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ABSTRACT OF DISSERTATION

NOVEL COMPUTATIONAL METHODS FOR TRANSCRIPT
RECONSTRUCTION AND QUANTIFICATION USING RNA-SEQ DATA

The advent of RNA-seq technologies provides an unprecedented opportunity to pre-
cisely profile the mRNA transcriptome of a specific cell population. It helps reveal
the characteristics of the cell under the particular condition such as a disease. It
is now possible to discover mRNA transcripts not cataloged in existing database,
in addition to assessing the identities and quantities of the known transcripts in a
given sample or cell. However, the sequence reads obtained from an RNA-seq ex-
periment is only a short fragment of the original transcript. How to recapitulate the
mRNA transcriptome from short RNA-seq reads remains a challenging problem. We
have proposed two methods directly addressing this challenge. First, we developed a
novel method MultiSplice to accurately estimate the abundance of the well-annotated
transcripts. Driven by the desire of detecting novel isoforms, a max-flow-min-cost al-
gorithm named Astroid is designed for simultaneously discovering the presence and
quantities of all possible transcripts in the transcriptome. We further extend an ab
initio pipeline of transcriptome analysis to large-scale dataset which may contain
hundreds of samples. The effectiveness of proposed methods has been supported by
a series of simulation studies, and their application on real datasets suggesting a
promising opportunity in reconstructing mRNA transcriptome which is critical for
revealing variations among cells (e.g. disease vs. normal).
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Chapter 1 Introduction

Uncovering the mystery of the functioning and heredity of living organisms has been
and remains to be one central mission of the life sciences. Human genetics, the
study of genes, heredity, and variation of human species, is of great interest. Genes
are basic functional units that determine an individuals’ unique traits. They not
only decide our hair color but also holds the information of the genetic traits pass-
ing to offspring. More specifically, the research of human genetics will help unveil
all fascinating mechanisms about human: ¢.e. how genetic inheritance or various
characteristics takes place from parents to kids, and therefore, is highly important.
One of the major milestones of the human genetics study was the effort of Human
Genome Project (HGP) which aims at identifying approximate all the 30, 000 genes in
human DNA. Upon its completion in 2003, over three billion human DNA bases have
been catalogued in the database, shedding lights on the study of human genetics.
Moreover, the study on human genome also led to a new era of “genomic medicine”
where genetics is playing a more and more important role in the diagnosis, prognosis,
and treatment of diseases that are caused by genetic abnormalities and mutations.
Before genomic medicine, most diseases were defined by clinical symptoms and treated
with one-fits-all treatments. This approach failed to account for individual biolog-
ical background. However, nowadays more and more diseases are being defined at
the molecular level, facilitating one’s unique genetic information being used to im-

prove health outcome. With the revolution of genome analysis, we are able to detect



biomarkers distinguishing between normal and diseased cells. For example the ge-
netic characteristics responsible for tumor progression in breast cancer (e.g. HER2+
marker) could serve as potential drug responses and are very informative for precise
and personalized treatment. Furthermore, genetic factors can also help to assess the
risk of a particular disease in an individual. This is known as genetic tests. Once a
high risk is confirmed, continuous monitoring and preventive measures can be taken
to reduce the risk of that disease.

The great success of genetics in medical practice have stimulated the development
of sequencing technology which aims to determine the sequence of entire genome, indi-
vidual genes or other important molecules in a living organism. In a typical sequenc-
ing experiment, the bases of a small fragment of DNA are sequentially detected and
millions of such fragments are generated from target DNA. However, only knowing
the sequence is not enough, the real challenge lies in how to elucidate the connection
between sequence and the gene functions, and further find out the way genes are
related to phenotypes and diseases. In the past decade, many contributions have
been made to answer this question, but efficient and effective computational meth-
ods are still in emerging needs. Therefore, this dissertation is dedicated to develop
computational models to bridge the gap between raw sequencing data and biological
findings. In this chapter, we will briefly review the biological backgrounds, introduce

the problems we wish to address, and present an overview of our efforts.



1.1 Biological background

Francis Crick, the Nobel Prize winner in Physiology or Medicine in 1962, has once
given a straightforward explanation of the flow of genetic information in a living
organism: “DNA makes RNA and RNA makes protein” (Figure 1.1). This statement
was then augmented into the central dogma of molecular biology as the following
“DNA makes RNA, RNA makes proteins, proteins make us”. Though a simplification,
this general rule sketches the connections of all important molecules and emphasizes
the order of the events in our body.

In this section, we will follow the central dogma, review the basic biological con-

cepts and then introduce the related sequencing technology platforms for analysis.
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Figure 1.1: A figure illustrates the central dogma of molecular biology. Figure ac-
commodated from Wikepedia( www.wikepedia.com)
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1.1.1 The genome in living organisms

For all living organisms, cells serve as their basic building blocks. Take human body
for example, it is made of trillions of cells. They support structure for the body and
carry out specialized functions. Most importantly, they hold the hereditary material
instructing the development and functioning of the organism (Figure 1.2a). This
important information is stored in DNA (deoxyribonucleic acid). DNA is a molecule
with double stranded structure as shown in Figure 1.2b. It is composed of four
chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). The order,
or sequence of these bases then determines the hereditary information. Human DNA

contains more than 3 billion bases.

Figure 1.2: (a) In cells, nuclear DNA resides within the chromosomes. (b) DNA
is a double helix formed by base pairs attached to a sugar-phosphate backbone.
Figure accommodated from Wikepedia( www.wikepedia.com) and Genetics Home
Reference( www.ghr.nlm.nih.gov)

The genome refers to the entire set of unique DNA that makes up a particular
organism. On the genome, there are segments of sequences which serve as the basic

physical and functional unit of heredity. They are called genes. In humans, genes
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vary in size from a few hundred DNA bases to more than 2 million bases, and totally
less than 30,000 genes are identified. For all human beings, they share more than
99% similarity at the gene-level. But the small differences (less than 1% of genes)

contribute greatly to the diversity of people.

1.1.2 The mRNA transcripts and proteins

Proteins are very important molecules consisting of one or more chains amino acids.
Basically, every function in a living cell depends on proteins, from antibody and en-
zyme to structural component and transport/storage [Phizicky et al., 2003]. Since
proteins play very critical roles in a living organism, it is a long-term interest for
scientists pursuing the mechanism of protein activities and deciphering their rela-
tionship with the genes. The journey from gene to protein is complex. It consists of
two steps: transcription and translation (Figure 1.3).

Within a gene, the sequences that will code the final protein sequence are specified
in the unit of exons (functional parts), and the rest sequences are called the introns
(non-functional parts). In the process of transcription, introns are removed and the
exons are concatenated in an mRNA transcript, following the transcription order of
the gene. Each mRNA transcript then serves as a template for producing a protein.
On the mRNA transcript, every contiguous three bases, called a codon, code for one
particular amino acid. In the translation, the amino acids are assembled sequentially
from the start codon to the end codon and form a protein.

However, the process of transcription can be further complicated by the mecha-

nism of alternative splicing, through which different subsets of exons in a gene may be
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Figure 1.3: Genes and mRNA transcripts. Through alternative splicing, an important
regulation process, one gene may code for multiple mRNA transcripts. Here a gene
can be considered as a directed acyclic graph with vertices representing exons and
directed edges representing splice junctions (introns). Different sets of exons may be
retained to form different mRNA transcripts, for example, exons 1, 3, 4 and 5 form
isoform o and the other set of exons form isoform (. Alternative transcripts will
typically lead to different amino acid sequences. As a result, the produced proteins
will have different amino acid compositions and structures, hence varied functions.

concatenated to form different transcript isoforms [Sultan et al., 2008, Wang et al.,
2008a, Pan et al., 2008a, Kwan et al., 2008]. Unlike the genome which is mostly
fixed except for small changes such as mutations, the transcripts present and their
individual abundance may vary in response to time and environmental factors hence
may characterize the cell at a specific condition. See Figure 1.3. The analysis of the
mRNA transcriptome, which consists of mRNA transcripts that are transcribed from
the protein-coding genes then becomes a key to revealing the linkage from genotype
to phenotype [Adams, 2008, Wang et al., 2008a].

