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Abstract

Fuselage-embedded engines in future aircraft will see increased flow distortions due

to the ingestion of airframe boundary layers. This reduces the required propulsive

power compared to podded engines. Inlet flow distortions mean that localized regions

of flow within the fan and first stage compressor are operating at off-design conditions.

It is important to weigh the benefit of increased vehicle propulsive efficiency against

the resultant reduction in engine efficiency. High computational cost has limited

most past research to single distortion studies. The objective of this thesis is to

extract scaling laws for transonic compressor performance in the presence of various

distortion patterns and intensities. The machine studied is the NASA R67 transonic

compressor. Volumetric source terms are used to model rotor and stator blade rows.

The modelling approach is an innovative combination of existing flow turning and loss

models, combined with a compressible flow correction. This approach allows for a

steady calculation to capture distortion transfer; as a result, the computational cost is

reduced by two orders of magnitude. At peak efficiency, the rotor work coefficient and

isentropic efficiency are matched within 1.4% of previously published experimental

results. A key finding of this thesis is that, in non-uniform flow, the state-of-the-

art loss model employed is unable to capture the impact of variations in local flow

coefficient, limiting the analysis of local entropy generation. New insight explains

the mechanism governing the interaction between a total temperature distortion and

a compressor rotor. A parametric study comprising 16 inlet distortions reveals that

for total temperature distortions, upstream flow redistribution and rotor diffusion

factor changes are shown to scale linearly with distortion severity. Linear diffusion

factor scaling does not hold true for total pressure distortions. For combined total

temperature and total pressure distortions, the changes in rotor diffusion factor are

predicted by the summation of the individual distortions, within 3.65%.

iv



Acknowledgments

The work presented in this thesis is a culmination of the effort and support of those

close to me. Firstly, I am grateful for the support and guidance of my supervisor,

Dr. Jeff Defoe. His expertise in the field of turbomachinery, dedication to each of his

students, and passion towards his craft has helped to develop me into the technical

professional I am today. For that, I am thankful. Additionally, I would like to thank

my committee members Dr. Andrzej Sobiesiak and Dr. Edwin Tam for both their

time in reviewing my thesis and thoughtful insight on improvements.

To the past and current members of the Computational Fluid Dynamics Labora-

tory group, I would like to thank you for your camaraderie and assistance in helping

me achieve this goal. In particular, I would like to extend my gratitude to Krishna

Patel, Ravinder Gill, Kharuna Ramrukheea, Matheson West, Quentin Minaker, and

Kohei Fukuda.

A final thank you is extended to my family: my parents, Dave and Sherry, and

sisters Lindsay, Courtney, and Chelsea for their unconditional support and encour-

agement. I would not be at this point in my academic career without each and every

one of you.

v



Contents

Declaration of Originality iii

Abstract iv

Acknowledgments v

List of Figures ix

List of Tables xv

Nomenclature xvi

1 Introduction 1

1.1 Objective and High-Level Approach . . . . . . . . . . . . . . . . . . . 2

1.2 Major Findings and Conclusions . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5

2.1 Non-Uniform Inlet Flow Patterns . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Boundary Layer Ingestion . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Turboprop Engine, Propeller Work Profile . . . . . . . . . . . 7

2.2 Distortion Mechanisms in Non-Uniform Flow . . . . . . . . . . . . . . 8

2.3 Scaling of Diffusion Changes in a Low-Speed Fan . . . . . . . . . . . 12

vi



2.4 Volumetric Source Term Representation of Blade Rows . . . . . . . . 14

2.4.1 Previous Volumetric Source Term Model Usage . . . . . . . . 16

2.4.2 Peters Volumetric Source Term Model . . . . . . . . . . . . . 18

2.4.3 Low-Speed Normal Force Model . . . . . . . . . . . . . . . . . 21

2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Calculation of Efficiency in Uniform and Non-Uniform Flow . 22

2.5.2 Entropy-Based Loss Coefficient . . . . . . . . . . . . . . . . . 23

2.5.3 Diffusion Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 State of the Art and Limitations of Previous Research . . . . . . . . . 25

3 Approach 26

3.1 High-Level Overview of Transonic Volumetric Source Term Model . . 26

3.2 Machine of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Single-Passage Computational Setup and Speedline Results . . . . . . 30

3.3.1 CAD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Single-Passage RANS Grid Independence . . . . . . . . . . . . 34

3.3.4 CFD Case Setup . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.5 Computational Resource . . . . . . . . . . . . . . . . . . . . . 37

3.3.6 Single Passage Results . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Volumetric Source Term Model Domain Setup . . . . . . . . . . . . . 39

3.5 Normal Force - Compressibility Correction . . . . . . . . . . . . . . . 43

3.6 Updated Parallel Force Model . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Implementation of the Volumetric Source Terms . . . . . . . . . . . . 55

3.8 Volumetric Source Term Grid Independence Study . . . . . . . . . . . 56

3.9 Distortion Matrix Selection . . . . . . . . . . . . . . . . . . . . . . . 59

3.9.1 Corrected Mass Flow Rate and Corrected Rotor Speed in the

Presence of Inlet Distortion . . . . . . . . . . . . . . . . . . . 59

vii



3.9.2 Boundary Layer Ingestion . . . . . . . . . . . . . . . . . . . . 61

3.9.3 Turboprop Work Profile . . . . . . . . . . . . . . . . . . . . . 64

4 Volumetric Source Term Model Assessment 72

4.1 Assessment of the VSTM in Uniform Inflow . . . . . . . . . . . . . . 72

4.2 Assessment of VSTM in Non-Uniform Inflow . . . . . . . . . . . . . . 74

5 Non-Uniform Inflow Efficiency Scaling 83

5.1 Limitations of the VSTM Parallel Force . . . . . . . . . . . . . . . . 83

5.2 Performance Scaling in BLI Distortions . . . . . . . . . . . . . . . . 90

5.3 Performance Scaling in Turboprop Radial Distortions . . . . . . . . . 95

5.3.1 Flow Redistribution Mechanisms in a Total Temperature Dis-

tortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Radial Distortion of Varying Propeller Offsets . . . . . . . . . 98

5.3.3 Radial Distortion of Varying Total Temperature Magnitude . 103

5.3.4 Radial Distortion of Varying Total Pressure Magnitude . . . . 105

5.3.5 Combined Total Temperature and Total Pressure Radial Dis-

tortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions and Future Work 112

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Key Outcomes and Conclusions . . . . . . . . . . . . . . . . . . . . . 113

6.3 Current Outlook and Future Recommendations . . . . . . . . . . . . 116

Bibliography 118

A Volumetric Source Term Model CFX Expressions 122

Vita Auctoris 124

viii



List of Figures

2-1 BLI and traditional podded engine configurations, the benefit of BLI

stems from the reduced propulsive power required to balance the mo-

mentum deficit created by the airframe wake. Adapted from Plas et

al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-2 Turboprop engine configuration, showing the propeller and compressor

shaft offset [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2-3 CFD fan inlet profile tested by Gunn and Hall, representative of a BLI

engine. [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2-4 Typical compressor work characteristic, work coefficient vs flow coeffi-

cient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2-5 Flow redistribution upstream of the rotor, due to a non-axisymmetric

rotor work profile. Adapted from Gunn and Hall [10]. . . . . . . . . . 10

2-6 Test case setup performed by Fidalgo et al.: a 120◦ total pressure deficit

far upstream. From [11]. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-7 Absolute swirl angle (left) and radial flow angle (right), upstream of

the rotor. Adapted from Fidalgo et al. [11]. . . . . . . . . . . . . . . 12

2-8 Near-linear diffusion metric scaling for vertically stratified, varying-

intensity distortions - total pressure left, total temperature right [13].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

ix



2-9 Volumetric source term representation of a blade row. Adapted from

[16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2-10 Volumetric source terms; normal turning force and parallel viscous

force [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3-1 A high-level overview of the volumetric source term model creation

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-2 Rotor and Stator blade profiles for NASA Stage 67. . . . . . . . . . . 29

3-3 Rotational and non-rotational sections of the NASA Rotor 67 hub [22]. 30

3-4 3D CAD model of the NASA 67 machine, including artificial upstream

and downstream ducts. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-5 Single passage grid generation software usage. . . . . . . . . . . . . . 32

3-6 Single Passage rotor (left) and stator (right) grid topologies at midspan. 32

3-7 Overhead view of the rotor blade tip; rotor tip gap grid. . . . . . . . 33

3-8 Single-passage domain as defined in CFX-Pre. . . . . . . . . . . . . . 36

3-9 Artificial mixing loss when using a stage interface between rotating and

non-rotating frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-10 Single passage 90% rotor speed, ηis and FPR results against experi-

mental and Fidalgo et al. CFD [11]. . . . . . . . . . . . . . . . . . . . 39

3-11 Uniform inflow volumetric source term model domain, a 1/16th sector

of the full annulus machine. . . . . . . . . . . . . . . . . . . . . . . . 40

3-12 Axial measurement locations in the volumetric source term grid. . . 40

3-13 Volumetric source term model, rotor domain grid (left) and stator do-

main grid (right) outlined in red. . . . . . . . . . . . . . . . . . . . . 40

3-14 Spanwise rotor exit total temperature ratio; tip gap leakage is not

modelled in VSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3-15 Example blade passage used to illustrate the relationship between cosκ

and |nθ|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



3-16 One iteration of the ε extraction process, comparing volumetric source

term flow angles to single passage flow angles. . . . . . . . . . . . . . 46

3-17 Mismatch of swirl velocity with a constrained flow angle due to the

absence of blockage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3-18 Rotor camber line angles, before and after re-cambering. . . . . . . . 49

3-19 Rotor total temperature ratio, before and after re-cambering. . . . . 50

3-20 Spanwise rotor total temperature ratio at rotor exit at peak efficiency,

compared to single passage results. . . . . . . . . . . . . . . . . . . . 50

3-21 Peters’ viscous model: rotor isentropic efficiency speedline is constrained

to a near-quadratic shape. . . . . . . . . . . . . . . . . . . . . . . . . 52

3-22 Rotor (left) and stator (right) parallel force values at peak efficiency. 54

3-23 Volumetric source term rotor isentropic efficiency characteristic versus

previously published results at 90% speed. . . . . . . . . . . . . . . . 55

3-24 Volumetric source term rotor isentropic efficiency, total temperature

ratio, and total pressure ratio for several grid densities. . . . . . . . . 58

3-25 Sample BLI inlet Mach profile, 0.75 immersion and 0.25 depth. . . . 62

3-26 Rectilinear total pressure distortions; immersion-varying cases. . . . . 63

3-27 Rectilinear total pressure distortions; depth-varying cases. . . . . . . 64

3-28 Linear profile of propeller exit total temperature ratio - propeller axis

of rotation to blade tip. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3-29 Radial distortions, three sample propeller offset distortion cases. . . . 67

3-30 Radial distortions; total temperature cases. . . . . . . . . . . . . . . . 68

3-31 Radial distortions; total pressure cases. . . . . . . . . . . . . . . . . . 69

3-32 Radial distortions; combined total temperature and total pressure cases. 71

4-1 Rotor total temperature, total pressure, and isentropic efficiency at

off-design conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



4-2 Far upstream circumferential traverse of total pressure at midspan,

published in the work by Fidalgo et al. [11]. . . . . . . . . . . . . . . 76

4-3 Circumferential traverses of mass flux at midspan locations 0.5 and 5.5

axial chords upstream of the rotor leading edge. . . . . . . . . . . . . 77

4-4 Circumferential traverses of absolute whirl angle at midspan locations

0.5 and 5.5 axial chords upstream of the rotor leading edge. . . . . . 78

4-5 Midspan circumferential traverse of absolute whirl angle, total temper-

ature, and total pressure at the rotor TE. . . . . . . . . . . . . . . . . 79

4-6 Spanwise profiles of total pressure, total temperature, and absolute

whirl angle at the rotor TE, θ = 73◦. . . . . . . . . . . . . . . . . . . 80

4-7 Midspan circumferential traverses of absolute whirl angle, total tem-

perature, and total pressure at the stator trailing edge. . . . . . . . . 81

5-1 Rotor domain, unwrapped circumferential sketch of the current parallel

force implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5-2 A sketch of the expected “loss bucket” (dashed line) vs the loss profile

in this work (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . 84

5-3 Rotor incoming mass flux (right) at 90% span, BLI 50% immersion. . 85

5-4 Rotor incoming relative flow angle at 90% span, BLI 50% immersion. 86

5-5 Rotor diffusion factor at 90% span, BLI 50% immersion. . . . . . . . 86

5-6 Rotor entropy-based loss coefficient at 90% span, BLI 50% immersion. 87

5-7 Stator incoming flow angle at 90% span, BLI 50% immersion. . . . . 88

5-8 Stator incoming mass flux at 90% span, BLI 50% immersion. . . . . . 88

5-9 Stator diffusion factor at 90% span, BLI 50% immersion. . . . . . . . 89

5-10 Stator loss coefficient at 90% span, BLI 50% immersion. . . . . . . . 89

5-11 Future parallel force implementation; local force magnitude is circum-

ferentially and radially dependent on flow coefficient as well as local

velocity squared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xii



5-12 BLI distortion (90% span, 50% immersion) mass flux ratio compared

to uniform inflow at station 1. . . . . . . . . . . . . . . . . . . . . . . 91

5-13 BLI distortion (90% span, 50% immersion) relative flow angle change

from uniform inflow at station 1. . . . . . . . . . . . . . . . . . . . . 92

5-14 BLI distortion (90% span, 50% immersion) rotor diffusion factor changes

from uniform inflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5-15 BLI distortion (90% span, 50% depth) mass flux ratio compared to

uniform inflow at station 1. . . . . . . . . . . . . . . . . . . . . . . . 93

5-16 BLI distortion (90% span, 50% depth) relative flow angle change from

uniform inflow at station 1. . . . . . . . . . . . . . . . . . . . . . . . 94

5-17 BLI distortion (90% span, 50% depth) rotor diffusion factor changes

from uniform inflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5-18 Total temperature radial distortion, plots (at 50% span) of (a) mass

flux, (b) static pressure, (c) relative flow angle, and (d) total temper-

ature at two locations upstream of the rotor leading edge. . . . . . . . 98

5-19 Mass flux ratio to clean inflow at station 1 for a radial distortion of

various propeller offset distances. . . . . . . . . . . . . . . . . . . . . 99

5-20 Change in rotor relative flow angle from clean inflow at station 1 for a

radial distortion of various propeller offset distances. . . . . . . . . . 100

5-21 Rotor work ratio to clean inflow for a radial distortion of various pro-

peller offset distances. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5-22 Radial offset distortion (90% span) mass flux ratio compared to uni-

form inflow at station 1. . . . . . . . . . . . . . . . . . . . . . . . . . 101

5-23 Radial offset distortion (90% span) relative flow angle change from

uniform inflow at station 1. . . . . . . . . . . . . . . . . . . . . . . . 102

5-24 Radial offset distortion (90% span) rotor diffusion factor changes from

uniform inflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiii



5-25 Radial distortion offset; compressor inlet total pressure distortion ra-

dius of curvature increases at offset locations further than one com-

pressor inlet radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5-26 Radial total temperature distortion (90% span, ∆R/R = 0.75) mass

flux ratio compared to uniform inflow at station 1. . . . . . . . . . . . 104

5-27 Radial total temperature distortion (90% span, ∆R/R = 0.75) relative

flow angle change from uniform inflow at station 1. . . . . . . . . . . 104

5-28 Radial total temperature distortion (90% span, ∆R/R = 0.75) rotor

diffusion factor changes from uniform inflow at station 2. . . . . . . . 105

5-29 Radial total pressure distortion (90% span, ∆R/R = 0.75) mass flux

ratio compared to uniform inflow at station 1. . . . . . . . . . . . . . 106

5-30 Radial total pressure distortion (90% span, ∆R/R = 0.75) relative flow

angle change from uniform inflow at station 1. . . . . . . . . . . . . . 106

5-31 Radial total pressure distortion (90% span, ∆R/R = 0.75) rotor diffu-

sion factor changes from uniform inflow. . . . . . . . . . . . . . . . . 107

5-32 Comparison of total pressure and scaled total temperature distortion

diffusion factor changes at 90% span. . . . . . . . . . . . . . . . . . . 108

5-33 Radial combined total temperature and total pressure distortion (90%

span, ∆R/R = 0.75) mass flux changes from uniform inflow. . . . . . 109

5-34 Radial combined total temperature and total pressure distortion (90%

span, ∆R/R = 0.75) relative flow angle changes from uniform inflow. 110

5-35 Radial combined total temperature and total pressure distortion (90%

span, ∆R/R = 0.75) rotor diffusion factor changes from uniform inflow. 111

xiv



List of Tables

3.1 Important design characteristics for NASA Rotor 67 at 90% speed

[22, 11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Grid count statistics for both single passage and full annulus RANS

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 A summary of the grid independence study performed. . . . . . . . . 34

3.4 Modified parallel force constant values for the rotor and stator domains. 54

3.5 Volumetric source term grid independence study, grid details. . . . . . 57

3.6 Volumetric source term grid independence study, rotor efficiency and

total temperature ratio changes. . . . . . . . . . . . . . . . . . . . . . 58

3.7 Non-dimensional flow characteristics conserved between test cases, NASA

stage 67, calculated with uniform inflow, 90% speed, peak efficiency. . 60

3.8 Rectilinear total pressure distortions; immersion-varying cases. . . . . 63

3.9 Rectilinear total pressure distortions; depth-varying cases. . . . . . . 64

3.10 Radial distortion detailed inlet parameters; offset cases. . . . . . . . . 67

3.11 Radial distortion detailed inlet parameters; total temperature cases. . 68

3.12 Radial distortion detailed inlet parameters; total pressure cases. . . . 70

3.13 Radial distortions; combined total temperature and total pressure cases. 71

4.1 Uniform inflow VSTM versus single passage RANS at peak efficiency. 73

4.2 Summary of results at 90% rotor speed and 32 kg/s, from Fidalgo et

al. CFD [11] vs VSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xv



Nomenclature

Symbols

a speed of sound

A area

AR aspect ratio

B number of blades

c blade chord

cp specific heat capacity of air at constant pressure

d boundary layer thickness

D diffusion factor

DC120 distortion characteristic

DMΣ diffusion metric

f volumetric source term per unit mass

F volumetric source term per unit volume

FPR fan/compressor pressure ratio

gred reduced rotor frequency

h enthalpy, staggered spacing in blade row

Kn Peters volumetric source term coefficient

L length
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Chapter 1

Introduction

In an effort to reduce the fuel consumption and carbon emission of commercial avia-

tion, future generation aircraft are moving towards fuselage embedded engines. These

configurations, known as Boundary Layer Ingestion (BLI), require reduced propul-

sive power to generate the equivalent thrust of a conventional podded engine. An

improvement in overall vehicle efficiency of 3-4% is expected for BLI [1], a significant

improvement for the commercial aviation industry. A consequence of BLI, however,

is the fan/compressor isentropic efficiency penalty associated with non-uniform inlet

conditions. Of importance is to assess the benefit of overall vehicle efficiency with BLI

against the reduction in engine efficiency. In particular, the way efficiency penalties

scale for different distortions is not well-understood.

