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ABSTRACT OF DISSERTATION

MULTILEVEL ANT COLONY OPTIMIZATION TO SOLVE CONSTRAINED
FOREST TRANSPORTATION PLANNING PROBLEMS

In this dissertation, we focus on solving forest transportation planning related
problems, including constraints that consider negative environmental impacts and
multi-objective optimizations that provide forest managers and road planers alter-
natives for making informed decisions. Along this line of study, several multilevel
techniques and mataheuristic algorithms have been developed and investigated. The
forest transportation planning problem is a fixed-charge problem and known to be
NP-hard. The general idea of utilizing multilevel approach is to solve the original
problem of which the computational cost maybe prohibitive by using a set of increas-
ingly smaller problems of which the computational cost is cheaper.

The multilevel techniques are devised consisting of two parts. The first part is to
recursively apply a graph coarsening heuristic to the original problem to produce a
set of coarser level problems of which the sizes in terms of number of problem compo-
nents such as edges and nodes are in decreasing order. The second part is to solve the
set of the coarser level problems including the original problem bottom up, starting
with the coarsest level. We propose that if coarser level problems inherit important
properties (such as attribute value distribution) from their ancestor during the coars-
ening process, they can be treated as smaller versions of the original problem. Based
on this hypothesis, the multilevel techniques use solutions obtained for the coarser
level problems to solve the finer level problems.

Mainly, we develop multilevel techniques to address three problems, namely a
constrained fixed-charge problem, parameter configuration problem, and a multi-
objective transportation optimization problem in this study. The performance of
the multilevel techniques is compared with other commonly used approaches. The
statistical analyses on the experimental results indicate that the multilevel approach
can reduce computing time significantly without sacrificing the solution quality.



KEYWORDS: Metaheuristic, Approximation Algorithms, Parameter Turning, Graph
Coarsening, Multilevel Approaches.
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1 Introduction

Metaheuristic algorithms are defined as a set of higher-level procedures that provide

sufficiently good solutions to optimization problems when limited computational re-

sources are available [8]. In comparison to exact algorithms that exhaustively search

for every possible option, metaheuristics do not guarantee the globally optimal so-

lutions. However, when the exact algorithms fail to tackle large-scale problems be-

cause of the limited computational resources, metaheuristics can usually provide high-

quality solutions with much less efforts.

A major strain of the metaheuristic in solving optimization problems arises from

the research on swarm intelligences (SI), which can be described as the collective

behavior that emerges from a group of social insects, of which their team works

involve both self-organizations and interactive-coordinations in a colony [13]. Stud-

ies of this collective behavior include a variety of nature based activities such as

nest building, foraging, item sorting, swarming, flocking, herding, schooling, and so

on. Based on these studies, many applications of SI have been developed for con-

ventional optimization problems where different SI designs are employed in library

materials acquisitions, communications, medical dataset classification, dynamic con-

trol, transportation planning, heating system planning, moving objects tracking, and

predictions.

This dissertation mainly focuses on studying and developing a multilevel meta-

heuristic paradigm that aims at solving large-scale optimization problems modeled

with underlying networks. In particular, we target a constrained forest transporta-

tion planning problem (CFTPP). However, the techniques presented can be easily

extended to other problem domains. For the purpose of multilevel computing, graph

coarsening heuristics and a SI framework, namely ant colony optimization, are used

to provide hierarchical computations, where larger problems are solved in a back-

1



track fashion by their smaller versions. The following sections introduce the related

techniques and preliminary knowledges.

1.1 Ant Colony Optimization (ACO) Metaheuristic

1.1.1 Background of ACO

ACO was developed in the mid 1990s by Marco Dorigo [25, 26]. The algorithm was

inspired by ant foraging behavior. When searching for food, ants walking to and from

a food source deposit a substance called pheromone on the ground. Other ants can

perceive the presence of the pheromone and tend to follow paths where pheromone

concentration is higher. Through this mechanism, ants are able to transport food to

their nest in a remarkably effective way [23].

Several successful applications of ACO to a wide range of different optimization

problems, especially for the NP-hard problems, have been developed. When the best

known algorithms that promise to obtain the optimal solutions become practically

infeasible for solving large size problems, ACO based algorithms, on the other hand,

can quickly find high quality solutions. As an example, the most notable application

of ACO is the traveling salesmen problem (TSP), where a salesman has to travel

through a list of cities in such a way that the expenses are minimized [73]. To solve

this problem, ACO deploys a set of artificial ants to search for the shortest possible

route that visits each city exactly once. Guided by the artificial pheromone values,

the ants construct solutions simultaneously according to the transition probability:

P k
ij =

{
[τij ]

α×[ηij ]
β∑

n∈N [τin]α×[ηin]β
if (i, j) is a solution component

0 Otherwise
(1.1)

where P k
ij is the probability for ant k to move from the city i to the city j, n ∈ N

represents the set of adjacent cities, τij is the pheromone intensity on path (i, j), ηij

is the visibility that is the inverse to the distance between the two cities, α and β

are parameters that control the relative importance of pheromone intensity versus
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visibility. The value of τ is updated iteratively using the following formula:

τij ← ρ× τij + ∆τij,

where 0 < ρ < 1 is the pheromone persistence rate and ∆τij is the amount of

pheromone to be added to path (i, j). The value of ∆τij is usually set to a small pos-

itive number to increase the pheromone amount on the path (i, j) if it is selected as a

solution component. On the other hand, ∆τij is set to zero, indicating no pheromone

increase for the non-solution component. Through this update mechanism, the artifi-

cial ants are directed towards better solutions by the iteratively updated pheromone

values.

1.1.2 ACO Algorithms

There have been a number of ACO algorithms proposed in the literature. They share

the same idea of ant foraging behaviors, and mainly differ in objective functions

and how the pheromone is updated. Below, we present the Ant System, Ant Colony

System, and Max-Min Ant System that have been used as the programming templates

for developing customized ACO algorithms in this thesis.

Ant System (AS)

The original ACO algorithm is the Ant System [22], where the pheromone values are

updated at every iteration by all them ants that have built a solution. The pheromone

τij, associated with the path connecting cities i and j, is updated as follows:

τij ← ρ× τij +
m∑
k=1

∆τ kij, (1.2)

where ∆τ kij is the increased pheromone amount added on the path (i, j) by ant k:

∆τ kij =

{
Q/Lk if edge (i, j) is used,
0 otherwise,

(1.3)

where Q is a parameter, Lk is the length of the route constructed by ant k. In the

construction of a solution, the above transition probability formula is used to select

edges that form the solution (solution components).
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The experiments conducted by Dorigo et al [22] for testing AS showed that the

algorithm was robust in solving TSPs, and the results also indicated that within a

range of parameter value settings (i.e., for the parameters α and β), the algorithm

always found very good solutions for all the tested problems.

Ant Colony System (ACS)

Ant Colony System is a variant of the Ant System. In addition to the pheromone

update performed at the end of the solution construction in AS, ACS introduces a

local pheromone update mechanism [21, 35, 67], which is performed by all the ants

after each construction step and applied to only to the last edge traveled:

τij = (1− ϕ)× τij + ϕ× τ0, (1.4)

where 0 < ϕ ≤ 1 is the pheromone decay coefficient, and τ0 is the initial value of the

pheromone.

The local pheromone update is used to diversify the subsequent searches by de-

creasing the pheromone concentration on the traveled routes. Other ants are given

more chances to choose a different set of solution components. As a consequence, ants

are unlikely to converge to a common path. This is a desirable property given that if

ants explore different paths then there is a higher probability that one of them will

find an improving solution than that in the case that they all converge to the same

tour [20].

Moreover, another difference between ACS and AS is the transition probability

used by ants during the solution construction process. In ACS, the probability for

an ant to move from city i to city j depends on a random parameter q, which is

uniformly distributed over [0, 1], and a parameter q0. If q ≤ q0, then

j = arg max
n∈N
{τin × ηin} (1.5)

where N is the set of the adjacent cities. Otherwise, formula 1.1 is used.
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Max-Min Ant System (MMAS)

Max-Min Ant System is another variant of AS [79]. In MMAS, only the best ant

(the ant that found the best solution) updates the pheromone and the value of the

pheromone is bounded:

τij ← [(1− ρ)× τij + ∆τ bestij ]τmaxτmin
, (1.6)

where τmax and τmin are the upper and lower bounds of the pheromone value, and

the operator [x]ab is defined as:

[x]ab =


a if x > a,
b if x < b,
x otherwise,

(1.7)

and

∆τ bestij =

{
1/Lbest if (i, j) belongs to the best tour,
0 otherwise,

(1.8)

where Lbest is the length of either the best route found in the current iteration or the

best solution found since the beginning of the algorithm or a combination of both

[24].

The improvement of MMAS, compared to AS, is that setting limits for amount of

pheromone helps avoid leading ants to a premature stagnation, which is the situation

where all ants follow the same path and construct the same solution over and over

again such that better solutions cannot be found anymore [22]. It has been proven in

[79] that the maximum possible pheromone is asymptotically bound by

1

1− ρ
× 1

f(sopt)
(1.9)

where f(sopt) is the optimal solution value. The lower bound can be determined with

a value for Pbest that is the probability of choosing the best solution component at a

choice point. However, the upper and lower bounds are typically obtained empirically

and tuned for specific problems [74].
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In this dissertation, the above described ant colony optimization algorithms have

been used as testing algorithms or served as programming templates in Chapter 2, 3,

4, 5 and 6.

1.2 Graph Coarsening Heuristics

The graph coarsening plays an important role in developing the multilevel meta-

heuristic framework. It can be interpreted as a process of aggregation of graph

nodes to define the nodes of the next coarser graph. Specifically, given a graph

G0 = (V0, E0), graph coarsening techniques construct a sequence of graphs G1, . . . , Gl,

where Gi = (Vi, Ei) is a coarse approximation of Gi−1 such that a solution of a given

problem for Gi can be “efficiently” extended to that for Gi−1 and vice versa [83, 86]:

|G0| > |G1| > |G2| > |G3| > . . . > |Gl|, (1.10)

where the operator | · | denotes for the size of a graph, i.e., number of edges and

nodes. Essentially, the process of producing a coarser level graph is mainly composed

of selecting a set of edges from a finer level graph, then collapsing the selected edges

(also known as edge contractions), and aggregating the end nodes.

1.2.1 Finding Matching Edges

The edges selected for contraction are the matching edges (formally called matching)

of which no two edges are incident on the same node [52, 64]. There are many existing

techniques for finding a maximum matching in a graph [52, 32, 12, 87]. In this thesis,

we implement a matching algorithm (Algorithm 1), which is adopted and modified

from a randomized algorithm proposed in [52] of which the complexity is proportional

to the number of edges O(|E|) [43].

In Algorithm 1, a maximum matching is found by visiting every node in a finer

graph. When an unmatched node u is visited, the algorithm checks whether it has

an adjacent node that has not been matched. If such a node vi exists, edge(u, vi) is
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included in the matching and nodes u and vi are marked as matched. Otherwise, u

remains unmatched and the algorithm continues to visit the next unvisited node.

If the node u is adjacent to more than one unmatched node, Algorithm 1 is de-

signed to include the incident edge with the largest attribute weight into the match-

ing. This design is particularly suitable for minimization problems, because edges

with large attribute values are unlikely to be part of good solutions. In contrast, for

the maximization problems, edges with small attribute weights should be considered

for the contraction.

Algorithm 1 Finding Matching Edges Algorithm.

Q := all nodes except source and destination nodes;
QE = φ;

begin
while Q has unvisited nodes do

visit an unvisited node u in Q
if u has been matched then

continue to next while iteration
end
for adjcant unmatched nodes v of u do

find vi ∈ v | wight(u, vi) is maximum
end
make vertices u and vi as matched
add edge(u, vi) to QE

end

end
return(QE)

1.2.2 Edge Contraction

After a matching is found from a finer graph, the selected edges are collapsed to gen-

erate a coarser graph (Algorithm 2). The end nodes of matching edges are aggregated

to form coarser level nodes. Those nodes that are not incident on matching edges are

directly copied to the coarser graph. Because two matching edges can not be incident

to the same node, each node in the finer level graph is mapped to an unique node in

the resulted coarser level graph.
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Algorithm 2 Graph Coarsening Algorithm.

QE := matching edges

begin
for edge(u,v) ∈ QE do

u v ⇐ aggregate u and v
if u, v are both adjacent to a node k then

weight(u v,k) := weight(u,k) + weight(v,k)
end

end

end

While matching edges are collapsed together in the coarsening process, edges that

both connect to the aggregated nodes and are incident to the same node are jointed

together to form coarser level edges. Naturally, the weights of two jointed edges are

combined to give a new weight to the resulted coarser level edge. This approach is

adopted from [52], in which adjacent nodes to a node u1 in a graph is defined as

Adj(u1) = ({Map[x]|x ∈ Adj(v1)} ∪ {Map[x]|x ∈ Adj(v2)})− {u1}

where v1 and v2 are the finer level nodes aggregated to obtain the coarser level node

u1, and Map[x] maps a finer level node to a coarser level node such that Map[v1] =

Map[v2] = u1. The combined attribute weight of an edge (u1, u2) is given by

w(u1, u2) =
∑

x{w(v1, x)|Map[x] = u1}+
∑

x{w(v2, x)|Map[x] = u2}.

An example of the edge contraction process is illustrated in Figure 1.1 where a

finer graph Gi is coarsened to construct a coarser graph Gi+1. The matching edges

(W1,W4,W10) are encompassed with dashed ovals, and they are contracted to produce

the coarser level graph. Nodes 1 and 4 are aggregated into the coarser node 1 4 and

the weights W2 and W6 are combined to W2 +W6. In the same manner, nodes 3 and

2 are aggregated into the coarser node 3 2. The weight W3 and the aggregated weight

W2 +W6 are combined to W2 +W6 +W3. Finally, nodes 5 and 7 are aggregated into

the coarser node 5 7.
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Figure 1.1: Edge contraction process.

1.3 Constrained Forest Transportation Planning Problem

The forest transportation planning problem (FTPP) is an economic conduct of forest

harvesting operations that has long been the primary objective in the construction

and maintenance of the forest transportation network [39]. Traditionally, the goal of

FTPP has been to find the road network that minimizes both log hauling and road

construction costs for timber management [16]. Modern FTPPs are driven not only

by the financial aspects of timber management, but also by multiple uses of roads,

such as recreation, and their social and environmental impacts on such things as water

quality, wildlife, and fish habitats.

A great source of the environmental impacts comes from the forest road network

due to the annually generated sediment [28, 30]. Research on the effects of forest

roads has shown that traffic on forest roads can result in accelerated erosion and

water quality impacts [48, 47, 49]. For example, the stream channels receive the

highest amount of sediment during forest road construction activities due to removal

of vegetation cover from road surface, cut-slope, fill-slope, and ditch areas. Sediment

delivered from a road section to streams causes serious damages on water resources

and aquatic life [3].

These environmental and social considerations and requirements introduce side
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constraint to the FTPP (CFTPP), which makes the problem more complex than the

traditional cost minimization. In this study, we target a CFTPP that considers a

fixed cost (i.e., road construction cost), a variable cost (log hauling) of timber trans-

portation and a sediment constraint. The CFTPP is a special case of the fixed charge

transportation problem (FCTP) and has been known as a NP-hard combinatorial

optimization problem [58].

1.3.1 Objective Functions and Constraints of CFTPP

The CFTPP can be modeled as a network problem comprised of a set of nodes V

and edges E representing road intersections and segments, respectively [17]. Each

edge in the network is associated with three attributes: fixed cost (FC ), variable cost

(VC ), and sediment amount (Sed). FC for an existing road segment is a one-time

road construction cost and/or maintenance cost, VC includes hauling cost that is

proportional to timber volume traffic, and Sed (tons/year) represents the amount of

sediment expected to erode from the road segment caused by heavy traffic of log-

trucks.

To formulate the CFTPP, let S = {s1, . . . , sm} be the set of timber sale locations

and D = {d1, . . . , dn} the set of mill destinations, where S,D ⊂ V . Each timber

sale si ∈ S has a minimum volume of timber to be delivered at a given period to a

designated mill dj ∈ D on a road network: G = (S ∪ D,Ω), where Ω ⊂ E is the

set of routes connecting all timber sale locations to the selected mills. For a route

Rsi,dj ∈ Ω (the route from a timber sale si to a mill dj), let VCi,j be the total variable

cost, FCi,j the total fixed cost, and Sedi,j the total sediment amount. The objective

function of the CFTPP is defined as:

Minimize :
∑

Rsi,dj∈Ω

VCi,j × Voli,j + FCi,j (1.11)

while the amount of sediment eroded from the entire road network is under a maxi-
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mum allowable value Sedmax:

Constraint :
∑

Rsi,dj∈Ω

Sedi,j ≤ Sedmax. (1.12)

1.3.2 Mixed Integer Programming Formulations for CFTPP

General approaches for solving FCTPs involve a mixed integer programming (MIP)

formulation [17, 70, 76, 38]. The MIP is used in this work to measure performance of

the proposed techniques and its formulations for the CFTPP is given as the follows:

Minimize :
∑
ij∈E

[V Cij × (V olij + V olji) + FCij ×Bij (1.13)

Subject to:∑
ij∈E

(Sedij ×Bij) ≤ allowable sed (1.14)

V ol Salej +
∑
ij∈L

V olij −
∑
ji∈L

V olji = 0 ∀j ∈ S (1.15)∑
ij∈L

V olij −
∑
ji∈L

V olji = 0 ∀j ∈ T (1.16)∑
ij∈L

V olij −
∑
j∈S

V ol Salej = 0 ∀j ∈ D (1.17)

M ×Bij − (V olij + V olji) ≥ 0 ∀ij ∈ E (1.18)

V olij, V olij ≥ 0 ∀ij ∈ E (1.19)

Bij ∈ {0, 1} ∀ij ∈ E (1.20)

Expression 1.13 specifies the objective function of the problem, where VC is the

variable cost of wood volume transported over edge ij in either direction, V olij is

the wood volume transported over the edge from node i to node j, V olji is the

amount transported in the opposite direction (from node j to node i), FC is the

fixed cost for edge ij in dollars, Bij is a binary variable representing construction of

edge ij (1 if the edge is built and 0 otherwise), and E indicates the total number
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of edges in the network. The first constraint (Eq. 1.14) is the sediment constraint

that limits the maximum allowable sediment amount (allowable sed) in tons, where

Sedij is amount of sediment from edge ij if the edge is built for traffic. The second,

third, and fourth sets of constraints (Inequality. 1.15 to 1.17) ensure that all volume

entering the network is channeled through the network to the destination nodes (mill

location). The constraints in Eq. 1.15 apply to the set of origin nodes, S (timber

sale locations), and ensure the sum of sale volume entering the network at node j,

V ol Salej, plus the sum of volume transported to j from other nodes, V olij, equal

the sum of volume transported from node j to connecting nodes, V olji. L is the set

of edges having node j as a from-or-to node. The constraints in Eq. 1.16 apply to the

set of intermediate nodes, T (that are neither origins nor destinations), and ensure

that the sum of volume entering node j, V olij, equals the sum of volume leaving that

node, V olji. The constraints in Eq. 1.17 apply to the destination nodes, D (mill

locations), and specify that the sum of the volume entering those nodes,
∑

ij∈L V olij,

equals the sum of the sale volume loaded onto the origin nodes,
∑

j∈S V ol Salej, thus

ensuring all volume that enters the network is routed to the destination nodes. The

fifth set of constraints (Eq. 1.18) represents the road-building constraint that makes

sure that, if there is volume transported over edge (i, j) in either direction, the edge

must be constructed and open for traffic; thus, the fixed cost and sediment amount

are counted. M is a constant greater than or equal to the total amount of volume to

be delivered to the mills. Lastly, the sixth and seventh sets of constraints (Eqs. 1.19

and 1.20) represent the non-negativity and binary value constraints, respectively.

