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ABSTRACT OF DISSERTATION 

 

 

A FAULT-BASED MODEL OF  
FAULT LOCALIZATION TECHNIQUES 

Every day, ordinary people depend on software working properly. We take it for granted; from 
banking software, to railroad switching software, to flight control software, to software that 
controls medical devices such as pacemakers or even gas pumps, our lives are touched by 
software that we expect to work. It is well known that the main technique/activity used to ensure 
the quality of software is testing.  Often it is the only quality assurance activity undertaken, 
making it that much more important. 

In a typical experiment studying these techniques, a researcher will intentionally seed a fault 
(intentionally breaking the functionality of some source code) with the hopes that the automated 
techniques under study will be able to identify the fault's location in the source code. These faults 
are picked arbitrarily; there is potential for bias in the selection of the faults. Previous researchers 
have established an ontology for understanding or expressing this bias called fault size. This 
research captures the fault size ontology in the form of a probabilistic model. The results of 
applying this model to measure fault size suggest that many faults generated through program 
mutation (the systematic replacement of source code operators to create faults) are very large and 
easily found. Secondary measures generated in the assessment of the model suggest a new static 
analysis method, called testability, for predicting the likelihood that code will contain a fault in 
the future. 

While software testing researchers are not statisticians, they nonetheless make extensive use of 
statistics in their experiments to assess fault localization techniques. Researchers often select their 
statistical techniques without justification. This is a very worrisome situation because it can lead 
to incorrect conclusions about the significance of research. This research introduces an algorithm, 
MeansTest, which helps automate some aspects of the selection of appropriate statistical 
techniques. The results of an evaluation of MeansTest suggest that MeansTest performs well 
relative to its peers. This research then surveys recent work in software testing using MeansTest 
to evaluate the significance of researchers' work. The results of the survey indicate that software 
testing researchers are underreporting the significance of their work. 
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Chapter 1.  General Introduction 

Software is expensive to build and maintain at a high quality.  According to the Department of 

Commerce, activities specifically geared toward improving software quality account for 50% of a 

typical software product's budget, altogether costing "$59.5 billion annually [1]." Quality takes 

many forms. Tangible aspects of quality include correct functionality and precise performance 

constraints. Intangible aspects include user-friendliness and security. While high quality of this 

nature may seem abstract, low quality has a very tangible impact. For instance, the healthcare.gov 

Web site suffered a catastrophic failure to launch on October 1st, 2013 that lasted two months. 

During this period, the White House recruited numerous consultants to fix the site, more than 

doubling the estimated cost of developing the site from the original $400 million as of October 

1st to $1 billion dollars as of December 4th [2]. 

According to the IEEE Software Engineering Body of Knowledge, most quality assurance 

activities that students learn to apply take the form of software testing [3]. Software testing is the 

process of actively seeking and eliminating software bugs. As mentioned above, software testing 

is a big business; some consultants, such as Galmont Consulting, profit exclusively through their 

testing services. Larger companies, such as Google and IBM, maintain internal software quality 

assurance operations, but also enter this market through their "global services" consultancy 

divisions. Other companies enter the market indirectly by providing tool support for testing. For 

instance, IBM sells the Rational Functional Tester to help testers write test cases for varied 

graphical user interfaces. Given the unprecedented scope of the healthcare.gov project and the 

high political stakes at the time, these companies that were contracted to fix the site had much to 

gain financially by selling their latest and greatest testing services. All software testing companies 

have an ethical obligation to provide testing services backed by testing theory that has been 

subjected to empirical validation. 

Researchers must fulfill their part of this ethical obligation: empirical validation must emulate the 

types of quality issues that arise in industry. Researchers have several options to provide this 

emulation. For instance, researchers sometimes back-test new theory against old bugs found in 

older versions of open-source software. Another popular approach is to introduce many small, 

random changes to the software, called program mutation. While this practice does not sound 

realistic, it appeals to some researchers because it is a low cost way to construct experiments. 

Regardless of the approach taken, researchers currently have no way of knowing whether the 
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bugs they select are representative of the bugs that arise in industry. It could be the case that 

researchers are inadvertently selecting bugs that are easy for their tools to find. 

In this respect, researchers also have an ethical obligation to prove that new theory works beyond 

reasonable doubt. Researchers must acknowledge the possibility that a new testing theory could 

eliminate a randomly selected set of bugs by chance, but not most bugs in practice. Researchers 

have been trying to design standard templates for software testing experiments that allow other 

researchers to determine the statistical significance of their work. Statistical hypothesis tests are 

essential to this end because they allow researchers to quantify the true value of their work. 

However, the correct construction of experiments is a highly nuanced process that requires the 

researcher possess considerable statistical background knowledge. Unfortunately, this research 

finds that it is usually not the case that experiments are properly constructed. 

Put succinctly, this dissertation is "research-of-research" that improves the state of the art of 

research into new software testing theory. It provides a new quantitative way of comparing faults, 

called fault size, that directly measures difficulty. It revisits the way statistical analysis is 

performed and imparts a new algorithm, MeansTest, for automating some parts of the analysis 

that are being skipped by researchers due to complexity. 

1.1. Problem Statements 
Experimentation in software testing research focuses on determining the location of a bug given 

one or more failing inputs to the software, called test cases. The practice of locating a bug is 

known as fault localization. Some fault localization techniques are said to be spectrum-based in 

that they use data about the execution of code during failing test cases to predict where the fault 

occurs. 

Unfortunately, there is limited theoretical foundation for understanding why spectrum-based 

methods work. The quality of spectrum-based fault localization is often described in the language 

of information retrieval quality metrics. While the theory provides no possibility that spectrum-

based fault localization could be wrong, all experiments show non-negligible erroneous 

classifications. Thus a major problem this research addresses is revising the existing model of 

spectrum-based fault localization to explain the erroneous classifications. 

To make matters worse, these researchers are often not statisticians and may not have access to a 

member of the statistics department, so their statistical conclusions may also be suspect. Within 
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the broader software engineering field, there is a discussion every few years on how software 

testing experiments should be performed. Recently, there was a paper [4] which concluded that 

all researchers should use a particular hypothesis test, the Mann-Whitney U test, to assess all 

experiments involving randomized optimization algorithms. This result has been oversimplified 

within the software testing community and now many researchers use this test, even when they 

are not studying randomized optimization algorithms. An anonymous reviewer on one of the 

papers in this dissertation anecdotally suggests that this trend has arisen out of laziness: 

As the authors point out, we are not statisticians and generally don't have the luxury of 

sending our data to one. As researchers, we often choose tests to employ because they're 

either safe or simply what we always use. I, the anonymous reviewer, am guilty of one of 

the crimes the authors mention - I almost always employ a conservative Mann-Whitney 

U test to evaluate my work because I do not want to make distributional assumptions. 

Anonymous ICST 2014 Reviewer 

This research seeks to address these issues by introducing and evaluating a more comprehensive 

approach to statistical analysis of software testing experiments that is partially automated. 

1.2. Thesis 
The thesis of this research is: software testing experimentation can be improved through a better 

understanding of experiment design. A quantitative model of fault size can show how software 

testability of code masks the true intrinsic size of faults. A workflow for a typical statistical 

analysis can help automate some aspects of the evaluation of software testing techniques. 

1.3. Contributions 
This dissertation makes several contributions. The software testability measure, itself, is an 

improvement over the state of the art, McCabe's cyclomatic complexity. This improvement is 

demonstrated through empirical validation on very large and well-known software, in which the 

recall, precision, and F1 of the methods are compared. The study found that the testability 

measure had higher recall than McCabe's version. The model of fault size has been applied to a 

set of well-known faults and demonstrates that these faults are very easy to find, raising concerns 

about the quality of experimentation in this area. The workflow of statistical analysis has been 

published in the form of an automated tool in several forms and is available for public use. The 
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dissertation contributes an empirical validation of the workflow, demonstrating that it is more 

effective than naively relying on any single statistical hypothesis test. The practical benefits of the 

workflow are demonstrated through a meta-analysis of existing software testing research. A more 

complete description of contributions is mentioned in context in Chapter 6: Conclusions and 

Main Contributions. 

1.4. Organization 
Chapter 2 presents the literature review. Chapter 3 summarizes the techniques developed. Chapter 

4 presents a synthesis of the dissertation research. Chapter 5 presents future work. Chapter 6 

presents conclusions and main contributions. The subsequent chapters are organized as a 

compilation of published research. Chapters 6 and 7 outline software testability and the model of 

fault size. Chapters 8 and 9 validate the workflow for statistical analysis. 
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Chapter 2.  Literature review 

This section discusses the problems faced in software testing experiments and related work. 

2.1. Definitions 

2.1.1. Testing 
Testing is defined as “an activity in which a system or component is executed under specified 

conditions, the results are observed or recorded, and an evaluation is made of some aspect of the 

system or component [5].” The goal of software testing in this research is to find bugs in 

software. 

Testing involves constructing test cases. A test case describes the expected behavior of a 

program. Typically a test case invokes the program under test with a specific set of input values 

and verifies that the output is correct. The size of the program's domain (the possible inputs to the 

program) determines the potential size of the universe of test cases. In general, this universe is too 

large to entirely test, so the science of software testing is selecting test cases effectively. 

A complete set of test cases is called a test set. In practice, a program has exactly one test set: the 

one the testers wrote. In terms of set theory, the universe of test sets for a given program is 

precisely the Kleene closure on the universe of test cases. Researchers in software testing create 

heuristics for selecting “useful” test sets from this universe; these heuristics are called coverage 

criteria. A family of coverage criteria of interest to this research is structural testing. Structural 

testing is defined as “testing that takes into account the internal mechanism of a system or 

component [6].” 

2.1.2. Control flow graphs and blocks 
In structural testing, programs are represented as control flow graphs. A control flow graph is “a 

diagram that depicts the set of all possible sequences in which operations may be performed 

during the execution of a system or program [6].” In this research, the term control flow graph 

refers to the flowchart of a single function's execution. 

The nodes in the graph represent blocks. A block is “a group of contiguous storage locations, 

computer program statements, records, words, characters, or bits that are treated as a unit [6].” 

Formally, let e(s) be the event that statement s is executed. A block b is a given set of statements 

that satisfy the following theorem: 
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 ∃𝑠(𝑠 ∈ 𝑏 → 𝑒(𝑠)) → ∀𝑠(𝑠 ∈ 𝑏 → 𝑒(𝑠)) (1) 

The theorem reads: if one statement in a block is executed, then all statements in the same block 

are also executed. 

The edges in the graph represent jump statements, such as if-else statements and while loops. A 

jump statement always ends the block containing the jump. The destination of the jump marks a 

new block; there is an edge from the jump to its destination in the control flow graph. In the case 

of conditional jumps, which simply go to the next statement when the jump's condition is false, 

the next statement implicitly marks the start of a new block and so there is always an implicit 

edge between a conditional jump and the next statement. 

Listing 2.1 gives a sample function and Figure 2.1 represents its control flow graph. 

public static List<CFG> parseCFGs(String fileName){ // B11 
 // B0 
 List<CFG> list=new LinkedList<CFG>(); 
 CompilationModelImpl cm=new CompilationModelImpl(); 
 cm.parseInputFile(fileName); 
 List<Compilation> clist=cm.getCompilations(); 
 for(Compilation c : clist){ // B1 
  // B2 
  for(CompilationElement e : c.getElements()){ // B4 
   if(e instanceof ControlFlowGraph // B5 
   && ((ControlFlowGraph)e).hasHir() // B7 
   &&e.getName().contains("HIR")){ // B9 
    // B10 
    List<at.ssw.visualizer.model.cfg.BasicBlock>  
     blist=((ControlFlowGraph)e) 
     .getBasicBlocks(); 
    CFG g=new CFG(c.getMethod(), blist.toArray(new  
     at.ssw.visualizer. 
     model.cfg.BasicBlock[0])); 
    list.add(g); 
   } 
   // B8 
  } 
  // B6 
 } 
 // B3 
 return list; 
} 

Listing 2.1. parseCFGs function 

6 
 



 
Figure 2.1. Control flow graph for parseCFGs 

In the graph, B11 represents the entry point to the function and B3 represents the exit point. There 

are two loops in the function and the graph indicates them. 

2.1.3. Coverage 
Code coverage is defined as “a measure of the occurrence of certain behavior during (typically 

dynamic) functional verification and, therefore, a measure of the completeness of the (dynamic) 

functional verification process [7].” Code coverage provides a stopping point for structural 

testing. There are many levels of coverage. The most basic level is called node coverage or 

statement coverage and requires that the test set execute all nodes in the graph at least once. In 

the above graph, a tester would have to execute all nodes in {B0, B1, B2, B3, B4, B5, B6, B7, 

B8, B9, B10, B11} at least once by executing the function with one or more test cases. More 

advanced forms of coverage exist, for example edge coverage, which would require executing all 

of the edges in the graph: {[B11,B0], [B0,B1], [B1,B3], [B1,B2], [B2,B4], [B4,B6], [B4,B5], 

[B5,B8], [B5,B7], [B7,B8], [B7,B9], [B9,B8], [B9,B10], [B10,B8], [B8,B4], [B6,B1]}. The most 

complicated level is called path coverage and requires that test cases execute every single 

possible path through the graph. It is actually not possible to enumerate the path coverage 

requirements for the above graph; for programs containing loops, path coverage is not feasible 

[8]. 

2.1.4. Faults, failures, fault seeding 
The goal of software testing activities, such as structural testing, is to find faults. A fault is “an 

incorrect step, process, or data definition in a computer program [9].” The manifestation of a fault 

on the behavior of a program is called a failure. A failure is defined as “the inability of a system 

or component to perform its required functions within specified performance requirements [9].” It 

is desirable to find faults, through activities such as testing, before the customer receives the 

software. 
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To demonstrate that a test set can find faults, researchers implement a process called fault 

seeding. Fault seeding is defined as “the process of intentionally adding known faults to those 

already in a computer program for the purpose of monitoring the rate of detection and removal, 

and estimating the number of faults remaining in the program [6].” In software testing research, a 

common goal is to show that a particular structural testing method is more effective at removing 

faults than some baseline method. Rather than studying the method in a longitudinal study of a 

real software project, the researcher will seed old faults back into existing software to simulate 

the method's effectiveness. In the absence of historical data, researchers will use program 

mutation to generate simple faults; for instance, by switching operators. 

2.1.5. Confusion matrix, recall, and precision 
In information retrieval, a list retrieved in response to a query is evaluated for accuracy. 

Typically, the analyst will somehow classify the data into true positives, false positives, true 

negatives, and false negatives. These classifications form a 2x2 confusion matrix. Table 2.1 gives 

an example confusion matrix. 

Table 2.1. Observed confusion matrix 

 TRUE FALSE 

Positive 11 4557 

Negative 18081 330 

 

As Table 2.1 shows, the query correctly returned 11 elements; these are called true positives. It 

correctly ignored 18081 elements; these are called true negatives. It incorrectly returned 4557 

elements; these are called false positives. It missed 330 elements; these are called false negatives. 

A number of metrics exist to measure the quality of a confusion matrix. Recall is the percent of 

recovered true positives: 

 recall = TP
TP+FN

.  (1) 

It is trivial to get 100% recall because returning the entire data set will guarantee 100% recall [9]. 

Thus researchers vie to achieve as high a recall as possible using only a minimal amount of data. 

In software testing research, recall is known synonymously as Defect Detection Effectiveness. 
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Precision is the percent of correct retrievals: 

 precision = TP
TP+FP

.  (2) 

It is non-trivial to get 100% precision [9]. In fault proneness research, a common threat to validity 

with measuring precision is that the absence of a fault in a component's historical data does not 

rule out the possibility of a fault appearing in the future; the false positive rate could be 

overstated. Nonetheless, precision continues to see use in fault proneness research. 

2.1.6. Systematic error 
Systematic error is defined as “the portion of error that is repeatable, i.e., zero error, gain or scale 

error, and linearity error [10].” If a researcher does not notice that a systematic error is present, 

the error could bias the experiment results. An example of a systematic error would be seeding 

only “easy” faults that a test set is guaranteed to catch. This error would result in a gain on the 

Defect Detection Effectiveness that would be erroneously attributed to the quality of the test set. 

2.2. Software Testing Experiments 
This section describes how typical software testing experiments are constructed. To be clear, this 

research does not employ typical software testing experiments. Instead, this section highlights 

issues with software testing experiments that motivate this research. 

Frankl and Weiss described a typical software testing experiment where they compared the 

effectiveness of two structured testing criteria in a statistically significant way. The criteria they 

compared were all-edges (the test set must execute all edges in the control flow graph at least 

once) and all-uses (for each variable defined in the program, the test set must execute all uses of 

the variable at least once). Frankl and Weiss picked nine programs to test. They described, for 

each program, the "universe" of test inputs they created. They assumed that the failure rates 

would be normal except in cases where all test sets always found all bugs. Frankl and Weiss 

generated ~5000 test sets for both criteria. For each test set, they used a random algorithm to add 

test cases to the set, followed by greedy tweaking to add and remove test cases until the desired 

coverage level was reached. Using this method, they produced at least 30 test sets per 2% 

coverage interval for each program. They created a range of faulty versions for each program. 

Then they ran the tests against the faulty programs and reported how many test sets reported a 

fault as a fault detection ratio. To test their hypothesis that all-uses found more bugs than all-

edges, they computed the confidence interval around all-edges and rejected the null hypothesis 
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when the mean bug find rate of all-uses fell outside the interval [10]. This paper is included here 

because it is representative of typical testing experiments that our research seeks to improve. 

Dit et al. [11] surveyed software maintenance papers from the last ten years. Their goal was to 

reproduce the tools and results of these papers in the TraceLab framework, then make the 

components publicly available. They organized the papers using the Petersen et al. systematic 

mapping process [12].  Their steps include: 1) Defining the research questions; 2) Conducting the 

search; 3) Selecting screening criteria; 4) Classifying the technique (in their case: determining the 

tracers and preprocessors used); and 5) Extracting the data. This research reuses the mapping 

process of Dit et al. 

Basili et al. surveyed empirical software engineering papers [13]. They created a framework that 

describes experiments in terms of its definition, design, implementation, and interpretation. Each 

part of the framework has several attributes, such as scope (single project, replicated project, 

multi-project variation, blocked subject-project), perspective, and impact. The authors used this 

framework to systematically survey research papers. They identified several problem areas: 1) 

that there is no consistency among practitioners, 2) that experiments are hard to precisely define 

because there is no standard metric for gauging software quality, 3) the experiment plan should 

contain ideas for subsequent experiments, 4) experiments need to be published in a repeatable and 

extendable way, and 5) results need to be qualified by the controlled variables [13]. Whereas 

Basili et al. provide a general experimentation framework; this research provides a more detailed 

framework for the specific problem of selecting the faults to seed into a software testing 

experiment. This research also addresses issues 4) and 5) by providing ways of controlling and 

comparing the faults used in experiments. 

2.2.1. Object of study 
Software testing experiments study the ability of code coverage criteria to find faults. Typically, 

the researcher will select a criterion, such as all-paths coverage, and compare its ability to find 

faults with a “null” criterion such as purely random testing. 

