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ABSTRACT OF DISSERTATION

Depth Enhancement and Surface Reconstruction with RGB/D Sequence

Surface reconstruction and 3D modeling is a challenging task, which has been explored
for decades by the computer vision, computer graphics, and machine learning communi-
ties. It is fundamental to many applications such as robot navigation, animation and scene
understanding, industrial control and medical diagnosis. In this dissertation, I take ad-
vantage of the consumer depth sensors for surface reconstruction. Considering its limited
performance on capturing detailed surface geometry, a depth enhancement approach is pro-
posed in the first place to recovery small and rich geometric details with captured depth and
color sequence. In addition to enhancing its spatial resolution, I present a hybrid camera
to improve the temporal resolution of consumer depth sensor and propose an optimization
framework to capture high speed motion and generate high speed depth streams. Given
the partial scans from the depth sensor, we also develop a novel fusion approach to build
up complete and watertight human models with a template guided registration method.
Finally, the problem of surface reconstruction for non-Lambertian objects, on which the
current depth sensor fails, is addressed by exploiting multi-view images captured with a
hand-held color camera and we propose a visual hull based approach to recovery the 3D
model.
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Chapter 1

Introduction

Nowadays it becomes quite easy to acquire images using a camera or mobile phone, and
meanwhile there are many computer vision techniques, such as object detection and recog-
nition [72, 26] that operate on 2D images or videos. However, 2D images are not sufficient
for tasks like navigation [81], object manipulation [62], remote control [52], scene under-
standing [130] since we live in a 3D world where scenes have volume and are spatially
arranged with objects occluding each other. The ability to reason about the 3D properties
is the basic technique for accomplishing these tasks, and has been widely used in games,
virtual reality, teleconferences, etc. As humans, we perceive the three-dimensional struc-
ture of the world with apparent ease as we have left and right eyes using which we can infer
the distance. But for computers, it is a non-trivial task and it has been studied for decades
by computer vision community [129, 45].

1.1 Background

Computer graphics studies the forward models of how light is reflected from the surface
of an objects, scattered by the atmosphere, refracted through camera lenses and finally
projected onto a 2D image plane. It is assumed that 3D shapes and surface appearance are
already available. But in computer vision, we are trying to do the inverse by reconstructing
the surface properties, such as shapes and appearance from the observed images. In fact,
the desire to recover the three-dimensional structure of the world from images and to use
it as a stepping stone towards full scene understanding is an important branch of computer
vision.

3D reconstruction is a longstanding ill-posed problem that has been explored for
decades. Early attempts at 3D reconstruction involved extracting edges and then inferring
the 3D structure of an object or a blocks world from the topological structure of the 2D
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lines [115]. Several line labeling algorithms [138, 58] were developed at that time. Later
on, the modeling of non-polyhedral objects was studied using general cylinders [14].
Similarly, the shape-from-X methods [99, 161] estimate 3D shapes from cues contained
in the image. For example, the shape from shading approach [55] exploits the shading
information and infers the surface by analyzing the image formation process.

Starting from the late 70s, feature-based correspondences matching algorithms [93, 94]
emerged and 3D structure could be reconstructed by triangulation. The structure-from-
motion framework [136] was proposed based on this feature matching strategy which re-
covers 3D structure and camera motion simultaneously with bundle adjustment optimiza-
tion. Later on, as we go from sparse to dense and watertight surface reconstruction, many
approaches have been proposed on multi-view stereo [6, 140] which utilize multiple color
cameras to reconstruct 3D models by exploiting the photo consistency constraints together
with smoothness regularizations. After nearly four decades of active research, we can
now achieve very good performance with high precision and robustness on stereo match-
ing [122]. In this case, the surrounding camera arrays have been widely used in laboratory
environment especially when we are dealing with humans experiencing non-rigid motion.
Another branch of 3D modeling [167] is to directly exploit the depth sensors from which
the depth information is readily available without resorting to the classical stereo match-
ing. The availability of low cost commodity depth sensors, such as Microsoft Kinect,
has made the static scene modeling substantially easier than ever. Many scanning sys-
tems [145, 98, 34] have been proposed for indoor modeling and they were also extended
to fusion of dynamic objects lately [111, 87, 63]. More recently, with the avenue of deep
learning techniques, researchers have explored more lightweight solutions that are able to
recover 3D shapes of objects from a single [134, 23] or a few RGB images [155, 22]. It
has become a new trend in surface reconstruction, especially for the modeling of human
body [65, 165, 119] and 3D face recovery [33].

1.2 Motivation

Although classic computer vision techniques such as image segmentation [125], object
tracking [77] and recognition [15] are usually studied to implement on images and videos
in 2D domain, the depth information has been proven to be substantially useful for solving
various computer vision problems, like indoor modeling [126], 3D object detection [46],
scene understanding [130], and so on. With the prevail of affordable consumer depth cam-
eras, 3D information becomes easier to acquire without the effort of extracting 3D structure
from 2D images.
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However, despite of the ubiquitous usage of depth sensors, the captured depth images
generally suffer from various degrees of noises, unavailable data in certain areas, as well as
low resolution [162, 44]. To be even worse, it will fail completely on objects with highly
non-lambertian surface reflectance as neither the stereo based depth sensor nor the Time-of-
Flight camera can establish correct correspondences or measure the time shift in this case.
Also, the depth sensor can only capture a partial piece of the object from a single view. A
fusion procedure will be needed to recover a complete 3D model. These limitations and
problems have motivated my research as described below in details.

1. The current available consumer depth sensors have limited resolution and accuracy
as compared to color cameras. As a result, fine-scale structural details of an object cannot
be recovered. Therefore, I believe that exploiting high quality color image as guidance to
enhance the depth map would be desired.

2. Among all the publicly available commodity depth sensors, the SwissRanger and
PMD can capture the depth at higher speed than 30Hz, but with a much lower resolution
at about 100 ∗ 200. For the well known Kinect depth sensors version 1 and version 2, both
have a refresh rate of 30Hz. In the meantime, high-speed video as high as 120Hz has been
commonly adopted in consumer-grade cameras. Thereafter, I believe augmenting these
videos with a corresponding depth stream will enable new multimedia applications, such
as 3D slow-motion video.

3. Deformable objects are one of the most general categories in our daily lives. One
particular example would be human body. 3D dynamic digital humans are essential for a
variety of applications ranging from gaming, visual effects to free-viewpoint videos. How-
ever, high-end capture solutions use a large number of cameras, and are restricted to pro-
fessional as they operate under controlled lighting conditions and studio settings. Instead
of using surrounding cameras, a single sensor is preferred which is more portable and easy
to set up.

4. 3D reconstruction of objects with lambertian reflectance has been studied for many
years. However, there are a large portion of objects in our daily life which are made of non-
lambertian material. Due to their non-Lambertian surface reflectance properties, establish-
ing correspondences a fundamental requirement for many 3D reconstruction algorithms
becomes difficult or even impossible. So targeting for reconstructing objects with complex
surface material such as specular or transparent, we want to investigate novel methods for
such tasks. We believe that this is a step forward in reconstructing objects made of more
general materials.
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1.3 Contributions

In this dissertation, I make contributions in three main areas: 1) a novel approach is pro-
posed to enhance the spatial and temporal resolution of the depth sensor with the help of
corresponding RGB videos, 2) I propose methods to reconstruct complete and watertight
surface for deformable objects, particularly for human bodies, using a single depth sensor,
and 3) I go beyond the lambertian surface and propose a method for 3D reconstruction of
specular and transparent objects. The major contributions are listed in details as below:

1. First I present a novel approach for depth map enhancement that recovers both highly
detailed surface geometry and its appearance from an RGB-D video sequence. Instead of
making any assumption about the surface albedo or controlled object motion and environ-
ment lighting, I exploit the lighting variation introduced by casual object movement. We
are able to recover the surface normal and albedo simultaneously, without any regulariza-
tion term under natural illumination.

2. To improve the temporal resolution of the depth sensor, I present a hybrid camera
system that combines a high-speed color camera with a depth sensor, e.g. Kinect depth sen-
sor, to generate a high-speed depth sequence. I find that simply interpolating the low-speed
depth frames is not satisfactory, where interpolation artifacts and loss of surface details
are often visible. Therefore, I present an optimization-based framework to estimate the
high-resolution/high-speed depth stream, taking into consideration temporal smoothness
and shading/depth consistency.

3. A novel framework is proposed to build up 3D human avatars with sparse frames
using a single RGBD camera. It is a challenging problem as we consider the various pose
changes and surface occlusion. I address this problem by exploiting a generative human
template to find initial alignment between every two frames that have great overlap. A
global non-rigid registration procedure is performed afterwards to deform those partial
scans into a unified model. Finally, I build consistent and clear texture maps for the recon-
structed human model with a flow based texture map optimization approach.

4. To address the difficulties of surface reconstruction for non-Lambertian objects,
I present a method using standard multi-view images. I extend the original visual hull
concept to incorporate 3D cues presented by internal occluding contours, i.e., occluding
contours that are inside the object’s silhouettes. It is discovered that these internal contours,
which are results of convex parts on an object’s surface, can lead to tighter fit than the
original visual hull.
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1.4 Structure

The reminder of this dissertation is structured as follows. In Chapter 2, I will discuss the
necessary background and previous work on surface reconstruction, depth enhancement
and human body modeling. I present a novel depth map enhancement approach in Chap-
ter 3 that recovers the surface details beyond the resolution of current depth sensors as
well as the surface appearance. Next, our high speed depth stream generation framework
is described in Chapter 4 showing my system setups and the proposed depth stream up-
sampling approach. In Chapter 5, I describe our method of building up human avatars
from sparse RGBD frames. In addition to lambertian surface modeling, in Chapter 6 I will
deal with the problem of surface reconstruction for specular and transparent objects using
multi-view images captured by a hand-held camera. The conclusion and future work are
finally presented in Chapter 7.
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Chapter 2

Related Work

In this chapter, I will review some previous works on surface reconstruction, depth en-
hancement, human modeling and also 3D modeling of non-lambertian object which are
related to my work.

2.1 Surface Reconstruction

We can divide the approaches of surface reconstruction into passive and active ones de-
pending on whether any active light or signal is involved.

2.1.1 Passive Methods

For the passive methods, the input is purely 2D color images and the goal of image-based
3D reconstruction [114] is to infer the 3D geometry and structure of objects and scenes
from one or multiple 2D images. Ingenious work on ”Shape-from-X” has utilized priors
on natural images to infer geometric features, with ”X” being shading [161], texture [8],
specularity [50], silhouettes [141], shadow [109], motion [136] and so on. For example, the
shape from silhouettes approach allows to obtain 3D shape of an object from their profiles
in multiple views by volume intersections. The very first attempts [18] dated back to 1990,
where the reconstructed object tends to be simple in shape. Later on, the stereo vision
was brought up and the shape-from-motion framework [120] was studied to reconstruct
the 3D shape of the scene while calculating the position of camera. Meanwhile, great
success was achieved in multi-view stereo (MVS) [122], which addresses the problem of
dense 3D model reconstruction from a collection of images taken from known viewpoints
with intrinsically calibrated cameras. The passive reconstruction methods also give us the
opportunity to use massive amounts of visual information available on the web. To give an
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example, there is a project, ”Building Rome in a Day” [5] in which basing on a collection
of thousands of images of Rome, they made a visual reconstruction of one of the citys main
parts. Till now, there are softwares such as the Altizure [1] which is able to reconstruct the
3D models of individual objects and also city-scale complex scenes.

More recently, the learning based solutions [155, 156, 128, 139] are growing rapidly
as with the development of large 3D shape databases [3, 69, 121]. Rather than using con-
ventional handcrafted image features and matching metrics [54], recent studies on stereo
matching apply the deep learning techniques for better pair-wise patch matching [49].
Besides of stereo matching, the first end-to-end network for the MVS problem, called
SurfaceNet, was proposed [61], which pre-computed the cost volume with sophisticated
voxel-wise view selection, and used 3D CNN to regularize and infer the surface voxels.
As compared with the conventional approaches on MVS, the learning based methods have
demonstrated superior performance on dealing with textureless objects [155, 116]. Be-
sides, instead of using dense multiple images, we could take sparse images or even single
image as input. For example, Choy et al. [25] proposed an unified framework for single and
multi-view reconstruction by using a 3D recurrent neural network based on long-short-term
memory. The learning based approaches have become a new trend in surface reconstruc-
tion, while there are still some issues that need further investigation. For example, if we
want to reconstruct the objects at a finer resolution for higher quality reconstructions, it will
become extremely computationally expensive. Besides, the generalization ability is another
concern especially when we have limited training dataset. Therefore, researchers are start-
ing to work on unsupervised approaches [67] which is more scalable as large amounts of
training data can be more easily acquired.

2.1.2 Active Methods

Basically, there are two main approaches of range sensing, namely triangulation and Time-
of-Flight [27]. The first can be implemented as a passive approach, i.e., stereo vision, or
as an active system, such as structured light [66]. Stereo vision calculates the disparity
between two images taken at different positions. The structured light camera projects an
infrared light pattern onto the scene and estimate the disparity from the perspective dis-
tortion of the pattern. Ranging scanners and ToF cameras, on the other hand, measure the
time it takes for light emitted by an illumination unit to travel to the object and return to
the detector.

The core technology behind the structured light or time-of-flight based depth cameras
dates back several decades. However, the advent of affordable consumer grade RGB-D
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cameras like Microsoft Kinect and Intel RealSense has brought profound advances in visual
scene reconstruction methods. For instance, the seminal KinectFusion work [101] which
enables real-time scanning and scan integration, had remarkable impact in the computer
graphics and vision communities. After that, many following up systems [102, 24, 164]
were proposed to tackle the drifting problem [144] and live scanning of large scenes [31].
Furthermore, researchers go beyond the rigid objects modeling to capturing dense 3D ge-
ometry models of dynamic scenes, such as models of moving humans [131], or of general
deformable surfaces [87]. It becomes possible to obtain detailed models of the non-rigid
objects with only a single depth camera.

2.1.3 Surface Reconstruction of Non-Lambertian Objects

Surface reconstruction of non-Lambertian objects is challenging and methods using tra-
ditional stereo correspondence are not sufficient for these objects, since the complex re-
flection effects are not validate under the Lambertian assumption. There are successful
approaches [32, 82, 142] that use structured light methods relying on specialized patterns,
where the surface depth or normal is computed by analyzing the captured patterns. In
paper [32] a checkerboard pattern is used and observed after distorted by the transpar-
ent objects; Liu et al. [82] design a set of frequency-based patterns. Zickler et al. [166]
use Helmholtz stereopsis for surface reconstruction with arbitrary and unknown surface
reflectance. The captured signal is transformed from the time domain into the frequency
domain to solve the correspondence problem. As for specular objects, existing state-of-art
methods can be broadly classified into two categories, namely shape from specular flow

and shape from specular correspondences [83]. The first method assumes a known con-
tinuous motion and tries to track the dense specular flows, while the second one uses a
reference plane with a known pattern as guidance to predict the unknown surface. The
above methods all need careful setup and extra projectors or light sensors. There are also
methods [91] that try to separate the specular reflection effects from diffuse reflection and
use traditional photometric stereo methods for surface reconstruction afterwards. However,
it is rather difficult to perform the separation on highly specular objects as we consider the
complex reflection, surrounding environments and also the lighting conditions. Recently,
Wu et al. [149] have proposed to train a neural network achieve this goal. But its general-
ization capability is questionable with the limited training dataset.
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2.2 Depth Enhancement

Existing depth cameras generally suffer from various degrees of noises, as well as low
resolution as compared to high quality body scanners. It poses significant challenges for
shape reconstruction, especially when rich geometric details are desired. As the resolution
of color images is usually several times higher and there is a high correlation between
structural features of the color image and the depth map (e.g., object edges), it is natural to
use the color image as guidance for depth map enhancement [106, 37, 151, 17, 96].

