
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2015

Design of a Scalable Path Service for the Internet Design of a Scalable Path Service for the Internet

Mehmet O. Ascigil
University of Kentucky, onur@netlab.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Ascigil, Mehmet O., "Design of a Scalable Path Service for the Internet" (2015). Theses and Dissertations--
Computer Science. 29.
https://uknowledge.uky.edu/cs_etds/29

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Mehmet O. Ascigil, Student

Dr. Kenneth L. Calvert, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

DESIGN OF A SCALABLE PATH SERVICE FOR THE INTERNET

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By

Mehmet Onur Ascigil

Lexington, Kentucky

Co-Directors: Dr. Kenneth L. Calvert, Professor of Computer Science
and Dr. James Griffioen, Professor of Computer Science

Lexington, Kentucky

Copyright c© Mehmet Onur Ascigil 2015

ABSTRACT OF DISSERTATION

DESIGN OF A SCALABLE PATH SERVICE FOR THE INTERNET

Despite the world-changing success of the Internet, shortcomings in its routing and
forwarding system have become increasingly apparent. One symptom is an escalating
tension between users and providers over the control of routing and forwarding of
packets: providers understandably want to control use of their infrastructure, and
users understandably want paths with sufficient quality-of-service (QoS) to improve
the performance of their applications. As a result, users resort to various “hacks” such
as sending traffic through intermediate end-systems, and the providers fight back with
mechanisms to inspect and block such traffic.

To enable users and providers to jointly control routing and forwarding policies,
recent research has considered various architectural approaches in which provider-
level route determination occurs separately from forwarding. With this separation,
provider-level path computation and selection can be provided as a centralized service:
users (or their applications) send path queries to a path service to obtain provider-
level paths that meet their application-specific QoS requirements. At the same time,
providers can control the use of their infrastructure by dictating how packets are
forwarded across their network. The separation of routing and forwarding offers many
advantages, but also brings a number of challenges such as scalability. In particular,
the path service must respond to path queries in a timely manner and periodically
collect topology information containing load-dependent (i.e., performance) routing
information.

We present a new design for a path service that makes use of expensive pre-
computations, parallel on-demand computations on performance information, and
caching of recently computed paths to achieve scalability. We demonstrate that, us-
ing commodity hardware with a modest amount of resources, the path service can
respond to path queries with acceptable latency under a realistic workload. The ser-
vice can scale to arbitrarily large topologies through parallelism. Finally, we describe
how to utilize the path service in the current Internet with existing Internet applica-
tions.

KEYWORDS: Future Internet Architecture, Routing, Scalability

Mehmet Onur Ascigil

Student’s Signature
Jan. 29, 2015

Date

DESIGN OF A SCALABLE PATH SERVICE FOR THE INTERNET

By

Mehmet Onur Ascigil

Dr. Kenneth L. Calvert

Co-Director of Dissertation

Dr. James Griffioen

Co-Director of Dissertation

Dr. Miroslaw Truszczynski

Director of Graduate Studies

Jan. 29, 2015

ACKNOWLEDGMENTS

I am very thankful to the following people, without whom this thesis would not be

possible.

Foremost, I would like to express my deepest gratitude to my advisor Dr. Kenneth

Calvert, not only for his strong guidance throughout my doctorate, but for being such

a powerful role model for an academic career. His in-depth knowledge, preciseness,

high standards in research, and strong work ethics have inspired me to not only be a

better researcher, but also to be a better person.

Secondly, I would like to thank my co-advisor Dr. James Griffioen. His enor-

mous patience, immense knowledge and strong encouragement were key motivations

throughout my PhD. Our weekly discussions were always very interesting and a great

learning experience. I am very grateful for giving me the opportunities to make pub-

lications and to attend conferences, which helped me to become a better researcher.

I also would like to thank the staff members of the Laboratory for Advanced Net-

working. Special thanks to William Marvel and Hussamuddin Nasir, who provided

assistance in maintaining the servers and providing technical support with my ex-

periments. I had wonderful memories working in the Hardymon building with fellow

colleagues. Thanks for the interesting discussions and collaborations on the projects.

Finally, I would like to thank my parents for their unrelenting support and love.

Being so far away from them for so many years, they were still my biggest support.

They have sacrificed more than I think I will ever be able to, so that I can be happy

and successful. I hope one day I will be able to repay them this incredible debt.

iii

Table of Contents

Acknowledgments iii

List of Figures viii

1 Introduction 1
1.1 A Loose Source Routing Architecture 6

1.1.1 Assumptions . 7
1.1.2 Topology Information . 8
1.1.3 Advantages . 9

1.2 Path Service Design Problem . 9
1.2.1 Path Computation Cost . 10
1.2.2 Routing Information Collection Cost 12

1.3 Our Solution . 13
1.4 Summary of Our Results . 14

2 Background 16
2.1 Internet Protocol . 16
2.2 Autonomous System . 17
2.3 Internet Routing and Forwarding . 19

2.3.1 Intra-domain Routing and Forwarding 19
2.3.2 Inter-domain Routing and Forwarding 20

2.4 IP Routing Compared to a Path Service 22

3 A Clean-slate Approach to Inter-domain Routing 24
3.1 Overview . 25
3.2 Model of Operation . 27

3.2.1 Relay Advertisements . 27
3.2.2 Measuring Performance Information 29
3.2.3 Obtaining Paths from the Path Service 31
3.2.4 Mapping Endpoints to Domain Identifiers 32

3.3 Problem Statement . 33
3.4 Assumptions . 36

3.4.1 Economic Considerations . 36
3.4.2 Policy Enforcement . 37

3.5 Advantages and Challenges . 38

iv

4 Related Work 40
4.1 Centralized and Multi-path Routing Approaches 40

4.1.1 Source Routing in the Internet Protocols 40
4.1.2 Source Route Bridging . 42
4.1.3 Software-Defined Networking (SDN) 43
4.1.4 Application-level Routing . 44
4.1.5 Multi-Path Transmission Control Protocol (MPTCP) 45

4.2 Clean-slate Source Routing Approaches 47
4.2.1 Platypus . 47
4.2.2 Routing as a Service . 48
4.2.3 NIRA: New Inter-domain Routing Architecture 48
4.2.4 SCION . 51
4.2.5 Nimrod . 52
4.2.6 Pathlet . 54
4.2.7 ICING . 56
4.2.8 A Network Path Advising Service for the Internet 57

4.3 Multi-constrained Path Problem . 57
4.3.1 Heuristic Approaches to Multi-constrained Routing 59

4.4 Advertising QoS Information . 60

5 The Design of a Path Service 62
5.1 Time-Scales of Routing Information Changes 63
5.2 Path Cache . 64
5.3 Path Service Architecture . 66

6 Evaluation 73
6.1 Experiment Methodology . 73

6.1.1 Workload Model . 74
6.1.2 Network Model . 76

6.1.2.1 Separating Access and Transit Roles 77
6.1.2.2 Adding Extra Channels 78

6.2 Slow-Joiner: Generating Paths . 79
6.2.1 Slow-Joiner Implementation 81

6.3 Path Service Implementation . 85
6.3.1 Master . 85
6.3.2 Path Cache . 86
6.3.3 Worker . 88
6.3.4 Grouping Together Paths with Common Prefixes 90
6.3.5 Updaters . 91

6.4 Experiments without Queuing . 92
6.4.1 Experiments without Caching 93
6.4.2 Experiments with Caching . 94
6.4.3 Adding Ingress and Egress Traffic Engineering Policies 96
6.4.4 Differences in Query Processing Times across Workers 98

6.5 Experiments with Queuing . 100
6.5.1 Overhead of Relay Advertisements 102

v

6.5.2 Stability of the System . 103
6.6 Adding a Disjointness Criteria . 104

7 Deploying Source Routing in the Internet 111
7.1 Prototype Implementation and Experiments on GENI 114

7.1.1 The Wrapper Library . 115
7.1.2 Forwarding Elements . 118

7.2 Experiments . 119
7.3 Deploying the Source Routing System in the Internet 121

8 Conclusion and Future Work 128
8.1 Future Work . 129

Bibliography 131

Vita 138

vi

List of Figures

2.1 Provider P advertising its prefix “1280:1630::/32” to provider A, and
A exports the advertisement to provider B. 21

3.1 Entities and information flow in our model. 27
3.2 Two access domains connected through a transit domain. 31
3.3 Inter-network with transit providers and access providers with local

path services. 34

4.1 A customer-provider hierarchy of domains with a core component that
contains B1, B2, B3, and B4. 49

4.2 The Nimrod architecture represents the Internet topology as clusters
of clusters of routers and switches. 53

5.1 CDF of flows to each of the most popular destination ASs for the time-
scales of 10 minutes, 10 hours, and 1 day. 65

5.2 An example of slow-join and fast-join operations on two relays: R1 and
R2 that form a path P. 67

5.3 Path service architecture. 69
5.4 Latency histograms of five paths sorted from left to right according to

their likelihood of satisfying delay ≤ 20 milliseconds. 70

6.1 Rate of query arrivals during the busiest hour. 75
6.2 Distribution of paths to destination domains. 84
6.3 The main components of the path service implementation. 85
6.4 Cumulative distribution of query processing times for 6, 12, and 18

workers. 94
6.5 The plot on the left hand side presents the CDF of the service times

for 12 and 18 workers with caching enabled, and the plot on the right
hand side presents the comparison of the CDFs of service times for the
caching enabled and the caching disabled path services with 18 workers. 95

6.6 Effect of routing information arrival frequency on the cache hit rate. 96
6.7 Cumulative distribution of query processing times for 6, 12, and 18

workers with ingress/egress traffic engineering. 98
6.8 CDF of the query processing time differences between the fastest worker

and the slowest worker. 99
6.9 Path service with N replicated servers. 100
6.10 Average query processing times for different number of servers with

caching disabled and enabled. 102

vii

6.11 Average error rate of the disjointness approximations when a random
fixed length path is compared to a million random paths with arbitrary
lengths. 108

6.12 Difference in the cumulative distributions of service times for the reg-
ular path queries and disjoint path queries. 110

7.1 Topology used in the GENI experiments. The topology has 3 paths
between the hosts, each having different qualities: 1) high bandwidth
and high latency (HBHL), 2) high bandwidth and medium latency
(HBML), and 3) low bandwidth and low latency (LBLL). 119

7.2 A simple scenario for a globally deployed source routing system. . . 121
7.3 A simple scenario for a partially deployed source routing system. . . 124

viii

Chapter 1

Introduction

A routing architecture “is a system that includes a way of naming entities such as

networks, interfaces, topology aggregates; a way of exchanging information as to

where the named entities are; a way of computing and selecting paths between named

entities; and a way of causing traffic to take these paths.” [21] An end-system or host

is a computer that is connected to the network such as a laptop or a tablet, a smart

phone, and so on. Forwarding is the relaying of packets from one network component

to another via a channel that connects the components. Routing is the process of

selecting paths in a network along which to send network traffic. An autonomous

system (AS) is a set of routers and channels that are administered by a single entity

in the Internet such as a university, company or Internet Service Provider (ISP).

This dissertation presents a scalable design for a path service that com-

putes application-specific paths across the network on behalf of end-systems

in a (loose) source routing architecture.

Despite the huge success of the Internet, shortcomings in its routing and for-

warding system have become apparent. The determination of a single “best” path

between the source and the destination, which has long been considered to be the

basic functionality of Internet routing, is no longer sufficient to meet the needs of

new and heterogeneous applications that use the Internet. Real-time video streaming

1

and video conferencing applications are examples of applications that require differ-

ent (i.e., application-specific) properties than those required by the Internet’s older

applications such as email and telnet. The current Internet routing and forwarding

system is not always able to provide satisfactory quality-of-service (QoS) for real-time

video applications, especially during the times of heavy Internet usage. Video is the

dominant component of the Internet traffic during the peak hours of usage [54], and

the performance of video streaming applications depends on the QoS provided by the

Internet routing and forwarding system during these times of heavy load.

Interactive (e.g., online multi-player games) and real-time (e.g., video conference,

VoIP) applications require the routing and forwarding system to provide robust end-

to-end communication even in the face of failures (e.g., channel or node failure). While

network failures are common in the Internet, the current Internet inter-domain (i.e.,

between ASs) routing system is known to suffer from slow convergence:1 The average

convergence time of the Internet inter-domain routing system upon changes in the

topology was measured to be 3 minutes in past studies [52, 53]. Slow convergence of

the Internet inter-domain routing system has been shown to hinder the performance

of interactive applications like VoIP [51], multi-player games, and online financial

transactions [78, 65].

While there are thousands to millions of unique communication paths between

any two end-systems located in different parts of the Internet (see Section 6.2.1),

end-systems have little to no influence on path selection in the current Internet archi-

tecture. Even the failure of a single network component (e.g., channel) on the “best”

path between two end-systems can disrupt communication for long periods due to

slow convergence of the routing system. Ideally, an application (or the operating

system) running on an end-system could simply switch to a (pre-computed) alternate

1 The current inter-domain routing and forwarding system requires all the network providers
to synchronize (i.e., converge) on the same set of “best” paths to all destinations in the Internet;
otherwise, packets can loop and will never reach their destinations.

2

path upon detecting a failure. In general, an end system can rapidly—that is, on the

order of a few round trip times (RTT)—detect performance problems based on the

feedback (or lack thereof) from the other end-system.

An important design factor that limits the influence end-systems have on the

path selection process is the conflation of routing and forwarding [38, 17]. In the

current Internet routing architecture, the routing functionality is performed in a fully-

distributed way: each node along the communication path makes an independent

decision as to where to forward packets next in a process called hop-by-hop routing.

This means that both routing and forwarding are performed at each hop that a packet

visits.

As opposed to the Internet’s fully-distributed routing system, in a fully-centralized

routing system (also known as strict source routing) one entity (not necessarily the

sender) computes and selects the entire path (i.e., source route) that the packets are to

follow using a topology map of the global network. Senders of traffic place these paths

in their packets and each network hop simply forwards those packets according to the

paths that they carry. However, ISPs usually have no desire to reveal topological

details of their internal network. More importantly, ISPs have great incentive to

control the routing of packets across their network in order to optimize the usage of

their infrastructure.

A possible hybrid between the fully-distributed routing and the fully-centralized

routing is loose source routing, where one entity picks the whole path, but in terms

of high-level abstractions. Such a routing mechanism gives stake-holders (e.g., ISPs)

local control over the routing within their infrastructure. For example, in a provider-

level (i.e., AS-level in the current Internet architecture) loose source routing system,

the paths carried in the packets determine the sequence of network providers (e.g.,

ASs) that the packets are to traverse, while the providers control the forwarding paths

of the packets that transit their network.

3

Provider-level source routes can be specified at different granularities. One pos-

sibility is for packets to specify a sequence of providers (i.e., node-level path), and

another possibility is for packets to specify the locations or interfaces where packets

enter and leave each provider (i.e., channel-level path). In the following discussion,

we assume the latter case. Channel-level routes result in a larger number of possible

paths compared to node-level routing, as the large providers in the Internet tend to

connect to one another at multiple locations.

A major challenge in deploying a loose source routing architecture is the com-

putation and the selection of provider-level paths in a centralized way. Considering

that there are over 35,000 inter-connected ASs in the current Internet, the resources

required in collection and maintenance of provider-level information and the path

computations can be nontrivial even if it is only based on connectivity. More impor-

tantly, computing application-specific paths (i.e., paths that satisfy multiple QoS con-

straints) requires NP-hard [79] computations when selecting a small number of paths

that satisfy constraints on multiple additive routing metrics2 from possibly millions

of unique (provider-level) paths. In addition to the computational cost, computing

application-specific provider-level paths requires periodically obtaining topology in-

formation including performance (i.e., QoS) information such as latency and available

bandwidth.

In this thesis, we propose that the burden of application-specific path computa-

tion/selection and collection of topology information be placed on specialized servers

that provide routing as a service, and we refer to this service as a path service. In a

loose source routing architecture with a path service, end-systems (before they can

initiate data communications with destinations) send path queries to the path service

to obtain a set of paths that meet application-specific constraints. Upon receiving a

query, the path service computes and returns a set of provider-level paths that satisfy

2A routing metric is additive if the join operation on the metric requires an addition operator
(e.g., the latency metric).

4

the constraints specified in the query based on the most recently obtained topology

information.

Because a (loose) source routing architecture with a path service brings sev-

eral important advantages3, especially with respect to fostering competition between

providers to attract user traffic, we believe it is worth examining in detail. The ar-

chitecture is not without challenges. In particular, obtaining paths from the path

service adds additional latency before end-systems can send their first data packets.

The additional latency cost is more significant for short-lived flows that last for only

few round-trip times (RTTs). Because short-lived flows are common in the Internet

communications, it is important to minimize the additional latency to obtain paths.

Domain name service (DNS) [60] lookups, which happen prior to most data commu-

nications in the current Internet architecture, add an additional latency of an RTT

to existing Internet communications. To be comparable with the latency of DNS

lookups in the current Internet architecture, the path service must limit the latency

in computing and returning paths for a “typical” request to at most an RTT. For

example, 10 milliseconds is a reasonable bound, because it is less than most RTTs

in the Internet. Our goal is to limit the latency incurred by the vast majority (i.e.,

95%) of requests to be less than a few tens of milliseconds.

In addition to the time limit in computing query results, another requirement for

a path service is being aware of changes in the topology information including per-

formance information such as latency and available bandwidth across the forwarding

paths of the network providers. However, awareness to changes in the performance

information at very short time-scales (i.e., milliseconds) is neither scalable nor useful,

because frequent collection of topology information leads to a large overhead, and the

collected information is likely to become stale by the time the path is computed using

the information. We propose that the path service use statistical performance infor-

3A detailed description of the advantages of a loose source routing architecture are given in
Section 1.1.3.

5

mation that is likely to change more slowly (i.e., on the time-scales of minutes). Such

information can be considered advisory as opposed to information that is guaranteed

to be accurate.

The main challenge for the design of a globally-deployed path service that provides

paths for all Internet communications is scalability. A scalable path service is one that

computes and returns paths on the rough time-scale of an RTT, in a topology that is

at least the size of today’s Internet with at least as many possible provider-level paths.

Although loose source routing systems have been proposed in the literature [18, 36,

14], the scalability of path computation and selection in these architectures is largely

ignored.

In this thesis, we propose a design for a scalable path service that discovers the

topology and computes application-specific provider-level paths for end-systems in a

loose source routing architecture, while considering ways to deploy the service in the

current Internet.

1.1 A Loose Source Routing Architecture

Our work assumes a clean-slate routing architecture where routing and forwarding

are separated: the path service performs inter-domain (i.e., provider-level) path com-

putation/selection for end-systems, and the network performs forwarding of packets

according to the paths they carry. End-systems query the path service expressing

their policies, such as path selection policy, as “hints”, and the path service computes

and returns a list of inter-domain paths according to the supplied policies. The policy

hints include a traffic class, selected from a set of known classes, and other hints such

as a blacklist of domains to be avoided in the paths returned.

6

1.1.1 Assumptions

We envision an inter-network consisting of independently-administered domains (i.e.,

providers) that are connected by bidirectional channels, each having a globally-unique

identifier. An inter-domain path consists of a sequence of (inter-domain) channels

starting with the egress channel of the source domain and ending with the ingress

channel of the destination domain. A separate lookup system (similar to DNS) maps

end-system identifiers to domains4. We assume that domains and end-systems have

unique identifiers, but the structure of the identifiers is irrelevant to our scheme; they

can be IP addresses or flat (i.e., unstructured) identifiers.

Deploying a source routing architecture in the real world would require payment

mechanisms by which users could compensate individual (both local and non-local)

network providers for their usage, as the providers would have no incentive to forward

source-routed traffic without compensation. A scalable payment mechanism is outside

the scope of this thesis but is on-going work that can be found in the ChoiceNet

Project [83]. In addition to payment mechanisms, the architecture must enable transit

providers to enforce their policies, so that they can control access to their resources.

For example, it is in the interest of all transit providers to forward source-routed traffic

only if it originated from, or destined to a paying customer. We briefly describe

two possible policy-enforcement mechanisms that can be used with our system in

Section 3.4.2.

In the proposed architecture, network providers reveal performance information

in addition to their connectivity with their neighboring domains. Today, network

providers reveal connectivity through the inter-domain routing advertisements they

send. By collecting the routing advertisements from multiple vantage points, it is

possible to (largely) infer the inter-domain topology [19]. However, the providers in

4The mapping of end-system identifiers to domain identifiers can be performed together (i.e., via
the same protocol) with the path computation, to avoid adding an additional RTT to the latency.

7

the current Internet do not reveal performance information to users. Providers do not

gain benefit from doing so because end-systems lack the ability to choose provider-

level paths. In our proposed architecture, revealing (good) performance information

benefits providers by attracting user traffic.

1.1.2 Topology Information

The path service periodically collects topology (i.e., routing) information from transit

providers in the form of relay advertisements, which are offers to relay (i.e., forward)

packets from an ingress channel to an egress channel. A relay advertisement contains

the advertising domain, the ingress and the egress channels, performance information,

and possibly other attributes. The actual set of routers used to relay packets across

a domain are not revealed in the relay advertisements, in order to keep the internal

topology of the domain hidden. Selection of the routers used to create a forwarding

path for the packets using the relay is under the control of the domain. However, a

domain can advertise multiple classes of forwarding services from a particular ingress

channel to a particular egress channel, by advertising each service as a separate relay

advertisement across the same domain. In that case, the end-systems can influence

the path selection across a domain.

When multiple relays are offered between a pair of ingress and egress channels,

each such relay is advertised with a unique traffic class label in addition to the physical

ingress, egress channels to uniquely identify the forwarding service in the paths. The

performance information in a relay advertisement provides a (statistical) summary of

measurements collected from the forwarding path associated with the relay. When a

domain utilizes multiple forwarding paths for a single advertised relay, it is responsible

for maintaining similar performances across the individual paths.

8

1.1.3 Advantages

Application-specific path selection is an important advantage of the proposed loose

source routing architecture over the current Internet architecture. The architecture

gives users the ability to discover and choose provider-level paths, which creates

competition between providers based on service quality assuming that providers get

compensation for usage.

In a loose source routing system with appropriate payment mechanisms, users can

reward providers that offer good service quality by choosing to route packets through

their network (and paying for usage), and “punish” (i.e., by blacklisting or simply

not using) providers that offer poor service quality. Such a system gives incentives

for providers to innovate and compete based on service quality, in contrast to the

current Internet routing architecture where there is no way to reward providers for

innovation and quality.

Unlike routers in a hop-by-hop routing system that are required to pre-compute

shortest paths to all destinations, in a loose source routing system the path service can

deploy more flexible computational strategies such as computing paths when they are

needed or a combination of on-demand and pre-computations. Another advantage of

our scheme is evolvability: testing and deployment of new path selection algorithms

only require modifications to the path service. In comparison, the fully distributed

nature of the Internet routing is very difficult to change or evolve, as testing and

deployment of new path selection techniques require global deployment. These ad-

vantages come with new challenges, especially with respect to the computation and

the selection of paths, which we describe next.

1.2 Path Service Design Problem

Our study on the design of a scalable path service focuses on the two main “pinch

points” that we believe are the primary challenges: i) cost of path computations, and

9

ii) bandwidth cost of periodically collecting routing information from the network.

The overhead of path computation is directly related to the responsiveness of the

service (i.e., latency in returning query results). Next, we discuss these two cost

components.

1.2.1 Path Computation Cost

Even though the path computation/selection is performed in a centralized manner,

the global path service is not necessarily a single centralized service. Because the end-

systems in an access domain only require paths that originate from their local domain,

a separate path service can be deployed at each access domain to compute inter-

domain paths from one access domain to all other end-systems. Although deploying a

path service in each access domain improves the scalability of the path computations,

it leads to increased bandwidth overhead of collecting routing information from the

providers to the path service, as we explain in Section 1.2.2.

In order to improve the responsiveness of the service, it is important to carry

out the majority of the path computations before the arrival of queries as pre-

computations. However, pre-computations must be repeated when the routing in-

formation used in the computation changes. Pre-computations can only be done if

the rate of change in the input is smaller than the rate at which the pre-computations

can be completed. Moreover, if the results of the pre-computation are not requested

before the routing information changes, then the pre-computation was wasted. There-

fore, an important factor in the design of a scalable path service is the time-scales

of change in the routing (i.e., topology) information and the rate of requests for the

pre-computed paths.

Routing information in the relay advertisements can be broadly categorized as

slow-changing and fast-changing information. An important observation is that the

connectivity of the domains and load-independent information such as a channel’s

10

bandwidth capacity and propagation delay changes relatively slowly when compared

to the load-dependent routing (i.e., performance) information such as latency and

available bandwidth in the Internet. The inter-domain connectivity and the load-

independent information change only with addition, upgrade, or removal of channels,

which happen on the time-scales of days or months. Transient changes in connectivity

can happen, however, with short-term (i.e., seconds to minutes) failures in the network

components (e.g., channel or node failure). The end-systems are in the best position

to rapidly detect and react to transient failures by simply switching to alternate (e.g.,

disjoint) pre-computed paths that they obtain from the path service. Therefore,

it is not necessary for the path service to keep track of transient changes in the

connectivity.

In addition to time-scales of change, another important consideration in the design

of the path service is the caching of recently computed paths. Caching can potentially

improve the responsiveness of the service, if there is a significant locality of reference in

the destinations contacted by the end-systems. Our preliminary results, based on col-

lected network traffic traces consisting of flows that originate from an access domain,

indicate that there is a significant locality of reference in the destinations contacted

by end-systems within an access domain. In particular, our measurements found that

around 90% of flows leaving the University of Kentucky (UK) campus during an entire

day were destined to fewer than 2000 destination domains (see Chapter 5 for details).

Another important factor determining the effectiveness of caching is the time-scales of

change in the performance information, because cached paths are not guaranteed to

be valid (i.e., may no longer satisfy the application-specific constraints) upon changes

in the information. As we pointed out earlier, the path service only keeps track of

slower-changing performance information such as statistical performance information

that is expected to change in the time-scales of minutes. As we will show, caching is

effective in reducing the path computation cost even when its contents expire on the

11

time-scales of minutes or less.

1.2.2 Routing Information Collection Cost

In the routing architecture that we consider, transit providers perform measurements

and periodically send the summaries of their measurements (i.e., performance infor-

mation) for each of their relays (directly) to all the path services as part of the relay

advertisements. Even though the path service uses slow-changing, statistical perfor-

mance information, the overhead of periodically sending relay advertisements with

performance information can be significant on the network. The overhead is greater

when the path service is deployed at each access domain to reduce the computational

cost, because the transit providers must periodically send relay advertisements to all

access domains. However, our scheme does not mandate that each access domain

have a path service; a path service can serve multiple access domains.

There are possible ways to reduce the bandwidth overhead of the relay advertise-

ments. One possibility is to build specialized routes to distribute the advertisements.