By studying the transcriptome, we could find out which transcript isoforms are

turned on and off in various cells or tissues (qualitative analysis). Also, the quanti-



ties of the expressed transcript isoforms could be used for analyzing their behaviors
(quantitative analysis). Both studies are fundamental for downstream differential
expression and transcription analysis between normal and diseased cells which help
identify the biomarkers for potential drug target [Wang and Cooper, 2007|. Similarly,
they could provide insight into the changes of the transcriptome at various stages of

development [Wang et al., 2008a, Trapnell et al., 2010a).

1.1.3 Traditional approaches for transcriptome study

The traditional technique for studying the transcriptome is DNA Microarray technol-
ogy [Clark et al., 2002, Russo et al., 2003]. In a Microarray experiment, thousands of
spotted samples known as probes with known identity (pre-knowledge of sequences)
are immobilized on a solid support. The spots can be DNA, ¢cDNA, or oligonu-
cleotides. These are used to determine complementary binding of the sequences thus
allowing parallel analysis for gene expression. Figure 1.4 illustrates the detailed pro-
cedure of the experiment. The sequences of interest is first purified, then PCR is used
for to amplify the sequences. The core principle behind microarrays is hybridization
between two DNA strands, the specific pairing of complementary nucleic acid se-
quences. A high number of complementary base pairs in a nucleotide sequence means
tighter non-covalent bonding between the two strands. A nucleic acid target is fluo-
rescently labeled, hybridized to the sequences, and washed after hybridization. The
abundance of the provided sequence is the strength of the signal which depends on
the amount of targets binding to the sequence [Wiki.

The Microarray has been used as a powerful tool to measure the expression levels



of large number of genes simultaneously, which has empowered the full understanding

of human genome and transcriptome.

Figure 1.4: Microarray experiment steps. Figure accommodated from Wikepe-
dia( www.wikepedia.com)

Besides Microarray, there exist other techniques, like CAGE (Cap analysis gene
expression) [Shiraki et al., 2003] and SAGE (Serial analysis of gene expression) [Vel-
culescu et al., 1995] have also been developed to determine the transcription start
position and transcript expression, provided the transcript sequence. In the experi-
ments, the small fragments from the very beginnings (5’ ends of capped transcripts) or
the end (3’ ends of capped transcripts) of mRNAs are extracted, reverse-transcribed
to DNA, PCR amplified and sequenced. The expression level of the transcripts can
be estimated by the observed counts of the sequenced fragments.

All these technologies suffer from some limitations. For example, they all re-
quire the pre-knowledge of gene/transcript sequences, which prohibits the detection
of novel ones. Moreover, the dynamic range of mRNA expression levels in a cell is
huge: some have only few copies while the most abundant ones may have over 10,000
copies. However, Microarray usually suffers from loss of signal at very abundant
mRNAs, making it have less power on accurately quantifying these mRNAs [Wang

et al., 2009b]. Microarray is also limited to larger background noises due to hybridiza-
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tion, such as cross-hybridization or non-ideal hybridization kinetics [Tu et al., 2002,

Klebanov and Yakovlev, 2007].

1.1.4 RNA Sequencing (RNA-seq) of mRNA transcriptome

High-throughput sequencing technologies such as RNA-seq [Wang et al., 2009b] opens
a new era for investigation on the mRNA transcriptome. Generally, in an RNA-seq
experiment, the probed RNA molecules in the target transcriptome can be first syn-
thesized into double stranded cDNAs, followed by a monitored process of fragmenta-
tion that cuts the full-length ¢cDNAs into shorter pieces. A sample of the generated
fragments usually with constrained length range (required by many sequencer) would
be selected to construct a ¢cDNA library for further sequencing. The output of the
RNA-seq experiment is the single-end reads or paired-end reads, typically of length
100 200 bp, which are sampled from one end (single-end sequencing) or both ends
(paired-end sequencing) of the size-selected fragments. See Figure 1.5. If paired-
end sequencing is utilized, the original transcript fragments in the sample may be
inferred according to the distribution of the mate-pair distances estimated from the
data. Therefore, the produced RNA-seq reads are snapshots of subsequences of orig-
inal mRNA molecules in the transcriptome.

The RNA-seq technique has several advantages over microarrays. First, by di-
rectly sequencing the cDNA fragments, RNA-seq allows the investigation on known
transcripts and the exploration on novel ones. Second, It is capable of quantify-
ing a larger dynamics range of expression levels, with absolute rather than relative

values [Wang et al., 2009b]. Last, the hybridization issues seen with microarrays is
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Figure 1.5: RNA-seq. Short RNA-seq reads are sequenced from mRNA transcripts
in the transcriptome. Figure accommodated from www.wikepedia.com

eliminated in RNA-seq experiments. All these features make it suitable for transcript
level reconstruction and quantification.

Although the application of next-generation sequencing or high-throughput se-
quencing technologies on transcriptome analysis has not been not long, just since
year 2008 [Marguerat et al., 2008, Wang et al., 2009b], there have been abundant re-
search work that utilizes the deep sequencing coverage on a transcriptome of interest
for insights into the linkage from genotype to phenotype of various species. This new
type of biological data has raised many computational and methodological challenges
that excite the society of computational biology and bioinformatics, recognized by its
extraordinary volume and computational difficulty. The sequence file of every single
sample may take up to tens of Gigabytes in its binary format, consisting of tens or
hundreds of millions of read records, requesting unprecedented challenges in issues

such as data hosting, management, sharing, analyzing, and privacy control. On the
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other hand, the sequencing capabilities of current next-generation sequencing proto-
cols still limit the direct profile of transcriptome using raw RNA-seq reads. Ideally,
the sequencing procedure should reveal the diversity and abundance of a transcrip-
tome in a complete, accurate and unbiased manner. However, the interpretation of
sequencing output in practice is often complicated by read length, sampling cover-
age, sampling errors and various types of sampling biases. Some sequencing protocols,
such as platforms provided by 454 and Pacific Biosciences, may sequence reads up to
thousands of nucleotides that may directly showcase the sequences of most transcripts
and quantitate their abundance at the same time. Nonetheless the throughput and
the quality are often highly limited, leading to insufficient coverage on the transcrip-
tome. The RNA-seq experiments are mainstreamed by the short read sequencing
protocols provided by Illumina. This protocol generate reads typically of a length
less than 100 nucleotides, a length insufficient to identify the original transcript for
most of the reads. Great ambiguity exists in the survey of transcript isoforms present
in a sample and in the evaluation of their expression levels. Therefore, more and
more approaches have been developed for the computational solutions that bridge
short read sequences and biological findings. In the next section, we will review some

of the primary computational challenges emerged in short-read sequencing.

1.2 Computational analysis using RINA-seq

Compared with early achievements which investigate the genome mainly at gene
level, i.e. computational analysis is conducted on gene sequences, RNA-seq dives into

a higher resolution. It allows us to look at alternative splicing events, gene fusion
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and mutation/SNPs at mRNA transcript level, all of which are very important events
and may potentially relate to diseases.

With all these benefits brought by RNA-seq, urgent needs escalate for bridging
the gaps between the sequenced RNA-seq reads and the characterization of the tran-
scriptome. However, the sequenced RNA-seq reads carry only partial information of
original mRNA transcripts. Therefore, there exist many challenges for this task, such
as: read mapping which tries to find the exact location on the genome where each
RNA-seq reads may originate from, transcriptome assembly which aims at identifying
the mRNA transcripts presented in the cell, transcript isoform expression estimation
which quantifies the expression level of mRNA transcrips and etc. In this disserta-
tion, we primarily focus on the transcriptome assembly and transcript quantification
problems (quality and quantity assessment), which will reveal all characteristics of the
mRNA transcriptome and is critical for downstream studies, like differential analysis
between diseased and normal cells.

In this section, we will formally define the problem of transcriptome assembly and
transcript quantification and show the challenges in solving these problems. First,

we will briefly introduce RNA-seq read mapping.