Fuel burn reduction was also the driving force behind the development of turbo-

props in the 1960’s [2]. A large propeller radius draws in a large mass flow rate of air,

leading to improved propulsive efficiency. The propeller radius requires it to oper-

ate at a reduced angular velocity compared to the high pressure compressor system,

meaning a gearbox is required. This gearbox shifts the propeller axis off centre from

the compressor axis.

In both configurations the fan or first compressor stage must operate in non-
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uniform inlet flow. It is important to quantify the impact of these distortions on

isentropic efficiency. While flow redistribution mechanisms in the presence of BLI have

been previously discussed, a quantitative relationship between various inlet distortions

and compressor performance has not been identified for the transonic regime - this

thesis serves to fill that research gap. By making use of an improved volumetric

source term model (VSTM), a parametric study of varying distortion patterns and

intensities is carried out.

1.1 Objective and High-Level Approach

The objective of this thesis is to identify the compressor performance scaling trends

resulting from a matrix of inlet distortions. The distortions will represent those

found in practical applications: BLI and turboprop engines. To study a large array

of cases, computational costs are reduced by making use of a volumetric source term

representation of the machine of interest. This approach allows for the use of steady

computational fluid dynamics (CFD) calculations, as opposed to unsteady, as the

rotor and stator domains are pitchwise-averaged representations of the actual blades.

Additionally, the removal of physical blades in favour of volumetric source terms

allows for a computational grid reduction of approximately two orders of magnitude.

1.2 Major Findings and Conclusions

In this thesis, key observations are made on two fronts: development of the VSTM

and the transonic compressor response to non-uniform inflow.

Within the revised VSTM, a compressibility correction factor to a low-speed

blade loading model is able to accurately capture the overall compressor work in-

put. Also, a double-sided loss model successfully produces a more robust blade row

efficiency characteristic. Spanwise profiles of rotor work input and isentropic effi-
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ciency, and of stator loss coefficient are shown to be well-matched to bladed, single

passage Reynolds-Averaged Navier-Stokes (RANS) results and previously published

data for both uniform and non-uniform inflow. The loss model, however, is shown to

be deficient in capturing the effect of spatial deviations from design flow coefficient

for non-uniform inflow. Though the blade domain viscous losses are inaccurately

modeled, the VSTM is still useful in studying upstream flow redistribution and ro-

tor diffusion factor changes; a parameter expected to be correlated with changes in

isentropic efficiency.

By employing the VSTM for a series of distortions, similarities and differences

arise from a previously-studied low-speed fan case. In both BLI and turboprop total

pressure distortions, the upstream mass flux and relative flow angle changes exhibit

similar behaviour for both low-speed and transonic cases. However, the rotor diffu-

sion factor changes in a transonic compressor exhibit a non-linear scaling trend which

differs from the results for a low-speed fan. For a total temperature distortion, the

governing mechanisms for upstream flow redistribution are identified - an observation

which has not been made in any previous literature, to the author’s knowledge. The

impact of the distortion exhibits a linear scaling trend for all pertinent flow character-

istics. However, the total temperature distortion is shown to have a reduced impact

on flow redistribution compared to total pressure distortion. In a combined turboprop

distortion of total temperature and total pressure, the resultant flow redistribution

and diffusion factor changes are shown to be consistent with the summation of the

individual distortions. Finally, a method for producing a revised parallel force model

is proposed. This approach would allow more a more comprehensive analysis of flow

characteristics within the blade domain in the presence of non-uniform inflow.
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1.3 Thesis Outline

Relevant past literature is reviewed in Chapter 2, relating to both distorted flow/ro-

tor interaction mechanisms and the development of volumetric source term models.

Next, the development of the volumetric source term used in this work is presented

in Chapter 3. Following this, the resultant volumetric source term model and its

assessment in uniform and non-uniform inflow is given in Chapter 4. In Chapter 5the

key results from the parametric study of distortions are presented. Lastly, conclusions

drawn from this work and future plans are detailed in Chapter 6.
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Chapter 2

Literature Review

This chapter establishes the state of the art with regard to the phenomena of interest,

pertinent modeling methodology, and identifies the research gaps this work seeks to

fill.

2.1 Non-Uniform Inlet Flow Patterns

In this work, two distinct cases of non-uniform inflow are studied: boundary layer

ingestion and turboprop compressor ingestion of propeller outflow.

2.1.1 Boundary Layer Ingestion

To reduce the propulsive power required in commercial aircraft, boundary layer in-

gestion (BLI) configurations can be utilized. The potential benefit of boundary layer

ingestion has been known since the early work by Smith and Roberts [3]. By placing

the engine in such a configuration that the engine ingests the boundary layer flow

over the fuselage of the aircraft, the aircraft wake momentum deficit can be reduced,

thus minimizing vehicle drag. This configuration and benefit is shown in Figure 2-1

[1]. In the podded engine configuration, the uniform flow into the engine inlet is at
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freestream velocity, v∞ and exits the engine at a velocity, vj. In the simplified BLI

configuration, air enters the engine with a reduced average wake velocity, vw and exits

at freestream velocity, v∞. In both configurations, the momentum balance is equal,

however the engine in the BLI case is tasked with adding momentum to a slower

moving fluid. The power required to accelerate this slower moving flow is less than

the for the uniform, freestream flow. This can also be shown through a comparison

of the propulsive power [1],

Ppodded =
ṁ

2

(
v2j − v2∞

)
, (2.1)

PBLI =
ṁ

2

(
v2∞ − v2w

)
, (2.2)

where the power, P , is a function of the difference between engine exit velocity and

engine inlet velocity. While (vj − v∞) is equal to (v∞ − vw), the higher velocity of vj

yields the following inequality,

(
v2j − v2∞

)
>
(
v2∞ − v2w

)
. (2.3)

Thus, the BLI configuration is able to produce the same thrust as the podded engine,

at a reduced propulsive power. Using BLI, Plas et al. were able to to computationally

achieve an overall aircraft efficiency benefit of 3-4% [1]. However, this is specific to

the machine of interest in that work. The benefit of BLI must be weighed against

the drawback, reduced engine isentropic efficiency as it operates in distorted inflow.

One aim of this thesis is to study various BLI distortions with varying intensity and

boundary layer thickness. Of interest, is the scaling of isentropic compressor efficiency

between the various distortions studied.
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Figure 2-1: BLI and traditional podded engine configurations, the benefit of BLI
stems from the reduced propulsive power required to balance the momentum deficit
created by the airframe wake. Adapted from Plas et al. [1].

2.1.2 Turboprop Engine, Propeller Work Profile

Since the Vickers Viscount made history as the first commercial turboprop airliner

[2], turboprop engines have been widely used as an efficient engine for powering short

range, low airspeed commercial aviation. The appeal in the turboprop engine stems

from the cruise thrust specific fuel consumption (TSFC), the rate of fuel burn per unit

thrust, of which the turboprop engine is the most efficient style of engine available

today [4]. Turboprops make use of a propeller, which is an unducted fan with an ultra

high bypass ratio. The large propeller radius allows the engine to produce thrust at

a larger mass flow rate and smaller velocity change compared to turbojet or even

turbofan engines, leading to its reduced cruise fuel consumption. Due to this large

propeller radius, the propeller must operate at a reduced rotational speed than the

high pressure compressor shaft. This is done to avoid supersonic tip relative flows

which lead to severe flow separation and drastic reductions in propeller isentropic

efficiency. To achieve this reduced propeller speed, a gearbox is employed. A typical

turboprop configuration is shown in Figure 2-2 [5]. The physical presence of the
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gearbox results in offset rotational axes for the propeller and compressor. Due to

this offset, and in combination with the propeller outlet radial work profile, there is

a non-uniform flow profile ingested in to the compressor. This thesis serves to study

various propeller offsets as well as various propeller work intensities, with the intent of

observing the first stage compressor isentropic efficiency scaling between distortions.

Figure 2-2: Turboprop engine configuration, showing the propeller and compressor
shaft offset [5].

2.2 Distortion Mechanisms in Non-Uniform Flow

Several studies observing the flow mechanisms present in BLI distortions have been

carried out [6, 7, 8, 9]. In particular, a study performed by Gunn and Hall [10]

was able to capture key distortion flow characteristics shared by both low-speed and

transonic fans. For both, they tested a total pressure distortion representative of a

BLI case, shown in Figure 2-3. The total pressure distortion is manifested through a

non-uniform velocity profile. The axial velocity itself can be expressed as a normalized

flow coefficient

φ =
vx
Umid

, (2.4)

where Umid is the blade speed at midspan. As the flow moves within one casing

diameter upstream of the rotor, the flow is no longer decoupled from the fan. A
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typical fan or compressor work characteristic is shown in Figure 2-4. This compressor

map demonstrates how the rotor imparts more work to slower moving fluid (lower φ).

The rotor work is represented by the work coefficient

ψ =
∆ht
U2

, (2.5)

where ∆ht is the rise in total enthalpy across a blade row and U is the blade speed at

some specified radius. For this reason, regions of lower axial velocity flow are sucked

harder in to the compressor. The result is an axial velocity increase and static pressure

reduction in upstream regions of slower-moving fluid. This flow feature is illustrated

in Figure 2-5, where both circumferential and radial flow redistribution arises from the

static pressure distortion. The non-uniform work profile of the compressor works to

attenuate the upstream axial velocity distortion, and thus the leading edge incidence

angle distortion as well.

Figure 2-3: CFD fan inlet profile tested by Gunn and Hall, representative of a BLI
engine. [10]
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Figure 2-4: Typical compressor work characteristic, work coefficient vs flow coefficient.

Figure 2-5: Flow redistribution upstream of the rotor, due to a non-axisymmetric
rotor work profile. Adapted from Gunn and Hall [10].

Within the rotor blade passage, the flow redistribution behaviour is limited, as

the physical blades block circumferential flow redistribution over length-scales greater

than a single blade pitch [10]. Redistribution in this region is purely radial, again

moving from regions of high flow coefficient to low coefficient. Following the rotor

blade, the further attenuated distortion is transferred to the stator. The flow in the
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stator is consistent with that of the rotor: flow redistribution is primarily observed

in the radial direction due to the presence of blades. In both the rotor and stator

blades, the main source of losses, compared to the uniform inflow case, stem from the

change in local incidence angle and mass flux redistribution. Finally, qualitative sim-

ilarities between the low-speed and transonic cases were observed in the fan response

to distorted flow [10].

A study performed by Fidalgo, Hall, and Colin [11] observed a transonic-compressor

response to a 120◦ total pressure distortion, with a DC120 of 83%. The distortion de-

scriptor, DC120, is [12]

DC120 =
(pt

M − pt,min)

qM
, (2.6)

where pt
M and qM are the mass-weighted average total pressure and dynamic pressure

across the entire inlet face, and pt,min is the lowest total pressure averaged over any

120◦ sector. The case setup is illustrated in Figure 2-6, where the distortion is imposed

10 midspan rotor axial chords upstream of the rotor inlet.

Figure 2-6: Test case setup performed by Fidalgo et al.: a 120◦ total pressure deficit
far upstream. From [11].
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Consistent with previous literature, the upstream flow redistribution, due to non-

uniform circumferential rotor work, is the mechanism that attenuates the incidence

angle distortion entering the compressor. Figure 2-7 shows the time-averaged absolute

whirl and radial angles just upstream of the rotor. As a result of non-axisymmetric

rotor work, flow has migrated towards the low static pressure region, creating regions

of co-swirl (circumferential flow in the direction of blade rotation) and counter-swirl

(circumferential flow swirl in the opposite direction of blade rotation). As well, in this

low hub-to-tip radius ratio machine, the flow traverses across the spinner, creating a

region of positive radial angle change. The result for this distortion, compared to a

clean flow case, is a rotor isentropic efficiency penalty of 1.5%.

Figure 2-7: Absolute swirl angle (left) and radial flow angle (right), upstream of the
rotor. Adapted from Fidalgo et al. [11].

2.3 Scaling of Diffusion Changes in a Low-Speed

Fan

Each of the studies previously discussed identified the flow mechanics present in non-

uniform inflow to a fan or compressor, but each considered a single inlet distortion.
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A study performed by Defoe and Hall [13] observed the behaviour of a low-speed

fan across an array of distortion patterns. Part of the work in this thesis serves

to complement that work as a comparison between low-speed and transonic fans in

distorted flow. Through the use of a volumetric source term model, the authors were

able to test a matrix of rectilinearly stratified (BLI) and radially stratified (turboprop)

distortions. The study was done on an inviscid fan model, meaning diffusion factor

changes were used to assess the performance of the rotor. Diffusion factor is a metric

developed from two-dimensional boundary-layer theory, such that an increase in flow

deceleration is proportional to an increase in flow losses [14]. The changes in diffusion

factor were proven to be highly dependent on the rotor leading edge incidence angle

changes relative to uniform inflow.

For both vertically stratified (BLI) and radially stratified (turboprop) cases, it

was shown that varying the distortion intensity of a stagnation quantity results in

a change in diffusion metric that is nearly linear. The diffusion metric is an overall

metric for a blade row based on the diffusion factor. This means that a more severe

distortion can be represented by a combination of less-severe distortions. An example

of this is shown in Figure 2-8, where the results from a vertically stratified total

pressure distortion is shown on the left, and total temperature on the right. The linear

scaling for these cases were found to be accurate within 3% to 16% [13]. Additionally,

the combination of a total temperature and total pressure distortion was shown to

be closely equivalent to the summation of the individual distortions. In the other

distortions studied (boundary layer thickness and propeller offset distance), the effects

of diffusion factor were shown to be highly non-linear.
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Figure 2-8: Near-linear diffusion metric scaling for vertically stratified, varying-
intensity distortions - total pressure left, total temperature right [13].

The work in this thesis is studied on a transonic compressor including viscous

effects. The overall flow mechanisms in the transonic compressor are expected to

qualitatively match the low-speed fan results, based on the work by Gunn and Hall

[10]. Observations from the results of Defoe and Hall dictate a few minor changes to

the distortions that are studied in this work. Vertically stratified total temperature

distortions are not considered, as this is not physically consistent with BLI. As well,

radial swirl distortions will be eliminated, as the results were seen to be highly non-

linear. This distortion matrix is later discussed in this thesis.