For example, one can construct multicast trees for each transit provider to distribute

its information to all path services using the smallest possible number of inter-domain

channels, assuming that the architecture supports forwarding of packets with paths

containing trees and duplicate packets when necessary. Also, the providers can use

compression mechanisms to reduce the size of the relay advertisements that they send

to the path service.

A more effective approach to reduce the overhead is to reduce the frequency of relay

advertisements. An important observation is that the path service can use a pull model

(i.e., on-demand) to collect relay advertisements from the transit providers. With an

on-demand approach, the frequency of collecting the performance information from

different parts of the network is one of the “knobs” that can be controlled in the design.

The path service can implement various on-demand collection strategies to reduce

12

the overhead of advertisements. For example, the service can collect performance

information from unpopular regions of the inter-network less frequently than from the

popular regions. Because the majority of the inter-domain traffic originating from one

access domain is destined to a small number of (popular) destination domains, parts

of the inter-network topology (i.e., closer to popular destination domains) are likely

to be more relevant to the path service than some other parts. Furthermore, frequent

collection of relay advertisements from backbone providers where the largest number

of flows are aggregated may be unnecessary, because the change in the statistical

performance information is expected to be slow at such locations. A comprehensive

solution to minimizing the overhead of performance information collection on the

inter-network is provided by Wu [84], and it is outside the scope of this thesis.

1.3 Our Solution

Our approach is to perform the most expensive computations in advance on the

slow-changing information (i.e., connectivity). For a network the size of the current

Internet this produces over a billion paths from a single source domain to all desti-

nation domains which we sort and then select paths using fast-changing information

during the query-time (i.e., on-demand). The pre-computation stage is performed

only once, and only incremental changes are made upon changes in the slow-changing

routing information. In order to improve the scalability of on-demand computations,

our approach makes heavy use of parallel computations. In particular, the set of

pre-computed paths are partitioned and assigned to a set of threads or processes5,

where each performs a part of the path computation in parallel.

Our hypothesis is that through path caching, a combination of pre-computations

and on-demand computations, parallel computations, and the use of slow-changing

(i.e., statistical) performance information, a scalable path service with acceptable

5Our approach does not rely on shared-memory for inter-process communication.

13

latency (i.e., comparable to a RTT) can be designed and implemented. We test our

hypothesis in a setting where a path service computes paths for end-systems in a single

access domain. Our workload model includes a set of queries that are generated using

real Internet traffic traces collected at a university campus and relay advertisements

generated using an accurate model of the Internet inter-domain topology.

1.4 Summary of Our Results

Our main result is that using commodity hardware with a modest amount of resources,

the path service can achieve acceptable latency under a realistic workload. The service

can support topologies with an arbitrarily large number of possible paths by scaling

the computations through parallelism. Also, the caching of recently computed query

results effectively reduces the computational cost under realistic workloads because of

the high locality of reference in the set of destinations contacted by the end-systems.

The path service can also compute disjoint paths (paths that share no channels in

common) with negligible additional overhead. In particular, the path service processes

“disjoint path queries” that provide an input path and request application-specific

paths that have the fewest channels in common (i.e., maximally disjoint) from the

input path. Such queries are useful, for example, when end-systems need to request a

disjoint path from a recently failed path in order to recover from failures. Our results

show that the path service can provide application-specific, maximally disjoint paths

with negligible overhead. The service minimizes the overhead of disjoint paths by

using compact data structures, i.e., Bloom Filters [15], to represent paths and by

using efficient comparison methods on the filters.

In this thesis, we also describe a loose source routing system with a path service

that can be deployed alongside the current Internet architecture, and we describe a

prototype implementation. The implementation of the system includes a “wrapper”

library and packet forwarding elements. The wrapper library enables legacy (unmod-

14

ified) Internet applications to use the loose source routing system and select paths

according to application-specific constraints. The forwarding element is a software

router implementation that forwards source-routed packets produced by the wrapper.

The implementation of the system uses a data-plane policy-enforcement mechanism

for transit providers that is inspired by Platypus [66], where policy-compliant pack-

ets (e.g., packets that are paid for) carry tokens that are verified by the forwarding

elements of the providers. We also briefly describe how the loose source routing sys-

tem can work with partial deployment—that is, when a subset of the domains in the

Internet forward source routed packets and send relay advertisements to the path

service—in order to demonstrate that the system is incrementally deployable.

We begin by describing Internet routing and forwarding in Chapter 2. The loose

source routing architecture and the challenges of designing a scalable path service are

described in Chapter 3. Chapter 4 describes relevant prior work and its relationship

to the thesis. Chapter 5 describes the path service design in detail and Chapter 6

presents the evaluation of the design. In Chapter 7, we describe a loose source rout-

ing architecture with the path service, which can be deployed alongside the current

Internet routing architecture. Finally, in Chapter 8, we present our conclusions and

discuss possible future work.

15

Chapter 2

Background

To better understand the limitations of the current Internet, we start by explain-

ing routing and forwarding in the current Internet. First, we briefly describe basic

concepts related to routing such as the Internet Protocol (IP) and the Autonomous

System (AS). Then, we discuss intra-domain routing and forwarding approaches in

the Internet. Finally, we describe the inter-domain routing and forwarding system of

the Internet.

2.1 Internet Protocol

Internet protocol version 4 (IPv4) and version 6 (IPv6) are connectionless protocols

used in packet-switched computer networks for transmitting blocks of data called

datagrams1 between hosts. The Internet Protocol (IP) provides a best-effort com-

munication facility—no acknowledgement of successful receipt of datagram messages

is defined by the protocol. In addition, there is no assurance of in-order delivery of

packets, and there is no avoidance of duplicate deliveries. IP addresses identify net-

work interfaces. Each network interface participating in IP is assigned a fixed-length

identifier: a 32-bit address in IPv4 and a 128-bit address in IPv6. Datagrams carry

source and destination IP addresses.

As the successor of IPv4, IPv6 is proposed as a long-term solution to cope with

1 The term packet is a more general name for blocks of data that are delivered either reliably
(using mechanisms that are not part of IP) or not.

16

the exhaustion of the 32-bit address space in IPv4. IPv6 addresses are written using

eight groups of four hexadecimal digits (16-bits) separated by colons. To simplify

IPv6 address representation, the Internet Engineering Task Force (IETF) proposed

two conventions: (i) “::” is used (at most once in an address) to shorten one or

more 16-bit groups of hexadecimal digits containing only 0’s, and (ii) leading zeros

in a 16-bit groups are suppressed [46]. Using these conventions, the IPv6 address

“0004:0dfb:85a3:0000:0000:0000:0000:0001” can be represented in a compact way as

“4:dfb:85a3::1”.

Some IPv4 header fields that are rarely used have been made optional in IPv6 to

reduce the processing cost of packets. These options are moved to extension headers,

which allow flexibility in the length of options and greater extensibility by allowing for

new options to be added in the future. One example is a fragment extension header,

which contains information to support breaking datagrams into smaller fragments and

then reassembling them. We use the IPv6 extension headers to carry source routes

in IPv6 packets in Chapter 7.

2.2 Autonomous System

An Autonomous System (AS) is a set of routers and channels that are administered by

a single entity such as a university, a company or an Internet Service Provider (ISP).

An AS represents a single, coherent routing policy to the Internet. As we explain later

in Section 2.3.2, AS routing policies determine whether an AS shares its routes with

neighboring ASs. These policies are influenced by the business relationships between

ASs. The business relationships between neighboring ASs can be classified into two

broad categories: (i) a provider-to-customer relationship, where a customer AS pays

a provider AS for sending and receiving traffic and (ii) a peer-to-peer (i.e., peering)

relationship, where both ASs find it mutually beneficial to exchange traffic without

exchanging money. Based on their traffic patterns, ASs can be broadly classified into

17

stub and transit ASs. A stub AS carries traffic that either originates or terminates

within that AS. On the other hand, a transit AS carries traffic that does not originate

or end within the AS.

The customer-provider relationships in the Internet form a hierarchy among the

ASs. Based on their location in the hierarchy, ASs can be broadly classified into

tier-1, tier-2, and tier-3 ASs. Tier-1 ASs form the root of the hierarchy and typi-

cally have peering relationships with almost all other tier-1 ASs to form a highly-

connected core region. Tier-1 ASs typically span a large geographical area including

multiple continents. Tier-2 ASs have regional customers and have one or more tier-1

providers. Tier-3 ASs have small number of local customers and have one or more

tier-2 providers.

One or more blocks of IP addresses called IP prefixes are assigned to autonomous

systems. An IP prefix is a block of addresses with the first N bits uniquely identifying

the network and the rest of the bits identifying the locations within the network. The

first N bits are called the prefix and “/N” denotes a prefix of N bits long. An example

of a IPv6 address prefix is “3001:bd8::/32”, where the first 32 bits are represented

with two 16-bit groups of hexadecimal numbers.

The assignment of IP addresses to ASs is made in one of the two ways: (i) the

customer AS obtains a block of IP addresses from its provider or (ii) the AS obtains

a block of IP addresses from a Regional Internet Registry (RIR). In addition to

IP prefixes, each AS has a unique 32-bit autonomous system number (ASN) which

uniquely identifies the AS in the Internet. Autonomous systems create a two-level

hierarchy for routing in the Internet. Routing between ASs is called inter-domain

routing and routing within the ASs is called intra-domain routing. Next, we describe

routing and forwarding in the Internet.

18

2.3 Internet Routing and Forwarding

Routing in traditional IP networks is performed in a fully-distributed, hop-by-hop

manner. Each router makes an independent routing decision to determine which

“next-hop” neighbor the packet should be forwarded. ASs use an intra-domain routing

protocol to determine how to route packets within the AS and an inter-domain routing

protocol to determine how to route packets from and to other ASs.

2.3.1 Intra-domain Routing and Forwarding

Intra-domain routing protocols can be divided into two categories: (i) distance-vector

and (ii) link-state. With link-state protocols, each router advertises its neighbors to

all other routers in the domain. In the distance-vector routing protocols, each router

shares its routing table—a data table that contains the next-hop to forward packets

with the “cost” of doing so for each destination—only with its directly connected

neighbors. Initially, the routing tables of nodes contain only their direct neighbors

and the cost of reaching them. The cost is a single value that can be computed using

various metrics such as hop count, latency, and available bandwidth. In link-state

protocols, each node composes the global map of the topology using the link-state

advertisements from all other nodes and uses a shortest path routing algorithm such

as Dijkstra [28] to compute paths.

An important task of intra-domain routing and forwarding systems is to select

paths with the goals of efficient use of network resources and good network per-

formance. Traditional intra-domain protocols route packets along the shortest (i.e.,

minimum hops) paths, which can cause congestion on the channels where multiple

shortest paths overlap. Equal-Cost Multi-Path (ECMP) algorithm [40] enables hop-

by-hop routing protocols to support sharing of traffic among multiple shortest paths.

Even though ECMP allows load-balancing traffic across multiple shortest paths, it

does not support load-balancing among paths with different costs.

19

Because of the limitations of the hop-by-hop routing, centralized routing ap-

proaches are becoming popular. One such approach is Multi-Protocol Label Switching

(MPLS) [69]. In MPLS, packets are encapsulated with a stack of labels which deter-

mines their paths across the network. Labels are pushed on the incoming packets at

an entry point of the network and popped off the packets at an exit point. Unlike

ECMP, MPLS supports load-balancing across paths with different lengths. Another

important advantage of path-oriented approaches over traditional hop-by-hop routing

is fast recovery from failures. In particular, an MPLS network can rapidly recover

from failures by diverting the traffic to pre-computed backup paths. On the other

hand, hop-by-hop routing requires a period of convergence, which can last for seconds

to minutes, to recover from failures.

Existing approaches to centralized routing in the Internet is mostly limited to in-

dividual ASs, where all the network devices are conveniently under a single manage-

ment. At the inter-domain level, routing is performed in a fully-distributed manner,

as we explain next.

2.3.2 Inter-domain Routing and Forwarding

While the routing decisions within a single domain are based mostly on efficiency and

performance, inter-domain routing decisions are mostly based on routing policies. A

main challenge of inter-domain routing is to ensure that domains forward traffic that

is policy-compliant. In particular, providers have no incentive to transmit traffic

which does not generate revenue. An ISP, call it S, usually provides full transit of

incoming and outgoing packets for its own customers and provides some transit for

the customers of the other ASs involved in a peering relationship with S.

The only inter-domain routing protocol in use today is the Border Gateway Pro-

tocol (BGP), version 4 [68]. Neighboring ASs use BGP route advertisements to

exchange routing information. A BGP route advertisement carries a particular IP

20

prefix. Consider Figure 2.1 where the AS P advertises its prefix “1280:1630::/32” to

AS A. AS A propagates (i.e., exports) the advertisement to AS B, which implies that

AS A is willing to forward packets destined to P through its network.

A P

C

B

Advertisement

AS−PATH: A, P

1280:1630::/32

Advertisement

AS−PATH: P

1280:1630::/32

1280:1630::/32

Figure 2.1: Provider P advertising its prefix “1280:1630::/32” to provider A, and A

exports the advertisement to provider B.

Unlike intra-domain routing protocols, the BGP advertisements do not provide

cost metrics such as the number of hops. Instead, the BGP advertisements contain

reachability information in the form of AS-level paths. The AS-level paths in the

advertisements are placed in the AS-PATH fields. Originally used only for loop-

detection in the paths, AS-PATH is used to make policy-based path selection decisions

by the ASs. In particular, when multiple routes to reach a particular prefix P are

received, the AS selects only one of the routes as the “best” route to P and exports

only the best route to its neighbors. The selection can be based on the length of the

AS-PATH or other considerations based on the ASs on the AS-PATH as specified by

the local AS policy.

BGP converges when the entire inter-network is synchronized to the same set of

“best” paths to all prefixes. Lack of synchronization in parts of the Internet can lead

to serious problems such as routing loops. The global synchronization is known to

take on the order of minutes, during which the end-systems can be disconnected [52].

Because BGP limits ASs to select a single “best” path for each destination, multi-path

routing has very limited support in the Internet at the inter-domain level.

21

The inter-domain topology of the Internet can be largely inferred from the BGP

advertisements. From the advertisements, one can construct an AS-level graph in

the following way: an edge exists between ASi and ASj if and only if ASi advertises

some prefix to ASj or vice versa. Various organizations such as the Route Views

project [75] collect BGP advertisements from multiple locations in the Internet and

then make their data available for use by researchers.

In summary, the BGP protocol provides mechanisms for ISPs to perform a dis-

tributed computation to determine a single “best” path to all destination IP prefixes.

BGP requires global synchronization to work properly, and multi-path routing usage

is very limited. Because the vast majority of the paths that end-systems use in the

Internet traverse multiple domains, the limitations of the inter-domain routing and

forwarding system impacts almost all the communications in the Internet.

2.4 IP Routing Compared to a Path Service

While IP routing has worked well, it has several limitations that are not present in

a loose source routing approach that uses a (logically) centralized path service to

compute paths. The centralized path computation approach separates routing from

forwarding. By separating routing and forwarding, one can achieve faster conver-

gence time and faster recovery from failures. Also, the end-systems in a loose source

routing architecture can use multiple paths with different characteristics instead of a

single “best” path as in BGP. The current Internet architecture has embedded busi-

ness models with no incentives for ISPs to innovate (i.e., improve service quality)

in order to attract traffic from end-systems. In a loose source routing architecture,

end-systems can select a path and (given appropriate mechanisms) pay for the route,

which provides incentives for ISPs to offer better service quality. However, a loose

source routing architecture with the path service brings new challenges. In particular,

the path service must periodically collect routing information containing performance

22

information and compute/select paths in a timely manner. In this thesis, we mostly

focus on the latter challenge.

23

Chapter 3

A Clean-slate Approach to
Inter-domain Routing

We consider a clean-slate approach to inter-domain routing in which inter-domain

paths are computed in a centralized manner and are selected prior to forwarding. In

this approach, a path service discovers topology and computes domain-level1 paths

between source and destination domains. Applications, before sending packets to

destinations, request a set of paths from a path service. The resulting paths returned

from the path service (or a subset) are then used by the application to send data

packets.

Routing and forwarding are separated: the path service performs routing (i.e.,

selection of domain-level paths), and the domains perform forwarding of packets ac-

cording to the domain-level paths carried in the packets. Such a system offers a

number of architectural advantages over the current Internet routing system, includ-

ing (i) native support for multipath forwarding; (ii) the ability to apply different

path-selection policies for different applications or user classes that can evolve over

time; and (iii) the ability to react to changes (in topology, etc.) without waiting for

the network to converge.

More precisely, we consider the design of an inter-domain path service, which

1We use the term domain or provider instead of “AS” because of the latter’s connection with
BGP in today’s routing and forwarding system.

24

discovers and computes domain-level paths between source and destination domains.

Applications send a query to the service to obtain paths from the service and the

paths returned from the path service (or some subset of them) are then used by the

network for forwarding.

3.1 Overview

We consider a network made up of separately-administered domains, with no central

administration (similar to today’s Internet). We classify domains as either transit or

access (i.e., stub), as it leads to a simpler and cleaner model. Access domains exist to

provide service to users. Transit domains exist only to interconnect access domains.

Thus, every packet originates from and is destined to, an access domain. This is

different from today’s Internet, where ASs can play both access and transit roles.

The separation of roles requires dividing the domains with mixed roles into a

transit domain and one or more access domains, where the transit domain inter-

connects the access domains to each other and to the rest of the Internet. The provider

networks in the current Internet are commonly organized as a backbone area that

interconnects one or more stub areas. Dividing providers with such an organization

can be straightforward since the backbone area performs the functionality of a transit

domain, and each stub area (or each group of directly-connected stub areas) can

become an access domain. Additional details on the access and transit separation in

our model and its implications on the Internet inter-domain topology are provided in

Chapter 6.

Domains are connected via named channels. The basic channel abstraction is a

point-to-point, bidirectional, best-effort packet transmission facility. Channels are

named with globally unique channel identifiers (CIDs) whose structure is irrelevant

to our scheme; they can be the IP addresses of the two endpoints or flat (i.e., un-

structured) identifiers. A channel is created between a pair of domains if and only

25

if both deem it mutually beneficial. In our model, one domain connects to another

for the same reason ASs connect in the Internet today: to get access to a greater

portion of the Internet. However, our model has no customer-provider relationships

between domains; all relationships are settlement-free, similar to peering. Because

a settlement-free relationship only requires two domains to pay the cost of connect-

ing a channel, access domains can peer with any number of transit domains—that

is, multi-homing comes “for free”. A possible implication of low-cost peering is the

increase in the multi-homing degrees of providers. In our experiments, we consider

access domains with larger multi-homing degrees than those in the current Internet.

All transit policies are strictly local—that is, transit providers have no say over

what happens to traffic after it leaves their domain. The collection of transit domains

forms a switching network that provides at least one path between every pair of

access domains. Transit domains form the “switching elements” of this network; they

simply relay packets between ingress and egress channels. The mechanism used to

convey packets between ingress and egress is opaque to our scheme; a domain might

use MPLS, Software-Defined Networking (SDN) [31], IP tunneling, or regular intra-

domain (IP) routing.

The path service is a crucial entity in our architecture. One or more (possibly

competing) instances of path services serve the users in the global Internet. The path

services collect routing information from transit domains about connectivity between

their ingress and egress channels and use that information to compute paths between

access domains. To send a packet, a user requests some number of paths to the

destination domain from a path service. The resulting information flow in our model

between all these entities is given in Figure 3.1.

26

Service

Path

Query
List of

Transit Providers

Packets with

Paths

End−systems

in Access Domains

Routing Information

Paths

Figure 3.1: Entities and information flow in our model.

3.2 Model of Operation

The path services periodically collect topology information and use them to construct

paths between access domains. Paths consist of a sequence of channels starting with

the egress channel of the source domain and ending with the ingress channel of the

destination domain.

The topology information from each domain must contain enough description of

the domain’s topology for the path service to be able to compute paths and must not

reveal the inner details of the domain’s topology. This is accomplished by advertising

an abstraction of the domain’s topology using a set of edge-to-edge (i.e., ingress to

egress) relaying services described next.

3.2.1 Relay Advertisements

The path service periodically collects relay advertisements from transit domains. A

relay advertisement is an offer to relay packets from an ingress channel to an egress

channel, and includes the offering provider, the Channel Ids (CIDs) of the ingress

and the egress channels, plus performance information and other attributes. The

performance information of a relay advertisement contains a statistical summary of

the recent measurements of load-dependent quality-of-service (QoS) attributes such

as latency and available bandwidth. We describe the performance measurements in

27

Section 3.2.2.

Transit domains can provide multiple “virtual” relaying services across a pair of

physical ingress and egress channels. In that case, each virtual relay is advertised sep-

arately with a traffic class label, along with its ingress, egress channels, performance

information, and other attributes. When sending data through a relay, the packet

must carry the traffic class in order to identify which virtual relay is being requested.

The inter-domain paths returned by the path service contain a traffic class label for

each virtual relay that the path contains.

Unlike the Differentiated Services (DS) [62] field in IP packets, a traffic class label

is associated with a relay not the entire path. Therefore, different combinations of

traffic classes can be selected on a path. Also, a domain which is not involved in

providing a particular traffic class does not need to support it or even be aware of the

traffic classes supported by other domains. The label values are not necessarily tied

to a small number of predetermined traffic classes as in the DS field. Instead, each

domain can use arbitrary traffic class labels for its services that do not necessarily

match the label for the same service provided by another domain.

Relay advertisements reflect local policies of the domain. A domain that does not

wish to forward packets from an ingress channel i to an egress channel e, simply does

not advertise a relay from i to e. The number of relays advertised by a domain with n

channels, offering C traffic classes per relay is at most n× (n−1)×C. The number of

traffic classes depends on the variety of applications using the inter-network. Existing

research in Internet traffic classification methods to map the traffic from different

applications to different (QoS) classes uses four main classes: throughput-intensive,

low-latency (interactive), web, and real-time [70]. In our experiments, we use a similar

number of traffic classes (see Section 6.1.1) for applications to choose from.

28

3.2.2 Measuring Performance Information

Transit domains perform measurements to generate performance information reported

in the relay advertisements, such as latency and available bandwidth information. The

performance information includes the performance on the forwarding paths across the

domain and on the ingress and egress inter-domain channels. Measuring the perfor-

mance information on inter-domain channels requires cooperation of the neighboring

domains. We assume that such cooperations can be established by joint interests of

the domains. The neighboring domains must make the necessary arrangements to

advertise the performance of their common inter-domain channels (e.g., the domain

with the smaller identifier reports the inter-domain channel measurements in its relay

advertisements).

It is the provider’s responsibility to ensure that the performance information is

accurate for the advertised relays; otherwise, the provider may lose business. If

multiple forwarding paths are utilized across a domain for a relaying service, the

provider must ensure that the advertised performance information for the relaying

service accurately reflects all the forwarding paths. In order to achieve that, the

provider may need to employ traffic engineering (TE) mechanisms to maintain similar

performances across all the forwarding paths for a relaying service. For example, a

flow-based traffic distribution—using hashing on source and destination addresses

and possibly other fields of the header in the incoming packets—is commonly used to

distribute load across equal cost paths in IP networks, and it is effective in networks

where the number of flows is large and heterogeneous [12]. If the performances of

paths differ significantly, despite traffic distribution and other TE mechanisms, the

domains can alternatively report a lower-bound of the performances of paths—that is,

the measurements on the path with the worst performance among all the forwarding

paths of the relay.

The latency on a path from an ingress channel i to an egress channel e can be

29

obtained by active measurements, where packets are periodically sent from i to e

containing the exact time—preferably in microsecond-level granularity—at which the

packet was sent (i.e., time-stamp value) from i. Once a measurement packet reaches e,

the difference between arrival time of the packet to e and the time-stamp in the packet

gives the latency of the packet from i to e. This type of active measurements involving

timestamps requires that the clocks of the measurement nodes to be synchronized. We

assume that microsecond-level synchronization is possible across nodes in a network

using existing techniques such as reference broadcasts [30].

Measuring available bandwidth is more difficult than measuring latency because

it requires computing the unused bandwidth—total capacity minus total volume of

traffic—on the intra-domain channels of the forwarding paths. There are existing

active measurement approaches; one that is most popular in the literature is packet

probing, sometimes referred to as packet pairs [41]. In packet probing techniques,

the ingress node sends a pair of packets (one immediately after the other) to the

egress node, and the egress node observes the changes in the spacing between the two

packets to estimate the volume of the cross (i.e., competing) traffic. The accuracy of

these techniques at any given point in time is questionable. However, taken on longer

time scales, the accuracy improves and gives reasonable estimation of the available

bandwidth [72].

The back-to-back probing packets, when time-stamped at the ingress point, can

also provide latency measurements in addition to available bandwidth estimation.

The difference between the latency measurements of the back-to-back packet pairs

provides a fine-grained latency variation on the forwarding path in addition to avail-

able bandwidth estimation. Transit domains can collect latency variation measure-

ments —also called jitter [26]—to be reported to the path service in addition to the

latency and the available bandwidth measurements.

The path service only maintains performance information for inter-domain paths

30

consisting of the inter-domain channels and the forwarding paths across the transit

domains. Figure 3.2 shows the “access paths” and the inter-domain path between two

end-systems. Our scheme ignores the performance information of the access paths

between the end-systems and the border nodes of their local access domain. However,

it is possible to deploy an intra-domain path service that computes access paths based

on performance information (of intra-domain paths) for end-systems.

Inter−domain Path

Access Path

End−system

Border Node

Channel A
Channel B

Transit Provider

Access Provider

Access Provider

Figure 3.2: Two access domains connected through a transit domain.

3.2.3 Obtaining Paths from the Path Service

Each source is configured with paths to one or more path services through a boot-

strapping protocol similar to DHCP [29]. A loose source routing architecture can also

use mechanisms that enable automatic discovery (i.e., without manual configuration)

of the path services by broadcasting their existence. A scalable broadcasting mech-

anism to bootstrap distributed services in a source routing architecture is described

in [10], and the details of the mechanism are outside the scope of this thesis. End-

systems obtain path service-specific arguments through the bootstrapping protocol

such as a time limit for the service to return query results upon receiving a query.

End-systems use the time limit to determine when to resubmit a query to the path

service in case of no response from the service.

To initiate an inter-domain flow, a source transmits a path query to a path service,

which may be local or located in another domain. The path query contains the source

31

and the destination domain identifiers (similar to an AS number), the number of paths

requested, and (optional) policy “hints”, i.e., characteristics of the paths desired.

Such hints include, for example, a “white list” of providers to be used if possible, a

“black list” of providers to avoid, advice about the application characteristics (e.g.,

streaming, interactive, or bulk transfer), or desired performance levels. These hints

are used to filter the set of paths returned in response to the query. The number of

paths returned is the number that satisfied the policy hints, or the number requested

(bounded by some system maximum), whichever is smaller.