2.2.1 Depth super-resolution vs. Shading based refinement
approaches

For depth super-resolution, the basic idea is to use the corresponding color image cap-
tured from the same scene to recover a high resolution depth map by exploiting the strong
structural correlations between depth and texture. One way is to recast the depth super-
resolution task as a global optimization problem [152, 79], in which, the data term penalizes
the difference between the observation and the recovered depth, while the smooth term reg-
ularizes neighboring pixels based on the designed priors. For instance, image guided depth
upsampling using anisotropic Total Generalized Variation [38] and Non-Local Means [107]
are very classical color assisted depth image super-resolution approaches. However, these
methods often use hand-designed objective functions which cannot express priors in real
images well and are typically time-consuming. Another category of depth upsampling
methods [97, 84, 13] uses designed filters to apply joint filtering on the depth map under
guidance of the color image. For example, Yang et al. [153] employed edge-preserving
filters to upsample a depth image. Hua et al. [56] approximately applied the filtering pro-
cedure with local gradient information of the depth image. These methods are established
on the assumption that local pixels with similar color will have similar depth value. How-
ever, sometimes this assumption is unfounded which will result in texture copying artifact,
and blurry edges will occur on textureless color and textured depth or when the color and
depth edges are not well aligned.

Another promising category is the learning-based methods [78, 143], which learns the
relation between the low resolution and high resolution depth map. It enjoys fast testing
speed, and delivers more promising performance than the above methods, but a sufficient
amount of training data will be needed to generalize well to different scenario of test data.

From the depth super-resolution, we will get a high resolution, noise-free depth image
with clear surface edges. However, the detailed structural information is still unrevealed.
There are other methods that take advantage of the shading information contained in color
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images so as to recover geometric surface details. The Shape-from-shading (SfS) problem
has long been studied ever since the pioneering work by Horn [55]. It aims to estimate
surface normal (and then indirectly surface shape) from a single image. There are various
regularization terms or prior assumptions [10, 12] that have been enforced to deal with the
inherently ill-posed problem. Some methods [48, 157] have shown that SfS can be used to
refine the noisy depth map captured from RGB-D cameras as well.

On the basis of Shape-from-Shading (SfS) techniques, most of these shading based
methods implement shading refinement on a single RGB-D frame [157, 105, 148]. The
inherent ambiguity of SfS is not resolved exactly, but with the initial depth close to the real
surface, Wu et al. [148] and Roy et al. [105] have achieved good performance in recover-
ing surface details. More recently, Haefner et al. [47] have combined heterogeneous depth
and color data to jointly solve the ill-posed depth super-resolution and shape from shad-
ing problem. Varying albedo poses another challenge as it needs to be factored out before
lighting estimation and shading refinement. Some works [48] assume uniform or piece-
wise constant albedo. Yu et al. [157] dealt with this by clustering a fixed set of discrete
albedos before optimizing geometry. A better, yet more complex strategy, is to simulta-
neously optimize for unknown albedos and refine geometry [68]. There are also previous
works that adopt the shading constraints to improve the coarse 3D shape reconstructed from
multi-view stereo [147]. More recently, Maier et al. [90] have optimized textures and the
geometry encoded in a signed distance function in an unified framework under estimation
of spatially-varying spherical harmonics which has achieved the state-of-the-art results on
reconstructed scene geometry.

2.3 Human Body Modeling

2.3.1 Template-free vs. template-based body modeling

Template free methods reconstruct the moving geometry by mesh deformation [6, 20] or
using volumetric representations for the surface [57, 7]. The advantage of these methods is
that they allow reconstruction of general dynamic objects. While flexible, such approaches
require high-quality multi-view input data. An alternative solution is to use a depth camera
and perform non-rigid registration between incoming depth frames and a concurrently up-
dated, initially incomplete template [111]. While general, such template-free approaches
are limited to slow and careful motion. There are some papers that exploit pre-scanned
human models as template, which makes the surface tracking problem easier to handle
as the overall shape is already available. For example, in paper. [89], the template was
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pre-scanned in the first place and then got deformed to fit the input acquired from a depth
sensor. Later on, Guo et al. [64] improved the surface tracking performance by incor-
porating both L0 and L2 regularizations. These works are in-between template-free and
template-based methods.

As compared with template-free methods, template-based approaches leverage a para-
metric body model for human pose and shape estimation from images. Early models in
computer vision were based on simple primitives [95, 41]. The recent statistical human
models, like SCAPE [9] and SMPL model [88], are learned from thousands of scans of
humans under real pose. The pose and shape deformations are encoded in the parametric
model. Therefore, instead of tracking the deformation of all those vertices on the surface,
some works [36, 110] solved the pose and shape coefficients of the statistical model. Also,
with the progress of deep convolutional neural networks and human pose estimation, it has
become possible to recover body shapes from a single image [104, 137, 135] by regress-
ing the parameters of statistical human models. The first automatic method was proposed
in SMPLify [16] where the SMPL model was fitted to the 2D keypoints estimated from
an image using ConvNets with an optimization technique. Constraints like silhouettes are
also incorporated for shape estimation [133, 165]. Kanazawa et al. [65] proposed an end-
to-end learning system of human body and shape based on generative adversarial networks
(GANs). The template-based approaches work naturally with the learning methods as we
just need to predict the coefficients using the neural network. However, there are some ex-
ceptions [103] which are template-free and use volumetric representations where a neural
network is trained predict the volume occupancy.

Overall, the template-based approaches are more reliable in handling occlusions, com-
plex motion, and work well with limited input such a single or few images. However, the
recovered human body lies on the space spanned by the models that we have used to train
the parametric model. On the contrary, the template-free approaches are more flexible and
can represent surface with geometric details. But in the meantime, the reconstruction relies
on more reliable input data, such as multi-view or depth images.

2.3.2 RGB image vs. depth input

The human shape reconstruction problem has been studied for decades under the multi-
view stereo setup[146, 6]. They exploit the correspondence cues between images of neigh-
boring views and also the temporal consistency to construct the involving surface. The mul-
tiple cameras are synchronized and this controlled setup is usually used in the laboratory.
On the contrary, deep learning based human body reconstruction methods have demon-
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strated its advantages in human body recovery from images in the wild [104, 137, 135].
They take a single RGB image as input or use sparse images of the human subject from
different view directions [80]. Despite of the widespread usage, the reconstructed human
body usually lacks sufficient surface details. More importantly the inherent depth ambigu-
ity of the RGB image stops the reconstructed human body from fitting closely to the real
surface.

The ambiguity can be easily resolved by utilizing a depth sensor. There are some works
that use only a single depth sensor for the non-rigid objects reconstruction and specifically
for the human body. First, as an extension to the KinectFusion system, a dynamic fusion
approach [111] has been proposed which takes non-rigid motion into account by solving a
non-rigid warp field for every frame. Later on, sparse feature information [87] and dense
color correspondences [63] in the color sequence were incorporated to improve the robust-
ness of surface tracking. Yu et al. [131] enforced skeleton constraints in the typical fusion
pipeline to get better performance on both surface fusion and skeleton tracking. A more
robust fusion approach [132] was proposed by tracking both the inner and outer surface.
Those methods allow the user to move more freely. However, as the sequence proceeds the
almost inevitable drifting problem makes it difficult to recover a complete model without
loop closure. There are also works [86, 74] that generate partial pieces in the first place
and handle the error accumulation problem by using a global non-rigid registration. For
example, Dou et al. [86] proposed a non-rigid bundle adjustment method where impres-
sive results have been obtained. But the bundle adjustment could be quite computationally
expensive and time-consuming due to the large number of unknowns and search space.
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Chapter 3

Detailed Surface Geometry and Albedo
Recovery from RGB-D Video Under
Natural Illumination

Due to the limited spatial resolution and sensor noise, the current consumer depth camera
fails to capture the important surface details. In this chapter, we propose a method to re-
cover highly detailed surface geometry as well as its appearance from an RGB-D sequence
by exploiting the shading information. More specifically, we capture the RGB-D sequence
with a Kinect V2 depth sensor attached with a relatively high quality color camera. During
the acquisition process, we can rotate the object casually in front of the cameras with the
depth and color cameras being static. In this way, the illumination changes in the image
sequence induced by the object’s movement provides us the valuable shading correlation
along the sequence, which is critical to resolve the surface normal and albedo without any
ambiguity. It resembles the photometric stereo. But instead of controlling the light when
imaging a static object, we are allowed to move the object under general natural lighting.
This kind of cue has been exploited in multi-view photometric stereo [35] and shape from
video [75, 127, 159]. However, they have the environmental lighting constrained to be
calibrated directional light and the object is experiencing turntable motion or the motion
is assumed be calibrated beforehand. On the contrary our approach works under natural
lighting with the object experiencing arbitrary motion using a single RGBD sensor, which
makes our method more widely used in everyday environment.

Given the captured RGB-D sequence, first we try to align the RGB-D sequence and find
the correspondences among the images using a novel robust matching technique. Then the
environmental lighting is estimated using the intensity ratios of the aligned sequence, which
effectively factors out the impact of varying albedo. Finally, we formulate an Expectation-
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Maximization framework in which the surface normal and its albedo map can be calculated
robustly, in the presence of some non-Lambertian reflection or cast shadow. A detailed
surface mesh is obtained after integration of the initial depth map with the estimated normal
map.

The main contribution is that we utilize the dynamic photometric information along
the sequence to recover the surface details beyond the resolution of current depth sensors.
Compared to previous depth enhancement schemes that use the color information, our
method, to the best of our knowledge, is the least restrictive. It allows arbitrary surface
albedo, does not require controlled or calibrated lighting or turntable capture. To achieve
these, we make two technical contributions. The first is a novel image registration scheme
that is robust to lighting variations and the second is an EM optimization scheme to produce
per-pixel normal and albedo map under general lighting.

3.1 Pipeline

An overview of our depth enhancement and albedo recovery framework is shown in
Fig. 3.1.
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Figure 3.1: System Pipeline.

First, instead of using all those frames of the sequence which is redundant and com-
putationally too expensive, we fuse every M = 20 to generate N key frame depth maps
from the RGB-D sequence via KinectFusion [101]. They are smoother and more accurate
than the raw depth maps. The extrinsic parameters between these key frames are computed
and refined with bundle adjustment afterwards. Next, a robust pixel matching strategy is
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proposed to find correspondences across the key frame images dealing with possible mis-
alignments caused by imprecise initial depth maps or image distortion. We call this pro-
cedure Local Match Refinement, as the correspondences are locally searched and refined
starting from the correspondences achieved by warping the images guided by the initial
depth maps. For lighting estimation, we utilize the entire sequence to make the estimation
more robust. Finally, given the computed lighting and correspondences along the sequence,
we recover the surface normal and albedo image under our robust EM framework. To the
end, the recovered normal can be integrated with any key frame depth map to generate a
surface model with much more structural details revealed.

3.2 Preliminary Theory

Before introducing our proposed approach in detail, we demonstrate some basic theory and
derivations in this section.

While environmental lighting can be arbitrarily complex, the appearance of a diffuse
object can be described by a low dimensional model [113]. Under this assumption, the
shading function s for Lambertian reflectance can be modeled as a quadratic function of
the surface normal with A, b, c represented as the lighting parameters.

s(n) = nTAn+ bTn+ c (3.1)

Generally the captured image is generated by multiplying the shading function with
surface albedo ρ(p)

I(p) = ρ(p)s(np) (3.2)

Given a single image as observation, as for each pixel we have three equations with five
unknowns to be estimated, it may not be feasible to recover the surface normal and albedo
faithfully even though we could suppose the lighting parameters have been determined
beforehand. Photometric stereo, with more lighting variations, is a typical solution to re-
solve the ambiguity. Mathematically, the surface normal and its albedo can be computed
by minimizing the following objective function that is formulated for each pixel indepen-
dently under various lighting conditions. Ak, bk, ck is one set of lighting parameters. No
smoothness or albedo regularization is needed here.

E(n, ρ) =
∑
k

(ρ(p)(np
TAknp + bTknp + ck)− Ik(p))2 (3.3)

The underlying principle of our enhancement method is based on the above photomet-
ric stereo theory, but we do not need to set the object to be static and manually change
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the lighting conditions; instead we have captured the RGB-D sequence of the object under
arbitrary motion in uncalibrated natural illumination. In this case, the lighting variations in-
duced by object motion resembles the classic photometric stereo in some way. We describe
the derivations in the following.

Suppose we set the first frame as the reference frame, and also we can find the corre-
spondences for pixels along the sequence. For example, for pixel p in the reference frame,
its correspondence in frame k is W (p). The appearance of the pixel W (p) is generated as,

Ik(W (p)) = ρ(p)
(
(Rknp)

TA(Rknp) + bT (Rknp) + c
)

= ρ(p)
(
nTp (RT

kARk)np + (bTRk)np + c
) (3.4)

where ρ is the albedo for pixel pwhich equals to the albedo of pixelW (p) andnp is surface
normal under reference frame coordinate. Rk is the rotation from the reference frame to
frame k. Therefore, the surface normal for the corresponding pixel W (p) in image Ik can
be represented as Rknp. As demonstrated in the above equation, the rotation Rk can be
extracted and applied to the lighting vectors, from which we will get the lightings for frame
k as RT

kARk, bTRk and c.
Therefore as similar to the photometric stereo, the changes of lighting induced by the

object motion provide valuable cues to recover the surface normal and its albedo. We
illustrate this in Fig. 3.2 with the energy plot showing that with more and more images
under diverse rotation variations included in the energy function, we are able to resolve the
local ambiguity and converge to the optimal solution without relying on any smoothness
regularizations.

3.3 Approach

There are four major parts in the pipeline as shown in Fig. 3.1, including robust pixel
matching among the images, lighting estimation, and normal and albedo recovery. We will
describe them successively in details in the following sections.

First of all, the key frame depth maps D1 ∼ DN are obtained via depth fusion with the
corresponding color images denoted as I1 ∼ IN .

3.3.1 Robust Pixel Matching

Rigid alignment

First, the global rigid transformation between key frames are calculated by detecting SIFT
or ORB features followed by feature matching. These extrinsic parameters are further
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(a) Reference image

(c) Three images (d) Twelve images

(b) Only  one image

Figure 3.2: Diverse rotation variations resolve local ambiguity. (a) shows a sampled image
of the object with a reference pixel marked as red. In (b),(c) and (d) we plot the energy
map for this reference pixel with x-axis and y-axis representing the two degree of freedom
of a surface normal. The cooler color in these figures corresponds to smaller energy value.
As we can see, given a single image the solution lies in a large band as shown in (b). With
three images the normal converges better as shown in (c). And finally we will be able to
find the optimal surface normal for the reference pixel if we have got enough images under
rotation variations as shown in (d).

refined with bundle adjustment and finally we get the rotation R1 ∼ RN and translation
matrix T1 ∼ TN with respect to a global coordinate for each key frame from which we can
warp any key frame to other frames.
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(a) Reference frame

(b) Sampled frame (d) Optical flow overlay(c) Initial overlay (e) Our overlay

Figure 3.3: Demonstration of correspondence matching. (a) is the reference frame and (b)
is one sampled key frame. Image(b) is warped to the reference frame with current transfor-
mation, and (c) displays the warped image overlaid with image(a). (d) shows the overlaid
result using the flow map computed from warped image and the reference image [19]. (e)
is the overlaid image after applying our proposed lighting insensitive robust matching.

Lighting insensitive Local Match Refinement

These key frames can be warped into any reference frame given the current transformation.
However misalignments still exist after bundle adjustment as shown in Fig. 3.3(c), which
is caused by the imprecise depth maps, image distortion and the imperfect synchronization
between the captured color and depth sequence. Optical flow is often used as a solution
to find correspondences between two images. Considering that the misalignment may be
severe, we have tried to use a large displacement optical flow computation approach [19]
to find the correspondences between the warped image and the reference image. However,
since the consistency assumption is not maintained in our case, the alignment has got even
worse in some part with great illumination changes as displayed in Fig. 3.3(d).

Our matching approach is implemented on every reference frame and we find corre-
spondences from the reference frame to other key frame images. Suppose we have the
reference depth map and corresponding color image denoted as Dref and Iref respectively.
For each pixel p = (u, v) in Iref, its current corresponding pixel q after bundle adjustment
in image Ik is computed as,

λ

[
q

1

]
= K

(
Rk

(
R−1

ref (K−1

 u

v

Dref(u, v)

− Tref)
)

+ Tk

)
(3.5)

In the above equation, K is the camera intrinsic matrix. Rref and Tref are the rotation
and translation matrix that transform the 3D point from world coordinate to the reference
frame. Similarly, Rk and Tk are the rotation and translation matrix for frame k.
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The corresponding pixel p in Iref and q in Ik may not be the correct correspondence
because of the misalignment. Therefore, we implement a local search strategy to find its
best matching pixel in Ik.