2.4 Volumetric Source Term Representation of Blade

Rows

To study the scaling effects of a matrix of distortions, the use of traditional full an-

nulus unsteady Reynolds-averaged Navier-Stokes (URANS) would require exorbitant

computational resources. A full annulus, bladed, computational grid can be in excess
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of 100 million cells, and require 20-30 rotor revolutions to obtain a converged solution

[11, 10]. A single calculation of this nature can take in excess of two months. Rather,

in this work, a volumetric source term model representation of the rotor and stator

blade rows is employed. A VSTM replaces physical blades in a computational domain

with a volumetric source term field, as shown in Figure 2-9. The volumetric source

terms are used to create the same circumferentially-averaged flow turning, total en-

thalpy rise, and viscous losses as the physical blade rows. The volumetric source

term model is a circumferentially-averaged representation of the blade rows, meaning

individual blade wakes and blade-to-blade flow features are not captured. Volumet-

ric source term models have been shown to accurately capture unsteady flow effects

using a steady calculation [15, 1, 16, 13, 17]. This is possible through the assumption

that the flow is quasi-axisymmetric, meaning that the flow is dependent on local flow

conditions but, not on circumferential gradients [18]. This assumption is dependent

on two conditions, the flow non-uniformity must have a characteristic length scale

significantly larger than a single blade pitch, and a reduced rotor frequency, gred � 1

[13]. The reduced rotor frequency is given by

gred =
cx/Vx
2π/Ω

≈ cosξ(1−Rhub/Rtip)

2πφAR
, (2.7)

where cx is the axial chord, Ω is the rotational speed, ξ is the blade stagger angle,

and AR is the blade aspect ratio (= cx/(Rtip −Rhub)). Rhub and Rtip are the radii of

the hub and tip of the blade row, respectively.
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Figure 2-9: Volumetric source term representation of a blade row. Adapted from [16].

2.4.1 Previous Volumetric Source Term Model Usage

The volumetric source term methodology (otherwise known as a body forces) was first

introduced by Marble [19], replacing the physical blade row by an infinite number of

infinitely-thin blades. The volumetric source terms themselves can then be broken

down in to a normal force, fn, and parallel force, fp. The normal force acts perpen-

dicular to the relative streamline, acting to reduce the deviation of the flow from the

blade camber surface. The parallel force acts against the streamwise direction and

generates viscous losses in the flow. These two forces are illustrated in Figure 2-10.

In studying short-wavelength stall inception and distortion transfer in multi-stage

compressors, Gong was able to expand upon Marble’s VSTM [17]. Gong’s model was

different from traditional actuator disk methods in that the volumetric source term

source terms are distributed axially and radially. In doing so, the volumetric source

term is able to respond to local flow properties. The Euler equation used to describe

this volumetric source term implementation is:
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Figure 2-10: Volumetric source terms; normal turning force and parallel viscous force
[15].
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)


, (2.8)

where the momentum source per unit volume, ~F , and momentum source per unit

mass, f , are related through the local density,
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~F =


Fx

Fθ

Fr

 = ρ


fx

fθ

fr

 , (2.9)

and the volumetric energy source term is expressed,

Ẇ = ρ~f · ~V + Q̇. (2.10)

If the flow is considered to be adiabatic,

Ẇ = ρfθΩr, (2.11)

where the rate of work added to the flow at each spatial location is a product of the

circumferential component of the volumetric source term, ρfθ, and the circumferential

blade velocity, Ωr. At each spatial location within a blade row, the rate of total

enthalpy rise per unit volume is given by Equation 2.11.

2.4.2 Peters Volumetric Source Term Model

Based on an adaptation from Gong’s volumetric source term model, Peters developed

a volumetric source term model to investigate fan inlet and nacelle design parameters

for low pressure ratio fans with increased fan and inlet coupling [15]. Peters model was

modified from Gongs to include a radial component in the normal force, accounting

for blade lean and radial streamline shifts due to area contractions. The normal force

used by Peters can be decomposed in to two components, a blade loading normal

force, ~fnOp and a blade loading response to local changes in deviation, ~fnδ. The

normal force magnitude is resolved to be,

fn = fnOp + fnδ =
1

ρ

∂p

∂x

sinκ

cos2κ
+
Kn(x, r)

h
W 21

2
sin(2δ), (2.12)
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where ∂p
∂x

is the local axial pressure gradient, κ is the local blade metal angle, Kn is

the blade loading coefficient, W is the local relative velocity, δ is the local deviation

angle, and h is the staggered blade spacing,

h =
2πr
√
σcosκ

B
. (2.13)

Here, B is the number of blades and σ is the blade solidity,

σ =
c

s
, (2.14)

where c is the blade chord length and s is the blade pitch. Given the magnitude of

local normal force, the coordinate transformation about the blade metal angle and

blade lean, is calculated,

~fn′ =


fn′,κ

fn′,ν′

fn′,τ ′

 =
Kn (x, r, δ,Mrel)

h

Wν′Wτ ′∣∣∣ ~W ∣∣∣


0

Wτ ′

−Wν′

+ fn′Op , (2.15)

where coordinates ν′ and τ ′ are parallel and normal to the local camber surface, to

account for radial flows. To calculate the volumetric source term coefficient Kn, the

pressure difference across blade suction and pressure surfaces is calculated normal to

the local camber line from single passage RANS calculations. Reworking Equation

2.12, Kn is solved for locally as,

Kn (x, r, δ,Mrel) =
fnδh

W 2 1
2
sin(2δ)

. (2.16)

There is a discontinuity where the local deviation angle is zero. In Peters work, at

no location is the local deviation is zero. In the case where this does exist, such as in

the work done by Brand [16], an offset constant, Koff , is implemented ,
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Kn (x, r, δ,Mrel) =
fnδh

W 2 1
2
sin(2δ +Koff )

. (2.17)

To avoid a change in the blade loading force, the offset constant must also be included

in Equation 2.12,

fn = fnOp + fnδ =
1

ρ

∂p

∂x

sinκ

cos2κ
+
Kn(x, r)

h
W 21

2
sin(2δ +Koff ). (2.18)

Peters’ volumetric source term model was shown to capture the flow features for a

low speed fan with continuous positive deviation angles.

Expanding upon Gong’s parallel force model, Peters implemented an off-design

formulation to capture the variation in blade losses with operating condition. Pe-

ters formulation uses a mix of quadratic dependence on mass-averaged relative Mach

number at the blade row inlet, combined with the existing quadratic dependence on

local relative velocity,

fp =
Kp1

h

[(
M

M

rel

)2
+Kp2

(
M

M

rel −Mref

)2]
W 2, (2.19)

where Kp1 and Kp2 are viscous force coefficients, M
M

rel is the mass-averaged relative

Mach number at the blade row inlet, and Mref is the value of M
M

rel at peak efficiency.

This formulation produces the desired quadratic loss profile typical of turbomachines.

In this research, Peters’ loss model is used, however, the normal force poorly

predicted the desired characteristic slope. This is due to the use of offset, Koff ,

which is unavoidable due to zero-value local flow deviations across the blade. For this

reason, a different normal force model is used in conjunction with Peters’ loss model.
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2.4.3 Low-Speed Normal Force Model

More recently, an incompressible, inviscid normal force model was developed by Hall

et al. [18]. The inviscid assumption eliminates the use of a parallel force model. The

normal force model is a function of local flow quantities and blade camber angle,

allowing the volumetric source term to be formulated without the need of a single

passage RANS calculation for calibration. This is especially useful as a tool for

commercial development of blade designs. The normal source, per unit mass, is

defined,

fn =
(2πδ)

(
1
2
W 2/ |nθ|

)
2πr/B

, (2.20)

where nθ is the circumferential projection of the local blade normal vector. In low

solidity blades, the constant 2π yields a normal force equivalent to thin airfoil lift

theory (cL = 2πδ). These low solidity blades have larger spacing between consecutive

blades, therefore the blade to blade interaction is reduced, and flat plate lift theory is

applicable. Conversely, in high solidity blades, the blade spacing is minimal and blade-

relative flow is unable to circumferentially shift. The resultant is local flow deviation

approaching zero (δ → 0) [18]. An adaptation of this incompressible normal force

model is used in this work.

2.5 Performance Metrics

To assess the performance of the rotor and stator blades, three key performance char-

acteristics are used in this thesis: isentropic efficiency, diffusion factor, and entropy-

based loss coefficient.
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2.5.1 Calculation of Efficiency in Uniform and Non-Uniform

Flow

Isentropic efficiency is a metric used to assess the rotor efficiency in imparting energy

to the flow, compared to an ideal, isentropic rotor. Due to system losses, a non-ideal

rotor requires additional work input to produce the same total pressure rise as an

isentropic rotor. In the case of a compressor, the isentropic efficiency is the ratio of

isentropic rotor work to actual rotor work,

ηis =
(∆ht)ideal
(∆ht)actual

, (2.21)

where ∆ht is the change in total enthalpy. Using isentropic flow relationships for a

perfect gas, the ideal total enthalpy change is calculated,

∆ho = cpTt1

[(
pt2
pt1

) γ−1
γ

− 1

]
. (2.22)

Here, cp is the specific heat capacity of air at constant pressure , Tt is the total

temperature, pt is the total pressure, and γ is the ratio of specific heats. Subscripts 1

and 2 represent the rotor inlet and outlet measurement planes, respectively. Equations

2.21 and 2.22 are combined to produce the rotor isentropic efficiency,

ηis =

cpTt1

[(
pt2
pt1

) γ−1
γ − 1

]
ht2 − ht1

. (2.23)

In the case of a volumetric source term model subjected to uniform inflow, this calcula-

tion is trivial. Since the upstream and downstream quantities are both axisymmetric,

the value at each radial location needs to be determined, but there is no circumferen-

tial variation. For the non-uniform flow cases, however, the efficiency must be tracked

and calculated along a streamline. This is due to the upstream spatial variation of to-

tal temperature and/or total total pressure. Finally, with the value of ηis determined
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at each spatial location, the overall efficiency (isentropic or polytropic) is calculated

using a mass-weighted average,

ηMis =

∫
ηisdṁ∫
dṁ

. (2.24)

2.5.2 Entropy-Based Loss Coefficient

As no work is done by a stator blade row on the flow, isentropic efficiency is not a

reasonable metric to quantify the flow losses across the blade. Instead, an entropy-

based loss coefficient is defined [20]

ζ3 =
T3∆s2−3

(ht3 − h3)
(2.25)

where T3 is the outlet static temperature, ∆s2−3 is the entropy change across the

stator blade row, and (ht3 − h3) represents the flow kinetic energy per unit mass at

the blade outlet. The use of subscript 3 on ζ indicates that the loss coefficient is

based on the stator blade row. A subscript of 2 is used to describe losses across the

rotor blade row. In Equation 2.25, the numerator represents the lost work potential

across the blade row. An advantage of this loss coefficient is that each component is

calculated in the stationary reference frame regardless of whether it is for a rotor or

stator.

A pressure-based loss coefficient has also been used in literature [21],

ω =
pt1,rel − pt2,rel
pt2,rel − p2

, (2.26)

where the change in relative total pressure is computed across the blade row. The

relative total pressure is calculated as

pt,rel = p

(
1 +

γ − 1

2
M2

rel

) γ
γ−1

. (2.27)
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Equation 2.27 illustrates the relative total pressure’s dependence on relative Mach

number and in turn, relative velocity. Along a streamline, radial shifts due to machine

geometry produce an associated change in relative velocity, in rotating components.

For this reason, the loss coefficient shown in Equation 2.25 is used in this thesis.

2.5.3 Diffusion Factor

One of the goals of this research is to study the validity of using diffusion factor

changes as a proxy for isentropic efficiency changes. The diffusion factor used is an

adaptation of Lieblein’s diffusion factor [?],

D = 1− Wout

Win

+
1

2

|routWθ,out − rinWθ,in|
Win

2π/B

cref
(2.28)

where the velocity, W , is in the relative frame for the rotor and absolute frame for

the stator, and cref is the midspan chord for each of the respective blades. This

diffusion factor accounts for both bulk diffusion as well as flow turning [10]. Diffusion

factor was developed through boundary layer and pressure distribution theory across

a compressor blade. The resultant diffusion factor provides a correlation between

increased losses associated with increased blade loading. Therefore, diffusion factor

changes are also correlated with isentropic efficiency changes, that is,

∆D = f (∆ηis) (2.29)

As with the two previous performance metrics, the diffusion factor is calculated by

tracking a streamline from inlet to outlet of each the rotor and stator blades.
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2.6 State of the Art and Limitations of Previous

Research

To observe distortion transfer in single stage turbomachinery, the current state-of-

the-art is comprised of two separate methodologies: full annulus URANS calculations

or steady volumetric source term representation of blade rows . With URANS cal-

culations, computational costs have limited past research to observation of single

distortions. For a low-speed fan, an inviscid normal force model has been used to

observe several distortions. To the author’s knowledge, no study on scaling between

different distortions for a transonic fan has been carried out.

To achieve this improvement to the state-of-the-art, this work makes use of a

compressibility correction to the incompressible normal force model, in combination

with a double-sided loss model. Doing so produces a transonic blade volumetric source

term model, allowing for a reduced full annulus computational cost. The output of

the work is a parametric study of compressor performance scaling for a transonic fan

in the presence of various distortion patterns and intensities.
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Chapter 3

Approach

This chapter details the approach used to generate a transonic volumetric source

term model and the non-uniform flow cases of interest. A high-level overview of

the methodology employed in developing this volumetric source term model is first

presented. Following that, the chronological steps in developing the volumetric source

term are explained in detail, and finally the development and selection of a matrix of

inlet distortions is outlined.

3.1 High-Level Overview of Transonic Volumetric

Source Term Model

To accurately model the stagnation pressure rise, flow turning, and viscous losses

through a transonic compressor stage, an innovative viscous volumetric source term

model is developed. This model is a combination of adaptations from the normal force

created by Hall, Greitzer, and Tan [18] and the parallel (viscous) force from Peters

[15]. Figure 3-1 illustrates the work flow used to produce the final volumetric source

term model. The machine and operating speed of interest must first be selected,

from which the single-passage RANS speedline can be calculated, and finally the
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resultant volumetric source term model can be developed from the extracted flow

characteristics.

Figure 3-1: A high-level overview of the volumetric source term model creation pro-
cess.

3.2 Machine of Interest

In this work, the transonic compressor NASA stage 67 is used. Important features for

this machine are shown in Table 3.1. This single-stage, axial compressor is selected

for three distinct reasons:
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1. at 90% rotor speed, the tip relative Mach number is 1.20 [22], meaning that the

flow is in the desired transonic regime for this study.

2. NASA stage 67 is the only known low hub-to-tip-ratio transonic compressor

to have blade geometry and experimental results both available in the open

literature.

3. Previous research completed by Fidalgo et al. [11] was performed on NASA

Stage 67, meaning the accuracy of the volumetric source term model’s response

to non-uniform flow can be assessed.

With a mean hub-to-tip radius ratio of 0.427, this machine lies in between a fan and

a typical compressor, meaning the flow response is similar to that of a first stage

compressor or a fan in a low bypass ratio turbofan.

Table 3.1: Important design characteristics for NASA Rotor 67 at 90% speed [22, 11].

Ω (rad/s) 1512 σhub 3.11

Mrel,tip 1.20 σtip 1.29

FPR 1.48
(
rhub
rtip

)
inlet

0.375

ṁ (kg/s) 31.10
(
rhub
rtip

)
outlet

0.478

B 22 ηis (%) 92.2

AR (Aspect Ratio) 1.56 φ = vxM

Umid
0.50

tip clearance
rtip

(%) 0.39

The rotor consists of 22 blades which rotate clock-wise (facing downstream); the

stator has 36 blades. A NASA technical report on rotor 67 has made blade data

available at 14 spanwise locations for the rotor, and 16 spanwise locations for the

stator [22]. At each of these spanwise locations, blade geometry is given in cylindrical

coordinates, from blade leading edge to trailing edge and back to the leading edge.
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Figure 3-2 shows blade stacking of the available data. Additionally, streamline data is

given along the meridional axis, where the low-radius streamline represents the hub,

and the high-radius streamline represents the casing.

Figure 3-2: Rotor and Stator blade profiles for NASA Stage 67.

Geometry for the upstream and downstream ducts are not available. Instead,

an artificial nose and inlet duct is produced to match those used in the study by

Fidalgo et al. [11]. The nose itself is stationary, and only a portion of the hub rotates

with the rotor, as shown in Figure 3-3. In this sense, the machine behaves as a

compressor rather than as a fan; the latter would typically have a rotating nose. The

downstream duct is different from Fidalgo et al. in that a converging nozzle is not

used. Converging nozzles are typically placed far enough downstream to avoid any

upstream flow influence. They are used to aid in reaching a converged computational

fluid dynamics (CFD) solution near stall conditions [23]. In this work, only solutions

near design are needed.
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Figure 3-3: Rotational and non-rotational sections of the NASA Rotor 67 hub [22].