RNA-seq reads alignment

The observed RNA-seq reads are sequences of ’A’, 'C’, ’G’ or "T”, representing DNA
bases. RNA-seq read alignment aims at locating the exact genomic coordinates on the
genome where these reads are sampled from. This is achieved by aligning the reads

to a reference genome. A reference genome can be considered as a assembled genome
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Figure 1.6: Typical computational analysis with RNA-seq data. (a) RNA-seq reads
are sequenced from mRNA transcriptome. (b) RNA-seq short read alignment to the
reference genome. (c¢) Transcriptome assembly. (d) Transcript quantification.

database which gathered from the sequencing of DNA from a number of donors. When

a read is mapped as an entirety, it is referred as “exonic alignments”; otherwise, it

is referred as “spliced alignments” which spans multiple exons and consequentially

defines the splice sites of the splice junctions (Figure 1.6(b)). Here, the splice junctions

are actually the intron region on the genome before alternative splicing happens.
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Transcriptome assembly

Transcriptome assembly is a central problem of RN A-seq analysis, which aims at reca-
pitulating the variety of transcript isoforms in an mRNA transcriptome from from the
sequenced short reads. This procedure allows us to recover the genes and isoforms in
existing database, as well as to detect novel ones. A typical RNA-seq protocol works
by randomly fragmenting the mRNA transcripts followed by sequencing a sample of
the total fragments. Therefore, the sequences of RNA-seq reads carry partial informa-
tion of the original transcripts. After mapping the reads to the reference genome, the
genomic coordinates where the reads are aligned will help reveal the exonic segments
on the genome. The contiguous bases covered by read alignments constitute exons
of a particular gene. While the splice junctions of the spliced alignments infer the
intronic regions of that gene and indicate how the exons will be connected to form
an isoform.

Figure 1.6(c) illustrates one simple example of transcript reconstruction. Three
exons have been suggested by the RNA-seq read alignments along with three introns
implied by the splice junctions. According to the observed evidence, two transcript
isoforms can be reconstructed. One connects all three exons and the other skips the

middle exon.

Transcript quantification

Recent studies have estimated that as many as 95% of all multi-exon genes are al-

ternatively spliced, resulting in more than one transcript per gene [Pan et al., 2008b,
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Wang et al., 2008b]. Transcript quantification determines the steady state levels of
alternative transcripts within a sample, enabling the detection of differences in the
expression of alternative transcripts under different conditions. Its application in de-
tecting biomarkers between diseased and normal tissues can greatly impact biomedical
research. Using RNA-seq data, the quantity of one transcript isoform expressed is usu-
ally measured by a statistic related to the number of reads falling on it. This statistic
is calculated to approximate the number of mRNA molecule copies of such isoform.
However, this task is not trivial. Since isoforms within a gene share sequences, some-
times it is difficult to assign one read to a specific isoform. For example, as showed
in Figure 1.6(d), there are five exonic reads aligned on “Exonl”. Solely based on this
observation, we can hardly determine their origination. Through quantification, we
may identify four reads (green) coming from 77 and 10 reads (blue) coming from 7°2.

Therefore, the relative abundance of these two isoforms are 1 : 2.5.

Challenges in transcriptome assembly and quantification

Despite plenty of methods have been developed for solving the transcript reconstruc-
tion and quantification problems, they are still considered quite challenging. First, it
is commonly observed that “the more the isoforms, the harder to predict” [Li et al.,
2011b]. Intuitively, transcript isoforms from the same gene often overlap significantly.
Limited by current sequencing technology, the length of RNA-seq read is insufficient
(usually shorter than 200bp for a single-end read or about 500bp for a paired-end
read). A short read may be mapped to more than one transcript isoform. Determin-

ing the presence and expression of individual transcripts from short read alignment,
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therefore, can lead to an unidentifiable model, where no unique solution exists. Sec-
ondly, various sampling biases have been observed regularly in RNA-seq datasets as a
result of library preparation protocols. These biases typically include position-specific
bias [Bohnert and R., 2010, Li et al., 2010a, Roberts et al., 2011, Wu et al., 2011]
such as 3’ bias and transcription start and end biases, and sequence-specific bias [Li
et al., 2010b, Roberts et al., 2011, Turro et al., 2011}, where the read sampling in the
transcriptome favors certain subsequences. How to compensate for these biases is an
open problem. Finally, though closely related, transcriptome assembly and quantifi-
cation are usually treated independently by existing methods. Typically, transcript
reconstruction methods are first employed to produce a candidate set of isoforms, and
quantification approaches may be further applied on the assembled set of isoforms
or the reference database to estimate their abundance. However, this strategy may
increase the risk of quantifying a false or incomplete set of transcripts. Moreover, it is
biologically unlikely to expect all candidate transcripts for a given gene to be signifi-
cantly expressed concurrently in a cell. Existing analytical approaches tend to assign
positive expression values to every candidate transcript provided, thereby creating
a situation in which large errors in abundance estimation can be computationally
introduced for transcript isoforms that may, in reality, barely be expressed.

To address these challenges, in this dissertation, we focus on developing a novel
and robust framework for comprehensive analysis of mRNA transcriptome both qual-
itatively and quantitatively, along with an accurate and consistent transcript abun-

dance measure.

16



1.3 Thesis Statement

The aim of this dissertation is to develop computational methods for precise tran-
scriptome analysis using RNA-seq data. Three closely related problems are studied:
how to accurately estimate the abundance of the known transcript isoforms, how to
simultaneously discover the presence and quantities of novel transcripts, and how to
scale the transcriptome analysis to large-scale RNA-seq data. With prior knowledge
of annotated gene/isoforms, a generalized linear model has been developed to solve
the first problem which resolves the “unidentifiable” challenge in transcript quan-
tification and effectively handles the sampling biases. For the purpose of detecting
transcripts uncatalogued in existing database, a novel framework is designed that
takes advantage of the biological interpretability of read relations and simultaneously
infers the identities and quantities of the full-length gene isoforms residing in origi-
nal cells. Empowered by the advent of large, complex clinical RNA-seq datasets, a
systematic pipeline is built which aims to leverage information from massive sam-
ples and highlight meaningful transcription signals. All developed methods explore
efficient solutions of recovering the characteristics of mRNA transcriptome both qual-
itatively by assessing the diversity of the mRNAs and quantitatively by estimating
the abundance of the mRNAs from the RNA-seq read alignments. Meanwhile, they
fully enable the translation from raw sequencing data to clinical insights and also
provide valuable information differentiating functions of normal cells and diseased

ones.
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1.4 Contributions of this dissertation

In this dissertation, we have developed a series of computational methods targeting
a comprehensive analysis of the mRNA transcriptome. All methods are data-driven.
Salient information are mined and extracted from large-scale biological data, i.e.,
raw RNA-seq reads. Experiments on both simulated and real RNA-seq datasets
have demonstrated significantly improved sensitivity and specificity of our developed

methods as compared to other state-of-the-art approaches.

Accurate transcript abundance estimation given reference annotation

Transcript quantification is performed to determine the steady state levels of all the
alternative transcripts within a sample if a set of reference transcripts is provided.
The reference transcripts could either from annotation database, or from various tran-
script assembly softwares. A robust model has been developed, named MultiSplice,
which directly resolves three main challenges in the abundance estimation task: (1)
ambiguity in solution; (2) bias in read sampling and (3) low-expression transcripts.
First, MultiSplice adopts a general linear model which not only includes informa-
tion from single exons and splice junctions, but also leverages reads spanning multiple
splice junctions to ameliorate unidentifiability. Second, all possible sampling biases
are taken into account, like positional bias and sequence bias. The bias parameters
are embedded into the general model. Lastly, to achieve reasonable sparsity. LASSO
is utilized to solve the linear system in order to infer an accurate set of dominantly

expressed transcripts.
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Simultaneous transcript reconstruction and quantification

When the reference transcript database is incomplete or inaccurate, the transcriptome
assembly is needed for producing a complete and correct set of transcript isoforms.
An efficient and accurate algorithm has been proposed for simultaneous transcript
reconstruction and quantification directly from RNA-seq paired-end read alignments.