For each pixel p in Iref, we set a searching region around it and find its best match
in Ik via NCC (Normalized Cross Correlation). However, the intensity consistency is not
preserved as the object is subject to arbitrary movements. This makes the original NCC
not suitable for matching in this case. To deal with this problem, we apply chromacity
normalization in the color image to eliminate the effect of lighting variations [39] and use
the normalized images for matching. For each pixel p, its appearance is generated as,

Ich(p) = ρch(p)s(np) ch ∈ {R,G,B}, (3.6)

in which s(p) is the shading function that accounts for the lighting or normal variation.
So the chromacity normalization is implemented as,

Icnch (p) =
Ich(p)

IR(p) + IG(p) + IB(p)
ch ∈ {R,G,B}, (3.7)

After the above normalization, NCC can then be applied for the matching which will
be insensitive to the photometric inconsistency induced by lighting factor. For the NCC
computation, we perform it separately on each channel of the color image.

Specially, the color image Iref is warped to the color frame Ik under the guidance of
Dref and we get the warped color image Irefk . The NCC patch matching is implemented in
Irefk with Ik instead of using Iref directly. Since Ik and Irefk are in the same viewpoint, the
fattening effect of NCC is successfully avoided.

Although for each pixel in Iref (or Irefk) we can find the corresponding pixel in Ik that
has the largest matching score, we cannot guarantee they are always the correct correspon-
dence. To tackle this problem, we only keep the pixels that are reliable and use these pixels
as control vertices to deform all the other pixels to find their correct correspondences.

Our criteria of reliable matches is that, 1) the largest matching score should be larger
than thresS; 2) the difference between the largest score and second largest score of local
peaks should be larger than thres∆. If these principles are maintained, the pixel in the
searching region that has the largest score is chosen as the correspondence. thresS is set to
be 0.75 and thres∆ is 0.05 in our experiments.

Next we use these reliable matches as control vertices to deform the image Irefk so that
it has an optimal match with Ik. As for each control vertices ol in Irefk , the deformation
function is defined as

f(ol) = ol + ∆l, (3.8)
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where ∆l is the motion vector between the optimal correspondence and its initial corre-
spondence in Ik.

For other pixels the deformation is formulated via bilinear interpolation with control
vertices [163],

f(u) = u+
∑
l

(θul ∆l) (3.9)

The interpolation coefficients θul is set according to the distance to control vertices and
only neighboring vertices will affect the deformation.

Finally, our objective function is defined to maintain the photo consistency of the two
normalized images.

E(∆) =
∑
p

(
Icnrefk(f

(
p,∆)

)
− Icnk (p)

)
+ λ

∑
l

||∆l − ∆̂l||2 (3.10)

where ∆̂ is the initial deformation vector for the control vertices between the current
optimal correspondence obtained from matching and its initial correspondence. λ is the
control weight set to be 10. Since we have good initials ∆̂, the optimization will converge
quite fast.

Some matching results are demonstrated in Fig. 3.3(e).

3.3.2 Lighting estimation

In this section, we demonstrate how to compute the lighting parameters A, b, c for each
reference frame. Since The unknown albedo poses challenges for lighting estimation, there
are some methods that cluster the image into different parts and use the mean value as
their albedos. The lighting and albedo is estimated in an iterative way. Instead of trying
to resolve the ambiguity from a single frame, we employ the aligned color sequence and
depth maps for robust lighting estimation, eliminating the need to make prior assumptions
about albedo.

With the aligned color images we can compute the ratio images with respect to the
reference image, from which the albedo will get canceled out. In details, for each pixel p in
Iref, suppose its corresponding pixel in Ik is denoted as q, then the ratio value is computed
as,

Ik(q)

Iref (p)
=
ρ(q)(nq

TAnq + bTnq + c)

ρ(p)(npTAnp + bTnp + c)

=
nq

TAnq + bTnq + c

npTAnp + bTnp + c

(3.11)
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Therefore, the environmental lighting can be achieved from the following minimiza-
tion,

arg min
A,b,c

∑
k

∑
p∈Iref

γp(
nq

TAnq + bTnq + c

npTAnp + bTnp + c
− Ik(q)

Iref(p)
)2 (3.12)

The normal n are approximated using the initial normals computed with the key frame
depth maps. The weighting term γp is set to prevent using pixels with intensity that are too
dark or too bright which might be caused by cast shadow or specularities. Besides, we also
ignore pixels with great image gradients that are sensitive to misalignments. The lighting
vectors can get updated iteratively after the albedo recovery with refined normal maps.

3.3.3 Normal and albedo recovery

With the key frame color images all aligned into the reference image (IW1 ∼ IWN ), and the
estimated environmental lighting (A, b, c), we are ready to recover the surface normal and
its albedo. We have the object rotation matrix R1 ∼ RN for each frame with respect to the
reference frame. Then for each pixel p in the reference frame, our goal is to find the optimal
albedo ρ(p) and normal n(p) conforming the pixel observations I(p) = {IWk (p)}Nk=1. We

drop the index of pixel locations for simplicity in the following description. The objective
function can be defined as:

E(n, ρ|I) =
∑
k

(sk(n)ρ− IWk )2, (3.13)

sk(n) = nTRT
kARkn+ bTRkn+ c (3.14)

The surface normal and albedo can be estimated from minimization of the above func-
tion. However, the outliers have not been taken into consideration. They will affect the
result if the observations violate the Lambertian assumption. To deal with these outliers,
we introduce a set of hidden states Hk = {0, 1} indicating whether the observation is ac-
tually generated by the Lambertian model. An expectation-maximization (EM) algorithm
is developed to solve the problem. While our formulation is inspired by [150], we extend
it from its original directional light assumption to general lighting. More specifically, we
denote the parameters to be estimated as Ω = {n, ρ, σ, α} and the observation probability
conditioned on parameters Ω is given as,

P (IWk |Ω) = α
1√
2πσ

exp(−(sk(n)ρ− IWk )2

2σ2
)

+ (1− α)
1

C

(3.15)
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P (Hk = 1) = α is the prior probability of Hk indicating the proportion of observations
generated by the Lambertian model. 1

C
is the probability as being an outlier which is

assumed to be uniform distribution and we set C to be 10 in our implementation.
The posterior probability of the hidden variable Hk is updated in every E-step using the

following equation given the computed parameters Ω′ in current iteration and the observa-
tion IWk ,

ωk = P (Hk = 1|IWk ,Ω′)

=
α exp(− (sk(n)ρ−IWk )2

2σ2 )

α exp(− (sk(n)ρ−IWk )2

2σ2 ) + 1−α
C

(3.16)

Next, in the following M-step, we maximize the complete-data log-likelihood given the
marginal distribution Hk obtained from the E-step.

Q(Ω|Omega′) =
∑
k

logP (IWk , Hk = 1|Ω)ωk

+
∑
k

logP (IWk , Hk = 0|Ω)(1− ωk)

=
∑
k

log(
α√
2πσ

exp(−(sk(n)ρ− IWk )2

2σ2
))ωk

+
∑
k

log(
1− α
C

)(1− ωk)

(3.17)

To maximize the above function, we set the first derivative of Q with respect to α, σ
and ρ equal to zero. In this way, the updating rules for these parameters are obtained,

α =
1

N

∑
k

ωk

σ =

√∑
k(sk(n)ρ− IWk )2ωk∑

k ωk

ρ =
1∑

k sk(n)2ωk

∑
k

sk(n)ωkI
W
k

(3.18)

Since the function Q is nonlinear to surface normal n, the updated normal is achieved
by fixing other parameters and solving the following energy minimization.

arg min
n

∑
k

((nTRT
kARkn+ bTRkn+ c)ρ− IWk )2ωk (3.19)

The above EM iterative optimization process is performed until no further improvement
on the recovered normal and albedo. The initial parameter of α and σ is set to be 0.75 and
0.05 respectively for all the datasets used in this chapter.

Finally, the recovered normal is integrated with the depth map to get enhanced surface
geometry with structural details [160].
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3.3.4 Implementation details

As a preprocessing step, the object is first segmented from the image by integrating both
color and depth information into GrabCut [117] framework. We manually masked the first
frame with the rest of frames segmented automatically.

We implement most parts of our framework in Matlab and it takes us approximately
820s to process a dataset with 500 ∼ 600 frames. Considering that the normal and albedo
is computed in pixel-wise manner, the running time could be reduced further with parallel
computation.

3.4 Experimental results

In the experiments, we validate our method on synthetic and real datasets with quantitative
and qualitative evaluation.

3.4.1 Synthetic datasets

In this section we perform quantitative evaluations of our method on several synthetic mod-
els. First given the 3D model, twenty images together with their corresponding depth maps
are rendered under natural illumination. The rendered ground-truth depth maps are over
smoothed to filter out the structural details. Those smoothed depth maps and rendered
color images are taken as input for our method. We have compared our method with a
shading refinement approach [105] from a single RGB-D image which has achieved good
performance on depth refinement.

Fig. 3.4 shows the comparison results of our recovered normal map and surface. For
each model, the first column is the reference color map and over smoothed mesh (displayed
as normal map). These are the input for the shading refinement method [105]. The output
of the shading refinement method is displayed in the second column. The texture copy
artifacts are caused by imperfect separation of albedo and shading layers. In comparison,
the surface normal can be recovered successfully with our pixel-wise recovery method with
quite small error shown in the third column. The albedo map computed from our method
together with its error map is demonstrated in the last column.

We display the quantitative results in Table 3.1 showing the mean error of computed
normal maps, extracted albedo images and also the enhanced depth maps. As we can
see, the error of our computed normal map is quite small as compared with the shading
refinement approach. For the Armadillo and Lion model, the normal error of the shading
refinement approach becomes even larger than the initial over smoothed normal as caused
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by the texture copy problem. We have also performed evaluation on our recovered albedo
image with the mean error shown in the Table 3.1. We have normalized the images into 0 1.
Since we cannot resolve the scale ambiguity of the computed albedo and shading image,
we have calculated a scale factor with six randomly selected pixels in the ground-truth
albedo image, which are divided by the values of corresponding pixels in our recovered
albedo image.

Table 3.1: Quantitative Evaluation.

Model Bunny Armadillo Lion
Initial depth error 1.2150 1.1129 1.3927
Initial normal error(degree) 8.4236 11.7554 14.3837
Shading normal error(degree) 6.7591 14.6649 23.5301
Our normal error(degree) 1.3485 4.5130 6.1094
Our albedo error 0.0127 0.0384 0.0295
Our depth error 0.2506 0.3129 0.2927

Fig. 3.5 is shown to demonstrate the effectiveness of our EM framework for robust
normal recovery in the presence of outliers. We have picked four out of those twenty
images randomly and added the salt and pepper noise with 0.50 density. It means the abrupt
noise will affect approximately fifty percent of the image pixels. As we can see from the
first two columns, the recovered normal map without EM optimization is noisy (the mean
error is 8.37 degree), while we can achieve much better performance after applying our
EM method, which is shown in the last two columns and the mean error decreased to 1.49
degree.

3.4.2 Real datasets

We have captured the datasets of real objects using the depth sensor of Kinect V2 with res-
olution of 512×424 and a PointGrey color camera with resolution of 1920×1080. Several
objects are captured, namely the Frog, Shoe, Backpack, Turtle, etc. We will demonstrate
the comparison results of our recovered surface normal and albedo with some state-of-the-
art approaches in the following.

Surface normal and geometry recovery

Fig. 3.6 shows the comparison results of a Frog, Shoe and Chinese Fan model. We have
made comparisons with a shading refinement approach [105] and a depth super-resolution
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(a2) Color (b2) Shading Normal 

(e2) Smoothed Normal

(c2) Our Normal (d2) Our Albedo

(h2) Albedo error(g2) Our Normal error(f2) Shading Normal error

(a3) Color (b3) Shading Normal 

(e3) Smoothed Normal

(c3) Our Normal (d3) Our Albedo

(h3) Albedo error(g3) Our Normal error(f3) Shading Normal error

(a1) Color (b1) Shading Normal 

(e1) Smoothed Normal

(c1) Our Normal (d1) Our Albedo

(h1) Albedo error(g1) Our Normal error(f1) Shading Normal error

Figure 3.4: Results on synthetic models. (a1-a3) is the rendered color image of the refer-
ence frame; (e1-e3) shows the normal map of the ground-truth mesh after over smoothing;
(b1-b3) is the normal map computed after applying shading refinement on the reference
frame with its error map displayed in (f1-f3); (c1-c3) and (g1-g3) are the normal map and
its corresponding error map achieved by our method. Our recovered albedo map and its
error map is also demonstrated in (d1-d3) and (h1-h3) respectively.
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(a) W/O EM (b) W/O EM error (c) With EM (d) With EM error

Figure 3.5: Results when adding salt and pepper noise. (a) shows the computed normal
map without our EM framework and (b) is its error map; The normal and error map after
applying our EM optimization are shown in(c) and (d) respectively.

approach [47] which deals with depth super-resolution and shading refinement problems
simultaneously in an unified framework. The color images shown in Fig. 3.6(a1)(a2)(a3)
and their corresponding depth images are taken as input for those two methods. As we can
see from Fig. 3.6(b1)(b2)(b3) the surface has got over-smoothed after the fusion [101] and
the small surface details cannot get revealed as restricted by the resolution and accuracy of
the Kinect depth sensor. The shading refinement approach [105] is able to recover some
surface details, but some textures are hallucinated as geometry details as well (Fig. 3.6(c1)
(c2) and (c3)). Fig. 3.6(d1) (d2) and (d3) displays the results of depth super-resolution [47]
for which the colorful textures have caused unpleasant artifacts on the recovered surface
as they have also assumed that the surface albedo is piecewise constant. Fig. 3.6(e1,e2,e3)
and Fig. 3.6(f1,f2,f3) displays our final results of recovered meshes and surface normals.
For the Frog and Shoe model, the small surface details have got successfully extracted
and revealed in our results without affected by the textures. For the Chinese Fan model,
it contains some concave parts which could cause cast shadow on the images. Although it
does not have much small geometric details, the pleats become more sharp in our recovered
mesh as compared to the fusion results with smooth surface on other parts as it should be.

Fig. 3.7 shows the comparison results of a very colorful Backpack and Turtle model
and in this figure we demonstrate the effectiveness and importance of our local match
refinement step. For the Backpack, it actually experiences non-rigid deformation during the
movement and therefore we only consider the front part of the backpack which is mostly
rigid. We have marked some colorful patterns on the Turtle surface to make the texture
more complex to show the superior performance of our pixel-wise recovery method.

Similar to the Frog and Shoe model, the shading refinement approach [105] suffers
from the texture-copy problem as shown in (Fig. 3.7(b1) and (b2)). Fig. 3.7(c1) and (c2)
displays the super-resolution results [47], for which the surface details have not got re-
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(a1) Color
(c1) Shading Refinement

(f1) Normal(e1) Ours

(f2) Normal(e2) Ours

(a2) Color
(c2) Shading Refinement

(d1) Super-resolution

(d1) Super-resolution

(b1) KinectFusion

(b2) KinectFusion

(a3) Color (c3) Shading Refinement(b3) KinectFusion

(f3) Normal(e3) Ours(d3) Super-resolution

Figure 3.6: Comparison results on Frog, Shoe and Chinese Fan model. (a1) (a2) and (a3)
are the reference color images of Frog, Shoe and Chinese Fan respectively. The outputs
from KinectFusion are shown in (b1) (b2) and (b3). The results computed by shading
refinement method [105] are displayed in (c1) (c2) and (c3). (d1) (d2) and (d3) are the
meshes computed by depth super-resolution method [47]. Finally, (e1) (e2) and (e3) are
the output meshes from our approach with their corresponding normal maps displayed in
(f1) (f2) and (f3).
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(a1) Color (b1) Shading Refinement

(d1) W/O Local Match Refinement (e1) Ours (f1) Our Normal

(a2) Color

(d2) W/O Local Match Refinement

(b2) Shading Refinement

(f2) Our Normal(e2) Ours

(c1) Super-resolution

(c1) Super-resolution

Figure 3.7: Comparison results on Backpack and Turtle model. (a1) and (a2) are the ref-
erence color images of Backpack and Turtle respectively. The output from shading re-
finement method [105] is shown in (b1) and (b2). The results computed by depth super-
resolution [47] are displayed in (c1) and (c2). (d1) and (d2) are the meshes acquired using
our method but without applying our locally robust matching procedure. (e1) and (e2) are
the output meshes of our method and the corresponding normal maps are displayed in (f1)
and (f2).
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covered clearly. Fig. 3.7(d1) and (d2) shows our results without applying our local match
refinement step. The uneven surface in some part is caused by misalignment. We are able
to eliminate the artifacts after our locally matching step with real geometric details revealed
as shown in Fig. 3.7(e1) and (e2).

