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ABSTRACT OF DISSERTATION 

 
 
 

NOVEL APPLICATIONS OF MACHINE LEARNING IN BIOINFORMATICS 

 

 

Technological advances in next-generation sequencing and biomedical imaging 

have led to a rapid increase in biomedical data dimension and acquisition rate, which is 

challenging the conventional data analysis strategies. Modern machine learning techniques 

promise to leverage large data sets for finding hidden patterns within them, and for making 

accurate predictions. This dissertation aims to design novel machine learning-based models 

to transform biomedical big data into valuable biological insights. The research presented 

in this dissertation focuses on three bioinformatics domains: splice junction classification, 

gene regulatory network reconstruction, and lesion detection in mammograms. 

A critical step in defining gene structures and mRNA transcript variants is to 

accurately identify splice junctions. In the first work, we built the first deep learning-based 

splice junction classifier, DeepSplice. It outperforms the state-of-the-art classification tools 

in terms of both classification accuracy and computational efficiency. To uncover 

transcription factors governing metabolic reprogramming in non-small-cell lung cancer 

patients, we developed TFmeta, a machine learning approach to reconstruct relationships 

between transcription factors and their target genes in the second work. Our approach 

achieves the best performance on benchmark data sets. In the third work, we designed deep 

learning-based architectures to perform lesion detection in both 2D and 3D whole 

mammogram images. 

 

KEYWORDS: Machine Learning, Deep Learning, Splice Junction, RNA-seq, Cancer, 

Biomedical Imaging 
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CHAPTER 1. INTRODUCTION 

 

1.1 Machine learning 

Machine learning can be broadly described as computational methods using 

previous experience to improve performance or to make precise inferences. Here, previous 

experience refers to the past information available to the learner. This data could be in the 

form of digitized human-labeled training sets, or other types of information obtained via 

interaction with the environment. In all cases, its quality and size are crucial to the success 

of the predictions made by the learner [1]. 

The processes involved in machine learning are similar to that of data mining and 

predictive modeling. Both require searching through data to look for patterns and adjusting 

program actions accordingly. Many people are familiar with machine learning from 

shopping on the internet and being served ads related to their purchase. This happens 

because recommendation engines use machine learning to personalize online ad delivery 

in almost real time. Beyond personalized marketing, other common machine learning use 

cases include fraud detection, spam filtering, network security threat detection, predictive 

maintenance and building news feeds. 

Machine learning algorithms are often categorized as supervised or unsupervised. 

Supervised algorithms require both input and desired output, in addition to furnishing 

feedback about the accuracy of predictions during algorithm training. Once training is 

complete, the algorithm will apply what was learned to new data. Unsupervised algorithms 

do not need to be trained with desired outcome data. 
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Since the success of a learning algorithm depends on the data used, machine 

learning is inherently related to data analysis and statistics. More generally, machine 

learning techniques are data-driven methods combining fundamental concepts in computer 

science with ideas from statistics, probability and optimization [1]. 

The standard machine learning tasks which have been extensively studied are listed 

as follows: 

 Classification: classification is used when the outputs are restricted to a limited set 

of values. For a classification task that filters emails, the input would be an incoming 

email, and the output would be the name of the folder in which to file the email [2]. 

 Regression: regression is adopted to predict continuous outputs, that is, real values 

within a range. Examples of a continuous value are the temperature, length, or price 

of an object [2]. 

 Ranking: ranking is to produce a permutation of items in unseen lists in a way which 

is similar to rankings in the training data in some sense. Ranking is a central part of 

many information retrieval problems, such as document retrieval, sentiment analysis, 

and online advertising [3]. 

 Clustering: clustering is the task of grouping a set of objects in such a way that 

objects in the same group are more similar to each other than to those in other groups. 

For instance, in social network analysis, clustering algorithms try to identify natural 

communities within a large group of people [4]. 

 Dimensionality reduction: dimensionality reduction is to transform an initial 

representation of items into a lower-dimensional representation while preserving some 



3 

 

properties of the initial representation. A common example involves preprocessing 

digital images in computer vision tasks [1]. 

 

1.2 Deep learning 

Deep learning is a branch of machine learning, which employs numerous similar 

but distinct deep neural network architectures to solve various problems in natural language 

processing, computer vision, and bioinformatics, among other fields. Deep learning has 

experienced tremendous recent research resurgence, and has been shown to deliver state of 

the art results in numerous applications. 

In essence, deep learning is the implementation of neural networks with more than 

a single hidden layer of neurons, as shown in Figure 1.1. However, this is a very simplistic 

view of deep learning, and not one that is unanimously agreed upon. These "deep" 

architectures also vary quite considerably, with different implementations being optimized 

for different tasks or goals. The vast research being produced at such a constant rate is 

revealing new and innovative deep learning models at an ever-increasing pace. 

The successes of deep learning are built on a foundation of significant algorithmic 

details and generally can be understood in two parts: construction and training of deep 

learning architectures [5]. Deep learning architectures are basically artificial neural 

networks of multiple non-linear layers and several types have been proposed according to 

input data characteristics and research objectives. Here, we categorized deep learning 

architectures into four groups: deep neural networks (DNNs), convolutional neural 

networks (CNNs), recurrent neural networks (RNNs) and emergent architectures. DNNs 

include multilayer perceptron (MLP), stacked auto-encoder (SAE) and deep belief 
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networks (DBNs), which use perceptrons, auto-encoders and restricted Boltzmann 

machines as the building blocks of neural networks, respectively. CNNs are architectures 

that have succeeded particularly in image recognition and consist of convolution layers, 

non-linear layers and pooling layers. RNNs are designed to utilize sequential information 

of input data with cyclic connections among building blocks like perceptrons, long short-

term memory units or gated recurrent units. In addition, many other emergent deep learning 

architectures have been suggested, such as deep spatio-temporal neural networks (DST-

NNs), multidimensional recurrent neural networks (MD-RNNs) and convolutional auto-

encoders (CAEs). 

 

 

 

Figure 1.1  Illustration of the deep neural network layers. 

 

The goal of training deep learning architectures is optimization of the weight 

parameters in each layer, which gradually combines simpler features into complex features 

so that the most suitable hierarchical representations can be learned from data. A single 

cycle of the optimization process is organized as follows. First, given a training dataset, 
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the forward pass sequentially computes the output in each layer and propagates the function 

signals forward through the network. In the final output layer, an objective loss function 

measures error between the inferred outputs and the given labels. To minimize the training 

error, the backward pass uses the chain rule to backpropagate error signals and compute 

gradients with respect to all weights throughout the neural network. Finally, the weight 

parameters are updated using optimization algorithms based on stochastic gradient descent 

(SGD). Whereas batch gradient descent performs parameter updates for each complete 

dataset, SGD provides stochastic approximations by performing the updates for each small 

set of data examples. Several optimization algorithms stem from SGD. For example, 

Adagrad and Adam perform SGD while adaptively modifying learning rates based on 

update frequency and moments of the gradients for each parameter, respectively. 

Another core element in the training of deep learning architectures is regularization, 

which refers to strategies intended to avoid overfitting and thus achieve good 

generalization performance. For example, weight decay, a well-known conventional 

approach, adds a penalty term to the objective loss function so that weight parameters 

converge to smaller absolute values. Currently, the most widely used regularization 

approach is dropout. Dropout randomly removes hidden units from neural networks during 

training and can be considered an ensemble of possible subnetworks. Furthermore, recently 

proposed batch normalization provides a new regularization method through normalization 

of scalar features for each activation within a mini-batch and learning each mean and 

variance as parameters. 
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1.3 Machine learning in bioinformatics 

In the era of big data, the rapid increase in biomedical data dimension and 

acquisition rate is challenging conventional analysis strategies. Modern machine learning 

methods, such as deep learning, promise to leverage large data sets for finding hidden 

structure within them, and for making accurate predictions. 

The potential of machine learning in analyzing biomedical data sets is clear: in 

principle, it allows to better exploit the availability of increasingly large and high-

dimensional data sets by training complex models that capture their internal structure. The 

learned models discover high-level features, increase interpretability and provide 

additional understanding about the structure of the biomedical data [6]. 

Recent papers are trying to apply machine learning to omics, biomedical imaging, 

electronic health record, and numerous other bioinformatics domains. 

 

1.3.1 Omics 

Improvements in technology have fueled the proliferation of omics applications. 

These techniques are often used to measure and study complex biological systems and their 

interactions. Omics includes a multitude of areas of focus such as genomics, 

transcriptomics, proteomics, interactomics, metabolomics, phenomics, and 

pharmacogenomics to name, but a few. Each one of these areas might also have many 

subdomains, each requiring further specialization in analytical and computational 

approaches [7]. 

Increasingly, the scale of omics data generation has been challenging researchers' 

abilities to integrate and model often noisy, complex, and high-dimensional data. Machine 
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learning has emerged as a powerful approach, which can both encode and model many 

forms of complex data both in supervised and unsupervised settings. DeepBind has been 

built to predict the sequence specificities of DNA- and RNA-binding proteins by deep 

learning [8]. Chen et al. [9] designed a machine learning-based method, D-GEX, to infer 

the expression of target genes from the expression of landmark genes. Arvaniti et al. 

proposed CellCnn [10], a representation learning approach to detect rare cell subsets 

associated with disease using high-dimensional single-cell measurements. Ma et al. 

developed DCell [11], a visible neural networks embedded in the hierarchical structure of 

2,526 subsystems comprising a eukaryotic cell. Trained on several million genotypes, 

DCell simulates cellular growth nearly as accurately as laboratory observations. Altae-Tran 

et al. [12] introduced a new deep-learning architecture, the iterative refinement long short-

term memory, a modification of the matching-networks architecture and the residual 

convolutional network. The architecture allows for the learning of sophisticated metrics 

which can trade information between evidence and query molecules. The authors 

demonstrated that their architecture offers significant boosts in predictive power for a 

variety of problems meaningful for low-data drug discovery. 

 

1.3.2 Biomedical imaging 

Over the recent years, machine learning has had a tremendous impact on various 

fields in science. It has led to significant improvements in speech recognition and image 

recognition, it is able to train artificial agents that beat human players in Go and ATARI 

games, and it creates artistic new images, and music. Many of these tasks were considered 
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to be impossible to be solved by computers [13]. Obviously this technology is also highly 

relevant for biomedical imaging. 

The advantage of machine learning in an era of biomedical imaging big data is that 

significant hierarchal relationships within the data can be discovered algorithmically 

without laborious hand-crafting of features. The key machine learning applications in 

biomedical imaging include image classification, localization and detection, segmentation, 

and image reconstruction. Esteva et al. [14] demonstrated the effectiveness of deep 

learning in dermatology, a technique applied to both general skin conditions and specific 

cancers. Using a single convolutional neural network trained on general skin lesion 

classification, the authors matched the performance of at least 21 dermatologists tested 

across three critical diagnostic tasks: keratinocyte carcinoma classification, melanoma 

classification and melanoma classification using dermoscopy. Chlebus et al. [15] 

developed a fully automatic method for liver tumor segmentation in CT images based on a 

2D fully convolutional neural network with an object-based postprocessing step. Inspired 

by the sharp, high texture-quality images retrieved by GANs, and the high contrast of MR 

images, Mardani et al. [16] employed GANs for modeling the low-dimensional manifold 

of high-quality MR images. This framework can leverage the historical data for rapid and 

high diagnostic-quality image reconstruction from highly undersampled MR 

measurements. 

 

1.3.3 Electronic health record 

Over the past 10 years, hospital adoption of electronic health record (EHR) systems 

has skyrocketed, in part due to the Health Information Technology for Economic and 
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Clinical Health (HITECH) Act of 2009, which provided $30 billion in incentives for 

hospitals and physician practices to adopt EHR systems [17]. According to the latest report 

from the Office of the National Coordinator for Health Information Technology (ONC), 

nearly 84% of hospitals have adopted at least a basic EHR system, a 9-fold increase since 

2008 [18]. Given the increasingly vast amount of patient data and the rise in popularity of 

machine learning approaches, there has also been an increase in the number of publications 

applying machine learning to EHR data for clinical informatics tasks which yield better 

performance than traditional methods and require less time-consuming preprocessing and 

feature engineering. 

Miotto et al. [19] presented a novel unsupervised deep feature learning method to 

derive a general-purpose patient representation from EHR data that facilitates clinical 

predictive modeling. In particular, a three-layer stack of denoising autoencoders was used 

to capture hierarchical regularities and dependencies in the aggregated EHRs. The authors 

reported that their findings indicate that deep learning applied to EHRs can derive patient 

representations that offer improved clinical predictions, and could provide a machine 

learning framework for augmenting clinical decision systems. Rajkomar et al. [20] 

proposed a representation of patients’ entire raw EHR records based on the Fast Healthcare 

Interoperability Resources (FHIR) format. The authors demonstrated that deep learning 

methods using their representation are capable of accurately predicting multiple medical 

events from multiple centers without site-specific data harmonization, and their models 

outperformed traditional, clinically-used predictive models in all cases. Chen et al. [21] 

developed NoteAid, a natural language processing system that links medical terms in EHR 
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notes to lay definitions targeted at or below the average adult literacy level to support 

patient EHR comprehension. 