We have developed a novel method named Astroid for simultaneous transcript
reconstruction and quantification directly from RNA-seq paired-end read alignments.
Recall that in a typical RNA-seq experiment, mRNA molecules in the sample are
cleaved into fragments. Fragments with desired sizes are randomly selected and se-
quenced at one end (single-end sequencing) or both ends (paired-end sequencing).
Using paired-end sequencing, the original transcript fragments in the sample may be
inferred according to the distribution of the mate-pair distances estimated from the
data. However, the distance between sampled fragments, which disconnects the frag-
ments that belong to the same mRNA copy of a transcript, has barely been studied.
Existing methods typically overlook the relation among the transcript fragments and
assume independent sampling for the fragments. We instead propose to statistically
model the distance between sampled transcript fragments, and to use this informa-
tion to relate fragments and thread the observed reads into individual transcript
copies. The read alignments are represented using vertices of a flow network, con-
nected by edges that represent mate-pair distances and between-fragment distances.
The likelihood of each edge is evaluated according to the distance distributions pre

learned or specified distribution. A maximum likelihood set of transcript copies is
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then reconstructed by solving a minimum-cost flow problem on the flow network.
The number of copies for a transcript simultaneously provides a direct estimate for
the transcript quantity. Lastly, we introduce a set of rules that clusters homogeneous
vertices and edges and compresses the flow network. A compression parameter is
defined to leverage the time and space complexity required by the flow network and

the model accuracy.

Transcriptome analysis on large-scale data

The rapid development of sequencing technology allows us to sequence a sample or
tissue at a much lower cost. For example, nowadays an RNA-seq experiment typi-
cally costs less than $1,000, comparable to the cost of microarray. Recently, several
projects have been launched which take advantage of this advancement and sequence
tens of thousands of samples aiming at a comprehensive understanding of cell func-
tioning as well as cell differentiation, such as TCGA (The Cancer Genome Atlas)
and ICGC (International Cancer Genome Consortium). The massive amount of data
not only brings more power for expanding our knowledge of human genome, but
also introduces great challenges. First, high volume of data means high demand of
computing and storage resources. Second, large-scale data from heterogeneous sam-
ples/tissues incurs ambiguity of a overall analysis: the uncertainty will be extremely
amplified when examining all assemblies simultaneously. Therefore, the joint analysis
of hundreds of transcriptome is not simply a trivial extension from existing methods.

Driven by the desire of finding biological signatures from TCGA breast cancer

projects (819 samples included), we systematically investigate the current standard
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pipelines for processing large-scale RNA-seq datasets. They can be divided into two
categories: reference transcriptome guided and reference transcriptome independent.
The first one solely quantifies the annotated transcripts and the latter one starts by
reconstructing a transcript set then estimates their abundances. Both strategies treat
each individual sample independently which involves heuristic and potential filtering
on every sample. Furthermore, their performances are limited by the difficulties of
assembling and quantifying full-length transcripts on massive datasets. Alternatively,
we have developed an ab initio workflow which establishes a joint analysis model
that summarizes all samples with a single splice graph without the knowledge of
gene/isoform annotations. In stead of per-sample analysis, information is pooled
together for detection of aberrant alternative splicing markers. To our best knowledge,
this is the first method directly targeting the above challenges and dedicated to large-

scale transcriptome analysis.

Summary

If we consider the sequencing process as fragmenting the mRNA transcriptome into
millions of smaller pieces, each of which corresponds to a short RNA-seq reads. The
effort of this dissertation is like seeking solutions of piecing the puzzle together to
recapitulate the original picture. The problem itself is quite challenging due to the
large quantity of puzzle pieces. It can be further complicated by real applications,
such as: sampling biases introduced during sequencing procedure, analogous to the
circumstance that pieces from another puzzle set are mixed in; the need of comparing

a large set of similar but slightly different puzzles, analogous to the comparison of hun-
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dreds of transcriptome; and etc. The methods developed in this dissertation directly
address the computational challenges in “solving the puzzle” and have demonstrated

superior effectiveness and efficiency in transcriptome analysis.

Copyright (© Yan Huang, 2015.
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Chapter 2 Related work in RINA-seqg-based transcriptome analyses

In this chapter, we will summarize the general analysis of mRNA transcriptome using

RNA-seq data including the computational challenges and the current solutions.
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Figure 2.1: The typical workflows in the transcriptome studies using RNA-seq tech-
nologies.

Figure 2.1 illustrates a typical workflow in the transcriptome studies. Although

the high-throughput RNA-seq reads provides an unprecedented opportunity to pre-
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cisely profile the mRNA transcriptome of a specific cell population, the observed
RNA-seq reads are still local pieces of the original transcripts, bringing great ambi-
guity to the effort of portraying the transcriptome. How to reconstruct the original
transcriptome with the RNA-seq reads remains a challenging problem. Generally, the
current methodologies of addressing this problem can be divided into two categories:
reference-quided and reference-independent referring to whether or not the analysis is
guided by the reference genome or transcriptome. The reference-independent meth-
ods are greatly useful when a reference genome is not available or when individual
modifications to the reference genome is significant. The representative approaches
are Trinity [Grabherr et al., 2011 and Trans-ABySS [Birol, 2009], which are known as
the de novo assembly. They assemble mRNA transcripts solely based on nucleotides
sequenced in RNA-seq reads without the guidance of any reference, which may fol-
lowed by downstream analysis (Figure 2.1). When a reference genome/transcriptome
is accessible, as for human for example, the other category, usually first align the
reads to the reference genome [Wang et al., 2010a, Trapnell et al., 2009b] or tran-
scriptome [Langmead et al., 2009a]. Transcripts can be reconstructed and quantified
according to the genomic coordinates or the mapped reads. Compared with de novo
methods, it is computational efficient regarding the time cost and memory usage, and
most importantly, it has been demonstrated to have higher sensitivity and specificity
in the subsequent assembly step [Garber et al., 2011b]. Here, we limit the discussion
of this dissertation in the scope of reference-guided methods. In the following sections
we will briefly introduce the existing work for reference-guided transcriptome studies

and their problems.
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2.1 RNA-seq read alignments

There exist two threads of work of read mapping approaches: the unspliced aligners
and the spliced aligners [Garber et al., 2011a].

The unspliced aligners usually rely on the access to the exact or similar reference
transcriptome of a specified species. Reads are mapped to a reference without al-
lowing any large gaps. The representative work include but not limited to MAQ [Li
et al., 2008], SHRIMP [Rumble et al., 2009], ELAND [Cox, 2007], Novoalign [Hercus],
Stampy [Lunter and Goodson, 2011], Bowtie [Langmead et al., 2009b], BWA [Li and
Durbin, 2009], Bowtie 2 [Langmead and Salzberg, 2012] and SNAP [Zaharia et al.,
2011].

However, the nature of unspliced aligners make them of limited use since they can
only identify known exons and splice junctions. Alternatively, the spliced aligners
map the reads to the genome where reads can span multiple exonic regions separated
by introns on the genome. This kind of methods allow the detection of novel exons,
junctions, and therefore novel transcript isoforms, making it more suitable for a com-
prehensive analysis of the mRNA transcriptome. Several methods are developed in
this category, including: TopHat [Trapnell et al., 2009b], SpliceMap [Au et al., 2010],
MapSplice [Wang et al., 2010b], GSNAP [Wu and Nacu, 2010], STAR [Dobin et al.,
2013] and etc.

By first mapping the reads to the reference genome/transcriptome, we obtain
the genomic coordinates of all possible exon and junction boundaries while build a

foundation for recapitulating the mRNA transcriptome.
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2.2 Ab initio transcript reconstruction

A handful of computational methods for transcript reconstruction have been devel-
oped to bridge the gap from the sequenced short read alignments to the identity of
the original transcripts [Trapnell et al., 2010b, Guttman et al., 2010, Li et al., 2011b,
Huang et al., 2012].

A common simplification in existing transcript reconstruction approaches is to
reconstruct transcripts from a small set of features extracted from the reads. Most
approaches, for example, Scripture [Guttman et al., 2010] and IsoLasso [Li et al.,
2011b], build a splice graph [Heber et al., 2002, Hu et al., 2012] in which nodes stand
for the exons and the edges stand for the splice junctions. Each path on the splice
graph represents a possible transcript. Cufflinks [Trapnell et al., 2010b] summarizes
the read alignments with a partial order list, based on the mutual compatibility
whether two reads may be explained by one transcript. A set of expressed transcripts
is then solved on the splice graph or the partial order list, typically combined with
transcript-level heuristics or shrinkage such as maximum parsimony [Trapnell et al.,
2010b], maximum sensitivity [Guttman et al., 2010] and Lasso [Li et al., 2011b]
(Figure 2.2).