To further validate our robustness against texture copy problem, the results of a Book
cover with extremely rich textures are demonstrated in Fig. 3.8. As displayed in Fig. 3.8(d)
the textures have been successfully factored out from the image with our approach and
the recovered model keeps as a planar surface after the enhancement. In comparison,
the result from shading refinement method(Fig. 3.8(b)) and depth super-resolution ap-
proach(Fig. 3.8(c)) are severely affected by the texture copy effect with lots of fake ge-
ometric details appeared.

Intrinsic Image Decomposition

In order to show the performance of our method in albedo recovery, we have also made
some comparisons with two state-of-the-art intrinsic image decomposition approaches [21,
60] as displayed in Fig. 3.9. For these two compared methods, they take the RGB-D images
of the reference frame as input, as displayed in the first column. The second column shows
the result from Chen [21], for which the shading image is over smoothed with the geometry
details decomposed into albedo map incorrectly. The method from Jeon [60] has better
results on recovered shading images for the Turtle and Frog models as displayed in the
third column. However, some textures still stay at the shading image especially for the
Shoe and Backpack. In comparison, with our pixel-wise albedo computation method, we
are able to recover a much sharper albedo map and the texture copy effect in the geometry
is barely noticeable.

3.5 Conclusion

In this chapter, I have presented a novel approach to recover surface details and its albedo
map from an RGB-D video sequence. The object is experiencing casual motion from which
the induced illumination variation provides us the cue to recover the surface normal and its
albedo as well. A robust lighting insensitive local match strategy is proposed to establish
correct correspondences from reference frame to other frames. Then, the environmental
lighting is estimated by exploiting the whole sequence to get rid of the effect of varying
textures. Finally, the surface normal and its albedo is calculated robustly with our EM
framework. We have validated our method on both synthetic and real datasets and com-
pared with some state-of-the-art surface refinement and intrinsic decomposition methods.
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(a) Color (b) Shading refinement

(d) Ours(c) Super-resolution

Figure 3.8: Results on Book model. (a) is the reference color image. (b) shows the refined
mesh with shading refinement method [105]. (c) shows the super-resolution results [47].
The recovered mesh surface from our method is displayed in (d).

As demonstrated in the experiments, we have achieved good performance on both surface
details recovery and intrinsic decomposition.
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Figure 3.9: Comparison results on albedo recovery or intrinsic decomposition of the Tur-
tle, Frog, Shoe and Backpack model. The first column is the input color image with its
corresponding depth map. The second column shows the result of Chen [21]. The third
column is the decomposed albedo and shading images from method in [60]. Finally, the
last column demonstrates the result achieved by our method.
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Chapter 4

High-speed Depth Stream Generation
from a Hybrid Camera

In addition to limited spatial resolution, the current consumer depth sensor also suffers
from low refresh rate. Among all the publicly available commodity depth sensors, the
SwissRanger™ and PMD™ can capture the depth at higher speed than 30Hz, but with a
much lower resolution at about 100 × 200. For the well known Kinect depth sensor, it
has depth resolution at 640 × 480 for Kinect V1 and 512 × 424 for Kinect V2. Both
have a refresh rate of 30Hz. The Azure Kinect, which is the latest version, has much
higher resolution(1024 × 1024) but the frame rate is still 30Hz. On the other hand, high-
speed video has been commonly adopted in consumer-grade cameras and even cellphones.
Therefore, in this chapter we present a hybrid camera system that combines a high-speed
color camera with a Kinect depth sensor that, with our novel post-processing algorithm, can
generate the depth stream that has the same frequency and resolution as the color camera.

Given our hybrid camera setup, one straightforward way to generate high-speed depth
stream is to apply bi-directional interpolation based on the optical flow. This is easy to
implement. However, it is not always sufficient, since the linear motion assumption is not
always true. In fact, usually it is the non-linear motion between frames that makes high-
speed video interesting. We present a novel algorithm that enforces the shading constraints
with the flow guidance in a unified framework. Instead of recovering the depth sequence
frame by frame, we formulate an objective function with the shading constraints within
frames and optical flow constraints between frames.
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4.1 System setup

We now briefly introduce our system setup and the overall processing pipeline. Our hybrid
camera uses a PointGrey™ Dragonfly camera as the high-speed color camera. It captures
images with resolution 640×480 at 180fps. We put the depth camera, for which we use the
Kinect depth sensor, next to the PointGrey camera. The original depth stream is captured
at 30fps. The two cameras are calibrated and synchronized with system timestamps.

An overview of our high-speed depth map generation framework is shown in Figure 4.1.
First, we will obtain the flow information between color images. In the meantime the

Key frame Depth
 𝐷0,  𝐷𝑇

Shading 
decomposition

Depth 
Synthesis

Depth 
Stream
𝐷0～𝐷𝑇

… …

… …

Color Sequence
𝐼0～𝐼𝑇

Optical flow 
computation

Figure 4.1: System Pipeline.

lighting condition is estimated in these key frames, which is assumed to be changing slowly
over time. Then the albedo and shading images for the whole sequence are estimated
with a novel decomposition algorithm. It uses the depth cues in key frames and temporal
constrains (Section 6.2.2). Finally, the shading cues and flow information are combined
together into our proposed global optimization framework, from which we can generate
the depth stream (D0 ∼ DT ) between any two key frames (Section 6.2.3), leading to an
output RGB-plus-depth stream at 180Hz (the same rate as the high-speed color camera).
Notice that we do not attempt to increase the spatial resolution of the depth map. Existing
algorithms can be adopted if desired.

4.2 Our Approach

Suppose we have two depth frames D̂0 and D̂T , which are denoted as the depth key frames,
and color frames I0 ∼ IT , where I0 and IT correspond to the depth frame D̂0 and D̂T
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respectively. Our goal is to estimate or refine the depth frames D0 ∼ DT .

4.2.1 Preprocessing

First, we will describe some pre-processing steps and clarify some notations.
Depth warp The two cameras are calibrated and we warp the key frame depth maps

into color coordinates using the calibrated intrinsic and extrinsic parameters.
3D point Suppose we have a pixel p = (i, j) with depth D(p), then with the depth

camera intrinsic K we can get its 3D point position as

X(p) = D(p)K−1(i, j, 1)T , (4.1)

K =

 fx 0 µ

0 fy ν

0 0 1

 (4.2)

where fx and fy are the focal length in x and y direction, µ and ν are the camera’s principal
point.

Normal We use the perspective camera projection model, and the unnormalized normal
ñp for pixel p can be computed as,

ñ(p) = (X(i, j + 1)−X(p)
)
×
(
X(i+ 1, j)−X(p)

)
(4.3)

Then substitute the 3D points in Eq. 4.3 with Eq. 4.2 and Eq. 4.1, the normal can be
written as

ñ(p) =
D(i+1, j)·D(i, j+1)

fx ·fy


fx·(D(i,j+1)−D(p))

D(i+1,j)
fy ·(D(i+1,j)−D(p))

D(i,j+1)
(µ−j)·(D(i,j+1)−D(p))

D(i+1,j)
+(ν−i)·(D(i+1,j)−D(p))

D(i,j+1)
−1

 (4.4)

Finally, we can normalize it to n(p).
Optical flow We have the color sequence I = [I0, I1, · · · IT ] and the corresponding

mapping between any two neighboring frames can be obtained from optical flow [19].
Wt(p) maps the pixel p in frame t to next frame t+ 1.

4.2.2 Intrinsic decomposition

Before enforcing the shading constraints for generating high-speed depth stream, we need
to perform the intrinsic image decomposition to separate the shading effect from albedo
and estimate the lighting condition using the depth key frames.
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Lighting estimation

Similar to the majority of prior work on lighting estimation, we assume the object surfaces
to be Lambertian, based on which Spherical Harmonics (SH) can be used to represent
the incident lighting L efficiently. We use the first nine SH basis functions (up to second
order), which is a good approximation for Lambertian reflectance [113]. Then the reflected
irradiance I for each pixel p can represented as

I(p) = A(p) · S(p), (4.5)

S(p) =
9∑

m=1

lmHm(n(p)), (4.6)

where A(p) is represented as albedo vectors for pixel p which contains three channels, and
S(p) donates the scalar shading vaule for p. lm are the corresponding SH coefficients of
incident lighting, Hm(np) represent the SH basis functions (see section 2 in supplementary
material for more details).

Similar to [124], we assume that the pixels within the same super-pixel share the same
albedo value, therefore we cluster the color image to SN segments with super-pixel algo-
rithm [4].

For every two neighboring key depth maps with their color images, we can get the lm
by minimizing the energy function,

EL =
∑

t∈{0,T}

SN∑
sn=1

∑
p

||Asnt (p)
9∑

m=1

lmHm(nt(p))− It(p)||2, (4.7)

where SN is the number of superpixels segments of color images,Asnt (p) means the albedo
in frame t for pixel p ∈ snth segments, which is approximated by the mean color of the
superpixel.

We can solve this minimization by computing the mean albedo of the superpixels and
lighting coefficients in an iterative way and the iteration starts by setting the albedo as
mean color of pixels inside each superpixels. Since we assume that the lighting is changing
slowly during the data capture, we use the same lighting coefficients lm for the sequence
between two key frames.

Shading and albedo computation

The goal of shading computation is recovering the albedo A(p) and shading S(p) that best
match the image I(p). This is an essential step before SfS can be used. Different from
the previous works on shading decomposition using RGBD images, we do not have depth
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images in every frame but only some key frames. On the other hand, the depth information
in key frames provides us the valuable cues to resolve the ambiguity for single image
decomposition. Therefore, we propose to compute the shading images for the sequence
between any two key frames in a unified optimization making use of the depth cues in key
frames and albedo consistency constraints along the sequence. The objective function is
described below.

First, we have the data terms. The first is to match the image input. We operate in the
logarithmic domain and Â, Ŝ and Î stand for the logarithm of albedo, shading and color
image, respectively.

Ed im =
T∑
t=0

∑
c∈{R,G,B}

∑
p

ωlumt (p)||Ât(p, c) + Ŝt(p)− Ît(p, c)||2, (4.8)

where
ωlumt (p) = lum(p) + ε (4.9)

This term is weighted by the luminance of the input intensity image to prevent dispro-
portionably strong affect of dark pixels.

The second data term is to preserve the initial shading images in key frames, which
can be computed with the lighting vector(Section 4.2.2) and coarse surface normals. The
generated shading images may not be accurate but they are good approximations.

Ed s =
∑

t∈{0,T}

∑
p

||log(
9∑

m=1

lmHm(np))− Ŝt(p)||2 (4.10)

Regularization terms Next, we have the spatial priors for shading and albedo in each
frame, as well as the temporal consistency priors of albedo between neighboring frames.

The albedo smoothness term for each frame with adaptive weighting is

Es a =
T∑
t=0

∑
p,q∈N

ωat (p, q)||Ât(p)− Ât(q)||22 (4.11)

The adaptive weight is computed with the differences of intensity and chromaticity
between adjacent pixels

ωat (p, q) =


0 if∇cht > τch

0 if∇lumt > τlum

exp(−∇ch
2
t

σ2
ch

) · exp(−∇lum
2
t

σ2
lum

) otherwise

(4.12)

where
∇cht = ||ch(It(p))− ch(It(q))||2 (4.13)
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∇lumt = ||lum(It(p))− lum(It(q))|| (4.14)

The shading smoothness term is formulated as below

Es s =
T∑
t=0

∑
p,q∈N

ωnt (p, q)||Ŝt(p)− Ŝt(p)||2, (4.15)

For key frame 0 and T, we have coarse depth from which we can compute the surface
normal n, and then the smooth weight ωnt (p, q) is set as

ωnt (p, q) = 1− exp(−
(nTpnq)

2

σ2
n

) (4.16)

It means that we will favor smooth shading for adjacent pixels that have similar normal
orientations. For other frames 1 ∼ T − 1 that only have color images, the smooth weight
may be set as a constant value. However, the weight is not easy to choose. As shown in
figure 4.2 , the texture is not separated clearly from shading image if the weight is small
(figure 4.2(b)), while the shading is over-smoothed when the weight is large (figure 4.2(c)).

To deal with this problem, we decide to propagate the adaptive weighting terms com-
puted in key frames into other frames. In more detail, the weight term in frame 0 is propa-
gated forward to next frames using the following equation

ωn,ft (p, q) =


ωn,ft−1(pt−1, qt−1) pt−1, qt−1 ∈ N for 1 < t < T

ωn0 (p0, q0) p0, q0 ∈ N for t = 1

0.1 otherwise for t ∈ [1, T − 1]

(4.17)

In the above formula, for adjacent pixels p and q in frame t, the corresponding pixels
pt−1 and qt−1 in previous frame t− 1 can be found with optical flow. The smooth weight is
propagated from previous frames when the adjacent pixels stay connected as neighbours,
otherwise is set to 0.1. In this way, the smooth shading is propagated and shading details
will still get preserved. We can compute the weight ωn,bt using backward propagation from
frame T . The weight is blended as

ωnt (p, q) = max{ωn,ft (p, q), ωn,bt (p, q)} (4.18)

The temporal albedo consistency is defined as

Et a =
T−1∑
t=0

∑
p

ωfbt (p)ωtat (p)||Ât(p)− Ât+1(Wt(p))||2, (4.19)

The weight terms are necessary as we need to prevent the artifacts caused by occlusion
between frames and the inaccuracy in flow computation. The weighting term ωfbt (p) is used
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to discard the occluded regions and is set to 0 if the froward-backward flow consistency
check fails, otherwise it is set to 1. We set the weighting term ωtat as

ωtat (p) =

{
0 ||It(p)− It+1(Wt(p))||2 > τta

1 otherwise
(4.20)

The final objective function is the weighted sum of all terms, that is

El = Ed im + λd s · Ed s + λs a · Es a + λs s · Es s + λt a · Et a (4.21)

The objective function can be solved with linear optimization.
With the above propagation framework, for middle frames that do not have depth im-

ages, we are still able to decompose the texture from color images while preserving shading
details, as shown in figure 4.2(d).

(a) (b) (c) (d)

Figure 4.2: Results on intrinsic decomposition. (a) a sampled middle frame; (b) decom-
posed shading image when constant shading smooth weight ωnt set as 1.0; (c) shading im-
age computed when ωnt is set as 6.0; (d) our shading image with adpative smooth shading
weight.

4.2.3 Depth stream generation framework

Now we have all the albedo and shading images for each frame (A0 ∼ AT and S0 ∼ ST ),
and the key frame depth images (D̃0 and D̃T ), we can recover the in-between depth frames.

Given equally sampled temporal frames indexed by t, the 3D scene velocity , Ut(D(p))

at pixel p, is computed as (for simplicity, we omit p here),

Ut(D) = XWt

(
Dt+1(Wt)

)
−X(Dt) (4.22)

where D = [D0, D1, · · ·DT−1]. The above function is the velocity field for the se-
quence.

It is assumed that the motion between neighboring color frames should not be too fast
and will prefer small velocities that are spatially smooth. Our first term is denoted as the
velocity term,
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Ev=
T−1∑
t=0

∑
p

(
||Ut(D)||2 + λvψ(||∇Ut(D)||2)

)
(4.23)

where
ψ(a2) =

√
a2 + ε2 (4.24)

The first term in Eq. 4.23 has the similar effect as bi-linear interpolation that will spread
the spatial movement in 3D between the two key frames into the whole sequence. The
second term in Eq. 4.23 is exploited here to preserve the smooth scene flow field [51]. We
do not enforce any linear constraints for this term while only spatial smoothness is favored
for the 3d flow field. Therefore, the velocity term will try to preserve the smooth transition
along the depth sequence while allowing for non-linear motion.

Secondly, with the albedo images computed from the previous section, we have the
shading constraint that penalizes the differences between rendered images and the captured
color images. We use the Charbonnier penalty function(Eq. 4.24), which is more robust to
the outliers in the shading image,

Es =
T∑
t=0

∑
p

ψ
(
||At(p)

9∑
m=1

lmHm(n(p))− It(p)||22
)

(4.25)

For the above formula, n(p) can be substituted with depth D based on the normal
computation equation (Eq. 4.4 ). Therefore, the shading constraints are directly enforced
on depth streams.

