
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2016

Data Persistence in Eiffel Data Persistence in Eiffel

Jimmy J. Johnson
University of Kentucky, boxer41a@yahoo.com
Digital Object Identifier: https://doi.org/10.13023/ETD.2016.444

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Johnson, Jimmy J., "Data Persistence in Eiffel" (2016). Theses and Dissertations--Computer Science. 51.
https://uknowledge.uky.edu/cs_etds/51

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Jimmy J. Johnson, Student

Dr. Raphael A. Finkel, Major Professor

Dr. Miroslaw Truszczyński, Director of Graduate Studies

Data Persistence in Eiffel

DISSERTATION

A dissertation submitted in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy in the College of

Engineering at the University of Kentucky

By

Jimmy J. Johnson

Lexington, Kentucky

Director: Dr. Raphael A. Finkel

Professor of Computer Science

Lexington, Kentucky

2016

Copyright © Jimmy J. Johnson 2016

 Jimmy J. Johnson

 November 9, 2016

 Date

Abstract of Dissertation

Data Persistence in Eiffel

 This dissertation describes an extension to the Eiffel programming language that provides

automatic object persistence (the ability of programs to store objects and later recreate those ob-

jects in a subsequent execution of a program). The mechanism is orthogonal to other aspects of

the Eiffel language. The mechanism serves four main purposes: 1) it gives Eiffel programmers a

needed service, filling a gap between serialization, which provides limited persistence functions

and database-mapping, which is cumbersome to use; 2) it greatly reduces the coding burden in-

curred by the programmer when objects must persist, allowing the programmer to focus instead

on the business model; 3) it provides a platform for testing the benefits of orthogonal persistence

in Eiffel, and 4) it furnishes a model for orthogonal persistence in other object-oriented lan-

guages.

 During my research, I created a prototype implementation of the persistence mechanism

using it effectively in several programs. Performance measurements showed acceptable perfor-

mance with some increase in program memory usage. The prototype gives the programmer the

ability to add automatic persistence to existing code with the addition of only a few lines of code.

The size of this additional code remains constant regardless of the total number of lines of code in

the project. Eiffel syntax remains unchanged and nonpersistent Eiffel code runs as is while incur-

ring only a very small speed penalty.

KEYWORDS: data persistence, orthogonal persistence, persistent

programming language, object-oriented programming,

Eiffel

 Dr. Raphael A. Finkel

 Director of Dissertation

 Dr. Miroslaw Truszczyński

 Director of Graduate Studies

 November 9, 2016

Data Persistence in Eiffel

By

Jimmy J. Johnson

iii

Acknowledgements

 I would like to express my special appreciation to my advisor Dr. Raphael Finkel. His

advice and encouragement have been invaluable. He put up with my zealousness for the Eiffel

programming language and supported my use of it as a platform for this research. I greatly ap-

preciate his dedication to my work and for the opportunity to study under him.

 I also want to thank Dr. Jerzy Jaromczyk, Dr. Miroslaw Truszczyński , and Dr. Victor

Marek for their guidance, instruction, and encouragement during my studies and research.

 I want to thank Dr. Bertrand Meyer for his support as I began my graduate studies.

Without him, I would not have had such a wonderful language in which to work, and this project

may not have materialized. Mrs. Annie Meyer at Eiffel Software also provided much encour-

agement as she liaised between Eiffel Software’s technical support team and me.

 Others at Eiffel Software and at ETH Zurich have been a great help as well and deserve

my thanks. Emmanuel Stapf, Jocylyn Fiat, and Alexander Kogtenkov provided help with the

Eiffel compiler and many other technical issues for which I am very grateful. Roman Schmock-

er’s help with the Eiffel runtime was indispensable.

 Finally, I wish to thank my wife for tolerating my late-night research and programming

and for mostly ignoring the ensuing grumpiness the next morning. She held the fort down, allow-

ing me to focus on this research.

iv

Table of Contents

Acknowledgements ... iii
Table of Contents .. iv
List of Tables .. vi
List of Figures .. vii
Chapter 1 Introduction .. 1

1.1 Terminology ... 3
1.2 “Eiffel: The Language” ... 4

1.2.1 Eiffel terminology .. 4
1.2.2 A sample system .. 6
1.2.3 Classes.. 6
1.2.4 Eiffel initialization rules... 8
1.2.5 Reference and value semantics .. 8
1.2.6 Tuples ... 10
1.2.7 Once features ... 10
1.2.8 Design by Contract® ... 11
1.2.9 Void-safe Eiffel .. 13
1.2.10 Feature renaming ... 13

1.3 The persistence problem ... 14
1.3.1 Serialization ... 15
1.3.2 Database mapping .. 16

1.4 Summary .. 17
1.5 Roadmap .. 18

Chapter 2 Interface and semantics ... 19
2.1 Interface classes.. 19
2.2 Persistent and persistable ... 20
2.3 Example system.. 21

2.3.1 Access to persistence and initialization ... 21
2.3.2 Create initial objects .. 21
2.3.3 Manual persistence ... 23
2.3.4 Automatic dirty marking .. 23
2.3.5 Checkpointing .. 24
2.3.6 Root-based persistence ... 26
2.3.7 Automatic persistence .. 27
2.3.8 Creating persistable objects ... 28
2.3.9 Loading persistent objects .. 29

2.4 Summary .. 30
Chapter 3 Implementation details.. 33

3.1 Persistence identifiers ... 33
3.2 The P-Eiffel runtime... 33
3.3 Tracking object types ... 34
3.4 The storage algorithm... 34

3.4.1 The TABULATION class .. 35
3.4.2 The REPOSITORY class ... 37

3.5 The underlying datastore .. 38
3.6 Summary .. 38

Chapter 4 Performance .. 40
4.1 Testing method ... 40

v

4.2 Automatic versus manual checkpointing ... 41
4.3 P-Eiffel versus Eiffel .. 41
4.4 Memory overhead .. 42
4.5 Meeting expectations.. 43

4.5.1 Orthogonal persistence ... 43
4.5.2 Database features ... 44

4.6 Measuring effectiveness ... 47
4.7 Summary .. 50

Chapter 5 Future research ... 51
5.1 Looking back .. 51
5.2 Correct inefficiencies ... 52
5.3 Include persistent invariants ... 52
5.4 Allow queries with an improved persistent type system .. 54
5.5 Add other database functionality .. 54
5.6 Looking ahead .. 56

Chapter 6 Conclusion .. 58
Appendix A Review of persistent systems .. 59

A.1 PS-Algol (1982) ... 59
A.2 Galileo (1995) .. 60
A.3 Napier88 (1988) ... 61
A.4 E (1989) .. 62
A.5 PM3 (1991) .. 64
A.6 PHP (1995) ... 65
A.7 Thor/Theta (1996) .. 66
A.8 Java (1996) ... 67

A.8.1 PJava .. 67
A.8.2 Java object serialization ... 68
A.8.3 Java database connectivity ... 69

A.9 C++ (1999) ... 70
A.10 Persistent Oberon (2006) .. 70
A.11 Timor (2007) .. 71
A.12 JavaScript (2010).. 72
A.13 Summary .. 73

Appendix B P-Eiffel setup and use ... 75
B.1 Building P-Eiffel .. 75
B.2 Using P-Eiffel ... 75
B.3 The runtime patch file .. 76

References .. 81
Vita .. 86

vi

List of Tables

Table 3.1 – The descriptor_table ... 35
Table 3.2 – The index_table ... 36
Table 3.3 – The objects_table .. 36
Table 3.4 – Automatic persistence steps .. 39
Table 4.1 – Memory allocation for HERO .. 42
Table 4.2 – Persistence goals and P-Eiffel ... 46
Table 4.3 – Program metrics .. 50

vii

List of Figures

Figure 1.1 – Program executions and a persistent store ... 1
Figure 1.2 – A sample system .. 6
Figure 1.3 – Copy and reference semantics ... 10
Figure 1.4 – Run-time object structure .. 14
Figure 2.1 – Important interface classes .. 19
Figure 2.2 – Example structure after initialization .. 22
Figure 2.3 – Manual persistence of chewie and incredible .. 23
Figure 2.4 – Object states after becoming dirty ... 24
Figure 2.5 – Persistence_manager.checkpoint ... 25
Figure 2.6 – Change chewie’s name and create robin ... 26
Figure 2.7 – After Persistence_manager.persist_as_root (members) ... 27
Figure 2.8 – After create john .. 28
Figure 2.9 – After members.extend (john) ... 29
Figure 3.1 – Application and client/server dataflow .. 38
Figure 4.1 – Persisting_automatic versus checkpointing ... 41
Figure 4.2 – P-Eiffel v Eiffel (creations) ... 42
Figure 4.3 – P-Eiffel v Eiffel (assignments) .. 42
Figure 4.4 – Othello ... 48
Figure 4.5 – Victory in the Pacific ... 48
Figure 4.6 – Persistence-related lines of code .. 49
Figure 4.7 – Persistence-related features ... 49

1

Chapter 1 Introduction

This dissertation presents P-Eiffel1, which extends the semantics of an Eiffel program to facilitate

the automatic storage and retrieval of objects to and from long-term storage, eliminating almost

all storage-related code from an Eiffel program and freeing the programmer to focus on the objec-

tive of the program. P-Eiffel provides the added functionality through a small change to the Eif-

fel runtime and a set of library classes, requiring no change to the Eiffel language or compiler. P-

Eiffel provides a useful tool for Eiffel programmers, proves that storage and retrieval of objects

need not require complex, database-related code or direct file manipulations, and provides a

framework for future development and testing. P-Eiffel’s semantics and library structure should

be feasible in other object-oriented languages. This section introduces and defines P-Eiffel terms

and describes the motivation behind this research. Subsequent sections show how a programmer

uses P-Eiffel, detail some of its implementation, present some performance data, and describe

possible improvements and future research possibilities.

 Persistence is the ability of data to live beyond the lifetime of the program that creates

the data. More specifically, persistence refers to the ability to capture an object’s run-time state

as defined by the stored values of the object’s fields or attributes (defined below), and later, dur-

ing a subsequent execution of that program or a different program, recreate an object that has the

same state as the original one. The reconstructed objects are distinguishable only by their separa-

tion in time. Figure 1.1 illustrates this concept2, showing executions of a program at two different

times. The first execution creates objects with references to other objects and stores the objects

and references to a persistent store (defined below). The second execution retrieves the objects

and references, placing them into volatile memory. Though the retrieved objects likely occupy

different location in volatile memory, they are logically equivalent to the objects in the first exe-

cution.

Figure 1.1 – Program executions and a persistent store

 Many types of programs require data persistence. For example, word processors and

spreadsheet programs preserve the state of a document by writing the document to a file. Online-

shopping sites store the records of products, customers, and orders in a non-volatile (i.e. persis-

tent) medium. Airline scheduling and reservation programs store flight, maintenance, and cus-

1 The name, P-Eiffel, pays homage to the pioneering efforts of PS-Algol.
2 Figure 1.1 was inspired by a similar diagram in the user manual for an Eiffel persistence framework [26].

object_2
 object_1

 object_3

object_1

object_2

object_3

Program Execution: 15 Jan 2013

time

object_3

object_1

object_2

Program Execution: 22 Feb 2013

Persistent Store

2

tomer information. Company databases store records about employees, customers, and products.

Even a long-running program for a single scientific calculation may occasionally save the compu-

tation state for resumption after a program failure. The need for easy access to persistence in my

own Eiffel programs was the initial catalyst for P-Eiffel.

 Meyer recognized the need for data persistence [55] and included basic persistence

mechanisms in Eiffel from its beginning. A cursory internet search reveals some type of persis-

tence mechanism for many programming languages, such as Java [88], C++ [17], Python [87],

Swift [84], and Smalltalk [28], to name a few. This research, then, does not address whether or

not programmers need persistence; it addresses the form persistence should take. This research

does not accept that the current persistence methods are good enough; it demonstrates a better

approach to persistence. P-Eiffel provides the programmer easy access to storing and retrieving

long-lived objects and makes that access automatically available and native within the program-

ming language.

 As Atkinson and Morrison [9] say, programming languages have evolved within a para-

digm in which persistence was not a major concern. Past engineering trade-offs, necessitated by

the disparity between the speeds of system memory and long-term storage media, have led to two

disparate technologies: programming languages that concentrate on expressiveness and calcula-

tions with short-term data and database systems that focus on the management and reuse of long-

term data. The result is programming languages with little or no persistence support and database

languages with inadequate computational power.

 To facilitate the data movement depicted in Figure 1.1, programmers typically use limited

file I/O mechanisms of the programming language or employ complicated interfacing facilities of

a database API. In both cases, the programmer must develop code to translate the data to a form

acceptable to the file or database system. Fu and Dasgupta [32] estimated that 15% of application

code deals with this memory and storage mismatch. Other authors [9, 10, 85] quote a 1978 IBM

report [49] that purportedly1 states that 30% of application code concerns movement of data from

the application to non-volatile memory.2 Furthermore, interfacing with a database necessitates

the development and maintenance of two programs, the application and the database; a change in

one program forces a change in the other.

 To avoid this extra coding effort, Persistent Programming Languages (PPLs), such as

those described in Appendix A , attempt to bridge the gap between system programming lan-

guages and database languages by adding easier-to-use persistence mechanisms to an existing

programming language3. These PPLs attempt to make the movement of data from short-term

memory to long-term storage transparent to the programmer and independent to other elements of

the language, hoping to reap the usually stated benefits of reduced code, higher quality, easier

maintenance, and overall improvement in software systems4. Despite many years of study in this

area, these PPLs have experienced limited success and have seen very little practical use.

 This research revisits persistence, specifically persistence in Eiffel. I chose Eiffel as the

target language for this research because of its support of most object-oriented concepts, clean

1 I cannot find the actual report.
2 The movement to object-oriented languages has not removed the requirement for this translation code. In

fact, the popular use of a relational database backend for the long-term store has so highlighted the differ-

ences in system versus database data representation that the term “impedance mismatch” [95] is now in

common use.
3 Others try to bridge this gap from the other side in the form of Database Programming Languages, which

attempt to add computational expressiveness to the data definition and access capabilities of an existing

database language.
4 One of the long-term goals of this study is to test Atkinson’s Orthogonal Persistence Hypothesis, which

says that a built-in persistence mechanism will produce better code at less cost [8].

3

syntax, and well-defined semantics, and because of my familiarity and pleasant experiences with

its use. An open-source, modifiable compiler is available, which facilitates this research. Eiffel’s

existing persistence mechanisms illustrate and closely parallel the current state of persistence in

other object-oriented languages. Existing persistence mechanisms force the programmer to

choose between a severely limited but simple solution and a very capable but overly complex

one. P-Eiffel provides a simple and capable alternative. Before summarizing at the end of this

chapter the benefits of P-Eiffel and its contribution to computer language development, this dis-

sertation explains Eiffel’s existing persistence mechanisms. In order to do so, it first defines

terms and explains some Eiffel constructs important to the discussion.

1.1 Terminology

Programming languages use different nomenclature for similar constructs. For example, the

terms “member function” (C++), “method” (Java), and “routine” (Eiffel) describe the same gen-

eral concept. This section defines some general terms used by this paper. The next section gives

an overview of Eiffel and Eiffel-specific terms.

 runtime – functions included in every execution of a program that implement the

core behavior of the language from which the program was built

 object – an instance of a type1; data that exists in volatile memory during execu-

tion of a program, but typically ceases to exist when the program terminates; any

piece of program information, such as an integer, array, structure, or class instance

 strongly typed object – an object for which enough information exists during

program execution to determine its type

 invariant – a consistency constraint applicable to an object that must be true at

certain times during a program’s execution

 consistent object – an object that satisfies its invariant (express or implied)

 attribute – a value or reference (i.e. a pointer) in an object, taking up space, such

as an array element, structure field, or instance variable

 routine – a computation performed on the object, usually requiring more time than

an attribute access; analogous to a class method

 persistent store – the logical construct where objects are maintained between pro-

gram executions; ideally viewed as infinite, non-volatile memory containing

strongly typed objects

 store an object – to place into the persistent store enough information about the

object so an equivalent object can be reconstructed

 retrieve an object – to reconstruct an object based on information obtained from a

persistent store, placing the result into volatile memory

 persistent object – an object that has been stored in a persistent store, allowing it

to live beyond execution of the program that creates it

 persistable object – an object that can become persistent but is not required to be

so

 transient object – an object that cannot be stored

 Programs that automate persistence must distinguish persistent and transient objects.

Mechanisms to identify persistable objects rely on allocation-based or store-time-based tech-

niques. An allocation-based mechanism, usually operating at compile time, requires the pro-

1 An object can also be an instance of more than one type. In an object-oriented program, an object that is

created as an instance of type PIGEON may also be an instance of types BIRD and ANIMAL.

4

grammer to mark an attribute or class as persistent or potentially persistent. Run-time mecha-

nisms, operating during program execution, identify persistent objects while traversing the object

graph. Run-time identification usually begins at a designated object and follows references until

all recursively-referenced objects have been stored.

 allocation-based persistence – a method that identifies persistent objects when

they are defined or created

 persistence-by-reachability – a method that discovers persistent objects at store

time by starting at a designated object, recursively storing it and all objects refer-

enced from that designated object

 persistence root – a designated object in a persistence-by-reachability approach

where a persistence operation begins; the top object in a tree of persistent objects

 reachable object – an object obtainable by following references from a persis-

tence root

 Type checking ensures compatibility between retrieved objects and program entities. The

type checking of persistent objects can use structural equivalence, name equivalence, or a combi-

nation of the two.

 structural equivalence – type compatibility and equivalence of objects deter-

mined by the actual structure or definition [98]

 name equivalence – type compatibility and equivalence of objects determined by

explicit declarations and/or the name of the types [94]

1.2 “Eiffel: The Language”1

Eiffel is a strongly and statically typed object-oriented language. It has a simple, Pascal-like syn-

tax, yet it supports the development of large-scale systems with run-time performance similar to

C and Fortran. AXA Rosenberg Investment Management, EMC Corporation, Hewlett Packard,

Northrop Grumman, the Chicago Board of Trade, and others use Eiffel. [27] It has generic clas-

ses, dynamic binding, and automatic garbage collection. Through feature renaming and redefini-

tions, it encourages the use of multiple inheritance, leading to the reusability benefits promised by

the object-oriented method. This research must anticipate the relationship between these various

features of the Eiffel language and the desired functionality of a persistence mechanism. A

somewhat contrived example shown below serves as a springboard from which to launch descrip-

tions of this relationship. Before describing the example, though, this paper defines Eiffel-

specific terms.

1.2.1 Eiffel terminology

Central to object-oriented programming are the terms class, object, and system. Because writers

often interchange or use these terms in confusing ways2, their definitions as used in this thesis

follow.

 class – an abstract data type describing a set of possible run-time objects to which

the same features are applicable [57]; text written by the programmer

 object – an instance of a type; the data that exist during execution of a program

1 “Eiffel: The Language” [54] is the name the first book to cover Eiffel in full.
2 The author of this paper recently encountered a college textbook that even used the two terms together,

referring to a variable declared within a class as a class-object.

5

 system – an assembly of one or more classes, one of which has been designated as

the root class, from which a compiler can produce an executable program

 root class – the designated class from which execution begins

Programmers usually group related classes together into clusters using the operating system’s

directory mechanism. A configuration file directs the compiler to the location of the clusters of

classes, from which the compiler automatically determines class dependencies and selects those

classes required for compilation.

 cluster – a set of related classes grouped together, corresponding to the directory

structure of the operating system

 feature – an operation for accessing or modifying instances of the class [54]

 attribute – a value or reference stored in the object

 routine – a computation, taking zero or more arguments, performed on the object

 procedure – a routine that performs some action on an object and does not return a

value

 function – a routine that returns a Result, possibly modifying1 the object

 creation feature – a feature that can be used to initialize an object of that type in a

creation statement; similar to a C++ or Java constructor

 feature call – a fundamental program construct of the form obj.some_feature, apply-

ing the feature of name some_feature, from the corresponding class, to the object

that obj denotes (i.e. the target of the call) at that moment in execution [57]

 qualified call – a feature call that explicitly lists the target object [57]

 unqualified call – a feature call that does not list its target object [57]

1 Eiffel style guidelines recommend that functions return values without changing an object’s state.

System, in the context of Eiffel, is a technical term, referring to

one or more classes or groups of classes from which a compiler

produces an executable program. Compiling an Eiffel system

results in an executable program.

In Eiffel, class is the only abstraction for the definition of a

type. Eiffel does not define constructs such as struct or union as

seen in other languages.

The values of all the attributes of an Eiffel object taken as a

whole define that object’s state.

Eiffel can ensure, through assertions (defined below), that an

object is in a valid state immediately after returning from a cre-

ation feature and after any qualified call.

6

1.2.2 A sample system

Figure 1.2 shows the class diagram for a sample system. It models a community of heroes, su-

perheroes, and their sidekicks. The red arrows indicate inheritance (i.e. IS-A) relationships, and

the green arrows indicate client (i.e. HAS-A) relationships.

Figure 1.2 – A sample system

The diagram shows that SUPERHERO and SIDEKICK inherit from SUPER and HERO, both of which inher-

it from PERSON. (The diamond inheritance pattern, shunned in other languages, either by conven-

tion or by lack of multiple inheritance capability, presents no problem in Eiffel.) Class PERSON

inherits from COMPARABLE, giving PERSON objects a total-order relationship with each other. Class

PERSON introduces two stored attributes, name, which determines the ordering, and index, which is a

simple basic field; class SUPER adds an alter_ego attribute, because supers cannot walk around in

costume all the time; and class HERO gives the person a companion, since every hero needs a side-

kick. All these attributes come together in SUPERHERO and SIDEKICK objects. Therefore, every HERO

has a companion but not an alter_ego, and every SUPER has an alter_ego but no companion; a SUPERHERO

or SIDEKICK has both. This system provides a framework with which to illustrate more Eiffel ter-

minology, the Eiffel methodology, and, later, P-Eiffel.

1.2.3 Classes

The class PERSON shows the simple syntax and basic structure of an Eiffel class1 and provides

examples for more definitions.

1 We depict Eiffel code in colors and fonts similar to the default syntax highlighting used by Eiffel Soft-

ware’s integrated development environment. For brevity, this example lacks adequate whitespace and,

with one exception, is devoid of comments.

class PERSON
inherit
 COMPARABLE
create
 make
feature {NONE} -- Initialization
 make (a_name: STRING)
 -- Create an instance, initializing `name’
 do
 name := a_name
 end

7

In this class, make, name, index, and is_less are features of the class. (An object of this type actually

has many more features, which it inherits from class COMPARABLE and other ancestors.) Features

name and index are attributes, and features make and is_less are routines. Feature is_less is a func-

tion taking one argument that must be the same type as the object on which this feature is called.

This feature determines the total ordering of PERSON objects based on comparison of the name of

two objects. The create keyword designates make as a creation feature. Feature is_less contains

two feature calls to name. The first targets the current object and the second targets the object to

which other is attached.

This feature compares the name of the current object to the name of another object that is of the

same type. The assignment statement Result := Current.name < other.name is equivalent to the one

above, but this form is uncommon.

 current object – the object to which the latest non-completed routine call applies

[54]

 Current – the Eiffel keyword denoting the current object [57]; similar to self or this

in other languages

 The PERSON class segregates the features into three groups using feature clauses comment-

ed with Initialization, Access, and Comparison. These clauses allow the programming tools to present

the features in ways that are helpful to the programmer. The clauses also aid information hiding.

For example, the {NONE} in the clause before feature make, feature {NONE} -- Initialization, says the fea-

tures following this clause down to the next clause are exported to no classes, making the feature

uncallable from other classes (except from a creation statement.) A clause such as feature {SUPER,

HERO} selectively exports the features that follow the clause (down to the next clause) only to the

listed classes. Feature clauses without an export qualifier make the features that follow it availa-

ble to any class.

 NONE – a fictional class that is logically the descendant of all classes, having no

useful instance [54]

 ANY – the ancestor of all classes, containing general-purpose features; analogous to

the Object class in Java or Smalltalk

 exported feature – a feature that may be used in a qualified call

 non-exported feature – a feature that may not be used in a qualified call

 selectively exported feature – a feature that may be used in a qualified call only

from within those classes listed in its enclosing clause

 As stated above, an object can be an instance of one or more classes; however, its type

never changes. An object created by executing a creation feature from class SUPERHERO is an in-

stance of class SUPERHERO. It is also an instance of its ancestral classes HERO, PERSON, COMPARA-

feature -- Access
 name: STRING
 index: INTEGER
feature -- Comparison
 is_less alias “<” (other: like Current): BOOLEAN
 do
 Result := name < other.name
 end
end

feature -- Comparison
 is_less alias “<” (other: like Current): BOOLEAN
 do
 Result := name < other.name
 end

8

BLE, and ANY, giving it access to all the features in those ancestral classes. The object is a direct

instance of only one class, SUPERHERO, its generating type.

 generating type – the class from which an object was created

1.2.4 Eiffel initialization rules

The following code segment illustrates the creation and use of the PERSON class by a client in fea-

ture get_john.

This feature, though silly, shows the use of the creation feature make from class PERSON. It also

serves as a backdrop for illustrating the Eiffel initialization rules and introducing the difference

between reference and value types.

 The local variables y and p show the two kinds of Eiffel objects: values and references.

The local variable y has one of the basic types (INTEGER, BOOLEAN, CHARACTER, REAL, and DOUBLE)

all of which represent a value. Local variables of features and attributes of classes declared of

these types hold the actual value, not a reference. The other local variable p contains a reference

to a value, not the value itself. This situation is similar to a pointer or address in other languages

but without the problems associated with pointers. Local variables, such as p in this example, and

the attributes name from the PERSON class are reference types. When a local variable comes into

scope or the program creates an object, the runtime initializes the involved variables to specific

values.

Type Default value
CHARACTER null character, ''

BOOLEAN False

INTEGER 0

REAL 0.0

DOUBLE 0.0

any reference type Void

 Void – a predefined value representing the void value (a value not attached to an

object) [57]; analogous to nil or null

When the program flow enters the above function, it sets the local variable y to zero and sets p

and the Result of the function (a reference) to Void. After creating a PERSON object and printing a

message, the function points Result to the newly created PERSON object and then passes the refer-

ence out of the function to the caller.

