
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2016

MODELING, LEARNING AND REASONING ABOUT PREFERENCE MODELING, LEARNING AND REASONING ABOUT PREFERENCE

TREES OVER COMBINATORIAL DOMAINS TREES OVER COMBINATORIAL DOMAINS

Xudong Liu
University of Kentucky, xudong.liu23@uky.edu
Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.132

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Liu, Xudong, "MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES OVER
COMBINATORIAL DOMAINS" (2016). Theses and Dissertations--Computer Science. 43.
https://uknowledge.uky.edu/cs_etds/43

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Xudong Liu, Student

Dr. Miroslaw Truszczynski, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES
OVER COMBINATORIAL DOMAINS

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Xudong Liu

Lexington, Kentucky

Director: Dr. Miroslaw Truszczynski, Professor of Computer Science
Lexington, Kentucky 2016

Copyright c© Xudong Liu 2016

ABSTRACT OF DISSERTATION

MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES
OVER COMBINATORIAL DOMAINS

In my Ph.D. dissertation, I have studied problems arising in various aspects of pref-
erences: preference modeling, preference learning, and preference reasoning, when
preferences concern outcomes ranging over combinatorial domains. Preferences is a
major research component in artificial intelligence (AI) and decision theory, and is
closely related to the social choice theory considered by economists and political scien-
tists. In my dissertation, I have exploited emerging connections between preferences
in AI and social choice theory. Most of my research is on qualitative preference repre-
sentations that extend and combine existing formalisms such as conditional preference
nets, lexicographic preference trees, answer-set optimization programs, possibilistic
logic, and conditional preference networks; on learning problems that aim at discover-
ing qualitative preference models and predictive preference information from practical
data; and on preference reasoning problems centered around qualitative preference
optimization and aggregation methods. Applications of my research include recom-
mender systems, decision support tools, multi-agent systems, and Internet trading
and marketing platforms.

KEYWORDS: preferences, decision theory, social choice theory, knowledge represen-
tation and reasoning, computational complexity, artificial intelligence

Author’s signature: Xudong Liu

Date: April 29, 2016

MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES
OVER COMBINATORIAL DOMAINS

By
Xudong Liu

Director of Dissertation: Miroslaw Truszczynski

Director of Graduate Studies: Miroslaw Truszczynski

Date: April 29, 2016

To my family, especially to my son Adam (Shude) Liu.

ACKNOWLEDGMENTS

Time flies. I cannot believe that my graduate school career is coming to the end. It

almost feels yesterday when I started my Ph.D. program in computer science at the

University of Kentucky (UK) in Fall 2010. Looking back and connecting the dots in

the past six years, I owe much gratitude to the wonderful individuals riding along

with me from start to end of this journey.

First and foremost, I want to thank my advisor and mentor, Dr. Miroslaw

Truszczynski, for his continuous support of my research, for always being there when-

ever I had questions, and for his patience and immense knowledge. I am thankful to

his guidance throughout the years that has helped me grow to not only a better com-

puter science researcher, but a better writer and speaker in writing technical papers,

including this dissertation, and presenting research results at numerous venues.

Besides, I am very grateful to the rest of my research committee: Dr. Samson

Cheung, Dr. Jane Hayes and Dr. Jerzy Jaromczyk, for their insightful and valuable

comments that encouraged me to expand my research from various perspectives.

These research directions provide me with a promising starting point for my next

endeavor as an assistant professor.

Next, my sincere thanks goes to all the professors at UK whom I am fortunately to

have taken classes with. I am also thankful to all the classmates, among other peers,

for their helpful and, more often than not, cheerful discussions during the years.

Finally, none of this dissertation would have been possible without the support

of my beloved parents, my father Zhaoling Liu and my mother Ping Liu, who had

implanted in me the great value of hard working and optimism, long before I started

graduate school. I also thank my wife Xiaozhen Zhang for her unconditional love and

iii

caring through all the ups and downs, and my son Adam for making me laugh and

mature gradually as a caregiver and as a father.

iv

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . v

List of Tables . vii

List of Figures . ix

Chapter 1 Introduction . 1

Chapter 2 Technical Preliminaries . 7

2.1 Relations and Orders . 7

2.2 Combinatorial Domains . 10

2.3 Propositional Logic . 10

2.4 Computational Complexity Theory 13

Chapter 3 Related Work . 18

3.1 Preference Modeling and Reasoning 18

3.2 Social Choice . 32

Chapter 4 Reasoning with Preference Trees 37

4.1 Introduction . 37

4.2 Preference Trees . 39

4.3 P-Trees and Other Formalisms . 44

4.4 Reasoning Problems and Complexity 52

4.5 Conclusions . 55

Chapter 5 Learning Partial Lexicographic Preference Trees 57

v

5.1 Introduction . 57

5.2 Partial Lexicographic Preference Trees 58

5.3 Passive Learning . 63

5.4 Learning UI PLP-trees . 64

5.5 Learning CI PLP-trees . 71

5.6 Conclusions . 74

Chapter 6 Empirical Evaluation of Algorithms to Learn PLP-Trees and PLP-

Forests . 76

6.1 Introduction . 76

6.2 Partial Lexicographic Preference Trees 79

6.3 Partial Lexicographic Preference Forests 92

6.4 Conclusions . 95

Chapter 7 Aggregating Lexicographic Preference Trees 98

7.1 Introduction . 98

7.2 Computing Ranks . 101

7.3 The Problems and Their Complexity 102

7.4 The Problems in Answer-Set Programming 117

7.5 The Problems in Weighted Partial Maximum Satisfiability 124

7.6 Experiments . 129

7.7 Conclusions . 134

Chapter 8 Conclusion and Future Work . 136

8.1 Future Work . 137

Bibliography . 139

Vita . 145

vi

LIST OF TABLES

3.1 Tolerance degrees with respect to P . 29

3.2 Satisfaction degrees with respect to P 31

5.1 Complexity results for passive learning problems 74

6.1 Classification datasets in UCI Machine Learning Repository used to gen-

erate preference datasets . 81

6.2 Description of datasets in the library . 82

6.3 Accuracy (percentage of correctly handled testing examples) for UIUP

PLP-trees learned using the best-agreement and the greedy methods on

the learning data (250 of E�) . 87

6.4 Accuracy percents on the testing data (30% of E�) for all four classes of

PLP-trees, using models learned by the greedy algorithm from the learning

data (the other 70% of E�) . 89

6.5 Maximum sizes of trees for all the classes and the training sample sizes

for all datasets . 90

6.6 Sizes of trees learned by the greedy algorithm from the training data (70%

of E�) . 91

6.7 Accuracy percents on the testing data (30% of E�) for UIUP trees and

forests of 5000 UIUP trees, using the greedy and the best-agreement al-

gorithms from the learning data (the other 70% of E�) 94

6.8 Accuracy percents on the testing data (30% of E�) for all four classes of

PLP-forests of 5000 trees, using the greedy algorithm from the learning

data (the other 70% of E�) . 94

7.1 k-Approval . 108

vii

7.2 (k, l)-Approval . 111

7.3 b-Borda . 117

viii

LIST OF FIGURES

2.1 Binary relations . 9

2.2 Polynomial hierarchy diagram . 16

2.3 Computational complexity diagram . 17

3.1 Acyclic CP-net . 21

3.2 An LP-tree T . 24

3.3 A CI-CP LP-tree T . 25

3.4 A preference tree . 27

4.1 A preference tree . 39

4.2 P-trees on cars . 41

4.3 Compact P-trees . 43

4.4 P-trees with empty leaves . 43

4.5 A full LP-tree on cars . 44

4.6 A compact LP-tree as a compact P-tree 45

4.7 A P-tree Tr (TP) . 48

4.8 T br when m = 6 . 49

4.9 The P-tree TΦ . 53

4.10 The P-tree TΦ . 55

5.1 PLP-trees over the car domain . 60

5.2 X2 ∈ AI (E , S) is picked at the root . 73

6.1 UICP-1 PLP-tree . 79

6.2 Learning UIUP PLP-trees . 88

6.3 Training time comparison: best-agreement vs. greedy 91

ix

6.4 Forests of UIUP trees vs. forests of CICP trees 96

7.1 UI-UP LP-trees . 110

7.2 UI-UP LP-trees . 112

7.3 UI-UP LP-trees . 116

7.4 Translation of v in logic rules . 119

7.5 Borda evaluation problem encoding in clingo 120

7.6 Borda evaluation problem encoding using clingcon 121

7.7 Auxiliary data in logic rules for computing ~dk 124

7.8 k-Approval evaluation problem encoding in clingo 124

7.9 The WTM instance of the LP-tree v . 127

7.11 The WTM instance of the LP-tree v under 5-Approval 127

7.10 The WPM instance of the LP-tree v . 128

7.12 The WPM instance of the LP-tree v under 5-Approval 128

7.13 Simple CI-CP tree . 130

7.14 Solving the winner problem given simple LP-trees 131

7.15 Solving the evaluation problem given simple LP-trees 133

x

Chapter 1 Introduction

Preferences are ubiquitous. They arise when we select ice-cream flavors, vote for

candidates for an office, and buy cars. Preferences have spurred research in areas such

as artificial intelligence, psychology, economics, and operations research. Specifically,

there has been growing interest in research problems on preferences in contexts such

as knowledge representation and reasoning, constraint satisfaction, decision making,

and social choice theory. My research focuses on problems in preference modeling,

reasoning and learning.

Preferences can be represented in a quantitative and qualitative manner. For

the former, agents express preferences in a numerical form of a value function that

precisely assesses the degree of satisfaction of objects (often called outcomes or al-

ternatives). Specifying preferences as value functions on alternatives is feasible for

humans in some situations, e.g., when the number of alternatives is limited. In other

circumstances, particularly when the number of alternatives is large, people often

cannot express their preferences directly and accurately as value functions [28].

Assume an agent is given three flavors of ice-cream: strawberry, chocolate and

vanilla, and is asked to describe her preference among them. The agent could think

of a value function that assigns quantities (utilities) to each outcome based on a scale

from 1 to 10, with 10 representing the most satisfaction. For instance, the agent

could give the following value function:

strawberry 7→ 6, chocolate 7→ 9 and vanilla 7→ 3.

This function shows that the favorite alternative to the agent is chocolate (it has the

highest utility), and strawberry is preferred over vanilla.

Instead of rating alternatives quantitatively, it is often easier and more intuitive

1

to give preferential information in a qualitative way, so that to specify a binary

preference relation. Thus, the same agent could rank the flavors as the following

preference order:

chocolate � strawberry � vanilla.

Note that one can obtain the qualitative preferences from the value function, but not

vice versa. My research deals with qualitative preference relations.

Preferences play an essential role in areas that involve making decision, such as

decision theory and social choice theory. Once we have preferences of a user or

users, we can reason about the preferences to support decision making. In general,

preference reasoning problems can be classified based on the number n of agents from

which the preferences are gathered:

1. n = 1: individual decision making,

2. n > 1: collaborative decision making.

In case n = 1, we focus on optimization of the agent’s preferences and help her make

a better decision by, for example, computing an optimal alternative or comparing two

given alternatives. For the case where n > 1, it is important to calculate a consensus

(e.g., a winning outcome or ranking) of the group of agents.

One of the problems in preference reasoning is to aggregate preferences of a group

of agents. The problem is central to collective decision making and has been studied

extensively in social choice theory. Let us consider a scenario, where we are given a

set of alternatives X = {a, b, c, d, e} and a set PX of 10 preferences (called votes) as

follows.

5 : a > c > b > e > d,

3 : b > a > e > c > d,

2 : c > d > b > a > e.

2

Note that the integer associated with every preference order is the number of

agents sharing that same preference. We are asked to compute the winning alter-

native according to some aggregation rule. Plurality, veto and Borda are examples

of commonly used voting rules. For instance, Borda rule assigns score m − i to the

ith ranked alternative, where m is the number of alternatives. Thus, the winner is

the alternative with the highest score. We compute that the Borda winner for PX is

a, since its score 31 is the highest, followed by candidates b and c with the second

highest score 26.

While in the cases when the number of alternatives is small the preference-

aggregating problems, such as dominance testing and winner determination, have

received wide attention in the literature, the problems concerning preferences over

combinatorial domains, which typically contain large numbers of outcomes, have not

been investigated as much.

To illustrate the setting of combinatorial domains, let us consider a taxi company

plans to purchase a fleet of cars. The features (or, as we will say, attributes) that

will be taken into account are BodyType, Capacity, Make, Price, and Safety. Each

attribute has a domain of values that it can take, e.g., BodyType may have four

values minivan, sedan, sport, and suv. There could be hundreds or thousands of

cars, described by different combinations of values on these five attributes, even for

a relatively small number of attributes, and the decision makers will soon find it

impossible to enumerate all of them from the most preferred to the least.

Consequently, an expressive yet concise representation is needed to specify pref-

erences over combinatorial alternatives. Such preference formalisms are often catego-

rized into logical models and graphical models. Logical models include penalty logic

(Pen-logic) [48], possibilistic logic (Poss-logic) [29], qualitative choice logic (Qual-

logic) [20], conditional preference theories (CP-theories) [79], and answer set opti-

mization (ASO) [22], whereas graphical models found in the literature include gen-

3

eralized additive independence networks (GAI-nets) [7, 46], lexicographic preference

trees (LP-trees) [11, 59], conditional preference networks (CP-nets) [50], conditional

preference networks with trade-offs (TCP-nets) [14], and conditional importance net-

works (CI-nets) [50].

Once we fix a preference formalism, say F , in which preferences of agents are

specified, eliciting and learning preference expressions in F from agents becomes a

fundamental problem. Different techniques have been proposed to preference learning

in F such as active learning (or preference elicitation) and passive learning [38]. In

the process of active learning, the algorithm iteratively asks the user for a pairwise

preference between two given outcomes and constructs an instance of F as more

preferences are elicited. For passive learning, the learning algorithm assumes that a

set of pairwise preferences are obtained over a period of time and builds an instance

of F with no more information from the user.

My research has centered around the language of LP-trees. Extending LP-trees, I

have proposed two new tree-like preference formalisms: partial lexicographic prefer-

ence trees (PLP-trees) [62] and preference trees (P-trees) [35, 61, 63]. The language

of P-trees exploits a natural way humans apply to express preference information in

the setting of combinatorial domains. Often a human agent would first consider the

most desired criterion, possibly represented by a propositional formula ϕ. Outcomes

that agree with it are preferred to those that do not. Then, the same mechanism is

applied recursively to further discriminate among the outcomes that satisfy ϕ and

among those that falsify ϕ. This process ends up with a structured preference system

that always induces a total preorder.

My research on tree-like preference formalisms can be categorized into three main

directions: preference modeling, preference learning and reasoning about preferences.

Preference Modeling My research formally proposed PLP-trees [62] and P-trees

[61, 63]. In particular, I studied the relationship between P-trees and other existing

4

preference languages, and showed that P-trees extend LP-trees, possibilistic logic,

and ASO rules. Moreover, my work established computational complexity results of

commonly considered decision problems in the setting of P-trees, such as dominance

testing optimality testing, and optimality testing w.r.t a property.