2.2.2. Hypothesis 
The null hypothesis is that the selected criterion finds about the same number of faults as the null 

criterion. The alternate hypothesis is that the selected criterion finds more faults than the null 

criterion. 
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2.2.3. Inputs 
The experiment takes one or more programs as input. For each program, the experiment requires 

one or more faults; the intention is to see how well the test sets can find the faults. There are 

typically two sources of faults: faults from the program's revision history, and faults generated 

automatically by program mutation. 

2.2.4. Outputs 
The output of running a sample of test sets satisfying a given coverage criterion is a measure 

called Defect Detection Effectiveness. It is another name for the recall measure in Equation 4. 

Software testing experiments typically do not study precision. Test cases are generated from a 

correct version of the program, so it is assumed that the generated test cases do not make 

mistakes. 

2.2.5. Implementation 
There are two processes that the researcher must implement: 1) generation of test cases and 2) 

generation of faults. 

 Test cases 
First, the researcher must generate one or more test sets satisfying the selected and null coverage 

criteria. To do this, the researcher must write or use an existing test case generator. The generator 

takes the grammar describing the input to the program (assumed to be correct) and iterates over 

the universe of possible accepted values. The researcher generates test cases and adds them to the 

test set until the desired level of coverage is achieved. The researcher then uses the same 

generator to generate another test set satisfying the null coverage criterion. 

 Faults 
Second, the researcher must generate faults. If the program is under version control, the 

researcher will simply recompile the code under earlier versions to “generate” faults. In the 

absence of historical data, the researcher will use program mutation to generate faults. Program 

mutation makes syntactically small changes to the program, such as replacing the plus operator 

with the minus operator. 

After the researcher generates the test sets and fault versions, the researcher runs each test set 

against each faulty version. For each test set, the researcher computes defect detection 

effectiveness to determine what percent of faulty versions were discovered by that test set. After 
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all test sets from both coverage criteria are executed, the researcher uses a hypothesis test to 

compare the mean defect detection effectiveness. 

2.2.6. Threats to validity 
In terms of the test sets used in the experiment, it could be the case that the generated test sets are 

not representative of real test sets. For instance, because the test sets are generated, the sets could 

be much larger than what would appear in industry; the issue is that no tester could realistically 

maintain an excessively large generated test set. Also, the test sets could have much higher 

coverage than what could be reasonably achieved in an industry setting; maybe it only took ten 

test cases to achieve 80% node coverage, but due to tricky conditions in the code, it took 1,000 

generated test cases to achieve 100% node coverage. Research into fault proneness tries to 

prioritize testing of code that is the most likely to contain faults, thus alleviating the tester of the 

time-consuming problem of achieving 100% coverage. 

In terms of the seeded faults, it could be the case that other programs will not experience the same 

faults in the same proportion as the proportions that were studied. If the researcher used the 

revision history to generate faults, then it could be the case that the faults are not representative of 

the faults found in other programs. If the researcher used program mutation, then the issue is that 

the faults may not be realistic. Research into fault size surveys and quantifies faults so that future 

researchers can select “representative” faults for their experiments. 

2.3. Fault size 
Several researchers have attempted to address the above threats to validity by specifically 

pursuing a way of quantifying fault size. 

2.3.1. Semantic fault model 
Offutt and Hayes [14] introduced two dimensions for measuring fault size: syntactic (number of 

tokens changed in the source code) and semantic (proportion of the inputs that catch the fault). 

They used this classification to explain several phenomena, such as the coupling effect and 

selective mutation. They performed an experiment to measure the semantic fault size of a tool's 

mutations. They mutated very simple programs that take a single floating point number from the 

Unix rand tool as input. They found on average that the mutants have about 31% semantic fault 

size. They also found that mutations had different semantic fault size depending on where the 

mutation was applied. While this is to be expected, this research posits that mutations have some 
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intrinsic detection difficulty and that all other variance can be explained away by accounting for 

factors external to the mutation. 

2.3.2. Mutation kill ratios 
Bertolino et al. [15] defined a set of mutation operators for access policy control to be applied to 

the eXtensible Access Control Markup Language (XACML) 2.0 language.  They also developed 

a tool to generate mutations to XACML.  The mutations include:  errors in the specification of 

XACML functions, and errors in the ordering of the rules.  The tool, XACml MUTation 

(XACMUT), generates mutants of XACML policies, executes XACML requests (test suites) on 

the original XACML policy and the mutated policy, and calculates the defect detection 

effectiveness.  XACMUT also implements the access control policy mutants defined by Martin 

and Xie [16] as well as by Mouelhi, Fleurey, and Baudry [17]. 

Bertolino et al. did not specifically discuss the size or frequency of the mutation operators,   but 

Table I in that paper indicated that three mutant operators from Martin and Xie are never applied 

and others are always killed.  Other mutants occur frequently (over 60% of the time) and provide 

a 65% mean fault detection effectiveness.  Mutation operators from Mouelhi, Fleury, and Baudry 

include one that is rarely applied (20% of the time).  On average, the test suites applied to these 

mutation operators have low fault detection effectiveness (39% ).   Of their own mutation 

operators, Bertolino et al. report “the test suites reach the highest percentage of fault detection 

effectiveness (79%) showing that they can address most of the new conceived types of faults.” 

This thesis investigates how likely it is that similar mutation operators are killed. 

2.3.3. Relationship between mutants and real faults 
Offutt [18] hypothesized that "simple" mutants (comprised of one mutation operator) and 

"complex" mutants (combinations of mutant operators) are coupled. That is: if a test set can find 

simple mutants, then it can most likely find complex mutants. To test this hypothesis, Offutt 

applied mutations to TriTyp, Find, and Mid to generate mutant-complete test sets; these represent 

test sets that can find "simple" faults. He then applied two mutations at the same time to create 

complex faults. He found that the “simple” test set could still find 99% of complex faults [3]. The 

idea of fault size presented in this thesis provides a way to verify Offutt's hypothesis. 
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2.4. Spectrum-based Fault Localization 
Spectrum-based fault localization (SBFL) is a relatively new method of software testing. Given 

an application and a set of unit test cases with some failures, one might ask: which lines of code 

are most likely causing test failures? SBFL utilizes various information retrieval similarity 

measures, such as cosine similarity, to compare execution traces and test failures. This 

comparison is believed to automatically infer the location of faults. This approach has the 

potential to create huge time savings for industry practitioners, who at present must analytically 

arrive at the location of faults. 

In the envisioned use of spectrum-based fault localization in industry, practitioners prepare a set 

of test cases to run. The practitioners recompile their product source code in such a way that it 

records a log of when each statement of source code is executed. The practitioners run the test 

cases, one at a time, on the modified product. Each time a test case executes, the practitioners 

read the log and associate the executed statements with the test case. When all test cases have 

finished executing, the practitioner has two sets of data:  

• A list of test results 

• Logs of executed statements, organized by test case 

The test results are encoded into a vector as follows: a "1" means that the test case failed, while a 

"0" means that the test case passed. For instance, the vector <1,0> means that there were two test 

cases in which the first test failed while the second test passed. The vector <0,0,0,1,0> means that 

there were five test cases and the fourth test case failed. Test cases usually run in a serial fashion, 

so it is easy to impose a total order on the test cases in this way. Research typically assumes 

determinism in the testing process, so for a given pairing of source code and test set, it is assumed 

there is a unique test results vector. 

The practitioner converts the logs of executed statements into a set of similar vectors. Each vector 

represents the execution of a statement. Each dimension in the vector maps to the same test case 

in the test results vector. A "1" in the vector means that a statement was executed by the 

corresponding test case, while a "0" means that the statement was not executed by the 

corresponding test case. For instance, the vector <1,1> means that there were two test cases and 

both test cases executed the statement represented by the vector. Observe that all statement 

execution vectors will have the same dimensionality as the test results vector, so if there are five 
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test cases, all statement vectors will have length five as well. There may be arbitrarily many 

statement vectors; there will be one for each line of executable code in the product. 

With these vectors available, the practitioner compares each statement execution vector with the 

test results vector and computes their similarity. At this point, the problem reduces to a typical 

information retrieval problem. For instance, it is common to compare vectors using cosine 

similarity [19]: 

 cos(𝑑, 𝑢) = 𝑑∙𝑢
|𝑑||𝑢| (1) 

The practitioner compares each statement execution with the test results and assigns the 

statements the resulting cosine similarity. For instance, the cosine similarity between the test 

results <1,0> and the statement vector <1,1> is 0.707. The practitioner sorts the similarities and 

chooses the statement with the highest similarity. This statement should, with no guarantee, 

contain the most likely cause of the observed test failures. If the practitioner sees this statement 

and does not think that it caused the fault, he or she assesses the other statements in descending 

order of their similarity score until arriving at the true problem statement. 

Abreu et al. [19] examined the recall and precision of this technique. They reduced the problem to 

two inputs: a) the similarity measure and b) the number of failing test cases. Given this context, 

they evaluated two aspects of the problem: the similarity coefficient used to compare the vectors 

and the number of failing test cases. They used several tools to compare the similarity measures, 

including Tarantula (cosine), Jaccard, and Ochiai. They found that Ochiai led to minor 

improvements in the recall and precision of the results, but found that more test failures led to 

substantial improvements regardless of the similarity measure [19]. 

Experiments in this area take the above form. As experiments show, this technology is not 

perfect; there are some faults that are not correctly located. Suppose a fault f is injected into the 

code. Given the code's test set, two questions arise in SBFL: 

1. How many test cases execute f? (denote as T) 

2. How many test cases in T identify f? (denote as Tf) 

SBFL expects that T and Tf will be roughly equivalent. For "easy to find" faults, this expectation 

is valid. For "hard to find" faults, this expectation will cause the similarity scores to appear 

artificially low, potentially leading to false negatives. Unfortunately, in all existing validation of 

SBFL, there is no regard for the nature of the fault f being localized; these techniques are not 
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fault-based. It is not clear whether this technique generalizes to all types of faults. An 

understanding of the nature of the fault, in particular a method of quantifying its fault size, would 

be very meaningful to eliminating this threat to validity. If researchers could account for how 

easy their faults are to find, they could assess the true effectiveness of the various information 

retrieval algorithms being proposed. The thesis research decomposes this notion of fault size into 

several probabilistic events that occur when a fault is discovered. 

2.5. Fault Proneness 
Ideally, practitioners would correctly prove the correctness of all their code. Failing that, they 

would exhaustively test all of their code. For large systems, neither approach is feasible. Thus 

academics have introduced this notion of fault proneness as a way of prioritizing quality 

assurance activities. The common vision is to start testing activities with the most fault prone 

code, then continue testing less fault prone components until testing reaches a target fault 

proneness. The open question is: what criteria should be used to classify code as fault prone? 

2.5.1. Program vocabulary 
The complexity of a program's vocabulary has been a strongly suspected source of fault 

proneness. This section examines recurring ideas in fault proneness literature with respect to 

program vocabulary. 

The Halstead code complexity metrics are well-known vocabulary-based metrics. Whereas code 

complexity generally connotes algorithmic complexity, Halstead thought of code complexity in 

terms of the breadth of the program's variables and operators. Two fundamental Halstead metrics 

are: 

• Vocabulary: the number of distinct operators and operands. 

• Length: the number of operators and operands. 

Using these definitions, Halstead created a number of derivative metrics, such as “difficulty” and 

“effort,” which estimate the time required to develop software [20]. A number of studies use 

these metrics to link code complexity to fault proneness [21]–[23]. 

Hata et al. claimed to be the first to examine fault proneness on the per-line level. Their approach 

borrowed from the vocabulary based methods of spam filtering. They trained a machine learner 

on the text of fault-prone lines, and then looked for files containing lines with similar vocabulary. 
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They back tested their work by training the machine learner on Eclipse changesets. They used the 

changesets to predict which modules in Eclipse would contain faults. To assess their results, they 

measured recall and precision on the per-module level. They surveyed other research to compare 

their results [24]. 

On the module level, Hata et al. stated high recall and precision. Unfortunately, the results did not 

fit the granularity of the estimator. The estimator was trained to identify specific problem lines, 

but Hata et al. did not state how well their classifier identified the actual faulty lines [24]. Thus it 

is not clear how well Hata et al. identified specific fault-prone lines. 

This thesis research is orthogonal to vocabulary metrics. This research relies on the code's 

structure, which uses no information at all from the code's vocabulary. 

2.5.2. Cyclomatic complexity 
McCabe introduced a seminal fault proneness measure called cyclomatic complexity. Given a 

control flow graph with one entry and one exit node that are not strongly connected to each other, 

McCabe defined cyclomatic complexity as: 

 M = E − N + 2 (2) 

where E is the number of edges and N is the number of nodes in the graph. McCabe claimed this 

number represents the number of “linearly independent paths.” To simplify testing, McCabe 

proved that code transformations can reduce this complexity, but did not give guidance as to 

which transformation is optimal at a given point. McCabe claimed that a function with a 

cyclomatic complexity of 10 or more needs to be tested [25], [26]. 

The thesis research closely relates to cyclomatic complexity. This research introduces a new 

measure, testability, that similarly measures the structural complexity of the code. This research 

advances cyclomatic complexity in two ways. First, this research assigns complexity values on a 

per-line basis. McCabe only assigns complexity values on a per-function basis, so it is not as 

useful for guiding developers to specific problem areas. Second, this research uses a more 

informative source of information than cyclomatic complexity. Cyclomatic complexity counts the 

number of linearly independent paths, but this research uses actual test paths from an open-ended 

source, such as actual test data or a test case generator. This research demonstrates that these two 

factors help better predict the locations of bugs than cyclomatic complexity. 
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2.5.3. Software testability 
Testers sometimes encounter difficulty testing code because the code's state is unobservable, for 

instance because the state is hidden in local variables that disappear after the program is finished 

executing. Developers write unobservable code for a variety of reasons, in fact the information 

hiding paradigm encourages it. While testers could use debuggers to step through code to verify 

the computations are accurate, debugging is indiscriminate and thus excessively expensive; there 

needs to be a way to predict which modules need more testing. This prediction is generally called 

software testability and provides another form of fault proneness prediction. 

Three research groups separately investigated software testability. This section discusses the two 

approaches and how they relate to the thesisresearch. 

 Pisces 
Voas and Miller examined the notion of software testability. They describe information loss 

issues in software development that make code difficult to test. For instance, computations 

performed on local variables may not be visible to external testing code. To identify code that is 

difficult to test, Voas and Miller introduce a dynamic analysis technique called sensitivity 

analysis, implemented by a tool called Pisces. Sensitivity analysis is a synthesis of three types of 

dynamic analysis: “execution analysis” (out of X random test runs, in how many of those runs 

was a given block of code covered?), “infection analysis” (aka weak mutation testing; does the 

mutant cause the internal state to change at the point of the mutation?), and “propagation 

analysis” (aka strong mutation testing; does the mutant cause the output to change?). They call 

this approach P.I.E. for propagation, infection, and execution, respectively [27], [28]. Voas 

independently evaluated his approach by correlating execution probability to random execution. 

He found a very strong correlation between his predicted execution probability and code covered 

by random execution [27]. 

This thesis uses a novel technique for computing the same sort of execution probability as that of 

Voas and Miller. A key difference is that their approach is dynamic,  requiring many executions 

of the code under test. The issue is that the existing set of test cases may not be sufficiently large 

enough to produce a testability estimate within a reasonable margin of error (they list the margin 

of error and required sample size at several thresholds). This thesis uses static analysis and does 

not require any test cases. 
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 Measuring propagation 
Freedman addressed the problem of the lack of propagation of variables in testing and created 

domain testability to measure the lack of propagation. Freedman formalized two desired qualities 

of domain-testable programs: observability (the program under test is purely a function of its 

parameters; it uses no global state) and controllability (the program can output all values in its 

defined range). Freedman measured domain testability by creating a domain-testable version of 

the program and then counting how many parameters he had to add; the more added parameters, 

the worse the domain testability. Freedman's students evaluated the measure by coding and 

testing programs according to specifications written with and without domain testability in mind. 

Freedman found that domain-testable specifications help speed up development [29]. This 

research is different from Freedman's because it focuses on simplifying the code's structural 

properties instead of restating the code's domain and range. 

Santelices and Harrold [30] revisited the problem of estimating evaluation and propagation of an 

error in the context of program slicing. They observe that propagation is linked to data flow 

dependencies. Often static data flow analysis overestimates data flow dependencies, while 

dynamic data flow analysis underestimates the data flow dependencies. To reduce the number of 

dependencies found in static analysis, they introduced a probabilistic model of def-use 

propagation. They use this model to rank and select the top results. This thesis reuses their def-

use propagation model to help explain fault size. 

 Automatic path construction 
In the absence of an actual test set, a static estimate of code's likelihood to be executed can 

determine its testability. Li et al. examined algorithms for reducing coverage requirements into a 

smaller set of actual test paths. When graph-based coverage criteria produce many requirements, 

sometimes there is overlap in the requirements, causing the criteria to overestimate the amount of 

work required to test the program. Li et al. cast the problem of minimizing coverage requirements 

into a prefix graph. Li et al. detailed algorithms to extend the criteria into full test paths. They 

provided a tool, Graph-Coverage, for use in our research [31]. This thesis uses this tool to 

develop a novel method of determining code testability. 

Filieri et al. [32] examined the use of symbolic execution to estimate a program's failure 

probability. Given a probability distribution representing the input domain, their technique can 

determine the likelihood that a program will produce a runtime error. They implemented their 
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symbolic execution as a plugin in NASA's Java Path Finder (JPF) [33] for finite domains (integer, 

Boolean, etc.). While the Filieri et al. tool appears to measure fault size, it performs poorly in the 

context of measuring the fault size of program mutations. The Filieri et al. tool returns different 

fault size measures for different programs, even if the same mutation operator, such as replacing 

less than with less-than-or-equals, is applied. Thus their tool is not useful for verifying the thesis 

of this research; our research instead presents a more detailed model that is readily applicable to 

program mutation. 

2.5.4. Evaluation techniques 
Several researchers have combined vocabulary and structural fault proneness predictors using 

linear regression to form even better fault proneness predictors (to date, no one has used the 

testability measures to build such a model). Researchers typically evaluate the regression model's 

quality using three measures: Pearson's correlation coefficient [34], recall, and precision [35]. 

To measure recall and precision, researchers build a confusion matrix listing true positives, false 

positives, true negatives, and false negatives. To delimit “positives” and “negatives,” they 

typically select an arbitrary cutoff for the predictor variables, such as 0.5 on a [0,1] fault 

proneness scale (in fact the goal of the experiment is usually to identify the optimal cutoff). 

Anything higher than the cutoff is considered a positive (prediction: it will have a bug) while 

anything lower than the cutoff is considered a negative (prediction: it will not have a bug). To 

determine whether these predictions are correct, researchers examine the code's revision history. 

Code that contained a bug in the past is considered to be faulty. All other code is considered not 

faulty. To measure Pearson's correlation coefficient, researchers pair the bug history with the fault 

proneness predictors under study and perform a least-squared fit; the technique is well-known. 