3.3 Single-Passage Computational Setup and Speed-

line Results

Using the data available in Section 3.2, single passage RANS computations are set

up. This process consists of four phases:

1. computer-aided design (CAD) model,

2. grid generation,

3. CFD setup, and

4. CFD calculation using external resources.

Each of these steps are explained in detail in this section.
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3.3.1 CAD Model

Using the blade data available, the single passage domain is created using AutoDesk

Inventor, a 3D CAD software package [24]. The machine inlet is placed approximately

10 rotor chords upstream of the rotor inlet, and the machine outlet approximately

10 stator chords downstream of the stator outlet. A full annulus 3D model of the

machine used is shown in Figure 3-4.

Figure 3-4: 3D CAD model of the NASA 67 machine, including artificial upstream
and downstream ducts.

3.3.2 Grid Generation

The single passage grid is comprised of two sections, shown in Figure 3-5. The first

section, the domain inlet, is produced using Pointwise [25]. Pointwise is a mesh

generation software with the capability of producing a completely user-customized

grid. The remaining sections of the grid, namely the rotor inlet, rotor blade, stator

blade, and downstream duct are created using ANSYS TurboGrid [26]. Due to the

complexity of the grid near the physical blade, TurboGrid is the preferred software for

this region. TurboGrid makes use of an automated grid generation algorithm, catered

towards the study of turbomachinery. As its name suggests, the single passage grid

represents one single blade passage meaning 1/22 of the inlet and rotor region and
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1/36 of the stator and outlet regions. An illustration of the single passage rotor and

stator grid topologies is shown in Figure 3-6.

Figure 3-5: Single passage grid generation software usage.

Figure 3-6: Single Passage rotor (left) and stator (right) grid topologies at midspan.

NASA Stage 67 rotor has a large stagger angle near the blade tip. This is a

characteristic shared with fan blades, as the large radius creates high rotor blade

velocity, requiring a steep blade angle. Due do this stagger, the complexity of the grid

is significantly increased in these outer span locations, driving home the importance

of using TurboGrid, as opposed to a more manual grid generation method. Another

advantage of TurboGrid is its handling of a non-conformal tip gap. In the rotor region,

a tip gap of 0.0039Rtip is needed to allow the rotor clearance while in operation. An

overhead view of the rotor blade, Figure 3-7, shows the grid generated in the tip gap

region and the non-conformal grid intersection.
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Figure 3-7: Overhead view of the rotor blade tip; rotor tip gap grid.

Finally, the upstream grid generated in Pointwise, and the rotor, stator, and

downstream grids generated in TurboGrid are imported to CFX to produce one single

grid with no geometric gaps. Grid count statistics are shown in Table 3.2, where the

relative grid density, υ, is calculated as

υ =
Cell%

V olume%
. (3.1)

As expected, the relative grid density is greatest in the rotor and stator, with values

of 6.747 and 9.301 respectively. NASA stage 67 is comprised of 22 rotor blades

and 36 rotor blades, meaning comparatively, there is reduced blade spacing within

the stator. Blade boundary layer regions require increased cell density, which is

why the stator domain with 36 blades has a larger relative grid density than the

rotor. The total grid count is 96,163,722 cells, more than twice the density used

by Fidalgo et al., 42,500,000[11]. Their study were performed on the identical NASA

Stage 67 machine, however, they were performing an unsteady full annulus calculation

where an increased cell count comes at a severe computational time penalty. Due to

the increased grid density, in addition to the availability of both experimental and

previous CFD results, an extensive grid independence study is unnecessary.
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Table 3.2: Grid count statistics for both single passage and full annulus RANS cal-
culations.

Region Cells/

Passage

Passages/

360◦

Cells/360◦ Volume % Cell % υ

Inlet 458,346 22 10,083,612 52.89 10.49 0.198

Rotor Inlet 106,848 22 2,350,656 8.42 2.44 0.290

Rotor 1,781,061 22 39,183,342 6.04 40.75 6.747

Stator 1,065,792 36 38,368,512 4.29 39.90 9.301

Outlet 171,600 36 6,177,600 28.37 6.42 0.226

Total 3,583,647 96,163,722

3.3.3 Single-Passage RANS Grid Independence

Availability of experimental data and previous CFD calculations limits the required

grid independence study. At a minimum, two grids need to be tested to ensure a grid

refinement does not change the computational result to a significant degree. Ideally,

a more coarse grid should be tested as well to determine if the total cell count can be

reduced. In the case of Fidalgo et al., a single passage rotor grid count of 1.18 million

cells was used [11]. This serves as a starting point for rotor grid density. Several

grids are produced using TurboGrid. Table 3.3 shows the final grid resolutions. It is

determined that the medium grid density is a sufficient grid. The total pressure ratio

and isentropic efficiency both change by less than 1%.

Table 3.3: A summary of the grid independence study performed.

Medium Grid Fine Grid Percent Change

Rotor Cell Count 1.78× 106 2.45× 106 37.6%

FPR 1.493 1.496 0.71%

Rotor ηis 0.9231 0.9229 0.022%

34



3.3.4 CFD Case Setup

The commercial software ANSYS CFX is used as the CFD solver for this work [27].

This software has been designed and customized for applications involving rotating

machinery [27]. CFX includes a pre-processor and solver, allowing the case setup and

calculation to be completed on one platform. CFD-Post, an ANSYS package, and

Matlab are used for post-processing [28].

The generated grids are imported to CFX-Pre, with the single-passage setup

shown in Figure 3-8. The calculation is steady state, with the shear-stress transport

(SST) turbulence model [29]. This turbulence model is especially useful in capturing

the separation of flow over a smooth surface in an adverse pressure gradient [27]. It

is a two equation turbulence model widely used in turbomachinery [27]. CFX recom-

mends a boundary layer resolution of a minimum of 10 nodes in order to accurately

capture the secondary flow effects; in this study a boundary layer with a minimum

of 15 layers is used. A non-conformal grid, and a general grid interface (GGI) within

CFX, is used in the tip gap region. The boundary layer cell specification is, however,

unchanged in this region, with a minimum of 15 boundary layer cells used. Within the

entire domain, the y+ value does not exceed 40. At the inlet of the domain, total con-

ditions are specified and the flow direction is normal to the inlet face. Two separate

outlet conditions are imposed, depending on the flow coefficient. In flow conditions

near choke, the static pressure is specified at outlet until the desired flow coefficient

is achieved. This is performed to accommodate for the nature of a compressor char-

acteristic, where the total pressure ratio is highly sensitive to static pressure changes

near choke. Near stall, the physical mass flow is specified as the outlet condition.

At flow coefficients away from these two critical values, the mass flow rate outlet

condition is once again used, as it allowed for a desired flow coefficient to be directly

obtained, as opposed to an arbitrary static pressure value. The no-slip condition is

imposed on all walls.
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Figure 3-8: Single-passage domain as defined in CFX-Pre.

To compare the single passage results to NASA experimental values for R67, 100%

rotational speed (1680 rad/s) is needed. However, with a tip relative Mach number

of 1.38, severe stator separations are expected in the presence of distortion [11]. For

this reason, the distortion study performed by Fidalgo et al. was calculated at 90%

rotational speed [11]. Thus, the work in this thesis is also performed at 90% rotational

speed (1512 rad/s).

In a steady calculation of rotating axial turbomachinery, the flow travels from

a stationary frame (inlet) to a rotating frame (rotor) and back again (stator). To

transfer flow data downstream across a changing reference frame, a mixing plane is

necessary. In this machine, a mixing plane is needed between the upstream region and

rotor, and once again between the rotor and stator. Within CFX, the stage mixing

plane is used. This type of mixing plane circumferentially averages the flow at the

domain outlet and converts it to the appropriate reference frame. In the process

of averaging, the mixing plane incurs a mixing loss, where the upstream domain is

allowed to mix out any velocity variations before entering the downstream domain

[27]. The effect of this mixing plane can be seen in Figure 3-9, the pressure loss

coefficient from rotor to stator is ω = 0.0089. To minimize the effect of this mixing

plane upstream of the rotor, where upstream rotor effects are present, the mixing
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plane is moved two chords upstream of the rotor. As a result, the rotor inlet region

is created. This region has the same rotational speed as the rotor, with the use of

counter-rotating walls to keep the boundary conditions consistent with that of the

actual machine. When placing the mixing plane between the rotor and stator regions,

the midpoint is selected.

Figure 3-9: Artificial mixing loss when using a stage interface between rotating and
non-rotating frames.

3.3.5 Computational Resource

To significantly reduce the computational time, Sharcnet is used as a computing

resource. This cluster of high-performance computers is available to 18 Canadian

academic institutions [30], allowing for the scope of this research to be realizable.

Job submissions vary based on several factors including initializing conditions, grid

density, Sharcnet resource availability, and the purpose of the submission. A typical

setup allows for the parallel usage of 24 CPUs and 48GB RAM.
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3.3.6 Single Passage Results

For 90% rotational speed, Fidalgo et al. have published both experimental and CFD

results of rotor total pressure ratio and isentropic efficiency [11]. Those results are

compared against the single-passage results obtained in this work in Figure 3-10.

The values obtained for total pressure ratio are in agreement with both experimental

and Fidalgo et al. CFD data, with an error ranging from 0.3% to 3.8%. The rotor

isentropic efficiency, near design corrected mass flow rate (31.1 kg/s), lies in between

the experimental and Fidalgo et al. computed values. At flow coefficients (mass flow

rates) near choke, the experimental data for isentropic efficiency has large variability,

making it difficult to calculate absolute error. In this region, the results from this

work lie between experimental and Fidalgo et al. CFD results. When comparing the

results from this work to that of Fidalgo et al., the use of a different grid and solver,

is the main source of inconsistency. It is also noteworthy that the corrected mass

flow rate of the CFD results is only run to a minimum of 30.07 kg/s. The reason for

this is instability in the solver as the rotor incidence angles become larger and flow

separations are more severe. To obtain values at lower mass flow rates, an unsteady

calculation, or choked nozzle is necessary. However, this is not necessary in this work,

as data extraction is only needed at peak efficiency.
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Figure 3-10: Single passage 90% rotor speed, ηis and FPR results against experimental
and Fidalgo et al. CFD [11].

3.4 Volumetric Source Term Model Domain Setup

As outline in section 2.4, the volumetric source term model is a pitchwise-averaged

representation of the actual machine. The computational domain is thus a meridional

projection of the single passage domain, rotated about the axial direction. The rotor

and stator domains encompass the swept volume of the physical blades. Since the

volumetric source terms are frame-independent, there are no rotational sections, al-

lowing for one continuous grid. For uniform flow cases, the circumferential rotation of

the grid is a 1/16th sector of the full annulus. However, non-axisymmetric inflow dis-

tortions require a full annulus domain. The resultant volumetric source term model

domain, for uniform inflow (1/16 section), is shown in Figure 3-11 and measurement

station locations are shown in Figure 3-12. The grid used in the volumetric source do-

main is produced entirely within Pointwise. It is a single, continuous, axi-symmetric
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grid with no rotating components. A meridional view of the rotor and stator grids

shown in Figure 3-13.

Figure 3-11: Uniform inflow volumetric source term model domain, a 1/16th sector
of the full annulus machine.

Figure 3-12: Axial measurement locations in the volumetric source term grid.

Figure 3-13: Volumetric source term model, rotor domain grid (left) and stator do-
main grid (right) outlined in red.
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Inlet total conditions, mass flow outlet , free-slip walls, a periodic rotational inter-

face, and a ratio of specific heats of γ = 1.4 is used. The rationale for use of free-slip

walls is presented later in this section. The same turbulence model, SST, is used as in

the single passage calculations. In determining an automatic time scale, CFX makes

use of two characteristic length scales [27],

Lvol =
3
√
V , (3.2)

Lext = max(Lx, Ly, Lz), (3.3)

where V is the domain volume, and Lx, Ly, and Lz are the x, y, and z extents of

the domain. The length scale for a conservative scheme is the minimum of the two

length scales,

Lscale = min(Lvol, Lext). (3.4)

For a conservative scheme, the velocity scale is calculated as the maximum arithmetic

average velocity at any boundary [27],

vscale = max |v̄bc| . (3.5)

The ratio of velocity to length scales, multiplied by a factor of 0.3 is used as the

conservative automatic time scale. In this volumetric source grid, a physical time

scale equal to 50.7% of the conservative automatic time scaled is used to ensure

stability of the computations.

NASA stage67 contains sharp hub radius increases in the rotor and stator do-

mains. Within the stator, these area contractions coincide with the adverse pressure

gradient produced by flow straightening and boundary layer development. Due to
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these conditions, non-physical severe flow separation and subsequent re-circulation

is observed. The separation is not consistent with the results observed in the single

passage model. To avoid the separation, slip-wall conditions are used. Within the

rotor and stator blade regions, the parallel force model accounts for the end-wall

losses. Using slip-wall conditions leads to the absence of boundary layer development

upstream of the rotor. While it is desired to be able to capture this effect, the use of

slip-walls only affects the flow in the bottom 5% span and upper 5% span. For the

purpose of this study, the overall efficiency trends are still observable.

Without the physical presence of blades in the volumetric source term model, flow

is able to circulate in the tip gap region, as it is unimpeded by a solid blade. An ideal

volumetric source term model would allow for the the tip gap region to be a separate

domain from the rotor, in which volumetric source terms do not exist. However, this

is not possible in this model, as this tip flow circulation previously discussed leads

to a divergent solution. To overcome this, the normal and parallel forces in the last

3 spanwise cell locations are averaged and then extrapolated to the tip region. By

eliminating the tip gap, work is done on the flow in this region, meaning the total

enthalpy rise is over-estimated, and the tip leakage flow details cannot be observed.

The tip gap in this machine is less than 0.4% of the blade span. A comparison of the

mass flux between the volumetric source term model and single-passage model at 1%

rotor chord is shown in Figure 3-14, which illustrates the effect of eliminating the tip

gap. The volumetric source term model continues to push the mass flux through the

machine, even in the tap gap, whereas the single passage tip leakage exhibits itself as

a mass flux deficit.
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Figure 3-14: Spanwise rotor exit total temperature ratio; tip gap leakage is not mod-
elled in VSTM.

3.5 Normal Force - Compressibility Correction

The normal force model in this work is based on incompressible thin airfoil theory.

To account for flow compressibility, a three-step process is carried out:

1. incompressible normal force calculation,

2. iterative calculation of compressibility correction constant, ε, and

3. blade re-cambering.

As detailed in section 2.4.3, the Hall et al. normal force model is based on thin airfoil

theory [18] and the force per unit mass is,

fn =
(2πδ)

(
1
2
W 2/|nθ|

)
2πr/B

, (3.6)
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where δ is the deviation angle, W is the relative velocity, |nθ| is the camber surface

normal projection on to the azimuthal direction, r is the radius, and B is the number

of blades. This equation can be further simplified using the staggered blade spacing

relationship [15],

h =
2πr
√
σcosκ

B
, (3.7)

so that

fn = π
√
σ
δW 2cosκ

h|nθ|
, (3.8)

where σ is the blade solidity and κ is the blade metal angle. Finally, the trigonometric

relationship shown in Figure 3-15 can be used to produce the final equivalent form of

this normal force equation

fn = π
√
σ
δW 2

h
. (3.9)

Figure 3-15: Example blade passage used to illustrate the relationship between cosκ
and |nθ|.

To adapt this model for a transonic fan, a compressibility correction constant, ε,

is added to the local deviation angle,
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fn = π
√
σ

[δ + ε]W 2

h
, (3.10)

where ε is a spatially dependent constant. The constant itself is calculated from an

observation in the Euler turbine equation,

ht,out − ht,in = ω (routvθ,out − rinvθ,in) . (3.11)

Knowing the volumetric source term model must produce the same stagnation en-

thalpy rise as the single-passage computations, if the relative swirl velocities are

matched, so too will the enthalpy rise. In an attempt to accomplish this, the vol-

umetric source term relative flow angles are matched to the single-passage relative

flow angles, by making use of ε. An innovative method is used to match the relative

flow angles. The volumetric source term model is calculated at peak efficiency, using

Hall et al.’s original definition of the normal force, Equation 3.9. From the results,

the relative flow angles are extracted within the rotor domain in the x − r plane.

These relative flow angles are then subtracted from the pitchwise-averaged, peak ef-

ficiency, single-passage flow angles, as illustrated in Figure 3-16. The resultant flow

angle field becomes the new value of ε. Due to the non-linear relationship between

incompressible and compressible flow turning, ε is not directly calculated, rather it is

iterated upon. After each iteration, the new value of ε is a cumulative sum of previous

iterations,

εi,total(x, r) = εi,extracted(x, r) + εi−1,total(x, r). (3.12)

To obtain the final spatial ε field, a series of 19 iterations are performed.
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Figure 3-16: One iteration of the ε extraction process, comparing volumetric source
term flow angles to single passage flow angles.