Preference Learning Given a set of pairwise preferences between alternatives,

called examples, acquired from the user, it is important to learn (i) a PLP-tree,

preferably of a small size, consistent with a dataset of examples, and (ii) a PLP-tree

correctly ordering as many of the examples as possible in case of inconsistency. In

my work, I studied both these problems [62]. I established complexity results for

them and, in each case where the problem is in the class P, proposed a polynomial

time algorithm. On the experimentation side, I have designed and implemented algo-

rithms, using both Answer-Set Programming (ASP) and approximation methods, to

learn PLP-trees and forests of these trees in the passive learning setting. To facilitate

experimentation, I developed several datasets based on classification datasets such as

Library for Preferences, Preference Learning Site, and UCI Machine Learning Repos-

itory. To evaluate the effectiveness and feasibility of our own models, I compared

them with machine learning models, such as decision trees and random forests.

Preference Aggregation In this area, I investigated two preference-aggregation

problems, the winner problem and the evaluation problem, based on positional scor-

ing rules (such as k-approval and Borda) when votes in elections are given as LP-trees

[58, 59]. My work brought new computational complexity results of these problems,

and provided computational methods to model and solve the problems using answer

set programming (ASP) and weighted partial maximum satisfiability (WPM).

The outline of the remainder of this dissertation is the following. In Chapter 2,

I present necessary technical preliminaries including binary relations, order theory,

and computational complexity theory. In Chapter 3, I go through related work that

proposed approaches to preference modeling and reasoning in artificial intelligence

5

and social choice theory. In Chapters 4 to 7, I discuss results of my work on modeling,

learning and reasoning about preferences over combinatorial domains. I conclude with

a brief note in Chapter 8 on my ongoing research, as well as on possible directions of

future work.

Copyright c© Xudong Liu, 2016.

6

Chapter 2 Technical Preliminaries

In this section I will give an overview of mathematical and computational concepts

that I will use throughout the rest of this document. First, since I consider preference

relations that are modeled as binary relations, I recall the definitions of binary rela-

tions and their key properties. I then define several types of preference relations in

terms of these properties. Second, I review combinatorial domains as I am interested

in preferences over combinatorial domains. Third, I introduce propositional logic to

show how propositional formulas are used to compactly represent outcomes. Finally,

I review concepts in computational complexity theory, as they are useful in describing

the hardness of problems involving reasoning about preferences.

2.1 Relations and Orders

Definition 1. Let A and B be two sets of elements. A binary relation R between A

and B is a subset of the Cartesian product of A and B, that is,

R ⊆ A×B.

The following properties of binary relations are particularly relevant for modeling

preferences.

Definition 2. Let R be a binary relation over a set O of objects (R ⊆ O × O). We

say that R is

1. reflexive if for every o ∈ O, (o, o) ∈ R.

2. irreflexive if for every o ∈ O, (o, o) 6∈ R.

3. total if for every o1, o2 ∈ O, (o1, o2) ∈ R or (o2, o1) ∈ R.

4. transitive if for every o1, o2, o3 ∈ O, if (o1, o2) ∈ R and (o2, o3) ∈ R, then

(o1, o3) ∈ R.

7

5. symmetric if for every o1, o2 ∈ O, if (o1, o2) ∈ R, then (o2, o1) ∈ R.

6. antisymmetric if for every o1, o2 ∈ O, if (o1, o2) ∈ R and (o2, o1) ∈ R, then

o1 = o2.

For instance, assuming that N = {1, 2, . . .} is the set of positive integers, the less-

than-or-equal-to relation ≤ over N is reflexive, total, transitive and antisymmetric,

while the less-than relation < over N is irreflexive, transitive and antisymmetric.

Definition 3. A binary relation over O is a partial preorder if it is reflexive and

transitive, a total preorder if it is a partial preorder that is total, a partial order if it

is a partial preorder that is antisymmetric, and a total order if it is a partial order

that is total.

We use preorders to model preference relations. Thus, when we describe a prefer-

ence order, we have in mind a relation that is a partial preorder. Given two objects o

and o′, we sometimes need to say that o′ is at least as good as o or, that o′ is strictly

preferred over o. In some situations, due to lack of information about the two objects

at hand, we cannot determine which object is preferred over the other, and speak

about the objects being incomparable. Formally, we have the following definitions.

Definition 4. Let O be a set of objects, and o and o′ two objects in O. Let �

be a preference relation that is a partial preorder over O. We say that o′ is weakly

preferred to o if o′ � o. Object o′ is strictly preferred to o, o′ � o, if o′ � o and o 6� o′.

Object o′ is equivalent with o, o′ ≈ o, if o′ � o and o � o′. Object o′ is incomparable

with o, o′ ./ o, if o′ 6� o and o 6� o′.

We illustrate these notions with several examples of preorders (preference orders)

in Figure 2.1. We assume that a directed edge is from a less preferred object to a

more preferred one. It is clear that the relation in Figure 2.1a is a partial preorder,

Figure 2.1b a total preorder, Figure 2.1c a partial order, and Figure 2.1d a total

8

order. Note that in these figures, each node represents a set of distinct but equivalent

outcomes.

o1,o5

o2,o6 o3,o7

o4,o8

(a) partial preorder

o1,o5

o2,o6

o3,o7

o4,o8

(b) total preorder

o1

o2 o3

o4

(c) partial order

o1

o2

o3

o4

(d) total order

Figure 2.1: Binary relations

Definition 5. Let R and R′ be two binary relations, R′ extends R if R ⊆ R′.

As an example of relation extensions, we consider the partial order � in Fig-

ure 2.1c. Since o2 ./ o3, we have in total two extensions:

o1 � o2 � o3 � o4,

o1 � o3 � o2 � o4.

Definition 6. Let � be a preference relation over O, o ∈ O is optimal if there does

not exist o′ ∈ O such that o′ � o.

For instance, object o1 is optimal in the partial preorder shown in Figure 2.1a.

9

2.2 Combinatorial Domains

One scenario when decision problems involving preferences are difficult is when out-

comes are described as combinations of attribute values from finite domains. Take the

domain of cars as an example, where the attributes we care about are Price, Safety,

and Capacity. Every attribute has a binary domain of values: Capacity with domain

{low,high}, Price with domain {low,high}, and Safety with domain {low,high}. Note

that, although we mostly use binary attributes in the dissertation, the results and

algorithms we have obtained can easily be adjusted to general non-binary cases. Since

these are the only aspects of a car we care about, cars can be described as vectors of

values from these domains. For instance, vector 〈high,low,high〉 represents a car that

has high capacity, low price and high safety. We clearly see that the number of cars

grows exponentially as there are more attributes.

Definition 7. Let I be a set of attributes {X1, . . . , Xp}, each attribute Xi asso-

ciated with a finite domain Dom(Xi). A combinatorial domain CD(I) is a set of

combinations of values from Dom(Xi):

CD(I) =
∏

Xi∈V Dom(Xi).

We call the elements of CD(I) outcomes. Clearly, the size of CD(I) is exponential

in p, the number of attributes. The exponential growth of |CD(I)| makes it hard,

if not impossible, for agents to directly assess their preferences, even when each

domain is binary and there are as few as 6-7 attributes. In many practical cases,

hard constraints that can be modeled, for instance, by propositional formulas, are

identified and imposed to eliminate the infeasible outcomes.

2.3 Propositional Logic

In this work, propositional logic plays an important role in compactly representing

preferences over combinatorial domains. Propositional logic [49], or propositional

10

calculus, is a logic language concerning propositions (e.g., statements that are true

or false) that are built upon atomic propositions by means of logical connectives. We

first define the syntax of the language, that is, how formulas are constructed. Then,

we show its semantics, i.e., what it means for a formula to be true or false.

Propositions are represented as well-formed formulas, or simply formulas when no

ambiguity. Formulas are built from an alphabet of truth symbols (> and ⊥), variables

(uppercase letters), connectives (¬, ∧, ∨, and →), and parentheses. A formula is

either a truth symbol, a variable, or, if ϕ and ψ are formulas, (¬ϕ), (ϕ∨ψ), (ϕ∧ψ),

and (ϕ→ψ). (An outside pair of parentheses is often left out. In addition, conventions

based on the binding strength of connectives are used to eliminate some other pairs

of parentheses.) For example, if X and Y are formulas, we have that X ∧ (X→¬Y)

is a formula.

A truth assignment is a mapping v from variables to logical values True and False.

We now define what it means for a truth assignment to satisfy and falsify a formula.

Let v be a truth assignment, X a variable, and ϕ and ψ propositional formulas. First,

we define that v satisfies X, denoted by v |= X, if v(X) = True; and that v falsifies

X, denoted by v 6|= X, if v(X) = False. Then, we have v |= ¬ϕ if v 6|= ϕ holds,

v |= ϕ∧ ψ if v |= ϕ and v |= ψ hold, v |= ϕ∨ ψ if v |= ϕ or v |= ψ holds, v |= ϕ→ψ if

v 6|= ϕ holds or v |= ψ holds. We always have v |= > and v 6|= ⊥.

A truth assignment can then be viewed as an outcome in a combinatorial domain.

We consider two types of combinatorial domains: those of binary attributes and those

of non-binary attributes.

For a combinatorial domain of binary attributes, such attributes correspond to

variables in a language of propositional logic, and the outcomes from such a combi-

natorial domain correspond to truth assignments for that language. To establish the

correspondence, it suffices to select one value in the domain of each attribute as True

(or simply, 1) and the other one as False (or simply, 0). Thus, propositional for-

11

mulas provide a convenient way of representing sets of, possibly exponentially many,

outcomes from the corresponding combinatorial domain. We consider the domain of

cars as discussed in Section 2.2. We write variables X1, X2 and X3 in propositional

logic, corresponding to attributes Capacity, Price, and Safety. We then set that the

variables X1, X2 and X3 being True (11, 12 and 13, respectively) represent high in the

attributes Capacity, Price and Safety, respectively. Immediately, the variables being

False (01, 02 and 03, respectively) means low in the attributes. Hence, we now can

represent a car with low capacity, high price and low safety by a truth assignment

011203. As a consequence, formula X1 ∧ ¬X2 is a shorthand for the set of cars that

have high capacities and low prices.

When the attributes in the combinatorial domain become in general non-binary,

we now view the values in the attribute domains, not the attributes, as variables

in propositional logic. A variable assigned True (False) in M means corresponding

attribute value is in o (is not in o, respectively). Then, a formula ϕ represents the

set of outcomes whose counterpart truth assignments satisfying ϕ. We look at the

domain of cars of non-binary attributes: Capacity with domain {2,5,7m}, Price with

domain {low,med,high,vhigh}, and Safety with domain {low,med,high}. This domain

corresponds to a language of propositional logic of 10 variables, because there are 10

attribute values. We denote these variables by TC , FC , SC , LP , MP , HP , VP , LS,

MS and HS, in order of the values in attributes Capacity, Price, and Safety. A truth

assignment, that sets True on variables SC , MP , and HS, and False on the others,

models a car that has small capacity, medium price and high safety. We see that

not all truth assignments are legal. Therefore, we need a constraint that, for every

attribute domain, exactly one variable is true. Such a constraint can be expressed as

a propositional formula Φ. Now it is clear that formula Φ∧ ((HP ∧SC)∨ (MP ∧MS))

precisely and concisely represents the set of cars that have high price and capacity of

7 or more, and cars that have medium price and medium security. Thus, all results we

12

have obtained for combinatorial domains over binary attributes apply to the general

case, too.

2.4 Computational Complexity Theory

Computer scientists looking for algorithms to solve computational problems seek ways

to classify problems according to their computational hardness in terms of time (the

number of instructions needed to solve the problem) or space (the size of memory

needed to solve the problem). In this section, we define classes of computational

complexity used for such classification. We assume familiarity with the concept of the

Turing machine (TM). The definition of this notion and other definitions discussed

below can be found in complexity books by Garey and Johnson [39]; Lewis and

Papadimitriou [57]; and Arora and Barak [5].

Decision Problems

Let Σ be a finite set of elements. A string over alphabet Σ is an ordered tuple of finite

elements from Σ. In complexity theory, Σ is typically binary, that is, Σ = {0, 1}. We

denote by Σ∗ the set of all strings of elements in Σ. A decision problem (or a language)

is a set L of strings such that L ⊆ Σ∗. For instance, the SAT problem is the set of all

finite propositional formulas that have a satisfying truth assignment (assuming some

natural representation of propositional formulas as strings over a finite alphabet).

Studying decision problems on preferences involves designing reasoning algorithms

and proving complexity results. Hence, it is important to review complexity classes

that are related to later discussions of computational complexity results. These classes

include P, NP, coNP, classes in the polynomial hierarchy, and PSPACE.

13

P, NP and coNP

What differentiates the two classes P and NP is whether the decision problem can

be solved by a deterministic or a non-deterministic TM. [5]

Let f(n) be the computation time to solve a problem of input size n. We denote

by DTIME(f(n)) (NTIME(f(n))) a set of decision problems for which there exists

a deterministic (non-deterministic, respectively) TM that solves any instance of the

problem in time f(n). We now define the two classes as follows.

Definition 8 (Garey and Johnson, 1979). The class P (NP) consists of the decision

problems that can be solved using a deterministic (non-deterministic, respectively)

TM in time polynomial in the size of the input. Formally, we have

P =
⋃
d∈N DTIME(nd),

NP =
⋃
d∈N NTIME(nd),

where n is the size of the input.

Researchers in the field of complexity theory have studied the relation between

these two classes. Clearly, the relation P ⊆ NP holds. Whether NP ⊆ P holds or

not remains an open question. However, it is strongly believed that P 6= NP [41].

One of the many complexity classes related to P and NP [41] is the class coNP,

which contains problems that are complements of the problems in NP. Let L ⊆

{0, 1}∗ be a decision problem, we denote by L the complement of L, that is, L =

{0, 1}∗ − L. We have the following definition of the class coNP.

Definition 9. coNP = {L : L ∈ NP}.

To characterize the most difficult problems in class C (NP, coNP, etc), it is

helpful to introduce the definition of polynomial-time reducibility [41] and the idea

of C-hardness.

14

Definition 10. A decision problem L ⊆ {0, 1}∗ is polynomial-time reducible to a

decision problem L′ ⊆ {0, 1}∗, L ≤p L′, if there is a polynomial-time computable

function g : {0, 1}∗ → {0, 1}∗ such that for every instance x ∈ L iff g(x) ∈ L′. If C is

a class of decision problems, we say that L′ is C-hard if L ≤p L′ for every L in class

C.

Definition 11. Let C be a complexity class (NP, coNP, etc). A decision problem

L′ is C-complete if L′ is in the class C and L′ is C-hard.

It is clear that, in order to prove C-completeness, one needs to show that L′ ∈ C

(membership of class C), and prove C-hardness.

TM with Oracles and Polynomial Hierarchy

A TM with an oracle for a decision problem L is a TM that makes calls to an oracle

that decides L. The polynomial hierarchy, denoted by PH, is a hierarchy of these

complexity classes (i.e., ∆P
i , ΣP

i , and ΠP
i) that generalize the classes P, NP and

coNP to oracles.

Definition 12. The PH is defined iteratively. We first define that ∆P
0 = ΣP

0 = ΠP
0 =

P. Then for i ≥ 0, we define ∆P
i+1 (ΣP

i+1) to consist of decision problems solvable by

a polynomial-time deterministic (non-deterministic, respectively) TM with an oracle

for some ΣP
i -complete problem. We denote by ΠP

i+1 the set of decision problems that

are complements of problems in ΣP
i+1 .

For example, ΣP
2 is the class of decision problems solvable by a non-deterministic

TM in polynomial time with an oracle for some NP-complete problem.

One may notice that the classes ΣP
i and ΠP

i consist of problems that are comple-

ments to each other. Moreover, we have the inclusion between these classes as shown

in Figure 2.2.

