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ABSTRACT 

The growing issues of energy shortage and the environmental crisis have 

resulted in new challenges for the automotive industry. Conventional commercial 

vehicles such as refuse trucks and delivery vehicles consume significantly more energy 

than other on-road vehicles and emit more emissions. It is important to make these 

vehicles more fuel efficient and environmentally friendly. Hybrid powertrains provide 

a good solution for commercial vehicles because they not only provide optimum 

dynamic properties but also substantially reduce emissions. For most commercial 

vehicle powertrains, the internal combustion engine (ICE) is the only power source that 

provides power to the driveline. The emission reduction faces a limit since a high-

powered engine is required to meet the dynamic properties of those heavy-duty 

vehicles. Also, the high-powered engine cannot avoid operating in low efficient areas 

due to the fact that these vehicles continually drive at low speeds on designated city 

routes. However, hybrid powertrains allow commercial vehicles to select lower 

powered engines because they are equipped with multi-power sources to supply torque 

together to the driveline. Therefore, hybrid powertrains are a natural fit for commercial 

vehicles. For this reason, an alternative series hybrid drivetrain system, which contains 

an electric tandem axle module, has been designed for those heavy-duty commercial 

vehicles like city transits and refuse trucks. In order to prove the theoretical efficiency 

and practicability of this application, the modeling methodology for specification of 

system architectures and hybrid drivetrain control strategies will be provided in this 

paper with the demonstration of simulation methods and results. [12] 
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CHAPTER 1 

Introduction 

The civilization of human society has dramatically changed since Karl Benz 

introduced the first petrol powered automobile to the world in 1885. Automobiles were 

one of the main contributing factors boosting modern industrial economy progress. 

However, the negative effects of vehicle popularization like air pollution, climate 

change, and energy sustainability have also been brought to the table along with the 

benefits. Therefore, reducing emission and improving fuel efficiency have become the 

focus of current automotive industries, especially when it comes to the heavy-duty 

commercial vehicles. New alternative energy source, such as vehicle electrification, are 

the irresistible general trend to minimize the load of Internal Combustion Engine.  

1.1 Objectives 

The main objective of this research was to design a new series hybrid drivetrain 

system for city operated heavy duty commercial vehicles, which contains a dual diesel 

engine generator and an electric motor tandem axle module. This tandem axle module 

is propelled by a dual-rotor electric motor, which provides the possibilities to induce 

brake energy recovery system into this application. Meanwhile, due to the series hybrid 

configuration, the dual diesel engines could operate with optimized engine speed. The 

modeling methodology for specification of system architectures and hybrid drivetrain 

control strategies are also provided along with the demonstration of simulation methods 

and results to prove the theoretical efficiency and practicability of this application.   
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1.2 Environment Impacts by Automobiles 

According to Winston and Virginia, automobiles play a major role in causing 

air pollution and global warming based on a large and growing share of pollutants 

greenhouse gas emissions worldwide [1]. 

There are three main types of air pollutants created by vehicles that could bring 

negative impact on air quality.  The first type of pollutants like carbon monoxide (CO) 

usually occurs when the combustion process of the fuel is incomplete. In this case, 

carbon monoxide (CO) is produced because of insufficient air. When inhaled carbon 

monoxide, human body will experience headache, dizziness, vomiting, and nausea. 

Certain long-term health problems like heart disease and lack of red blood cells are 

more likely to occur after breathing high levels of carbon monoxide over long periods 

of time. However, this does not mean that the complete combustion process of the fuel 

is clean. The major portion of air pollutions listed below are actually from the chemical 

processes during complete combustion, which depends on different types of fuels, 

engines, and environment conditions.  

 Carbon dioxide (CO2): It is also defined as a greenhouse gas that 

contributes to global warming. 

 Nitrogen oxides (NOx): The lung function can be damaged by this irritant 

gas.  

 Sulfur oxides (SOx): Sulfur dioxide (SO2) is a harmful compound to 

human respiratory system and mucous membrane.  

The final type of pollutants is formed by reactions of vehicle emissions in the 

atmosphere. The ground level ozone (O3), which is capable of damaging humans’ 

pulmonary function, respiratory system, and immune system, can be generated by 
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emissions of both hydrocarbons (HC) and nitrogen oxides (NOx). Nitrogen oxides 

(NOx) can also form nitric acid by reacting with water. In same case, sulfur oxides 

(SOx) forms sulfuric acid and sulfate aerosols in the atmosphere that contributes to acid 

rain and particulate matter (PM) pollution respectively. [1] Meanwhile, particulate 

matter (PM) is another unneglectable pollutant from vehicle emissions. Based on the 

size of particulates from vehicle emissions, Total Suspended Particulates (TSP) is 

defined into two categories: PM2.5 and PM10, which refers respectively to particulate 

matters with less than 2.5 μm diameter and 10 – 2.5 μm diameter. 

Since the combustion process of the engine is the source of the vehicle 

emissions patterns, the pollutants vary with different fuel type.  Emissions from petrol 

cars contain higher level of carbon monoxide (CO) and hydrocarbons (HC) when 

compare to a diesel car. Meanwhile, lead only occurs in emissions of petrol because of 

leaded gasoline. However, emissions of nitrogen oxides (NOx) and particulate matter 

are much higher in diesel cars. 

 

Figure 1. Share of U.S. Green House Gas by Sector, 2015 [3] 



4 
 

As demonstrated above, all kind of vehicle emissions contain serval harmful 

pollutants, which can cause series damages to either environment or human bodies in 

long term exposure. The research of David Mage and Olivier Zali indicates that there 

are 3.4 billion trips are taken by vehicle daily in major cities around world and at least 

120 million peoples in those cities spend a working day in roadsides settings, which 

means large numbers of people being exposed to high levels of pollutants has become 

a significant problem. [2] Plants are damaged by acid rain caused by nitrogen oxides 

(NO2); and sun’s ultraviolet radiation becomes more harmful because of deterioration 

of ozone. According to Figure 1. from United States Environmental Protection Agency, 

27% of total U.S. Green House Gas (GHG) emissions in 2015 are from transportation, 

which includes cars, trucks, commercial aircraft, and railroad. Within the transportation 

sector, 83% of emissions are from cars and trucks. [3] All of these greenhouse gas 

(GHG) emitted by automobiles prevents heat dissipation in the atmosphere, hence 

global temperatures start to increase, which is shown on Figure 2.  

 

Figure 2. Global Annual Mean Surface Air Temperature Change [4] 
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1.3 Emissions Regulations, Improvements, and Concerns  

Since the emissions of vehicles has become the major contributor to the negative 

impacts on environment, societies urge automakers to bring cleaner and more fuel-

efficient vehicles on the markets. With this momentum for automotive industrial 

building globally, more countries and regions are willing to enforce and develop more 

energy-efficiency policies for the transport sector. For instance, vehicles in Europe had 

to reach the requirements of the European emission standards and the regulation of 

carbon dioxide emissions. The European emission standards are known by a ‘Euro’ 

sign followed by Arabic or Roman numbers, and mandate the acceptable limits for 

vehicles emissions of nitrogen oxides (NOx), total hydrocarbon (THC), non-methane 

hydrocarbons (NMHC), carbon monoxide (CO) and particulate matter (PM). As Table 

1. and Table 2. from Kajsa Lindqvist shows, the Euro standard has been progressively 

and frequently tightened for the emission limits of both light-duty and heavy-duty 

vehicles in past 20 years. [5] 

 

Table 1. Emission standards for Light-duty vehicles in mg/km [5] 

 

Table 2. Emission standards for heavy-duty vehicles [5] 
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As a result of high-pressure policy, major automobile companies have brought 

a lot of new technologies and methods on the table to make these vehicles more fuel 

efficient and environmentally friendly. Catalytic converter, an exhaust emission control 

device, was one of those technologies popularized due to emissions limit policies. 