Matching the flow angles is only a first step in matching the total enthalpy rise,

or exit swirl velocities. In a bladed single-passage calculation, the fan blades provide

a physical blockage for the flow. This blockage effect is not modelled in the volu-

metric source term computation. The only means for axial mass flux gradients in

the volumetric source term model is duct contraction or expansion. Therefore the

axial velocity in the blade force model cannot be matched to the single passage cal-

culation without altering the mass conservation equation. Instead, by matching the

flow angles, as is done in the work, an incorrect axial velocity means that the swirl

velocity is mismatched. There is no scenario is which both the swirl velocity and

flow angle can be matched to the single-passage values, without blockage. In this

volumetric source term model, rotor work is over-predicted in regions of increasing

blade thickness, and under-predicted in regions of decreasing blade thickness. Figure

3-17 serves as a hypothetical example of this velocity mismatch. In this figure, blade

thickness is increasing axially and the flow angle is conserved between single passage

and volumetric source term, that is,

β1,SP = β1,V STM (3.13)

β2,SP = β2,V STM , (3.14)
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.

without modeling blockage,

vx,1,SP = vx,1,V STM (3.15)

vx.2.SP > vx,2,V STM , (3.16)

which results in an uneven change in outlet swirl velocity,

δvθ,rel,2,SP < δvθ,rel,2,V STM . (3.17)

Figure 3-17: Mismatch of swirl velocity with a constrained flow angle due to the
absence of blockage.
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Since the work in the rotor is over-predicted, a blade camber line alteration is

necessary to reduce the normal turning force. Within the volumetric source term

normal force equation, the camber line, κ, controls the magnitude of flow turning and

in turn, the work done on the flow by the rotor,

fn = π
√
σ

(β − κ)W 2

h
. (3.18)

Thus, to correct for over-predicted work, the rotor blade is re-cambered using the

circumferentially-averaged spanwise rotor total temperature ratio from single passage

RANS data. Since the blade loading is highest in the first quarter chord of the

rotor blade, the re-cambering is performed linearly from leading edge to trailing edge,

meaning that the camberline is unaltered at the leading edge. In performing a linear

recambering, the resultant VSTM camberline is a blend of correct swirl angle at the

leading edge and correct swirl velocity at the trailing edge. To produce the recambered

blade, changes in flow angle from leading edge to trailing edge are extracted from

single passage RANS and are used to radially scale the re-cambering. Doing so allows

for the spanwise total temperature profile at rotor exit to be preserved.

The final form of the equation used for re-cambering is,

κnew(x, r) = κold(x, r) + Λ
(x− xLE(r))

(xTE(r)− xLE(r))
(βTE,SP (r)− βLE,SP (r)) , (3.19)

where κnew(x, r) is the new blade camber profile at each rotor grid point, kold(x, r) is

the original camber profile at each rotor grid point, Λ is a re-cambering constant, x is

the axial location within the rotor blade, xLE(r) and xTE(r) are the blade leading edge

and trailing axial locations at radius r, and βLE,SP (r) and βTE,SP (r) are the relative

flow angles at the leading edge and trailing edge of the single passage RANS results.

The constant Λ is determined iteratively by comparing the rotor total temperature
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ratio to the single passage RANS results; ultimately Λ = 0.27 is found to give the

best agreement for the rotor-exit total temperature ratio vs. span profile between

volumetric source term model and single passage RANS. The resultant rotor camber

line profiles are shown versus the original rotor camber line profile is shown in Figure

3-18. The rotor total temperature ratio is plotted against mass flow rate in Figure

3-19 and a spanwise plot of rotor exit total temperature at peak efficiency before and

after re-cambering is shown in Figure 3-20.

As an alternative, the normal force model can be constructed by matching the

swirl velocity as opposed to the flow angles. Doing so, and again due to the absence

of blockage modelling, the swirl velocity will be correct, but the flow angles will be

incorrect. Incorrect flow angle, and in turn incidence angle, is especially detrimental

at the blade leading edge. This is for two reasons: blade loading is most severe in the

first 1/4 chord, and the normal force model is directly dependent on incidence angle.

Future work will include a blockage model to circumvent the need for re-cambering.

Figure 3-18: Rotor camber line angles, before and after re-cambering.
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Figure 3-19: Rotor total temperature ratio, before and after re-cambering.

Figure 3-20: Spanwise rotor total temperature ratio at rotor exit at peak efficiency,
compared to single passage results.
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3.6 Updated Parallel Force Model

For NASA rotor 67, Peters parallel force model [15] requires a revision to allow the

viscous model to replicate the shape of the desired efficiency versus corrected mass

flow characteristic. Peters’ model produces a rotor loss profile that has a quadratic

dependence on blade-inlet relative Mach number, M
M

rel,

fp =
Kp1

h

[(
M

M

rel

)2
+Kp2

(
M

M

rel −Mref

)2]
W 2. (3.20)

The equation also contains quadratic dependence on the local relative velocity, W 2.

M
M

rel is calculated as a mass-weighted average of an y − z plane at the leading edge

of the blade; station 1 for the rotor and station 2 for the stator. The shape of the

efficiency characteristic can be altered by Kp1, Kp2, and Mref . While Kp1 and Kp2

set the magnitude and slope of the efficiency curve, the constant Mref is the single

control point used to alter the shape of the resultant efficiency curve. By setting

Mref to equal M
M

rel at peak efficiency, the resultant efficiency vs. corrected mass flow

characteristic is constrained as shown in Figure 3-21. Kp1 controls the magnitude of

peak efficiency and Kp2 controls the slope of off-design efficiency. These constants do

not allow for the creation of different efficiency characteristic shapes.

To allow for the design of more customizable efficiency curves, two innovations are

implemented: Mref is no longer located at the peak efficiency point, and a piecewise

loss function is established,
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Figure 3-21: Peters’ viscous model: rotor isentropic efficiency speedline is constrained
to a near-quadratic shape.

fp,new =


fp if M

M

rel < M ′
ref

fp

[
1 +K ′p2

(
M ′

ref −M
M

rel

)2]
if M

M

rel > M ′
ref

, (3.21)

where K ′p2 is a constant used to alter the efficiency at flow coefficients where M
M

rel >

M ′
ref . The resulting formula allows for enhanced control of the resultant efficiency

characteristic shape. Mref and M ′
ref serve as local loss minima within their respective

multiplicative terms, allowing for 2 independent “shaping” variables. The values for

Kp1, Kp2, K
′
p2, Mref , and M ′

ref are calculated iteratively by comparing the resultant

efficiency characteristic to the desired efficiency characteristic. The desired efficiency

speedline is known from single-passage calculations, and each variable is adjusted

until the desired output is obtained. The following is the expanded form of Equation

3.21, illustrating the difficulty of resolving an analytical solution:
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fp,new =

(
kp1 + kp1kp2 + kp1kp2k

′
p2

)
h

(
M

M

rel

)2
W 2 +

kp1k
′
p2

h

(
M

M

rel

)4
W 2 +

kp1kp2
h

M2
refW

2

− 2kp1kp2
h

M
M

relMrefW
2 −
−2kp1k

′
p2

h

(
M

M

rel

)3
M ′

refW
2 +

kp1k
′
p2

h

(
M

M

rel

)2 (
M ′

ref

)2
W 2

−
2kp1kp2k

′
p2

h
M

M

relM
′
refW

2 +
kp1kp2k

′
p2

h

(
M ′

ref

)2
W 2 (3.22)

To reduce the computational time required to solve for fp, initial values are of

significant importance. Given that the peak efficiency is known, the parallel force is

initially reduced to the following form:

fp =
Kp

h

(
M

M

rel

)
W 2. (3.23)

Using this simplified form of the viscous model, Kp can be adjusted until the

peak efficiency is matched to the single passage results. From here, the total viscous

force at peak efficiency must remain constant in all future iterations. That means,

despite the complex viscous force equation, when one variable is changed, there is a

constraint on the other variables, such that the total value of fp at peak efficiency

must be conserved. Previously used values for Kp1 (0.0336) and Kp2 (0.6321) in the

work by Patel [31] served as an initial guess. Mref is initially set to be equal to M
M

rel

at peak efficiency. The resulting constant values used in this work are shown in Table

3.4, the parallel force distribution is shown in Figure 3-22 and the resultant volumetric

source term efficiency characteristic is shown in Figure 3-23. The new parallel force

formulation is used in the rotor domain, and Peters’ parallel force formulation is used

unaltered in the stator. Without computational resources as a limiting factor, the

revised parallel force model would be used in both domains. Future work will see this

process automated and optimized to reduce computation time and increase parameter

accuracy.
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Table 3.4: Modified parallel force constant values for the rotor and stator domains.

Rotor Stator

kp1 0.0145 kp1 0.052

kp2 650 kp2 5

k′p2 1125 k′p2 n/a

Mref 1.007 Mref 0.6199

M ′
ref 0.9870 M ′

ref n/a(
M

M

rel

)
peak−efficiency

0.9868
(
M

M

rel

)
peak−efficiency

0.6045

Figure 3-22: Rotor (left) and stator (right) parallel force values at peak efficiency.
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Figure 3-23: Volumetric source term rotor isentropic efficiency characteristic versus
previously published results at 90% speed.

3.7 Implementation of the Volumetric Source Terms

As with the single passage model, CFX is used as the pre-processor and solver. The

volumetric source term model is implemented as source terms in the momentum

and energy equations. This is done via a series of expressions and user functions

within CFX. Each of the locally calculated variables are represented as expressions,

whereas the spatially dependent constants appear as user functions. Within the rotor

domain, forces are expressed as both a general momentum source and energy source,

whereas the stator requires only a general momentum source. CFX allows the user to

express these forces in cylindrical components. The following transformation is used

to convert the total force and energy to individual cylindrical components per unit

volume:
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Fn,rotor =


Fn,rotor,x

Fn,rotor,r

Fn,rotor,θ

 = ρfn,rotor


sin(β)

0

cos(β)

 (3.24)

Fp,rotor =


Fp,rotor,x

Fp,rotor,r

Fp,rotor,θ

 =
ρfp,rotor
Wrel


−vx

−vr

−vθ,rel

 (3.25)

Ẇrotor = ρrΩ(fn,rotor,θ + fp,rotor,θ) (3.26)

Fn,stator =


Fn,stator,x

Fn,stator,r

Fn,stator,θ

 = ρfn,stator


sin(α)

0

cos(α)

 (3.27)

Fp,stator =


Fp,stator,x

Fp,stator,r

Fp,stator,θ

 =
ρfp,stator
W


−vx

−vr

−vθ

 . (3.28)

Appendix A contains the CFX expressions for implementation of the volumetric

source term model.

3.8 Volumetric Source Term Grid Independence

Study

A series of five grids are tested, with increasing refinement in the axial, radial, and

circumferential directions. The grid details are shown in Table 3.5. To achieve grid

independence, it is desired to have the rotor work and isentropic efficiency reach a

point of minimal change (<0.5%) between grids. The actual change in rotor efficiency
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and total temperature ratio between grids is given in Table 3.6. The grid results show

that the efficiency is continually changing as grid density is refined. While the finest

grid resolution provides the least amount of interpolation between cells and hence the

greatest accuracy, there exists a tradeoff with computational cost. For this reason,

a grid cell count of 279,760 is selected, corresponding to the second level of five grid

densities. As the grid density increases, work input by the rotor changes at a rate

that is acceptable (<0.5% in all cases). The efficiency however, is largely dependent

on the grid discretization and subsequent interpolation of the parallel, viscous force.

These traits are graphically shown in Figure 3-24. Therefore, any grid refinement

requires an associated change in parallel force loss constants. It is deemed that all

of the grids shown in Table 3.5 are acceptable. This assumption is made under the

provision that the parallel force is tuned in accordance to the selected grid. Therefore,

grid selection must first be determined, after which the parallel force is calculated for

that specific grid.

Table 3.5: Volumetric source term grid independence study, grid details.

Grid Cell Count Spanwise Cells Chordwise Cells Circumferential Cells

(per 1/16 annulus sector) (per component) (per degree)

1 187,440 40 50 0.71

2 279,760 60 50 0.71

3 609,500 80 60 0.89

4 1,115,125 100 75 1.11

5 1,953,300 120 85 1.33
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Table 3.6: Volumetric source term grid independence study, rotor efficiency and total
temperature ratio changes.

Grid ηrotor % difference Tt,2/Tt,1 % difference

1 0.9084 1.1298

2 0.9215 1.440 1.1300 0.154

3 0.9301 0.933 1.1302 0.154

4 0.9355 0.581 1.1305 0.230

5 0.9382 0.289 1.1306 0.077

Figure 3-24: Volumetric source term rotor isentropic efficiency, total temperature
ratio, and total pressure ratio for several grid densities.
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3.9 Distortion Matrix Selection

Two practical types of distortions are of interest in this study: boundary layer inges-

tion and turboprop propeller work profiles. In each case setup, the rotor flow coef-

ficient (and hence mass-averaged inlet Mach number) is held constant. The method

and reasoning behind this is firstly detailed.

3.9.1 Corrected Mass Flow Rate and Corrected Rotor Speed

in the Presence of Inlet Distortion

In the presence of distortion, whether a total pressure or total temperature distortion,

the inlet conditions must be corrected to compare against one another. Traditionally,

an inlet-corrected mass flow rate and corrected rotor speed is used,

ṁcorr = ṁ
pt

pt,ref

√
Tt,ref√
Tt

(3.29)

Ωcorr = Ω

√
Tt,ref√
Tt

, (3.30)

where Tt,ref and pt,ref are the reference total temperature and reference total pressure

the flow is being corrected to. This method is applicable to varying conditions of

uniform inflow, such as comparing engine operation at different altitudes. In this

work, distortions only exists in a section of the inlet and vary spatially. Therefore,

the order of operation in mass-weighted averaging is of importance. CFX computes

the corrected mass flow as,

ṁcorr = ṁ
pt
M

pt,ref

√
Tt,ref√
Tt
M
. (3.31)

However, the desired function is not a multiplicity of the individual mass-weighted

quantities, but rather a mass-weighted average of the entire function,
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ṁcorr = ṁ
pt

pt,ref

√
Tt,ref√
Tt

M

. (3.32)

As a consequence, the traditional method within CFX for calculating corrected mass

flow rate is not used in this work. Additionally, with the complicated distortion ge-

ometry used in the radial distortion cases, the solution to Equation 3.32 is convoluted.

Rather, two important variables can be conserved to ensure consistency between all

cases: the corrected rotor speed, Ωcorr and flow coefficient, φ. The flow coefficient is

defined [13],

φ =
vMx
Umid

. (3.33)

In the case of non-swirling flow, the flow coefficient has a one-to-one mapping to

the relative rotor flow angle. By conserving these two dimensionless quantities, the

physical mass flow rate which corresponds to the corrected mass flow rate is solved.

This also ensures that that mass-averaged inlet Mach number, M
M

inl, is conserved for

non-swirling flows. For NASA stage 67 at 90% rotor speed, these values are shown

in Table 3.7. These quantities can be be enforced within CFX, as an outlet mass

flow rate, through use of a series of expressions combined with a Fortran routine.

However, to reduce computational time in the full annulus calculation, a hard-coded

outlet boundary condition is desired. Therefore, the physical mass flow is desired to

be solved a priori.

Table 3.7: Non-dimensional flow characteristics conserved between test cases, NASA
stage 67, calculated with uniform inflow, 90% speed, peak efficiency.

ṁc (kg/s) ṁ (kg/s) Ω (rad/s) φ M
M

inl

31.1 31.1 1512 0.498 0.3944

To determine the correct boundary conditions, an additional CFD calculation is

performed. A simplified computational mesh is developed - an extremely short duct
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with the exact dimensions of the machine inlet. To produce this grid, the first four

axial cells in the volumetric source term grid were extracted, keeping the radial and

circumferential grid spacing unchanged. By creating a simplified grid with no external

forces, the desired distortion pattern can be applied to the inlet and a converged

solution can be found quickly. While running the calculation, the outlet mass flow

rate is adjusted until the mass-averaged inlet Mach number is desired. Once a solution

is reached, the resultant mass-averaged inlet axial velocity is used to solve for Umid

from Equation 3.33. The corresponding physical rotor speed is solved using,

Ω =
Umid

Ωcorrrmid
. (3.34)

From this short duct calculation, the physical mass flow rate and physical rotor speed

that yield the correct flow coefficient and corrected rotor speed is determined.

3.9.2 Boundary Layer Ingestion

In the case of boundary layer ingesting fans, the upstream boundary layer develop-

ment results in a total pressure distortion at the engine inlet. This total pressure

distortion is represented by a quadratic Mach number deficit in this thesis. Two sep-

arate profiles are considered: immersion-varying cases and depth-varying cases. The

immersion of the distortion is expressed as,

Immersion = d/2Rin, (3.35)

where d is boundary layer thickness and Rin is the duct inlet radius. The depth of

the distortion is expressed as,

Depth =
Mmin

M∞
, (3.36)
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where Mmin is the Mach number at maximum distortion and M∞ is the freestream,

or undistorted, Mach number. A smaller value for depth represents a move severe

distortion. Figure 3-25 represents a sample BLI inlet distortion profile, with 0.75

immersion and 0.25 depth. The 0.75 immersion means that 75% of the vertical span

is subjected to the distorted Mach number, and 0.25 depth dictates that the minimum

Mach number is 25% of the freestream Mach number.