15

Figure 2.2: Polynomial hierarchy diagram

PSPACE

In this work, we consider yet another complexity class called PSPACE that concerns

the complexity of space. It consists of problems that can be decided in polynomial

space.

Definition 13. The class PSPACE is the class of decision problems solvable by a

TM in space polynomial in the size of the input.

It is not hard to see the following relation hold.

PH ⊆ PSPACE.

We illustrate the relationship among the complexity classes in Figure 2.3. Many

classes that are not in our focus are omitted from our diagram.

Copyright c© Xudong Liu, 2016.

16

P

NP coNP

p
2

p
2

p
2

PH

PSPACE

Figure 2.3: Computational complexity diagram

17

Chapter 3 Related Work

In this chapter I will present research work in the literature that is related to my

research for the dissertation. I will first review some of the preference systems that

were introduced before, designed to represent qualitative preferences over combina-

torial domains. I will then introduce concepts from social choice theory underlying

methods to combine individual preferences to reach a common decision.

3.1 Preference Modeling and Reasoning

Researchers have proposed several languages to model preferences. I will now discuss

those of them that are closely related to my work. These languages include graphical

formalisms: Conditional Preference Networks (CP-nets) and Lexicographic Preference

Trees (LP-trees); and logical formalisms: Possibilistic Logic and Answer Set Opti-

mization (ASO). They are developed to provide concise and intuitive presentations

of preferential information for objects from combinatorial domains.

For all systems, I will focus on two aspects: the language in which preferences are

specified, and complexity of and algorithms for problems about the model. The most

fundamental of these problems are introduced in the following definitions.

Definition 14. L-CONSISTENCE: given an instance C of a preference formalism L,

decide whether C is consistent, that is, whether there exists a total order of outcomes

that agrees with every preference statement in C.

Definition 15. L-DOMINANCE: given an instance C of a preference formalism L

and its two distinct outcomes o1 and o2, decide whether o1 �C o2, that is, whether o1

is strictly preferred to o2 in the preference order defined by C.

18

Definition 16. L-OPTIMALITY-I: given an instance C of a preference formalism

L, decide whether C has an optimal outcome.

Definition 17. L-OPTIMALITY-II: given an instance C of a preference formalism

L and an outcome o of C, decide whether o is an optimal outcome.

Definition 18. L-OPTIMALITY-III: given an instance C of a preference formalism

L and some property Φ, decide whether there is an optimal outcome o that satisfies

Φ.

Conditional Preference Networks

The Language. Conditional Preference Networks (CP-nets) define preferential re-

lations between outcomes based on the ceteris paribus semantics [12]. Ceteris paribus

is Latin for “everything else being equal.”

Let V be a set of binary attributes.1 We denote by Asst(V) the set of all truth

assignments to the attributes in V. For each attribute Xi ∈ V, Pa(Xi) denotes the

parent attributes of Xi, such that preferences over the domain of Xi depend upon

how Pa(Xi) are evaluated.

Definition 19. Let V be a set of binary attributes V = {X1, . . . , Xn}. A CP-net

over V is a tuple (G,T), where

1. G = (V,E) is a directed graph, also called a dependency graph, specifying

dependencies among attributes; an arrow in the dependency graph points to a

child attribute from a parent attribute; for every Xi ∈ V , we have Pa(Xi) =

{Xj : (Xj, Xi) ∈ E}; and

2. T is a collection of conditional preference tables (CPTs) for all attributes. A

CPT(Xi) consists of preference statements of the form

1Attributes in CP-nets can be multi-valued. However, as my research mostly deals with prefer-
ence models over binary attributes, it suffices to discuss CP-nets in the binary setting.

19

u :�iu,

where u ∈ Asst(Pa(Xi)) and �iu is a total order describing preferences over

Dom(Xi) for a given assignment u to Pa(Xi).

We say that a CP-net N = (G, T) is acyclic if G is acyclic; otherwise, it is cyclic.

To illustrate, let us consider the domain of cars. For simplicity, we take three binary

attributes Capacity, Price, and Safety. Attribute Capacity (X1) has two values high

(11) and low (01). Attribute Price (X2) has two values high (12) and low (02).

Attribute Safety (X3) has two values high (13) and low (03). An example CP-net

N = (G, T) over binary attributes V = {X1, X2, X3} is shown in Figure 3.1a. We see

that the preferences on Price (Safety) depend upon the assignment made to Capacity

(Price, respectively).

To decide if outcome o1 is preferred to outcome o2 in a CP-net N , one needs to

show that o2 can be successively improved, in a “ceteris paribus” way, according to

the preference statements in N to reach o1.

Definition 20. Let N be a CP-net over V, Xi ∈ V, U = Pa(Xi), and Y = V −

(U ∪ {Xi}). Let uxiy be an outcome, where xi ∈ Dom(Xi), u ∈ Asst(U), and

y ∈ Asst(Y). An improving flip of uxiy wrt Xi is an outcome ux′iy such that

x′i �iu xi. A sequence of improving flips wrt N is a sequence of outcomes o1, . . . , oj

such that, for every k < j, ok+1 is an improving flip of ok wrt some attribute in V.

We say that outcome o1 is preferred to outcome o2 in N , denoted by o1 �N o2, if

there exists a sequence of improving flips from o2 to o1.

In a CP-net N , we say that outcome o is optimal if there does not exist another

outcome o′ such that o′ �N o.

Consider the CP-net N in Figure 3.1. It induces a partial order shown in Fig-

ure 3.1b, where each arrow represents an improving flip between two outcomes. We

see that 110203 �N 011213 because of the improving flipping sequence: 011213, 010213,

20

010203, and 110203. Outcome 111213 is optimal because no other outcome is better.

We note that there is no flipping sequence between 110213 and 010203. In such case, we

say that the two outcomes are incomparable. This CP-net is consistent because there

exists a total order of outcomes that agrees with the preference graph Figure 3.1b.

There are in fact two such total orders:

111213 � 111203 � 110203 � 110213 � 010203 � 010213 � 011213 � 011203,

111213 � 111203 � 110203 � 010203 � 110213 � 010213 � 011213 � 011203.

X1

X2

X3

11 > 01

11 : 12 > 02

01 : 02 > 12

12 : 13 > 03

02 : 03 > 13

(a) Dependency graph and CPT’s

011203

011213

010213

010203

110213

110203

111203

111213

(b) Preference graph

Figure 3.1: Acyclic CP-net

Problems and Complexity. Boutilier, Brafman, Domshlak, Hoos and Poole [12]

have proved that every acyclic CP-net is consistent, whereas Goldsmith et al. [45]

have shown that the CPN-CONSISTENCE problem is PSPACE-complete in general.

For the CPN-DOMINANCE problem, its complexity depends on the structure of

the dependency graph. The CPN-DOMINANCE problem can be solved by a poly-

nomial time algorithm for binary-valued tree-structured CP-nets, and the problem is

NP-complete for binary-valued CP-nets with specially structured dependency graphs

(e.g., max-δ-connected dependency graphs) [12]. However, it is NP-hard for general

binary-valued acyclic CP-nets [12]. Furthermore, in the most general case when the

21

dependency graph could be cyclic, this problem is PSPACE-complete even if the

CP-nets are consistent [45].

For acyclic CP-nets, the optimality problems (i.e., CPN-OPTIMALITY-I, CPN-

OPTIMALITY-II, and CPN-OPTIMALITY-III) are easy, that is, they are in the

class P [12].

Lexicographic Preference Trees

The language of lexicographic preference trees [11] uses trees to model preferences. It

is motivated by lexicographic orderings [50] and lexicographic preferences [33]. This

formalism and its variants are the primary focus on my research.

The Language. A lexicographic preference tree (LP-tree) T over a set I of p binary

attributes X1, . . . , Xp is a labeled binary tree. Each node t in T is labeled by an

attribute from I, denoted by Iss(t), and with preference information of the form

a > b or b > a indicating which of the two values a and b comprising the domain of

Iss(t) is preferred (in general the preference may depend on the values of attributes

labeling the ancestor nodes). We require that each attribute appears exactly once on

each path from the root to a leaf.

Intuitively, the attribute labeling the root of an LP-tree is of highest importance.

Alternatives with the preferred value of that attribute are preferred over outcomes

with the non-preferred one. The two subtrees refine that ordering. The left subtree

determines the ranking of the preferred “upper half” and the right subtree determines

the ranking of the non-preferred “lower half.” In each case, the same principle is used,

with the root attribute being the most important one. We note that the attributes

labeling the roots of the subtrees need not be the same (the relative importance of

attributes may depend on values for the attributes labeling the nodes on the path to

the root).

The precise semantics of an LP-tree T captures this intuition. Given an outcome

22

x1x2 . . . xp, we find its preference ranking in T by traversing the tree from the root

to a leaf. When at node t labeled with the attribute Xi, we follow down to the left

subtree if xi is preferred according to the preference information at node t. Otherwise,

we follow down to the right subtree.

It is convenient to imagine the existence of yet another level of nodes in the

tree, not represented explicitly, with each node in the lowest level “splitting” into

two of these implicit nodes, each representing an outcome. Descending the tree

given an outcome in the way described above takes us to an (implicit) node that

represents precisely that outcome’s rank. The more to the left the node representing

the outcome, the more preferred it is, with the one in the leftmost (implicit) node

being the most desirable one as left links always correspond to preferred values.

To illustrate these notions, let us consider an example LP-tree over the car domain,

given by the three binary attributes Capacity, Price, and Safety, described earlier.

Our agent prefers cars with high capacity to cars with low capacity, and this preference

on Capacity is the most important one. Then, for high-capacity cars, the next most

important attribute is Safety and she prefers cars with high security level, and the

least important attribute is Price. She prefers low-price cars if security is low, and

high-price, otherwise. For low-capacity cars, the importance of Safety and Price

changes with Price being more important. The agent prefers low-price cars among

the low-capacity. Finally, high-security cars are preferred over low-security cars.

These preferences are captured by the LP-tree T in Figure 3.2. The tree shows that

the most preferred car for our agent has high capacity, security, and price, and the

next in order of preference has high capacity and security but low price.

Sometimes LP-trees can be represented in a more concise way. For instance, if

for some node t, its two subtrees are identical (that is, the corresponding nodes are

assigned the same attribute), they can be collapsed to a single subtree, with the same

assignment of attributes to nodes. To retain preference information, at each node

23

X1

X3

X2 X2

11 > 01

13 > 03

12 > 02 02 > 12

02 > 12

13 > 03 13 > 03

X2

X3 X3

Figure 3.2: An LP-tree T

t′ of the subtree we place a conditional preference table, and each preference in it

specifies the preferred value for the attribute labeling that node given the value of

the attribute labeling t. In the extreme case when for every node its two subtrees are

identical, the tree can be collapsed to a path.

Formally, given an LP-tree (possibly with some subtrees collapsed), for a node t,

let NonInst(t) be the set of ancestor nodes of t whose subtrees were collapsed into

one, and let Inst(t) represent the remaining ancestor nodes. A parent function P

assigns to each node t in T a set P(t) ⊆ NonInst(t) of parents of t, that is, the nodes

whose attributes may have influence on the local preference at Iss(t). Clearly, the

conditional preference table at t requires only 2|P(t)| rows, possibly many fewer than

in the worst case. In the extreme case, when an LP-tree is a path and each node has

a bounded (independent of p) number of parents, the tree can be represented in O(p)

space.

If for every node t in an LP-tree, P(t) = ∅, all (local) preferences are unconditional

and conditional preference tables consist of a single entry. Such trees are called

unconditional preference LP-trees (UP trees, for short). Similarly, LP-trees with all

non-leaf nodes having their subtrees collapsed are called an unconditional importance

LP-trees (UI trees, for short). This leads to a a natural classification of LP-trees into

four classes: unconditional importance and unconditional preference LP-trees (UI-UP

24

X1 11 > 01

X313 > 03

X2
13 : 12 > 02

03 : 02 > 12

X2 02 > 12

X3 13 > 03

Figure 3.3: A CI-CP LP-tree T

trees), unconditional importance and conditional preference trees (UI-CP trees), etc.

The class of CI-CP trees comprises all LP-trees, the class of UI-UP trees is the most

narrow one.

The LP-tree T in Figure 3.2 can be represented more concisely as a (collapsed)

CI-CP tree v in Figure 3.3. Nodes at depth one have their subtrees collapsed. In the

tree in Figure 3.2, the subtrees of the node at depth 1 labeled P are not only identical

but also have the same preference information at every node. Thus, collapsing them

does not incur growth in the size of the conditional preference table.

An LP-tree consisting of p binary attributes corresponds to a total order over 2p

outcomes. For the example in Figure 3.3, the total order induced by T is

111213 � 110213 � 110203 � 111203 � 010213 � 010203 � 011213 � 011203.

Problems and Complexity. As any LP-tree induces a total order, the LP -CONSISTENCE

problem is trivial. Moreover, an optimal outcome always exists and the LP -OPTIMALITY-

I problem is trivial, too. Similarly, the LP -OPTIMALITY-II and LP -OPTIMALITY-

III problems are easy to solve. Deciding whether outcome o1 dominates outcome o2 is

done by traversing the tree until an attribute X is reached such that o1(X) 6= o2(X).

Alternatives o1 and o2 are then ordered based on the preference information on X [11].

This method works in polynomial time and so, we know that the LP -DOMINANCE

problem is in P.

25

In addition to problems of reasoning about a single LP-tree, recently researchers

have initiated studies of the problem of aggregating LP-trees expressing preferences of

multiple agents. The goal is to facilitate collaborative decision making when all agents

express their preferences by means of LP-trees. LP-trees are aggregated according

to some social choice scheme, such as issue-by-issue voting [31], sequential majority

voting rule [80], positional scoring rules (e.g. Borda, k-Approval) [55, 60]. Basics

of social choice are discussed later in this chapter. In Chapter 7, I will provide

detailed definitions of aggregating problems and results I obtained on their complexity

according to positional scoring rules, as well as experimental analysis of computational

methods I proposed for aggregating votes given as LP-trees. These methods are based

on answer-set programming (ASP) [21] and weighted partial maximum satisfiability

(WPM) [73].

Preference Trees

The model of preference trees, proposed by Fraser [34, 35], is a more general formalism

than LP-trees. Using formulas as labels of the nodes, preference trees can represent

total preorders.

The Language and the Model. A preference tree PT over A is a binary tree

with each node labeled by some preference statement P , which is represented by a

propositional formula over A.

By associating the root of PT with CD(A), each node in PT partially orders a

subset of CD(A). Particularly, if each node t labeled by ϕ is associated with the set

Qt ⊆ CD(A), then for the two subtrees of t, the left subtree Lt is associated with

outcomes satisfying ϕ, and the right subtree Rt with outcomes falsifying ϕ.

Consider the domain of cars over three binary attributes: Capacity, Price and

Safety, with values high (11) and low (01), high (12) and low (02), and high (13) and

low (03), respectively.

26

X1∨X2

X1 X3

Figure 3.4: A preference tree

We look at the preference tree in Figure 3.4. The most preferred cars according

to this preference tree are those with high capacity, followed by the cars with high

price. The least preferred cars are those with low capacity and price, but with high

safety.

Problems and Complexity. In the setting of preference trees, the PT-CONSISTENCE

and the PT-OPTIMALITY-I problems are trivial as any preference tree induces a

total preorder. Later in the dissertation I will show, as our new results [63], that

the PT-DOMINANCE problem is in P, PT-OPTIMALITY-II is coNP-complete, and

PT-OPTIMALITY-III is ∆P
2 -complete.