However, the simplification relying on extracted features that current methods
made ignore the relation among the reads — as long as the features extracted from
the reads, or the probabilities of the read being sampled from each transcript, or
the collective statistics do no change, how the reads are distributed cannot provide

additional information.
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Figure 2.2: (a) Splice graph built from RNA-seq read alignments. (b) and (c¢) show
two different strategies of transcript assembly. (b) refers to mazimal parsimony which
gives rise to only two isoform transcripts that can explain all reads. (c) refers to
maximum sensitivity that generates all possible transcript isoforms from the splice
graph.

Moreover, since they typically work from the exons and the splice junctions re-
vealed from the RNA-seq read alignment. One central difficulty of transcript recon-
struction becomes solving the combinatorial ambiguity in linking splice isoforms of dif-
ferent alternative splicing events into full transcripts. Heuristics are what the existing
assembly methods usually rely on. For example, on the basis of maximum parsimony,
Cufflinks Trapnell et al. [2010b] will choose the minimum set of transcripts that can
explain the observed fragments. Following maximum sensitivity, Scripture Guttman
et al. [2010] will keep all putative isoforms, subject to later biological filtering. Other
methods, such as IsoLasso Li et al. [2011b], apply L1-regularization (known as Lasso)
to reinforce transcript set shrinkage by favoring candidates with higher estimated

abundance. Each of these transcript-level heuristics reflects a general sense about
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what true transcript isoforms could look like. For example, the philosophy behind
maximum parsimony is that the most concise set of transcripts necessary to explain
the data tends to have sufficient sensitivity and high specificity, and that behind reg-
ularization is that transcripts with very low expression are likely the artifacts due to
sampling ambiguity. Nonetheless, the intention of these heuristics focus on how to
select one optimal combination of exons and splice junctions which is the secondary
structure inferred from read or fragment alignments, while ignoring the linkage re-
lationship among the transcript fragments which would reveals the original mRNA

molecules more directly.

2.3 Transcript abundance estimation

The problem of transcript quantification is often treated separately from transcript
assembly. A common simplification is to assume independent and random sampling
of reads. This assumption allows processing each read individually with a same model
to calculate the probability that a read is sampled from a transcript [Trapnell et al.,
2010b, Li and Dewey, 2011, Nicolae et al., 2011]. Alternatively, this assumption
allows efficient inference with only a few collective statistics, such as the number of
reads mapped to each exon [Jiang and Wong, 2009, Huang et al., 2012, Bohnert and
R., 2010].

However, these simplifications ignore the relation among the reads — as long as
the features extracted from the reads, or the probabilities of the read being sampled
from each transcript, or the collective statistics do no change, how the reads are dis-

tributed cannot provide additional information. For example, the two sets of reads in
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Figure 2.3a suggest the same splice graph hence contain the same information regard-
ing possible transcripts. According to maximum parsimony, for instance, the two sets
of reads may be explained by the same two transcripts. However, the distribution of
the reads may suggest two different sets of transcripts. Figure 2.3b, shows two read
distributions that contain the same number of reads but have drastically different
coverage profiles. Collectively, the two loci will get the same FPKM Trapnell et al.
[2010b], Li et al. [2011b], i.e., the Fragments Per Kilobase of transcript per Million
mapped reads. However, the relative location of the reads in set 2’ may suggest an
additional transcription termination that distinguishes two transcripts of different
expression levels. This also demonstrates the advantage of performing transcript re-
construction and quantification simultaneously, as alleviating the risk of estimating

transcript abundance on the basis of an incorrect set of transcripts.

_ Read set 1 Read set 1’
_r:E::EE:~_ Lo N N
=" N=__="\
L | L | | L | |
_T— - ==
Read set 2 N Read set 2’

Figure 2.3: The read sets 1 and 1’. Two read sets have the same number of reads.
The read sets 2 and 2’, Two read sets have the same number of reads. Different read
distributions may suggest different set of transcripts.

Another problem is the current measurement for transcript quantity based on read
count may be skewed in practice. The typical unit FPKM requires that the number of

fragments sampled from each transcript is strictly proportional to the length and the

number of molecule copies of the transcript. However, this correlation may become
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poor especially for short transcripts (e.g. ~ 14% of transcripts in human genome are
less than 1000nt, according to UCSC GAF 2.0 annotation), because these transcripts
may be fragmented into smaller pieces that will not be sequenced due to size selec-
tion in RNA-seq James [2011]. The presumed correlation may further weakened by
sampling biases (e.g. GC-content biases and positional biases Bohnert and R. [2010],
Roberts et al. [2011]) and read mapping errors. Furthermore, FPKM normalizes rel-
ative expression according to the total number of mapped reads in one sample, which
may not reflect the true library size and may bias comparison of transcript expres-
sion across samples Wagner et al. [2012], Dillies et al.. Another measure TPM [Li
and Dewey, 2011, Wagner et al., 2012|, i.e., Transcripts Per Million, resolves this
inconsistency problem. It approximates the transcript number by normalizing the
cumulative per base read coverage by the isoform length. The library size is esti-
mated by summing up the estimated abundance of all isoforms accounting for the
total number of transcripts in the transcriptome. However, it is unclear how well
the per base coverage in TPM can approximate the true abundance of one isoform
because it is impossible that all observed fragments can be tightly arranged one after

the other making every single base of the isoform covered by the read.

Copyright (© Yan Huang, 2015.
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Chapter 3 A Robust Method for Transcript Quantification with

RNA-seq Data

In this chapter, we introduce a robust method for transcript-level quantification.
Transcript isoforms can differ not only in exons alternatively included or excluded but
also in where two or more exons are connected together. In RNA-seq data, this infor-
mation is typically implied by the spliced reads, i.e., the reads that cross one or more
splice junctions. We have developed a general linear model for transcript quantifica-
tion that leverages discriminative features in spliced reads to ameliorate the issue of
identifiability and simultaneously corrects the sampling bias. Our contribution of this
method is three-fold: (1) We explicitly identify MultiSplice, a novel structural feature
consisting of a contiguous set of exons that are expected to be spanned by the RNA-
seq reads or transcript fragments of a given length. The MultiSplice, which includes
single splice junctions as a special case, is used in two ways: its presence in the sample
will infer the host transcript while its absence may reject it. MultiSplices are more
powerful than single exons in disambiguating transcript isoforms, making more tran-
script quantification problems identifiable with long or paired-end reads; (2) We set
up a linear system which minimizes the summed relative squared errors regarding the
ratio of the expected expression against the observed expression across all structure
features along a gene while taking into account various bias effects; (3) We develop
an iterative minimization algorithm in combination with LASSO [Tibshirani, 1996]

to resolve the aforementioned linear system in order to achieve the most accurate set
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of dominantly expressed transcripts while simultaneously correcting biases.

We have demonstrated the efficacy of our methods on both simulated RNA-seq
datasets and real RNA-seq data: (1) We conducted the first study to investigate the
question: what is the maximum read length needed in order to disambiguate all possi-
ble transcript isoforms in transcriptomes from different species; (2) We compared the
proposed method with several state-of-the-art methods including Cufflinks, RSEM,
the Poisson model, and the ExonOnly model. Our results using simulated data from
the human mRNA transcriptome demonstrated superior performance of the proposed
method in most cases. When applied to 8 RNA-seq datasets from two breast can-
cer cell lines (MCF-7 and SUM-102), the quantification obtained from MultiSplice
demonstrated good consistency within technical replicates from each transcriptome-
wide assessment and substantial differences between the two biological groups (cell

lines) in a small percentage of genes.

3.1 Method

In this section, we propose a method designated MultiSplice, for mRNA isoform
quantification. We first define the observed features used in the MultiSplice model
and the statistics collected. Then, we derive a general linear model to relate transcript
level estimate to the observed expression on every feature.