 

1.4 Dissertation statement 

This dissertation aims to design novel machine learning-based models to transform 

biomedical big data into valuable biological insights. It covers three different but closely 

related bioinformatics domains of great importance, including: classification of splice 

junction sequences using convolutional neural networks, reconstruction of gene regulatory 

networks using gradient boosted trees, and detection of lesions in mammogram images 

using deep learning. 

 

1.5 Contributions of this dissertation 

We have developed a series of novel machine learning-based approaches for 

analyzing various biomedical data, including genomics data, transcriptomics data, and 

biomedical imaging data. The performance of each of those approaches is assessed using 

a number of simulated and real datasets. The experiments demonstrate their advantages on 

accuracy and efficiency compared to other state-of-the-art approaches. This dissertation 

may contribute to the following three areas. 

 Accurate classification of novel splice junctions derived from RNA-seq 

alignment A model inferred from the sequences of annotated exon junctions 

that can then classify splice junctions derived from primary RNA-seq data has been 

developed. Our DeepSplice model is the first deep learning-based splice junction 

classifier. The performance of the model was evaluated and compared through 



11 

 

comprehensive benchmarking and testing, indicating a reliable performance and gross 

usability for classifying novel splice junctions derived from RNA-seq alignment. Our 

findings further indicate that valuable information is present in the nucleotide 

sequence local to the splice junction, data that conventional splice site prediction 

techniques discard. 

 Efficient reconstruction of gene regulatory networks using multi-omics data 

sets Leveraging gradient boosted trees, a multi-omics approach to uncover TFs 

governing cancer metabolic reprogramming and reconstruct their interactions with 

metabolic enzymes has been designed. We demonstrated that TFmeta achieved state-

of-the-art performance in recovering TF-target gene interactions on public benchmark 

data sets. We applied our model to non-small-cell lung cancer patients’ data sets to 

predict TFs modulating the dysregulation of glycolysis in lung cancer, leveraging the 

pairing information of the samples and TF DNA binding activities. Eventually, we 

predicted a list of key TFs that may motivate the upregulation of glycolysis observed 

in tumor cells, some of which have been supported by literature evidence, and some 

of which were predicted as novel putative TFs in lung cancer. 

 Precise detection of lesions in 2D and 3D mammography images We 

conducted the first work that study both 2D and 3D mammography images for breast 

cancer classification through deep learning. We evaluated ten different convolutional 

neural network architectures and concluded that combining both data augmentation 

and transfer learning methods with a convolutional neural network is the most 

effective in improving classification performance. Our work sheds light on how each 

type of data sets performs when trained independently. 2D and 3D images are 
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complementary to each other, where 2D offers high resolution while 3D offers 

multiple views. Our work suggests the development of assembled classifiers that 

integrate the 2D and 3D data to achieve optimal performance. 

The software packages for the algorithms developed in this dissertation are open 

source and publicly available to the research community. 
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CHAPTER 2. DISCERNING NOVEL SPLICE JUNCTIONS REVEALED BY RNA-SEQ WITH 

DEEPSPLICE 

Exon splicing is a regulated cellular process in the transcription of protein-coding 

genes. Technological advancements and cost reductions in RNA sequencing have made 

quantitative and qualitative assessments of the transcriptome both possible and widely 

available. RNA-seq provides unprecedented resolution to identify gene structures and 

resolve the diversity of splicing variants. However, currently available ab initio aligners 

are vulnerable to spurious alignments due to random sequence matches and sample-

reference genome discordance. As a consequence, a significant set of false positive exon 

junction predictions would be introduced, which will further confuse downstream analyses 

of splice variant discovery and abundance estimation. 

In this chapter, we present a deep learning based splice junction sequence classifier, 

named DeepSplice [22], which employs convolutional neural networks to classify 

candidate splice junctions. We show (I) DeepSplice outperforms state-of-the-art methods 

for splice site classification when applied to the popular benchmark dataset HS3D, (II) 

DeepSplice shows high accuracy for splice junction classification with GENCODE 

annotation, and (III) the application of DeepSplice to classify putative splice junctions 

generated by Rail-RNA alignment of 21,504 human RNA-seq data significantly reduces 

43 million candidates into around 3 million highly confident novel splice junctions. 

 

2.1 Introduction 

Technological improvements, reduced cost, and accessibility of RNA sequencing 

technologies have provided unprecedented visibility of the transcriptome through the deep 

sequencing of all mRNA transcripts present in a sample. Through analyses of mRNA-seq 
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data, researchers now believe that 92–94% of mammalian protein-coding genes undergo 

alternative splicing, with roughly 86% of these containing a minor transcript isoform 

frequency of at least 15% in certain cell types, developmental time points, physiological 

states, or other conditions [23]. This is an 87-89% increase from forty years ago when 

alternative exon structures from a single gene locus were first introduced and it was 

believed that only around 5% of genes in higher eukaryotes undergo alternative splicing 

[24]. 

The approach to defining exon junctions from RNA-seq data utilizes the subset of 

reads that have a gapped alignment to the reference genome. These reads can be aligned to 

two or more exons, indicating that there exist junctions joining adjacent exons. Whereas 

some mapping strategies [25-28] require pre-defined structural annotation of exon 

coordinates, more recently developed algorithms [29-33] can conduct ab initio alignment, 

which means that they do not rely on the existence of predetermined gene structure 

annotation and can potentially identify novel splice junctions between exons by the 

evidence of spliced alignments. 

The accurate prediction of exon junctions is essential for defining gene structures 

and mRNA transcript variants. Splicing must be absolutely precise because the deletion or 

addition of even a single nucleotide at the splice junction would throw the subsequent 

three-base codon translation of the RNA out of frame [34]. However, novel splice junctions 

predicted by read alignments are not totally reliable, since the possibility of randomly 

mapping a short read up to 150 bases to the large reference genome is high [35], especially 

when gapped alignments with short anchoring sequences are permitted. In a recent report 

by Nellore et al [36] that investigated splicing variation, 21,504 RNA-seq samples from 
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the Sequenced Read Archive (SRA) were aligned to the human hg19 reference genome 

with Rail-RNA [37], identifying 42 million putative splice junctions in total. This value is 

125 times the number of total annotated splice junctions in humans, making it impossible 

to admit that all of them actually exist. False positive splice junctions may lead to false 

edges in splice graphs, significantly increasing the complexity of the graphical structures 

[38]. Consequentially, this will impact the accuracy of splice variant inference algorithms 

as they often start from splice graphs derived from RNA-seq alignment [39].  

Conventional strategies designed to filter out false positive exon splice junctions 

depend primarily on two properties: (1) the number and the diversity of reads mapped to 

the given splice junction [35]; and/or (2) the number of independent samples in which the 

specific exon splice junction is identified [35, 40]. In general, higher read support and 

sample reoccurrence rate both enlarge the likelihood of being a true splice junction. These 

criteria have a positive correlation with the number of read alignments, which are 

dependent on the sampling depth of the particular sample. Exact thresholds are difficult to 

set due to varying sampling depth across samples. Additionally, due to both sequencing 

and alignment errors, a splice junction with both high read support and high sample 

reoccurrence may still be the result of systematic bias. In contrast, a splice junction that 

exists in a transcript with relatively low expression may still be functionally important [41]. 

Thus, further classification of putative splice junctions revealed by RNA-seq data is still 

necessary but remains a challenging issue. 

Since the 1980s, a number of bioinformatic approaches have been developed for 

splice site prediction. Neural networks [42-44], support vector machines [45-47], hidden 

Markov model [48-50], deep Boltzmann machines [51] and discriminant analysis [52, 53] 



16 

 

have been applied to recognize splice sites in the reference genome of many given species. 

Neural networks, support vector machines and deep Boltzmann machines learn the 

complex features of neighborhoods surrounding the consensus dinucleotide AG/GT by a 

non-linear transformation. Hidden Markov models estimate position specific probabilities 

of splice sites by computing the likelihoods of candidate signal sequences. The 

discriminant analysis uses several statistical measures to evaluate the presence of specific 

nucleotides, recognizing splice sites without explicitly determining the probability 

distributions [50]. However, all these work treat donor and acceptor sites as independent 

events, failing to leverage the inherent relationships between the donor and acceptor during 

splicing.  

In this work, we develop a deep neural network-based approach to the classification 

of potential splice junctions. Our method is applicable to both splice site prediction and 

splice junction classification. First, instead of treating donor or acceptor splice sites 

individually, our method models the donor and acceptor splice sites as a functional pair. 

Thus, it is capable of capturing the remote relationships between features in both donor and 

acceptor sites that determine the splicing. Additionally, flanking subsequences from both 

exonic and intronic sides of the donor and acceptor splice sites will be used for learning 

and prediction, making it possible to understand the contribution of both coding and non-

coding genomic sequences to the splicing. Our approach does not rely on sequencing read 

support or frequency of occurrence derived from experimental RNA-seq data sets, thus can 

be applied as an independent evidence for splice junction validation. Our experiments 

demonstrate that DeepSplice outperforms other state-of-the-art approaches [50, 54-58] 

when tested against a benchmarking dataset, Homo Sapiens Splice Sites Database (HS3D), 
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using a variety of evaluation metrics. Trained on an older version of the GENCODE project 

gene annotation data [59], we show that our algorithm can predict the newly annotated 

splice junctions with high accuracy and performs better than splice site-based approach. 

The application of DeepSplice to further classify putative intropolis human splice junction 

data by Nellore et al [36] is able to eliminate around 83% unannotated splice junctions. We 

discover that the combinational information from the functional pairing of donor and 

acceptor sites facilitates the recognition of splice junctions and demonstrate from large 

amounts of sequencing data that non-coding genomic sequences contribute much more 

than coding sequences to the location of splice junctions [47, 60]. 

 

2.2 DeepSplice method 

DeepSplice employs a convolutional neural network (CNN, or ConvNet) to 

understand sequence features that characterize real splice junctions [61]. The overall 

architecture of DeepSplice is shown in Figure 2.1. In the supervised training step, CNN 

learns features that help to differentiate actual splice junctions from fake ones. In the 

inference step, the trained model uses the genomic sequence of the candidate splice 

junction and predicts the probability of it being a real splice junction. Deep Taylor 

decomposition [62] of the CNN is used to explain to what extent each nucleotide in the 

candidate splice junction has contributed to the inference. 
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Figure 2.1  Visualization of splice junction sequence representation and deep convolutional 

neural network in DeepSplice. Each sequence is converted into a tensor through one-hot 

encoding in the pre-processing of the sequence representation. The tensor is fed as original 

input to the deep convolutional neural network, which contains one input layer, two 

convolutional layers, one fully connected layer (FCN) and one output layer. The 

convolutional neural network transforms the nucleotide signal in splice junction sequences 

to the final label of class. 

 

2.2.1 Splice junction representation 

A splice junction sequence is represented by four subsequences, the upstream 

exonic subsequence and downstream intronic subsequence at the donor site, and the 

upstream intronic subsequence and downstream exonic subsequence at the acceptor site, 

as shown in Figure 2.1. Each subsequence has the length of 30, which is believed to be 

optimal for splice site/junction prediction [41, 44, 48, 49, 63]. Nucleotides in each sequence 

are represented through one-hot encoding. In the proposed encoding system, the 

orthonormal sparse encoding is used for the four definite values (A, C, G and T) as it has 

been used widely in the numerical representations of biological sequences [64]. But for the 

ambiguous base N, instead of disregarding it or giving it the same importance as the definite 

values, the probability is used. 
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Each splice junction sequence is transformed into a 3-dimensional tensor. The first 

dimension ‘height’ is equal to one, and the second dimension ‘width’ indexes the sequence 

length, that is, the number of nucleotides in the sequence, and the third dimension 

‘channels’ indexes the type of nucleotide. The tensors are fed as input to deep convolutional 

neural networks for downstream processing. 

 

2.2.2 Deep convolutional neural network 

DeepSplice contains a multi-layer feedforward neural network. We stack one input 

layer, two convolutional layers, one fully connected layer, and one output layer. The whole 

network architecture can be written as follows:  

𝐿𝑎𝑏𝑒𝑙 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 = 𝑓𝑓𝑐𝑛(𝑓𝑐𝑜𝑛𝑣2(𝑓𝑐𝑜𝑛𝑣1(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝑠𝑖𝑔𝑛𝑎𝑙)). 

In this way, the convolutional neural network transforms the nucleotide signal in splice 

junction sequences to the final label of class as shown in Figure 2.1. 

In the first convolutional layer, the convolution will compute 8 features over the 

input tensor which represents splice junction sequence, which results in 8 feature maps of 

the input tensor. In order to reason the complex nonlinearity between inputs and outputs, 

we further stack the second convolutional layer computing 16 features over 8 feature maps 

from the first convolutional layer. In the convolutional layers, the filters have size 3x1. 

During the forward pass, we slide each filter along the splice junction sequence and 

compute dot products between the filter and the input tensor. As we slide the filter over the 

input splice junction sequence we will produce feature maps that give the responses of that 

filter at every spatial position. After two convolutional layers, the features are presented in 

16 tensors. The output of the second convolutional layer is taken by a fully connected layer 
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with 32 feature maps for high-level reasoning. The fully connected layer is followed by the 

output layer indicating the final label of class. In the neural network, all parameters are 

learned during training to minimize a loss function which captures the difference between 

the true labels of class and predicted values. 