1.2.5 Reference and value semantics

Value types allow the construction of simple objects similar to Pascal records or C structures.

Reference types allow the modeling of complex objects containing links to other objects, as

shown in Figure 1.4, where there are multiple references to an object or circular references among

two or more objects. Sometimes, however, an object must contain, not a reference to a complex

object, but the actual object itself. Attributes declared to have a type that is an expanded class

get_john: PERSON
 local
 y: INTEGER -- silly, unused local
 p: PERSON
 do
 create john.make (“John Galt”) -- Sets `name’ and `index’.
 print (p.name + “ at index “ + p.index)
 Result := p
 end

9

store values, not references. In this case, that object appears as a sub-object of the enclosing ob-

ject.

 In the sample system, class ALTER_EGO supplies a SUPER with an identity behind which he

can hide in order to function in everyday society.

In addition, a SUPER must always have an alter_ego (i.e. it cannot be Void) and no other SUPER can

possess (i.e. reference) that same object. An expanded class provides this functionality. The only

difference in form between a normal and an expanded class is the addition of the expanded key-

word at the beginning of the class. (The void-safe compiler also forces the assignment of a non-

void reference to the name attribute, which SUPER inherits from PERSON. Void-safety also requires

the declaration of default_create, from ANY, as a creation feature. The runtime calls default_create to

construct objects in settings where it cannot call a constructor with parameters.)

 The following code and object diagram illustrate the difference between reference and

value semantics. The code creates a SUPER named “Mr Incredible”, setting his alter-ego name to

“Bob” and his alter-ego age to 40. It then assigns values to local variables b and other_ego. Varia-

ble b is a SUPER, a reference type; and variable other_ego is an ALTER_EGO, an expanded type.

The diagram below shows the attachment status set up by the routine.1

1 Passing reference or value objects as routine parameters has the same semantics as assignment.

class SUPER
inherit
 PERSON
create
 make
feature -- Access
 alter_ego: ALTER_EGO
 -- Every {SUPER} must protect his identity
end

expanded class ALTER_EGO
inherit
 ANY
 redefine
 default_create
 end
create
 default_create,
 make
feature {NONE} -- Initialization
 default_create
 do
 name := “no name yet”
 age := 0
 end
 make (a_name: STRING; a_age: INTEGER)
 do
 name := a_name
 age := a_age
 end
feature -- Access
 name: STRING
 index: INTEGER
end

 create incredible.make (“Mr Incredible”, “Bob”, 40)
 b := incredible
 other_ego := incredible.alter_ego

10

Figure 1.3 – Copy and reference semantics

Because the alter_ego attribute is an expanded type, the runtime makes a field-by-field

shallow copy1 into other_ego so that no aliasing occurs.

 expanded class – a class describing objects that have copy semantics

 expanded object – an object with an expanded generating type, which therefore

has copy semantics

 reference semantics – attachments through assignment or argument passing re-

sults in aliasing

 copy semantics – assignment or argument passing produces a shallow copy

1.2.6 Tuples

A tuple is a language mechanism useful for describing an object consisting only of attributes and

their accompanying setter features, where a more complicated class is overkill. The programmer

creates an instance of a TUPLE with one or more values enclosed in square brackets, treating the

resulting object like any other reference. Normal type-checking rules apply.

The programmer accesses components of the TUPLE through the tags (e.g. day, month, and year)

provided in the type declaration as if they were attributes of a class. TUPLE types are very useful,

avoiding declaration of a class when a Pascal-like record suffices.

1.2.7 Once features

A once feature is a routine whose body is executed only when it is called the first time. Subse-

quent calls have no effect even if the arguments are different. For a once function, subsequent

calls return the Result computed on the first execution.

 once feature – a feature whose body is called at most one time

1 For simplicity, the diagrams depict STRING attributes as values residing in objects. Strings are actually

reference types in Eiffel; therefore, the structure is more complicated than depicted. The name attribute of

the ALTER_EGO object contained in bob and the name attribute in the copied ALTER_EGO object referenced by

other_ego refer to the same STRING object, which, itself, has attributes, such as internal_hash_code and count,

and a reference to a CHARACTER array called area.

some_feature
 local
 tup: TUPLE [day: INTEGER, month: STRING, year: INTEGER]
 do
 tup := [31, “Jan”, 2016]
 ...

11

 Our sample system imposes a total ordering for an object of type PERSON based on its

index. The goal is to sort the objects based on their creation order. In the previous definition of

make from PERSON, the initialization rules set the index to zero. Eiffel does not allow global varia-

bles, so there seems to be no way for a PERSON object to know what its index should be. A once

feature, added to PERSON, comes to the rescue.1

This non-exported feature returns on its first execution, not an INTEGER, but a reference to an INTE-

GER_REF, an object containing an INTEGER. Subsequent calls return a reference to that same INTE-

GER_REF object. This object serves as a global counter. A modified creation routine from the PER-

SON class increments the counter and records the count in the index attribute.

1.2.8 Design by Contract®

Preconditions and other assertions are a very important part of recommended Eiffel practice.

Assertions help programmers create correct software and serve as an aid to documentation.

 assertion – a Boolean statement expressing a formal property of runtime values

 precondition – an assertion expressing the constraints under which a routine func-

tions properly [56]

 post-condition – an assertion guaranteed to hold at the end of a feature’s execution

if the precondition was satisfied

Preconditions and post-conditions express properties of features. The class invariant expresses

properties of objects.

 class invariant – an assertion, expressing general consistency constraints applica-

ble to every class instance as a whole [56]; checked after creation of an object and

upon entry to and exit from exported features

The class invariant defines conditions under which the object's state, as defined by the values of

its attributes, is valid. Recall that the PERSON class under section 1.2.3 has a state consisting of

two attributes: name and index. So what constitutes a valid state for a PERSON object? Can a PER-

SON exist without a name? Can a PERSON have a negative index? Is the first PERSON the zero-th

object or the first object? A class invariant answers these design questions and enforces the deci-

sions. The following code segment illustrates these assertions, introduced with the keywords

require, ensure, and invariant.

1 Eiffel is not case sensitive, but the usual convention is to use a leading upper case letter for constants,

once features, and the predefined value Result.

feature {NONE} -- Implementation
 Index_imp: INTEGER_REF
 once
 create Result
 end

feature {NONE} -- Initialization
 make (a_name: STRING)
 -- Create and initialize using parameters
 do
 name := a_name
 Index_imp.set_item (Index_imp.item + 1)
 index := Index_imp.item
 end
end

12

These invariants also apply to objects of any descendant class such as HERO.

 In the sample system, the HERO class models objects that usually have a companion. This

detachable (i.e. possibly Void) companion attribute is also of the HERO type.1 For this model, the com-

panion of a companion must point back to the original HERO object. The invariant in class HERO ex-

presses this referential integrity constraint.

The invariant of the HERO class is AND-ed to the invariant inherited from the PERSON class, which

itself has invariants accumulated from its ancestors. The interface view of the HERO class shows

this invariant accumulation. The interface view shows only the signatures of exported features,

hiding implementation details. It has different colors to distinguish it from the normal text view

of a class.

1 The companion attribute could have been modeled as a PERSON, for which the referential integrity would

not be required, but modeling it as a HERO illustrates the point of invariant accumulation without adding

uninformative complexity to the invariant.

class PERSON
 ...
feature {NONE} -- Initialization
 make (a_name: STRING)
 require
 argument_exists: a_name /= Void
 do
 name := a_name
 Index_imp.set_item (Index_imp.item + 1)
 index := Index_imp.item
 ensure
 name_was_assigned: name = a_name
 end
 ...
invariant
 name_exists: name /= Void
 index_large_enough: index >= 1
end

class HERO
inherit
 PERSON
feature -- Access
 companion: detachable HERO -- can be Void
invariant
 integrity: attached {HERO} companion as c and then c.companion = Current
end

class interface
 HERO
create
 make (a_name: STRING)
 -- Create an instance, initializing `name’
 require
 argument_exists: a_name /= Void
feature -- Access
 name: STRING
 -- The person’s name
 index: INTEGER
 -- Ordinal value tracking order of creation

13

 invariant accumulation – the conjunction of [assertion] clauses appearing in the

texts of [the current class and all its ancestor classes] [57]

 interface view – automatically generated documentation showing exported fea-

tures and contracts of a class

1.2.9 Void-safe Eiffel

Invariants increase confidence that software is correct. Another, relatively new Eiffel mecha-

nism, void-safety, also helps build quality software. Void-safe Eiffel ensures at compile time that

if a program applies a feature to a reference, that reference is attached to some object. The com-

piler prevents a variable declared as an attached type from ever being set to Void or set to anything

that can be set to Void. In the example code above, companion is the only attribute declared to be

detachable and allowed to become Void; other attributes default to the attached type.

 The attached rule applies to attributes in much the same way as the class invariant applies

to features; an attached attribute must be non-void upon completion of the object’s creation rou-

tine and must remain non-void throughout its lifetime.

1.2.10 Feature renaming

A class may rename features it inherits from other classes for convenience or to avoid name

clashes. The SUPER_HERO class illustrates renaming.

 feature renaming – syntax to change the name of a feature in a descendant; used

for convenience, as above, or to remove name clashes with inherited features

feature -- Access
 companion: detachable HERO
 -- Possibly another hero that travels with Current
 generator: STRING
 -- Name of current object's generating class
 -- (base class of the type of which it is a direct instance)
 -- (from ANY)
 ensure -- from ANY
 generator_not_void: Result /= Void
 generator_not_empty: not Result.is_empty
 -- other exported features not shown

invariant
 integrity: attached {HERO} companion as c and then c.companion = Current
 -- from PERSON
 name_exists: name /= Void
 index_large_enough: index >= 1
 -- from COMPARABLE
 irreflexive_comparison: not (Current < Current)
 -- from ANY
 reflexive_equality: standard_is_equal (Current)
 reflexive_conformance: conforms_to (Current)
end

class SUPER_HERO
inherit
 SUPER
 HERO
 rename
 companion as sidekick
 end
create
 make
end

14

 Eiffel is an object-oriented application development language that supports almost all

object-oriented concepts1. Eiffel’s characteristics, especially its assertion mechanism, support a

development practice that helps developers create robust, reliable, and efficient software that

scales up well to large systems. However, Eiffel lacks a lean mechanism for the persistence and

concurrent sharing of objects.

1.3 The persistence problem

If a programming language does not have a built-in persistence mechanism, the programmer must

resort to other, sometimes complicated, and hence more error-prone, mechanisms to move data to

and from long-term storage. In older languages, the programmer relies on the input-output

mechanisms to store and retrieve data via the file system. This technique may have sufficed for

simple objects such as integers and characters, and even for arrays of these simple types; howev-

er, it is insufficient for object-oriented languages or any language that allows references through

pointers. Consider a hypothetical organization that requires an Eiffel program to track its mem-

bers. The following Eiffel code shows one possible class and its attributes.

The entity companion is a possible reference to a PERSON object. The entities name and index are

basic values stored in the object. (In Eiffel, STRING is a reference type, so name is really a refer-

ence to a STRING object, but that level of detail is not important for this discussion.) Figure 1.4

depicts a sample object graph that could exist during the execution of the program, showing cir-

cular, shared, and Void references.

Figure 1.4 – Run-time object structure

1 Eiffel does not have feature name overloading as found in Ada, C++, C# and Java. Meyer explains the

reasoning behind this omission. [66]

class PERSON
feature -- Access
 name: STRING
 index: INTEGER
 companion: detachable PERSON

15

The program could store the object referenced by john without storing other objects, but if it stores

the chewie, han, or members object, it must also store other reachable objects as well. Bertrand

Meyer calls this storage-by-reachability concept the Persistence Closure Principle:

Whenever a storage mechanism stores an object, it must store with it the depend-

ents of that object. Whenever a retrieval mechanism retrieves a previously stored

object, it must also retrieve any dependent of that object that has not yet been re-

trieved. [56]

If a program stores members as the root object, it stores all the other objects as well, because they

are recursively reachable through references. When the program retrieves members, it must re-

trieve the entire object structure.1 In order to obtain this type of processing, programmers typical-

ly rely on serialization or database mapping.

1.3.1 Serialization

Serialization represents an object as a sequence of bytes. A serialization mechanism (e.g. the

Serializable interface in Java2 or the Eiffel mechanism shown below) traverses the complete ob-

ject structure starting at a root object, visiting and converting all reachable objects in the process.

Deserialization retrieves the byte sequence, building a complete copy of the original structure.

 The Eiffel code below shows how to store and retrieve the objects depicted in Figure 1.4.

The code assumes the entities employees, chewie, han, and john exist in the same class as the exam-

ple routines, so these entities are available for use within the example routines.

Given a RAW_FILE object, the second line of the routine, file.basic_store (members) serializes and

stores the entire object structure into a disk file. Serialization preserves enough information, in-

cluding types, so a deserialization operation will be able to rebuild the complete object structure.

Deserialization does not restore location in memory, but it does restore content and type. Eiffel

programs can restore most objects using this method, but not objects that depend on the current

execution context (e.g. threads, sockets, windows, and pointers to routines.) Objects of these

types are meaningless outside the constructing process.

 Retrieving the entire object structure is also straightforward, as shown below.

1 After a program retrieves the stored structure into members, it loses the original list. Furthermore, the

objects referenced from the other handles (e.g. chewie, han, and batman) are not the same objects referenced

in the retrieved list. In fact, there may be two PERSON objects with the name “Chewbacca”.
2 Java serialization is similar to Eiffel, but it uses allocation-based persistence combined with persistence-

by-reachability; the programmer must designate possibly persistent classes by implementing the Serializa-

ble interface.

store_example (a_file_name: STRING)
 -- Save `members’ to a file named `a_file_name’
 local
 file: RAW_FILE
 do
 create file.make_open_write (a_file_name)
 file.basic_store (members)
 file.close
 end

16

The routine retrieve_example calls retrieved on the RAW_FILE object, file, within an assignment at-

tempt, introduced with the keyword attached. If the call to file.retrieved returns an object of the

expected type, LINKED_SET, the temporary variable, temp, becomes attached to that object and is

used within the if statement for assignment to the members attribute.

 The serialization routines of the RAW_FILE class (or any other descendant of class

IO_MEDIUM) provide an easy way to store and retrieve objects in simple applications, but these

routines have a major weakness; there is no way to retrieve only a portion of the stored structure.

The program cannot retrieve the object referenced by chewie in Figure 1.4 independently from the

rest of the objects. Furthermore, after retrieve_example executes, chewie references an object that

may differ from a programmer’s expectations. The retrieved routine creates an entirely new object

structure, but chewie still references the object that existed before the call to retrieved, not the sec-

ond object in members. Furthermore, serialization is an all-or-nothing operation in which the iden-

tity of each object is lost. Serialization cannot selectively store and retrieve individual objects. In

addition, there is no way for two or more running programs to access objects simultaneously.

Overcoming these weaknesses and providing more complex store and retrieve operations requires

the much heavier database-mapping approach provided by the EiffelStore library.

1.3.2 Database mapping

The EiffelStore library requires considerably more programmer effort, but it provides much

greater control over the persistent store. This library allows an Eiffel program to interface with

several different types of databases, such as ODBC, MySQL, Oracle, and Sybase. It provides

benefits usually associated with a database, such as transactions, security, concurrency, and data-

base triggers. This additional functionality comes with a price; the code is much more complicat-

ed. The following summarizes the steps required to use EiffelStore.1

 The first step is to create an object of type DATABASE_APPL [G], where the generic parameter

G is one of ODBC, MYSQL, ORACLE, or SYBASE. Using this object, the program logs into the database

and initializes a database handle. Next, the program creates a session manager of type

DB_CONTROL. This object allows the program to connect to the database, handle errors, and discon-

nect. To modify a table, the program creates an object of type DB_CHANGE and calls the modify fea-

ture on the object, passing an SQL statement as argument. Using the previously created

DB_CONTROL object, the program commits the change. Class DB_SELECTION provides a feature to

query the database, which places its result into an object of type DB_RESULT. After converting the

DB_RESULT object to a DB_TUPLE, the program accesses individual tuple items using an index. Pro-

grams map Eiffel objects directly to relational tables using class DB_STORE and class

DB_REPOSITORY.

1 See [30] for a more complete tutorial.

retrieve_example (a_file_name: STRING)
 -- Read the object structure from a file named
 -- `a_file_name’ and assign it to `members’
 local
 f: RAW_FILE
 do
 create f.make_open_read (a_file_name)
 if attached {LINKED_SET} file.retrieved as temp then
 members := temp
 else
 print (“Retrieval error”)
 end
 file.close
 end

17

 This cursory description of the database-mapping approach of the EiffelStore library

illustrates its complexity. The programmer must be aware of many classes and call the features in

the correct order. The interrelations between the classes are complex, making the use of this li-

brary difficult to master. This approach also suffers from the two-system problem (i.e. the re-

quirement to develop and maintain the application and a database in parallel.) This approach

seems to fit Atkinson’s and Morrison’s [9] definition of glue-ware, hiding different technologies

(a programming language and a database) behind an interface veneer in a hope of combining the

two in an understandable and useful way.

 This clash between the object-oriented data model and the relational data model has be-

come known as the object-relational impedance mismatch [31]. An often-referenced blog post

highlights the problems associated with object-relational mapping:

 Object-to-table mapping problem – As long as the structure of data in the system

is simple, regular, and of fixed size, a class can map directly to a relational table.

But object-oriented systems typically have complex relations. Indirect access to an

object’s property through another object, done simply in an object-oriented lan-

guage with a call such as chewie.companion.name, requires the heavier relational al-

gebra approach in the form of a join. Inheritance, which is hard to represent in re-

lational tables, further exacerbates the problem.

 Dual-schema problem – Two programs, the application and the database, must

maintain the form of the data, raising the question of schema ownership. Is the

schema owned by the application developers or by the database developers? This

ambiguity greatly complicates system evolution.

 Entity identity issues – An object in an object-oriented system has an implicit

sense of identity separate from the state of the object, and this identity is not a con-

cern for the programmer. An object-oriented program simply accesses the object

through its references. In a relational database, the identity is part of the object’s

state—its key.

 Data retrieval mechanism concern – Relational database systems can arrange da-

ta in a way that optimizes typical retrievals. The relationships between objects in

object-oriented programs can lead to very inefficient selections, projections, and

joins. For example, a relational database requested to display just the name of a

person may be able to select only the name field from a table; whereas an equiva-

lent, object-oriented program may have to retrieve the entire person object, includ-

ing irrelevant fields (i.e. address, job title, list of children, etc.) in order to construct

a valid person object from which to obtain the person’s name. [64]

 The Database mapping approach, exemplified by the EiffelStore library, attempts to solve

the lack of flexibility inherit in the serialization approach, but the problems caused by the object-

relational impedance mismatch call for other solutions to the persistence problem.

1.4 Summary

The two Eiffel approaches illustrate the extremes of the persistence problem. The serialization

approach is easy to use but suffers from an all-or-nothing dilemma: either the entire object graph

is retrieved and useable, or nothing is useable. It suffers a big-exhale and big-inhale problem as

the whole graph is stored and retrieved. Object identity is lost, and there can be no simultaneous

sharing of objects between programs. Database mapping libraries remedy these problems but

require code that is more complicated. Object-oriented database systems attempt to solve the

impedance mismatch problem but seem to have had limited success. Persistent programming

languages, which attempt to merge database-like functionality with a systems programming lan-

guage, have also failed to see widespread use. I believe P-Eiffel fares much better.

18

 P-Eiffel fills a long overdue void1 in Eiffel as it bridges the ease-of-use-versus-

functionality gap between the serialization and database-mapping approaches. It provides some

of the database-mapping functionality while remaining at least as simple as the serialization ap-

proach. Though P-Eiffel requires further testing to determine its speed impact on the data-

retrieval mechanism concern, it eliminates the other issues of the impedance mismatch problem.

Testing with the current prototype, which is usable as is for programs requiring only local stor-

age, indicates that the speed and memory overhead, though improvable, is acceptable. Testing

also shows that P-Eiffel imposes a very small coding burden on the programmer. With P-Eiffel,

the programmer who desires to add persistence to a program measures the amount of persistence-

related code as a constant, extremely small number of lines, not as a percentage of code. P-Eiffel

adds automatic persistence semantics to existing Eiffel constructs without a single change to the

syntax of Eiffel. This simple-looking accomplishment coupled with the mentioned benefits

proves that automatic persistence need not be complicated for the programmer. Empirical data on

the benefits of automatic persistence can be gathered only after programmers have used P-Eiffel

for some time. This paper details P-Eiffel’s semantics and implementation to encourage its use

and in hopes that developers of other object-oriented languages will add similar functionality to

their languages.

1.5 Roadmap

 The next chapter shows how to use P-Eiffel, illustrating its benefits. Subsequent chapters

describe the implementation, list some of the difficulties encountered during development, show

the result of some performance tests, suggest improvements, and introduce ideas for continuing

research in persistence. Appendix A presents an overview of some of the past approaches to per-

sistence from which this research greatly benefited. Appendix B offers a quick-start guide for

setting up and using P-Eiffel.

1 I remember that Bertrand Meyer, the developer of Eiffel, shortly after becoming Chair of Software Engi-

neering at ETH Zurich, hired a full-time researcher and a PhD student for work on persistence. When I

visited Dr. Meyer and this student in 2004, the research seemed promising; but it soon became upstaged by

other concerns such as void-safety, concurrency, and automatic testing. Until now, persistence in Eiffel has

progressed very little.

19

Chapter 2 Interface and semantics

P-Eiffel consists of a framework of classes coupled with a modified Eiffel runtime. The frame-

work classes, residing in the jj_persistence cluster, provide the programmer interface to the per-

sistence mechanism and implement most of the persistence functionality. A small modification

to the Eiffel runtime, included in the P-Eiffel compiler, makes automatic persistence, which is

selectable by the programmer, possible. The persistence classes, which are written in standard

Eiffel and require no changes to the language, give a programmer access to persistence function-

ality through normal Eiffel techniques of inheritance and feature calls. Additionally, the persis-

tence footprint is very small; only a few added lines of code give the programmer full control of

the persistence mechanism. The interface classes provide this access. A programmer adds persis-

tence to an Eiffel system by including the jj_persistence cluster in the system, inheriting from one

or more of the framework classes, calling appropriate initialization features, and, if desired, turn-

ing automatic persistence on.

2.1 Interface classes

The persistence cluster divides the persistence classes into two sub-clusters, the interface cluster

and the support cluster. The interface cluster contains about a dozen classes, some of which ap-

pear in Figure 2.1. The red arrows indicate inheritance (i.e. IS-A) relationships, and the green

arrows indicate client (i.e. HAS-A) relationships.1 Of the many classes and features available, the

programmer need use only a few to take full advantage of the persistence mechanism.

Figure 2.1 – Important interface classes

 Class PERSISTENCE_FACILITIES contains queries, constants, and global attributes used by al-

most all of the persistence classes. A programmer who wishes to add persistence to a system

should inherit from this class. The most convenient place for this inheritance relation is usually

in the system’s root class. Through inheritance, the programmer gains access to the program’s

single Persistence_manager.

 Class PERSISTENCE_MANAGER adds commands to the queries, constants, and attributes of

PERSISTENCE_FACILITIES to allow the programmer to initialize, activate, and perhaps fine-tune the

persistence mechanism. A REPOSITORY is the abstraction for the data store, the location to which

the persistent objects are stored. The programmer initializes the one REPOSITORY in a system as

either a LOCAL_REPOSITORY or a NETWORK_REPOSITORY, creating it with the appropriate CREDENTIALS.

A LOCAL_REPOSITORY connects to a local file, storing and retrieving objects to and from the hard

drive. A NETWORK_REPOSITORY connects to a PSERVER, passing persistent objects across a network.

1 Eiffel allows attributes to have the same name as a class.

20

 To use these classes and their features effectively, the programmer must understand the

semantics of the persistence mechanism.

2.2 Persistent and persistable

P-Eiffel distinguishes between persistent and persistable objects. P-Eiffel provides automatic

persistence, but does not demand it. A persistent object is one that resides in a persistent store

and continues to exist between program executions. A persistable object is one whose state P-

Eiffel can monitor and whose attributes P-Eiffel can store without explicit programmer involve-

ment. In P-Eiffel, (almost1) all objects can become persistable.2

 P-Eiffel marks an object as persistable by associating the object with a PID (i.e. a persis-

tent identifier). Once P-Eiffel pairs an object with a PID, that association remains for the lifetime

of the object. An object gets a PID, becoming persistable, in one of three ways: by an explicit call

to identify, through reachability from some other persistable object, or through creation as a PER-

SISTABLE type.

 Though not the ideal method, a programmer can associate an object with a PID, manually

making that object persistable, using an explicit call to feature identify. This feature obtains a new

PID from the repository. The repository guarantees that the PID is unique. It is better to let P-Eiffel

perform this object/PID pairing as it stores or creates objects.

 When P-Eiffel stores an object, it uses persistence-by-reachability to achieve Meyer’s

persistence closure principle. As P-Eiffel explores an object’s attributes during a persist operation,

it calls identify on newly discovered objects, marking the newly discovered objects as persistable.

After an object is so marked, P-Eiffel monitors that object for state changes. P-Eiffel, though,

requires at least one object to be persistable already in order to initiate the persistence-by-

reachability process. The easiest way to obtain this persistence starting point is to make at least

one object begin its life as a persistable object.

 P-Eiffel’s persistence-through-allocation comes via inheritance from class PERSISTABLE.

An object of this type is automatically marked as persistable by a call to identify in this class’s

creation feature. After an object is marked as persistable, explicitly or otherwise, P-Eiffel stores

that object or updates its persistent representation automatically at the appropriate times during

execution.

 P-Eiffel stores or updates an object only when that object is in a consistent state, that is,

when the object’s invariant holds, which is after object creation and after execution of an export-

ed feature. Eiffel allows qualified calls (e.g. my_object.do_something or Current.do_something) for ex-

ported features only, so the invariant is sure to hold after such a call. Therefore, if automatic

persistence is enabled and the target object of a creation instruction or a qualified feature call is

an automatically persistable object, then P-Eiffel stores that object.