Possibilistic Logic

Possibilistic logic [29] describes atomic preferences as weighted propositional formulas

and uses collections of weighted formulas to specify preference relations.

The Language and the Model. A possibilistic logic theory Π over a vocabulary

I is a set of preference pairs

{(φ1, a1), . . . , (φm, am)},

where every φi is a propositional formula over I, and every ai is a real number such

that 1 ≥ a1 > . . . > am ≥ 0 (if two formulas have the same weight, they can be

replaced by their conjunction). Intuitively, ai represents the importance of φi, with

larger values indicating higher importance.

27

The tolerance degree of an outcome o with regard to a preference pair (φ, a),

TD (φ,a)(o), is defined by

TD (φ,a)(o) =

1, o |= φ

1− a, o 6|= φ

Based on that, the tolerance degree of an outcome o with regard to a theory Π of

preference pairs, TDΠ(o), is defined by

TDΠ(o) = min{TD (φi,ai)(o) : 1 ≤ i ≤ m}.

The larger TDΠ(o), the more preferred o is; that is, given two outcomes o1 and o2,

we have

o1 �Π o2 iff TDΠ(o1) > TDΠ(o2),

o1 ≈Π o2 iff TDΠ(o1) = TDΠ(o2).

Intuitively, the most preferred outcomes are those satisfying all the formulas in Π.

The next preferred ones are those that falsify some formulas φi ∈ Π, the smallest am

of which is maximal.

Let us look at the combinatorial domain of cars over three binary attributes

Capacity, Price, and Safety, with values high (11) and low (01), high (12) and low

(02), and high (13) and low (03), respectively. Consider that an agent presents the

following possibilistic theory P with two preference pairs.

P = {(X1 ∧X3, 0.8), (X3 ⇔ X2, 0.6)}.

Intuitively, the agent expresses the following preferences. She likes the most the

cars that falsifies neither X1 ∧ X3 nor X3 ⇔ X2. Her next preferred cars are those

falsifying X3 ⇔ X2, but satisfying X1 ∧X3. The least preferred cars for her are the

ones falsifying X1 ∧ X3. We now compute the tolerance degrees of outcomes with

28

Table 3.1: Tolerance degrees with respect to P

Outcomes TD (φ1,a1)(o) TD (φ2,a2)(o) TDP (o)

111213 1 1 1

111203 0.2 0.4 0.2

110213 1 0.4 0.4

110203 0.2 1 0.2

011213 0.2 1 0.2

011203 0.2 0.4 0.2

010213 0.2 0.4 0.2

010203 0.2 1 0.2

regard to P and show the results in Table 3.1. The theory P , thus, induces a total

preorder:

111213 � 110213 � 111203 ≈ 110203 ≈ 011213 ≈ 011203 ≈ 010213 ≈ 010203.

Answer Set Optimization

The formalism of Answer Set Optimization (ASO) was introduced by Brewka, Niemelä

and Truszczynski [23] and later enhanced by Brewka [19].

In this work, we focus on the original framework [23] where the Pareto method is

used to order outcomes.

The Language.

Definition 21. Let A be a finite set of atoms. An ASO theory over A is a tuple

(Pgen , Ppref), where

1. Pgen , the generating program, is a logic program, built of atoms in A, used to

generate answer sets called feasible outcomes,

2. Ppref , the selecting program, is a preference program consisting of preference

rules of the form

C1 > . . . > Cm ← B,

29

where each Ci is a propositional formula over A and B is a conjunction of literals

of atoms in A.

A single ASO preference rule specifies a total preorder over outcomes. Applying

the Pareto method, a general ASO program with multiple ASO rules determines a

partial preorder over the space of outcomes represented by answer sets. We will now

provide the details.

We say that outcome o is irrelevant to preference rule r if o |= ¬B ∨ (¬C1 ∧ . . .∧

¬Cm), that is, if o does not satisfy B or o does not satisfy any of the propositional

formulas Ci. As mentioned in the work by Brewka et al [23], outcomes irrelevant to

r are considered as good as the best outcomes. This default treatment of irrelevance

can be overwritten by including formula ¬B ∨ (¬C1 ∧ . . . ∧ ¬Cm) in any place of the

preference rule r. Formally we define satisfaction degree of an answer set with respect

to a preference rule.

Definition 22. Let o be an outcome generated by Pgen , r an ASO preference rule.

The satisfaction degree of o on r, denoted dr(o), is defined as follows: dr(o) = 1 if o

is irrelevant to r; dr(o) = min{i : o |= Ci}, otherwise.

Definition 23. Let (Pgen , Ppref) be an ASO theory, o and o′ two outcomes. Outcome

o′ is weakly Pareto-preferred to o, o′ � o, if, for every rule r in Ppref , dr(o
′) ≤ dr(o).

outcome o′ is strictly Pareto-preferred to o, o′ � o, if o′ � o and dr(o
′) < dr(o) for

some r ∈ Ppref . Outcome o is optimal if there exists no outcome o′′ such that o′′ � o.

Consider an ASO theory P = (Pgen , Ppref) over the domain of cars, where

Pgen = { 1{X1,¬X1}1. 1{X1,¬X1}1. 1{X1,¬X1}1.}, and

Ppref = {r. r′.},

where rule r is X3 > ¬X3 ← X1 ∧ X2, and rule r′ is ¬X2 ∧ X3 > X2 ∧ X3 > ¬X3.

Rule r expresses that, among high-capacity and high-price cars, cars of high safety are

30

Table 3.2: Satisfaction degrees with respect to P

Outcomes dr(o) dr′(o)

111213 1 2

111203 2 3

110213 1 1

110203 1 3

011213 1 2

011203 1 3

010213 1 1

010203 1 3

preferred to cars of low safety. Rule r′ describes the preference statement that high-

safety and low-price cars are the most preferred, followed by high-safety and high-price

cars, which are better than low-safety cars. We now compute the satisfaction degrees

of outcomes with regard to P and show the results in Table 3.2. The theory P , thus,

induces a total preorder:

110213 ≈ 010213 � 111213 ≈ 011213 � 110203 ≈ 011203 ≈ 010203 � 111203.

In this case, we have two optimal outcomes: 110213 and 010213.

Problems and Complexity. Brewka et al [23] proved that the ASO-DOMINANCE

problem is in P, ASO-OPTIMALITY-I is NP-complete, ASO-OPTIMALITY-II is

coNP-complete, and ASO-OPTIMALITY-III is ΣP
2 -complete. More recently, Zhu

and Truszczynski [82] presented complexity results concerning the existence of optimal

outcomes similar and dissimilar to a given interpretation.

Brewka et al [23] also introduced a ranked version of ASO. Ranked ASO programs

are ASO programs where rules in Ppref are given numeric values that represent dif-

ferent levels of importance of preference rules. Let us assume Ppref = {P1, . . . , Pg}

is a collection of ranked ASO preferences divided into g sets Pi, with each set Pi

consisting of ASO-rules of rank di so that d1 < d2 < . . . dg. We assume that a lower

rank of a preference rule indicates its higher importance. We define o′ �rk o w.r.t P

if for every i, 1 ≤ i ≤ g, o′ ≈Pi
o, or if there exists a rank i such that o′ ≈Pj

o for

31

every j, j < i, and o′ �Pi
o.

Complexity results discussed above stay unchanged, when we move from unranked

to ranked ASO programs.

3.2 Social Choice

The study of preference aggregation can be traced back to social choice theory, which

dates back to Condorcet’s paradox of voting, noted by the Marquis de Condorcet in

the 18th century, in which the winning ranking of outcomes could be cyclic even given

acyclic individual votes [78]. Kenneth Arrow’s work, Social Choice and Individual

Values, is recognized as the basis of modern social choice [1]. In the book, Arrow

states that any preference aggregation method for at least three outcomes cannot meet

some fairly desirable axioms, a result known as the Arrow’s impossibility theorem.

Further extending this result, Gibbard and Satterthwaite showed that any social

choice function, again meeting some fair properties, is subject to manipulation [44,

75]. Extending the Gibbard-Satterthwaite theorem, the Duggan-Schwartz theorem

deals with voting rules that elect a nonempty set of co-winners rather than a single

winner [30].

All these results inform us that it is impossible to design a fair preference ag-

gregation system that is manipulation-proof. However, Bartholdi, Tovey and Trick

proposed the idea of protecting social choice schemes from manipulation via compu-

tational complexity [9, 8, 10]. The idea is that, if manipulation is computationally

hard to achieve, manipulation is unlikely.

That started the field of computational social choice by adding an algorithmic

perspective from computer science to the formal approach of social choice theory

[16].

32

Preference Aggregation and Voting Rules

One of the most fundamental problems in social choice theory is how to aggregate

individual preferences over outcomes so that a collaborative preference relation is

reached. In other settings, people are interested in some optimal outcomes rather

than a collective preference relation over all outcomes.

Social Welfare and Social Choice Functions.

Definition 24. Let A = {a1, . . . , am} be a finite set of outcomes, N = {1, . . . , n} a

finite set of agents (or voters). A preference relation (or a vote) vi given by agent i is

a total order �i, that is, a total, transitive and antisymmetric. A preference profile

P is a finite set of preference relations {�1, . . . ,�n}.

We denote by L(A) the set of all preference relations over the space of outcomes

A, and L(A)n, the set of all preference profiles.

Definition 25. A social welfare function (SWF) is a function f :

L(A)n → L(A).

We call the resulting relation �∈ L(A) the social preference relation.

If there are two outcomes a1 and a2, May’s theorem [69] suggests that a1 should

be preferred to a2 in the social preference relation if and only if more agents prefer

a1 to a2 than a2 to a1. This idea is called the majority voting. However, when there

are more than two outcomes, the majority voting rule can lead to cycles of outcomes,

which is known as the Condorcet’s paradox. For instance, we have three voters with

the following preference relations:

a1 �1 a2 �1 a3

a2 �2 a3 �2 a1

a3 �3 a1 �3 a2

33

Based on the pairwise majority rule, we have the following cycle

a1 � a2, a2 � a3, a3 � a1.

Definition 26. A social choice function (SCF) is a function f :

L(A)n → 2A − {∅}.

We call the resulting outcome (outcomes) a winner (co-winners, respectively).

Voting Rules

The problem of aggregating individual preferences (or votes) into a single collective

preference relation or a single group preferred winner is one of the key problems in

social choice theory. Several voting rules and schemas have been proposed over the

years. While, when there are three or more candidates, none of these methods is free

of some unexpected properties, some of them have gained broad acceptance. I will

now introduce some of these commonly used voting rules.

Definition 27. A voting rule r is a specific SCF proposed for practical use.

Positional Scoring Rules. For profiles over a set A of outcomes, a scoring vector

is a sequence w = (w1, . . . , wm) of integers such that w1 ≥ w2 ≥ . . . ≥ wm and

w1 > wm. Given a vote v with the outcome a in position i (1 ≤ i ≤ m), the score

of a in v is given by sw(v, a) = wi. Given a profile P of votes and an outcome a,

the score of a in P is given by sw(P, a) =
∑

v∈P sw(v, a). These scores determine the

ranking generated from P by the scoring vector w (assuming, as is common, some

independent tie breaking rule). Common positional scoring rules include the plurality

rule, the veto rule, the k-approval rule and Borda’s rule.

1. plurality: (1, 0, . . . , 0)

2. veto: (1, . . . , 1, 0)

34

3. k-approval: (1, . . . 1, 0, . . . 0) with k the number of 1’s

4. Borda: (m− 1,m− 2, . . . , 1, 0)

We propose yet another positional scoring rule, called (k, l)-approval [60], with the

scoring vector (a, . . . , a, b, . . . , b, 0, . . . , 0), where both a and b are constants (a ≥ b)

and the numbers of a’s and b’s equal to k and l, respectively. Note that (k, l)-

approval allows agents to specify two levels of approval, compared to only one level

in k-approval, and thus (k, l)-approval generalizes k-approval.

A voting method, that is closely related to positional scoring rules, is the approval

voting [15]. Under approval voting, each voter approves any number of outcomes and

the winner, or co-winners, are those with the highest score.

Condorcet Consistent Rules. A Condorcet winner is an outcome that wins every

pairwise comparisons against each of the other outcomes. Clearly, a Condorcet winner

is unique whenever it exists. If a voting rule r always selects the Condorcet winner,

if it exists, then r is said to be Condorcet consistent.

Positional scoring rules are not Condorcet consistent [32]. Voting rules that are

Condorcet consistent include the following, only to list a few [16].

1. Copeland’s rule: An outcome scores 1 for each pairwise comparison it wins, and

some number between 0 and 1 for each pairwise comparison it ties. Alternatives

with the highest score are the co-winners.

2. Maximin: The Maximin score of an outcome a is the minimum number of votes

for a among all pairwise comparisons. Alternatives with the highest Maximin

score wins.

3. Kemeny’s rule: It selects linear rankings that maximize the number of agree-

ments with pairwise preferences of outcomes in the profile of votes, and the

top-ranked outcomes in these rankings are the co-winners.

4. Dodgson’s rule: A winner is an outcome that can be made a Condorcet winner

by a minimal number of swaps of adjacent outcomes in the votes.

35

If it is required that only a single winner is eventually elected, we apply some

tie-breaking method in case of co-winners. Such a tie-breaking method could be that

we break ties in favor of the lexicographically smallest or largest outcome, or in favor

of a randomly picked outcome among co-winners.

Copyright c© Xudong Liu, 2016.

36

Chapter 4 Reasoning with Preference Trees

Preference trees, or P-trees for short, offer an intuitive and often concise way of rep-

resenting preferences over combinatorial domains. In this chapter, we propose an

alternative definition of P-trees, and formally define their compact representation

that exploits occurrences of identical subtrees. We show that P-trees generalize lex-

icographic preference trees and are strictly more expressive. We relate P-trees to

answer-set optimization programs and possibilistic logic theories. Finally, we study

reasoning with P-trees and establish computational complexity results for key rea-

soning tasks of comparing outcomes with respect to orders defined by P-trees, and of

finding optimal outcomes.

4.1 Introduction

Let us consider preferences on the domain of cars. We will assume that cars are

described by four binary variables:

1. Capacity (X1) with values high (11) and low (01),

2. Price (X2) with values high (12) and low (02),

3. Safety (X3) with values high (13) and low (03), and

4. Transmission (X4) could be automatic (14) and manual (04).

A truth assignment of these four variables 01021314 represents the car with low ca-

pacity, low price, high safety, and automatic transmission.

Explicitly specifying strict preference orders on CD(I) becomes impractical even

for combinatorial domains with as few as 7 or 8 attributes. However, the setting

introduced above allows us to specify total preorders on outcomes in terms of desirable

37

properties outcomes should have. For instance, a formula ϕ might be interpreted as

a definition of a total preorder in which outcomes satisfying ϕ are preferred to those

that do not satisfy ϕ (and outcomes within each of these two groups are equivalent).

More generally, we could see an expression (a sequence of formulas)

ϕ1 > ϕ2 > . . . > ϕk

as a definition of a total preorder in which outcomes satisfying ϕ1 are preferred to

all others, among which outcomes satisfying ϕ2 are preferred to all others, etc., and

where outcomes not satisfying any of the formulas ϕi are least preferred. This way

of specifying preferences is used (with minor modifications) in possibilistic logic [29]

and ASO programs [22]. In our example, the expression

X3 ∧X4 > ¬X2 ∧ ¬X4

states that we prefer automatic (14) cars with high safety (13) to manual (04) cars

with low price (02), with all other cars being the least preferred.