Next, in order to have the smooth surface, we utilize a Laplacian smoothness term for
each frame. We use the adaptive weighting again to preserve the surface boundary.

Elap =
T∑
t=0

∑
p

(
Dt(p)−

∑
q∈Np

ωt(p, q) ·Dt(q)∑
q∈Np

ωt(p, q)

)2

(4.26)

In the above formula, the weighting term is computed using the Gaussian filter as,

ωt(p, q) = exp(−||Dt(p)−Dt(q)||2

σ2
lap

) (4.27)

Finally, the data term enforces the constraint provided by two depth key frames D̃0 and
D̃T , which can be regarded as the boundary condition.

Ed =
∑

t∈{0,T}

∑
p

(
Dt(p)− D̃t(p)

)2 (4.28)

In summary, our energy function for depth map generation is formulated as

E = Ev + λs · Es + λlap · Elap + λd · Ed (4.29)
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The formulation for generating the depth stream is a non-linear minimization problem.
We use the Levenberg-Marquard (LM) method to solve this optimization problem. We
have found out that it is difficult to achieve convergence directly since the solution space
could have many local minimums. We instead develop a coarse-to-fine refinement strategy.
First, we build up the pyramid for shading sequence and two key depth frames. In our
implementation, we have four layers for the pyramid. In the first two coarsest levels, the
energy function Eq. 4.29 is minimized and we can get the initial rough depth sequence.
Then we will refine the depth with shading constraints separately for each frame. In this
step, the initial depth propagated from the coarser level will be enhanced with the shading
constraints together with Laplacian smoothness with the Eq. 4.25 and Eq. 4.26.

4.3 Experiments

We have captured some real data sets with the prototype of our hybrid camera setup de-
scribed in Section 4.1 and tested our method on these datasets. Also, we have generated
some synthetic datasets to validate the method quantitatively. In this section, we will show
quantitative and qualitative comparison results. All the parameters in our algorithms are
showed on Table 4.1, these values are tuned empirically and remain fixed for all the exper-
iments.

Table 4.1: The parameter settings for our experiments.

Eq. 4.7 Eq. 4.9 Eq. 4.12 Eq. 4.16 Eq. 4.20
SN ε τch τlum σch σlum σn τta
30 0.001 0.06 0.10 0.01 0.05 0.1 0.08

Eq. 4.24 Eq. 4.27 Eq. 4.21 Eq. 4.29
ε σlap λs a λs s λt a λs λlap λd

0.001 5mm 2.0 3.0 5.0 0.1 0.01 10

We have also implemented two baseline algorithms. The first is to use the optical flow
information to interpolate the in-between frames. We denote this baseline method as the
BL (bi-directional interpolation) method. The second is to refine the interpolated depth
map with shading information. More specifically, we first apply a low-pass filter to smooth
out the interpolated depth maps and then do the refinement with shading constraints, e.g.,
using method [105], to recover more surface details. We denote this method as the SBL
method.
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4.3.1 Intrinsic image decomposition

We have compared our method with three previous works on intrinsic image decomposition
with single RGB-D image as input. As shown in figure 4.3, the upper rows demonstrate
the decomposition for key frame images that have captured depth frames as input. For
the lower row, it corresponds to a sampled middle frame that has no captured depth as
input. For this middle frame, the interpolated depth from the BL method is taken as the
input depth for all these comparison methods; for our method the interpolated depth is not
needed, since the decomposition is performed using global optimization with key frames
and middle frames computed all together.

Chen et al. [21] performs the decomposition without taking surface details into ac-
count and tends to get shading image that is quite smooth, as shown in figure 4.3(b). This
method performs better on scene level decomposition not on surface details. Jeon et al. [60]
explicitly deal with the texture in the image and separate the repeated texture patterns be-
fore shading decomposition. Therefore, the grid patterns can be separated into albedo
image correctly, while the texture on the scarf stays at the shading image, as shown in
figure 4.3(c). Figure 4.3(d) displays the results using the method [11] which takes as in-
put a single RGB-D image and produces as output an improved depth map, albedo image,
shading image and illumination model. This approach is sensitive to the outliers in input
depth map, especially along the surface boundary, as the zero depth value is not handled
explicitly. It will fail in our case where the depth round the moving hands and arms is quite
noisy caused by motion blur and also the interpolated depth is wrong around the arms. Fig-
ure 4.3(e) shows the results from our method where the texture is successfully decomposed
into albedo image while real surface details, i.e. on the hat and the around the arms, can be
seen in the shading image.

4.3.2 Qualitative evaluation for depth frame generation

In Figure 4.4, we demonstrate the recovered depth of the relative simple case, where the hu-
man subject is waving her arms and hands quite fast. For this relative simple case, since the
3D motion can be approximated by the linear motion, the bi-directional interpolation(BL)
result is acceptable in most of the parts except for some artifacts along the hands. After
the shading refinement(SBL), the depth becomes more smooth and the surface details can
be recovered. However, the artifacts have got passed from the interpolation result and the
shading refinement could not handle this properly. In comparison with these two methods,
our method yield better results thanks to the smooth velocity field constraints in the whole
sequence and our bundle optimization approach. Also, considering the motion blur effect
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(a) input (b) Chen13[11] (c) Jeon14[19] (d) Barron16[5] (e) ours
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Figure 4.3: Results on sampled images from hand waving stream. (a) Input color image
and depth map. (b-e) Albedo and Shading images estimated by three recent approaches for
intrinsic decomposition and by our approach.

along the moving boundary, for the key frame depth, we detect the object boundaries with
both depth and color contrast and enforce the gradient smoothness in the boundary area
along with shading refinement. The refined key frame meshes are shown in (d) and (h).

Figure 4.5 shows the sequence where a towel is waved in front of the hybrid camera. For
this case, the towel is experiencing both global translation and local deformations, which
are more challenging to recover. Similar to the above case, the error in the interpolated
depth will pass to the shading refinement. Also, the texture-copy problem has not been
handled properly for the SBL method, as the stripe patterns on the towel are visible as
hallucinated surface details. As most of the texture details have been separated clearly with
our intrinsic decomposition, the recovered depth from our method is more faithful with the
real surface details preserved.
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(b) Sampled middle frame(a) Input key frame 0

(d) Refined key frame 0 (f) ours(e) BL (g) SBL (h) Refined key frame T

(c) Input key frame T

Figure 4.4: Results on the hand waving sequence. To better show the shape of the hands,
we adjust the perpective angle of the generated mesh. We have two key frame color images
and the initial meshes as input shown in (a) and (c). (d) and (h) are the key frame meshes
after refinement. The second row shows the interpolation result of one sampled frame
shown in (b). (e)-(g) are the recovered meshes using BL, our proposed method and SBL,
respectively.

4.3.3 Quantitative evaluation

Quantitative evaluation for Synthetic data We use synthetic data to demonstrate the
effectiveness of the global optimization framework for depth map generation compared to
frame-by-frame method. The shading images are supposed to be given for the optimization
framework, therefore we ignore the influence of albedo or texture.

We have generated two cases of synthetic data displayed in Figure 4.6 and Figure 4.7.
For each sequence, it consists of seven depth frames with resolution of 64 × 64. We have
the ground-truth lighting condition, therefore we can render the shading images for each
frame. The optical flow between any frames are all set to zeros for simplicity, which means
that the motion is purely in the z-direction. Given the first and last depth frame as two key
frames and the shading sequence, we present the result computed with BL, SBL, and also
our method.

The first case (Figure 4.6) displays a simple case where the surface is bending forward
along with the global linear translation. As illustrated in Figure 4.6, both SBL and our
approach can recover the depth with quite small error.

For the second case (Figure 4.7), we have generated the depth sequence that has the
sine wave in the shape deformation and also the global translation, which is the complex
combination of linear and non-linear motion. For this more complex motion, our method

43



SB
L

o
u
rs

Figure 4.5: Results on the towel shaking sequence. To better demonstrate the shape of the
towel, we adjust the perpective angle of the generated mesh which differs from the color
image. First row shows the input color sequence with left most and right most have the
corresponding input depth frame, while the middle ones are sampled frames between these
two frames. Second row gives the input depth on the left and right, and interpolated depth
with BL method for the middle frames. Third row displays the shading refinement result
using SBL method. The last row shows the recovered depth from our method.

will get smaller error than the BL and SBL method. The regularization terms and the global
optimization will make our method converge to a better local minimum that is closer to the
real depth.

For Figure 4.6 (Figure 4.7), the first row shows the mesh and shading image, which
are the key frames as our input. Figure 4.6a (Figure 4.7a) is the mesh for the first frame
with the shading image shown in Figure 4.6b (Figure 4.7b). We put the meshes of the key
frames together in Figure 4.6c (Figure 4.7c). The second row shows one sampled frame,
where the first column Figure 4.6e (Figure 4.7e) is the groundtruth mesh and the next three
columns present the error map for the depth maps recovered with BL, SBL and also our
method respectively.
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(b)(a) (d)(c)

(f)(e) (h)(g)

mm

Figure 4.6: Results on synthetic data (simple case).

(b)(a) (d)(c)

(f)(e) (h)(g)

mm

Figure 4.7: Results on synthetic data (more complex case). The two shading images (b)
and (d) are the same to each other as we set the sequence to have half period of sine wave
and these two key frames have the same shape, but they have the global displacement in
depth, as shown in (c).
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Mean Squared error

BL SBL Ours

Hand waving 8.252 6.646 4.878

Towel shaking 15.638 10.295 6.9814

Skirt spinning 12.691 7.053 4.752
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Figure 4.8: Quantitative results for real datasets. All the results are computed with squared
mean error. We discard the extreme outliers around the surface boundaries during the
evaluation.

To better illustrate the results, we compute the relative depth error with the formula
below, where the error is evaluated using the difference between recovered depth and the
ground-truth depth divided by the displacement from the first frame,

err =
1

T − 1

T−1∑
t=1

∑
p |Dt(p)−Rt(p)|∑
p |Dt(p)−D0(p)|

(4.30)

For the BL method, the relative error is 0.1962 for the simple case and 0.3788 for
complex case. The error will decrease to 0.0012 after the shading refinement (SBL) for the
simple case and 0.0837 for the complex one. For our proposed method, the error is 0.0012
and 0.0569 respectively.
Quantitative evaluation for real data To better validate our method on the real datasets
with some quantitative measurement, we sample several frames from our real datasets and
down-sample the captured depth frames into 15Hz and then use these frames to recover all
the depth sequences corresponding to color frames (180Hz), which means for every two
key frame depth maps, we will get thirteen depth frames interpolated from the interpolation
methods. The middle frame corresponds to the original depth frames in 30Hz. The captured
depth frames can be approximated as the groundtruth depth to measure the accuracy of the
interpolated depth maps. We evaluate the BL method, SBL method and our approach using
this strategy on three real datasets we have captured. We evaluate the performance of each
method by measuring the mean value of the depth error compared to ground-truth depth.
The results are shown in Fig. 4.8. Again our method is the best one.
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4.4 Conclusion

In this chapter, we present a novel hybrid camera setup, which is composed of a high-
speed color camera and a depth sensor. Using this hybrid camera, we propose a framework
to recover the depth sequence of the scene with high-speed motion. Considering that the bi-
directional interpolation method will fail when there exists non-linear motion in the scene,
we exploit the shading constraints in each color frame to overcome this limitation. In our
formulation, we use the depth information captured from low-speed depth camera as the
boundary constraints for the whole sequence and enforce the SfS constraints in each frame.
Also, the depth maps of neighboring frames are associated with our proposed velocity term
that preserves smooth motion field. Therefore, we can recovery the depth sequence in a
single optimization. Finally, we present the comparison results for real datasets captured
with our hybrid camera and also for synthetic datasets. Our high-speed and high-quality
RGB-D sequence can be used in many areas where the motion is fast, such as sport event,
gait analysis, etc.
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Chapter 5

SparseFusion: Dynamic Human Body
Reconstruction from Sparse RGBD
Images

3D modeling or reconstruction of human bodies is a very hot topic which has been studied
for decades due to its vast applications in biometrics, virtual reality, gaming, etc. Many
scanning systems [59, 29, 85] have been presented under a multi-view setup [30], from
which pleasant and impressive results have been achieved. However, the system is usually
expensive and not portable. Therefore, instead of using any complex setups, in this chapter
we intend to build up complete 3D human avatar using a single commodity RGBD camera,
which is a challenging task because of the almost inevitable non-rigid motion and also
surface occlusion.

Scanning systems [111, 87, 131, 86, 118, 132] have been proposed by tracking the dy-
namic surface motion along the RGB-D sequence. Although very impressive and pleasing
results have been achieved, they rely on reliable and continuous dense tracking over the
whole sequence which is computational expensive and contains much redundant informa-
tion. To address this issue, we propose to use only several sparse RGBD frames to build
up a complete and watertight human model with clear and consistent textures. Similarly,
Li [74] has presented the system that takes eight partial pieces as input. However, in this
method the user is supposed to keep a certain static pose while rotating in front of the sen-
sor. On the contrary, we are able to handle sparse fusion of human body under various
poses.

To achieve this goal, we exploit the SMPL [88] model as a human template to register
sparse frames of the human into a canonical model. First, we optimize the SMPL parame-
ters so that the optimized SMPL model will closely fit to the partial scans generated from
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the input depth images. We align every two pieces that have sufficient overlap using the
correspondences transferred by the SMPL template model. Starting from this initial align-
ment, we use the color information to get better registration. A global non-rigid registration
procedure is performed to get all those partial pieces deformed into a canonical coordinate
as guided by those correspondences acquired from the pairwise registration.

5.1 Approach

We are given sparse frames of a human subject captured under different poses with different
body orientation. It is a partial scan of the human body for each frame and our goal is to
build up a complete human model by fusing all those partial scans. In this section, a
generative probabilistic human template called SMPL model is exploited to register sparse
frames into a canonical model.

The SMPL model is a skinned vertex-based model which parametrizes a triangulated
mesh by pose and shape parameters. The shape parameters β are coefficients of a low-
dimensional shape space, learned from a training set of thousands of registered 3D human
body scans. The pose parameters θ represent the joint angle in an axis-angle representation
of the relative rotation between body parts. The posed body model M (β,θ) is formulated
as below given the shape and pose parameters,

M (β,θ) = W (TP (β,θ), J(β),θ,Ω) (5.1)

TP (β,θ) = T +BS(β) +BP (θ) (5.2)

where T is a base template mesh, BS(β) and BP (θ) are vectors of vertices representing
offsets from the base template as controlled by the shape and pose parameters respectively.
W () is a blend skinning function which transforms the mesh from T pose to the current
pose as controlled by the joint position J(β) and blending weights Ω. More details about
the SMPL model can be found in paper [88].

We optimize the SMPL model to let it fit to each of the partial scans. And then We
align every two partial pieces that have great overlap regions by using the correspondences
conveyed by the SMPL model. After that, we register those pieces altogether with a global
non-rigid registration approach. In the following equations, M1 ∼ MN denotes the partial
scans from the depth images and I1 ∼ IN are the color images.
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5.1.1 Initial fitting

For every frame of the RGBD images, we solve the pose and shape parameters of the SMPL
model so that the generated 3D human model fits as closely as possible to the captured
RGBD image. For each frame Mk and Ik, we achieve this by minimizing the following
objective:

E(β,θ) = Edata(β,θ) + Er(θ) (5.3)

The data term Edata is defined as:

Edata(β,θ) = Esurface(β,θ) + Ejoints(β,θ) (5.4)

For each vertex M i
k in the surface Mk, we minimize its distance to the closest vertex on

the generated SMPL model M (β,θ):

Esurface(β,θ) =
∑
i∈|Mk|

min
v∈M (β,θ)

||M i
k − v||22 (5.5)

The joints fitting term Ejoints(β,θ) is to match the model joints to the joints of the
partial scans denoted as Ĵest,i. f() is the function that transforms the joint from its rest
pose to current positions as controlled by the pose parameters using the chain rule de-
fined by the human skeleton. We compute the 2D joint locations in the color image using
OpenPose [158], after which the 3D human joints are estimated by back-projecting the 2D
joints into 3D space with the depth information. ρ() is a robust Geman-McClure penalty
function [42]. This term is important to enable solving large pose changes.