 When P-Eiffel stores an object, it sends all the attributes of that object to the repository,

reducing references (i.e. pointers) to a persistable representation (i.e. a PID). It recursively follows

1 The almost caveat is necessary, because there are some object types for which persistence is meaningless.

For example, a network SOCKET does not maintain its connected state when a program using it terminates,

therefore restoring its previous state in the context of a different program is meaningless. GUI objects,

which rely heavily upon the operating system of the current platform, also lose their state and are not re-

storable once they go out of scope. Consider an EV_WINDOW. When a window is closed, the operating

system removes that graphical element and those graphical elements contained in the window from the

screen environment. Even though the underlying Eiffel objects still exist, restoring the corresponding

graphical elements is impossible.
2 Creating a persistable GUI should be possible if the GUI widgets only relied upon its corresponding ob-

ject state. These self-contained widgets would have to draw themselves instead of relying on the operating

system; however, they might lose the native feel of the platform.

21

references, storing all objects reachable from the original object. As it stores an object, it ensures

the repository gets a terse and/or verbose representation of each object’s type. Section 3.3 con-

tains more details about the persistent type.

 To reduce the time required to store objects, P-Eiffel only stores dirty objects during its

recursive traversal of the object structure. P-Eiffel marks an object as dirty when an attribute of

that object changes.

2.3 Example system

The sample system that was introduced in Chapter 1 along with its accompanying run-time object

structure serves as a springboard to explore P-Eiffel’s semantics in more detail and to show P-

Eiffel’s tiny persistence code footprint. The summary for this section collects all the following

code snippets into one root class, highlighting the unobtrusiveness of the persistence code.

2.3.1 Access to persistence and initialization

The root class gains access to the basic persistence features through inheritance.

Inheriting from PERSISTENCE_FACILITIES grants the class access to the Persistence_manager, from which

the programmer controls P-Eiffel’s actions. Before making any calls to features that send data to

the persistent store, the programmer must set up the repository, which also comes via the above-

mentioned inheritance relation. The following feature does this.

Feature initialize_repository contains code required only for persistence that is unrelated to the busi-

ness logic of the program. With P-Eiffel, the programmer is able to restrict this persistence-

related code to this single feature instead of spreading intrusive code throughout a system. The

root feature calls initialize_repository as its first action.

With these preliminaries out of the way, the following sub-sections give details relating to the

persistence mechanism. The example progresses from manual persistence, through an intermedi-

ate persistence level, to fully automatic persistence.

2.3.2 Create initial objects

The next feature called by the root feature sets up the initial object structure, initializing some of

the following attributes that serve as handles to the objects used by the program. As the program

progresses, it manually or automatically persists the objects referenced by these attributes. The

attribute names themselves are never stored, because the root object, which contains these attrib-

class 1
 ROOT 2
inherit 3
 PERSISTENCE_FACILITIES 4

 initialize_repository 39
 -- Set up the repository. 40
 local 41
 c: CREDENTIALS 42
 r: LOCAL_REPOSITORY 43
 do 44
 create c.make (“data_file.dat”) 45
 create r.make (c) 46
 Persistence_manager.set_repository (r) 47
 end 48

 make 16
 -- Root feature for the system. 17
 do 18
 make_object_structure 19
 initialize_repository 20
 demo_manual_processing 21
 demo_automatic_processing 22
 end 23

22

utes, is never stored. Because all object types are persistable, it would have been possible to store

the root and hence allow P-Eiffel to build an association in the REPOSITORY between the objects

and these attribute names, but this example does not do that.

The type of each attribute from john down is an heir of PERSISTABLE, either directly in the case of

john or indirectly through PERSON for the others. Therefore, these attributes reference objects that

are automatically persistable by virtue of their types. Feature make_object_structure initializes the

attributes and sets up the initial relationships among some of the resulting objects.

Figure 2.2 shows the result of executing make_object_structure. The status reporting feature,

is_persistable from PERSISTENCE_FACILITIES, now returns true for the objects referenced by batman,

chewie, han, and incredible. Queries is_dirty, is_rootable, and is_persistent still return false at this point.

Figure 2.2 – Example structure after initialization

 members: TWO_WAY_SORTED_SET [PERSON] 8
 john: detachable PERSON 9
 chewie: HERO 10
 han: HERO 11
 incredible: SUPER 12
 batman: SUPERHERO 13
 robin: detachable SIDEKICK 14

 make_object_structure 24
 -- Set up the test objects. 25
 -- Leave `john’ and `robin’ void. 26
 do 27
 create members.make 28
 create chewie.make (“Chewie”) 29
 create han.make (“Han Solo”) 30
 create batman.make (“Batman”, “Adam West”, 35) 31
 create incredible.make (“Incredible”, “Bob”, 40) 32
 chewie.set_companion (han) 33
 members.extend (chewie) 34
 members.extend (han) 35
 members.extend (batman) 36
 members.extend (incredible) 37
 end 38

23

2.3.3 Manual persistence

After the repository is set up, the programmer can manually control persistence by marking and

storing objects. Feature demo_manual_processing demonstrates how to explicitly call some of the

persistence features. Its first few lines follow.

The first call to persist1 stores chewie, and through persistence-by-reachability, stores the han object

that is attached as the companion of chewie. The second call to persist demonstrates P-Eiffel’s ability

to handle expanded types as it stores incredible. Figure 2.3 highlights the persistent state of the

three affected objects. (Persistent objects are orange, and dirty objects are grey. Basic (and

STRING) attribute values, as opposed to references, are shown in purple.)

Figure 2.3 – Manual persistence of chewie and incredible

Query is_persistent now returns true for chewie, han, and incredible, but is_dirty returns false. Feature

is_persistent_root is also true for the objects because they inherit from PERSISTABLE. The call to fea-

ture mark forces batman.is_dirty to return true.

 The information sent to the repository includes the persistent type of each object and, be-

cause this is the first place where the persistence mechanism encounters the HERO and SUPER types,

verbose type descriptions of those types. Subsequent persistence operations involving these two

types require sending less information.

2.3.4 Automatic dirty marking

The PERSISTENCE_MANAGER class has features that allow the programmer to choose among three

levels of persistence automation, represented by the constants No_automation, Marking_dirty, or Per-

1 A cleaner alternative in this context is to replace the line “Persistence_manager.persist (chewie)” with “chew-

ie.persist”. Feature persist from PERSISTABLE wraps the call from Persistence_manager and allows an argu-

mentless feature call. The example does not use this alternative, because it is only available for objects of

type PERSISTABLE. The version used in the example is more general; it is available on all non-basic, non-

expanded types.

 Persistence_manager.persist (chewie) 52
 Persistence_manager.persist (incredible) 53
 Persistence_manager.mark (batman) 54

24

sisting_automatic. The programmer sets the level of automation through one of the status-setting

features or by passing one of the above constants to feature set_persistence_level. The programmer

queries the current automation level with feature persistence_level or checks the status of the persis-

tence level with feature is_marking_dirty or is_persisting_automatic.

 The next section of code shows the Marking_dirty persistence level. This level of automa-

tion is a step up from the manual processing described above, providing some persistence auto-

mation while leaving persistence timing to the programmer. The first line of the following code

segment calls set_mark_dirty. This feature causes P-Eiffel to automatically mark a persistable ob-

ject dirty when one or more of its attributes changes. For example, the next line of the feature

changes the name of incredible from “Incredible” to the more formal “Mr Incredible”.1

After the assignment statement inside set_name changes the name of incredible, P-Eiffel ensures that

incredible is now dirty. Figure 2.4 shows the resulting state.

Figure 2.4 – Object states after becoming dirty

2.3.5 Checkpointing

At this point, two of the four PERSON objects are marked dirty. P-Eiffel allows the programmer to

persist all dirty objects with a call to checkpoint.

During the checkpoint, P-Eiffel sends all the attributes of batman, including the void value for side-

kick, along with the verbose description of the SUPERHERO type, to the repository, demonstrating P-

Eiffel’s ability to handle void references. Because the repository already knows about the SUPER

type from a previous persist operation on Incredible, P-Eiffel only sends reduced type information

1 Eiffel does not allow direct changes to attributes from outside the enclosing class; it requires setter fea-

tures to perform attribute changes.

 Persistence_manager.set_mark_dirty 55
 incredible.set_name (“Mr Incredible”) 56

 Persistence_manager.checkpoint 57

25

for that type along with the new value of the name attribute, which was changed above. The pre-

viously dirty objects are no longer dirty and are persistent, as shown in Figure 2.5.

Figure 2.5 – Persistence_manager.checkpoint

 As seen above, now that the persistence_level is set to Marking_dirty, an object that is per-

sistable becomes dirty when one of its attributes changes or upon creation. The next two lines of

code change chewie and create robin. As a PERSISTABLE object where the persistence_level is set to

Marking_dirty, the Robin object begins life in a dirty state. It is not persistent, because the code cre-

ates it after the above call to checkpoint.

Setting the persistence level to Marking_dirty followed by intermittent checkpoint calls allows the

programmer to control the timing of persist operations. However, a misplaced or forgotten call to

checkpoint could lead to data loss. As shown in Figure 2.6, chewie and robin are dirty. If those ob-

jects are not manually persisted, the new information could be lost.

 chewie.set_name (“Chewbacca”) 58
 create robin.make (“Robin”, “Dick Grayson”, 16) 59
 check attached robin as r then 60
 members.extend (r) 61
 end 62

26

Figure 2.6 – Change chewie’s name and create robin

2.3.6 Root-based persistence

One way to ensure the objects are persisted is to make the entire members list persistable, so that

the two dirty objects, by reachability, also become persistent.

Feature persist_as_root is the same as the call to persist except that it promotes its argument to a

persistent root, protecting it from collection by the repository’s automatic garbage collector.1

Like persist, it is a manual call that ensures the persistence of its argument and all objects directly

reachable from its argument. It strengthens the object’s persistence status in relation to the gar-

bage collector, but in the marking_dirty or no_automation level, it does not guarantee the persistence

of all reachable objects. P-Eiffel might not visit a dirty object deep in the structure if that object’s

parent is not dirty at the time that persist_as_root is called. Furthermore, objects below this new

persistent root may again be dirtied. Both cases require a call to checkpoint to ensure changes are

not lost.

 After the call, the persistence mechanism sends the header of members and all its linkable

objects to the repository along with verbose type information about the LIST and LINKABLE types.

Because this is the first time that robin is stored, P-Eiffel also sends verbose information about the

SIDEKICK type. Because the chewie object is dirty from a previous change, P-Eiffel also sends its

name attribute to the repository. Figure 2.7 depicts the resulting state.

1 P-Eiffel does not yet implement the persistence garbage collector. When implemented, it will collect any

object that is not a persistent root or that has become unreachable from a persistent root. The programmer

must explicitly delete a persistent root object.

 Persistence_manager.persist_as_root (members) 63

27

Figure 2.7 – After Persistence_manager.persist_as_root (members)

The manual persistence features mark, persist, persist_as_root, and checkpoint allow the programmer to

control timing aspects of persistence, but an oversight or improper ordering of feature calls could

lead to data loss. P-Eiffel removes the need for direct programmer involvement and eliminates

this possible data loss with its fully automatic persistence mechanism.

2.3.7 Automatic persistence

Feature demo_automatic_processing shows how to initialize P-Eiffel’s automatic persistence mecha-

nism and details the resulting semantics. The first line in the feature enables automatic persis-

tence.

After execution of this line, the persistence mechanism begins to mark any persistable object as

dirty upon modification of any of its attributes and automatically stores modified attributes of the

dirty object upon completion of any qualified feature call on that dirty object. After the call, the

programmer proceeds with normal Eiffel code, possibly never calling another persistence fea-

ture.1 For example, the next line of the feature links batman to robin. Because the state,

is_persisting_automatic, is now true, the qualified feature call triggers the persistence mechanism,

storing the two new references, the sidekick reference from batman to robin. and the companion refer-

ence from robin to batman.

The next line tests automatic persistence for an attribute change of an expanded object embedded

inside another object by correcting the name of the expanded alter_ego object within batman from

1 The programmer might occasionally call a query feature to get the persistence status of an object or to ask

for the persistence identifier of an object.

 Persistence_manager.set_automatic 68

 batman.set_companion (robin) 69
 batman.set_alter_ego_name (“Bruce Wayne”) 70

28

“Adam West” to “Bruce Wayne”1. Again, after this qualified feature call, batman and alter_ego are dirty

but P-Eiffel only sends the dirty attribute, the name of the alter_ego, to the repository.2

 As described before, the attribute change within set_alter_ego_name causes the persistence

mechanism to make batman dirty. When the qualified feature call ends, the persistence mecha-

nism sends only the new name and the persistent type of name to the repository. The companion link

is unchanged and robin is not dirty, so the persistence mechanism does not follow the reference or

visit robin. In addition, the old name is now unreachable and subject to Eiffel garbage collection.

Because the old name was not stored as a persistent root, the repository’s garbage collector3, if

enabled, eventually removes the corresponding persistent version of the old name from the reposi-

tory.

2.3.8 Creating persistable objects

The object structure is almost complete. The final lines of code in demo_automatic_processing create

john and adds him to members. The code below creates a PERSON and attaches john to it.

Besides rounding out the organization’s members, it shows the one remaining aspect of persis-

tence semantics, the effect of a creation statement when persistence is automatic. After the crea-

tion statement, P-Eiffel checks the persistable status of john, the target of the creation statement,

and, because john is persistable by virtue of its PERSISTABLE type, P-Eiffel sends john and the type

information for PERSON to the repository. All six PERSON objects now exist, and a version of all of

them exists in the repository.

Figure 2.8 – After create john

1 Adam West is the name of the actor that played Batman in the campy 1960’s Batman TV series. Bruce

Wayne is the character name of Batman’s alter ego.
2 There is a little sleight of hand here. Really, P-Eiffel sends all the basic attributes of both robin and al-

ter_ego to the repository. Also, P-Eiffel does not store the sidekick attribute or follow the reference, because

batman is not dirty.
3 As previously noted, the repository’s garbage collector is not yet implemented.

 create john.make (“John Galt”) 71

29

Now john is not yet reachable from members, but adding john to members is a normal Eiffel call.

Because the insertion of john changes the count of members, P-Eiffel sends the count attribute of the

list’s header to the repository. P-Eiffel also adds the new persistable LINKABLE and the modified

persistable references, circled in Figure 2.9, to the repository.

Figure 2.9 – After members.extend (john)

Even though the creation calls and assignment statements that set up these LINKABLE objects and

trigger the persistence operations are far removed from the extend call itself, P-Eiffel automatical-

ly handles persistence, allowing the programmer to focus on the real objective of the program.

2.3.9 Loading persistent objects

The final lines of the example program show how to restore a persistent object from long-term

storage. A persistence identifier for chewie provides a handle to the persistent representation of

that object as stored in the repository. Using this identifier, the current session or a later one can

load the corresponding, persistently-referenced object and any objects reachable from it.

This code segment simply obtains the pid from the chewie object that is still active, so the entity

my_person becomes attached as an alias to that same chewie object. Normally, though, a program

loads an object from a PID recorded during a previous session. When such code runs in a different

session, entity my_person becomes attached to a newly created object, initialized with the values

that are stored in the repository. This session, or a later session that knows the persistence identifi-

er of the desired object, uses the pid value, whether stored in a variable or written on a piece of

 check attached john as j then 72
 members.extend (j) 73
 end 74

 pid := persistence_id (chewie) 81
 if repository.is_stored (pid) then 82
 check attached {PERSON} Persistence_manager.loaded (pid) as p then 83
 my_person := p 84
 end 85
 end 86

30

paper, as the actual parameter to feature loaded1 to refresh chewie and, through reachability, han.

The attachment check verifies that the returned object is of type PERSON. In this context, it is easy

to see by inspecting the preceding lines that the check statement succeeds. The conditional

statement that checks repository.is_stored guarantees the precondition of loaded.

2.4 Summary

The following code consolidates all the code segments discussed above, highlighting the lines

that involve programmer use of persistence features.

1 An alternative to is to replace the entire check statement with robin.load (pid). Feature load from PER-

SISTABLE wraps the contents of the check statement and has the same semantics, assuming its preconditions

are met. Just like the parameterless version of persist, it is only available to PERSISTABLE objects.

class 1
 ROOT 2
inherit 3
 PERSISTENCE_FACILITIES 4
create
 make
feature -- Access
 members: TWO_WAY_SORTED_SET [PERSON] 8
 john: detachable PERSON 9
 chewie: HERO 10
 han: HERO 11
 incredible: SUPER 12
 batman: SUPERHERO 13
 robin: detachable SIDEKICK 14
feature -- Initialization
 make 16
 -- Root feature for the system. 17
 do 18
 make_object_structure 19
 initialize_repository 20
 demo_manual_processing 21
 demo_automatic_processing 22
 end 23
 make_object_structure 24
 -- Set up the test objects. 25
 -- Leave `john’ and `robin’ void. 26
 do 27
 create members.make 28
 create chewie.make (“Chewie”) 29
 create han.make (“Han Solo”) 30
 create batman.make (“Batman”, “Adam West”, 35) 31
 create incredible.make (“Incredible”, “Bob”, 40) 32
 chewie.set_companion (han) 33
 members.extend (chewie) 34
 members.extend (han) 35
 members.extend (batman) 36
 members.extend (incredible) 37
 end 38

31

 The listing shows that using P-Eiffel requires only a small amount of persistence-related

code, and most of that code is confined to initialization, manual operations, and loading. Once

initialized through a few features of the interface classes, mostly from PERSISTENCE_FACILITES and

PERSISTENCE_MANAGER, persistence is automatic1, as shown by feature demo_automatic_processing.

Furthermore, other classes do not require awareness of persistence, nor do they need to make any

1 The programmer may revert to one of the non-automatic persistence modes at any time. In Marking_dirty

mode, subsequent changes to a persistable object still marks that object as dirty and the changes can be

persisted with a call to checkpoint. If the programmer totally disables persistence, P-Eiffel no longer guar-

antees that changes to previously persisted objects are stored, even after a call to checkpoint.

 initialize_repository 39
 -- Set up the repository. 40
 local 41
 c: CREDENTIALS 42
 r: LOCAL_REPOSITORY 43
 do 44
 create c.make (“data_file.dat”) 45
 create r.make (c) 46
 Persistence_manager.set_repository (r) 47
 end 48
feature -- Basic operations
 demo_manual_processing
 do
 Persistence_manager.persist (chewie) 52
 Persistence_manager.persist (incredible) 53
 Persistence_manager.mark (batman) 54
 Persistence_manager.set_mark_dirty 55
 incredible.set_name (“Mr Incredible”) 56
 Persistence_manager.checkpoint 57
 chewie.set_name (“Chewbacca”) 58
 create robin.make (“Robin”, “Dick Grayson”, 16) 59
 check attached robin as r then 60
 members.extend (r) 61
 end 62
 Persistence_manager.persist_as_root (members) 63
 end
 demo_automatic_processing
 -- Demonstrate automatic persistence features.
 do
 Persistence_manager.set_persist_automatic 68
 batman.set_companion (robin) 69
 batman.set_alter_ego_name (“Bruce Wayne”) 70
 create john.make (“John Galt”) 71
 check attached john as j then 72
 members.extend (j) 73
 end 74
 end
 demo_loading
 -- Demonstrate loading features.
 local
 pid: PID
 do
 pid := persistence_id (chewie) 81
 if repository.is_stored (pid) then 82
 check attached {PERSON} Persistence_manager.loaded (pid) as p then 83
 my_person := p 84
 end 85
 end 86
 end
end -- class

32

calls to persistence features. P-Eiffel provides automatic persistence while requiring programmer

familiarity with only a small subset of the persistence features of the interface. The use of P-

Eiffel does not require programmer knowledge of its inner workings; nevertheless, the program-

mer may desire a cursory understanding of the implementation.

33

Chapter 3 Implementation details

P-Eiffel does a lot of work behind the scenes to make automatic persistence possible. The func-

tionality P-Eiffel adds to Eiffel requires no change to the language. The persistence framework

classes coupled with a few changes to the Eiffel runtime provide automatic persistence with ac-

ceptable memory and time overhead. Appendix B shows the changes to the runtime. This sec-

tion delves into the inner workings of the persistence classes and the modified runtime. It de-

scribes the implementation of the persistence identifier and the interface to the modified runtime.

It details the type tracking mechanism and the persistence algorithm. The section ends with a

description of the open-ended nature of the actual data storage mechanism.

3.1 Persistence identifiers

In an object-oriented program, an object has implicit identity through a reference built into the

language. In the P-Eiffel framework, class PID (for persistence identifier) represents a persistable

object identity and persistable references. A PID wraps a 64-bit natural number in attribute item.

The low-order 32 bits of a PID, the object_identifier, identifies a particular persistable object. The

high-order 32 bits, the attribute_identifier, when combined with the object_identifier, provides a per-

sistable representation of an Eiffel reference (i.e. a pointer). An object-attribute pair with a non-

zero value for the attribute_identifier represents a reference. For example, the PID 4/2 represents the

reference (i.e. a persistable representation of a pointer) to the second attribute of the fourth identi-

fied object. An object-attribute pair with a zero in the attribute_identifier identifies an object. The

persistence framework classes use PID throughout to track and access persistable objects or to

obtain the object referenced from an attribute of a persistable object.

 Class PERSISTENCE_FACILITIES tracks persistable objects and monitors the persistence status

of objects in once (i.e. global) hash tables, allowing O(1) lookup with a PID key. Feature

Dirty_objects keeps track of objects that have undergone an attribute change since the last persist

operation. Feature Rooted_objects keeps track of persistable objects that are persistable as persis-

tent roots. The Expanded_links table is a necessary indirection required to link an expanded object

to the attribute of its enclosing object. Finally, feature Identified_objects keeps track of each per-

sistable object along with its persistable type. Associating an object with a PID in this table, which

is automatic, allows the framework to find an object or the type of an object when it knows the

PID of that object. The class also has feature persistence_id for O(1) lookup of a PID given an object.

The feature obtains the persistence identifier stored in the header of each object by the modified

runtime.

3.2 The P-Eiffel runtime

P-Eiffel preserves object identity through a PID, a 64-bit natural number1 added, in the runtime,

to the header of all non-basic objects. The framework classes use the low-order 32 bits of this

value to track persistable objects during a session and to identify persistent objects saved to an

external datastore. The persistence mechanism sets the persistence identifier of an object to a

non-zero value in feature identify from class PERSISTENCE_MANAGER in order to mark that object as

persistable. The creation features of PERSISTABLE call identify when initializing an object of that

type. The persistence mechanism also calls the feature when it discovers an object that should be

persistable because of reachability from some other object. To reiterate, the persistence identifier,

accessible with query persistence_id from the PERSISTENCE_FACILITIES class and set by identify from

PERSISTENCE_MANAGER, is not an attribute of an object; it is part of the object header provided by

the P-Eiffel runtime.

1 This modification of the object header requires an additional 64-bits as padding for memory alignment.

34

 Class CALLBACK_HANDLER serves as the bridge between the framework classes and the mod-

ified runtime. This class contains the calls to the C routines of the runtime. Feature persis-

tence_id_from_handler wraps the 64-bit header value and returns it as a PID. Feature set_persistence_id

sets the header value of an object when given a PID. Besides access to the persistence identifier of

an object, the CALLBACK_HANDLER also implements the callbacks to C routines that provide automat-

ic persistence functions.

 P-Eiffel’s modified runtime executes a callback in three instances. It calls feature

on_modify after all assignment statements to mark a dirty object, and it calls feature on_targeted

after creation instructions and after qualified feature calls to persist the targeted object. When P-

Eiffel persists an object, along with the attributes of the object, it also persists the type of the ob-

ject.

3.3 Tracking object types

P-Eiffel tracks the type of each object to facilitate object loading and to ensure runtime checking

of types between the repository and the session. During a normal Eiffel session, when the

runtime encounters an object of a type previously unused, the runtime maps a dynamic type, rep-

resented by an integer, to the type. The dynamic type remains unchanged during the session.

However, another execution of the same program, depending on execution order, might map that

type to a different dynamic type. Because the dynamic type of objects may differ between each

session, the persistence mechanism keeps its own type mapping for persistable objects, which is

constant between executions.

 When an object becomes persistable, P-Eiffel ensures that the persistence mechanism has

a corresponding PERSISTENT_TYPE associated with the dynamic type of that object. The PERSIS-

TENT_TYPE of an object is computed as the 160-bit SHA_1 message digest of the TYPE_DESCRIPTOR of

the object’s type. A TYPE_DESCRIPTOR is an internal representation, obtained through reflection on

an object, of the object’s generating type (i.e. the name of the class from which it was created)

combined with the names and types of each attribute. Because P-Eiffel builds the

TYPE_DESCRIPTOR, and hence the PERSISTENT_TYPE, from a generating type of an object, a descriptor

and type remain the same during any execution of a system that was built using the underlying

class, providing a combination of name and structural equivalence. P-Eiffel stores this de-

scriptor and type in the repository. The stringified TYPE_DESCRIPTOR produced from the chewie ob-

ject shows an example of the information stored in a descriptor.

It contains the generating type HERO with its three fields, companion, index, and name. It also shows

the field types and the position of the corresponding attribute within the HERO class. Here is the

PERSISTENT_TYPE produced from that string.

During a session, P-Eiffel maintains an association between a TYPE_MAPPING, a PERSISTENT_TYPE,

and the current session’s corresponding dynamic_type, storing these values in the once feature

Type_mapping from class PERSISTENCE_FACILITIES. P-Eiffel builds the mapping, adding the three-value

tuple when it first encounters a new type. After this first encounter, P-Eiffel only sends the per-

sistent type, not the entire type description, to the repository as it runs the storage algorithm.

3.4 The storage algorithm

P-Eiffel launches its storage algorithm, manually or automatically, with a call to feature persist

from class PERSISTENCE_MANAGER. This feature ensures the object passed as an argument is identi-

fied as persistable, creates a flattened representation of the object, and then asks the repository to

store that representation.

 Feature persist first ensures the object passed as argument is_persistable. If the object has

not already been identified as persistable during a previous operation, the persistence mechanism

<<{HERO} 3 fields [companion:HERO:2, index:INTEGER_32:3, name:attached STRING_8:1] >>

3ab3f827c1a217d1c25408208c236162700b03ca

35

makes it persistable by a call to identify from PERSISTENCE_MANAGER, which obtains a unique, per-

manent, persistable identifier from the repository, assigns it to the object’s header, and stores it in

the session’s Identified_objects mapping table. The repository guarantees identifier uniqueness.