This linear specification of preferred formulas is sometimes too restrictive. An

agent might prefer outcomes that satisfy a property ϕ to those that do not. Within

the first group that agent might prefer outcomes satisfying a property ψ1 and within

the other a property ψ2. Such conditional preference can be naturally captured by a

form of a decision tree presented in Figure 4.1. Leaves, shown as boxes, represent sets

of outcomes satisfying the corresponding conjunctions of formulas (ϕ ∧ ψ1, ϕ ∧ ¬ψ1,

etc.).

Trees such as the one in Figure 4.1 are called preference trees, or P-trees. They

were introduced by Fraser [34, 35], who saw them as a convenient way to represent

conditional preferences. Despite their intuitive nature they have not attracted much

interest in the preference research in AI. In particular, they were not studied for their

38

ϕ

ψ1 ψ2

Figure 4.1: A preference tree

relationship to other preference formalisms. The attribute of compact representations

received only an informal treatment by Fraser (P-trees in their full representation are

often impractically large), and the algorithmic attributes of reasoning with P-trees

were also only touched upon.

We propose an alternative definition of preference trees, and formally define their

compact representation that exploits occurrences of identical subtrees. P-trees are

reminiscent of LP-trees [11]. We discuss the relation between the two concepts and

show that P-trees offer a much more general, flexible and expressive way of repre-

senting preferences. We also discuss the relationship between preference trees and

ASO preferences and possibilistic logic theories. We study the complexity of prob-

lems of comparing outcomes with respect to orders defined by preference trees, and

of problems of finding optimal outcomes.

This chapter is organized as follows. In the next section, we formally define P-trees

and a compact way to represent them. In the following section we present results

comparing the language of P-trees with other preference formalisms. We then move

on to study the complexity of key reasoning tasks for preferences captured by P-trees

and, finally, conclude by outlining some future research directions.

4.2 Preference Trees

In this section, we define preference trees and discuss their representation. Let I be a

set of binary attributes1. A preference tree (P-tree, for short) over I is a binary tree

1In case of multi-value attributes, I is then a set of binary variables representing attribute values.

39

with all nodes other than leaves labeled with propositional formulas over I. Each

P-tree T defines a natural strict order �T on the set of its leaves, the order of their

enumeration from left to right.

Given an outcome o ∈ CD(I), we define the leaf of o in T as the leaf reached by

starting at the root of T and proceeding downwards. When at a node t labeled with

ϕ, if o |= ϕ, we descend to the left child of t; otherwise, we descend to the right node

of t. We denote the leaf of o in T by lT (o).

We use the concept of the leaf of an outcome o in a P-tree T to define a total

preorder on CD(I). Namely, for outcomes o1, o2 ∈ CD(I), we set o1 �T o2, o1

is preferred to o2, if lT (o1) �T lT (o2), and o1 �T o2, o1 is strictly preferred to o2, if

lT (o1) �T lT (o2). (We overload the relations �T and �T by using it both for the order

on the leaves of T and the corresponding preorder on the outcomes from CD(I)).

We say that o1 is equivalent to o2, o1 ≈T o2, if lT (o1) = lT (o2). Finally, o is optimal

if there exists no o′ such that o′ �T o.

Let us come back to the car example and assume that an agent prefers small cars

with low price or big cars with high price over the other options. This preference

is described by the formula (X1 ∧ X2) ∨ (¬X1 ∧ ¬X2) or, more concisely, as an

equivalence X1 ≡ X2. Within each of the two groups of cars (satisfying the formula

and not satisfying the formula), high safety (13) is preferred. These preferences can be

captured by the P-tree in Figure 4.2a. We note that in this example, the preferences

at the second level are unconditional, that is, they do not depend on preferences at

the top level.

To compare two outcomes, o1 = 01020314 and o2 = 11121304, we walk down the

tree and find that lT (o1) = l1 and lT (o2) = l2. Thus, we have o1 �T o2 since l1

precedes l2.

The key property of P-trees is that they can represent any total preorder on

CD(I).

40

x1≡x2

x4

l1 l2

x3

(a) Full

x1≡x2

x3

(b) Compact

Figure 4.2: P-trees on cars

Proposition 1. For every set I of binary attributes, for every set D ⊆ CD(I) of

outcomes over I, and for every total preorder � on D into no more than 2n clusters

of equivalent outcomes, there is a P-tree T of depth at most n such that the preorder

determined by T on CD(I) when restricted to D coincides with � (that is, �T |D =�).

Proof. Let � be a total preorder on a subset D ⊆ CD(I) of outcomes over I, and let

D1 � D2 � . . . � Dm be the corresponding strict ordering of clusters of equivalent

outcomes, with m ≤ 2n. If m = 1, a single-leaf tree (no decision nodes, just a box

node) represents this preorder. This tree has depth 0 and so, the assertion holds.

Let us assume then that m > 1, and let us define D′ = D1 ∪ . . . ∪ Ddm/2e and

D′′ = D \D′. Let ϕD′ be a formula such that models of D′ are precisely the outcomes

in D′ (such a formula can be constructed as a disjunction of conjunctions of literals,

each conjunction representing a single outcome in D′). If we place ϕD′ in the root

of a P-tree, that tree represents the preorder with two clusters, D′ and D′′, with D′

preceding D′′. Since each of D′ and D′′ has no more than 2n−1 clusters, by induction,

the preorders D1 � . . . � Ddm/2e and Ddm/2e+1 � . . . � Dm can each be represented

as a P-tree with depth at most n − 1. Placing these trees as the left and the right

subtrees of ϕD′ respectively results in a P-tree of depth at most n that represents

�.

Compact Representation of P-Trees. Proposition 2 shows high expressivity of

P-trees. However, the construction described in the proof has little practical use.

41

First, the P-tree it produces may have a large size due to the large sizes of labeling

formulas that are generated. Second, to apply it, one would need to have an ex-

plicit enumeration of the preorder to be modeled, and that explicit representation in

practical settings is unavailable.

However, preferences over combinatorial domains that arise in practice typically

have structure that can be elicited from a user and exploited when constructing a

P-tree representation of the preferences. First, decisions at each level are often based

on considerations involving only very few attributes, often just one or two and very

rarely more than that. Moreover, the subtrees of a node that order the “left” and

the“right” outcomes are often identical or similar.

Exploiting these features often leads to much smaller representations. A compact

P-tree over I is a tree such that

1. every node is labeled with a Boolean formula over I, and

2. every non-leaf node t labeled with ϕ has either two outgoing edges, with the left

one meant to be taken by outcomes that satisfy ϕ and the right one by those

that make ϕ false (Figure 4.3a), or one outgoing edge pointing

• straight-down (Figure 4.3b), which indicates that the two subtrees of t are

identical and the formulas labeling every pair of corresponding nodes in

the two subtrees are the same,

• left (Figure 4.3c), which indicates that right subtree of t is empty, or

• right (Figure 4.3d), which indicates that left subtree of t is empty.

The P-tree in Figure 4.2a can be collapsed as both subtrees of the root are the same

(including the labeling formulas). This leads to a tree in Figure 4.2b with a straight-

down edge. We note that we drop box-labeled leaves in compact representations

of P-trees, as they no longer have an interpretation as distinct clusters.

42

ϕ

t

(a)

ϕ

t

(b)

ϕ

t

(c)

ϕ

t

(d)

Figure 4.3: Compact P-trees

Empty Leaves in P-Trees. Given a P-tree T one can prune it so that all sets of

outcomes corresponding to its leaves are non-empty. However, keeping empty clusters

may lead to compact representations of much smaller (in general, even exponentially

smaller) size.

A full P-tree T in Figure 4.4a uses labels ϕ1 = ¬X1 ∨ X3, ϕ2 = X2 ∨ ¬X4, and

ϕ3 = X2 ∧X3. We check that leaves l1, l2 and l3 are empty, that is, the conjunctions

ϕ1 ∧ ¬ϕ2 ∧ ϕ3, ¬ϕ1 ∧ ϕ2 ∧ ϕ3 and ¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3 are unsatisfiable. Pruning T one

obtains a compact tree T ′ (Figure 4.4b) that is smaller compared to T , but larger

than T ′′ (Figure 4.4c), another compact representation of T , should we allow empty

leaves and exploit the structure of T .

ϕ1

ϕ2

ϕ3 ϕ3

l1

ϕ2

ϕ3

l2

ϕ3

l3

(a) T

ϕ1

ϕ2

ϕ3

ϕ2

(b) T ′: pruned T

ϕ1

ϕ2

ϕ3

(c) T ′′

Figure 4.4: P-trees with empty leaves

That example generalizes and leads to the question of finding small sized repre-

sentations of P-trees. (We conjecture that the problem in its decision version asking

about the existence of a compact representation of size at most k is NP-complete).

From now on, we assume that P-trees are given in their compact representation.

43

4.3 P-Trees and Other Formalisms

In this section we compare the preference representation language of P-trees with

other preference languages.

P-Trees Generalize LP-Trees. As stated earlier, P-trees are reminiscent of LP-

trees, a preference language that has received significant attention recently [11, 56, 60].

In fact, LP-trees over a set I = {X1, . . . , Xn} of attributes are simply special P-trees

over I. Namely, an LP-tree over I can be defined as a P-tree over I, in which all

formulas labeling nodes are atoms xi or their negations ¬xi, depending on whether

xi or ¬xi is the preferred over the other, and every path from the root to a leaf has

all atoms xi appear in it as labels exactly once. Clearly, LP-trees are full binary trees

of depth n (assuming the depth of the root is 1) and determine strict total orders on

outcomes in CD(I) (no indifference between different outcomes). An example of an

LP-tree over {X1, X2, X3, X4} for our car example is given in Figure 4.5.

X1 ¬x1>x1

X3 x3>¬x3

X2 ¬x2>x2

X4

¬x4>x4

X4

x4>¬x4

X4 ¬x4>x4

X2

x2>¬x2

X2

x2>¬x2

X3 x3>¬x3

X2 ¬x2>x2

X4

¬x4>x4

X4

x4>¬x4

X4 ¬x4>x4

X2

x2>¬x2

X2

x2>¬x2

Figure 4.5: A full LP-tree on cars

In general representing preferences by LP-trees is impractical. The size of the

representation is of the same order as that of an explicit enumeration of the preference

order. However, in many cases preferences on outcomes have structure that leads

to LP-trees with similar subtrees. That structure can be exploited, as in P-trees, to

represent LP-trees compactly. Figure 4.6a shows a compact representation of the LP-

tree in Figure 4.5. We note the presence of conditional preference tables that make up

44

for the lost full binary tree structure. Together with the simplicity of the language,

compact representations are behind the practical usefulness of LP-trees. The compact

representations of LP-trees translate into compact representations of P-trees, in the

sense defined above. This matter is not central to our discussion and we simply

illustrate it with an example. The compactly represented P-tree in Figure 4.6b is the

counterpart to the compact LP-tree in Figure 4.6a, where ϕ = (X2∧X4)∨(¬X2∧¬X4).

X1 ¬x1>x1

X3 x3>¬x3

X2¬x2>x2

X4
x2 :x4>¬x4
¬x2 :¬x4>x4

X4 ¬x4>x4

X2 x2>¬x2

(a) A compact LP-tree

¬X1

X3

¬X2

ϕ

¬X4

X2

(b) The corresponding P-tree

Figure 4.6: A compact LP-tree as a compact P-tree

The major drawback of LP-trees is that they can capture only a very small fraction

of preference orders. Let us first compute the number, say G(n), of LP-trees over n

attributes. We have

G(n) =

1, n = 0;

2n ·G2(n− 1), n > 0.

From this recursive definition of G(n), we calculate that

G(n) =
n−1∏
k=0

(n− k)2k · 22k

It is asymptotically much smaller than L(n) = (2n)!, the number of all preference

orders of the corresponding domain of outcomes. In particular, we show in Theorem 1

that LP-trees only encode an exponentially small portion of all linear orders.

45

Theorem 1. Let L(n) = 2n! be the number of linear orders of outcomes over n binary

attributes, r be the ratio of G(n) to L(n). We have

r =
G(n)

L(n)
<

1

2(2n·(n−logn−2))
. (4.1)

Proof.

r2n! = T (n); (4.2)

log r + log 2n! = log(
n−1∏
k=0

(n− k)2k · 22k)

=
n−1∑
k=0

(log((n− k)2k) + 2k)

=
n−1∑
k=0

(2k · (log(n− k) + 1))

<
n−1∑
k=0

(2k · (log n+ 1))

= (log n+ 1) ·
n−1∑
k=0

2k

= (log n+ 1) · (2n − 1). (4.3)

Let N be such that N = (log n + 1) · (2n − 1). By the Stirling’s approximation

n! ≥
√

2πn · (n
e
)n, we have the following.

46

log r < N − log 2n!

≤ N − log(
√

2π2n · (2n

e
)2n)

< N − log(
√

2n · (2n

e
)2n)

= N − (
n

2
+ log

2n·2
n

e2n
)

= N − (
n

2
+ n · 2n − log e2n)

< N − (
n

2
+ n · 2n − log 22n)

= N − (
n

2
+ n · 2n − 2n)

= 2n · (log n− n+ 2)− log n− 1− n

2

< 2n · (log n− n+ 2). (4.4)

Therefore, we have

r <
1

2(2n·(n−logn−2))
. (4.5)

This is in stark contrast with Proposition 2, according to which every total pre-

order can be represented by a P-tree.

Even very natural orderings, which have simple (and compact) representations by

P-trees often cannot be represented as LP-trees. For instance, there is no LP-tree on

{x1, x2} representing the order 00 � 11 � 01 � 10}. However, the P-trees (both full

and compact) in Figure 4.2 do specify it.

P-Trees Extend ASO-Rules. The formalism of ASO-rules [22] provides an in-

tuitive way to express preferences over outcomes as total preorders. An ASO-rule

partitions outcomes into ordered clusters according to the semantics of the formal-

47

ϕ1

ϕ2

ϕm

Figure 4.7: A P-tree Tr (TP)

ism. Formally, an ASO-rule r over I is a preference rule of the form

C1 > . . . > Cm ← B, (4.6)

where all Ci’s and B are propositional formulas over I.

Let us consider the domain of cars. An agent may prefer a car with high safety

and capacity to one with low safety and capacity, if she is going for an expensive car.

Such preference can be described as an ASO-rule:

X1 ∧X3 > ¬X1 ∧ ¬X3 ← X2.

Under the semantics of ASO, this preference rule specifies that the most desirable

cars are all the inexpensive cars, the expensive cars with high capacity and safety, the

expensive cars with high capacity but low safety, and the expensive cars with high

safety but low capacity.

Given an ASO-rule r of form (4.6), we show how r is encoded in a P-tree. From the

ASO-rule r, we build a P-tree Tr in Figure 4.7, where ϕ1 = ¬B ∨C1 ∨ (
∧

2≤i≤m ¬Ci),

ϕi = Ci (2 ≤ i ≤ m), and the dashed edge represents nodes labeled by the formulas

ϕ3, . . . , ϕm−1 and every formula ϕi, 3 ≤ i ≤ m−1, is constructed such that the parent

of ϕi is ϕi−1, the left child of ϕi is empty, and the right child of ϕi is ϕi+1.