In order for a sender to obtain its own source domain’s number and the domain

identifier of endpoints, additional mechanisms are necessary. Next, we discuss a

directory service that maps the endpoint (sender and the final destination of packets)

identifiers to domain identifiers.

3.2.4 Mapping Endpoints to Domain Identifiers

In reality, packets will travel between finer-grained entities, and some means is re-

quired to transform endpoint identifiers into (access) domain identifiers. The end-

points can have either hierarchical (e.g., IP addresses) or flat identifiers. In the case

of hierarchical endpoint identifiers where the domain identifier has no relation to the

IP prefixes in the domain, a distributed directory system similar to DNS can be used

to store endpoint identifier to domain identifier mappings. If the domain identifier

is based on the prefixes then there is no need for a DNS-like system. In case of

non-hierarchical names, a distributed hash table can be used. The directory system

must allow mobile endpoints to register their requests when moving from one access

domain to another. There are existing proposals [76, 57, 32] for a directory system

that maps identities to (dynamic) locations (e.g., domain identifier) and can handle

mobility in an efficient and scalable way. Our system can use any of these existing

solutions.

32

3.3 Problem Statement

Although the path service is “centralized” (in the sense that each source sends queries

to a specific place), the global path service can be distributed to improve computa-

tional scalability. In particular, since each access domain only needs paths from itself

to other access domains (and possibly paths from other domains to itself), the com-

putation of paths from one access domain can be handled by a local path service as

shown in Figure 3.3. Moreover the local path service needs to compute paths from

the local access domain to all other domains, not all-to-all. This greatly reduces the

computational complexity.

Deploying a path service at each access domain improves the computational scal-

ability of the global path service, but at the same time increases the bandwidth

overhead. In particular, path services at each access domain must periodically collect

relay advertisements from each transit domain. There are possible ways of reducing

the bandwidth overhead of the advertisements. Our approach is to reduce the over-

head by controlling the frequency of advertisement collection by the path service. An

important observation is that the path service can use a pull (i.e., on-demand) model

to collect relay advertisements. By using an on-demand collection mechanism, the

path service can control the frequency at which the relay advertisements are collected

from the transit domains. For example, it is expected that the large (e.g., backbone)

transit domains, where a large number of flows are aggregated, have relatively stable

performance measurements compared to smaller transit providers. The path service

can also select the frequency of relay advertisement collection from different transit

domains according to their “popularity”. For example, if a set of transit domains

are heavily used (i.e., popular) by the end-systems to relay packets compared to the

other transit domains, then the path service can collect relay advertisements from

those domains more frequently than from the others. A comprehensive solution to

collecting performance information with minimal bandwidth overhead is described

33

by Wu in [84]. In this thesis, we mostly focus on the computational overhead of

computing paths rather than the bandwidth overhead.

Transit

Provider

Transit

Provider

Transit

Provider

PS

Access Provider

PS

Access Provider

PS

Access Provider

Transit

Provider

PS

Access Provider

PS

Access Provider

PS

Access Provider

PS

Access Provider

PS

List of Paths

Path Query

Sender

Path Service

Relay Advertisements

Figure 3.3: Inter-network with transit providers and access providers with local path
services.

The conventional wisdom on source routing mandates that accurate topology maps

of the global Internet be used to compute end-to-end paths, and accurate topology

maps require awareness to changes in the routing state that happen at very short time-

scales (in milliseconds). Based on this conventional wisdom, source routing is very

hard to scale because of (i) the high frequency of route updates, and (ii) path services

repeating path computations with the frequent arrival of new routing information

rather than being able to use pre-computed paths.

Our hypothesis is that awareness of changes at very short time-scales is not nec-

essary because end systems can observe the state of the relevant parts of the network

by performing end-to-end measurements. The measurements can either be made in-

band during a data transfer or by simply sending probe packets. Instead of notifying

the path service of short-term changes in the network, transit providers can provide

performance information that contains information such as a statistical summary of

measurements over a longer (e.g., 10 seconds to minutes) period.

The design of a scalable path service is challenging due to computational com-

34

plexities and having to return paths to end systems, upon path requests, in a timely

manner. The path service must respond to queries (i.e., compute and return paths)

with latency comparable to the time it takes it takes for users in the current Internet

to resolve a DNS query, prior to sending their first data packets. In particular, the

time to obtain paths from the path service should not exceed an Internet round-trip

time of up to a few tens of milliseconds for the majority (say, 95%) of the queries.

Periodically collecting large amounts of routing information containing dynamic

performance information is also a challenge. However, we only consider domain-

level routing information that is aggregated to hide the inner details of the domains.

Therefore, the amount of routing information is on the order of the number of transit

domains in the global Internet and not the number of routers. However, each transit

domain can produce routing information (i.e., relay advertisement) that is quadratic

in terms of the number of channels that the domain has (in theory, a domain can

advertise multiple relays for each of its ingress, egress channel pairs). The path

service must keep up with the advertisements that are periodically obtained from

the transit domains. More importantly, the service must provide the most recent

available information about the performance characteristics of any returned paths, to

help the application—the path characteristics are derived from the information for

the individual relays making up the path.

Given the above model, the challenge is to design a path service that can provide,

on demand, multiple paths that satisfy a set of application-specific constraints from

a set of source domains (one or many) to any given destination access domain in

a timely manner. It must perform this function in a graph at least the scale of

today’s Internet AS graph with 105 – 106 nodes. On-demand computation of paths

that satisfy multiple constraints require the path service to consider thousands to

millions of possible paths between access providers in a limited amount of time. The

computation should use the most recently collected performance information. The

35

second challenge is to scale to large networks with arbitrarily large number of paths

between access domains.

3.4 Assumptions

In this section, we list our assumptions about the routing architecture that the path

service requires. In Section 3.4.1, we describe a possible money flow between the

stakeholders—that is, the path services, the domains, and the users. Then, we ex-

plain mechanisms by which transit domains can enforce their transit policies in Sec-

tion 3.4.2.

3.4.1 Economic Considerations

The flow of compensation in our system is as follows. Access domains make money by

charging users to connect to the network. Transit domains make money by charging

for transit service. Path services make money by charging users—either directly, or

indirectly by charging their access providers—for providing paths, and access to the

transit services that implement those paths. Thus, users pay access providers and

path services; path services pay transit providers for the use of their relay services.

Transit providers should receive compensation (directly or indirectly) from any users

or access domains whose traffic they forward. One thing that makes this feasible

is that the path service acts as a clearinghouse for payments from users to transit

providers. Such payments might occur on various time scales. In the limit, a path

service might charge for each individual path query it fulfills. More plausible, however,

would be a subscription type service, in which users (or their access domains) contract

with a path service for a longer time (e.g., over a month period) interval.

One of the features of this system is that money follows traffic flow, while traffic

flow is only weakly constrained. This is in contrast to the current Internet ecosystem,

in which traffic is (mostly) constrained to flow between customer AS’s and their

36

providers. In other words, in the current Internet ecosystem, traffic flow follows

money flow. Because the money flow changes very slowly, competition based on

service quality is effectively inhibited.

It is quite possible that brokers (which act as intermediaries among users, ac-

cess domains, and path services) or other kinds of “middlemen” would arise in this

ecosystem. We do not consider them here, although they are quite compatible with

our model.

3.4.2 Policy Enforcement

It remains to be shown that transit providers can enforce their policies—that is,

control access to their resources. If all path services receive all relay advertisements,

and a path service constructs many possible paths (up to some maximum path length),

in principle any access domain can send packets via any of a large set of transit

providers. However, a transit domain should only carry traffic that it knows it has

been (or will be) compensated for. The problem is that once a source knows a path,

it can continue to use it forever (including after it stops paying the path service),

unless some access control mechanism is provided. The form of such a mechanism

will depend on the way forwarding is implemented. Here we discuss two possibilities

that correspond to an SDN-based forwarding approach and a source-routed approach

to forwarding.

• Stateful, Software Defined Networking (SDN) based enforcement : In this method,

when a path service returns a path to a user, it informs an SDN controller for

each transit domain in the path. Each controller then installs state in its do-

main, which causes packets arriving on the specified ingress channel that match

a specified pattern—say, source and destination IP address (or prefix) and/or

flow ID—to be forwarded through the network to the specified egress channel.

The transaction between the user and the path service gives the user access

37

to the returned paths for some period of time, after which the switch state is

removed from the transit domains, revoking that user’s access. Note that no

co-ordination is required between the SDN controllers for the different domains.

The advantage of this approach is that it can be made backward-compatible,

using existing protocol headers. It has the usual disadvantages of stateful for-

warding in networks, and also increases the pre-transmission latency. We discuss

SDN in Section 4.1.

• Stateless, in-band enforcement : In this approach, packets carry an explicit rep-

resentation of the path in the packet, along with a proof of policy-compliance for

each domain in the path. Such a proof could take the form of a cryptographically-

derived token, based on a secret shared between the path service and the tran-

sit domain, and containing an expiration time. Such a scheme for verifying

policy-compliance of source-routed packets is described in Platypus [66], for

example. The ingress switch in each transit domain verifies compliance, then

simply forwards the packet to the indicated egress channel. This approach has

the advantage of greatly simplifying the state requirements of transit domains.

It has the disadvantage of adding to the computational load on the data plane,

and significantly increasing the overhead in the packet. Both of these costs can

be amortized over multiple uses, for example by verifying packets at random

intervals.

3.5 Advantages and Challenges

Below are some of the advantages of our proposed approach, compared to the current

Internet routing architecture:

• Application-specific path selection. The ability to select paths with different

characteristics for different classes of applications—without building application

38

knowledge into the infrastructure—is a key benefit of our approach.

• Performance Differentiation. Our system allows performance information to be

computed for paths and conveyed to the application, thus enabling applications

to manage their own quality of service.

• Transparency. In our system the scope of each provider’s (access or transit)

responsibility is clear and well-defined. Contrast this with the current Internet,

in which customers pay ISPs for Internet access, but no ISP can provide this

service by itself, because it controls only a small fraction of end-to-end paths.

In particular, a customer cannot hold a provider responsible for downstream

service failures.

• Competition. Because providers are paid for well-defined services, they have an

incentive to innovate and compete based on service quality.

• Efficiency. In today’s Internet, the routing system amortizes the cost of com-

puting routes to all possible destinations over all packets; every node has a

route to every destination at all times. Our system admits a much wider range

of amortization schedules. For example, paths to certain destinations might be

computed on demand, if latency is not important for the users. Paths that are

frequently used can have their performance information updated more often.

These advantages are not without costs. In particular, our scheme adds additional

latency to obtain paths before a first data packet can be sent. If paths are unidirec-

tional, a similar delay will be required before any reply packet can be sent. One goal

of this thesis is to give evidence that a well-engineered system can keep these delays

within acceptable range.

39

Chapter 4

Related Work

In this chapter we discuss several important research directions related to our work.

First, we briefly describe centralized routing approaches in the current Internet ar-

chitecture in Section 4.1. In Section 4.2, we provide a summary of several clean-slate

source routing architecture proposals. Section 4.3 describes several solutions to the

multi-constrained path computation problem. Finally, in Section 4.4, we describe a

protocol to advertise performance (i.e., QoS) information in the Internet.

4.1 Centralized andMulti-path Routing Approaches

In this section, we first discuss the IP source routing mechanisms which are generally

not available in the current Internet architecture due to security issues and violation

of ISP policies. Then, we discuss centralized routing approaches within provider

networks and within bridged local area networks. An application-level centralized

routing approach is described in Section 4.1.4. We conclude this section with the

description of an on-going effort to support reliable multi-path communications in

the Internet.

4.1.1 Source Routing in the Internet Protocols

The Internet protocol specification defines two IPv4 options called “loose source and

record route (LSRR)” and “strict source and record route (SSRR)” [42]. Both the

40

LSRR option and the SSRR option provide a mechanism for the sources to insert

paths (i.e., source routes consisting of a sequence of IPv4 addresses) into packet

headers. SSRR differs from LSRR in that successive IPv4 addresses in the SSRR

option must be directly adjacent neighbors, whereas in LSRR they may be separated

in the router-level topology by several hops. The headers of both options contain a

variable-length path field to store the path, and a 1-byte pointer field which indicates

the next hop to be traversed in the source route.

The destination address of LSRR and SSRR packets is initially set to the address

of the first hop node in the source route by the sender. In the case of a packet with

LSRR option, the network simply forwards the packet using hop-by-hop routing until

it reaches its destination. If the destination is not the final hop on the LSRR path, the

intermediate (destination) node replaces the IPv4 destination address of the packet

with the address of the next hop in the source route and increments the pointer field

in the header. In the case of a packet with SSRR option, each hop along the path

replaces the destination with the next hop address and increments the pointer.

The processing of IPv4 packets with source routing option at the intermediate

destinations also involves recording the reverse path in the packets for the receivers

to use in their return traffic back to the sender. The recorded reverse path replaces

the route in the path field placed by the sender. In particular, each intermediate

destination on the path replaces the address of its ingress interface in the path field

with the address of its egress interface, where the packet is to be forwarded. The

resulting recorded path is in the reverse order of the path from the destination back

to the source. Similar to LSRR option in IPv4, the Internet protocol version 6 (IPv6)

specification defines an optional routing extension header (type 0) that can be used

by an IPv6 host to insert a sequence of IPv6 addresses [25]. Unfortunately, both the

IPv6 and the IPv4 source routing options are deprecated [7, 67]. As a consequence,

most network routers and hosts (by default) drop IP packets that contain source

41

routing options.

One of the main reasons for the deprecation of source routing is the ability of the

senders to specify arbitrary paths that violate the policies of ISPs, such as paths that

bypass firewalls or other middleboxes that ISPs strategically place in their networks

to perform various checks on the traffic [37]. As opposed to IP source routing, in our

source routing approach, packets can only contain ingress and egress channels of the

domains, and the domains control the forwarding paths across their infrastructure.

Also, the providers use policy-enforcement mechanisms to only allow packets that

contain policy-compliant inter-domain paths.

Another important reason for the deprecation of IP source routing is the poten-

tial for bandwidth exhaustion attacks. In such attacks, the sender specifies a route

containing loops, for example one that is routed between two victim nodes repeat-

edly [7]. In our approach, a path service provides simple paths to end-systems, and

additional mechanisms can be used to prevent end-systems from modifying (e.g., in-

serting channels) those paths provided by the service. In particular, the in-band

policy enforcement mechanism (described briefly in Section 3.4.2) can be modified to

generate proof-of-compliance tokens that are cryptographically bound to the entire

path. Such tokens are verified with computations on each channel that form the path,

and modifications to the path would make the token invalid with very high probabil-

ity. However, using tokens that are tied to the entire path also makes the verification

of tokens more expensive.

4.1.2 Source Route Bridging

The 802.2 standard defines source route bridging that is used in token-ring net-

works [5]. A routing information field (RIF), is used to place source routes consisting

of a series of bridges and Local Area Networks (LANs) in the frames.

End-systems discover source routes to destinations (within the LANs inter-connected

42

by source routing bridges) by sending a special type of broadcast frame. A broadcast

frame records the path it traverses as it travels through bridges. In particular, each

bridge receiving a broadcast frame records its bridge number (i.e., unique to each

bridge) and drops arriving broadcast frames that already has its own bridge number

to prevent loops. Each broadcast frame also has a maximum hop count, which is

decremented by each bridge receiving the frame. A frame is dropped if the hop count

reaches zero.

The destination uses the recorded source routes in each of the received broadcast

frames to send unicast frames along the reversed paths to notify the sender of the

available paths to the destination. Therefore, for each broadcast frame sent, the

sender discovers a set of paths to the destination. The sender selects one of the

discovered paths and places the path in the outgoing frame to communicate with the

destination. The discovery of paths using broadcast messages is effective within small

bridged networks, but the approach is not scalable for the discovery of paths at the

inter-domain level.

4.1.3 Software-Defined Networking (SDN)

Software-Defined Networking (SDN) [31] is a centralized routing approach that sepa-

rates the routing functionality from routers and performs it in a centralized controller.

SDN achieves this separation by decoupling the “control plane” from the “data (for-

warding) plane”. The control plane is the part of the router architecture that performs

the routing functionality (i.e., participating in routing protocols to make routing de-

cisions). The data plane is the part of the router architecture that performs the for-

warding function based on the routing decisions of the control plane. The controller

processes all the packets that belong to the control plane, makes routing decisions,

and pushes the decisions onto the network elements for the forwarding plane.

SDN requires new protocols for the network switches to communicate with the

43

controller to forward control plane messages and obtain forwarding instructions. One

such protocol is OpenFlow [58]. OpenFlow provides an interface for remotely con-

trolling the forwarding tables of network devices to add, remove or modify packet

matching rules and actions. The use of SDN in the current Internet is largely

limited to single-provider networks such as data center networks. An exception is

Google’s deployment of SDN in a wide-area network which connects multiple Google

data centers [45]. In addition, recent research has proposed the use of SDN-capable

switches at the Internet Exchange Points (IXPs) where multiple providers peer with

each other [39]. The deployment of an SDN-capable switch at an IXP would enable

application-specific peering policies. For example, two domains can establish peering

to carry only the packets belonging to certain applications by inserting appropriate

forwarding rules in the switch.

Our path service approach is compatible with the use of SDN to forward packets

across the domains. In particular, the path service, upon selecting a path, can in-

form an SDN controller for each transit domain on the inter-domain path to install

forwarding state in its domain. Once the state is installed in a transit domain, the

packets arriving on the specific ingress channel (that match a specific pattern such

as source and destination addresses in the packet) can be forwarded through the net-

work to the specified egress channel. However, the deployment of SDN is currently

not common in transit providers and is more common in datacenter networks.

4.1.4 Application-level Routing

Routing overlays have emerged as a result of the users’ desire to change the default

(BGP) path of data through the network. Routing overlays have been proposed

for defining paths based on application-specific criteria (e.g., lower latency) and for

improving resiliency through multi-path routing [9, 8, 90, 16, 73].

In routing overlays, a set of end-systems participate in routing and forwarding

44

of the packets. Using a routing overlay with participating end-systems, applications

concatenate multiple default paths through multiple end-systems to reach their des-

tination. Even though the routing between end-systems still uses the default paths

chosen by the BGP protocol, overlay routing has been shown to improve the quality

and resilience of communications between end-systems [9].

On the other hand, overlay traffic tends to violate the routing policies of the ISPs

by circumventing their routes determined according to cost and operational efficiency

criteria [56]. By circumventing the routes determined by the ISPS, overlay traffic can

cause load imbalances in the ISP networks that would otherwise have been avoided.

More importantly, overlay traffic routed over multiple intermediate end-systems often

consumes the resources of ISPs that do not obtain any compensation from the sources

or the destinations of the traffic. This leads to an on-going “tussle” [22] between ISPs

and users in the Internet. As a result, ISPs deploy packet filtering mechanisms (i.e.,

deep packet inspection) to drop overlay traffic.

There are also other technical problems with overlays. For example, overlays are

inefficient because they involve routing through end systems (which should not be

used to transit packets). In particular, the in/out problem of traffic going “in” to

an end system just to be turned around and come “out” of the end system is known

to be a source of congestion in overlays. In summary, the routing overlays are not a

viable long-term solution to obtain paths with better end-to-end quality and resilience

because of policy and technical problems.

4.1.5 Multi-Path Transmission Control Protocol (MPTCP)

It is increasingly common for end-systems to be multi-homed in the Internet. For

example, mobile systems often have simultaneous access to a Wi-Fi channel and to

a cellular data network. Such systems can use multiple simultaneous paths to reach

destinations by sending the traffic through all the available interfaces. Multi-path

45

transmission control protocol (MPTCP) [33] is an on-going work at the IETF whose

aim is to allow reliable transport-level connections through multiple simultaneous

paths. MPTCP provides the same interface as TCP to applications by abstracting

the individual resources on the paths into an aggregate pool of resources [81]. MPTCP

sends the data on multiple paths as individual flows (one flow per path) of traffic and

controls the rate of each flow.

An important challenge with MPTCP is stability. In particular, MPTCP needs

to be responsive to congestion and move traffic from flows with congested paths to

flows with less congested paths in order to take advantage of the pool of available

bandwidth across the available paths. However, an over-responsive traffic distribution

mechanism can lead to oscillations in the rates of the individual flows. MPTCP uses

the theoretical foundation of the work by Kelly et al. [47] to stabilize the rate of

change in the flows by coupling the congestion control with the load-distribution

mechanism that moves traffic across the flows [82]. MPTCP moves the traffic from

a congested path to uncongested paths at a rate permissible by the additive increase

multiplicative decrease (AIMD) of the congestion control mechanism. In particular,

the change in the rate of a flow is only constrained by the RTT of the flow’s path and

not the RTTs of the other flows’ paths.

The performance of MPTCP can suffer with the use of overlapping paths when

overlapping links have congestion. Because paths are selected by BGP in the cur-

rent Internet architecture, MPTCP is not guaranteed to obtain disjoint paths when

sending traffic through multiple interfaces. Our path service, on the other hand, can

return disjoint paths that can improve the performance of MPTCP. Also, the appli-

cations can replace paths with new ones (obtained from the path service) when the

current set of paths used for the MPTCP connection are not satisfactory.

46

4.2 Clean-slate Source Routing Approaches

In this section, we start by briefly describing a policy enforcement mechanism that

we use in our source routing implementation in Chapter 7. Then, we will describe

several clean-slate source routing architectures.

4.2.1 Platypus

Raghavan et al. [66] identify the lack of policy enforcement mechanism as the main

barrier towards the deployment of source routing and propose a data plane (i.e.,

in-band) policy enforcement mechanism for provider-level loose source routing archi-

tectures. In the data plane mechanism, policy-compliant packets carry valid proof-

of-compliance (capability) tokens that are verified during forwarding of the packets.

An end-system computes a proof-of-compliance token using a one-way function—

keyed hash-based authentication code (HMAC)—on various invariant fields of the

packet such as the path information. The shared secret (i.e., key) used in the HMAC

computation for a token is securely transmitted from either the waypoint owner or a

“delegated entity”. Platypus provides an efficient delegation mechanism to distribute

shared secrets from the waypoints to customers and each customer in turn can further

delegate to its own customers and so on.

Token delegations and verifications involve HMAC computations, but require no

state to be maintained by the network. We do not provide further details of Platypus

in this thesis, as our focus is on routing. The source routing system, which we describe

in Chapter 7, uses an in-band policy enforcement mechanism, very similar to Platypus.

However, our routing scheme is compatible with other (stateful) policy-enforcement

mechanisms including SDN.

47

4.2.2 Routing as a Service

Lakshminarayanan et al. [55] propose centralized computation of paths with guaran-

teed quality-of-service (QoS). A centralized Routing Service Provider (RSP) acts as a

broker between providers that are willing to sell quality-of-service routing and users

who desire customized routes. Providers sell virtual links, which are paths across the

providers (similar to relay paths), to the RSP. The RSP stitches together virtual links

to form inter-domain paths and sells the end-to-end paths to users. ISPs provide the

RSPs with a service-level agreement (SLA), which defines the QoS guarantees for

each virtual link sold by the providers. However the RSP is designed to be used by a

small number of users for only customized routes that demand guaranteed QoS.

4.2.3 NIRA: New Inter-domain Routing Architecture

In NIRA [88], end-systems discover paths to a set of well-connected providers that

form the “Internet core region”. The paths to the core region are discovered through

the Topology Information Propagation Protocol (TIPP) that distributes “path in-

formation” downwards in a customer-provider hierarchy. The core region, being the

root of the hierarchy, initiates the TIPP protocol by sending messages that eventually

reach the edge (i.e., access) domains. As the protocol messages propagate downwards,

they accumulate the paths to reach the core region.

An example hierarchy of domains with a core region consisting of the domains B1,

B2, B3, and B4 is shown in Figure 4.1. Because the discovery protocol messages prop-

agate only downwards in the customer-provider hierarchy, all the discovered paths

from access domains to the core strictly follow customer-to-provider (inter-domain)

links that are shown with lines with arrows pointing to the provider domain in the

Figure 4.1. In NIRA, an end-to-end path between two hosts contains an up-path and

a down-path portion. The up-paths consist of a sequence of customer-to-provider

links and the down-paths consist of a sequence of provider-to-customer links.

48

4:2:1::1000

4:1:1::1000

1:1::/32

1:1:1::/48

4:2::/321:2::/32

A1
A2

A3

T1

T2 T3

T4

1:2:1::/48

4:2:2::/48

1::/16

2::/16 3::/16

4::16

B1

B2 B3

B4

CORE

4:1::/32

intra−domain link

intra−core link

 customer−to−provider link

4:2:2::1000

1:2:1::1000

4:1:1::/48

4:2:1::/48
H1 H2

Figure 4.1: A customer-provider hierarchy of domains with a core component that
contains B1, B2, B3, and B4.

NIRA architecture encodes both up-paths and down-paths in IPv6 addresses that

are 128 bits long, where the first 96 bits are used as an inter-domain address prefix

that is hierarchically allocated from a provider to a customer, and the remaining 32

bits are used as an intra-domain address that identifies a network location within a do-

main. In Figure 4.1, the top-level providers are shown with their globally unique IPv6

prefixes that are obtained from a Regional Internet Registry. Using the TIPP proto-

col messages, B4 allocates portions of its prefix 4::/16 to its customers T3 and T4.

T3 and T4 obtain 4:2::/32, 4:1::/32, respectively. T3 then allocates prefix 4:2:1::/48,

and similarly, T4 allocates 4:1:1::/48 to the access domain A3. The end-system H1 in

A2 is assigned 1:2:1::1000 and 4:2:2:1000 from the two prefixes assigned to A2, while

the end-system H2 in A3 is assigned 4:1:1::1000 and 4:2:1::1000.

In NIRA, packets contain a source address corresponding to an up-path and a

destination address corresponding to a down-path. Packets are first forwarded along

the sequence of domains that allocated the source address, and then forwarded along

49

the sequence of domains that allocated the destination address. By selecting a source

and a destination address, end-systems determine the sequence of providers along the

up-paths and down-paths that the packets are to follow.

As an example, consider the scenario whereH1 selects the source address 1:2:1:1000

and places the destination address 4:2:1::1000 in its packets destined to H2. This

means that the packets are to follow the up-path A2 → T2 → B1 and then the

down-path B4 → T3 → A3. Because the root of the up-path (B1) and the down-

path (B4) are different providers, there needs to be a mechanism to route the packets

between the providers in the core region. In NIRA, routing within the core is per-

formed using a hop-by-hop mechanism and the hosts have no control over the portion

of the paths that move packets across the core. Even though the inter-connections

between the domains within the core region are shown in the Figure 4.1, in reality,

the domains or the end-systems outside the core have no visibility into the core re-

gion. Also, the core region is not necessarily a fully-connected network of domains as

depicted in Figure 4.1.

