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ABSTRACT 

Magnesium alloy AZ91 is high pressure die cast (HPDC) into rectangular 

coupons with the section thicknesses of 2, 6 and 10 mm. The first group of samples is 

employed to investigate the effect of section thicknesses on tensile properties, strain-

hardening and fracture behaviours of the die cast AZ91.  The results of tensile testing 

indicate that the ultimate tensile strength (UTS), yield strength (YS), elongation (ef), 

modulus(E), toughness(Ut) and resilience(Ur) decrease to 129.17, 110.59 MPa, 0.37%, 

25.9 GPa, 0.89 MJ/m3, and 236.10 kJ/m3 from 245.54, 169.26 MPa, 4.07%, 37.8 GPa, 

8.34 MJ/m3, and 378.95 kJ/m3 with increasing the section thicknesses of die cast AZ91 to 

10 mm from 2 mm, respectively. The analysis of true stress vs. strain curves shows that 

the straining hardening rates increases with decreasing the section thickness to 2 mm 

from 10 m.  The analyses of scanning electron microscopy (SEM) reveal that the high 

tensile properties of the HPDC Mg alloy AZ91 with the thin section thickness should be 

attributed to the low porosity level, fine dendrite structure, high eutectic content, and 

relatively thick skin.  The observation via SEM fractography illustrates that the fracture 

behaviour of die cast AZ91 is influenced by section thicknesses. As the section thickness 

increases, the fracture of AZ91 tends to transit from ductile to brittle mode due to arising 

porosity content and coarsening microstructure. The second group of samples is 

employed to study the effect of plasma electrolytic oxidation (PEO) coating on tensile 

properties of the HPDC Mg alloy AZ91. The tensile test results show that the PEO 

coating reduces the UTS and YS of the 2 and 6 mm samples, but slightly enhance the 

tensile properties of 10 mm sample. The SEM analysis reveals that the differences in the 

size and content of pores between the substrate and the ceramic coating should be 

responsible for the change in the tensile properties.    
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Light weight metals have become one of the most desirable and necessary materials 

in the automotive and manufacture industries where lightweight structure is highly 

demanding. Their properties like high strength-to-weight ratios, good ductility and low 

density become new favorite in enhancing fuel efficiency. The use of magnesium in the 

automotive industry has grown dramatically in response to consumer demands for 

increased performance and fuel economy of vehicles. Magnesium is the eighth most 

common element in the earth’s crust. Pure magnesium has a density of 1.7g/cc, which is 

35% lower than aluminum and 78% lower than iron. Moreover, magnesium alloys offer 

not only light weight, but moderate mechanical properties. Thus, they provide to 

engineering designers a great choice for lightweight structural applications in the 

aerospace and automotive industries.  

In the automotive industry, the most common manufacturing method is high pressure 

die casting (HPDC) to form parts of magnesium alloys. High pressure die cast 

magnesium alloys have a relatively good strength and high ductility at room temperature. 

Applications of HPDC magnesium alloys AZ91 include front end support assemblies, 

steering wheel armatures, steering column support brackets, door inner, tailgate, bulk 

head, instrument panel and engine cradle which have cross sections with difference 

thickness and complex shapes. HPDC processes are capable of casting of complex thin 

walled components with good surface finish and dimensional tolerance at very 

competitive prices. Understanding the effect of thick wall stocks on mechanical behaviors 

of HPDC AZ91 is crucial for proper design of lightweight components to meet desired 
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engineering requirement. Like all other metallic materials, there is also a trade-off in 

using magnesium alloys.  Pure magnesium and magnesium alloys have poor corrosion 

resistance that greatly limits the expansion of their applications. The application of 

surface treatment can expand the field of applying magnesium alloys.  

Plasma Electrolytic oxidation (PEO) process is an emerging, environmentally- 

friendly surface engineering technique to deposit ceramic coatings on magnesium and 

magnesium alloys for corrosion protection. Throughout years, researchers have 

developed the chemical compositions of electrolyte and PEO process parameters for 

corrosion prevention of magnesium alloys. The results show PEO can significantly 

improve corrosion resistance of magnesium alloys. In the open literature, however, little 

information is available on PEO coating effect on the mechanical properties of HPDC 

magnesium alloys with different section thicknesses.  

 

The objectives of this work are outlined as follow:  

• Evaluate the tensile properties of high pressure die cast magnesium alloy AZ91 with 

section thicknesses of 2, 6 and 10 mm; 

• Investigate the microstructure of high pressure die cast magnesium alloy AZ91 with 

three different section thickness; 

• Analysis the effect of section thickness on mechanical properties of AZ91; 

• Apply PEO coating on surface of HPDC AZ91 alloy and conduct the tensile test; 

• Investigate the microstructure of the PEO ceramic layer and substrate of HPDC AZ91 

alloy; 
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• Compare the mechanical properties of PEO coated and uncoated HPDC AZ91 alloy 

with three section thicknesses; and 

• Determine the effect of PEO coating on mechanical properties of HPDC AZ91 alloys 

with different section thicknesses.  

 

This thesis contains six chapters. Chapter 1 provides a general background of high 

pressure die cast and plasma electrolytic oxidation process, and the objectives of this 

study. Chapter 2 provides the literature review about the investigation in the process of 

high pressure die casting, the metallurgical aspects of magnesium alloy AZ91, the 

mechanism and process of PEO coating. Chapters 3 and 4 report the results of the effects 

of section thickness on tensile behaviors and microstructure of high pressure die cast 

magnesium alloy AZ91. In Chapter 5, the effect of PEO coating on mechanical properties 

of HPDC AZ91 alloy with different section thicknesses is discussed. Chapter 6 concludes 

and summarizes the present study. Lastly, Chapter 7 presents the recommendations for 

future work. 
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2.1.1 Crystal structure of pure magnesium 

Magnesium has a hexagonal close-packed structure (hcp) constituted by lattice 

dimensions of c=5.199A and a=3.202A. The axial ration c/a= 1.6237 is close to the 

theoretical Close-packing c/a=1.633, which is obtained for incompressible spheres. 

Magnesium is the only hcp metal that has an atom that approaches true spherical shape 

[1]. 

2.1.2 Alloying Elements in Magnesium Alloy AZ91 and Their General 

Effects 

Pure magnesium has low mechanical properties. Like other structural metals, such as 

Al, Zn or Fe, magnesium has to be alloyed for the improvement of its overall mechanical 

properties and the activation of the matter for engineering applications. A summary of the 

effect of some alloying elements and their effect on the metallurgical behavior of 

magnesium are provided below for references [1-3]: 

Aluminum: Al has a maximum solubility of 12.7 wt% in magnesium at the eutectic 

temperature. It confers strength and refines the cast structure of magnesium, particularly 

in conjunction with superheating. 

Manganese: Mn has a solubility of 2.2 wt% at the peri-tectic temperature. It forms 

the basis for the well established medium strength Mg-Mn wrought alloys and the more 

recent Mg-Al-Mn pressure die casting alloys. Mn is added to AZ91 alloy in small 

quantities (0.4 wt%) mainly to improve the corrosion resistance of the alloy. It transforms 
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FeAl3 into (FeMn) Al6 intermetallics and thus eliminates the problematic electrolytic 

potential difference between the impurity iron compound and the Mg matrix [4]. 

Zinc: Zn has a maximum solubility of 6.2 wt% at the eutectic temperature. It causes 

grain refinement and increase of strength in Mg. Alloys containing Zn are heat treatable 

but are somewhat brittle and prone to hot shortness unless Zn is added to further refine 

the grain size. 

2.1.3 Effect of Al and Zn on the Mechanical Properties and Die Castability 

of Magnesium alloy 

There are few literatures available concerning the individual effects of Al and Zn on 

the elongation or on the tensile properties of as-cast magnesium binary alloys. In the 

existing literatures, the properties reported are either for the heat treated or worked 

condition, neither of which truly represent the properties of the as-cast microstructure that 

are crucial data for present work. The earliest data is found in the work of Fox (1945) [5], 

which measures the tensile properties of as-cast Mg-Al and Mg-Zn sand cast alloys. 

Fox’s results are demonstrated in Figures 2.1 and 2.2, specifically concerning the effect 

of Al and Zn on ultimate tensile strength (UTS), proof stress (yield) and elongation [5]. 

In Mg-Al alloys, the UTS and elongation achieve a maximum at 4 and 6 wt% Al 

respectively and then decrease, while proof stress (yield) increases monotonically up to 

12 wt% Al. In Mg-Zn alloys, the UTS shows a peak at 6%Zn, while elongation shows a 

decreasing trend after 4wt% Zn. The proof stress also increases monotonically up to 12 

wt% Zn. 
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Figure 2.1 Tensile properties of sand cast (as-cast) Mg-Al alloys [5]. 

 

Figure 2.2 Tensile properties of sand cast (as-cast) Mg-Zn alloys [5]. 

2.1.4 Phase Diagram Considerations and Solidification of AZ91 

Alloying additions to magnesium can change magnesium’s structure, forming new 

phases. The mechanical properties of as-cast Mg alloys are strongly dependent on their 

microstructural features, including grain size, type, size and distribution of constitute 

phases and crystallographic direction (texture). In reference to the phase diagram, this 
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section presents and discusses the formation of phases during general solidification, 

growth directions and castability of AZ91. 

Although AZ91 is actually a ternary alloy, it may be practically considered as being 

based upon the binary Mg-Al system. The Mg-Al binary phase diagram, which is most 

widely accepted, is displayed as Figure 2.3 [6]. 

 

Figure 2.3 The Al-Mg binary equilibrium phase diagram [6]. 

Significant academic interests have been placed at the Mg-rich portion of the 

equilibrium phase diagram, because AZ91 is based around the composition Mg-9 wt%Al. 

The solidus line on the Mg-rich side shows a decreasing solid solubility of Al from 

12.7wt% at 4370C to 3.2 wt% at 204 0C, indicating that Mg-Al alloys are likely to be age-

hardened. When the solubility of Al exceeds 12.7 wt%, an intermetallic phase of 

stoichiometric composition Mg17Al12 is formed as an eutectic, with a melting point of 437 

0C. The structure of Mg17Al12 based on the ideal composition (58.62 wt% Mg) is 

suggested to be an -Mg type cubic unit cell consisting of 58 atoms [7]. The lattice 
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constant of the intermetallic compound varies linearly between 10.469Ǻ at 51.6wt%Mg 

to 10.591 Ǻ at 61.5wt% Mg [7]. 

According to the reviewed literatures, the formation of -Mg17Al12 phase is 

inevitable when AZ91 is cast by high pressure die casting processes. The volume fraction, 

shape and size of -Mg17Al12 influence the mechanical properties of die cast or squeeze 

cast AZ91. Present literatures have not identified if die cast or squeeze cast AZ91 also 

exhibits any preferential growth direction. This preferential growth can be expected to 

result in anisotropic mechanical properties. Moreover, in die cast AZ91 parts, porosity 

formation may be influenced by the relatively high eutectic content and its final 

solidification. In sand cast Mg-Al alloys, microporosity is found to associate with “low 

melting point constituent” or eutectic [8], confirming imperfect feeding as a major cause 

of microporosity.  

 

2.2.1 Die Casting Process  

 The presently employed die casting process typically utilize high pressure die 

casting (HPDC), a process of which used to produce complexly shaped non-ferrous metal 

parts by large quantities. Such a process is highly mechanized, first-high-cost, with high 

production rate. The HPDC is first-high-cost because it requires permanent mold dies 

using metals like H13 steel, which is highly expensive, making it economical only for 

high volume castings [9]. Two kinds of HPDC machines, including the hot chamber and 

cold chamber variations, are shown below in Figures 2.4 and 2.5 [10,11]. 



9 

 

 

Figure 2.4 Schematic diagram of a hot-chamber die casting machine [11]. 

 

Figure 2.5 Schematic diagram of cold chamber die casting machine [10]. 
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2.2.2 Cold chamber die casting  

A cold chamber die casting process consists of the following steps: 

1. Die is closed and molten metal is ladled into the cold chamber cylinder; 

2. Plunger pushes molten metal into die cavity. The metal is held under high 

pressure until it solidifies; 

3. Die opens and plunger follows to push the solidified slug from the cylinder. Cores, 

if any, retract; and 

4. Ejector pins push casting off ejector die and plunger returns to its original 

position[10]. 