Preliminaries. For a gene g, we use &, to denote the set of exonic segments [Jiang
and Wong, 2009, Li et al., 2011b] in g, which are disjoint genomic intervals on the
genome that can be included in a transcript in its entirety. We use 7, to denote the

set of mRNA isoforms transcribed from ¢g. These mRNAs can be a set of annotated
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Figure 3.1: Overview of the MultiSplice model. a. Sequenced RNA-seq short-reads
are first mapped to the reference genome using an RNA-seq read aligner such as
MapSplice [Wang et al., 2010a]. In the presence of paired-end reads, MapPER [Hu
et al., 2010] can be applied to find PER fragment alignments for the entire transcript
fragment based on the distribution of insert size. b. Observed coverage on each exonic
segment. c. Four transcripts originate from the alternative start and exon skipping
events. Provided with these transcripts, abundance estimates would be unidentifiable
for methods that only use coverage on exonic segments. Both transcript profiles P;
and P,, for instance, can explain the observed read coverage on each exon, but deviate
from the true transcript expression profile. d. MultiSplices that connect multiple
exonic segments in a transcript. e. A linear model can be set up where the expected
coverage on every exonic or MultiSplice feature approximates its observed coverage.
The transcript expression is solved as the one that minimizes the sum of squared
relative error.

transcripts retrieved from a database such as Ensembl [Ens| or Refseq [Ref]. A

t

s Where

transcript ¢ € T, is defined by a sequence of exon segments, ¢ = elel---e
e € &, and n; denotes the number of exonic segments in the transcript ¢. The length of
each exonic segment e is defined as the number of nucleotides in the exonic segment,
denoted as I(e). Hence, the length for every transcript is () = > ", I(el).

=1 7
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3.1.1 MultiSplice

In a typical RNA-seq dataset, a significant percentage of the read alignments are
spliced alignments that connect more than one exon. With paired-end reads, the
transcript fragment where its two ends are sampled can be inferred based on the
distribution of the insert size [Roberts et al., 2011]. Transcript fragments are typ-
ically between 200bp and 300bp, making them more likely to cross multiple exons,
indicating these exons are present together in one transcript. This information can
be crucial in distinguishing alternative transcript isoforms. However, they are often
ignored in current computational approaches.

In this subsection, we consider a sequence of adjacent exons in an mRNA tran-
script covered by transcript fragments. These structural features are the basis of
MultiSplice. For generality, we assume that the RNA-seq reads are sampled from
transcript fragments whose lengths follow a given distribution F}, with probability
density function ff,. For example, the fragment length distribution F%, is often
modeled as a normal distribution with mean and variance learned from the genomic

alignment of the RNA-seq reads. We also assume the maximum fragment length is

v,

Definition Let b = efej,;---¢},, be a substring of a transcript sequence t =

eteb -+ el . ny >1and i+ n, <ng Then bis a MultiSplice in ¢ if and only if

ne?

ny—1

D leivg) Slpr—2. (3.1)

The condition in Equation 3.1 guarantees that a MultiSplice b connects n;, + 1 adja-
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cent exons with at least 1 base landed on the 5" most exon e} and the 3’ most exon

t
i+ng*

e We use B, to denote the set of all MultiSplices in gene g. From the definition,
the set of MultiSplices vary according to the fragment length ls,. The longer the
fragments, the more MultiSplices are expected to function as structural features, and
the higher power in disentangling highly similar alternative isoforms.

In Figure 3.1, for example, assume the maximum fragment length is {4, = 300bp
with the expected fragment length of 250bp and the exonic segments of this gene have
lengths of [(e;) = 2000bp, [(ez) = 200bp, l(e3) = 100bp,l(es) = 2000bp,l(e5) = 200bp.
In reference transcript 77 = ejeses, by = ejezes is a substring of 77, and we have
l(e3s) = 100bp < 300bp = Il which allows a fragment to cover by. Therefore, by
is a MultiSplice feature of the gene. Combining MultiSplices from all the reference

transcripts, by, bs, bs, bg, and b; are MultiSplices consisting of a single splice junction,

by, bs, bs, by, and by are MultiSplices consisting of two splice junctions.

3.1.2 Expected coverage and observed coverage

Given the gene g and a transcript ¢ € 7T, let ¢; be the number of transcript fragments
covering the ith nucleotide of t. We define the coverage on t¢ as the averaged number
of transcripts covering each base in the transcript, C(t) = ﬁ Zi(:t)l ¢;. Then C(t) is
an estimator for the quantity of ¢ in the sample, which provides a direct measure for
the expression level of ¢. In our model, C(t) is the unknown variable. The feature
space that can be observed from the given RNA-seq sample is the union of all exonic

segments and MultiSplices of the gene, &, = &, U B;. We aim at resolving the

transcript expressions that minimize the difference between the observed expression
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and the expected expression of every feature.

The observed coverage on an exonic segment e € &, is defined as C'(e) = @ Zi(ji ci,
where ¢; is the number of reads covering the ith nucleotide in e. The read coverage
C'(e) provides an estimator for the number of transcript copies that flow through the
exonic segment e assuming uniform sampling. For a MultiSplice b € B, we use C(b)
to denote the read coverage on b defined as the number of transcript fragments that
include b.

For every ¢ € ®, and every transcript ¢t € 7, the expected coverage of feature ¢
from t can be expressed as a function of the transcript quantity C(t), i.e., E[C(¢|t)] =
m(p,t)C(t), where m(¢p,t) contains the probability of observing ¢ in ¢ assuming
uniform sampling. Next, we define the expected coverage on exonic segments and
MultiSplice respectively.

For an exonic segment e in ¢, assuming N, fragments were sampled from ¢, the
number of fragments falling in e then follows a binomial distribution with parameters
N, and p(e|t), where p(e|t) = % denotes the probability that a fragment sampled

from t originated from e. Therefore, the expected number of reads on e from t is

E[Nep) = Nip(elt). Let fry, fro,---, fry, be the fragments sampled on ¢, the expected

N,
fragment coverage on t is E[C(t)] = E[Zi:?(tl)(f”)] = Ntb;glt()fr)], where E[l(fr)] is the

expected fragment length. On the other hand, the expected fragment coverage on
. . _ o Nep EL(S)]y
e contributed by ¢ is calculated as E[C(e|t)] = E[E[C(e|t)|Ne]] = E[—75—] =

E[N | EM(fr)] _ Nip(el) E[l(fr
I(e) o l(e)

1 l(e e
I Since plelt) = %, pl((elsf) ﬁ

Therefore, we could get
E[C(e|t)] = %, which means the expected fragment coverage on e contributed

by t equals the expected fragment coverage of ¢, which concludes that the probability
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of observing e in ¢t is 1: m(e,t) = 1.

For a MultiSplice b = efef,, - - - €}, , we are interested in the number of fragments

i
containing it. Should a transcript fragment fr cover b, fr must start no later than

the 3’ end boundary of the 5’ most exonic segment e} and have at least 1 base landed

t

on the 3’ most exonic segment e;,,, . Therefore, there exists a window w(b) before the

3" end of e! with length I(w(b)) = I(fr)— Z;‘Zl l(ei+q) — 1, where b can be covered by

the transcript fragment fr. The probability that fr covers b in transcript ¢ is hence
W(fr) =gty
p(b|t) = ql(lt)

Heira) 71 Equivalent to the expected number of fragments from ¢

that contain b, the expected fragment coverage on b from ¢ is E[C(b[t)] = E[Ny] =

nb—ll

E[N;p(b|t)] = NtE[l(fT)]_Zf(j)l )=l Gince E[C(b]t)] = m(b,t)C(t), the probability

that the MultiSplice b is observed within transcript ¢ is m(b,t) = EICO] - Recall

)] — np—1 ) _
that C(t) = %, therefore, m(b,t) = alltip) g;&;)]l(e”(") " In Figure 3.1, for

Bll(fr)]—l(es)=1 _ 250-100—1 __ () .

example, m(by, T7) = BeED) = 2o

In summary, the probability that a feature ¢ contained in a uniformly sampled

transcript fragment f, is:

1 if o Ctand o€ &g
_ nb—l Citq)— .
m(o,) = { Zen (0= i g ¢ tand ¢ € Bo (3.2)
0 if ¢ & 1.

with ¢ C t standing for that ¢ is contained in ¢.