An up-path and a down-path may intersect before reaching the core. In that case,

the transition in the forwarding path from the up-path to down-path happens at the

intersecting provider. As an example, if H1 selects the source address 4:2:2::1000 to

reach H2 using 4:2:1::1000, then the packets are forwarded along the path: A2 →

T3 → A3.

In order to compose an entire path to a destination, the sender host needs to

discover the down-paths (i.e., IPv6 addresses) of a destination host. In NIRA, a

lookup service provides down-paths of destination hosts. Hosts, who are willing to

be reachable, register their addresses to the lookup service. To send a packet to a

destination host, a sender first contacts the lookup service and obtains the set of

addresses of the destination host. Then, the sender chooses a source address and a

destination address (from the addresses obtained from the lookup service) to form an

50

end-to-end path.

The TIPP protocol has a separate component to distribute performance infor-

mation in addition to address allocation messages that enables end-hosts to discover

their connectivity to the core. However, the performance information only includes

the performance on the inter-domain links (outside the core region) and does not

include the performance of the forwarding paths across the providers in the up-paths

and the down-paths. Because the discovery protocol messages propagate only down-

wards in the customer-provider hierarchy, all (discoverable) inter-domain paths in

NIRA have the “valley-free” property [35]. The valley-free property means that after

traversing a down-path, the inter-domain paths do not traverse an up-path again.

Our source routing approach does not impose such restrictions on the structure of

the paths. In addition, our scheme does not require the existence of a core region

in which end-systems have no control over the paths. More specifically, our scheme

enables domain-level path selection using the connectivity of all the domains and does

not require the abstraction of a region of domains.

4.2.4 SCION

Scalability, Control and Isolation On Next-Generation Networks (SCION) is a source

routing architecture design [89]. In SCION, a set of contigious ASs form a trust

domain (TD), which is an abstraction to isolate ASs that have a “trust” relationship

with one another from other ASs. ASs in a TD only exchange control plane messages

with each other. Within a TD, the ASs form a customer-provider hierarchy with a

trusted core component consisting of fully-connected ASs. Routing within a TD is

very similar to NIRA and involves discovering up-paths and down-paths. The up-

paths and down-paths of an AS A only consist of other ASs that are in the same TD

with A.

The inter-TD routing takes place using pre-negotiated and configured paths, as

51

the SCION architecture assumes at most 100s of TDs to emerge in the Internet.

An inter-TD route first follows an up-path within the source TD followed by a pre-

configured inter-TD path and a down-path within the destination TD. The main

difference between NIRA and SCION is the concept of trust domains and addressing.

In SCION, the end-systems have flat identifiers and path information is not embedded

in hierarchical addresses as in NIRA. The SCION architecture achieves scalability

through TD abstraction. In our approach, we do not rely on TD abstraction to

achieve scalability.

4.2.5 Nimrod

Nimrod [18] is a routing architecture that represents an inter-network topology as a

hierarchy of clusters. Clustering begins by aggregating network elements (i.e., routers

and switches) and can be applied recursively to form cluster of clusters. The only

restriction with clustering is that the elements within a cluster are connected by a

path that is entirely within the cluster. A universal cluster contains all other clusters

in the inter-network at the topmost level of the cluster hierarchy. A topology map of

a cluster representing an inter-network at multiple levels of abstraction is shown in

Figure 4.2.

Routers and hosts discover the topology through a map-distribution mechanism.

Maps express the connectivity and services between entities in different regions of

the Internet. Maps can represent a physical network at different levels of details.

In Figure 4.2, Node B reveals more details of its topology than A. Also, node D

reveals the routers within its network, while node E does not reveal its inner details.

By repeated clustering and abstracting the connectivity and services provided in the

maps, the Nimrod architecture reduces the amount of information that is visible to

the routing process, thus achieving scalability.

The maps are distributed using a link-state protocol that allows providers to

52

restrict the distribution (i.e., which neighbors to share) of the maps. In addition to

the link-state protocol, the Nimrod architecture provides mechanisms for entities to

request detailed maps of a region by sending queries.

U (Universal Node)

C

A B

D E

Figure 4.2: The Nimrod architecture represents the Internet topology as clusters of
clusters of routers and switches.

Locations of end-systems and nodes are represented by locators, which are se-

quences of identifiers that describe the levels of clustering the entities. For example

in Figure 4.2, the locator of node D is U:B:D (the universal cluster U can be omit-

ted). Maps represent entities by their locators. A lookup mechanism maps endpoint

identifiers to locators.

The architecture supports routes with different levels of details: strict and loose

source routing as well as hop-by-hop routing are supported for end-systems with dif-

ferent computational power. In particular, end-systems with sufficient computational

power can request detailed topology maps and compute strict source routes, while

other (less powerful) end-systems can use less detailed maps to compute loose source

routes or simply place the destination address in the packets to use hop-by-hop rout-

ing. In Nimrod, forwarding information in routers is established on-demand rather

than pre-computed as in the current Internet routing architecture. Therefore, for-

warding of packets by the routers may be delayed if the routing information (i.e.,

topology map) of the router is insufficient to compute paths. In that case, the router

requests detailed routing information from the neighbors. Routers cache forward-

ing information to reduce the amount of resources consumed and delay incurred in

53

obtaining the information in the future.

Nimrod architecture does not provide the necessary mechanisms to support transit

policies for providers and does not include scalable mechanisms to distribute topology

maps and to compute end-to-end paths. As a result, the only instance of Nimrod is

an intra-domain routing protocol for ATM networks called the Private Network-to-

Network Interface [11] protocol.

4.2.6 Pathlet

The Pathlet [36] architecture uses MPLS-like label switching as the main mechanism

to forward packets. In the Pathlet architecture, the packets contain a sequence of

labels as their source routes. The nodes in the architecture advertise sequences of

labels—corresponding to segments of paths—which are called pathlets. What dis-

tinguishes the Pathlet architecture from other label-switching architectures is the

concept of virtual nodes (vnodes). A vnode is an abstraction that can represent an

entire domain, a group of routers, or an interface to a router. In essence, pathlet

routing is label-switching over a virtual topology whose nodes are vnodes and whose

directed edges are pathlets. Vnodes are assigned globally unique identifiers. Each

domain in the Pathlet architecture must generate at least one vnode and advertise a

pathlet to reach its vnode in order to receive traffic.

An important property of the Pathlet architecture is that it supports a variety of

transit routing policies. One extreme case is the local transit (LT) policy. A domain,

say N , uses the LT policy if N ’s willingness to relay packets along some route depends

only on the portion of the route that crosses N . In order to use the LT policy, N

designates a vnode for each of its ingress and egress interfaces. If N is willing to

transit packets between its neighbors A and B, then N constructs and advertises

a pathlet from its vnode corresponding to its ingress interface from A to its vnode

corresponding to its egress interface to B. A domain with n neighbors can advertise

54

up to n× (n− 1) pathlets to provide transit service between all its ingress and egress

links.

The other extreme case is the BGP routing policies, where a domain N ’s willing-

ness to relay packets along some route depends on the portion of the route from N to

the destination of the route. The Pathlet architecture can emulate BGP policies by

using a path-vector protocol (similar to BGP) to distribute pathlet advertisements.

In this case, each access domain creates a vnode for each of its prefixes and advertises

pathlets to reach its vnodes to their neighboring domains. As the pathlet advertise-

ments propagate in the network, each domain constructs a multi-hop (inter-domain)

pathlet to each destination prefix along its most preferred domain-level path. Multi-

hop pathlets are advertised with a single label along with the AS-PATH corresponding

to the pathlet. A packet containing a single label corresponding to a multi-hop inter-

domain path is forwarded as follows: each domain receiving the packet along the path

swaps the (topmost) label in the source route with a new label that is associated with

the forwarding path to reach the next hop domain.

The downside of using BGP-style policies is that a domain needs to maintain

pathlets for each destination prefix in order to send the packet along the desired

paths. In the case of LT, the pathlets are advertised using a link-state protocol and

can be stitched together (i.e., sequence of labels) in exponentially many ways to form

larger end-to-end inter-domain pathlets, similar to our source routing approach. In

our scheme, a relay advertisement corresponds to one or more pathlets between an

ingress channel and an egress channels.

The novelty of the Pathlet architecture is its use of vnodes. The architecture

represents the policy-compliant data plane with a set of pathlets that inter-connect

vnodes. Being able to represent routing policies with topology maps consisting of

vnodes, the architecture can emulate a variety of routing policies. The Pathlet ar-

chitecture does not specify how the end-to-end paths are computed in the case of LT

55

policies. Our path service can be used to complement the Pathlet architecture with

the LT policies to compute inter-domain paths for the end-systems.

4.2.7 ICING

ICING [61] is a loose source routing proposal which focuses on policy-compliance

of source-routed packets. Different from existing proposals, ICING uses path-based

policies where the domains’ willingness to forward packets depends on the entire inter-

domain path (i.e., sequence of domains) of the packets. In particular, a sender, before

it can send traffic along an inter-domain path, must obtain consent from each domain

along the path to use the path. A possible motivation for domains to enforce policies

that concern the entire inter-domain paths is security. For example, if a domain, say

S, does not trust another (not necessarily a neighbor) domain, say M (for malicious),

S can refuse to provide consent for paths that contain M . By refusing to provide

consent for paths with M , S can prevent packets that are forwarded through M to

reach its network and also prevent packets being sent to M through its network.

However, the path consent mechanism is not sufficient to enforce path-based poli-

cies without additional mechanisms to verify that packets actually take the paths

for which they have consent for. In order to address that problem, ICING pro-

vides mechanisms for each provider Ni to verify that an arriving packet with path

P = N0, N1, N2, ... actually followed the path N0, N1, ...Ni−1 on its way to Ni. ICING

uses in-band mechanisms to provide consents and to verify that the packets actually

follow their paths.

Because ICING is mostly concerned with the challenges of forwarding, it is orthog-

onal to our path service that computes and selects paths. The path service design,

which we explain in this thesis, assumes local transit policies. However, our path

service can be extended to work with domains that use path-based policies. For ex-

ample, the path service can collect path-based policies from the providers (possibly in

56

the form of regular expressions) to compute and select paths that are compliant with

the path-based policies of the domains. Because such policies are expected to change

slowly, the path service can compute policy-compliant paths in advance similar to

computing paths with local transit policies. We leave it to future work to extend our

path service to support path-based policies.

4.2.8 A Network Path Advising Service for the Internet

Wu et al. propose a network path advising service (NPAS) that monitors the perfor-

mance of a set of links and advises paths for the end-systems [86, 85]. End-systems

obtain performance measurements from NPAS to select paths among a small subset

of possible paths to a destination. The goal of NPAS is to monitor the minimum

number of links that cover the majority of the paths that the end-systems use in the

Internet.

NPAS takes advantage of locality of reference in the set of destinations contacted

by the end-systems to achieve a high coverage percentage [86]. In particular, by

covering the majority of the links that are close to popular destination domains, NPAS

achieves a high coverage of the paths. The results of the work by Wu et al. is relevant

to the design of the path service, because the path service also collects performance

measurements from the network. The path service can use the strategy of selectively

collecting performance information from the popular regions of the inter-network to

reduce the bandwidth overhead of collecting measurements.

4.3 Multi-constrained Path Problem

The multi-constrained path problem (MCP) [74, 20] is the problem of computing a

feasible end-to-end path from a given source to a given destination that satisfies a

given set of constraints. A constraint is a desired upper or lower bound value on a

specific link quality measure (routing metric) such as bandwidth, delay and so on.

57

The MCP problem is formally stated as: Given a graph representation G where each

link in the graph is associated with a vector of m (instantaneous) measurements in

various routing metrics (e.g., delay), a source node S, a destination node D and a

vector of constraints C, find a single path from S to D that satisfies the constraints.

Routing metrics are classified as either additive or max-min based on their com-

position. For example, routing metrics such as number-of-hops, propagation delay,

jitter are additive metrics, because the path metric is defined as the sum of the

metrics of the links in the path. Available bandwidth is an example of a max-min

metric, because the available bandwidth of the path is the minimum over the avail-

able bandwidths of the links in the path. The problem of finding a feasible path in

a network that satisfies multiple constraints on multiple additive routing metrics has

been proved to be NP-hard, and the proof involves reducing the problem to the well-

known NP-hard Partition problem [79]. The main reason for the complexity is the

exponential growth of incomparable paths that an exact solution to the MCP problem

must consider during the computation. Paths P1 and P2 (with the same source and

the destination) are incomparable if both of them satisfy the constraints C and P1 is

better than P2 in at least one metric, and at the same time P2 is better than P1 in

at least one other metric. P1 is said to be dominated by the path P2 if P2 is better

than P1 in all the routing metrics. When a path is dominated by another (with the

same source and destination), it can be removed from the set of feasible paths that

are considered during the computation of a feasible path.

Samcra [74] is an exact solution to the MCP problem, which uses a nonlinear

path length function: len = max1≤i≤m
wi(P)
Ci

where wi(P) is an additive attribute of

a path P and Ci is the constraint on the additive attribute. An important property

of a nonlinear path length is that the subsections of shortest paths in multiple di-

mensions (i.e., attributes) are not necessarily shortest paths. This suggests that one

should consider the k-shortest paths in the computation as opposed to the shortest

58

paths. The Samcra algorithm is essentially Dijkstra’s algorithm [28], but it does not

terminate when the destination is reached. Instead, it continues until k paths are

found to the destination. If k is not limited, the k-shortest path algorithm returns

all the possible paths between the source and the destination. Samcra does not have

a pre-determined limit on the value of k.

As the Samcra algorithm extends the k-shortest paths from the source node to-

wards the destination, the number of incomparable paths can grow exponentially and

in the worst case scenario, the algorithm considers all possible paths between the

source and the destination. Samcra uses various techniques to eliminate paths as

they are generated. One example is the elimination of dominated paths.

Next, we discuss several heuristic solutions that reduce the search space to obtain

a polynomial-time algorithm.

4.3.1 Heuristic Approaches to Multi-constrained Routing

One heuristic approach is to compute the length of paths as the linear combination

of the individual routing metrics to avoid incomparability of paths [44]. Such an

approach reduces the m dimensional problem, where m is the number of routing

metrics, to a single dimensional problem. After reducing the problem to a single

dimension, any shortest-path algorithm (e.g., Dijkstra) can be used to compute the

shortest path. However, the shortest path does not necessarily satisfy the individual

constraints when the path length is a linear combination of the routing metrics.

Korkmaz et al. proposed a randomized heuristic algorithm that consists of a

pre-computation step followed by a randomized breadth-first search [50]. The algo-

rithm starts by computing the shortest path (using Dijkstra’s algorithm) from each

node u to the destination node D with respect to a linear combination of the link

weight components (called length) on the lines of Jaffe’s approach [44]. After this

pre-computation step, the algorithm starts from the source node S and discovers

59

neighboring nodes that are estimated as “feasible”. A node t is feasible if the length

of the pre-computed shortest path from t to D plus the length of the discovered path

from S to t is less than the linear length value of the constraints. Once all the feasible

neighbors of S are discovered and placed in a queue Q, the algorithm randomly picks

a node n from Q and discovers n’s neighbors similarly. The algorithm terminates

when D is discovered. However, the path to D may not be a feasible path as the pre-

diction of feasibility on pre-computed linear lengths can direct the algorithm towards

infeasible paths.

Several heuristic methods take actions to limit the number of incomplete (i.e.,

a path from source to an intermediate node) paths considered by the algorithm so

that the complexity becomes polynomial. One such algorithm by De Neve et al. [23]

prevents the exponential growth of paths by limiting the number of (incomparable)

incomplete paths to intermediate nodes that are computed.

To summarize this section, the main drawback of the exact approach to the MCP

problem is that in the worst case, all possible paths are considered. Heuristic solutions

cut down the number of paths, but they do not guarantee finding a satisfactory path.

Our approach to computing paths also uses a heuristic approach that limits the

number of paths considered to a subset of all possible paths. However, our approach

also makes use of pre-computations and parallel computations by considering the

time-scales of change in the routing information.

4.4 Advertising QoS Information

In general, the QoS routing algorithms assume that the most recent performance

measurements from the networks are available for computation. The current BGP

protocol does not include performance measurements as part of the advertisements.

In a work by Xiao et al. [87], histograms of measurements are advertised peri-

odically in route advertisements of ASs in a modified BGP protocol. As the route

60

advertisements are propagated between ASs, the histograms of measurements of dif-

ferent ASs are joined to obtain aggregate measurements of paths. For latency, the

histograms are joined using convolutions. However, this approach has the same draw-

backs as the BGP in terms of limiting the number of paths known to ASs since each

AS advertises one path to each destination. In our approach, we also use histograms

to represent a set of measurements.

61

Chapter 5

The Design of a Path Service

In this chapter, we discuss several important design considerations needed to achieve

a scalable path service, including caching and the time-scales at which routing infor-

mation changes. We then describe the system architecture in Section 5.3.

An important consideration in the design of the path service is the transferability

of paths between end-systems in the same access domain. In particular, inter-domain

paths from the access domain S to all other domains are usable by many of, but only,

the end-systems in S. Reuse of recently computed paths by end-systems in the same

access domain can be achieved by storing the paths in a local path cache in each

access domain. A local path cache can improve the scalability of the path service

if there is significant locality of reference in the set of destinations contacted by the

end-systems. We will discuss the path cache in Section 5.2.

From a system design perspective, our path service and existing web search sys-

tems have similar properties. Both systems deal with dynamic information, even

though the time-scales of change in the dynamic information used by the two systems

can be different1. In the case of web search systems, the dynamic information is the

content of the web pages and in case of the path service, it is the routing informa-

tion. Also, both systems must respond to queries in a timely manner. Web search

1In general web page information changes at a substantially slower rate than routing information;
however, web search systems for social networking sites must deal with fast-changing content because
of the high rate of updates in such sites.

62

engines use parallelism to speed up the processing of on-demand computations and

also perform expensive computations, such as page rank [64], offline in advance. The

on-demand computations are parallelized by dividing the web content into smaller

partitions. In particular, a set of workers computes results on the individual parti-

tions in parallel, followed by a relatively inexpensive merging step, which produces

the final results [13]. We follow a similar strategy of using expensive pre-computations

and parallelizing the on-demand query computations.

In general, pre-computations are useful only if the rate of change in the input is

smaller than the rate at which the pre-computations can be repeated. Therefore, an

important consideration in the design of the path service is the time-scales of change

in the routing information.

5.1 Time-Scales of Routing Information Changes

We consider the time-scales of change in the following routing information:

• The set of possible paths is defined by the topology, namely the set of access

and transit domains and the channels that interconnect them. This set changes

slowly : only when new providers and channels come into existence or existing

ones go out of service permanently.

• The medium-to-long-term performance information of a relay, or of a path,

collected and averaged/analyzed over timescales of seconds to minutes—e.g., a

histogram of measurements observed over the past minute. It is expected that

such information is a reasonably good predictor of the near future.

• The users of a path are in the best position to observe the instantaneous status of

a path—whether it is up or down, and its current performance. Given adequate

path diversity, the knowledge and ability to select from multiple paths enables

63

a source to quickly detect and react to temporary outages and recoveries gen-

erally on the scale of a round-trip-time, i.e., tens to hundreds of milliseconds.

In contrast, today’s global routing system converges on the timescale of min-

utes [53].

Because the connectivity of the domains in the Internet changes slowly, it is rea-

sonable to perform an expensive computation to construct a long-lived database of pos-

sible paths in advance, and thereafter update it on a relatively slow timescale (hours

to days) as the underlying graph changes. The constructing of paths can include the

computation of slow-changing (i.e., load-independent) attributes of the paths such as

bandwidth capacity and propagation delay. The path service can update the perfor-

mance information of the pre-computed paths in an on-demand fashion.

Generating a subset of all possible paths from an access domain to all other

domains has an exponential cost of O(TL−2), where T is the number of transit domains

and L is the length (in terms of number of domains, including source and destination)

of the longest path allowed between any two access domains. This cost approximation

assumes the transit domains are fully-connected, thus there are T alternatives for

each hop along the path. A better approximate upper-bound on the cost is O(DL−2),

where D is the highest degree among the degrees of the transit providers. Because of

the computational cost involved in constructing all possible paths, we use a heuristic

approach to rule out paths that are much longer (more than 2 hops) than the shortest

paths.

5.2 Path Cache

In order to get an idea of how effective a path caching mechanism would be if it

were to be deployed at an access provider, we performed a set of experiments using

a flow-level trace of the outgoing traffic collected at the edge routers of a campus

network for the duration of one day.

64

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000

P
e
rc

e
n
ta

g
e
 o

f
F

lo
w

s

Number of Most Popular Destination ASs

1 Day
10 Hours

10 Minutes

Figure 5.1: CDF of flows to each of the most popular destination ASs for the time-
scales of 10 minutes, 10 hours, and 1 day.

These measurements can give us an idea about the effectiveness of caching, because

each flow with destination domain D leaving the campus network corresponds to a

request to the path service for paths to domain D. We make the assumption that

the paths returned from the path service to end-systems in the campus network are

cached at some location close to the end-systems.

Our initial results indicate that there is a significant locality of reference in the

set of destination ASs contacted by flows originating from the campus network. The

cumulative distributions of flows going to each of the most popular destinations—that

is, the destinations that attract the largest number of flows in the traces—is shown

in Figure 5.1 for the time-scales of 10 minutes, 10 hours and 1 day. As can be seen

from the figure, the majority (over 90%) of flows, in all the time-scales, are destined

to less than 2000 ASs. The flow distribution for the 10 minute data in Figure 5.1

corresponds to the first 10 minutes during the peak hour (i.e., most flows leaving

the campus) traffic. The peak hour happened between 11 am and 12 noon on a

65

business day. We used the peak hour traffic because the effectiveness of caching is

most important under the most intense load. Also, we used the 10 hour data in the

plot corresponding to the busiest 10 hour period during the business hours of 8 am

to 6 pm.

In our preliminary analysis, we did not classify flows according to classes of traffic.

Instead, we simply assumed that all flows used the same paths for the same destination

domain. Our analysis without traffic classes suggests that a path cache with a capacity

of few thousand entries would cover around 98 percent (i.e., miss rates around 2

percent) of all path requests at all time-scales.

One concern with path caching is the lifetime of the paths. With the arrival of new

routing information through relay advertisements, a cached path may become stale if

it is not computed with the most recently obtained routing information. We explore

the effectiveness of caching paths with dynamic attributes in the next chapter.

5.3 Path Service Architecture

This section presents the conceptual design of the path service described in the fore-

going sections. The path service design takes advantage of the time-scales of change

in the routing information. In particular, the service distinguishes between fast-

changing and slow-changing routing information. The slow-changing routing infor-

mation comprises the connectivity and load-independent information. Examples of

load-independent information include bandwidth capacity and propagation delay. On

the other hand, the fast fast-changing routing information comprises load-dependent

performance information such as latency and available bandwidth.

The path service performs an expensive computation to construct paths and their

slow-changing information. We refer to this operation as slow-join since the con-

structing of paths require an iterated operation that is the equivalent of a database

“join” operation on slow-changing relay information (an example is given below).

66

Computing the performance information of paths involves join operations using fast-

changing relay information. Similarly, we refer to the join operation performed using

fast-changing information as fast-join.

S

F

S

F

: Slow−join Operation

: Fast−join Operation

 : Histogram

Path P

10 Mbps

Propagation Delay: 2.6 msecs

X−>Y−>Z

Latency:

Available Bandwidth:

Fast−Changing Path Info.

Channel ZChannel YChannel X

Bandwidth Capacity: 10 Mbps

1.2 msecs

10 Mbps

1.4 msecs

Fast−Changing Relay Info.

Latency:

Available Bandwidth:

Fast−Changing Relay Info.

Latency:

Available Bandwidth:

Slow−Changing Relay Info. Slow−Changing Path Info.

Relay R1 Relay R2

Relay R1 Relay 2 Path P

Slow−Changing Relay Info.

Connectivity: X −> Y

Propagation Delay:

Connectivity: Y−>Z

Bandwidth Capacity:

Propagation Delay:

Connectivity:

Bandwidth Capacity:

Figure 5.2: An example of slow-join and fast-join operations on two relays: R1 and
R2 that form a path P.

An example for slow-join and fast-join operations is shown in Figure 5.2. In this

example, slow-join and fast-join operations are performed on the relay information

of the two relays: R1 and R2. Using the slow-changing information of the relays,

the slow-join operations compute the slow-changing information of the path P . The

connectivity of a relay comprises the ingress channel i and the egress channel e of

the relay shown as i → e in the figure. The slow-join on the connectivity of the two

adjacent relays (the egress channel of R1 matched the ingress channel of R2) forms

67

a sequence of channels that make up the path. A slow-join on the load-independent

information of R1 and R2 are performed to compute the rest of the slow-changing

attributes of P . In particular, slow-joins on the propagation delay and available

bandwidth information are performed using addition and minimum operations, re-

spectively. The fast-changing information is represented in the form of histograms.

The join operations on the fast-changing information involves histogram operations

such as convolution on the latency histograms and minimum operation on the avail-

able bandwidth histograms.

Unlike the QoS routing algorithms [74, 23] that perform the slow-join (i.e., con-

structing paths) and fast-join operations together (at the same time), our approach

separates the two joins and performs them in different stages of the computation. In

particular, the slow-join operations are performed during the pre-computation stage

and the fast-join operations are performed during the on-demand stage of the path

computation. An important observation is that when the two join operations are

separated, both the slow-join and the fast-join operations are parallelizable.

Parallelizing the on-demand fast-join operations improves the responsiveness of

the system—that is, how fast it responds to queries. A path query consists of i) a

source, ii) a destination, iii) a traffic class selection from a set of available classes, and

iv) the number of paths (i.e., k). The path service maps the traffic class to a set of

constrains such as an upper-bound on the latency of the desired path.

Figure 5.3 is a high-level overview of the design, which comprises the routing in-

formation collector (RIC), slow-joiner, fast-joiner, sorter, query-handler, and indexer.

Arrows between components in Figure 5.3 indicate the flow of information. Ovals rep-

resent threads or processes; the number of times each is instantiated can be varied as

resources permit.

RIC is a distributed component which receives periodic relay advertisements from

transit domains. Each RIC component collects information from a different set of

68

providers in parallel. The collected routing information consists of the slow-changing

and the fast-changing components that we discussed in the example above. The

received information goes into databases of slow-changing and fast-changing routing

information as shown in the figure.

Slow

Changing

Routing

Information

Repository

Fast
Joiner

Routing

Information

Collector

Slow

Joiner

Information

Repository

Fast

Changing

Routing

Path

Sorter

Path

Index
Table

Cache Path Query

Indexer

Partitions of

Slow−Changing Path Records

Partitions of

Fast−Changing Path Records

Query Handler

Figure 5.3: Path service architecture.