Training the network follows the standard backpropagation and optimizes the loss 

function using Adam [65]. Advance deep learning techniques L2 regularization [66], 

dropout [67] and mini-batch gradient descent [68] are deployed to regularize the network 

to prevent over-fitting and to accelerate the training process. 

In the reference step, testing splice junction sequences transformed by one-hot 

encoding are fed to the learned network for a binary classification, which outputs the 

predicted label of the class, true or false splice junction. 

 

2.2.3 Deep Taylor decomposition of deep convolutional neural network 

We propose to use deep Taylor decomposition [62] to explain the contribution of 

nucleotides in the splice junction sequence to the final decision function of the deep 

convolutional neural network, as shown in Figure 2.2. Taking image recognition task as an 

example, such decomposition results in a “heat map” that indicates what pixels of the image 

are important for a neural network classification. In our application, for testing splice 

junction sequence 𝐒, we would like to associate to nucleotide 𝑛 a contribution score 𝐶𝑛(𝐒) 

from which it is possible to judge which nucleotides are of importance to explain the 

predicted label of class from the deep convolutional neural network. 

Deep Taylor decomposition operates by running a backward pass on the trained 

convolutional neural network using a predefined set of rules. Backpropagating from the 
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function output down to the input, it results in assigning a set of scores 𝐂(𝐒) = {𝐶𝑛(𝐒)} to 

the nucleotides in the input testing splice junction sequence 𝐒 to quantify their contributions 

to the predicted label of class. 

 

 

 

Figure 2.2  Visualization of deep Taylor decomposition in DeepSplice. Deep Taylor 

decomposition explains the contribution of each nucleotide in the splice junction sequence 

to the final decision function of the deep convolutional neural network. Deep Taylor 

decomposition operates by running a backward pass on the trained convolutional neural 

network using a predefined set of rules. 

 

2.2.4 Other deep learning architectures 

To decipher the abilities of different deep learning architectures in handling splice 

junction sequence data, we further build multilayer perceptron network (MLP) and long 

short-term memory network (LSTM) to compare with convolutional neural network. MLP 

is a feedforward artificial neural network with multiple hidden layers of units between input 
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and output layers. LSTM is a recurrent neural network architecture where connections 

between units form a directed cycle. 

The multilayer perceptron network is composed of one input layer, four hidden 

layers and one output layer. Each layer is fully connected to next layer in the network. The 

number of neurons in each hidden layer is 64, 128, 128 and 256 respectively. In the long 

short-term memory network, we deploy one input layer, three hidden layers and one output 

layer. Each of the three hidden layers contains 16 LSTM cells. For both architectures, the 

inputs are splice junction sequences transformed by one-hot encoding, and the outputs are 

class labels. Advance deep learning techniques, dropout [67], regularization [66], mini-

batch gradient descent [68] and Adam [65], are exploited in the supervised training steps 

in both networks. 

 

2.2.5 Filtering of false splice junction as a result of repetitive sequences 

One potential resource of false positive splice junction is the inability to align a 

sequence to the correct sites due to higher mismatches than the threshold set by aligners or 

small indels that cannot be detected by aligners. Before the classification of splice 

junctions, we first remove the splice junctions whose sequence at the acceptor (donor) site 

has high sequence similarity with the immediate flanking sequence next to the donor 

(acceptor) site or the sequence at any of its alternative acceptor (donor) sites, as shown in 

Figure 2.3. The edit distance between the alternative acceptor (donor) site sequences is 

computed using the Smith-Waterman algorithm [69]. This filtering strategy is independent 

of read coverage and enables the retention of correct splice junctions even with low read 
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coverage. The removal of these sequences is necessary as most of them are highly similar 

with one of the splice junctions remaining in the data set. 

 

 

 

Figure 2.3  Illustration of splice junction filtering strategy. In this example, two edit 

distances are calculated. One (Ed) is between anchor sequence at donor site (G[Jd-

Ad+1:Jd]) and intermediate flanking sequence next to acceptor site (G[Ja-Aa:Ja-1]). The 

other (Ea) is between anchor sequence at acceptor site (G[Ja:Ja+Aa-1]) and intermediate 

flanking sequence next to donor site (G[Jd+1:Jd+Ad]). 

 

2.2.6 Implementation and performance measures 

The deep learning architectures are implemented using TensorFlow [70]. Training 

and testing are deployed on Nvidia GeForce GTX 1080 graphics cards. DeepSplice is 

freely available for academic use and can be accessible at 

https://github.com/zhangyimc/DeepSplice. 

We employ the following metrics: Area Under the ROC Curve (auROC), Area 

Under the Precision Recall Curve (auPRC), sensitivity, specificity, accuracy, F measure 

and 𝑄9. 𝑄9 is independent of the class distribution in the data set and is used to evaluate 

the classifier performance on splice site prediction [57]. 

 

https://github.com/zhangyimc/DeepSplice
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2.3 Experimental results 

We first applied our approach to a benchmark dataset HS3D [71] and compared the 

performance with other state-of-the-art approaches for donor and acceptor splice site 

classification. We then evaluated DeepSplice’s performance by classifying annotated 

splice junctions from GENCODE gene annotation data [59]. Deep Taylor decomposition 

[62] was then applied for further interpretation of base level contribution of flanking splice 

sequence. Finally, we applied DeepSplice to intropolis [36], a newly published splice 

junction database with 42,882,032 splice junctions derived from 21,504 samples. The 

detailed results are described below. 

 

2.3.1 DeepSplice outperforms state-of-the-art splice site prediction method 

We utilized HS3D [71] (Homo Sapiens Splice Sites Data set, 

http://www.sci.unisannio.it/docenti/rampone/), a popular benchmark for measuring the 

quality of splice site classification methods. HS3D includes introns, exons and splice site 

sequences extracted from GeneBank Rel. 123. The splice site sequences in HS3D are with 

the length of 140 nucleotides. There are 2796 (2880) true donor (acceptor) splice sites and 

271,937 (329,374) false donor (acceptor) splice sites which all contain conserved GT (AG) 

dinucleotides. We constructed the 1:10 data set, which contains all the true splice sites and 

27,960 (28,800) randomly selected false donor (acceptor) splice sites. Binary 

classifications were conducted to identify the actual splice sites on donor and acceptor 

splice site data separately. 

DeepSplice was trained on donor and acceptor splice site sequences separately in 

order to compare with state-of-the-art approaches of splice site classification. The exact 
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same number of training and testing splice site sequences from HS3D were used for all 

approaches. Table 2.1 summarizes the classification accuracies on the 1:10 data set by 10-

fold cross-validation. To measure the quality of the classification results, we employed 

sensitivity, specificity, and 𝑄9 which is the global accuracy measure calculated from both 

sensitivity and specificity scores. Since the published splice site classification methods do 

not provide public tools for training and testing, the results of SVM+B [54], MM1-SVM 

[50], DM-SVM [55], MEM [56] and LVMM2 [57] were obtained from [55, 57]. As shown 

in Table 2.1, DeepSplice outperforms other methods in both sensitivity and specificity for 

both donor and acceptor splice site classification. For donor splice sites, there is a 95% 

likelihood that the confidence interval [0.0581, 0.0633] covers the true classification error 

of DeepSplice on the testing data. For acceptor splice sites, there is a 95% likelihood that 

the confidence interval [0.0814, 0.0872] covers the true classification error of DeepSplice 

on the testing data. 

 

Table 2.1  Evaluation of DeepSplice and state-of-the-art approaches for donor (acceptor) 

site classification on HS3D data set 

 Donor Acceptor 

 Sensitivity Specificity 𝑄9 Sensitivity Specificity 𝑄9 

LS-GKM 0.8679 0.8516 0.8595 0.8403 0.8319 0.8361 

SVM+B 0.9406 0.9067 0.9212 0.9066 0.8797 0.8920 

MM1-SVM 0.9256 0.9244 0.9247 0.8993 0.8869 0.8926 

DM-SVM 0.9469 0.9339 0.9399 0.9215 0.9073 0.9136 

MEM 0.9324 0.9275 0.9295 0.9153 0.8843 0.8978 

LVMM2 0.9424 0.9242 0.9323 0.9122 0.8970 0.9039 

DeepSplice 0.9571 0.9376 0.9465 0.9337 0.9139 0.9232 
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To deduce the most suitable architecture for learning the patterns in splice 

site/junction sequences, we then compared DeepSplice against two other prominent types 

of neural networks, multilayer perceptron network and long short-term memory network, 

in terms of classifying HS3D data set by 10-fold cross-validation. As shown in Figure 2.4, 

DeepSplice with convolutional neural network exceeds the other architectures, achieving 

an auROC score of 0.983 (0.974) on donor (acceptor) splice site classification and an 

auPRC score of 0.863 (0.800) on donor (acceptor) splice site classification. LSTM 

achieved an auROC score of 0.960 (0.942) on donor (acceptor) splice site classification 

and an auPRC score of 0.803 (0.721) on donor (acceptor) splice site classification. MLP 

achieved an auROC score of 0.931 (0.914) on donor (acceptor) splice site classification 

and an auPRC score of 0.650 (0.559) on donor (acceptor) splice site classification. In 

general, convolutional neural network is a well-studied architecture, which outperforms 

other deep learning architectures in almost all kinds of applications currently [72]. Even 

for speech recognition, convolutional neural networks recently beat recurrent neural 

networks. In our application, convolutional layers efficiently learned the complex 

information of nucleotide neighborhoods.  
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Figure 2.4  The ROC curves of DeepSplice, multilayer perceptron network (MLP) and long 

short-term memory network (LSTM) for donor (acceptor) splice site classification on the 

HS3D data set by 10-fold cross-validation. DeepSplice with convolutional neural network 

exceeds the other deep learning architectures, achieving an auROC score of 0.983 (0.974) 

on donor (acceptor) splice site classification. 

 

2.3.2 DeepSplice predicts newly annotated splice junctions with high accuracy 

Next, we evaluated the accuracy of DeepSplice in terms of splice junction 

classification. To achieve this, we trained DeepSplice using splice junctions extracted from 

the GENCODE annotation version 3c, and then tested the model on newly annotated splice 

junctions in the GENCODE annotation version 19. All GENCODE splice junctions used 

for training and testing are experimental validated by RT-PCR amplification. The training 

set contains 521,512 splice junctions, and the testing set contains 106,786 splice junctions. 

In both training and testing sets, half of the splice junctions are annotated, and the rest are 

false splice junctions randomly sampled from human reference genome (GRCh37/hg19). 
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We trained the first model by feeding the 521,512 training splice junction sequences 

to DeepSplice for a binary classification, splice junctions or not. In the meantime, we 

trained two other models separately by feeding the donor (acceptor) splice site sequences 

extracted from the 521,512 training splice junction sequences to DeepSplice for a binary 

classification, donor (acceptor) splice sites or not. This experiment was designed to 

determine whether making use of paired combinational information of donor and acceptor 

splice sites from a splice junction, instead of classifying donor or acceptor splice site 

individually, would ameliorate the quality of splice junction classification. In the first mode 

(Splice Junction Mode), the input splice junction sequences were with the length of 120 

nucleotides, reflecting 30 nucleotides of upstream and downstream nucleotides for both 

donor and acceptor splice site. In the second mode (Donor+Acceptor Site Mode), the input 

splice junction sequences were split into two substrings with the length of 60 nucleotides 

and then fed to donor (acceptor) splice site classification model separately. For the second 

mode, we defined that the probability of a splice junction being classified as positive is the 

product of the probability of its donor splice site being classified as positive and the 

probability of its acceptor splice site being classified as positive, considering the two splice 

site classification events are statistically independent [73]. Figure 2.5 shows the ROC 

curves of the two modes. Splice Junction Mode achieved an auPRC score of 0.990, 0.987 

for Donor+Acceptor Site Mode. Table 2.2 summarizes sensitivity, specificity, accuracy, 

and F1 score on the 106,786 testing splice junction sequences. Donor+Acceptor Site Mode 

acquires a higher specificity; however, Splice Junction Mode significantly outperforms 

Donor+Acceptor Site Mode in terms of sensitivity, accuracy, F1 score, auROC score, and 

auPRC score with substantially higher scores. In total, Splice Junction Mode predicted 
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50,340 out of 53,393 newly annotated splice junctions, which covered 9,806 genes, 98.01% 

of all newly annotated genes. Donor+Acceptor Site Mode detected 39,067 splice junctions 

from 9,185 genes. There is a 95% likelihood that the confidence interval [0.0432, 0.0456] 

covers the true classification error of DeepSplice on the testing splice junctions. These 

results indicate that the proposal splice junction classification in DeepSplice achieves high 

accuracy in identifying novel splice junctions in large data sets than conventional splice 

site classification.  