Theorem 2. Given an ASO-rule r, the P-tree Tr has size linear in the size of r, and

for every two outcomes M and M ′

M �ASO
r M ′ iff M �Tr M ′

48

Proof. The P-tree Tr induces a total preorder �Tr where outcomes satisfying ϕ1 are

preferred to outcomes satisfying ¬ϕ1 ∧ ϕ2, which are then preferred to outcomes

satisfying ¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3, and so on. The least preferred are the ones satisfying∧
1≤i≤m ¬ϕi. Clearly, this order �Tr is precisely the order �ASO

r given by the ASO

rule r.

There are other ways of translating ASO-rules to P-trees. For instance, it might

be beneficial if the translation produced a more balanced tree. We could proceed as

in the proof of Proposition 2.

For example, ifm = 6, we build the P-tree T br in Figure 4.8, where ψ1 = ϕ1∨ϕ2∨ϕ3,

ψ2 = ϕ1, ψ3 = ϕ2, ψ4 = ϕ4, and ψ5 = ϕ5. The indices i’s of the formulas ψi’s indicate

the order in which the corresponding formulas are built recursively.

ψ1

ψ2

ψ3

ψ4

ψ5

Figure 4.8: T br when m = 6

This P-tree representation of a preference r of the form (4.6) is balanced with

height dlog2me. Moreover, the property in Theorem 2 also holds for the balanced T br

of size polynomial in the size of r. In fact, the size of T br is in O(sr log sr), where sr is

the size of rule r. It is clear that, though tree T br is larger than Tr in size, comparing

outcomes could be done faster due to a smaller depth of T br .

Representing P-Trees as RASO-Theories. Preferences represented by compact

P-trees cannot in general be captured by ASO preferences without a significant (in

some cases, exponential) growth in the size of the representation. However, any P-tree

can be represented as a set of ranked ASO-rules, or an RASO-theory [22], aggregated

by the Pareto method.

49

Given a P-tree T , we construct an RASO-theory ΦT as follows. We start with

ΦT = ∅. For every node ti in a P-tree T , we update ΦT = ΦT ∪ {ϕi
di← conditions},

where ϕi is the formula labeling node ti, di, rank of the ASO-rule, is the depth of

node ti, and conditions is the conjunction of formulas ϕj or ¬ϕj labeling all nodes

tj that are ancestor nodes of ti in T with two outgoing edges. Whether ϕj or ¬ϕj

is used depends on how the path from the root to ti determines whether descending

left (ϕj) or right (¬ϕj) at tj.

For instance, the P-tree T in Figure 4.6b gives rise to the following RASO-theory:

¬X1
1←.

X3
2←.

¬X2
3← X3. ¬X4

3← ¬X3.

(X2 ∧X4) ∨ (¬X2 ∧ ¬X4)
4← X3. X2

4← ¬X3.

Theorem 3. Given a P-tree T , there exists an RASO-theory ΦT of size polynomial

in the size of T such that for every two outcomes M and M ′

M �RASO
ΦT

M ′ iff M �T M ′

Proof. (⇐) Let us assume M �T M ′. Denote by (ϕi1 , . . . , ϕij) the order of formulas

labeling the path determined by M from the root to a leaf. Let ϕik , 1 ≤ k ≤ j, be

the first formula that M and M ′ evaluate differently, in fact, M |= ϕik and M ′ 6|= ϕik .

Denote by d the depth of ϕik in T . Based on the construction of ΦT , for every RASO-

rule r of rank less than d, we have M ≈ASO
r M ′. For every RASO-rule r of rank d,

we have M �ASO
r M ′ if r comes from ϕik ; M ≈ASO

r M ′ for other rules of rank d.

According to RASO ordering, M ≈RASO
ΦT

M ′ holds if ϕik does not exist; M �RASO
ΦT

M ′

holds, otherwise. Therefore, M �RASO
ΦT

M ′ holds.

(⇒) Prove by contradiction. We assume that M �RASO
ΦT

M ′ and M ′ �T M hold.

We again denote by (ϕi1 , . . . , ϕij) the order of formulas labeling the path determined

50

by M from the root to a leaf. There must exist some formula ϕik , 1 ≤ k ≤ j, such

that M ′ |= ϕik , M 6|= ϕik , and all formulas ϕ`, 1 ≤ ` ≤ k − 1, are evaluated in

the same way by M and M ′. Based on RASO ordering, we have M ′ �RASO
ΦT

M ,

contradiction.

Hence, the relationship between P-trees and ASO preferences can be summarized

as follows. Every ASO preference rule can be translated into a P-tree, and every

P-tree into a theory of ranked ASO preference rules. In both cases, the translations

have size polynomial in the size of the input. Examining the reverse direction, the

size of the ASO rule translated from a P-tree could be exponential, and the orders

represented by ranked ASO theories strictly include the orders induced by P-trees as

RASO-theories describe partial preorders in general.

P-Trees Extend Possibilistic Logic. Similarly as for ASO-rules, we can apply

different methods to encode a possibilistic logic theories in P-trees. Here we discuss

one of them. We define TΠ to be an unbalanced P-tree shown in Figure 4.7 with

with labels ϕi defined as follows: ϕ1 =
∧

1≤i≤m φi, ϕ2 =
∧

1≤i≤m−1 φi ∧ ¬φm, ϕ3 =∧
1≤i≤m−2 φi ∧ ¬φm−1, and ϕm = φ1 ∧ ¬φ2.

Theorem 4. Given a possibilistic theory Π, there exists a P-tree TΠ of size polynomial

in the size of Π such that for every two outcomes M and M ′

M �Poss
Π M ′ iff M �TΠ

M ′

Proof. It is clear that the size of P-tree TΠ is polynomial in the size of Π. Let

mi(M,Π) denote the maximal index j such that M satisfies all φ1, . . . , φj in Π. (If M

falsifies all formulas in Π, we have mi(M,Π) = 0.) We have that M �Poss
Π M ′ if and

only if mi(M,Π) ≥ mi(M ′,Π), and mi(M,Π) ≥ mi(M ′,Π) if and only if M �TΠ
M ′.

Therefore, the theorem follows.

51

4.4 Reasoning Problems and Complexity

In this section, we study decision problems on reasoning about preferences described

as P-trees, and provide computational complexity results for the three reasoning

problems defined below.

Definition 28. Dominance-testing (DomTest): given a P-tree T and two distinct

outcomes M and M ′, decide whether M �T M ′.

Definition 29. Optimality-testing (OptTest): given a P-tree T and an outcome

M of T , decide whether M is optimal.

Definition 30. Optimality-with-property (OptProp): given a P-tree T and some

property α expressed as a Boolean formula over the vocabulary of T , decide whether

there is an optimal outcome M that satisfies α.

Our first result shows that P-trees support efficient dominance testing.

Theorem 5. The DomTest problem can be solved in time linear in the height of

the P-tree T .

Proof. The DomTest problem can be solved by walking down the tree. The pref-

erence between M and M ′ is determined at the first non-leaf node n where M and

M ′ evaluate ϕn differently. If such node does not exist before arriving at a leaf,

M ≈T M ′.

An interesting reasoning problem not mentioned above is to decide whether there

exists an optimal outcome with respect to the order given by a P-tree. However, this

problem is trivial as the answer simply depends on whether there is any outcome at

all. However, optimality testing is a different matter. Namely, we have the following

result.

Theorem 6. The OptTest problem is coNP-complete.

52

Ψ

Figure 4.9: The P-tree TΦ

Proof. We show that the complementary problem, testing non-optimality of an out-

come M , is NP-complete. Membership is obvious. A witness of non-optimality of M

is any outcome M ′ such that M ′ �T M , a property that can be verified in linear time

(cf. Theorem 5). NP-hardness follows from a polynomial time reduction from SAT

[40]. Given a CNF formula Φ = c1∧ . . .∧cn over a set of variables V = {X1, . . . , Xm},

we construct a P-tree T and an outcome M as follows.

1. We choose X1, . . . , Xm, unsat as attributes, where unsat is a new variable;

2. we define the P-tree TΦ (cf. Figure 4.9) to consist of a single node labeled by

Ψ = Φ ∧ ¬unsat;

3. we set M = {unsat}.

We show that M = {unsat} is not an optimal outcome if and only if Φ =

{c1, . . . , cn} is satisfiable.

(⇒) Assume that M = {unsat} is not an optimal outcome. Since M 6|= Ψ, M belongs

to the right leaf and there must exist an outcome M ′ such that M ′ �M . This means

that M ′ |= Φ ∧ ¬unsat. Thus, Φ is satisfiable.

(⇐) Let M ′ be a satisfying assignment to Φ over {X1, . . . , Xm}. Since no ci ∈ Φ

mentions unsat, we can assume unsat 6∈ M ′. So M ′ |= Ψ and M ′ is optimal. Thus,

M = {unsat} is not optimal.

Theorem 7. The OptProp problem is ∆P
2 -complete.

Proof. (Membership) The problem is in the class ∆P
2 . Let T be a given preference

tree. To check whether there is an optimal outcome that satisfies a property α, we

start at the root of T and move down. As we do so, we maintain the information

53

about the path we took by updating a formula ψ, which initially is set to > (a generic

tautology). Each time we move down to the left from a node t, we update ψ to ψ∧ϕt,

and when we move down to the right, to ψ ∧ ¬ϕt. To decide whether to move down

left or right form a node t, we check if ϕt ∧ψ is satisfiable by making a call to an NP

oracle for deciding satisfiability. If ϕt ∧ψ is satisfiable, we proceed to the left subtree

and, otherwise, to the right one. We then update t to be the node we moved to and

repeat. When we reach a leaf of the tree (which represents a cluster of outcomes),

this cluster is non-empty, consists of all outcomes satisfying ψ and all these outcomes

are optimal. Thus, returning YES, if ψ∧α is satisfiable and NO, otherwise, correctly

decides the problem. Since the number of oracle calls is polynomial in the size of the

tree T , the problem is in the class ∆P
2 .

(Hardness) The maximum satisfying assignment (MSA) problem2 [53] is ∆P
2 -complete.

We first show that MSA remains ∆P
2 -hard if we restrict the input to Boolean formulas

that are satisfiable and have models other than the all-false model (i.e., 01 . . . 0n).

Lemma 1. The MSA problem is ∆P
2 -complete when Φ is satisfiable and has models

other than the all-false model.

Proof. Given a Boolean formula Φ over {X1, . . . , Xn}, we define Ψ = Φ∨(X0∧¬X1∧

. . .∧¬Xn) over {X0, X1, . . . , Xn}. It is clear that Ψ is satisfiable, and has at least one

model other than the all-false one. Let M be a lexicographically maximum assignment

satisfying Φ and M has Xn = 1. Extending M by X0 = 1 yields a lexicographically

maximum assignment satisfying Ψ and this assignment satisfies Xn = 1. Conversely,

if M is a lexicographically maximum assignment satisfying Ψ and Xn = 1 holds in

M , it follows that M |= Φ. Thus, restricted M to {X1, . . . , Xn}, the assignment is

lexicographically maximal satisfying Φ.

2Given a Boolean formula Φ over {X1, . . . , Xn}, the maximum satisfying assignment (MSA)
problem is to decide whether xn = 1 in the lexicographically maximum satisfying assignment for Φ.
(If Φ is unsatisfiable, the answer is no.)

54

Φ∧x1

Φ∧xn

Figure 4.10: The P-tree TΦ

We now show the hardness of the OptProp problem by a reduction from this

restricted version of the MSA problem. Let Φ be a satisfiable propositional formula

over variables X1, . . . , Xn that has at least one model other than the all-false one.

We construct an instance of the OptProp problem as follows. We define the P-tree

TΦ as shown in Figure 4.10, where every node is labeled by formula Φ ∧Xi, and we

set α = Xn.

Our P-tree TΦ induces a total preorder consisting of a sequence of singleton clus-

ters, each containing an outcome satisfying Φ, followed by a single cluster comprising

all outcomes that falsify Φ and the all-false model. By our assumption on Φ, the

total preorder has at least two non-empty clusters. Moreover, all singleton clusters

preceding the last one are ordered lexicographically. Thus, the optimal outcome of

TΦ satisfies α if and only if the lexicographical maximum satisfying outcome of Φ

satisfies xn.

4.5 Conclusions

We investigated the qualitative preference representation language of preference trees,

or P-trees. This language was introduced in early 1990s (cf. [34, 35]), but have not

received a substantial attention as a formalism for preference representation in AI. We

studied formally the attribute of compact representations of P-trees, established its

relationship to other preference languages such as lexicographic preference trees, pos-

sibilistic logic and answer-set optimization. For several preference reasoning problems

on P-trees we derived their their computational complexity.

55

P-trees are quite closely related to possibilistic logic theories or preference expres-

sions in answer-set optimization. However, they allow for much more structure among

formulas appearing in these latter two formalisms (arbitrary trees as opposed to the

linear structure of preference formulas in the other two formalisms). This structure

allows for representations of conditional preferences. P-trees are also more expressive

than lexicographic preference trees. This is the case even for P-trees in which every

node is labeled with a formula involving just two attributes, as we illustrated with

the 00 � 11 � 01 � 01 example. Such P-trees are still simple enough to correspond

well to the way humans formulate hierarchical models of preferences, with all their

decision conditions typically restricted to one or two attributes.

Our work shows that P-trees form a rich preference formalism that deserves further

studies. Among the open problems of interest are those of learning P-trees and their

compact representations, aggregating P-trees coming from different sources (agents),

and computing optimal consensus outcomes. These problems will be considered in

the future work.

Copyright c© Xudong Liu, 2016.

56

Chapter 5 Learning Partial Lexicographic Preference Trees

We introduce partial lexicographic preference trees (PLP-trees) as a formalism for

compact representations of preferences over combinatorial domains. Our main results

concern the problem of passive learning of PLP-trees. Specifically, for several classes

of PLP-trees, we study how to learn (i) a PLP-tree consistent with a dataset of

examples, possibly subject to requirements on the size of the tree, and (ii) a PLP-

tree correctly ordering as many of the examples as possible in case the dataset of

examples is inconsistent. We establish complexity of these problems and, in all cases

where the problem is in the class P, propose polynomial time algorithms.

5.1 Introduction

Recently, there has been a rising interest in representing preferences over combina-

torial domains by exploiting the notion of the lexicographic ordering. For instance,

assuming attributes are over the binary domain {0, 1}, with the preferred value for

each attribute being 1, a sequence of attributes naturally determines an order on out-

comes. This idea gave rise to the language of lexicographic preference models or lexi-

cographic strategies, which has been extensively studied in the literature [76, 27, 81].

The formalism of complete lexicographic preference trees (LP-trees) [11] generalizes

the language of lexicographic strategies by arranging attributes into decision trees

that assign preference ranks to outcomes. An important aspect of LP-trees is that

they allow us to model conditional preferences on attributes and conditional ordering

of attributes. Another formalism, the language of conditional lexicographic preference

trees (or CLP-trees) [17], extends LP-trees by allowing subsets of attributes as labels

of nodes.

A central problem in preference representation concerns learning implicit models

57

of preferences (such as lexicographic strategies, LP-trees or CLP-trees), of possibly

small sizes, that are consistent with all (or at least possibly many) given examples,

each correctly ordering a pair of outcomes. The problem was extensively studied.

Booth et al. [11] considered learning of LP-trees, and Bräuning and Eyke [17] of

CLP-trees.

In this work, we introduce partial lexicographic preference trees (or PLP-trees) as

means to represent total preorders over combinatorial domains. PLP-trees are closely

related to LP-trees requiring that every path in the tree contains all attributes used to

describe outcomes. Consequently, LP-trees describe total orders over the outcomes.