 Feature persist then creates a TABULATION for the object, calling tabulate to produce a flat-

tened version of the object. The flattening process, encapsulated in the TABULATION class, recur-

sively explores an object structure starting at a root object, following references to each reachable

object. The resulting, tabulated form of the object structure consists of a set of hash tables that

contain only basic, special values, and persistable PID references along with some type infor-

mation.

 After tabulating the object structure, feature persist asks the repository to store the TABULA-

TION. Descendants of REPOSITORY implement the features that communicate with the underlying

datastore. Class MEMORY_REPOSITORY, primarily for testing, simulates persistence by keeping the

tabulated form of all persistent objects in memory, never writing the data to a permanent medium

such as a file. The class FILE_REPOSITORY saves the tabulated data into a file on the local hard

drive. Class NETWORK_REPOSITORY sends the tabulated data across a network to a PERSIS-

TENCE_SERVER. The PESISTENCE_SERVER may then communicate with a FILE_REPOSITORY to save the

data locally relative to the server. The next two subsections give more detail about the TABULA-

TION and REPOSITORY classes.

3.4.1 The TABULATION class

The TABULATION class is the heart of the persistence mechanism. Given a PID, feature tabulate ex-

plores the object structure of the referenced object, flattening the structure into a format that is

easily written to an external medium such as a file or network connection. Basically, a TABULA-

TION is a collection of hash tables containing a representation of one or more object structures

rooted at a particular persistent object, where each reference (i.e. pointer) is replaced with a PID

(i.e. a persistable reference). As the example program described above persists chewie, and

through reachability, han, it produces the TABULATION tables as shown next.

 The descriptor_table contains a TYPE_DESCRIPTOR for each object type encountered during the

traversal keyed by its corresponding type.

Table 3.1 – The descriptor_table

PERSISTENT_TYPE (key) TYPE_DESCRIPTOR1

e161a18397628154b4114879dfcf87c24d8da95a <<{HERO} 3 fields [companion:HERO:2, in-
dex:INTEGER_32:3, name:attached
STRING_8:1] >>

92df2553bd413893615c1fcddb64089bdf944b07 <<{STRING_8} 5 fields [area:attached SPECIAL
[CHARACTER_8]:1, count:INTEGER_32:5, inter-
nal_case_insensitive_hash_code:INTEGER_32:4,
internal_hash_code:INTEGER_32:3, ob-
ject_comparison:BOOLEAN:2] >>

da57f42995eab8cf94d252b7815a1b342d842c11 <<{ALTER_EGO} 2 fields [age:INTEGER_32:2,
name:attached STRING_8:1] >>

0f8546a68e6f2e0336ed267e139ccfef70f77d7f <<{SPECIAL [CHARACTER_8]} 1 fields [spe-
cial:SPECIAL [CHARACTER_8]:1] >>

Both chewie and han are of type HERO as well as is the companion field of HERO. The name field is of

type STRING_8, which itself contains an area field of type SPECIAL [CHARACTER_8]. The INTEGER_32,

BOOLEAN, and CHARACTER_8 types are basic types that the persistence mechanism stores directly in

1 This table shows the string representation of a TYPE_DESCRIPTOR. The actual value stored in the table is

the Eiffel serialization of the descriptor.

36

the table, so there is no need to map those types. The persistence mechanism creates a table,

shown later, for each of the mapped types.

 The index_table serves as a dictionary for the type of an object and the time at which that

object was last persisted. This example shows all the represented objects with the same time-of-

storage, because this particular persist operation updates all the reachable objects.

The TABULATION class has features for storing and retrieving the values in the tables. Given a PID,

the value of the corresponding PERSISTENT_TYPE leads the persistence mechanism to the table in

which the attributes of all objects of that type are stored.

Table 3.2 – The index_table

PID (key) PERSISTENT_TYPE YMDHMS_TIME

2/0 3ab3f827c1a217d1c25408208c236162700b03ca 20160208T205703.247
11/0 92df2553bd413893615c1fcddb64089bdf944b07 20160208T205703.247
3/0 3ab3f827c1a217d1c25408208c236162700b03ca 20160208T205703.247

12/0 0f8546a68e6f2e0336ed267e139ccfef70f77d7f 20160208T205703.247
13/0 92df2553bd413893615c1fcddb64089bdf944b07 20160208T205703.247
14/0 0f8546a68e6f2e0336ed267e139ccfef70f77d7f 20160208T205703.247

 The objects_table is a table of tables, where each sub-table holds the fields of all the persis-

tent objects of a particular type keyed on a PID containing an object-attribute pair. Because this

example encounters three types, there are three sub-tables.

Table 3.3 – The objects_table
PERSISTENT_TYPE HASH_TABLE [ANY, PID]

3ab3f827c1a217d1c25408208c236162700b03ca PID (key) ANY
2/1 11/0
2/2 3/0
2/3 2000
3/1 13/0
3/2 2/0
3/3 3000

92df2553bd413893615c1fcddb64089bdf944b07 PID (key) ANY
11/1 12/0
11/2 False
11/3 0
11/4 0
11/5 6
13/1 14/0
13/2 False
13/3 0
13/4 0
13/5 8

0f8546a68e6f2e0336ed267e139ccfef70f77d7f PID (key) ANY
12/1 C,h,e,w,i,e
14/1 H,a,n, ,S,o,l,o

The first row of the objects_table contains a table that holds the attributes for the two HERO objects,

object number two and object number three. Attribute number one of object number two, in the

first row of the sub-table, shows a PID that references object 11. Looking up PID 11/0 in the in-

dex_table gives the PERSISTENT_TYPE of that object which in turn leads to the second sub-table of the

objects_table. The five attributes of this STRING_8 object are stored here. For example, attribute five

of object eleven shows the basic value 6, which corresponds to the count field of that STRING_8

object. Object chewie does indeed have six characters.

37

 Flattening an object structure into a TABULATION replaces each Eiffel reference with a per-

sistable representation and reduces the entire object structure to easily serializable tables, which a

REPOSITORY then saves to a datastore or transmits over a network.

3.4.2 The REPOSITORY class

Deferred1 class REPOSITORY in the interface cluster exposes the interface to the particular type of

repository created during setup. It allows the programmer to interact with stored data. For exam-

ple, given a PID, the programmer can ask the repository if an object with that PID is_stored or can

query the repository for the stored_time and stored_type of an object. The store feature takes a TABU-

LATION as argument and adds the tabulated object structure to the datastore. The loaded feature

takes a PID and returns a TABULATION. Normally, though, the programmer does not call these fea-

tures directly but delegates the calls to the automatic persistence mechanism.

 One of the most important automatic features of the REPOSITORY class is next_pid, which

supplies the persistence mechanism with a fresh identifier for eventual assignment to some object.

The REPOSITORY manages a bucket of available identifiers, ensuring that a supplied identifier is

unique. A REPOSITORY can identify up to 231 - 1 unique identifiers. Descendant classes, such as

MEMORY_REPOSITORY, LOCAL_REPOSITORY, or NETWORK_REPOSITORY, implement most of the features

declared in the REPOSITORY class.

 The MEMORY_REPOSITORY class, useful for testing, stores objects directly in memory. This

type of repository does not provide true persistence, because the data is lost when the program

ends. It stores incoming tabulated objects during the session in its data field, which is of type

TABULATION. When the store feature receives an object structure as a TABULATION, it simply merges

the incoming tables with its own data tables. This merging is easy to implement and test.

 The LOCAL_REPOSITORY class works the same way as MEMORY_REPOSITORY, but it stores its

data to a local file after a store operation2. Though slow, this class does provide real persistence of

objects. A subsequent program execution or even another program can access the objects stored

in the data file.

 The NETWORK_REPOSITORY class provides the same interface, but instead of storing the

persistent objects in memory or to a local file, it passes its information across a network through a

socket, wrapping the data in a PMESSAGE. A PERSISTENCE_SERVER at the other end of the network

connection interprets the message, answering with the appropriate PMESSAGE. For this research,

the server stores its data in a file local to the server through a LOCAL_REPOSITORY implementation.

Figure 3.1 shows this repository setup.

1 An Eiffel deferred class is similar to a C++ “pure virtual” class and a Java “abstract” class.
2 Class LOCAL_REPOSITORY, through the Eiffel kernel class IO_MEDIUM, relies on the underlying operating

system to write data to stable storage. The current version of P-Eiffel does not confirm that the actual,

physical write actually occurs. It does, however flush the local buffer, making the objects visible to other

local processes as if the physical write has actually occurred. Future versions should address this shortcom-

ing.

38

Figure 3.1 – Application and client/server dataflow

The stand-alone application on the left, which shows an execution date of 1 May 2016, stores the

tabulated representation of its persistent objects on a local hard-drive through a LOCAL_REPOSITORY

object. The two client-server applications on the right, which show an execution date of 16 June

2016, store their persistent objects through a NETWORK_REPOSITORY. Feature ask_server wraps the

tabulated representation of its objects in a PMESSAGE, sending the message across a network to the

PERSISTENCE_SERVER at the bottom of the figure, which runs continuously. The server unwraps the

message and, through its LOCAL_REPOSITORY, stores the enclosed tabulated representation.

3.5 The underlying datastore

The three descendants of REPOSITORY show the flexibility of the framework’s implementation by

storing data to different types of medium. Though each type of REPOSITORY simply serializes its

data to its medium using Eiffel’s serialization library, a future descendant of REPOSITORY is free to

implement its underlying datastore in other ways.

 P-Eiffel’s implementation does not dictate the storage method of tabulated objects. A

new descendant of REPOSITORY could interface with a relational database or store its objects using

a B-tree. Such classes could take advantage of well-known database techniques and greatly im-

prove performance of the back end of the persistence mechanism.

3.6 Summary

The Table 3.4 summarizes the steps of the automatic persistence mechanism, giving the general

ordering of the persistence features. The table shows the top-level features only. P-Eiffel associ-

ates each persistable object with a long-term persistence identifier, allowing the modified runtime

to mark an object as dirty and to store that object and its type automatically. P-Eiffel minimizes

programmer involvement in this process, making P-Eiffel very easy to use. Its non-commitment

to a specific underlying datastore gives P-Eiffel implementation flexibility, allowing future speed

and memory improvements.1

1 See Chapter 5 for a description of planned improvements for P-Eiffel.

39

Table 3.4 – Automatic persistence steps

Feature Class Description
set_repository (r: REPOSITORY) PERSISTENCE_MANAGER The programmer calls this feature to tell

P-Eiffel where to store persistent objects.

set_persistence_automatic PERSISTENCE_MANAGER The programmer uses this feature to

enable the automatic persistence mecha-

nism.

identify (object: ANY) PERSISTENCE_MANAGER This feature, called by the creation fea-

tures of PERSISTABLE, queries the reposi-

tory for a persistence identifier, assigning

it to the object.

c_execute_callback (object: ANY) CALLBACK_HANDLER This feature is the entry point for P-

Eiffel. The modified Eiffel runtime calls

it after an object creation, after a quali-

fied feature call, or after an assignment

statement. This feature calls exe-
cute_callback.

execute_callback (object: ANY) CALLBACK_HANDLER This feature selects on_modified or

on_targeted based on the context of the

runtime’s call.

on_modified (object: ANY) CALLBACK_HANDLER This feature, called after an assignment

statement, marks the parent object as

dirty, if that object is persistable.

on_targeted (object: ANY) CALLBACK_HANDLER This feature, called after a creation

statement or a qualified feature call,

persists the object, if that object is per-

sistable.

persist (object: ANY) PERSISTENCE_MANAGER This feature produces the tabulation (the

flattened representation of the object) by

calling tabulate and passes that tabulation

on to store.

tabulate (object: ANY) TABULATION This feature reduces the object and all

dirty objects recursively reachable from

that object to a tabulated form, replacing

all pointers with persistence identifiers.

store (t: TABULATION) REPOSITORY This feature writes the tabulation, the

persistable representation of an object

structure, to a long-term storage medium.

40

Chapter 4 Performance

Execution speed and memory footprint of a production program are very important. This re-

search, however, focuses on ease of use and proof of concept, which the previous chapters

demonstrate. Nevertheless, it is prudent to look at the performance of a prototype implementation

of P-Eiffel. The intent of the speed tests is to show relative performance across P-Eiffel’s modes

and in comparison to regular Eiffel. Specifically, this section compares P-Eiffel’s automatic

mode to its mark-and-then-checkpoint mode, showing that Persisting_automatic is more efficient

than Marking_dirty followed by a manual call to checkpoint. It explores the computation burden im-

posed by P-Eiffel’s modified runtime upon Eiffel’s original runtime, demonstrating that P-Eiffel

performs acceptably when there is no persistence despite some performance overhead. The sec-

tion concludes with a discussion about the additional memory requirements of P-Eiffel as com-

pared to Eiffel.

4.1 Testing method

P-Eiffel’s three modes of operations or persistence levels, No_automation, Marking_dirty, and Persist-

ing_automatic, place various demands on a program at different times during execution. A program

in which the persistence level is set to No_automation requires very little processor time and scant

memory until the programmer manually initiates persistence operations. Persistence levels Mark-

ing_dirty and Persisting_automatic, on the other hand, require more time and memory, but the re-

quirements differ between these two modes as well. Executing a test program that persists thou-

sands of objects gives some indication of the relative demands of the three modes.

 The test program employs one of three persistence modes (e.g. No_automation, Mark-

ing_dirty, and Persisting_automatic) on various sets of objects, ranging from 10,000 objects to 70,000

objects. For each mode, the program performs ten runs, creating the proper number of objects

and triggering persistence operations on those objects. The program records the time spent for

creations, assignments, and qualified calls, because those three language constructs trigger the P-

Eiffel runtime callbacks. It also makes a manual call to trigger checkpointing in order to time that

operation. The graphs depict data that was produced by running the single-threaded test program

with assertion checking turned off and as few other processes as possible in memory.

 On each run of the test program, the main test feature calls three auxiliary features. Each

starts a timer, performs the tested operation a bunch of times, and then records the time spent in

the loop. Another auxiliary feature records the time required to checkpoint any dirty objects.

Here are the calls made by the main test feature.

 The test_creations feature records the time required to create many persistable objects and

places it into an array. The other features then operate on those objects within a similar loop

structure.

 The test_assignments feature gauges the time overhead incurred by P-Eiffel after every

assignment statement. The timing loop occurs within a feature of a single TEST_OBJECT. Assigning

a value within a feature of the enclosing object avoids a qualified feature call and thus does not

 test_creations
 test_assignments
 test_assignment_calls
 test_checkpointing

 timer.start
 from i := 1
 until i > test_count
 loop
 objects_array.extend (create {TEST_OBJECT})
 i := i + 1
 end
 timer.stop
 statistics.record_creations_time (timer.duration)

41

trigger a persist operation. The feature test_assignment_calls, on the other hand, calls a feature on

each object, assigning a value to that object, so it might trigger a persist operation when the call

returns. This feature tests the relative time required for P-Eiffel to mark an object as dirty and

then possibly persist that dirty object after the qualified feature call returns.

 The test program runs on two types of test objects, both of which descend from PER-

SISTABLE through TEST_OBJECT. The first type contains only basic attributes (e.g. INTEGER, CHARAC-

TER, BOOLEAN, etc.), whereas the second type contains references. With the exception of the one

attribute change made by test_assignment_calls, the references remain void. The use of two object

types checks P-Eiffel’s susceptibility to changes in attribute types. P-Eiffel always persists basic

attributes of dirty objects, but it only follows references if the referenced object is dirty, leading to

different timings for objects of different makeup.

4.2 Automatic versus manual checkpointing

The graph in Figure 4.1 shows the relative speeds between the persistence modes, Marking_dirty

and Persisting_automatic. Under Persisting_automatic, P-Eiffel identifies, marks, and persists a per-

sistable object when that object is created or after the object changes. Under Marking_dirty, it only

identifies and marks a persistable object, persisting only on a manual call to checkpoint. Under

no_automation, P-Eiffel creation and assignment times (shown in the next sections) are comparable

to times in a normal Eiffel program.

Figure 4.1 – Persisting_automatic versus checkpointing

 From the graph, it is clear that the Persisting_automatic mode is faster than the Marking_dirty

mode. P-Eiffel requires less time to persist objects as they are created or changed than it does to

mark the objects as dirty and checkpoint them later. P-Eiffel marks an object as dirty with rela-

tive ease, but persisting a collection of dirty objects during a checkpoint requires a considerable

amount of time. Checkpointing requires more time, because P-Eiffel must revisit dirty objects

and manage the dirty-object list as each object is persisted. If persistence is fully automatic, P-

Eiffel persists a dirty object immediately after it becomes dirty, and there is no dirty-object list to

manage. The Persisting_automatic mode is normally the best mode to use.

4.3 P-Eiffel versus Eiffel

The next graphs compare P-Eiffel’s time costs to Eiffel. For these tests, the test objects no longer

inherit from PERSISTABLE and hence are not automatically persistable. Despite the fact that P-Eiffel

persists no objects in these tests, it still checks if persistence is required after each object creation,

assignment, and qualified feature call. Figure 4.2 and Figure 4.3 show the overhead of these ad-

42

ditional calls. Unlike the previous graph, which show time in seconds, these graphs depict time

in hundredths of a second.

Figure 4.2 – P-Eiffel v Eiffel (creations)

Figure 4.3 – P-Eiffel v Eiffel (assignments)

 If the mode of the PERSISTENCE_MANAGER is set to No_automation, the difference in execution

times between P-Eiffel and Eiffel is almost immeasurable. However, if the persistence_mode is

anything other than No_automation, a program compiled with P-Eiffel requires more time per oper-

ation than the same program compiled with normal Eiffel, even if the program persists no objects.

If the program requires great speed and does not need persistence, then use the normal Eiffel

compiler, not P-Eiffel, or turn off automation.

 On the other hand, if object persistence is important, then the programmer should consid-

er using P-Eiffel. The test and timing programs exhibit no user-detectable delays during interac-

tive executions.

4.4 Memory overhead

Program execution time is not the only concern. Execution of a P-Eiffel program requires more

memory than a normal Eiffel program. The P-Eiffel framework classes as well as the modified P-

Eiffel object header use additional memory.

 The framework class PERSISTENCE_FACILITIES tracks persistable, rooted, and dirty objects in

globally accessible tables. The impact of the tables themselves, which are once features, is small,

but the content can become significant when there are many persistable objects. The tables store

references to objects, indexing each object by a PID. Ideally, a persistence identifier should use

only eight bytes, but because this version of P-Eiffel wraps the 8-byte identifier in a non-basic

object, every PID instance incurs the overhead required by non-basic objects, which is driven by

the size of the object header.

 The largest impact on memory, then, comes from P-Eiffel’s object-header format. First,

P-Eiffel’s runtime adds an 8-byte persistence identifier to each object. Furthermore, it requires an

additional 8-byte pad for memory alignment. The resulting object header occupies 32 bytes in-

stead of the 16 bytes required by the normal Eiffel runtime. Table 4.1 shows P-Eiffel’s memory

allocation scheme applied to a HERO object.

Table 4.1 – Memory allocation for HERO
 Fields Size (in bytes)

Eiffel Header type, flags, and processor identifier 16

P-Eiffel Header persistence identifier plus padding 8 + 8

Reference Fields name: STRING_8

companion: detachable HERO

4

4

Other Fields index: INTEGER_32 4

Padding to bring size to multiple of 32 20

 Total 64

43

Because P-Eiffel, like Eiffel, allocates space for objects in multiples of the header size, P-Eiffel

objects always occupy at least 64 bytes, slightly more space than required by normal Eiffel ob-

jects.1

4.5 Meeting expectations

Atkinson and Morrison were among the first researchers to add persistence to a programming

language. Their research includes PS-Algol [7], which adds persistence to S-Algol, and PJama

[8], an early version of persistence for Java. When describing their research, they developed

three main principles, collectively called orthogonal persistence, which they believe developers

of programming languages should pursue. These principles, shown later, are often, like now,

quoted in research papers, because they represent the minimum requirements of a persistent pro-

gramming language. These principles have guided developers of persistent programming lan-

guages for the last 30 years. But programmers expect many more capabilities from a persistent

programming language, particularly capabilities normally allocated to a database management

system. This section describes how well P-Eiffel lives up to Atkinson’s orthogonal persistence

principles and then examines how well it meets programmers’ expectations in database-like oper-

ations.

4.5.1 Orthogonal persistence

 Atkinson and Morrison believe developers of programming languages should pursue

orthogonal persistence, as defined by three principles:

1. The Principle of Persistence Independence – The form of a program is

independent of the longevity of the data which it manipulates. Programs

look the same whether they manipulate short-term [transient] or long-

term [persistent] data.

2. The Principle of Data-Type Orthogonality – All data objects should be

allowed the full range of persistence, irrespective of their type. There are

no special cases where objects are not allowed to be long-lived or are not

allowed to be transient.

3. The Principle of Persistence Identification – The choice of how to

identify and provide persistent objects is orthogonal to the universe of

discourse of the system. The mechanism for identifying persistent ob-

jects is not related to the type system. [9]

In older literature, the exact meaning of principle three is unclear or is assumed to have been sub-

sumed by the other two principles. To clarify this ambiguity, Atkinson restates principle three:

3. The Principle of Completeness or Transitivity – If some data structure

is preserved, then everything that is needed to use that data correctly

must be preserved with it, for the same lifetime. [5]

This principle is the same as Meyer’s Persistent Closure Principle.

 P-Eiffel conforms to all these principles. It satisfies the first principle, persistence inde-

pendence, because a P-Eiffel program looks just like a normal Eiffel program. Calling a persist

feature or inheriting from PERSISTABLE are normal Eiffel constructs. P-Eiffel achieves persistence

with no change to the language itself. Furthermore, the amount of application code actually re-

quired for persistence in P-Eiffel is minimal.

1 Some of this memory overhead may be reduced in future implementations, as described in Chapter 5.

44

 P-Eiffel places no restrictions or requirements on the type of an object in order for that

object to persist. P-Eiffel’s persistence type system is completely orthogonal to the Eiffel type

system. A P-Eiffel program behaves the same as an Eiffel program, except for the additional

persistence semantics. P-Eiffel satisfies principle number two.

 P-Eiffel also satisfies Principle number three, completeness. Through persistence by

reachability, P-Eiffel ensures all objects that should be persisted are persisted. Satisfying all three

principles, P-Eiffel is truly a persistent programming language.

 persistent programming language – a programming language that provides some

degree of orthogonal persistence

4.5.2 Database features

P-Eiffel achieves the minimum requirements for a persistent programming language, adding per-

sistence to Eiffel without negatively affecting the language, but to be truly useful, it must also

meet at least some of the expectations that programmers normally associate with a relational or

object-oriented database system. The following paragraphs list these expectations and describe

how well P-Eiffel lives up to them.

 Database systems were developed to overcome the limitations of storing data in the

1960’s era file-processing system, such as unnecessary data redundancy and inconsistency, diffi-

culty in accessing data, data integrity violations, and security and concurrent-access problems

[83]. Codd’s landmark paper [23] defines the relational database model and sets the stage for its

dominance among data models. The model’s success has led to the expectation that a database

system should achieve certain goals.

 The goals required of any database system and of an object-oriented database system are

listed in the forward to a collection of readings by pioneers on the subject [90] and summarized

by Meyer [56]. Atkinson also stated similar goals in the often-quoted Object-Oriented Database

System Manifesto [6]. The bulleted items below show the goals for databases listed by Zdonik et

al. and Meyer. Bold font indicates items that Zdonik et al. and Meyer include in the Threshold

Model [56, 90] for object-oriented databases.

 Object identity [47] – A database must be able to determine if two references

point to the same object, to two equivalent objects, or to non-equivalent objects.

 Encapsulation – A database must hide the internal properties of objects and make

them accessible through an official interface, hiding the data and implementation.

 Complex state – Objects must be able to refer to other objects through references.

 Inheritance, overriding, overloading, and dynamic binding – A database may pro-

vide these capabilities, which are common to object-oriented programming lan-

guages, but whose usefulness in a database language seems unclear and perhaps

too complex to be practical.

 Computational completeness – A database may include the ability to express any

computable function. This concept is really the whole point of persistent pro-

gramming languages, but it may add too much complexity to a database language.

 Integrity constraints – The user should be able to describe and enforce the cor-

rectness and consistency of data.

 Query mechanism – There must be some provision to allow users (database users

or application programmers) to access data based on properties of the data items.

P-Eiffel achieves the first of these goals, object identity, through class PID and the modified

runtime’s use of persistence identifiers. P-Eiffel satisfies the other goals (except for overloading,

which Eiffel does not incorporate) simply by virtue of the language. P-Eiffel ensures integrity

constraints within the application through Eiffel’s built-in assertion mechanism, specifically the

45

class invariant. Enforcing integrity between two different systems would require invariant inclu-

sion in the repository. In order to implement a fully capable query mechanism, P-Eiffel would

need to store more type information, encompassing attribute renaming, which is not yet available

in P-Eiffel’s repository. Chapter 5 describes the plan for adding full integrity enforcement and

query capability to P-Eiffel.

 Programmable structure – The database must support much more than streams

of bytes. It must represent and store relationships and types in the database while

keeping the logical and physical representation of the data separate. It must hide

most of the data management tasks from the user.

 Arbitrary size – The processor or amount of memory must not limit the data-

base’s addressable space.

P-Eiffel does not require a separate database with a programmable structure, because the

structure and programming occurs through the language within the application. The re-

pository simply holds the data, hiding management of the data from the programmer.

The amount of data in the repository is limited only by the underlying data representation

as defined in a descendant of the REPOSITORY class. Eiffel, though, does impose some

restrictions. For example, the implementation of feature count in the container classes

limits the number of items in a container to the maximum value represented by an INTE-

GER_32 (over 2 billion items). Similar restrictions exist in Java and C++ class implemen-

tations. This restriction, though, affects the P-Eiffel (or other language) application only,

not a properly designed repository.

 Permanence –The data must be accessible beyond execution of the process that

created the data and be resilient to system failures. This capability may require

some recovery mechanism and/or data redundancy.

 Distribution – A database system may distribute data over multiple computers in

different geographic locations to improve performance or increase availability.

P-Eiffel’s main function is data permanence. P-Eiffel achieves permanence gracefully

with no impact on the Eiffel language and requires very little effort from the programmer.