The slow-changing routing information is used by the slow-joiner to pre-compute

partitions of slow-changing path records. A slow-changing path record contains the

sequence of relays that make up the path, along with the aggregate slow-changing

attributes derived from the slow-changing attributes of the relays in the path. Because

the computation of a large number (e.g., over a billion) of possible paths is data-

intensive (i.e., I/O bound), the MapReduce distributed computation model can be

used for the pre-computation stage [24]. We will explain the details of the slow-joiner

implementation in Section 6.2.1.

69

The fast-joiner computes the performance information (delay and available band-

width distributions) of the pre-computed partitions of (i.e., slow-changing) paths by

performing join operations on the histograms (i.e., fast-changing attributes). In the

case of delay distributions, the fast-joiner performs approximate convolution on the

histograms because exact convolution is computationally expensive. In particular, we

use a quantizing approximation described by Xiao et al [87], which treats histograms

as if each measurement’s value is equal to the midpoint of the bin. Thus, if the bin

boundaries are 0 and 20, the operation assumes each observed value (packet delay)

counted in the bin was actually 10. This introduces a (bounded) error, but maintains

uniformity of the data structure. Convolution on two histograms with n bins has a

time complexity of O(n2). In the case of available bandwidth distributions, the join

operation involves a simple min operation on the distributions with a complexity of

O(n). The fast-joiners work in parallel—one fast-joiner per partition of slow-changing

path records—to generate partitions of fast-changing path records.

 0

 0.2

 0.4

 0.6

 0.8

 1

Hist1 Hist2 Hist3 Hist4 Hist5

0-20msec
20-40msec
40-60msec
60-80msec

Figure 5.4: Latency histograms of five paths sorted from left to right according to
their likelihood of satisfying delay ≤ 20 milliseconds.

The path sorter produces a ranking of paths according to their likelihood of satis-

fying the end-system’s performance constraints. For each query that specifies perfor-

mance constraints, the path sorter first computes each path’s probability of satisfying

the constraints, then performs the sorting operation. With one path sorter working

70

on each partition of fast-changing path records, the sorting operation is computed in

parallel.

Consider a path query that requests k paths from S to D, with the delay upper-

bound C. The sorter first uses the histogram associated with each S-D path to

compute the probability that delay is less than C for that path. That probability is

computed as the fraction of the packets in the histogram that are not to the right of

the bin containing C; in other words, C is rounded up to the nearest bin boundary,

and the fraction of packets in that bin or to the left of it is computed. Figure 5.4

shows an example with delay histograms for five paths, where the bin boundaries

are at 0, 20, 40, 60, and 80 milliseconds. The histograms are sorted from left to

right in order of decreasing likelihood of satisfying the delay constraint: delay ≤ 20

milliseconds. Each sorter deals with a separate partition of the fast-changing path

info database and sorts its own assigned partition. Consider again the above query

that requests k paths from domain S to domain D, with delay not greater than C.

The query-handler receives the query and forwards it to the sorter, which carries out

the following steps:

• Each path sorter retrieves the fast-changing path records with the source domain

S and the destination domainD from its partition. Indexers pre-compute a path

index table which is used by the sorters to locate paths by source-destination

domains.

• Each path sorter computes the likelihood of satisfying the delay constraint for

each path. This computation requires a single pass through the entire list of S

to D paths. The linear search through the paths produces the k paths in the

partition with the highest likelihood of satisfying the constraint.

• The individual results of the sorters are merged to obtain the k overall best

paths.

71

Path queries that include additional hints will require additional processing steps,

for example to filter out paths that use providers on a blacklist or not on a whitelist.

The path index table contains pre-computed mappings to locate path records by

the providers that they traverse. The indexer updates the table only when the list

of path records changes as a result of changes in slow-changing routing information

(i.e., infrequently).

Having provided a high-level overview of the system architecture, a detailed de-

scription of an implementation of the path service architecture is presented in the

next chapter.

72

Chapter 6

Evaluation

This chapter describes an implementation of the previously described path service

architecture and the experiments conducted using the implementation. We first de-

scribe the experiment methodology in Section 6.1. In Section 6.2, we describe the

process of generating paths that we use in our experiments. We provide a detailed

description of the path service implementation in Section 6.3. Section 6.4 presents

the performance results of the path service implementation on a single server with

multiple cores. In Section 6.5, we use the performance results of the single server

implementation to simulate a path service consisting of multiple instances of the sin-

gle server implementation working in parallel, under a realistic workload. Finally, in

Section 6.6, we describe how the path service can return disjoint paths for resiliency.

6.1 Experiment Methodology

In this section, we describe the workload and the network models used in the exper-

iments. We discuss the workload of the system consisting of the path queries and

the relay advertisements in Section 6.1.1. Later in Section 6.1.2, we will describe the

network model.

73

6.1.1 Workload Model

We used unsampled1 NetFlow [43] traffic traces to obtain a realistic set of path queries

originating from an access domain. The traces were collected at an egress point of

a campus network in June 2012 for the duration of 24 hours. The traces consist of

traffic flows leaving the campus network, with each flow represented by its source

IP address, destination IP address, source port, destination port, and the protocol

information.

A Netflow collector is a router which collects flow information from the passing

traffic. The collector keeps active flows in its flow cache with a finite size. When a

flow terminates with the exchange of FIN flags (in the case of TCP), or when a flow

becomes inactive (i.e., no packets belonging to the flow are captured for more than

120 seconds), the flow information in the cache is written to a secondary storage. The

expiration of inactive flows is necessary to prevent the flow cache from overflowing

but possibly introduces errors—e.g., flows that send packets infrequently with more

than 120 seconds gaps. However, the resulting workload is an over-estimation of the

number of flows, and therefore it does not invalidate our results.

An outgoing flow leaving the campus network is considered a query to the path

service. We mapped each destination IP prefix in the NetFlow data to a destination

Autonomous System (AS) number using the CAIDA IP prefix-to-AS-mappings data

set [3]. By doing so, we obtained the domain-level traffic matrix from a single access

domain to all other domains. In addition to the sequence of flows, the NetFlow data

also contains the flow initiation times that are the arrival times of the first packets of

flows to the NetFlow collector.

In our experiments in Section 6.5, we use the flow initiation times as the query

arrival times to the Path Service. We only used the peak hour traffic in the experi-

1“Unsampled” means the captured traffic traces include all the flows that were passing through
the traffic collector.

74

ments in order to measure the performance of the path service under the most intense

load. The peak hour happened on a business day between 11 am and 12 noon. The

rate of the outgoing flows in terms of flows per second during the peak hour is shown

in Figure 6.1. The average number of outgoing flows per second during the peak hour

is measured as 30,200 flows per second. Because we map each flow to a query for the

path service, the plot in Figure 6.1 presents the workload in terms of query arrivals

per second.

 26000

 27000

 28000

 29000

 30000

 31000

 32000

 33000

 34000

 35000

 36000

 0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e
r

o
f
Q

u
e
ry

 A
rr

iv
a
ls

Time Interval (secs)

11am-12pm

Figure 6.1: Rate of query arrivals during the busiest hour.

A path query consists of i) a source AS, ii) a destination AS, iii) a traffic class

selection from a set of available classes, and iv) the number of paths (i.e., k). The

traffic class selections are mapped to a list if performance constraints on latency and

available bandwidth by the path service. In the case of latency, the constraint is an

upper-bound, whereas in the case of available bandwidth, the constraint is a lower-

bound. In the experiments, the traffic class in each query is either picked randomly

or statically—the same traffic class is selected for all traffic to a destination domain.

The list of available traffic classes that users can choose from are listed below. The

list is based on the existing work on IP traffic classification such as the work described

in [70]:

• Low latency (interactive traffic).

75

• High bandwidth (bulk transfer).

• Medium Bandwidth and Low Latency (video conference).

• High Bandwidth and Low Latency (real-time applications).

• Best Effort (web, email traffic).

Both queries and the relay advertisements that the path service periodically re-

ceives are generated by external components named query-generator and update-

generator, respectively. Both of the external components communicate with the

service through the Message Passing Interface (MPI) [2]. The query-generator can

use either random queries or queries based on the NetFlow traces. The relay ad-

vertisement generator sends R relay advertisements every Tu seconds. We test the

performance of the implementation for varying rate R and frequency 1
Tu

of relay ad-

vertisements.

6.1.2 Network Model

The input to our experiments is an Internet AS-level topology which is constructed

using CAIDA’s AS relationship dataset [1]. The CAIDA AS relationship dataset con-

sists of AS adjacencies along with annotated relationships such as customer-provider

and peer-to-peer. We used the CAIDA dataset to build an initial topology by adding a

single channel between the domains that have business relationships according to the

dataset. As we discuss in Sections 6.1.2.1 and 6.1.2.2, we made modifications to the

initial topology to obtain an equivalent AS-level topology that met our requirement

that domains be either access or transit, but not both.

The current Internet topology, having domains that act both as access and as

transit at the same time (e.g., a tier-1 domain hosting content), does not map directly

to our model where each domain is transit or access, but not both. We describe the

separation of access and transit roles in Section 6.1.2.1. We also added additional

76

channels to the topology to reflect the existence of multiple channels between the

domains in the Internet and to reflect the possible implication of settlement-free

relationships. We describe the addition of extra channels to the CAIDA topology in

Section 6.1.2.2.

6.1.2.1 Separating Access and Transit Roles

We began by transforming the CAIDA AS topology into a domain-level topology by

separating the roles of access and transit. The two steps of the transformation are:

i) identify ASs in the CAIDA topology with mixed-roles, and ii) split the ASs with

mixed-roles into an access and a transit domain, connected to each other by a channel.

In order to identify domains with mixed-roles, we first classified each domain in

the CAIDA topology as either i) primarily transit or ii) primarily access. A method

suggested by Dhamdhere et al [27] infers the primary business of each domain based

on the size of its customers, providers and peers. In particular, the method classifies

each domain into one of the three categories: i) Transit Providers (TPs), ii) Con-

tent/Access/Hosting providers (CAHP), and iii) Enterprise Customers (ECs). The

EC domains correspond to various companies, universities and organizations. Apply-

ing the above classification method to the CAIDA data resulted in 35,287 domains

that are primarily EC, 4,646 primarily TP, and 1,755 primarily CAHP. Using these

results, we formed the set of primarily access domains from the domains classified as

either EC or CAHP and formed the set of primarily transit domains from the domains

classified as TP.

We then used the NetFlow traces to identify domains with mixed-roles among the

primarily transit domains. Our approach to identify mixed-role transit domains is

based on determining whether the domain is the destination in a large percentage of

the flows in the NetFlow traces. Based on the traces, 2,700 of the 4,646 primarily

transit domains were the destinations in a significant number of flows (i.e., over 10%

of all the collected flows). Therefore, we identified those 2,700 domains as mixed-role

77

transit domains. We also identified mixed-role primarily access domains using the

CAIDA AS relationships data. In particular, a primarily access domain is identified

as mixed-role if the domain is the transit provider of at least one other domain

according to the CAIDA data. Finally, we split the mixed-role domains into a transit

and an access domain, connected with a channel. After splitting the domain into two,

we assign all the existing channels of the original domain to the transit component.

6.1.2.2 Adding Extra Channels

In the Internet today, there are typically multiple channels between domains, es-

pecially between large ISPs. However, the CAIDA AS relationship topology dataset

does not provide the number of channels between the ASs. In order to reflect the mul-

tiple channels in our network model, we added 60,000 additional channels2 between

the transit providers, placing them between pairs of adjacent transit domains. We

performed a biased random selection of channel endpoints by favoring high degree3

domains in the selection. In particular, we followed the three step procedure to add a

new channel: i) pick one domain with a probability proportional to its degree, ii) pick

a second domain from the existing neighbors of the first domain with a probability

proportional to its degree, and iii) add a channel between the two domains.

After adding extra channels between the transit domains, we also added new

channels from access domains to transit domains in order to reflect the possible impact

of settlement-free relationships between the domains (as described in Section 3.1). In

particular, we added a total of 18,694 new edges between access and transit providers

in order for access domains to have an average multi-homing degree of 4 (as opposed

to 2.8 in the original topology). When adding the extra channels to access domains,

we selected access providers uniformly at random in order to create a topology where

260,000 additional channels equate to around 10 extra channels per transit domain on average.
However, we performed a biased random selection favoring high degree domains when choosing the
channel endpoints. As a result, the largest transit domains obtained hundreds of additional channels.

3We made the assumption that the number of channels of a domain (i.e., degree) is a good
indication of its size.

78

all access providers were equally likely to be multi-homed. The resulting topology

contains 37,986 access domains and 6,402 transit domains. In the topology, there are

171,074 bidirectional channels.

The final topology approximates the structure of the current Internet topology.

Because our approach scales through parallelism, future Internet topologies with

larger number of paths than the current Internet can be accommodated by adding

additional instances of parallel components to our path service. Next, we describe

how the paths are generated in the pre-computation stage.

6.2 Slow-Joiner: Generating Paths

The challenge in computing paths in a large topology with around 44K nodes is both

the resource requirements in terms of memory usage and performing the computa-

tion in a timely manner. We describe a method which uses an acceptable amount

of memory (less than 64 GB) and can complete the computation in five hours on

our (modified) Internet topology of roughly 44K nodes. Note that the slow-joiner

computation is by design intended to be performed infrequently (on the order of days

rather than hours), so a completion time of five hours is more than acceptable.

Using the topology described in Section 6.1.2, we computed the following paths

from a random access domain S in two steps: i) for each destination access domain

D, we computed the shortest paths from each egress channel Se of S to each ingress

channel Di of D using Dijkstra [28] to obtain the length of the shortest paths between

source egress and destination ingress channels, ii) for each Se of S and Di of D, we

computed all the paths from Se to Di with length up to L + 2, where L is the length

of the shortest path from Se to Di. This resulted in approximately 1.65 billion unique

paths to all destination access domains from source domain S.

In generating these paths, we made certain assumptions about the routing policies

of the transit domains. Specifically, we distinguished between the transit providers

79

(TPsec) that resulted from splitting primarily access domains (with mixed-roles) and

the transit domains that are classified as primarily (TPpri) transit provider. For the

latter, we assumed an unconstrained policy: they offer relays between any two of their

channels, since their business is primarily transit. The use of such an unconstrained

policy increases the number of paths between the access domains, and thus makes

it more challenging to scale the path service. On the other hand, we assumed a

more constrained policy for the transit domains in TPsec. Because the TPsec domains

exist mainly to connect their access domain neighbors to the rest of the Internet,

we assumed that the TPsec domains only transit traffic between their access domain

neighbors and their transit domain neighbors. Using the two types of transit policies,

we obtained a total of 157 million relays offered by the transit domains. However, the

computed paths from the random source access domain S to all destination domains

uses only about 11 million relays out of 157 million—mainly because of the constraint

on the length of the paths.

The computed paths are kept in the main memory as a list of path records. As

shown in Listing 6.1, a path record structure contains the source (line 3), the destina-

tion (line 4), the slow-changing attributes (line 6), the fast-changing attributes (line

7) and the list of references (line 5) to relay records that form the path. Similarly,

each relay is stored as a relay record in the main memory. A relay record structure,

shown in Listing 6.2, is identical to the path record structure with the exceptions of

the references to relay records and a readers-writer lock. We discuss the relay records

and the required locking mechanisms on the relay records in Section 6.3.5.

The slow-join operation computes and writes all members of the path records

except the fast-changing attributes. We refer to these path records that are pre-

computed by the slow-joiners as slow-changing path records. The fast-changing at-

tributes of path records are computed and written during the computation of the

query results—paths that are most likely to satisfy the performance constraints of

80

the application. A path record becomes stale when the fast-changing or the slow-

changing attributes of one or more relays that form the path change with the arrival

of fresh relay information. We describe how the implementation deals with staleness

in Section 6.3.3

1 struct PathRecord

2 {

3 Channel source;

4 Channel destination;

5 RelayRecord *relays [];

6 SlowChangingAttr s_attr;

7 FastChangingAttr f_attr;

8 Time lastWrite;

9 };

Listing 6.1: Path Record Structure.

1 struct RelayRecord

2 {

3 Channel ingress;

4 Channel egress;

5 SlowChangingAttr s_attr;

6 FastChangingAttr f_attr;

7 ReadWriteLock lock;

8 Time lastWrite;

9 };

Listing 6.2: Relay Record Structure.

6.2.1 Slow-Joiner Implementation

The pre-computation of paths is a time-consuming operation in large graphs such as

the Internet AS-level graph. Even though changes to the slow-changing path records

happen infrequently (as a result of permanent changes in the connectivity), it is

still important to complete the pre-computations in a timely manner (i.e., at most

a few hours). To that end, we use a parallel breadth-first search method which is

effective in reducing the computation time. However, parallel breadth-first search

requires a significant amount of memory when computing paths, because the frontier

(i.e., incomplete) paths are kept in the main memory. We use two strategies to

81

significantly reduce the memory usage: i) divide the problem of computing paths

from a single source domain to all destination access domains into subproblems of

computing paths from an egress channel Se of the source domain to an ingress channel

of a destination access domain Di, and ii) pre-compute distances from all the channels

to the destination ingress channel in order to identify and filter frontier paths that

are to exceed the permissible length (i.e., L+2) of the path from Se to Di, as they

are generated.

To further reduce the memory usage, the path generation method first generates

paths on an “abstract” AS-level topology that contains a single “virtual channel”

between all the neighboring domains that are connected by one or more physical

channels in the actual topology. In the second step, the set of paths generated using

the abstract topology are duplicated using the virtual-to-physical channel mappings.

Generating paths using the two-step approach does not miss any paths that a breadth-

first search method would compute on the actual topology.

The procedure to compute paths from a single source domain S to all destination

domains is given in Listing 6.3. In this approach, we first generate an initial set of

paths (Lines 4–11) using the abstract topology, named Tabstract. The path generation

procedure is divided into smaller sub-problems of computing paths from an egress

channel Se of the source domain to an ingress channel Di of the destination domain.

The procedure computes all the paths from Se to Di with length up to L + 2, where

L is the length of the shortest path (i.e., distance) from Se to Di. Then, the paths

are duplicated with the multiple channels of the actual topology (Line 12).

The parallel breadth-first search method (Line 8) computes paths from an egress

channel Se of the source domain to an ingress channel Di of the destination domain

D. The method uses the pre-computed distances from the channel Di to all other

channels in the topology which are computed using the Dijkstra algorithm (Line 7).

In particular, the pre-computed distances are used to eliminate frontier paths, whose

82

current length plus the pre-computed distance of its last channel to Di exceeds the

length constraint (i.e., distance between Se and Di plus two), as they are generated.

1 def Path_Generation (Topology_Graph T,Domain S)

2 Tabstract = Extract_Connectivity_Graph(T)

3 Paths = {}

4 for each egress channel Se of S

5 for each Stub Domain D in T

6 for each ingress channel Di of D

7 DistDi
= Dijkstra(Di,Tabstract)

8 Paths += BFS_Parallel(Se,Di,Tabstract,DistDi
)

9 end

10 end

11 end

12 Final_Paths = Duplicate_Paths_Parallel (Paths ,Tabstract,T)

13 end

Listing 6.3: Procedure to compute paths from domain S to all access domains.

Using the topology described in Section 6.1.2, we computed the paths from a ran-

domly selected access domain to all other access domains using the above procedure.

The computation resulted in 1.65 billion paths. The path computation procedure

requires around five hours to complete on a single server with four Intel Xeon X5650

processors (six cores per processor) with 128 MB RAM, using 24 threads working in

parallel.

The main bottleneck in the computation is the input and output since the compu-

tation is data intensive. Because the MapReduce programming model is a good fit for

data intensive computations, we developed and used a parallel breadth-first search im-

plementation in Hadoop [80]—an open source MapReduce implementation—to gen-

erate paths. The MapReduce implementation generates the same set of paths from

a single source to all destinations with the length constraint in just an hour using 8

quad-core computers each with 500 GB storage.

The distribution of the number of paths to each destination domain is shown in

Figure 6.2. It is important to note that a large percentage of the destinations (32,067

of 37,986 domains or 86% of all domains), have 60,000 or less paths. Also, a very small

83

percentage of domains, (517 domains or around 1% of all domains) have 300, 000 or

more paths. The domains with large number of paths have high connectivity and as

a result, our channel-oriented path generation method computes more paths to such

highly connected access domains. These domains include popular destinations such

as content distribution networks (e.g., Akamai) and content producers like Google.

The popularity of the domains with large number of paths makes it more challenging

to scale the path computations. However, by caching recently computed paths, the

path service can respond to queries that request paths to popular destinations directly

from its cache.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5000 10000 15000 20000 25000 30000 35000 40000

N
u
m

b
e
r

o
f
P

a
th

s

Destination Domains

Figure 6.2: Distribution of paths to destination domains.

In the experiments, we assume that the slow-changing routing information is

static. Therefore, the slow-join operation is only performed once and no incremental

changes are made thereafter. Instead, we focus on the more challenging problem of

scaling path computations with periodic changes in the fast-changing routing infor-

mation. Next, we describe the path service implementation which only deals with the

fast-changing routing information.

84

6.3 Path Service Implementation

The path service implementation follows the conceptual design depicted in Figure 5.3.

The major components of the implementation are master, workers and updaters as

shown in Figure 6.3.

Query

Master

Path SorterFast−Joiner

Relay

Fast−Changing

Information

A Partition of

Slow−changing

Path Records

A Partition of

Fast−changing

Path Records

Cache

Path

Worker

Updater

Figure 6.3: The main components of the path service implementation.

6.3.1 Master

The master consists of a communication component and a computation component.

The communication component is responsible for sending queries to and collecting

results from both the cache-controller (described in Section 6.3.2) and the workers.

As explained in Section 6.3.3, the path service implementation distributes the work

of computing query results among all the workers. The computation component of

the master merges the individual results from the workers to obtain the final query

results. The master is responsible for the following tasks:

1. Receive queries and forward them to the workers.

2. Collect results from all the workers.

3. Merge the individual results to produce the final query results.

85

4. Forward the final results to the cache-controller and the user.

The master performs three communication tasks (Tasks 1, 2, and 4) and a compu-

tation task (Task 3). It is important for the master to communicate with the workers

in a timely manner for the path service to be work-conserving—that is, workers are

busy computing results as long as there are queries that arrived to the system. In

particular, if the master gets blocked with a computation task and does not for-

ward the arriving queries to the workers immediately, the workers could stay idle

instead of computing the query results. In order to prevent the computation task

from blocking the communication tasks of the master, the computation component

and the communication component of the master are separated, they work in parallel.

The computation component consists of a single merger thread which computes the

results to incoming merge requests and returns the results.

The master and workers communicate through a task queue and a results queue

(i.e., completed tasks). The master inserts a query in the form of a task into the task

queue, from which the available workers obtain the tasks. Once a worker completes

a task, it inserts the result (i.e., paths with performance information) into the results

queue for the master to fetch. Arrival of a query at the master results in exactly W

tasks being inserted in the task queue when there are a total of W workers. This

results in W query results from the workers to be merged. Another task of the master

is to make cache-insert and cache-search requests to the path cache, which is described

next.

6.3.2 Path Cache

The most recently computed results to path queries are stored in an in-memory path

cache which is implemented as a hash table. The cache is managed by a cache-

controller process that handles insert and search requests from the master. A cached

entry in the path cache is shown in Listing 6.4. The cache maps a triple consisting

86

of a source domain, a destination domain and a traffic class to a set of top k paths

(i.e., query results).

1 struct CachedEntry

2 {

3 int sourceDomain;

4 int destinationDomain ;

5 int trafficClass;

6 PathRecord *topk[kmax];

7 int timestamp;

8 };

Listing 6.4: A Path Cache entry containing information about the top k paths result-
ing from a query.

One concern over the caching of query results is the lifetime of the paths. With

the arrival of new routing information (in the form of relay advertisements), some

of the cached paths to a destination domain D may become stale. However, it is

not possible to determine whether a cached path to D is stale after the arrival of

new routing information without repeating the path computation to D using the

most up-to-date routing information. Although one could imagine a more efficient

algorithm to determine whether a cached path needs to be recomputed or not, the

cache-controller simply treats all the existing cached entries as stale entries (and does

not use them) once new routing information arrives.

It is important for the cache-controller to respond to search and insert requests

in a timely-manner. Therefore, even if fresh routing information arrives, it is not

desirable for the cache-controller to flush all the existing cached entries. Instead,

the cache-controller updates entries only when a search or insert operation finds a

stale entry. To determine staleness, the cache controller timestamps each entry in

the cache as it is inserted (in the timestamp variable in Listing 6.4). A comparison

of the timestamp in a cached entry with the arrival time of the most recent routing

information determines if the entry is stale.

87

6.3.3 Worker

A worker is a combined fast-joiner and path sorter as shown in Figure 6.3. The main

task of the worker is to compute results for a particular query. The workers compute

the results of a query in parallel. In order to distribute the work of computing query

results, each worker is assigned a single partition of slow-changing path records, and

the workers compute the results using only the partition that is assigned to them.

After the master forwards the query to the workers, each worker computes and returns

a list of path records. The master then merges the individual results from each worker

to produce the final results, as discussed before.

The task of the fast-joiner component is to compute the fast-changing attributes

of the path records in the assigned partition of path records using the fast-changing

relay (routing) information. The fast-changing information consists of a list of relay

records, which contains both slow- and fast-changing attributes of relays. Similar

to path records, relay records are kept in the main memory for fast access by the

workers. Once the fast-changing attributes of paths are computed, they are stored as

part of the path record to use for future queries. However, the fast-changing attributes

of a path record need to be re-computed when the path record becomes stale. As

mentioned before, a path record becomes stale when the fast-changing attributes of

one or more relays used in the path change. In order to check for staleness, both path

records and relay records contain a member to record the time of the most recent

write to the fast-changing attribute. We refer to path records whose fast-changing

attributes are computed as fast-changing path records in Figure 6.3. The actual worker

implementation uses a single copy of each path record; the two partitions—slow-

changing and fast-changing—are used in the Figure 6.3 for presentation purposes.

In our experiments, we use latency and available bandwidth as the two fast-

changing attributes. Both of the attributes are represented in the form of histograms

with five bins that represent probability distributions. The value of each bin is an

88

integer between zero and 100, and the sum of the bin values in a histogram is 100.

As mentioned before, an external (simulation) component named update-generator

periodically sends relay (i.e., routing) information updates to the path service. These

updates contain fast-changing attributes for a list of relays, with randomly generated

histograms of probability distributions. The fast-joiner component computes convolu-

tions on the latency histograms and minimum operations on the available bandwidth

histograms to produce path histograms.

The path sorter component performs a linear search on path records to obtain the

top kmax paths, where kmax is the largest k value that the system allows for queries.