Lanubile et al. combined a number of simple fault proneness metrics into a linear model. These 

metrics include: McCabe's cyclomatic complexity [25], Halstead metrics [20], and Henry and 

Kafura's fan in/fan out [36]. They trained the linear model on the student projects from a software 

engineering course. They used the model to build a confusion matrix and computed chi-squared 

to determine if the predictions were better than random. They used a chi-squared test to compare 

the confusion matrix to random classification. They found that their model did not perform 

significantly better than random classification [22]. 

Bellini et al. built two linear models using two large collections of fault proneness metrics, CPP-

Analyzer and PAMPA. Using both tools, they built the two linear models for two programs (one 
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model per program). Using principal component analysis, they reduced over one hundred 

predictors down to only eleven principal predictors for one program and five for the other. Sadly, 

due to a lack of space, the authors could not state what these metrics actually were. The Pearson 

correlation coefficients were moderate at 0.5 for the first model and 0.6 for the second. The 

authors did not cross validate these models. When the authors fitted both data sets to the factors in 

common, the correlation slipped to only 0.4 [21]. 

Ostrand et al. tried to predict how many faults each file in a program will have. Their linear 

regression modeled many factors, including: the log of the number of lines of code, the log of the 

number of faults, the file type, and the product release number. They found that their model 

poorly predicted the actual number of faults (to such an extent that they would not state more than 

this). To evaluate their model's recall, the authors set a threshold to include only the top 20% of 

files with the highest predictions. The authors found that this top 20% contained on average 83% 

of all faults [23]. This presentation of the results is not confidence inspiring. First, the authors did 

not report precision. It could be that their predictions have many false positives. Second, the 

authors said that the top 20% of files according to their model were also the longest files. The 

issue is that they forgot to prove that the top 20% of files did not also contain 83% of all lines of 

code. All lines of code being equally likely to be faulty, one would expect random selection to 

assign the most faults to the largest files. 

These derived models show that existing fault proneness metrics still fundamentally lack the 

ability to predict faults. This result motivates the need for better fault proneness metrics. 

2.6. Statistical Conclusion Validity 
In a typical software reliability paper, researchers introduce a new technique for finding errors in 

code, a.k.a. "bugs" or "faults." To show that their technique is significantly better than the state of 

the art, they evaluate their technique as well as the state of the art technique on one or more 

programs that are known to contain faults. They then try to establish that their technique finds 

"significantly" more faults than the state of the art, using statistics to validate this claim. 

Unfortunately, software reliability engineers are generally not statisticians and do not have 

statisticians readily available. Statistics software such as R provides several viable hypothesis 

tests for performing statistics, but for a researcher without a statistics background, picking a test 

at whim is fraught with potential for error. Many tests make strong assumptions about the shape 
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of the data; without testing those assumptions, the results from hypothesis tests are meaningless. 

While tests exist that make few assumptions, these tests are less powerful and are less likely to 

indicate that research is statistically significant when researchers know it is significant for other 

reasons. 

2.6.1. Definitions 
To evaluate a hypothesis, researchers in software testing typically look at one or more summary 

statistics. The most common statistic is the mean, or average. Researchers strive to show that one 

approach can find more faults on average than another approach.  Note that in this section, the 

term “test” refers to a statistical test and not dynamic execution of software as part of software 

testing. 

According to Cohen, effect size is a key measure in computing an experiment's power, which is 

its ability to correctly reject the null hypothesis [37]. Often, researchers will run small, initial 

experiments to see if their ideas hold any merit. While they may find a positive result, their result 

might not be statistically significant. Post-hoc power analysis is a procedure used at the end of 

such a pilot study to determine the sample size required to achieve a statistically significant result. 

The analysis assumes that the effect size the researcher observed will remain constant in the 

larger experiment. 

This thesis refers to several hypothesis tests for comparing means. Well-known hypothesis tests 

include the t-tests [38] and the Wilcoxon tests [39]. Less well known is the recent Brunner-

Munzel test [40]. The t-tests are considered parametric tests because they assume parameterized 

families of distributions (normal distribution family or others where a particular distribution can 

typically be described using one or two parameters). The Wilcoxon and Brunner-Munzel tests are 

considered nonparametric because they do not assume that the data originates from any particular 

distribution family. 

In particular, the t-tests assume normality: the assumption that the data fits a normal distribution, 

also known as a "Gaussian distribution" or "bell-shaped curve." The normal distribution is 

defined to be symmetric, meaning that the mean and median are equal. Symmetry does not always 

hold; distributions like the beta distribution can be asymmetric, which indicates a significant 

departure from normality. Distributions can also have varying peakedness ranging from the 

completely flat uniform distribution to the especially sharp t-distribution. Pearson [41] formally 

defined these aspects of non-normality in terms of skewness (asymmetry) and kurtosis 
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(peakedness). Many methods of varying effectiveness exist for verifying the normality of data, 

but we use the Shapiro-Wilk test [42] because it formally reasons about the likelihood that a given 

sample's skewness and kurtosis are a significant departure from normality. 

Some tests assume that the data takes the form of two independent samples. One might imagine a 

software testing experiment where testers are divided into two groups (control and treatment 

group) and testers in the treatment group are given a new method of detecting faults. We might 

then formulate a hypothesis that testers in the treatment group find more faults than testers in the 

control group; this would be an example of an experiment with two independent samples. Other 

software testing experiments take the form of paired sample experiments. In these experiments, 

each defect detection algorithm under study is applied to every program. The defects found are 

related (paired) on the program being tested. The experiment designer establishes whether their 

experiment is paired or two-sample based on the nature of the procedure; it cannot be inferred 

from the samples. The choice of two independent samples vs. paired samples determines which 

hypothesis tests can be applied. 

Some independent samples tests, like the classical Student's t-test, also assume that the samples 

have equal variance. Several formal hypothesis tests exist for disproving this assumption, such as 

the classical F-test and the more robust Brown-Forsythe test [43]. However, the F-test itself 

makes strong assumptions about normality, so in cases where normality is not clearly inferred 

from the sample data, Brown-Forsythe can be more appropriate. When the data does not have 

equal variance, Welch's t-test is appropriate because it computes a more robust estimate of the 

variance.  

The Brunner-Munzel implementation in R [44] uniquely assumes that there is overlap between 

the samples. If one were to plot two independent samples on a shared number line, the number 

line would indicate overlap if at least one value from one sample fell within the min and max 

values of the other sample. When no overlap is present, our experience is that the Brunner-

Munzel test is undefined. Overlap is likely a new assumption to researchers, but as the description 

indicates, overlap is straightforward to test. 

2.6.2. Statistics in software engineering 
Statistics are frequently used in the design of software engineering experiments. This section 

discusses efforts to survey their use. 
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Arcuri and Briand surveyed the presence of statistical analysis practices in the study of the 

performance of randomized solutions to computationally hard problems. In the 16 papers studied, 

they found that only five papers used statistical analysis. Of those, three used linear regression, 

one used the Mann-Whitney U test, and one used both the U test and the t-test. Through an 

analysis of hypothetical scenarios comparing the t-test with the U test, they argue for the use of 

the U test in most scenarios. They provide a "practical guide" to using statistics in software 

engineering based on these findings [4]. This thesis refutes the conclusions of this guide. 

Kampenes et al. [45] systematically reviewed the statistical significance of 103 controlled 

software engineering experiments dating between 1993-2002. Their goal was to examine the 

proportion of journal papers that report Cohen's effect size. As a secondary measure, they 

collected the number of statistically significant results as reported by the authors. The 103 papers 

contained a total of 429 hypothesis tests. Of those, only 212 tests (49%) indicated statistically 

significant results. This proportion serves as a baseline for a meta-analysis of ICST'13 in Chapter 

7.  
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Chapter 3.  Summary of Techniques 

This chapter provides a summary of the new techniques defined by this research, including the 

model of fault size and the MeansTest algorithm.  This chapter also summarizes the research 

questions that this thesis research answers. 

3.1. Fault size 
The background concepts and necessity of fault size were described in section 2.3. This section 

provides a description of the fault size model presented in this research. The complete formalisms 

are developed in Chapter 8 and Chapter 9. 

As previously discussed in Chapter 2, Voas already established that three events are necessary for 

a fault to be found [27]: 

1) Execution: the code containing the fault must be executed. 

2) Infection: the code must infect the local data state. 

3) Propagation: the infected data state must propagate. 

This thesis research formally models these events and their interaction in the language of set 

theory. In essence, a fault can only be found when the intersection of the above events occurs.  

Figure 3.1 abstractly shows the interaction of these events in the discovery of a fault. 

 

Figure 3.1. Model of fault size 

Execution 

Infection Propagation 
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As the diagram shows, faulty code can be executed, but not infect the data state. Similarly, faulty 

code can be executed and infect the data state, but its result may not propagate to some point 

readily verifiable. As well, faults cannot infect the data state nor propagate if the code is not 

executed. Spectrum-based fault localization implicitly assumes that executing faulty code is 

sufficient to achieve the required intersection of the three events, but as the diagram shows, this is 

not necessarily the case; it depends on the true size of the infection and propagation spaces. 

In the context of software testing, the execution probability is the likelihood that code is tested; 

this thesis research calls this probability testability and formally investigates possible definitions 

in Chapter 7. In essence, there are two main ways of determining testability. One can dynamically 

profile the proportion of time that an existing test set executes the code. This assumes that the test 

set executes the code in a way that reflects the code's real-life usage. In the absence of this type of 

test set (which is often the case in research) one must statically estimate how likely the code will 

be executed. This thesis describes a novel method of statically estimating testability. The method 

analyzes the possible paths through the code's logic. To determine these paths, the method uses 

the static path analysis by Li et al. [31]. When the majority of paths execute a particular line of 

code, this thesis attributes high testability to this code. When the minority of paths execute a 

particular line of code, this thesis attributes low testability to this code [26]. 

This thesis research describes a novel procedure to analytically derive the size of the infection 

space in the diagram; this quantity is referred to as intrinsic size. If a fault has a particularly small 

infection space, it biases the experiment against finding the fault; this thesis calls this type of 

infection intrinsically small. If a fault has a particularly large infection space, it biases the 

experiment in favor of finding the fault; this thesis calls this type of infection intrinsically large. 

Worked examples showing the computations involved are given in Chapter 9. 

The propagation aspect is well-studied in this field and is presented in Chapter 8. In essence, 

propagation is guaranteed if there is a path of definitions and uses from the infected line of code 

to some use in a test case. Otherwise, propagation is not guaranteed; it can only be certain if the 

infection alters the path taken through the program [30]. 
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3.2. MeansTest 
The MeansTest algorithm automates certain steps of the statistical analysis process in software 

testing research. In a typical software testing experiment, one collects two data samples (number 

of faults found by old and new testing methods), then tests several conditions concerning the 

shape of the data. The conditions one examines are: 

• Normality: whether the number of faults found is bell-shaped; 

• Equal variance: whether the number of faults found has equal scatter around the mean; 

and 

• Overlap: whether there is intersection in the two samples. 

MeansTest is unique in the way it makes determinations about these factors. Classically, a 

statistician would visually examine the shape of the data to determine which conditions hold. An 

automated solution would be preferable, but statisticians are aware of the uncertainty in this 

endeavor, so formulate such solutions in terms of specialized statistical hypothesis tests. The 

language used is familiar to researchers: the null hypothesis is that the condition holds and it is 

disproved when the likelihood that the null hypothesis holds falls below a critical value such as 

5%. MeansTest combines select tests into a workflow for determining which conditions hold; the 

validity of these selections is examined in Chapter 10. These tests are: 

• Normality: Shapiro-Wilk [42]; 

• Equal variance: Brown-Forsythe [43]; and 

• Overlap: an original test. 

Using this information, MeansTest also contributes a workflow for determining the appropriate 

hypothesis test: 

• Normality and equal variance: Student's t-test [38]; 

• Normality holds but not equal variance: Welch's t-test [46]; 

• No normality but overlap: Brunner-Munzel [40]; and 

• No factors hold: Wilcoxon procedures [39]. 

As mentioned in Chapter 1, this type of workflow is rarely used in the software testing field. 

Instead, researchers tend to choose the last family of tests in the workflow, the Wilcoxon tests, 
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because they require that none of the above conditions hold. Arcuri and Briand asserted that the 

Wilcoxon tests are more readily applicable than the t-test to the data that software testing 

researchers examine, [4] implying that such a workflow is not necessary. That being said, in 

situations where the conditions do hold, the Wilcoxon procedures can be shown to be 

asymptotically weaker than the t-test, having only 96% asymptotic relative efficiency in normal 

distributions [47]. Furthermore, Brunner and Munzel [40] introduced a new test that this thesis 

research shows is superior to the Wilcoxon approach in Chapter 10.  

3.3. Research questions 
Table 3.1 summarizes the research questions and the respective chapters in which they are 

investigated below. 

Table 3.1. Research questions 
Research questions Chapter 

Fa
ul

t s
iz

e 

RQ1 How does the testability of fault-prone (FP) code compare with the 

testability of non-fault-prone (NFP) code? 

Chapter 7.  

RQ2 How well do static fault proneness metrics predict the fault-proneness of 

code? 

Chapter 7.  

RQ3 What are the fault sizes of typical mutations? Chapter 8.  

St
at

is
tic

al
 a

na
ly

si
s 

RQ4 How should statistical analysis be performed and presented in software 

testing published work? 

Chapter 9.  

RQ5 How accurate is the MeansTest hypothesis test compared to classical 

hypothesis tests? 

Chapter 10.  

RQ6 How prevalent is Wilcoxon statistical analysis in software testing 

research? 

Chapter 10.  

RQ7 How often are results in software testing research significant? Chapter 10.  

 

As Table 3.1 shows, this thesis research started by investigating the individual aspects of the fault 

size model. As this research was conducted, it soon became evident that statistical analysis 

problems existed in software testing research at large that needed to be addressed first. Thus, this 

research was supplemented by research questions corresponding to observed issues. 
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Chapter 4.  Research synthesis 

This chapter summarizes the findings of each of the dissertation publications in a consistent 

format. In each section, the research questions, main findings, potential applications, and threats 

to validity are listed. More information can be found in each paper's respective chapter. 

4.1. The Effect of Testability on Fault Proneness 
RQ1: How does the testability of fault-prone (FP) code compare with the testability of non-fault-

prone (NFP) code? 

RQ2: How well do static fault proneness metrics predict the fault-proneness of code? 

Main findings: FP code in the Apache HTTP Server had significantly higher testability than NFP 

code. The result was surprising because it was assumed that FP code would have lower 

testability. The interpretation is that highly testable code is easiest to test, therefore known bugs 

appear most often in easily testable code. It could still be the case that there are more bugs in 

untestable code that have not been found. However, this presents an ontological problem because 

it is not possible to construct an experiment from known bugs to represent the locations of 

unknown bugs. 

Static fault proneness metrics, including the well-known McCabe cyclomatic complexity, were 

shown to have low precision, making many predictions about the fault-proneness of code that did 

not actually contain faults. The testability measure introduced by this research had superior recall 

to McCabe, but similarly low precision. The finding regarding McCabe cyclomatic complexity is 

significant because it refutes work by Ostrand and Weyuker [23]. One might alternatively 

interpret the Ostrand and Weyuker results as finding that no particular lines of code are faultier 

than others. 

Potential applications and results: While the testability measure introduced in the work was not 

found to be particularly good at predicting the locations of bugs, it was able to accurately predict 

the likelihood that code was executed. This property plays well into the execution probability 

needed to estimate fault size. 

Threats to validity: The main threat was to conclusion validity. The study did not examine every 

fault in Apache, so the precision values were all artificially low. This threat is mitigated because 

the recall values were not affected, so the main conclusions still apply. 
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4.2. A Framework for Assessing the Validity of Mutation-based Experiments 
RQ3: What are the fault sizes of typical mutations? 

Main findings: MuJava generated 341 mutants for the program TriTyp from seven mutation 

operators. Roughly 71% of the faults, or five out of the seven operators, had an intrinsic fault size 

of 100%, indicating that they were theoretically trivial to find through testing. The hardest 

category to find was the Relational Operator Replacement operator, which replaced relational 

operators with one another. Its intrinsic size varied depending on the specific replacement, but the 

average size was 50%. 

A problem framework was presented for researchers to determine the fault size of real faults. The 

framework is left as future work for other researchers to apply. 

Potential applications and results: The distribution of mutant fault sizes could be used as a 

baseline for comparing the size of real-world faults to mutant faults. If there is statistically 

significant disparity between the distributions, then it would give rise to the possibility that 

program mutation is not a sufficient way to test new theory. The model of fault size could also 

explain why spectrum-based fault localization techniques have trouble finding some faults but not 

others. 

Threats to validity: The main threat was to external validity. The mutants analyzed were all from 

the Trityp program, which is easily analyzed, but is very small, written in one language, and is 

restricted to 32 bit integer operations. Each program has a different proportion of the different 

types of mathematical operators, so it is possible that the distribution of faults does not generalize 

to all programs. It would take many mutants from many sample programs to determine a more 

representative sample. 

4.3. Statistical Analysis for Traceability Experiments  
RQ4: How should statistical analysis be performed and presented in published work? 

Main findings: The paper introduces the MeansTest TraceLab component for performing 

statistical analysis. The paper also suggests specific writing styles for expressing the results of the 

MeansTest analysis in appropriate statistical terms. 

Potential applications and results: The MeansTest algorithm was written as an example of a 

complicated TraceLab composite component; feedback from other TraceLab component writers 
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indicates that researchers will do well to follow its implementation as an example for future 

components. The algorithm and writing style will revolutionize the way experiment results are 

presented. 

Threats to validity: As of the writing of this paper, the MeansTest algorithm had yet to be 

empirically validated. The MeansTest algorithm is not a panacea; it does not automate all aspects 

of statistical testing and is not a substitute for an expert statistician. While the MeansTest 

algorithm contains the most robust statistical assumption tests known, they are not 100% 

accurate, particularly at small sample sizes of less than twenty. 

4.4. Validation of Software Testing Experiments 
RQ5: How accurate is the MeansTest hypothesis test compared to classical hypothesis tests? 

RQ6: How prevalent is statistical analysis in software testing research? 

RQ7: How accurate is statistical analysis in software testing research? 

Main findings: The study compared the accuracy of the MeansTest component with four other 

hypothesis tests: Mann-Whitney, Student's t-test, Welch's t-test, and Brunner-Munzel. The study 

applied them to predetermined distributions, then ranked their ability to determine statistically 

significant differences. The study showed that the four classical hypothesis tests had at least one 

distribution for which they each performed the worst at finding statistically significant 

differences. The MeansTest algorithm was always ranked at least third, demonstrating superior 

worst-case performance. 

Only 33% of the empirical papers at the Sixth IEEE International Conference on Software 

Testing, Verification and Validation (ICST'13) featured any kind of statistical analysis. Of those 

papers, only 50% of papers accurately stated the significance of their results. One paper in 

particular was shown to have under-stated the significance of its results due to incomplete testing 

of statistical assumptions. 