Though not yet resilient to system failures, P-Eiffel provides access to data from process-

es other than the one that created the data. Chapter 5 addresses failure recovery, data

redundancy, and the closely related concept of data distribution and suggests possible

paths for adding these functions to P-Eiffel.

 Authorization or access control – The database must allow users to own data and

have a way to grant access to others.

 Administration – A database system requires tools to monitor, reorganize, and

change users to the database.

The P-Eiffel prototype developed for this dissertation does not enforce access control, but

it does contain the basic mechanism, class CREDENTIALS, which encapsulates the concept.

Expanding the capabilities of that class should be straightforward. Adding a tool that

manipulates user and connection information contained in a PSERVER should also be

easy. These two goals are not necessary for demonstrating the feasibility of a persistent

programming language like P-Eiffel, so they can be addressed after completion of other,

more important functions.

46

 Sharing – A database system must allow multiple programs to simultaneously ac-

cess data created by another program. A snapshot or checkpointing system, such

as provided by class IO_MEDIUM is not enough.

P-Eiffel supports sharing through classes NETWORK_REPOSITORY and PSERVER. Multiple

applications may connect through a NETWORK_REPOSITORY to communicate with a single

PSERVER object.

 Locking – Users or programs should be able to obtain exclusive access to data

items.

 Transactions – Users or programs should be able to achieve failure-atomic opera-

tions in isolation from other operations and allow rollback in the event of failure.

Object locking and transaction support are closely related and necessary for concurrent object

access in a shared environment. The current version of P-Eiffel does not implement locking or

transaction support, but future research should investigate the feasibility of meeting these goals.

 Object versioning – A database might retain earlier states of an object after the

program changes the object.

 Class versioning and schema evolution – Systems always evolve and classes

change. The stored objects must follow suit with any class changes if they are to

remain usable.

These two goals fall outside the scope of this research. Object versioning provides a history or

logging mechanism and may facilitate rollback operations, but this goal is not important for P-

Eiffel at this time. Class versioning and schema evolution is important in the long run; some

Eiffel classes (e.g. SED_RECOVERABLE_DESERIALIZER and MISMATCH_CORRECTOR) already provide a

rudimentary support for schema evolution. Piccioni et al. describe an IDE-based solution to

schema evolution integrated with Eiffel Software’s Eiffel IDE and compiler [75, 76]. In the fu-

ture, a new P-Eiffel compiler, developed for other reasons as described in Chapter 5, may be able

to incorporate some of their work.

 The following table shows each of the above goals along with the orthogonal principles,

showing how P-Eiffel fares when evaluated against them. A “yes” in the status column means

that P-Eiffel has that capability, and the provided-by column indicates if that capability comes

from the Eiffel language (Lang), the P-Eiffel runtime (RT), or from the persistence framework

(PF). A “no” in that column means that P-Eiffel does not yet provide that capability. The “yes

and no” for inheritance and dynamic binding indicates that while Eiffel provides these mecha-

nisms, P-Eiffel does not yet include the inheritance structure of objects within the repository. The

requirement column indicates where to focus future work in order to provide a particular capabil-

ity.

Table 4.2 – Persistence goals and P-Eiffel
Goal Status Provided by Requirements

persistence independence yes PF

data-type orthogonality yes PF

persistence completeness yes PF

object identity yes PF and RT

encapsulation yes PF and Lang

inheritance, dynamic binding yes and no Lang Compiler extension and additions to PF

complex state yes Lang

computational completeness yes Lang

integrity constraints partial Lang Compiler extension and additions to PF

47

Table 4.2 – Persistence goals and P-Eiffel
Goal Status Provided by Requirements

query mechanism partial PF Compiler extension and additions to PF

programmable structure yes Lang

arbitrary size yes FW and Lang

permanence yes PF

distribution no Additions to PF

access control partial PF Additions to PF

administration no Additions to PF

sharing yes PF Additions to PF

locking no Additions to PF

transactions no Additions to PF

object versioning no NA

schema evolution no NA

 The table shows that the prototype P-Eiffel compiler already facilitates the production of

programs that meet over half of the listed capabilities. The main item deserving attention is a

robust query mechanism, which requires an enhanced compiler. A new compiler that can gather

the information required for queries will likely also eliminate the shortcomings in enforcing in-

tegrity constraints and including inheritance structure within the repository. Chapter 5 discusses

the requirement of an enhanced compiler in more detail. A new compiler with some additions to

the persistence framework could transform the existing prototype P-Eiffel compiler into a produc-

tion-quality compiler of great benefit to programmers.

4.6 Measuring effectiveness

If P-Eiffel is useful, it should help a programmer produce persistence-related programs that are

better than and cheaper than programs produced without P-Eiffel. Measuring the quality of soft-

ware, though, is difficult. Often, writers describe quality software with terms such as reliability,

efficiency, and usability [71]; simplicity and expressiveness [82]; or robustness, extendibility, and

compatibility [55]. However, measurements of these software qualities are very subjective. To

present a more objective assessment of P-Eiffel, this research relies on criteria similar to the

measurements presented by Grimstad et al. [33] in their evaluation of the usability aspects of

PJama.

 First, Grimstad et al. link the subjective qualities: maintainability (the measure of effort

required to change code), understandability (the ease of code comprehension), and reusability (the

ability to use the code in other applications) to objective measurements: lines of code (LOC),

persistent explicit lines of code (PLOC), and number of persistence affected classes (PNOC1).

They argue that writing fewer lines of code improves maintainability and eases code under-

standability and that high cohesion and low coupling improve maintainability, understandability,

and reusability. If we accept their premise, then we can at least anecdotally explore the useful-

ness of P-Eiffel.2

 Grimstad et al. use a measurement tool to count the number of lines of code (LOC), de-

fined as productions rather than line-shifts. Instead, the metric tool for this research counts all

lines of code, including comments, which presents no problem, because the comments remain

almost the same in all versions of the test programs. Besides, good comments are an integral part

of a well-written Eiffel program. Because the programs contain so few persistence-related fea-

tures, and a relatively small number of persistence-related lines of code, hand counting persistent

affected lines of code (PLOC), where a PLOC is defined as a line containing a call, declaration,

1 Grimstad et al. actually abbreviated this metric as NOPC.
2 Future work will test the hypothesis that automatic persistence makes persistence programming easier and

less error prone by comparing P-Eiffel programs with their Eiffel counterparts.

48

or variable that directly relates to the persistence framework classes or features, is sufficient. The

number of persistence-affected classes (PNOC) is any class that contains a PLOC. To obtain the

number of classes (NOC) and PNOC, this study counts only the application’s classes; it does not

include persistence framework classes or supporting kernel classes. It also counts the total num-

ber of features (NOF) and the number of features that contain persistence code (PNOF). Again,

these metrics only count the number of immediate features, those features defined in the applica-

tion’s classes, excluding inherited features.

 This research evaluates three programs: 1) Supers, a more involved version of the Demo

program that served as the example in section 2.4 ; 2) Flipper, an Othello game with a graphical

user interface; and 3) Victory in the Pacific (VITP), a computer version of that 1970’s board

game.

Figure 4.4 – Othello

Figure 4.5 – Victory in the Pacific

Program Supers performs the persistence actions described in Section 2.3 , displaying the results

of each step in the terminal window. Parallel versions of the programs, one using serialization

and one using database mapping, mimic the persistence version of their respective program as

closely as possible. The parallel versions require additional features to emulate the dirty-marking

and automatic-persistence features of the P-Eiffel versions. The serializable versions fail to main-

tain object identity. Flipper incorporates automatic persistence, saving the state of the current

game after each player’s move. VITP uses the intermediate level of persistence, marking objects

as dirty, then checkpointing the changes when the player commits the changes. The VITP ver-

sion using serialization saves the state of the entire game when the player commits his actions. I

abandoned the database-mapping approach for VITP, because developing and testing a VITP

database to accompany the application quickly became overwhelmingly difficult.

 Figure 4.6 depicts the number of lines of code (LOC) for the Supers and Flipper pro-

grams, showing the lines of persistence-related code (PLOC) in red. The percentages at the top of

the columns show the ratios of PLOC to LOC.

49

Figure 4.6 – Persistence-related lines of code

 The serialized versions of the programs require slightly more persistence-related code

than P-Eiffel versions. Much of the additional code in Supers emulates the marking-dirty and

checkpointing features native to P-Eiffel.

 The database-mapping versions require much more code than the serialized or P-Eiffel

versions of the same program, mostly to build and access the database tables. The database in the

Supers program must model the PERSON class and all its descendants, and account for multiple

inheritance used by some of the program’s classes. The database for Flipper, on the other hand,

models only the GAME and DISK classes, so it does not require as much additional code. The

amount of database-mapping code is dependent upon the number and complexity of the modeled

classes. Increased complexity of the modeled classes also manifests as an increase in the number

of persistence-related features (PNOF), as shown in Figure 4.7.

Figure 4.7 – Persistence-related features

The relationships between the classes in VITP were so complex that I abandoned the database-

mapping version. Table 4.3 shows the metrics collected from the three programs, including class

and feature counts as well as the number of lines of code.

50

Table 4.3 – Program metrics
 DB mapping Serialization P-Eiffel

 PLOC / LOC 537 / 1499 = 35.82% 86 / 920 = 9.35% 43 / 884 = 4.86%

Supers PNOC / NOC 2 / 7 = 28.57% 1 / 7 = 14.30% 2 / 7 = 28.57%

 PNOF / NOF 46 / 112 = 41.07% 22 / 86 = 25.58% 12 / 81 = 14.81%

 PLOC / LOC 304 / 1670 = 18.20% 47 / 1292 = 3.64% 42 / 1275 = 3.29%

Flipper PNOC / NOC 2 / 10 = 20.00% 1 / 10 = 10.00% 2 / 10 = 20.00%

 PNOF / NOF 16 / 113 = 14.16% 4 / 102 = 3.92% 3 / 99 = 3.03%

 PLOC / LOC 56 / 34,115 = 0.16% 45 / 34,115 = 0.13%

VITP PNOC / NOC 1 / 155 = 0.65% 2 / 155 = 1.29%

 PNOF / NOF 5 / 1926 = 0.26% 4 / 1925 = 0.21%

The PLOC, PNOC, and PNOF measures do not increase as the size of the program increases. For

P-Eiffel, the PLOC mainly represents initialization and loading. Storing operations require no

additional code. These metrics show that adding P-Eiffel’s persistence mechanism to an Eiffel

system requires very little effort from the programmer.

4.7 Summary

Tests show that P-Eiffel’s automatic persistence mode performs adequately, despite a small speed

degradation and additional memory requirement when compared to a normal Eiffel program. The

benefits of automatic persistence, though, offset these penalties. With P-Eiffel, a programmer

adds persistence to a program using little additional code, which is restrictable to a small number

of classes. The small overhead in lines of code and minimal impact on class coupling allow a

programmer to easily add persistence to a system without affecting the system’s maintainability,

understandability, and reusability.

51

Chapter 5 Future research

The version of P-Eiffel described in this dissertation provides automatic persistence with very

little programmer effort. Storing and retrieving objects with P-Eiffel is easier than with a seriali-

zation or database approach. P-Eiffel expands the usefulness of Eiffel with no change to the lan-

guage. Though it has some memory and time overhead, it does show that automatic persistence

in an object-oriented language is feasible and beneficial, and it lays the groundwork for future

research into persistence. This continuing research should first fix some speed and memory inef-

ficiencies of the framework classes. After improving performance, the research should branch

into areas that have been too difficult or beyond the scope of this current research.

 The early stages of P-Eiffel’s development focused mainly on modifying the Eiffel com-

piler, but developing a new compiler required more manpower, expertise, and time than was

available. As a compromise, P-Eiffel developed around modifying the runtime. This compro-

mise prevents P-Eiffel from including class invariants in persistent type definitions and limits

support of Eiffel’s inheritance and type conformance mechanisms in the persistent data. A com-

piler that directly supports P-Eiffel’s persistence mechanism would be a great improvement. P-

Eiffel also needs improvement in its database functionality, such as security, transactions and

locking, read-write error recovery, and data replication. This chapter looks back at some of the

difficulties encountered during development. It then addresses some of P-Eiffel’s inefficiencies,

the inclusion of persistent invariants, a fully supported persistent type system, and database is-

sues. It concludes by looking forward with hopeful optimism to P-Eiffel’s future contributions.

5.1 Looking back

The beginning of the P-Eiffel project was characterized by enthusiasm, confidence, and ambition.

Setbacks during development revealed that the project might also have had an abundance of over-

confidence. At the start, I believed that I could easily modify Eiffel Software’s compiler. After

many painstaking hours, I realized that I lacked the expertise required to learn the code layout and

modify it without breaking other aspects of the compiler. The code for the compiler and Eif-

felStudio, the Eiffel GUI integrated environment, is publicly available, but there is little docu-

mentation describing the code’s logic. My lack of understanding of the compiler’s implementa-

tion and its tight coupling with EiffelStudio and the runtime led to false starts.

 The attempted compiler modification sought to modify the code it generates, so that it

would inject at appropriate points in the abstract syntax tree new nodes that represent calls to

persistence-related features. In order to give the compiler access to these new features, I modi-

fied class ANY, adding new attributes such as persistence_id and is_dirty. After many hours of de-

bugging, I realized that the problem was not with the modified compiler, but with the new ANY

class. The original text of class ANY states that the class “may be customized for individual pro-

jects or teams”, but it failed to give details about restrictions placed on these modifications. Only

after many hours wasted debugging code did I discover that the Eiffel compiler does not allow

attribute additions.

 After realizing that attributes could not be added to every class via class ANY, I took a

different tack, attempting to preprocess a system of classes to inject the desired functionality by

inserting new feature calls into the class texts. Though tedious, this approach could explore all

the classes in a system and somewhat parse the code, but problems surfaced when a class text

ventured beyond basic Eiffel structure. For example, the preprocessor successfully handles a

feature call such as the following.

 However, the preprocessor could not understand more sophisticated constructs:

 my_object.do_something

 my_object.do_something (a_object.get_object)
 my_object.get_object.other_object

52

Feature calls nested inside a parameter list and chained feature calls proved too problematic to

reliably intercept. As these constructs are not uncommon, a new approach became necessary.

The new approach, a modified runtime, allowed the construction of the prototype version of P-

Eiffel described in this thesis.

5.2 Correct inefficiencies

The current version of P-Eiffel abstracts the 64-bit persistence identifier with class PID. The PID

class permeates the persistence framework, so there are many instances of this type in a P-Eiffel

program, and each PID object incurs the memory overhead associated with complex objects. This

overhead consists of the P-Eiffel object header, which itself contains an unused 8-byte persistence

identifier, plus padding. As a result, every PID requires 64 bytes of memory just to wrap an 8-byte

identifier. Removing the PID class and replacing that type with a NATURAL_64 type should save

quite a bit of memory and may give a slight speed improvement. Unfortunately, feature signa-

tures would then become less descriptive. For example, the signature of the feature loaded from

PERSISTENCE_MANAGER informs the programmer that the argument is a persistence identifier.

The new form is a little less informative.

Class PID has been very helpful during development, providing a very specific type for contexts

that use a persistence identifier, making the implementation more readable and helping in debug-

ging. Now that P-Eiffel is operational, this readability can be sacrificed for a substantial reduc-

tion in memory use.

 P-Eiffel’s memory usage also suffers in another way. Feature Identified_objects from class

PERSISTENCE_FACILITIES keeps track of persistable objects, pairing each of them with its persistence

identifier for quick lookup of an object given an identifier. Unfortunately, once P-Eiffel places a

reference to a persistable object into the Identified_objects table, the garbage collector never re-

claims the memory used by that object, even if the referenced object otherwise goes out of scope.

Because a reference to the object still exists in the table, the garbage collector can never free that

memory even if the program never uses that object again. The current arrangement defeats the

Eiffel garbage collector, at least in spirit. A future version of P-Eiffel should address this issue,

perhaps by using class WEAK_REFERENCE or by tying directly into the Eiffel garbage collector itself.

 Future research must also investigate garbage collection of persistent objects in the REPOS-

ITORY. At one point during execution of the example system of Section 2.3 , the program changes

the name of one of the PERSON objects after that person and his name has been written to the re-

pository. From the program’s perspective, the old name is unreachable from any root object, and

the persistent memory should be freed to prevent the accumulation of persistent garbage. A less

myopic view reveals that persistent garbage collection is not so straightforward. Some other pro-

gram, currently running or not, might need that object. In that case, deleting the object in ques-

tion is wrong. The repository could track all the programs or users that refer to particular objects,

but that solution just pushes the problem back. How long should a repository maintain a persis-

tent object if that object is unreferenced for a long time? The version of P-Eiffel described in this

dissertation does not yet implement the repository’s garbage collector, and perhaps this solution is

best. After all, long-term storage is cheap and, by definition, a persistent object never goes out of

scope. Nevertheless, for completeness, future versions of P-Eiffel should explore persistent gar-

bage collection, because automatic garbage collection is a very important feature of Eiffel.

5.3 Include persistent invariants

Another important feature of Eiffel is its built-in support for assertions, particularly class invari-

ants, which express “consistency constraints applicable to all instances of a class.” [16] Class

 loaded (a_pid: PID): ANY

 loaded (a_pid: NATURAL_64): ANY

53

invariants, and the accumulation of invariants in descendants, serve to define the correctness of

classes and help improve reliability of software. Invariants describe properties that must hold for

every instance of that class. An assertion violation during execution does not represent an excep-

tion from which the system should recover, but an invalid state that should never exist; it indi-

cates an error in the software. A correct program, then, should contain only consistent objects.

P-Eiffel takes this view of assertions, storing an object only when it satisfies the object’s asser-

tions. Unfortunately, the current version of P-Eiffel cannot enforce consistency constraints be-

tween different programs retrieving the same object, because P-Eiffel lacks the ability to discover

invariants during program execution and hence is unable to include the invariants in the reposito-

ry.

 Meyer considers the inclusion of attribute names and types along with objects to be the

minimum amount of information necessary for a reasonable approach to persistence but concedes

that the inclusion of the class invariant would be a better policy. While describing requirements

for schema evolution, he suggests four possible levels of information that a persistence mecha-

nism could store in a class descriptor to capture object types. His description of the four levels

follows:

C1 • At one extreme, the class descriptor could just be the class name. This is

generally insufficient: if the generator of an object in the storing system has the

same name as a class in the retrieving system, we will accept the object even

though the two classes may be totally incompatible. Trouble will inevitably fol-

low.

C2 • At the other extreme, we might use as class descriptor the entire class text

— perhaps not as a string but in an appropriate internal form (abstract syntax

tree). This is clearly the worst solution for efficiency, both in space occupation

and in descriptor comparison time. But it may not even be right for reliability,

since some class changes are harmless. Assume for example the new class text

has added a routine, but has not changed any attribute or invariant clause. Then

nothing bad can happen if we consider a retrieved object up-to-date; but if we de-

tect an object mismatch we may cause some unwarranted trouble (such as an ex-

ception) in the retrieving system.

C3 • A more realistic approach is to make the class descriptor include the class

name and the list of its attributes, each characterized by its name and its type. As

compared to the nominal approach, there is still the risk that two completely dif-

ferent classes might have both the same name and the same attributes, but (unlike

in case C1) such chance clashes are extremely unlikely to happen in practice.

C4 • A variation on C3 would include not just the attribute list but also the

whole class invariant. With the invariant, you should be assured that the addition

or removal of a routine, which will not yield a detected object mismatch, is harm-

less, since if it changed the semantics of the class it would affect the invariant.

[56]

P-Eiffel currently provides level C3. It builds a persistent type representation through reflection,

discovering the class name, attribute names, and attribute types when it stores an object. P-Eiffel

avoids the space and time overheads mentioned by Meyer, because it computes a digest to repre-

sent type information. Because Eiffel’s reflection mechanism does not yet provide access to in-

variant definitions, P-Eiffel has no way to discover invariants at runtime. Runtime invariant dis-

covery, which would improve P-Eiffel’s ability to enforce object consistency, requires a new

compiler. Not only could a new compiler discover invariants, it could also build the type infor-

mation that P-Eiffel currently finds through reflection at runtime, improving P-Eiffel’s efficiency.

54

5.4 Allow queries with an improved persistent type system

Besides improving persistent object consistency checking, a new compiler could allow P-Eiffel to

fully support Eiffel’s type system in the repository. The current implementation discovers type

information through reflection on an object when it is stored. The resulting type information,

though adequate for P-Eiffel to recreate any stored object, does not contain complete information

about an object’s lineage. P-Eiffel only knows the generating type of each stored object, and it

knows the persisted types to which an object conforms. P-Eiffel does not account for feature,

specifically attribute, renaming. P-Eiffel’s rudimentary query mechanism allows queries based

on object types but is incomplete for queries about specific attributes.

 P-Eiffel has enough persistent type information to perform queries based on object con-

formance. In the context of the example program from previous chapters, the query, “Return all

HERO objects” works as expected. A test program using the prototype P-Eiffel implementation

retrieves all persisted HERO objects using the following code.

After obtaining the PERSISTENT_TYPE corresponding to the run-time dynamic type of HERO, the code

queries the Persistence_manager for a list of objects of that type. Calling this query at the end of the

example system described in 2.3 returns chewie, han, batman, and robin, because the types of these

objects conform to type HERO.

 Though not yet implemented, it should be straightforward to implement in the repository

the ability for P-Eiffel to answer queries such as, “Return all SUPERHERO objects that have a side-

kick.” The repository explores the type information and returns the representation of those objects

that have a non-void entry in the representation of the sidekick attribute. But queries involving

attributes are limited, because P-Eiffel is unable to account for feature renaming. A query such

as, “Return all SUPERHERO objects that have a companion” would fail to find batman, because the

SUPERHERO class renames the companion attribute inherited from HERO as sidekick. Because the per-

sistent type system in the repository lacks information about the renamed attribute, the current

implementation of P-Eiffel fails for such queries.

 Accounting for attribute renaming and redefinition is problematic. While it may be pos-

sible to determine with reasonable probability that an attribute from an ancestor is renamed or

redefined in a descendant type and to even infer the original name and type, there seems to be no

way to positively identify all renamed or redefined attribute information at runtime. In the long

run, a compiler built specifically to gather the persistent type information is necessary.

5.5 Add other database functionality

While work on a persistence-aware compiler proceeds, another branch of research should focus

on extending the existing persistence framework to incorporate functions normally performed by

a database. In order for P-Eiffel (or any other persistent programming language) to reach produc-

tion status, it must robustly incorporate security, data replication and durability, and safe object

sharing through transactions or locking.

 P-Eiffel does not yet incorporate security, but the username and password features of class

CREDENTIALS, unused in the example programs but required for connection to a repository, could

provide authentication and access privilege enforcement. When a program initially creates a

repository, P-Eiffel could record salted and hashed username and password values in the repository,

setting the owner to this initial creator. Subsequent connections to that repository would verify

 load_heros: LINKED_LIST [ANY]
 -- Load all the stored {HERO} objects.
 local
 pt: PERSISTENT_TYPE
 do
 pt := persistent_type_from_dynamic_type (({HERO}).type_id)
 Result := Persistence_manager.loaded_by_type (pt)
 end

55

the username and password. Furthermore, envisioned NETWORK_REPOSITORY features could allow

the repository owner to set the access mode to something other than the default read-and-write

mode in which any user can modify objects in the repository. A private setting would allow only

the owner to access the repository; a read-only setting would allow other users to access objects

from the repository while allowing only the owner to make changes to those objects. P-Eiffel

could implement the private setting in the framework code that connects a user to the repository;

it could implement the read-only setting at the point of the persistence calls, allowing the program

to run normally while avoiding calls that write objects to the repository. This multiple-tiered data

access scheme implemented in the existing framework or runtime would enhance P-Eiffel’s data

security.

 P-Eiffel’s data security could be enhanced further by adding encryption. Simple data

encryption of a repository would prevent programs other than P-Eiffel programs specifically de-

signed for that repository’s data types from viewing or modifying the contents. Encryption func-

tions could be added at the point of data persistence and loading. The choice to encrypt or not

could be controlled by the programmer with calls to features to be added to the REPOSITORY class.

The speed and memory costs that these authentication and encryption features would add is un-

known, but they would enhance P-Eiffel’s usefulness.

 Replication and durability of persisted data might also be useful. Google’s Cloud Storage

Service [22] and Amazon’s Simple Storage Service [4] provide various levels of data access,

security, disaster recovery, and backup. These functions could be added to P-Eiffel in a descend-

ant of the REPOSITORY class built using the API of one of these services. On the other hand, a RE-

POSITORY for object replication and distribution built specifically for P-Eiffel might provide faster

access to persistent objects. Because P-Eiffel’s persistence mechanism, at least in full_automatic

mode, persists objects after every qualified feature call, the amount of data transferred is usually

quite small. This fine granularity provides a checkpoint of sorts for an object after every persist

operation. The class invariant ensures object consistency at the time of the write. Combining this

consistency checking with logging and repository mirroring could provide a stable and reliable

persistence mechanism and make P-Eiffel much more useful.

 For P-Eiffel to become unquestionably useful, one more, perhaps the most important,

database-like capability must be added—the capability for many programs to concurrently and

safely access the same repository. Using a common example, the following code segment illus-

trates how concurrent feature calls might violate object consistency even when preconditions are

present. In this typical scenario, the transfer_off feature from class ACCOUNT attempts to move

money from the current account into some other account. The precondition requires that the orig-

inating account starts with enough money to accommodate the transfer.

In a concurrent environment, between verification of the precondition and execution of the call to

withdraw, a second program can deplete the account, invalidating the call. P-Eiffel must protect

against this type of consistency violation while still allowing concurrent access to objects. It

might be possible for P-Eiffel to provide object sharing through transactions with locking [29, 83]

or with synchronization through semaphores or even with conditional critical regions [61], but

both methods seem difficult, because they both require a sophisticated concurrency management

system on top of the persistence mechanism. Instead, I hope that P-Eiffel can leverage Eiffel’s

built-in Simple Concurrent Object-Oriented Programming (SCOOP) mechanism.