2.2.3 Hot chamber die casting 

A hot chamber die casting process involves: 

1. Die is closed and gooseneck cylinder is filled with molten metal; 

2. Plunger pushes molten metal through gooseneck passage and nozzle and the    

cavity. Metal is held under pressure until it solidifies; 

3. Die opens and cores, if any, retract. Casting stays in ejector die. Plunger returns, 

pulling molten metal back through nozzle and gooseneck; and  

4. Ejector pins push casting out of ejector die. As plunger uncovers inlet hole, 

molten metal refills gooseneck cylinder.  

Figure 2.5 schematically shows the commonly used hot chamber die casting machine 

[11]. 

 

Comparing to other manufacturing techniques, high pressure die casting stands out in 

its production efficiency and economic value, as well as capacity to produce a variety of 
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components in different shapes. Parts produced by die casting also have long service life, 

in addition to the quality of easily fitting to the surround parts. The advantages of die 

casting in detail are presented as the following: 

High-speed production – die casting provides more complexity in shapes within 

closer tolerances than most other mass production processes, with little to no requirement 

for machining. Additionally, thousands of identical castings can be produced before 

additional tooling is required. 

Dimensional accuracy and stability – die casting produces parts with higher 

durability, dimensional stability, and heat resistance than, while achieving the same level 

of close tolerance as conventional sand casting. 

Strength and weight – die cast parts are stronger than plastic injection moldings with 

the same dimensions. Thin wall castings are stronger and lighter than that produced by 

any other casting methods. Further, products of die casting’s strength depend on the alloy 

rather than the joining process, since die castings does not consist of separate parts 

welded or fastened together. 

Multiple finishing techniques – die cast parts can be produced with smooth or 

textured surfaces, making them easily plated or finished with a minimum of surface 

preparation. 

Simply assembly – die castings provide integral fastening elements, such as bosses 

and studs, which allows simple process in assembly. Holes can be cored and made to tape 

drill sizes, or external treads can be cast [12]. 

2.3.1 Origin of Porosity in Die Castings 

There are four main causes of porosity in any die casting [13]: 
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1. Shrinkage porosity due to differences in specific volumes of the molten metal at 

the liquidus temperature and the solidified metal at the solidus temperature; 

2. Release of dissolved hydrogen during the solidification and its subsequent 

entrapment; 

3. Porosity due to vaporization of die lubricant and die spray; and 

4. Trapped air arising in the die casting process. 

2.3.2 Die Cast Microstructure and Properties 

 Literatures [14-17] on the microstructure and properties evolution of high 

pressure magnesium alloy die castings are relatively abundant. The work of Haavard et al 

[14] studies typical die cast magnesium alloy AZ91D and AM50 with 1, 3 and 9 mm 

section thicknesses, and also investigates the influence of cooling rate on microstructure 

and mechanical properties. The mechanical properties of magnesium alloys are found to 

be strongly affected by grain size. Smaller grain size helps to improve ductility and 

strength of castings, whereas thicker wall reduces mechanical strength and ductility [21]. 

On the other hand, Mao [15] reports the results of tensile tests on die cast AZ91D and 

AM60B magnesium alloy, as well as reverse bending fatigue tests on AM60B alloy, and 

observed relations between section size, porosity levels and the measured mechanical 

properties. In Wang et al’s [16] work, the microstructure of AM50 magnesium alloys and 

the dislocation arrangement in the stressed states are examined through conventional 

transmission electron microscopy (TEM), high-resolution transmission electron 

microscopy (HRTEM), and energy dispersive X-ray (EDX) analysis. It has been found 

[17] that the deformation and fracture behavior of die cast AM50 and AM60 magnesium 
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alloys under examination shows fracture in bending and tension drawing inferences to the 

elucidation of the influences of microstructure and porosity on ductility. 

 Many past studies [18-24] reported that the tensile properties of cast magnesium-

based alloys depend on the cross-sectional thickness of the casting and/or the distance 

from the mold surface of the part. Although the section thickness is an easily measurable 

parameter for comparing various castings, it may not be sufficient to predict the 

microstructure of the part and the associated mechanical properties. For example, it has 

been [20] proposed that the local solidification time is a more suitable parameter than the 

thickness of the section, and is used to predict the tensile properties of the cast component. 

Feinbeg et al. [21] showed that the mechanical properties of castings, such as ultimate 

tensile strength, tensile elongation at break and fatigue limit, are affected by the porosity 

of the component. The results presented by Sequeira et al. [24] show that the 

microstructure and mechanical properties change even when the cross-sectional thickness 

of the AZ91D high-pressure die casting changes under optimal casting conditions. When 

the section thickness is reduced, the yield strength and ultimate tensile strength is 

increased more than expected. In addition, changes in mechanical properties are observed 

in thick and thin die cast parts when the gate conditions are changed from the optimum 

setting. In terms of microstructure, solidification, wedge casting experiments and 

computer simulation of shot blasting sleeves, the mechanical properties of the best cast 

profiles vary with section thickness. 

 It has previously been shown that the formation of microstructures in high 

pressure die cast magnesium in cold chambers is carried out in two stages [25]. In the 

first stage, there is a growth of primary magnesium dendrites in the sleeve prior to 
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injection into the mold. Thus, the input material is actually a partially cured material with 

a solid fraction of up to about 20% solids [26]. This means that the metal injected into the 

mold from the spray sleeve contains a certain proportion of solids. Second, the resulting 

semi-solid slurry then enters the mold cavity through the narrow gate at high velocity. 

The flow of the semi-solid slurry through the narrow gate may affect the morphology of 

the solid portion that has been nucleated, thus affecting the final microstructure. Once the 

metal is filled with the die casting cavity, the pressure applied to the solidified casting by 

the piston causes intimate contact of the metal with the mold and produces a very high 

cooling rate (cooling rate in the range of 1000-10 ° C / s). Therefore, the microstructure 

generated in cold chamber die casting is complex and subject to direct and indirect 

processing variables. 

 Figure 2.6 shows the tensile curves of die cast AZ91D alloy with different section 

thickness [14]. The tensile properties, the ultimate tensile strength (UTS), the yield 

strength (YS, 0.2% Proof stress) and elongation at fracture (ef) of die cast AZ91D alloy 

are present in Figure 2.7 [14]. It is clear that the mechanical properties are decreasing 

with increasing thickness of the plates. 
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Figure 2.6 Tensile curves of die cast AZ91D with different section thickness [14]. 

 

Figure 2.7 Tensile properties of die cast AZ91D with different section thickness [14]. 
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2.4.1  Introduction of squeeze casting 

 Squeeze casting is a process involving the solidification of molten metal in a 

closed mold at an applied high pressure. Other terms used to describe the same or similar 

processes are liquid metal forging, squeeze casting, and pressure crystallization. The high 

applied pressure is several orders of magnitude higher than the melt pressure produced 

during normal casting, keeping the entrained gas in solution and squeezing the molten 

metal from the hot spot to the initial shrinkage hole. As a result, the porosity in the 

extruded cast part is almost eliminated. Furthermore, since the air gap at the liquid-liquid 

interface is eliminated by the applied high pressure, heat transfer on the surface of the 

mold is enhanced, which increases the solidification and cooling rates. Therefore, the 

excellent mechanical properties of the casting produced by the non-porous fine structure 

are achieved in the squeeze casting process [27]. 

2.4.2 Squeeze Casting Process 

Squeeze casting bases on the principle of pressurized solidification, a process by 

which finished castings is able to be produced in a single process from molten metal to 

solid components within re-usable dies. Figure 2.8 shows the schematic diagram of a 

squeeze casting machine. The process which is schematically shown in Figure 2.9 

involves several steps[28]: 

1. A suitable dieset is installed on the bed of a hydraulic press.  The dieset is 

preheated to a required working temperature. During the heating-up period, the dieset is 

usually sprayed with a commercial graphite lubricant;  
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2. A metered quantity of molten metal is poured into an open female die cavity. Then, 

an upper male die or punch is lowered, coming into contact with the liquid metal;   

3. The pressure is applied shortly after molten metal begins to solidify and is 

maintained until all the molten metal has solidified; 

4. The upper punch returns to its original position and the casting is ejected. 

 Overall, two different types of squeeze casting techniques have been developed 

based on different methods of metal metering and metal movement, referred to as "direct" 

and "indirect". Figure 2.10 is a schematic illustration of the direct and indirect modes of 

squeeze casting. Direct squeeze casting technology is characterized by direct pressure 

applied to the casting without any casting system, as shown in Figure 2.10. Since the 

pressure is applied directly to the entire surface of the molten metal during solidification, 

this technique provides a completely dense composition and extremely fast heat transfer, 

which results in a fine grain structure. As a result, higher mechanical properties are 

obtained. However, in the indirect technique shown in Figure 2.10 (b), pressure is applied 

to the load that transfers the load to the component. 

 Since pressure is applied at a distance from the component, it is difficult to 

maintain a high pressure on the component throughout the solidification and cooling. 

This indicates that it is difficult to cast an alloy of a long freezing range using indirect 

techniques. Moreover, due to the need to use a gating system, metal production is much 

lower than that achieved by direct squeeze casting. The advantage of indirect technology 

is that due to the presence of the gate system, a highly accurate external metering system 

is not required. Adjust the change in metal volume in the gate. While direct technology 

seems to offer more opportunities for a variety of alloys, it can be used to produce high-
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strength, complete metal castings and metal-based composite parts. This is the concept of 

squeeze casting, and more indirect squeeze casting machines are currently in 

operation.This may be because the indirect process has been successfully commercialized. 

 

Figure 2.8 Schematic diagram of squeeze casting machine [29] 
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Figure 2.9 Schematic diagram of squeeze casting process [27]. 
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(a) (b) 

 

Figure 2.10 Schematic diagram to illustrate the (a) direct and (b) indirect modes of the squeeze casting 

process [28]. 

2.4.3 Squeeze Casting of Magnesium Alloys 

There are many scholarly resources on aluminum alloy squeeze casting. Though the 

exploration of squeeze casting of magnesium and its alloys has still not been extensive, 

recent development in the aluminum casting industry has successfully managed to 

employ the squeeze casting process to produce diverse components. 

In the past few years, some publications on magnesium alloy squeeze casting has 

emerged. As the most common magnesium casting alloy, the alloy AZ91 has been the 

focus of most of the researches. For example, Ha [30] studies three key parameters, 

namely the effect of pressure, mold temperature and casting temperature on the 

solidification behavior and microstructure of two different types of magnesium alloys 

AZ91 and AZ31. Indication drawn from the study includes that the pressure causes the 

melting temperatures of the two alloys to increase (AZ91 is 7.58 ° C and 8.70 ° C, 

respectively, 115 MPa is AZ31), and the total solidification time is significantly reduced. 
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Furthermore, it has been shown that long freeze range alloys (AZ91) require higher 

pressures than short freeze range alloys (AZ31) to produce non-porous castings. It was 

found that a non-porous casting can be obtained under the application pressure of AZ91 

of 100 MPa and AZ31 of 50 MPa. Low mold and casting temperatures and high pressures 

produce fine grain structures in AZ91 and AZ31 castings. The tensile properties of 

extrusion cast AZ91 and AZ31 are higher than those of gravity casting. Later, another 

similar survey was conducted during the squeeze casting of the AZ91 [31]. In this study, 

AZ91 was subjected to squeeze casting under an applied pressure of 138 MPa, a die 

temperature of 250 ° C and heat treatment under T6 conditions. The results show that 

compared with the permanent die casting, the squeeze casting significantly improves the 

tensile properties of the AZ91-T6 alloy, and the microstructure of the extruded AZ91 

alloy has fine grains. It has been suggested that in order to lower the porosity of higher 

castings, a longer pressurization duration is required. 

The study by Chadwick et al. [32] finds that the properties of the squeeze cast AZ91 

are higher than those cast with other processes such as sand casting, gravity casting and 

high pressure casting under as-cast and full heat treatment conditions. Figures 2.11 and 

2.12 [27] show the changes in the properties of AZ91 produced by different conditions. 

In all cases, the squeeze cast samples exhibited the highest yield strength, UTS and 

elongation at break values. The full heat treatment cycle increased the UTS of the 

squeeze cast sample from 200 MPa to 260 MPa, resulting in a decrease in elongation of 

only 1%. 
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(a) 

 

(b) 

Figure 2.11 Mechanical properties of cast AZ91 in fully as-cast condition. (a) UTS and yield strength 

and (b) elongation [27]. 
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(a) 

 

(b) 

Figure 2.12 Mechanical properties of cast AZ91 in as-cast condition. (a) UTS and yield strength, (b) 

elongation [27]. 