1.4 Organization

The remaining Chapters of this dissertation are organized as follows:

• In Chapter 2, an ACO algorithm that is designed to search solutions in two

stages and incorporates local search to refine the solution quality is presented
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to solve the CFTPP. An exhaustive search is conducted to look for the best

parameter settings for the ACO in order to maximize its performance.

• In Chapter 3, a multilevel approach, namely MParamILS, is developed to au-

tomatically configure the ACO algorithm. The MParamILS combines a graph

coarsening technique and the ParamILS to select high-quality parameter set-

tings by refining a parameter combination domain from the coarsest level prob-

lem to the finest level problem.

• In Chapter 4, the idea of the multilevel approach is further studied and ex-

tended to develop a multilevel ACO for solving the CFTPP, which integrates

the MParamILS to automatically configure the parameters and uses the infor-

mation obtained from solving coarser level problems to help search for solutions

for the finer level problems.

• In Chapter 5, a multi-objective ACO, that is designed by combining various

algorithmic components in existing ACO algorithms, is developed to solve a

bi-objective FTPP, in which the objectives are to minimize both transportation

cost and negative environmental impact at the same time.

• In Chapter 6, a multilevel multi-objective ACO is developed to solve the bi-

objective FTPP, which aims at improving the performance of the multi-objective

ACO algorithm in terms of computing time and solution quality.

• In Chapter 7, I summarize contributions of this dissertation and outlook for

possible future research work.

Copyright c© Pengpeng Lin 2015
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2 Applying Ant Colony Optimization for Solving Constrained Forest
Transportation Planning Problems

2.1 Introduction

In this Chapter, we present an ACO algorithm to solve the CFTPP. It consists of

three major routines: least-cost route finding process from all timber sales simulta-

neously; two stage search process developed to quickly find feasible (stage one) and

high-quality (stage two) solutions; local search solution refinement to further improve

solution quality. The ACO algorithm was applied to a medium scale, grid-shaped

hypothetical FTPP with 500 road segments, 25 timber sale locations, and a single

mill destination. Four cases with increasing levels of sediment constraints were con-

sidered, and an exhaustive parameter search process was conducted to select the best

parameter combination for each case. To test the robustness of the ACO algorithm,

we created 10 different problem instances with different timber sale locations and

destination nodes for the same hypothetical network. Solutions were then compared

with those obtained from the MIP formulations solved by CPLEX [18].

2.2 Proposed ACO Algorithm

2.2.1 Ant Traveling Routine

In the ACO algorithm, artificial ant colonies are placed at the entry nodes (timber

sale locations). Ants from the affiliated colonies move sequentially through adjacent

nodes until the destination node (mill) is reached. Let S denote the set of timber

selling locations, D the set of mills, C the set of ant colonies. Then, at each algorithm

iteration, each colony Ci ∈ C sends out one ant ai ∈ Ci to search for the best route

to the designated mill location Di ∈ D. After all colonies have found the best

routes connecting each timber sale to the selected destination node, one iteration is

completed.

The ants in the colonies are searching routes in the order that is assigned to each
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colony randomly at the beginning of the algorithm iteration. This sequence order is

randomly shuffled for every new iteration to ensure that every colony in the network

has a fair chance to be the first one to construct solution.

During the route search process, if ant ai from Ci moves to a node Ni that belongs

to the route that was discovered by ant aj of a colony that precedes Ci in the search

sequence and shares the same destination mill, the ant ai will stop the search and

join the solution route found by aj. Similarly, if an entry node has been visited and

is part of the solution routes obtained by other colonies with the same destination,

the colony at the entry will not initiate the search process.

1

2

3

4

5

Figure 2.1: Ants traveling routine.

An example is illustrated in Figure.2.1 where the ant colony searching sequence

is randomly determined at the beginning of the algorithm iteration in the order:

5 → 1 → 4 → 3 → 2 as indicated with the numbers beside the timber selling nodes.

Ant colony C5 is the first to construct solution: N5 → N4 → N9 → N3 → N8 →

N14 → N18 → N24 → N30 → N31 → N34 → N38 → N40. The ant colony C1 is the

second and joins the route found by C5 at the node N31. Ant colonies C4 and C3

are next but do not search for solutions because the entry nodes are already part of

the route of C5. Colony C2 is the last in the search sequence and again joins colony
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C5’s route at the node N3. Note that this search routine is designed specifically for

the fixed charged cost transportation problems. Less fixed cost is incurred with more

edges or routes shared by timber sellers, because they only have to pay the fixed cost

once for a road segment. On the other hand, the variable cost is calculated with

combined timber volumes from all timber selling nodes.

2.2.2 Edge Selection & Back Track Routine

When searching routes, circular paths, which are formed when ants move to a pre-

viously visited node, should be avoided. That is the edges leading to a circle should

not be considered for solution components. This will cause ants moving back to the

previous node if no available edges at front. The edges that the ant moves back from

are marked as unavailable in order to prevent them from being selected again. The

ant will continue moving back to a point where edges are available for selection again.

If the ant moves back to its starting node where still no edges are available, ACO will

discard the current iteration and start a new round of route search.

Figure 2.2: Ants back track routine.

An example is illustrated in Figure.2.2. The ant a1 from the colony C1 travels to

N29. The edge E29,23 cannot be selected because a circle will be created as node N23
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is already visited. Similarly to the traveling route for the colony C2, C3, C4 and C5

(marked in red), there are no available edges to be selected at node N14, so the ant

has to move back to N10 and the edge E10,14 is then marked as unavailable. At N10,

there are still no available edges to choose, so the ant continues to move back to N12

and the edge E12,10 is marked as unavailable (indicated as a circle with an oblique

line across it).

Pheromone update mechanism

The pheromone updating process is designed to have two stages. In the first stage,

ants are set to find the feasible solutions only. In this stage, the algorithm only

updates pheromone when there is a better solution found according to the total

sediment amount. If a solution is found better than the best-so-far solution found

from previous iterations, the new solution becomes the best solution. This will very

quickly lead to a feasible solution if one exits, or stop the algorithm from searching

further at the second stage if otherwise.

After the feasible solution is successfully found at the first stage, the algorithm will

switch to the second stage of which the objective is to find the best feasible solution.

The pheromone is updated when a better feasible solution is found, i.e., the solution

has lower costs and its total sediment amount satisfies the constraint.

Local search refinement

Local refinement procedures have shown to improve solution quality for different ACO

based algorithms [34, 77, 78]. In our ACO algorithm, a local search in the form of a

1-opt routine was implemented into our algorithm. Corresponding to the pheromone

update process, the local search is based on sediment yield only during stage one and

based on all three edge attributes during stage two.

After an iteration is completed, the local search procedure consists of looking at

each node along the routes forming the solution and its adjacent nodes also forming
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the solutions. For a given node ni forming a route R(ns → . . .→ ni → . . .→ nn), the

local search procedure looks at adjacent nodes of ni other than ni−1 and ni+1 along

the route and evaluates the edges to these nodes to determine if there is a shortcut

that eliminates either ni−1 or ni+1 from the route. Figure 2.3 shows an example

of a selected route (red path in Figure 2.3 a) on which the local search refinement

procedure is applied and resulting in eliminating n7 and n11 from the route ((red path

in Figure 2.3 b)).

1

7
11

6

15

19

12

14

4

23

17

21

11

9

1

7
11

6

15

19

12

14

4

23

17

21

11

9

Before Local Refinement

After Local Refinement

a)

b)

Figure 2.3: Diagram illustrating the 1-opt local search refinement procedure imple-
mented into our ACO algorithm.

2.2.3 Stopping Criterion

Three stopping criteria are implemented into our ACO algorithm to address solution

quality stagnation and solving time efficiency. During stage one the algorithm tracks

the number of iterations evaluated, and if a user-defined maximum number of itera-

tions is exceeded without finding a feasible solution, the algorithm stops and reports

no feasible solution found. During stage two, the algorithm tracks the number of
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consecutive infeasible iterations, and if it exceeds a user-defined maximum number,

then the algorithm stops and reports the best feasible solution found. Each time a

feasible solution is found, the algorithm resets the associated counter to zero. Also

during stage two the algorithm tracks the number of consecutive feasible solutions

found of inferior quality than the best found so far, and if it exceeds a user-defined

maximum number, the algorithm stops and the best feasible solution found so far

is reported. In our ACO the maximum number of iterations is set to 10,000 for all

cases.

2.2.4 Formulations of Transition Probability and Pheromone Update

Formulas for calculating transition probability and pheromone update are defined dif-

ferently for the two stages, as a result from the different objectives. In the first stage,

the objective is to find a feasible solution only. Therefore, the transition probability

is defined as:

pkij(t) =
[τij(t)]

α[(Sediij)
−1]β∑

j∈φi [τij(t)]
α[(Sediij)−1]β

(2.1)

where t is the iteration counter, φi denotes for a set of available neighboring edges

adjacent to node i. The corresponding formula for pheromone update is defined as:

τij(t+ 1) = τij(t)× ρ+ ∆τij(Sedi) (2.2)

where ∆τij(Sedi) is given as:

∆τij(Sedi) =


Q

Sediij
if edge (i, j) is part of the route

0 Otherwise
(2.3)

The edges associated with larger sediment values will receive less pheromone up-

date and the edges with smaller sediment values will receive more pheromone update.

In the first stage, only the sediment value on each edge is considered for the local

refinement.
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In the second stage, the objective is to find a feasible solution with minimum

fixed cost and variable cost. Transition probability is calculated considering fixed

cost, variable cost and sediment amount. Therefore, its formula is defined as:

pkij(t) =
[τij(t)]

α × [(λ(FCij + V Cij) + (1− λ)Sediij)
−1]β∑

j∈φi [τij(t)]
α × [(λ(FCij + V Cij) + (1− λ)Sediij)−1]β

(2.4)

The formula for pheromone update is defined as:

τij(t+ 1) = τij(t)× ρ+ ∆τij(t), (2.5)

and

∆τij(t) =


Q

λ[FC/
∑
V oli + V C] + (1− λ)Sedi

0
(2.6)

where
∑
V oli is the sum of all the timber volumes transported through the edge.

From the formula 2.6 we can see that the amount of pheromone used for the pheromone

update process is determined based on not only the costs and sediment but also the

number of timber volumes being transported through the edge, because the more tim-

ber volumes transported via the edge the larger amount pheromone to be added to

the solution components. For the local refinement, all three attributes are considered

for comparison: (FC + V C)× λ+ Sedi× (1− λ).

2.3 Experimental Studies

2.3.1 Experiment Setup

The ACO algorithm was applied to a 500-edge network presented in Contreras at.

el. [17] (Figure 2.4). This hypothetical problem allows traffic in both directions

(thus 1000 edges); it considers 25 timber sale locations with a total volume of 36,500

m3 to be delivered to one mill destination in a single period. Variable cost, fixed

cost, and sediment yield per edge ranged from $0.01/m3 to $10/m3, from $0.1 to

$23,000 for road construction and maintenance, and from 0.4 to 200 tons, respectively.
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We also considered four cases with increasing level of sediment constraint. Case

I is a cost minimization problem without a sediment constraint, cases II and III

are cost-minimization problems subject to increasing levels of upper-bound sediment

constraints, 2,000 and 1,500 tons respectively, and case IV is a sediment-minimization

problem without a cost constraint.

Table 2.1: Range of parameter values considered.

Parameter Interval Steps

α [0, 1] 0.05

β [0, 1] 0.05

ρ [0, 1] 0.05

δ 0.00001

Q 0.001, 0.0001, 0.00001

λ [0, 1] 0.1

Table 2.2: Best parameter combination found for each case.

Case α β ρ λ

I 0.5 0.4 0.55 1

II 0.5 0.9 0.6 0.7

III 0.5 0.7 0.65 0.7

IV 0.45 1 0.15 0

ACO parameters have been shown to have a significant effect on solution quality.

Thus we conducted an exhaustive parameter search to find the best value for the

four parameters in our ACO algorithm namely: α, β, ρ, and λ. Table 2.1 shows

the range of values considered when searching for the best parameter values, totaling

240,000 parameter combinations. Each parameter combination was applied ten times

and the combination providing the best solution on average was selected as the best
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Figure 2.4: The hypothetic FTPP problem instance.

parameter combination. This exhaustive parameter search was conducted for all four

cases and resulted in a different best parameter combination for each case. From

Table 2.2 we can see that although pheromone importance (α) was relatively similar

for all cases, the importance of the edge attributes (β), sediment yield and costs,

increased as sediment constraint level became more limiting. Pheromone persistence

(ρ) increased with increasing level of sediment constraint with the exception of case

IV. As expected the importance of the sediment yield (1−λ) increased as the sediment

restriction level increased.

2.3.2 Experiment Results and Discussions

The four test cases were solved to optimality by the MIP solver, providing a bench-

mark for comparing solutions found by the ACO algorithm. The results (Table 2.3)

show that our ACO algorithm was able to find the optimal solution for cases I and

IV. We used these two unconstrained test cases (cases I and IV) as a reference to

obtain a meaningful sediment constraint range and set two increasing levels for the

constrained cases (cases II and III). As the ACO algorithm presented in this study

was designed to address constrained FTPP, it was able to reach high quality solu-
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tions for all cases and instances. The best found ACO solutions for cases II and III,

achieved optimality levels of 96.7% and 96.1%, respectively.

Table 2.3: Objective function value comparisons between MIP and ACO for the
Hypothetical FTPP.

ACO Sediment Constraint Value MIP Percent

Case (Objective Value - $) (tons) Objective Value - $ Different

I 1,496,562 N/A 1,496,562 0.00%

II 1,637,860 2,000 1,585,393 3.31%

III 2,086,280 1,500 2,008,344 3.88%

IV 948.6 N/A 948.6 0.00%

To test the overall robustness of the ACO algorithm and its ability to consis-

tently find high quality solutions on different problems of similar size using the same

parameter values found for the original FTPP, we created a set of 10 different prob-

lem instances on the same transportation network (Figure 2.5). These ten problem

instances were created by randomly assigning timber sale locations and the mill des-

tination to different nodes. Timber volume at each sale location as well as the three

edge attributes (fixed and variable transportation costs and sediment yield) on each

edge remained the same for all problem instances. As with the original FTPP, we

also considered the four problem cases with increasing level of sediment constraint.

In order to compare ACO solution quality, we used the MIP solver to obtain optimal

solutions. The total sediment amount associated with the optimal solution for case

I (cost minimization) and the objective function of the optimal solution for case IV

(sediment minimization) were used as the upper and lower limits of the sediment

constraint in cases II and III. For all ten instances, one third and two thirds of the

difference between the upper and lower limits were subtracted from the upper limit

to determine the sediment constraint values for cases II and III, respectively.

The ACO algorithm was able to successfully solve all ten problem instances (Table
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Instance 1 Instance 2 Instance 3 

   
Instance 4 Instance 5 Instance 6 

   
Instance 7 Instance 8 Instance 9 

   
 Instance 10  
 

 

 

Figure 1. Set of ten problem instances created on the original hypothetical FTPP.  
Figure 2.5: Ten problem instances created on the hypothetical FTPP.

2.4), four cases for each of the ten instances, obtaining high quality solutions and in

many cases matching optimal solutions. For case I, the ACO algorithm was able

to find optimal solutions for seven of the ten instances, and on average for all ten

instances ACO solutions were 99.8% optimal. For case IV, the ACO algorithm found

optimal solutions for all problem instances but number five, which solutions quality

was 99.6%. ACO solutions for the constrained FTPP (cases II and III), for which the

ACO algorithm was designed, also provided near-optimal solutions. For case II, ACO

solution quality ranged from 97.7% to 99.9% with an average solution quality of 98.9%.

As problem complexity increased in case III due to the more strict constraint, ACO
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solution quality averaged 97.8% with a range between 95.3% and 100%. Consistently

for all problem instances, solution quality for case II was slightly better than for case

III, mainly because of the fewer feasible solutions evaluated per unit of time.

In general, the ACO algorithm was able to produce near-optimal solutions for all

tested problem cases. Although MIP was able to find optimal solution, the ACO

algorithm only required a fraction of time requested by MIP (Table 2.5). On average,

the best solution found by the ACO algorithm required about 25% (18 vs. 79 sec)

and 1% (24 vs. 1678 sec) of the computing time required by the MIP solver to find

the optimal solution for cases I and IV. For case II, the ACO was relatively similar

between each instance, taking between 190 and 960 sec with an average of 544 sec.

On the other hand, computing time required by the MIP solver was about 18 times

larger (9,949 sec). Due to the complexity of the problem, ACO and MIP solution

times for case III were on average much larger and more variable than those for case

II. ACO solution times varied from 360 to 29,000 sec with an average of 5,370 sec,

which is only about 7.3% of the average time required by the MIP solver.

2.4 Concluding Remarks

In this study, a customized ACO algorithm was developed to solve CFTPP consider-

ing fixed and variable costs as well as a sediment constraint representing the negative

environmental impact of timber transport. The ACO metaheuristic, as most approxi-

mation algorithms, is highly dependent on problem specific fine tuning of parameters

to ensure high quality solutions. Consequently, after conducting an exhaustive pa-

rameter search process on the hypothetical network considered in this study, the ACO

algorithm was able to find optimal and near-optimal solutions. The best parameter

combination found for each case of the original hypothetical network was applied to

ten different problem instances. Resulting ACO solutions for the constrained prob-

lems (cases II and III) were on average 98.4% optimal, which indicated consistent
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Table 2.4: Objective function comparisons between MIP and ACO solutions for cases
I, II, III and IV of the ten different problem instances.

ACO Sediment Constraint Value MIP Percent

Instance Case (Objective Value - $) (tons) Objective Value - $ Different

1

I 866254 N/A 866254 0.00%

II 887,719 2,159 878,749 1.02 %

III 1,027,550 1,727 981,203 4.72 %

IV 1294 N/A 1294 0.00%

2

I 1361070 N/A 1360965 0.01%

II 1,416,090 2,490 1,415,960 0.01 %

III 1,619,740 1,860 1,563,669 3.59 %

IV 1230 N/A 1230 0.00%

3

I 1016500 N/A 1016500 0.00%

II 1,055,330 2,254 1,048,768 0.63 %

III 1,174,630 1,746 1,170,956 0.31 %

IV 1236 N/A 1236 0.00%

4

I 897677 N/A 897677 0.00%

II 914,972 2,449 910,152 0.53 %

III 1,043,763 1,778 1,043,763 0.00 %

IV 1106 N/A 1106 0.00%

5

I 1171130 N/A 1171130 0.00%

II 1,203,500 2,445 1,181,284 1.88 %

III 1,301,920 1,945 1,260,541 3.28 %

IV 1389 N/A 1384 0.37%

6

I 1173387 N/A 1173387 0.00%

II 1,212,620 2,354 1,208,610 0.33 %

III 1,398,950 1,760 1,355,860 3.18 %

IV 1163 N/A 1163 0.00%

7

I 1069100 N/A 1050671 1.75%

II 1,089,140 2,672 1,066,148 2.16 %

III 1,164,660 1,978 1,164,368 0.03 %

IV 1283 N/A 1283 0.00%

8

I 1214400 N/A 1211218 0.26%

II 1,241,760 2,660 1,229,392 1.01 %

III 1,418,220 1,971 1,361,841 4.14 %

IV 1343 N/A 1343 0.00%

9

I 1322930 N/A 1322930 0.00%

II 1,410,850 2,262 1,378,432 2.35 %

III 1,679,540 1,734 1,636,147 2.65 %

IV 1205 N/A 1205 0.00%

10

I 1328930 N/A 1328930 0.00%

II 1,403,150 2,342 1,394,355 0.63 %

III 1,634,760 1,750 1,628,223 0.4 %

IV 1132 N/A 1132 0.00%
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Table 2.5: Comparison of computing times (sec) for a single run required by the ACO
algorithm and the MIP solver for the four cases of each of the ten instances.