 

 

 

Figure 2.5  The ROC curves of DeepSplice Splice Junction Mode and Donor+Acceptor 

Site Mode for splice junction classification on the GENCODE data set. DeepSplice Splice 

Junction Mode achieves a higher auROC score of 0.989. 
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Table 2.2  Classification performance evaluation of different DeepSplice modes on 

GENCODE data set 

 

2.3.3 Interpretation of sequence features captured by DeepSplice 

There are highly conserved segments on splice junctions between exons and introns 

which help in the prediction of splice junctions by computational methods and decipher 

biological signals of splice junctions. We next further interpret which nucleotides 

contribute to the splicing process. This is achieved by the quantification of the contribution 

of nucleotides in splice junction sequences to the classification process using deep Taylor 

decomposition [62].  

DeepSplice employs convolutional neural network with two convolutional layers. 

In the convolutional layer, we defined filters with a shape of 3x1, which means filters scan 

the input sequence with a window size of 3 to learn the information of nucleotide 

neighborhoods. DeepSplice fundamentally is not using a single base but rather 3-mers or 

subsequences of length 3 as its features. Then deep Taylor decomposition runs a backward 

pass on the convolutional neural network to sign contributions. The contribution score of 

each single base in DeepSplice reflects the aggregated importance of the three 3-mers it 

belongs to. We first used deep Taylor decomposition to decompose cross-validation results 

of the HS3D dataset in terms of input splice site sequences. For nucleotides in the testing 

splice site sequences, scores were assigned to present their contribution. We obtained a 

graphical representation from which it is possible to judge which region in the splice site 

  Sensitivity Specificity Accuracy F1 score 

Splice site 

classification 

Donor 0.917 0.897 0.907 0.908 

Acceptor 0.873 0.913 0.893 0.891 

Splice 

junction 

classification 

Splice Junction Mode 0.943 0.968 0.956 0.955 

Donor+Acceptor Site 

Mode 
0.732 0.997 0.864 0.844 



31 

 

sequences is of importance. Figure 2.6 shows the contribution of nucleotides to the final 

decision function of DeepSplice. In general, intron sequences carry more discriminative 

information than exon sequences in this analysis. We then applied deep Taylor 

decomposition to the results of splice junction classification with the GENCODE data set. 

Figure 2.7 shows the contribution distribution of nucleotides in the testing splice junction 

sequences. Regions of increased importance in splice junction classification are consistent 

with the result from splice site classification. 
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Figure 2.6  Visualization of the contribution of nucleotides in the flanking splice sequences 

to the final decision function of DeepSplice on the HS3D dataset for donor (acceptor) site 

classification. For both donor and acceptor site classifiers, intronic bases close to GT-AG 

di-nucleotides achieve the most importance in the classifiers. In general, intron sequences 

carry more discriminative information than exon sequences. 
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Figure 2.7  Visualization of the contribution of nucleotides in the flanking splice sequences 

to the final decision function of DeepSplice on the GENCODE dataset for splice junction 

classification. The nucleotides in the proximity of a splice junction have the highest impact 

on the classification outcome. As observed in the splice site classifiers, the contribution 

distribution of nucleotides in the flanking splice sequences indicates that intron nucleotides 

carry more discriminative information than exon nucleotides. 

 

2.3.4 DeepSplice classification of intropolis 

The intropolis v1 database [36] contains a large number of putative junctions found 

across 21,504 human RNA-seq samples in the Sequence Read Archive (SRA) from spliced 

read alignments to hg19 with Rail-RNA [37]. There are 42,882,032 putative splice 

junctions in total, including 18,856,578 canonical splice junctions containing flanking 

string GT-AG, 24,025,454 semi-canonical splice junctions containing flanking string AT-

AC or GC-AG [74], and no non-canonical splice junctions which are not allowed by Rail-

RNA. Table 2.3 lists the number of splice junctions in each category separated by the 

number of reoccurrence in samples and total read support across all samples in four scales: 

(a) equal to 1 {1}, (b) more than 1 and no greater than 10 (1, 10], (c) more than 10 and no 

greater than 1000 (10, 1000] and (d) more than 1000 (1000, +∞). As listed in Table 2.3, for 
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our analysis, we only retain splice junctions in intropolis that are supported by more than 

one sample, followed by the filtering of false splice junction sequences due to repetitive 

sequences. After this pre-processing, 5,277,046 splice junctions were left for further 

classification. 

 

Table 2.3  Distribution of splice junctions from intropolis given the reoccurrence in 

samples and total read support 

Splice junction 

number 

Reoccurrence in samples 

{1} (1, 10] (10, 1000] (1000, +∞) 

T
o
ta

l 
re

a
d
s {1} 23M - - - 

(1, 10] 3,331K 11M - - 

(10, 1000] 91K 936K 3,301K - 

(1000, +∞) 38 187 124K 305K 

  “M” stands for “million”. 

  “K” stands for “thousand”. 

 

The DeepSplice model was trained on 812,967 splice junctions including (1) 

291,030 annotated splice junctions from GENCODE annotation version 19, (2) 271,937 

false splice junctions generated from the HS3D data set, and (3) 250,000 randomly selected 

semi-canonical splice junctions with only one read support from intropolis. Overall, 

DeepSplice classified 3,063,698 splice junctions as positive. Figure 2.8 (a) lists the 

proportions of positive canonical splice junctions, positive semi-canonical splice junctions 

and negatives from the classification results at different levels of average read support per 

sample. Splice junctions with average read support per sample more than 15 achieve a 

positive rate around 88%. In contrast, for splice junctions with average read support per 

sample no more than 1, only 36% are identified as positives. There is a significant rise in 

the probability to obtain a positive splice junction with the increase of the average read 
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support per sample. Around 99% positive splice junctions contain the canonical flanking 

string. Figure 2.8 (b) illustrates the proportions of positive semi-canonical and canonical 

splice junctions cumulatively with the increase of the average read support per sample. 

To further clarify characteristics of the positives, we categorized splice junctions in 

intropolis based on annotated splice sites in GENCODE annotation: (1) splice junctions 

with both splice sites annotated, (2) splice junctions with the donor splice site annotated, 

(3) splice junctions with the acceptor splice site annotated, and (4) splice junctions with 

neither the donor nor acceptor splice sites annotated. Figure 2.9 (a) shows the discrete 

proportions of negatives and positive splice junctions in each category above, given the 

average read support per sample. Results indicate that 97% of splice junctions with both 

sites annotated are classified as positives, while only 39% with both sites being novel are 

positive. Splice junctions connecting annotated splice sites also tend to be associated with 

higher read coverage. Figure 2.9 (b) illustrates the proportions of positive splice junctions 

in each category cumulatively with the increase of the average read support per sample. 

Figure 2.10 shows positive splice junctions in intropolis near known protein-coding 

junctions show a periodic pattern, such that splice sites which maintain the coding frame 

of the exon are observed more often than those which disrupt frame. This observation 

recapitulates patterns seen in studies of noisy splicing [41]. 
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Figure 2.8  Positive splice junctions tend to have high read support and contain the 

canonical flanking string. (a) Discrete proportions of negatives, positive semi-canonical 

splice junctions and positive canonical splice junctions from the classification results, 

given the average read support per sample. Splice junctions with average read support per 

sample more than 15 achieve a positive rate of around 88%. In contrast, for splice junctions 

with average read support per sample no more than 1, only 36% are identified as positive. 

There is a significant rise in the probability to obtain a positive splice junction with the 

increase of the average read support per sample. Around 99% positive splice junctions 

contain the canonical flanking string. (b) Cumulative proportions of positive semi-

canonical and canonical splice junctions with the increase of the average read support per 

sample. 
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Figure 2.9  Positive splice junctions tend to have both donor and acceptor sites annotated. 

(a) Discrete proportions of negatives, positive splice junctions without annotated site, 

positive splice junctions with acceptor site annotated, positive splice junctions with donor 

site annotated and positive splice junctions with two sides annotated, given the average 

read support per sample. 97% of splice junctions with both sites annotated are classified as 

positives, while only 39% with both sites being novel are positive. Splice junctions 

connecting annotated splice sites also tend to be associated with higher read coverage. (b) 

Cumulative proportions of positive splice junctions in each category with the increase of 

the average read support per sample. 
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Figure 2.10  Splice sites which maintain the coding frame of the exon are observed more 

often than those which disrupt frame. Positive splice junctions in intropolis near known 

protein-coding junctions show a periodic pattern. For each donor (acceptor) site in the 

positive splice junctions, we calculated its distance to the nearest annotated donor 

(acceptor) site, and then counted the frequency for each position. The red points denote 

positions that are a multiple of three base pairs from the major splice form, and the black 

points those that are not. 

 

2.4 Summary 

Even though splice junctions with high read support and/or high reoccurrence are 

more likely to be classified as real, a significant portion of relatively low-expressed splice 

junctions also carry true splicing signals. DeepSplice does not rely on sequencing read 

support, frequency of occurrence, or sequencing read length derived from experimental 

RNA-seq data sets, thus can be applied as an independent evidence for splice junction 

validation. The accumulation of RNA-seq data especially in different cell types, tissues 

and disease conditions will further consolidate the cell type-specificity and tissue-

specificity of some of these junctions and their corresponding isoforms. DeepSplice may 

provide the first round of filtering of RNA-seq derived splice junctions for further structural 

validation, and studies that assess functional annotation of these splice junctions are 

warranted. DeepSplice could also extend its functionality to discriminate splice junctions 
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that are highly or lowly supported by gene expression evidence and try to figure out what 

sequence patterns associate to this difference in future. For each input candidate splice 

junction, DeepSplice outputs a probability of being true, and the probability can be used as 

an input feature to the studies for learning the tissue-regulated splicing code [75] and the 

splicing in human tissues with a wide range of known diseases [76]. 

It is also well known that splicing can be changed due to mutations around the 

splice sites. Future studies that use subject-specific genomic sequences instead of reference 

genome sequences may further improve the accuracy of the DeepSplice model and 

classification performance. Additionally, DeepSplice can be further extended to the 

prediction of non-canonical splicing [77] that existing annotation has not captured, 

including not only exonic but also splicing involving Alu elements, small exons, and 

recursive splicing. Besides the classification of linear junctions, the identification of non-

linear splice junctions, such as circRNA junctions will also expand the functionality of 

DeepSplice. 

Employing deep convolutional neural network, we develop DeepSplice, a model 

inferred from the sequences of annotated exon junctions that can then classify splice 

junctions derived from primary RNA-seq data, which can be applied to all species with 

sufficient transcript annotation to use as training data. Results demonstrate that DeepSplice 

outperforms the state-of-the-art splice site classification tools in terms of both classification 

accuracy and computational efficiency. Our findings further indicate that valuable 

information is present in the nucleotide sequence local to the splice junction, data that 

conventional splice site prediction techniques discard. Nucleotide representations learned 

from the input sequences are meaningful and improve accuracy. The major application of 
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DeepSplice is the classification of splice junctions rather than individual donor or acceptor 

sites. For learning on large datasets of putative splice junctions, DeepSplice is orders of 

magnitude faster than the best performing existing alternatives, which becomes 

increasingly common considering the tremendous amount of new RNA-seq data being 

generated. 
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CHAPTER 3. INFERRING TRANSCRIPTION FACTORS GOVERNING METABOLIC 

REPROGRAMMING WITH TFMETA 

Metabolic reprogramming is a hallmark of cancer. In cancer cells, transcription 

factors (TFs) govern metabolic reprogramming through abnormally increasing or 

decreasing the transcription rate of metabolic enzymes, which provides cancer cells growth 

advantages and concurrently leads to the altered metabolic phenotypes observed in many 

cancers. Consequently, targeting TFs that govern metabolic reprogramming can be highly 

effective for novel cancer therapeutics. In this chapter, we present TFmeta, a machine 

learning approach to uncover TFs that govern reprogramming of cancer metabolism. Our 

approach achieves state-of-the-art performance in reconstructing interactions between TFs 

and their target genes on public benchmark data sets. Leveraging TF binding profiles 

inferred from genome-wide ChIP-seq experiments and 150 RNA-seq samples from 75 

paired cancerous (CA) and non-cancerous (NC) human lung tissues, our approach 

predicted 19 key TFs that may be the major regulators of the gene expression changes of 

metabolic enzymes of the central metabolic pathway glycolysis, which may underlie the 

dysregulation of glycolysis in non-small-cell lung cancer patients. 

 

3.1 Introduction 

Metabolism is collection of predominantly enzyme-catalyzed biochemical 

transformations that are needed for maintenance, growth and survival of an organism. For 

nearly a century, scientists have documented profound metabolic changes that occur in 

tumors [78]. Oncogenes and tumor suppressors are well-established regulators of 

metabolism, and dysregulated expression as well as mutations can lead to the altered 

metabolic phenotypes observed in many cancers [79, 80]. A high proportion of oncogenes 



42 

 

and tumor suppressor genes encode transcription factors (TFs) [81]. Most oncogenic 

pathways converge on sets of TFs that ultimately control gene expression patterns resulting 

in tumor formation and progression as well as metastasis [82]. Deregulated expression, 

activation or inactivation of TFs play critical roles in tumorigenesis. In cancer cells, TFs 

govern metabolic reprogramming by controlling the expression patterns of metabolic 

enzymes. For example, the transcription factor MYC is frequently overexpressed in human 

cancers and regulates the expression of many metabolic enzymes. In carcinomas, MYC 

drives increased Gln uptake and conversion to Glu by upregulating glutamine transporters 

and inducing the expression of metabolic enzyme GLS at the mRNA and protein level, 

leading to increased anaplerotic input via glutaminolysis into the Krebs cycle and increased 

Gln incorporation into lactate [79, 83, 84]. 