 The preliminary study [33] was carried out on the squeeze casting of AZ91D 

alloy at a pressure of 87 MPa and a die temperature of 450 °C shows that the squeeze cast 

AZ91D alloy has almost no pores in the microstructure, as shown in Figure 2.13(a). 

However, as shown in Fig. 2.13(b), typical pores are easily found in high pressure die 
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cast sheets. Based on the density measurement, the difference in casting stability of the 

porosity level between squeeze casting and die casting is quantitatively illustrated in 

Figure 2.14. At this low porosity level, the elongation of the extruded cast sample is 

expected to be higher. The mechanical properties of the squeeze and die cast alloy 

AZ91D samples are summarized in Table 2.1. 

The elongation of the squeeze cast AZ91D specimens was 5%, 10.5% and 6.5%, 

respectively, which were 67%, 250% and 117% higher than the as-cast conditions of the 

as-cast AZ91D. Although the strength (YS and UTS) of the squeeze-cast specimens 

under as-cast conditions was lower than that of die-casting, the ultimate strength (255 

MPa) of the squeeze cst parts after T6 treatment was slightly higher than that of die-cast 

(230) MPA). The low yield strength and ultimate tensile strength of the squeeze cast 

specimens under as-cast conditions are directly attributable to their coarse grain and 

intermetallic compound particles, primarily due to the high mold temperatures used. 

Higher strengths can be envisaged when further optimizing the parameters of the squeeze 

casting process. Furthermore, it was confirmed that the parts produced by the squeeze 

casting were heat treatable compared to the die casting which usually had surface 

foaming during the heat treatment. 

  The fracture surface of the tensile specimen was examined by SEM, indicating the 

difference in fracture behavior between the aqueeze casting and the die casting, as shown 

in Figure 2.15. It can be clearly seen from Fig. 2.15(a) that the failure of the die cast 

specimen is caused by the void coalescence as a starting point of the crack and the 

combined brittle fracture mechanism along the crystal fracture. However, the fracture 

behavior of the squeeze cast samples is completely different. Their fracture surface is 
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shown in Figure 2.14(b) and is mainly ductile. The entire fracture surface of the squeeze 

cast specimen is characterized by the presence of dimples. 

Table 2.1 Tensile Properties of squeeze cast AZ91D Alloy at Room Temperature [33] 

Casting Yield Strength UTS Elongation 

Condition (MPa) (MPa) (%) 

Squeeze 

Cast 

as-cast 96 179 5.0 

T4 76 220 10.5 

T6 117 255 6.5 

Die Cast (as-cast) 150 230 3.0 

 

 

 

(a) 
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(b) 

Figure 2.13 Optical micrographs showing microstructure of (a) a squeeze-cast part,and (b) a die-cast 

AZ91D part in the as-cast condition [33]. 

 

Figure 2.14 Porosity levels of squeeze cast and die cast AZ91D parts with 5 mm section thickness 

[33]. 
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(a) 

 

(b) 

Figure 2.15 SEM fractographs of AZ91D (a) a die-cast part, and (b) a squeeze-cast part [33]. 
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2.5.1 Galvanic corrosion 

When two dissimilar metals are placed in contact in a corrosive or conductive 

solution, a potential difference produces electron flow between them. The more active 

metal then becomes anodic and is corroded, and the less active metal becomes cathodic 

and is protected. This kind of corrosion is called galvanic corrosion, or two-metal 

corrosion. Magnesium and its alloys are highly susceptible to galvanic corrosion, because 

magnesium has the lowest standard potential of all the engineering metals as illustrated in 

Table 2.2 [34].  

Table 2.2 Standard EMF series of metals [34] 
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Galvanic corrosion can also occur between two different phases. Fig. 2.16 illustrated 

those kinds of galvanic corrosion, external and internal [35]. When magnesium and its 

alloys are placed contact with other metals, magnesium and magnesium alloys are 

corroded, while hydrogen gas is evolved on the other metals. When magnesium and 

magnesium alloys contain second phases because of impurities or alloying elements, the 

matrix −phase is corroded, while the hydrogen gas is evolved on the second phases.  

 

Figure 2.16 a) External galvanic corrosion. b) Internal galvanic corrosion [35]. 

  The galvanic corrosion rate is increased by the following factors: high conductivity 

of the medium, large potential difference between anode and cathode, large area ratio of 

cathode to anode, and small distance from anode to cathode [34]. Song et al [36[36]] 

investigated the corrosion behaviour of AZ91D when it is in contact with aluminum alloy 
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A380, high strength steel 4150 and pure zinc. It has been found that even though the 

galvanic effect offers some degree of cathodic protection for aluminum and zinc cathodes, 

the dissolution of these metals in the salt solution is still unavoidable, particularly in the 

region far away from the anode/cathode junction. The dissolved Zn2+ or Al3+ ions flushed 

to the surface of the AZ91D anode could react to form zinc or aluminum oxides or 

hydroxides and finally deposit on the AZ91D surface. These products can provide a 

certain degree of protection for the AZ91D surface.  

2.5.2  Stress corrosion cracking (SCC)  

Stress-corrosion cracking refers to cracking caused by the simultaneously presence 

of tensile stress and a specific corrosive medium [34]. Pure magnesium can be considered 

immune to stress corrosion cracking in both atmospheric and aqueous environments, with 

no reported failures occurring when loaded to its yield strength [37]. Aluminum 

containing alloys of magnesium are generally considered the most susceptible to SCC, 

with the tendency increasing with the aluminum content [37]. The alloys AZ61, AZ80, 

and AZ91 with 6, 8, and 9% aluminum, respectively, can show high susceptibility to SCC 

in laboratory and atmospheric exposures, while AZ31, a 3% aluminum alloy used in 

wrought product applications, is considered to show good corrosion resistance [37]. 

Magnesium-zinc alloys such as ZK60 and ZE41 that are alloyed with zirconium, or 

zirconium and rare earth elements, are typically considered only mildly susceptible, while 

magnesium alloys containing no aluminum or zinc are the most SCC-resistant. For 

example, M1 alloy, a 1% manganese alloy, like unalloyed magnesium itself, shows no 

evidence of SCC when placed under tensile stresses as high as its yield strength [35]. 
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SCC in magnesium is mainly transgranular. Sometimes intergranular SCC occurs as a 

result of Mg17Al12 precipitation along grain boundaries in Mg-Al-Zn alloys [35].  

2.5.3 Corrosion fatigue 

There is very little research on the corrosion fatigue of magnesium alloys. It has been 

indicated in reference 37 that corrosion fatigue has a close relationship with humidity. 

For example, AZ31 subjected to an axial load cycle at 105 cycles per hour in air and then 

subjected to increasing levels of humidity showed a slow decrease in the fatigue strength 

once the humidity exceeded 50%. At 93% relative humidity, the measured fatigue 

strength had declined to about 75% of that in dry air. It has also been found [35] that 

corrosion fatigue cracks propagate in a mixed transgranular-intergranular mode and that 

the corrosion fatigue crack growth rate was accelerated by the same environments that 

accelerate stress corrosion crack growth. And the corrosion fatigue resistance of AZ91-

T6 was significantly reduced in 3.5% salt water relative to that in air.  

2.5.4 Pitting corrosion 

Few studies have addressed these forms of localized attack of Mg and Mg alloys 

because other forms of corrosion such as general, galvanic, or stress corrosion are the 

cause of more serious failure of these materials. The studies of pitting of Mg and Mg are 

concerned by comparing the pitting behavior of cast to that of rapidly solidified Mg 

alloys. Makar and Kruger [38] show that rapidly solidified AZ61 exhibits better 

resistance to pitting than cast AZ61 in a buffered carbonate solution containing various 

levels of Cl-. Pit initiation of rapidly solidified AZ61 is found to take place at a higher 

potential and the pit growth rate is apparently lower than cast AZ61. In the review given 

by Makar and Kruger [39], it is stated that the difference between the rapidly solidified 
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and cast Mg. A metallic glass Mg70Zn30 exhibits a better resistance to pitting. Also, the 

film on the metallic glass is more protective against pitting attack than the pure Mg. The 

glassy Mg alloy is found to exhibit a more stable passive film than pure Mg, Zn or 

several other crystalline Mg-based alloys. Heavy metal contamination promotes general 

pitting attack. In Mg-Al alloys, pits are often formed due to selective attack along 

Mg17Al12 network that is followed by the undercutting and falling out of grains [35]. 

 

2.6.1 Introduction of Plasma Electrolytic Oxidation coating 

Plasma Electrolytic oxidation (PEO), also called plasma anodizing or micro arcing, is 

a promising surface treatment for hexavalent chromium replacement in anti-corrosion 

protection or in the improvement of the tribological properties of lightweight metal 

structures. This electrolytic plasma oxidation can be distinguished from classical 

anodizing by the use of voltages above the dielectric breakdown potential of the anodic 

oxide being formed. This leads to the local formation of plasmas, as indicated by the 

presence of sparks that are accompanied by a release of gas [40].  

The PEO coatings exhibited better corrosion resistance than the coatings treated by 

anodizing. Zhang et al [41] compares the oxide coatings produced by the PEO process 

with the anodic coatings prepared by the HAE and Dow 17 process. It has been found 

that the PEO coatings are smooth, uniform, in contrast to rough, patchy film produced by 

HAE and relatively rough, even, partly powdery film produced by DOW17. Furthermore, 

the films produced by the EPO process are much more corrosion protective than those 

produced by HAE and DOW17.  
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2.6.2 The PEO Coating Process 

The PEO process involves anode electrochemical dissolution, the combination of 

metal ions with anions to form ceramic compounds and sintering on the substrate under 

the action of the sparks. Plasma electrolytic oxidation (PEO) technology has been used 

for depositing ceramic coatings on magnesium alloys for corrosion protection [41-44]. 

The coatings can be as thick as a few hundreds of micrometers and their corrosion 

behavior strongly depends on the process parameters employed, the chemical 

compositions of the materials studied, and the electrolytes used. The effect of electrolyte 

composition on properties of PEO oxide coatings on Mg and Mg alloys has also been an 

interesting subject of investigation to the automobile industry. The electrolytes consisted 

of potassium hydroxide and some other passive agents can modify the characteristics of 

the oxide coatings. Hsiao and Tsai [43] studied the characteristics of anodic films formed 

on solutions containing 3M KOH, 0.21M NaPO4, 0.6 MKF, with and without Al(NO3)3. 

The addition of Al (NO3)3 into 3 M KOH+0.21 M Na3PO4 +0.6 M KF base electrolyte 

assists uniform sparking on AZ91D magnesium alloy in anodizing. Either with or without 

a low concentration of Al (NO3)3, a porous and non-uniform anodic film is formed. The 

presence of Al (NO3)3 in the base electrolyte results in the formation of Al2O3 and 

Al(OH)3 in the anodic film. The presence of Al2O3 in the films is beneficial to the 

corrosion resistance of films in 3.5 wt% NaCl solution.  

The process parameters employed also play an important role in the characteristics of 

oxide coatings. Zhang et al. [41] indicate that the properties of oxide coatings are strongly 

influenced by the process parameters employed. With an increase in solution temperature, 

the film thickness decreases. On the other hand, the film thickness increases with an 



34 

 

increase in treatment time and current density. The voltages rise during the PEO process 

is always accompanied by the increase of film thickness. Higher voltage produces thicker 

film. Khaselev et al [42] investigats the characteristics of the oxide coatings on binary 

Mg-Al alloys in a solution containing 3 M KOH, 0.6 M KF, and 0.21 M Na3PO4 with 1.1 

M aluminate. The breakdown voltages increases with an increase in Al content in the 

alloys. The growth of oxide films is non-uniform. The growth starts on -Mg and 

continues on the -phase (Mg17Al12) when the voltage exceeds 80 V, and a uniform 

anodic film is formed on the alloy substrate when the voltages reached 120 V. Al is 

incorporated into oxide coatings from both the substrate and the electrolyte.  

 

From the literature review, it can be concluded that, despite of the availability of data 

of section thickness-dependent mechanical properties, detailed information on the 

relationship between section thicknesses, microstructure and tensile behavior and 

porosity level is limited for high pressure die cast (HPDC) magnesium alloy AZ91. 

Literatures on the microstructure and mechanical properties of high pressure die cast 

magnesium alloy are limited comparing to those aluminum alloys. A systematic research 

in understanding the microstructure and mechanical properties of high pressure die cast 

magnesium alloy AZ91 is needed for further expanding magnesium applications in 

automobiles. 