ACO MIP

Instance Case I Case II Case III Case IV Case I Case II Case III Case IV

1 17 434 363 23 41 3,254 31,722 2,790

2 14 263 2,732 25 134 62,314 90,973 500

3 16 790 428 25 65 3,532 21,893 2,147

4 21 708 396 23 95 4,732 36,385 1,275

5 18 190 29,051 19 64 3,110 149,585 54

6 21 304 8,885 24 69 4,344 97,582 2,922

7 21 905 371 28 76 1,333 31,540 2,933

8 20 371 10,722 31 68 8,458 55,516 1,786

9 14 509 332 20 84 1,182 152,629 1,157

10 20 962 419 26 98 7,225 59,597 1,212

Average 18 544 5,370 24 79 9,949 72,742 1,678

results and overall robustness of the algorithm.

The algorithm developed in this study has a great application potential to en-

sure the economic efficiency of timber transport operations, which is the largest cost

component of timber harvesting. However, the ACO algorithm needs improvement

to ensure solution quality and time efficiency for larger and more complex, real-world

FTPP. Future work should be focused on time efficient technique to configure param-

eter values without the need to conduct an exhaustive parameter search. The current

version of the algorithm coded in a sequential fashion, thus incorporating paralleliza-

tion is likely to reduce solution time and allow addressing large-scale problems.

Copyright c© Pengpeng Lin 2015
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3 Automatically Configuring ACO Using Multilevel ParamILS to Solve
Transportation Problems

3.1 Introduction

In this Chapter, we present the design, implementation and testing of a multilevel

online parameter configuration framework (MParamILS) for ACO, which combines

a graph coarsening heuristic and the ParamILS framework. The proposed multilevel

framework configures ACO algorithms to solve the original problem, which might

be computationally expensive, using a set of increasingly coarser level problems of

which the computational cost is cheaper. The graph coarsening technique (described

in Chapter 1) is recursively applied to the original problem, from which the gen-

eral structure and certain edge properties are inherited by the resulted coarser level

problems. The ParamILS is a state of the art parameter configuration algorithm.

MParamILS is robust for it does not rely on any specific problem types or require

predetermined good parameter value sets. Moreover, the framework developed in

this work can be potentially generalized to other problem domains and optimization

algorithms. For example, instead of using ParamILS, other parameter configuration

methods can be used to solve different kinds of problems (such as those presented

in [9, 41, 15]). The following sections provide preliminary knowledge and detailed

descriptions of MParamILS.

3.2 Preliminary Knowledge

3.2.1 Challenge for Setting Parameters for ACO-based Algorithms

As aforementioned, the performance of ACO-based algorithms are highly dependent

on the values of their parameters. Without proper parameter settings, ACO-based

algorithms can either converge very slowly or stagnate in local optimal solutions

[27, 71, 33]. However, setting parameters for ACO algorithms is a difficult task

because users have to balance between diversification and intensification [29, 24].
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On one hand, when choosing parameter values that emphasize diversification, the

final solution quality is often better, but more computing time is required. On the

other hand, when choosing parameter values that emphasize intensification, ACO

algorithms converge quickly but often to sub-optimal solutions.

Traditionally, ACO parameters were configured by manually changing one param-

eter at a time while keeping other parameters constant [33], which was similar to the

Coordinate Search. Such a parameter tuning method was time consuming and prone

to human errors [81]. In addition, the performance of the Coordinate Search is highly

affected by the initial search point and step size. Without a proper initial setting, the

Coordinate Search may converge very slowly and often obtain local optimal solutions

[84].

Automatic parameter configuration techniques have been developed to improve

the performance of the manual parameter configurations [72]. Broadly, the automatic

configuration techniques are categorized into “online”, which modifies an algorithm’s

parameter values while solving a problem instance, and “offline”, which adjusts pa-

rameter values before the target algorithm is actually deployed [71, 31, 14]. For

example, Khichane et al. proposed two online frameworks (named GPL and DPL)

that automatically adapted parameters for ACO algorithms at runtime [55]. The idea

behind the frameworks resembled the pheromone update mechanism of ACO and the

experiments showed positive results. However, discrete sets of parameters must be

known a priori, and they were assumed to contain good values, which should allow

ACO to find good results. This requirement is often difficult to meet for parameters

with large value ranges. Birattari et al. [10, 6, 11] presented the iterated F-Race (I/F-

Race) method for offline algorithm configurations. This method consisted of sampling

parameter values from a probability distribution, selecting the best parameter set-

tings according to the results of F-Race, and updating the probability distribution to

bias the sampling towards good parameter values. Although the method was used to
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automatically tune parameters, I/F-Race required a well defined probability distri-

bution that is usually difficult to determine if a limited set of instances are available

[10], and the adoption of a full factorial decision was impractical and computation-

ally prohibitive for a large number of parameter configurations [6]. Manuel et al.

[66] proposed two offline parameter variation strategies called “delta” and “switch”,

which were used for changing parameter values in the I/F-Race. In the delta strategy,

parameter values first increased by a certain amount at each algorithm iteration, and

then decreased when the values exceed a maximum allowable range. In the switch

strategy, parameter values were either randomly selected from a value range or kept

constant at each algorithm iteration. The experimental results showed that the per-

formance of the automatic configuration method was able to match that obtained by

the parameter variation strategies designed by a human expert.

3.2.2 Algorithm Configuration Problem

Generally speaking, setting parameters for ACO is an algorithm configuration prob-

lem that is comprised of a set of input data, a given target algorithm A, and a

parameter domain Θ = Θ1 × . . . × Θk, where Θi represents a parameter value set.

Let A(~θ) be an instantiation of the target algorithm with a parameter combination

~θ ∈ Θ, OA(~θ) the objective function that measures the observed cost for running A(~θ),

and E a statistical measurement such as the expectation, median, or norm. The ob-

jective of the algorithm configuration problem is to find the parameter combinations

Θ∗ ⊆ Θ such that the target algorithm achieves the best possible performance on any

input data that minimizes E(OA(~θ)), ∀~θ ∈ Θ∗. Mathematically, the objective of the

algorithm configuration problem is described as

Θ∗ = ~θ : arg minE(OA(~θ)),
~θ ∈ Θ (3.1)

Accordingly, algorithms that solve the algorithm configuration problem are called
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configurators, and algorithms to be configured are called target algorithms.

3.2.3 ParamILS Framework

ParamILS framework is a state of the art procedure to solve the algorithm configura-

tion problem [46]. To configure parameters, ParamILS makes a sequence of algorithm

runs for each parameter combination. It then, selects the best one based on the sta-

tistical information calculated from obtained objective values.

In order to properly compare between two parameter combinations, a sufficient

number of algorithm runs are required for calculating the necessary statistical infor-

mation. Due to the stochastic nature of ACO algorithms, a high-quality or the opti-

mal solution may be obtained by a low-quality parameter setting purely by chance.

Therefore, the expected objective function value is used to assess qualities of param-

eter combinations.

As the expected values are calculated with the number of algorithm runs, two

parameter combinations are comparable only when they have been evaluated the

same number of times. Therefore, we formally state in Definition 1 that a parameter

combination ~θ1 dominates ~θ2 if the expected objective value of ~θ1 is better than that

of ~θ2 for the same number of algorithm runs:

Definition 1. (Domination). ~θ1 dominates ~θ2 if N(~θ1) ≥ N(~θ2) and E(~θ1) < E(~θ2),

where N(~θ1) = length(R~θ1
) and R~θ1

denotes for algorithm runs on the parameter

combination ~θ1.

Definition 1 is used to modify the original ParamILS framework for configuring

ACO algorithms.
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3.3 Multilevel ParamILS

3.3.1 Multilevel Parameter Configuration Framework

The proposed multilevel framework (Figure 3.1) consists of a target algorithm for pa-

rameter configuration, a problem that is coarsened into a set of increasingly coarser

level problems, a parameter domain that contains possible parameter combinations,

and a configurator that runs the target algorithm to evaluate the qualities of param-

eter combinations in the domain [63].

Run on different 
parameter sets

Configurator

Target 
Algorithm

(ACO)

Problem domain

Returns solution evalutions

Calls

Parameter Domain

Set Parameters & 
starting values

Update
Parameter Domain

Original Problem Coarsening process
Generates set 

of coarse problems

Choose problem with 

corresponding coarse levelStart

Original problem 
solved?

Terminate & return 
solution

Yes

N
o

Figure 3.1: Multilevel parameter configuration framework.

In this study, the ACO-based algorithms developed for transportation problems

with underlying weighted networks are the target algorithms, and the ParamILS is

used as the configurator. The qualities of parameter combinations in the parame-

ter domain are evaluated by running the target algorithm. Based on the obtained

objective function values, low-quality parameter combinations can be identified and

removed from the domain. This evaluation process is applied first to the coarsest level

problem, and then applied subsequently to the next coarser level problem, then to the

finest level (original) problem. Because of the smaller sizes of coarser level problems,
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evaluating parameter combinations on a coarser level problem is expected to finish

quicker than that on the original problem. The size of the domain decreases as the

low-quality parameter combinations are constantly being eliminated. As a result, the

required computing time is reduced due to fewer number of parameter combinations

having to be evaluated at finer level problems. After the parameter evaluation process

on the coarser level problems, the remaining parameter combinations in the domain

at the finest level are considered high-quality and used to solve the original problem.

3.3.2 Modifying ParamILS

A modified ParamILS framework (Algorithms 3 to 5) is implemented according to

Definition 1 to configure ACO, where procedure Objective (Algorithm 3) evaluates a

parameter combination and returns the expected objective value. For the evaluated

parameter combinations, a global cache is used to archive their evaluation information,

which contains the number of times the parameter combination has been evaluated

(runtime), the best objective value obtained, and the sum of all the obtained objective

values (sum). Objective procedure takes an integer value (N), which is the number

of algorithm runs required for the evaluation, and a threshold bound, which is used to

stop the evaluation process for low-quality parameter combinations. Before evaluating

a parameter combination ~θ, its runtime is extracted from the global cache to compare

with N . If ~θ has already been evaluated N times (i.e., runtime ≥ N), it will not be

evaluated again and Objective simply returns the expected objective value calculated

based on the evaluation information. Otherwise, ~θ is evaluated until the number of

evaluations equals N or the parameter combination is considered as low-quality. This

is determined when the expected objective value exceeds the bound. Then, Objective

stops evaluating the parameter combination further and returns a worst possible

objective value (i.e., a big number for minimization problems) as an indication of bad

quality.

Note that a proper bound value can save computing time by avoiding evaluating
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Algorithm 3 Objective(~θ, N , bound). R[i] denotes ith ACO run.

Input(Parameter Set ~θ, number of runs: N , bound)
Output(the expected objective value E(~θ))

begin

runtime ← number of algorithm runs for ~θ
sum ← sum of objective values in R~θ[1], . . . , R~θ[runtime]
if runtime ≥ N then

return(sum/runtime)
end
foreach i = runtime to N do

Oi ← objective from a newly executed run of A(~θ)
sum ← sum + Oi

runtime ← runtime+ 1
R~θ[i]← Oi

// terminate early for bad parameter set

if (sum/N) > bound then
return(WorstPossibleObjective)

end

end
return(sum/runtime)

end

low-quality parameter combinations. An improper bound value (such as too small

or too large), however, can either cause a good parameter combination being falsely

labelled as low-quality or a bad parameter combination not being identified. In this

study, based on the preliminary experimental results, bound is set to be twice as big

as the best expected objective value found. However, we emphasize that this setting

is by no means optimal or universal. For a different set of testing problems, a new

bound setting may be more appropriate to achieve good results.

Procedure better (Algorithm 4) compares two parameter combinations ~θ1, ~θ2. It

returns true if ~θ1 dominates ~θ2 and false otherwise. The Objective procedure and an

auxiliary procedure Dominate are used to make the comparison. To determine which

parameter combination is superior, ~θ1 and ~θ2 have to be evaluated for the same number

of times. If both parameter combinations produce the same expected objective value,
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Algorithm 4 better(~θ1, ~θ2).

Input(Parameter Set ~θ1, Parameter Set ~θ2)

Output(true if ~θ1 dominates ~θ2, false otherwise)
begin

if ~θ1 == ~θ2 then
return(true)

end

if N(~θ1) ≤ N(~θ2) then

N ← N(~θ1)
else

N ← N(~θ2)
end
while true do

N ← N + 1
Objective(~θ1, N, bound)
Objective(~θ2, N, bound)
if Dominate (~θ1,~θ2) then

return true
end

if Dominate (~θ2,~θ1) then
return(false)

end

end

end

Procedure: Dominate(~θ1,~θ2)

begin

if N(~θ1) < N(~θ2) then
return(false)

else
return(

Objective(~θ1, N(~θ2), bound) ≤
Objective(~θ2, N(~θ2), bound))

end

end

better will continue the evaluation process until one of them dominates the other.

The main procedure of ParamILS (Algorithm 5) uses better, and the other two

auxiliary procedures (Nbh and IterativeLocalImprovement) to select high-quality pa-

rameter combinations. Nbh takes a parameter combination and randomly selects one

of its neighboring parameter combinations that differ in one parameter value. Itera-
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Algorithm 5 ParamILS(Θ, ~θstart, r, s); Nbh(~θ): returns a neighboring parameter

combination; R~θ: denotes for the evaluation information of ~θ; getbest(R~θ): returns
the best objective value obtained; IterativeLocalImprovement : iteratively compares
the neighboring parameter combination with the current best one.

Output(Best parameter seting, parameter combination set)
begin

~θbest = ~θstart
foreach i=1 to r do

~θ ← random ~θ ∈ Θ
if better(~θ, ~θbest) then ~θbest ← ~θ

end
~θbest ← IterativeLocalImprovement(~θbest)
while NotTerminationCriterion do

~θ ← ~θbest
// parameter local perturbation

foreach j = 1 to s do
~θ ← random ~θ

′ ∈ Nbh(~θ)
end
~θ ← IterativeLocalImprovement(~θ)
// parameter acceptance

if better(~θ, ~θbest) then ~θbest ← ~θ
end
O~θbest

← getbest(R~θbest
)

E~θbest ← E(R~θbest
) // expected objective value for ~θbest

forall the evaluted ~θ ∈ Θ do
if getbest(R~θ) ≤ O~θbest

and E(R~θ) < BF × E~θbest then

add ~θ to Θselected

end

end

return(Θselected, ~θbest)
end

Procedure: IterativeLocalImprovement(~θ)
begin

while ~θ
′ 6= ~θ do

~θ
′ ← ~θ

foreach ~θ
′′ ∈ Nbh(~θ

′
) in randomized order do

if better(~θ
′′
, ~θ
′
) then ~θ ← ~θ

′′

break
end

end

return(~θ)
end
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Procedure: Nbh(~θ)
begin

visit each ~θ
′ ∈ ~θ in randomized order

if ~θ
′

differs from ~θ in one parameter then return(~θ
′
)

end

tiveLocalImprovement uses Nbh to compare the current best parameter combination

~θbest with the neighboring parameter combinations. If a neighbouring parameter com-

bination is found to be better, it replaces ~θbest and becomes the new best parameter

combination. IterativeLocalImprovement continually refines the best parameter com-

bination until a dominating one, where no better neighbors can be found, is obtained.

ParamILS takes two parameters: r, which is the number of attempts to find

a better parameter combination than ~θstart at the beginning, and s, which is the

number of parameter neighboring searches (IterativeLocalImprovement). The values

of the two parameters affect the overall computing time and final solution quality.

In the experiments, r was set to 10, s was set to the number of parameters being

configured (α, β, ρ for ACO), and ~θstart was set to α = 0.5, β = 0.5, ρ = 0.5. ParamILS

iteratively evaluates parameter combinations. Meanwhile, the evaluation information

is archived and updated. In the end, a set of good parameter combinations are selected

from evaluated parameter combinations according to the evaluation information. A

parameter combination is considered good if its best objective value obtained is no

worse than the one obtained by ~θbest and their expected objective value is less than

E~θbest times a boundary factor (BF ):

Definition 2. (Selecting good parameter combinations). A parameter combination ~θ

is considered good if getbest(R~θ) ≤ getbest(R~θbest
) and E(R~θ) < BF×E(R~θbest

), where

BF is an integer scaler and getbest(R~θ) is a function that returns the best objective

value obtained from evaluating ~θ.

Similar to the bound setting in Algorithm 4, based on the preliminary experimental

results, the boundary factor was set to 2 in the implementation. Time complexity
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of ParamILS depends on the number of parameter combinations to be evaluated.

The convergence of ParamILS is proven in [46], where the probability of finding

the optimal parameter configuration ~θ∗ approaches one as a number of parameter

combination searches goes to infinity.

3.3.3 Multilevel ParamILS Framework

The Multilevel ParamILS framework (Algorithm 6) combines the graph coarsening

procedure (Chapter 1) and ParamILS. the graph coarsening procedure coarsens a

problem G into a set of increasingly coarser level problems G0, G1, . . . , Gn. ParamILS

is first applied to the coarsest problem (Gn) with a start parameter combination. It

selects high-quality parameter combinations from a parameter combination domain Θ

and the identified low-quality parameter combinations are discarded. Next, ParamILS

is applied to the second coarsest level problem (Gn−1) and uses the best parameter

combination selected from the coarsest level problem as the start parameter combina-

tion. It again selects high-quality parameter combinations, removes low-quality ones

from the Θ, and possibly obtains a new best parameter combination. Subsequently,

this process continues to the next level coarser problem until ParamILS is applied to

the finest level problem G0 (original problem), resulting in a significant reduction in

size of the Θ at the finest level. Consequently, computing time is greatly saved in that

1) identifying and eliminating parameter combinations on coarser level problems is

faster than that on the original problem, 2) the target algorithm (ACO) is expected

to converge faster using selected high-quality parameter combinations.

3.4 Experimental Studies

3.4.1 Experiment Setup

Algorithms and procedures were implemented using C++ and uploaded to the Lip-

scomb High Performance Computing Cluster (HPC) supported and maintained by

the University of Kentucky Center for Computational Science. All programs were
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Algorithm 6 Multilevel ParamILS framework(Θ, ~θstart, G).

Input(Θ, ~θstart, Problem G)
Output(good parameter combinations set, best solution)
begin

(Gn, . . . , G0 ⇔ G) ← obtain coarse problems from G
foreach i = n to 0 do

// update domain Θ, obtain ~θbest

(Θ, ~θbest)← ParamILS(Θ, ~θstartGi)
~θstart ← ~θbest

end
return(Θ, best solution)

end

executed on the computing nodes of HPC: Dual Intel E5-2670 of 8 Cores at 2.6 GHz

with 64 GB of 1600 MHz RAM and Linux Red Hat OS. To test for performance,

MParamILS was compared with an Exhaustive method and the ParamILS (Table

3.1). The Max-Min Ant System (MMAS) [80] was used as the target algorithm and

the objective was to configure its three main parameters: α that controls relative im-

portance of pheromone information, β that controls relative importance of heuristic

information, and ρ which is the pheromone evaporation rate used to prevent ACO

from converging to local optimal or reaching premature stagnation. The value ranges

of the three parameters were confined to [0,1] with a step of 0.05 for α, β and 0.1

for ρ, which makes a total 4,000 parameter combination domain. The MMAS was

implemented according to the previous study (Chapter 2).