Therefore, since the main focus of automotive societies has switched to emission 

reduction and fuel saving, the preliminary results of air pollutant reduction were 

encouraging. Even with the high growth of vehicle sales, air pollutant from the 

emissions transportations has been decreasing for past decades. [6] The indexes of most 

key air pollutant emissions from U.S. transportation in Figure 3. are experiencing a 

downward trend from 1990 to 2013.  

 

Figure 3. Indexes of Key Air Pollutant Emissions from U.S. Transportation: 1970-2013 

[7] 

However, there are no standards for limits on CO2 emissions of heavy-duty 

vehicles, which means these commercial vehicles with heavy engine load missions are 

consistently consuming tremendous amount of fuel and producing tons of greenhouse 

gas (GHG) around world. The heavy commercial vehicles like refuse trucks and city 
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transit vehicles averagely travel around 40000 kilometers per year and consumes 80-

100 liters per hundred kilometers. [8] Meanwhile, when operated at a daily stop-go 

route in the city, the heavy-duty commercial vehicles waste a tremendous amount of 

energy during braking and idling, which also result in a highly inefficient driving cycle. 

[9] When we break down the U.S. Green House Gas (GHG) emissions by transportation 

sectors for 2015 in Figure 4. medium- and heavy-duty trucks account for 23% of 

greenhouse gas (GHG) emissions, almost half of the light-duty vehicles. Compare to 

all these fancy alternative drivelines been used on new passenger cars, it should be 

clearly to state that heavy-duty vehicles deserve more focus from the automotive 

industrials to improve the efficiency and emissions of their drivelines. 

 

Figure 4. Share of U.S. Transportation Sector GHG Emissions by Source, 2015 [3] 
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1.4 Alternative Driveline and Vehicle Electrification 

In order to reduce fuel consumption and greenhouse gas (GHG) emissions of 

vehicle, certain alternative drivelines have been introduced to todays’ automotive 

industrials. Even most of the innovations are for the passenger vehicles, there are still 

few that has been developed for the heavy-duty vehicles.  

The highly efficient internal combustion engine is one of most common 

pathways that contribute to improve fuel consumption and greenhouse gas (GHG) 

emissions. One approach that is been rapidly utilized in the market is engine downsizing, 

which can be achieved by better fuel vaporization from fuel direct injection (DI) and 

turbocharging. The energy losses from engine friction and torque conversion are 

unneglectable when maximizing driveline efficiency. Hence, redesigning drivetrain 

with more efficient transmissions and improving lubrication for better overall design in 

the engine are the solution right now for the better efficiency. [9] Meanwhile, new 

systems like engine start-stop can automatically stop and start the engine based on the 

operating conditions of vehicle, so fuel supply is able to be cut off when vehicles are 

stopped in traffics. This system allows the internal combustion engine of the vehicle to 

operate in a more fuel efficiency control strategy because of the no fuel consumptions 

for idle stop. It is useful to the vehicle that travels in city condition routes, however, all 

the improvements mentioned above have limitations and draw backs. Additional wear 

may be applied to the engine for the long-term use of engine start-stop, and saving of 

the fuel is not significant for low traffic routes. Therefore, to further enhance the 

improvements of clean technology on vehicles, alternative energy sources are brought 

on the table. 
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Alternative energy sources include non-petroleum-based fuel like hydrogen, 

biofuels, and natural gas; and electricity. Due to its greater reliability, vehicle 

electrification and hybridization have become the most common applications in recent 

years. Among the vehicle electrification applications, electric vehicles are the cleanest 

one, since the 20% of the electricity is generated from renewable energy sources and 

18% of the electricity is generated from nuclear in North America which is showed in 

figure 5. [10] However, the short range, lack of recharging points, heavy weights, and 

battery problems of electric vehicles have not been fully solved, so hybrid technology 

that utilizes both electric motor and internal combustion engine is developed as a 

transitional function for electric car. The hybrid system satisfies the improvement of 

these types of vehicles’ fuel economy and has less weight effects caused by batteries 

and other power storage devices. [11] Since the hybrid drivetrain provides the 

possibilities of inducing the braking energy recovery system by utilizing electric drive 

system, it is considered as one of the best choices for the city operated heavy-duty 

commercial vehicles. [12]  

 

Figure 5. North America electricity generation mix [10] 
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CHAPTER 2 

Literature Review 

This chapter provides an overview of the relevant literature and summary of the 

research on conventional heavy-duty commercial vehicles, hybrid vehicles, and brake 

energy recovery systems.  

2.1 Conventional Heavy-Duty Commercial Vehicle 

Heavy duty commercial vehicles are classified differently in different countries, 

but most of counties defined this type of vehicles by weight. So, the weight of heavy-

duty commercial vehicles, which is average 23000 Kg of curb weight in North America, 

shapes the characteristic of their powertrains and chassis. The reason of the high weight 

is because of the main job of the heavy-duty commercial vehicles, which is moving 

varieties of objects. The focus of this thesis will be on city operated heavy duty 

commercial vehicles like city transits, furniture delivery trucks, and refuse trucks.  

2.1.1 Engine 

Most of the heavy-duty commercial vehicles are using diesel engines, which 

have better lubrication properties, higher compression ratios and energy density. 

According to Rachel M. Zoyhofski, there are 55% of the energy turn into work by diesel 

engines, while gasoline engines can only convert 35%. [13] For the vehicles are 

required to travel 40000 kilometers per year and normally carry legal payload of about 

nine tons, the more durable diesel engines provide an ideal propulsion to system. 

Cummins X15, one of the top diesel engines, has been widely used for fire 

trucks in North America. As Table 3. demonstrated, this inline 6 diesel engine has 505 

to 600 hp and 1850 lb-ft of peak torque with 14.9 L displacement and 32,000 psi 

Injection Pressure. Based on the Figure 6. the X15 torque & horsepower curves, this 
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engine can reach peak braking horsepower at engine speed of 1850 rpm and peak torque 

between engine speeds of 1100 rpm and 1700 rpm. [14] 

 

Table 3. X15 Performance Series for Fire & Emergency (2017) Specifications [14] 

 

Figure 6. X15 Performance Series for Fire & Emergency Torque & Horsepower 

Curves [14] 
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2.1.2 Drivetrain 

The drivetrains of the heavy-duty commercial vehicles are varied by the distinct 

functions of the trucks. Generally, they have similar but simpler structures of passenger 

vehicles’ drivetrains. There are two typical heavy tractor configurations, which are 4x2 

and 6x4. The 4x2 consists of four wheels and only two of them are used to propel the 

vehicle, and the 6x4 has 6 wheels and 4 of them propel the vehicle. [15] The Figure 7. 

provide an example of 6x4 drivetrain from Prima LX 4923.S, where can be showed that 

torque is transferred from engine to a 9-speed gearbox by a 430mm diameter clutch, 

and two cutaway differential carriers pass the torque to wheels trough tandem axles. 

 

Figure 7. Prima LX 4923.S Drive Train. [16] 

The gearbox used in Prima LX 4923.S is a Tata G 1150 OD 9-speed Gearbox 

which deals with input torque of 1150 Nm with a centre distance of 125 mm. To achieve 

the better start ability and maneuverability, the gear ratios indicated in table 4. are used.  

Table 4. Gear ratio of Tata G 1150 OD 9-speed Gearbox [16] 

Crawler 1st 2nd 3rd 4th 5th 6th 7th 8th Rev 

12.868 9.139 6.725 4.903 3.571 2.559 1.883 1.373 1.00 13.399 
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A cutaway differential carrier is displayed in Figure 8., where the black line 

represents the torque transfer flow. When the power divider is locked, torque is 

delivered from input shaft through helical gears to ring gear and differential side gears, 

which will transfer the torque to each wheel trough the drive axle. When the power 

divider is unlocked, torque is delivered from differential. [17] 

 

Figure 8. Cutaway Differential Carrier [17] 

In Figure 9. the tandem drive axles have front axle and rear axle connected by 

a propeller shaft. So, torque provided by differential is delivered from propeller shaft 

to rear axle, when the power divider is unlocked. Otherwise, torque will go through the 

propeller shaft directly to rear axle. [17] 
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Figure 9. Tandem Drive Axles [17] 

2.1.3 Frame 

The typical structure of a truck frame is based on two parallel rails held together 

by riveted and bolted cross members, which is well known as a ladder frame. For a 6x4 

truck, the frame is sited on a straight front axle by a working leaf-spring suspension and 

tandem drive axles by a bogie suspension. The materials of most frames are steels or 

aluminum; and the vehicle’s floor plan will be placed above the frames. It has ability 

to provide better beam resistance and worse torsional resistance, which makes the frame 

more applicable to heavy trucks rather than passenger cars.  