Potential applications and results: The results of the MeansTest analysis are very positive 

because they show that researchers can perform statistics more reliably with MeansTest than they 

could have by relying solely on the Mann-Whitney test, which was the state of practice for many 

years. Additionally, the paper featured a revised implementation of the MeansTest algorithm that 

performed post-hoc power analysis. The post-hoc analysis helps researchers select an appropriate 
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sample size in future work. Finally, the MeansTest used in this experiment was built in R. R is a 

common statistics language and so this implementation is more widely accessible than the 

previous TraceLab implementation. 

Threats to validity: There is a threat to conclusion validity regarding RQ5 in that the study did 

not examine every possible distribution. The study minimized selection bias by using a 

predetermined set of distributions from another similar study by Razali and Wah [48]. There is 

also a mono-measure threat to validity in that we only assessed RQ7 using MeansTest. 
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Chapter 5.  Future Work 

Work will continue into the evaluation of fault size and the MeansTest algorithm. The next 

sections discuss the possibilities in each subject. 

5.1. Fault size 
Now that fault size has been formally modeled, the opportunity arises to apply the model to 

existing research. First, future work will involve reconstructing other researchers' experiments 

and determining the fault size distribution of those experiments. Some experiments will feature 

mutation while others will feature naturally occurring faults; future work will study the age-old 

question of the similarity or dissimilarity of these types of faults once and for all. 

With this problem solved, work will turn toward assessing the size of faults that occur in practice. 

Naturally occurring faults again provide perspective on the size of faults, so rather than randomly 

sampling them as in experiments, a systematic survey of faults can occur. When this survey is 

complete, differences in fault size profiles between this universe of faults and experiments should 

indicate whether there has been any significant sampling bias in experiments. 

5.2. Statistical analysis 
The design of experiments on the statistical side will continue to be of interest. MeansTest 

automates the comparison of means, but other types of statistical analysis, such as analysis of 

variance and power analysis, exist. Analysis of variance has several parametric and 

nonparametric options that each has their own assumptions that need to be tested. It would be 

worthwhile to try to develop a similar automated algorithm to assist with this process. Power 

analysis is trickier to automate in the same way because there is no such thing as non-parametric 

power analysis, so considerable theoretical advances in statistics would need to be made first. 
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Chapter 6.  Conclusions and Main Contributions 

While there are many ways that software engineers propose to improve software quality, in 

practice software testing is the approach that is most easily understood and thus used in practice. 

This ease of use does not erase the substantial threats to validity to the process of software testing. 

These threats manifest in very real and costly ways, as was the case with the healthcare.gov 

failure to launch. While practitioners tout the latest and greatest software testing techniques, 

appropriate scientific rigor in the underlying theory is essential to making a real difference in the 

state of practice in industry. Failure to uphold this rigor can result in testing services and products 

that only work in theory, not in practice. 

The research presented in this dissertation contributes to the understanding of the construction of 

software testing experiments. Contributions consist of a formal model of fault size, an algorithm 

for automating some parts of statistical analysis, an empirical study of static analysis metrics, and 

an empirical study of hypothesis tests and their application in software testing research. 

The formal model of fault size finally formulates existing notions of code testability and the 

semantic fault model into a succinct definition. The definition breaks down a highly abstract 

problem into several areas, some of which have already been well-studied. The notion of intrinsic 

fault size is a particularly novel contribution that has the potential to separate experiment noise 

from true deficiencies present in new testing theory such as spectrum-based fault localization. 

The MeansTest algorithm for automating some parts of statistical analysis vastly improves the 

state of the art in software engineering. Researchers have made dangerous generalizations 

regarding the applicability of certain results and hypothesis tests within our field. While any 

result from MeansTest theoretically suffers the same threats to validity, its worst-case 

performance has been demonstrated to be superior to the current practice. More importantly, its 

simple and transparent TraceLab implementation will hopefully invite curiosity from other 

researchers, encouraging them to think more critically about how they perform their statistical 

analysis. 

The empirical study of static analysis metrics shows that static analysis methods that measure 

fault proneness, such as McCabe cyclomatic complexity, are far from the panacea that other 

researchers have claimed. It shows deep flaws in the experiment methodology used in past 

experiments. While the failure of the novel testability measure is a negative result, the testability 
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measure has been shown to have other approximations based on spectrum-based fault localization 

that better approximates the testability of the code. 

The empirical study of hypothesis tests shows that no hypothesis test is perfect in every 

situation. That being said, the study suggests that MeansTest is never the worst option. For 

researchers who insist on choosing the same hypothesis test for every experiment, MeansTest will 

mitigate the most damage. The study of the application of hypothesis testing in software testing 

research confirms that many researchers do not know how to validate their work. 

In conclusion, the empirical studies show considerable flaws in current software testing research. 

The formal model of fault size and the MeansTest algorithm have the potential to raise the quality 

of scientific rigor applied in this field. Through increased awareness of the effects of fault size on 

experiment outcomes, researchers can better calibrate their selection of faults to more thoroughly 

assess new testing theory. Similarly, the MeansTest algorithm will bring awareness of new 

options for testing statistical assumptions. These advancements will advance the state of software 

testing research, improving the results of its practice in ways that can be materially felt by all.  
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Chapter 7.  The Effect of Testability on Fault Proneness 

© 2012 IEEE. Reprinted, with permission, from Hays, M.; Hayes, J., "The Effect of Testability 

on Fault Proneness: A Case Study of the Apache HTTP Server," Software Reliability Engineering 

Workshops (ISSREW), 2012 IEEE 23rd International Symposium on, pp.153,158, 27-30 Nov. 

2012 
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7.1. Summary 
Numerous studies have identified measures that relate to the fault-proneness of software 

components. An issue that practitioners face in implementing these measures is that the measures 

tend to provide predictions at a very high level, for instance the per-module level, so it is difficult 

to provide specific recommendations based on those predictions. We examine a more specific 

measure, called software testability, based on work in test case generation. We discuss how it 

could be used to make more specific code improvement recommendations at the line-of-code 

level. In our experiment, we compare the testability of fault prone lines with unchanged lines. We 

apply the experiment to Apache HTTP Server and find that developers more readily identify 

faults in highly testable code. We then compare testability as a fault proneness predictor to 

McCabe's cyclomatic complexity and find testability has higher recall. 

7.2. Introduction 
The importance of fault proneness metrics is usually explained with succinct reasons, such as 

“methodologies and techniques for predicting the testing effort, monitoring process costs, and 

measuring results can help in increasing efficacy of software testing” [49]. These reasons make 

assumptions about the importance of software testing that outside observers may not share. We 

hear anecdotal stories from local software development firms where clients state during 

negotiations that they refuse to pay for time spent on testing, including the types of tests that test-

driven development involves (such as unit tests). 

During negotiations, their clients cite two issues with paying the developers to test. First, they see 

no reason why highly paid and qualified developers should make errors.  Second, they believe 

that testing performed by the developers presents a conflict of interest. A series of Dilbert comics 

parodies this concern, where the developers are told they will earn $10 for every bug fixed [50]. 

From the client's perspective, the developers are no different from Dilbert. These two issues give 

clients pause and thus our local development companies simply see no reason to train developers 

to test, much less hire designated quality assurance staff. 

Inspired by this problem, we issue a challenge to the fault proneness community to use their huge 

collection of metrics to propose actionable development plans to improve code quality. In the 

same vein as formal specification, rather than testing more, we propose developing more to 

reduce the testing burden of proof. To this end, we describe a novel fault proneness metric based 

on previous work in test case generation. Our contributions in this paper include: our position on 
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using fault proneness metrics to improve code quality, our new testability metric, our tools, and 

our experiment. 

In Section III, we describe our metric, testability, and illustrate our vision of how a developer 

could use certain fault proneness metrics to systematically reduce fault proneness. In Section IV, 

we describe a case study performed on the Apache HTTP Server and discuss our surprising 

results. 

7.3. Testability 
We define testability with an intuitive static approximation to the Voas execution probability. For 

each function in the software, we generate the function's control flow graph. We feed the graph to 

the Graph-Coverage tool to compute the minimum set of paths required to achieve node 

coverage. We overlay all of the paths onto the graph. We define the testability of each node in the 

graph as the proportion of paths passing through that node. A testability of 1 means the node has 

perfect testability. A testability of 0 means the node is unreachable. 

7.3.1. Formal definition 
Let GraphCoverage(𝐺, NODE) be the minimum set of test paths satisfying node coverage for 

graph G. Let  GraphCoverage(𝐺, NODE)b be the subset of GraphCoverage(𝐺, NODE) test paths 

containing node b. We define the testability of node b as: 

 𝑡(𝑏) = GraphCoverage(𝐺,NODE)𝑏
GraphCoverage(𝐺,NODE)

. (2) 

Graph-Coverage refers to the Li et al. prefix graph algorithm mentioned in the related work. 

It can be substituted for an equivalent program; for instance, NASA's Path Finder would suffice. 

Similarly node coverage could be substituted with a stronger criterion (node coverage happens to 

scale well from a computational standpoint). We also envision practitioners extracting test paths 

from their operational profiles and/or test sets in place of Graph-Coverage. In short, there are 

many possibilities. We challenge the community to examine the effectiveness of these other 

techniques in place of our static approximation. 
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7.3.2. Implementation 
We have developed tools to compute the above testability definition for arbitrary C and Java 

code. We developed the tools with maximum reuse of common Linux tools in mind. We hope 

that practitioners will benefit from our insights into developing tools of their own. 

The tools build a database mapping the source code line numbers to the control flow graph. To 

build the database, the tools parse the compiler's internal control flow graphs. From this database, 

the tools computes the testability scores by invoking Graph-Coverage, parsing that format, 

then computing (2). To get human-readable results, the tools perform a join operation to map the 

Graph-Coverage output back to source line numbers. They also generate a GraphViz [51] 

map. 

The tools defer the parsing of C code to the gcc compiler [52]. The compiler can dump the 

control flow graph at many stages of compilation. We decided to use the Single Static 

Assignment (SSA) representation [53]. The SSA dump is useful because it explicitly lists the 

basic blocks (atomic groups of lines), the edges, and the mapping from block to source lines. For 

very small projects, practitioners can generate the SSA dump for their own purposes using: 

 

gcc -g -fdump-tree-ssa-lineno-blocks 
 

Several open source projects use configure scripts that configure the compiler for all files. 

The following command (on one line) configures the compiler to create a SSA file for every file 

that it compiles: 

 

./configure CFLAGS="-g  
-fdump-tree-ssa-lineno-blocks" 

 

With the SSA file available for each compiled C file, our tools simply use awk [54] to parse the 

SSA line-by-line. From the resulting database we can easily generate the graphs in the adjacency 

list format that Graph-Coverage expects. 

The gcc man page seems to favor -fdump-tree-cfg and -fdump-tree-vcg for 

generating graphs [55]. We wish the SSA format was documented in greater detail on this page. 
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We found the CFG dump inferior to the SSA dump because it does not explicitly state the edges. 

As for the VCG dump, we found that the VCG format comes from an early compiler pass that can 

very rarely contain dead code. For sharing the structural data of sensitive code with other parties, 

this could prove to be a useful feature. For our purposes, the dead code was not worth it. 

The compiler throws out nonfunctional lines. For instance, if a function call taking many 

arguments is spread across multiple lines, the compiler will treat the call as if it were on only one 

line. This behavior is problematic for our purposes. To resolve this issue, we let lines that the 

compiler does not specify inherit the last known testability. 

7.3.3. Vision 
Our vision is to use some fault proneness metric to guide automatic code refactoring. In this 

section, we give an example using testability for illustration purposes. We have not yet performed 

a longitudinal study validating this particular vision, but it is in the spirit of McCabe's ideas about 

“reducing” code [25]. 

Figure 1 contains part of the output from our Java tool: the testability of a 12 node control flow 

graph (the mapping from nodes to source lines is omitted). 

 

Figure 7.1. A function's testability, before refactor. 
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As Figure 1 shows, node B10 is hardest to test. We envision an automatic refactoring process that 

would allow us to fold B10 and B9 together by moving that code into its own function.  

 

Figure 7.2. A function's testability, after refactor 

Intuitively, as Figure 2 shows, this change would reduce the number of test paths and thus make 

the code overall easier to test. It should be very feasible to implement this process with a per-line 

metric such as testability because it precisely identifies fault-prone code. We posit that this 

process could reduce the fault proneness of the code by making the code less complex. 

7.4. Case Study 
In our case study, we examined the link between testability and fault proneness in Apache HTTP 

Server, otherwise known as “httpd” or simply “Apache.” We also examined the quality of 

testability as a fault proneness predictor in terms of recall and precision. To our knowledge, no 

one has studied fault proneness on a per-line basis, so for comparison, we also compared two 

other metrics: McCabe cyclomatic complexity and random. 
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Apache is a well-known open-source HTTP server written entirely in C. Its licensing allows 

many commercial HTTP servers to reuse its code. We examined the Apache “trunk” SVN 

revision history to conduct our case study. 

7.4.1. Research Questions 
This section states our hypotheses. We were interested in two ideas: RQ1) how the testability of 

Fault Prone (FP) code compared with Not Fault Prone (NFP) code, and RQ2) how well our 

testability measure predicted the precise location of faults. 

 Difference in means (RQ1) 
Our null hypothesis (𝐻0) states that there is no difference between the mean testability of FP code 

and the mean testability of NFP code. Our alternate hypotheses states that there is a difference, 

either: 

• 𝐻1: FP code had lower testability than NFP code (what we posit), or 
• 𝐻2: FP had higher testability than NFP code. 

We reject the null hypothesis if the difference is significant within 95% confidence (𝛼 = 0.05). 

We accept the null hypothesis only if we have at least 80% statistical power (𝛽 = 0.2) and the 

difference is not significant. 

 Recall and precision (RQ2) 
To determine the quality of our predictions, we also performed a traditional fault proneness 

experiment by assessing the recall and precision of our estimates. We define recall, precision, and 

the hybrid measure F1 as: 

 recall= true positives
true positives + false negatives

 (3) 

 precision= true positives
true positives + false positives

 (4) 

 F1=2 precision ∙ recall
precision + recall

. (5) 

Thus our null hypothesis is that there is no difference in recall and precision between testability, 

McCabe cyclomatic complexity, and random. Our alternate hypothesis is that there is a difference 

(two-sided). 
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7.4.2. Procedure 
We examined 43 random revisions modifying C code of Apache trunk in the range 

[1082630,1377685]. We picked 43 based on a preliminary statistical power analysis for an overall 

hypothesis test. We skipped revisions correcting spelling mistakes in comments or Windows-

specific code (we could not cross-compile it on our Linux system). When we picked revisions at 

random from the above range, we noticed most of them changed the Apache “modules” as 

opposed to the actual server. Historically, we observed the proportion in Apache was more even. 

To reduce the potential bias of using so many revisions to modules, we selected 22 revisions to 

the modules and 21 revisions to the server. 

For each revision, we identified the C files changed by that revision. For each changed C file, we 

ran our tool to compute the testability of each source line. The testability scores for the changed 

lines formed the FP data set. The remaining scores went into the NFP data set. 

To implement this procedure, we configured the SVN diff to output an ed [14] script, an old but 

easy-to-parse form of diff that gives the line numbers of changed and deleted lines with respect to 

the original file's line numbers. We then built the database for the original revision and queried 

the database for the testability scores of the changed lines. To handle added lines, we computed 

the testability of the added lines in reverse: we updated to the next revision, recompiled the 

database, and extracted the deleted line numbers in the reverse SVN diff. 

Testability returns a number in [0,1], but cyclomatic complexity returns a positive integer; both 

metrics need thresholds defining whether a line is FP or NFP. To set thresholds in a “fair” way, 

we computed 11 percent ranks in [0,1], incrementing 0.1 every time. For each rank, we computed 

the corresponding testability and McCabe cyclomatic complexity. We used the values as our 

FP/NFP thresholds. 

We also plotted the recall and precision from randomly ranking blocks. In theory, the recall of 

random choices should scale linearly from 0 to 1, while the precision of random should remain 

roughly flat at the overall FP sample proportion. On the graphs of recall, precision, and F1, 

methods that are better than random will be superlinear (above random) while methods that are 

worse than random will be sublinear (below random). 

7.4.3. Results 
This section discusses the results of the comparison of testability means as well as the recall and 

precision. 
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 Difference in means (RQ1) 
Table I summarizes the files present in the 43 revisions. 

Table 7.1. Apache summary statistics 

Measure FP NFP 
Basic blocks 341 22638 

Mean 0.34 0.31 
Variance 0.10 0.12 

 

As Table I shows, only about ~1.5% of basic blocks changed over the 43 revisions. The FP code, 

on average, had higher testability than the NFP code. In other words: developers found faults in 

easy-to-test code, supporting 𝐻2. The data was not normally distributed, so to determine the 

significance of the difference in the means, we used the ranksum test in Matlab corresponding 

to the Mann-Whitney U-test nonparametric comparison of means. 

Table II gives the results of the test. 

Table 7.2. Results of U-test between FP and NFP groups 

Measure Value 
p-value 1.35∗10−6  

Effect size (Cohen's d) 0.06 
 

As Table II shows, the difference in the means was significantly different and exceeded our 

confidence threshold of 95%. The effect size, Cohen's d, (the difference between means 

normalized by a standard deviation) was only 0.06, but the difference was still significant because 

the data was not normally distributed. Thus we reject 𝐻0 in favor of 𝐻2. 

To perform finer-grained testing, we applied k-means to cluster the blocks into three testability 

groups: low, medium, and high testability. Within each cluster, we again partitioned the blocks 

into FP and NFP sub-clusters and repeated our analysis. We applied the t-test to compare the FP 

and NFP sub-clusters. Table III summarizes our results. 
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Table 7.3. Results of 3-means clustering 

Measure Low Medium High 
Blocks (FP) 209 72 60 

Blocks (NFP) 14157 4139 4342 
Mean 0.0780 0.4487 0.9462 

Mean (FP) 0.1215 0.4586 0.9394 
Mean (NFP) 0.0772 0.4486 0.9463 

Variance (FP) 0.0048 0.0130 0.0073 
Variance (NFP) 0.0048 0.0161 0.0081 

p-value 4∗10−17  0.4611 0.3336 
Effect size d 0.6428 0.0788 0.1204 

Statistical power 100.00% 9% 15% 
 

Within the “Low” testability cluster, the FP blocks had significantly higher testability that the 

NFP blocks. The effect size was moderate at 0.6428. Thus the trend of developers finding bugs in 

easy-to-test code was actually strongest in the Low group. 

The medium and high testability clusters are inconclusive. The corresponding p-values in Table 

III lead us to not reject 𝐻0. However, the statistical power is too low to actually accept 𝐻0. 

Increasing statistical power is tricky because it is impeded by unequal sample proportions. While 

we could have easily looked at more revisions, we cannot convince the Apache developers to 

change more lines of code per revision. 