3.1.3 A generalized linear model for transcript quantification

We construct a matrix M/ € RI®s*[7al to represent the structure of the transcripts,

whose entry on the row of ¢ and the column of ¢ corresponds to the probability of
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observing feature ¢ from transcript ¢, M/(¢,t) = m(¢,t). The linear model is set
up for every feature ¢ € ®, by equating the observed coverage on ¢ to the expected

coverage from all transcripts:

C(op) = Z M/ (¢, t)C(t) + €4, for any ¢ € D,,. (3.3)

teT,
Here C(t) > 0 for every t € Tg, €, is the error term for feature ¢ in transcript ¢.
Lemma 3.1.1 The MultiSplice model for transcript quantification is identifiable if

the rank of M’ is no less than the number of transcripts |T,).

Lemma 3.1.1 directly follows the the Rouché-Capelli theorem [Horn and Johnson,

1990).

3.2 Bias correction

Under uniform sampling, the sampling probability is the same at every nucleotide of
a transcript. The observed coverage on ¢ is unbiased for the expected coverage on
t. In this case, the bias coefficient o(¢,t) is set to 1 for all transcripts and features.
However, sampling bias is often introduced in RNA-seq sample preparation protocols
and has been demonstrated to have significant effects in RNA-seq analysis [Kozarewa
et al., 2009, Wang et al., 2009a]. Therefore, we discuss in the following subsections
how MultiSplice corrects various sampling bias via learning of the bias coefficients and
simultaneously solves the linear model for transcript coverage C(t) of every transcript
t.

Figure 3.5(a-e) shows how various types of sampling bias alter the sampling prob-

ability and hence the coverage. Two types of sampling bias are commonly observed in
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RNA-seq data, namely, the position-specific bias and the sequence-specific bias [Bohn-
ert and R., 2010, Roberts et al., 2011, Olejniczak et al., 2010, Srivastava and Chen,
2010]. In our model, sampling bias may affect the sampling probability of both the
exonic segments and MultiSplices. Therefore, we calculate the bias coefficient o (¢, t)
for every feature ¢ € ®, and every transcript ¢ so that E[C(¢|t)] = o (¢, t)m(¢, t)C(t).

Next, we introduce each independent bias individually.

a uniform sampling f sale 048
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Figure 3.2: Sampling bias present in the RNA-seq data. a. RNA-seq read coverage
under uniform sampling. b. RNA-seq read coverage under uniform sampling with
transcript start/end bias. c. RNA-seq read coverage under uniform sampling with
sequence-specific bias. d. RNA-seq read coverage under uniform sampling with 5’/3’
position-specific bias. e. RNA-seq read coverage under uniform sampling with all
aforementioned types of bias. f. Sampling bias on gene CENPF in the breast cancer
dataset used in Section 6. Please note that the second peak in the coverage plot is not
an exon in CENPF. The observed coverage on each exon decreases almost linearly
from the 3’ end to the 5" end. The coverage also drops at the bases near the end of
the gene. The non-uniformity in the two middle large exons is likely to be due to the
sequence-specific sampling bias.

3.2.1 Sequence-specific bias.

The sequence-specific bias refers to the perturbation of sampling probability related
to certain sequences at the beginning or end of transcript fragments [Roberts et al.,

2011, Li et al., 2010b]. The characteristic of this type of bias in the given RNA-seq
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sample can be learned in advance by examining the relationship between GC content
and the observed coverage on single-isoform genes. To derive the sequence-specific
bias at an arbitrary exonic position, we look into 8bp upstream to the 5’ start to
11bp downstream according to [Roberts et al., 2011]. A Markov chain is constructed
to model the effect on the sampling probability at the position from the sequence
of surrounding nucleotides. Then we use an approach based on the probabilistic
suffix tree [Bejerano, 2004] to learn the sequence-specific bias coefficient «(t, i) for ith

nucleotide in transcript ¢.

3.2.2 Transcript start/end bias.

Sampling near transcript start site or transcript end site is often insufficient. The
read coverage in these regions is typically lower than expected because the positions
where a sampled read can cover are restricted by the transcript boundaries. The bias

coefficient for start/end bias at the ith nucleotide in transcript ¢ is written as:

i/ E[L(f7)] if i < B[I(fr)]
plt1) =9 1 if BI(fr)] < i <1(t) = E[I(fr)]
() = i)/ ElU(fr)) i i > U(t) = BlI(fr))

3.2.3 5’/3’ position-specific bias.

Position-specific bias refers to the alteration on sampling probability according to
position in the transcript. For example, nucleotides to the 3’ end of the transcript
have higher probability to be sampled in Figure 3.5(f). Here we model the position-
specific bias coefficient as a linear function, y(¢,i) = +4 -i+~§. The intercept 7§ gives
the bias coefficient at the 5 transcript start site. The slope 74 measures the extent

of the bias: a positive 74 indicates that 3’ transcript end site has higher sampling
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probability than the start site; a zero 4} indicates no positional bias in the transcript

t.

3.2.4 Combined bias model.

Assuming the above three types of bias have independent effect on read sampling,
we derive the bias coefficient at ith nucleotide in transcript ¢ as o(t,i) = «(t, i) -
B(t,3) - v(t,i). The bias coefficient of an exonic segment e € &, is then the averaged
bias coefficient on all positions in the exonic segment e, and the bias coefficient of
a MultiSplice b € B, is the averaged bias coefficient on all positions in its sampling
window w(b). In summary, the bias coefficient for a MultiSplice feature ¢ € ®, in

transcript ¢ is

2%%@2 if ¢ Ctand €&,

0@ t) = § ZeeZld it g Ctand ¢ € B, (3.4)

0 if ¢ ¢ t.

3.3 Solving the general linear models with bias correction

Conventionally, we are interested in the set of transcript expressions that minimize
the sum of squared errors, the absolute residuals between the expected coverage and
the observed coverage. This solution is relatively sensitive to unexpected sampling
noise which often occurs in real RNA-seq samples and may lead to a highly unstable
extrapolation when the expression of the alternative splicing events discriminating
the transcripts is notably lower than the average level of gene expression. Therefore,

we define the sum of squared relative errors (SSRE), which measures the relative
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residual regarding the ratio of the expected coverage against the observed coverage.

(S oM 6000\
SSRE = g{; ( o0 1) . (3.5)

3.3.1 Bias parameter estimates.

Among all the bias parameters, the sequence-specific bias is learned in advance while
the start and end bias is a function of transcript fragment length. The only bias
parameters unknown related to the 3’ bias are defined by the intercept 7§ and slope
74 for every transcript ¢ € 7,. Therefore, we use an iterative-minimization strategy
and search for a set of bias coefficients 74’s and ~i’s that better fit the RNA-seq
sample than the uniform sampling model. We start with the transcript coverage
C(t)’s that are solved from the uniform sampling model (with 7{ = 1 and +{ = 0
as initial condition). Analogous to the hill climbing algorithm [Russell and Norvig,
2003], we then iteratively probe a locally optimal set of transcript coverage together
with the bias coefficients around the uniform solution through minimizing the SSRE.
In each iteration, a candidate solution is obtained through sequentially setting the
partial derivatives to 0 with respect to every unknown parameter 7§, vi, C(¢), and
for every transcript ¢t € 7,. If the candidate solution results in a smaller SSRE, the
candidate solution is taken and the iteration continues.

We use an iterative-minimization strategy to search for a set of bias coefficients
v’s and 41’s for every transcript ¢ € T, that better fit the RNA-seq sample than
the uniform sampling model. We initiate the iterations with the transcript coverage
C(t)’s solved from the uniform sampling model and the bias coefficients v} = 1 and

vt = 0. In each iteration, for transcript ¢ we set:
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Because o (¢, t) is a linear combination of 74 and 4f, and hence Z¢e<1>g o(p, t) Mo, t

is also the linear combination of ¢ and ~¢. Then we can directly calculate 90021 and
M Yo o
90 (t)
o

3.3.2 Solving the linear model with LASSO regularization.

Lastly, we solve for the level of individual transcript expression with additional regu-
larization, based on the bias coefficients from the previous step. One common problem
in transcript quantification is that the set of expressed transcripts are not known a
priori. Hence it becomes crucially important to identify the set of truly expressed
transcripts provided in a candidate set. Therefore, we further apply the L1 regular-
ization (known as LASSO) for its proven effectiveness in irrelevance-removal and solve

for the set of transcript expression C(7,) that minimizes the following loss function

L =SSRE + LI penalty = »

PeDy

(ztgg o(6, )M (6, 1)C (1)

where XA > 0 denotes the weight of the L1 shrinkage and C(t) > 0 for every t € 7.