In Figure 10. the configuration of the MAN CLA 26.280 6x4 BB Tipper’s 

chassis is presented as the example of the typical 6x4 truck chassis. According to 

MAN’s specification brochures, the L09 wheelbase is 3875mm, the L02 is rear axle 

spacing which is 400mm, L10 is front overhang which is 1293mm, L11 is rear overhang 

which is 1300mm, and L43 is chassis length behind cab of 5025mm, so the overall 

length of the chassis is 7257mm and foremost point of body from front axle is 850mm.  
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Figure 10. Man CLA 26.280 6x4 BB Tipper Chassis [18] 

2.2 Hybrid Vehicle 

As mentioned above the hybrid systems have become the major solution for the 

auto industries, whose desire is to offer the ‘greener’ trucks to the world, so researches 

have been conducted to indicate the characteristic, benefits, and drawbacks of different 

hybrid technologies.  In this section, hybrid vehicles are categorized and reviewed in 

three main classes: series, parallel, and hydraulic.   

2.2.1 Parallel Hybrid Vehicle 

The parallel hybrid is the most common hybrid drivetrain for current passenger 

vehicles, which usually has an internal combustion engine and an electric motor directly 

joined at an axis by a transmission shaft. The internal combustion engine is powered by 
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fuel or diesel and the electric motor is powered by battery can propel the vehicle by the 

engine alone or by the motor alone, or by both together at same rotational speed and 

torque. The internal combustion engine also used as a generator which convert 

mechanical energy to electrical energy that charges the battery. [11] Since the parallel 

hybrid has a mechanical connection between each power sources, the transmission is 

required in this drivetrain system like shown in Figure 11. There is a clutch between 

the engine and transmission to allow electric launch without starting the engine. 

 

Figure 11. Topology of a parallel hybrid electric vehicles [19] 

The better drivetrain efficiency is the main advantages of parallel hybrid electric 

vehicles because of controllable couple operation of the internal combustion engine and 

the electric motor, which allow varied capacities of the engine and scalable electrical 

power system with same drivability of the vehicle. [19] However, due to the most 

parallel hybrid vehicles only need one electric motor with a low power rating, 

regenerative braking system will be less efficient and more mechanical dependable in 

parallel hybrid. 
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2.2.2 Series Hybrid Vehicle 

Figure 12. shows the component configuration of a series hybrid system. The 

internal combustion engine (ICE) only drives the electric generator, which recharges 

the larger battery packs or propel the wheels by the electrical motor through Electric 

Power Splitter. Therefore, there is no mechanical connection between the ICE and the 

wheels. The ICE converts thermal energy into the mechanical energy, and thereafter, in 

the generator, turned into electric energy, used to charge the battery which in its turn 

supplies the electric traction motor. [20] 

 

Figure 12. Topology of a series hybrid electric vehicles [19] 

Due to more energy conversions, which contributes to high energy loss, the 

overall efficiency of the series hybrid power train is significantly affected.  A heavier 

battery with higher capacity is unavoidable for series hybrid vehicles, since the internal 

combustion engine only works as an electric vehicle range extender. However, the 

impact of the extra batteries’ weight plays a less significant role for heavy duty 

commercial vehicles like garbage trucks, which weighs about 13 to 28 tones. 

Meanwhile, instead of operating over a wide variety of engine speeds, the optimized 

engine speed can also be run continuously even during the stop-start traffic. In this case, 

the series hybrid power train system can provide an optimal operative strategy for fuel 
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efficiency and exhaust emissions. [11] Moreover, the electric motors of the series 

hybrid vehicle are required to handle peak power, which means they generally have 

higher power rating. Therefore, the series electric hybrid vehicles are more suitable for 

brake energy recovery system then parallel electric hybrid vehicles. 

2.2.3 Hydraulic Hybrid 

Hydraulic hybrid is an important branch of hybrid technology especially when 

it comes to heavy duty commercial vehicle. It has been widely utilized and developed 

by automotive manufactory and institutions. The hydraulic motor and/or pump is the 

secondary power source in hydraulic hybrid vehicle, which is also similar to hybrid 

electric vehicles’ electric motor. [21] Therefore, hydraulic hybrid can be further 

classified into series, parallel and series-parallel, based on their power train layout.  

In parallel hydraulic hybrid, the internal combustion engine is the prime power 

source, and produces torque to the wheels through the transmission, shaft, and 

differential, like Figure 13. The hydraulic components are used as energy bumper to 

provide assistance to vehicle’s stopping and accelerating. 

 

Figure 13. Parallel Hybrid Hydraulic Vehicle (PHHV) 
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In series hydraulic hybrid configuration in Figure 14. from my colleague Dhruv 

Bhavsar, the internal combustion engine only connects to a pump to store energy into 

an accumulator, which uses high pressure to propel the vehicle.  

 

Figure 14. Series Hybrid Hydraulic Vehicle (SHHV) [21] 

Both series and parallel hydraulic hybrids are capable of regenerative braking. 

According to my colleague Dhruv Bhavsar, ‘when compare to electric hybrid vehicles, 

high efficiency of the hydraulic pump/motor and high-power density of accumulator at 

approximately 500-1000 W/kg contribute in a more effective regeneration of energy 

while deceleration. However, comparatively low energy density of accumulator creates 

special challenge and requires novel approaches in the development of supervisory 

control strategy.’ [21] Based on above information, the series hybrid electric drive train 

is more suitable for heavy duty commercial vehicles for city operations.  
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2.3 Regenerative Braking 

The brake energy recovery system, also referred to the regenerative braking 

system, is of vital importance to the energy efficiency of the series hybrid commercial 

vehicle, especially for the frequently stop-go vehicles like garbage truck. [11] 

In a typical conventional braking, disc brake is most common braking system 

for current automobiles to slow the rotation of the wheels by the friction between brake 

pad and brake rotor. In this case, the friction pads are pressed into brake disc by the 

piston of the fixed caliper, which contains hydraulic force from brake fluid cylinders. 

Another type of braking, known as drum brakes, slows the rotation of the wheels by 

pressing the friction pad to the inner surface of drum of the wheel. Both of the 

traditional braking systems turn most of the kinetic energy of the moving vehicle into 

a tremendous amount of heat energy by friction. [22] Therefore, the recovery of vehicle 

kinetic and potential energy in conventional braking systems becomes the one of major 

development in hybrid vehicles. [11] 

As mentioned before, the characteristic of electric motor in hybrid electric 

vehicles is enabling to allow the bi-directional power flow, which helps the braking 

system to seize the kinetic energy as electricity by using the motor as a generator. The 

electricity from generator can be saved in an energy storage device like a battery or 

ultra-capacitor. According to Lester J. Erlston’s illustrations, “a division of a vehicle’s 

total kinetic energy, based on a realistic assumption that 50% of the available kinetic 

energy from a braking or slowing event is able to pass through the recovery system, 

and shows that a) 40% of this energy will be stored in the batteries for future use, and 

b) that the foundation brakes will experience a load reduction from 95% to 45% of the 

total kinetic energy for a comparable non-kinetic energy recovery system braking event, 
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the other 5% being for losses due to aerodynamic drag and road-to-tire friction.” [23] 

When the hydraulic hybrid vehicle starts braking, the momentum of the wheels impels 

the pump to pressurize fluid into the accumulator. This highly pressurized fluid in 

accumulator drives the pump to accelerate vehicle after braking. Around 75% of the 

friction braking energy are regenerated by this process. [24] 
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CHAPTER 3 

Design of The Series Hybrid Commercial Vehicles’ Drivetrain 

The design and development of a new series hybrid commercial vehicles 

drivetrain, which is powered by Dr. Oriet’s inventions of “Structural Electric Tandem 

Axle Module” and “Series Hybrid Generator”, which provides the fundamental 

structural of this series hybrid powertrain, are presented in this chapter. The details of 

battery and ultra-capacitor are also explained with brake energy recovery system.  