Plasma electrolytic oxidation is the most widely commercially used coating 

technology for magnesium and its alloys. This process is technologically more complex 

than other coating methods but is less sensitive to the type of alloys being coated. 

Although the process is relatively expensive due to the need for cooling systems and 
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high-power consumption, this expense could be evened out by its low waste disposal, 

high effectiveness and environmental friendliness. The PEO coatings produced by 

anodizing are porous ceramic-like films. These properties impart good paint-adhesion 

characteristics and excellent wear and abrasion resistance to the coating. Studies have 

proofed and developed appropriate coating schemes for the protection of magnesium for 

use in corrosion resistant. PEO Coating technology has been developed, which functions 

to adequately protect magnesium from corrosion in harsh service conditions. Overall it 

appears that the PEO coating is increasingly becoming the leading technology for 

magnesium alloys to improve corrosion resistance, especially since the process is 

environmentally friendly and capable of providing thick and hard ceramic coating. 

It is evident that there is little information comparing the effect of the section 

thicknesses and the effect of PEO coating on mechanical properties of high pressure die 

cast AZ91 alloy. Hence, this study includes two parts. Part one is to investigate how the 

section thickness of HPDC magnesium alloy AZ91 affect the mechanical properties; and 

part two is to evaluate the PEO coating effect on mechanical properties of HPDC Mg 

alloy AZ91 with through three different section thickness.   
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Magnesium alloys, as one of the attractive lightweight materials, are utilized widely 

in the automotive industry due to market demand for high gas mileages of vehicles and 

government regulations for low greenhouse gas emission. Presently, conventional high 

pressure die casting (HPDC) process are primarily employed by the automotive industry 

for production of magnesium alloy-based lightweight components such as radiator 

support, instrumental panels and steering column support brackets [1-4]. HPDC Mg 

components usually have various wall stocks around 5 mm and moderate mechanical 

properties. It is crucial to understand the relationship between the mechanical properties 

including ultimate tensile strength (UTS), 0.2% yield strength (YS) and elongation (ef) 

and the wall stocks of HPDC magnesium alloys for the purpose of engineering design [5, 

6]. Previous studies were focused on the HPDC Mg alloys with relatively thin wall stocks 

since the nominal thickness of most current thin-wall Mg components is around 5 mm, 

although the effect of wall stocks on their mechanical properties was investigated [7, 8]. 

In this research, the influence of wall thicknesses on microstructure evolution and 

mechanical properties of relatively thick HPDC AZ91 alloys (10 mm and 6 mm) was 

studied in comparison with the thin wall (2 mm) counterpart. Microstructural analyses 

and mechanical testing on the HPDC AZ91 alloy were performed. The effort of 

establishing the relation between the thin and thick wall stocks up to a thickness of 10 

mm, microstructure and mechanical properties of the HPDC were made. 
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3.2.1 Material and Process 

The commercially available magnesium alloy AZ91 (Mg-8.48wt.%Al-0.61wt.%Zn-

0.18wt.%Mn) was used. A 700-ton cold chamber horizontal high pressure die casting 

machine was employed for producing specimens which had a rectangular shape of 125 

mm by 27 mm and a desired wall thicknesses of 2 mm, 6 mm or 10 mm.  

3.2.2 Porosity Measurement 

Porosity contents of specimens were measured based on Archimedes principle. After 

specimen weights were measured in air and distilled water, Equation 3.1 was used to 

calculate the actual density (ρa) of each specimen according to ASTM Standard D3800: 

𝝆𝒂 =
𝑾𝒂×𝝆𝒘

𝑾𝒂−𝑾𝒘
                                     Equation 3.1                            

where Wa equals to the weight in air and Ww equals to the weight in water, and ρw 

equals to the density of water. Equation 3.2 was applied for computing the porosity 

content (P %) according to ASTM Standard C948: 

𝑷% = 𝟏𝟎𝟎% × 
𝝆𝒕−𝝆𝒂

𝝆𝒕
                           Equation 3.2            

where ρt is the theoretical density of the alloy AZ91, with density 1.81 g/cm3 [5]. 

3.2.3 Microstructure  

Metallographic samples were cut from the center of cast specimens. The standard 

mounting and polishing procedure were applied to the cut metallographic samples 

subsequently before the observation. An etchant of 60% ethanal-20% acetic acid-19% 

distilled water-1% nitric acid was applied to the polished specimens for microscopic 
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examination. An optical microscope was employed to characterize primary features of the 

prepared sample. The detailed features of the microstructure were also characterized at 

high magnifications by a scanning electron microscope (SEM), Hitachi Tabletop 

Microscope TM3000, with a maximum resolution of 30 nm in a backscattered mode/1 

μm in x-ray diffraction mapping mode, and useful magnification of 15–30,000. 

3.2.4 Tensile Testing  

An Instron machine integrated with a digital data recording system was used to 

determine the tensile properties of the HPDC AZ91 alloy with various wall stocks at 

room temperature. Based on ASTM B557, tensile samples with a gage length of 25 mm, 

a width of 6 mm, and a wall thickness of 2 mm, 6 mm, or 10 mm were prepared from 

HPDC specimens. According to the averaged results of three tests, yield strength (YS), 

ultimate tensile strength (UTS), and elongation to failure (ef) of the HPDC AZ91 alloy 

were determined. 

 

3.3.1 Porosity Content  

Figure 3.1 presents the SEM micrographs, showing the porosity contents in the 

HPDC AZ91 alloy. Despite the presence of very few and small pores in the 2 mm 

specimens as shown in Figure 3.1 (a), a large number and sizes of pores are easily 

observed in the 6 mm and particularly in the 10 mm specimens as illustrated in Figure 

3.1(b) and Figure 3.1(c).  
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(a) 

 

(b) 

 

(c) 

Figure 3.1 SEM microstructure of die cast AZ91 alloy with wall thicknesses (a) 2, (b) 6, and (c) 10 

mm. 
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The measured porosity contents of the HPDC AZ91 alloy specimens with the wall 

stocks of 2 mm, 6 mm and 10 mm are presented in Figure 3.2. It can be seen that the 6 

mm and 10 mm specimens have the high porosity contents of 2.61% and 3.57%, 

respectively, while there is a very low porosity content of only 0.53% in the 2 mm one.  

Examination of the measured porosity contents manifests the differences in casting 

quality resulting from variation in wall stocks. As the wall thickness increases, the 

porosity content of the HPDC AZ91 alloy increases and its entrapped pores become large. 

The very fast filling of high temperature melts into mold and the high cooling rates 

lead to the very low porosity content of the 2 mm specimen. The implication from 

computer simulation of mold filling and heat transfer of the HPDC AZ91 alloy indicates 

that the existence of high porosity contents in the thick 6 mm and 10 mm specimens 

might be attributed to poor filling and slow solidification [9]. 

 

Figure 3.2 Porosity content vs. wall thicknesses 

3.3.2 Microstructure 

Figure 3.3 gives optical micrographs showing the existence of a fine microstructure 

in the outer skins of the HPDC AZ91 alloy for the 2 mm and 10 mm specimens. The 
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observation on the presence of large primary α-Mg dendrites in the 10 mm specimen 

reveals the distinct difference in the microstructure of the skin from the 2 mm specimen. 

In the center region of the 10 mm HPDC AZ91 alloy specimen, there are also large 

primary α-Mg dendrites as shown in Figure 3.4. In contrast, the dendrites in the 2 mm 

specimen are much smaller.  

 

(a) 

 

(b) 

Figure 3.3 Optical micrograph showing microstructure in the skin of the HPDC AZ91 alloy with 

difference wall thicknesses, (a) 2 mm and (b)10 mm. 

To understand the development of the observed microstructure of the HPDC AZ91, 

the filling and solidification sequences of the conventional HPDC process need to be 

taken into consideration. The process starts with pouring the liquid metal at a desired 

temperature into a shot sleeve.  The direct contact between the liquid metal and the sleeve 

chills the metal rapidly to its liquidus temperature and kicks off solidification. The 

formation of a high-volume fraction of the primary α-Mg dendrite occurs in the sleeve 

prior to the metal arrives at the gate of the cavity. Once the partially-solidified metal is 

pushed into the cavity, the pre-formed α-Mg crystals float in the melt, which are present 

in the finally-solidified HPDC microstructure [5, 10]. Due to the fast cooling at the 

interface between the casting and die, the surfaces of the specimens become the location 
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to form fine grains.  In the center of the specimens, the solidification for the 6 and 10 mm 

thick specimen due to their thick walls takes place much more slowly than that of the 2 

mm one. As a result, the coarse microstructure develops in the 10 mm thick specimen 

compared to that formed in the 2 mm one. 

 

(a) 

 

(b) 

Figure 3.4 Optical micrographs showing microstructure in the center of the HPDC AZ91 alloy with 

difference wall thicknesses, (a) 2 mm and (b) 10 mm 

3.3.3 Tensile Properties 

Typical tensile engineering stress vs strain curves of the HPDC AZ91 alloy with the 

2 mm, 6 mm and 10 mm thicknesses are given in Figure 3.5. For all the three wall stocks, 

the stress changes with the strain in the similar trends. Upon the application of tensile 

loads, the elastic deformation of the alloy commences. With increasing the load, the alloy 

arrives at its yield point. Then, the alloy deforms plastically. As the load further increases 

and reaches its UTS, the fracture of the alloy occurs. Both the plastic deformations and 

fracture for the 10 mm thick specimen take place at much lower stress and strain levels 

than those of the 2 mm and the 6 mm ones. 
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Figure 3.5 Typical tensile engineering stress vs strain curves of the HPDC AZ91 alloy. 

Table 3.1 lists the UTS, YS and ef for all the three wall stocks. It can be seen that the 

UTS and YS increases to 245.5 and 169.3 MPa for the 2 mm thick specimens from 129.2 

and 110.6 MPa for the 10 mm coupons, which exhibits over 90% and 53% increases in 

UTS and YS, respectively. Also, a large increase in elongation appears when the wall 

thickness of the specimens decreases, since the elongation values, 4.1%, 3.0% and 0.7% 

for the 2 mm, 6 mm, and 10 mm respectively. The results of the current study are 

consistent with the relationship between tensile properties and wall thicknesses for 

different types of the die casting magnesium alloys reported in the literature [6, 7]. The 

changes in strengths and elongation should be attributed to the differences in the porosity 

content and the microstructure characteristics of the HPDC AZ91 alloy. The increases in 

the tensile properties results from the fine microstructure and low porosity content of the 

thin specimen. On the contrary, the coarse microstructure, the high porosity contents and 

the presence of large pores reduce strengths and elongations of the thick specimens. 
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Table 3.1 Tensile properties of the HPDC AZ91 alloy 

Wall Stock UTS 0.2% YS Elongation 

(mm) (MPa) (MPa) (%) 

2 245.5 ±5.7 169.3 ± 5.5 4.1 ±0.34 

6 182.9 ±4.8 132.0 ±4.0 3.0 ±0.18 

10 129.2 ±7.11 110.6 ±6.8 0.7 ±0.21 

 

The microstructural characteristics of the HPDC AZ91 alloy with three different wall 

stocks, 2 mm, 6 mm and 10 mm are investigated. The wall thickness affects 

microstructure development of the HPDC AZ91 alloy. The relatively thick wall stocks 

leads to the formation of large pores and large primary -Mg dendrites, and high porosity 

contents in the HPDC AZ91. 

The tensile properties, UTS, YS, and ef, are considerably reduced by the thick wall 

stocks.  The UTS and YS decreases to 129.2 and 110.6 MPa for the 10 mm thick 

specimen from 245.5 and 169.3 MPa for the 2 mm one, which exhibits over 47% and 35% 

decrease in UTS and YS, respectively. Also, a large decrease of 82% in elongation 

appears when the wall thickness of the specimens increases from the 2 mm to 10 mm, 

since the elongation values, 4.1%, and 0.7% for the 2 mm and the 10 mm respectively. 