We set kmax to five in our experiments as this provides senders with a reasonable

number of alternatives. As the path sorter goes through the list of path records, it

maintains a list of the current top five path records. Once the search is complete,

the list of the top five path records is returned to the master. In order to obtain the

top five paths, the path sorter computes the likelihood of each path record satisfying

the constraints on latency and available bandwidth. The constraint on latency is an

upper-bound, while the constraint on available bandwidth is a lower-bound value. In

the implementation, the fast-join and path sorter components operate together in a

sequence—they are implemented as part of the worker thread. After the fast-joiner

computes the attributes of a path, the path sorter computes its likelihood of satisfying

the constraints.

Each worker maintains an index to locate the path records for a specific source and

destination channel in its path record partition. Upon receiving a query, a worker

first looks up in its index to locate paths whose source and destination matches

the source and the destination requested in the path query. Our hypothesis is that

when each partition of path records contains roughly the same number of paths with

similar lengths for a given source-destination pair, each worker has roughly the same

89

computational load.4 We test our hypothesis in Section 6.4.4. The pre-computed

paths by the slow-joiner are partitioned in such a way as to ensure that each worker

obtains a similar load, as follows:

1. Pre-computed paths are grouped by source and destination domains.

2. Within each group, paths are sorted by their length (i.e., number of relays).

3. Grouped and sorted paths are assigned to workers in a round-robin fashion.

The majority of the time that a worker spends computing query results is during

the fast-join operation. During this operation, the worker iterates over the paths

in its partition and computes the path attributes through a sequence of histogram

operations (i.e., convolution and minimum). In order to improve the performance of

this step, we perform an additional optimization step to reduce the repeated com-

putations for paths that have common portions. This optimization step is explained

next.

6.3.4 Grouping Together Paths with Common Prefixes

The pre-computed paths from one source domain to a destination domain are likely

to contain common prefixes. As an example, consider two paths that traverse the

same relays to reach a particular tier-1 domain T and then follow different relays

from T to the destination. By grouping paths with similar prefixes in each partition,

the fast-joiner component can avoid the repeated computation when two subsequent

paths have a common prefix. To group paths with similar prefixes together, each

sub-partition containing paths from one particular source domain to a particular

destination domain is sorted lexicographically using the relay identifiers that form

the path.

4The processing cost of a path is dominated by the histogram (i.e., join) operations to compute
the fast-changing path information. The number of histogram operations performed on a path is
based on the length (i.e., number of relays) of the path.

90

We also considered other potential solutions to avoid repeating join computations

across different paths. One solution is to identify portions of paths (not necessarily

prefixes of paths) that are most common across different paths and reuse the result

of the join operation on the common sub-paths during the fast-joins. Identifying the

most common sub-paths across a large number of paths is a challenging task which

involves counting the occurrences of all possible sub-paths (across over a billion paths)

and sorting them. This task can possibly be performed using a MapReduce approach.

However, computing popular sub-paths and using them to avoid repeated join com-

putations requires additional overhead in terms of (in-memory) storage, because one

needs to store all the popular sub-portions and represent the paths in terms of both

relays and popular path portions.

We use the simpler path grouping approach, because it requires no extra overhead

except the grouping stage. Yet another possible solution is to group paths with

similar suffixes rather than prefixes together. However, we found that grouping paths

by common prefix or suffix makes a negligible difference in terms of their impact on

the fast-join performance.

6.3.5 Updaters

While workers read fast-changing relay records from the local (in-memory) storage

during fast-join computations, the system periodically receives fresh fast-changing

relay information. The task of the updaters is to update the in-memory storage of

relay records with the arriving fast-changing routing information. It is important to

update the local storage with the new information as soon as possible in order to

compute query results with the most up-to-date information. Therefore, one or more

updaters perform the writing of new relay information to the local storage in parallel.

Because the workers read from the relay records that are periodically written by the

updaters, locking mechanisms are implemented to protect the integrity of the relay

91

records.

Another task of the updater is to inform the cache-controller of the arrival of fresh

routing information in order for the cache-controller to identify stale cached entries.

The updater and the cache-controller use MPI to communicate. In our experiments,

updaters receive routing information updates periodically every Tu seconds, and each

update contains the fast-changing attributes for R distinct relays. We use different

Tu and R values in the experiments. The update-generator picks the relays to be

updated randomly.

In the next few sections, we present our experiments with the path service imple-

mentation. In Section 6.4, we provide results using a single server implementation

with four Intel Xeon X5650 processors containing a total of 24 cores and 128GB of

memory. In this setting, the server has no input queue to store the incoming queries.

Therefore, the server accepts one query at a time: it receives a query, computes the

results and then obtains the next query. Later, we consider a distributed system with

multiple identical instances of the single server implementation which has an input

queue. We experiment with the distributed system using a realistic query arrival

schedule in Section 6.5.

6.4 Experiments without Queuing

In this section, we measure the performance of the path service on a single server,

where the service obtains one query at a time. The master, each worker, and each

updater component is implemented as threads. In addition to these path service

threads, we use two simulation processes: an update-generator and a query-generator

to send relay information updates to the updater thread and to send queries to the

master thread, respectively.

The performance metric of interest is the query processing (i.e., service) time,

which we measure as the time from when the query is received by the path service

92

until the results are ready to be sent by the path service (In a real system there will

also be latency to transmit the query and response, but if the service is located in the

local access domain, we expect this to be small, comparable to DNS lookups today).

The parameters varied include the number of worker threads and the frequency of

routing information updates.

In the first experiments, presented in Section 6.4.1, we used path queries with

random destinations and disabled the path caching in the path service. The goal of

the first experiments is to collect the service times for each destination access domain

when the computation is done in real-time (no caching). The collected service times

are used in the simulation of the distributed system in Section 6.5. In the second set

of experiments, presented in Section 6.4.2, we present the results of the experiments

with the path caching enabled and compare the caching-enabled path service to the

caching-disabled path service. In all the experiments that we present in this chapter,

the traffic classes in the path queries are selected randomly, unless stated otherwise.

In the experiments that we present in the next two sections, the arrival rate

of the relay information is set to one million relays every 10 seconds. The pre-

computed paths from the source domain to all destination domains use about 11

million relays. At the rate of 6 million relays per minute, all the 11 million relays

can be updated within 2 minutes. The update-generator picks the relays in the

advertisements uniformly at random, and each relay advertisement contains random

performance information containing randomly generated histograms of latency and

available bandwidth.

6.4.1 Experiments without Caching

The cumulative distribution functions (CDF) of query service times for 6, 12, and 18

workers are presented in the three plots in Figure 6.4. We present the distributions of

the query processing times using three plots by dividing the percentage of queries (x

93

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 T

im
e

 (

m
s
e

c
/q

u
e

ry
)

Percentage of Queries

6 Workers
12 Workers
18 Workers

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.9 0.91 0.92 0.93 0.94 0.95

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 T

im
e

 (

m
s
e

c
/q

u
e

ry
)

Percentage of Queries

6 Workers
12 Workers
18 Workers

 10

 100

 1000

 10000

 0.95 0.96 0.97 0.98 0.99 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e

 (

m
s
e
c
/q

u
e

ry
)

Percentage of Queries

6 Workers
12 Workers
18 Workers

Figure 6.4: Cumulative distribution of query processing times for 6, 12, and 18 work-
ers.

axis of the plots) into three ranges: i) 0–0.9, ii) 0.9–0.95, and iii) 0.95–1.0. Note that

the y axis of the plot for the range of 0.95–1.0 is log-scaled. As expected, we achieved

a (close to linear) decrease in the service times decrease as the number of workers that

perform computations in parallel increases. The average of query processing times

for 6, 12, and 18 workers are 27.36, 20.92, and 16.05 milliseconds, respectively.

6.4.2 Experiments with Caching

In the experiments we present in this section, we used path queries that we generated

using NetFlow traffic traces collected from a campus network to real-world destina-

tions. In particular, we selected a 1-minute interval which was representative of the

other parts of the traces based on its locality of the reference—around 90% of the

queries destined to less than 2000 destinations.

94

Figure 6.5 presents the results of the experiments. The plot on the left hand side

of the Figure 6.5 presents the difference in the cumulative distribution of the service

times for the path services with 12 and 18 workers. The initial flat portions of the

curves correspond to the queries that are satisfied from the path cache. The cache

hit rate of the path service with 18 workers is higher than the path service with 12

workers. The reason is that the path service with 18 workers has a smaller service

time, and as a result it can cache larger numbers of paths between the arrivals of

fresh relay information compared to the path service with 12 workers. The cache hit

rate of the path service with 12 workers was 34%, while the cache hit rate of the

path service with 18 workers was 52% in the experiments. The plot on the right hand

side of the Figure 6.5 presents the difference between the path services with caching

enabled and caching disabled.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
e
c
s
)

Fraction of Queries

12 Workers
18 Workers

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
e
c
s
)

Fraction of Queries

Cache Enabled
Cache Disabled

Figure 6.5: The plot on the left hand side presents the CDF of the service times for
12 and 18 workers with caching enabled, and the plot on the right hand side presents
the comparison of the CDFs of service times for the caching enabled and the caching
disabled path services with 18 workers.

In order to understand the impact of routing information (i.e., update) arrival

frequency on the cache hit rates, we measured the cache hit rate as the update

frequency is varied for a fixed number of 12 workers. The cache hit rates for the

update intervals of 10, 15, 20, 25, and 30 seconds are shown in the plot in Figure 6.6.

In this experiment, the number of relays in each update was set to a million relays.

95

As expected, the cache hit rates increase as the update frequency decreases. The

increase in the cache hit rates translate to improvement in the service times for the

path service.

 35

 40

 45

 50

 55

 60

 65

 10 15 20 25 30

H
it
 R

a
te

 (
%

)

Update Interval (seconds)

Figure 6.6: Effect of routing information arrival frequency on the cache hit rate.

In these experiments, the path service considers all the pre-computed paths be-

tween the source and the destination domains. In the current Internet, many access

domains are multi-homed, and they have strong incentive to control how traffic enters

and leaves their network to balance the load on their access channels. In the next

section, we consider the scenario where each access domain selects a subset of its

access channels for incoming and outgoing traffic.

6.4.3 Adding Ingress and Egress Traffic Engineering Policies

As cloud and content delivery services become popular in the Internet, multi-homing is

also becoming important for providers to load-balance and to fail-over traffic. Multi-

homed providers have strong incentive to control the ingress and egress routes of

traffic in order to get maximum utilization from the aggregate bandwidth of the

access channels.

In the current Internet, multi-homed access providers use name-resolution-based

(DNS) and BGP-based solutions to perform ingress and egress traffic engineering [59].

In the BGP-based approach, an access provider A assigns blocks of IP addresses that

96

it owns to access channels by advertising each address block selectively to different

upstream transit providers. In the name-resolution-based approach, the access do-

main runs an authoritative DNS server to resolve server names dynamically to IP

addresses.

In the loose source routing architectures, we envision a mapping service which

translates endpoint identifiers (EIDs) to sets of ingress and egress channels in the

source routing system. Similar to the name resolution based approach of the Inter-

net, access providers can control their ingress/egress traffic by providing authoritative

mapping servers that dynamically resolve EIDs of the end-systems within their do-

main to ingress/egress channels. Before contacting the path service to obtain paths

from the source domain S to the destination domain D, the end-systems query the

authoritative mapping services of S and D to obtain a set of egress and a set of

ingress channels, respectively. Once they obtain the ingress and egress channels, the

end-systems query the path service to request paths from a set of egress channels to

a set of ingress channels.

In our experiments, we assumed that the end-systems obtain 2 (random) egress

and ingress channels for each multi-homed source and destination domains from the

mapping service. Figure 6.7 shows the service times of the path service with access

domains selecting up to 2 egress/ingress channels with 6, 12, and 18 workers. The

average service times corresponding to 6, 12, and 18 workers are 7.12, 5.98 and 4.67

msecs, respectively. In these experiments the query processing times are significantly

reduced in comparison to the results shown in Figure 6.4, because the ingress and

egress channel selection reduces the number of paths considered by the path service

when computing the results.

97

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 T

im
e

 (

m
s
e

c
/q

u
e

ry
)

Percentage of Queries

6 Workers
12 Workers
18 Workers

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0.9 0.91 0.92 0.93 0.94 0.95

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 T

im
e

 (

m
s
e

c
/q

u
e

ry
)

Percentage of Queries

6 Workers
12 Workers
18 Workers

 10

 100

 1000

 0.95 0.96 0.97 0.98 0.99 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e

 (

m
s
e
c
/q

u
e

ry
)

Percentage of Queries

6 Workers
12 Workers
18 Workers

Figure 6.7: Cumulative distribution of query processing times for 6, 12, and 18 workers
with ingress/egress traffic engineering.

6.4.4 Differences in Query Processing Times across Workers

An important goal of our design is the equal sharing of work among the workers. To

achieve equal sharing of work among the workers, we make sure that each worker is

assigned roughly an equal number of paths with roughly equal lengths, as explained

in Section 6.3.3. Because the final merge of the individual query results of the work-

ers has negligible contribution to the service times (below 0.01 milliseconds), the

processing time of a query is dominated by the query processing time of the slowest

worker.

We measured the query processing time differences between the slowest worker and

the fastest worker to evaluate the balance of computational load across the workers.

In the experiments that we present in this section, the path service uses all the pre-

98

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
if
fe

re
n
c
e
 B

e
tw

e
e
n
 S

lo
w

e
s
t
a
n
d
 F

a
s
te

s
t
W

o
rk

e
r

Percentage of Queries

Figure 6.8: CDF of the query processing time differences between the fastest worker
and the slowest worker.

computed paths between the source and the destination domains to respond to queries

(i.e., no traffic engineering), and the caching was disabled.

Figure 6.8 shows the cumulative distribution of the query processing time differ-

ences between the fastest workers and the slowest workers across 100,000 random

queries. For 80% of the queries, the difference in the service times between the fastest

and the slowest worker is below 1.2 milliseconds. For less than 2% of the queries, the

difference in service times is greater than five milliseconds and less than 23 millisec-

onds. The queries with the largest service time differences (i.e., over 20 milliseconds)

correspond to destinations with service times over a second. Therefore, in comparison

to the actual query processing times, the differences in the service times between the

fastest and the slowest workers are fairly small (i.e., around 2% of the query service

time).

One of the possible contributing factors to the differences in query processing times

across the workers is the differences in the number of path comparison operations

that each worker performs when computing the final set of paths (i.e., the task of the

path sorter component). In particular, once a path’s likelihood of satisfying a set of

99

constraints is computed, the path sorter compares the path with the worst path in

the current top five paths list. If the path is worse than the last path in the top five

paths list, the worker skips to the next path in the partition. Otherwise, the worker

continues with the comparison of the path with the second worst path, and possibly

the third worst path, and so on. In the next section, we describe the simulation of

a path service consisting of multiple instances of the single server implementation

which was described in this section.

6.5 Experiments with Queuing

Path

Query

Top k
Results
Cache Queue

Master

...

Server 1

Worker Worker

Queue Queue

Server N

Figure 6.9: Path service with N replicated servers.

In the previous section, we considered a single server responding to queries that

arrive one at a time. Obviously such a single server implementation cannot handle

100

realistic workloads. In this section, we consider a path service system that consists

of multiple identical instances of the (slightly modified) single server implementation

shown in Figure 6.9. The single server instances shown in the Figure 6.9 differ from

the original implementation of the single server path service in that they do not have

path caches to store the results of recently computed queries and have input queues

to store incoming queries. Instead of having a separate path cache at each individual

server, a single (external) path cache is implemented. The arriving queries in the

distributed system are handled by a master node. Queries arrive to the master node

according to the flow arrival times in the NetFlow data during the busiest hour of

the 24 hour data at an average rate of 30,200 queries per second.

The master node assigns an incoming query to a single server and collects indi-

vidual results from servers. To optimize the responsiveness of the system, the master

node keeps track of the workloads of the servers and assigns an incoming queue to

the server that is closest to completing its current workload (i.e., currently queued

queries at the server). We compute the service times of the queries in the distributed

system using the query service times obtained from the single server experiments with

18 workers and disabled path cache in Section 6.4.1.

Figure 6.10 shows the average query processing times for different number of

servers running in parallel. With caching enabled, only 10 servers are sufficient to

serve queries with an average service time of 3.2 milliseconds, when queries arrive to

the system at the average rate of 30,200 queries per second. In this simulation, we

assumed that the input queues of the servers were unbounded, which resulted in very

large query service times when the number of servers was small.

In this simulation, we restricted the number of servers that handle a particular

query to one. A possible extension to this approach is for multiple servers to process

a query concurrently and return individual results, which are then merged by the

master node to compute the final result. In that case, the paths to destinations

101

Figure 6.10: Average query processing times for different number of servers with
caching disabled and enabled.

would be partitioned among the servers as opposed to partitioning among workers in

a single server. This extension would allow larger sets of pre-computed paths (that

one server by itself cannot store in its memory) to be considered by the system. We

leave the implementation of such an extension to future work.

6.5.1 Overhead of Relay Advertisements

The majority of the relay updates consists of the fast-changing attributes of relays,

and only a small portion of updates need to carry both the slow-changing and the

fast-changing attributes (i.e., only upon changes in slow-changing attributes, which

happen infrequently). Assuming that the bin boundaries of histograms are static

and are not communicated in each update, a single relay update which carries only

fast-changing attributes of a relay is only around 14 bytes. In particular, a typical

update contains a globally unique relay identifier and the value of each individual bin

(ranging between zero and 100) in the two histograms corresponding to latency and

available bandwidth. A globally unique relay identifier can be assigned to each relay

either based on the relay’s ingress and egress channel identifiers or some other method

known to both the path service and the domains. The total bandwidth capacity re-

102

quired to transmit one million relays every 10 seconds under these assumptions is only

around 11.2 Mbits/sec. Relay updates with slow-changing information contains iden-

tifiers of ingress, egress channels, and the various slow changing relay attributes such

as bandwidth capacities, propagation delays and so on in addition to fast-changing

attributes.

6.5.2 Stability of the System

Our loose source routing system with the path service contains a feedback loop,

because it includes the load on the network to compute paths, and the paths that

are returned by the system are eventually used by the end-systems to contribute new

load on the network.

The original ARPANET [34], predecessor to the Internet, used hop-by-hop routing

with load-dependent routing metrics in the path selection process. The nodes in the

ARPANET network became aware of the topology and cost of all the channels in

terms of load-dependent metrics through periodic broadcast of link-state updates

upon significant changes in the channel costs. ARPANET had major problems with

oscillations, especially when the utilization of the channels in the network is high [48].

The oscillation was due to the fluctuation of the channel costs: nodes advertised their

current channel costs was not a good prediction of the new channel costs after all

nodes re-route their traffic (on a single “best” path for each destination) based on

the most recently reported channel costs. As a result, the channel costs changed

rapidly, which triggered new broadcasts of updates, causing constant fluctuations in

the routes. The effect of such rapid changes in routing (i.e., selection of best paths)

is a disproportionate load assignment to the channels. In particular, while some

channels are highly utilized, others stay under-utilized at any time.

Later, the ARPANET developers changed the instantaneous queue length metric

to slower-changing metrics (e.g., average delay on the channels over few seconds)

103

in order to prevent rapid oscillations. However, this hardly improved the oscillation

problem since the fundamental problem—that is, the feedback loop between next-hop

selection and load—was still there. ARPANET was the earliest attempt to achieve

dynamic load balancing with hop-by-hop routing.

One of the reasons that hop-by-hop routing is unable to achieve load-balancing

with load-dependent metrics is the selection of only a single “best” path to each

destination by each node. In the case of source routing, the path service can possibly

balance the load between source and destination domains across a large number of

paths. A possible way to achieve load-balancing across multiple paths using the path

service is to randomize the path selection. In particular, instead of computing and

storing (in the cache) only five paths per query as we did in the experiments, the

path service could compute and store (in the cache) a much larger number (e.g., top

500) of paths that are most likely to satisfy a query. Then for each query, the path

service could return a randomly selected set of five paths from the top 500 paths. The

overhead of storing larger number of paths in the path cache is negligible, because a

separate node with sufficient amount of memory can be dedicated for this task.

6.6 Adding a Disjointness Criteria

An important benefit of source routing is that it enables end-systems to react to

failures (e.g., disconnections) by simply diverting their traffic from the primary (i.e.,

currently used) paths to alternate (i.e., backup) paths. However, if primary and

backup paths have common (i.e., overlapping) channels, switching to a backup path

may not lead to recovery, since the failure may occur on a common node or channel.

In this section, we consider the problem of computing disjoint5 (i.e., non-overlapping)

inter-domain level paths that also satisfy the performance constraints for robust com-

5Two channels in the topology that may appear to be disjoint can actually traverse the same
physical wire or conduit. This presents additional problems, but for the purposes of this thesis we
will assume channels that are disjoint in the graph are in fact disjoint.

104

munication. Unfortunately, there may be no channel-disjoint or node-disjoint paths

between two access domains in the Internet (e.g., if one of them is single-homed).

Therefore, we consider a metric to compute the degree of disjointness on a pair of

paths. We use this metric to find maximally disjoint inter-domain paths—that is,

paths with minimum overlap.

A commonly used metric to compute the degree of disjointness on two paths

is: Disjointness(P1, P2) = Number of common components(P1,P2)
minimum(length(P1,P2))

[77]. The “number of com-

mon components” is the number of channels common to two paths when computing

channel-disjoint paths, or it is the number of common domains when computing node-

disjoint paths. The disjointness metric produces values between zero and one, where

zero means disjoint. We use the above disjointness metric as the ground truth in the

experiments below. The disjointness metric is the inverse of the similarity metric

which is computed as: Similarity(P1, P2) = 1−Disjointness(P1, P2)).

Our goal is for end-systems to obtain maximally disjoint paths from the path

service. However, disjoint paths may not be needed in all the communications in

the Internet—short-lived, best-effort communications (i.e., accessing a web page), for

example. Also, some communications can tolerate a few RTTs of delay to obtain

disjoint paths from the path service upon failures. An on-demand approach would

save the path service from unnecessarily computing maximally disjoint paths for all

path requests. For the path service to compute on-demand maximally disjoint paths,

we introduce a new type of query, namely the disjoint path query. In the disjoint

path queries, the end-systems provide a single path P (which was obtained from the

path service earlier) in addition to the rest of the items in a typical path query: the

destination, the number of paths requested, and the traffic class selection6.

For disjoint path queries, the path service computes and selects paths according

to two criteria: i) the least overlap with the path P supplied by the application, and

6A possible extension to the disjoint path queries, which can easily be supported, is for end-
systems to also select between channel-disjoint and node-disjoint computation.

105

ii) the highest likelihood of satisfying the application’s performance requirements. In

order to compare paths based on two metrics, we use a nonlinear combination of the

two metrics, similar to the approach used by the exact QoS routing algorithms when

computing paths with multiple constraints [74] (See Section 4.3). In particular, the

path service computes the maximum of the similarity (i.e., inverse of disjointness)

and the likelihood metrics to produce a single “goodness” metric for the paths. The

path service then returns the paths with the highest goodness metric to the users in

response to disjoint path queries. By using the maximum operation, the path service

computes paths with the highest likelihood of satisfying the performance requirements

that are also maximally disjoint from the given path P .

The computation of disjoint path queries involve a large number of disjointness

computations. More specifically, the path service must compute the disjointness of the

given path P against all the pre-computed paths that are destined to P ’s destination.

Because the pre-computed paths change slowly, a pre-computation approach, whereby

the disjointness metric is computed pairwise between all possible pairs of paths within

the groups of paths with the same destination in advance, can be considered. Pre-

computation of disjointness can also be parallelized across distributed nodes to scale

the computation; however, the pre-computed disjointness information requires about

a terabyte7 of storage (ideally in the main memory for fast access). Therefore, the

path service computes disjointness of the user supplied path against the pre-computed

paths in an on-demand fashion.

To reduce the complexity of the on-demand disjointness computations, we use

approximations of the (ground truth) disjointness computations. In the approximate

disjointness computations, each path (i.e., set of channels) is represented by a Bloom

Filter (BF) [15] which is a compact bit vector representation of a set using a prob-

7There are on average 10,000 pre-computed paths to each destination and around 35,000 desti-

nation domains which results in approximately 35000 ×

(

10000

2

)

≈ 1012 disjointness values to be

computed.

106

abilistic data structure. The path service computes BF of each path when the path

is constructed (during the pre-computation phase) and stores its representation in

the path record. The metrics we consider approximate the size of the intersection

(i.e., overlap) of two Bloom Filters, and then normalize the size of the approximate

intersection to produce values between zero and one. More specifically, we consider

the following approximate disjointness metrics that operate on two bit vectors B1 and

B2 with equal sizes:

1. Disjointness1(B1, B2) =
popcount(B1 AND B2)

minimum(popcount(B1),popcount(B2))

2. Disjointness2(B1, B2) =
popcount(B1 AND B2)

maximum(popcount(B1),popcount(B2))

3. Disjointness3(B1, B2) =
popcount(B1 XNOR B2)
Number of bits in B1

4. Disjointness4(B1, B2) =
popcount(B1 AND B2)
popcount(B1 OR B2)

Population count or popcount of a bit vector B is the sum of the digits of B.

In recent CPU architectures, population count is implemented as a single hardware

instruction which operates on 64 bit values. Because of its efficiency, we use the

popcount operation on a BF B to approximate the size of the set represented by B.

The first disjointness metric performs a bitwise AND operation on the two BFs,

which is an approximation for an intersection operation on two sets represented by

the filters. Then, the metric divides the popcount (i.e., approximate size) of the

intersection set with the (approximate) size of the smaller of the two sets. The second

metric differs from the first by using the maximum operation instead of the minimum

operation in the denominator. The third disjointness metric uses a bitwise XNOR

operation and the popcount of the result to approximate the size of the intersection

of the two sets. The XNOR of two BFs computes the approximate intersection of

two filters by counting the number of positions where the two filters have the same

value. The popcount of the intersection is then normalized by the number of bits in

107

Figure 6.11: Average error rate of the disjointness approximations when a random
fixed length path is compared to a million random paths with arbitrary lengths.

the BF. The final metric, also known as the Jaccard distance, computes the size of

the intersection set and divides the intersection size by the size of the union set.

The approximations produced by the four metrics are compared against the ground

truth to produce an error rate between zero and one, over a million path pairs. A

108

large error rate indicates a large absolute difference with the ground truth value.

We present the error rates of the four metrics in Figure 6.11. In the plots shown

in Figure 6.11, AND/MIN, AND/MAX, XNOR, and Jaccard refer to the first, sec-

ond, third and fourth metrics, respectively. Our results can be interpreted as either

channel-disjoint or node-disjoint path computations.