The MMAS was applied to five test cases (Table 3.2). Case I was a fixed charge

transportation problem [44] where fixed and variable costs were involved. Case II and

Case III were constrained fixed charge transportation problems where constraints of

different strictness levels were imposed. Case IV was a minimization problem where

the objective was to obtain a set of routes from sources to destinations with minimum

total weights. Case V was the Hamiltonian cycle problem, which is a special case of

the travelling salesmen problem (TSP) obtained by setting the edge attributes to one
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Original Problem Coarse Level 1 Coarse Level 2

Coarse Level 3 Coarse Level 4 Coarse Level 5

Figure 3.2: Original problem and its subsequent coarser level problems.
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Figure 3.3: Average computing time of running MMAS 100 times on the original
problem and its coarse level problems for Case I (ACO stops search for solution after
10000 iterations, α = 0, β = 0, ρ = 1).

[5].

The test cases were designed on the network that was used in Chapter 2 that

consists of 500 road segments and 200 intersection nodes with 25 sources and one
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Table 3.1: Tested methods, parameter settings, and running environment.

Method Parameter Settings Implementation OS

Exhaustive α ∈ [0, 0.05, 0.1, . . . , 0.95, 1],
β ∈ [0, 0.05, 0.1, . . . , 0.95, 1],
ρ ∈ [0, 0.1, 0.2, . . . , 0.9, 1],
|Θ| = 4000,
Max iteration = 10000,
Max pheromone = 0.01,
Min pheromone = 0.00001.

Divide Θ into 10 partitions
and use 10 processors to run
GuidedACO with each pa-
rameter combination parti-
tion simultaneously.

C++,
Linux.

ParamILS Same ACO settings as Exhaustive,
Number of iterations: 100,
Local search r = 10,
Perturbation s = 3,
Initial best parameter Setting:
(α = 0.5, β = 0.5, ρ = 0.5).

Parameter settings in Θ is
sequentially configured and
ParamILS stops after 100 it-
erations. Best solution is
obtained during parameter
configuration.

C++,
Linux.

MParamILS Same ACO settings as Exhaustive,
Four level problems:
Level 0 (original problem),
Level 1 (first coarser),
Level 2 (second coarser),
Level 3 (coarsest).

C++,
Linux.

Table 3.2: Test cases, objective functions, and constraints.

Test Case Name Objective Function Constraints Description

Case I Fixed charge
problem
(FCP)

min
n∑
i=1

n∑
j 6=i,
j 6=0

V Ci,j × Ei,j +

FCi,j × Ei,j

where Ei,j = {0, 1}

VC: variable cost,
FC: fixed cost,
Route: multiple sources to
one or more destinations.

Case II & Case III Constrained FCP
(CFCP)

min
n∑
i=1

n∑
j 6=i,
j 6=0

V Ci,j × Ei,j +

FCi,j × Ei,j

where Ei,j = {0, 1}

n∑
i=1

n∑
j 6=i,
j 6=0

Sedi,j × Ei,j ≤

SedRct

Sedi,j : sediment,
SedRct = 2000 for Case II,
SedRct = 1500 for Case III,
Route: multiple sources to
one or more destinations.

Case IV Minimization
transportation
problem

min
n∑
i=1

n∑
j 6=i,
j 6=0

Sedi,j × Ei,j

where Ei,j = {0, 1}

Route: multiple sources to
one or more destinations.

Case V Hamiltonian cy-
cle problem

n∑
i=1

n∑
j 6=i,
j 6=0

Ei,j

where Ei,j = {0, 1}

n∑
i=0,
i6=j

Ei,j = 1,

n∑
j=0,
j 6=i

Ei,j = 1

Route: single source, every
node has to be visited ex-
actly once.

destination. The graph coarsening procedure was applied to the network to produce

coarser level problems. Special nodes, such as source and destination nodes, were
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Table 3.3: Number of nodes and edges between the original network and coarser
level networks. Percentage of nodes and edges reduced from finner level networks to
coarser level networks.

Original Level 1 Level 2 Level 3 Level 4 Level 5

# of Nodes 200 116 74 53 41 35

# of Edges 500 300 190 134 102 86

Nodes Reduction Rate N/A 42.00% 36.21% 28.37% 22.64% 14.63%

Edges Reduction Rate N/A 40.00% 36.66% 29.47% 23.88% 15.68%

reserved from the coarsening process and copied directly from a finer level to a coarser

level problem. Five coarser level problems (Level 1, 2, 3, 4, 5 in Figure 3.2) with

increasingly reduced sizes were obtained (Table 3.3). The problem size was reduced

considerably from the original problem to the coarser level problems (about 40% from

the original problem to Level 1 problem). However, the size reduction rate gradually

decreased as the coarser level increased (i.e., only 15% from Level 4 to Level 5). This

can be explained by the fact that a coarser level problem contains fewer number of

matching edges than a finer level problem. Therefore, fewer number of nodes and

edges are aggregated and collapsed when the coarsening process is applied, causing a

smaller size reduction rate.

Because the size reduced from a coarser level to the next coarser level problem can

be inadequate, not all five coarser level problems might be needed in MParamILS.

To select appropriate coarser level problems, we ran MMAS 100 times on each of the

coarser level problems (including original problem) to solve for Case I and compared

their average running times (Figure 3.3). MMAS was set to stop after 10,000 iterations

and the three parameters were set: α = 0, β = 0, ρ = 1, which turned off the

functionality of the pheromone information and made MMAS a randomized search

algorithm. The average computing time reduction was highest from the original

problem to Level 1 problem, and lowest from Level 4 problem to Level 5 problem

(Figure 3.3). In general, the differences in computing time between coarser level
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problems became less significant as the problem size differences became smaller. This

was especially evident for Level 3, 4 and 5 problems, where their computing times only

differed in one or two seconds. Due to the small time difference, we only considered

Level 1, 2 and 3 problems in our experiments for the MParamILS.

3.4.2 Experiment Results and Discussions

The Exhaustive method was applied to each test case once and used to compare so-

lution quality. It ran MMAS on each parameter combination 10 times, and the best

solutions were selected according to the objective functions. Since sequential exhaus-

tive methods can take a long time, we divided the parameter combination domain

into 10 intervals and applied the Exhaustive method to each of them simultaneously.

The computing time of the Exhaustive method was calculated by adding the time

spent for each interval. ParamILS and MParamILS were run independently 10 times

for each test case, and average computing time and objective function value were

used for comparisons in the experimental results. Because MParamILS was set to

use a different number of coarser level problems, we use MParamILSi to denote the

different settings, where i indicates the maximum number of coarsening levels used.

For example, MParamILS4 indicates that Level 0-3 problems were used. Additionally,

we use MParamILSs as a collective name referring to MParamILS with all the tested

coarsening level settings as a whole.

The performances were first compared between the Exhaustive method and the

two heuristic methods. The purpose was to investigate whether the tested heuristics

can produce the same solution qualities. No significant differences among the tested

methods in terms of solution quality can be observed, as the results obtained for

all test cases are reduced to a single point due to the extremely small variances

(Figure 3.4). This indicates that ParamILS and MParamILSs were able to match the

performance of the Exhaustive method, and high-quality solutions were consistently

produced by both heuristic methods. In terms of computing time in average for all
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Figure 3.4: Best objective values obtained by the Exhaustive, average objective values
obtained by ParamILS and ParamILSs.

test cases, the Exhaustive method spent a substantially longer time (about 75% more)

compared to ParamILS of which the required computing times for all the test cases

were the second longest (Table 3.4).

Table 3.4: Results of statistical significance tests (ANOVA test) on computing time
of methods for each test case and the corresponding least-square means of computing
time. The difference in computing time is significant if the p value is less than 0.05.

P < .05 Exhaustive ParamILS ParamILS2 ParamILS3 ParamILS4 P -V alue

Case I 951413.80 244822.90 98266.35 75390.81 49693.95 < .0001

Case II 921843.70 246613.80 99363.67 69789.65 54150.39 < .0001

Case III 866465.40 277902.80 104019.05 73155.85 56313.06 < .0001

Case IV 849819.00 191257.50 82751.51 73309.86 63709.44 < .0001

Case V 1018748.20 172384.10 53592.25 35869.23 34975.68 < .0001

Average 921658.02 226596.22 87598.57 65503.08 51768.50

Reduced 75% 61% 25% 21%

Second, comparisons of performances between ParamILS and MParamILSs were

44



conducted to investigate how much MParamILSs can save time compared to ParamILS.

According to the statistical results, the computing times were significantly different

among the tested methods for all the test cases, and MParamILSs was always faster

than ParamILS (Table 3.4). On average when compared to ParamILS, MParamILS2

reduced more than 60% of the computing time, MParamILS3 and MParamILS4 re-

duced more than 70% of the computing time. This demonstrates, for all tested

problem cases, that MParamILSs required significantly shorter time than ParamILS.

It can also be observed that MParamILS2 required longer time than MParamILS3,

followed by MParamILS4, which indicates that larger time savings were obtained with

MParamILS using more coarser level problems.

Next, comparisons in terms of computing time variation were made among MPara-

mILSs with ParamILS as the baseline method, in order to investigate the performance

of MParamILS using a different number of coarser level problems. Figure 3.5 displays

five box plots of computing time distributions of 10 runs of the methods on each

test case. Results show that ParamILS had the largest computing time variations

compared to MParamILSs for all the test cases. Moreover, time variations among

MParamILSs were similar, and varied for different test cases. For example in Case

III, MParamILS3 had larger variation than MParamILS4, whereas an opposite result

can be observed in Case IV. This shows that 1) MParamILSs was more stable (less

variation) than ParamILS in terms of computing time, and 2) time variations among

MParamILSs were small and not related to the number of coarser level problems used.

Finally, we conducted significance statistical analyses on both objective values

and computing times considering all test cases (Diffograms in Figures 3.6 - 3.7). The

vertical and horizontal axes in the Diffograms were marked with the least-squares

means. Colored lines indicate if there is a significant difference between the two

methods. When a colored line crosses the reference line (the diagonal dashed line),

the least-squares means associated with the center point (joint point) of the line are
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(a) Computing time distribution of Case I (b) Computing time distribution of Case II

(c) Computing time distribution of Case III (d) Computing time distribution of Case IV

(e) Computing time distribution of Case V

Figure 3.5: Distribution of computing times of ParamILS and MParamILSs over 10
runs for each test case.
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Figure 3.6: Diffograms illustrating the signaficance comparison on objective value
among methods.

not significantly different. The results were consistent between any combination of

methods that there were no significant differences in objective value (Figure 3.6).

This indicates MParamILSs was able to match ParamILS in solution quality for all

the test cases. On the other hand, results show that computing times were signifi-

cantly different among ParamILS and MParamILSs (Figure 3.7). This difference was

largest between ParamILS and each MParamILS and relatively small among MPara-

mILSs. This corresponds with the results in Table 3.4 that MParamILSs required

substantially less computing time than ParamILS for all the test cases.

3.5 Concluding Remarks

In this chapter, we present a multilevel parameter configuration scheme (MParamILS)

to configure ACO-based algorithms for solving transportation problems modeled with
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Figure 3.7: Diffograms illustrating the signaficance comparison on computing time
among methods.

underlying weighted networks. It combines the graph coarsening procedure and a

modified ParamILS procedure. MParamILS coarsens a large problem into smaller

problems and uses the ParamILS to select high-quality parameter combinations from

the smaller problems. The selected parameter combinations are then used to solve the

original problem. As a result, the computing time is significantly reduced by evalu-

ating a larger number of parameter combinations on less complex (smaller) problems

and evaluating fewer number of parameter combinations on more complex (larger)

problems. MParamILS was applied to five test cases and compared with ParamILS

and the Exhaustive method in terms of solution quality and computing time. Results

show that MParamILS was able to match solution qualities obtained by the other

methods and reduce computing times substantially for all test cases.

Moreover, savings in computing time increased with the number of coarser level
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problems used in MParamILS. Consideration should be given to select an appropriate

number of increasingly coarser problems used in MParamILS. A large number of

coarser problems might result in low-quality parameter combinations as the structure

of the coarsest problem might differ too much from the original problem. On the

other hand, a small number of coarser problems can result in MParamILS requiring

a longer computing time. In addition, the graph coarsening procedure used in the

experiments produces coarser level graphs by contracting finer level edges with large

attribute weights. This is an important property for solving minimization problems.

However, depending on different applications, weights on contracted edges can be

calculated differently. Analogously, parameter configurators other than ParamILM

in the proposed multilevel scheme can be considered. Lastly, although we applied

MParamILS to configure ACO algorithms, it can be extended to any parameterized

algorithms.

Copyright c© Pengpeng Lin 2015
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4 A Multilevel ACO Approach for Solving Constrained Forest
Transportation Planning Problems

4.1 Introduction

As demonstrated in the last chapter, a multilevel approach was used successfully

for the parameter configuration problem. In fact, as a general solution strategy,

multilevel schemes have been used for many years and applied to several problem

areas [42, 54, 60, 69, 51] where solution quality can benefit from having a relatively

high-quality initial solution that can be computed inexpensively on a lower level scale.

These schemes have proven to be efficient when solving discrete NP-hard problems

with a finite but exponential number of problem component combinations [86, 57, 85].

In this chapter, we extend the study from the previous work and develop a multi-

level ACO approach (MLACO) to solve the CFTPP. The MLACO not only consid-

ers automatically configuring the parameter values to achieve best algorithm perfor-

mance, it also attempts to reduce computing time by using the multilevel computa-

tion. Specifically, on one hand, MLACO integrates the multilevel ParamILS technique

to automatically configure the ACO parameters; on another hand, the best solution

obtained for a coarser level problem is used to help search for best solution for a finer

level problem quickly. The idea is to reduce the computational cost, which is expen-

sive for using exact methods to solve the original problem of large size, by solving a

set of smaller problems hierarchically, starting from the smallest one to the largest

one. In particular, three objectives to be achieved in this chapter with the MLACO

are to demonstrate that, for the problem instances on which it is tested, the MLACO

can either accelerate the solution convergence rate or improve the solution qualities;

explain the underlying process and why the MLACO can enhance performance com-

pared to other methods; and extract generic properties of the MLACO such as its

advantages and limitations and suggest how it might be applied to other optimization

problems. Ultimately, the MLACO presented in this study can serve as a framework
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that can be easily expanded to develop tools that incorporate other factors into forest

transportation planning and provide forest managers with environment-friendly road

network alternatives to help them make informed decisions.

4.2 Multilevel Scheme

Typically, multilevel schemes solve a large problem using a set of increasingly smaller

problems through a series of solution refinements. These smaller problems are ob-

tained by successively applying a coarsening process to the original problem. The

coarsening process creates a hierarchy of problem instances where a given coarser

level problem is always smaller than the previous finer level problem. The solution is

computed for a given coarser level problem and then transformed into a solution for

the next finer level problem until the original problem is solved.

An illustration of this process with ACO algorithm is presented in Figure 4.1

where a finer problem is coarsened into a coarser problem. The coarsening process is

believed to have preserved certain properties of the finer level problem in a sense that

a coarser level solution can be mapped into a set of finer level problem components,

and vice versa. An ACO algorithm is applied to the coarser level problem of which

the computational time is observably lower than that for the finer level problem.

The obtained solution, then, is interpolated into a set of components of the finer

level problem, which can be used to aid the ACO algorithm to find good solutions

for the finer level problem faster. Based on this idea, the MLACO is developed

in this chapter. To avoid confusion and assure the clarity, we define the following

terminologies that are used through out this thesis.

coarser/finer level problems: for a set of increasingly coarser level problems Π =

Π0, Π1, . . ., ΠN , where Π0 is the original problem and ΠN is the coarsest level

problem. If a problem Πi ∈ Π is referred to as a coarser level problem, then the

problem Πi−1 ∈ Π is referred to as its finer level problem and vice versa.
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interpolated components: for a coarser level problem Πi and its finer level problem

Πi−1, the interpolated components refer to the finer level problem components

obtained by interpolating the solution found for the coarser level problem.

mapping process: for a coarser level problem Πi and its finer level problem Πi−1,

the mapping process interpolates the coarser level solution to obtain the inter-

polated components.

Finer Problem
(expensive to solve)

Coarser Problem
(relatively cheaper to solve)

Coarsening

Finer Problem
(expensive to solve)

Coarser Problem
(relatively cheaper to solve)

Coarsening

Solution
(Coarser Problem)

Solution
(Finer Problem)

ACO

ACO

Figure 4.1: Diagram illustrating a multilevel scheme where a finer level problem is
coarsened to a coarser level problem (Left hand side picture). An ACO algorithm
solves the coarser level problem first and the obtained solution is used to help find
high-quality solutions for the finer level problem (right hand side picture).

4.3 Multilevel Approach

4.3.1 Obtaining Coarser Level Problems

As the networks of the CFTPP are weighted graphs, graph coarsening techniques can

be naturally applied to produce coarser level problems. Similar to Chapter 3, the

same graph coarsening algorithm used for the Multilevel ParamILS is used for the

MLACO. The coarsening algorithm generates coarser level problems by finding a set

of matching edges (matching) from the finer level problem, in which no two edges are

incident to the same node, and then collapsing the matching edges and aggregating

the incident nodes (Figure 4.2). This process is applied to each subsequently obtained

coarser level problem, resulting in a set of increasingly smaller problems.

For the sake of clarity, in the following section, the nodes on the collapsed match-

ing edges are referred to as “matching nodes”, the coarser level nodes obtained by
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aggregating the matching nodes are referred to as “aggregated nodes”, and the coarser

level nodes that are the same as its finer level are referred to as “unaggregated nodes”.

4.3.2 Underlying ACO

The underlying ACO algorithm (Algorithm 7), referred to as “GuidedACO” in this

study, is designed to search for solutions for a finer level problem guided by the in-

terpolated solution components that are mapped from the computed solution of the

coarser level problem. In the implementation, the GuidedACO is used for all coarser

level problems and the original problem with or without the guidance from the inter-

polated solution components. The edge case here is when applying the GuidedACO

to the coarsest level problem where no solution components are available.

The GuidedACO is subsequently applied to the coarser level problems, from the

smallest to the largest, to the original problem (as shown in Figure 4.2). The best solu-

tions found for the coarser level problems are mapped to the interpolated components,

which are used for the pheromone update to help the underlying ACO algorithm find

high-quality solutions for the finer level problems.