Figure 3-25: Sample BLI inlet Mach profile, 0.75 immersion and 0.25 depth.

A set of four immersion cases are tested, the immersion ranging from d/2Rin =

0.25 to d/2Rin = 1.00, each at a depth of Mmin/M∞ = 0.50 as shown in Figure 3-26.

Further case characteristics are detailed in Table 3.8.

A set of three depth cases are also tested, the depth ranging fromMmin/M∞ = 0.75

to Mmin/M∞ = 0.25, each with an immersion of d/2Rin = 0.50 as shown in Figure

3-27. Further case characteristics are detailed in Table 3.9.
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Figure 3-26: Rectilinear total pressure distortions; immersion-varying cases.

Table 3.8: Rectilinear total pressure distortions; immersion-varying cases.

Immersion Depth ṁ Ω/Ω100 φ M
M

inl

d/2Rin Mmin/M∞ (kg/s)

0.25 0.50 30.815 0.9

0.49801 0.3944
0.50 0.50 30.350 0.9

0.75 0.50 29.835 0.9

1.00 0.50 29.333 0.9
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Figure 3-27: Rectilinear total pressure distortions; depth-varying cases.

Table 3.9: Rectilinear total pressure distortions; depth-varying cases.

Immersion Depth ṁ Ω/Ω100 φ M
M

inl

δ/2Rin Mmin/M∞ (kg/s)

0.50 0.75 30.812 0.9

0.49801 0.39440.50 0.50 30.350 0.9

0.50 0.25 29.696 0.9

3.9.3 Turboprop Work Profile

A simplified work profile leaving the propeller of a turboprop engine is one class of

distortion considered. Based on the work by Defoe and Hall [13], it was shown that

swirling flow in to the engine has a highly non-linear scaling trend. Therefore, it is

assumed that an inlet guide vane is ahead of the engine fan or first stage compressor,
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eliminating incoming swirl. Additionally, a uniform work profile from root to tip of

the propeller is not desirable in this thesis, as it does not produce a non-uniform

compressor inflow. Rather, a linear variation of propeller work from the axis of

rotation to propeller tip is used, based on a forced-vortex assumption, as shown in

Figure 3-28.

Figure 3-28: Linear profile of propeller exit total temperature ratio - propeller axis
of rotation to blade tip.

Such a work profile is achieved by a spanwise-uniform exit flow angle combined

with a spanwise-uniform inlet flow coefficient. The values used are based on the

available specifications for the PW150 [32] turboprop engine. The specified flight

speed for the Q400, using 2xPW150 engines is 179.44 m/s, or a flight Mach number

of 0.625. Given that the propeller inlet area is13.27 m2, the corrected mass flow

equation is used to solve the mass of air flowing through the propeller,

ṁ
√
RTt

Apt
√
γ

=
Mx[

1 +
(
γ−1
2

)
M2

x

] γ+1
2(γ−1)

. (3.37)

The provided propeller shaft horsepower for this turboprop machine, 5000hp, is used

to determine the change in total temperature from leading edge to trailing edge,
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P = ṁ∆ho, (3.38)

Tt2
Tt1

= 1 +
∆ho
cpTt1

. (3.39)

From this, the total temperature ratio for this propeller is calculated to be 1.0073, at

mid-span. Linearly extrapolating this to the propeller tip, provides a ratio of 1.0146.

The values tested in this thesis range from 1.04 to 1.12, providing a large safety factor

in distortion severity.

Four distortion parameter variations are studied:

1. varying propeller rotational axis offset from the compressor rotational axis,

2. total temperature distortion, with varying intensity, at a constant axis offset,

3. total pressure distortion, with varying intensity, at a constant axis offset, and

4. a combination of the three previous distortions.

The first test case consists of shifting the propeller rotational axis offset from the

compressor rotational axis, varying from ∆R/R = 0.00 to ∆R/R = 3.00. A sample

of this distortion study (∆R/R = 0.00, ∆R/R = 0.50, and ∆R/R = 1.00) at the

compressor inlet, station 0, is shown in Figure 3-29. The corresponding detailed flow

characteristics for the entire study is shown in Table 3.10.
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Figure 3-29: Radial distortions, three sample propeller offset distortion cases.

Table 3.10: Radial distortion detailed inlet parameters; offset cases.

Offset Total Temperature Total Pressure ṁ Ω/Ω100 φ M
M

inl

∆R/Rin Tt,prop,tip/Tt,∞ pt,prop,tip/pt,∞ (kg/s)

0.00

1.08 1.31

31.9210 0.90445

0.49801 0.3944

0.25 31.9308 0.90466

0.50 31.9702 0.90531

0.75 32.0680 0.90633

1.00 32.2687 0.90763

1.50 32.8784 0.91061

3.00 34.9907 0.92008
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To observe the effect of a radial total temperature profile, the total temperature

ratio, measured at the propeller tip, is tested at three values, 1.04, 1.08, and 1.12. In

each case the propeller offset is ∆R/R = 0.75. The resultant distortion patterns are

shown in Figure 3-30 and corresponding detailed flow characteristics in Table 3.11.

Figure 3-30: Radial distortions; total temperature cases.

Table 3.11: Radial distortion detailed inlet parameters; total temperature cases.

Offset Total Temperature Total Pressure ṁ Ω/Ω100 φ M
M

inl

∆R/Rin Tt,prop,tip/Tt,∞ pt,prop,tip/pt,∞ (kg/s)

0.75

1.04

1.00

30.9922 0.90309

0.49801 0.39441.08 30.8871 0.90616

1.12 30.7833 0.90922
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To observe the effect of a radial total pressure profile, the total pressure ratio,

measured at the propeller tip, is tested at three values, 1.15, 1.31, and 1.49. In

each case the propeller offset is ∆R/R = 0.75. These values are determined from an

isentropic relationship between total temperature and total pressure, corresponding

to the values in the total temperature study,

(
pt2
pt1

)
=

(
Tt2
Tt1

)( γ
γ−1)

. (3.40)

The resultant distortion patterns are shown in Figure 3-31 and corresponding

detailed flow characteristics in Table 3.12.

Figure 3-31: Radial distortions; total pressure cases.
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Table 3.12: Radial distortion detailed inlet parameters; total pressure cases.

Offset Total Temperature Total Pressure ṁ Ω/Ω100 φ M
M

inl

∆R/Rin Tt,prop,tip/Tt,∞ pt,prop,tip/pt,∞ (kg/s)

0.75 1.00

1.15 31.7752 0.9

0.49801 0.39441.31 32.2913 0.9

1.49 32.5905 0.9

Combinations of the three previous distortions is studied: offset, total tempera-

ture, and total pressure distortion. At an offset of ∆R/R = 0.75, the total tempera-

ture propeller tip ratio is tested at 1.04, 1.08, and 1.12, as well as the corresponding

total pressure propeller tip ratio, 1.15, 1.31, and 1.49. The resultant distortion pat-

terns are shown in Figure 3-32 and corresponding detailed flow characteristics in Table

3.13.

70



Figure 3-32: Radial distortions; combined total temperature and total pressure cases.

Table 3.13: Radial distortions; combined total temperature and total pressure cases.

Offset Total Temperature Total Pressure ṁ Ω/Ω100 φ M
M

inl

∆R/Rin Tt,prop,tip/Tt,∞ pt,prop,tip/pt,∞ (kg/s)

0.75

1.04 1.15 31.6657 0.90313

0.49801 0.39441.08 1.31 32.0680 0.90633

1.12 1.49 32.2510 0.90962
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Chapter 4

Volumetric Source Term Model

Assessment

In this chapter, the resultant VSTM performance is assessed against uniform inflow

single passage results as well as non-uniform inflow experimental and CFD results

published by Fidalgo et al. [11].

4.1 Assessment of the VSTM in Uniform Inflow

To evaluate the VSTM accuracy, a comparison is made against the uniform inflow

single passage RANS calculation. At peak-efficiency mass flow rate, 31.1 kg/s, the key

characteristics are shown in Table 4.1. The rotor isentropic efficiency of the VSTM

is correct to within 0.03%. This degree of accuracy is expected, as the VSTM loss

model is calibrated using the single passage isentropic efficiency. In the stator, the

loss coefficient is designed to replicate the entropy-based loss coefficient. There is

a reduced accuracy of this loss coefficient, at 3.37% error, due to the VSTM design

methodology. Firstly, an emphasis is placed on rotor isentropic efficiency, over stator

loss coefficient. This is because the impact of the rotor on flow redistribution me-

chanics is greater than the impact of the stator. Secondly, the flow coupling between
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the rotor and stator makes it difficult to adjust both the rotor and stator loss co-

efficients simultaneously. For this reason, the rotor loss accuracy, at peak-efficiency,

is more accurate than the stator loss coefficient. Future work will see an automated

optimization scheme developed for the process of tuning the loss model, which will

serve to increase the accuracy of all loss coefficients.

Table 4.1: Uniform inflow VSTM versus single passage RANS at peak efficiency.

single passage VSTM % error

ṁcorr (kg/s) 31.1 31.1

FPR (rotor) 1.48 1.49 1.43

ηis (rotor, %) 92.45 92.42 0.03

ζ (stator) 0.143 0.148 3.37

For a VSTM to accurately capture the effects of an inlet distortion, off-design

performance must also match the physical machine. To assess this capability, rotor

total temperature, total pressure, and isentropic efficiency is plotted at various mass

flow rates in Figure 4-1. The isentropic efficiency is well matched at mass flow rates

both below and above design condition, even out performing Fidalgo et al. bladed

CFD results [11] at mass flow rates below peak efficiency. At mass flow rates near

choke conditions, the VSTM is unable to capture the drop off in rotor work. This

is expected, as blockage is not modelled, therefore choking effects are significantly

delayed. This is not consequential, however, as no local flow region in any of the

distortion studies approach choking flow rates. The total pressure ratio trend is also

well predicted at all mass flow rates, aside from choke conditions, again attributed

to the absence of blockage modelling. There is a shift in total pressure above the

previously published results, an overestimation of 1.9% to 4.1% (versus Fidalgo et al.

CFD [11]) . This overestimation does not have in impact on the non-uniform inflow

study. The study is not machine specific, therefore the magnitude of total pressure is
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not significant, rather the total pressure characteristic shape is of importance. It is

determined that the off-design performance of the VSTM is representative of a first

stage compressor and valid for use in a inflow distortion study.

Figure 4-1: Rotor total temperature, total pressure, and isentropic efficiency at off-
design conditions.

4.2 Assessment of VSTM in Non-Uniform Inflow

Of importance in this work is the VTSM accuracy in response to non-uniform inlet

distortions. To assess the VSTM performance, the inlet distortion study performed

by Fidalgo et al., discussed in section 2.2, represents a benchmark test to compare

against. The full annulus, unsteady CFD results of their study was shown to accu-

rately capture the experimental results performed on the same case setup [11]. The

distortion itself is a 120 degree total pressure deficit region, at an operating speed of
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90% of the design rotational speed, and the inlet-corrected mass flow rate based on

mass-averaged, stagnation quantities, is 32 kg/s. Additionally, the distortion char-

acteristic, DC120 is 83%. Since the distortion characteristic is calculated post priori,

it is not of assistance in setting boundary conditions to match flow conditions. The

midspan total pressure used by Fidalgo et al., in addition to the volumetric source

term model (VSTM) is shown in Figure 4-2. The station location is far enough

stream that minimal mixing between the distorted and undistorted regions has taken

place. The minimum value of total pressure from this graphic is used to set up the

VSTM calculation of the same distortion. The difficulty in this is that the exact value

is unknown, however a best estimate is found through the use of plot digitization,

0.893pt0,clean. The resultant distortion, which covers 1/3 of the entire inlet domain,

is highly sensitive to the value of pt0,min/pt0,clean selected. The difference in total

pressure profiles suggest that the total pressure distortion used in the VSTM is not

consistent with the setup used by Fidalgo et al.. The corrected mass flow rate is

dependent on this distortion, thus the magnitude of results in this study are incorrect

and only qualitative trends can be observed.

Due to the discrepancy in inlet distortions between the VSTM and previously

published CFD results, it is expected that the different physical mass flows will result

in different rotor work. This is demonstrated in Figure 4-3, a plot of the mass flux

at 0.5 and 5.5 axial chords upstream of the rotor leading edge. In the VSTM, the

far upstream mass flux is greater than in the Fidalgo et al. CFD calculation. As a

result, the rotor work is greater on the slower moving CFD case, and the difference

between the cases is attenuated as the flow moves closer to the rotor, especially in

the undistorted region. The mass flux redistribution is qualitatively similar between

the two cases, as the regions distorted regions of counter-swirl are sucked harder than

the regions of co-swirl, as expected. While there is a level of mass flux redistribution

upstream of the compressor, (ρux,max/ρux,min)5.5 = 0.5577 and (ρux,max/ρux,min)5.5 =
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0.6578, there is still a significant distortion ingested to the rotor.

Figure 4-2: Far upstream circumferential traverse of total pressure at midspan, pub-
lished in the work by Fidalgo et al. [11].

The effect of mismatched inlet conditions is further shown in Figure 4-4, a plot

of the upstream whirl angle between the VSTM and Fidalgo et al. CFD. Here it is

shown that at far upstream locations, where the rotor influence is minimal, the whirl

angle is incorrect, due to a higher mass flow in the VSTM case. While the induced

swirl angles are very similar, the axial velocity difference leads to different absolute

flow angles. As the flow approaches the rotor, the regions of co-swirl and counter-

swirl have reduced magnitudes due to a combination of two factors: reduced rotor

work and increased axial velocity. For the remainder of the analysis between the two

cases, a qualitative approach is enlisted, as a quantitative mismatch is expected.
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Figure 4-3: Circumferential traverses of mass flux at midspan locations 0.5 and 5.5
axial chords upstream of the rotor leading edge.

Despite the mismatched inlet conditions, the rotor outlet characteristics are similar

to the results from Fidalgo et al. The rotor work and trailing edge absolute whirl

angle of the VSTM are well matched, as shown in Figure 4-5, a plot of three key

variables at midspan. In particular, the rotor work and flow angle follows the CFD

trendline near perfectly, while the total pressure has a wider margin of error. This

is attributed to two factors. Firstly, the rotor work is dependent almost solely on

the accuracy of the normal force model, while the pressure rise is dependent on the

accuracy of both the normal and parallel forces, leading to a reduction in accuracy.

Secondly, Fidalgo et al. published two different values for rotor isentropic efficiency

at design flow coefficient, 92.4% and 93.5% [11]. The rotor parallel force model is

based off the lower isentropic efficiency, thus it is reasonable to assume that the total

pressure at rotor exit will be under-predicted, as shown here, if the incorrect rotor

efficiency was published.
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Figure 4-4: Circumferential traverses of absolute whirl angle at midspan locations 0.5
and 5.5 axial chords upstream of the rotor leading edge.

In addition to a well-matched circumferential flow characteristics, the VSTM also

captures radial flow profiles accurately. As shown in Figure 4-6, the total pressure,

total temperature, and absolute whirl angles are well matched at a circumferential

coordinate location of 73 degrees, a spanwise location just outside of the distortion

region. Two notable exceptions are in the VSTM near the hub and tip. Within the

VSTM tip, the losses are poorly captured due to the absence of a physical tip gap.

Additionally, near both the hub and tip, the flow angles are under-predicted, due to

the use of slip-walls. For this reason, the end wall flow features are poorly predicted.
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Figure 4-5: Midspan circumferential traverse of absolute whirl angle, total tempera-
ture, and total pressure at the rotor TE.

For the purpose of an efficiency scaling study, the end-wall flows and absolute

values of isentropic efficiency and fan pressure ratio are less important than the change

in these values, from clean inflow to distorted inflow. These results are shown in Table

4.2. To three significant digits, the rotor total pressure ratio is unchanged in both

results, and the rotor efficiency change is correct within 2.7%.
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Figure 4-6: Spanwise profiles of total pressure, total temperature, and absolute whirl
angle at the rotor TE, θ = 73◦.

Table 4.2: Summary of results at 90% rotor speed and 32 kg/s, from Fidalgo et al.
CFD [11] vs VSTM.

CFD (clean) CFD (distorted) VSTM (clean) VSTM (distorted)

FPR (rotor) 1.46 1.46 1.45 1.45

ηis (%, rotor) 93.5 92.0 91.87 90.41

∆ηis (%,rotor) -1.50 -1.46

Within the stator blade passage, the qualitative flow response to the distortion

excellently captures the results by Fidalgo et al. [11]. Midspan circumferential tra-

verses of important flow characteristics, downstream of the stator are shown in Figure
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4-7. The plot of absolute whirl angle demonstrates one key element of the VSTM,

the absence of trailing edge blade wakes. While the mean value of flow angle is well

predicted, the unsteady, bladed CFD calculation by Fidalgo et al. exhibits the trail-

ing edge blade wakes. The total temperature is well predicted, as there is no work

or energy lost within the stator, meaning the rotor work profile is transferred to the

stator blade. The total pressure profile at stator exit is nearly identical to the rotor

exit, aside from a vertical shift down, due to stator losses. Circumferential flow redis-

tribution within the stator blade is minimal as illustrated by the similarity between

rotor exit flow properties and stator exit flow properties.