 SCOOP addresses synchronization issues such as race conditions, atomicity violations,

and deadlocks. Using SCOOP, a programmer does not have to deal with semaphores, mutexes,

transfer_out (a_amount: INTEGER; a_other: ACCOUNT)
 require
 has_sufficient_funds: balance >= a_amount
 do
 withdraw (a_amount) -- Sets `name’ and `index’.
 a_other.deposit (a_amount)
 end

56

or critical regions. A SCOOP-enabled program has one additional reserved word and only slight-

ly modified contract semantics. Though SCOOP is currently implemented using threads, it is

progressing toward wider implementation strategies. The SCOOP developers envision an envi-

ronment that handles simultaneous program executions not just with separate processors in the

same CPU but by widely diverse computational engines, including separate networked computers

[24].

 Regardless of the implementation, simultaneous repository access by multiple programs

requires some method to notify clients that a particular object in the repository was changed and a

way for the client programs to react to these changes. This functionality could be achieved with

the addition of a few features to the PSERVER and REPOSITORY class. The PSERVER could track each

client that is currently accessing it and the objects in which each client is interested. When a cli-

ent changes one or more objects, the server would send a list of persistent identifiers to interested

clients. Upon receipt of a change, each client that requires an update to any of those objects

would send a normal request for objects back to the server. A client would initially express its

desire for such notifications by subscribing to them with the server. This subscription, notifica-

tion, and callback functionality could be added to the framework implementation without chang-

ing the current programmer interface.

 Safe and concurrent object sharing coupled with a subscription-notification-callback

scheme would be a welcome upgrade to P-Eiffel’s networking capabilities. Providing this up-

grade while maintaining programming simplicity would make P-Eiffel production-ready and

provide a platform for long-term testing of Atkinson’s orthogonal persistence hypothesis.

5.6 Looking ahead

Malcolm Atkinson, likely the first advocate for persistence in programming languages, developed

his Orthogonal Persistence Hypothesis (OPH) during his early studies of PS-Algol [7] and stated

it more formally while describing the outcome of persistence studies using PJama [5], a language

based on early versions of Java intended for long-term research into persistence. His hypothesis

reads:

If application developers are provided with a well-implemented and well-

supported orthogonally persistent programming platform, then a significant in-

crease in developer productivity will ensue and operational performance will be

satisfactory. [5]

This hypothesis states what programmers intuitively suspect: less code is better. This intuition

has inspired many attempts at orthogonal persistence. Some of the languages in which program-

mers have attempted to produce a viable orthogonal persistence mechanism include1 Ada [25, 48,

65], C [46], C++ [18, 32, 41, 43, 50], Objective C , E [78, 79, 81], Eiffel [18, 21, 26], Java [11,

53, 63, 89], JavaScript [19], Lisp [46], Napier [9], Oberon [12], PM3 [36, 38], PS-Algol [7, 14],

and Smalltalk [39]. None of these approaches seem to have lived beyond the initial research or

achieved use in production systems.

 In “Persistence and Java—A Balancing Act” [5], Atkinson describes the mixed success

and limited influence that the PJama project has had on industry’s adoption of a persistent lan-

guages. The PJama project was perhaps the most extensive study of orthogonal persistence, and

it achieved most of the goals set for this research. However, despite access to a team of pro-

grammers, the use of a popular base language, and sufficient resources, PJama was never adopted

by a sufficient number of users to prove the OPH. Atkinson attributes this failure, in hindsight,

to several reasons, including improper technical decisions that forced the project to chase Java’s

1 This list is for illustration only and not all inclusive. Apologies to authors who have contributed to the

study of persistence but are not listed here.

57

rapidly changing implementation and the availability to industry of other, more visibly attractive

but short-range solutions to persistence, such as automated code generation and relational data-

base technology.

 In contrast, P-Eiffel builds on a very stable language. Though some may consider Eiffel

obscure, it is very much alive and continues to influence development in other languages. For

example, authors acknowledge the specification, design, documentation, and testing benefits of

Eiffel’s built-in assertion support [16, 42, 67, 86] or attempt to embed such support in other lan-

guages [3, 20, 34, 68, 80]. Furthermore, universities such as ETH Zurich continue to use Eiffel

for research, some of which seems aimed at schema evolution [75]. Schema evolution and persis-

tence are closely related, so this research and the research at ETH should benefit each other, mak-

ing P-Eiffel more attractive to other users. Finally, programmers have expressed interest in per-

sistence in Eiffel in newsgroup messages [92, 93, 97] and in Eiffel Software’s web-based Eiffel

persistence project [69]. Language stability, ongoing research, and interest in persistence has the

potential to move P-Eiffel to a prominent position in the Eiffel community. If programmers then

begin to use P-Eiffel, the usefulness of orthogonal persistence in programming languages should

become evident, encouraging renewed interest in its applicability to other languages.

 The approach to orthogonal persistence presented in this thesis should be workable in

other object-oriented languages, but the ease of implementation in the other language will depend

on the complexity of the language, the language’s introspection capabilities, and upon the availa-

bility of a modifiable compiler or runtime. P-Eiffel’s persistence semantics rely upon Eiffel’s

unambiguous qualified feature call and assignment statement constructs—an object becomes dirty

when an attribute is changed through assignment and it is stored when a qualified feature call on

that object exits. These semantics are easy to define, because 1) Eiffel confines attribute assign-

ments to the body of a feature within the class, and 2) operations on objects occur only through

feature calls. P-Eiffel also relies heavily upon Eiffel’s introspection ability, which provides P-

Eiffel with class names and gives it attribute types and names at runtime. Furthermore, P-Eiffel

would not exist if not for the open-source availability of the Eiffel runtime and compiler.

 Mimicking P-Eiffel’s persistence mechanism in other languages may require more work.

For example, Java, C++, and C# allow an assignment to an attribute from outside the context of

the enclosing object.

Following P-Eiffel’s semantics, this code would be interpreted as an assignment to an attribute

contained within my_object, which marks my_object as dirty. But it is unclear if my_object should be

persisted immediately after this line of code, or if the persistence mechanism should wait, hoping

for a normal, unambiguous feature call to occur later in the code. Another example of a problem-

atic construct is the use of friend functions and procedural methods in C++. Because these calls

generally operate outside the context of any enclosing object, it might be hard to determine which

object to mark as dirty or to persist. These languages also give arrays special treatment, unlike

Eiffel, in which an ARRAY is a class subject to normal feature call semantics. This special treat-

ment would likely require special treatment in the persistence mechanism. Also, C++ and C#

have very limited introspection capability, likely making P-Eiffel’s approach to object persistence

less applicable in these languages. On the other hand, Java’s reflection API seems very capable,

so implementation of object traversal and tabulation might be easier than in Eiffel. Regardless of

the language, the addition of orthogonal persistence would probably require access and modifica-

tion of the language’s compiler or runtime.

my_object.some_attribute = a_value;

58

Chapter 6 Conclusion

Even if P-Eiffel never moves the orthogonal persistence hypothesis to theorem status, it does

provide a new service to Eiffel. It adds orthogonal persistence to the language, filling the gap

between the all-or-nothing, serialization approach of STORABLE and the overly complex database-

mapping approach of the EiffelStore library. The new mechanism fits into Eiffel with minimal

impact on the language itself. Persistence in P-Eiffel, accessible through the interfaces of easy-

to-use classes, is mostly automatic, requiring very little explicit persistence-related code. The

persistence implementation automates persistent object identification, physical storage, persistent

object access, and persistent-object type checking. P-Eiffel extends the strong type system of

Eiffel to the objects in the persistent store and leverages Eiffel’s built-in assertion mechanism to

ensure persistent-object consistency. A basic persistence mechanism with an easy-to-use pro-

grammer interface paves the way for the development of other database-like functions such as

concurrent access, security, distribution, and replication. Research using P-Eiffel should contin-

ue, hopefully leading to advancements in the study of persistence in other object-oriented lan-

guages, such as Java. Time will tell if P-Eiffel will persist.

59

Appendix A Review of persistent systems

The development of database systems and persistent programming languages has proceeded from

differing viewpoints; programming languages have focused on computation and database systems

have focused on data storage. Over the years, developers of database systems have added more

and more computation capabilities while developers of persistent programming languages have

attempted to add long-term data storage to system languages.

 Built-in persistent mechanisms over the years have met with limited success. The suc-

cessful languages were those that have aspired to achieve the goals mentioned in Section 4.5

while presenting a simple interface to the programmer. This simple interface usually hides a very

complex storage or memory manager and/or a modified compiler that handled the database-like

functionality. This separation of concerns into language issues and data management appears in

the programmer interface of persistent languages reviewed below. A review of a few of these

languages illustrates some desirable (and perhaps undesirable) characteristics and techniques for a

persistent programming language.

A.1 PS-Algol (1982)

PS-Algol [7, 10] is one of the first languages to add persistence mechanisms directly to an exist-

ing language, extending S-Algol (1979) [58, 59] and introducing orthogonal persistence. For

persistence, PS-Algol adds two sets of procedures, one set for managing persistence (i.e. access-

ing a database and performing transactions) and another set to manipulate tables for associative

lookup (i.e. hash-table procedures.)

 S-Algol creates complex objects on the heap and subjects them to garbage collection.

PS-Algol extends this heap model to the persistence mechanism by adding new predeclared pro-

cedures and types. The new procedures provide methods for creating and opening a database and

for accessing objects stored in the database. The compiler and language remains unchanged, but

a modified runtime extends the dynamic type checking of S-Algol. PS-Algol adds a persistent

object manager to the runtime to lazily1 follow references using a persistent object identifier

(PID) for each object. Following the run-time model of S-Algol, PS-Algol performs run-time,

structural type checking on objects as they are loaded from the persistent store. To allow this

checking, the persistent store holds fieldnames and field types for all the fields associated with

each object.

 As a PS-Algol program accesses or creates an object, the new runtime adds two map-

pings, one from the object’s local address to a PID and another from a PID to the object’s local

address. These mappings prevent duplicate disk reads, because as PS-Algol dereferences a point-

er, it consults the table to determine if that PID has already been associated with a local object.

To avoid unnecessary writes, a commit routine writes back out changed or newly created objects

only. The authors say these procedures give reasonable performance.

 The PS-Algol code fragment in Figure 6.1 inserts a new person into a persistent store.2

The PS-Algol persistence procedures used in the example are open.database, error.record, s.lookup,

s.enter, and commit. (The dot notation used in procedure names and variables is a naming conven-

tion of PS-Algol and should not be confused with the dot notation used in object-oriented lan-

guages. The identifier read.a.line, for example, is the name of a routine that reads input from the

terminal.)

1 In other words, the runtime copies the objects to its heap only when a pointer is dereferenced. This is in

contrast to a program that loads all persistent objects when it loads a root object.
2 The code examples in this dissertation loosely follow a company-with-employees motif, which is similar

to the superheroes example described in section 1.2 and depicted in the object structure of Figure 1.4.

60

 Figure 6.1 – Add a new person to a persistent store in PS-Algol

After defining two structures, the above code attempts to open a persistent store named Employ-

ees.list in write mode. If successful, it creates a new person object from input gathered from the

user. The code inserts that object, indexed by the object’s name, into a table called

addr.list.by.name. Finally, commit stores the changed table, the person object, and the address refer-

enced inside the person object to the persistent store.

 The example illustrates Atkinson’s principles of persistence. PS-Algol achieves persis-

tence independence. PS-Algol uses the same syntax used by S-Algol, and the added persistence

routines appear as normal routine calls. PS-Algol is data-type orthogonal, because any created

object can become persistent. PS-Algol obtains transitivity through persistence-by-reachability.

A.2 Galileo (1995)

As with PS-Algol, which extends S-Algol to add persistence features, Galileo [1, 2] extends Ed-

inburgh ML to add persistence features. Galileo is a strongly and statically typed functional lan-

guage. A program can only change attributes declared as modifiable. Galileo supports abstract

types, type hierarchies, information hiding, and exception handling. It also includes a built-in

assertion mechanism to restrict the domains of attributes. In contrast to PS-Algol, Galileo seems

to have been more influenced by the needs of database programming than that of systems pro-

gramming. Galileo code is reminiscent of SQL. The code in Figure 6.2 models a company that

has departments and employees, and Figure 6.3 illustrates the model’s use.

 Figure 6.2 – Galileo structures

 For persistence, the language relies on the concept of environments. In the code above,

use adds a new environment called Company to the global environment. The Company environment

structure person (string name, index ; pntr addr, other)
structure address (int no ; string street, town ; pntr next.addr)
let db = open.database (“Employees.list”, “my-password”, “write”)
if db is error.record then write “Can’t open database” else
begin
 write “Name: “ ; let this.name = read.a.line
 write “Index: “ ; let this.index = read.a.line
 write “House num: “ ; let this.house = readi
 write “Street: “ ; let this.street = read.a.line
 write “Town: “ ; let this.town = read.a.line
 let p = person (this.name, this.index, address (this.house, this.street, this.town, nil), nil)
 let addr.list = s.lookup (“addr.list.by.name”, db)
 s.enter (this.name, addr.list, p)
 commit
end

use
Company :=
(rec Departments class
 Department ↔
 (Name: string
 and Manager: var Person
 and Budget: num
 key: (Name)
and Employees class
 Person ↔
 (Name: string
 and Index: num
 and Salary: num
 and Dept: var Department
 key (Index));

61

contains two classes1, Departments and Employees, into which it places objects of type Department

and Person. A Department object has attributes Name, Manager, and Budget of the declared types. The

program similarly defines a Person. Each class contains a key constraint that requires each Index

attribute of the contained objects to differ. Attributes marked with var can change; if var is absent

the attribute cannot change once set. A top-level, global environment is available and automati-

cally managed and stored by the runtime. Because Company is part of this global environment, the

runtime automatically stores it, its two classes, and the objects contained in those classes.

 A programmer interacts with objects through a set of graphical primitives or associated

operators during an interactive session. The graphical interface and the associated operators pro-

vide a query language for a Galileo persistent store. Figure 6.3 shows an interactive session using

the previously defined classes.

 Figure 6.3 – Galileo object insertion and query

 This example code adds an employee to the research department using an automatically

generated operation, mkPerson. The second query, beginning with for x in…, asks for a list of names

for all employees in the same department with a salary less than the average salary of the em-

ployees in that department. Galileo does not require the programmer who defines the structures

or the user who interacts with the program to issue explicit commands to store or retrieve objects;

persistence is transparent and automatic. The enter command, used to make Company the current

environment, may be considered the closest Galileo comes to having an open-database command.

Any type of object used by the Galileo system can become persistent. In this respect, Galileo

provides orthogonal persistence. Unfortunately, concurrency and sharing of objects is not possi-

ble.

A.3 Napier88 (1988)

Napier88 [15, 60, 62] is as a proof-of-concept language with an integrated persistent program-

ming environment. It allows parallel execution and provides facilities for schema evolution.

 Like Galileo, Napier88 hides object persistence from the programmer using environments

arranged as a tree. The predefined procedure PS provides access to the user’s persistent root envi-

ronment, into which the user places new objects (other environments or user-defined objects.) A

retrieve operation attempts to project (type cast) a stored object onto an entity, failing if the re-

trieved object and the entity’s definition are not structurally equivalent. The code in Figure 6.4,

defines a structure called person containing the attributes name, index, and extra. This example as-

sumes that the persistent store contains one previously persisted object that matches the person

1 Use of the term class in Galileo differs from its use in object-oriented languages. A class in Galileo pro-

vides a container within the persistent environment and defines the structure of the objects that container

can hold.

enter Company:

mkPerson
 (Name := “John Galt”
 and Salary := 100
 and Index := 5
 and Dept := get Departments with Name = “Research”);

for x in Employees
 with Salary of x
 < avg (for y in Employees
 with at Dept of x = at Dept of y
 do Salary of y)
do Name of x;

62

structure. The program loads the object and updates some attributes using the attributes’ names

as indexes.

 Figure 6.4 – Napier88

 The point of this simple example is not to explain Napier88 in any detail but to illustrate

orthogonal persistence in Napier88. Obtaining a reference to the persistent root is the only action

required for storing objects. All objects reachable from that root are retrievable, and changes,

such as the changes made to the name and index attributes, are stored when the program ends. The

programmer does not write explicit code to store the objects.

 Figure 6.4 also illustrates Napier88’s dynamic type checking. The PS function returns a

reference to an object of type any. When it is projected (type cast) onto X, the object is dynamical-

ly type checked to ensure the object matches X’s type, that is, person. The runtime type checks

attribute extra only when the program projects that object onto the extraInfo type at the second pro-

ject operation. Programs that do not use the extra attribute need not declare the extraInfo type or

perform the second projection.

 Napier88 provides parallel execution through the process type, which can establish an

Ada-like rendezvous [60].1 A process object, just as all other objects, can be stored. Napier88

adheres to the three principles of persistence.

 Finally, Nappier88 allows schema evolution. Because it type checks an object only when

a program projects an object onto a type, modifications to unused types do not necessarily affect

all programs that use objects based on the changed types. For example, if a programmer changes

the extraInfo type, he must change only those programs that reference that type. Programs that use

only the name and index attributes can retrieve the person object with no change to their code. This

dynamic type checking allows incremental modification of an object’s structure.

A.4 E (1989)

The E programming language [78, 79, 81], originally designed as a language for implementing

database systems, has evolved into the first C++ extension to support persistence. Figure 6.5

shows the use of E for the same purpose as that given for Galileo above. The example is not in-

tended to be complete (e.g. there are no constructors or member functions), but it should suffice

to present the flavor of E as experienced by the programmer.

1 Morrison [60] shows a Napier88 solution to Dijkstra’s dining philosophers [35] that uses the process type.

type person is structure (name: string; index: int; extra: any)

let ps = PS()

project ps as X onto ! Entire structure obtainable from X
person:
 begin
 X(name) := “John Galt”
 X(index) := “5”
 let this = X (extra)
 type extraInfo is record (sal: int; gender: bool)
 project this as Y onto
 extraInfo: write Y (sal) ! Output the person’s salary
 default: … ! Perform if project as Y fails
 end
default: {} ! Perform if project as X fails

63

 Figure 6.5 – E code

 The programmer declares objects as potentially persistent using the dbxxx types, which

mirror the standard C++ types. The persistent declaration of company causes that object to survive

across all runs of the program. As descendants of the generic1 collection class, Employees and De-

partments inherit an overloaded new operator, allowing the dynamic creation of Person and Depart-

ment objects. The code creates a new Person object, with name “John Galt”, within the employees

collection. The entity, e1, references the newly created object. Because the employees collection is

a member of a persistent structure, it and any object created within it are also persistent. The

runtime automatically stores e1 when it creates the object. There are no calls to file routines or

database-like functions such as open or read. With the exception of the new types, the code looks

almost like standard C++. To complete the example, the query code seen in the Galileo example

would be coded using normal C++ methods.2

 The persistence mechanism used by E is different from the persistence-by-reachability

seen in PS-Algol, Napier, and Galileo. E uses allocation-based persistence, which determines

object persistence based on the creation method applied to the object, either statically with a per-

sistent declaration or dynamically in a collection. The E runtime and programming environments

use the EXODUS Storage Manager behind the scenes to take care of the actual physical place-

ment of objects. Compiling an E source module that contains declarations of persistent objects

produces both a C translation and a storage manager file, the persistent store, containing those

persistent objects. The compiler binds the names of the persistent variables to the physical ob-

jects at compile time. This binding links the variable names in a module to a location in a physi-

cal file maintained by the Storage Manager and initially identified with an environment variable,

EVOLUME. Because the compiler allocates memory for persistent objects based on the declara-

tions in the code, subsequent deletions of the declarations leave unreferenced objects in the per-

sistent store. To prevent this accumulation of persistent garbage, compilation and execution of E

1 A generic class such as collection [T] is called a generator in E [79] and predated C++ templates.
2 E also introduced CLU-like iterators to C++ to loop over the elements in a collection by calling a resuma-

ble iterator function that yields a result on each step through the loop.

dbclass Department {
 public:
 dbchar* name;
 Person* manager;
 dbint num;
};
dbclass Person {
 public:
 dbchar* name;
 dbint index;
 dbint salary;
 Department* department;
};
dbclass Departments: collection [Department];
dbclass Employees: collection [Person];

persistent dbstruct company {
 Departments departments;
 Employees employees;
};

main() {
 Employee* e1 = new (personnel.employees) Employee (“John Galt”);
};

64

programs must occur within a special environment that tracks dependencies between programs

and persistent objects.

 The E runtime calls routines that move objects to and from the persistent store.1 The

Storage Manager schedules the physical reads and writes and provides atomic, recoverable trans-

actions with two-phase locking. An E compiler or interpreter injects the calls to store and retrieve

objects and adds the code to mark objects as clean or dirty into the C code during E code prepro-

cessing.

A.5 PM3 (1991)

PM3 [37, 38] adds orthogonal persistence, as defined previously by Atkinson and Morrison in

1985 to Modula-3 while incurring negligible performance costs. A modified runtime and two

new library interfaces, Database and Transaction, adds persistence to the language. The example

code in Figure 6.6 shows the use of the two interfaces. The code obtains a reference to a root

object2 from a previously created, named database and modifies one of the previously stored,

reachable objects within a transaction. The call to Transaction.commit() ends the transaction and

stores the object.

 Figure 6.6 – PM3

 A modified3 compiler ties persistence to the Modula-3 garbage collector and allows the

runtime to intercept calls to the operating system’s virtual memory primitives. If a system call

results in a memory fault, in the case of a read, the persistence mechanism allocates and maps

1 Richardson et al call these data-movement operations pin and release.
2 The statement assigning the root object to Employees triggers type checking. The runtime raises an excep-

tion if the obtained object is not structurally equivalent to the definition of an EmployeeList object.
3 The authors say the Modula-3 compiler was not changed. They added the new Modula-3 compilation

process as a front end to the GNU C compiler. This preprocessor produces C output, sending the output to

the GNU C compiler.

MODULE Company;
 IMPORT Text;
 IMPORT Database;
 IMPORT Transaction;
 CONST n = 30;
 TYPE
 Person = RECORD
 name: TEXT;
 salary: INTEGER;
 END Person;
 EmployeeList = OBJECT (* … *) END EmployeeList;
 VAR
 Employees: EmployeeList;
PROCEDURE SetSalary (aName: TEXT; aValue: INTEGER);
 VAR
 p: Person; (* a reference type *)
 BEGIN
 Database.open (“aDatabaseName”);
 Employees := Database.getRoot();
 Transaction.begin();
 (* assume a procedure to search Employees exists *)
 p := FindEmployeeByName (aName);
 p.salary := aValue;
 Transaction.commit();
 END SetSal;
END Personnel;

65

new memory and reads in the missing object. During writes to memory as an object changes, the

mechanism marks as dirty the page containing the changed object, so the page can be stored, if

required, during a commit. The mechanism only stores pages that contain persistent objects. It

discovers persistent objects through reachability analysis and copies newly persistent objects into

persistent pages, mapping the pages to the virtual address space associated with the root object’s

persistent store. The commit operation, when called, stores any dirty, persistent pages.

 Likewise, PM3 retrieves objects from a persistent store on demand. As PM3 discovers

references to objects, it maps the references to pages in volatile memory. When the runtime ref-

erences an object on a mapped but non-resident page, the runtime traps and reads in the required

page from the persistent store, placing the page into volatile memory. The programmer needs

only to request a root object from the persistent store; PM3 automatically retrieves the pages con-

taining reachable objects as it accesses those objects.

A.6 PHP (1995)

Unlike the above languages, PHP [73, 96] is not a persistent programming language; it is a

scripting language usually embedded within HTML and used primarily for web development.

Nevertheless, PHP deserves a review along with persistent languages because of its popularity

and the ease with which it interfaces with databases. It also provides an example of a persistence

mechanism that is contrary to the orthogonal principles.

 Internet documents seem to attribute PHP’s popularity to its C-like syntax, extendibility,

and availability on most operating systems. Netcraft, a company that provides web server and

hosting analysis, claims that as of January 2013, 244 million sites, 39% of the sites surveyed, run

PHP [72]. PHP’s ability to access numerous types of databases also contributes to its popularity.

The following code connects to a relational database, runs a query, and formats the result in

HTML.

 Figure 6.7 – PHP with SQL query

<?php
$dbhost = 'localhost:8889';
$dbuser = 'root';
$dbpass = 'root';
$dbname = ‘Company’;
 // Connect to the database
$connection = mysql_connect ($dbhost, $dbuser, $dbpass);
mysql_select_db ($dbname);
 // Define the query
$underpaid_employees_query =
 "SELECT e1.name, e1.salary, e1.department " .
 "FROM Employees AS e1, " .
 "((SELECT e2.department, AVG (salary) AS avg FROM Employees as e2 " .
 "GROUP BY e2.department) as e3) " .
 "WHERE e1.department = e3.department AND e1.salary < avg";
 // Execute the query
$result = mysql_query ($underpaid_employees_query);
 // Send query result as a formatted table in HTML
echo "<table border='1'>
<tr> <th>Name</th> <th>Salary</th> <th>Department</th> </tr>";
while ($row = mysql_fetch_array ($result)) {
 echo "<tr>";
 echo "<td>" . $row['name'] . "</td>";
 echo "<td>" . $row['salary'] . "</td>";
 echo "<td>" . $row['department'] . "</td>";
}
echo "</table>";
 // Terminate the database connection
mysql_close ($connection);
?>

66

The example code assumes a database defined similarly to the previously reviewed languages.

The query asks for all employees in each department who have a salary less than the average

salary of all the employees in that department. The code runs (interpreted or compiled) on the

server, and sends the results back to the client.

 The example code is straightforward, assuming the programmer is familiar with relational

databases, SQL, and the hundreds of functions available in PHP. Because PHP requires pro-

grammer expertise in so many technologies, it is the antithesis of orthogonal persistence. Persis-

tence related statements that have little to do with the actual processing of the objects litter the

code and require extensive programmer knowledge of the database schema. Its reliance upon

SQL subjects PHP scripts to security risks [74]. Type checking of persistent objects seems al-

most nonexistent. From the viewpoint of orthogonal persistence, the only redeeming quality of

PHP is its model of execution, where the code that interfaces with the database runs entirely at the

server.

A.7 Thor/Theta (1996)

Thor [51, 52] is a database system that allows sharing of persistent objects across a network by

various types of applications. Thor allows safe sharing of persistent objects between applications

written in different languages. Thor’s client cache management scheme provides efficient store

and retrieve operations.