PLP-trees relax this requirement and allow paths on which some attributes may be

missing. Hence, PLP-trees describe total preorders. This seemingly small difference

has a significant impact on some of the learning problems. It allows us to seek PLP-

trees that minimize the set of attributes on their paths, which may lead to more

robust models by disregarding attributes that have no or little influence on the true

preference (pre)order.

The rest of the chapter is organized as follows. In the next section, we introduce

the language of PLP-trees and describe a classification of PLP-trees according to their

complexity. We also define three types of passive learning problems for the setting

of PLP-trees. In the following sections, we present algorithms learning PLP-trees

of particular types and computational complexity results on the existence of PLP-

trees of different types, given size or accuracy. We close with conclusions and a brief

account of future work.

5.2 Partial Lexicographic Preference Trees

Let I = {X1, . . . , Xp} be a set of binary attributes, with each Xi having its domain

Di = {0i, 1i}. The corresponding combinatorial domain is the set X = D1× . . .×Dp.

Elements of X are called outcomes.

58

A PLP-tree over X is binary tree whose every non-leaf node is labeled by an

attribute from I and by a preference entry 1 > 0 or 0 > 1, and whose every leaf node

is denoted by a box �. Moreover, we require that on every path from the root to a

leaf each attribute appears at most once.

To specify the total preorder on outcomes defined by a PLP-tree T , let us enu-

merate leaves of T from left to right, assigning them integers 1, 2, etc. For every

outcome α we find its leaf in T by starting at the root of T and proceeding down-

ward. When at a node labeled with an attribute X, we descend to the left or to the

right child of that node based on the value α(X) of the attribute X in α and on the

preference assigned to that node. If α(X) is the preferred value, we descend to the

left child. We descend to the right child, otherwise. The integer assigned to the leaf

that we eventually get to is the rank of α in T , written rT (α). The preorder �T on

distinct outcomes determined by T is defined as follows: α �T β if rT (α) ≤ rT (β)

(smaller ranks are “better”). We also define derived relations �T (strict order) and

≈T (equivalence or indifference): α �T β if α �T β and β 6�T α, and αT ≈T β if

α �T β and β �T α. Clearly, �T is a total preorder on outcomes partitioning them

into strictly ordered clusters of equivalent outcomes.

To illustrate the notions just introduced, we consider preference orderings of car

options over four binary attributes. The capacity (X1) can be either low (01) or

high (11). The price (X2) is either low (02) or high (12). The safety (X3) can be

low (03) or high (13). Finally, the transmission (X4) of a car can be manual (04) or

automatic (14). An agent could specify her preferences over cars as a PLP-tree in

Figure 5.1a. Price is the most important attribute to the agent and she prefers high

to low. Her next most important attribute is capacity (independently of her selection

for price). She prefers high over low on capacity for expensive cars, and low over

high for inexpensive cars. Among the expensive cars, no matter what capacity she

considers, her next consideration is the transmission, and she prefers automatic to

59

manual. In this example, the attribute safety does not figure into preferences at all.

The most preferred cars are automatic cars with high price and high capacity, with

all possible combinations of choices for safety (and so, the cluster of most preferred

cars has two elements).

X2
12>02

X1
11>01

X4
14>04 X4

14>04

X1
01>11

(a) Collapsible PLP-tree

X2

X1

X4

12>02

12 :11>01

02 :01>11

12 :14>04

(b) UI-CP PLP-tree

X2
12>02

X3
13>03 X3

13>03

(c) Collapsible PLP-tree

X2

X3

12>02

13>03

(d) UI-UP PLP-tree

X1

X2

X3

11>01

01 :02>12

1112 :13>03

(e) Invalid UI-CP PLP-tree

X3

X2

X4

X4

X2

(f) CI-FP PLP-tree

Figure 5.1: PLP-trees over the car domain

Classification of PLP-Trees

In the worst case, the size of a PLP-tree is exponential in the number of attributes

in I. However, some PLP-trees have a special structure that allows us to “collapse”

them and obtain more compact representations. This yields a natural classification

of PLP-trees, which we describe below.

Let R ⊆ I be the set of attributes that appear in a PLP-tree T . We say that T is

collapsible if there is a permutation R̂ of elements in R such that for every path in T

60

from the root to a leaf, attributes that label nodes on that path appear in the same

order in which they appear in R̂.

If a PLP-tree T is collapsible, we can represent T by a single path of nodes labeled

with attributes according to the order in which they occur in R̂, where a node labeled

with an attribute Xi is also assigned a partial conditional preference table (PCPT)

that specifies preferences on Xi, conditioned on values of ancestor attributes in the

path. These tables make up for the lost structure of T as different ways in which

ancestor attributes evaluate correspond to different locations in the original tree T .

Moreover, missing entries in PCPT of Xi imply equivalence (or indifference) between

values of Xi under conditions that do not appear in the PCPT. Clearly, the PLP-tree

in Figure 5.1a is collapsible, and can be represented compactly as a single-path tree

with nodes labeled by attributes in the permutation and PCPTs (cf. Figure 5.1b).

Such a collapsed path labeled by attributes is sometimes denoted as a sequence of

attributes in R̂ connected by ., e.g., X2 . X3 . X1 for the path in Figure 5.1b.

Collapsible PLP-trees represented by a single path of nodes will be referred to

as unconditional importance trees or UI trees, for short. The name reflects the fact

that the order in which we consider attributes when seeking the rank of an outcome

is always the same (not conditioned on the values of ancestor attributes of higher

importance).

Let L be a collapsible PLP-tree. If for every path in L the order of attributes

labeling the path is exactly R̂, and L has the same preference 1 > 0 on every node,

then every PCPT in the collapsed tree contains the same preference 1 > 0, no matter

the evaluation of the ancestor attributes. Thus, every PCPT in the collapsed form

can be simplified to a single fixed preference 1 > 0, a shorthand for its full-sized

counterpart. We call the resulting collapsed tree a UI tree with fixed preferences, or

a UI-FP PLP-tree.

A similar simplification is possible if every path in L has the same ordering of

61

attributes which again is exactly R̂, and for every attribute Xi all nodes in L labeled

with Xi have the same preference on values of Xi (either 1i > 0i or 0i > 1i). Such

collapsed trees are called UI-UP PLP-trees, with UP standing for unconditional pref-

erence. As an example, the UI-UP tree in Figure 5.1d is the collapsed representation

of the collapsible tree in Figure 5.1c.

In all other cases, we refer to collapsed PLP-trees as UI-CP PLP-trees, with CP

standing for conditional preference. If preferences on an attribute in such a tree

depend in an essential way on all preceding attributes, there is no real saving in the

size of representation (instead of an exponential PLP-tree we have a small tree but

with preference tables that are of exponential size). However, if the preference on an

attribute depends only on a few higher importance attributes say, never more than

one or two (or, more generally, never more than some fixed bound b), the collapsed

representation is significantly smaller.

As an aside, we note that not every path of nodes labeled with attributes and

PCPTs is a UI tree. An example is given in Figure 5.1e. Indeed, one can see

that there is no PLP-tree that would collapse to it. There is a simple condition

characterizing paths with nodes labeled with attributes and PCPTs that are valid UI

trees. This matter is not essential to our discussion later on and we will not discuss

it further here.

When a PLP-tree is not collapsible, the importance of an attribute depends on

where it is located in the tree. We will refer to such PLP-trees as conditional impor-

tance trees or CI trees.

Let T be a CI PLP-tree. We call T a CI-FP tree if every non-leaf node in T is

labeled by an attribute with preference 1 > 0. An example of a CI-FP PLP-tree is

shown in Figure 5.1f, where preferences on each non-leaf node are 1 > 0 and hence

omitted. If, for every attribute Xi, all nodes in T labeled with Xi have the same

preference (1i > 0i or 0i > 1i) on Xi, we say T is a CI-UP PLP-tree. All other

62

non-collapsible PLP-trees are called CI-CP PLP-trees.

5.3 Passive Learning

An example is a tuple (α, β, v), where α and β are two distinct outcomes from combi-

natorial domain X over a set I = {X1, . . . , Xp} of binary attributes, and v ∈ {0, 1}.

An example (α, β, 1) states that α is strictly preferred to β (α � β). Similarly, an

example (α, β, 0) states that α and β are equivalent (α ≈ β). Let E = {e1, . . . , em}

be a set of examples over I, with ei = (αi, βi, vi). We set E≈ = {ei ∈ E : vi = 0},

and E� = {ei ∈ E : vi = 1}. In the following, we denote by p and m the number of

attributes and the number of examples, respectively.

For a PLP-tree T in full representation we denote by |T | the size of T , that is,

the number of nodes in T . If T stands for a UI tree, we write |T | for the size of T

measured by the total size of preference tables associated with attributes in T . The

size of a preference table is the total size of preferences in it, each preference measured

as the number of values in the condition plus 1 for the preferred value in the domain

of the attribute. In particular, the sizes of UI-FP and UI-UP trees are given by the

number of nodes on the path.

A PLP-tree T satisfies an example e if T orders the two outcomes of e in the

same way as they are ordered in e. Otherwise, T falsifies e. Formally, T satisfies

e = (α, β, 1) if α �T β, and T satisfies e = (α, β, 0) if α ≈T β. We say T is consistent

with a set E of examples if T satisfies every example in E .

In this work, we study the following passive learning problems for PLP-trees of

all types we introduced.

Definition 31. Consistent-learning (ConsLearn): given an example set E , decide

whether there exists a PLP-tree T (of a particular type) such that T is consistent

with E .

63

Definition 32. Small-learning (SmallLearn): given an example set E and a pos-

itive integer l (l ≤ |E|), decide whether there exists a PLP-tree T (of a particular

type) such that T is consistent with E and |T | ≤ l.

Definition 33. Maximal-learning (MaxLearn): given an example set E and a pos-

itive integer k (k ≤ m), decide whether there exists a PLP-tree T (of a particular

type) such that T satisfies at least k examples in E .

5.4 Learning UI PLP-trees

In this section, we study the passive learning problems for collapsible PLP-trees in

their collapsed representations as UI-FP, UI-UP and UI-CP trees.

The ConsLearn Problem

The ConsLearn problem is in the class P for UI-FP and UI-UP trees. To show it,

we present a general template of an algorithm that learns a UI tree. Next, for each

of the classes UI-FP and UI-UP, we specialize the template to a polynomial-time

algorithm.

The template algorithm is shown as Algorithm 1. The input consists of a set

E of examples and a set I of attributes from which node labels can be selected.

Throughout the execution, the algorithm maintains a set S of unused attributes,

initialized to I, and a set of examples that are not yet ordered by the tree constructed

so far.

If the set of strict examples is empty, the algorithm returns an empty tree. Other-

wise, the algorithm identifies the set AI (E , S) of attributes in S that are available for

selection as the label for the next node. If that set is empty, the algorithm terminates

with failure. If not, an attribute, say Xl, is selected from AI (E , S), and a PCPT

for that attribute is constructed. Then the sets of examples not ordered yet and of

attributes not used yet are updated, and the steps repeat.

64

Algorithm 1: Procedure learnUI that learns a UI tree

Input: E and S = I
Output: A sequence T of attributes from I and PCPTs that define a UI tree

consistent with E , or FAILURE if such a tree does not exist
1 T ← empty sequence;
2 while E� 6= ∅ do
3 Construct AI (E , S);
4 if AI (E , S) = ∅ then
5 return FAILURE;
6 end
7 Xl ← an element from AI (E , S);
8 Construct PCPT(Xl);
9 T ← T, (Xl,PCPT(Xl));

10 E ← E\{e ∈ E� : e is decided on Xl};
11 S ← S\{Xl};
12 end
13 return T ;

To obtain a learning algorithm for a particular class of UI trees (UI-FP or UI-UP)

we need to specify the notion of an available attribute (needed for line 3) and describe

how to construct a partial conditional preference table (needed for line 8).

To this end, let us define NEQ(E , S) to be the set of all attributes in S (where

S ⊆ I) that incorrectly handle at least one equivalent example in E≈. That is, for an

attribute X ∈ S we have X ∈ NEQ(E , S) precisely when for some example (α, β, 0)

in E , α(X) 6= β(X). Similarly, let us define EQ(E , S) to be the set of attributes in S

that do not order any of the strict examples in E . That is, for an attribute X ∈ S we

have X ∈ EQ(E , S) precisely when for every example (α, β, 1) in E , α(X) = β(X).

Fixed Preferences. For the problem of learning UI-FP trees, we define AI (E , S)

to contain every attribute X /∈ NEQ(E , S) such that

(1) for every (α, β, 1) ∈ E�, α(X) ≥ β(X).

Proposition 2. If there is a UI-FP tree consistent with all examples in E and using

only attributes from S as labels, then an attribute X ∈ S is a top node of some such

tree if and only if X ∈ AI (E , S).

65

Proof. Let T be a UI tree consistent with E and having only attributes from S as

labels. Let X be the attribute labeling the top node of T . Clearly, X /∈ NEQ(E , S), as

otherwise, T would strictly order two outcomes α and β such that (α, β, 0) ∈ E≈. To

prove condition (1), let us consider any example (α, β, 1) ∈ E�. Since T is consistent

with (α, β, 1), α(X) ≥ β(X). Consequently, X ∈ AI (E , S).

Conversely, let X ∈ AI (E , S) and let T be a UI-FP tree consistent with all

examples in E and using only attributes from S as labels (such a tree exists by

assumption). If X labels the top node in T , we are done. Otherwise, let T ′ be a

tree obtained from T by adding at the top of T another node, labeling it with X and

removing from T the node labeled by X, if such a node exists. By the definition of

AI (E , S) we have that X /∈ NEQ(E , S) and that condition (1) holds for X. Using

these properties, we see that T ′ is also a UI-FP tree consistent with all examples in

E . Since the top node of T ′ is labeled by X, the assertion follows.

We now specialize Algorithm 1 by using in line 3 the definition of AI (E , S) given

above and by setting each PCPT(Xl) to the fixed unconditional preference 1l > 0l.

Proposition 2 directly implies the correctness of this version of Algorithm 1.

Theorem 8. Let E be a set of examples over a set I of binary attributes. Algorithm 1

adjusted as described above terminates and outputs a sequence T representing a UI-FP

tree consistent with E if and only if such a tree exists.

We note that attributes in NEQ(E , S) are never used when constructing AI (E , S).

Thus, in the case of UI-FP trees, S could be initialized to I \NEQ(E , I). In addition,

if an attribute selected for the label of the top node belongs to EQ(E�, S), it does

not in fact decide any of the strict examples in E and can be dropped. The resulting

tree is also consistent with all the examples. Thus, the definition of AI (E , S) can

be refined by requiring one more condition: X 6∈ EQ(E�, S). That change does not

66

affect the correctness of the algorithm but eliminates a possibility of generating trees

with “redundant” levels.

Unconditional Preferences. The case of learning UI-UP trees is very similar to

the previous one. Specifically, we define AI (E , S) to contain an attribute X ∈ S

precisely when X /∈ NEQ(E , S) and

(2) for every (α, β, 1) ∈ E�, α(X) ≥ β(X), or for every (α, β, 1) ∈ E�, α(X) ≤ β(X).

We obtain an algorithm learning UI-UP trees by using in line 3 the present defini-

tion of AI (E , S). In line 8, we take for PCPT(Xl) either 1l > 0l or 0l > 1l (depending

on which of the two cases in (2) holds for Xl).

The correctness of this algorithm follows from a property similar to that in Propo-

sition 2.