Comprehensive characterization of TF-metabolic enzyme interactions in cancer 

cells can help uncover potential TFs governing cancer metabolic reprogramming and 

prioritize targets for novel cancer therapeutics. Reconstructing interactions between TFs 

and their target genes from transcriptomic data is a long-standing and well-studied 

challenge in molecular and computational biology. Some interaction reconstruction 

methods [85-88] exploiting co-expression in gene expression patterns have successfully 

identified the interactions in the gene pairs whose expression vary sufficiently and correlate 

globally across a large set of samples. Other methods [89, 90] take advantage of differential 

gene expression to predict interactions between each TF and all the genes that are 

differentially expressed when the TF is deleted, overexpressed or perturbed. These 

methods, however, have at least two major drawbacks for reconstructing TF-target gene 

interactions. First, a fundamental assumption of current interaction reconstruction methods 
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using transcriptomic data is that mRNA levels of TFs and their target genes are strongly 

correlated; however, this assumption may not be true for all the data sets, especially for 

those containing complex TF-target gene interactions. The Dialogue on Reverse 

Engineering Assessment and Methods (DREAM) project performed an assessment of 35 

TF-target gene interaction reconstruction methods on both synthetic and real 

transcriptomic data sets [85]. The competing methods achieved an average AUROC score 

of 0.69 on the synthetic data set, but 0.55 on the real data sets. The poor performance on 

the real data sets was due to the low correlation at the mRNA level in the data, which would 

suggest that reliable reconstruction of complex TF-target gene interactions requires 

additional inputs besides transcriptomic data, for example, TF binding profiles. Second, 

current interaction reconstruction methods disregard the valuable pairing information of 

the samples in transcriptomic data, treating each input gene expression profile 

independently in their inference models. For cancer patients’ transcriptomic data, pairwise 

comparisons of gene expression profiles between matched cancerous (CA) and non-

cancerous (NC) samples of the same patient should circumvent the interferences from 

genetic and physiological variations, eliminating the prediction of false TF-target gene 

interactions caused by the variations. 

Here, we developed TFmeta [91], a machine learning method for the reverse 

engineering of TF-metabolic enzyme interactions that pinpoint TFs governing cancer 

metabolic reprogramming. TFmeta integrates transcriptomic data and TF binding profiles 

inferred from genome-wide ChIP-seq experiments, to learn non-linear interactions between 

TFs and their targets. Using a gold standard data set, namely DREAM5 network inference 

challenge [85] data, we demonstrate that TFmeta outperformed the winner of the challenge 
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in reconstructing TF-target gene interactions. Taking 150 RNA-seq samples from 75 paired 

CA and NC human lung tissues and TF binding profiles as input, TFmeta predicted a set 

of key TFs that may control the transcription rate of metabolic enzymes in the central 

metabolic pathway glycolysis, which may cause the observed metabolic reprogramming in 

glycolysis pathway in non-small-cell lung cancer patients [91]. 

 

3.2 TFmeta method 

 

3.2.1 RNA-seq analysis 

We sequenced 150 RNA-seq samples from 75 paired CA and NC human lung 

tissues under IRB approval from the University of Kentucky. All patient information was 

de-identified and adhered to HIPPA guidelines. 100 bp paired-end reads were generated 

by Illumina HiSeq 2000 sequencer. RNA-seq reads were mapped to the human reference 

genome GRCh38, and gene expression values (TPM, transcripts per million) were 

estimated using RSEM package [92]. Gene expression profiles generated from RSEM were 

normalized and comparable between samples. Pairwise gene expression comparisons of 

CA and NA samples from the same patient were conducted through measuring the log2 

ratios of gene expression values between CA and matched NC samples. Based on the log2 

ratios, we maintained a master table for showing the regulation status of each gene in each 

individual patient. The regulation status of each gene was represented by a categorical 

variable that can take on one of the three possible values: upregulated, downregulated, and 

no change. Genes with the |log2| ratio greater than 0.8 were categorized as upregulated (or 

downregulated) genes, and the rest were genes with no expression change. The size of the 
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master table was 19,814 (number of genes) by 75 (number of patients). Using the gene 

expression log2 ratio of paired CA and NC tissue samples from the same patient should 

reduce the effects of individuality and the impact of tissue-specific genes and consequently, 

increase the accuracy of predicting clinical outcomes [93]. 

We then collected the detailed information of the major metabolic pathways in 

human, including glycolysis, the Krebs cycle, purine metabolism, and others from KEGG 

(Kyoto Encyclopedia of Genes and Genomes) pathway database [94]. The regulation status 

of metabolic enzymes involved in each metabolic pathways was extracted from the master 

regulation status table. According to the one-tailed one-proportion z-test (with a 

hypothesized proportion of 0.6667), we considered metabolic enzymes with consistent 

expression change (upregulated or downregulated) among at least 57 patients out of the 75 

patients as altered metabolic enzymes (p-value for 57 patients: p=0.0433<0.05). 

 

3.2.2 Transcription factor binding profiling 

We integrated TF binding profiles which were inferred from genome-wide ChIP-

seq experiments in four public databases, including ChEA [95], ENCODE [96], JASPAR 

[97], TRANSFAC [98]. We eventually accumulated 2,286,192 TF DNA binding activities, 

involving 493 TFs and 23,644 target genes. The minimum, median and maximum number 

of TFs binding to a target gene is 1, 104 and 279, and the minimum, median and maximum 

number of target genes for one TF is 4, 1853 and 21545, respectively. The total number of 

metabolic enzymes involved in the major metabolic pathways is 366. For each altered 

metabolic enzyme, we curated a list of TFs which bind to the transcription start site of that 

enzyme according to the TF DNA binding activities. 
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3.2.3 TF-metabolic enzyme interaction inference 

Problem Definition     We approached the problem of uncovering TFs that govern 

cancer metabolic reprogramming by measuring the interactions between the altered 

metabolic enzymes and TFs binding to the transcription start sites of them. Through RNA-

seq analysis, we identified 𝑀 altered metabolic enzymes with consistent expression change 

between CA and matched NC samples. We divided the problem of inferring TF-metabolic 

enzyme interactions involving 𝑀 enzymes into 𝑀 sub-problems. Each of these sub-

problems uncovered the TFs regulating one of the enzymes. We generated 𝑀 sub-tables 

from the master regulation status table, each of which contained the regulation status of 

one enzyme and TFs which bind to the transcription start site of that enzyme according to 

the TF DNA binding activities. In the sub-table, for enzyme 𝑚 with 𝑇𝑚 TFs binding to its 

transcription start site, every patient’s regulation status profile can be expressed as 

(x𝑛
𝑚, 𝑦𝑛

𝑚), where 𝑛 ∈ {1, … , 𝑁} is the index of each patient out of 𝑁 patients, and x𝑛
𝑚 is a 

tensor of 𝑇𝑚 TF regulation status, and 𝑦𝑛
𝑚 is the regulation status of enzyme 𝑚. 

Interaction Inference as a Feature Selection Problem     TFs and their target genes 

are known to interact in a dynamic and nonlinear manner [99]. We hypothesize that the 

regulation status of the enzyme 𝑚 is a function 𝑓𝑚 of the regulation status of the 𝑇𝑚 TFs, 

and the function 𝑓𝑚 only employs the regulation status of the TFs that are direct regulators 

of the enzyme 𝑚. Identifying those TFs whose regulation status is predictive of the 

regulation status of the enzyme 𝑚 can be considered as a feature selection problem, which 

is to rank the input features in the function 𝑓𝑚 based on their relevance for predicting the 

output in machine learning terminology. Considering a large amount of TFs as input 
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features relative to a small set of learning patient regulation status profiles and the nonlinear 

relationship between input TFs and the output enzyme, we proposed to use gradient 

boosted trees [100, 101] to find the function 𝑓𝑚 and rank the input TFs by their relevance. 

Gradient tree boosting is a scalable and highly effective machine learning algorithm, which 

works well in reliably extracting relevant features and identifying non-linear feature 

interactions. 

Gradient Boosted Tree-based Model     For each sub-problem, we fitted a multi-

class classification model (𝑓𝑚) to predict the regulation status (upregulated, downregulated, 

no change) of the enzyme 𝑚 based on the combined regulation status of the 𝑇𝑚 TFs. 

Gradient boosted trees were employed to find the function 𝑓𝑚 which minimizes the multi-

class classification error rate which is calculated as the number of wrong predictions 

divided by the number of all predictions. To achieve this goal, classification and regression 

tree (also known as CART) recursively partitions the 𝑁 patients into smaller disjoint sets 

based on the input regulation status of TFs, aiming at minimizing the number of wrong 

predictions of the output enzyme regulation status in the resulting subsets. Classification 

and regression tree uses the tree structure to represent the recursive partition, and each of 

the leaves in the tree represents a cell of partition. The basic idea of tree boosting is to build 

additive models through classification and regression trees. Let 𝑏𝑚,𝑘(x𝑛
𝑚) be a 

classification and regression tree in mth sub-problem, which works as the base learner. In 

tree boosting, we built a model that is the sum of base learners as: 

𝑓𝑚(x𝑛
𝑚) = ∑ 𝑏𝑚,𝑘(x𝑛

𝑚)

𝐾

𝑘=1

, 

where 𝑘 ∈ {1, … , 𝐾} is the index of each base learner out of 𝐾 base learners. The target 
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additive model was built in a forward stagewise fashion. Namely, it started with the simple 

function 𝑓𝑚,0(x𝑛
𝑚) = 0, then iteratively adds base learners to minimize the multi-class 

classification error rate of 𝑓𝑚,𝑘−1(x𝑛
𝑚) + 𝑏𝑚,𝑘(x𝑛

𝑚). Gradient Boosting attempts to solve 

this minimization problem numerically via steepest descent. By iteratively shifting the 

focus towards problematic observations that were difficult to predict, the performance of 

the classification and regression tree is very much boosted. 

Feature Importance Measure: TF Ranking     A benefit of using CART-based 

methods is that after the trees are constructed, it is relatively straightforward to retrieve 

estimates of feature importance that allow ranking the input features according to their 

relevance for predicting the output. The importance is calculated for a single classification 

and regression tree by the amount that each attribute split point reduces the Gini impurity, 

weighted by the number of observations the node is responsible for. The feature importance 

scores are then averaged across all the classification and regression trees within the model. 

In this application, every CART-based sub-model solving one sub-problem yields a 

separate ranking of TFs as potential regulators of a target enzyme 𝑚 along with importance 

scores 𝐼𝑚,𝑡𝑚
 for 𝑡𝑚 ∈ {1, … , 𝑇𝑚}. 

TF-metabolic enzyme Map     Our primary goal is ultimately using this approach 

to find a relatively small number of robust target TFs based on multiple lines of evidence. 

We considered a variety of strategies to select an appropriate threshold on the TF ranking 

in each sub-model. For instance, we could apply an independent threshold for each sub-

model, or we could use a uniform threshold across all sub-models. We found that optimal 

performance was obtained when we applied an overall threshold on the combined TF 

ranking. To combine the separate rankings of TFs in sub-models, we performed the 
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Wilcoxon signed-rank test on every pair of TFs to compare their ranks, which tested 

whether the ranks of one TF from all sub-models were significantly higher (or lower) than 

those of the other TF. Based on the test decisions of comparing all pairs of TFs, the orders 

of TFs were eventually determined to generate the combined ranking. Through evaluating 

the number of output TFs and their biological significance, we considered TFs in the top 

5% of the combined ranking as robust targets. The interactions between the predicted TFs 

and their target enzymes were then displayed in a TF-metabolic enzyme map. The overall 

workflow of TF-metabolic enzyme interaction inference is shown in Figure 3.1. 
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Figure 3.1  Overview of TF-metabolic enzyme interaction inference workflow. We divided 

the problem of inferring TF-metabolic enzyme interactions involving 𝑀 enzymes into 𝑀 

sub-problems. In each sub-problem, taking the regulation status table of one enzyme and 

TFs binding to its transcription start site as input, we utilized gradient boosted trees to 

identify those TFs whose regulation status is predictive of the regulation status of the 

enzyme. This learning process was repeated on all the 𝑀 enzymes. The predicted 

interactions between TFs and enzymes were then displayed in the TF-metabolic enzyme 

map as output. 

 

3.2.4 Implementation 

TFmeta was implemented using scikit-learn library (version 0.19.1) [102] and 

XGBoost library (version 0.7) [101] in Python (version 2.7.13) as task parallelized 

program. TFmeta [91] is freely available for academic use and can be accessible at 

https://github.com/zhangyimc/TFmeta. 