 Type-safe sharing means Thor uses and modifies stored objects only in a way consistent

with the type of each of those objects. Thor enforces type safety across system boundaries by

requiring interface routines to be included within the persistent store itself. These routines, writ-

ten in an object-oriented language called Theta, form a well-defined interface through which ap-

plications access persistent objects, insulating the objects from potential invariant-breaking

changes. The database author must implement the routines in a way that ensures each object in

the persistent store remains in a valid state. Even programs written in other languages must go

through the Theta interface by use of a Theta veneer (i.e. a wrapper) around the non-Theta code.

Other database systems available at the time Thor/Theta was developed (GemStone, O2, SHORE,

and ObjectStore) allow object sharing, but they do not enforce object consistency. Thor address-

es this shortcoming.

 The client side of Thor/Theta maintains objects in a cache, requesting objects as needed

from Object Repositories (OR) duplicated on multiple servers. An OR contains persistent roots

and accesses them through a string-to-object mapping. The OR prefetching policy dynamically

determines the set of objects to be returned to the client. Instead of passing a page, which likely

contains many objects not requested by the application, a Thor server passes only a subset of

those objects that reside on the same page as the requested object. The prefetching mechanism

culls or adds objects based on their frequency of use.1 In addition, once the group of objects ar-

rives at the client Front End (FE), the FE determines which of these objects to keep. When stor-

ing objects, a transaction sends only modified objects, not a whole page, back to the server.

When compared to paging systems, this object-level granularity at the FE combined with the

dynamic prefetching scheme usually reduces the number of objects that must pass over a net-

work, greatly improving overall system performance.

1 Besides the requested object, the Thor server returns other objects that are stored on disk next to the re-

quested object. If these clustered objects are related, the client program is more likely to use them making

the server continue to return a high number of objects. As clustering decreases, the number of objects

returned by Thor decreases.

67

A.8 Java (1996)

Since version 1.1, Java has had facilities for storing objects. Besides the core classes for manipu-

lating files, Java includes Java Object Serialization [40], which allows Java objects to be serial-

ized and deserialized to and from sequences of bytes and the Java Database Connectivity [88]

API, which allows Java programmers to work with objects stored in a DBMS. Predating these

two persistence methods, and initially built on Java version 1.0, is PJava (later PJama1) [5, 11].

A.8.1 PJava

The first version of PJava [11] achieves persistence through a set of classes along with a modified

Java VM. In PJava, one class, PJavaStore, encapsulates persistence. To store or retrieve objects

the programmer creates a PJavaStore object and then associates a persistence root to a string key,

likely within a try block.

 Figure 6.8 – Create a new persistent store in PJava

The PJavaStore.getStore routine in the try block gives the program access to the persistent store; the

newPRoot routine allows the runtime to store automatically the employees object during a commit,

which occurs at program termination.

 Accessing previously committed objects is almost as straightforward.

 Figure 6.9 – Using a persistent store in PJava

As before, the PJavaStore.getStore routine reveals the persistent store to the program. The program

accesses the stored employees list via a string key with a call to getPRoot. The association of the

stored list to the entity, employees, requires a cast to the correct type. In both examples, the employ-

ees entity is a persistence root. After obtaining a persistence root, the programmer manipulates

the object and all reachable objects normally, with no further concern that the objects are persis-

tent.

 The first version of PJava stores changed objects only when the program exits. Later

versions of PJava [8] provide checkpointing and resumption routines, allowing objects to be

stored at other times. As a PJava program executes, it marks modified, persistent objects and

promotes newly reachable, persistent objects to persistent status. These modified and promoted

objects are stored during a checkpoint or commit. If an error occurs, PJava restores the objects to

a previous, consistent state.

 The class PJavaStore provides the interface; modification of the Java VM provides the

functionality. The modified VM determines from a cache if an object in volatile memory differs

from that in the persistent store and faults objects in from the persistent store when necessary.

PJava’s persistent store, called Sphere, operates on objects instead of disk pages, as used by other

1 The PJava developers renamed the project PJama.

try {
 PJavaStore companyDB = PJavaStore.getStore();
 // Obtain a persistent store
 companyDB.newPRoot (“Employees”, employees);
 // Associate a root with a key
} catch (PJSException e) {
 // Handle the exception
}

try {
 PJavaStore companyDB = PJavaStore.getStore();
 employees = (LinkedSet) companyDB.getPRoot (“Employees”);
} catch (PJSException e) {
 // Handle the exception
}

68

systems. The persistent store assigns a Persistent ID (PID) for each persistent object, allocates

space for the object, and copies it to disk. For an object fault, the runtime locates the object via

its PID and transfers the object to the program.

 Persistence in PJava requires minimal effort from the programmer, and the automatic

aspect of its persistence mechanism makes it mostly orthogonal, serving as an end-of-program

checkpointing mechanism. PJava’s persistent store also provides object migration, schema evolu-

tion, and disk garbage collection. The convenience provided by the named, persistence roots in

PJava predated similar functionality provided by Java Object Serialization.

A.8.2 Java object serialization

 Serialization in Java is similar to the serialization mechanism in Eiffel. It stores a persis-

tent root and all reachable objects to a file or transmits them over a network as a stream of bytes.

Most Java library classes are serializable, but some (e.g. Thread and Socket) are not. Serializable

classes must implement the Serializable interface. Figure 6.10 shows the declaration for the Compa-

ny class.

 Figure 6.10 – Implementing the Serializable interface in Java

There are no routines to define; implementing the interface suffices to identify the class as serial-

izable. The serialVersionUID1 aids in version control. The Department class and the Person class must

also implement Serializable. Other entities of the example classes are either serializable (e.g.

String) or primitive data types (e.g. int), so the default serialization mechanism suffices. Figure

6.11 shows how to store an object in Java.

 Figure 6.11 – Store example in Java

The writeObject routine stores its argument, company, and all reachable objects via the ObjectOut-

putStream, oss. Figure 6.12 shows how to retrieve an object.

1 The default value is generated from a SHA-1 hash [91] of the name and other components of the class,

making the default serial version UID very sensitive to class changes.

import java.io.Serializable;
public class Company implements Serializable {
 private static final long serialVersionUID = 1L;
 private LinkedSet <Department> departments = new LinkedSet <Department>();
 private LinkedSet <Person> employees = new LinkedSet <Person>();
// rest of class not shown

void store_example (String aFileName) throws FileNotFoundException, IOException {
 FileOutputStream fos = new FileOutputStream (aFileName);
 ObjectOutputStream oos = new ObjectOutputStream (fos);
 try {
 oos.writeObject (company);
 } finally {
 oos.close();
 }

69

Figure 6.12 – Retrieve example in Java

The readObject routine retrieves an object via the ObjectInputStream, ois, casting the result to the ap-

propriate type. This simple code stores and retrieves serializable objects.

 Non-serializable objects require more complex processing. Modification of the default

serialization mechanism combined with the reflection API handles non-serializable superclasses

and attributes and can improve efficiency. Redefinition of the writeObject and readObject routines

furnishes special handling for non-serializable entities. Through reflection, a program examines

an object’s attributes and type information to make run-time decisions that can improve perfor-

mance of the persistence mechanism. This customization, versioning control, and ease of use

make Java serialization a good persistence mechanism for simple applications. This mechanism,

though, is an all-or-nothing approach to persistence, where the entire structure must be stored and

retrieved as a whole. It does not work well for large object graphs or shared objects. More so-

phisticated, database-like functionality requires another approach to persistence, such as the Java

Database Connectivity API.

A.8.3 Java database connectivity

 The Java Database Connectivity API, or simply JDBC, is a database-mapping approach

to persistence. It provides access to objects stored as tabular data, such as a flat file or relational

DBMS. JDBC helps programmers connect to a persistent store, query the store using SQL, pro-

cess persistent objects, and transfer modified objects back to the persistent store. The code in

Figure 6.13 illustrates a few of the capabilities of JDBC.

 Figure 6.13 – JDBC modify-with-rollback example

void retrieve_example (String aFileName) throws FileNotFoundException, IOException {
 FileInputStream fis = new FileInputStream (aFileName);
 ObjectInputStream ois = new ObjectInputStream (fis);
 try {
 Company company = (Company) ois.readObject ();
 } catch (ClassNotFoundException e) {
 System.err.println (“Unknown class: “ + e.getMessage());
 } finally {
 ois.close();
 }
}

public void modify() {
 String url = “jdbc:mysql://localhost:3306/myDB”;
 Connection con = DriverManager.getConnection (url, username, password);
 con.setAutoCommit (false);
 Savepoint savePt = con.setSavepoint();
 String query = “SELECT EMP_ID, NAME, SALARY FROM EMPLOYEES”;
 Statement stmt = con.createStatement (
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 ResultSet rs = stmt.executeQuery (query);
 boolean tooBig = false;
 while (rs.next() && (!tooBig)) {
 int s = rs.getInt (“SALARY”);
 tooBig = s * 2 > maxSalary;
 rs.updateInt (“SALARY”, s* 2);
 // double the salary
 rs.updateRow();
 }
 if (tooBig) {
 con.rollback (savePt);
 }
 con.commit();
 con.setAutoCommit (true);
}

70

 The example code accesses and modifies an existing database that represents a company

with a set of departments and a set of employees. The modify routine attempts to double every

employee’s salary unless this doubling results in a salary that is above the maximum, in which

case any changes made up to that point are undone. (For brevity, the code does not show try,

catch, and finally blocks.) This code creates a Connection to a MySQL database. After saving the

current state of the database in a Savepoint, an SQL query, called on a Statement object, retrieves

information about each employee, placing the information in a ResultSet, a table containing the

selected rows. Using the ResultSet’s iterator, next, the while loop visits each row in the table,

changing the salaries. If at any point a salary becomes too large, the program rolls back to the

referenced Savepoint. The call to setAutoCommit at the beginning allows the code to treat the state-

ments in the loop as a single, all-or-none transaction, but it requires an explicit call to commit at

the end to store the changes and release locks obtained during the routine.

 JDBC works well for interacting with a relational database, but the added convenience

comes with a price; working with complex object-relational mapping can become quite tedious.

The approach meets none of the three principles of orthogonal persistence.

A.9 C++ (1999)

Kasbekar et al. [43] describe a different and less ambitious approach for adding a sufficient level

of user-transparency to the persistence mechanism for C++. Their preprocessing approach allows

an application to checkpoint the state of C++ objects by adding routines Checkpoint() and Restore()

to the classes for which the programmer desires persistence. The programmer then adds calls to

the runtime’s global object called RuntimeSystem.
 RuntimeSystem.Checkpoint (thisPtr)

and
 RuntimeSystem.Restore (thisPtr)

These calls result in the eventual execution of the Checkpoint() or Restore() routine of the object ref-

erenced from thisPtr. It also forces any objects reachable from the thisPtr object to be checkpointed

in like manner. This deep checkpointing1 is analogous to making a deep copy. A unique type-id

attribute, added during code preprocessing, records the type of each object. This type information

facilitates allocation of memory and object retrieval. The preprocessing also adds an ancestor

class to each of the persistent classes.

 Because source code must be available for the preprocessing, this approach cannot make

all classes persistent. To accommodate missing source code and avoid preprocessing errors, users

of this approach must specify, using MA_Persistent class T { … }, those classes that should be pro-

cessed; or by specifying the names of the classes in a supplemental file. This falls short of Atkin-

son’s three principles of persistence.

A.10 Persistent Oberon (2006)

Persistent Oberon [12, 13, 70] extends Oberon [77], a language in the Algol family with strict

static typing of variables and functions. Oberon builds on the module concept of Modula-2, al-

lowing the programmer to add attributes to a module, extending the abstract data types described

by the original modules. Persistent Oberon runs in its own environment and loads modules as

needed, after which they remain loaded, surviving system restarts. Each module is a persistent

root, making all objects referenced in that module automatically persistent. Type declarations are

the same in Persistent Oberon as in Oberon. The example code in Figure 6.14 creates the persis-

tent object Employees the first time the module is loaded, and that object, along with any reachable

1 Dr. Raphael Finkel, advisor and University of Kentucky professor, suggested the term “deep checkpoint-

ing.”

71

objects, remains alive unless the module is explicitly unloaded. (Modules are unloaded for pro-

gram modification.)

 Figure 6.14 – Persistent Oberon

 To capture the idea of consistent state, Persistent Oberon adds transactions, complete

with atomicity, abort, and rollback capability. To define a transaction, the programmer annotates

a normal BEGIN-END block with a TRANSACTION decoration, as shown in the example code. The

entire block executes completely or, if an operation aborts, any persistent objects affected by the

transaction role back to their previous state. Transactions execute serially (no overlap in time)

within a system. Because Persistent Oberon runs within its own environment, only one instance

of a particular module exists. It is unclear if a module can reference objects belonging to another

module. All entities represent persistent objects unless specified by the programmer as TRANSIENT

(does not survive restarts) or WEAK (reclaimable by the runtime.) When a top-level transaction

completes, the runtime stores all modified objects. The Persistent Oberon environment incorpo-

rates a main-memory caching scheme to speed movement of objects between the persistent store

and volatile memory. The system also facilitates schema evolution.

 The addition of the TRANSACTION tag is the only change to Oberon. From the program-

mer’s point of view, Persistent Oberon achieves orthogonal persistence.

A.11 Timor (2007)

Timor [44, 45] is an object oriented language that was designed to distribute persistent objects

over the Internet. Ideally, a Timor program runs within the SPEEDOS operating system1, which

works directly with Timor’s routines. Timor approaches orthogonal persistence, because it hides

most of the persistent mechanism from the programmer and allows all [types of] objects to be

[potentially] persistent.

 Any type of Timor object can be made persistent by instantiating it as a persistent root,

which the authors call a [Timor] file, using the create keyword. Objects reachable from this file

automatically become persistent. Timor references the file via a capability, a special kind of

reference that allows method calls on objects from the operating system as well as the program-

ming language and which can protect objects by restricting access to a subset of the object’s rou-

tines. The following code creates a file of type CompanyDatabase and makes it persistent.

1 SPEEDOS is a new operating system under simultaneous development by the Timor developers to facili-

tate Timor programs. The website, www.speedos-security.org, is currently undergoing maintenance. It

appears this project was never finished.

MODULE Company
 CONST n = 30;
 TYPE
 Person = RECORD
 name: ARRAY n of CHAR;
 salary: INTEGER;
 END Person;
 EmployeeList = OBJECT (* … *) END EmployeeList;
 VAR
 Employees: EmployeeList;
PROCEDURE SetSalary (aName: ARRAY OF CHAR; aValue: INTEGER);
 VAR
 p: POINTER TO Person;
 BEGIN {TRANSACTION}
 (* assume a search procedure exists *)
 p := FindEmployeeByName (aName);
 p.salary := aValue;
 END SetSalary;
END Company;

http://www.speedos-security.org/

72

 CompanyDatabase** companyDB = create CompanyDatabase.int();

A programmer accesses this file through the companyDB entity. The double star declares companyDB

as a capability. This gives companyDB access to all the routines (or a subset of the routines) identi-

fied in the interface section of the CompanyDatabase type definition. The operating system (or an

emulator) verifies whether a caller can use the called routine.

 A globally unique identifier1, assigned at creation time and available to the programmer,

provides indexing of Timor files across a network. File-unique identifiers index sub-objects with-

in each file. A combination of the file and sub-object identifiers can identify objects referenced

across various files. The capability to distribute Timor files globally and the ability to reference

objects across Timor file boundaries highlights the problem of garbage collection on a worldwide

scale. Though Timor does not solve this problem, it does draw attention to the possibility and

perhaps the need to identify and distribute persistent objects worldwide.

A.12 JavaScript (2010)

Cannon and Wohlstadter [19] present (without code examples) a framework-based approach to

persistence in JavaScript for use with off-line, web-based applications. This framework detects

changes made via assignment operations to the properties of an object. (JavaScript does not have

classes; everything is an object. A property is analogous to an attribute or a routine.) It also

detects changes made to an object’s structure, such as the addition or removal of a property, using

periodic iteration over specific groups of persistent objects to search for new properties. The

framework relies on JavaScript Object Notation (JSON) to store individual objects. The frame-

work serializes the references to objects, removing cycles, which JSON cannot handle, and gen-

erates a globally unique identifier (GUID) for mapping to the serialized objects. The framework

then stores the objects locally for use by the application. Periodically, the application pushes

modified objects to a persistent store over the internet, and returns objects changed at the server

level to the application. The server notifies the application about any conflicts and gives the ap-

plication opportunity to resolve them.

 The framework abstracts object-level access and persistence timing issues. A key/value

mapping provides access at the level of individual objects through a GUID instead of the tradi-

tional persistence-by-reachability. (The authors do not give details about this GUID, but it is

clear that it allows the framework to match a particular stored object to the object model of the

application.) This finer, object-level granularity allows the framework to balance the timing of

store and retrieve operations between numerous, frequently called operations on small objects and

fewer, less frequently called operations on a single large batch, reducing perceptible delays. This

framework uses two methods for determining this set of changed objects, the use of JavaScript

accessors and a developer-scheduled task that checks objects for changes in structure.

 In JavaScript, a developer can bind a function to a property, turning a simple access or

assignment into a function call. JavaScript interprets an assignment such as MyObject.attribute :=

aValue as a function call where aValue is the argument to a setter routine. These bound routines in

the framework do additional work beyond the normal semantics of access or assignment. In other

words, the framework intercepts the normal operations, adding its own semantics through a func-

tion call that marks an object as changed.

 Besides the normal modification of object properties through assignment, JavaScript also

allows the structure objects to change dynamically. (This is analogous to adding an attribute to a

class, but JavaScript allows this addition during program execution.) The framework detects this

type of change. The framework maintains a set of the referenced, persistent objects and periodi-

cally traverses the set, checking for new or deleted object properties. The programmer tunes the

1 Neither of the referenced papers describes the format of this globally unique identifier.

73

time spent on this iteration and the frequency of this operation in order to balance the time spent

on this maintenance task with the likelihood of data loss.

 After the framework discovers a set of modified objects, the web browser locally stores

the changed objects along with a log that records the reason for each modification (e.g. creation,

update, or deletion.) The framework serializes the objects to disk using JSON, removing cyclic

references and assigning a GUID to each object. The log, also stored locally, aids reliability and

batch processing of changed objects by the remote server. Periodically, the application sends the

modified objects and log to the server. The server simply stores any modified objects that do not

conflict with the version on the server (i.e. they have not been changed elsewhere.) Conflicting

modifications trigger a callback, forcing resolution at the application. In addition, the server re-

sponds by sending the GUID’s [only] of objects that have changed since the last synchronization

with the server. If the application requires the new objects, it requests them from the server [us-

ing the GUID’s] and stores the resulting objects locally for possible off-line use by the applica-

tion.

A.13 Summary

PS-Algol introduced the concept of orthogonal persistence, demonstrating persistence as a built-

in part of the language. Like most of the languages, it uses a load-compute-save model combined

with pointer faulting. The model used by Galileo and Napier is a continuous computation model.

Each of these languages has a persistent environment where any object reachable from that envi-

ronment is automatically stored. In contrast to persistence-by-reachability, the classes in Galileo

and the collections in E demonstrate persistence-by-allocation where persistence of an object is

determined at creation time. Persistent Oberon and PM3 add persistence mechanisms to Modula.

Persistent Oberon wraps computations in transactions; PM3 focuses on the use of the garbage

collector for determining object reachability. For C++, this paper presents a somewhat limited

scheme that uses a precompiler to add persistence code to the language, allowing the state of se-

lected objects to be checkpointed. PJava demonstrates many of the previous concepts (e.g. object

faulting, persistent store with a cache, and persistent object identifiers.) PJava provides the pos-

sibility of referencing the persistent store by object instead of by memory page. The JavaScript

approach also uses object-level granularity for persistence. It detects modification of an object’s

structure as well as modification of an object’s values. It demonstrates a method of distributing

persistent objects via client-server architecture, complete with callbacks from the server.

Thor/Theta, a database programming language built for object sharing between different types of

applications, also illustrates distribution of persistent objects. Timor combines a persistent pro-

gramming language with an operating system built specifically for persistence. Timor also draws

attention to the possibility of worldwide distribution of persistent objects. The other two ap-

proaches, serialization and database mapping, used in Eiffel and Java, illustrate two extremes of

the persistence problem. The serialization approach is easy to use, but it induces an all-or-

nothing dilemma; either the whole structure is retrieved and useable, or nothing is useable. The

database-mapping approach remedies this problem, but its use involves code that is more compli-

cated.

 The reviewed languages use seemingly different approaches to persistence, but taken as a

whole, illustrate some of the goals of a persistent programming language and show helpful tech-

niques for developing an orthogonally persistent programming language. The main goal of all

these languages is to abstract object persistence so programmers need not be concerned with the

movement of objects between volatile memory and a persistent store. The developers of the

above languages believe that orthogonal persistence will lead to improvements in software sys-

tems. However, proving that a language with orthogonal persistence provides improvement over

one that does not provide that functionality can only be achieved, as pointed out by Atkinson et

al., with the development of a platform in which this Orthogonal Persistence Hypothesis [8] can

74

be tested. The above languages provide anecdotal evidence that such a system is possible. These

languages form a base on which a new orthogonally persistent platform should be built and point

out likely characteristics required of a new system.

75

Appendix B P-Eiffel setup and use

To produce a P-Eiffel compiler, apply the patch file shown at the end of this appendix and also

available online, as described below, to the Eiffel Software GPL source code, and compile the

modified code with an Eiffel compiler. Include the persistence framework classes in a project

and compile it with the new, modified compiler. (This patch and library works for version 16.05

of the Eiffel compiler.)

B.1 Building P-Eiffel

1. Download the patch file and library from:

https://github.com/boxer41a/P-Eiffel

2. Download the Eiffel compiler from:

www.eiffel.com

3. Download the Eiffel source code from:

https://github.com/EiffelSoftware/EiffelStudio.git

4. Apply the runtime patch file:

cd $EIFFEL_DEV/Src
patch –p0 < /location_of_patch_file/auto_persistence_v4.patch

5. Compile the new runtime, runtime libraries, and compiler:

See instructions at https://dev.eiffel.com/Compiling_EiffelStudio

6. Run the new EiffelStudio, including the jj_persistence cluster in a project.

B.2 Using P-Eiffel

 The following code segments highlight the minimal persistence related code within some

surrounding code context.

 Before any persistence operations, automatic or manual, the program must connect to a

repository, preferably in the creation feature of the root class. The root class should inherit from

PERSISTENCE_FACILITIES and call set_repository. The creation feature of the REPOSITORY class sets up

the underlying physical datastore.

class
 ROOT
inherit
 PERSISTENCE_FACILITIES
create
 make
feature {NONE} -- Initialization
 make
 -- Set up Current.
 local
 c: CREDENTIALS
 r: LOCAL_REPOSITORY
 do
 create c.make (“data_file.dat”)
 create r.make (c)
 Persistence_manager.set_repository (r)
 -- The rest as normal.
 end

https://github.com/boxer41a/P-Eiffel
http://www.eiffel.com/
https://github.com/EiffelSoftware/EiffelStudio.git
https://dev.eiffel.com/Compiling_EiffelStudio

76

Additionally, classes describing objects that are automatically persistable should inherit from

class PERSISTABLE, calling the precursor version of default_create.

The following segment shows the minimal code required to retrieve an object given its PID.