 Recall and precision (RQ2) 
Figures 3, 4, and 5 show the recall, precision, and F1 of predicting the precise location of faults 

using the same 43 revisions from the first part of the study. The “Random-” plots show the effects 

of picking the stated percent of blocks at random. The “Testability-” plots show the effects of 

using the percent rank of the testability scores as an upper bound threshold. The “McCabe-” plots 

similarly show the effects of using the percent ranks of the cyclomatic complexity as a lower 

bound  threshold (we order this series in reverse for comparison). 
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Figure 7.3. Recall of testability, cyclomatic complexity, and random 

As Figure 3 shows, testability was not significantly different than random at recall. According to 

a matched pair t-test, the p-value was 0.16. McCabe had significantly worse recall than testability 

(p-value 0.04) and random (0.01). 
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Figure 7.4. Precision of testability, cyclomatic complexity, and random 

As Figure 4 shows, testability did not have significantly different precision than McCabe (p-value 

0.49) despite appearing slightly higher. Both metrics had significantly worse precision than 

random (p-values 0.048 and 0.006, respectively). 
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Figure 7.5. F1 of testability, cyclomatic complexity, and random 
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As Figure 5 shows, testability did not have significantly higher F1 than McCabe (p-value 0.15), 

but had significantly worse F1 than random (p-value 0.04). McCabe was also significantly worse 

than random (p-value 0.03). The F1 for both methods peaked at the 80% percent rank. This rank 

corresponds to a cyclomatic complexity of 10 or more, which was McCabe's rule of thumb [25]. 

The testability at the 80% rank is 0.66, suggesting a rule of thumb that code with testability less 

than 0.66 needs testing. 

In absolute terms, the precision of all methods examined was atrocious. Although testability 

significantly improved recall over McCabe, neither method was especially precise. This point 

leads into our threats to validity. 

7.4.4. Threats to validity 
In terms of content validity, we did not study all revisions. While we could have studied more 

revisions, we could not study all past revisions because the older revisions require significant 

system modification to compile. This factor artificially caps the precision of random. Even if we 

could compile all revisions, the data would still be incomplete for the usual reason: the false 

positive code could indeed have faults that have yet to be discovered. Thus the true precision of 

the methods could be understated. Mitigating this threat is the fact that the data still supported 

McCabe's rule of thumb. 

In terms of internal validity, there could be selection bias from using recent revisions. We tried to 

mitigate selection bias by being random, but a random selection across a longer time period 

would have been better. As said above, we could not compile very old revisions. Also, we did not 

model all possible effects on testability, for instance the effects of specific files or effects of the 

modules and server directories; we treated these as random effects. 

In terms of external validity, we only studied Apache. While Apache is a very “real world” 

project, it could be that other projects, such as Eclipse, display different trends regarding 

testability and cyclomatic complexity. Hata et al. note that fault proneness metrics tend to 

perform especially well on Eclipse [24], so our results might not be directly comparable with 

Eclipse papers. 

7.5. Conclusion and Future Work 
We examined recent revisions in the Apache SVN log and found, to our surprise, that developers 

had a tendency to find bugs in easy-to-test code. The more complicated the code became, the 
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more evident the pattern became. This result went against our posited hypothesis that developers 

find bugs in hard-to-test code. 

In Apache, we found the recall of testability as a fault-proneness predictor was significantly better 

than McCabe cyclomatic complexity when applied on a per-line basis. We found evidence 

confirming McCabe's “10-or-more” rule of thumb for deciding what code to test. We introduced 

our own rule of thumb: lines with testability 0.66 or less need to be tested. 

Our challenge to the fault proneness community is to use fault proneness metrics to make specific 

code improvement recommendations. We hope that such recommendations will help practitioners 

improve fault-prone code and thus simplify their testing efforts. We discussed one possible 

approach: using a line-specific fault proneness metric to automatically refactor fault-prone lines 

out of complicated functions. We constructed testability with this approach in mind. The current 

function-level metrics we see in fault proneness studies, such as McCabe cyclomatic complexity, 

do not suffice for our purposes. 
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Chapter 8.  A Framework for Assessing the Validity of Mutation-based 
Experiments 

M. Hays and J. H. Hayes, “A Framework for Assessing the Validity of Mutation-based 
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8.1. Summary 
Software testing researchers frequently must empirically demonstrate that new testing techniques 

can be used to find faults. Researchers usually construct controlled experiments by seeding 

known faults into programs under test. Program mutation is a useful tool for generating faults in 

situations when it is either too expensive or impossible to retrieve large numbers of faults from 

the programs' history. However, it is not known for certain whether such mutations are materially 

similar to naturally occurring faults. To facilitate this comparison, we present an experiment 

framework to assist the mutation testing community to establish whether faults generated by 

program mutation fail as often as real-world faults. We introduce a probabilistic definition for 

estimating a mutation's failure rate. We decompose the definition into several events and 

demonstrate ways to statically measure the likelihood of each event. We provide worked 

examples with systematically computed definitions for all observed mutations in a small program, 

TriTyp. 

8.2. Introduction 
Program mutation has many uses to both researchers and practitioners. Practitioners can use 

mutation to boost the sufficiency of their existing test sets. Software testing researchers can use 

mutation as a source of faults for their empirical validation of new ways to test. 

One open problem hindering the wider adoption of mutation is that it can be very time-consuming 

to produce a test set that kills all mutants. Worse, sometimes equivalent mutants arise that do not 

actually alter the functionality of the program, requiring further analysis. To reduce the overall 

effort involved in building these test sets, much mutation research has focused on the 

determination of sufficiently small sets of mutations. Usually success is indicated when the 

resulting test set can find excluded mutants as well. 

Another open problem is whether mutants are suitable substitutes for real faults; this is called the 

coupling effect hypothesis [18]. It has been demonstrated that the mutant coupling holds: test sets 

that can identify simple mutants can generalize to more complicated pairs of mutants [18]. While 

this result is encouraging, a more robust framework is needed to confirm the generalized coupling 

hypothesis. 
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In this problem description report, we make several contributions toward understanding these 

issues. We introduce a probabilistic definition to express existing concepts such as testability and 

fault size. We split this definition into several components that can easily be determined for 

mutants and discuss approximations for naturally occurring faults. We provide a worked example 

showing how one would build a fault size profile for a program processed by the mutation tool 

MuJava [56]. We then describe an experiment framework for determining the validity of the use 

of mutation in software testing experiments. We also discuss potential ramifications of our work 

to mutation testing research. 

This paper is organized as follows. Section III outlines our formal model. Section IV provides 

worked examples from the TriTyp program. Section V outlines our validation framework applied 

to mutation testing. Threats to validity are presented in Section VI.  Section VII  discusses 

planned future work. 

8.3. Definitions 
In this section, we describe our formal model of fault size. We also list the MuJava mutant classes 

referenced in this paper. 

8.3.1. Fault size 
Voas's testability and our take on fault size are similar. As Voas [27] originally outlined, there are 

three events that occur when a test fails. Let F be the event that a test suite experiences at least 

one failure due to a single fault. We formally denote the events leading up to F using the PIE 

notation: 

E: the code containing the fault is executed. 

I: the fault corrupts the internal state. 

P: the program propagates the bad internal state to the test case. 

Equation 1 formally describes the relation of these events: 

 Pr(𝐹) = Pr(𝐸 ∩ 𝐼 ∩ 𝑃). (1) 

We can rewrite this as: 

 Pr(𝐹) = Pr(𝐸)Pr(𝐼|𝐸)Pr(𝑃|𝐼 ∩ 𝐸). (2) 

Note that Voas also factored in the input distribution into his definition of testability. We now 

provide definitions for each of these components.  
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8.3.2. Testability 
In our previous work [26], we established that the likelihood of code being executed can be 

statically estimated by path analysis of the faulty code. Li et al. at George Mason University [31] 

provided us with their tool to produce a minimal set of test paths to establish code coverage. We 

originally made the simple fault assumption that a fault can only exist in a single block. Given 

that a fault is located in basic block b of a function f, its likelihood of being executed is: 

 Pr(𝐸(𝑏)) = # 𝑝𝑎𝑡ℎ𝑠 𝑖𝑛 𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔  𝑏
# 𝑝𝑎𝑡ℎ𝑠 𝑖𝑛 𝑓

. (3) 

There are some cases where MuJava can generate faults that span multiple blocks, but in those 

cases, we observe that it is sufficient to execute any of those blocks to notice the mutant. For 

naturally occurring faults that are localizable to some number of blocks, the answer is less clear. 

We offer alternative formulations of fault size in subsequent sections that work around this issue. 

8.3.3. Propagation 
To induce a failure, it is not enough for a mutation to be executed. The result must also propagate 

to the output. Santelices and Harrold [30] described a very simple formula to represent this 

situation. If an affected definition d is accessible to the test, then they say the error always 

propagates. Otherwise, if the code branches N ways, then the fault propagates when the code 

chooses one of the N-1 wrong branches. Santelices and Harrold implicitly assume that each 

branch is equally likely to be executed with probability 1
𝑁

: 

 𝑃𝑟(𝑃|𝐼 ⋂𝐸) = �
1 if 𝑑 is accessible

𝑁−1
𝑁

otherwise
�. (4) 

We suggest tweaking (4) by letting N count the number of paths leaving d. This tweak more 
intuitively represents how faults unpredictably impact the overall program flow. 

8.3.4. Intrinsic fault size 
The most important probability, Pr(I | E), can be referred to as a fault's intrinsic size. The intrinsic 

size measures how likely it is that a fault will corrupt the internal data state, regardless of where it 

is inserted into the code. 

 Mutations 
In the context of mutation, it makes sense that a given mutation would have some intrinsic 

difficulty associated with it, regardless of where the mutation is applied in the program. Seeing as 

many mutations take arithmetic expressions as arguments, we offer a definition relevant to those 

52 
 



mutations. Let p be the un-mutated expression. Let p' be the mutated expression. Let X represent 

the possible variable assignments in p. The fault's intrinsic size is: 

 Pr(𝐼|𝐸) = ∑ Pr(𝑋 = 𝑥) ∗ (𝑝(𝑥) ≠ 𝑝′(𝑥))𝑥 ∈𝐷 . (5) 

Generally, we know the data types in the program domain (such as integers, floats, strings, etc.) 

and the values those types take, but we don't know the distribution of the values. This complicates 

the evaluation of Pr(𝑋 = 𝑥). In this typical case, the principle of maximum entropy suggests that 

the uniform random distribution is statistically sufficient: 

 Pr(𝑋 = 𝑥) = �
1

|𝐷| if 𝑥 ∈ 𝐷

0 otherwise

�. (6) 

Note that these intrinsic size definitions apply to MuJava traditional mutations only.  

 Naturally occurring faults 
Unlike mutations, naturally occurring faults can be syntactically very large, so attempting to 

precisely frame them as above can be tricky. If we have a representative test set and assume that a 

single fault is present, we can approximate Pr(F) by the proportion of failing test cases in a 

program's test set. This lets us use (2) to evaluate intrinsic fault size in the following way: 

 Pr(𝐼|𝐸) = %failures
Pr(𝐸)Pr(𝑃|𝐼∩𝐸)

. (7) 

In practice, we can reduce the expression %failures
Pr(𝐸)

 by counting only the proportion of failing test 

cases that actually executed the fault. Furthermore, if there was at least one test failure, we can 

posit that Pr(𝑃|𝐼 ∩ 𝐸) = 1 because the propagation of the fault is no longer an uncertainty. Thus 

we have: 

 Pr(𝐼|𝐸) = %failures caused by F
%test cases executing F

. (8) 

The program instrumentation required to make this determination is very similar to that used in 

spectrum-based fault localization: one must associate the code coverage of each test case with the 

test's result. Under these conditions, one can determine the intrinsic size of arbitrary naturally 

occurring faults. 

8.3.5. Mutation classes 
In the next sections, we refer to several abbreviations for mutant classes. For reference, these are 

[57]: 
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• AOIS: Arithmetic Operator Insertion - Shortcut 

• AOIU: Arithmetic Operator Insertion - Unary 

• AORB: Arithmetic Operator Replacement Binary 

• COI: Conditional Operator Insertion 

• COR: Conditional Operator Replacement 

• LOI: Logical Operator Insertion 

• ROR: Relational Operator Replacement. 

According to MuJava, there are 15 method-level mutations in total. A program that covers the 

unlisted mutations must use arithmetic shortcuts, perform bitwise Boolean arithmetic (both unary 

and binary), and perform bit shifts. Arithmetic shortcut mutations are equivalent to AORB 

mutations because they mutate the same operators. The unary deletion operators are equivalent to 

their insertion operators from a fault size perspective; the order doesn't matter. Bitwise operations 

are harder to find, but we can probably ignore these mutations without loss of generality to our 

results in most programs. 

We've posited that the intrinsic fault size of each mutation is constant for a given input profile. 

While a diverse class of mutations, such as ROR, may contain many mutations, each mutation 

within that class is allowed to have its own intrinsic fault size. This view of mutations facilitates 

the following worked examples. 

8.4. Worked Examples 
In this section, we describe how to apply our definitions of fault size to MuJava mutants 

generated for the TriTyp [58] program. We characterize the resulting distribution of fault sizes, 

then show worked examples for computing sample fault sizes from each mutant class. 

8.4.1. Approach 
We ran MuJava on TriTyp. For each mutant version of TriTyp, we determined the specific 

characters changed based on the diff [59] of the source code. From this, we derived the mutation 

being applied and computed its intrinsic size. MuJava applies the same mutation at different 

points of the Trityp code, so we constructed a feedback-driven tool to help speed up the 

classification process. We represent a mutation as a quadruple listing the number of values in the 

mutation, the operators changed, and the mutation's intrinsic size: 

(#tokens, before_operators, after_operators, intrinsic size) 
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We keep a lookup table of these quadruples. As our tool scans the mutated source code, it 

performs a diff to identify the changed line, then tries to match the diff to entries in the lookup 

table. When a match is found, it reports the match as a suggestion to the analyst. 

For instance, consider the diff in Listing 1 of the following ROR mutant, ROR_1: 

34c34 
<         if (Side1 <= 0 || Side2 <= 0 || Side3 <= 0) { 
--- 
>         if (Side1 > 0 || Side2 <= 0 || Side3 <= 0) { 
Listing 1. Diff of Trityp between original code and mutation ROR_1. 

As the diff shows, ROR_1 replaces the les-than-or-equal operator with a greater-than operator. It 

involves two values: Side1 and 0. When the tool first encounters this mutation, it prompts the 

analyst to specify the intrinsic size. As we will later demonstrate, the intrinsic fault size of this 

mutation is very large; it is in fact 1.0. The tool records this information in the following 

quadruple: 

(2,{<=},{>},1.0) 

When the tool comes across future instances of this mutation, it automatically suggests this 

intrinsic size to the analyst. Higher-order mutations that involve many values take precedence in 

this recommendation procedure. 

8.4.2. Summary of results 
Table 1 present the results of our calculations after applying MuJava to the TriTyp program and 

computing the intrinsic fault size of each mutant. For brevity's sake, we recorded those mutants 

whose sizes were approximately zero (less than 10-6) as zero. We similarly recorded mutants that 

were approximately one as one. As there are many mutants, we list summary statistics by mutant 

type. 
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Table 8.1. Intrinsic Fault sizes for TriTyp mutants 

Mutant 
Class 

# 
Mutants 

Mean Variance 

AOIS 136 1 0 

AOIU 7 1 0 

AORB 36 1 0 

COI 24 1 0 

COR 14 0.48 0.03 

LOI 39 1 0 

ROR 85 0.6 0.1 

 

The AOIS AOIU, AORB, COI, and LOI classes of mutations were consistently very large. The 

COR and ROR classes had some slight variation but were medium sized on average. 

Figure 1 summarizes the total distribution of fault sizes: 

 

Figure 8.1. Intrinsic size of TritTyp mutations. 
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As Figure 1 shows, the mutations overall tended to be very large. There were a few very small 

faults. This would suggest that most Trityp mutants are easily killed. In the next subsections, we 

provide some worked examples demonstrating how we arrived at this distribution. 

8.4.3. Arithmetic Operator Insertion - Shortcut 
The AOIS class of mutations inserted increment (++) and decrement (--) operators on all numeric 

variable uses. For instance, the mutation AOIS_1 replaced a reference to an integer input, Side1, 

with ++Side1. As Side1 can be any integer, we define the domain to be the set of integers, Z. We 

formally derive the intrinsic size of this mutation as follows: 

 Pr(𝐼|𝐸) = ∑ Pr(𝑆𝑖𝑧𝑒1 = 𝑥) ∗ (𝑥 ≠ 𝑥 + 1)𝑥 ∈𝑍  (9) 

 = 1
|Z|

∑ (𝑥 ≠ 𝑥 + 1)𝑥 ∈𝑍  (10) 

 = 1. (11) 

8.4.4. Arithmetic Operation Insertion - Unary 
The AOIU class negated numbers. For instance, AOIU_1 negated a variable called triOut, which 

is the returned classification. The negation operation essentially affects every Integer except zero. 

It could be argued that triOut is only allowed to take a few values over the course of execution 

and thus the domain Z is not an appropriate fit. Clearly though this constraint would materially 

not affect the following evaluation. 

 Pr(𝐼|𝐸) = ∑ Pr(𝑡𝑟𝑖𝑂𝑢𝑡 = 𝑥) ∗ (𝑥 ≠ −𝑥)𝑥 ∈𝑍  (12) 

 = 1
|Z|

∑ (𝑥 ≠ −𝑥)𝑥 ∈𝑍  (13) 

 = |Z|−1
|Z|

≈ 1. (14) 

8.4.5. Arithmetic Operator Replacement - Binary 
The AORB class replaced binary arithmetic operations such as addition, subtraction, 

multiplication, division, and bitwise operations, with one another. For instance, AORB_1 replaces 

the sum of triOut+1 with the product triOut*1. Clearly every execution is affected. 

 Pr(𝐼|𝐸) = ∑ Pr(𝑡𝑟𝑖𝑂𝑢𝑡 = 𝑥) ∗ (𝑥 + 1 ≠ 𝑥 ∗ 1)𝑥 ∈𝑍  (15) 

 = 1. (16) 

8.4.6. Conditional Operator Insertation 
The COI class negated logical expressions. For instance, AORB_1 negates the expression 

Side1<=0. The resulting intrinsic size formula is a tautology. 

 Pr(𝐼|𝐸) = ∑ Pr(𝑆𝑖𝑑𝑒1 = 𝑥) ∗ (𝑥 ≤ 0 ≠ ! (𝑥 ≤ 0))𝑥 ∈𝑍  (17) 
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 = 1. (18) 

8.4.7. Conditional Operator Replacement 
The COR class replaced binary Boolean operators, such as OR (||), AND (&&), XOR, etc. For 

instance, COR_1 replaces Side1 <= 0 || Side2<=0 with Side1<=0 && Side2<=0. Examining the 

truth table, we see that this replacement will affect half of all possible return values of the 

underlying predicates. 