Overall, it appears that the conventional HPDC is capable of producing the sound AZ91 

casting, with a thickness up to 6 mm, and fails to manufacture the AZ91D alloy with 

thick wall stock of 10 mm, which has insufficient tensile properties.  
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Magnesium usage in automobiles has arisen significantly due to consumer demands 

for increased performance and fuel economy of vehicles.  Most magnesium applications 

presently used in the automotive industry are high-pressure die cast (HPDC) and have 

relatively good strengths and high ductility at room temperature. Applications of HPDC 

magnesium alloys, such as front-end support assemblies, steering wheel armatures and 

steering column support brackets [1, 2], have not only complex shapes but also cross 

sections with various thicknesses. Very often, under normal die casting conditions, thick 

sections have a higher tendency to solidification shrinkage and porosity caused by 

inclusion of gas than thin walls. It has been indicated [3-6] that the porosity level of 

HPDC Mg alloys influences mechanical properties, such as ultimate tensile strength 

(UTS), 0.2% yield strength (YS) and elongation (ef). Cáceres et al [7] attempted to 

establish the relationship between the hardness and yield strength for the HPDC AZ91 

with the section thickness upto 5 mm, while the study by Sin et al [8] showed the tensile 

properties of the plaster mold cast AZ91 with the section thicknesses of 1 to 4.3 mm, 

which were compared with those of the HPDC counterpart.  Gjestland et al [9] present 

the tensile properties of the HPDC AZ91 alloy with the section thicknesses varying from 

1 to 9 mm, but failed to provide detailed analyses of plastic deformation, and tensile and 

fracture behaviors.   

This paper presents an in-depth analysis of strain-hardening behaviour during plastic 

deformation and fracture characteristics of the HPDC AZ91 alloy with section 
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thicknesses of 2, 6 and 10 mm.  The influence of section thicknesses on plastic 

deformation behaviour of the alloy was studied based on the analysis of true stress-strain 

relation.  The fracture behaviour of the HPDC AZ91 affected by section thicknesses was 

characterized by using SEM fractography. 

 

4.2.1 Alloy and Casting Preparation 

The magnesium alloy selected in this study was die casting Mg-8.48 wt.%Al-0.61 

wt.%Zn-0.18 wt.%Mn alloy AZ91D. Flat rectangular coupons of 125 mm  27 mm with 

different section thicknesses of 2, 6 and 10 mm were die cast on a 700 ton cold chamber 

horizontal high pressure die casting machine. 

4.2.2 Porosity Measurement 

Porosity contents of specimens was measured based on Archimedes principle. After 

specimen weights were measured in air and distilled water, Equation 4.1 was used to 

calculated the actual density (ρa ) of each specimen according to ASTM Standard D3800: 

𝝆𝒂 =
𝑾𝒂×𝝆𝒘

𝑾𝒂−𝑾𝒘
                                Equation 4.1                                                                  

where Wa equals to weight in air and Ww equals to weights in water, and ρw equals to 

density of water. Equation 4.2 was applied for computing the porosity percentage (P%) 

according to ASTM Standard C948: 

𝑷% = 𝟏𝟎𝟎% × 
𝝆𝒕−𝝆𝒂

𝝆𝒕
                           Equation 4.2                                                           

where ρt is the theoretical density of the alloy AZ91, i.e., 1810 kg/cm
3
 [5]. 
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4.2.3 Tensile Testing 

The mechanical properties of the HPDC AZ91 alloy with various thickness were 

evaluated by tensile tests, which were performed at ambient temperature on an Instron 

machine equipped with a computer data acquisition system. Following ASTM B557, 

subsize flat tensile specimens (25 mm in gage length, 6 mm in width, and 2, 6, 10 mm in 

as-cast thicknesses) were machined from the die cast coupons. The tensile properties, 

including 0.2% yield strength (YS), ultimate tensile strength (UTS), and elongation at 

fracture (ef), were obtained based on the average of three tests. 

4.2.4 Characterization of Microstructure and Fractured Surface 

Specimens were sectioned, mounted, and polished from the center of the coupons 

and prepared following the standard metallographic procedures. An etchant of 60% 

ethanal-20% acetic acid-19% distilled water-1% nitric acid was applied to polished 

specimens for microscopic examination.  A Buehler optical image analyzer 2002 system 

was used to determine primary characteristics of the specimens.  The detailed features of 

the microstructure were also characterized at high magnifications by a scanning electron 

microscope (SEM), Hitachi Tabletop Microscope TM3000, with a maximum resolution 

of 30 nm in a backscattered mode (BSE)/1 μm in x-ray diffraction mapping mode, and 

useful magnification of 10–30,000. 
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4.3.1 Porosity Content 

Figure 4.1 presents the SEM micrographs, showing the porosity contents in the 

HPDC AZ91 alloy.  Despite the presence of very few and small pores in the 2 mm 

specimens as shown in Figure 4.1(a), a large number of big pores are easily observed in 

both the 6 and 10 mm specimens as illustrated in Figure 4.1(b) and (c).  

 

(a) 

 

(b) 
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(c) 

Figure 4.1 SEM micrographs showing porosity in the die cast AZ91 alloy with section thicknesses of 

(a) 2 mm, (b) 6 mm, and (c) 10 mm. 

The porosity contents of the HPDC AZ91 alloy specimens with the section 

thicknesses of 2 mm, 6 mm and10 mm are presented in Figure 4.2. The 6 and 10 mm 

specimens have the high porosity contents of 2.61 % and 3.57 %, respectively, while 

there is a very low porosity content of only 0.53% in the 2 mm coupon. Examination of 

the measured porosity contents reveals the variation in casting quality resulting from 

differences in section thicknesses.  When the casting section becomes thin, the porosity 

content of the HPDC AZ91 alloy decreases, and the size of the entrapped pores reduces.  

The rapid cavity filling of liquid metal into the die and high solidification rates lead 

to the formation of the small pores and the low content of porosity in the 2 mm coupon. 

The implication from computer simulation of mold filling and heat transfer of the HPDC 

AZ91 alloy indicates that the existence of high porosity contents in the thick 6 and 10 

mm specimens might be attributed to the improper filling pattern and slow solidification 

[10]. 
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Figure 4.2 Porosity content vs. section thicknesses 

4.3.2 Dendrite Measurement 

Figure 4.3 gives SEM micrographs showing the existence of a fine microstructure in 

the outer skins of the HPDC AZ91 alloy for the 2, 6 and 10 mm specimens.  The dendrite 

sizes in the outer skins of the HPDC AZ91 alloy are 6, 15 and 20 µm for the 2, 6 and 10 

mm specimens, respectively.  The dendritic structure in the center of the AZ91 coupons 

are present in Figure 4.4.  It can be seen from Figure 4.4(a) that the dendrite size in the 

center of the 2 mm is only 14 µm and still small.  However, there are large primary α-Mg 

dendrites (32 µm) in the center of the 10 mm specimen. Figure 4.5 summarizes the 

average size of primary α-Mg dendrites in different region of each section thickness. The 

reduction in the section thickness decreases the dendrite size considerably, although the 

variation of the dendritic structure is insignificant in the outer skins.  
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(a) 

 

(b) 

 

(c) 

Figure 4.3 SEM micrograph showing microstructure in the outer skin of the die cast AZ91 alloy with 

difference wall thicknesses, (a) 2, (b) 6 and (c) 10 mm, respectively 
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(a) 

 

(b) 

 

(c) 

Figure 4.4 SEM micrograph showing microstructure in the center of the die cast AZ91 alloy with 

difference wall thicknesses, (a) 2, (b) 6 and (c) 10 mm, respectively. 
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Figure 4.5 Average primary dendrite size in the out skin and center of the die cast AZ91 alloy with the 

section thicknesses of 2, 6 and 10 mm. 

The relation between the skin thickness in the skin area, and section thicknesses is 

shown in Figure 4.6. With the section thickness increase, more gas is entrapped into the 

die and the tendency to form shrinkage porosity is also become high. As the die 

temperature is constant for all three thicknesses coupons, the cooling rate is almost the 

same for all three coupons at the very beginning of solidification. As solidification keeps 

on going, the thicker specimen tends to release more latent heat, which reduces the 

solidification rate. As a result, more shrinkage porosity and thinner skin tends to form in 

the thick specimens. 
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Figure 4.6 Skin Thickness vs. Section Thickness 

To understand the development of the observed microstructure of the HPDC AZ91, 

the filling and solidification sequences of the conventional HPDC process need to be 

taken into consideration. The process starts with pouring the liquid metal at a desired 

temperature into a shot sleeve.  The direct contact between the liquid metal and the sleeve 

chills the metal rapidly to its liquidus temperature and kicks off solidification. The 

formation of a large volume fraction of the primary α-Mg dendrite occurs in the sleeve 

prior to the metal arrives at the gate of the die cavity. Once the partially-solidified metal 

is pushed into the cavity, the pre-formed α-Mg crystals floats in the melt, which stays in 

the finally-solidified microstructure [5]. Due to the fast cooling at the interface between 

the casting and die, the surface of the specimens become the location to form fine grains.  

In the center of the specimens, the solidification for the 6 and 10 mm thick specimen due 

to their thick section thickness takes place much more slowly than that of the 2 mm 

specimen. As a result, the coarse microstructure developed in the center of the 10 mm 

thick specimen.  
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4.3.3 Eutectic Content 

Figure 4.7 presents the SEM images in BSE mode showing the etched microstructure 

of the AZ91 alloy in details at a high magnification. The results of the EDS analysis as 

shown in Figure 8 and the element analysis in atomic percentages listed in Table 4.1 

indicate that the microstructure of the etched AZ91 consists of primary α-Mg grains 

(dark ), eutectic β-Mg17Al12 phases (bright ), and Al-Mn intermetallics (white spot). The 

eutectic β-Mg17Al12 phases and Al-Mn intermetallics are present in the form of isolated 

fine particles surrounding the boundaries of the primary α-Mg grains. 

 

(a) 

 

(b) 
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(c) 

Figure 4.7 SEM micrographs in BSE mode showing constituent phases in the microstructure of the die 

cast AZ91 alloy (a) 2, (b) 6 and (c) 10 mm. 

 

 

(a) 

 

(b) 
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(c) 

Figure 4.8 EDS spectra (a), (b) and (c) for the areas containing α-Mg grains (dark), and β-Mg17Al12 

phases (bright), and Al-Mn intermetallic (white spots) as shown in Figure 4.7, respectively. 

Table 4.1 Elements in analyzed phases shown in Figure 4.5 

Phase Element Atomic (at. %) 

α-Mg 

Mg 96.68 

Al 3.32 

Mg17Al12 

Mg 57.15 

Al 42.85 

AlMn 

Mg 56.57 

Al 26.48 

Mn 16.95 

 

Figure 4.9 presents the converted micrographs from Figure 4.7, highlighting the 

presence of the Mg17Al12 eutectics in the observed alloys represented by the black area. 

Shown in Figure 4.9, the image analysis reveals that the volume fraction of the 

intermetallic phases decreases with increasing the section thickness. Figure 4.10 shows 

the variation of the volume fraction of the eutectics with the different section thickness.  



65 

 

The volume fractions of the intermetallic phases in 2, 6 and 10 mm are measured to be 

19.86%, 16.71% and 14.91%, respectively. 

 

 

 

 

 

(a) 

 

(b) 



66 

 

 

(c) 

Figure 4.9 Binary black and white images showing the eutectic contents in the die cast AZ91 alloy 

with the section thicknesses, (a) 2, (b) 6 and (b)10 mm, respectively. 

 

Figure 4.10 Volume fraction of eutectics varying with the section thickness 

4.3.4 Tensile Properties 

The variation of engineering tensile properties including UTS, YS, ef, tensile 

toughness and resilience with the section thicknesses are compiled in Table 4.2. The UTS 

and YS decreases to 129 and 110 MPa for 10 mm thick specimens; from 245 and 169 

MPa for the 2 mm coupons, which implies over 50% reduction in UTS and almost 35% 

decrease in YS, respectively. Moreover, the elongations are 4.07%, 3.04% and 0.73% for 
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the 2, 6, and 10 mm specimens, respectively, indicate evidently that a significant decrease 

in elongation occurs when the section thickness of specimens increases. The results of the 

current study is consistent with the relationship between tensile properties and section 

thicknesses for different types of die casting magnesium alloys reported in the literature 

[7-9]. As mentioned above, differences in the porosity level and the microstructure of die 

cast AZ91 should be responsible for the deviation in strengths and elongation. The fine 

dendritic structure, high volume fractions of eutectics and low porosity level of the thin 

specimens enhances their tensile properties. The relatively low strengths and elongations 

of the thick specimens result from the coarse dendritic structure, low volume fractions of 

eutectics, thin skin layer, high porosity level in the center, and the presence of large pores.  