B.3 The runtime patch file

Index: C/run-time/eif_auto_persistence.h
===
--- C/run-time/eif_auto_persistence.h (nonexistent)
+++ C/run-time/eif_auto_persistence.h (working copy)
@@ -0,0 +1,27 @@
+
+#ifndef _eif_auto_persistence_h_
+#define _eif_auto_persistence_h_
+#if defined(_MSC_VER) && (_MSC_VER >= 1020)
+#pragma once
+#endif
+
+#include "eif_portable.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Constants for different tasks. */
+#define EIF_AP_DIRTY 1
+#define EIF_AP_QUALIFIED_CALL 2
+#define EIF_AP_CREATION 3
+
+/* Additional code for the automatic persistence framework. */
+RT_LNK void eif_auto_persistence_init (EIF_REFERENCE a_object, EIF_POINTER a_routine);
+RT_LNK void eif_auto_persistence_callback (EIF_REFERENCE a_object, EIF_INTEGER_32 a_task);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif

Property changes on: C/run-time/eif_auto_persistence.h

Added: svn:eol-style
-0,0 +1 ##

class
 MY_CLASS
inherit
 PERSISTABLE
 redefine
 default_create
 end
feature -- Initialization
 default_create
 -- Set up Current.
 do
 Precursor {PERSISTABLE}
 -- The rest as normal.
 end

 if repository.is_stored (pid) then
 check attached {PERSON} Persistence_manager.loaded (pid) as p then
 -- Use the PERSON p normally.
 end
 end

77

+native
\ No newline at end of property
Added: svn:keywords
-0,0 +1 ##
+Author Date Id Revision
\ No newline at end of property

Index: C/run-time/eif_eiffel.h
===
--- C/run-time/eif_eiffel.h (revision 98126)
+++ C/run-time/eif_eiffel.h (working copy)
@@ -61,6 +61,7 @@

 #include "eif_macros.h"

+#include "eif_auto_persistence.h"

 /* Platform definition */

Index: C/run-time/eif_types.h
===
--- C/run-time/eif_types.h (revision 98126)
+++ C/run-time/eif_types.h (working copy)
@@ -301,6 +301,8 @@
 EIF_TYPE_INDEX dftype;
 uint16 flags;
 EIF_SCP_PID scp_pid; /* SCOOP Processor ID to which object belongs */
+ EIF_NATURAL_64 persistence_id; /* Object persistence ID for automatic persistence. */
+ EIF_NATURAL_64 persistence_id_2; /* Padding */
 } ovs;
 } ovu;
 rt_uint_ptr ovs_size;
Index: C/run-time/garcol.c
===
--- C/run-time/garcol.c (revision 98126)
+++ C/run-time/garcol.c (working copy)
@@ -4180,6 +4180,7 @@
 uint16 age; /* Object's age */
 uint16 flags; /* Eiffel flags */
 uint16 pid; /* SCOOP Processor ID */
+ EIF_NATURAL_64 l_persistence_id;
 EIF_TYPE_INDEX dftype, dtype;
 EIF_REFERENCE new; /* Address of new object (tenured) */
 rt_uint_ptr size; /* Size of scavenged object */
@@ -4190,6 +4191,7 @@
 dftype = zone->ov_dftype;
 dtype = zone->ov_dtype;
 pid = zone->ov_pid;
+ l_persistence_id = zone->ov_head.ovu.ovs.persistence_id;

 if (gen_scavenge & GS_STOP) /* Generation scavenging was stopped */
 if (!(flags & EO_NEW)) /* Object inside scavenge zone */
@@ -4306,6 +4308,7 @@
 zone->ov_dftype = dftype;
 zone->ov_dtype = dtype;
 zone->ov_pid = pid;
+ zone->ov_head.ovu.ovs.persistence_id = l_persistence_id;
 zone->ov_size &= ~B_C; /* Object is an Eiffel one */

 CHECK("Valid size", size <= (zone->ov_size & B_SIZE));
Index: C/run-time/malloc.c
===
--- C/run-time/malloc.c (revision 98126)
+++ C/run-time/malloc.c (working copy)
@@ -1432,6 +1432,7 @@

78

 zone->ov_dftype = HEADER(ptr)->ov_dftype;
 zone->ov_dtype = HEADER(ptr)->ov_dtype;
 zone->ov_pid = HEADER(ptr)->ov_pid;
+ zone->ov_head.ovu.ovs.persistence_id = HEADER(ptr)->ov_head.ovu.ovs.persistence_id;

 /* Update flags of new object if it contains references and the object is not
 * in the scavenge zone anymore. */
@@ -2982,6 +2983,7 @@
 HEADER(zone)->ov_dftype = HEADER(ptr)->ov_dftype;
 HEADER(zone)->ov_dtype = HEADER(ptr)->ov_dtype;
 HEADER(zone)->ov_pid = HEADER(ptr)->ov_pid;
+ HEADER(zone)->ov_head.ovu.ovs.persistence_id = HEADER(ptr)->ov_head.ovu.ovs.persistence_id;
 if (!(gc_flag & GC_FREE)) { /* Will GC take care of free? */
 eif_rt_xfree(ptr); /* Free old location */
 } else {
@@ -3956,6 +3958,7 @@
 if (EIF_IS_EXPANDED_TYPE(System (dtype))) {
 zone->ov_flags |= EO_EXP | EO_REF;
 }
+ zone->ov_head.ovu.ovs.persistence_id = 0LL;

 #ifdef ISE_GC
 if (flags & EO_NEW) { /* New object outside scavenge zone */
@@ -4038,6 +4041,8 @@
 zone->ov_pid = (EIF_SCP_PID) 0;
 #endif
 zone->ov_size &= ~B_C; /* Object is an Eiffel one */
+
+ zone->ov_head.ovu.ovs.persistence_id = 0LL;

 #ifdef ISE_GC
 if (in_scavenge == EIF_FALSE) {
Index: C/run-time/misc.c
===
--- C/run-time/misc.c (revision 98126)
+++ C/run-time/misc.c (working copy)
@@ -68,6 +68,8 @@
 #include <ctype.h> /* For toupper(), is_alpha(), ... */
 #include <stdio.h>

+#include "eif_auto_persistence.h"
+
 /*
 doc: <routine name="eif_pointer_identity" export="public">
 doc: <summary>Because of a crash of VC6++ when directly assigning a function pointer to an array of function
pointer in a loop, we create this identity function that cannot be inlined and thus prevents the bug to occur. As soon
as VC6++ is not supported we can get rid of it. Read comments on ROUT_TABLE.generate_loop_initialization for
details.</summary>
@@ -556,6 +558,51 @@
 }
 #endif

+/* Variables needed to store the handler object and routine. */
+rt_private EIF_OBJECT eif_auto_persistence_handler = NULL;
+rt_private EIF_PROCEDURE eif_auto_persistence_callback_routine = NULL;
+
+/* Initialize the auto_persistence callback module with the two given arguments. */
+rt_public void eif_auto_persistence_init (EIF_REFERENCE a_object, EIF_POINTER a_routine)
+{
+ EIF_OBJECT l_protected = NULL;
+
+ /* Convert 'a_object' to an EIF_OBJECT indirect reference that is protected by the garbage collector. */
+ if (a_object) {
+ l_protected = eif_protect (a_object);
+ }

79

+
+ /* Release the old object from the protection (if any). */
+ if (eif_auto_persistence_handler) {
+ eif_wean (eif_auto_persistence_handler);
+ }
+
+ /* Set the new handler object. */
+ eif_auto_persistence_handler = l_protected;
+
+ /* Set the callback function. */
+ eif_auto_persistence_callback_routine = (EIF_PROCEDURE) a_routine;
+}
+
+/* Perform a callback into Eiffel code. */
+rt_public void eif_auto_persistence_callback (EIF_REFERENCE a_object, EIF_INTEGER_32 a_task)
+{
+ if (eif_auto_persistence_handler && eif_auto_persistence_callback_routine) {
+
+ /* Temporarily set the callback routine to NULL.
+ * That way we can avoid infinite recursion when the callback triggers another callback. */
+ EIF_PROCEDURE l_routine = eif_auto_persistence_callback_routine;
+ eif_auto_persistence_callback_routine = NULL;
+
+ /* Execute the routine */
+ l_routine (eif_access (eif_auto_persistence_handler), a_object, a_task);
+ /* NOTE: After the call to 'eif_auto_persistence_callback_routine', 'a_object' may be invalid. Do not use it
any longer. */
+
+ /* Reset the callback routine. */
+ eif_auto_persistence_callback_routine = l_routine;
+ }
+}
+
 /*
 doc:</file>
 */
Index: Eiffel/eiffel/byte_code/access_b.e
===
--- Eiffel/eiffel/byte_code/access_b.e (revision 98126)
+++ Eiffel/eiffel/byte_code/access_b.e (working copy)
@@ -615,6 +615,19 @@
 buf.put_new_line
 buf.put_character ('}')
 end
+
+ if a_result = Void and a_target.c_type.is_reference and (call_kind = call_kind_creation or call_kind =
call_kind_qualified) then
+ buf.put_new_line
+ buf.put_string ("eif_auto_persistence_callback (")
+ a_target.print_register
+ buf.put_two_character (',', ' ')
+ if call_kind = call_kind_qualified then
+ buf.put_string ("EIF_AP_QUALIFIED_CALL")
+ else
+ buf.put_string ("EIF_AP_CREATION")
+ end
+ buf.put_two_character (')', ';')
+ end
 end

 feature -- Conveniences
Index: Eiffel/eiffel/byte_code/assign_bl.e
===
--- Eiffel/eiffel/byte_code/assign_bl.e (revision 98126)
+++ Eiffel/eiffel/byte_code/assign_bl.e (working copy)

80

@@ -347,6 +347,11 @@
 else
 generate_assignment
 end
+
+ if not target.is_predefined then
+ buffer.put_new_line
+ buffer.put_string ("eif_auto_persistence_callback (Current, EIF_AP_DIRTY);")
+ end
 end

 Simple_assignment: INTEGER = 4
@@ -725,7 +730,7 @@
 end

 note
- copyright: "Copyright (c) 1984-2013, Eiffel Software"
+ copyright: "Copyright (c) 1984-2015, Eiffel Software"
 license: "GPL version 2 (see http://www.eiffel.com/licensing/gpl.txt)"
 licensing_options: "http://www.eiffel.com/licensing"
 copying: "[

81

References

[1] Albano, A., Cardelli, L. and Orsini, R. 1985. GALILEO: a strongly-typed, interactive con-

ceptual language. ACM Trans. Database Syst. 10, 2 (Jun. 1985), 230–260.

[2] Albano, A., Ghelli, G., Occhiuto, M.E. and Orsini, R. 1986. A strongly typed, interactive

object-oriented database programming language. Proceedings on the 1986 international

workshop on Object-oriented database systems (Los Alamitos, CA, USA, 1986), 94–103.

[3] Amalio, N. and Kelsen, P. 2010. Modular Design by Contract Visually and Formally Using

VCL. 2010 IEEE Symposium on Visual Languages and Human-Centric Computing (Sep.

2010), 227–234.

[4] Amazon Simple Storage Service (S3) - Cloud Storage: //aws.amazon.com/s3/. Accessed:

2016-07-12.

[5] Atkinson, M. 2001. Persistence and Java — A Balancing Act. Objects and Databases. K.

Dittrich, G. Guerrini, I. Merlo, M. Oliva, and M.E. Rodriguez, eds. Springer Berlin / Hei-

delberg. 1–31.

[6] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D. and Zdonik, S. 1989. The

Object-Oriented Database System Manifesto.

[7] Atkinson, M., Chisholm, K. and Cockshott, P. 1982. PS-algol. ACM SIGPLAN Notices. 17,

7 (Jul. 1982), 24.

[8] Atkinson, M., Jordan, M., Atkinson, M. and Jordan, M. 2000. A review of the rationale and

architectures of PJama: a durable, flexible, evolvable and scalable orthogonally persistent

programming platform. Sun Microsystems Laboratories Inc and Department of Computing

Science, University of Glasgow.

[9] Atkinson, M. and Morrison, R. 1995. Orthogonally persistent object systems. The VLDB

Journal. 4, 3 (Jul. 1995), 319–402.

[10] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, P.W. and Morrison, R. 1983. An

Approach to Persistent Programming. The Computer Journal. 26, 4 (Nov. 1983), 360–365.

[11] Atkinson, M.P., Daynès, L., Jordan, M.J., Printezis, T. and Spence, S. 1996. An orthogonal-

ly persistent Java. ACM SIGMOD Record. 25, 4 (Dec. 1996), 68–75.

[12] Bläser, L. 2006. A programming language with natural persistence. Companion to the 21st

ACM SIGPLAN symposium on Object-oriented programming systems, languages, and ap-

plications (New York, NY, USA, 2006), 637–638.

[13] Bläser, L. 2007. Persistent Oberon: A Programming Language with Integrated Persistence.

Programming Languages and Systems. Z. Shao, ed. Springer Berlin / Heidelberg. 71–85.

[14] Brown, A. 1988. Persistent Object Stores. University of St Andrews.

[15] Brown, A.L. 1996. Napier88 Standard Library Reference Manual: Release 2.2.1. Depart-

ment of Computer Science, University of Adelaide.

[16] Buschmann, F. 2011. Unusable Software Is Useless, Part 2. IEEE Software. 28, 2 (Mar.

2011), 100–102.

[17] C++ Object Persistence with ODB: 2016.

http://www.codesynthesis.com/products/odb/doc/manual.xhtml#0.1.

[18] Cahill, V., Horn, C., Kramer, A., Martin, M., Starovic, G. and College, T. 1990. C** and

Eiffel**: languages for distribution and persistence.

[19] Cannon, B. and Wohlstadter, E. 2010. Automated object persistence for JavaScript. Pro-

ceedings of the 19th international conference on World wide web (New York, NY, USA,

2010), 191–200.

[20] Chalin, P., Kiniry, J.R., Leavens, G.T. and Poll, E. 2006. Beyond Assertions: Advanced

Specification and Verification with JML and ESC/Java2. Formal Methods for Components

and Objects. F.S. de Boer, M.M. Bonsangue, S. Graf, and W.-P. de Roever, eds. Springer

Berlin Heidelberg. 342–363.

82

[21] Chignoli, R., Farre, J., Lahire, P. and Rousseau, R. 1994. FLOO: A Strong Coupling Be-

tween Eiffel Language and O2 DBMS.

[22] Cloud Storage - Online Data Storage: https://cloud.google.com/storage/. Accessed: 2016-

07-12.

[23] Codd, E.F. 1970. A relational model of data for large shared data banks. Commun. ACM.

13, 6 (Jun. 1970), 377–387.

[24] Concurrent programming with SCOOP: 2016.

https://www.eiffel.org/doc/solutions/Concurrent programming with SCOOP. Accessed:

2016-07-25.

[25] Crawley, S. and Oudshoorn, M. 1994. Orthogonal Persistence and Ada. IN PROCEEDINGS

TRI-ADA’94, BALTIMORE MD. (1994), 29--8.

[26] Crismer, P.G. and Fafchamps, E. 2003. EPOM Eiffel Persistent Object Management.

[27] Customers: https://www.eiffel.com/company/customers/. Accessed: 2016-11-03.

[28] Databases and Persistence: 2016. http://wiki.squeak.org/squeak/512. Accessed: 2016-11-03.

[29] Daynes, L. and Czajkowski, G. 2001. High-performance, space-efficient, automated object

locking. (2001), 163–172.

[30] EiffelStore Tutorial: https://www.eiffel.org/doc/solutions/EiffelStore. Accessed: 2016-04-

20.

[31] Franco-Japanese Symposium on Programming of Future Generation Computers 1988. Pro-

gramming of future generation computers II: proceedings of the Second Franco-Japanese

Symposium on Programming of Future Generation Computers, Cannes, France, 9-11, No-

vember, 1987. North-Holland ; sole distributors for the U.S.A. and Canada, Elsevier Science

Pub. Co.

[32] Fu, M.-M. and Dasgupta, P. 1993. A concurrent programming environment for memory-

mapped persistent object systems. Computer Software and Applications Conference, 1993.

COMPSAC 93. Proceedings., Seventeenth Annual International (Nov. 1993), 291–297.

[33] Grimstad, S., Sjøberg, D.I.K., Atkinson, M. and Welland, R. Evaluating Usability Aspects

of PJama based on Source Code Measurements.

[34] Guerreiro, P. 2001. Simple support for design by contract in C++. 39th International Con-

ference and Exhibition on Technology of Object-Oriented Languages and Systems, 2001.

TOOLS 39 (2001), 24–34.

[35] Hoare, C.A.R. 1978. Communicating Sequential Processes. Communication of the ACM.

21, 8 (Aug. 1978), 666–677.

[36] Hosking, A.L. and Chen, J. 1999. Mostly-copying reachability-based orthogonal persis-

tence. SIGPLAN Not. 34, 10 (Oct. 1999), 382–398.

[37] Hosking, A.L. and Chen, J. 1999. PM3: An Orthogonal Persistent Systems Programming

Language - Design, Implementation, Performance. Proceedings of the 25th International

Conference on Very Large Data Bases (San Francisco, CA, USA, 1999), 587–598.

[38] Hosking, A.L. and Moss, J.E. 1991. Compiler Support for Persistent Programming. Univer-

sity of Massachusetts.

[39] Hosking, A.L., Moss, J.E.B. and Bliss, C. 1990. Design of an Object Faulting Persistent

Smalltalk. (1990).

[40] Java Object Serialization Specification:

http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html.

[41] Jayasekara, K.A.T.A. and Jayasena, S. 2010. Persistent data structure library for C++ appli-

cations. 2010 1st International Conference on Parallel Distributed and Grid Computing

(PDGC) (Oct. 2010), 356–361.

[42] Jazequel, J.M. and Meyer, B. 1997. Design by contract: the lessons of Ariane. Computer.

30, 1 (Jan. 1997), 129–130.

83

[43] Kasbekar, M., Yajnik, S., Klemm, R., Huang, Y. and Das, C.R. 1999. Issues in the design of

a reflective library for checkpointing C++ objects. Proceedings of the 18th IEEE Symposi-

um on Reliable Distributed Systems, 1999 (1999), 224–233.

[44] Keedy, J.L., Espenlaub, K., Heinlein, C. and Menger, G. 2007. Persistent Objects and Ca-

pabilities in Timor. The Journal of Object Technology. 6, 4 (2007), 103.

[45] Keedy, J.L., Espenlaub, K., Heinlein, C. and Menger, G. 2007. Persistent Processes and

Distribution in Timor. The Journal of Object Technology. 6, 6 (2007), 91.

[46] Kempf, J., Paepcke, A., Beach, B., Mohan, J., Mahbod, B. and Snyder, A. 1988. Language

level persistence for an object-oriented application programming platform. Software Track,

Proceedings of the Twenty-First Annual Hawaii International Conference on System Sci-

ences, 1988. Vol.II (0 1988), 424–433.

[47] Khoshafian, S.N. and Copeland, G.P. 1986. Object identity. ACM SIGPLAN Notices. 21, 11

(Nov. 1986), 406–416.

[48] Kienzle, J. and Romanovsky, A. 2002. Framework based on design patterns for providing

persistence in object-oriented programming languages. Software, IEE Proceedings -. 149, 3

(Jun. 2002), 77–85.

[49] King, E. 1978. IBM Report on the Contents of a Sample of Programs Surveyed. IBM Re-

search Center San Jose.

[50] Lamb, C., Landis, G., Orenstein, J. and Weinreb, D. 1991. The ObjectStore database sys-

tem. Commun. ACM. 34, 10 (Oct. 1991), 50–63.

[51] Liskov, B., Adya, A., Castro, M., Ghemawat, S., Gruber, R., Maheshwari, U., Myers, A.C.,

Day, M. and Shrira, L. 1996. Safe and efficient sharing of persistent objects in Thor. Pro-

ceedings of the 1996 ACM SIGMOD international conference on Management of data

(New York, NY, USA, 1996), 318–329.

[52] Liskov, R.B., Liskov, B., Adya, A., Castro, M., Chung, E., Curtis, D., Ghemawat, S.,

Gruber, R., Johnson, P., Maheshwari, U., Myers, A.C., Ng, T., Shrira, L. and Zondervan, Q.

Thor/Theta Users Guide.

[53] Lunney, T. and McCaughey, A. 2003. Object persistence in Java. Proceedings of the 2nd

international conference on Principles and practice of programming in Java (New York,

NY, USA, 2003), 115–120.

[54] Meyer, B. 1992. Eiffel The Language. Prentice Hall International (UK) Ltd.

[55] Meyer, B. 1988. Object-oriented Software Construction. Prentice Hall International (UK)

Ltd.

[56] Meyer, B. 1997. Object-oriented software construction. Prentice Hall PTR.

[57] Meyer, B. 2009. Touch of class learning to program well with objects and contracts.

Springer.

[58] Morrison, R. 1979. On the Development of Algol. University of St Andrews.

[59] Morrison, R. 1979. S-algol Reference Manual. University of St Andrews.

[60] Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. and Atkinson, M.P.

1989. The Napier Type System. Persistent Object Systems. Rosenberg, J. & Koch, D. (ed),

Springer-Verlag. 3–18.

[61] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. and Munro, D.S. A PROGRAM-

MING LANGUAGE AND DATABASE INTEGRATION TECHNOLOGY. University of

St Andrews, Scotland.

[62] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Munro, D.S. and Atkinson, M.P.

The Napier88 Persistent Programming Language and Environment.

[63] Moss, J.E.B. and Hosking, A.L. 1996. Approaches to Adding Persistence to Java.

[64] Neward, T. 2006. The Vietnam of Computer Science. The Blog Ride.

[65] Oudshoorn, M. and Crawley, S. The Addition of Persistence to Ada95 and its Consequenc-

es.

84

[66] Overloading vs. Object Technology: 2001.

http://se.ethz.ch/~meyer/publications/joop/overloading.pdf.

[67] Ozkaya, M. and Kloukinas, C. 2013. Towards Design-by-Contract based software architec-

ture design. 2013 IEEE 12th International Conference on Intelligent Software Methodolo-

gies, Tools and Techniques (SoMeT) (Sep. 2013), 157–164.

[68] Panchapakesan, A., Abielmona, R. and Petriu, E. 2013. A python-based design-by-contract

evolutionary algorithm framework with augmented diagnostic capabilities. 2013 IEEE

Congress on Evolutionary Computation (Jun. 2013), 2517–2524.

[69] Persistence unified: https://dev.eiffel.com/Persistence_unified. Accessed: 2016-08-13.

[70] Persistent Oberon Language Specification:

http://www.composita.net/PersistentOberon.html.

[71] Pfleeger, S.L. 2006. Software engineering: theory and practice. Pearson/Prentice Hall.

[72] PHP Just Grows & Grows: http://news.netcraft.com/archives/2013/01/31/php-just-grows-

grows.html. Accessed: 2013-11-18.

[73] PHP Manual: 2013. http://us1.php.net/manual/en/.

[74] PHP Programming/SQL Injection:

http://en.wikibooks.org/wiki/PHP_Programming/SQL_Injection.

[75] Piccioni, M., Oriol, M. and Meyer, B. 2013. Class Schema Evolution for Persistent Object-

Oriented Software: Model, Empirical Study, and Automated Support. IEEE Transactions on

Software Engineering. 39, 2 (Feb. 2013), 184–196.

[76] Piccioni, M., Oriol, M., Meyer, B. and Schneider, T. 2009. An IDE-based, integrated solu-

tion to Schema Evolution of Object-Oriented Software. (Auckland, New Zeland, Nov.

2009).

[77] Reiser, M. 1992. Programming in Oberon: steps beyond Pascal and Modula. ACM Press ;

Addison-Wesley Pub. Co.

[78] Richardson, J.E. and Carey, M.J. 1989. Persistence in the E Language: Issues and imple-

mentation. Softw. Pract. Exper. 19, 12 (Nov. 1989), 1115–1150.

[79] Richardson, J.E., Carey, M.J. and Schuh, D.T. 1993. The Design of the E Programming

Language. ACM Transactions on Programming Languages and Systems. 15, (1993), 494–

534.

[80] Rubio-Medrano, C.E., Ahn, G.J. and Sohr, K. 2013. Verifying Access Control Properties

with Design by Contract: Framework and Lessons Learned. Computer Software and Appli-

cations Conference (COMPSAC), 2013 IEEE 37th Annual (Jul. 2013), 21–26.

[81] Schuh, D., Carey, M. and Dewitt, D. 1990. Persistence in E Revisited — Implementation

Experiences. In Dearle et al. [DSZ90 (1990), 345–359.

[82] Sebesta, R.W. 2010. Concepts of programming languages. Addison-Wesley.

[83] Silberschatz, A. 2011. Database system concepts. McGraw-Hill.

[84] Swift Guides and Sample Code: 2016.

https://developer.apple.com/library/content/referencelibrary/GettingStarted/DevelopiOSAp

psSwift/Lesson10.html.

[85] Takasaka, S. 2005. Survey of Persistence Approaches. Stockholm University.

[86] Tantivongsathaporn, J. and Stearns, D. 2006. An Experience With Design by Contract.

2006 13th Asia Pacific Software Engineering Conference (APSEC’06) (Dec. 2006), 335–

341.

[87] The Python Standard Library: https://docs.python.org/3.4/library/persistence.html. Ac-

cessed: 2016-11-03.

[88] Trail: JDBC(TM) Database Access: http://docs.oracle.com/javase/tutorial/jdbc/index.html.

[89] Vangari, S.S. 1998. An object relationship framework and persistence in Java. West Virgin-

ia University.

[90] Zdonik, S.B. and Maier, D. 1990. Readings in object-oriented database systems. Morgan

Kaufmann.

85

[91] 2012. Federal Information Processing Standards Publication: Secure Hash Standard (SHS).

National Institute of Standards and Technology.

[92] 2016. General Question: Object Persistence Mechanism. Eiffel Users - Google Groups.

[93] 2015. .NET guys, do you use DataSets or write your own persistence layers? Eiffel Users -

Google Groups.

[94] 2013. Nominative type system. Wikipedia, the free encyclopedia.

[95] 2012. Object-relational impedance mismatch. Wikipedia, the free encyclopedia.

[96] 2013. PHP. Wikipedia, the free encyclopedia.

[97] 2015. Simple persistence mechanism for stand-alone app. Eiffel Users - Google Groups.

[98] 2013. Structural type system. Wikipedia, the free encyclopedia.

86

Vita

Jimmy Jack Johnson

Education

PhD – Computer Science, University of Kentucky (expected Dec 2016)

MS – Computer Science, Louisiana State University in Shreveport (1989)

BS – Basic Academics, United States Air Force Academy (1984)

Military Education

Air Command and Staff College Associate Correspondence Program (1999)

Squadron Officer School (1991)

Squadron Officer School Correspondence Program (1988)

Experience

PhD candidate – University of KY (Jan 10 – present)

Instructor, Computer Languages

Instructor, C++ Data Structures (Berea College)

Instructor, Algorithm Analysis and Design (Berea College)

ATS Construction – Lexington, KY (Feb 07 – Sep 09)

Part 91 corporate pilot / PIC – CE-750

Part 91 corporate pilot / PID – Bell 407

Self-employed – Pueblo, CO (Jan 06 – Jan 07)

Part 91 contract pilot / PIC, G-100

201st Airlift Squadron, DC Air National Guard – Andrews AFB, MD (Oct 96 – Aug 05)

C-38A (G-100) chief evaluator and instructor pilot

CONUS and OCUNUS operational support airlift pilot

Flight commander

C-38 lead training officer

Squadron scheduling officer

MEDEVAC training officer

Advance Instrument School graduate

C-21A pilot

1st Helicopter Squadron, USAF – Andrews AFB, MD (Jan 94 – Sep 96)

Flight commander, classified plans and programs

UH-1N transport and MEDEVAC pilot

52nd Flying Training Squadron, USAF – Lubbock, TX (Jul 91 – Jan 94)

T-1A initial cadre

T-1A operation test and evaluation pilot

T-1A instructor pilot

FAA liaison and airspace officer

T-37 pilot

71st Flying Training Wing, USAF – Barksdale AFB, LA (Aug 87 – Jul 91)

Deputy Detachment Commander

T-37 evaluator pilot

T-37 instructor pilot

Life support officer

Computer programmer and computer systems manager

71st Flying Training Squadron, USAF – Vance AFB, OK (Aug 84 – Aug 87)

87

T-37 Instructor pilot

Squadron Scheduling Officer

Student pilot, Undergraduate Pilot Training

Computer Science Department – USAF Academy, CO (May 84 – Jul 84)

Computer programmer

Academic assistant

Special Awards

Meritorious Service Medal (2)

Air Force Aerial Achievement Medal

Air Force Commendation Medal (4)

Air Force Achievement Medal (2)

Air Force Outstanding Unit Award (7)

National Defense Service Medal with Star

Armed Forces Expeditionary Medal

Global War on Terrorism Service Medal

Air Force Longevity Service Award (6)

Armed Forces Reserve Medal with Mobilization

Small Arms Expert Marksmanship Award

Air Force Training Ribbon Award

Washington DC National Guard Meritorious Service Medal

Washington DC National Guard Homeland Defense Medal

Washington DC National Guard Emergency Service Medal

Washington DC Faithful Service Medal (3)

Washington DC Special Recognition Award