 

https://github.com/zhangyimc/TFmeta
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3.3 Experimental results 

 

3.3.1 Benchmarking TFmeta with DREAM5 Network Inference Challenge data sets 

We utilized the data sets in Dialogue on Reverse Engineering Assessment and 

Methods (DREAM) 5 network inference challenge [85]. The DREAM project is a 

framework to enable an assessment of computational methods through standardized 

performance metrics and common benchmarks. DREAM5 challenge performed a 

comprehensive blind assessment of 35 TF-target gene interaction inference methods on 

Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico 

microarray data. Table 3.1 summarizes the number of TFs, the number of genes, and the 

number of microarray chips for each network. DREAM5 challenge organizer claimed that 

Staphylococcus aureus data was not used for the final evaluation for the lack of a 

sufficiently large set of experimentally validated interactions. Each microarray data set is 

represented as a 𝑚 ∗ 𝑛 gene expression matrix, where 𝑚 is the total number of genes 

including both TFs and target genes, and 𝑛 is the total number of microarray measurements. 

Based on descriptions provided by participants, DREAM5 challenge classified the 35 

competing methods into six distinct categories: regression, mutual information, correlation, 

Bayesian networks, meta (methods that combine several different approaches) and others 

(methods that do not belong to any of the previous categories). 
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Table 3.1  Summary of DREAM5 Challenge Data Sets 

Network 
Number 

of TFs 

Number 

of genes 

Number of 

microarray chips 

In silico 195 1643 805 

S.aureus 99 2810 160 

E. coli 334 4511 805 

S. cerevisiae 333 5950 536 

 

TFmeta was trained and tested on the same benchmark data sets used by the 35 

competing methods. Since the input data is numerical, the gene expression values 

generated from microarray chips, the functionality of classification and regression trees 

(CART) in TFmeta was shifted from classification to regression. In DREAM5 challenge, 

standardized performance metrics were provided to evaluate the performance of different 

methods. An overall score was used to summarize the performance across the three 

networks, which is a comprehensive assessment on both the area under the precision-recall 

(AUPR) and receiver operating characteristic (AUROC) curves. We applied the same 

metrics used by the 35 competing methods to TFmeta. Figure 3.2 (a) shows the overall 

scores for TFmeta and the 35 competing methods. The winner of DREAM5 challenge, 

GENIE3 [88], achieved an overall score of 40.279. The overall score of TFmeta is 69.031, 

which outperforms the winner of DREAM5 challenge. 

Transcription-factor perturbation experiments can be applied to validate the 

biological significance of the TFs predicted by computational methods. However, the usage 

of transcription-factor perturbation experiments is limited by their high cost and strong 

dependence on cellular type and context. Though TF-target gene interaction inference 

methods reconstruct gene regulatory networks with a large set of regulatory interactions, 

the number of TFs chosen for further experimental validation is always limited, and it is 
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highly likely that only the top predicted interactions will be selected for further validation. 

We then evaluated the accuracy of the top interactions predicted by GENIE3 and TFmeta. 

As shown in Figure 3.2 (b), TFmeta consistently achieved a higher accuracy than GENIE3 

for the top predictions on in silico data set, indicating that the most significant interactions 

predicted by TFmeta are more likely to be true interactions than those by GENIE3. We 

further compared TFmeta with GENIE3 in terms of computational efficiency. Figure 3.2 

(c) illustrates the total CPU running time of GENIE3 and TFmeta for reconstructing the 

testing gene regulatory networks. It took GENIE3 761.58 hours to finish the entire 

reconstruction job, but only 6.03 hours for TFmeta. TFmeta is orders of magnitude faster 

than GENIE3. 
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Figure 3.2  Performance evaluation of DREAM5 challenge data sets. (a) demonstrates the 

overall scores for TFmeta and the 35 competing methods. The winner of DREAM5 

challenge, GENIE3, achieved an overall score of 40.279. The overall score of TFmeta is 

69.031. (b) illustrates the accuracy of the top interactions predicted by GENIE3 and 

TFmeta. TFmeta consistently achieved a higher accuracy than GENIE3. (c) shows the total 

CPU running time of GENIE3 and TFmeta on the testing datasets. TFmeta is orders of 

magnitude faster than GENIE3. 

 

3.3.2 Prediction of TFs governing the dysregulation of glycolysis in NSCLC patients 

All parts of the body require energy to maintain non-equilibrium cellular states and 

perform work, and this energy is derived from consumption and oxidation of external 

nutrients. Typically, all food is broken down into smaller parts and coupled to the 

production of the main energy intermediate, ATP. ATP provides a uniformly usable store 

of biochemical energy that can be used to drive endergonic cellular reactions. The process 

of the breakdown of glucose, termed glycolysis, occurs in the cytoplasm of mammalian 

cells [103]. Since the early twentieth century, abnormalities of glycolysis in cancer cells 
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have been observed [104]. Marked progress has been made in understanding the molecular 

mechanisms leading to constitutive upregulation of glycolysis in tumor cells. Many 

glycolytic enzymes are often overexpressed in cancer cells. For example, 

phosphofructokinase-1 (PFK1) has been identified to be upregulated in types of breast 

cancer [105]. Another well-known classic glycolytic enzyme, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) is also implicated in cancer. Overexpression of GAPDH is 

considered an important feature of numerous types of cancer [103]. GAPDH has been 

proposed as a promising target for the treatment of carcinomas [106]. Both MYC and 

HIF1a are known to upregulate expression of most of the glycolytic enzymes in cancers 

[107]. These results indicate that uncovering TFs that govern the abnormal expression 

patterns of these glycolysis and/or glycolytic enzymes in tumor cells may underlie the 

abnormalities of glycolysis, which could be highly effective for the treatment of different 

types of cancer. 

We acquired 150 RNA-seq samples from 75 paired CA and NC human lung tissues. 

Through pairwise gene expression comparisons of CA and NA samples from the same 

patient, we identified 14 altered glycolytic enzymes with consistent expression changes. 

ENO1, ENO2, GAPDH, GPI, LDHA, PFKP, PKM, and TPI1 were upregulated, whereas 

ACSS2, ADH1B, ALDH2, ALDH3B1, FBP1, and HK3 were downregulated. Using a 

network editor, Omix [108], we visualized the patient-specific regulation status of part of 

glycolytic enzymes in four selected patients (UK022, UK059, UK084, and UK085) in the 

context of glycolysis pathway extracted from KEGG [94] pathway database, as shown in 

Figure 3.3. Each pie chart in Figure 3.3 depicts the regulation status of one enzyme in one 

patient. The pie chart with a larger slice of red (white) indicates the upregulation 
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(downregulation) of the enzyme. Though they are all non-small-cell lung cancer patients, 

individual differences in the regulation status of some enzymes can be observed. In the 

meanwhile, some well-known glycolytic enzyme, like PFKP, GAPDH, and PKM, are 

consistently upregulated in the four patients. This pairwise comparison analysis and 

patient-specific visualization eliminated the interferences from genetic and physiological 

variations, and also characterized the difference and consistency in regulation status among 

the patients. 
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Figure 3.3  Visualization of the regulation status of part of glycolytic enzymes in the 

context of glycolysis pathway. We randomly selected four patients: UK022, UK059, 

UK084 and UK085 (from left to right). Each pie chart in the figure illustrates the regulation 

status of one enzyme in one patient. The pie chart with a larger slice of red (white) indicates 

the upregulation (downregulation) of the enzyme. Individual differences in the regulation 

status of some enzymes can be observed among the four patients. Meanwhile, some well-

known glycolytic enzymes, like PFKP, GAPDH, and PKM, are consistently upregulated 

in the four patients. In total, twelve (three) out of thirty-five enzymes shown in the figure 

are consistently upregulated (downregulated) in the four patients. Glycolytic enzymes are 

more likely to be overexpressed in cancer cells. 

 

For every altered glycolytic enzyme, we curated a list of TFs which bind to the 

transcription start site of that enzyme according. to the TF DNA binding activities inferred 

from ChIP-seq experiments. The average number of TFs selected for one enzyme is 134. 

We then fitted a gradient boosted tree-based classification model to predict the regulation 

status of each altered glycolytic enzyme based on the combined regulation status of the 

selected TFs. The optimal model configuration was achieved by extensive hyperparameter 
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search over various learning rate (0.001, 0.01, 0.1, and 1), maximum tree depth (1, 3, and 

5), and number of rounds for boosting (100, 200, 300, and 400). To evaluate the 

performance of models with different parameter settings, 10-fold cross-validation was 

used. Table 3.2 summarizes the average prediction accuracy of models varying parameter 

settings upon the 14 altered glycolytic enzymes. Based on this results, we used 0.01 as 

learning rate, 3 as maximum tree depth, and 300 as number of rounds for boosting in our 

model to save the computing time without loss of classification accuracy. 

 

Table 3.2  Performance evaluation of models with different parameter settings 

Learning rate 
Maximum 

tree depth 

Number of rounds 

for boosting 
Accuracy 

0.001 

3 300 

0.696 

0.01 0.723 

0.1 0.661 

1 0.634 

0.01 

1 

300 

0.714 

3 0.723 

5 0.723 

0.01 3 

100 0.679 

200 0.714 

300 0.723 

400 0.705 

 

The application of TFmeta allows us to narrow down to a list of key TFs as 

modulating the dysregulated expression of those altered glycolytic enzymes. Figure 3.4 

shows the TF-metabolic enzyme map predicted by TFmeta. In the map, the 14 altered 

glycolytic enzymes (red squares) and 19 predicted TFs (blue squares) are nodes, and an 

edge from one TF to one enzyme demonstrates that TF is predicted to regulate that enzyme, 

and all the edges are directed. Some predicted TFs and their interactions with glycolytic 
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enzymes in the map have already been supported by literature evidence. For example, 

transcription factor E2-alpha (TCF3) was identified as novel putative TF in lung cancer 

[109]. ETS Proto-Oncogene 1 (ETS1) was reported as a key TF involved in the metabolism 

of cancer cells, and ETS1 is particularly important in the metabolic shift towards glycolysis 

and anabolic means of energy production [110]. Enhancer of zeste homolog 2 (EZH2) 

promotes tumorigenesis and malignant progression in part by activating glycolysis. The 

mRNA expression of key enzymes involved in glycolysis in xenograft tumors was 

significantly increased in tumors derived from cells overexpressing EZH2, which suggests 

EZH2 overexpression leads to increases in glycolysis in vivo [111]. Forkhead box 

transcription factor-2 (FOXA2) was implicated as a suppressor of lung cancer, playing an 

important role in lipid and glucose metabolism in lung development using Foxa2+/– mice 

model [112]. Another well-known TF, MYC is a critical growth regulatory gene that is 

commonly overexpressed in a wide range of cancers. Overexpression of MYC leads to the 

upregulation of many glycolytic enzymes [113]. Zinc finger and BTB domain-containing 

protein 7A (ZBTB7A) acts as a tumor suppressor through the transcriptional repression of 

glycolysis, which directly binds to the promoter and represses the transcription of critical 

glycolytic enzymes, including GLUT3, PFKP, and PKM [114]. Krüppel-like factor 4 

(KLF4) represses the transcription of the glycolytic enzyme LDHA in pancreatic cancer 

[115]. We propose that these TFs should be prioritized for follow-up experiments, both to 

validate predicted target metabolic enzymes and to evaluate specific biological functions 

for each TF. We further visualized the regulation status of 8 well-known classic glycolytic 

enzymes and 2 predicted TFs, KLF4 (known as a tumor suppressor gene in lung cancer) 

and EZH2 (known as an oncogene), in the 75 patients, as shown in Figure 3.5. The 
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regulation status of EZH2 and the 8 enzymes are positively correlated, on the contrary, 

KLF4 is negatively correlated with the 8 enzymes in terms of regulation status. 

 

 

 

Figure 3.4  Visualization of the TF-metabolic enzyme map predicted by TFmeta. In the 

map, the 14 altered glycolytic enzymes (red squares) and 19 predicted TFs (blue squares) 

are nodes, and an edge from one TF to one enzyme demonstrates that TF is predicted to 

regulate that enzyme, and all the edges are directed. 

 

Thus, in this pilot study, we demonstrated the feasibility of using TFmeta for 

uncovering TFs that govern glycolytic reprogramming in non-small-cell lung cancer 

patients. This approach should be equally powerful for deciphering other metabolic 

reprogramming in cancer cells, thereby enabling more comprehensive characterization of 

cancer metabolism. 
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Figure 3.5  Heatmap of the regulation status of 8 well-known classic glycolytic enzymes 

and 2 predicted TFs, KLF4 and EZH2, in the 75 patients. The regulation status of EZH2 

and the 8 enzymes are positively correlated, on the contrary, KLF4 is negatively correlated 

with the 8 enzymes in terms of regulation status. EZH2 is known as an oncogene, and 

KLF4 is a tumor suppressor gene in lung cancer. 

 

3.3.3 Prediction of TFs governing other major metabolic pathways in NSCLC patients 

We further applied TFmeta to infer TFs that govern other major metabolic 

pathways in non-small-cell lung cancer patients. The Krebs cycle is a central metabolic 

hub that integrates carbohydrate, lipid, and amino acid metabolism. The pentose phosphate 

pathway (PPP) is an alternative route for glycolysis, yielding ribose 5-phosphate for 

nucleotide biosynthesis and NADPH for fatty acid biosynthesis and decomposition of 

peroxides [116]. Purine metabolism maintains cellular pools of adenylate and guanylate 

via synthesis and degradation of purine nucleotides. The top TFs predicted for each 

metabolic pathway are shown as follows: 

a) The Krebs cycle: ZBTB7A, MYC, SMARCB1, TAL1, TCF7L2; 

b) The pentose phosphate pathway: FOXA2, MYC, EGR1, TCF3, ZEB1; 

c) Purine metabolism: MYC, H2AFZ, EZH2, NFIC, ETS1, TCF3, BHLHE40, 



62 

 

CEBPB, STAT1, MAFK. 