Figure 4-7: Midspan circumferential traverses of absolute whirl angle, total temper-
ature, and total pressure at the stator trailing edge.

The results presented in this chapter show an excellent response by the VSTM

to both uniform and non-uniform inflow. The change in overall rotor efficiency from
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clean to non-uniform inflow compared to Fidalgo et al. URANS results is predicted

within 2.7%. Given that this is the steady calculation of an unsteady effect, this

degree of accuracy drives home the effectiveness of a VSTM representation of a single

stage compressor and the associated reduced computational requirements.
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Chapter 5

Non-Uniform Inflow Efficiency

Scaling

In this chapter, the limitations of the volumetric source term model are discussed, in

addition to the efficiency scaling results of the distortion matrix.

5.1 Limitations of the VSTM Parallel Force

The parallel force model in this work is dependent on two variables, the mass-averaged

inlet relative Mach number and local relative velocity. This model was shown in

Chapter 4 to be able to accurately capture viscous losses in uniform inflow at both

design and off-design conditions. In the parallel force formulation, a single value for

M
M

rel is calculated and applied at all spatial locations within the domain. This value

is calculated just upstream of the blade domain inlet. Within the blade domain, the

local loss force is dependent only on M
M

rel and the local relative velocity. This method

for calculating the parallel force is illustrated in Figure 5-1. In non-uniform inflow, a

limitation of this model arises: the loss force is unable to capture local parallel force

changes due to deviation from the design flow coefficient.
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Figure 5-1: Rotor domain, unwrapped circumferential sketch of the current parallel
force implementation.

In a physical compressor, the loss force has a “bucket”-like behaviour. At each

spanwise and chordwise location along the blade, deviations from the design flow

coefficient work to increase the local loss force quadratically. In the loss force model

used in the work, this behaviour is not captured. This phenomena is sketched in

Figure 5-2, where the quadratic dependence on local velocity alone creates a loss

profile inconsistent with the expected loss bucket.

Figure 5-2: A sketch of the expected “loss bucket” (dashed line) vs the loss profile in
this work (solid line).
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This loss force deficiency is apparent in the non-uniform inflow cases studied in

this thesis. Figures 5-3 to 5-6 contain rotor mass flux, relative flow angle, diffusion

factor, and loss coefficient. Each of these plots are at 90% span circumferential tra-

verses for a BLI distortion with 50% immersion. The mass flux profile illustrates the

extent of non-uniformity ingested by the rotor domain. This mass flux deficit, or

flow coefficient deficit, also leads to an increased relative incidence angle entering the

engine. Increases in relative incidence angle have an associated increase in blade load-

ing, and thus increased boundary layer development along the blade and associated

flow losses. This flow feature is captured as increases in relative flow angle, compared

to clean inflow, leads to an increase in diffusion factor. The loss coefficient behaviour,

however, is not as expected. Due to the parallel model’s local dependence on relative

velocity, the loss coefficient changes very closely resemble mass flux changes. In other

words, distorted flow regions of reduced axial velocity directly lead to a reduced local

loss force, such that it dominates the losses from increased boundary layer develop-

ment. A more accurate loss model should produce a correlation between diffusion

factor and loss coefficient.

Figure 5-3: Rotor incoming mass flux (right) at 90% span, BLI 50% immersion.
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Figure 5-4: Rotor incoming relative flow angle at 90% span, BLI 50% immersion.

Figure 5-5: Rotor diffusion factor at 90% span, BLI 50% immersion.
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Figure 5-6: Rotor entropy-based loss coefficient at 90% span, BLI 50% immersion.

Pertinent information in the stator domain is shown in Figures 5-7 to 5-10. Within

the stator domain, the incoming flow distortion has been further attenuated by the

rotor. The maximum mass flux deficit is 15.7%, compared to a maximum rotor

mass flux deficit of 37.1%. Due to a change in reference frame, the incidence angle

change from design is actually larger in the stator than in the rotor (10.7◦ to 7.3◦).

This reduction in mass flux distortion, combined with an increased incidence angle

distortion and lower relative velocity within the stator leads to diffusion loss effects

being dominant. For this reason, there is a correlation between diffusion factor and

loss coefficient in the stator, despite the incorrect formulation of the parallel force in

non-uniform flow.
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Figure 5-7: Stator incoming flow angle at 90% span, BLI 50% immersion.

Figure 5-8: Stator incoming mass flux at 90% span, BLI 50% immersion.
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Figure 5-9: Stator diffusion factor at 90% span, BLI 50% immersion.

Figure 5-10: Stator loss coefficient at 90% span, BLI 50% immersion.

In future work, to overcome this limitation, a spatial dependence on flow coefficient

is to be implemented. A schematic of this revised parallel force method is shown in

Figure 5-11. This implementation allows for the parallel force to respond to incoming
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flow distortions; at each radial and circumferential location the blade exhibits the

properties of a blade efficiency characteristic. To accomplish this, the design flow

coefficient at each radial location for uniform inflow needs to be calculated a priori.

From this, an efficiency characteristic is developed at each radial location and finally,

the loss coefficient along a streamline becomes dependent on the streamline inlet flow

coefficient.

Due to the limitation of the parallel force model used in this thesis, the distortion

matrix results focus on upstream flow redistribution and rotor diffusion as opposed

to changes in isentropic efficiency and loss coefficient across blade domains.

Figure 5-11: Future parallel force implementation; local force magnitude is circum-
ferentially and radially dependent on flow coefficient as well as local velocity squared.

5.2 Performance Scaling in BLI Distortions

In depth-varying BLI distortion cases, the upstream mass flux redistribution and

change in relative flow angle exhibits a linear scaling trend. This observation is

consistent with the results of a low-speed fan study performed by Defoe and Hall [13].

In Figure 5-12 this phenomena is observed at station 1 (stations previously detailed

in Figure 3-12) as the mass flux deficit for a distortion depth of Mmin/Mmax = 0.25 is

predicted by the addition of distortions Mmin/Mmax = 0.50 and Mmin/Mmax = 0.75,
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within 2.1%. Note that for all of the mass flux distortion studies in this paper, mass

flux addition is calculated as,

distortion1 + distortion2 =

[
ρux1

(ρux1)clean
− 1

]
1

+

[
ρux1

(ρux1)clean
− 1

]
2

+ 1. (5.1)

Linear scaling is also observed within the relative flow angle distribution at station

1, shown in Figure 5-13. A deviation from the low-speed results is observed in the

rotor diffusion factor. Where Defoe and Hall found that the diffusion changes scaled

with distortion intensity, this relationship does not hold true for a transonic com-

pressor. A combination of distortions, Mmin/Mmax = 0.50 and Mmin/Mmax = 0.75,

underpredicts the resultant diffusion of Mmin/Mmax = 0.25 in the rotor by 14.7% to

57.1%.

Figure 5-12: BLI distortion (90% span, 50% immersion) mass flux ratio compared to
uniform inflow at station 1.
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Figure 5-13: BLI distortion (90% span, 50% immersion) relative flow angle change
from uniform inflow at station 1.

Figure 5-14: BLI distortion (90% span, 50% immersion) rotor diffusion factor changes
from uniform inflow.
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In immersion-varying distortions, no mass flux, relative flow angle or diffusion

scaling is observed. An increase in distortion immersion has a diminishing effect on

the resultant mass flux and flow angle changes, as seen in Figures 5-15 and 5-16,

respectively. As expected, due to diffusion factor dependence on inlet relative flow

angle, a non-linear rotor diffusion factor relationship exists, shown in Figure 5-17.

Figure 5-15: BLI distortion (90% span, 50% depth) mass flux ratio compared to
uniform inflow at station 1.
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Figure 5-16: BLI distortion (90% span, 50% depth) relative flow angle change from
uniform inflow at station 1.

Figure 5-17: BLI distortion (90% span, 50% depth) rotor diffusion factor changes
from uniform inflow.
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5.3 Performance Scaling in Turboprop Radial Dis-

tortions

This section explores the various parameters of interest for a radial distortion pro-

file: propeller offset, total temperature distortion, total pressure distortion, and a

combined total temperature and pressure distortion.

5.3.1 Flow Redistribution Mechanisms in a Total Tempera-

ture Distortion

Relevant flow redistribution mechanisms in flow subjected to a total pressure distor-

tion have been observed in previous literature [10, 11]. In these distortions, such as

boundary layer ingestion, non-axisymmetric rotor work results from a non-uniform

velocity field entering the compressor. The rotor performs more work on low momen-

tum fluid, causing upstream static pressure distortion and mass flux redistribution

towards the region of total pressure deficit. In a total temperature distortion, the op-

posite reaction is present. Upstream flow redistribution arises from changes in local

density and axial velocity. Changes in local total density are inversely proportional

to changes in total temperature, as observed from the ideal gas law,

pt = ρtRTt, (5.2)

ρt =
pt
RTt

, (5.3)

ρt ∝
1

Tt
. (5.4)
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Further, changes in axial velocity are proportional to the square root of total temper-

ature changes. This is explained through the corrected flow equation,

ṁcorr = ṁ

√
Tt/Tt,ref
pt/pt,ref

, (5.5)

where the mass flux per unit area is calculated as,

ṁ

A
= ρvx. (5.6)

To further simplify the corrected mass flow, the reference stagnation values are ig-

nored, ideal gas law is implemented, and the gas constant is neglected. Additionally,

neglecting changes in Mach number (which are small), changes in density scale with

changes in total density,

ṁcorr ∝ ṁ

√
Tt

ρTt
. (5.7)

Finally, the corrected mass flow rate is held constant between test cases and can

also be neglected. In addition, the mass flow rate can be expressed in terms of axial

velocity and density, leaving the final relationship,

1

ṁ
∝
√
Tt

ρTt
, (5.8)

1

ρvx
∝ 1

ρ
√
Tt
, (5.9)

vx ∝
√
Tt. (5.10)

The above relationships dictate that regions of reduced total temperature have an

associated reduction in axial velocity and increase in density. Due to a typical com-
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pressor characteristic, regions of lower axial velocity, or lower fluid momentum have

a higher relative blade loading, meaning the upstream flow is pulled harder into the

compressor. This non-axisymmetric rotor work profile exaggerates the upstream inlet

total temperature distortion instead of attenuating it. This observation is shown in

Figure 5-18, a sample turboprop total temperature distortion with an axis offset of

∆R/R = 0.75 at 50% span. In Figure 5-18(a), the mass flux distortion is increased

at the compressor inlet compared to far upstream. This observation is supported by

Figure 5-18(b) where the static pressure upstream, normalized by the local minimum

value, has been reduced in the region of maximum total temperature distortion. The

result of this flow redistribution is that counter-swirl is added to the flow in regions

of high total temperature and co-swirl is added to the flow in regions of low total

temperature. This effect is shown in 5-18(c), where the upstream rotor incidence an-

gles are attenuated further downstream. The final result is that the flow mechanisms

present in a total temperature distortion are opposite of a total pressure distortion;

the rotor upstream influence increases the distortion, as observed in 5-18(d).
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Figure 5-18: Total temperature radial distortion, plots (at 50% span) of (a) mass flux,
(b) static pressure, (c) relative flow angle, and (d) total temperature at two locations
upstream of the rotor leading edge.

5.3.2 Radial Distortion of Varying Propeller Offsets

To assess the upstream flow redistribution in the presence of radial offset distortions,

the flow details at station 1 are observed at various propeller axis offset values. In

this study, the total temperature ratio and total pressure ratio at station 0 are set

to Tt0/Tt∞ = 1.08 and pt0/pt∞ = 1.31, respectively. Figures 5-19 and 5-20 show

the change in mass flux and relative flow angle at station 1, respectively, compared

to a uniform inflow case. The resultant ratio of rotor work to clean inflow rotor

work is pictured in Figure 5-21. In the case of zero offset, upstream flow migrates

radially towards the hub due to increased blade loading in the hub region. The mass

flux, relative flow angle, and work profiles are radially variant, but circumferentially
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invariant. At propeller offsets of of ∆R/R = 0.25 and ∆R/R = 0.50 the streamtube

expansion near the distortion centre becomes apparent. Mass flux migrates towards

the distortion centre, creating regions of co-swirl and counter-swirl near the hub. This

leads to increased rotor work in the regions of co-swirl compared to the regions of

counter-swirl. For this reason, mass flux is further redistributed towards the regions

of co-swirl, causing the region of co-swirl to wrap around the spinner in the same

direction as blade rotation. The magnitude of flow redistribution increases further at

an offset distances of ∆R/R = 0.75 and ∆R/R = 1.00. Further increases in propeller

axis offset have a diminishing effect on flow redistribution; propeller axis offsets larger

than one compressor radius produce qualitatively similar inlet profiles.

Figure 5-19: Mass flux ratio to clean inflow at station 1 for a radial distortion of
various propeller offset distances.
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Figure 5-20: Change in rotor relative flow angle from clean inflow at station 1 for a
radial distortion of various propeller offset distances.

Figure 5-21: Rotor work ratio to clean inflow for a radial distortion of various propeller
offset distances.

Circumferential plots at 90% span for a radial offset distortion, with offset values

of ∆R/R = 0.50, ∆R/R = 1.00, and ∆R/R = 1.50 are shown in Figures 5-22 to 5-

24. Qualitatively, the mass flux and relative flow angle profiles are similar irrespective

of the propeller offset. Mass flux migrates away from the propeller centre, causing

streamtube contraction on the opposite side of the compressor inlet. The most severe

mass flux deficit occurs at an offset equal to the compressor radius, ∆R/R = 1.00;

100



further increases in propeller axis offset smooth the distortion profile. This smoothing

is explained by examining the compressor inlet total pressure gradients, and the

increased distortion radius of curvature at increased offsets. This effect is illustrated

in Figure 5-25, a sketch of the total pressure at compressor inlet for two propeller

offsets.

Figure 5-22: Radial offset distortion (90% span) mass flux ratio compared to uniform
inflow at station 1.
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Figure 5-23: Radial offset distortion (90% span) relative flow angle change from
uniform inflow at station 1.

Figure 5-24: Radial offset distortion (90% span) rotor diffusion factor changes from
uniform inflow.

102



Figure 5-25: Radial distortion offset; compressor inlet total pressure distortion radius
of curvature increases at offset locations further than one compressor inlet radius.

5.3.3 Radial Distortion of Varying Total Temperature Mag-

nitude

At a propeller axis offset of ∆R/R = 0.75, varying propeller outlet total temperature,

and hence the compressor inlet total temperature, exhibits a linear scaling trend for

all metrics observed. In Figure 5-26, the mass flux redistribution of a propeller tip

total temperature ratio of 1.12 is predicted by the summation of propeller tip total

temperature ratios of 1.04 and 1.12, by an error margin of 0.01% to 0.05%. The

relative flow angle at station 1 and rotor diffusion factor changes, shown in Figures

5-27 and 5-28 also exhibit linear scaling trends. The rotor diffusion factor changes

show low frequency oscillations. This due to the low magnitude of the changes from

uniform case, where the maximum diffusion factor change is 0.45% from the uniform

case. This is a result of the computational precision and not a physical phenomena.
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Figure 5-26: Radial total temperature distortion (90% span, ∆R/R = 0.75) mass flux
ratio compared to uniform inflow at station 1.

Figure 5-27: Radial total temperature distortion (90% span, ∆R/R = 0.75) relative
flow angle change from uniform inflow at station 1.
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Figure 5-28: Radial total temperature distortion (90% span, ∆R/R = 0.75) rotor
diffusion factor changes from uniform inflow at station 2.

5.3.4 Radial Distortion of Varying Total Pressure Magnitude

In a radial total pressure distortion, a linear scaling relationship of mass flux and

relative flow angle exists with distortion severity. This is shown in Figures 5-29 and

5-30, plots of the mass flux and relative flow angle at station 1 compared to the

uniform inflow case. Compared to a mass flux distortion error of 2.1% in the BLI

case, an error of 3.9% in present in the radial distortion. Also consistent with the

BLI results shown in section 5.2, a non-linear scaling relationship of diffusion factor

is observed in a total pressure distortion, shown in Figure 5-31.. This deviates from

the observation made by Defoe and Hall [13] in a study of a low speed fan, as a total

pressure distortion exhibited a linear scaling trend.
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Figure 5-29: Radial total pressure distortion (90% span, ∆R/R = 0.75) mass flux
ratio compared to uniform inflow at station 1.