 Pr(𝐼|𝐸) = ∑ Pr �𝑆𝑖𝑑𝑒1 ≤ 0 = 𝑥 ∩
𝑆𝑖𝑑𝑒2 ≤ 0 = 𝑦 �

∗ (𝑥 ||𝑦 ≠ 𝑥&&𝑦)
𝑥 ∈𝑍  (19) 

 = 0.5. (20) 

 

This category had some slight variance because different replacements have different effects. For 

instance, replacing OR with XOR will only affect 25% of the truth table, while replacing AND 

with XOR will affect 75% of the table. 

8.4.8. Logical Operator Insertion 
The LOI class computed the 1's complement of numbers. For instance, LOI_1 replaces Side1 

with ~Side1. There is a 1-1 mapping of numbers and their 1's complements and none of them map 

to themselves, so every value will be drastically affected: 

 Pr(𝐼|𝐸) = ∑ Pr(𝑆𝑖𝑑𝑒1 = 𝑥) ∗ (𝑥 ≠ ~𝑥)𝑥 ∈𝑍 . (21) 

8.4.9. Relational Operator Replacement 
The ROR class replaces binary Boolean operators, such as less than, greater than, etc., with one 

another. For instance, ROR_1 replaces Side1<=0 with Side1>0. In this case, the intrinsic size 

formula is a tautology. 

 Pr(𝐼|𝐸) = ∑ Pr(𝑆𝑖𝑑𝑒1 = 𝑥 ) ∗
(𝑥 ≤ 0 ≠ 𝑥 > 0)𝑥 ∈𝑍  (22) 

 = 1. (23) 

The ROR class possessed the most variance in intrinsic size of all of the mutant classes we 

studied. For instance, ROR_3 replaces Side1<=0 with Side1<0. Under our usual assumptions, 

there is a miniscule chance that Side1=0. Thus, the intrinsic size of ROR_3 is close to zero - the 

complete opposite of ROR_1. This variance makes the ROR mutants the most diverse of the 

mutations applicable to Trityp. 

58 
 



8.5. Validation Framework 
With these definitions and worked examples in mind, we outline our framework for mutation 

researchers: 

1. Given a program with a known test set and fault set, generate mutants for the program. 
2. Determine the distribution of the mutant faults' intrinsic sizes. 
3. Determine the distribution of the real faults' intrinsic sizes. 
4. Using the appropriate statistics, determine whether the two distributions are significantly 

different. 

There are several competing hypotheses: 

H0: mutants have the same fault size as naturally occurring faults. 

H1: mutants are significantly smaller than naturally occurring faults. 

H2: mutants are significantly larger than naturally occurring faults. 

H0 suggests that mutants and naturally occurring faults are equally useful for software testing 

research. H1 might help explain why Offutt's coupling hypothesis [18] holds; if a test set can find 

intrinsically small mutant faults, then surely it can find intrinsically large naturally occurring 

faults. If H2 were to hold, then it would suggest that mutation boils down to making sure that the 

test set is covering the code. 

8.6. Threats to Validity 
Our calculation of the intrinsic fault size of MuJava mutants of TriTyp and subsequent analysis of 

the mutation operators is subject to a number of threats to validity. 

8.6.1. Conclusion validity 
A possible conclusion validity threat is that of reliability of treatment implementation.  This threat 

arises due to our implementing a tool to calculate the mutation operators applied by MuJava, a 

basis for the rest of the work.  If the tool is not correct, the entire study could be flawed.  We feel 

this risk is fairly minimal as the algorithms required are fairly simple, table look ups, and we 

tested the tool extensively.  A possible threat to conclusion validity is that of reliability of 

measures.  It is possible that our definition of intrinsic size is not correct; this could lead to 

flawed sizes for the mutation operators and could lead to incorrect conjectures about the 

frequency and/or defect detection effectiveness of the operators.  This threat can be mitigated by 
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examining other definitions of intrinsic size, repeating the study with those definitions, and 

comparing the results.   

8.6.2. Internal validity 
A possible threat to internal validity is that of ambiguity about direction of causal influence.  Is it 

the case that intrinsic fault size is “causing” defect detection effectiveness, or vice versa? 

8.6.3. Construct validity 
There are two possible threats to construct validity.  First, it is possible that we have mono-

operation bias.  Our study is conducted with a single program as object, so the cause construct is 

under-represented.  Second, it is possible that we have mono-method bias.  As we use just one 

type of measurement to estimate the intrinsic fault size, we may have a measurement bias.  To 

mitigate this, we can use multiple measures and compare (as in reliability of measures above). 

8.6.4. External Validity 
There are two possible threats to external validity.  It is possible that we have interaction of 

selection and treatment.  Our object of study, TriTyp, represents but one program in one domain.  

Our results cannot be generalized to other programs or domains or programming languages.  In 

order to mitigate this threat, the study must be replicated on numerous, diverse programs.  It is 

possible that we have interaction of setting and treatment.  Some may consider TriTyp to be a 

“toy” program as it is quite small.  However, it has been used in many testing and mutation 

testing papers and has been studied extensively.  Also, it is well known that even small programs 

generate a large number of mutants.  Studying a large program, therefore, is problematic. 

8.7. Conclusions and Future Work 
Our results open many interesting possibilities that warrant investigation. We found that the 

mutant classes AOIS, AOIU, AORB, COI, and LOI were all intrinsically large. According to our 

model of test failure, practices such as code coverage and design for testability would guarantee 

the death of these mutants. To improve the test set itself, we hypothesize that it would be more 

productive to apply mutations from smaller classes such as COR or ROR, then use a small 

selection from the larger classes to ensure every definition is mutated at least once. This is a 

readily testable hypothesis for researchers working in the area of developing sufficient sets of 

mutants. 
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Our model of test failures could help identify equivalent mutants early in the testing process. 

While we did not come across any mutants in TriTyp that truly had zero intrinsic fault size, if we 

were to, clearly these would be equivalent mutants. Changes that cannot propagate also yield 

equivalent mutants, but the Santelices and Harrold definition of propagation [30] always allows 

for some chance of propagation. 

MuJava supports several mutations that could be applied to TriTyp. While the deletion mutations 

will simply mirror their insertion counterparts, it would be interesting to investigate intrinsic fault 

size of the bitwise mutations. This would give us a clearer idea of the complete mutant fault size 

distribution. With this type of distribution available, we intend to use the outlined framework to 

validate the applicability of mutation in software testing experiments. Completing this step will 

allow us to say definitively whether mutants are materially similar to naturally occurring faults. 
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Chapter 9.  Statistical Analysis for Traceability Experiments  

© 2013 IEEE. Reprinted, with permission, from Hays, M.; Hayes, J.H.; Stromberg, A.J.; Bathke, 

A.C., "Traceability Challenge 2013: Statistical analysis for traceability experiments: Software 

verification and validation research laboratory (SVVRL) of the University of Kentucky," 

Traceability in Emerging Forms of Software Engineering (TEFSE), 2013 International Workshop 

on, pp.90,94, 19-19 May 2013. 
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9.1. Summary 
An important aspect of traceability experiments is the ability to compare techniques.  In order to 

assure proper comparison, it is necessary to perform statistical analysis of the dependent variables 

collected from technique application.  Currently, there is a lack of components in TraceLab to 

support such analysis.  The Software Verification and Validation Research Laboratory (SVVRL) 

and the Statistics Department of the University of Kentucky have developed a collection of such 

components as well as a workflow for determining what type of analysis to apply (parametric, 

non-parametric).  The components use industry-accepted R algorithms.  The components have 

been validated using independent standard statistical algorithms applied to publicly available 

datasets.  This work addresses the Purposed grand challenge (research project 4) and Cost-

Effective Grand Challenge (research project 4) as well as the Valued Grand Challenge - research 

project 6. 

9.2. Introduction 
Early traceability papers rarely applied statistical analyses as the authors were only able to 

examine two or three datasets and knew that such a small sample could not lead to statistically 

significant results.  With the advent of the use of Mean Average Precision (MAP) and other “per 

query” measures, traceability researchers now have many more data points (a dataset that has 50 

queries searching into 150 elements now has at least 50 data points versus being considered one 

dataset).  With these larger sample sizes, it is now incumbent on traceability researchers to apply 

statistical analyses to the dependent variables they collect when running experiments. 

This leads to the next conundrum.  What statistical techniques should be used?  How can 

traceability researchers overcome the parade of criticism from reviewers such as:  "your data did 

not conform to the assumptions of the statistical technique used,”  your test did not have 

sufficient power,” and/or “you cannot use the mean with that type of data.” 

This Challenge paper seeks to address some of the aforementioned concerns by providing a 

collection of TraceLab components that take the dependent variables from experiments (such as 

MAP, F, recall, precision) and determine what tests are required, check the appropriate 

assumptions, and run the tests.  This paper contains standard language that can be used in 

traceability papers to demonstrate to reviewers that proper statistical analysis, designed by 

statisticians, has been applied. 
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The paper is organized as follows.  Section 2 discusses statistical tests for traceability.  Section 3 

presents some thoughts on statistical testing.  Section 4 discusses the TraceLab components 

developed for statistical analysis.  The standard language to be used in papers employing these 

Statistics components is provided in Section 5.  Section 6 discusses evaluation of the TraceLab 

statistic components, and Section 7 concludes and discusses future work. 

9.3. Statistical tests for traceability 
Currently, it is becoming more commonplace to see non-parametric techniques applied to 

dependent variables (such as MAP) in various experiments.  Examples include Kong, Hayes, 

Dekhtyar, and Dekhtyar  (used Wilcoxon Signed Rank test) [60], Niu and Mahmoud (used Mann 

Whitney) [61], and Shin, Hayes, and Huang (examined correlation of commonly used measures 

and their analysis) [62]. 

It is rare for parametric tests such as student’s t or ANOVA to be applied.  It appears that this is 

due to author fear of reviewer criticism versus due to data not meeting required assumptions 

(such as normality).  Yet when normality and equal variance assumptions are met, appropriately 

chosen parametric tests are more powerful than their non-parametric counterparts and thus should 

be considered first.  Our TraceLab components support such consideration, making statistics 

accessible to all researchers, even those who may not feel comfortable working with statistics. 

9.4. Statistical tests 
 Selecting an appropriate inferential method for statistical analysis is a complex and 

highly interactive task. Typically, there is not one correct procedure, but there are some that are 

more appropriate and others less and some simply inappropriate. An expert statistician will 

consult diagnostic plots, test statistics, p-values, and transformations, among other tools, in order 

to choose a method that is adequate and powerful. Automating the process of test selection may 

therefore draw criticism: no automated procedure will be able to substitute expertise and 

experience. On the other hand, with widespread availability of free statistical software packages, 

the application of statistical procedures is at the fingertips of many. Many researchers simply 

don’t have advanced statistical expertise or experience, or even quick access to expert statistics 

knowledge to choose the most appropriate method, or to decide when a standard method is not 

appropriate. The MeansTest algorithm will be useful for this group of researchers. It is designed 

to imitate the major decisions a statistician would make when analyzing two-sample data.  
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Indeed, the first decision is whether the two samples are independent or paired. If paired, then for 

normal data, the paired t-test [38] is the method of choice, while the signed rank test [39] is its 

nonparametric alternate. For independent samples, even more important than checking normality 

is whether it is reasonable to assume that both samples come from distributions with equal 

variances. If not, there exist powerful approximate methods for the normal distribution case [40], 

[63], [64], and for the case in which normal distributions cannot be assumed (the Brunner-Munzel 

test [40] and its permutation version).  

The latter is also an example that the statistics research community continues to derive and 

validate new and more powerful or more robust inferential procedures, so that updates on the 

decision trees may have to be made. For example, for the comparison of two independent samples 

of non-normal data, the rank-sum test [64] has been the method of choice for several decades. 

However, it assumes that under null hypotheses, the variances of both samples are equal. Just 

recently, the Brunner-Munzel [40] test has been devised and validated to provide a nonparametric 

test for location in the presence of unequal variances. Even more recently, the performance of this 

test has been improved by using a permutation approach. 

How are the decisions regarding normality and unequal variances made? Normality can be 

assessed using the Shapiro-Wilk [42] test. However, since the t-test is rather robust against 

violations of the normality assumption, an alpha-level of 5% can be chosen as a threshold. In the 

case of two independent samples, neither should show strong evidence of non-normality. The 

assumption of equal variances in the case of two independent samples is rather important and is 

tested using the Levene-Brown-Forsythe [65] test at the 5% level. 

9.5. TraceLab Statistical Components 
We implemented all of the above tests as individual TraceLab components. In this section, we 

describe the implementation details of our composite component, MeansTest, as well as our 

experiences with TraceLab. 

9.5.1. R Implementation 
It is straightforward to calculate many test statistics, such as the t statistic for the t-test. However, 

most researchers are interested in the p-value of the test statistic, which expresses the significance 

of the result. The computation generally does not have an easily computed closed form, so 

implementing this step by hand is undesirable. TraceLab already links with the commercial 
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library ALGLIB [66] that provides a limited selection of hypothesis tests that return p values. R 

[44], a popular statistics language, supports several tests not in ALGLIB that are relevant to our 

research. In the interest of maximum code reuse, we wrote our statistics in R. 

We wrote a TraceLab helper component, called Rscript, which returns an opaque reference 

representing the R runtime. TraceLab components can use this opaque reference to execute any R 

script. In a TraceLab experiment, the user simply specifies the path to his or her Rscript.exe in the 

helper's configuration. Then the user can write a component that takes the helper as input and can 

use the helper's API to easily invoke their R script, which they store in their component's DLL as 

an embedded resource. 

Each of our R-based statistics components follows a shared workflow. First, the component loads 

the experiment's sample data from the TraceLab workspace. Second, the component extracts and 

executes the R script corresponding to the statistics test in question. Finally, the component stores 

the resulting test statistic and p-value in the TraceLab workspace. 

We unknowingly developed the ability to run R in parallel to similar efforts at the College of 

William and Mary. Their work, RPlugin, uses a similar technique to run R scripts, but uses a 

singleton pattern instead of providing a workspace variable. We only discovered this overlap 

inadvertently [67] and very late in development, so it should be interesting to compare the two 

implementations in future work. For now, we turn our attention to the main novelty, the 

MeansTest component. 

9.5.2. MeansTest Implementation 
Although R provides implementations for all of the tests mentioned in section III, R assumes that 

the user is a statistics savant who is aware of all of the assumptions that the tests entail. Our goal 

is to reduce the user's burden by cataloging and automatically testing these assumptions. 

TraceLab helped us in this respect by providing a very useful feature called composite 

components. The composite component wizard in TraceLab enables researchers to take a subset 

of an existing experiment and encapsulate it as one component. Using this wizard, we developed 

a composite component called MeansTest. The MeansTest component takes just a few 

parameters: the two samples the user is comparing, a flag specifying whether the samples 

represent paired data, and the Rscript opaque reference. After executing an experiment containing 

a MeansTest, TraceLab stores the p-value of the test and the appropriate test statistic in the 

66 
 



workspace. MeansTest then prints a human-readable summary of the steps and tests involved in 

the computation. 

Figure 1 shows the TraceLab dependency graph of MeansTest. 

 

Figure 9.1. Internals of the MeansTest composite component. 

As can be seen, MeansTest automatically verifies all of the assumptions one would normally have 

to check before performing a comparison of location parameters. First, MeansTest checks 

whether the user provided paired data. In the paired case, MeansTest branches to the left to test 

the normality of the pairs with Shapiro-Wilks. If the difference between the pairs is normally 

distributed, MeansTest performs the paired t-test. Otherwise, MeansTest performs the 

nonparametric Wilcoxon signed-rank test. 

In the case the samples were not paired, MeansTest branches to the right and tests the normality 

of the two sample groups separately. If both groups are normal, MeansTest compares the sample 

variances for equality. If there is no evidence against this assumption, it performs a classical t-test 

using the pooled sample standard deviation; otherwise, it makes Welch's adjustment to the 

standard deviation when performing the t-test. 

If either of the groups is not normal, MeansTest branches into the nonparametric tests. MeansTest 

checks the assumption of overlap between the samples. If this assumption holds, MeansTest 

simply invokes the Brunner-Munzel non-parametric test, which is designed for testing location 

differences in the presence of possibly unequal variances. When there is no overlap, then clearly 

the difference in means is significant, so MeansTest invokes the Mann Whitney U test only to 

provide the researcher with a non-zero p-value. 
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MeansTest is by no means a complete summary of all possible statistics tests, but is 

representative of the involved thought process we use in practice when comparing means. There 

are many other tests for normality, equal variance, and shift in location that fit specialized 

circumstances. There are also some assumptions, such as independence and identical 

distributions, which statisticians have yet to invent ways to numerically verify. We hope the 

TraceLab dependency graph of MeansTest will start a dialog in the statistics community to agree 

on a complete process for testing for shifts in means. 

9.5.3. Experiences 
In general, we found that the TraceLab tool was very stable and facilitated a wide variety of 

experiment procedures. As we mentioned earlier, composite components proved useful for 

bundling our massive statistics workflow into one comprehensive (and comprehensible!) statistics 

test. Besides applications in statistics, we found other uses for TraceLab. For instance, we were 

able to implement a classical mutation testing experiment comparing all-definitions testing to 

random testing. Mutation testing experiments are entirely outside the scope of TraceLab, yet the 

tool proved to be a plausible fit. Although the component framework adds extra work to 

experiment implementation, it is our experience that this extra work leads to portable experiments 

with reproducible results. 

While the core tool provides a nice framework for developing experiments, we discovered several 

major issues indicating that the stock components are still experiencing growing pains. For 

instance, we identified a computation failure in the TraceLab vector space model where it 

reported that the cosine similarity between a vector and itself was far less than 1.0 [68]. This 

failure resulted from an error in the TF-IDF computation where the authors were normalizing the 

document vectors but not updating their pre-computed lengths. This mistake adversely affected 

the similarity measures; for example, Equation 1 gives the resulting erroneous cosine similarity: 

 cos(𝑞, 𝑑) = 𝑞 ∙ 𝑑
|𝑞||𝑑|2 (1) 

The other measures were similarly impacted. For obvious reasons, this error invalidates the 

results of every tracing experiment run in TraceLab 0.5 or earlier using the default tracing 

components. 

Errors like these aside, we see the need for design and documentation improvements to the stock 

components as well. For instance, it is not possible to extract the per-artifact recall and precision 
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scores from the experiment results data type; the data type hides these scores from the public API 

in the form of summary statistics. This API makes it impossible to perform meaningful analysis 

of experiment results. Also, the file importer and exporter descriptions provide no hint as to the 

expected file format. The worst offender is the “multiple dataset importer,” which takes a 

“configuration file” as input. It would be useful to provide the expected formats in the 

components' descriptions. 

Changes to the design of these components will definitely help improve productivity in TraceLab, 

but more work is needed. First, TraceLab needs to better advertise the availability of third-party 

components to collaborators. The Rscript/RPlugin overlap mentioned earlier is a perfect example 

of this necessity. We hope that the new Component Directory on coest.org [69] will help improve 

code reuse to avoid collisions like these. 