3.4 Experimental Results

To evaluate the performance of the MultiSplice model, we compared it with four other
approaches. The ExonOnly model, where only exonic segments are used to represent
transcript composition as proposed in SLIDE [Li et al., 2011a], was implemented
using a linear regression approach with LASSO. The ExonOnly model provided the
baseline comparison for MultiSplice. The Poisson model, which was originally pro-

posed by [Richard et al., 2010], was implemented in C. Two read-centric models:
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Cufflinks [Trapnell et al., 2010c] which uses the reads aligned to the reference genome
and RSEM [Li and Dewey, 2011] which uses the reads aligned to the set of reference
transcript sequences are analyzed. Cufflinks 1.1.0 was downloaded from its website
in September, 2011. RSEM 1.1.13 was downloaded in November, 2011.

These algorithms were run on both simulated datasets and real datasets. Reads
were first mapped by MapSplice 1.15.1 [Wang et al., 2010a] to the reference genome. If
the read was paired-end, MapPER [Hu et al., 2010] was applied to infer the alignment

of the entire transcript fragment.

3.4.1 Transcriptome identifiability with increasing read length

We first study how the increase in read length may alleviate the lack of identifiability
issues in transcript quantification using MultiSplice. We downloaded UCSC gene
models in human (track UCSC genes:GRCh37/hgl9), mouse (track UCSC Genes:
NCBI37/mm9), worm (track WormBase Genes: WS190/ce6) and fly (track FlyBase
Genes: BDGP R5/dm3). We computed the feature matrix used in MultiSplice given
variable read length and determined its rank. The transcript isoforms of a gene is
identifiable if the rank of the feature matrix is no less than the number of transcripts.
Figure 3.3 plots the additional number of genes that become identifiable as the read
length increases from 50bp assuming single-end read RNA-seq data. For all four
species, as the read length increases, MultiSplice is capable of resolving the transcript
quantification issues of more genes. With 500bp reads, about 98% genes in both
human and mouse become identifiable. Surprisingly, for worm and fly, 500bp reads

do not gain significant improvement over 50bp reads. This is mostly due to the
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fact that the exon lengths of fly and worm are comparably much longer [Fox-Walsh
et al., 2005] than human and mouse, making it difficult for reads of moderate size
to take effect. With current short read technology where read length is typically
100bp or less, paired-end reads with the size of transcript fragments around 500bp
may be the most economical and effective for transcription quantification for genes
with identifiability issues. This is under the assumption that it is possible to infer the
transcript fragment from paired-end reads based on the tightly controlled distribution

of insert-size.
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Figure 3.3: Changes in mRNA identifiability as a function of transcript fragment /read
length. Starting from levels achieved with 50bp single-end reads, the left side of the y-
axis shows the additional number of genes that become identifiable using MultiSplice
as the read length increases. The y-axis on the right side shows the total percentage
of genes for which mRNA transcript structures are resolved. The UCSC annotated
transcript sets of four species: human, mouse, fly and worm were used for this analysis.

3.4.2 Simulated human RNA-seq experiment

Data Simulation. Due to the lack of the ground truth within real datasets, simu-

lated data has become an important resource for the evaluation of transcript quan-

tification algorithms [Bohnert and R., 2010, Li et al., 2010a, Nicolae et al., 2011]. We
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developed an in-house simulator to generate RNA-seq datasets of a given sampling
depth using UCSC human hgl9 annotation. The simulation process consists of three
steps: (1) randomly assign relative proportions to all the transcripts within a gene
and set this as the true profile; (2) calculate the number of reads to be sampled from
each transcript; (3) sample transcript fragments of a given length along the tran-
scripts according to the per base coefficient o (t,i) = % + 1 for the 7th base on
transcript ¢, where «(t,7) and f(t,7) are the sequence-specific bias and the transcript
start/end bias as defined in Section 4 and k is the slope of the position-specific bias.
Paired-end reads will be generating by taking the two ends of the transcript frag-
ment. Please note the sequence bias per base has been learned from a real dataset, a
technical replicate of MCF-7 data that will be introduced in the next section.
Accuracy measurement. Due to inconsistencies in the normalization scheme
used by different software, the estimated abundance may not be comparable among
different approaches. Hence, we computed relative proportions of transcript isoforms
for each method. The similarity between the estimated result and the ground truth is
measured by both Pearson correlation and Euclidean distance. Pearson correlation is
the accuracy measurement used in rQuant [Bohnert and R., 2010]. Let X denote the
vector of real isoform proportions of a gene and X denote the estimated proportions.
The formula of the correlation is: (X, X) = cov(X,X)/(ox - 0¢). A value close
to 1 means that our estimation is highly accurate and vice versa. Below, we adopt
a boxplot to illustrate the performance of each method. The box is constructed

by the 1st quartile, the median, and the 3rd quartile. The ends of the upper and

lower whisker are given by the 3rd quartile +1.5 x IQR (inner quartile range) and 1st
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quartile —1.5 x IQR, respectively. Due to the space limit, we present the result of
correlation measurement in the main manuscript.

Varying read lengths. On the premise of the same sequencing depth, we would
like to find out whether or not the read length will affect the estimation results. 40
million RNA-seq fragments were simulated from the human transcriptome. 2x50bp
paired-end reads (insert size around 150bp) were generated from these fragments. A
50bp single-end read set was constructed by simply throwing out the second read of
each pair and the 100bp single reads were obtained by taking the 100bp prefix of the
transcript fragments. This configuration allows a fair evaluation about the effect of
varying read lengths by eliminating difference from random read sampling.

As shown in Figure 3.4, the performance of MultiSplice, RSEM and ExonOnly
method improves as the read length increases. Accuracy of the Poisson model does
not change much with varying read lengths. It is surprising to see that Cufflinks
achieves better correlation with 100bp single-end reads than both 2x50bp paired-end
reads and 50bp single-end reads. This is probably because the transcript fragment
inference from paired-end reads may not be accurate for Cufflinks. Both MultiSplice
and RSEM show higher median correlation and lower variance compared with other
methods under different read lengths, which indicates that MultiSplice and RSEM
are capable of leveraging longer reads for more accurate estimation as RNA-seq tech-
nologies improve.

Varying sampling depth. Next we evaluate how the sequencing depth may af-
fect the accuracy of transcript abundance estimation. Four groups of 2x50bp paired-

end synthetic data were generated on the whole human transcriptome with increasing
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number of reads: 5 million, 10 million, 20 million and 40 million. Since the exonic
regions of different genes may overlap, we quantify isoforms within a genomic lo-
cus [Trapnell et al., 2010c]. 13364 genomic loci with multiple isoforms are selected
for analysis. The loci were divided into three subsets: (1) 12413 loci to which identifi-
ability holds for all methods; (2) 498 loci to which identifiability holds for MultiSplice;
(3) 453 loci to which identifiability does not hold for all methods.

For each subplot in Figure 3.5(a, b, ¢), the estimation accuracy for all methods
generally improves as more reads are sampled. For the loci whose identifiability con-
ditions are satisfied for all methods, the estimated transcript proportion is highly
similar with the ground truth, with an median correlation close to 0.9 for all meth-
ods. In the second category, when the genes are still identifiable with MultiSplice, the
estimation accuracy of MultiSplice and RSEM remain high, with an median correla-
tion above 0.8 while others slip below 0.7. For the category when identifiability is not

satisfied for all methods, the estimation accuracy is degraded even more. However,
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Figure 3.4: a-c. Boxplots of the correlation between estimated transcript proportions
and the ground truth under varying read length. (a),(b) and (c) correspond to the
estimation results on 40M 50bp single-end reads, 40M 100bp single-end reads, and
40M 2x50bp paired-end reads, respectively.
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MultiSplice still consistently gives better estimation results indicating that the in-
clusion of MultiSplice features make transcript quantification more stable than other
methods. Cufflinks demonstrated the worst performance in this category with largest
variance as also shown in Figure 3.7(c), mainly because the unidentifiability condi-

tions make it diffic