3.1 Configuration of Drivetrain  

As Figure 15. demonstrated, the series hybrid drivetrain contains a dual-diesel 

engine generator, which is invented by Dr. Oriet, consists of two turbo diesel engines 

connected by an electric generator with two hydraulic internal wet-disk clutches 

between. The power generated by the dual diesel engine only is delivered to each 

components of the vehicle through mechanical and electrical paths, which are 

respectively represented by blue and red lines. The dual-diesel engine provide power 

through the mechanical path to the electric generator to produce the alternating current 

(AC) as the function of the range extender. The alternating current (AC) can be 

converted to direct current (DC) by a convertor, then dispatched by the controller unit 

through two electrical paths to either charge the battery or drive the dual rotor electric 

motor. The dual rotor electric motor transfers the electrical power to mechanical power 

by interacting electromagnetic field patterns from direct current (DC) and outer rotor’s 

permanent magnets. Thus, the torque produced from the electric motor is mechanically 

delivers to the wheels through the differentials on each tandem axle. When vehicle 

starts braking, the dual rotor electric motor can also work as a generator to recovery the 

braking kinetic energy as electric power, which will be stored in ultra-capacitor first, 
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then either slowly charge the battery or power the electric motor based on the State of 

Charge (SOC) of the battery. [12]  

 

Figure 15. Series Hybrid Drivetrain Block Diagram [11] 

3.2 Dual Diesel Engine Generator  

This series hybrid generator has an outer rotor and inner rotor with generator 

winding connected to two identical diesel engines by two hydraulic internal wet-disk 

clutches, which will allow them to rotate in opposite direction. This dual diesel 

generator as Figure 16. showed will be working as a range extender in this application, 

which means that the diesel engines can be continuously run at the optimized engine 

speed even during the stop-start traffic. According to Dr. Oriet, “the analysis of that 

drive shows that this selective use of the engines can enable a vehicle to achieve 

significant fuel economy improvements in comparison to improvement which is likely 

to be obtained in engines and engine controls through use of conventional single-

engine/powertrain design.” [25] [12] 
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Figure 16. Structural Electric Tandem Axle Module and Series Hybrid Generator by 

Dr. Oriet [25] 

3.3 Electric Motor Tandem Axle Module 

The core of this design is based on Dr. Oriet’s invention of “Structural Electric 

Tandem Axle Module”, which is an electrical powered tandem axle that provides torque 

by a dual-rotor motor in the center. [11] 
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Figure 17. Electric Motor Drive of Structural Electric Tandem Axle Module by Dr. 

Oriet [26] 

Normally, commercial trucks like refuse vehicles have a chassis, which is a 

combined of pair of frame rails cross joined with front and rear axles that clamp to the 

suspensions. The internal combustion engine of the trucks provides the torque through 

the driving shaft located as a longitudinal axis from front to rear. As we know, the 

torque delivered to the wheels by the engine is applied to the frame at the same time. 

Meanwhile, there are also appreciable amount of torque transferred from the driveline 

to the frame by the suspension system due to the rough road. This condition can cause 
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repeated twisting to the torsional rigid components that are attached to the frame rails, 

and half of torque produced by the engine is lost. [26] In order to change the repeated 

torsion absorption into an exploitable condition and improve the fuel efficiency of 

commercial trucks, Dr. Oriet came up the idea of a structural electric tandem axle 

module as Figure 17. This module is propelled by a dual-rotor electric motor, which 

has two rotors to deliver the same torque from rotor shafts’ bevel pinion gears to the 

differential gears that connected to front and rear tandem axles’ wheels. Instead of 

wasting the half of the rotational mechanical torque as strain on frame, the module 

perfectly exploits the characteristic of dual rotors motor, which results in better 

handling and a more efficient driveline. Moreover, there is reduction of torque applied 

to the frame side rails, the weight of chassis is able to be reduced. At same time, the 

utilization of the electrical drive system induced in the hybrid system into this 

application, which endows the brake energy recovery system a more applicable 

platform. [11] 

3.4 Battery  

The battery is of vital importance to hybrid electric vehicle, since the energy 

capability of the battery determines the maximum power limitation. To design a suitable 

battery packs for this application, the types, principle, and properties of the battery cells 

are specified by key attributes, which are the cycle life, specific energy density, specific 

power, and cost of manufacturing.  

There are several types of battery that been used in real world applications, and 

the most used options for automotive industries are the following: lead acid, nickel 

metal hydride, and lithium-ion. Since the series hybrid vehicles require high specific 

power and high energy storage capacity, the low energy density character of lead acid 
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battery, which indicates its low energy storage capacity means it is not suitable for this 

application. The comparisons of nickel metal battery and lithium-ion battery clearly 

stated that lithium-ion battery provides higher energy and power density with lighter 

weight and long cycle life. Therefore, the lithium-ion battery which has over 100 Wh/kg 

energy density been selected in this application. 

The lithium-ion battery’s working principles are based on three aspects; anode, 

electrolyte, and cathode. According to Vishal Mahajan, ‘When two chemicals contact 

with each other, they react with each other based on their tendency to gain or lose 

electrons. An electrochemical cell is designed in such a way that one electrode will 

undergo oxidation while the second electrode will undergo reduction when both the 

electrodes are connected by external electronic path provided by anode and cathode.’ 

[28] In this case, potential difference between each ends of the external electronic path 

is known as the open circuit voltage, which can be evaluated by Eq.1. where ∆G is 

Gibbs Free energy, F is Faraday Constant valued as 9.65 x 104 C/mol, and n is number 

of charge carriers, so its value is decided by the type of host materials and the lithium 

concentration. [28] 

𝑉𝑜𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =
∆𝐺

𝑛𝐹
                                    Eq. 1 

Normally a fully functional series hybrid truck’s battery pack requires more than 300 

voltage, but a typical lithium-ion battery operates from 3 to 4.2 v. Hence, a multi-cells battery 

pack, whose cells are connected in series, is utilized in this power-train system. The Lithium 

Nickel Manganese Cobalt Oxide battery is considered as the most suitable type for this battery 

pack. It is using the combination of nickel-manganese-cobalt (NMC) as cathode material. The 

Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) battery has 610–650Wh/kg energy 

density, 250-340 W/kg specific power, 150–220Wh/kg specific energy. 0.7c–1c charge rate, 1c 
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discharge rate, around 2000 cycle life, and costs around $450 per kWh. It is apparently the most 

durable battery with higher energy density from Table 5. [29], which indicates energy density, 

cost, and lifetime of different types of lithium-ion battery. 

Table 5. Cathode materials Overview. [29] 

 

3.5 Ultra Capacitor  

To maximize the recovery of regenerative brake energy, protect battery from 

rapid charging and discharging overload, and extend battery’s life time, a suitable 

ultracapacitor is set to be used in a high-power situation of this hybrid drivetrain.  