Another key obstacle to productivity is that all operations, no matter how trivial, need to be 

encapsulated in their own components. For instance, to test the normality assumption in the 

paired case, one usually computes the difference between the two paired samples and tests the 

normality of the resulting vector. In R, this is very easy; if you have two vectors x and y, the 

expression x-y will return the input vector. However, TraceLab did not have a component to 

compute x-y, so we had to write our own x-y as a separate TraceLab component (see 

GetPairedSample in Figure 1) consisting of 99% TraceLab boilerplate and 1% actual code. We 

postulate that the existing decision nodes, which support inline scripts for making branching 

decisions, can be repurposed to avoid this boilerplate. To this end, we would like to see better 

documentation of decision nodes describing the available variables, the process to save 

workspace variables, and the particular .NET dialect in which decision code is written. Perhaps 

the TraceLab developers could help us create a facility to script R code inline as well. 

9.6. Standard Language for Papers 
“We used the statistical analysis components available in TraceLab. These were designed by 

computer scientists and statisticians at the University of Kentucky and use the well-respected 

statistical analysis toolkit R.  The TraceLab components, collectively called MeansTest, first 

examine the paired or independent variables for the experiment and determine what statistical 

tests to apply by testing the appropriate assumptions.  Next, the TraceLab components apply the 

appropriate statistical test.  The components then report the appropriate p-value.  This information 
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has been included below.  Details on the statistical analysis methodology applied by the TraceLab 

component can be found in an earlier publication by Hays et al.” (with proper citation of this 

TEFSE paper). 

In addition, the researcher shall use the output from MeansTest to describe the tests applied.  For 

example, “we had two samples, the data was normally distributed, we performed an F test and 

determined there was not equal variance in the samples, thus Welch's t-test was applied and 

yielded a p-value of NNN.”  

9.7. Evaluation 
In order to vet the MeansTest components, we ran an independent evaluation.  The dependent 

variable measures output by TraceLab from a typical traceability experiment on one dataset with 

comparison of techniques (collection of MAP values for a traceability dataset for TF-IDF with 

stopwords removed and MAP values for TF-IDF on that same dataset without stopword removal) 

was provided to the Statistics department co-authors of this paper.  They independently analyzed 

the data using publicly available tools such as SAS (not R) and derived p-values (these are shown 

in Table 1).  We generated t and p-values using MeansTest, also shown in Table 1.  As expected, 

the values are within rounding error of each other. The t-distribution in this context is symmetric 

around zero, so the difference in sign simply reflects a minor implementation difference between 

their tools and R. 

Table 9.1. Evaluation Results. 

  

Statistics Department 
values 

  
MeansTest values 

  
t 0.346225 -0.3462248 
p-value 0.7371 0.7371301 

9.8. Conclusions and Future Work 
As the traceability research community ushers in the era of TraceLab, it will be much easier to 

generate and try out new ideas.  It is incumbent upon researchers to practice responsible 

experimentation and use proper techniques in ensuring that the obtained results are statistically 

significant.  Toward that end, we present the MeansTest component as well as standard language 

that can be used in papers which employ this composite TraceLab component.  We evaluated our 

component and found that the values generated match those of SAS and similar tools. 
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In the future, we would like to expound on other statistical analyses such as power analysis and 

analysis of variance. As with the comparison of means, researchers performing other analyses of 

their results have many options readily available thanks to statistical software packages. 

Unfortunately, researchers often lack the required expertise to select the most appropriate option. 

While a fully automated solution to the selection process is not a panacea, we posit that such a 

solution can imitate the decisions of an expert in most applicable cases. 
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Chapter 10.  Validation of Software Testing Experiments 

© 2014 IEEE. Reprinted, with permission, from Hays, M.; Hayes, J.H.; Bathke, A.C., " 

Validation of Software Testing Experiments: A Meta-Analysis of ICST 2013," to appear in 

Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh International 

Conference on, 1-4 April 2014. 
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10.1. Summary 
Researchers in software testing are often faced with the following problem of empirical 

validation: does a new testing technique actually help analysts find more faults than some 

baseline method? Researchers evaluate their contribution using statistics to refute the null 

hypothesis that their technique is no better at finding faults than the state of the art. The decision 

as to which statistical methods are appropriate is best left to an expert statistician, but the reality 

is that software testing researchers often don't have this luxury. We developed an algorithm, 

MeansTest, to help automate some aspects of statistical analysis. We implemented MeansTest in 

the statistical software environment R, encouraging reuse and decreasing the need to write and 

test statistical analysis code. Our experiment showed that MeansTest has significantly higher F-

measures than several other common hypothesis tests. We applied MeansTest to systematically 

validate the work presented at the 2013 IEEE Sixth International Conference on Software 

Testing, Verification, and Validation (ICST'13). We found six papers that potentially misstated 

the significance of their results. MeansTest provides a free and easy-to-use possibility for 

researchers to check whether their chosen statistical methods and the results obtained are 

plausible. It is available for download at coest.org. 

10.2. Introduction 
Research in software testing often lends itself to empirical validation; researchers show that some 

new way of discovering faults finds more faults or takes less time than the state of the art. 

Publications often describe such results as being significant. While significance is an overloaded 

term, in the context of empirical validation, we'd like to think that significance refers to statistical 

significance: that a difference between two means or variances is not likely due to chance. 

Significance in this context is demonstrated through formal hypothesis testing. 

Researchers who ascribe to this notion of significance must also contend with threats to statistical 

conclusion validity. Researchers sometimes incorrectly fail to reject the null hypothesis due to 

choosing inappropriate statistical test. Worse, they almost never go back and analyze the 

statistical power of their experiment to determine whether their sample size was appropriate. Less 

often, they interpret a p-value as a probability when in fact the assumptions of the underlying 

statistical test have not been met. While the former problem can be solved by using powerful 

tests, powerful tests make assumptions that run the risk of suffering the latter problem. This 

impasse has led researchers in software testing to rely on classical, possibly rather conservative 
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tests from the Wilcoxon family because they "do not wish to make assumptions on the 

distribution." [70] We present relatively recent advances in nonparametric statistics that provide 

powerful alternatives to the classical tests. 

In this paper, we make several contributions to address these issues. We introduce an algorithm, 

called MeansTest, to introduce the software testing research world to new statistical tests such as 

Brunner-Munzel. This process has the potential to automatically analyze experimental results. To 

our knowledge, there is no other approach readily available that goes through the workflow to 

analyze the data under study for properties such as normality, equal variance, and power, and then 

use that information to decide which test to apply, and then apply that test. We have encapsulated 

those aspects of a professional statistician’s approach that can reasonably be automated; while it 

is obvious that common sense and experience of a trained statistician can’t be replaced by an 

automated procedure, we also found that some crucial steps can indeed be left to software. The 

simulation of our algorithm demonstrates its usefulness. Nevertheless, the idea of automated test 

selection will always have an air of controversy and we recommend to the user to employ our 

automatism wisely, and with common sense. However, readers shall keep in mind that the only 

viable alternatives would be relying on unrealistic model assumptions, or restricting oneself to 

overly conservative tests and thus failing to detect important effects. We introduce a unique way 

to validate the statistical technique that blends statistics with classification-based validation seen 

in fields such as software fault classification. We use our statistical technique to examine prior art 

at the 2013 IEEE Sixth International Conference on Software Testing, Verification, and 

Validation (ICST'13) [71] for statistical significance. 

This paper is organized as follows. Section III revisits the MeansTest implementation. Section IV 

discusses the challenges that researchers face in performing valid statistical analysis. In Sections 

V and VI, we analyze the effectiveness of MeansTest. Sections VII and IIX state the results of 

our meta-analysis of ICST'13. In Section IX, we discuss our planned future work. 

10.3. MeansTest Algorithm 
In our prior work [72], we introduced the first iteration of the MeansTest algorithm. We 

implemented it for the experiment design framework, TraceLab [73]. MeansTest automated 

important aspects of the basic logic that expert statisticians use when selecting statistics tests that 

compare location parameters, such as the mean and median. MeansTest implemented the 
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underlying statistical tests and testing of assumptions by invoking the statistics environment R. 

MeansTest reported the p-value, test statistic, and the logical path it took through the composite 

component. Our paper separately gave statistician-crafted language describing the meaning of 

each possible path so that researchers could correctly report the MeansTest output. 

Figure 1 displays the precedence graph of the revised MeansTest algorithm used in this paper. 

Figure 10.1. The MeansTest algorithm, as implemented in TraceLab. 

MeansTest operates in two modes: paired-sample (aka "one-sample") and two-sample. In the 

paired mode, depending on the properties of the data being compared, MeansTest performs either 

the paired-sample t-test or Wilcoxon signed-rank test. In the two-sample mode, MeansTest 

performs one of: a) the t-test, b) Welch's t-test for unequal variances, c) Brunner-Munzel, or d) 

the Mann-Whitney U test (also known as the Wilcoxon rank-sum test), again depending on the 

shape and overlap of the two distributions.  

Since its introduction, we have continued to improve to the MeansTest algorithm. We introduced 

post-hoc power analysis to facilitate pilot studies. In this context,  power analysis takes 

experiment results that are not statistically significant and determines the minimum sample size 

required to make them significant; this analysis assumes that the observed results are not an 
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artifact of chance. Also, we now directly display in line with the results the descriptive text that a 

researcher can cite. 

10.3.1. Tests for Normality 
Razali and Wah [48] compared several algorithms for determining normality of data. Razali and 

Wah selected the four "most common" automated tests for normality: Shapiro-Wilk, 

Kolmogorov-Smirnov, Anderson-Darling, and Lilliefors. They applied these tests to samples of 

various sizes drawn from 14 probability distributions; they selected these distributions "to cover 

various standardized skewness and kurtosis values." They generated samples of sizes 10, 20, 30, 

50, 100, 200, 300, 400, 500, 1000, and 2000. They found that the Shapiro-Wilk test was the most 

efficient overall at identifying non-normality. 

The Razali and Wah paper is relevant to MeansTest for two reasons. First, they identified the best 

algorithm to determine non-normality; note that MeansTest used Shapiro-Wilk in the initial 

release. Second, they presented an empirical framework and data set that could be extended to 

validate MeansTest. Table 1 summarizes the probability distributions that Razali and Wah used. 

As Table 1 shows, the data is balanced evenly between symmetric and asymmetric distributions. 

It also has balanced skewness (seven values are 0) and kurtosis (seven absolute values are less 

than or equal to 1). This balance helps eliminate bias threats. 

Table 10.1. Razali and Wah Distributions 
Distribution Skewness Kurtosis 
uniform(0,1) 0 -1.2 

beta(2,1) -0.5656854249 -0.6 
beta(2,2) 0 -0.8571428571 
beta(3,2) -0.2857142857 -0.6428571429 
beta(6,2) -0.692820323 0.1090909091 

t(7,0) 0 2 
t(5,0) 0 6 
t(10,0) 0 1 
t(300,0) 0 0.0202702703 

Laplace(0,1) 0 3 
chisq(4,0) 1.4142135624 3 
chisq(20,0) 0.632455532 0.6 

Gamma(1,5) 2 6 
Gamma(4,5) 1 1.5 
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10.4. The Importance of Statistical Analysis 
Generally, statistical inference aims to quantify whether observed real-data phenomena could be 

explained by chance alone, or whether the observed data are so unusual that a convincing 

explanation requires a model with components beyond chance alone [74]. In the case of 

comparing two techniques, each technique results in a data sample. Most likely, the samples will 

differ from each other. However, even if both techniques are equivalent, one would expect the 

samples to be different due to chance variation. Statistical inference provides the tools to decide 

whether the two samples are different enough to reject the possibility that both methods were 

equally effective. To this end, statistical testing procedures yield p-values. A p-value in this 

context is the probability, assuming both methods are indeed equivalent, that two resulting data 

samples would be as (or more) different than the two samples that were observed in the 

experiment. P-values are one of the main decision tools in statistical inference. If the p-value is 

small, typically less than 0.05, researchers conclude that the assumption “both methods are indeed 

equivalent” can no longer be upheld. 

One of the main problems with p-values is that the underlying probability calculation typically 

relies on several model assumptions. Unless these assumptions are carefully checked and verified, 

the seemingly precise “p-value” can be worthless and misleading. For example, the unpaired two-

sample t-test can be used to compare two independent samples. Observations in each sample are 

assumed to be normally distributed with equal variance. If the samples are truly independent and 

the observations truly follow normal distributions and have the same variance, then a reported p-

value of 0.03 can indeed be interpreted as a rejection of the hypothesis “both methods are equally 

effective,” while a p-value of 0.12 does not provide evidence against this hypothesis. However, if 

the samples are actually paired instead of independent, this test will often provide large p-values 

even if both methods are rather different. The same can happen if the data is highly skewed and 

thus violates the normality assumption. On the other hand, it can also happen that an 

inappropriately chosen statistical test provides a small p-value even though the methods being 

compared are not distinguishable in quality, and the observed differences are in fact due to 

chance. Such a test is as undesirable as the first one. In either case, the resulting p-values do not 

serve as a meaningful decision tool, and they do not have the probability interpretation mentioned 

above.  

The solution to this problem is rather straightforward: only appropriate inference procedures 

should be used. The MeansTest workflow facilitates this by making sure that all of the important 
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assumptions are being examined and that appropriate inference procedures are being chosen. As a 

result, the final reported p-value for the comparison of two methods still satisfies the probability 

interpretation given above. Also, this p-value can be used to decide whether the hypothesis “both 

techniques are equally effective” shall or shall not be rejected. 

10.5. Experiment Design 
In our experiment, we evaluated the accuracy of the MeansTest component. We drew samples at 

random from the Razali and Wah probability distributions. We drew second samples at varying 

distances from the original samples. We then applied hypothesis tests to see if they could notice 

the true difference in the population means. 

10.5.1. Research question 
As stated earlier, the MeansTest workflow combines several hypothesis tests that researchers 

already use. In light of the tendency of researchers to favor the Wilcoxon tests, we might ponder 

whether MeansTest is more effective overall than the Wilcoxon tests. We pose this hypothesis 

more generally in the form of RQ0 below. 

RQ0: can MeansTest more accurately detect the true significance of differences/lack thereof than 

other hypothesis tests? 

10.5.2. Data 
We studied the Razali and Wah probability distributions from Table I. 

10.5.3. Procedure 
We expanded the Razali and Wah procedure to cover statistical significance. Razali and Wah 

only evaluated the likelihood that a test of normality could find a known difference in non-

normality. We looked at two aspects: the likelihood that a hypothesis test would find a significant 

difference when a difference was present, and the likelihood that a hypothesis test would not find 

a significant difference when no difference was present. This procedure is more in line with the 

usual fault classification experiments in software testing and gives direct evidence toward 

answering our research question. 

We applied the following hypothesis tests: MeansTest, Student's t-test, Welch's t-test, Wilcoxon 

ranked-sum, and Brunner-Munzel. As mentioned earlier, these tests are all invoked by 

MeansTest, so it is worth considering whether MeansTest can perform any better than its parts. 
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We ran our hypothesis tests on many pairs of samples. Each pair consisted of an initial sample 

and a shifted second sample. We drew our initial samples from the Razali and Wah distributions 

using their sample sizes. To draw the second samples, we used Cohen's effect size to define the 

difficulty of noticing a difference between two samples. We systematically examined 20 effect 

sizes: ten of the effect sizes were selected from zero to one in 0.1 increments, while the other ten 

had zero effect size. This selection created a balance between zero differences and non-zero 

differences, reducing bias. We selected the parameters of the second sample's probability 

distribution to yield the desired effect size. For each distribution/sample size/effect size triple, we 

drew 100 pairs of initial samples and shifted samples. 

The result of running each hypothesis test on each pair of samples was a p-value. We interpreted 

the p-value at the 95% confidence level to determine whether an outcome was significant 

(positive) or not significant (negative). We interpreted the correctness of this result depending on 

the effect size. Table 2 concisely demonstrates our classification logic given a p-value p and an 

effect size d. 

Table 10.2. Classification logic 
Positive Negative 

True p<0.05,d>0 p>0.05,d=0 
False p<0.05,d=0 p>0.05,d>0 

We labeled these quantities using TP for True Positive, TN for True Negative, FP for False 

Positive, and FN for False Negative. Using these labels, we then computed the F-measure of each 

classification. We use the following definitions to compute F-measure [75]: 

recall = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (1) 

precision = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (2) 

𝐹 = 2 ∗ recall∗precision
recall+precision

. (3) 

The F-measure of all hypothesis tests increased with sample size, but the relative rankings 

between methods remained stable. To eliminate the effect of sample size on F-measure, we 

ordinally ranked each value at each sample size; the ranks were consistent across sample sizes. 

This consistency allowed us to summarize our results by distribution. 
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10.5.4. Hypothesis 
We wanted to show that MeansTest had higher rank than that of other hypothesis tests. Given a 

hypothesis test i, Equations 4 and 5 formally state the null and alternate hypotheses as: 

 𝐻0: Rank(MeansTest) = Rank(𝑖) (4) 

 𝐻𝐴: Rank(MeansTest) > Rank(𝑖). (5) 

We rejected each null hypothesis with 95% confidence. 

10.6. Results 
In this section, we describe our results, including the rankings by distribution, the p-values for the 

hypothesis tests, and the threats to validity. 

10.6.1. Rankings 
Table 3 shows the summary of the ranks on an ordinal scale of 1-5, using the average for ties. 

Higher ranks are better. 

Table 10.3. Hypothesis Test Rankings 
Distributio

n 
Mean

s-
Test 

Wilcox
on 

t Welc
h 
t 

Brunner
-Munzel 

beta(2,1) 5 3 1.
5 

1.5 4 

beta(2,2) 3 1 4 5 2 
beta(3,2) 3 1 5 4 2 
beta(6,2) 5 3 2 1 4 

chisq(20,0) 4 3 2 1 5 
chisq(4,0) 3.5 3.5 2 1 5 
Gamma(1,

5) 
4.5 3 2 1 4.5 

Gamma(4,
5) 

5 2 3 1 4 

Laplace(0,
1) 

3 5 2 1 4 

t(10,0) 4 3 2 1 5 
t(300,0) 4 1 5 3 2 
t(5,0) 3 4 2 1 5 
t(7,0) 3 4 2 1 5 

uniform(0,
1) 

3 1 5 4 2 

 

As Table 3 shows, MeansTest demonstrated favorable classification behavior over the other tests. 

While the individual tests each had their strong and weak points, MeansTest was able to infer the 
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appropriate test sufficiently to always place at least third or higher. Contrast that with the 

Wilcoxon rank-sum test and Welch's t-test, which both fared poorly with alarming frequency. 

Brunner-Munzel, the new non-parametric test, usually did well. With regard to the added entry on 

normality, the t-tests nicely complemented Brunner-Munzel's weak points, lending credibility to 

our idea to pick between the tests based on the normality of the data. 