Ejoints(β,θ) =
∑
i∈|J |

ωiρ(f(J(β)i,θ)− Ĵest,i) (5.6)

The other termEr(θ) is a pose regularization term formulated as below which penalizes
unusual poses. It is defined as a Gaussian mixture model trained from the CMU dataset [2]
whereN(θ;µθ,i,Σθ,i) is a Gaussian distribution with its mean and variance denoted as µθ,i
and Σθ,i respectively.

Er(θ) = − log
∑
i

(ciN(θ;µθ,i,Σθ,i)) (5.7)

We get the shape and pose parameters for each piece by minimizing the above objective
function so that the optimized SMPL model will fit to the partial scans.

Furthermore, we propose a bundle adjustment approach to refine the shape and pose pa-
rameters by minimizing the total misalignment error of all those partial pieces to the SMPL
model with respect to a consistent body shape and their poses respectively. For each piece
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(a) RGBD Input (b) Optimized SMPL (c) After Deformation

Figure 5.1: Initial Fitting results. (a) is the input RGBD frame and we show the detect
joints on the color image. (b) shows the optimized SMPL aligned with the input scan. (c)
shows the deformed input scan that fits even better to the SMPL model.

they should have consistent body shapes as for the same human subject. Mathematically
the objective function is formulated as below,

E(Ω,β) =
N∑
k=1

Esurface(β,θk) (5.8)

Ω = {θ1,θ2, · · ·θN} (5.9)

We initialize the pose parameters with those computed separately from each piece. The
shape parameters are initialized by the one computed from a frontal piece. We show the
fitting results in Fig. 5.1 showing the optimized SMPL that fits to the input partial scans.

5.1.2 Template guided pairwise alignment

After we get the optimized SMPL model that fits to the input RGBD images, we take it
as guidance for initial alignment of those partial scans. Before that, since we cannot find
any SMPL model that will fit perfectly to the input mesh, we further deform the input
mesh onto the optimized SMPL model to get better alignment, as shown in Fig. 5.1(c).
After this, we can establish correspondences from every input scan to the optimized SMPL
model via nearest search. And then the correspondences between every two input scans are
established through the SMPL model.
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Now suppose we want to register the partial piece Mi to Mj . We exploit the Em-
bedded Deformation Model [112] to parametrize the mesh. That is, a set of graph nodes
(g1, g2, ..., gl) are uniformly sampled throughout the mesh, and for each node gi, it has an
affine transformation specified by a 3 ∗ 3 matrix Ai and a 3 ∗ 1 translation vector ti. For
each vertex v it gets deformed by its K nearest graph nodes with a set of weights:

Φ(v) =
K∑
i=1

wi(v)[Ai(v − gi) + gi + ti] (5.10)

We compute the deformation from Mi to Mj by building a graph for the mesh Mi and
the deformation parameters A1 ∼ Al (denoted as A) and t1 ∼ tl (denoted as T ) are
optimized by minimizing the following objective function:

E(A, T ) = Ereg(A) + Es(A, T ) + Ecor(A, T ) (5.11)

The term Ereg serves as the as-rigid-as-possible term that prevents arbitrary surface
distortion.

Ereg(A) =
l∑

i=1

||AiA
T
i − I||22. (5.12)

The smoothness term Es ensures smooth deformation of neighboring graph nodes.

Es(A, T ) =
∑

(i,j)∈µ

||Ai(gj − gi) + gi + ti − (gj + tj)||22. (5.13)

The term Ecor is our data term which penalizes the distances between correspondences
on these two pieces, which are extracted through the above optimized SMPL model Si for
Mi and Sj for Mj . Specifically, for a vertex vp on piece Mi, we find its nearest vertex on
Si within a certain threshold, which is denoted as vs. And we extract the vertex from Sj

which has the same vertex index as vs. Then we find the nearest vertex for vs with respect
to the mesh Mj , which is denoted as vq. The distance between vp and vq is minimized.

Ecor(A, T ) =
∑

(vp,vq)∈Cij

||Φ(vp)− vq||22. (5.14)

To get better alignment, we use the color information to refine the initial registration. In
details, first every partial scan is textured with its corresponding color image. Suppose we
have got the deformed mesh of Mi which is aligned to Mj after the above registration, and
we denote it as Dj

i . Now, we render a color image Ii with the deformed mesh Dj
i onto the

same space with respect to the color image Ij . We compute a flow field from Ii to Ij and
map the flow correspondences to the meshes. Finally, the deformation from Mi to Mj is
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(a) Frame I (b) Frame II (c) After Nonrigid Registration

Figure 5.2: Pairwise registration results. (a) and (b) are two sampled pieces. (c) shows our
registration result of (a) and (b). The mesh of (a) is deformed onto the mesh of (b).

further optimized using the EDM by enforcing the color correspondences. We show some
sampled pairwise registration results in Fig. 5.2.

Topology Change With the template guided initial alignment, we are able to deal with
the topological changes quite conveniently. That is, while building up the embedded graph,
we set further constraints that the vertex is controlled by the graph nodes belonging to
either the same body part or neighboring parts defined by its parents or child nodes. In the
meanwhile, the smoothness constraints are enforced on nodes that belong to the same body
parts.

5.1.3 Global alignment

After the initial alignment, we are able to establish correspondences between those partial
pieces, with which we can align them globally into a canonical model. Similar to the
registration of two partial pieces, we exploit the Embedded Deformation Model here to
extrapolate the deformation field, which means for every partial piece(M1 ∼ MN ) we
have a deformation graph embedded with it and our goal will be to solve those graph
parameters(A = A1 ∼ AN , T = T1 ∼ TN ) altogether. The objective function is formulated
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as,

E(A,T) =
N∑
i=1

[αregEr(Ai, Ti) + αsEs(Ai, Ti)] + αcorrEcorr(A,T) (5.15)

The first two terms are the as-rigid-as-possible and smoothness term respectively as
defined in Equation 5.12 and 5.13. We have the third term Ecorr defined as below as the
data term enforcing the correspondences between partial scans achieved from the above
pairwise initial alignment.

Ecorr(A,T) =
∑

(Ms,Mr)∈U

∑
(pi,qi)∈Csr

||φ(Mpi
s ,As, Ts)−M qi

r ||22 (5.16)

where Ms and Mr are any two pieces that have sufficient overlaps, and Csr is the
correspondence set we have got after the pairwise alignment. The deformed mesh of Ms

is supposed to fit onto the target mesh Mr as controlled by the correspondences. Besides,
vertices of the reference frame is enforced as fixed constraints.

Finally, with all those input partial pieces deformed to a canonical space, we apply
Poisson surface reconstruction to get the final human model S that is watertight.

5.1.4 Texture optimization

In some applications such as free-viewpoint video generation and teleconference, a 3D
geometric human body is not enough and we want the model to be textured. We describe
our texture optimization approach in this section. The input is the reconstructed human
model together with those partial pieces that are aligned to the canonical model and their
corresponding color images. Our goal is to generate consistent and clear texture map for
the 3D human model given the input.

Many texture mapping methods project mesh onto multiple image planes, and then
adopt weighted average blending strategy to synthesize model textures. However, the gen-
erated texture gets quite blurry in our case as the misalignment between those partial pieces
still exist which means the textures from different images are not perfectly matched. There-
fore, instead pf directly synthesizing from multiple images, we optimize a warping field for
every image consecutively before attaching these to the mesh model to eliminate possible
misalignment.

Starting from the reference frame, we attach the corresponding image onto the recon-
structed mesh model by projecting the mesh onto the image plane and compute the texture
coordinates for every face that is visible in the reference frame. For the next neighboring
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(a) Texture mapping results without
texture optimization

(b) Texture mapping results after 
texture optimization

Figure 5.3: Texture optimization results.

frame k, first we render an color image Imodel with the current textured mesh with respect
to the view direction of frame k. In the meanwhile, we have the color image Ik rendered
from the deformed partial mesh piece Mk that is textured with its corresponding captured
image. The possible misalignment between the overlap regions in Imodel and Ik will cause
visual seams if we attach the image Ik directly onto the current human mesh. To address
this problem, instead of adjusting the texture coordinates for each face in the 3D mesh
which is difficult to optimize, we try to find a warping field Wk for Ik in the image plane
so that the warped image will get well aligned with Imodel. In details, first we detect the
overlap regions of the texture map between Imodel and Ik, which we denote as Ωo. A flow
field Ŵk is computed from Ik to Imodel for the overlap part. Next, I propagate the flow field
onto the non-overlap part ΩN by minimizing the following objective function, from which
the overall warping field is estimated,

E(Wk) =
∑
p∈Ωo

(||Wk(p)− Ŵk(p)||2) + λs
∑

(p,q)∈N

||Wk(p)−Wk(q)||2 + λb
∑
p∈ΩN

||Wk(p)||2

(5.17)
Where we keep the warping field to be as smooth as possible with the second term.

The last term is a boundary term that is enforced to set constraints for pixels that are not
connected to the overlap regions.

Afterwards, we select optimal texture image for each face of the human model to gener-
ate the final texture maps. In Fig. 5.3, we show the texture mapping results w/o our texture
optimization procedure.
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Table 5.1: Reconstruction Error

frame number 1 6 8
mean error(mm) 17.1 9.2 7.4

5.2 Experiments

We demonstrate the effectiveness of our approach in the experimental part with both quan-
titative and qualitative results.

5.2.1 Quantitative evaluation on synthetic datasets

We tested our system on a synthetic dataset that we have created using Poser [108]. We
have selected eight models of a human subject under different poses from Poser and synthe-
size one depth map and color image from each selected frame with a virtual camera rotating
around the subject as shown in Fig. 5.4(a). Our reconstruction system results in a shape
with respect to the first selected frame which we take as the canonical frame as shown in
Fig. 5.4(b). We plot the error map to show the geometric error of our reconstructed model
with respect to the groundtruth model. The error for each vertex is computed via a nearest
search to the groundtruth mesh.

We also evaluated our method with only six input frames. As shown in Fig. 5.4(g),
we are able to reconstruct the human model with quite sparse frames. We evaluate the
reconstruction error of our method using 1, 6 and 8 frames. We take the optimized SMPL
model as the reconstructed model for only one frame. Table 5.1 shows the mean error of
our reconstructed model.

We compare our results with 3D self-portrait [74], which also takes eight partial pieces
as input. As can be seen in Fig. 5.4(f), it becomes quite difficult to align all those par-
tial pieces when there are large pose changes, and the misalignment still exists especially
around the arms and legs. On the contrary, we are able to align those partial pieces success-
fully under our framework, as we have taken the pose variations into account by optimizing
both pose and shape parameters of the SMPL model to fit to the input partial scans.

5.2.2 Qualitative evaluation on real datasets

For the qualitative evaluation, we have captured several sequences of human subjects with
Microsoft Kinect V2. The results of our method are displayed in Fig. 5.5. For each re-
construction, we use twelve RGBD images as input. For each person, we have actually
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(a) Input scans

(e) Groundtruth

(b) Our reconstructed model
Unit: mm

(c) Error Map of (b) (d) Error Map of (b) 

(f) Self-Portrait [13] (g) Our reconstructed model
using 6 pieces

(h) Error Map of (g) (i) Error Map of (g) 

Unit: mm

Figure 5.4: Results on a synthetic dataset.

captured a sequence with 360 frames with the person turns around in front of the camera
and we select one frame every thirty frames from the sequence. The partial pieces are gen-
erated from the selected frames and are smoothed as preprocessing. We take a frontal piece
as the canonical space and deform all other pieces onto it. But we are able to generate the
fused mesh with respect to any input scan by deforming the canonical mesh onto it.

We demonstrate the effectiveness of our method on dealing with topology changes in
Fig. 5.6.

5.3 Conclusion and Future work

In this chapter, we have proposed a novel SparseFusion approach to build up a complete
human avatar from only sparse RGBD images. In order to align those partial pieces of
human body under different poses and viewpoints together, we have exploited the SMPL
model as a human template and used it as a bridge to align those partial pieces into a unified
3D model. Experiments on both synthetic and real datasets demonstrate the capability of
our framework to reconstruct complete human bodies with accuracy in millimeters.
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Figure 5.5: Results on real datasets. The left two columns are sampled input scans and the
three right columns are the fused model and models deformed to some input scans.

58



(a) Sampled Frames (b) Reconstructed Human Bodies

Figure 5.6: Results on changing topologies.
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Chapter 6

Interactive Visual Hull Refinement for
Specular and Transparent Object
Surface Reconstruction

In this chapter, I will go beyond the lambertian surface reconstruction and focus on the 3D
reconstruction of specular or transparent objects, which is still a challenging problem in
computer vision. Due to their non-Lambertian surface reflectance properties, establishing
correspondences – a fundamental requirement for many 3D reconstruction algorithms –
becomes difficult or even impossible. The active depth sensors also fail in this case. The
reason is that for the stereo based depth sensor like Kinect v1, it cannot find correct cor-
respondences and for the TOF camera, it fails to calculate the phase shift of the emitted
signal. Therefore existing methods on reconstructing these difficult objects typically use
additional constraints such as specialized active illumination with stripes or checkerboard
pattern or known reference objects (e.g.,[53, 100, 32, 82, 142]).

In this work we aim to reconstruct highly specular surfaces like glass sculptures and
glossy trophies (such as these shown in Figure 6.1), from a multi-view images set casually
captured with a hand-held camera, without using active illumination or reference objects
(except a few markers for pose estimation). Naturally we decide to use a visual hull-based
approach that does not require pixel correspondences. The fundamental limitation of the
visual hull representation is that it is unable to model concavity. Through careful geomet-
ric analysis, we show that some type of concavity can actually be removed by using the
internal occluding contours, i.e., occluding contours that are inside the object’s silhouette.
Based on that we present a new visual hull refinement method, which we refer to as Locally

Convex Carving (LCC).
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Figure 6.1: The reconstructed models for glossy trophy and glass sculpture. The left col-
umn shows the capture object; the middle column shows the reconstructed 3D model using
visual hull; and the right column presents the reconstructed surface using our proposed
method.

6.1 Approach

Our goal is to reconstruct highly non-Lambertian objects from a set of casually-captured
multi-view images, without using any active lights. We assume that viewpoint for each
image is known and the object has been segmented from the background. There are many
existing techniques and tools that can achieve these two requirements. From the calibrated
and segmented images, we first construct a visual hull of the 3D model using traditional
volumetric visual hull reconstruction. The overall pipeline is shown in Figure 6.2, in which
we develop a novel contour tracking method and a new visual hull refinement scheme that
we referred to as Locally Convex Carving, finally concave areas are identified and interpo-
lated using boundary conditions. In the next few sections we will present our methods in
detail.

6.1.1 Terminology

An object’s contour provides important clues about the object shape. Suppose a 3D object
S is viewed by a camera. The object’s silhouette image contains values that distinguish
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Figure 6.2: The system pipeline of our approach

regions where the object is or is not present. Combined with calibration information for
the camera, Each pixel in a silhouette defines a ray in scene space (denoted as E3) that
intersects the object S at some unknown depth. The union of these view rays for all pixels
in the silhouette defines a generalized cone within which S must lie. If we are presented
with multiple views of S, the intersection of these generalized cones from all views defines
a volume in E3 that must contain S. As the number of the reference views, taking from
different locations, goes to infinity, the intersection volume converges to the shape known
as the objects visual hull, a term defined by Laurentini [76]. The visual hull, denoted as
V H(S), is guaranteed to contain the object S. In 2D, the visual hull is equal to the convex
hull of the object (denoted as CH(S)). For 3D scenes, the visual hull is a tighter fit than
the convex hull.

A less-known term, also defined by Laurentini [76], is the internal visual hull

((IV H(S)). CH(S) segments E3 into two regions. When all the reference views are
taken outside CH(S), V H(S) is formed. If views are taken outside S, e.g., including
concave areas in S but still outside S, IV H(S) is formed. It can be shown that IV H(S) is
an even tigher fit than V H(S), i.e., S ≤ IVH (S )≤VH (S )≤CH (S ). However it is often
difficult, if not impossible, to take pictures in concave areas in S. So IV H(S) mostly
remains a theoretical concept.

To explain our method, a few more terms need to be defined. As shown in Figure 6.3,
a contour is a view-dependent concept, a point in a contour is a point on S for which
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Figure 6.3: Illustration for occluding contours and visual hull. S is the real surface and
CH(S) is the convex hull which is same as visual hull (V H(S)) in 2d. P is the internal
occluding contour point while Q is the external occluding contour point.

a tangent line is intersecting S. The intersection point divide the tangent line into two
segments. When both segments are outside CH(S), it is called an external contour point
(e.g. Q in Figure 6.3); when at least one of them is inside the CH(S), it is called an
internal contour point (e.g. P in Figure 6.3). V H(S) can also be thought of as a union of
the external contour points. IV H(S), on the other hand, is the union of all contour points,
both external and internal, resulting a tighter fit.