First, the type of the capacitor needs to be decided from two storage principles, 

which are electrochemical double-layer capacitor (EDLC) and electrochemical pseudo-

capacitance. Based on Andrew Burke, ‘the electrochemical double-layer capacitor 

(EDLC) is able to store electrostatically energy as positive and negative charges 

separation in the double layer formed at the interface between the solid electrode 

material surface [30], which are shown in the electrochemical double-layer capacitor 

Figure. 18 [31].’ It is widely used as the back-up and peak-power sources with battery 

as the primary sources. [31] By utilizing activated carbon as electrode, the 

electrochemical double-layer capacitor achieves both higher energy density and higher 

power density than electrochemical pseudo-capacitance. [30] 
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Figure 18. The Electric Double Layer Capacitors (EDLC) Layouts. [31] 

Selecting a certain available electrochemical double-layer capacitor (EDLC) on 

the market depends on the size of the supercapacitor, which is fit to store the maximum 

regenerative brake energy. The capacitance is the most important characteristic of each 

ultra-capacitor. The higher equivalent capacitance 𝐶𝑒 of the ultra-capacitor, the higher 

the energy can be stored in it. In Eq. 2,  𝐸𝑐  is the energy of super-capacitor, 𝑈𝑚𝑎𝑥 is 

maximum voltage of super-capacitor, 𝑈𝑚𝑖𝑛 is minimum allowable voltage of super-

capacitor and 𝑑 is percentage discharge ratio from Eq. 3. [32] 

𝐶𝑒 =  
2𝐸𝑐

𝑈𝑚𝑎𝑥
2 [1−(𝑑/100)2]

                                    Eq. 2 [32] 

d =  
𝑈𝑚𝑖𝑛

𝑈𝑚𝑎𝑥
× 100                                          Eq. 3 [32] 
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3.6 Brake Energy Recovery System 

In the configuration of the single motor tandem axle module powered hybrid 

commercial vehicles, the electric motor has an outer rotor connected with rear 

differential and an inter rotor connected with front differential. Both front and rear 

differentials are rotationally coupled with the drive shafts of front and rear tandem 

axles. When the braking action is started, the controller unit which connects directly to 

the electric motor drops the applied voltage to be less then back electromotive force 

(back-EMF) voltage (V𝑏), so the armature torque is reversed with the armature current. 

Therefore, the speed of the rotor of the electric motor is falling with the drive shaft 

connected to the wheels, as along as the power is generated by greater EMF. As we 

known, the battery has limited capacity, which is more likely to be overloaded by the 

suddenly large amount of recovered energy. In order to extend the battery life and 

improve the efficacy, the DC current, generated by electromagnetic field, is stored in 

an ultra-capacitor first. The controller units will dispatch the energy flow from the ultra-

capacitor to slowly charge the battery and power the electric motor later. [11] 

The braking performance is always a priority consideration when design a 

braking system. The capability of braking system is defined as the response speed of 

stopping vehicles and the stability of the vehicles’ braking action at any road condition. 

In order to stop the vehicle as fast as possible, the braking system has to provide enough 

torque to slow the rotation of each wheel. Meanwhile, this amount of torque is supposed 

to be controlled by antilock braking system (ABS), which avoids the wheels to be 

locked to cause uncontrolled skidding. [23] Due to the function of the single motor 

tandem axle module powered hybrid commercial vehicles, the braking torque by 

electric motor/generator is easier to be controlled for each tandem axle. However, the 

torque control for each wheel is still required, hence two brake rotors are introduced to 
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site each side of the differential mechanisms on each tandem axle. These two rotors are 

smaller than big disc brakes for heavy duty vehicles, since the tremendous number of 

loads on the discs are extracted by motor/generator. For this reason, vehicle weight 

reduction can be achieved as well as lighter unsprang weight. Furthermore, a 

conventional brake system is applied to the front axle of the trucks. [11] 
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CHAPTER 4 

Theoretical Simulation and Modeling 

This chapter explains theoretical modeling of the series hybrid heavy-duty 

commercial vehicle powertrain powered by motor tandem axle module and dual diesel 

engine generator module, presents details of AVL Cruise model, and numerical 

simulations. These models are used for testing the fuel consumption and drivetrain 

efficiency of this application on city operated driving cycles.    

4.1 Vehicle Dynamics 

The simulation process starts by determine the propulsion and braking power 

requirements of the vehicle. By applying the New York city driving cycle into the 

vehicle dynamic model, the tire rolling resistance force  𝐹𝑅𝑅 , aerodynamic drag 

resistance force  𝐹𝑎𝑒𝑟𝑜 , road grading ( 𝜃 ) resistance and inertia resistance will be 

generated to estimate the tractive force and power of city operated heavy-duty 

commercial vehicles. [12] 

4.1.1 Aerodynamic Drag 

The aerodynamic drag, also known as fluid resistance, is basically a friction 

force acting opposite to the body of moving subject from the surrounding air. In vehicle 

dynamics, it can exist as viscous friction between air and the surfaces of vehicle and 

shape drag from the high-pressure zone at the front of the vehicle to the low-pressure 

zone at the tail of the vehicle as Figure 19 showed.  
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Figure 19. Shape Drag [33] 

Hence, aerodynamic drag resistance force  𝐹𝑎𝑒𝑟𝑜  can be calculated as Eq. 4, 

where 𝜌𝑎𝑖𝑟 is the density of air, 𝐶𝐷 is the aerodynamic drag coefficient of vehicle body, 

𝐴𝑓 is the frontal area of the vehicle, and 𝑉𝑓 is the final speed of the vehicle. [27] 

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑓𝑉𝑓

2                                      Eq. 4 [27] 

4.1.2 Rolling resistance  

Rolling resistance is the force resisting the motion when a subject is rolling on 

a hard surface, which is caused by the deformation of the rolling subject’s material and 

hard surface. It normally occurs between vehicle wheels and road surface, where the 

deformation of the tires’ material causes hysteresis losses, which results in a distribution 

of ground reaction forces shifting forward. [27] Thus, a resist rolling moment 𝑇𝑟 formed 

by the forward shifted ground reaction force and normal load as Figure 20. showed. 
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Figure 20. Tire deflection and rolling resistance on a road surface [33] 

The rolling resistant moment, as shown in Figure 20. can be calculated by Eq. 

5 [33] where P is norm load and a is the shifted distance from center of the tires. The 

rolling resistance 𝐹𝑟, is the equivalent force opposite to the force F in Figure 20., and 

can be expressed as Eq. 6 [33]. Considering that vehicles normally travels on surfaces 

that are not horizontal, a slope θ is applied to Eq. 6 to achieve the final rolling resistance 

𝐹𝑅𝑅  in Eq. 7, where 𝑓𝑟  is the rolling resistance coefficient which is ratio of shifted 

distance from center of the tires a to effective radius of the tire 𝑟𝑑. The rolling resistance 

coefficient is normally around 0.01 for low-resistance tires on heavy-duty commercial 

vehicles. [33] 
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𝑇𝑟 = Pa                                                 Eq. 5 [33] 

𝐹𝑟 = F =  
𝑇𝑟

𝑟𝑑
=  

𝑃𝑎

𝑟𝑑
= 𝑃𝑓𝑟                                  Eq. 6 [33] 

𝐹𝑅𝑅 = 𝑃𝑓𝑟𝑐𝑜𝑠𝜃                                         Eq. 7 [33] 

4.1.3 Grading resistance  

When road has an upward or downward slope, which is more common in real 

world applications, the vehicle is either experiencing resistance in the uphill trip or 

assistance in the downhill trip. This resistance or assistance force is called grading 

resistance 𝐹𝐺𝑅 that is given by Eq. 8. [33] 

𝐹𝐺𝑅 = mgsin(θ)                                           Eq. 8 [33] 

4.1.4 Inertial resistance  

The rotational inertia resistance can be produced by the acceleration of the 

vehicle and its spinning components. As the Newton's second law of motion stated, the 

inertia resistance 𝐹𝐼𝑅 can be expressed as Eq. 9. [27] 

𝐹𝐼𝑅 = 𝑚
𝑑𝑣

𝑑𝑡
                                                   Eq. 9 

4.1.5 Tractive Force and Power 

According to the resistive forces diagram for car model on Figure 21., the 

tractive force 𝐹𝑡𝑟𝑎𝑐 must be estimated by Eq. 10 and Eq. 11. [12] 
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Figure 21. Resistive Forces Diagram for Car Model [27] 

𝐹𝑡𝑟𝑎𝑐 =  𝐹𝐼𝑅 + 𝐹𝐺𝑅 + 𝐹𝑅𝑅 + 𝐹𝑎𝑒𝑟𝑜                         Eq. 10 

𝐹𝑡𝑟𝑎𝑐 =  𝑚
𝑑𝑣

𝑑𝑡
+  𝑚𝑔𝑠𝑖𝑛(𝜃) +  𝑃𝑓𝑟𝑐𝑜𝑠𝜃 +  

1

2
𝜌𝑎𝑖𝑟𝐶𝐷𝐴𝑓𝑉𝑓

2    Eq. 11 

The curb weight of the vehicle is 23000 Kg, while gross weight m is 25000kg. 