 

3.4 Summary 

Metabolic reprogramming of cancer cells is recognized as one of the hallmarks of 

cancer. Tumors remarkably elevate the expression of the majority of metabolic enzymes, 

which play active roles in promoting cancer survival, metastasis, and invasion. One of the 

most common trends in anti-cancer metabolism therapies is to inhibit metabolic enzymes 

that are exclusively or mostly expressed or used in tumor cells. This therapeutic strategy 

would effectively eliminate tumors while minimizing damage to normal cells [117]. Thus, 

targeting TFs that control the transcription rate of those metabolic enzymes could be highly 

effective for novel cancer therapy. 

In this work, we develop TFmeta, a machine learning approach to uncover TFs 

governing cancer metabolic reprogramming and reconstruct their interactions with metabolic 

enzymes. We demonstrated that TFmeta achieved state-of-the-art performance in recovering 

TF-target gene interactions on public benchmark data sets. We applied our model to non-

small-cell lung cancer patients’ data sets to predict TFs modulating the dysregulation of 

glycolysis in lung cancer, leveraging the pairing information of the samples and TF DNA 

binding activities that conventional approaches discard. Eventually, we predicted a list of key 

TFs that may motivate the upregulation of glycolysis observed in tumor cells, some of which 

have been supported by literature evidence, and some of which were predicted as novel 

putative TFs in lung cancer. Our model can also be easily deployed to uncover TFs governing 

other metabolic pathways, in addition to glycolysis. 

Based on our results, we found the majority of metabolic enzymes have interactions 
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with more than one TFs. TFs are known to have to work together to achieve needed 

specificity in both DNA binding and effector function [118]. In our current model, the 

analysis of TF-TF relationships is generally lacking. TFmeta could extend its functionality 

to evaluate the associations of TFs in future. 
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CHAPTER 4. WHOLE MAMMOGRAM IMAGE CLASSIFICATION WITH CONVOLUTIONAL 

NEURAL NETWORKS 

Due to the high variability in tumor morphology and the low signal-to-noise ratio 

inherent to mammography, manual classification of mammogram and tomosynthesis yields 

a significant number of patients being called back, and subsequent large number of biopsies 

performed to reduce the risk of missing cancer. The convolutional neural network (CNN) 

is a popular deep learning construct used in image classification. This technique has 

achieved significant advancements in large-set image-classification challenges in recent 

years. In this study, we had obtained over 3000 high-quality original mammograms and 

tomosynthesis with approval from an institutional review board at the University of 

Kentucky. Different classifiers based on CNNs were built to classify both the 2D 

mammograms and 3D tomosynthesis, and each classifier was evaluated based on its 

performance relative to truth values generated by histology results from biopsy and two-

year negative mammogram follow-up confirmed by expert radiologists. Our results 

showed that CNN model we had built and optimized via data augmentation and transfer 

learning have a great potential for automatic breast cancer detection using mammograms 

and tomosynthesis. 

 

4.1 Introduction 

Breast cancer is the most common cancer in women. Approximately 40,000 breast 

cancer patients die each year in the U.S [119]. Early detection of cancer significantly 

reduces the death rate [120]. To find breast cancer in early stages, before patients exhibit 

symptoms, women are recommended to undergo a screening test, commonly a 

mammogram. Mammography entails exposing a patient’s breasts to low levels of X-ray 
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radiation. Breast cancer are identifiable from mammograms thanks to the different X-ray 

absorption rates of normal and abnormal tissues. Tumors can appear as masses, distortions 

or micro-calcifications on mammograms [121]. In patient with dense breast tissue, the 

tumor mass may overlap with the dense tissue, creating masking effect and making 

mammography less sensitive. Breast tomosynthesis is a newly emerging breast imaging 

technique first approved by the FDA in 2011. It takes multiple X-ray images at different 

angles; the images are then reconstructed to yield a video from which a radiologist can 

identify abnormalities. Compared to traditional mammograms, tomosynthesis provides 

more accurate results because tumors can be more easily distinguished from dense tissues 

using images taken from different angles [122]. Normally, mammograms and 

tomosynthesis were acquired in two standard orientations: Craniocaudal (CC) and Medial-

lateral-oblique (MLO) views during screening. Figure 4.1 shows an example of the CC and 

MLO views of mammogram of two breasts, and Figure 4.2 shows an example of the 

multiple slices of the right CC view of tomosynthesis from the same patient. 

 

 

 

Figure 4.1  Illustration of 2D mammogram (from left to right): right CC view, left CC view, 

right MLO, left MLO view. 
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Figure 4.2  Illustration of 3D tomosynthesis: multiple slices of right CC view. 

 

Screening mammography is the only imaging modality that has been proven to 

reduce breast cancer mortality [123]. However, mammography is also associated with high 

recall rates and high false-positive results [124]. With current practice, approximately 10% 

of all women screened for breast cancer are called back for additional work-ups, but only 

0.5% are diagnosed with breast cancer (that is, 5 cancer detected out of 1,000 women 

screened, or 5 out of the 100 women called back). The use of the new technology, 

tomosynthesis in conjunction with mammography, was showed to improve the accuracy of 

cancer detection [125]. However, manual classification by radiologists still incurs a high 

recall rate and requires years of experience on the part of the radiologist. This high recall 

rate results in an abundance of additional diagnostic tests, including biopsy, and thus 

contributes to increased health-care costs as well as unnecessary emotional turmoil for the 

patients themselves [121, 126, 127]. 

Deep learning with convolutional neural networks has emerged as one of the most 

powerful machine-learning tools in image classification, surpassing the accuracy of almost 

all other traditional classification methods and even human ability [128]. The convolutional 

process can simplify an image containing millions of pixels to a set of small feature maps, 
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thereby reducing the dimension of input data while retaining the most important differential 

features. The application of CNNs to classify mammograms is not entirely new. However, 

most of the work focus on the classification of small patches, referred to as region of 

interest (ROI) [129]. An ROI is the region that is likely to contain a tumor. This is typically 

carved out of the whole images based on either clinical information or automatic 

segmentation. Daniel Lévy et al. used deep CNNs on small patches of mammograms, 

achieving a maximum accuracy of 93% [130]. Neeraj Dhungel et al. built a deep learning 

based method that automatically segments the area of lesions and then classifies the 

mammogram. Their best results were 0.74 for whole image, 0.8 for whole image plus 

automatically detected small lession patches, and 0.91 for whole image plus manually 

segmented small patches in terms of auROC [131]. In general, the classification of 

mammograms using small abnormality patches affords reasonable performance but 

requires very extensive pre-processing work. 

An effective classification model for whole mammograms would offer multiple 

benefits, including (a) saving the work of annotating partial mammograms and its 

associated segmentation errors, (b) optimizing the use of contextual information 

surrounding tumors, (c) closely representing the real-world clinical practice, and (d) 

reducing the patient call-back rate, and thus the number of unnecessary tests conducted, 

without harming sensitivity. However, classification with whole images is much more 

challenging than with small patches due to the increased size and feature space. The best 

performance reported on whole mammography classification with CNN is 60.90% in terms 

of accuracy by Henry Zhou et al [132]. 
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In this work, we developed and evaluated a number of CNN models for whole-

mammography image classification [133]. We also present the first breast cancer 

classification model using 3D tomosynthesis data, a relatively new technology that is only 

available to 20% of major hospitals in the US. All images were collected at the Department 

of Radiology, University of Kentucky with an institutional review board approval (IRB17-

0011-P3K). Techniques including data augmentation [134] and transfer learning [135] are 

combined with CNN models to optimize the performance of the classifiers. 

 

4.2 Architecture overview 

Our approach employs deep convolutional neural networks to classify whole-

mammography images from both the 2D mammograms and 3D tomosynthesis data. The 

pipeline consists of three stages: data augmentation, transfer learning and CNNs. Ten 

different models in total were developed, optimized and compared through cross validation 

[136]. 

 

4.2.1 Data augmentation 

Generally, deep neural networks require training on a large number of training 

samples to perform well. However, biomedical datasets like ours contain a relatively small 

number of samples due to limited patient volume. Data augmentation is a method for 

increasing the size of input data by generating new data from the original input data. Many 

strategies exist for image data augmentation [5, 128]. This study employed a combination 

of reflection and rotation. For the 2D mammograms, each original image was flipped 

horizontally. The original and reflected images were then rotated by each of 90, 180, and 



69 

 

270 degrees. Each original image was thus augmented to eight images. For each 

tomosynthesis sample, the 3D image sequences as a whole were either horizontally flipped 

or not flipped, and then randomly rotated 0, 90, 180 or 270 degrees. Such data 

augmentation generates relevant training samples because tumors may present themselves 

in various orientations. 

The data augmentation can be performed either before the training or during 

training. Frontloading the augmentation process reduces the running time of the tests but 

requires 8 times more disk space to store all images. While this is applicable for 2D images, 

for the 3D tomosynthesis data, data augmentation was performed during the training phase 

to minimize storage usage. 

 

4.2.2 Transfer learning 

Transfer learning is the re-use of information obtained during the training phase of 

a previous project. In the field of image classification, the CNNs [128] trained in the course 

of successful projects are sometimes published for use by other researchers. Two popular 

transfer-learning methods involve (a) fine-tuning the parameters in certain layers of the 

trained CNN, or (b) using the trained CNN to calculate the feature maps of new types of 

data.  

Mammography data is different from natural image data due to its limited color 

distribution and structures. However, it can still leverage the basic image features in terms 

of edges and shapes that can be soundly detected by well-trained CNN models. This study 

utilizes AlexNet [128], trained with ImageNet [137]. Considering the fact that 

mammograms differ dramatically from the images in the ImageNet dataset, the trained 



70 

 

AlexNet was used only to obtain the feature maps. Each image in the augmented dataset 

was resized to 832*832, which resolution was chosen with the goal of retaining tumor pixel 

information. The ImageNet trained AlexNet was deployed to generate the feature maps for 

the resized images. AlexNet output the feature maps with the shape of 25*25*256. The 

feature maps were then used in the training of the following shallow CNNs. 

 

4.2.3 CNN architectures 

We have built different architectures of convolutional neural networks to classify 

the 2D mammograms and 3D tomosynthesis images. A general shallow CNN architecture 

is shown in Figure 4.3. Each convolution layer (Conv layer) includes convolution, batch 

normalization [138], leaky ReLU [139] and max pooling [128]. All CNNs used Max 

pooling with stride 2. The optimizer used is the Adam optimizer [65]. L2 regularization 

was introduced in the loss function to prevent overfitting [66]. Dropout was also included 

to improve the model performance [67]. We also adopted two top-performing CNN 

architectures, AlexNet [128] and ResNet50 [140], to classify the 2D whole mammograms. 

Additionally, we have built several models incorporating transfer learning with feature 

maps learned from AlexNet. Detailed mathematical description of each step is omitted in 

this paper as they are well established deep learning techniques. 
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Figure 4.3  Sample convolutional neural network architecture used in this study. Conv layer 

denotes the convolution, batch normalization, leaky ReLU and max pooling process. Conv 

layers are followed by fully connected layers (Fully conn) and output layer. 

 

The complete list of architectures is provided in Table 4.1. During the training 

phase, learning rate, dropout and L2 regularization beta were tuned with the range of 

0.0001 to 0.1, 0.25 to 1 and 0.00001 to 0.1 respectively. The learning rate decay rate of 

Adam optimizer was set to 0.985 based on the preliminary results. The batch size was set 

by two rules: (1) power of two and (2) largest data size can fit the 8 GB memory. 

 

Table 4.1  Detailed architectures of tested models for 2D mammogram and 3D 

tomosynthesis classification 

Architecture 
Transfer 

Learning 
Input Shape conv1 conv2 conv3 fc1 fc2 Output 

2D-A1 No 224*224*3 6@5*5 16@3*3 -- 1024 1024 2 

2D-A2 No 224*224*3 16@3*3 32@3*3 64@3*3 1024 1024 2 

AlexNet No 224*224*3 -- -- -- -- -- 2 

ResNet50 No 224*224*3 -- -- -- -- -- 2 

2D-T1-Alex Yes 25*25*256 256@1*1 -- -- 1024 -- 2 

2D-T2-Alex Yes 25*25*256 256@1*1 -- -- 1024 1024 2 

2D-T3-Alex Yes 25*25*256 256@1*1 -- -- 512 512 2 

3D-A1 No 128*128*16*3 16@3*3*3 32@3*3*3 64@3*3*3 1024 1024 2 

3D-T1-Alex Yes 25*25*16*256 32@3*3*3 -- -- 256 256 2 

3D-T2-Alex Yes 25*25*16*256 256@1*1*1 -- -- 256 256 2 

 

Imbalanced data represent a common problem in machine-learning projects [141]. 