Coarsest level

Original problem 
(finest level)

Coarsening Coarsening

Refine parameter 
domain, obtain best 

solution set

Original problem 
(finest level)

projection

Interpolate solution 
components from coarser 

level to finer level

Using projected components to 
help ACO find good solution

Refine parameter 
domain, obtain best 

solution set

Refine parameter 
domain, obtain best 

solution set
Obtain best solution set

Figure 4.2: The upper left corner of the diagram shows the original problem network
where the objective is to find a route from an origin (red node) to a destination
(green node). The matching edges (red edges) are contracted to produce coarser
level problems. The original problem is coarsened into a set of increasingly coarser
problems.
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Algorithm 7 GuidedACO(Π, Scomponent, ~θ)

Initialization(HasFeasible = false; BestSolus ⇐= φ.)
Output(BestSolus)// equivalent best solution set

begin
Set Phero(Π,Scomponent)
while stop conditions are not satisfied do

CurSolu ⇐= Ants obtain solution for Π with ~θ
/* Searching best feasible solutions */

if CurSolu is feasible AND HasFeasible then
if CurSolu is better than CurBestSolu then

Set Phero(Π,Scomponent)
CurBestSolu ⇐= CurSolu
BestSolus ⇐= φ /* remove all previous best solutions */

BestSolus ⇐= CurBestSolu
end
else if CurSolu is equivalent to CurBestSolu then

BestSolus ⇐= BestSolus + CurSolu
end
Phero Update(Π,CurBestSolu)

end
/* Searching feasible solutions */

if ¬ HasFeasible then
if CurSolu is feasible then

CurBestSolu ⇐= CurSolu
HasFeasible ⇐= true
continue

end
if CurSolu is better than CurBestSolu then

CurBestSolu ⇐= CurSolu
Phero Update(Π,CurBestSolu)

end

end

end

end

Similarly to the ACO algorithm described in Chapter 2, the GuidedACO is also

designed specifically for the CFTPP. It proceeds with first stage where existence of

feasible solution is determined, and then with second stage where the solution quality

is iteratively improved. Compared to the ACO in Chapter 2, in guided ACO, the

interpolated components are initialized with a larger amount of pheromone. This
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is to increase their chances of being selected for constructing solutions because they

are expected to form the best solution with high probability due to the fact that

these problem components are mapped using the best solutions found for coarser

level problems.

Algorithm 8 Set Phero(Π, Scomponent)

begin
foreach Ci ∈ Π do

τCi ⇐= Initial Pheromone
if Ci ∈ Scomponent then

τCi ⇐= (
ηCi

max(η)
)−1 × Update Factor × τCi

end

end

end

In trial experiments, we discovered that, the GuidedACO usually can find several

solutions that have the same objective value. This observation shows that the pos-

sibility exists that optimal solution may not be unique, which is actually intuitive

for constrained optimization problems where two solutions can be equivalent in the

following two situations: 1) two feasible solutions with the same objective function

value but different constraint values; 2) two feasible solutions with the same objective

function and constraint values but differ in one or more solution component combi-

nations. In practice, the former case is expected to occur more frequently than the

latter case because seldom two solutions with different constructions have identical

objective and constraint values.

In this study, it is preferable that all the optimal solutions can be obtained,

mapped into interpolated components and be used for the pheromone update and

solution construction guidance routines (as implemented in Algorithm 7). To this

end, we give a definition for solutions that are equivalent:

Definition 3. For a constraint optimization problem, two feasible solutions Si and

Sj are equivalent, denoted as Si ‖ Sj, if their objective function values are equal:
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Obj(Si) = Obj(Sj), and there is at least one solution component C such that C ∈

Si ∧ C /∈ Sj or vise versa.

Therefore, pheromone values are updated in both stages using the current best

solution set, where all the best-found-so-far solutions are used. The GuidedACO in-

creases pheromone values for the current best solution components by a small amount

and decreases pheromone values for other problem components by a small fraction. If

a solution is found to be better than the current best solution, pheromone values are

first reset according to the interpolated components (Algorithm 8) and then updated

with the new current best solution.

The reason for resetting the pheromone values is to prevent the premature conver-

gence to a local optima. Different from the ordinary problem components on which

pheromone values are equally reset with an initial pheromone amount, pheromone

values for the interpolated components are set to be the inverse of the normalized

heuristic value (ηCi/max η) multiplied by an updating factor (Update Factor - dis-

cussed later) (shown in (Algorithm 8)). This formulation ensures that the interpolated

components with smaller heuristic values (such as costs) receive a larger amount of

pheromone, whereas interpolated components with larger heuristic values receive less

pheromone. The GuidedACO stops searching for better solutions when the set of

equivalent best solutions reach stagnation.

4.3.3 Multilevel ACO

The MLACO is shown in Algorithm 9 that applies the GuidedACO to solve the

CFTPP through a process of solution, parameter search and refinement on the coarser

level problems. The first step is to generate a set of increasingly coarser level prob-

lems of which the coarsening information including contracted edges and aggregated

weights is tracked and recored. This information is used when mapping the coarser

level solutions to the finer level.
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More concretely, the coarsening information is defined as follows. Let a problem

Π0 be coarsened into coarser level problems Π1,Π2, . . . ,ΠN and k = k0, k1, . . . , kN−1

be the coarsening information for all coarser level problems, then ki ∈ k is defined as

a set of triplets:

ki = (ki|(vΠi−1
a1

, v
Πi−1

b1
, vΠi
c1

), (vΠi−1
a2

, v
Πi−1

b2
, vΠi
c2

), . . . , (vΠi−1
ad

, v
Πi−1

bd
, vΠi
cd

)) (4.1)

where d is the number of the aggregated nodes and each triplet contains two finer

level matching nodes va, vb and the resulted coarser level aggregated node vc.
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Figure 4.3: Diagram illustrating the problem coarsening phase (A), and the mapping
process in the solution refinement phase (B).

In general, the interpolated components are the finer level problem components

contracted and aggregated to produce the coarser level solution components. With

the coarsening information, the best found solutions for a coarser level problem can be

easily mapped to produce the interpolated components, which is described in Mapping

procedure in Algorithm 9. The GuidedACO uses the interpolated components to

construct solutions for the finer level problem and iteratively refines and improves the

solution quality. The obtained best finer level problem solutions, in turn, are used

again with the coarsening information to map a new set of interpolated components

that are used in the GuidedACO to solve the next finer level problem. The MLACO
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Algorithm 9 MLACO

Input(Coarser problems D ⇔ Π0,Π1, . . . ,ΠN where Π0 is the original problem;
Coarse information k = k0, k1, . . . , kN−1; Parameter combination domain Θ.)
begin

S ⇐= φ // S is an empty solution set

Best Solu ⇐= Evaluate(Θ, ΠN , S)
for i = N − 1 to 0 do

S ⇐= Mapping(Πi,Πi−1, ki,Best Solu)
Best Solu ⇐= Evaluate(Θ, Πi, S)

end
Return(Best Solu)

end

/* Obtain solution with given problems */

Procedure: Evaluate(Θ, Π, S)
begin

foreach ~θ ∈ Θ do

LocalBestSolu ⇐= running GuidedACO(Π, S, ~θ)
if solutions in LocalBestSolu better than that of GlobalBestSolu then

GlobalBestSolu ⇐= φ
GlobalBestSolu ⇐= LocalBestSolu

end
else if solutions in LocalBestSolu equivalent to that of GlobalBestSolu
then

GlobalBestSolu ⇐= GlobalBestSolu + LocalBestSolu
end
if solutions in LocalBestSolu have very low qualities then

remove ~θ from Θ
end

end
Return(GlobalBestSolu)

end

/* Obtain the interpolated components */

Procedure: Mapping(Πi,Πi−1, ki,Best SoluΠi)

begin
Interpolated Comps ⇐= φ
foreach solution SΠi ∈ Best SoluΠi do

foreach component CΠi ∈ SΠi do
Interpolated Comps ⇐= interpolated components SCΠi−1

⊂ Πi−1 using ki
foreach component CΠi−1

∈ SCΠi−1
do

Calculate its Update Factor
add CΠi−1

to Interpolated Comps
end

end

end
Return(Interpolated Comps)

end
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repeats the same steps subsequently from coarser to finer level until the finest level

problem (original) is solved.

An example of the coarsening and solution mapping processes is illustrated in

Figure 4.3, where problem Πi−1 is coarsened into Πi in the coarsening phase and the

solution found for Πi is mapped to Πi−1 for the interpolated problem components.

In the problem coarsening phase, the problem Πi−1 is coarsened to obtain coarser

level problem Πi. In the solution refinement phase, after mapping the solution com-

ponents eBi,ACi and eACi,Di in Πi, the possible solution combinations that connect

from node Bi−1 to node Di−1 are (Bi−1 → Ai−1 → Di−1), (Bi−1 → Ci−1 → Di−1),

(Bi−1 → Ai−1 → Ci−1 → Di−1), (Bi−1 → Ci−1 → Ai−1 → Di−1). The interpolated

components are edges appear in all the possible solution combinations: eBi−1,Ai−1
,

eAi−1,Di−1
, eBi−1,Ci−1

, eCi−1,Di−1
, eAi−1,Ci−1

, eCi−1,Ai−1
.

Furthermore, while the interpolated components are used as initial solution and

refined iteratively to obtain better quality solutions, the MLACO also attempts to

achieve maximum performance by automatically selecting high-quality parameter

combinations (Evaluate procedure in Algorithm 9) using the coarser level problems.

When a new solution is obtained, it is compared to the solutions in the best so-

lution set obtained from previous iterations. If the new solution is equivalent or

better, it is included in the best solution set and the associated parameter combina-

tion is considered high-quality. Otherwise, it is discarded along with the parameter

combination used. By identifying and discarding low-quality parameters, the overall

computing time of the MLACO is reduced because of the better ACO performance

due to the selected high-quality parameter combinations for the final level problem.

This approach is similar to the refinement process for a multilevel graph partitioning

algorithm developed in [52] where solutions are refined from coarser to finer levels.
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4.3.4 Calculating Update Factor

When setting pheromone values in a finer level problem, different interpolated com-

ponents are given different pheromone amounts. Each interpolated component is

associated with an update factor that reflects its importance in terms of forming a

good quality solution based on the interpolated coarser level solutions. Depending

on the values of the update factors, the amount of pheromone is assigned by giv-

ing a larger amount of pheromone to interpolated components associated with larger

update factors and vice versa (Algorithm 8).

For a coarser level problem, after the GuidedACO is applied, a number of equiv-

alent solutions are found. Each of the equivalent solutions is then mapped to obtain

a set of interpolated components. As one solution component can exist in several

equivalent coarser level solutions, an interpolated component might also be obtained

more than once. The number of times that an interpolated component is obtained by

the mapping process indicates how frequently the corresponding coarser level compo-

nent is used as the solution component and can be considered as a metric to calculate

the associated update factor.

An example of the calculation of the update factor is illustrated in Figure 4.4 where

the solution set of a coarser level problem contains two routes that pass through edges

ea,b, eb,c, and eb,d (the 1st and 2nd routes in the left picture in Figure 4.4.A). Each

edge is associated with a number indicating the number of times the edge is used

in the solution set (i.e., the number for the edge ea,b is two since it is used twice).

After the mapping process, the nodes a and c stay the same and node b is replaced

with finer level nodes b1 and b2 to produce the interpolated components because b is

an aggregated node (right picture in Figure 4.4.A). If an interpolated component is

incident to one or two unaggregated nodes (such as ea,b1 and eb1,c), it is assigned the

number associated with the coarser level solution component incident to the same

nodes. Otherwise, zero is assigned to the interpolated component incident only to
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Figure 4.4: Calculating update factor values for interpolated solution components.

the finer level nodes (i.e., eb1,b2 and eb2,b1). As the coarser level solution route goes

from nodes a to c, the interpolated components are expected to also connect these

two nodes, which results in four possible paths: (a → b1 → c), (a → b2 → c),

(a → b1 → b2 → c), (a → b2 → b1 → c) (left picture in Figure 4.4.B)). Counting the

solution component occurrences in the four paths, ea,b1 , eb1,c, ea,b2 , eb2,c appear twice

and eb1,b2 , eb2,b1 appear once. Then the update factor values are calculated by adding

these occurrences to the existing assigned numbers (right picture in Figure 4.4.B).

4.4 Experimental Studies

4.4.1 Experiment Setup

The algorithms and procedures presented in this study were implemented using C++

and Java. The computer nodes of Lipscomb High Performance Computing Cluster

(HPC) were used to execute the programs. We compared the performance of the

MLACO with other three methods: an Exhaustive method, a ParamILS method
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[46], and the MIP.

The configured parameters included α, β, ρ and their values were confined to

[0,1] with a pace of 0.05. The Exhaustive method ran the GuidedACO for each

parameter combination in the parameter combination domain 10 times and selected

the feasible solutions with the best objective value. The parameter combination

domain was divided into 20 partitions and the Exhaustive method was applied to

each of the partitions simultaneously. The computing time of the Exhaustive method

was calculated by adding up times required for all partitions (which is the same setting

as in the Chapter 3). The ParamILS method configured parameter settings for the

GuidedACO based on solution quality. It iteratively permuted parameter values

and ran the GuidedACO until it could not find a better quality solution. The MIP

formulated the CFTPP using the formulations presented in [61] and was implemented

using Java and the CPLEX 12.5 Callable Library (ILOG Inc. 2007) with the default

parameter setting [18]. Because MIP can take impractically long computing time,

we set its maximum running time to 864,000 seconds (10 days). CPLEX was forced

to stop and report the best solution found when the computing time exceeded the

maximum running time.

The MLACO approach was set to use a set of three increasingly coarser level

problems: Level-1, Level-2 and Level-3. After initial test runs, three coarsening levels

were selected to balance solution quality and computation time as well as preserving

the properties of the original problem. This resulted in the coarsest level problem to

be about one eighth of the size of the original problem (problem size was reduced by

about half from a given level to its coarser level).

For the experimental data, we used 10 network instances containing 20 CFTPPs

used in Lin, et al., [61]. These problems were designed as medium-scale, grid-shaped

hypothetical networks. The hypothetical grid-shaped network was used because it

resembles real-world FTPPs, providing a good test case for algorithm performance.
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In addition, the medium-scale size allows solving the instances a large number of

times within reasonable time to conduct the parameter search.

4.4.2 Experimental Results

The experiments were conducted to test performance in terms of solution quality and

computing time. All methods were able to find feasible solutions for all problems

(obtained sediment amounts below the constraint values as shown in Figure 4.5).

As MIP can solve CFTPPs optimally, its solutions were used to benchmark solution

qualities achieved by the Exhaustive, ParamILS and MLACO methods (Figure 4.6).

The three approximation methods were able to match MIP solutions for most of the

problems, except for problems 3, 16, 19 and 20 where solution qualities were slightly

worse. In the worst case (problem 16), the MLACO approach was able to outperform

the ParamILS method (closer to the MIP solution) and was slightly worse than the

Exhaustive method. In addition, univariate statistical tests (Table 4.1, where two

methods are significantly different if Sig. < 0.05 (0.95 confidence interval)) show that

there were no significant differences between MIP and any other tested methods for

solution quality, indicating that on average the Exhaustive, ParamILS and MLACO

are expected to obtain near-optimal solutions for the tested problems. This also

indicates that the MLACO approach was able to self-configure properly and obtained

competitive high-quality solutions compared to other methods.

In terms of computing time, results show significant differences among the tested

methods (Table 4.1). As expected, on average the Exhaustive method required the

longest (184.35 days) compared to other methods (Figure 4.7). The ParamILS re-

quired only 12.27 days (about 6.6%), MIP 6 days (3.2%), and the MLACO only

required an average time of 1.28 days (Table 4.2). For the worst case scenario, the

Exhaustive method required 227 days, ParamILS 19 days, MIP 10 days and MLACO

4 days, while for the best case scenario, the Exhaustive method required 137 days,

ParamILS 6 days, and both MIP and MLACO less than one day. Although MIP
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Figure 4.5: Sediment values obtained by each method for the 20 problems.
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Figure 4.6: Solution quality comparisons between Exhaustive, ParamILS, and
MLACO with respect to MIP.

solvers typically require relatively long computing time, on average the MIP spent

less time to solve all problems than the Exhaustive and ParamILS methods. This
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Table 4.1: Statistical test (Univariate Test with Tukey Post Hoc) of objective function
values and computing time for the tested methods. The Exhaustive method was not
included in the statistical test for computing time as the differences between it and
other methods were evidently significant shown in Figure 4.7 and Table 4.2

Objective function value Time

(I) Method (J) Method Sig. (I) Method (J) Method Sig.

Exhaustive MIP 0.707 MIP MLACO < 0.0001

MLACO 0.969 ParamILS < 0.0001

ParamILS 0.845

MIP Exhaustive 0.707 MLACO MIP < 0.0001

MLACO 0.43 ParamILS < 0.0001

ParamILS 0.243

MLACO Exhaustive 0.969 ParamILS MIP < 0.0001

MIP 0.43 MLACO < 0.0001

ParamILS 0.983

ParamILS Exhaustive 0.845

MIP 0.243

MLACO 0.983

resulted from MIP being able to finish quickly for some problems (Figure 4.8), which

reduced overall computing time. Variation in computing time among problems was

largest for the Exhaustive search (Std Dev: 26.7 days) followed by MIP (Std Dev: 4.8

days) and ParamILS (Std Dev: 3.2 days). In contrast, the MLACO approach showed

the most stable computing times (Std Dev: 1.05 days). Also, computing time for

MIP was highly skewed by some problems (1,3,5,7,11,13,15,17) that were solved very

quickly. For other problems, MIP spent exactly 10 days indicating it was not able to

find the optimal solutions and was forced to stop after the maximum running time.

As suggested on the CPLEX reference manual [45], MIP performance is affected by

its parameter setting. However, it is impractical to configure all 135 MIP parameters

driving the search process.

We also analyzed the performance of the MLACO approach by examining the

parameter domain size and computing time for each level of the coarser problems.

The minimum computing time required for all problems at each level was related to
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Figure 4.7: Computing time comparisons between Exhaustive, MIP, ParamILS, and
MLACO.

Table 4.2: Summary of computing time required to solve all problems for the Ex-
haustive, ParamILS, MIP, and MLACO.

(Seconds) Exhaustive ParamILS MIP MLACO

Min(days) 137 6 0 0

Max(days) 227 19 10 4

Median(days) 183 11 10 1

Average(days) 184.352 12.274 6.009 1.288

Stand. Dev(days) 26.079 3.280 4.888 1.053

the number of parameter combinations in the domain, which was largest for Level-3

and smallest for Level-0, 8,000 and 6 respectively (Table 4.3). On the other hand,

the maximum computing time was largest for Level-0 (280,291 seconds) with the

least number of parameter combinations to evaluate (176 parameter combinations

for Problem 4) and was relatively small for Level-3 (18,796 seconds) and Level-2
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Figure 4.8: Computing time comparisons between MIP, ParamILS, and MLACO.

Table 4.3: Time spent and parameter combination domain size changes for each coarse
level problem used in MLACO. Level-0 denotes for the original problem.

Time(Seconds) Size of parameter combination domain

Level-3 Level-2 Level-1 Level-0 Level-3 Level-2 Level-1 Level-0

Min 7,978 3,436 3,143 512 8,000 889 63 6

Max 18,796 13,725 46,478 280,291 8,000 2,162 564 176

Median 9,310 7,301 9,284 54,112 8,000 1,239 235 37

Average 10,076 7,609 11,243 82,367 8,000 1,275 270 58

Stand. Dev 2,337.848 2,339.627 9,542.240 86,383.311 0 275.652 142.449 53.721

(13,725 seconds) for which a larger number of parameter combinations were evaluated

(8,000 and 2,162 parameter combinations). In general, computing time increased more

quickly for Level-0 problem even though the number of parameter combinations was

smaller compared to other levels (Figure 4.9). This might indicate that computing

time was more susceptible to problem complexity than the number of the parameter
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Figure 4.9: Time spent on each level of problems by MLACO.

combinations to evaluate. Lastly, the size of parameter combination domain decreased

significantly (Figure 4.10) from Level-3 (8,000 on average) to Level-2 (1,275) and

continued to decrease to Level-1 (270) and to Level-0 (58). This result shows that as

problem complexity increased, the number of high-quality parameter combinations for

the problem was reduced, which might indicate that the performance of the MLACO

approach was less sensitive to its parameter setting for a coarser level problem than

that for a finer level problem.