The central idea of our method is to use the internal contours, without requiring pictures
taken from the concave regions of S. First we want to point out that most internal contours
are actually visible from outside, as long as one segment of the tangent line is outside
CH(S). For now we assume that the internal contours are already detected and present our
internal contour carving algorithm below.

6.1.2 Locally Convex Carving

Our carving algorithm starts with an already calculated V H(S) and detected internal con-
tours. Unlike the external contours, an internal contour captured outside CH(S) does not
define a clear region that separates S from E3. However, by definition, it does point to a
set of points that are locally convex. We just do not know where they are on the tangent
line. Inspired by stereo matching, we plan to use a pair of internal contours to further carve
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the volume. As illustrated in Figure 6.4, let us assume that we are given two internal con-
tours IC0 and IC1 with respect to viewpoint V0 and V1. We intersect view rays defined by
two contours to define a region R. At a first glance, R is in the concavity and should be
removed (shown in Figure 6.4 left). But close observations lead to the conclusion that the
intersecting view rays coming from the two sides of concavity may lead to over or under
carving. To prevent this, we define our Rule (1): if the contour normals (Np and Nq) are
opposite from each other, no carving should occur. On the other hand, if the two contours
are generated from the same continuous convex surface (as shown in Figure 6.4 right), then
R could be safely carved. However if the direction of the contour is close to parallel to
the epipolar plane, the intersections cannot be reliably estimated. So we set up Rule (2) to
prevent this: the angle between the surface normal and the epipolar plane normal should
not be too small.

pN
0V

epN

1VqN

P
R

pN P epN
qN

0V

1V
R

Figure 6.4: Locally Convex Carving. The left figure represents the case that the intersected
tangent lines coming from two different convex surface and the contour normal are opposite
from each other, and in this case we cannot carve out the Region R. The right one is what
we defined as locally convex carving cases where the Region R can be carved. All the
tangent lines in these figures indicate internal contours. Np and Nq are the contour normals
and Nep is the normal for the epipolar plane.

In summary, our locally convex carving is defined in Algorithm 1. The two if statements
represents the two rules. To is the threshold of the angle between surface normal computed
from occluding contours and epipolar plane. Also in practice we have used contours from
neighboring viewpoints to do convex carving which is more reliable.

Figure 6.5 shows the effect with and without locally convex carving. While the area
carved out may not be that significant, it actually identifies locally convex points, which
are usually next to concave areas. These points are critical in our concave fitting step that
will be introduced in Section 6.3.
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Algorithm 1 Locally Convex Carving
for pixel p in IC0 do

find its correspondence q in IC1 using the epiplar constraint;
triangulate 3D point P with p and q;
Estimate the surface normal of p and q, denoted as Np and Nq;
Compute the angle between Np and Nq with epipolar plane (Nep), denoted as Rp and
Rq;
if dot (cross(Np, Nep), cross (Nq, Nep)) < 0 then

continue;
else if Rp < To or Rq < To then

continue;
else

carve out R;
end if

end for

Figure 6.5: Locally convex carving Illustration of convex and concave cases. The figure
presents the two cases that illustrate the additional regions that can be carved out with LLC
and also the region that we will get after the locally convex carving operation.

6.2 Internal Contour Tracking

We have described our locally convex carving approach to refine the visual hull using
internal contours. The problem now is how to get the internal contours on the images.
While there are previous methods on contour tracking and detection (e.g., [73, 40, 123]),
none of them addresses highly specular surfaces in our case. We present a semi-automatic
approach for detecting the internal contours with contours labeled in a few key frames.

Given labeled contours from key frames, our algorithm is designed to interpolate the
corresponding contours between these frames. Let us assume that we have contours Ci−n
and Ci+m in Image Ii−n and Ii+m respectively, the goal is to detect the corresponding
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Figure 6.6: Geometric illustration for contour prediction. See more details in the text.

contours in Image Ii.
We first intersect Ci−n and Ci+m to obtain a set of 3D points, which provides a proxy

about where the contour points should be in 3D. The use of the 3D proxy to guide contour
detection is the main difference from typical contour tracking/detection formulations. Let p
inCi−n and q inCi+m denote the pair of corresponding pixels and Uref be the reconstructed
3D point. We also denote the contour points on the surface as P and Q. Assuming the sur-
face between P and Q is smooth, then the possible contour points for Ii must be between
P and Q. This is similar to the order constraint that is often used in stereo matching. Un-
fortunately we really do not know where P and Q are. However, Uref can be used as loose
upper bound for Q. For the lower bound, we approximate it with a user-defined parameter
∆, which defines a 3D point P ′ on the back-projection ray for p, but ∆ distance away from
Uref . The line between the lower bound P ′ and the upper bound Uref provides the search-
ing space in 3D. Projecting P ′ and Uref to image Ii defines the possible candidates for a
contour point in Ii.

Once all the candidates for one contour are identified, we develop a global optimization
approach to detect the contour points. We formulate it as a labeling problem with a data
consistency term and two regularization terms. To create a uniform label set for each
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contour point, the 3D line segment between P ′ and Uref is uniformly divided to a set of
discrete points {Lk}, each representing a unique label.

6.2.1 Data term

The data term expresses the likelihood of point Lk, which projects to a particular pixel uk
in Image Ii that is a contour pixel. It is defined as the weighted sum of two sub-terms as
described below.
Gradient term Dg is the gradient term, which favours the contour point to pass through
pixels with strong gradient. It can be computed as:

Dg(k) = exp
(
− λkG(uk)

2
)

(6.1)

λk = ω1V(uk) ·V(p) + ω2V(uk) ·V(q) (6.2)

where G(·) is the gradient magnitude at a given pixel location and V(·) is the gradient
direction. λk is used to preserve the direction of the contour. It considers the differences
of the gradient directions between predicted contours and two reference contours. ω1 =

m/(m+ n) and ω2 = n/(m+ n) are the interpolation factors.
Histogram of intensity term Dh is the intensity matching term computed with histogram.
It is assumed that the corresponding occluding contours in consecutive frames have similar
color distributions (see Figure 6.7 for some examples). Dh is computed as follows:

Dh(k) = exp
(
−H

(
Ii(uk)

)2) (6.3)

Where H is the intensity probability function computed from the intensity of pixels of
Ci−m and Ci+n. In essence, we calculate a histogram of all the pixels in Ci−m and Ci+n.
For uk’s intensity, we look at the corresponding bin to find its normalized probability.

With these terms defined, the data term for one contour point u can be defined as

D(u) =
∑
k

(ωgDg(k) + ωhDh(k)), (6.4)

where ωg and ωh are weighting factors. The data term for an entire contour, D(Ci), is the
sum of D(u) for all u in Ci. We use the number of pixels in Ci−n to discretize Ci.

6.2.2 Regularization terms

To preserve the smoothness of the detected contour, we introduce two regularization terms.
To abuse the notation a bit, we denote a contour point in Ii as uj , it is different from uk,
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Figure 6.7: Intensity histogram. The upper row is captured images with internal contours
highlighted in red, and the second row is the histogram of corresponding contours. Images
in the first and second column are from nearby viewpoints and so as the third and fourth
column.

which is a candidate for one contour point. uj has two neighbors uj−1 and uj+1. The first
term V (uj) penalizes large spatial distance of neighboring pixels.

V (uj) = V (uj|uj−1) + V (uj|uj+1) (6.5)

V (uj|uj±1) = 1− exp
(
− ||uj − uj±1||22/σ2

v

)
(6.6)

where σ2
v is a normalization factor.

The second term T (uj) is to preserve the shape of Ci to be similar with reference
contours Ci−n and Ci+m. We denote the corresponding contour points as pj and qj . We
formulate in a way to preserve the Laplacian vector of uj . Since a contour is a 1D entity,
the Laplacian coordinate of uj is calculated as L(uj) = uj − 1

2
(uj−1 + uj+1). Then T (uj)

is expressed in the following:

T (uj) = ∆(L(uj),L(pj)) + ∆(L(uj),L(qj)), (6.7)

∆(L(p),L(q)) = 1− exp(−||L(p)− L(q)||22/σ2
t ) (6.8)

where σ2
t is again a normalization factor.

6.2.3 Energy Function

Finally we get the energy function to be minimized as follows,

E(Ci) = D(Ci) +
∑
j

(λvV (uj) + λtT (uj)) (6.9)
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where λv, and λt are weighting terms. We have used the SRMP [70] to solve the high-order
optimization problem with multiple labels. One contour is labeled each time.

6.3 Concave refinement

The locally convex carving (LCC) algorithm presented in Section 6.1.2 is able to recon-
struct the convex part of the object surface revealed by internal occluding contours. How-
ever It cannot recover concave part since the tangent lines of a concave surface is lying
inside the surface. We have developed a simple surface fitting method to estimate the con-
cave part with some user interactions.

The basic idea is to fit a concave surface based on its boundary that can be correctly
reconstructed. We first allow the user to mark a concave area. This is done in the image
space. An image in which the concavity is most frontal is chosen to allow the user to mark
up the concave region RC. Boundary points near RC serve as the seed points, denoted as
RS. Many points in RS can be automatically identified since there is usually a transition
from convex to concave, the convex part can be carved out with our LCC algorithm. A user
can also include additional boundary points to give a tighter control. Figure 6.8 shows the
concave boundary.

Figure 6.8: Concave boundary illustration. The two images illustrate the boundary cues
used in concave fitting for these two models. The projection of these 3D boundary vertices
is RV aera in the frontal 2d image.

Then we try to propagate the boundary depth to the concave part under the smoothness
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constraints. We will estimate a depth value (dp) for every pixel inRC. The energy function
that needs to be minimized can be expressed as follows:

Ed = λc
∑
p∈RV

||dp − d̃p||22 + λr1
∑

p,q∈RC
q∈N(p)

||dp − dq||22 + λr2
∑

p,q∈RC
q∈N(p)

||δdp − δdq||22 (6.10)

where λc, λr1 and λr2 are the weights for corresponding terms and N(p) defines the four
neighbors of pixel p. The first data term measures the depth difference between the known
point d̃p and the depth value of the reconstructed point dp. The second and third term
enforce the smoothness constraints with δdp stands for the depth gradient.

The above energy function can be formulated as a linear least square system for which
the global optimum can be efficiently computed. Once we get depth map for RC, we will
use it to carve out any volume that is in the concave part of the reconstructed surface. That
leads to the final model.

6.4 Experiments and Results

We evaluate the proposed method on four challenging objects, consisting of shiny specular
objects (statue, trophy, and frog) and one transparent object made of glass (lotus). Forty-
five 2000∗3000 images were captured for each object when it was placed on a checkerboard
pattern (for pose calculation). The object silhouettes were extracted using Grab-cut [117].

6.4.1 Contour Tracking Results

We have verified our contour tracking method on the four datasets. Several contours were
scribbled first in a set of key frames. Based on the complexity of objects, generally we need
to label internal contours in every 5-7 consecutive images (see supplementary materials).
From these labelled contours on the key frames, we ran our contour tracking algorithm.
The parameters were set to ∆ = 20mm, wg = wh = 0.8, σv = 2.0, σt = 2.5, and
λv = 1.2, λt = 1.0. These values were tuned empirically and remained fixed for all four
data sets.

Figure 6.9 shows some qualitative comparisons with gradient + smoothness only
method. As we can see in the first row, for statue and lotus (right two) the detected
contours can be snapped to highlights where the gradient is really strong. With our
proposed terms, we can still get good results in these cases, as shown in the second row.
For frog (left), comparable results are archived since it is not as specular as the other two.
Quantitative Evaluation We further manually labelled all the images to quantify the accu-
racy of our tracking results. We calculate the mean distance (in pixels) between the tracked
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Figure 6.9: Comparison of contour tracking. The detected pixels are highlighted in images.
The first row shows the results using only the gradient data term and the pairwise smooth-
ness term. The second row shows the results with all the data terms and regularization
terms.

contour and the labelled data, which are considered as the ground truth. The numbers are
shown in Table 6.1. It shows the effect of different terms. With only the gradient term we
cannot get pleasant results especially for statue and lotus. As we integrate the proposed
data terms and regularization terms, the mean pixel error has been reduced to half.

Table 6.1: Mean error of tracked contours. The table gives the mean pixel error on four
datasets and the rows indicate the terms that were incorporated. G donates the gradient
term data (Eq. 6.1) and IH is the term using histogram of color intensity (Eq. 6.3); P and T
are two regularization terms of Eq. 6.5 and Eq. 6.7 respectively.

Statue Lotus Trophy Frog
G 2.3178 2.3516 1.9448 1.7657
G+IH 1.3902 1.6106 1.2256 1.1423
G+IH+P 1.2503 1.3961 1.1028 0.9869
G+IH+P+T 1.1221 1.2324 1.0509 0.9381

6.4.2 Reconstruction Results

We present our final reconstructed 3D models in Figure 6.10 with a comparison to visual
hull reconstruction. The threshold To in the LCC algorithm are chosen from 30 to 45
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(a) statue
(b) trophy

(c) lotus

(d) frog

Figure 6.10: Comparison of reconstructed 3d models. For each object, the first row shows
the original image from one viewpoint and reconstructed visual hull surface, and the second
row shows the rendered and reconstructed model with our proposed method.
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degrees. As for the weighting parameters for each term in the fitting formulation, we use
λc = 0.5 , λr1 = 0.2, and λr2 = 0.3 for the four models. We need some user guidance for
our interactive system and it will take about twenty mininutes to get the model.

For the statue model, the wings of the statue are refined with our LCC method which
are tighter to the real surface than the original visual hull model. Also, the concave part
between the two wings is reconstructed with our concave fitting method.

For the lotus model, most parts of the petals are actually convex, therefore our LCC
method can successfully reconstruct the petals. Original visual hull method, on the other
hand, is not able to get this. The concave part on the top of the model is fitted to have
smooth transition with the top layer petals.

For the frog model, we are able to carve out the locally convex part along the left/right
arms and also the belly under the hands, which provides the boundary and gradient propa-
gation cues for concave fitting. The fitted surface has preserved the tendency of the surface.

For the trophy model, the pillar of the model is completely reconstructed with our
method. No concave fitting is performed on this model.
Limitations There are still some limitations in our method. Our concave fitting method
tends to under fit concave areas. A better user interaction method is needed, such as push
of surfaces. Contour tracking on highly specular objects are still very challenging, in par-
ticular for areas with small details, such as the face of the baseball player on the trophy.
These are difficult for even our human eye to see. Overall our method is better suited for
reconstruction of organic shapes without detailed surface relief patterns. Finally image seg-
mentation on glass objects is very difficult, even with user interactions. It probably requires
a more controlled setup.

6.5 Conclusion

This chapter addressed the problem of multi-view surface reconstruction for non-
Lambertian objects. Instead of using active lights or other specialized setup, we aim to
use multi-view stereo capture setup under general unknown illumination. Our visual-hull-
based reconstruction approach exploits internal contours inside the objects silhouettes to
generate a tighter surface model. Given the internal contours, our novel locally convex
carving algorithm is able to carve out extra voxels in convex part of the surface. Also,
this carving operation provides important boundary cues for fitting concave areas that do
not have any contours. Our second contribution is a novel approach for tracking internal
contours given contours labeled in sparse key frames. It is designed specifically for
highly specular or transparent objects, for which assumptions made in traditional contour
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detectiong/tracking methods are no longer valid. We have validated our methods, both
quantitatively and qualitatively, with four datasets of different object materials. Results
show that we are able to generate visually pleasing models for very challenging cases.
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Chapter 7

Summary

In this chapter, I summarize the contributions, limitations of our methods and future re-
search directions.

7.1 Conclusions

First I have proposed an approach to recover surface details and its albedo map from an
RGB-D video sequence. The basic idea is to exploit the photometric information in the
color sequence using the lighting variations induced by casual object movement. The object
was rotated freely in front of the camera and we presented a lighting insensitive local
match refinement approach to find correspondences along the sequence, after which the
surface normal and albedo were recovered in a pixel-wise manner without relying on any
regularization. In this way, we can resolve the texture-copy problem which has not been
effectively treated in previous shading refinement approach. We believe that this is an
interesting discovery that can be extended to multi-view stereo to recover fine details.