10.6.2. Summary statistics 
Table 4, in turn, provides summary statistics for Table 3.  

Table 10.4. Hypothesis Test Summary Statistics 

Test Worst rank Best rank Mean p-value 
MeansTest 3 5 3.8 - 
Wilcoxon 1 5 2.7 0.013 
Welch's t 1 5 1.9 0.0037 

t 1.5 5 2.8 0.038 
Brunner-Munzel 2 5 3.8 0.61 

 

To evaluate our set of hypotheses regarding the ranks, we applied paired hypothesis testing to 

account for the fact that the ranks are dependent variables on the distribution being tested. Since 

we are here comparing ranks, only a nonparametric rank test is appropriate. Note that ranks have 

the property that their sum is always constant (consider the row sums in Table 3) – therefore 

violating an always implicitly assumed independence assumption in parametric tests. 

Using this information, we applied the Wilcoxon signed-rank test (as Brunner-Munzel only 

applies to independent samples). As Table 4 highlights, we found that MeansTest had a 

significantly higher rank than Wilcoxon rank-sum and the t-tests. MeansTest did not have a 

significantly higher rank than Brunner-Munzel. 

10.6.3. Threats to Validity 
In terms of threats to statistical conclusion validity, our results only have 95% confidence. We 

declared our hypotheses ahead of time so we would not have to worry about inflated experiment-

wide error from performing multiple comparisons. Even if we had decided on all four tests after 

performing the experiment, we should still have at least 80% experiment-wide confidence 

according to the very conservative Bonferroni correction. 

In terms of threats to construct validity, these should be minimal because we used the statistics 

framework R to perform all of our statistics. In our previous work [72], we tested each MeansTest 
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path and confirmed that it returned the same result as the expert statisticians using other statistics 

software. Similarly, in our experiment, we used R to generate the probability distributions and 

shift their parameters. 

In terms of threats to internal validity, we used a data set that was previously used in an 

experiment to assess the ability of statistics to infer non-normality, which on the surface could 

appear to create a bias towards nonparametric statistics. We defused this threat by establishing 

that the distributions were balanced between normal and non-normal skewness and kurtosis. 

Many of the distributions used in the experiment, such as the t distribution, were in fact 

approximately normal. We ran each hypothesis test on every data set we generated, so it is not 

possible that MeansTest received "easier" samples than the other tests. 

In terms of threats to external validity, we only looked at the 14 Razali and Wah distributions. 

While we generated many samples from these distributions, it is true that there are other 

distributions out there such as the negative exponential and standard normal distributions. This 

threat is mitigated by Razali and Wah's methodology, in that they selected distributions to cover a 

range of standard skewness and kurtosis values. Thus, the skewness and kurtosis of many other 

distributions are implicitly covered by these 14 distributions. 

10.7. Meta-analysis 
Borrowing from the Dit et al. mapping process, we systematically mapped the proceedings of 

ICST'13 into our experiment framework. We applied MeansTest to the experiments from those 

papers that 1) featured empirical comparisons of two or more testing methods/tools, and 2) had 

sufficient data in the paper to perform the validation. Based on the output from MeansTest, we 

reported the statistical significance of the experiments' results and provided recommendations for 

insignificant results. 

10.7.1. Research Questions 
We are curious to know: 

RQ1: How pervasive were Wilcoxon tests at ICST'13? 

RQ2: To what extent are the results at ICST'13 statistically significant?  
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10.7.2. Conducting the search 
We systematically examined prior art from ICST'13. As we will show, ICST'13 was of interest 

because the venue featured considerable empirical validation using the Wilcoxon family of tests. 

ICST'13 also had several empirical validation papers which did not comment on the statistical 

significance of their results. 

10.7.3. Screening criteria 
We wanted to analyze the existing published results of papers at ICST'13, so we included papers 

which consisted of empirical studies of testing methods that published their data. We excluded 

other types of papers such as practical experience reports and papers with formal proofs. 

10.7.4. Classification 
We classified papers at several levels: their track, their focus, whether they published raw data, 

and whether the results were statistically significant. We considered a result statistically 

significant if MeansTest reported at least one significant result and MeansTest found at least as 

many significant results as the authors claimed; if MeansTest disagreed with the authors about the 

significance of their results, we classified that paper overall as not being statistically significant. 

In this way, we did not bias our classification against thorough experiments with many hypothesis 

tests and some statistically insignificant results. 

10.7.5. Data extraction 
There were four pieces of data we extracted from each paper: 1) the paper's hypotheses, 2) the 

hypothesis testing applied (if any), 3) the published results and claims of significance, and 4) the 

MeansTest assessment of the results. We extracted these through manual reading and copy/paste 

of tables. Whereas Dit et al. reproduced entire experiments and published the TraceLab 

components implementing them, we found that we could sufficiently answer our more modest 

research questions through meta-analysis of the published results. 

Figure 2 shows the workflow we created to model individual comparisons of means in software 

testing experiments. Based on the paper's hypotheses, we manually established the nature of the 

samples (paired vs. two independent samples) as an input to the overall workflow. After inputting 

each sample, we executed the MeansTest workflow depicted in Figure 1, abstracted here as the 

node labeled MeansTest. As an output, MeansTest provided information such as the p-value, the 

hypothesis test used, and the sample size required to get a significant result. We compared those 

results with the results the authors provided. We used this workflow to present the results below. 
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Figure 10.2. Workflow for ICST 2013 meta-analysis. 

10.8. Meta-analysis results 
Figure 3 shows the scope of the meta-analysis. 

 

Figure 10.3. Scope of ICST 2013 meta-analysis. 
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There were 38 papers in the main testing and industry track. Of those, 24 papers (63%) featured 

some kind of empirical validation comparing a method with one or more baseline methods. Of 

those 24 papers, only eight papers (33%) reported the statistical significance of the authors' 

empirical validation. In response to RQ1, we note that six papers (75%) used the Wilcoxon 

tests with no consideration for alternative tests. Only one of these papers  [76] printed enough 

raw data to enable a meta-analysis; the remaining 7 papers reported only summary statistics that 

we could not validate with MeansTest. 

We examined the remaining 16 papers with no statistical validation for the presence of raw data. 

Of the 16 papers, 11 papers (69%) printed enough of their experiment data in the proceedings to 

suffice for a MeansTest meta-analysis. Together with the Canfora et al. paper, we analyzed 12 

papers with data. 

In response to RQ2, our meta-analysis found that only six papers (50%) had reproducible 

statistically significant results at the 95% confidence level. This proportion is consistent with the 

Kampenes et al. systematic review [45]. The remaining six papers invariably claimed 

"significant" results even though the experiment was too small to support the statistical 

significance of said results.  These issues in the non-significant experiments could likely be 

remedied with a larger experiment. In the next sections, we use the MeansTest power analysis to 

recommend appropriate sample sizes. 

10.8.1. Analyses by experiment 
In this section, we briefly summarize the 12 experiments in question. We report the properties of 

the experiment as inferred by MeansTest, including normality, the appropriate hypothesis test, 

and MeansTest's p-value for the experiment. In cases where the authors' results were not 

statistically significant, we also state MeansTest's power analysis to suggest the appropriate 

course of action in order to get a significant result. 

 Multi-Objective Cross-Project Defect Prediction 
Canfora et al. [76] introduce a regression model, which they call Multiple-Objective Logistic 

Regression, to predict defects across projects. They compare their model with a Within-Project 

Logistic model, a Single-Objective cross-project Logistic model, and a Clustering-Based Logistic 

model. They study 10 projects. For each project, they compute the cost of the model, its recall, 

and precision. 

85 



They concede that the Within-Project model is better than their cross-project model. Using the 

Wilcoxon signed-rank test, they report that the Multiple-Objective Logistic model significantly 

diverges from the Single-Objective Logistic model in terms of the cost (p=0.02), but not the 

precision (p=0.4). Finally, they report that the Multiple-Objective Logistic model significantly 

diverges from the Clustering-Based Logistic model in terms of the cost (p=0.009) but the 

precision is borderline significant (p=0.05). All of the models had identical recall. 

This paper is of particular interest to this meta-analysis because it features raw data, existing 

statistical analysis of the results, and a statistically borderline p-value of 0.05. Better still, this 

inconclusive p-value was achieved because the authors used the least-powerful Wilcoxon test 

without justification. MeansTest was designed to address exactly this situation by automatically 

inferring whether the data is normal to lend more power to the analysis when appropriate. 

Table V summarizes our meta-analysis of this paper. Most of our results were the same, but in the 

case of the borderline significant p-value, MeansTest concluded that the data was sufficiently 

normally distributed to apply the t-test; this enabled the difference in precision to become 

statistically significant. 

Table 10.5. Canfora et al. vs MeansTest 
Logistic 
model 

Cost p-value Precision p-value 
Author's MeansTest Author's MeansTest 

Within-
Project 

- 0.15 - 0.06 

Single-
Objective 

0.02 0.02 0.4 1.0 

Clustering-
Based 

0.009 0.01 0.05 0.02 

 

In light of this small victory, one might pause to ponder whether the MeansTest p-values, 

themselves, are significantly different from the p-values of Canfora et al. and the broader research 

community. One could recursively apply MeansTest to the MeansTest p-values and the authors' 

p-values to make that determination. If the difference were not significant, the MeansTest power 

analysis would recommend the required sample size needed to get a significant difference. We 

leave this problem as future work. 
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 Empirical Evaluation of the Statement Deletion Mutation Operator 
Deng et al. [77] examined the effectiveness of the statement deletion mutation operator. They 

applied this mutation to 40 Java classes. For each class, the first author built a test set that killed 

every deletion mutant. They then applied the test set to muJava's mutants. They reported that the 

deletion operator used significantly less mutants than muJava to get roughly the same level of 

coverage as a test set generated from killing muJava mutants. 

In applying MeansTest, we found that neither of the paired data sets were normally distributed. 

The statement deletion operator indeed produced significantly less mutants than muJava 

(Wilcoxon signed-rank, p~10^-8). However, MeansTest reported that the deletion operator had a 

significantly worse mutation score than a muJava test set with mutation score 1 (Wilcoxon 

signed-rank, p ~10^-7). 

 Symbolic Path-Oriented Test Data Generation for Floating-Point Programs 
Bagnara et al. [78] introduced a performance optimization to the symbolic constraint solver for C 

code, FPSE. They ran their improved code against the stock code and measured the running time 

against 1-12 iterations of the C functions dichotomic() and 

tcas_periodic_task_1Hz(). They reported improved execution times, including solving 

some problems that caused the original code to time out. 

MeansTest inferred that the performance data was approximately normal under dichotomic(), 

but not under tcas_periodic_task_1Hz(). The performance optimization was indeed 

significantly faster under dichotomic() (t-test, p=0.02) but not significantly faster under 

tcas_periodic_task_1Hz() (Wilcoxon signed-rank, p-value=0.12). According to 

MeansTest's power analysis, the authors would need to run at least 55 iterations to get a 

statistically significant difference in performance. 

 Generating Effective Integration Test Cases from Unit Ones 
Pezzè et al. [79] developed an Eclipse plugin, called Fusion, for automatically generating 

integration test cases from the semantics of unit test cases. They compared the number of faults 

and false positives found by their method with two other tools: Randoop and Palus. They 

performed this comparison across four programs. They reported that Fusion found different 

faults than Randoop and Palus, but had a comparable number of false positives. 

We applied MeansTest 4 times total to compare Fusion with the other two methods. MeansTest 

inferred that the differences between the methods were normally distributed. It is difficult to 
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formulate a hypothesis for assessing the statistical significance of finding "different" faults, but 

Fusion did not find significantly different number of real faults than either Randoop or Palus (t-

test, p=0.09 and 0.13, respectively). Fusion indeed found about the same false positives as 

Randoop and Palus (t-test, p=0.26 and 0.12, respectively). According to MeansTest's power 

analysis, the authors would need to test at least 12 programs to notice a difference in real faults, 

and 26 programs to notice a difference in false positives. 

 Improving Test Generation under Rich Contracts by 

 Tight Bounds and Incremental SAT Solving 
Abad et al. [80] developed a new test generator, called FAJITA. They compared the branch 

coverage and performance of FAJITA with Pex, Kiasan, Randoop, AutoTest, and EvoSuite. They 

ran these tools on 25 methods across 8 classes. They reported that FAJITA had the best branch 

coverage of all tools. 

We applied MeansTest 4 times to compare FAJITA's branch coverage to that of each of the other 

tools. We configured MeansTest to state the authors' hypothesis as one-sided. MeansTest inferred 

that the differences between the tools were not normally distributed. FAJITA did have 

significantly greater branch coverage than Pex, Kiasan, Randoop, AutoTest,  and EvoSuite 

(Wilcoxon signed-rank, p=0.0008, 0.03, 0.0002, 0.0004, 0.01, respectively). 

 Search-Based Testing of Relational Schema Integrity Constraints Across Multiple Database 
Management Systems 
Kapfhammer et al. [81] developed an input generator, called AVM, to test the constraints on 

database schemas. They compared the constraint coverage of AVM to DBMonster. They reported 

that AVM had better constraint coverage than DBMonster. 

MeansTest inferred that the difference between the data was not normally distributed. MeansTest 

concluded that the constraint coverage of AVM was significantly better than DBMonster 

(Wilcoxon, p~10^-5). 

 MFL: Method-Level Fault Localization with Causal Inference 
Shu et al. [82] applied spectrum-based fault localization at the method level. They compared their 

technique, MFL, to existing SBFL tools Tarantula, Ochiai, PFIC, and one based on the F-

measure. They ran these tools across 4 programs each seeded with about 7 faults and calculated 

the minimum cost of a developer searching through methods according to the suspiciousness 
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ranks to find a bug. The authors reported that MFL was cheaper to use than the other measures in 

3 out of 4 programs. 

MeansTest inferred that the difference between the minimum costs of the methods was normally 

distributed. MeansTest concluded that the minimum cost of MFL was significantly cheaper than 

Tarantula and PFIC (t-test, p=0.033 and 0.34, respectively), but not significantly cheaper than 

Ochiai and F-measure (t-test, p=0.07 and 0.06, respectively). According to MeansTest's power 

analysis, the authors would need to test at least 11 programs to notice a difference in minimum 

cost in all four tools. 

 Scaling Model Checking for Test Generation using Dynamic Inference 
Yeolekar et al. [83] developed a test generation tool, called AutoGen, for satisfying structural 

coverage criteria.  They compared the branch coverage of test cases generated with their tool 

against random testing and another test generator called SatAbs. They applied these tools to 10 

functions. They reported that AutoGen had better coverage than SatAbs and random testing. 

AutoGen had significantly higher coverage than random (t-test, p~10^-5). The analysis of the 

difference between SatAbs and AutoGen is tricky because although SatAbs had higher coverage 

in some instances, it timed out on most functions. If we treat the timeouts as 0% coverage, we see 

that AutoGen had significantly higher coverage than SatAbs, but the difference was not 

normally distributed (Wilcoxon signed-rank test, p= 0.04). 

 Transformation Rules for Platform Independent Testing: An Empirical Study 
Eriksson et al. [84] introduced UML transformations to identify implicit logical predicates ahead 

of time, before code is generated from the models. Their goal was to reduce the number of 

requirements needed to satisfy logic coverage criteria such as all-pairs and MCDC. They examine 

the UML of 6 programs and apply their transformations to the programs. They then compute the 

number of new requirements generated going from UML to code and show that their method 

requires less new rules. 

MeansTest inferred that the data was not normally distributed. The implicit-to-explicit 

transformations did indeed generate significantly less rules going from the UML to code; this 

result applied to both all-pairs and MCDC coverage requirements (Wilcoxon, p=0.008). 
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 An Efficient Algorithm for Constraint Handling in Combinatorial Test Generation 
Yu et al. [85] introduced their combinatorial test generation tool, called ACTS. They compared 

ACTS to other combinatorial test generators: CASA, Ttuples, and PICT. They compared the 

tools' performance in terms of the amount of time spent building the test set. They evaluated their 

tools across 16 programs and concluded that "ACTS can perform significantly better for systems 

with more complex constraints." 

MeansTest inferred that the performance data was not normally distributed. ACTS was 

significantly faster than CASA and TTuples, but not PICT (Wilcoxon, p=0.0001, 0.004, and 

0.37, respectively). MeansTest estimates that the authors would need 35 programs to show a 

statistically significant difference in the runtime performance between ACTS and PICT. 

 Oracle-Based Regression Test Selection 
Yu et al. [86] examined the problem of regression test selection as part of change impact analysis 

at ABB. They discussed two broad methods of creating test oracles: using outputs and tracking 

the internal state. They introduced an algorithm for inferring the test cases needed to test a 

change, based on so-called "internal oracles" that study the effect of changes on the internals of a 

system. They compared the faults found by test sets selected by internal oracles with those 

generated by "output oracles" (oracles that only check the output) on 9 programs. They found that 

internal oracles discover significantly more faults than output oracles. 

MeansTest inferred that the fault distribution data was normally distributed.  The internal oracle 

tests found significantly more faults than the output oracle tests (t-test, p=0.002). 

 Test Case Prioritization Using Requirements-Based Clustering 
Arafeen and Do [87] examined the issue of test case prioritization: which test cases are most 

likely to uncover faults?  They introduced a new test case clustering technique that orders test 

cases based on the priority of their requirements. They introduce several within-cluster ordering 

heuristics as well. They compare the effectiveness of prioritizing with clustering against standard 

McCabe-style prioritization metrics on four programs: three versions of iTrust and Capstone. 

They find that clustering outperforms McCabe on iTrust, but not on Capstone. 

MeansTest inferred that the relative effectiveness percentages were normally distributed. The 

clustering technique significantly outperformed McCabe on the iTrust code (t-test, p~10^-14) 

but not on Capstone (t-test, p=0.18). The Capstone program was too small to perform a 

meaningful analysis. 
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10.9. Discussion and Future Work 
An automated selection process for statistical analysis can help researchers draw conclusions 

about the statistical significance of their results in the absence of an expert statistician. Our 

validation showed that this process significantly outperformed blind adherence to the Wilcoxon 

nonparametric tests. In light of newer nonparametric hypothesis tests such as Brunner-Munzel, 

the adherence to the Wilcoxon tests that prevailed in ICST'13 may be outdated. Indeed, we found 

a specific instance at ICST'13 where our process found a significant result that was originally 

reported as being of questionable significance. While very promising, our results indicate that our 

process is still not perfect; it is not a substitute for an expert statistician. It is ultimately up to an 

expert to decide which test is most appropriate in a given situation.  

Cross-referencing our meta-analysis with the systematic review by Kampenes et al. [45], we see 

that ICST'13 had almost identical statistical significance as journal papers. About 50% of results 

were statistically significant in both studies.  Unfortunately, authors at ICST'13 under-reported 

the statistical significance of their work compared to the Kampenes et al.  journal papers, with 

only 33% of empirical validation papers at ICST'13 reporting their statistics. We hope that our 

workflow will make it more convenient for authors in the future to report statistical significance. 

In our meta-analysis of ICST'13, we stated the minimum sample sizes required to achieve 

statistically significant results. Our methodology, well-known to statisticians as power analysis, is 

a welcome addition to the automated statistics mode of thought. Many problem domains call for 

even more sophisticated analysis, such as blocked designs and analysis of variance, for which we 

have yet to provide a solution. There are several models of analysis of variance, each with their 

own assumptions, so this type of analysis would benefit from an automated selection process 

similar to that of MeansTest and remains as future work. 
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