The dv is the speed difference of the vehicle, g is the gravity acceleration in 9.80 m/s2, 

θ is the road grading. After multiply Equation 1 by vehicle final speed 𝑉𝑓, the power 

rating of the motor 𝑃𝑡𝑟𝑎𝑐 can be estimated as Equation. 12. 

𝑃𝑡𝑟𝑎𝑐 =  𝑚𝑉𝑓
𝑑𝑣

𝑑𝑡
+  𝑚𝑔𝑉𝑓𝑠𝑖𝑛(𝜃) +  

2

3
𝑚𝑔𝑉𝑓𝑓𝑟𝑐𝑜𝑠𝜃 + 

1

5
𝜌𝑎𝑖𝑟𝑔𝐶𝐷𝐴𝑓𝑉𝑓

3   Eq. 12 

Where 𝑉𝑓 is the final acceleration speed of 105 km/h, as the speed limits for 

urban commercial vehicles in Toronto, Canada, 𝜌𝑎𝑖𝑟 is the air density in 1.202 kg/m3, 

𝑓𝑟 is the tire rolling resistance coefficient assumed as 0.01, 𝐴𝑓 is the front area of the 
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normal rear loading collection vehicle in 10.75m2, and 𝐶𝐷 is the aerodynamic drag 

coefficient assumed to be 0.5. [12] By applying the New York City driving cycle into 

the vehicle dynamic model in MATLAB, the result is presented in Figure 22. [12], 

where the required power with no regenerative braking can be reflected as 485kw. 

Meanwhile, the available power for regenerative braking system is going to be the 

overall required braking power, which is the same value of 485 kW in different 

direction, times the estimated 77% regenerative braking efficiency. [12] 

 

Figure 22. Drive Cycle Power Diagrams by Dynamic Model [12] 

4.2 Diesel Engine 

The diesel engine in this application is mainly working as the primary power 

source for the generator. Unlike the conventional diesel engines of heavy trucks, this 

diesel engine is set to be constantly operated at most optimal engine speed. In this case, 

the minimum specific fuel economy and most efficient characteristics of the engine 

with enough power output are required to be determined.  
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The typical fuel economy characteristic of an internal combustion engine is 

shown in Figure 23. [34], where the optimal operation area is located within the center 

area of the oval-shaped contours. When engine operates at the most optimal operation 

point, which is around 2500 rpm engine speed with 50 kw power output, its minimum 

specific fuel consumption is at lowest level. Since the engine consumes the least amount 

of fuel within that area, the engine efficiency also reaches its best at that operating point. 

Therefore, the lowest fuel consumption for its power output is determined by the load 

power 𝑃𝑖  and the specific fuel consumption 𝑔𝑖 , and best efficiency of the engine is 

determined by power output and fuel energy input. [27] The total fuel consumption of 

a driving cycle 𝑄𝑡 can be calculated by Eq. 13, where ρ𝑓𝑢𝑒𝑙 is the mass density of fuel 

and ∆t is the time interval of whole cycle.[33] The engine efficiency, η𝑒, is obtained by 

Eq. 14, where 𝑇𝑒 is the torque output of engine, 𝜔𝑒 is the output speed of engine, 𝑄𝑡
̇  is 

the rate of fuel consumption, and 𝐻𝑓𝑢𝑒𝑙is the heating value of the fuel. [27] 

𝑄𝑡 = ∑
𝑃𝑖𝑔𝑖

1000𝜌𝑓𝑢𝑒𝑙
∆𝑡𝑖                                  Eq. 13 [33] 

η𝑒 =  
𝑇𝑒𝜔𝑒

𝑄𝑡̇𝐻𝑓𝑢𝑒𝑙
                                        Eq. 14 [27] 
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Figure 23. Example of Engine Characteristics and Optimal Operating Region [34] 

Based on the results of dynamic model, the eight cylinders turbocharged diesel 

engines was selected in this application, which has 8478 cm3 displacement and 80 ℃ 

working temperature. The fuel type is selected as diesel with 44000kJ/kg heating value 

and 0.76 kg/l density. By entering all the parameters into engine model from the AVL 

Cruise database, the engine fuel map is generated as Figure 24., where diesel engine 

reaches its optimal operation point at engine speed of 1000 rpm. 
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Figure 24. Engine Fuel Map 

4.3 Electric Components 

4.3.1 Motor and Generator  

The efficiency and the maximum torque are the most important properties for 

both the electric motor and the generator. Since the torque output of the electric motor, 

𝑇𝑜𝑢𝑡, is equal to power output 𝑃𝑜𝑢𝑡 times efficiency η𝑒𝑚 divided by angular speed ω, 

and power rating of the electric motor has been indicated as the required power 485kw 

in vehicle dynamic model, the efficiency of the electric motor can be calculated with 

respect to speed and torque. The tractive force, 𝐹𝑡𝑟𝑎𝑐, is applied to the wheels with radius 
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R, which is selected as 515 mm, so the torque on the wheel, 𝑇𝑤, can be calculated as 

Eq. 15. The required output torque of motor, 𝑇𝑜𝑢𝑡_𝑟𝑒𝑞, transfers to the wheels though a 

differential on each axle. Hence, the output torque of motor can be obtained by Eq. 16, 

where 𝑁𝑑𝑖𝑓 is the differential ratios of 6.06. 

𝑇𝑤 =  𝐹𝑡𝑟𝑎𝑐𝑅                                                  Eq. 15 

𝑇𝑜𝑢𝑡_𝑟𝑒𝑞 =  
2𝑇𝑤

𝑁𝑑𝑖𝑓
                                              Eq. 16 

After established the estimation, an electric machine model has been created in 

AVL Cruise, which is a 360 V nominal voltage motor with 10000 1/min maximum 

speed and 2472 Nm maximum torque. It is shown in Figure 25. that motor torque is 

constant from zero speed to 3000 1/min, which is called corner speed that limits motor 

torque to maximum value.  

 

Figure 25. Speed-Torque Curve of Electric Motor 
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The efficiency of the electric motor is also shown in Figure 26. The highest 

efficiency of 93% happens when speed reaches around 4900 1/min and torque is around 

1300 Nm.  

 

Figure 26. Efficiency Map of Electric Motor 

4.3.2 Battery  

A multi-cells lithium nickel manganese cobalt oxide (NMC) battery pack is 

adopted in this application. In order to figure out the size of battery for this drivetrain, 

the whole battery pack is modelled as a simple resistance model as in Figure 27.  
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Figure 27. Schematic Model of The Battery Model [21] 

 The terminal voltage of whole multi-cell, which is the potential difference 

between the battery terminals with load applied, can be calculated as a simple resistor 

capacitor circuit in Eq. 17, where Voc is open circuit voltage, Rint is internal resistance 

of the battery, Vt is battery terminal voltage and I bat is battery output current. [12] 

𝑉𝑡 =  𝑉𝑜𝑐 − 𝐼 𝑏𝑎𝑡° 𝑅𝑖𝑛𝑡                               Eq. 17 [21] 

The open circuit voltage is the voltage between the battery terminals with no 

load applied, which is a function of the battery state of charge (SOC). Meanwhile, 

internal resistance of the battery, which causes decline in efficiency 𝜂𝑏𝑎𝑡𝑡 when 

increasing, is also a function of state of charge (SOC). According to Karin Jonasson, 

the sum of electric power output of the battery, 𝑃𝑏𝑎𝑡𝑡, is equal to the battery losses that 

act on the deviation of power, which is the demanded power from drivetrain system, 

can be expressed as Eq. 18. [35]  Thus, the terminal voltage of the whole battery pack 
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is 360 V, which results in a 100 cells of lithium nickel manganese cobalt oxide (NMC) 

battery. 