In addition to improving the spatial resolution of the depth sensor, I also focused on
improving its temporal resolution to capture slow motion in 3D. I have presented a hybrid
camera system that combined a high-speed color camera and a consumer depth sensor to
generate a high-speed depth sequence. A novel framework was developed that utilized both
shading constraints within each frame and optical flow information between neighboring
frames. The high speed depth sequence was recovered in a single optimization which
was formulated by taking the depth information captured from low-speed depth camera as
the boundary constraints and preserving smooth motion field between the depth maps of
neighboring frames. The problem of enhancing the temporal resolution of the depth sensor
has not received much attention in the computer vision community compared to expanding
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the spatial resolution and depth map denosing. And I hope this work can inspire more
thoughtful insights on this topic.

Another contribution is that I have developed an approach to build up 3D human avatars
with sparse frames using a single RGBD camera. It is a challenging task because of the
almost inevitable non-rigid motion and also surface occlusion. I have accomplished this
by taking advantage of a generative human template(the SMPL model) to guide the align-
ment of those pieces from the sparse frames. It becomes quite convenient and easy to get
human avatars with our fully automatic method. One biggest problem for current learn-
ing based techniques of human shape reconstruction is lack of groundtruth detailed human
shapes. The reconstructed human models have rich surface details and clear texture maps,
which can serve as the groundtruth model to train a deep neural network for human body
estimation.

Last but not the least, I go beyond the lambertian surface assumption and use standard
multi-view images to reconstruct the 3D surface of specular and transparent objects. A
new visual hull refinement scheme – Locally Convex Carving was proposed which can
completely reconstruct concavity caused by two or more intersecting convex surfaces. Al-
though this Locally Convex Carving is used for the reconstruction of specular and trans-
parent objects, it does not stop it from applying on the general objects which will provide
more constraints on surface reconstruction.

7.2 Limitations and Extension

For the detailed surface reconstruction approach proposed in Chapter 3, it works well on
convex objects that come with a whole piece of surface, but it is challenging to deal with
objects that have great concavities and discontinuities since it will be difficult to compute
a continuous warping field to get precise alignment due to the self-occlusion. More im-
portantly the concave part will probably get occluded during the capture as we rotate the
object. In this case, we will not be able to collect enough evidence of the surface under
different lighting condition, therefore the surface normal might not converge to its optimal
value. We should definitely conduct further investigation on the reconstruction of more
sophisticated objects. Also, our method fails on objects that are too small since the fusion
step will fail in the first place. I have used Kinect V2 in our implementation which was
supposed to have the best performance in a distance range from 0.5m to 4.5m and it means
we cannot let the object be too close to the camera. Therefore, a possible solution is to
use a depth sensor that works well in the near range. Another limitation is that we assume
the environment lighting does not change abruptly during the capture. The formulation
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will become invalid in this case as the changes of pixel intensity are not just caused by the
object rotation. We will have to take both lighting changes and object motion into account.
As a future work, we could take advantages of the changing lighting conditions in our for-
mulations since more lighting variation will reveal more valuable information about the
surface. Finally, right now we are mainly focusing on depth enhancement, while we would
like to implement all these procedures in full 3D space and recover a complete model.

For the temporal upsampling method presented in Chapter 4, I have found a few limi-
tations of our method during experiments. First, there are still some artifacts at the discon-
tinuous boundary of the recovered depth which is caused by the motion blur effect of the
captured depth sequence. This might be resolved using the normal constraints along the
contours on the boundary. Secondly, we have not dealt with the occlusions and topology
changes explicitly in our formulation, therefore the artifacts exist in our recovered depth
caused by the occlusions and topology changes. In future work, I plan to detect the occlu-
sions via bi-directional matching and track the pixel or 3D point in the whole sequence and
try to deal with the occlusions and topology changes. The most important drawback of the
proposed method is that it involves bundle optimization of the sequence which has great
computational cost and is time consuming. To resolve this problem, we could take ad-
vantage of the current deep learning techniques and train a deep neural network to predict
the in-between depth frames. First, we will need to build up a dataset and capture various
objects in motion with an RGBD camera which could be taken as groundtruth high speed
depth. We generate the input depth frames by downsampling of the captured sequence.
To build up the network, the basic idea is to have a network to predict the flow between
neighboring frames and adopt the Spatial Transformer Network to predict the depth frames
as guided by the flow field.

For the human shape reconstruction in Chapter 5, one assumption of the proposed
method is that the human subject is wearing clothes that are relatively tight. As we want to
deform the captured pieces onto the SMPL model which is a naked human model template,
it will pose great challenges with human subject with loose clothes or even in a dress.
Therefore, it will be necessary to explicitly recover the shapes of the garment and infer its
physical properties [132]. This could be achieved by parsing the clothes from the RGBD
frame and fitting the surface with a garment template that is controlled by its type and
physical parameters [154]. After the modeling of both human body and clothes, we would
also be able to perform tasks like virtual try-on. As an immediate extension to this work,
it would be useful if we could model the exact shape of the hands. For now we assume
clenched fists and have not dealt with the hands particularly.

For the non-Lambertian surface reconstruction method proposed in Chapter 6, although
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good results have been achieved for some cases, the reconstructed models are still lack of
geometric details. Theoretically, the proposed local convex carving approach could be
applied on any internal contour. However, it is extremely difficult if not impossible to
detect the internal contours on surface regions that have small and rich geometric details.
Therefore, our method works well on objects with smooth surface. To extend our ap-
proach to work on more sophisticated objects, one possible solution is to take the current
reconstructed model as an initial estimation and recover the environmental lighting, surface
normals and reflectance properties iteratively. For example, for specular objects we could
exploit more sophisticated BRDF model (Bidirectional Reflectance Distribution Function)
[92] to express the relationship between surface normal, reflectance and lighting.

7.3 Future work

To conclude, in this dissertation, I have focused on 3D surface reconstruction, which is an
important topic that keeps growing recently in computer vision. I have exploited the depth
sensor together with high quality color cameras to recover 3D shapes and corresponding
appearance of objects from an RGB/D sequence. In the future, I would like to continue my
journey on the reconstruction topic and work on more complex scenarios where objects
as well as humans are not standalone but have interactions with each other. For example,
currently the human modeling method is designed for a single person, but reconstructing
multiple human subjects that interact with each other would be more challenging as we
consider the significant occlusions and complex topology as well as interactions between
multiple human subjects. We could start from the modeling of each human subject sepa-
rately, infer the interactions between them, and then refine the 3D body shapes iteratively.
I believe this could be a new trend in human modeling as we cannot separate ourselves
completely from the environment; instead we usually have interactions with other people
and also with the surrounding objects.

For another long-term future work, I want to explore the possibilities of involving con-
ventional approaches on surface reconstruction into the learning procedure. The advantage
of learning based approaches is that we could recover 3D shapes of objects from a sin-
gle or a few RGB images. However, the reconstructed shapes are still quite rough with
limited surface details. Besides, learning based techniques perform well on images and
objects spanned by the training set, but it is not clear how these methods would perform
on a completely unseen object/image categories. On the contrary, the conventional meth-
ods reconstruct the surface by exploiting the geometric or photo-consistency constraints
contained in the images which will have the results that best explain the 2D observations.
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Since we explicitly optimize for the agreement of the model with respect to image features,
we will get a good fit. But the optimization tends to be very slow and is quite sensitive to
the choice of initialization. In contrast, regression-based methods, that use a deep network
to directly estimate the model parameters from pixels, tend to provide reasonable, but not
pixel accurate results. Therefore, we could formulate the learning and conventional ap-
proach in a loop to fine-tune the network in an self-supervised manner. Basically, we could
get reasonable good initial estimation from the learning procedure, and after that we could
refine the shapes using conventional approaches to get better results that fit closely to the
input data, which will serve as better groundtruth models to train a neural network for the
learning module. This strategy has been adopted recently in human body estimation [71]
and I believe it could be extended into many tasks.
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[81] Jó Agila Bitsch Link, Paul Smith, Nicolai Viol, and Klaus Wehrle. Footpath: Accurate
map-based indoor navigation using smartphones. In 2011 International Conference on

Indoor Positioning and Indoor Navigation, pages 1–8. IEEE, 2011. 1

[82] Ding Liu, Xida Chen, and Yee-Hong Yang. Frequency-based 3d reconstruction of
transparent and specular objects. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 660–667, 2014. 8, 60

[83] Miaomiao Liu, Kwan Yee Kenneth Wong, Zhenwen Dai, and Zhihu Chen. Pose
estimation from reflections for specular surface recovery. In IEEE International Con-

ference on Computer Vision, 2011. 8

[84] Ming-Yu Liu, Oncel Tuzel, and Yuichi Taguchi. Joint geodesic upsampling of depth
images. In Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 169–176, 2013. 9

[85] H. Fuchs M. Dou and J. M. Frahm. Scanning and tracking dynamic objects with
commodity depth cameras. In IEEE Symposium on Mixed and Augmented Reality,
page 99106, 2013. 48

87



[86] H. Fuchs H A. Fitzgibbon M. Dou, J. Taylor and S. Izadi. 3d scanning deformable
objects with a single rgbd sensor. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 493–501, 2015. 12, 48

[87] M. Niener C. Theobalt M. Innmann, M. Zollhfer and M. Stamminger. Volumedeform:
Real-time volumetric non-rigid reconstruction. In European Conference on Computer

Vision, pages 362–379, 2015. 2, 8, 12, 48

[88] J. Romero G. Pons-Moll M. Loper, N. Mahmood and M. J. Black. Smpl: A skinned
multi-person linear model. ACM Transactions on Graphics, 34(6):248, 2015. 11, 48,
49

[89] C. Rehmann C. Zach M. Zollhfer, S. Izadi and et al. Real-time non-rigid reconstruc-
tion using an rgb-d camera. ACM Transactions on Graphics, 33(4):156, 2014. 10

[90] R. Maier, K. Kim, D. Cremers, J. Kautz, and M. Nießner. Intrinsic3d: High-quality 3d
reconstruction by joint appearance and geometry optimization with spatially-varying
lighting. In IEEE International Conference on Computer Vision, pages 3114–3122,
2017. 10

[91] Satya P. Mallick, Todd Zickler, David J. Kriegman, and Peter N. Belhumeur. Be-
yond lambert: Reconstructing specular surfaces using color. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 619–626, 2005. 8

[92] Satya P Mallick, Todd E Zickler, David J Kriegman, and Peter N Belhumeur. Beyond
lambert: Reconstructing specular surfaces using color. In 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages
619–626. Ieee, 2005. 78

[93] David Marr and Tomaso Poggio. Cooperative computation of stereo disparity. Sci-

ence, 194(4262):283–287, 1976. 2

[94] David Marr and Tomaso Poggio. A computational theory of human stereo vi-
sion. Proceedings of the Royal Society of London. Series B. Biological Sciences,
204(1156):301–328, 1979. 2

[95] Dimitris Metaxas and Demetri Terzopoulos. Shape and nonrigid motion estimation
through physics-based synthesis. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(6):580–591, 1993. 11

88



[96] D. Min, J. Lu, and M. N Do. Depth video enhancement based on weighted mode
filtering. IEEE Transactions on Image Processing, 21(3):1176–1190, 2012. 9

[97] Dongbo Min, Jiangbo Lu, and Minh N Do. Depth video enhancement based on
weighted mode filtering. IEEE Transactions on Image Processing, 21(3):1176–1190,
2011. 9

[98] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versa-
tile and accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–
1163, 2015. 2

[99] Shree K Nayar and Yasuo Nakagawa. Shape from focus. IEEE Transactions on

Pattern analysis and machine intelligence, 16(8):824–831, 1994. 2

[100] Diego Nehab, Tim Weyrich, and Szymon Rusinkiewicz. Dense 3d reconstruction
from specularity consistency. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8, 2008. 60

[101] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface map-
ping and tracking. In ISMAR, pages 127–136, 2011. 8, 14, 26
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[167] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Christian Theobalt, Matthias
Nießner, Reinhard Klein, and Andreas Kolb. State of the art on 3d reconstruction with
rgb-d cameras. In Computer graphics forum, volume 37, pages 625–652. Wiley Online
Library, 2018. 2

95



Vita

 
 
 
 
 
 

Xinxin Zuo 
 

Education and Professional Experience                                              

 Jan. 2017 – present: Ph.D student at Gravity Lab, Department of Computer 

Science, University of Kentucky. (Advisor: Dr. Ruigang YANG) 

Graduate Research Assistant 

General GPA: 4.0/4.0 

 Sep. 2012 – Dec. 2016: PhD student in Computer Science and Technology, NPU. 

(Advisor: Dr. Jiangbin ZHENG) 

General GPA: 88.20/100, Rank: 1/21 

 Oct. 2014 – Oct. 2016: Joint Ph.D student at Gravity Lab, Department of 

Computer Science, University of Kentucky. (Advisor: Dr. Ruigang YANG) 

 2011.9 – 2014.3: Master in Computer Application Technology, NPU. (Advisor: 

Dr. Jiangbin ZHENG) 

General GPA: 91.35/100, Rank: 1/142 

 2007.9 - 2011.7: Bachelor in Computer Science and Technology, NPU. 

General GPA: 92.03/100, Rank: 1/174 

 

Publications                                                                                              

1. Xinxin Zuo, Sen Wang, Jiangbin Zheng, Zhigeng Pan, Ruigang Yang. Detailed 

Surface Geometry and Albedo Recovery from RGB-D Video Under Natural 

Illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence 

(TPAMI), 2019. (Accepted) 

2. Hao Zhu, Xinxin Zuo, Sen Wang, Xun Cao, Ruigang Yang. Detailed Human 

Shape Estimation from a Single Image by Hierarchical Mesh Deformation. In 

IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2019: 

4491-4500. (Oral) 

3. Sen Wang*, Xinxin Zuo*, Chao Du, Runxiao Wang, Jiangbin Zheng, Ruigang 

Yang. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor. 

Sensors, 2018, 18(3): 886. 

96



4. Xinxin Zuo*, Sen Wang*, Jiangbin Zheng, Ruigang Yang. Detailed Surface 

Geometry and Albedo Recovery from RGB-D Video Under Natural Illumination. 

In IEEE International Conference on Computer Vision (ICCV), 2017: 3133-3142. 

5. Sen Wang, Xinxin Zuo, Runxiao Wang, Fuhua Cheng, Ruigang Yang. A 

Generative Human-Robot Motion Retargeting Approach using a Single Depth 

Sensor. In IEEE International Conference on Robotics and Automation (ICRA), 

2017: 5369-5376. (Spotlight) 

6. Xinxin Zuo, Sen Wang, Jiangbin Zheng, Ruigang Yang. High-speed Depth 

Stream Generation from a Hybrid Camera. In ACM International Conference on 

Multimedia (ACM MM), 2016: 878-887. (Oral) 

7. Xinxin Zuo, Chao Du, Sen Wang, Jiangbin Zheng, Ruigang Yang. Interactive 

Visual Hull Refinement for Specular and Transparent Object Surface 

Reconstruction. In IEEE International Conference on Computer Vision (ICCV), 

2015: 2237-2245.  

8. Jiangbin Zheng, Xinxin Zuo, Jinchang Ren, Sen Wang. Multiple Depth Maps 

Integration for 3D Reconstruction using Geodesic Graph Cuts. International 

Journal of Software Engineering and Knowledge Engineering (IJSEKE), 2015, 

25(3):473-492.  

 

Selected Awards & Scholarship                                                       

 IEEE CVPR Doctoral Consortium, 2019 

 Thaddeus B. Curtz Memorial Scholarship, University of Kentucky, 2018 

 ACM student travel grants (for ACM MM), 2016 

 The National Scholarship, 2008-2011. 

 Excellent Bachelor’s Degree Thesis, NPU, 2011 

 Outstanding Graduate Student, NPU, 2011. 

 Excellent Student Scholarship, First Prize, 2008-2011, 2013-2015. 

 

Service                                                                                              

 Reviewer for 

 International Journal of Computer Vision (IJCV) 

 IEEE TPAMI, IEEE TIP 

 Reviewers of 

 CVPR 2016-2020, ICCV 2017, 2019; ECCV 2018, 2020; AAAI 2020 

BMVC 2019; Pacific Graphics 2016, 2019; ACCV 2018 

97