Figure 5-30: Radial total pressure distortion (90% span, ∆R/R = 0.75) relative flow
angle change from uniform inflow at station 1.
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Figure 5-31: Radial total pressure distortion (90% span, ∆R/R = 0.75) rotor diffusion
factor changes from uniform inflow.

In this thesis, the propeller work outlet is that of a perfectly efficient propeller

and the total pressure is calculated from an isentropic compression. The magnitude

of total pressure distortion compared to total temperature distortion is,

pt = T
(γ−1)
γ

t . (5.11)

For this reason, changes in diffusion factor and mass flux redistribution cannot

be directly compared between the total temperature and total pressure distortion. A

comparison is made by scaling the diffusion factor changes by a factor of ∆D
(γ−1)
γ .

Additionally, total temperature and total pressure distortions exhibit opposite mass

flux redistribution trends as discussed earlier. In addition to the magnitude scaling,

the results must also be phase shifted by 180º. The resultant comparison of diffusion

factor changes is shown in Figure 5-32. The total pressure distortion creates diffusion

factor changes more significant than the total temperature distortion, ranging from
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165% at θ = 0º to 457% at θ = 180º. This phenomena can be explained by the

nature of the two individual distortions. A total pressure distortion incorporates

a velocity distortion, however, a total temperature distortion incorporates both a

velocity and density distortion. The velocity and density distortions have opposite

effects on diffusion factor changes, thus reducing the magnitude of diffusion factor

changes compared to a total pressure distortion.

Figure 5-32: Comparison of total pressure and scaled total temperature distortion
diffusion factor changes at 90% span.

5.3.5 Combined Total Temperature and Total Pressure Ra-

dial Distortion

In the presence of a combined total temperature and total pressure distortion at

a propeller axis offset of ∆R/R = 0.75, a non-linear diffusion factor relationship

between distortion severities exits. This is expected based on the results from the
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previous subsection. However, a summation of the individual total temperature and

total pressure distortion is able to quantitatively predict the upstream mass flux

redistribution and relative flow angles, shown in Figures 5-33 and 5-34. As expected

by matching upstream conditions, the diffusion factor results are also represented by

a summation of the individual distortions, as shown in Figure 5-35, to within 3.65%.

Figure 5-33: Radial combined total temperature and total pressure distortion (90%
span, ∆R/R = 0.75) mass flux changes from uniform inflow.

In this chapter, important generalized findings as well as machine specific findings

were observed. First, the mechanisms for upstream flow redistribution in a total

temperature distortions were identified. Regions of high total temperature have an

associated reduction in density, increase in axial velocity and thus reduced blade

loading compared to regions of low total temperature. These mechanisms result

in a rotor upstream influence that works to exaggerate the inlet total temperature

distortion, the opposite mechanism of a total pressure distortion. For NASA r67, non-

linear diffusion factor scaling was observed for all total pressure distortions, despite
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linear scaling of upstream flow redistribution; a result different from the results of a

low-speed fan case. In a total temperature distortion, linear scaling of both upstream

effects and rotor diffusion factor were observed. Finally, the effects of a combined

total temperature and total pressure distortion were well predicted by the addition

of the individual distortions.

Figure 5-34: Radial combined total temperature and total pressure distortion (90%
span, ∆R/R = 0.75) relative flow angle changes from uniform inflow.
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Figure 5-35: Radial combined total temperature and total pressure distortion (90%
span, ∆R/R = 0.75) rotor diffusion factor changes from uniform inflow.
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Chapter 6

Conclusions and Future Work

In this thesis, a volumetric source term model is used to assess the performance of a

single stage compressor across a parametric study of non-uniform inflow distortions.

In this chapter, a summary of the work performed is outlined, the key outcomes of

the study are presented, and recommendations for future work are discussed.

6.1 Summary

Several previous authors have studied the flow mechanisms present in a BLI compres-

sor or fan. A study on the scaling of both BLI and turboprop inlet distortions has

been performed on a low-speed fan, however, no such study has been performed on a

transonic compressor. This limitation in previous research is the motivation behind

the work in this thesis. Due to the extensive computational requirement of a full

annulus URANS calculation, a volumetric source term model of the NASA stage67

machine was developed.

In Chapter 3, the methodology behind the development of this volumetric source

term model is discussed. To develop both the normal and parallel force models,

a single passage RANS calculation is first carried out. The results of this study

are assessed versus previously published experimental and CFD results. The normal

112



force model is an adaptation of a previously developed low-speed blade loading model

based on thin airfoil theory. Using the extracted flow angles from the single passage

RANS results, a compressibility correction constant is found to allow the low-speed

model to be used on a transonic fan. For the parallel force, a double-sided loss bucket

is developed to create a more robust efficiency characteristic, again by comparison

against the single passage results. Finally, the distortion matrix of interest in this

thesis is established.

The resultant volumetric source term model is assessed in both uniform inflow

and non-uniform inflow conditions in Chapter 4. For a uniform inflow, the model is

assessed against the single passage RANS results. To determine the accuracy of the

model in non-uniform inflow, the VSTM is compared against previously published ex-

perimental and CFD results, with a 120◦ total pressure distortion. Upstream flow re-

distribution and downstream circumferential and spanwise flow profiles are observed,

however flow characteristics within the blade domain are not examined.

In Chapter 5 a key limitation in the VSTM parallel force is examined. A flaw

in the formulation of off design loss characteristics is revealed, which limits the ex-

tent to which the distortion matrix can be studied. Rather than each streamtube

being dependent on the local deviation from design flow coefficient, a mass averaged

parameter across the entire blade inlet is used, meaning that the flow response to

non-uniform inflow is incorrect. The remainder of the chapter observes the upstream

flow redistribution and rotor diffusion factor in both BLI and turboprop distortions.

These parameters are unaffected by the loss force limitation.

6.2 Key Outcomes and Conclusions

From the results obtained in this thesis, key outcomes and conclusions are drawn

regarding two facets of the work: development of the VSTM itself and the transonic
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compressor response to an array of non-uniform inflow distortions.

The VSTM in this work is successful in significantly reducing the computational

resources required to study a matrix of distortions. This is achieved through two

separate advantages, a full annulus grid count reduction of 95.3% and the use of a

steady calculation. Previously published results using unsteady RANS calculations

have indicated the need for 30 rotor revolutions to obtain a converged solution [11],

meaning the use of a steady calculation is the main advantage of the VSTM. Within

the VSTM, innovations were made to both the normal and parallel force models. More

specifically, a normal force compressibility correction constant and a parallel force

double-sided loss model (above and below peak efficiency) were implemented. Using

this model, with uniform inflow, the rotor FPR, isentropic efficiency, and entropy-

based loss coefficient are predicted within 1.43%, 0.03%, and 3.37% of single passage

RANS results, respectively. The VSTM is also assessed against previously published

experimental and CFD results on a 120◦ total pressure distortion. The VSTM is

able to qualitatively capture the upstream flow redistribution, as well as rotor and

stator TE total temperature, total pressure, and relative flow angles. Due to the

uncertainty in inlet boundary conditions, distortion conditions are not able to be

perfectly replicated. Despite this, the rotor total pressure ratio is perfectly matched

by the VSTM, and the rotor isentropic efficiency change is correct to within 2.7%.

By subjecting the VSTM to non-uniform inflow, the entropy-based loss coefficient

was shown qualitatively to match the mass flux redistribution profile, an inconsistency

with typical compressors. This is the result of a shortcoming within the parallel force

model. Using M
M

rel as an off-design loss coefficient scaling parameter does allow local

deviations in flow coefficient to be captured, rather a single value is applied to the

entire blade domain inlet. Therefore, local loss forces are highly dependent on local

relative velocity, explaining the relationship between mass flux and loss coefficient.

For this reason, only three key parameters, each of which are weakly dependent of the
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blade domain loss value, are studied: mass flux ratio, change in relative flow angle,

and rotor diffusion factor, all compared against uniform inflow conditions.

For a BLI total pressure distortion of varying depth, a linear scaling trend for mass

flux redistribution and relative flow angle was observed. A distortion of Mmin/Mmax =

0.25 is predicted by the addition of distortions ofMmin/Mmax = 0.50 andMmin/Mmax =

0.75, within 2.1%. This result is consistent with that observed on a low-speed fan. A

difference from the low-speed fan is observed in studying the rotor diffusion factor,

where the error between the same two conditions ranges from 14.7% to 57.1%. No

scaling between cases was observed for immersion-varying BLI distortions, increasing

the distortion immersion has a diminished effect on diffusion factor. This effect is

attributed to the compressibility effects of the transonic compressor.

Mechanisms for flow redistribution were observed in a total temperature distor-

tion. Relative increases in total temperature create an associated local reduction in

density and increase in axial velocity. Due to this, non-axisymmetric rotor work is

performed and the compressor pulls harder on the undistorted flow, working to ex-

aggerate the total temperature distortion. This upstream flow redistribution is the

opposite of a total pressure distortion of the same pattern.

In the case of varying propeller axis offset, no scaling parameter was observed.

Due to the change in distortion pattern at varying axis offsets, this result is expected.

The maximum change in rotor diffusion factor was observed at a propeller axis offset

of ∆R/R = 1.00; increases in axis offset beyond this point smoothed diffusion factor

changes. This effect is due to increased radius of curvature of the compressor inlet

distortion as the propeller is moved further off-axis. Radial total temperature dis-

tortions were observed at an axis offset of ∆R/R = 0.75, for which a linear scaling

trend was observed for mass flux redistribution, rotor inlet relative flow angle, and

rotor diffusion factor, with a maximum error of 0.05%. For a radial total pressure

distortion, similar results to the BLI distortion were found; a linear scaling between
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distortion severity was observed for mass flux redistribution and relative flow angle,

to 3.9%, but not for rotor diffusion factor. Comparing the effects of radial total pres-

sure versus radial total temperature distortions, a total pressure distortion was found

to have a significantly larger impact on the rotor diffusion factor, by up to 457%.

Lastly, the effect of the individual total temperature and total pressure distortions

was shown to capture the combined distortion diffusion factor to within 3.65%.

6.3 Current Outlook and Future Recommendations

This section contains work that is currently in progress that will serve to complement

this work, as well as a recommendation for future work based on the discoveries in

this thesis.

At the time of this thesis publication, work is being performed on creating an op-

timized, automated approach to determining the loss force coefficients. Through the

use of analytical optimization methods, a significant reduction in the computational

time to develop these coefficients will be achieved, in combination with an increased

accuracy when compared to experimental results. Additionally, and based on the dis-

tortion matrix tested in this paper, work is being done by Defoe and Hall [13] to test

non-dimensionally similar radial distortions on a low-speed fan. Doing so will allow a

more extensive comparison between the two machines. Finally, work is being done to

establish the use of a mass-source model to eliminate the need for blade recambering.

It is also recommended that a further modification to the parallel force model

could be made, and the test matrix in this work re-studied. The limitation of the

volumetric source term model in this work is that it is unable to correctly capture

off-design local blade performance in the presence of non-uniform inflow. A modified

parallel force description could be developed to trace individual streamlines through

a blade domain. This approach would allow for the local deviation in flow coefficient
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to be captured and thus the local entropy-based loss coefficient and overall rotor

isentropic efficiency could be captured. Given that the parameters for the distortion

matrix are established, the normal force model for the machine is already developed,

and the reduced computational cost of a VSTM, this study could be replicated in a

significantly shorter time frame.
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Appendix A

Volumetric Source Term Model

CFX Expressions

AngularCoordinate = atan2 ( z ,(−y ) )
AngularVeloc i ty = Ve loc i ty v * s i n ( AngularCoordinate ) + Ve loc i ty w * cos

( AngularCoordinate )
BladeMetalAngle = BladeAngle (x , Radiusx , 0 [m] )
BladeMetalAngleDeg = BladeMetalAngle * 180 [ deg ] / p i [ rad ]
DeviationFromDesiredRotor = ( FlowAngleRotor − FlowAngleRotorDesired ) *

180 [ deg ] / p i [ rad ]
Deviat ionFromDesiredStator = ( FlowAngleStatorDesired − FlowAngleStator )

* 180 [ deg ] / p i [ rad ]
Deviat ionRotor = ( FlowAngleRotor − BladeMetalAngle )
DeviationRotorDeg = Deviat ionRotor * 180 [ deg ] / p i [ rad ]
Dev ia t ionStator = ( BladeMetalAngle − FlowAngleStator )
Deviat ionStatorDeg = Dev ia t ionStator * 180 [ deg ] / p i [ rad ]
EnergyR = (FthetaR+FthetaRp ) *Radiusx*RotationSpeed
FRotor = s i n ( FlowAngleRotor − BladeMetalAngle + o f f s e t r o t o r − decamber )

* ( r v e l o ˆ2) / h * constant
FStator = s i n ( BladeMetalAngle − FlowAngleStator − o f f s e t s t a t o r ) * ( s v e l o

ˆ2) / h * constant
FlowAngleRotor = atan2 ( ( AngularVeloc i ty + Radiusx*RotationSpeed ) ,

Ve loc i ty u)
FlowAngleRotorDeg = FlowAngleRotor *180 [ deg ] / p i [ rad ]
FlowAngleRotorDesired = FlowAngle (x , Radiusx , 0 [m] )
FlowAngleStator = atan2 ( AngularVeloc ity , Ve loc i ty u)
FlowAngleStatorDeg = FlowAngleStator *180 [ deg ] / p i [ rad ]
FlowAngleStatorDesired = FlowAngle (x , Radiusx , 0 [m] )
FpRotor = i f ( rMachRel > rMachRef2 , Kp1Rotor / h * ( rMachRelˆ2 + Kp2Rotor

*( rMachRel−rMachRef ) ˆ2) * . . .
( r v e l o ˆ2) *(1+(rMachRef2−rMachRel ) ˆ2* Kp3Rotor ) *

Density , Kp1Rotor / h * ( rMachRelˆ2 + . . .
Kp2Rotor *( rMachRel−rMachRef ) ˆ2) * ( r v e l o ˆ2) * Density )
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FpStator = Kp1Stator / h * ( sMachRelˆ2 + Kp2Stator *( sMachRel−sMachRef )
ˆ2) * ( s v e l o ˆ2) * Density

FrRp = −1 * FpRotor * Radia lVe loc i ty / rv e l o
FrSp = −1 * FpStator * Radia lVe loc i ty / sv e l o
FthetaR = Density *FRotor* cos ( FlowAngleRotor )
FthetaRp = FpRotor * ( AngularVeloc i ty + Radiusx*RotationSpeed ) / rv e l o
FthetaS = −1*Density *FStator * cos ( FlowAngleStator )
FthetaSp = FpStator * AngularVeloc i ty / sv e l o
FxR = Density *FRotor* s i n ( FlowAngleRotor )
FxRp = −1 * FpRotor * Ve loc i ty u / rv e l o
FxS = −1*Density *FStator * s i n ( FlowAngleStator )
FxSp = −1 * FpStator * Ve loc i ty u / sv e l o
Kp1Rotor = 0.0145
Kp1Stator = 0.052
Kp2Rotor = 650
Kp2Stator = 5
Kp3Rotor = 1125
Rad ia lVe loc i ty = −1*Ve loc i ty v * cos ( AngularCoordinate ) + Ve loc i ty w *

s i n ( AngularCoordinate )
Radiusx = sq r t ( yˆ2 + z ˆ2)
Rotat ionSca l ing = 0 .9
RotationSpeed = Rotat ionSca l ing * 1680 . 02 [ s−1 rad ]
anglechange = AngleChangeFunction ( Radiusx )
constant = pi * s q r t ( s o l i d i t y )
decamber = 0.27 * (x−rotormin ) /( rotormax−rotormin ) * −anglechange * pi [

rad ] / 1 8 0 [ deg ]
h = hFunction (x , Radiusx , 0 [m] )
o f f s e t r o t o r = OffsetRotorFunct ion (x , Radiusx , 0 [m] )
o f f s e t s t a t o r = Of f s e tSta to rFunct i on (x , Radiusx , 0 [m] )
rMachRef = 1.0007
rMachRef2 = 0.987
rMachRel = massFlowAve ( rve l ova r )@REGION: Roto r In l e t B / . . .

massFlowAve ( Local Speed o f Sound )@REGION: Roto r In l e t
rotormax = RotorMaxFunction ( Radiusx )
rotormin = RotorMinFunction ( Radiusx )
r v e l o = sq r t ( Ve loc i ty u ˆ2 + ( AngularVeloc i ty+Radiusx*RotationSpeed ) ˆ2

+ Rad ia lVe loc i ty ˆ2)
sMachRef = 0.61996
sMachRel = massFlowAve (Mach Number)@REGION: S t a t o r I n l e t
s o l i d i t y = So l i d i t yFunc t i on (x , Radiusx , 0 [m] )
s v e l o = sq r t ( Ve loc i ty u ˆ2 + AngularVeloc i ty ˆ2 + Rad ia lVe loc i ty ˆ2)
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