4.5 Concluding Remarks

In this chapter, a multilevel ACO approach (MLACO) is developed to solve the

CFTPP. The approach coarsens a problem into a set of increasingly coarser level

problems and uses an underlying ACO algorithm (GuidedACO) to solve the problem

from the coarsest level to the finest level. The best solutions found for coarser level
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Figure 4.10: Parameter combination domain size changes at each level of problems
for MLACO.

problems are used to obtain the interpolated components to help the GuidedACO im-

prove solution quality and reduce computing time. In addition, the MLACO approach

configures its parameter setting by consecutively eliminating low-quality parameter

combinations from a predefined parameter combination domain from coarser level to

finer level problems. The performance of the MLACO approach was tested on 20

problem instances with similar topology to real world problems and solutions were

compared with those obtained from the Exhaustive, ParamILS, and MIP methods.

Experimental results demonstrate that MLACO approach was able to obtain high-

quality solutions for all tested problems with significant reduction in computing time.

The design of the underlying ACO algorithm includes two stages to: first find fea-

sible solution and then improve solution quality. Although only one constraint was

considered, the algorithm design can be easily modified to incorporate any number

of constraints. The solution refinement method implemented in our algorithm offers
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a good potential for applications to other large-scale and complex optimization prob-

lems with underlaying networks. The parameter configuration technique that elim-

inates low-quality parameter combinations at coarser levels and reduces parameter

combination domain for finer levels can also be used to configure any parameterized

algorithms whose performance is greatly affected by the parameter settings. Finally,

we conclude that the MLACO approach can be a powerful tool in the solution of the

CFTPP and its multilevel design can be applied to other constrained combinatorial

optimization applications.

Copyright c© Pengpeng Lin 2015
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5 Applying Pareto Ant Colony Optimization to Solve Bi-objective
Forest Transportation Planning Problems

5.1 Introduction

In this chapter, we consider a bi-objective forest transportation planning problem

(BOFTPP) with two objectives, namely, minimizing the transportation cost and sed-

iment, which is the negative environmental impact. The difference from the previous

studies is that, one of the goals is to minimize the sediment amount, instead of keeping

it under an allowable level. This presents a new challenge because the best solution is

determined by balancing between two objective values as opposed to only one for the

CFTPP studied in the previous chapters. The practical use of solving the BOFTPP is

to provide alternative solutions to help forest road planners make informed decisions

that balance cost and environmental concerns.

To efficiently solve the BOFTPP, we develop a multi-objective ACO (MOACO)

algorithm by combining many design choices (such as pheromone matrices update

and transition probability formulation) proposed in recent literature [4, 36, 37, 65].

Each of the them is grabbed from ACO algorithms devised for tackling different multi-

object combinatorial optimization problems, and has shown good merits in solving

the tested problems in the experimental results. By integrating these design choices,

the proposed MOACO offers possibilities that were not previously considered.

In addition, the developed MOACO incorporates the flexibility from the borrowed

algorithmic components, which has reduced its dependency on parameter configura-

tions (the number of parameters needed to be configured is reduced). Most impor-

tantly, the specific algorithm design in this study provides a powerful tool to solve

the BOFTPP.
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5.2 Preliminary Knowledge

5.2.1 Multi-objective Optimization

Multi-objective optimization problems are characterized by considering several ob-

jectives simultaneously [36, 4, 7]. In practice, there is no single best solution for the

problem but a set of solutions that are superior when all objectives are considered.

The solution set is known as Pareto set (named after the economist Vilfredo Pareto) or

non-dominated solution set [1] (sometimes approximation set [89]). Mathematically,

a multi-objective optimization problem with K objectives can be stated as:

minimize : f(x) = {f1(x), . . . , fK(x)}, x ∈ Ω, (5.1)

where x is a feasible solution, Ω represents the feasible area in the solution search

space, and f(x) is a vector of objective functions that produces a vector of objective

values RK . A solution vector a ∈ Ω dominates another solution vector b ∈ Ω (a � b)

if and only if:

∀i ∈ 1, 2, . . . , K|fi(a) ≤ fi(b) ∧ ∃j ∈ 1, 2, . . . , K|fj(a) < fj(b). (5.2)

Similarly, The solutions a and b are incomparable (a ‖ b) if a � b and b � a. In this

thesis, we use the term “approximation set” for the solution set, which consists of

incomparable solutions.

5.2.2 Bi-objective Forest Transportation Planning Problem (BOFTPP)

As aforementioned, the BOFTPP considers two objectives that need to be minimized:

costs and sediments. The former objective is to reduce transportation costs from a set

of timber selling locations to a set of designated mill locations. The latter objective

is to reduce the total sediments eroding from the entire road network. Similarly to

the CFTPP, the underlying transportation network in the BOFTPP is given as a

directed graph G = (V,E) with a set of n = |V | nodes {v1, . . . , vn} representing road

intersections and a set of edges ei,j ∈ E,∀i, j ∈ [1, . . . , n] representing road segments
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that connect adjacent road intersections. With the three attributes associated with

each edge in the network: fixed cost (F cost), variable cost (V Cost), and sediment

amount (Sed), the objective functions of costs and sediments are defined as follows:

min(fcost) =
∑
ei,j∈E

(F Costi,j + V Costi,j × V li,j)× bi,j,

(5.3)

min(fsedi) =
∑
ei,j∈E

Sedi,j × bi,j,

where bi,j is a binary variable that equals one if the edge ei,j is in use and equals zero

otherwise. The objective of BOFTPP is to find the set of trade off (incomparable)

solution routes connecting timber sales to mill locations that minimize, in the sense

of Pareto optimality, the vector of objective functions
→
f = (fcost, fsedi).

5.3 Multi-objective ACO for BOFTPP

5.3.1 Construction of Non-dominated Solutions

The MOACO algorithm is presented in Algorithm 10. First, an equal amount of

pheromone value is initialized on all problem components. Then, the algorithm begins

to iteratively search for incomparable solutions and archive them in an approximation

set. At each algorithm iteration, a new solution is obtained and compared with all

the archived incomparable solutions that are obtained from the previous algorithm

iterations. The new solution is determined to be incomparable and added to the

approximation set if it does not dominate or is not dominated by any previously

archived solutions. Otherwise, either the new solution is dominated by the previously

obtained solutions, in which case the new solution is discarded or it dominates the

previously obtained solutions, in which case the algorithm archives the new solution

and removes those dominated by it. At the end of each algorithm iteration, the

pheromone values are updated according to a selected solution (the select method is

presented in later section) from the approximation set. The algorithm stops when a
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user defined condition (enough number of incomparable solutions) is satisfied.

Algorithm 10 MOACO for BOFPTT

Input(FTPP: D; A set of N real numbers: λi ∈ λ, λ ⊂ [0, 1])
begin

Approx Set ⇐ φ
/* Initialize pheromone */

Initialize(D)

while Inadequate incomparable solutions do
foreach λi ∈ λ, ∀i ∈ [1, N ] do

Iteration ⇐ 0
while Iteration < Threshold do

New Solu ⇐ construct a solution with λi
if New Solu is incomparable then

add New Solu to Approx Set
end
else if New Solu is dominated then

discard New Solu
end
else

foreach solution S ∈ Approx Set do
if New Solu dominates S then

remove S from Approx Set
end

end
add New Solu to Approx Set

end
Iteration ⇐ Iteration + 1
Update Phe(D, Approx Set, λi)

end

end

end
Return(Approx Set)

end

Note that the stop condition forces the MOACO to produce a certain number of

incomparable solutions. Without this enforcement, MOACO may produce very few

incomparable solutions because whenever a new solution is added to the archived

approximation set, some previously found incomparable solutions may be removed.

Although an important criterion to evaluate quality of an approximation set is its

closeness to the Pareto frontier, the number of incomparable solutions obtained is
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another important quality assessment criterion. Ideally, we want to obtain all the

Pareto solutions. In the literature, many heuristic algorithms are designed to stop

after a maximum number of iterations. However, it is hard to set such a number

appropriately for ACO based algorithms. On one hand, setting the iteration number

too low will likely result in a low-quality solution set. On the other hand, if the

iteration number is set too large, unnecessary amount of computing time may result.

Another important criterion to determine the quality of an approximation set is

the solution distribution. A high-quality approximation set should contain incom-

parable solutions that cover wide range of the Pareto frontier or, ideally, the entire

frontier. However, very often the obtained approximation set only concentrates on

the best solutions for a single objective, or sometimes centers extremely towards trade

off solutions [65]. In order to obtain non-dominated solutions that are more spread

out and distributed evenly across the Pareto frontier, we use a set of λ values that

divide an interval [0,1] into several equal-length subintervals with each subinterval

representing a region of the Pareto frontier. The MOACO starts from the first Pareto

region to the last Pareto region. At each region, MOACO iteratively searches for

incomparable solutions. The solution search is guided by the corresponding λ values

for the region. One cycle of the incomparable solution search process finishes after all

Pareto regions are searched. If the stop condition is not satisfied, MOACO will start

a new cycle of the incomparable solution search process. The previously found in-

comparable solutions are passed to the new cycle to provide a good initial solution set

for updating pheromone values. Preliminary results suggest that because pheromone

values are important in the ACO solution construction process, the quality of the

resulted approximation set is expected to improve in the new round of incomparable

solution search process for an equal number of iterations.
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5.3.2 Decision Rule

The solution at each iteration (Algorithm 10) is constructed by making a sequence

of decisions to select the next solution component. The decision is based on a transi-

tion probability that is calculated based on both heuristic (costs and sediment) and

pheromone values (5.4).

P k
i,j =

(
F Costi,j

Vli,j
+ V Costi,j)

(1−λ) × (Sedi,j)
λ × (τcost)

(1−λ)
i,j × (τsed)

λ
i,j∑

l∈Nk
i

(
F Costi,l

Vli,l
+ V Costi,l)(1−λ) × (Sedi,l)λ × (τcost)

(1−λ)
i,l × (τsedi)λi,l

(5.4)

where τcost and τsedi denote pheromone values for costs and sediment respectively.

Because the BOFTPP considers two different objectives, we use two pheromone ma-

trices for the transition probability, one for each objective. The parameter λ is used

to specify different weights given to cost and sediment in different regions of the

Pareto frontier. The values of λ are defined in the interval [0, 1] with pace of 0.2 such

that λ = {0, 0.2, 0.4, 0.6, 0.8, 1}, which divides the Pareto frontier into 6 regions. The

MOACO iteratively constructs solutions with the value of λ changing from 0 to 1

for each region. At the beginning, when λ = 0, the transition probability only con-

siders cost, the algorithm focuses on finding incomparable solutions towards the cost

minimization objective. As the value of λ increases, the weight gradually shifts from

cost to sediment when calculating the transition probability. As a result, the incom-

parable solutions obtained are expected to reflect corresponding cost and sediment

proportions according to their weights. Eventually, the transition probability only

considers sediment when λ = 1. Note that, in the transition probability (Equation

5.4), we only use λ to adjust the relative importance between heuristic and pheromone

values, whereas common ACO algorithms usually use two parameters, α and β. The

reason is two-fold. First, since we want the obtained incomparable solution set to be

more spread out and wider coverage of the Pareto frontier, there is no need to find

a set of specific values of α and β that greatly affect performance of a single objec-

tive optimization problem. Second, this design reduces the number of parameters to
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be configured, thus making the MOACO algorithm more robust (less dependent on

parameter setting).

5.3.3 Pheromone Update

Pheromone values are updated for both cost and sediment pheromone matrices using

the Update Phe procedure (Algorithm 11) where the current approximation set and

the λ values are used. Solutions in the approximation set are evaluated according to

the λ value in the corresponding Pareto region in order to select a solution for updating

pheromone. The method to select the solution is described in Figure 5.1, where the

Pareto frontier is divided into six regions according to the six different λ values. The

MOACO starts with the first Pareto region where λ = 0 and archives all the obtained-

so-far incomparable solutions. For all available solutions (blue squares surrounded by

a red oval in Figure 5.1), a value according to a formula, cost(1−λ) × sedimentλ, is

calculated. A solution (square with red edge in Figure 5.1) with the smallest value is

selected to update pheromone. Note that when λ = 0, the selected solution will have

the smallest total cost value. Next, for the second region, new incomparable solutions

are obtained (blue circles in Figure 5.1) and archived together with previous obtained

solutions (blue circles and squares surrounded by a green oval in Figure 5.1). From

these solutions, a solution for pheromone update in the second Pareto region (circle

with red edge in Figure 5.1) is selected using the same formula, but with a different λ

value (λ = 0.2). Note that this process selects a solution not only from incomparable

solutions obtained for the current region, but from incomparable solutions obtained

for all the previously searched regions. This is because the best solution to update

pheromone values for the current Pareto region may be obtained from other Pareto

regions. As the solution construction process of MOACO is stochastic, incomparable

solutions obtained from a region may belong to other Pareto regions. Therefore, all

the obtained incomparable solutions are considered in our method to determine the

most suitable solution for updating the pheromone. This idea is similar to the “update
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by origin” method used in [50]. Subsequently for the rest of the Pareto regions, the

same solution selection process is used.

co
st

sediment

Sorted by (cost(1-λ) × sediλ) 

λ = 0update λ = 0.2update λ = 1update

 , ,...
λ = 0.4, λ = 0.6, λ = 0.8

Figure 5.1: An incomparable solution from the approximation set is selected using
the corresponding λ value to update pheromone values for a Pareto region. Incom-
parable solutions are shown as shapes filled with blue color (different shapes for
different Pareto frontier region), the dashed ovals encompass the approximation set
available for different regions where a solution (circle highlighted in red) is selected
for pheromone update.

Although the λ value changes for different regions to adjust weights of the two

heuristic values, the cost values are usually much larger than the sediment values

which causes unbalanced comparisons. To cope with this, the cost and sediment values

are normalized based on the largest objective value of solutions in the approximation

set. This will restrict the value of cost and sediment within an interval [0,1] in
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the formula cost(1−λ) × sedimentλ and help the algorithm determine an appropriate

solution to update regional pheromone.

Algorithm 11 Update Phe

Input(FTPP: D; incomparable solution set: Approx Set; λ)
begin

/* Find the appropriate solution */

Best Value ⇐ max possible number
Max Cost ⇐ max cost in Approx Set
Max Sedi ⇐ max sediment in Approx Set

foreach solution S ∈ Approx Set do
if Best Value > ( S.cost

Max Cost
)(1−λ) × (S.sediment

Max Sedi
)λ then

Best Value ⇐ ( S.cost
Max Cost

)(1−λ) × (S.sediment
Max Sedi

)λ Best Solu ⇐ S
end

end
/* Update pheromone values using Best Solu */

foreach solution component C ∈ D do
if C ∈ Best Solu then

/* Update cost pheromone matrix */

τC cost ⇐ τC cost + ∆τ × (1− λ)
/* Update sediment pheromone matrix */

τC sedi ⇐ τC sedi + ∆τ × (λ)
end
else

/* Evaporate pheromone with 0 < ρ < 1 */

τC cost ⇐ τC cost × ρ
τC sedi ⇐ τC sedi × ρ

end

end

end

When updating pheromone values, the λ value is used again to adjust the amount

of pheromone to be added to each solution component. The selected solution is used

to update pheromone values for both cost and sediment pheromone matrices. For the

edges used in the solution, pheromone values are increased by a small amount, ∆τ ,

multiplied by either 1−λ for cost matrix or λ for sediment matrix. When the weight

favors cost, this setting allows more pheromone update for cost than for sediment
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and vice versa. For the edges not used in the solution, their pheromone values are

decreased by a factor ρ, which is the pheromone persistence rate.

5.4 Experimental Studies

5.4.1 Experiment Setup

The MOACO algorithm presented in this study was implemented using C++. Pro-

grams were executed on the computing nodes of Lipscomb High Performance Com-

puting Cluster. To test for MOACO performance, we applied it to the ten FTPP

problem instances used in [61]. For parameter setting, we set ρ = 0.95 to allow for

slow pheromone evaporation. As the pheromone values were updated at each iter-

ation, setting ρ too small would rapidly reduce the pheromone amounts on unused

problem components, while only pheromone values on selected solution components

would be increased, which would likely cause solution stagnation and provide a low-

quality approximation set.

5.4.2 Approximation Set Evaluation

An important issue in multi-objective optimization is the evaluation of the quality of

approximation sets. In single-objective optimization, solution quality is evaluated by

the objective function. In multi-objective optimization, two solutions may be incom-

parable (i.e., neither dominates the other). Comparing two approximation sets is even

more complex because it is difficult to define appropriate quality measures that take

into consideration several factors such as proximity to the true Pareto frontier, and

coverage of a wide range of diverse solutions [89]. Studies have addressed the problem

of comparing approximation sets of the Pareto optimization quantitatively. Examples

include the hypervolume measure [88], which considers volume of the objective space

dominated by an approximation set, and the chi-square-like deviation measure, which

tries to capture diversity of an approximation set [75]. A comprehensive analysis and

review of multi-objective optimization performance assessment methods can be found
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in [89].

In this study, we used a unary ε-Indicator, (suggested in [89]), which is defined

by a binary ε-Indicator to measure BOFTPP solution quality. For any two given

approximation sets A and B, the binary ε-Indicator is defined as:

Iε(A,B) = infε∈R{∀z2 ∈ B, ∃z1 ∈ A : z1 �ε z2} (5.5)

where z = (z1, z2, . . . , zn) represents a vector of an optimization problem with n

objectives, and z1 �ε z2 if and only if

∀1 ≤ i ≤ n : z1
i ≤ ε× z2

i (5.6)

for a given ε > 0. The unary ε-Indicator is defined: Iε1 = Iε(A,P ) where A is an

approximation set and P is a set of reference points. Instead of making pair-wised

comparisons, all approximation sets are compared to a reference set which is assumed

to be the same or close to the Pareto frontier so that the approximation set with

the smallest ε-Indicator value with respect to the reference set is considered the best

solution set. Because it is not possible to obtain the Pareto frontier for a multi-

objective optimization problem beforehand, in the experiments, we used a reference

point {cost= 700, 000, sediment = 500} to calculate the unary ε-Indicator based on

experimental results presented in [61]. There are two reasons for using this reference

point. First, due to the nature of the unary ε-Indicator, either using one reference

point or a set of reference points will provide the same effect because the purpose

is to quantify the closeness of the solution approximation set to the Pareto frontier.

Second, in order to make the comparison straightforward, the calculated ε-Indicator

values are expected to be always greater than zero so that approximation set with

smaller ε value is consider better (closer to Pareto frontier).

Although other values for the reference point can be used (i.e., cost = 0, sediment

= 0) that in theory could produce same results, large ε numbers can be produced

that are less comparable than small numbers if the difference is too big and cause
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Figure 5.2: SetA (red triangle) and SetB (red square) are two approximation sets.
To compare their quality, an ε-A value is calculated for setA and an ε-B value is
calculated for SetB with respect to a reference point (greed circle). Since SetA is
further away from the reference point than SetB, the value of ε-A will be greater than
value of ε-B, indicating that SetB is a better approximation set than SetA.

difficulty when visualizing the results side by side. An example is illustrated in Figure

5.2 where two approximation sets SetA and SetB are compared based on their ε values

(ε-A, ε-B) calculated with respect to the reference point.

5.4.3 Experimental Results

The MOACO was applied to solve each of the ten problem instances ten times with

three stop conditions (obtain at least 40, 50 and 60 incomparable solutions) designed

to test its performance on increasingly harder problem complexity. There were 300 ap-

proximation sets obtained and an ε-Indicator value was calculated for each of them.