In each plot, a random path with fixed length L is compared with million random

paths with lengths selected randomly from the range of 2–14 which corresponds to

the range of path lengths in our network model. The comparisons are repeated for

L values between 2 and 14 (inclusive) to obtain the error rate for each L value in

the plots. We perform the same set of comparisons using BFs of sizes 128, 192,

256. The selected BF sizes are chosen to be multiples of 64, because the popcount

instruction operates on 64 bit values. The false positive rates for the maximum length

(14 channels) path are 0.015, 0.0015 and 0.00015 for BFs of sizes 128, 192, and 256,

respectively.

According to the error rates in Figure 6.11, the AND/MIN metric provides the best

approximation of the ground truth. The popcount of the bitwise XNOR operation on

two filters over-estimates the size of the intersection when the two sets have a small

number of elements. This is mainly because the BF representations of two small

sets have a large number of matching positions with a zero value. This results in

an XNORed BF with large numbers of ones. As a result, the third metric performs

better when comparing larger paths as can be seen in the plots.

Both the Jaccard and AND/MAX metrics under-estimate the disjointness when

the difference in the lengths of the two paths is large. In particular, when comparing

a small path PS with a large path PL, dividing the size of the intersection by either

the size of the larger set or the union set results in a small disjointness metric even

when PS is a subset (i.e., prefix) of PL. The error curves of both AND/MIN and

Jaccard reach their minimum when the path length of the path is the median length

109

(i.e., 8), because the length difference between the random and the median length

path is smaller on average over a million random paths.

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
e
c
/q

u
e
ry

)

Percentage of Queries

18 Workers
18 Workers Disjoint

Figure 6.12: Difference in the cumulative distributions of service times for the regular
path queries and disjoint path queries.

Based on the above results, we incorporated the AND/MIN approximation to the

path service implementation. We used 192 bit Bloom Filters, because the AND/MIN

metric is more stable in 192 bit and 256 bit filters, and the performance of the metric

on 192 bit and 256 bit filters does not differ significantly. The BF representations of

the paths are pre-computed in advance by the path service and stored in the path

records. The query processing times of disjoint path queries are negligibly higher

than regular path queries as shown in the Figure 6.12. The average service times of

the regular path queries differed from the disjoint path queries by 0.25 milliseconds

over 100,000 random path queries with disabled path caching. The above result

demonstrates that the path service can compute disjoint path queries with very little

overhead.

110

Chapter 7

Deploying Source Routing in the
Internet

In this chapter, we describe a (loose) source routing system and its prototype im-

plementation which can be deployed alongside the current Internet routing and for-

warding system. An important property of the source routing system is that legacy,

unmodified Internet applications can leverage the new features provided by the sys-

tem such as path selection. The prototype is implemented as part of a larger project

called the ChoiceNet Future Internet Architecture [71].

The goal of the ChoiceNet project is to develop an “economy plane”, where con-

ventional network layer services like routing and forwarding, as well as new network

layer services like caching or transcoding can be purchased by users from any provider.

In this chapter, we focus on a small portion of the ChoiceNet project involving the

network layer services needed to implement a source routing system: namely, transit

providers that sell relay (i.e., forwarding) services and path services that sell paths.

In particular, the path service purchases relay services (in advance) from transit

providers and sells paths containing one or more relay services to the users.

In the current Internet, IP source routing is disabled mainly because of the lack of

policy enforcement mechanisms that would enable transit domains to dictate how and

which packets enter and leave their network. The source routing system, which we

describe in this chapter, makes use of a data plane (i.e., in-band) policy enforcement to

111

make efficient policy-compliance checks on packets. The in-band policy enforcement

mechanism used in our system is similar to that used in Platypus [66]. In particular,

packets carry policy-compliance tokens for each relay along the path. The tokens serve

as proof-of-purchase for the relay services. The end-systems pay the path service to

obtain paths along with the tokens for the relay services along the paths. The details

of the payment and the policy enforcement mechanisms are on-going work as part

of the ChoiceNet project and is outside the scope of this thesis. In the rest of the

chapter, we assume the existence of payment mechanisms whereby the path services

pay the transit providers and then turn around and charge end-systems for the paths.

The path services provide tokens to the end-systems along with the paths, but we do

not provide details on how the tokens are generated or how they are checked by the

domains. For additional information about the payment and tokens see [83].

In addition to the path service, the source routing system consists of forwarding

elements that perform the relay function and policy-compliance checks on the source-

routed packets, and a wrapper library which end-systems use to run legacy, unmodified

Internet applications on the source routing system. The wrapper library can be

linked against a legacy application to enable users to express their application-specific

performance constraints through a configuration file. The wrapper library includes

the performance constraints in the path queries it sends to the path service. The

performance constraints can include an upper-bound latency value in milliseconds

and a lower-bound bandwidth value in megabits per second.

The system uses Internet Protocol version 6 (IPv6), because IPv6 allows variable-

length source-routing headers to be carried as extension headers. The source-routing

header contains the path and the policy-compliance tokens. As described in Sec-

tion 2.1, IPv6 defines several types of extension headers for the purposes of carrying

optional network layer information. Our packets use destination options, whose orig-

inal purpose is to carry optional information which needs to be examined only by the

112

packet’s destination end-point; therefore, they remain untouched by the legacy Inter-

net routers and middle-boxes. The use of destination options header for our purposes

does not interfere with the use of that header by the existing IPv6 protocol, because

we use a new option type within the destination options header which is currently

not allocated to any existing IPv6 services.

As a consequence of using the IPv6 protocol to deliver source routing packets,

the system uses IPv6 addresses to name channels and end-systems. In our system,

a channel is a unidirectional, point-to-point, best-effort transmission facility identi-

fied by a pair of interface (IPv6) addresses, the interface address of the channel’s

origin (egress interface of a node) followed by the interface address of the channel’s

destination (i.e., ingress interface of a node). The end-systems are identified by any

one of the IPv6 addresses of their interfaces. The reason for naming channels using

both the origin and destination endpoint IPv6 addresses is to enable end-systems to

construct return paths by directly reversing the (forward) paths carried in the in-

coming packets in order to send return traffic. In particular, a receiver constructs a

return path by reversing the order of channel identifiers and the order of the IPv6

addresses (i.e., origin and destination) in each channel identifier. Our system uses

“bi-directional” policy-compliance tokens that are usable in both directions of a path

by the end-systems; therefore, a receiver can use the tokens in the incoming packets

to send policy-compliant packets back to the sender. In contrast, the deprecated IP

source routing, explained in Section 4.1.1, uses a reverse route recording mechanism

where routers on the forward path overwrite the path information in the packets with

the reverse path for the receivers to use in the return traffic. Because our in-band

policy enforcement mechanism requires the path information in the packets to be

unmodified for the receivers to be able to construct policy-compliant packets for their

return traffic, our forwarding elements do not use a reverse route recording mecha-

nism. However, our approach is similar to the IPv4 loose source routing in that the

113

processing of packets at the forwarding elements involve modifying the destination

address of the packets. In particular, the forwarding elements replace the destination

address of the packets with the address of the next hop on the path. Consequently, the

routing of packets between consecutive hops in a loose source route can be performed

by the hop-by-hop routing mechanism similar to IP loose source routing option.

For reasons of simplicity of bootstrapping and to enable partial deployment (ex-

plained later), the source routing system currently uses IPv4 routing to deliver control

traffic, but we plan to remove this requirement in the future. The control traffic in our

system comprises the relay advertisements from transit providers to the path services,

queries from the end-systems to the path services, and query responses from the path

services to the end-systems. The relay advertisements contain the ingress and egress

channels of the transit domains and the performance information. We also make the

assumption that the end-systems can discover the locations (i.e., IPv4 addresses) of

available path services through out-of-band means.

In Section 7.1, we describe the prototype implementation of the system. Then, we

describe our experiments with the implementation in Section 7.2. Finally, we discuss

a potential scenario for real-world deployment of the system in Section 7.3.

7.1 Prototype Implementation and Experiments

on GENI

We implemented a prototype that demonstrates the capabilities of our source routing

system. Our prototype demonstrates that legacy, unmodified Internet applications

can utilize the multi-path capabilities of our system by using a wrapper library in

Section 7.1.1. Also, we present a software router implementation of a forwarding

element in Section 7.1.2.

114

7.1.1 The Wrapper Library

One benefit of a source routing system for applications is to leverage the multi-path

routing features. However, legacy, unmodified Internet applications are not designed

to use the features of our source routing system. In order to use legacy, unmodified

applications in our system, we implemented a preloaded shared library called wrapper.

The wrapper library replaces standard network I/O function calls such as connect()

and send() with functions that are able to leverage the multi-path capabilities of our

path service. The wrapper can be linked against a wide range of existing, legacy

Internet applications including things such as ssh, browsers, iperf, etc. We refer to

an application which is linked against the wrapper library as a wrapped application.

The wrapper library initially reads a user-provided configuration file to obtain

the performance constraints of the (wrapped) application and the IPv4 address of

the path service. At some point a standard TCP client application will make a

connect() call to connect a socket file descriptor to a destination IPv6 address, both

specified as arguments. The connect() call is intercepted by the wrapper connect()

call implementation in the wrapper. The pseudo code of the wrapper connect() is

shown in Listing 7.1. The wrapper connect() call first checks if the file descriptor

in the arguments is an IPv6 socket. If so, the wrapper sends a path query request

to the path service. The wrapper includes the performance constraints read from

the configuration file along with the local machine’s and the destination machine’s

IPv6 addresses in the path query. The path service returns paths (in the code shown

here, only one path is returned) and policy-compliance tokens (for transit domains to

authenticate packets) to the wrapper. The wrapper inserts the path and the tokens

returned by the path service into an IPv6 extension header (Line 15) and makes

a setsockopt() system call (Line 18) to attach the extension header to all future

outgoing IPv6 packets that will be sent from the socket. The setsockopt() call is

given the argument IPV6 DSTOPTS which indicates a destination options header to

115

be used within the extension header.

1 int wrapper_connect (int sockfd ,const struct sockaddr

2 *dst_addr , socklen_t len)

3 {

4 unsigned char *ext_hdr;

5 unsigned char del_tokens [], final_tokens [];

6 struct sockaddr *next_hop_addr = NULL;

7 ... [other declarations]

8
9 if(is_ipv6(sockfd)){

10 // Obtain paths and proof -of-compliance tokens

11 //from the path service.

12 Path path = request_path(PathService_addr ,src_addr ,

13 dst_addr , constraints [], tokens []);

14
15 ext_hdr = build_ext_header(path , tokens);

16 next_hop_addr = get_next_hop(path);

17
18 if(setsockopt(sockfd ,IPPROTO_IPV6 ,IPV6_DSTOPTS ,

19 ext_hdr ,extlen) < 0){

20 die("setsockopt IPV6_DSTOPTS error!");

21 }

22 }

23 if(next_hop_addr){

24 rc = connect(sockfd , next_hop_addr , len);

25 }

26 else

27 rc = connect(sockfd , dst_addr , len);

28
29 return rc;

30 }

Listing 7.1: Psuedo code for the wrapper’s modified connect() call.

Finally, the wrapper connect() function makes a call to the real connect I/O sys-

tem call. The destination address (i.e., second argument) passed to the real connect

call (Line 24) is the address of the next forwarding element that the packet is to

visit. The next hop address is extracted from the path, which is returned by the path

service and saved in the next hop addr variable (Line 16). The original destination

of the IPv6 packet is stored as part of the path carried in the extension header. The

forwarding elements on the path eventually restore the original destination of the

116

packets as explained in Section 7.1.2. If the wrapper intercepts a connect call from

an IPv4 socket, the destination address is not modified and passed as it is to the real

connect call (Line 27).

After the connect call returns, the wrapper is not called (directly) until the socket

is closed, at which point the wrapper deletes all the state allocated for the socket.

All the client application’s packets sent over the socket, including the handshake (i.e.,

SYN and ACK) packets, are sent with extension headers by the operating system,

because the IPV6 DSTOPTS has been set for the socket. In the extension header, the

wrapper stores multiple source routing related fields including the path information,

a next-hop field, and the proof-of-compliance tokens. The path information contains

a sequence of channel identifiers where each consecutive channel pair along the path

is a relay. The first and the last identifiers are different from the other channels

identifiers. In particular, the first channel only contains an origin interface identifier

corresponding to the IPv6 address of the source end-system, and the last channel

only contains a destination interface identifier corresponding to the IPv6 address of

the destination end-system. The next-hop field points to the next channel that the

packet is to visit next. The forwarding elements increment the next-hop field upon

processing the packet.

At the receiving end, a wrapped server application creates a socket and waits

for incoming packets. In the case of a TCP server, the wrapped application makes a

listen() call before the three-way handshake, which involves responding to an incoming

SYN packet with a SYN-ACK packet. A challenge with wrapping the receiving-side

TCP application is the SYN ACK packet. In particular, the network layer application

programming interface (i.e., socket interface) does not enable access to the headers

of the incoming SYN packets. Without access to the incoming SYN packets, the

operating system will treat them like normal IPv6 packets, creating a SYN-ACK

packet destined for the sender, but not carrying a (reversed) source route in the IPv6

117

options field. Because the receiving-side wrapped TCP application did not see the

SYN packet, it cannot construct a SYN-ACK packet with a return path based on

the path carried in the SYN packet. To address this problem, the wrapper uses

the libpcap library [4] to obtain a copy of all incoming IPv6 SYN packets carrying

destination options extension headers. The wrapper reverses the path carried in the

SYN packet and forms a SYN ACK packet (using raw sockets) with the reversed path

and the (bi-directional) tokens carried in the SYN packet.

For UDP applications, the client side wrapper performs the path requests in the

first I/O call that tries to send data through a UDP socket. At the receiving (i.e.,

server) side, the wrapper makes a setsockopt() call with IPV6 RECVDSTOPTS pa-

rameter to receive extension headers containing destination options along with the

data portion of the packets. After the wrapper obtains the extension header of an

incoming packet, it reverses the path and extracts the tokens in the incoming packets

to form outgoing packets.

7.1.2 Forwarding Elements

The forwarding element is implemented using the Click modular router [49] on a

Linux host. The forwarding element intercepts only the IPv6 packets with extension

headers containing destination options. It forwards legacy Internet IPv4 packets as

normal so that control traffic can be delivered.

Upon the arrival of a source-routed IPv6 packet, the forwarding element first

checks the tokens in the packet to confirm that the packet is policy-compliant. If

the token is valid, the forwarding element copies the egress IPv6 address of the next

channel on the path to the IPv6 destination address field in the main IPv6 header.

Once the address is modified, the forwarding element hands the packet to the Linux

kernel to have it forwarded through the appropriate outgoing interface.

Another task of the forwarding element is to send relay advertisements to the

118

path service to report the performance across its relays—each ingress, egress channel

combinations of the node. In our experiments, we used only slow-changing routing

information including the propagation delay and the bandwidth capacity.

In the next section, we present our experiments with the system.

7.2 Experiments

We tested our prototype implementation consisting of the wrapper library, the for-

warding element, and the path service, using the Global Environment for Network

Innovations (GENI) experimental network [63]. GENI is a virtualized network con-

sisting of end-hosts and networking fabric that allows multiple researchers to simul-

taneously run their experiments.

20 msec

10Mbits/sec

1Mbits/sec 1Mbits/sec

10Mbits/sec

10Mbits/sec

Host A Host B

srcR

LBLL

HBML

HBHL

dstR

~0 msec~0 msec

10Mbits/sec

20 msec
10Mbits/sec

10 msec 10 msec

~0 msec~0 msec
10Mbits/sec

Figure 7.1: Topology used in the GENI experiments. The topology has 3 paths
between the hosts, each having different qualities: 1) high bandwidth and high latency
(HBHL), 2) high bandwidth and medium latency (HBML), and 3) low bandwidth and
low latency (LBLL).

We used the sample topology given in Figure 7.1 for our experiments. The topol-

ogy has 7 nodes with 2 hosts (named hostA and hostB) and 5 routers (named srcR,

HBHL, LBLL, HBML, dstR). All the nodes in the experiments are Xen virtual ma-

chines. The router nodes run the forwarding element described earlier, and the hosts

119

run wrapped legacy Internet applications such as iperf, wget, ssh, and scp. One of

the hosts also runs the path service implementation with a single worker thread to

compute query results and a single updater to process relay advertisements. Given

the small size of the topology, a single worker sufficed to compute paths.

The three (loop-free) paths in the topology between the two hosts traverse the

three routers HBHL (high bandwidth, high latency), HBML (high bandwidth, medium

latency), LBLL (low bandwidth, low latency) that are adjacent to channels with dif-

ferent propagation delays and bandwidth capacities. The high bandwidth routers are

adjacent to 10 Mbits/sec channels, while the low bandwidth routers are adjacent to 1

Mbits/sec channels. The high latency routers are adjacent to channels with approxi-

mately 20 msec propagation delay, medium latency routers are adjacent to channels

with approximately 10 msec delay (see Figure 7.1). The rest of the channels in the

topology have close to 0 msec propagation delay and 10 Mbits/sec bandwidth.

The wrapper library is configured with the latency (in msecs) and throughput (in

Mbits/sec) of the desired path via a configuration file. The configured constraints

on latency and bandwidth are sent to the path service as part of the path queries.

The path service returns the path whose propagation delay and bandwidth capacity

attributes are “closest” to the constraints. By returning the closest (i.e., best fit)

rather than the best path, we make sure that all the paths (not just the best) are

utilized. To obtain the closest path, the path service computes an aggregate fit

metric for each path. In particular, the service computes the absolute value of the

differences between the constraints and the attributes in the two dimensions of latency

and bandwidth. Then, a nonlinear combination, i.e., maximum, of the two differences

is computed to produce a single fit metric. The path service sorts the paths according

to their fit metrics and the path with the smallest metric is returned to the wrapper.

By entering different performance constraints in the configuration file, users or

their applications are able to obtain different paths between the hosts. For example,

120

by entering a 10 Mbits/sec upper-bound on the bandwidth and a 20 msec lower-

bound on the latency in the configuration file, the user obtains the high bandwidth,

medium latency (HBML) path. We used a wrapped iperf program to measure the

throughtput on the paths between the hosts. Because of the overheads involved in

copying addresses in the packets and verifying tokens, the throughput achieved by

the wrapped applications are lower than the capacity. In particular, the wrapped

iperf reported 5.6 Mbits/sec of throughput on the high bandwidth paths (HBHL and

HBML), which had a capacity of 10Mbps and no cross traffic..

7.3 Deploying the Source Routing System in the

Internet

In this section, we consider the deployment of our source routing system alongside the

current Internet. The deployment of our system in the Internet means that domains

forward source-routed IPv6 packets and send relay advertisements to the path service.

We assume that the system is globally deployed in all domains and explain how the

source routing system would work in that scenario. Then, we consider a more realistic

scenario, where only a subset of the domains forward source-routed packets and send

relay advertisements (i.e., partial deployment).

F

F

F
F

F

F

F
F

F
F

F

(1,2) −> (3,4),

,(10,9)−>(8,7)

(8,7) −>(6,5)

1
3

5

6

789

10

2 4

X:Y:Z::/48

Path Service

Interdomain channel

Forwarding element

Intradomain channel

X:Y:Z::P

S D

Domain R
Domain P

K:L:M::/48

0 11

12
Domain Q

Domain N Domain O

X:Y:Z::S K:L:M::D

Advertisements:

Locator

Relay

Advertisements:

K:L:M::/48−>(3,4)

X:Y:Z::/48−>(1,2)

1) Egress Locator:

2) Ingress Locator:

Figure 7.2: A simple scenario for a globally deployed source routing system.

Consider the simple topology in Figure 7.2, where 5 domains are inter-connected.

121

The endpoints of the channels are numbered from 0 to 12. Each numbered interface is

associated with a globally routable IPv6 address1. We assume that the border nodes

in the domains are capable of routing legacy Internet packets (IPv4) and processing

source-routed IPv6 packets similar to the forwarding element. In the figure, end-

system S is located within domain P and end-system D is located within domain

R. Both end-systems are assigned IPv6 addresses from the IPv6 prefixes assigned

to their local domain. IPv6 address prefixes X:Y:Z::/48 and K:L:M::/48 are assigned

to the domains P and R, respectively2. The path service is shown in Figure 7.2 as

located within domain P . The notations for the channel identifiers in the example

use the numbers corresponding to the origin and destination interfaces surrounded

by brackets, as in (1,2) for the channel connecting the domains P and Q. We assume

that each transit domain periodically sends relay advertisements to the path services

with slow-changing and fast-changing information.

In order for the path service to compute inter-domain paths between two end-

systems, some means is necessary to map end-system IPv6 addresses (EIDs) to the

ingress and the egress channels of their access domains. We refer to the ingress and

egress channels corresponding to an EID as the ingress locators and egress locators,

respectively. In order to map IPv6 addresses to ingress and egress locators, the

path service collects locator advertisements from the domains in addition to the relay

advertisement. In particular, an egress locator advertisement maps a source IPv6

prefix to a set of egress channels, while an ingress locator advertisement maps a

destination IPv6 prefix to a set of ingress channels. In order to map a given destination

(source) IPv6 address to an ingress (egress) locators, the path service finds a longest

prefix match of the destination (source) address among all the prefixes obtained from

the ingress (egress) locator advertisements. Once the matching prefix is found, the

1We assume that the IPv6 protocol is globally deployed.
2In the IPv6 address notations, we use an upper-case letter instead of each group of four hex-

adecimal digits for brevity.

122

path service extracts the ingress channels from the ingress locator advertisement of

the prefix. The path service collects locator advertisements periodically, upon changes

in the set of locators of prefixes. We expect such changes to be infrequent.

Some of the relay and locator advertisements that are collected by the path service

from the transit providers are shown in Figure 7.2. The relay advertisements are

shown with only the connectivity information. In the figure, we use an arrow between

an ingress channel and an egress channel to represent the connectivity of a relay. To

obtain paths to the end-system D, S sends a query to the path service providing the

IPv6 address of D (K:L:M::D), a set of performance constraints, number of requested

paths and its own IPv6 address (X:Y:Z::S). The path service first obtains the egress

locators of S and the ingress locators of D using the locator advertisements. In

Figure 7.2, the longest prefix match of S’s address (i.e., X:Y:Z::/48) maps to the

channel (1,2), and the longest prefix match of D’s address (i.e., K:L:M::/48) maps to

(3,4) in the locator advertisements. The path service computes the paths from the

egress locator and ingress locator (in this case there is only one) and returns it to S.

In the case of global deployment, the source-routed packets are only processed by

the ingress forwarding elements of the domains. The processing of a source routed

packet involves incrementing the next-hop field, copying the destination interface

address of the next channel on the path to the destination of the packet, and verifying

the tokens as explained before. The forwarding of the packets across the domains (i.e.,

between ingress and egress) can be performed by hop-by-hop routing, MPLS or any

other intra-domain routing approach.

In Figure 7.2, the path from S to D is P1: (0,)(1,2)(3,4)(,11). The destination

interface address of the first channel and the origin interface address of the last chan-

nel are empty, as they represent the source and destination end-system identifiers,

respectively. Below we describe how a packet with path P1 is processed on its way

to D. The wrapper library running in S sets the initial destination of the outgoing

123

packets to the destination interface address of the second channel of the path (i.e.,

interface 2). Once the packet arrives at the interface 2 of domain Q, the ingress for-

warding element sets the new destination of the packets to the destination interface

IPv6 address of the third channel (i.e., interface 4). Similarly, once the packet arrives

to the ingress forwarding element of the domain R, the new destination of the packet

is set to the destination interface IPv6 address of the final channel (i.e., interface 11).

Finally, the packet is routed to the destination D in the domain R.

New routing and forwarding systems that require global deployment have a high

barrier to deployment in the Internet, because there is no gain for the provider who

deploys, unless the system is simultaneously deployed by all the providers in the Inter-

net. On the other hand, an incrementally deployable routing system that can provide

benefits to end-systems and providers even with partial deployment has comparably

lower barrier to deployment.

FF

FF

F

F

F

S

Path Service

Interdomain channel

Intradomain channel

1 2

5 6

4

3

9 10

BGP advertisement path
8

7

11

Forwarding element

0

13

X:Y:Z::/48

Domain P Domain T

K:L:M::/48

D

14

12

Domain WDomain V

Domain Q Domain R

 1) P,T,V, W

 2) P,T,Q,R,V,W

BGP Advertisements:

AS−level Paths to W:

K:L:M::/48 of W

Relay Advertisements:

(11,12)−>(3,4)

(1,2)−>(9,10)

(1,2)−>(7,8)

Prefixes:

Figure 7.3: A simple scenario for a partially deployed source routing system.

Because our source routing system is compatible with the existing Internet routing

and forwarding system, it is possible for end-systems to leverage multi-path capabil-

ities even when only a few transit providers deploy the source routing system. End-

systems accrue more benefit from the source routing system as more providers deploy

the system, because the path choices increases with increasing number of deployment.

124

Consider the example shown in Figure 7.3, where only three of the six domains

(P , R, and T) participate in the source routing system. In this example, the domains

P and W are access domains, and the rest are transit domains. The domains R and

T periodically send relay advertisements to the path service located in the domain

P , with slow-changing and fast-changing information. The partial deployment limits

the topology information known by the path service, since only the participating

domains advertise routing information. In particular, the path service is unable to

even compose a global map of the AS-level connectivity without complete set of slow-

changing relay information from all the domains. Also, the path service is unable to

map destination addresses of end-systems within non-participating access domains to

ingress or egress locators due to lack of locator advertisements from non-participating

domains.

A possible workaround is to utilize BGP advertisements. In particular, the BGP

advertisements contain AS-level paths to prefixes that can be used to build an inter-

domain connectivity map and also to map prefixes to ASs. We assume that the

path service has access to BGP advertisements that are received by a subset of the

participating domains. In Figure 7.3, the path service obtains the BGP advertise-

ments received by the domain P . Domain P receives two BGP advertisements for

the prefix K:L:M::/48 over two distinct paths as shown in the figure with dashed

lines with arrows. From the two advertisements, the path service infers two AS-level

paths to domain W and associates the prefix K:L:M::/48 with the domain W . More

specifically, the path service learns the two AS-level paths to Q: i) P ,T ,V ,W and

ii) P ,T ,Q,R,V ,W . By using the complete BGP advertisements from all the partic-

ipating domains, the path service could form a more complete map of the AS-level

connectivity of the Internet.

Even though the path service has a connectivity map of the topology, the perfor-

mance (i.e., fast-changing) information from non-participating domains are missing.

125

For example, the performance information along the relay: (7, 8) → (11, 12) of the

non-participating domain Q is not known to the path service. The path service only

knows that the domain T and R are connected through Q from the BGP advertise-

ments. However, even with an incomplete set of routing information, the path service

can still compute (possibly useful) end-to-end paths between the end-systems. One

possible strategy is to pick the shortest paths with the most participating domains—

that is, the paths with the most known performance information. The end-systems

can benefit from the partial deployment, because they can possibly obtain multiple

paths to destinations. Also, the providers can benefit from deployment by charging

users for source routing their traffic.