𝑃𝑏𝑎𝑡𝑡 =  𝑉𝑜𝑐𝐼𝑏𝑎𝑡                                             Eq. 18 

When power loss from other battery power electric components like air 

condition and fan is neglected in this model, the battery efficiency, 𝜂𝑏𝑎𝑡𝑡 , can be 

expressed as Eq. 19, when the battery is charged or discharged by power 𝑃𝑐ℎ𝑎𝑟𝑔𝑒 . 

Therefore, the total battery efficiency is also based on the current state of charge of 

battery. [35] 

𝜂𝑏𝑎𝑡𝑡 =  
𝑃𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑏𝑎𝑡𝑡
                                      Eq. 19 [35] 

4.3.3 Ultra Capacitor 

The size of super-capacitor is based on the maximum energy 𝐸𝑚𝑎𝑥 demanded 

to be stored, which basically depends on regenerative braking. According to vehicle 

dynamics model the regenerative braking system will be able to restore 373kw power 

during the braking action. The maximum energy storage,  𝐸𝑚𝑎𝑥 , can be also be 

expressed as Eq. 20. 

𝐸𝑚𝑎𝑥 =
𝐶𝑒𝑈𝑚𝑎𝑥

2

2
                                            Eq. 20 [32] 

The equivalent capacitance, 𝐶𝑒, which can be calculated by Eq. 2., where 𝐸𝑐  is 

the energy of ultracapacitor can provide, 𝑈𝑚𝑎𝑥 is maximum voltage of ultracapacitor, 

𝑈𝑚𝑖𝑛  is minimum allowable voltage of ultracapacitor and 𝑑  is percentage discharge 

ratio from Eq. 3.  The energy releases from ultracapacitor bank is presented as Eq. 21, 

and maximum power, 𝑃𝑚𝑎𝑥, the ultracapacitor can provide is presented in Eq. 22, where 

𝑅𝑒 is equivalent series resistance of ultracapacitor. 
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𝐸𝑢 =  
𝐶𝑒(𝑈𝑚𝑎𝑥−𝑈𝑚𝑖𝑛)2

2
                                       Eq. 21 

𝑃𝑚𝑎𝑥 =
𝑈𝑚𝑎𝑥

2

4𝑅𝑒
                                                    Eq. 22 

As most available electrochemical double-layer ultracapacitors (EDLC) on 

markets demonstrated, ultracapacitors can be connected in series and parallel and work 

as a multi-cell ultracapacitor bank. Thus, the equivalent capacitance of each cell times 

number of series connected cells divided by number of parallel connected cells can 

result in the equivalent capacitance 𝐶𝑒. For this application the equivalent capacitance 

of each cell is 100 Farad, nominal voltage of each cell is 36 V, and total 10 cells 

connected in series. 

4.4 Control Strategies 

The on-board controller consists of three function modules, which are electric 

brake and mechanical brake unit, electric drive control unite, and range extender control 

unit. These units are working as written control-code developed by the control strategies. 

The maximum state-of-charge of peaking power source control strategy has been 

developed in this application, since engine can be turned off when SOC of battery 

reaches a certain level or operates at its most optimized engine speed for better 

efficiency. Based on Dr. Oriet’s design analysis of dual diesel engine generator, there 

is sufficient power and torque to propel most heavy duty trucks on high way from only 

one engine, hence the controller can shut down one of the dual engines during the drive 

cycle requiring less power. When the truck vehicle is accelerating or experiencing high 

demand driving cycle, the controller brings the second engine back to provide the 

additional power required, so the efficiency of the generator is significantly improved 

by optimized variable power delivery. [25] Meanwhile, both of engines can be 
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continuously runs at the optimized engine speed to drive the generator charging the 

battery, when SOC of the battery is less than 30%. When SOC of the battery reaches 

80% of its maximum capacity, the generator will be turned off by controller, so enough 

capacity can be reserved for regenerative braking energy. Eq. 21 can be used to indicate 

the SOC for the battery, where SOCi is initial state of charge, A is amp-hour, and t is 

time[21]. 

𝑆𝑂𝐶 =  𝑆𝑂𝐶𝑖 −
∫ 𝐼𝑏𝑎𝑡𝑑𝑡

𝑡
0

𝐴
                                   Eq. 23 

  

This control strategy is also suitable for the vehicles with frequent stop–go 

driving cycles.[33] When the braking action starts, the controller unit will turn the 

motor into a generator, so the back electromotive force voltage became greater then 

applied voltage, which will change the direction of the armature current. The reversed 

armature torque is provided to stop the vehicle from moving, and the braking energy 

can be recovered as electric power. The mechanical brake and anti-braking system will 

also be brought in action per the magnitude of requested braking power and wheel 

motions. [12] 

 

  



47 
 

CHAPTER 5 

Simulation Result Analysis 

In this chapter, the details of simulation experiments for both conventional 

heavy-duty commercial trucks and the electric tandem axle module powered series 

hybrid commercial truck are presented. The set-up and drive cycles are included in this 

chapter along with the simulation result, which mainly focused on the comparisons of 

drivetrain efficiency and fuel consumption.  

5.1 Simulation Set-up 

The simulation tool for this thesis is AVL Cruise, a preprogramed software 

assists in vehicle driveline system analysis that includes all the applications needed in 

this thesis like fuel efficiency, driving emissions and performance analyses. According 

to Figure 28. from the AVL CRUISE training course, it is recommended to initiate the 

project by creating vehicle model, imputing data generated from Chapter 4 into 

components, and establishing energetic connections. 

 

Figure 28. Recommended Work Process Flow [36] 
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Frist of all, a conventional heavy-duty commercial vehicle model is created in 

AVL Cruise as Figure 29. demonstrated. The property inputs of the truck vehicle setting 

like gas tank volume, vehicle body dimensions, load dependent characteristics, curb 

weight, and air coefficient are identical to the new series hybrid truck. The 8-cylinder 

turbocharged intercool diesel engine has 8478 cm3 displacement and 80 ℃ working 

temperature. The fuel type selected as diesel with 44000kJ/kg heating value and 0.76 

kg/l density. The blue lines represent mechanical energetic connection transfer torque 

from the engine through a friction clutch, an 8-speed gear box, and a differential to 

wheels on rear tandem axles.  

 

Figure 29. Conventional Heavy-Duty Commercial Vehicle Model 

The model of the electric tandem axle module powered series hybrid 

commercial vehicles is also shown in Figure 30., where red lines are electrical 

connections and blue lines are mechanical connections. The data of diesel engine, 
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battery, supercapacitor, electric motor, and generator gathered from theoretical 

calculations has been put into each component. The acceleration pedal and brake pedal 

data has been imported into the cockpit, which is the modules that links the driver and 

the vehicle, the available information of possible to influence the vehicle can be defined 

by using the monitor set up. The load signal from cockpit, velocity of vehicle, torque 

of electric drive, SOC of the battery, and engine speed are added as the input channels 

into the monitor that can be connected to output channels of different modules to show 

the output values after running the calculation of the model. [12] 

 

Figure 30. Electric Tandem Axle Module Powered Series Hybrid Commercial 

Vehicles Model 

The final step before setting up the drive cycle for the simulation task is creating 

the informational connections on the Databus, which are represented as rainbow lines 
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in Figure 31. The load signal is delivered though the Databus from the engine to the 

control system, which is modeled as a control function in AVL Cruise model. 