Figure 5.3 shows the mean ε-Indicator values of all problem instances over the 10

MOACO runs for the three different stop conditions. On average with respect to the

ε-Indicator value, MOACO obtained best quality approximation set for the 60 stop

condition, and the solution quality was reduced for 50 and 40 stop conditions. In gen-
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eral, the average ε-Indicator value increased as the number of required incomparable

solutions decreased. This indicates the MOACO tends to obtain approximation set

closer to Pareto frontier when the required number of incomparable solutions was set

higher. Also, the ε-Indicator value gap is different among the three stop conditions

for the same problem instance (Figure 5.3). In some cases, such as problem instances

2 and 6, the average ε-Indicator values for 40 and 50 stop conditions were almost the

same, while the average ε-Indicator value for 60 stop condition was relatively smaller.

In other cases (problem instances 3 and 9), MOACO obtained very close average ε-

Indicator values for 50 and 60 stop conditions and the average ε-Indicator value for 40

stop condition was relatively larger. This is because of the stochastic nature of ACO

algorithms where solution quality often varies for each algorithm run. However, this

variation is quite small for the largest average ε-Indicator value difference is less than

0.5. This indicates that the solution quality is steady despite the stochastic nature of

heuristic algorithms that the same solution can not be guaranteed at each run.

Computing time of MOACO for all problem instances is illustrated in Figure 5.4,

which shows that the time spent is largest for 60 stop condition, followed by 50 and

40 conditions. This is because of the increasing difficulty to satisfy the stop condition.

As the required number of incomparable solutions for the stop condition increases,

more computational time was needed for MOACO. Computing time varied among

different stop conditions. This variation was less evident for the 40 stop condition

and became stronger for 50 and 60 stop conditions. Particularly, the computing time

variation was larger for problem instances 1, 4, 9 and 10, but less obvious for problem

instances 2, 6, 7 and 8. This indicates that, even with the same stop condition, the

level of imposed complexity was different for the different problem instances. One

of the factors that can determine the complexity of a BOFTPP is the size of its

associated Pareto frontier and solution space. Problems with small Pareto frontier

required longer computing time because the Pareto solutions were harder to identify.
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Figure 5.3: Average ε-Indicator values for all problem instances over three difference
stop conditions.

Another observation is that MOACO spent much larger computing time for 60 stop

condition compared to 50 and 40 stop conditions, which in general corresponds to the

ε-Indicator values shown in Figure 5.3. This shows that at least for some problem

instances, the performance of the MOACO was affected by the computing time spent.

Better results seem to be obtained with longer computing time, which also justifies

setting the parameter ρ = 0.95.

Figure 5.5 illustrates the distribution of ε-Indicator values over the ten MOACO

runs on the ten problem instances for the three stop conditions. The ε-Indicator value

trend appeared to decrease slightly as the number of required incomparable solutions

increased. For the ε-Indicator value variations, there was no significant differences

among different stop conditions. All the boxes are of similar length, although there are

a few exceptions, such as problem instance 10 whose box length is much shorter for 60

stop condition than 40 and 50 stop conditions. Overall, the variation for ε-Indicator
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Figure 5.4: Computing times for all the problem instances over 10 MOACO runs.

values was small (less than 0.5), which corresponded to results in Figure 5.3 and

indicated that MOACO was able to produce relatively consistent results regardless

of stop condition settings.

Figures 5.6a-5.10b graphically present the results for the ten tested problem in-

stances with three stop conditions. All approximation sets obtained by MOACO for

the ten runs and three stop conditions were combined into one single approximation

set by removing the dominated solutions from the joined set. For almost all problem

instances, the approximation sets found for the 60 stop condition were better than

those found for 40 and 50 stop conditions in terms of closeness to the optimal ap-

proximation set (closer to the reference point) and coverage of the Pareto frontier.

This is more obvious in problem instance 2 where the approximation set obtained for

60 stop condition is much closer to Pareto frontier than the other stop conditions.

For problem instances 3, 6, 7 and 8, the approximation set obtained for all three
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Figure 5.5: ε-Indicator value distribution of all 10 problem instances for 40, 50, and
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box show scatter plots of ε-Indicator values.

500

1000

1500

2000

2500

3000

70000 570000 1070000 1570000 2070000 2570000

Se
di

m
en

t

Total Cost

Prob1

40
50
60

(a) Solution of Problem 1.

500

1000

1500

2000

2500

3000

70000 570000 1070000 1570000 2070000 2570000 3070000

Se
di

m
en

t

Total Cost

Prob2

40
50
60

(b) Solution of Problem 2.

Figure 5.6: Distribution of average objective values for test cases 1 and 2.

stop conditions overlap each other, except that approximations for 60 stop condition

usually cover a wider area of the Pareto frontier. For test cases 1, 4, 5, 9, 10, the
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(a) Solution of Problem 3.
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(b) Solution of Problem 4.

Figure 5.7: Distribution of average objective values for test cases 3 and 4.
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(a) Solution of Problem 5.
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(b) Solution of Problem 6.

Figure 5.8: Distribution of average objective values for test cases 5 and 6.
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(b) Solution of Problem 8.

Figure 5.9: Distribution of average objective values for test cases 7 and 8.
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(a) Solution of Problem 9.
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(b) Solution of Problem 10.

Figure 5.10: Distribution of average objective values for test cases 9 and 10.

approximation sets obtained for 60 stop condition were slightly closer to optimal solu-

tion set than that of 40 and 50 stop conditions. These results indicate that MOACO’s

performance may be affected by different stop condition settings and it was able to

obtain feasible approximation sets for all problem instances.

5.5 Concluding Remarks

In this chapter, we presented the design and implementation of an MOACO algorithm

for solving a BOFTPP where the two objectives were minimizing timber transporta-

tion cost and environmental impact. First, the MOACO was designed to consider

two pheromone matrices, one for each heuristic factor, to aggregate the cost and

sediment information. This design helped the MOACO obtain trade off solutions.

Secondly, the MOACO was designed to divide the Pareto front into different regions

and obtained an incomparable solution set for each of the Pareto region. The final

approximation set was then obtained by combining all incomparable solution sets.

This design helps the algorithm explore wider range of the Pareto frontier. Thirdly,

the MOACO was designed to have only one parameter, the pheromone evaporation

rate ρ, for the underlying ACO algorithm, which reduced the MOACO dependency

on its parameter setting and made the algorithm more robust.
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To test for algorithm performance, we applied the MOACO to ten different FTPPs.

Solution sets were visualized and their qualities were assessed using unary ε-indicator

method. Experimental results showed that the MOACO algorithm was able to solve

all testing problem instances and obtain approximation set under different stop con-

ditions.

Copyright c© Pengpeng Lin 2015
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6 Solving Bi-objective Forest Transportation Planning Problems with
Multilevel ACO Approach

6.1 Introduction

In this chapter, we continue the study from Chapter 5, in which an MOACO [62]

is developed and implemented for solving the BOFTPP. The MOACO is devised

with different algorithmic components in existing MOACO algorithms, which reduces

ACO algorithm dependency on parameter configurations. In the experiments, while

MOACO was able to solve all the test cases, the required computing times appear

to vary significantly for different stop conditions and test cases. Therefore, in this

chapter, we develop a multilevel MOACO (MMOACO) to improve the performance

of the MOACO in terms of solution quality and computing time.

Similar to the previous works, the MMOACO is developed by first using a graph

coarsening heuristic to generate a set of coarser level problems from the original

problem, and then solve the original problem using these coarser level problems. As

an expectation, MMOACO should require significantly less computing time compared

to the MOACO based on previous experimental results. Additionally, the solutions

from coarser level problems are used to help the ACO search for good solutions

for finer level problems, which further improves the convergence speed and solution

quality. More detailed description is presented below.

6.2 Multilevel Patero ACO

6.2.1 Coarsening Exact Graph

From previous studies, it can be observed, for the multilevel schemes developed, that

it is important for finer and coarser level problems to share some common properties

in such a way that the coarser level solutions can be effectively used to facilitate the

underlying algorithm to find high-quality finer level solutions. For this reason, the

coarsening procedure (Algorithm 12) is implemented to produce coarser level networks
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that are exact replicas of the finer graphs in terms of total attribute weights (sums of

costs and sediment on every edge), but smaller in sizes (fewer number of nodes and

edges). This is done by adding the weights of the combined edges and retaining the

total weights of the collapsed edges to the aggregated nodes, which is different from

previous Chapters where we assumed that nodes do not carry any weights.

For instance, when the nodes of a matching edge edge(u, v) are collapsed to form

a coarser level node u v, the weight of node u v is set to be equal to the sum of the

weights of nodes u, v and edge edge(u, v). For edges that are incident on the same

node k in one end and incident either on u or v in another end, the weights of these

edges are combined for the resulted edge in the coarser level network.

Algorithm 12 Coarsening Procedure(G)

QE ⇐ matching edges in graph G

foreach edge(u,v) ∈ QE do
u v ⇐ aggregate u and v
weight(u v) ⇐ weight(u) + weight(v) + weight(u, v)
if u, v are both adjacent to a node k then

weight(u v,k) := weight(u,k) + weight(v,k)
end

end

For finding the matching edges, we implement the heavy edge matching (HEM),

which computes the maximal matchings that contain edges with large weights [53].

The nodes of a network are visited one at a time. If a node u has not been matched

yet, then an unmatched adjacent node v is selected such that the weight of the edge

(u, v) is maximum over all valid incident edges. For the BOFTPP, weights for an edge

are considered to be the sums of associated costs and sediment values. The reasons to

use the HEM are two-fold. First, as the two objective functions of the BOFTPP are

minimizing total cost and sediment, high-quality solutions are likely to be comprised

of small weighted edges. For a finer level network, the HEM finds matching edges with

large weights. After having collapsed the matching edges, the resulting coarser level
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graph will consist of small weighted edges. Second, by visiting nodes in a sequential

order and selecting only largest weighted edges, the HEM forces the matching process

to be deterministic. This eliminates the randomness in the graph coarsening process,

which leads to more stable final solutions.

6.2.2 Aggregation & Importance Factors

While both edges and nodes have cost and sediment attributes, nodes are associated

with additional information, which are called aggregation and importance factors in

this study. The aggregation factor represents the number of times the node has been

aggregated with other nodes in the coarsening process, and the importance factor is

a measure of the node’s relevance in finding a high quality solution.

Figure 6.1 illustrates how the attribute values for nodes and edges are treated

in the coarsening process from the original level (Figure 6.1. A) to the subsequent

coarser level (Figure 6.1. B). This process begins with edge cost and sediment values

assigned from the original problem. Cost and sediment values for each node are

initialized to 0, and importance and aggregation factors are initialized to 1, of which

the aggregation factor of 1 indicates that no aggregation has taken place. When

matching edges are collapsed, the cost and sediment values of the aggregated node

are both calculated by summing the values of combined nodes and collapsed matching

edges. The aggregation factor of the new node is the sum of the aggregation factors

of the combined nodes, and the importance factor remains 1 throughout the entire

coarsening process. This procedure continues in subsequent coarser levels with the

new values produced from aggregations.

6.2.3 Solution Mapping Process

After the coarsening process is applied to the original network and a set of increas-

ingly coarser level networks are produced, an underlying ACO algorithm (which is

discussed in later sections) is used to search for solutions starting from the coarsest
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Figure 6.1: Diagram illustrating how the edges and weights of a fine level network
are collapsed and aggregated to form edges and weights for the resulted coarser level
network. Edge attributes include cost (left value in parentheses on each edge) and
sediment (right value in parentheses on each edge). Node attributes include cost
(left value in parentheses on each node), sediment (right value in parentheses on each
node), aggregation factor (left value in parentheses in each node), and importance
factor (right value in parentheses in each node).

level network. The solution search process of the underlying ACO algorithm for a

finer level problem is helped by the solution obtained for the coarser level problem.

This help comes from a mapping process, which maps the coarser level solution com-

ponents into interpolated finer level components (similar to the approach used in

Chapter 4) of which more considerations are given for constructing solutions.

The number of times that each node has been included in the solution set is

counted and recorded during the coarsening process, which is used to set the impor-

tance factor. For nodes that are not included in the solution set, the importance
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Figure 6.2: Diagram illustrating the solution mapping process and calculations of
importance factors. The importance factor of node Bi+1 and Ai+1 of (i+ 1)th coarser
level network is 2, as these nodes have been included in two solutions, whereas im-
portance factors of other nodes are 1. The same importance factors are used for the
interpolated nodes of ith level network.

factors are set to one. The mapping process maps coarser level solutions into finer

level problem components. Essentially, the interpolated problem components are the

finer level (second coarsest level) problem components that are either collapsed or di-

rectly copied over to form the obtained coarsest level solutions. During the mapping

process, the number of times that each node is included in the solution set is counted

and used to set the importance factor. The interpolated components connected to

nodes with high importance factors may be given higher considerations for being

used as solution components, which expects to help the underlying ACO converge to

a high-quality solution set faster.

An example of the coverall mapping process is illustrated in Figure 6.2, where

solution components found for a coarser network are mapped to obtain interpolated

finer level components, which, along with the importance factors assigned to the

corresponding nodes, are used for finding high-quality finer level solutions (Figure

6.2. A). At a coarser level network ((i + 1)th level network shown in Figure 6.2. B),
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the obtained solutions are used to calculate importance factors, of which the combined

finer level nodes are set to have the same importance factor values as the aggregated

coarser level nodes (e.g., importance factors for nodes Bi and Fi set to two, which is

the same as the aggregated node Bi+1 as shown in Figure 6.2. C).

6.3 Solution Construction

6.3.1 Construct Single Solution

The underlying ACO algorithm used to obtain approximation solution set is imple-

mented according to the MOACO developed in Chapter 5, which incorporates many

design choices and algorithmic components, such as using separate pheromone matri-

ces for heuristic attributes and locally updating pheromone values with selected elite

solution set, from existing multi-objective ACO algorithms that have been identi-

fied to be effective in several combinatorial optimization applications. The transition

probability formula divides the Pareto frontier into different regions with a param-

eter λ that increasingly changes its value from 0 to 1. The values of λ are used to

adjust the weight of objectives. When λ value is 0 or 1, the algorithm tends to obtain

solutions towards each objective function (i.e., cost or sediment). When λ value is a

fraction value in [0, 1], however, higher consideration is given to trade-off solutions.

The MOACO searches solutions from different Pareto regions. The final solution is

obtained by combining solutions found for all the regions.

In the multilevel scheme, the MOACO searches for solutions from the coarsest

level network to the finest level network (original problem). Because the settings of

attributes at coarser level networks differ from the original network, the transition

probability and objective function formulations are also defined differently compared

to that in [62]. The newly defined formulations take the node attributes into consid-

eration. Let Z denote the aggregation factor, I the importance factor. For a solution
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component Ei,j, the cost and sediment values are calculated as the following.

Costi,j =
F Ci,j + F Cj/Zj

V oli,j
+ (V Ci,j + V Cj/Zj) (6.1)

Sedi,j = Sedi,j +
Sedi,j
Zj

(6.2)

where the costi,j is the sum of unit fixed cost ($ per timber volume) and variable

cost. Both edge and node costs are considered, where the node costs (Fix Costj

and V ar Costj) are divided by the aggregation factor. Similarly, the sediment is

calculated by adding edge and node sediments, and the node sediment value is divided

by the aggregation factor.

Note that the node attributes are divided by the aggregation factor for calculating

both cost and sediment values. This is because we want to consider not only the total

aggregated cost value, but also the number of matching edges collapsed. Dividing the

node attributes by the aggregation factor provides expected attribute values of the

collapsed matching edges from the coarsening process. The transition probability is

then defined using the Costi,j and Sedi,j as the following.

P
(t)
i,j =

Cost
(1−λ)
i,j × Sed(λ)

i,j × τ
(1−λ)×Ij
Costi,j

× τ (λ)×Ij
Sedi,j∑

l∈Nt
i

Cost
(1−λ)
i,l × Sed(λ)

i,l × τ
(1−λ)×Il
Costi,l

× τ (λ)×Il
Sedi,l

(6.3)

where the importance factor is used to adjust weights given to the pheromone values.

Accordingly, the objective functions at coarser level networks are defined as:

fCost =
∑
ei,j∈E

[(F Ci,j +
F Cj
Zj

) + (V Ci,j +
V Cj
Zj

)× V oli,j]× bi,j (6.4)

fSed =
∑
ei,j∈E

(Sedi,j + Sedj/Zj)× bi,j (6.5)
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At the original level, the aggregation and importance factors are set to one, which

turns off their effects on calculating the transition probability and objective functions,

and the node heuristic attributes are set to zero, which follows the original design in

[62] and ensures that the calculations only consider edge attributes.

6.3.2 Construct Approximation Set

Interative Search Procedure

The approximation set is generated iteratively by the MOACO, which maintains an

archive of non-dominated solutions that is updated whenever a new solution is ob-

tained. These kind of archiving/selection strategies have shown the ability to improve

solution quality towards the Pareto-optimal set and discover a diverse range of non-

dominated solutions [59].

An abstract description of the iterative search in the MOACO is given in Al-

gorithm 13, where t denotes the iteration count, ft a newly generated solution at

iteration t, and A(t) the archive that contains non-dominated solution selected from

solutions obtained up to the tth iteration. When a new solution is found, it is com-

pared with solutions stored in the archive from previous iterations. The new solution

will be discarded if it is dominated by any solutions in the archive. In this case, a new

iteration will start as long as the stop conditions are not satisfied. Otherwise, the

new solution is included in the archive. In this case, before starting a new iteration,

the algorithm will first find those archived solutions dominated by the new solution,

and then remove them from the archive.

Stop Conditions

The iterative search process (Algorithm 13) stops constructing approximation set

when the stop conditions are satisfied, which should indicate that further iterations

will not improve the solution quality. This is achieved by evaluating non-dominated

solutions stored in the archive, and counting number of iterations that the quality of
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Algorithm 13 Iteratively Constructing Approximation Set

begin
A(0) := φ
while stop condition not satisfied do

t := t+ 1
ft ⇐ ACO
if ∃ft−1 ∈ A(t−1), such that ft−1 � ft then

discard ft
end
else

A(t) ⇐ A(t−1) + ft
A(t) ⇐ A(t) \ S, where S ⊂ A(t−1) ∩ ft � fs,∀fs ∈ S

end

end

end

the archived solution set being unchanged. In this study, the quality is assessed by

ε-indicator, which is calculated using a reference point [89, 62]. The essential idea

is to calculate the distances between each of the obtained approximation sets and

the reference point. Based on the distances, comparisons can be made to determine

better solution sets. The two heuristic values of the reference point are set to be

small, then the solutions with closer distance to the reference point are considered

better. As an example in the Figure 6.3, the solution B is better than A.

However, in some cases, using the ε-indicator alone is inadequate to properly

compare two approximation sets because the set quality is determined not only by

its closeness to the Pareto frontier, but also by the diverseness of the contained non-

dominated solution. This is illustrated in the Figure 6.3 that the solution B appears

to be better than C, when only the ε-indicator is considered. In practice, we may

prefer the solution C because it covers wider range of the Pareto frontier.

Therefore, in the implementation, the stop condition is set to consider both the ε-

indicator and the size of the approximation set (Algorithm 14). Specifically, a counter,

that continuously adds up its value for each iteration, is used to stop the algorithm.

When a new approximation set is generated, its ε-indicator is calculated and compared
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Figure 6.3: Preferred approximation set and its ε-indicator value.