Table 4.2 Tensile Properties of the die cast AZ91 alloy at room temperature 

Section Thickness 

(mm) 

UTS 

(MPa) 

YS 

(MPa) 

ef 

(%) 

Young’s 

Modulus 

(GPa) 

2 245.54±5.65 169.26± 5.48 4.07±0.34 37.8±2.26 

6 182.91±4.75 132.02±3.95 3.04±0.18 28.6±1.43 

10 129.17±7.11 110.59±6.82 0.73±0.21 25.9±1.30 

 

4.3.5 Deformation Behavior 

 (1) Resilience 

The ability of a material to absorb energy is referred to as resilience when it is 

deformed elastically and releases that energy upon unloading. The resilience is usually 

measured by the modulus of resilience which is defined as the maximum strain energy 

absorbed per unit volume without creating a permanent distortion. It can be calculated by 
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integrating the stress-strain curve from zero to the elastic limit.  In uniaxial tension, the 

strain energy per unit volume can be determined by the following equation: 

𝑼𝒓 =
(𝒀𝑺)𝟐

𝟐𝑬
                          Equation 4.3                                                    

where Ur is the modulus of resilience, YS is the yield strength, and E is the Young's 

modulus. The calculated moduli of resilience for different section thickness of AZ91 are 

given in Table 4.3. In comparison between 2 mm and 10 mm specimens, the modulus of 

resilience in 2 mm is 140 kJ/m3 higher than that of the 10 mm. This implies that the 

AZ91 in the 2 mm thickness is much more capable of resisting energy loads in 

engineering application during service, in which no permanent deformation and distortion 

are allowed.  

(2) Toughness 

The tensile toughness of a ductile alloy is its ability to absorb energy during static 

loading condition, i.e., static deformation with a low strain rate.  The ability to bear 

applied stresses higher than the yield strength without fracturing is usually required for 

various engineering applications.  The toughness for ductile alloys can be considered as 

the total area under the stress-strain curve for the amount of the total energy per unit 

volume. To evaluate the deformation behavior, the energy expended in deforming a 

ductile alloy per unit volume given by the area under the stress-strain curve can be 

approximated by  

𝑼𝒕 = 𝑼𝒆𝒍 + 𝑼𝒑𝒍 =
(𝒀𝑺+𝑼𝑻𝑺)

𝟐
× 𝒆𝒇                              Equation 4.4 

where Ut is the total energy per unit volume required to take to point of fracture, Upl 

is the energy per unit volume for elastic deformation, and Uel is the energy per unit 
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volume for plastic deformation, and ef is the elongation at fracture. Table 4.3 lists the 

calculated values of the Ut for AZ91 with different section thickness. Examination of the 

Ut values reveals that the 2 mm specimen exhibits an Ut value of 8.34 MJ/m3 higher than 

the 6 mm and the 10 mm specimen. This is because the 2 mm AZ91 alloy has a higher 

ultimate tensile strength and a greater elongation. As a result, the total area under the 

stress and strain curve is much larger for the 2 mm specimen.  

 

Table 4.3 Tensile toughness and resilience of die cast AZ91 at room temperature 

Section Thickness 

(mm) 

Toughness 

(MJ/m3) 

Resilience 

(kJ/m3 ) 

2 8.34±0.57 378.95±15.45 

6 4.78±0.62 304.71±18.23 

10 0.89±0.05 236.10±12.85 

 

(3) Strain Hardening 

Figure 4.11 shows the representative true stress and strain curves of the die cast 

AZ91 alloy. For all three section thicknesses of specimens, the stress variation with the 

strain follows almost the same pattern. Under tensile loading, the alloy deformed 

elastically first. Once yield points reach, plastic deformation of the alloy sets in. However, 

the fracture of the 2 mm-thick specimen occurs at a much higher stress and elongation 

than that for the 6 and 10 mm thick specimens.   
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Figure 4.11 Typical true strain vs. stress curves for the die cast AZ91 alloy. 

The stress-strain curve for metals is often described by the power expression  

                            𝝈 = 𝑲𝜺𝒏                    Equation 4.5                                                                             

where 𝜎 is the true stress, K is the strength coefficient, 𝜀 is the true strain and n is the 

strain hardening exponent. The regression analysis indicates that the power expression is 

in a reasonable agreement with the tensile results.  The numerical values of these 

constants in Equation 4.5 with the regression coefficients (R2) are listed in Table 4.4. 

Equation 4.5can be differentiated to obtain strain-hardening rates (dσ/dε).   
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Table 4.4 Best fits parameters for power equations 

Section Thickness 

(mm) 

K 

(MPa) 

n R2 

2 449.58±5.71 0.1776±0.0051 0.96±0.02 

6 388.66±5.83 0.2039±0.0063 0.98±0.02 

10 386.51±8.64 0.2208±0.0081 0.99±0.01 

 

The strain-hardening behaviors of the die cast AZ91 alloy are illustrated in a plot of 

strain-hardening rate (dσ/dε) vs true plastic strain (ε) during the plastic deformation as 

shown in Figure 4.12, which is derived from Figure 4.11. The 2 mm specimen has a high 

strain hardening rate (5500 MPa) with respect to that of the thick 10 mm specimen (4600 

MPa) at the onset of plastic deformation. It is evident that, despite of decreasing with an 

increase in true strain, the strain-hardening rates during the plastic deformation of the die 

cast alloys varies with their section thicknesses. As the section thickness decreases, the 

strain hardening rates increase. This observation implies that, compared to the 6 and 10 

mm thick samples, the die cast AZ91 alloy with the thin cross section (2 mm) is capable 

of spontaneously strengthening itself increasingly to a large extent, in response to 

extensive plastic deformation prior to fracture. The low porosity level and the even 

dispersion of fine intermetallic particles inside grains and around ground boundaries 

observed by Zhou et al [11], which resist slip in the primary phase should be responsible 

for the relatively high strain-hardening rate of the thin alloy in the early stage of plastic 

deformation, i.e., instantly after the onset of plastic flow as indicated in Figure 4.12.  
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Figure 4.12 Strain hardening rate vs. true strain for plastic deformation of the die cast AZ91 alloy. 

4.3.6 Fracture Characteristics 

Examination of the fracture surfaces of tensile specimens via SEM manifests the 

fracture behavior of die cast AZ91 with three different thicknesses, which is shown in 

Figures 4.13-15.  The circled areas are observed under a high magnification in an attempt 

to reveal detailed features of fracture surface and determine the manner where the 

primary crack originated. The analysis of SEM fractography shows that the fracture 

behavior of die cast AZ91 is influenced by the section thicknesses. As the section 

thickness increases, the fracture of AZ91 tends to transit from ductile to brittle mode.  

The fracture surface of the 2 mm thick specimen illustrated in Figure 4.13 is 

primarily ductile in nature, which is characterized by the presence of deep dimples.  The 

fractograph with a higher magnification, Figure 4.13 (b), portrays the dimples with 

extensive deformation marking along the walls of individual craters. A considerable 

amount of energy is consumed in the process of the formation of microvoids and 

microvoid-sheet, eventually leading to the creation of cracks. Thus, this type of fracture 

failure results from the coalescence of microvoids under the tensile stress. It seems, 
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however, that the failure of the 10 mm-thick specimen is caused by a combined brittle 

fracture mechanism of void coalescence and intergranular fracture (Figure 4.15). The 

similar mechanism for the fracture of die cast magnesium alloys has also been reported in 

references 11 and 12.   

 

(a) 

(b) 

Figure 4.13 SEM fractographs of the 2 mm-thick die cast coupon, (a) low and (b) high magnifications. 

 

(a) 

 

(b) 

Figure 4.14 SEM fractographs of the 6 mm-thick die cast coupon, (a) low and (b) high magnifications 
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(a) 

   

(b) 

Figure 4.15 SEM fractographs of the 10 mm-thick die cast coupon, (a) low and (b) high magnification. 

 

The strain-hardening and fracture failure of the high pressure die cast magnesium 

alloy AZ91 is influenced by its section thickness. The results of tensile testing indicate 

that the mechanical properties, UTS, YS, and ef, as well as resilience (Ur) and toughness 

(Ut) increase significantly with a reduction in the section thickness of the alloy. The 

analysis of plastic deformation behavior reveals that, an increase in high strain-hardening 

rates of the alloy with decreasing the section thickness enables the alloy to spontaneously 

strengthen the materials increasingly to a large extent, in response to extensive plastic 

deformation prior to fracture. The observation via SEM fractography illustrates that the 

fracture behavior of die cast AZ91 is influenced by the section thickness. As the section 

thickness increases, the fracture of AZ91 tends to transit from ductile to brittle mode.  
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Magnesium alloys have great properties that suit numerous applications. Their high 

strength to weight ratio, good castability, and low density attract interests of many 

industries. Especially, in the fields of automotive and aerospace, the researches of 

increasing the fuel efficiency have been continuedly studied. It is crucial that the proper 

design of structural application maximizes the usage of light weight material to improve 

fuel efficiency. In certain applications, magnesium and its alloys can perform the same 

engineering functionality at low mass compared with competitive materials such as steel 

and aluminum. However, poor corrosion resistant of magnesium alloys confines their 

range of uses [1]. Particularly in corrosive environments, mechanical properties of 

magnesium and its alloys decrease as their exposure extends. A suitable surface treatment 

may enhance corrosion resistance. Plasma electrolyte oxidization (PEO) is a promising 

coating technology which is widely used in mechanical and biological engineering due to 

the low cost, high efficiency and environment friendliness [2]. The magnesium alloy with 

eco-friendly PEO coating create components which still have low density, but with 

inproved corrosion resistance. On the topic of plasma electrolytic oxidation coating, 

major focus is on its corrosion resistant aspect. Although previous studies show that the 

PEO coating significantly increases corrosion resistant of magnesium alloys [3], the 

effect of PEO coating on mechanical properties remains uncleared. Few researchers have 

studied the effect of PEO coating on stress corrosion cracking and fatigue performance 

[4-6]. Hu and Nie [7] performed tensile tests on squeeze cast pure magnesium with and 
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without PEO coating. Their tensile testing results show that a thin PEO coating (7 μm) 

decreases the yield strength (YS) of 3 mm thick samples, but has little effect on the 

ultimate tensile strength (UTS) and elongation. The study by Sun et al. [8] reveals that 

the UTS, YS, and elongation of the high pressure die cast AZ91 alloy without coating 

decrease with increasing section thickness of magnesium alloys [8]. Thus, the correlation 

between section thickness, effect of PEO coating, and tensile properties for HPDC 

magnesium alloy AZ91 is still unknown. In this study, the PEO process was utilized to 

deposit coating on high pressure die cast magnesium alloy AZ91 with the section 

thicknesses of 2, 6, and 10 mm. The work includes an in-depth analysis of tensile 

properties, strain-hardening behaviour during plastic deformation, and microstructure of 

the PEO-coated HPDC AZ91 alloy with the section thicknesses of 2, 6 and 10 mm. The 

influence of PEO coating on tensile properties and plastic deformation behaviour of the 

alloy was investigated based on the analyse of engineering stress-strain relation and true 

stress-strain relation. The microstructure of the PEO coated HPDC AZ91 was 

characterized by using scanning electron microscopy. The fractured surface of the PEO 

coated AZ91 alloy was also analysed by SEM fractography. 

 

5.2.1 Alloy and Casting Preparation 

The magnesium alloy selected in this study was die casting Mg-8.48 wt.%Al-0.61 

wt.%Zn-0.18 wt.% Mn alloy AZ91. Flat rectangular coupons of 125 mm  27 mm with 

different section thicknesseses of 2, 6 and 10 mm were die cast on a 700 ton cold 

chamber horizontal high pressure die casting machine. 
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5.2.2 Electrolyte Preparation and PEO Process 

Prior to conducting PEO coating process, AZ91 alloy tensile samples were sanded 

using the abrasive paper following by 240 grits, 400 grits, and 800 grits respectively and 

cleaned by ultrasonic with ethanol. Then the samples (anode) was immersed in 

electrolyte (10 g/L NaAlO2, 4 g/L Na3PO4, and 1 g/L KOH) in a stainless steel vessel 

(cathode). A bipolar pulsed (f = 200 Hz) direct current (dc) power supply was used. The 

current density was set to 0.075 A/cm2 and voltage was kept at 480 V for 600s. After 

removal from the electrolyte, all samples were dried at room temperature. 