If imbalances in the training data are not considered, the resulting model generally 

performs well on the larger class but poorly on the smaller class. The target dataset for this 
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study was classically imbalanced, with roughly 90% of samples representing negative 

diagnoses. To reduce the imbalance effect, the mini-batches [138] selected during the 

training phase were restricted to be balanced. During each training epoch, the training data 

were randomly split into m folds: 

m =
Npos

n/2
 

where Npos denotes the number of positive samples (smaller class) in the training set, and 

n is the batch size. In each iteration, all positive samples (n/2 samples) and n/2 randomly 

selected negative samples of 1-fold training data were fed to train the CNN. 

For the data input, 2D mammograms and their feature maps were read as three 

dimensional tensors with shape defined as length*width*channels. 3D tomosynthesis data 

and their feature maps were read as four dimensional tensors with shape defined as 

length*width*depth*channels. Here, depth denotes the number of frames of 3D 

tomosynthesis data, which may vary across tomosynthesis samples. To obtain a fixed input 

shape, an equal number of frames were selected for each sample. Selected frames were 

start from frame 0 and with equal interval in one tomosynthesis sample. In this study, the 

frame number was set to 16 to fit the hardware limitation. 

 

4.2.4 Implementation and performance evaluation 

The convolutional neural networks were implemented using TensorFlow [70]. All 

the tests were performed on a machine with two groups of four Nvidia GTX 1080 GPUs, 

each with 8 GB memory. 

To evaluate the performance of each prediction model, cross validation was used. 

The dataset was randomly partitioned into training and testing datasets. The training set 
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was used to train the model; the results of predictions made on the testing set were used to 

evaluate the performance of the model. The training-testing ratio used in all validation tests 

was 4:1. 

Receiver operating characteristic curve (ROC) [142] is plotted as the true-positive 

rate versus the false-positive rate at various thresholds. The area under the ROC curve, 

auROC is used to measure the performance of a binary classifier. Tradeoffs can be made 

based on ROC curves to select the most appropriate classification model. When testing the 

prediction models in this study, probability of all test samples in each class was calculated. 

Using each value in the probability set as the threshold, we can derive true-positive rates 

(TPRs) and false-positive rates (FPRs). These TPR-FPR data were then used to plot the 

ROC curve and calculate the auROC. 

 

4.3 Experimental results 

 

4.3.1 Data description 

High-quality mammogram data from the University of Kentucky Medical Center 

were obtained with institutional review board approval (IRB 17-0011-P3K). All 

mammography images were assessed by experienced radiologists. The dataset includes 

3,018 negative and 272 positive mammogram images. Each of the positive image contains 

at least one biopsy-proven malignant tumor. The negative images do not contain malignant 

tumors confirmed with at least 2- year negative mammogram follow-up assessed by 

radiologists, but may have benign masses approved by biopsy or established more than 2 -

year imaging stability. All exams in the dataset were taken in either CC or MLO view or 
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both. Negative images originated from 793 patients, most of which had 4 images taken: 

namely, CC and MLO views for both left and right breasts. Positive samples originated 

from 125 patients. Most positive patients have two images collected: CC and MLO views 

of the breast site with tumor. For each exam, both 2D mammogram and 3D tomosynthesis 

results were obtained. The 2D mammograms were provided in 12-bit DICOM format at 

3328*4096 resolution. The 3D tomosynthesis images were provided in 8-bit AVI format 

with a resolution of 768*1024.  Table 4.2 summarizes the dataset used in this study. All 

data were de-identified to protect the patients’ privacy. In order to save storage space and 

reduce the time of file I/O, the pixel array for each 2D mammogram DICOM file was saved 

as a 16-bit JPEG image. For each 3D tomosynthesis AVI file, all frames were processed to 

a set of 8-bit JPEG images for the same purpose. The total number of frames for each 3D 

tomosynthesis exam varies from 21 to 120. 

 

Table 4.2  2D mammogram and 3D tomosynthesis data used in this study 

View Negatives Positives 

RCC 758 77 

RMLO 759 73 

LCC 751 64 

LMLO 750 58 

Total 3018 272 

 

4.3.2 Effect of data augmentation 

Data augmentation increases the size of the training dataset 8-fold. It significantly 

improves the performance of almost every CNN architecture tested by roughly 0.1 auROC 

units. Figure 4.4 (A) and (B) depicts the training loss status of architecture 2D-T2 without 

and with data augmentation and Figure 4.4 (C) shows the associated ROC curves. The 
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auROC of the test with data augmentation is 0.73 comparing to 0.62 for the test without 

data augmentation. The training loss converged more smoothly with data augmentation 

than without. For this reason, all subsequent tests utilized the data augmentation strategy. 

 

 

 

Figure 4.4  Loss converge status of tests using data without (a) and with augmentation (b) 

and ROC curves of them (c). 
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4.3.3 2D mammogram classification 

We evaluated all CNN architectures on 2D mammography images listed in Table 

4.1. The loss converge status during the training phase of all those architectures were 

shown in Figure 4.5. The optimized parameter combination and results of the best shallow-

CNN model, the best classic-CNN model, and the best transfer-learning model for 2D 

mammograms are summarized in Table 4.3. 

While classic-CNN models such as AlexNet do generate competitive results, the 

best architecture seems to be the one leveraging transfer-learning where feature maps 

derived from ImageNet-trained AlexNet are used for training. For example, 2D-T2-Alex 

delivers the best auROC approaching 0.73. The result suggests that utilizing the pre-trained 

model can be more sensitive in detecting key elements such as edges and shapes within a 

mammogram image as well. However, due to inherent difference between mammogram 

image and natural images, further training with these features using even a shallow CNN 

still delivers better classification accuracy than using AlexNet alone. 
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Figure 4.5  Loss converge status of 2D mammogram classification models: (a) 2D-A1, (b) 

2D-A2, (c) AlexNet, (d) ResNet50, (e) 2D-T1-Alex, (f) 2D-T2-Alex, (g) 2D-T3-Alex. (h) 

illustrates the ROC curves of different models. 
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Table 4.3  Validation results and optimized parameter combination of 2D mammogram 

classification models 

Architecture 
Batch 

size 

Learning 

rate 
Dropout 

L2 regularization 

beta 
auROC 

2D-A1 128 0.1 0.5 0.001 0.5488 

2D-A2 128 0.1 1 0.001 0.6295 

AlexNet 128 0.0001 0.25 0.001 0.6749 

ResNet50 32 0.01 0.5 0.001 0.6239 

2D-T1-Alex 256 0.0001 0.5 0.0001 0.7234 

2D-T2-Alex 256 0.001 0.5 0.0001 0.7274 

2D-T3-Alex 256 0.001 0.5 0.01 0.7237 

 

4.3.4 3D tomosynthesis classification 

We also evaluated three architectures listed in Table 4.1 designed for 3D 

tomosynthesis images. Cross validation was used to test one model, 3D-A1, on 3D 

tomosynthesis data, and two models on 3D tomosynthesis feature maps derived from 

transfer learning. The loss converge status during the training phase of all 3D classification 

architectures were shown in Figure 4.6. The optimized parameters and auROCs for the 

three models are shown in Table 4.4. Based on the tests, 3D-T2-Alex exhibited the best 

performance on 3D tomosynthesis feature maps; similar to 2D images, transfer learning 

using ImageNet-trained AlexNet was able to improve the performance of 3D 

tomosynthesis classification models. 
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Figure 4.6  Loss converge status of 3D tomosynthesis classification models: (a) 3D-A1, (b) 

3D-T1-Alex, (c) 3D-T2-Alex. (d) illustrates the ROC curves of different models. 

 

Table 4.4  Validation results and optimized parameter combination of 3D tomosynthesis 

classification models 

Architecture 
Batch 

size 

Learning 

rate 
Dropout 

L2 regularization 

beta 
auROC 

3D-A1 128 0.01 0.5 0.001 0.6312 

3D-T1-Alex 16 0.01 0.5 0.0001 0.6116 

3D-T2-Alex 16 0.0001 0.5 0.0001 0.6632 

 

4.3.5 Comparison of classification results of 2D mammogram and 3D tomosynthesis 

Our current results suggest that the 2D mammogram classification model performs 

slightly better than the 3D tomosynthesis classification model. However, radiologists 

generally achieve better classification accuracy on 3D tomosynthesis data. One possible 
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explanation for this phenomenon is that this study used only a subset of the 3D 

tomosynthesis frames due to memory limitations and the consistent shape requirement of 

the input. If the discarded frames contained information for diagnosing cancer that the 

selected frames lacked, then the frame sampling may have contributed to significant 

information loss. Another possible reason is that the 2D mammograms have better 

resolution than the 3D tomosynthesis data used in this study, such that the 2D 

mammograms may benefit from a higher signal-to-noise ratio [143]. 

 

4.4 Summary 

This chapter reports our work on developing and optimizing machine learning 

models for whole image classification of both 2D and 3D mammograms. We evaluated 10 

different CNN architectures and conclude that combining both data augmentation and 

transfer learning methods with a CNN is the most effective in improving classification 

performance. 

We report the first work that study both 2D and 3D mammography images for 

breast cancer classification. Our current work sheds light on how each type of dataset 

performs when trained independently. But in practice, 2D and 3D images are 

complementary to each other, where 2D offers high resolution while 3D offers multiple 

views. One of our future work is to develop an assembled classifier that integrates the 2D 

and 3D data to achieve optimal performance. 

3D tomosynthesis has proven to be much more powerful in manual detecting of 

tumors in clinical practice than conventional 2D imaging. However, 3D data is much more 

challenging to deal with, as it often corresponds to a much bigger feature space, requiring 
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a larger training dataset to obtain better performance and requiring more memory space for 

training. We believe there is still a great opportunity to improve the performance of 3D 

image classification model. We are currently collecting more images while simultaneously 

obtaining more precise annotation of each slice of 3D tomosynthesis data. Typically, only 

a few frames in 3D images of a positive exam do contain the tumor. Using negative frames 

within a positive exam may mislead the training of the model. In the meantime, we are also 

investigating alternative strategies, such as RNN model, that can leverage the sequence 

information among slices to perform classification. 
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CHAPTER 5. CONCLUSION 

In the era of big data, transformation of biomedical big data into valuable biological 

insights has become one of the most important challenges in bioinformatics. Large 

quantities of biomedical data, including DNA/RNA sequencing data, and biomedical 

imaging data, have been generated. Modern machine learning techniques, such as deep 

learning, have been widely used in extracting meaningful patterns from big data sets. This 

dissertation presents three novel machine learning applications in different but closely 

related bioinformatics domains, two of them focus on next-generation sequencing data 

analysis, and the other one is designed for biomedical imaging data analysis. 

Alternative splicing is a regulated process that enables the production of multiple 

mRNA transcripts from a single multi-exon gene. The availability of large-scale RNA-seq 

datasets has made it possible to predict splice junctions, as well as splice sites through 

spliced alignment to the reference genome. This greatly enhances the capability to decipher 

gene structures and explore the diversity of splicing variants. However, existing ab initio 

aligners are vulnerable to false positive spliced alignments as a result of sequence errors 

and random sequence matches. These spurious alignments can lead to a significant set of 

false positive splice junction predictions, confusing downstream analyses of splice variant 

detection and abundance estimation. In chapter 2, we illustrated that splice junction 

sequence characteristics can be ascertained from experimental data with deep learning 

techniques. We employed deep convolutional neural networks for a novel splice junction 

classification tool named DeepSplice. It performs better than the currently available splice 

site prediction tools. We found that there is valuable information to be gained from splice 
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junction sequences that conventional tools discard. The meaningful representations 

learning from input sequences improve accuracy. 

Metabolic reprogramming is a hallmark of cancer. In cancer cells, transcription 

factors govern metabolic reprogramming through abnormally increasing or decreasing the 

transcription rate of metabolic enzymes, which provides cancer cells growth advantages 

and concurrently leads to the altered metabolic phenotypes observed in many cancers. 

Consequently, targeting transcription factors that govern metabolic reprogramming can be 

highly effective for novel cancer therapeutics. In chapter 3, we presented TFmeta, a 

machine learning approach to uncover transcription factors that govern reprogramming of 

cancer metabolism. Our approach achieves state-of-the-art performance in reconstructing 

interactions between transcription factors and their target genes on benchmark data sets. 

Leveraging TF binding profiles inferred from genome-wide ChIP-seq experiments and 150 

RNA-seq samples from 75 paired cancerous and non-cancerous human lung tissues, our 

approach predicted 19 key TFs that may be the major regulators of the gene expression 

changes of metabolic enzymes of the central metabolic pathway glycolysis, which may 

underlie the dysregulation of glycolysis in non-small-cell lung cancer patients. 

Mammography is the most popular technology used for breast cancer early 

detection. Manual classification of mammogram images is a difficult task because of the 

variability of tumors, which yields a noteworthy number of patients being called back to 

perform biopsies, ensuring no missing diagnosis. The convolutional neural network has 

succeeded in lots of image classification challenges recent years. In chapter 4, we designed 

an approach to perform 2D mammogram and 3D tomosynthesis classification based on 

convolutional neural networks. Our study demonstrated that CNN-based models with data 
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augmentation and transfer learning have good potential for automatic breast cancer 

detection based on the mammograms and tomosynthesis data. 

All software packages of the models described in this dissertation are open-source, 

released, and freely available to the research community. 
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