Algorithm 14 Stop Conditions

begin
; /* Use a Counter and Threshold to stop iteration */

while Counter < Threshold do
if ε-indicator improved then

Counter ⇐ 0 ; // reset Counter
end
else if ε-indicator not improved AND Size of approximation set increased
then

Counter ⇐ 0 ; // reset Counter
end
else

Counter ⇐ Counter + 1 ; // update Counter
end

end

end

with the current best one. The counter is reset to zero if the new approximation set has

a better ε-indicator, or bigger size in terms of non-dominated solutions. Otherwise,

the counter value is updated and increased by one. The algorithm will stop when the
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counter exceeds a threshold value.

6.3.3 Construct Approximation Set from Selected Nodes

In addition to the importance factors that carry coarser solution information to the

finer level, the MOACO is designed to search only the interpolated solution compo-

nents for the finer level problem, i.e., the nodes that constitute the non-dominated

solutions and the edges connecting them (Figure 6.4). At the beginning, after an

approximation set is obtained by the MOACO, the contained non-dominated solu-

tions are mapped to obtain second coarsest level solutions (interpolated solutions).

The nodes and connecting edges that form the interpolated solutions are then used

by MOACO to search for better solutions. The search is limited to using only these

nodes and edges that constitute the interpolated solutions. After an approximation

set is obtained for the second coarsest, the contained non-dominated solutions are

again mapped to produce interpolated solutions for the third coarsest level problem,

and MOACO will again search for better solutions using the nodes and edges that

construct the approximation set. This process continues to each of the finer level

problems until the original problem is solved.

Algorithm 15 Applying Dijkstra to Improve Initial Solutions

begin
for each solution C in the obtained approximation set from Gn do

1. Apply mapping process to C and get an interpolated solution I from Gn−1.

2. Apply Dijkstra algorithm to Gn−1, limit the search to nodes that form I, and
find solutions that minimize the considered objectives.

3. Store the obtained solutions into an archive A.

end

• Refine and update A.

end

Moreover, a solution refinement process is implemented to further improve the
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Figure 6.4: Constructing solutions from a set of selected problem components.

solution quality (Algorithm 15). For each of the interpolated solutions, the nodes and

connecting edges form a smaller network, where the Dijkstra algorithm is applied to

search for two routes that minimize total cost and sediment, separately. These two

routes are, by definition, non-dominated to each other because they are guaranteed

to be optimal in the given network. The Dijkstra is applied to every interpolated

solution, resulting a new set of initial solution set which includes twice as many

solutions as before. Finally, these solutions are refined again to remove any dominated

solutions to obtain the approximation set.
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6.4 Experimental Studies

6.4.1 Experiment Setup

The procedures and techniques presented in this study were implemented using C++.

Programs were executed on the computing nodes of Lipscomb High Performance

Computing Cluster. To test the performance, we applied the developed algorithm to

the ten FTPP problem instances used for the previous chapters. Comparisons were

made between the MOACO and MMOACO for solution quality in terms of the ε-

indicator and computing time. Because MOACO is essentially a multi-objective ACO

algorithm that searches for the best solution on the finest level problem, we refer to

it as SMOCAO, which stands for single level MOACO, in order to distinguish from

MMOACO. The threshold for the stop counter was set to 10000, and the reference

point for calculating the ε-indicator is the same as the one used in Chapter 5. We

followed the same experimental designs that set three conditions such that the first

condition requires searching process stops when an approximation set containing 40

non-dominated solutions is found, and then the second and third conditions increase

the stop requirement to 50 and 60.

6.4.2 Experimental Results

Table 6.1 lists the statistical results of the ε-indicator value. It shows that, for most

of the tested problems, there are significant differences between the two algorithms

(SMOACO and MMOACO) and the three conditions (40, 50, and 60), whereas

no significant differences can be observed for combinations of methods and condi-

tions (method*condition). This indicates that the solution quality in terms of the

ε-indicator is greatly affected by different methods and stop conditions, but the sta-

tistical inference between methods and conditions are not as significant. An exception

is Problem 1, where the method and condition are affecting each other greatly. In this

case, the individual analysis has to be conducted. Therefore, Table 6.1 also includes
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the statistical results considering each combination of methods and stop conditions.

Table 6.1: Statistical test (ANOVA) of solution quality in terms of ε-indicator (score).
Values less than 0.05 indicate significant difference between the tested subjects.

(Score) Prob1 Prob2 Prob3 Prob4 Pro5 Prob6 Prob7 Prob8 Prob9 Prob10

Method 0.0006 0.0066 0.3122 0.2096 0.0011 0.7383 0.0043 < .0001 0.0166 0.4196

Condition < .0001 0.0275 0.0041 < .0001 0.0004 0.033 < .0001 0.0095 0.007 0.0014

Method*Condition 0.0077 0.3964 0.5668 0.1403 0.135 0.6631 0.3707 0.7878 0.1475 0.2631

Multi vs. Single (40) 0.0006 0.9892 0.9663 0.9968 0.0277 0.9838 0.5264 0.0174 0.0426 0.5239

Multi vs. Single (50) 0.3463 0.1271 0.8259 0.9938 0.1686 0.9978 0.0862 0.1111 0.9994 0.9997

Multi vs. Single (60) 1 0.5245 0.9999 0.2237 0.9987 0.9944 0.9791 0.1649 0.9386 0.9909

Figure 6.5 displays ε-indicator comparisons for all the tested problems. It shows

that, for the 40 condition, MMOACO generally produced better solution qualities

than SMOACO for most of the problems. The cases where MMOACO had worse

solution qualities are Problems 3 and 4. However, the statistical results in Table

6.1 indicate that the performance is not greatly affected by different tested methods

and both multilevel and SMOACO methods are not expected to produce significantly

different solution qualities for Problems 3 and 4. Similarly, for the 50 stop condition,

MMOACO performed better than SMOACO for most of the problems, except for

Problem 3, where SMOACO was able to obtain smaller ε-indicator value. As sug-

gested from the statistical results, there is no significant difference between methods

for Problem 3, indicating the result obtained by multilevel MOACO for Problem 3 is

not much different from the single MOACO. For the 60 stop condition, MMOACO

had better performances for 6 problems (Problems 2, 3, 5, 7, 8, and 9), and had worse

performances for other problems (Problems 1, 4, 6, 10). Again, the statistical results

indicate that although the multilevel MOACO performed worse than single MOACO

for Problems 4, 6 and 10, the performance differences are not very significant. The

statistical results also indicate that, for Problem 1, there is a correlation between

methods and condition, and the individual tests show that there is no significant

difference between the two methods.
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(a) ε-indicator of Problem 1
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(b) ε-indicator of Problem 2
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(c) ε-indicator of Problem 3
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(d) ε-indicator of Problem 4
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(e) ε-indicator of Problem 5
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(f) ε-indicator of Problem 6

Figure 6.5: Comparisons of ε-indicator (score) between single and multi ACO algo-
rithms in different stop condition.
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(g) ε-indicator of Problem 7
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(h) ε-indicator of Problem 8
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(i) ε-indicator of Problem 9
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(j) ε-indicator of Problem 10

Figure 6.5: Comparisons of ε-indicator (score) between single and multi ACO algo-
rithms in different stop condition.

Figure 6.6 shows the time comparisons of the MMOACO and SMOACO among

the three stop conditions. It shows that the time differences are smallest for all tested

problems when the stop condition was set to 40. This time difference increases when

the stop condition was set to 50, and became largest when the stop condition was set

to 60. It can also be observed that the time change fluctuations were small for the

MMOACO and large for the SMOACO. These results show that 1) when the time

differences between MMOACO and SMOACO were not significant when the stop

condition was set less complex and vise versa; 2) MMOACO was able to spend less

computing times than SMOACO for most of the tested problems, especially when the

60 stop condition was used; 3) the MMOACO is more robust and stable in terms of
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computing time compared to SMOACO (less fluctuation).
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(a) Computing time comparison between multi and
single ACO for 40 stop condition.
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(b) Computing time comparison between multi and
single ACO for 50 stop condition.
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(c) Computing time comparison between multi and
single ACO for 60 stop condition.

Figure 6.6: Computing time comparisons between multi and single level ACO for the
three stop conditions.

Table 6.2, which has the same layout as Table 6.1, lists the statistical results for

computing time. Similar to the statistical results for the ε-indicator, the value in

the table that is less than 0.05 indicates the tested subjects are significantly differ-

ent. It shows that, for most of the problems, the performances of the two methods

were significantly different in terms of the computing time, except for the Problems

2 and 8, where the p values are greater than 0.05. It also can be observed that dif-
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ferent stop condition settings greatly influenced the computing time for all problems.

Furthermore, because the methods and conditions are all affecting each other, the

individual statistical results are also given. Generally, the two methods were not

significantly different when the stop condition was 40, and the differences became

significant when the condition became harder to achieve. These results correspond to

the results observed from Figure 6.6.

Table 6.2: Statistical test (ANOVA) of computing time. Values less than 0.05 indicate
significant difference between the tested subjects.

(Time) Prob1 Prob2 Prob3 Prob4 Pro5 Prob6 Prob7 Prob8 Prob9 Prob10

Method < .0001 0.5948 < .0001 < .0001 < .0001 0.0163 < .0001 0.6748 < .0001 < .0001

Condition < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

Method*Condition < .0001 0.0015 < .0001 < .0001 < .0001 < .0001 < .0001 0.093 < .0001 < .0001

Multi vs. Single (40) 0.9996 0.9973 0.9948 0.4426 0.0695 0.499 0.9564 0.9794 0.8922 0.9336

Multi vs. Single (50) < .0001 0.3905 < .0001 < .0001 < .0001 0.9969 0.2353 0.9893 < .0001 0.0041

Multi vs. Single (60) < .0001 0.0189 < .0001 < .0001 < .0001 < .0001 < .0001 0.3223 < .0001 < .0001

Figure 6.7 shows the computing time comparisons for each problem. For 40 con-

dition, MMOACO tends to spend more time than SMOACO for most of the problem.

However, according to the statistical results (Table 6.2), the differences in computing

time between the two algorithms were not significant. For 50 condition, MMOACO

performed better for 7 problems, but worse for the other 3 problems. For the problems

that MMOACO had worse performances, the results were not significantly different

(Table 6.2). For the 60 stop condition, the similar results can be observed. These

results clearly showed that MMOACO is superior than SMOACO in computing time.

6.5 Concluding Remarks

In this Chapter, a multilevel multi-objective ACO algorithm is developed. First, the

exact graph coarsening technique is recursively applied to the original problem to

produce a set of coarser level problems that have the same total amount attribute

values as the original problem. This helps the coarser level problems to retain im-

portant properties of the original problem so that the coarser level solutions may be
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(a) Computing Time of Problem 1
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(b) Computing Time of Problem 2
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(c) Computing Time of Problem 3
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(d) Computing Time of Problem 4
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(e) Computing Time of Problem 5
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(f) Computing Time of Problem 6

Figure 6.7: Comparisons of computing time between single and multi ACO algorithms
in different stop condition.
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(g) Computing Time of Problem 7
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(h) Computing Time of Problem 8
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(i) Computing Time of Problem 9
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(j) Computing Time of Problem 10

Figure 6.7: Comparisons of computing time between single and multi ACO algorithms
in different stop condition.

used to help search for finer level solutions. Second, the underly MOACO is designed

to consider importance and aggregation factors to obtain solutions. These two fac-

tors represent importances of the interpolated finer level edges and the aggregation

degrees, which can guide MOACO towards searching for better solutions. Third, the

interpolated solutions are refined using the Dijkstra algorithm before they are used

as initial good solution set for MOACO. This design further increases the chance

of finding a good solution set for the finer level problems. Finally, the MOACO is

constrained to search solutions only using nodes that are included in the interpolated

solutions. This design helps reduce the total computing time. The MMOACO was

applied to ten problem instances and its performance was compared with SMOACO.
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The experimental results show that MMOACO can produce better solutions with

much less time in comparison to SMOACO.

Copyright c© Pengpeng Lin 2015
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7 Conclusion and Future Work

This dissertation presents a research work in computational science to develop a

multilevel paradigm, which targets at solving large-scale transportation problems.

Although the constrained forest transportation planning problem is used as the test

problem, the developed algorithms can be extended to other problem domains with

minor modifications. This work involves different Ant Colony Optimization algo-

rithms, graph coarsening heuristics, mixed integer programming, automatic parame-

ter configuration techniques, constrained and unconstrained fixed charge transporta-

tion problems, multi-objective optimization problems, and quantifying the quality of

approximation sets. In this chapter, I summarize my dissertation work and discuss

some possible future research topics.

7.1 Research Accomplishments

In the computational science and operations research, solving complex optimization

problems with metaheuristic algorithms has received considerable attention among

practitioners and researchers. Hence, many metaheuristic algorithms have been de-

veloped over the years. These algorithms are often inspired by various phenomena of

nature, and are designed to provide solutions to many difficult engineering optimiza-

tion problems in which the search spaces grow exponentially with the problem size.

As a counterpart, the traditional optimization methods usually fail with the limited

computational resources.

The optimization problem dealt with in this thesis is called a fixed charge trans-

portation problem, which is a special case of the fixed cost linear programming prob-

lem induced in the origins of the operations research [2, 82]. It is also a special case

of the cost minimization network problem that has been the center of many distri-

bution and network design problems [68]. The introduction of the fixed cost to the
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linear programming and transportation problems has changed the objective function

to be concave and discontinuous in the search region [44], which also implies that the

fixed charge problems are much more difficult to solve than their corresponding lin-

ear versions. In fact, this has been shown in [40, 56] that most minimization network

problems with strictly concave objective functions, including these with fixed-charges,

are NP-hard.

Two-stage ACO Algorithm to Solve CFTPP

The first contribution of this research work is that an ACO algorithm is designed to

solve the CFTPP, which is a real world application of the constrained fixed charge

transportation problem. The algorithm is comprised of two stages such that it tries

to determine the existence of the feasible solution in the first stage, and improve the

quality of the obtained feasible solution in the second stage. Moreover, the ACO

algorithm follows different search routines, performs edge selection and pheromone

update mechanisms under different situations, and integrates a local search at the

end, which further improves the solution quality. All these designs are customized

specifically for the constrained fixed charge transportation problem, providing an

algorithmic tool for solving the CFTPP.

Multilevel Approach to Automatically Configure ACO

The second contribution is that a multilevel ParamILS technique is proposed and im-

plemented to configure ACO for solving transportation problems. The MParamILS

is designed by combining a graph coarsening heuristic and the state of the art param-

eter configuration framework ParamILS. The graph coarsening is applied recursively

to the original problem, which produces a set of increasingly smaller problems of

which the basic network layout and attribute distribution of the original problem are

well inherited. Because of this, a philosophical assumption was made that a set of

high-quality parameters is shared among the coarser and finer level problems. There-
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fore, the MParamILS applies the ParamILS to each coarser level problem to refine

a parameter combination domain, which identifies the high-quality parameter com-

binations and eliminates the low-quality ones. This parameter refinement process

starts from the coarsest one to the finest level, until the original problem is solved.

As shown in the experimental results, the proposed MParamILS can save computing

time significantly compared to ParamILS.

Multilevel ACO Algorithm to Solve CFTPP

The third contribution is a continuing study of the previous works. A multilevel ACO

algorithm is developed to solve CFTPP that integrates the MParamILS for configur-

ing the parameters and uses the solutions found for the coarser level problems to fa-

cilitate the ACO solution search process for the finer level problems. The coarser level

solution components are mapped into the corresponding finer level problem compo-

nents. These interpolated finer level components are given more considerations when

searching for the best solution by initializing larger amounts of pheromone values to

them. The essential idea behind this is that the interpolated problem components of

a finer level problem are expected to form the best solution because they are mapped

from the best solution of its next coarser level problem. Therefore, concentrating

the search process on these problem components could reduce the search space, and

eventually lead to the best solution much faster. This has been proven in the exper-

iments that the multilevel ACO shows considerable improvement in computing time

and better objective function values in most of the test cases, comparing to only the

MParamILS used to solve the CFTPP.

Applying the ACO to Solve Bi-objective FTPP

The fourth contribution is that we present a multi-objective ACO algorithm to solve

a bi-objective FTPP in which the objectives are to minimize both the transportation

cost and negative environmental impact. The goal is to provide the forest man-
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agers or planners alternative solution choices, in order to make informed decisions.

Many algorithmic components in existing ACO algorithms that are designed for solv-

ing multi-objective optimization problems are considered. As a result, the proposed

MOACO offers a new possibility in algorithm design choices that was never consid-

ered before. In addition, the incorporated flexibility from the different existing ACO

algorithm components reduces the MOACO’s dependency on the parameter settings.

From the experimental results, the MOACO has shown to successfully solve all the

tested problem instances.

Multilevel ACO to Sovle Bi-objective FTPP

The last contribution of this thesis study is that a multilevel MOACO algorithm

is developed to improve the performance of the MOACO. The algorithm applies a

exact graph coarsening technique to produce the coarse level problems of which the

aggregated attribute weight is the same as that of the original problem. This increases

the connections between the coarser and finer level problems so that the coarser

level solutions can be used to help search for finer level solutions. Furthermore, the

interpolated solutions are refined using the Dijkstra algorithm before they are used

for initializing the pheromone, hence increasing the quality of the selected problem

components that are given more consideration. The experimental results show that

the multilevel MOACO is substantially faster than the MOACO for all the tested

cases.

7.2 Future Work

In the future, I plan on continuing my current lines of research. In particular, I

would like to continue the research on the multilevel scheme, hierarchical computing,

and extending the developed multilevel framework to other problem domains and

optimization algorithms. The following sections briefly explain my ideas and different

directions that I would like to pursue.
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Parallelization for Multilevel ACO

For large size problems, ACO will require a significantly large amount of time for

searching good parameter combinations and evaluating algorithms. ACO algorithms

are highly distributed algorithms in which a set of ants construct solutions indepen-

dently. Thus, their parallelization is relatively straightforward. However, the paral-

lelization has not yet been explored in the multi-objective optimization context [19].

Furthermore, the multi-level ACO framework allows many components to combine

in many different ways to improve ACO performance. In the future, I would like to

integrate parallelism to the multi-level ACO to solve constraint multi-objective opti-

mization problems. The plan is to first design a parallel multi-level ACO framework

and then implement it using massage passing interface (MPI).

Automatically Determine the Number of Coarser Level Problems

We have examined the performance of using multilevel approaches to solving trans-

portation problems and parameter configuration problems. In both cases, the general

idea is to first coarsen the original problem to produce a set of increasingly smaller

problems, then solve the original problem, which is expensive to solve, using the ob-

tained coarser level problems of which the computational expense is cheaper. In our

studies, the number of the coarser level problems is four, which is set according to

the ratio of the sizes between the original problem and the coarser level problems.

However, there is no formal proof that can theoretically justify this setting. The fu-

ture work should focus on providing some genetic rules or techniques to automatically

determining the right number of coarser level problems to be used in the multilevel

approaches.

Extending the Multilevel ACO to Solve Other Problem Domains

As aforementioned, although the multilevel ACO is designed for solving the CFTPPs,

it can be easily modified to tackle other problem domains. In particular, I will focus
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on the interdisciplinary studies between computer science and forest management to

develop computational tools that incorporate multilevel schemes for solving problems

related to operations research. Possible projects include 1) forest fire treatment prob-

lems where good tree planning strategies are needed to prevent or reduce forest fire

hazards; 2) forest transportation planning problems where additional variables (such

as detailed operational costs, different timber harvest periods, other than the envi-

ronmental impact, sediment.) may be considered; 3) Analyzing the digital elevation

model (DEM) and LiDAR data for forest management problems such as tree detec-

tions in a specific area, tree species identifications, and timber volume inventory and

so on.

Copyright c© Pengpeng Lin 2015
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