In the partial deployment scenario, the processing of source-routed packets by

the participating domains differ from the full-deployment scenario. In particular,

the packets are processed by both the ingress and egress forwarding elements of the

participating domains. For example, consider the following path P2 from S to D

in Figure 7.2: (0,)(1,2)(9,10)(,13). If the source-routed packet with the path P2

were to be processed only by the ingress forwarding elements of the participating

domains, then the packet would be eventually forwarded from domain T to domain

V with a destination of 10. Because domain V ignores the source routes on the

packets, the transmission of the packet with the path P2 would terminate at the

ingress forwarding element (with interface 10) of V and therefore, the packet would

never reach the destination D. In order to route packets across non-participating

domains, the participating domains must process packets at both the ingress and the

egress forwarding elements. More specifically, instead of forwarding the packets with

path P2 to domain V with a destination address of 10, the egress forwarding element

of T (with interface 9) modifies the destination of the packet to be the destination

interface of the next channel on the path P2, which is 13. However, the processing

of source-routed packets at the ingress forwarding elements of the domains is only

126

necessary if the next hop domain of the ingress node is a non-participating domain.

In this chapter, we described our implementation of a source routing system and

experiments on GENI. We also considered ways to deploy the system in the current

Internet and briefly described a scenario where the system is partially deployed. A

more detailed investigation of how the path service can compute paths under the

partial deployment scenario is left for future work.

127

Chapter 8

Conclusion and Future Work

In this thesis, we have introduced a design for a scalable path service which can com-

pute application-specific paths for end systems. End-systems send path queries to the

path service to request inter-domain paths to destinations with one or more perfor-

mance constraints. The path service considers the time-scales of change in the routing

information and distinguishes between the slow-changing connectivity and the fast-

changing performance information of paths. In particular, the path service performs

a pre-computation step to generate a large subset of all possible paths. The set of

pre-computed paths is updated infrequently with permanent changes in the connec-

tivity of the domains. On the other hand, the path service computes the performance

information of paths frequently as an on-demand computation. Performing the path

generation separately from the computation of performance information leads to new

opportunities. More specifically, the path service can parallelize the construction of

paths and the computation of path performance information. The path service also

takes advantage of caching of recently computed query results.

We have evaluated the performance of a path service implementation on a single

server with 24 cores. Because a single server is insufficient to handle a realistic

workload, we have also considered a distributed path service with multiple identical

copies of the single server implementation working in parallel. In the evaluation of the

distributed path service, we have used traffic traces collected in a campus network to

128

generate a realistic workload for the service. We have shown that with only 10 path

service instances working in parallel, the path service can serve all the end-systems in

a single access domain. We have also extended the path service to provide maximally

disjoint paths and have shown that the path service can compute maximally disjoint

paths with very little additional cost.

We have implemented a simple source routing system consisting of a wrapper li-

brary and a forwarding element. The wrapper library is used by the end-systems to

leverage the path selection capability of the source routing system with legacy, un-

modified IPv6-capable Internet applications. In particular, the wrapper library can

link against (i.e., wraps) IPv6 applications to obtain paths from the path service.

Once it obtains paths from the path service, the wrapper inserts source routes in

the outgoing IPv6 packets of the wrapped application within the extension headers.

The forwarding element is a software router which forwards the source-routed IPv6

packets generated by the wrapped IPv6 applications. Finally, we have considered

a deployment scenario for our source routing system alongside the current Internet

architecture. The deployment of the system by a domain requires the domain to

forward source-routed IPv6 packets and periodically send relay and locator advertise-

ments to the path service. We have shown that the system can work with only a subset

of all the domains participating in the source routing system. In particular, under

partial deployment, the path service uses BGP advertisements as slow-changing rout-

ing information to form a topology map and uses an incomplete set of performance

information to compute paths.

8.1 Future Work

In the future, we hope to extend our work by deploying a distributed path service

on a cluster of computers to verify the results that we obtained from simulating

the distributed path service. In our simulation of the distributed system, we assumed

129

multiple instances of the single server implementation running in parallel. Each server

in the simulation had identical copies of the entire set of pre-computed paths in order

to compute the results to queries. A possible extension would be to parallelize the

computation of queries across multiple servers. In particular, each server in the cluster

would obtain a proper set of the paths instead of all the pre-computed paths. This

extension would allow testing of the path service with larger sets of pre-computed

paths than we used in our experiments by distributing the set of paths across many

servers.

Another possible direction is to investigate path computation and performance

measurement strategies in the partial deployment scenario where a subset of the

domains in the Internet forward source-routed packets and report performance in-

formation. Providing paths in a partial deployment scenario is challenging due to

incomplete slow-changing and fast-changing routing information. A possible strat-

egy for the path service is to collect measurements across default (i.e., BGP) paths

between pairs of distant participating domains. However, performing measurements

between all pairs of participating domains is unlikely to scale; therefore, the system

must choose a scalable strategy to measure the performance across a subset of default

paths.

In our experiments, we assumed that the Internet inter-domain topology with

source routing system is similar to the current Internet. In future work, we hope

to understand the implications of deployment of source routing in the inter-domain

topology of the Internet. With significant changes in routing and economics, we

expect differences in the structure of the domain-level topology to emerge as a con-

sequence of the deployment of source routing. In order to understand the potential

effects of the architectural changes in the structure of the inter-domain topology, a

possible approach is to use an agent-based model to simulate the behaviors of transit

providers and users, similar to the approach by Dhamdhere et al. in [6].

130

Bibliography

[1] The CAIDA UCSD AS Relationships Dataset, June-August 2013. http://www.
caida.org/data/active/as-relationship/.

[2] Open MPI: A High Performance Message Passing Library. http://www.

open-mpi.org/.

[3] The CAIDA UCSD Routeviews Prefix to AS Mappings for IPv4
and IPv6, June-August 2013. http://www.caida.org/data/routing/

routeviews-prefix2as.xml.

[4] The Libpcap Project. http://www.tcpdump.org/.

[5] IEEE 802.2 International Standard for Information Technology Telecommuni-
cations and Information Exchange Between Systems - Local Area Networks -
Media Access Control (MAC) Bridges. http://ieeexplore.ieee.org/xpl/

mostRecentIssue.jsp?punumber=6887401, 1993.

[6] C. Dovrolis A. Dhamdhere. The Internet is Flat: Modeling the Transition from a
Transit Hierarchy to a Peering Mesh. In Proceedings of ACM CoNTEXT, 2010.

[7] J. Abley, P. Savola, and G. Neville-Neil. Deprecation of Type 0 Routing Headers
in Internet Protocol Version 6, December 2007. RFC 5095.

[8] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Re-
silient Overlay Networks, volume 35. ACM, 2001.

[9] David G Andersen, Alex C Snoeren, and Hari Balakrishnan. Best-path vs. Multi-
path Overlay Routing. In Proceedings of the 3rd ACM SIGCOMM Conference
on Internet Measurement, pages 91–100. ACM, 2003.

[10] Onur Ascigil, Song Yuan, Jim Griffioen, and Ken Calvert. Deconstructing the
Network Layer. In Proceedings of 17th IEEE International Conference on Com-
puter Communications and Networks (ICCCN), pages 1–6, 2008.

[11] ATM Forum Technical Committee and Others. Private Network-Network Inter-
face Specification Version 1.0, 1996.

[12] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and
Principles of Internet Traffic Engineering, May 2002. RFC 3272.

131

http://www.caida.org/data/active/as-relationship/
http://www.caida.org/data/active/as-relationship/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.tcpdump.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6887401
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6887401

[13] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web Search for a Planet:
The Google Cluster Architecture. IEEE Micro, 23(2):22–28, 2003.

[14] Bobby Bhattacharjee, Ken Calvert, Jim Griffioen, Neil Spring, and James PG
Sterbenz. Postmodern Internetwork Architecture (PoMo). Technical report,
2006. NSF-FIND Proposal, ITTC Technical Report ITTC-FY2006-TR-45030-
01.

[15] Burton H Bloom. Space/time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7):422–426, 1970.

[16] John W Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost.
Informed Content Delivery Across Adaptive Overlay Networks. IEEE/ACM
Transactions on Networking (TON), 12(5):767–780, 2004.

[17] Kenneth L Calvert, Jim Griffioen, and Leonid Poutievski. Separating Routing
and Forwarding: A Clean-slate Network layer Design. In 4th International Con-
ference on Broadband Communications, Networks and Systems, BROADNETS,
pages 261–270. IEEE, 2007.

[18] I. Casteneyra, N. Chiappa, and M. Steenstrup. The Nimrod Routing Architec-
ture. RFC 1992, August 1996.

[19] Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott Shenker, and Walter
Willinger. On Inferring AS-level Connectivity from BGP Routing Tables. Tech-
nical report, Citeseer, 2002.

[20] Shigang Chen and Klara Nahrstedt. On Finding Multi-constrained Paths. In
IEEE International Conference on Communications ICC, volume 2, pages 874–
879, 1998.

[21] J. Noel Chiappa. Technical Presentation: Map-Distribution/Explicit Routing
Architectures for QoS Routing and Traffic Engineering. http://mercury.lcs.
mit.edu/~jnc/tech/routing_slides.html. [Online; accessed 10-November-
2014].

[22] D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in Cyberspace: Defin-
ing Tomorrow’s Internet (position paper). In Proceedings of ACM SIGCOMM
2002, Pittsburgh, USA, pages 347–356, August 2002.

[23] Hans De Neve and Piet Van Mieghem. TAMCRA: a Tunable Accuracy Multi-
ple Constraints Routing Algorithm. Computer Communications, 23(7):667–679,
2000.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[25] S. Deering and R. Hinden. Internet Protocol Version 6 Specification, December
1998. RFC 2460.

132

http://mercury.lcs.mit.edu/~jnc/tech/routing_slides.html
http://mercury.lcs.mit.edu/~jnc/tech/routing_slides.html

[26] C. Demichelis. IP Packet Delay Variation Metric for IP Performance Metrics
(IPPM), November 2002. RFC 3393.

[27] Amogh Dhamdhere and Constantine Dovrolis. Twelve Years in the Evolution
of the Internet Ecosystem. IEEE/ACM Transactions on Networking (ToN),
19(5):1420–1433, 2011.

[28] Edsger W Dijkstra. A Note on two Problems in Connexion with Graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[29] R. Droms. Dynamic Host Configuration Protocol, March 1997. RFC 2131.

[30] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained Network Time
Synchronization using Reference Broadcasts. ACM SIGOPS Operating Systems
Review, 36(SI):147–163, 2002.

[31] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to SDN. Queue,
11(12):20, 2013.

[32] Internet Engineering Task Force. Locator/ID Separation Protocol (LISP) IETF
Working Group. https://datatracker.ietf.org/wg/lisp/, 2009.

[33] Internet Engineering Task Force. Multi-path Transmission Control Protocol
(MPTCP) IETF Working Group. https://datatracker.ietf.org/mptcp,
2014.

[34] Howard Frank, Robert E Kahn, and Leonard Kleinrock. Computer Communi-
cation Network Design: Experience with Theory and Practice. In Proceedings of
the Spring joint Computer Conference, pages 255–270. ACM, 1972.

[35] Lixin Gao. On Inferring Autonomous System Relationships in the Internet.
IEEE/ACM Transactions on Networking (ToN), 9(6):733–745, 2001.

[36] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Pathlet
Routing. In Proceedings of ACM SIGCOMM, pages 111–122, 2009.

[37] F. Gont. Security Assessment of the Internet Protocol, July 2011. RFC 6274.

[38] James Griffioen, Kenneth L Calvert, Onur Ascigil, and Song Yuan. Separating
Routing Policy fromMechanism in the Network Layer. Next-Generation Internet:
Architectures and Protocols, pages 219–232, 2011.

[39] Arpit Gupta, Muhammad Shahbaz, Laurent Vanbever, Sean Donovan, Russ
Clark, Brandon Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, and
Ethan Katz-Bassett. SDX: A Software Defined Internet Exchange. In Proceedings
ACM SIGCOMM 2014, Chicago, USA.

[40] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm, November 2000.
RFC 2992.

133

https://datatracker.ietf.org/wg/lisp/
https://datatracker.ietf.org/mptcp

[41] Ningning Hu and Peter Steenkiste. Evaluation and Characterization of Available
Bandwidth Probing Techniques. IEEE Journal on Selected Areas in Communi-
cations, 21(6):879–894, 2003.

[42] Information Sciences Institute, University of Southern California. Internet Pro-
tocol Specification, September 1981. RFC 791.

[43] Cisco Internetwork Operating System (IOS). Netflow, 2008.

[44] Jeffrey M Jaffe. Algorithms for Finding Paths with Multiple Constraints. Net-
works, 14(1):95–116, 1984.

[45] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:
Experience with a Globally-deployed Software Defined WAN. In Proceedings of
the ACM SIGCOMM, pages 3–14. ACM, 2013.

[46] S. Kawamura. A Recommendation for IPv6 Address Text Represenation, August
2010. RFC 5952.

[47] Frank Kelly and Thomas Voice. Stability of End-to-end Algorithms for Joint
Routing and Rate Control. ACM SIGCOMM Computer Communication Review,
35(2):5–12, 2005.

[48] Atul Khanna and John Zinky. The Revised ARPANET Routing Metric. In ACM
SIGCOMM Computer Communication Review, volume 19, pages 45–56. ACM,
1989.

[49] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. The Click Modular Router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[50] Turgay Korkmaz and Marwan Krunz. A Randomized Algorithm for Finding a
Path Subject to Multiple QoS Requirements. Computer Networks, 36(2):251–
268, 2001.

[51] Nate Kushman, Srikanth Kandula, and Dina Katabi. Can you hear me now?!: It
must be BGP. ACM SIGCOMM Computer Communication Review, 37(2):75–84,
2007.

[52] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed Inter-
net Routing Convergence. ACM SIGCOMM Computer Communication Review,
30(4):175–187, 2000.

[53] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed
Internet Routing Convergence. IEEE/ACM Transactions on Networking (TON),
9(3):293–306, 2001.

[54] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and
Farnam Jahanian. Internet Inter-domain Traffic. ACM SIGCOMM Computer
Communication Review, 41(4):75–86, 2011.

134

[55] Karthik Kalambur Lakshminarayanan, Ion Stoica, Scott Shenker, and Jennifer
Rexford. Routing as a service. Technical Report UCB/EECS-2006-19, EECS
Department, University of California, Berkeley, Feb 2006.

[56] Yong Liu, Honggang Zhang, Weibo Gong, and Don Towsley. On the Interac-
tion Between Overlay Routing and Underlay Routing. In 24th Annual Joint
Conference of the IEEE Computer and Communications Societies INFOCOM,
volume 4, pages 2543–2553. IEEE, 2005.

[57] Hongbin Luo, Yajuan Qin, and Hongke Zhang. A DHT-based Identifier-to-
locator Mapping Approach for a Scalable Internet. IEEE Transactions on Par-
allel and Distributed Systems, 20(12):1790–1802, 2009.

[58] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM Computer Communication
Review, 38(2):69–74, 2008.

[59] Michael Mitzenmacher. The Power of Two Choices in Randomized Load Balanc-
ing. IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–1104,
2001.

[60] P. Mockapetris. Domain Names - Concepts and Facilities, November 1987. RFC
1034.

[61] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazires, Michael Miller,
and Arun Seehra. Verifying and Enforcing Network Paths with ICING. In
Proceedings of the ACM CoNEXT Conference, December 2011.

[62] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers, December 1998. RFC
2474.

[63] G. P. Office. Global Environment for Network Innovations - System Overview.
http://www.cra.org/ccc/files/docs/GENISysOvrvw092908.pdf, 2008.

[64] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. 1999.

[65] Dan Pei, Lan Wang, Daniel Massey, S Felix Wu, and Lixia Zhang. A Study of
Packet Delivery Performance During Routing Convergence. In Proceedings of
IEEE International Conference on Dependable Systems and Networks, 2003.

[66] Barath Raghavan and Alex C Snoeren. A System for Authenticated Policy-
compliant Routing. In ACM SIGCOMM Computer Communication Review,
volume 34, pages 167–178. ACM, 2004.

[67] A. Reitzel. Deprecation of Source Routing Options in IPv4, August 2007. RFC
791 update.

135

http://www.cra.org/ccc/files/docs/GENISysOvrvw092908.pdf

[68] Y. Rekther and S. Hares T. Li. A Border Gateway Protocol 4 (BGP-4), January
2006. RFC 4271.

[69] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Ar-
chitecture, January 2001. RFC 3031.

[70] Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield. Class-
of-service Mapping for QoS: a Statistical Signature-based Approach to IP Traffic
Classification. In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 135–148. ACM, 2004.

[71] George N Rouskas, Ilia Baldine, Kenneth L Calvert, Rudra Dutta, Jim Griffioen,
Anna Nagurney, and Tilman Wolf. Choicenet: Network Innovation through
Choice. In Proceedings of the Optical Network Design and Modeling (ONDM),
2013.

[72] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A Measurement Study of
Available Bandwidth Estimation Tools. In Proceedings of the 3rd ACM SIG-
COMM Conference on Internet Measurement, pages 39–44. ACM, 2003.

[73] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H
Katz. OverQoS: Offering Internet QoS Using Overlays. ACM SIGCOMM Com-
puter Communication Review, 33(1):11–16, 2003.

[74] P. Van Mieghem and F. A. Kuipers. On the Complexity of QoS Routing. Com-
puter Commununications, 26(4):376–387, 2003.

[75] Route Views. University of Oregon Route Views Project, 2000.

[76] Tam Vu, Akash Baid, Yanyong Zhang, Thu D Nguyen, Junichiro Fukuyama,
Richard P Martin, and Dipankar Raychaudhuri. DMAP: A Shared Hosting
Scheme for Dynamic Identifier to Locator Mappings in the Global Internet.
In IEEE International Conference on Distributed Computing Systems (ICDCS),
pages 698–707. IEEE, 2012.

[77] Feng Wang and Lixin Gao. Path Diversity Aware Interdomain Routing. In IEEE
INFOCOM, pages 307–315, 2009.

[78] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush.
A Measurement Study on the Impact of Routing Events on End-to-end Inter-
net Path Performance. ACM SIGCOMM Computer Communication Review,
36(4):375–386, 2006.

[79] Zheng Wang and Jon Crowcroft. Quality-of-service Routing for Supporting
Multimedia Applications. IEEE Journal on Selected Areas in Communications,
14(7):1228–1234, 1996.

[80] Tom White. Hadoop: the Definitive Guide. O’Reilly Media, Inc., 2009.

136

[81] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The Re-
source Pooling Principle. ACM SIGCOMM Computer Communication Review,
38(5):47–52, 2008.

[82] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,
Implementation and Evaluation of Congestion Control for Multipath TCP. In
NSDI, volume 11, pages 8–21, 2011.

[83] T. Wolf, A. Nagurney, J. Griffioen, K. Calvert, G. Rouskas, I. Baldine, and
R. Dutta. ChoiceNet Project. www.ecs.umass.edu/ece/wolf/ChoiceNet/.

[84] Xiongqi Wu. A Network Path Advising Service. PhD thesis, University of Ken-
tucky, May 2015.

[85] Xiongqi Wu and James Griffioen. Network Path Advising Service for the Future
Internet. In 4th IEEE/IFIP International Workshop on Management of the
Future Internet in conjunction with IEEE Network Operations and Management
Symposium (NOMS), pages 1127–1134, 2012.

[86] Xiongqi Wu and James Griffioen. Supporting Application-based Route Selec-
tion. In International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2014.

[87] Li Xiao, Jun Wang, King-Shan Lui, and Klara Nahrstedt. Advertising Interdo-
main QoS Routing Information. IEEE Journal on Selected Areas in Communi-
cations, 22(10):1949–1964, 2004.

[88] Xiaowei Yang, David Clark, and Arthur W Berger. NIRA: a New Inter-domain
Routing Architecture. IEEE/ACM Transactions on Networking, 15(4):775–788,
2007.

[89] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,
and David G Andersen. SCION: Scalability, Control, and Isolation on Next-
generation Networks. In IEEE Symposium on Security and Privacy, pages 212–
227, 2011.

[90] Yong Zhu, Constantinos Dovrolis, and Mostafa Ammar. Dynamic Overlay Rout-
ing Based on Available Bandwidth Estimation: A Simulation Study. Computer
Networks, 50(6):742–762, 2006.

137

www.ecs.umass.edu/ece/wolf/ChoiceNet/

Vita

• Education

– Western Kentucky University, Bowling Green, KY, M.S. in Computer Sci-
ence, Jan. 2004 – Aug. 2006

– Baskent University, Ankara, Turkey, B.Eng. in Electrical and Electronics
Engineering, Sep. 1999 – May 2003

• Employment History

– University of Kentucky, Lexington, KY Research Assistant, Jan. 2007 -
Aug. 2011 & Jan. 2012 – now

– University of Kentucky, Lexington, KY, Teaching Assistant, Aug. 2011 –
Jan. 2012

– Western Kentucky University, Bowling Green, KY, Teaching and Research
Assistant, Jan. 2005 – Aug. 2006

• Publications

– X. Chen, T. Wolf, J. Griffioen, O. Ascigil, R. Dutta, G. Rouskas, S. Bhat,
I. Baldin, K. Calvert, “Design of a Protocol to Enable Economic Trans-
actions for Network Services”, In Proceedings of the IEEE International
Conference on Communications (ICC), 2015

– O Ascigil, K. Calvert, J. Griffioen, “On the Scalability of Interdomain Path
Computations”, In Proceedings of the 13th IEEE/IFIP Networking, 2014

– D. Brown, O. Ascigil, H. Nasir, C. Carpenter, J. Griffioen, K. Calvert,
“Designing a GENI Experimenter Tool to Support the ChoiceNet Internet
Architecture”, In Proceedings of the International Workshop on Computer
and Networking Experimental Research using Testbeds (CNERT 2014), in
conjunction with ICNP, 2014

– D. Brown, O. Ascigil, J. Griffioen, K. Calvert, “ChoiceNet Gaming: Chang-
ing the Gaming Experience with Economics”, In Proceedings of 19th In-
ternational Computer Games Conference (CGAMES), 2014

– S. Yuan, O. Ascigil, J. Griffioen, K. Calvert, “Leveraging Legacy Software
in Clean-Slate Network Architectures”, In Proceedings of 21st IEEE In-
ternational Conference on Computer Communications and Networks (IC-
CCN), 2012

138

– O. Ascigil, K. Calvert, “Implications of Source Routing”, In Proceedings
of the ACM Conference on CoNEXT Student Workshop, 2012

– O. Ascigil, “On the Scalability of Source Routing Architectures”, In Pro-
ceedings of 19th IEEE International Conference on Communications and
Network Protocols (ICNP), 2011

– J. Griffioen, K. Calvert, O. Ascigil, S. Yuan, “Separating Routing Pol-
icy from Mechanism in the Network Layer”, In Next-Generation Internet
Architectures and Protocols, Cambridge University Press, 2010

– O. Ascigil, Y. Diao, C. Ernst, D. High, U. Ziegler, “Generating 4-Regular
Hamiltonian Plane Graphs”, Journal of Combinatorial Mathematics and
Combinatorial Computing, 2010

– O. Ascigil, S. Yuan, J. Griffioen, K. Calvert, “Deconstructing the Network
Layer”, In Proceedings of 17th IEEE International Conference on Com-
puter Communications and Networks (ICCCN), 2008

139

	Design of a Scalable Path Service for the Internet
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 A Loose Source Routing Architecture
	1.1.1 Assumptions
	1.1.2 Topology Information
	1.1.3 Advantages

	1.2 Path Service Design Problem
	1.2.1 Path Computation Cost
	1.2.2 Routing Information Collection Cost

	1.3 Our Solution
	1.4 Summary of Our Results

	2 Background
	2.1 Internet Protocol
	2.2 Autonomous System
	2.3 Internet Routing and Forwarding
	2.3.1 Intra-domain Routing and Forwarding
	2.3.2 Inter-domain Routing and Forwarding

	2.4 IP Routing Compared to a Path Service

	3 A Clean-slate Approach to Inter-domain Routing
	3.1 Overview
	3.2 Model of Operation
	3.2.1 Relay Advertisements
	3.2.2 Measuring Performance Information
	3.2.3 Obtaining Paths from the Path Service
	3.2.4 Mapping Endpoints to Domain Identifiers

	3.3 Problem Statement
	3.4 Assumptions
	3.4.1 Economic Considerations
	3.4.2 Policy Enforcement

	3.5 Advantages and Challenges

	4 Related Work
	4.1 Centralized and Multi-path Routing Approaches
	4.1.1 Source Routing in the Internet Protocols
	4.1.2 Source Route Bridging
	4.1.3 Software-Defined Networking (SDN)
	4.1.4 Application-level Routing
	4.1.5 Multi-Path Transmission Control Protocol (MPTCP)

	4.2 Clean-slate Source Routing Approaches
	4.2.1 Platypus
	4.2.2 Routing as a Service
	4.2.3 NIRA: New Inter-domain Routing Architecture
	4.2.4 SCION
	4.2.5 Nimrod
	4.2.6 Pathlet
	4.2.7 ICING
	4.2.8 A Network Path Advising Service for the Internet

	4.3 Multi-constrained Path Problem
	4.3.1 Heuristic Approaches to Multi-constrained Routing

	4.4 Advertising QoS Information

	5 The Design of a Path Service
	5.1 Time-Scales of Routing Information Changes
	5.2 Path Cache
	5.3 Path Service Architecture

	6 Evaluation
	6.1 Experiment Methodology
	6.1.1 Workload Model
	6.1.2 Network Model
	6.1.2.1 Separating Access and Transit Roles
	6.1.2.2 Adding Extra Channels

	6.2 Slow-Joiner: Generating Paths
	6.2.1 Slow-Joiner Implementation

	6.3 Path Service Implementation
	6.3.1 Master
	6.3.2 Path Cache
	6.3.3 Worker
	6.3.4 Grouping Together Paths with Common Prefixes
	6.3.5 Updaters

	6.4 Experiments without Queuing
	6.4.1 Experiments without Caching
	6.4.2 Experiments with Caching
	6.4.3 Adding Ingress and Egress Traffic Engineering Policies
	6.4.4 Differences in Query Processing Times across Workers

	6.5 Experiments with Queuing
	6.5.1 Overhead of Relay Advertisements
	6.5.2 Stability of the System

	6.6 Adding a Disjointness Criteria

	7 Deploying Source Routing in the Internet
	7.1 Prototype Implementation and Experiments on GENI
	7.1.1 The Wrapper Library
	7.1.2 Forwarding Elements

	7.2 Experiments
	7.3 Deploying the Source Routing System in the Internet

	8 Conclusion and Future Work
	8.1 Future Work

	Bibliography
	Vita