 

Figure 31. Databus Connections 

5.2 Drive Cycles 

Using drive cycles to estimate and compare fuel efficiency of two types of 

trucks is the main goal of simulation process. For this reason, two drive cycles for both 

city operated and high way operated have been selected from AVL Cruise database. 

The Figure 32. presents the velocity and distance verse time curves of the city operated 

drive cycle that is 13.14km long. This cycle has an average speed of 40 km/h, maximum 

speed of 82 km/h, and 600 s break time.  
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Figure 32. Velocity and Distance Verse Time Curves of City Operated Drive Cycle 

For high way operated drive cycle’s, the velocity and distance verse time curves 

in Figure 33., the total distance is 12.1 km. This mean speed is around 80 km/h, 

maximum speed is 97 km/h, and break time is 80 s at end of the cycle. 

 

Figure 33. Velocity and Distance Verse Time Curves of Highway Operated Drive 

Cycle 
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By applying these two driving cycles for AVL Cruise Models, the simulation 

was run under the variable step solver implicit euler+. The results of simulation are 

generated as time dependent with a standard driver. 

5.3 Result Analysis 

5.3.1 E-Drive Efficiency 

The main improvement of this application when compares to conventional 

hybrid powertrain system is electrical tandem axle power module with regenerative 

braking. Therefore, with the optimization of the hybrid electric drivetrain, the efficiency 

of electric drive should be significantly improved in this application when the city 

operated drive cycle applied. The plot of electric drive efficiency versus time is given 

as Fig. 34 evidently states a maximum efficiency of 92%, which is much better than 

most conventional hybrid trucks’ 75%. [12]  

 

Figure 34. E-Drive Efficiency for City Operated Drive Cycle 
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When it comes to high way operated drive cycle, the maximum efficiency of 

the electrical drive is also improved to same level of the city operated condition, as 

Figure 35. showed.  

 

Figure 35. E-Drive Efficiency for High way Operated Drive Cycle 

According to the diesel engines efficiency data in AVL Cruise models, the 

diesel engine can averagely convert over 47% of the fuel energy into mechanical 

energy. Hence, the average efficiency of whole drivetrain from fuel is around 44% for 

this new series hybrid drivetrain, and the average efficiency of whole drivetrain from 

fuel is around 35% for this conventional series hybrid drivetrain. 

5.3.2 Fuel Consumption 

The electrical hybrid powertrain has optimal engine operation and regenerative 

braking to improve the efficiency of conventional heavy-duty vehicles. Generally, the 

more efficient driveline certainly means better fuel economy, and this application is 

also not exceptional. As Figure 36. recorded, the new hybrid truck consumes 3.4-liter 
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diesel fuel when drives in a city operated driving cycle and reaches maximum fuel 

consumption rate of 22 litter per hour only at engine start.  

 

Figure 36. Fuel Consumption of New Hybrid Heavy-Duty Commercial Vehicle for 

City Operated Driving Cycle 

In Figure 37., the conventional heavy-duty commercial vehicle consumes 8.4-

liter diesel fuel and constantly reaches a maximum fuel consumption rate of 45 liter 

per hrs.  
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Figure 37. Fuel Consumption of Conventional Heavy-Duty Commercial Vehicle for 

City Operated Driving Cycle 

Based on the result files from AVL Cruise, the average fuel consumption of the 

new hybrid heavy-duty commercial vehicle for this driving cycle is 25.81 liters per 

hundred kilometers. Compare to conventional heavy-duty commercial truck’s 62.3 

liters per hundred kilometers, the progress of this application’s fuel saving is 

conspicuously in city. 
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Figure 38. Fuel Consumption of New Hybrid Heavy-Duty Commercial Vehicle for 

Highway Operated Driving Cycle 

When two vehicles drive on high way operated drive cycle, both of the fuel 

consumption dropped significantly due to the less decelerations and accelerations. For 

12.1 kms, new hybrid heavy-duty commercial vehicle consumes 1.3-liter fuel in Figure 

38., and conventional heavy-duty commercial vehicle consume near 3 times fuel of 3.7- 

liter shown in Figure 39.  
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Figure 39. Fuel Consumption of Conventional Heavy-Duty Commercial Vehicle for 

Highway Operated Driving Cycle 

The average fuel consumption of the new hybrid heavy-duty commercial 

vehicle for the highway drive cycle is 10.55 liters per hundred kilometers, and the 

conventional heavy-duty commercial truck is 24.8 liters per hundred kilometers, the 

progress of this application’s fuel saving is conspicuously in the city.  
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CHAPTER 6 

Conclusions 

This Thesis demonstrated the design and modeling methodology for the 

specification of system architectures and hybrid drivetrain control strategies of series 

hybrid heavy-duty commercial vehicles powered by motor tandem axle module. The 

simulation methods and results proved the theoretical efficiency and practicability of 

this application, which has better drivetrain efficiency and fuel economy then 

convectional hybrid heavy-duty commercial vehicles and conventional heavy-duty 

commercial vehicles. However, certain loopholes still exist in this simulation approach. 

Due to the characteristic of dual diesel engine and control strategies of the drivetrain 

system, two diesel engines barely work together at high power required situation like 

climbing. The profile of the drive cycle we used does not consider any grading or 

cornering, so the simulation result might be discrepant to real world test result. 

Moreover, the optimum modeling of the electrical motor of this application in AVL 

Cruise or other simulation software could be done in future developments. [12] 
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APPENDICES  

Appendix A  

  1 AVL Driving Performance and Consumption Calculation Result for City Hybrid 

  *** CHARACTERISTIC DATA *** 

         Curb Weight            <kg>: 23000.0 

         Admissible Weight      <kg>: 25000.0 

         Wheel Base              <m>:     5.650 

         Driving resistance         : Function without Reference Vehicle 

         Frontal Area           <m2>:    10.750 

         Lift Coefficient Front  <->:     0.000 

         Lift Coefficient Rear   <->:     0.000 

              Engine: 

         Displacement            <l>:     8.478 

         Cylinder Number         <->:     8 

         Stroke Number           <->:     4 

 Hot Start:               Hot Start - steady state                   Load State Empty:        Yes 

Location:                Chassis Dynamometer                        Load State Half:         No 

Gear Sel. Upshifting:    According to Profile                       Load State Full:         No 

Gear Sel. Downshifting:  According to Profile           Vehicle Mass:       3115.0 <kg> 
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Vehicle Additional Load:  115.0 <kg> 

*** RESULTS *** 

Overall Fuel Consumption:             2.5769   [kg] 

Idle Fuel Consumption:                0.8543   [kg] 

Acceleration Fuel Consumption:        0.7127   [kg] 

Constant Drive Fuel Consumption:      0.2132   [kg] 

Deceleration Fuel Consumption:        0.7967   [kg] 

Overall Energy Consumption:           1.6195   [kWh] 

 

TRANSPORT EFFICIENCY RESULTS: 

Fuel Consumption:      25.808 <l/100km> 
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Appendix B 

  2 AVL Driving Performance and Consumption Calculation Result for Highway 

Hybrid 

*** GENERAL SETTINGS *** 

Hot Start:               Hot Start - steady state                   Load State Empty:        Yes 

Location:                Chassis Dynamometer                        Load State Half:         No 

Gear Sel. Upshifting:    According to Profile                       Load State Full:         No 

Gear Sel. Downshifting:  According to Profile           Vehicle Mass:       23115.0 <kg> 

Vehicle Additional Load:  115.0 <kg> 

 

Overall Fuel Consumption:             0.9671   [kg] 

Idle Fuel Consumption:                0.1722   [kg] 

Acceleration Fuel Consumption:        0.1899   [kg] 

Constant Drive Fuel Consumption:      0.1999   [kg] 

Deceleration Fuel Consumption:        0.4050   [kg] 

Overall Energy Consumption:           1.6255   [kWh] 

TRANSPORT EFFICIENCY RESULTS: 

Fuel Consumption:      10.553 <l/100km> 
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