5.2.3 Tensile Testing 

The mechanical properties of the coated and uncoated AZ91D alloy with the section 

thickness of 2, 6 and 10 mm were evaluated by tensile tests, which were performed at 

ambient temperature on an Instron machine equipped with a computer data acquisition 

system. Following ASTM B557, subsize flat tensile specimens (25 mm in gage length, 6 

mm in width, and 2, 6, 10 mm in as-cast thicknesses) were machined from the die cast 

coupons. The tensile properties, including 0.2% yield strength (YS), ultimate tensile 

strength (UTS), and elongation at fracture (ef), were obtained based on the average of 

three tests. 

5.2.4 Characterization of Microstructure  

Specimens were sectioned, mounted, and polished from the center of the coupons and 

prepared following the standard metallographic procedures. An etchant of 60% ethanal-

20% acetic acid-19% distilled water-1% nitric acid was applied to polished specimens for 

microscopic examination. The detailed features of the microstructure were characterized 

at high magnifications by a scanning electron microscope (SEM), Hitachi Tabletop 
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Microscope TM3000, with a maximum resolution of 30 nm in a backscattered mode 

(BSE)/1 μm in x-ray diffraction mapping mode, and useful magnification of 10–30,000. 

 

5.3.1 Microstructure 

SEM images showing the morphology of the PEO coating on AZ91D magnesium 

alloy are presented in Figure 5.1. Overall, the coating thickness exhibits consistency 

throughout all three samples which is approximately 7.5 μm on each side. With the same 

coating thickness, the coated thin specimens proportionally contain the volume fraction 

of coating higher than those of the thick ones. This observation implies the PEO on thin 

specimens coating should be able to carry more loads than those on the thicker samples 

during tensile testing. Figure 5.1 also shows the different level of porosities in the 

substrate AZ91 alloy of the coated 2, 6 and 10 mm specimens. The porous nanostructure 

of the ceramic PEO coatings on the 2, 6 and 10 mm specimens is revealed under the high 

magnification of SEM observation as illustrated in Figure 5.2. The average size of the 

pores in both coatings and substrates of the 2, 6, and 10 mm specimens are given in 

Figure 5.3(a), which are 2.5 and 10 μm for the 2 mm, 2.7 and 31 μm for the 6 mm, and 

2.4 and 72 μm for the 10 mm, respectively.  The porosity percentage of the coatings and 

substrate are displayed in Figure 5.3(b), which are 2.97% and 0.53% for the 2 mm, 3.01% 

and 2.61% for the 6 mm, and 2.95% and 3.57% for the 10 mm.  All the coatings on the 

three different thickness specimens contain both nano-size and micron-sized pores. In the 

2 mm sample, the pores presented in the ceramic coating could serve as sites for crack 

initiation, since the substrate is basically free of porosity. There are the visible pores in 

both the coating and the substrate of the coated 6 mm specimen (Figure. 5.1(b)). Similar 
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to that of the 6 mm specimens, the pores are evidently present in both the coating and the 

substrate of the 10 mm specimen as shown in Figure 5.1 (c). However, the percentage 

and size of the pores in the substrate of the 10 mm specimen are much higher and larger 

than those in 6 mm specimen.   

The comparison of the pore structure between the 6 and 10 mm specimens suggests 

that the pores in the coating of the 6 mm one might still play a significant role in 

initiating and growing crack due to their size similar to those in the substrate. But, in the 

10 mm specimen, the crack initiation and growth should be controlled by the massive 

presence of the large pores in the substrate, since the pores in the coating are much 

smaller. The presence of a relatively dense PEO coating on the very porous substrate of 

the 10 mm specimen could be protective and prevent the crack initiation as well as slow 

down the crack growth, which results from the massive presence of the large pores in the 

substrate.   

Additionally, during the PEO coting process, the chemical reactions take place 

mainly between the primary α-Mg phase and electrolytic ion solutions. The high content 

of large primary α-Mg dendrites present in the 10 mm specimen facilitates the formation 

of the uniform and continuous interface between the PEO coating and the substrate, in 

comparison of that in the 2 mm specimen.  Figures 5.2 (a) and (b) show the presence of 

discontinuity in the interface of the coated 2 and 6 mm specimens. This is because the 2 

mm and 6 mm specimens have the relatively high-volume fractions of the β-Mg17Al12 

phase with the low content of the fine primary α-Mg dendrites, especially along the edge 

of the specimen, which hinders the formation of the continuous PEO crystalline structure 

at the interface. The continuous interface evidently exhibits in the coated 10 mm 
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specimen as revealed in Figure 5.2 (c). The presence of the continuous interfaces in the 

10 mm specimen could mitigate crack propagation from the PEO ceramic coating inward 

to the substrate during tensile loading, which might improve the mechanical properties. 

 

 

   

(a) 
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(b) 

 

(c) 

Figure 5.1 SEM micrographs showing the microstructure of the coated AZ91D alloy with the section 

thicknesses (a) 2, (b) 6, and (c) 10 mm. 
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(a) 

 

(b) 
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(c) 

Figure 5.2 SEM micrographs showing the structure of the PEO coating on AZ9211 alloy with the 

section thickness, (a) 2, (b) 6, and (c) 10 mm.  

 

 

(a) 
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(b) 

Figure 5.3 (a) Average pore sizes and (b) Percentage of porosity in the substrate and PEO coating 

layer of the HPDC Mg alloy AZ91 with the section thicknesses of 2, 6, and 10 mm. 
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5.3.2 Tensile Properties 

To demonstrate and compare the effect of PEO coating on the tensile behavior of the 

HPDC AZ91 alloy, the data of the uncoated alloy was used as references [9]. Figure 5.4 

shows the representative engineering stress-strain curves of both the uncoated and coated 

samples. The variation of engineering tensile properties including UTS, YS, and 

elongation with the coated section thicknesses are compiled in Table 5.1. In the groups of 

the 2 and 6 mm samples, compared with the uncoated tensile results, their mechanical 

properties significantly decrease. For the 2 mm sample, the UTS drops from 245.52 MPa 

to 196.61 MPa; the YS from 169.26 MPa to 139.17 MPa; the elongation reduces from 

4.07% to 2.94%, which implies a reduction of 20% in UTS, 18% in YS, and 25% in 

elongation. The results of the 6 mm samples also reflect that the PEO coating has a 

negative effect on the mechanical properties of the HPDC AZ91 alloy, of which UTS, YS 

and elongation are reduced by 7%, 6% and 11%, respectively. On the contrast, while the 

uncoated 10 mm sample exhibits 129.17 MPa in UTS, 110.57 MPa in YS and 0.73% in 

elongation, the UTS, YS and elongation of the coated HPDC AZ91 alloy increase to 

140.35 MPa (8%), 122.74 MPa (10%) and 0.75% (2%), respectively. The phase 

constitution, microstructure and the volume fraction ratio of the coating and substrate as 

discussed in the in the preceding section should be responsible for the resultant tensile 

results.  
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Table 5.1 Tensile Properties of the die cast AZ91D vs PEO coated AZ91D alloy at room temperature 

Section 

Thickness 

Surface 

Condition 

UTS (MPa) YS(MPa) ef (%) 

2 Uncoated 245.52 ±5.65 169.26±5.48 4.07±0.34 

PEO Coated 196.61±6.14 139.17±5.83 2.94±0.29 

6 Uncoated 182.27±4.75 132.02±3.95 3.04±0.18 

PEO Coated 168.27±5.10 122.56±5.73 2.7±0.17 

10 Uncoated 129.17±7.11 110.59±6.82 0.73±0.21 

PEO Coated 140.35±6.52 122.74±5.43 0.75±0.13 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.4 Engineering stress-strain curve of the uncoated and PEO coated (a) six curves for all the 

three section thicknesses and (b) 2, (c) 6, and (d) 10 mm HPDC AZ91 Alloy.  
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5.3.3 Modulus of Resilience and Tensile Toughness 

Based on the tensile properties data, both modulus of resilience and tensile toughness 

were calculated. The modulus of resilience can be calculated by integrating the stress-

strain curve from zero to the elastic limit. In uniaxial tension, the strain energy per unit 

volume can be determined by the following equation: 

𝑈𝑟 =
(𝑌𝑆)2

2𝐸
                                Equation 5.1 

where Ur is the modulus of resilience, YS is the yield strength, and E is the Young's 

modulus. To calculate the tensile toughness, the energy expended in deforming a ductile 

alloy per unit volume given by the area under the stress-strain curve can be approximated 

by  

𝑈𝑡 =
(𝑌𝑆+𝑈𝑇𝑆)

2
× 𝑒𝑓                          Equation 5.2 

where Ut is the total energy per unit volume required to take to point of fracture and ef is 

the elongation at fracture. 

Table 5.2 lists the calculated values of the Ur and the Ut for the PEO-coated and 

uncoated AZ91 alloy with different section thicknesses. Examination of the Ut values 

reveals that the coated 2 mm specimen exhibits an Ut value of 5.04 MJ/m3 higher than the 

coated 6 mm (4.65 MJ/m3) and the coated 10 mm (0.98 MJ/m3) specimen. However, by 

comparing with the uncoated results, both the 2 and 6 mm samples show reductions in 

toughness and resilience. For the 2 mm samples, the toughness and the resilience are 

decreased by 40% and the by 23%, respectively; for the 6 mm samples, the toughness and 

the resilience are decreased by 5% and 0.7%. On the contrary, for the 10 mm samples, the 

toughness and the resilience show increases by 10% and 20%. The results of the 



92 

 

calculated moduli and tensile toughness reveal that the outer coating layer promotes the 

crack initiation and growth in the thinner samples during tensile loading, which 

consequently reduces the capability of material energy absorption.  

Table 5.2 Tensile toughness and resilience of die cast AZ91 at room temperature 

Section 

Thickness 

(mm) 

Surface 

Condition 

Young’s  

Modulus 

(GPa) 

Toughness 

 

(MJ/m3) 

Resilience 

 

(kJ/m3) 

2 Uncoated 37.8±2.26 8.34±0.57 378.95±15.45 

PEO-Coated 33.2±1.98 5.04±0.31 291.69±12.89 

6 Uncoated 28.6±1.43 4.78±0.62 304.71±18.23 

PEO-Coated 28.8± 4.56±0.54 302.59±16.31 

10 Uncoated 25.9±1.30 0.89±0.05 236.10±12.85 

PEO-Coated 26.6±1.72 0.98±0.06 283.18±14.74 

 

5.3.4 Deformation Behavior 

Figure 5.5 shows the representative true stress and strain curves of the die cast AZ91 

alloy. For all the three section thicknesses of specimens, the stress variation with the 

strain follows almost the same pattern. Under tensile loading, the alloy deformed 

elastically first. Once yield points reach, plastic deformation of the alloy sets in. However, 

the fracture of the 2 mm-thick specimen occurs at a much higher stress and elongation 

than that for the 6 and 10 mm thick specimens.   
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(a) 

 

(b) 
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(c) 

(d) 

Figure 5.5 Typical true strain vs. stress curves for the die cast AZ91 alloy., (a) six curves for all three 

section thickness, (b) 2 mm,(c) 6mm, and (d) 10mm.  
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The true stress-strain curve for metals during plastic deformation is often described 

by the power expression:  

     𝜎 = 𝐾𝜀𝑛                             Equation 5.3                                                                          

where K and n are empirical constants. The regression analysis indicates that the power 

expression is in a reasonable agreement with the tensile results.  The numerical values of 

these constants in Equation 5.3 with the regression coefficients are listed in Table 5.3. 

Equation 5.3 can be differentiated to obtain strain-hardening rates (dσ/dε).   

Table 5.3 Best fits parameters for power equations 

Section 

Thickness 

Surface Type K n R2 

(mm) (MPa) 

2 Uncoated 449.58±5.71 0.1776±0.0051 0.96±0.02 

PEO Coated 410.94±6.32 0.1968±0.0048 0.96±0.02 

6 Uncoated 388.66±5.83 0.2039±0.0063 0.98±0.02 

PEO Coated 388.21±7.52 0.2088±0.0072 0.98±0.02 

10 Uncoated 386.51±8.64 0.2208±0.0081 0.99±0.01 

PEO Coated 387.53±9.12 0.2155±0.0077 0.99±0.01 

 

The strain-hardening behaviors of each coated die cast AZ91 alloy are illustrated in a 

plot of strain-hardening rate (dσ/dε) vs true plastic strain (ε) during the plastic 

deformation as shown in Figure 5.6, which is derived from Figure 5.5. Based on the 
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strain hardening rate, even with the PEO coating, the 2 mm specimen exhibits the highest 

strain hardening rate, and the 10 mm specimen remains the least strain hardening rate.  

The strain hardening rates at the beginning of the plastic deformation for all the 

uncoated and coated samples are revealed in Figure 5.6. All the six testing samples show 

the similar trend of strain hardening, in which the strain hardening rates decrease with the 

increasing true strains. The comparison between the uncoated samples at the true strain of 

0.006 indicates that the 2-mm specimen has the highest strain hardening rate of 5388.86 

MPa, while the 6 and 10-mm specimens have 4653.28 MPa and 4596.57 MPa, 

respectively.  The high strain hardening rate of the 2-mm specimen should be attributed 

to the low porosity content, fine microstructure, and high content of intermetallic phase 

Mg17Al12.  With the PEO coating on the HPDC AZ91 alloy, the strain hardening rate of 

the 2-mm specimen decreases from 5388.86 MPa to 4913.37 MPa, which gives a drop of 

8%.  The reduction in strain hardening rates by the application of a coating on the thin 

specimen might result from the fact that the pores in the coating could be the initiation 

sites for cracking, and discount the material capability of strengthening itself during 

plastic deformation.  There is almost no change in strain hardening rates to the PEO 

coated 6 (4641.05 MPa at  = 0.006) and 10-mm (4630.35 MPa at  = 0.006) specimens.  

This suggests that a thin PEO coating of 7.5 μm has a limited influence on the strain 

hardening behavior of the HPDC AZ91 alloy with the relatively thick sections.  Among 

all the uncoated and coated samples, the uncoated and coated 2-mm specimens have the 

strain hardening rates higher than the counterparts in the 6 and 10-mm thickness, which 

implies that the microstructure of the substrate plays a more important role in strain 

hardening than that of the thin PEO coating on the HPDC AZ91 alloy. 
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Overall, the PEO coating has the effect on strain hardening rates of the thin specimen 

more significantly than those of the thick ones. Even though the effect of PEO coating on 

strain hardening is obvious, it is evident that the section thickness could be a factor to 

determine how the PEO coating affect the mechanical properties of magnesium alloys. 

 

 

(a) 
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(b) 

Figure 5.6 (a)Strain hardening rate vs. true strain for plastic deformation of PEO coated AZ91D alloy; 

(b) Enlarge area of Strain hardening rate vs. true strain for plastic deformation 

5.3.5 Fracture Behavior 

Examination of the fracture surfaces of the tensile specimens via SEM manifests the 

fracture behavior of PEO coated HPDC AZ91 with the three different thicknesses, which 

are shown in Figures 5.7-5.9. The circled areas are observed under a high magnification 

in an attempt to reveal detailed features of the fracture surface and determine the fracture 

mechanism. The analysis of SEM fractography shows that the fracture behavior of PEO 

coated AZ91 is influenced by the section thicknesses and the surface condition.  

The fracture surface of the 2 mm thick specimen illustrated in Figure 5.7 is primarily 

semi ductile in nature, which is characterized by the presence of microvoids in the shape 
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of cup and cone. The fractography with a high magnification, Figure 5.7 (b), portrays the 

microvoids with certain deformation marking along the walls of individual craters. A 

certain amount of energy is consumed in the process of the formation of microvoids and 

microvoid linkage, eventually leading to the creation of cracks. Thus, this type of fracture 

failure results from the coalescence of microvoids under the tensile stress. It seems, 

however, that the failure of the PEO coated 10 mm-thick specimen is basically caused by 

a combined brittle fracture mechanism of void coalescence and intergranular fracture 

(Figure 5.9). The fracture surface of the coated 10 mm thick specimen is reasonably 

smooth and flat. The low magnification SEM micrograph as shown in Figure 5.9(a) 

reveals the presence of river marking, which run in a direction roughly parallel to crack 

propagation. The local stress condition and the grain orientation might be responsible for 

the direction deviation. Figure 5.9 (b) with the high magnification discloses the 

microvoids and river marking in fact ridges, of which a few have a distinct V-shape. This 

observation suggests that the fracture of the coated 10 mm specimen is quasi-cleavage. 

Under a high tensile load, the coated specimen experiences a catastrophic failure. The 

similar mechanism for the fracture of die cast magnesium alloys has also been reported in 

reference 10. 
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(a) 

 

(b) 

Figure 5.7 SEM fractography of the PEO coated 2 mm-thick die cast coupons, (a) low and (b) high 

magnifications 

 

(a) 

 

(b) 

Figure 5.8 SEM fractography of the PEO coated 6 mm-thick die cast coupons, (a) low and (b) high 

magnifications 
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(a) 

 

(b) 

Figure 5.9 SEM fractography of the PEO coated 10 mm-thick die cast coupons, (a) low and (b) high 

magnifications 

 

 

A PEO process has been applied to form a protective coating on high pressure die 

cast AZ91 magnesium alloy. Compared with the group of the PEO coated samples, the 

results show the identical trend of effect by section thickness, where mechanical 

properties decrease with increase the section thickness. The tensile test and defamation 

behavior result of PEO coated follows the patterns that effect by section thickness. This 

implies that the low porosities, fine microstructure, and high content of intermetallic 

phase Mg17Al12 of AZ91 alloy samples still play an important role when the magnesium 

alloys are under the load.  

However, in comparison between PEO coated and uncoated samples, the influence of 

PEO coating depends the substrate microstructure condition. For the 2 and 6 mm samples, 

the PEO coatings reduce the tensile properties of HPDC Mg alloy AZ91. This is due to 

the unmatched porosity content and microstructure size, where the outer coating layer 
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provides initiation sites of cracking, and consequently reduces the tensile strengths and 

strengthening hardening rates under tensile loading. On the other hands, for the 10 mm 

PEO coated samples, the PEO coating increases the tensile properties and strain 

hardening rate. This is because the pores in the PEO coating on the 10 mm specimen are 

both smaller in size and less in porosity content than those in the substrate. Thus, the 

ceramic layers have a limited influence on 10 mm AZ91 alloy. It is certain to conclude 

that the PEO coating reduces the overall mechanical properties on the thin section 

thickness samples which have a low porosity and fine microstructure. Yet, in the thick 

section thickness, the large pores and high porosity content play a dominant role in 

controlling mechanical properties of the HPDC Mg alloy AZ91, compare with the 

relatively small pores and low level of porosity present in the PEO coating.  

  



103 

 

 

[1] H. Hu. “Squeeze Casting of Magnesium Alloys and Their Composites”, Journal of 

Materials Science Vol. 33, pg. 1579-1589, 1998. 

[2] P. Zhang., X. Nie, H. Hu, & Y. Liu. “TEM analysis and tribological properties of 

Plasma Electrolytic Oxidation (PEO) coatings on a magnesium engine AJ62 

alloy”. Surface and Coatings Technology,Vol. 205(5), pg. 1508, 2010. 

[3] Y. Ma, H. Hu, D. Northwood, & X. Nie. “Optimization of the electrolytic plasma 

oxidation processes for corrosion protection of magnesium alloy AM50 using the 

Taguchi method”. Journal of materials processing technology,Vol. 182(1-3), pg. 58-

64, 2007. 

[4] P. B. Srinivasan, C. Blawert, & W. Dietzel. “Effect of plasma electrolytic oxidation 

coating on the stress corrosion cracking be haviour of wrought AZ61 magnesium 

alloy”.Corrosion Science,Vol. 50(8),  pg. 2415-2418, 2008. 

[5] P. B. Srinivasan, C. Blawert, W. Dietzel, & K.U. Kainer. “Stress corrosion cracking 

behaviour of a surface-modified magnesium alloy”.Scripta Materialia, Vol. 59(1), pg. 

43-46, 2008. 

[6] A. Němcová, P. Skeldon, G.E. Thompson, S. Morse, J. Čížek, & B. Pacal. “Influence 

of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy”. 

Corrosion Science,Vol. 82, pg. 58-66, 2014. 

[7] J. Hu, & X. Nie. “Effect of nanostructured oxide coatings on tensile properties of cast 

pure magnesium”. In Advanced Materials Research, Vol. 1088, pp. 18-22, 2015. 



104 

 

[8] Z.Sun, , L.Ren, X. Geng, L. Fang, X. Wei, & H. Hu. “Influence of Wall Stocks on 

Mechanical Properties of HPDC AZ91”. Key Engineering Materials, Vol. 793, pg. 

41-45, 2019. 

[9] H. Hu & Z. Sun : Internal Research, University of Windsor, 2019.  

[10] Z. Sun, M. Zhou, N, Li, and H. Hu. “Strain-Hardening and Fracture Behavior of Die 

Cast Magnesium Alloy AM50”, Adv.Mater.SCI ENG, Vol. 2007, article ID 64195, 5 

pages, 2007.  

 

 

  



105 

 

 

The conclusions drawn from this study can be classified into two categories based on 

two research objectives: 

I. Effect of Section Thicknesses on Tensile Behavior and Microstructure of 

High Pressure Die Cast Magnesium Alloy AZ91 

1. The microstructural features of the high pressure die cast magnesium alloy AZ91 

with three different section thicknesses, 2, 6 and 10 mm were studied via 

metallography, SEM/EDS analysis. The microstructure for all three the section 

thicknesses of specimens contains the primary -Mg, β-Mg17Al12 intermetallics, 

Mn-Al phases. The intermetallic phase β-Mg17Al12 occupies the intergranular 

regions between the -Mg grains. 

2. The section thickness has a significant influence on microstructure evolution of 

die cast AZ91. The grain size increases with an increase in the section thickness 

of specimens. 

3. High porosity levels and large primary -Mg dendrites and pores are presented in 

die cast AZ91 with relatively thick cross-sections. The observation via SEM 

fractography illustrates that the fracture behavior of die cast AZ91 is influenced 

by section thicknesses. As the section thickness increases, the fracture of AZ91 

tends to transit from ductile to brittle mode.   

4. The results of tensile testing indicate that the mechanical properties, UTS, YS, 

and ef, decrease significantly with an increase in the section thickness of 

specimens.  
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5. It appears that the section thicknesses determine porosity level and microstructure 

characteristics, and consequently dictate tensile properties of die cast magnesium 

alloy AZ91.  

 

II. Effect of Plasma Electrolytic Oxidation (PEO) on Tensile Properties of High 

Pressure Die Cast Magnesium Alloy AZ91 

1. The microstructure characteristics of the HPDC alloy AZ91 substrate remain 

the major role in determining the overall mechanical properties and tensile 

behavior of the uncoated and PEO coated specimens. 

2.  The PEO coating significantly reduces the tensile properties of the 2 mm and 

6 mm section thickness samples due to the presence of porosity. With the 

relatively large size of pores and high content of porosities, the ceramic 

coating becomes the initiation sites of cracking which reduces the mechanical 

properties of the thin specimen.  

3. The tensile properties of the 10 mm specimen slightly increase with the 

presence of the PEO coating. This is because the thin PEO coating contains 

pores smaller in size and less in content than those in the substrate, which 

provides protection from crack initiation and growth during tensile loading. 

4. The effect of PEO coating depends on the volume fraction of the section 

thickness and the different level of porosities content between the substrate 

and the outer coating layer. High similarity of porosity content is prone to 

have limited effect on the tensile properties.  
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5. The microstructure of PEO coating on AZ91 with three different section 

thickness, 2, 6, and 10 mm were studied via metallography, SEM/EDS 

analysis. The results reveal that the strain hardening rate are insignificantly 

affected by the PEO coating, particularly for the 6 and 10 mm specimen 

samples.  
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This study carried out the investigation of the effect on tensile properties of different 

section thickness of HPDC magnesium alloy AZ91 and the effect of PEO coating on 

tensile properties of HPDC magnesium alloy AZ91 with different section thickness. This 

study laid a foundation for further investigation on finding the relation between PEO 

coating and the mechanical properties of magnesium and its alloys. The following are the 

suggestions for the future work.  

• Study the effect of different thicknesses of PEO coating on mechanical properties of 

one specific section thickness (recommended on 10 mm) of magnesium alloy AZ91, 

examine their microstructure in the coating layer and substrate  

• Analyze the effect of volume fraction of PEO ceramic coating affects the mechanical 

properties of magnesium alloy AZ91 

• Investigate the effect of different electrolyte compositions on PEO coating 

thicknesses, which might resulted in the effect on the mechanical properties of 

magnesium alloy 

• Investigate the correlation between the specimen thickness, the PEO coating layer 

thickness, and the tensile properties, which could result in an optimal combination to 

maximize the mechanical properties.  
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