As in the previous case, here too S could be initialized to I \ NEQ , and the

condition X 6∈ EQ(E�, S) could be added to the definition of AI (E , S).

Conditional Preferences. The problem is in NP because, if a UI-CP tree consistent

with E exists (a priori, it does not have to have size polynomial in the size of E), then

another such tree of size polynomial in the size of E exists, as well. We conjecture

that the general problem of learning UI-CP trees is, in fact, NP-complete. As we

have only partial results for this case, the study of the UI-CP tree learning will be

the subject of future work.

The SmallLearn Problem

Algorithm 1 produces a UI PLP-tree consistent with E , if one exists. In many cases, it

is desirable to compute a small, sometimes even the smallest, representation consistent

with E . We show that these problems for UI trees are NP-hard.

Theorem 9. The SmallLearn problem is NP-complete for each class of {UI} ×

{FP,UP,CP}.

67

Proof. We present the proof only in the case of UI-FP. The argument in other cases

(UI-UP and UI-CP) is similar.

(Membership) One can guess a UI-FP PLP-tree T in linear time, and verify in

polynomial time that T has at most l attributes and satisfies every example in E .

(Hardness) We present a polynomial-time reduction from the hitting set problem

(HSP), which is NP-complete [40]. To recall, in HSP we are given a finite set U =

{a1, . . . , an}, a collection C = {S1, . . . , Sd} of subsets of U with
⋃
Si∈C Si = U , and a

positive integer k ≤ n, and the problem is to decide whether U has a hitting set U ′

such that |U ′| ≤ k (U ′ ⊆ U is a hitting set for C if U ′ ∩ Si 6= ∅ for all Si ∈ C). Given

an instance of HSP, we construct an instance of our problem as follows.

1. I = {Xi : ai ∈ U} (thus, p = n).

2. E = {(si,0, 1) : Si ∈ C}, where si is a p-bit vector such that si[j] = 1 ⇔ aj ∈ Si

and si[j] = 0⇔ aj 6∈ Si (1 ≤ j ≤ p), and 0 is a p-bit vector of all 0’s (thus, m = d).

3. We set l = k.

We need to show that U has a hitting set of size at most k if and only if there

exists a UI-FP PLP-tree of size at most l consistent with E .

(⇒) Assume U has a hitting set U ′ of size k. Let U ′ be {aj1 , . . . , ajk}. Define a UI-FP

PLP-tree L = Xj1Xjk . We show that L is consistent with E . Let e = (αe, βe, 1)

be an arbitrary example in E , where αe = si and βe = 0. Since U ′ is a hitting set,

there exists r, 1 ≤ r ≤ k, such that ajr ∈ Si. Thus, there exists r, 1 ≤ r ≤ k,

such that αe(Xjr) = 1. Let r be the smallest with this property. It is clear that e is

decided at Xjr ; thus, we have αe �L βe.

(⇐) Assume there is a UI-FP PLP-tree L of l attributes in I such that L is consistent

with E . Moreover, we assume L = Xj1 Xjl . Let U ′ = {aj1 , . . . , ajl}. We show

by means of contradiction. Assume that U ′ is not a hitting set. That is, there exists

a set Si ∈ C such that U ′ ∩ Si = ∅. Then, there exists an example e = (αe, βe, 1),

where αe = si and βe = 0, such that αe ≈L βe because none of the attributes

68

{Xi : αe(Xi) = 1} show up in L. This is a contradiction! Thus, U ′ is a hitting

set.

Corollary 10. Given a set E of examples {e1, . . . , em} over I = {X1, . . . , Xp}, finding

the smallest PLP-tree in each class of {UI}×{FP,UP,CP} consistent with E is NP-

hard.

Consequently, it is important to study fast heuristics that aim at approximating

trees of optimal size. Here, we propose a greedy heuristic for Algorithm 1. In every

iteration the heuristic selects the attribute Xl ∈ AI (E , S) that decides the most

examples in E�. However, for some dataset the resulting greedy algorithm does not

perform well: the ratio of the size of the tree computed by our algorithm to the size of

the optimal sequence may be as large as Ω(p). To see this, we consider the following

input.

(11020304, 01020304, 1)

(11120304, 01020304, 1)

(11021304, 01020304, 1)

(01020314, 11020304, 1)

For each class of {UI} × {FP,UP}, Algorithm 1 in the worst case computes X2 .

X3 . X4 . X1, whereas the optimal tree is X4 . X1 (with the PCPTs omitted as they

contain only one preference and so, they do not change the asymptotic size of the

tree). This example generalizes to the arbitrary number p of attributes. Thus, the

greedy algorithm to learn small UI trees is no better than any other algorithm in the

worst case.

Approximating HSP has been extensively studied over the last decades. It has

been shown [65] that, unless NP ⊂ DTIME (npoly logn), HSP cannot be approximated

in polynomial time within factor of c log n, where 0 < c < 1
4

and n is the number of

69

elements in the input. The reduction we used above shows that this result carries

over to our problem.

Theorem 11. Unless NP ⊂ DTIME (npoly logn), the problem of finding the smallest

PLP-tree in each class of {UI} × {FP,UP,CP} consistent with E cannot be approxi-

mated in polynomial time within factor of c log p, where 0 < c < 1
4
.

It is an open problem whether this result can be strengthened to a factor linear

in p (cf. the example for the worst-case behavior of our simple greedy heuristic).

The MaxLearn Problem

When there is no UI PLP-tree consistent with the set of all examples, it may be

useful to learn a UI PLP-tree satisfying as many examples as possible. We show this

problem is in fact NP-hard for all three classes of UI trees.

Theorem 12. The MaxLearn problem is NP-complete for each class of {UI} ×

{FP,UP,CP}.

Proof. The problem is in NP. This is evident for the case of UI-FP and UI-UP trees.

If E is a given set of examples, and k a required lower bound on the number of

examples that are to be correctly ordered, then witness trees in these classes (trees

that correctly order at least k examples in E) have size polynomial in the size of E .

Thus, verification can be performed in polynomial time. For the case of UI-CP trees,

if there is a UI-CP tree correctly ordering at least k examples in E , then there exists

such tree of size polynomial in |E|.

The hardness part follows from the proof in the setting of learning lexicographic

strategies [76], adapted to the case of UI PLP-trees.

Corollary 13. Given a set E of examples {e1, . . . , em} over I = {X1, . . . , Xp}, finding

a PLP-tree in each class of {UI}× {FP,UP,CP} satisfying the maximum number of

examples in E is NP-hard.

70

5.5 Learning CI PLP-trees

Finally, we present results on the passive learning problems for PLP-trees in classes

{CI} × {FP,UP,CP}. We recall that these trees assume full (non-collapsed) repre-

sentation.

The ConsLearn Problem

We first show that the ConsLearn problem for class CI-UP is NP-complete. We

then propose polynomial-time algorithms to solve the ConsLearn problem for the

classes CI-FP and CI-CP.

Theorem 14. The ConsLearn problem is NP-complete for class CI-UP.

Proof. The problem is in NP because the size of a witness, a CI-UP PLP-tree consis-

tent with E , is bounded by |E| (if a CI-UP tree consistent with E exists, then it can

be modified to a tree of size no larger than O(|E|)). Hardness follows from the proof

by Booth et al. [11] showing ConsLearn is NP-hard in the setting of LP-trees.

For the two other classes of trees, the problem is in P. This is demonstrated by

polynomial-time Algorithm 2 adjusted for both classes.

Fixed Preference. For class CI-FP, we define AI (E , S) to contain attribute X /∈

NEQ(E , S) if

(3) for every (α, β, 1) ∈ E�, α(X) ≥ β(X).

Proposition 3. If there is a CI-FP tree consistent with all examples in E and using

only attributes from S as labels, then an attribute X ∈ S is a top node of some such

tree if and only if X ∈ AI (E , S).

Proof. It is clear that if there exists a CI-FP PLP-tree consistent with E and only

using attributes from S as labels, then the fact that X ∈ S labels the root of some

such tree implies X ∈ AI (E , S).

71

Algorithm 2: The recursive procedure learnCI that learns a CI PLP-tree

Input: E , S = I, and t: an unlabeled node
Output: A CI PLP-tree over S consistent with E , or FAILURE

1 if E� = ∅ then
2 Label t as a leaf and return;
3 end
4 Construct AI (E , S);
5 if AI (E , S) = ∅ then
6 return FAILURE and terminate;
7 end
8 Label t with tuple (Xl, xl) where Xl is from AI (E , S), and xl is the preferred

value on Xl;
9 E ← E\{e ∈ E� : e is decided on Xl};

10 S ← S\{Xl};
11 Create two edges ul, ur and two unlabeled nodes tl, tr such that ul = 〈t, tl〉 and

ur = 〈t, tr〉;
12 El ← {e ∈ E : αe(Xj) = βe(Xj) = xl};
13 Er ← {e ∈ E : αe(Xj) = βe(Xj) = xl};
14 learnCI (El, S, tl);
15 learnCI (Er, S, tr);

Now we show the other direction. Let T be the CI-FP tree over a subset of S

consistent with E , X be an attribute such that X ∈ AI (E , S). If X is the root

attribute in T , we are done. Otherwise, we construct a CI-FP tree T ′ by creating

a root, labeling it with X, and make one copy of T the left subtree of T ′ (T ′l) and

another, the right subtree of T ′ (T ′r). For a node t and a subtree B in T , we write t′l

and B′l, respectively, for the corresponding node and subtree in T ′l . We define t′r and

B′r similarly. If X does not appear in T , we are done constructing T ′; otherwise, we

update T ′ as follows.

1). For every node t ∈ T labeled by X such that t has two leaf children, we replace

the subtrees rooted at t′l and t′r in T ′l and T ′r with leaves.

2). For every node t ∈ T labeled by X such that t has one leaf child and a non-leaf

subtree B, we replace the subtree rooted at t′l in T ′l with B′l, and the subtree rooted

at t′r in T ′r with a leaf, if t ∈ T has a right leaf child; otherwise, we replace the subtree

rooted at t′l in T ′l with a leaf, and the subtree rooted at t′r in T ′r with B′r.

72

X1

X2

X3

X4

X4

X3

X3

X2 X2

X4

(a) T

X2

X1

X3

X4

X3

X4

X1

X4

X3

X3

(b) T ′

Figure 5.2: X2 ∈ AI (E , S) is picked at the root

3). Every other node t ∈ T labeled by X has two non-leaf subtrees: left non-leaf

subtree BL and right BR. For every such node t ∈ T , we replace the subtree rooted

at t′l in T ′l with BL′l, and the subtree rooted at t′r in T ′r with BR′r.

As an example, this construction of T ′ from T is demonstrated in Figure 5.2. We

see that this construction results in a CI-CP tree consistent with E and, clearly, it

has its root labeled with X. Thus, the assertion follows.

Proposition 3 clearly implies the correctness of Algorithm 2 with AI (E , S) defined

as above for class CI-FP and each xl ∈ (Xl, xl) set to 1.

Theorem 15. Let E be a set of examples over a set I of binary attributes. Algorithm 2

adjusted as described above terminates and outputs a CI-FP tree T consistent with E

if and only if such a tree exists.

Conditional Preference. For class CI-CP, we define that AI (E , S) contains at-

tribute X 6∈ NEQ(E) if

73

(4) for every (α, β, 1) ∈ E�, α(X) ≥ β(X), or for every (α, β, 1) ∈ E�, α(X) ≤ β(X).

We obtain an algorithm learning CI-CP trees by using in line 4 the present def-

inition of AI (E , S). In line 8, we take for xl either 1 or 0 (depending on which of

the two cases in (4) holds for Xl). The correctness of this algorithm follows from a

property similar to that in Proposition 3.

The SmallLearn and MaxLearn Problems

We outline the results we have for this case. Both problems for the three CI classes

are NP-complete. They are in NP since if a witness PLP-tree exists, one can modify

it so that its size does not exceed the size of the input. Hardness of the SmallLearn

problem for CI classes follows from the proof of Theorem 9, whereas the hardness

of the MaxLearn problem for CI cases follows from the proof by Schmitt and

Martignon [76].

5.6 Conclusions

We proposed a preference language, partial lexicographic preference trees, PLP-trees,

as a way to represent preferences over combinatorial domains. For several natural

classes of PLP-trees, we studied passive learning problems: ConsLearn, Smal-

lLearn and MaxLearn. All complexity results we obtained are summarized in

tables in Table 5.1. The ConsLearn problem for UI-CP trees is as of now unset-

tled. While we are aware of subclasses of UI-CP trees for which polynomial-time

algorithms are possible, we conjecture that in general, the problem is NP-complete.

Table 5.1: Complexity results for passive learning problems

FP UP CP
UI P P NP
CI P NPC P

(a) ConsLearn

FP UP CP
UI NPC NPC NPC
CI NPC NPC NPC

(b) SmallLearn & MaxLearn

74

For the future research, we will develop good heuristics for our learning algorithms.

We will implement these algorithms handling attributes of, in general, finite domains

of values, and evaluate them on both synthetic and real-world preferential datasets.

With PLP-trees of various classes learned, we will compare our models with the ones

learned through other learning approaches on predicting new preferences.

Copyright c© Xudong Liu, 2016.

75

Chapter 6 Empirical Evaluation of Algorithms to Learn PLP-Trees and

PLP-Forests

Partial lexicographic preference trees, or PLP-trees, form an intuitive formalism for

compact representation of qualitative preferences over combinatorial domains. In this

chapter, we show that PLP-trees can be used to accurately model preferences arising

in practical situations, and that high-accuracy PLP-trees can be effectively computed.

We also propose and study a variant of the model based on the concept of a PLP-

forest, a collection of PLP-trees, where the preference order specified by a PLP-forest

is obtained by aggregating the orders of its constituent PLP-trees. The motivation

is that learning many PLP-trees, each from a small set of examples, often is faster

than learning a single tree from a large example set yet, thanks to aggregation, yields

an accurate and robust representation of the preference order being modeled. We

propose and implement several algorithms to learn PLP-trees and PLP-forests. To

support experimentation, we use datasets that we adapted to the preference learning

setting from existing classification datasets. Our results demonstrate the potential of

both approaches, with learning PLP-forests showing particularly promising behavior.

6.1 Introduction

Learning preference models, that is, expressions concisely representing a preference

order has been central to this research. Much of the attention was focused on learn-

ing utility functions that represent preference orders quantitatively [37]. Recently,

researchers proposed several qualitative models of preference orders arguing that they

are more directly aligned with conventions humans use when expressing their pref-

erences. They include conditional preference networks (CP-nets) [13], and models

ordering outcomes lexicographically such as lexicographic strategies [76], conditional

76

lexicographic preference trees [17], lexicographic preference trees (LP-trees) [11], par-

tial lexicographic preference trees (PLP-trees) [62], and preference trees[36, 64]. As

with quantitative models, learning qualitative models is important. Indeed, eliciting

them directly from users is often impractical. However, while learning CP-nets has

received a fair amount of attention [54, 26, 52, 47], study of learning lexicographic

models is still in the early stages. The results obtained so far concern mostly learn-

ing LP-trees [11] and conditional lexicographic preference trees [17]. Other models

received less attention. In particular, no algorithms for learning PLP-trees have yet

been proposed even though PLP-trees retain the simplicity of LP-trees but also offer

flexibility that makes them less sensitive to overfitting.

In this chapter, we address the problem of practicality of PLP-trees as a preference

representation formalism. To this end, we introduce several best-agreement and ap-

proximate algorithms to learn PLP-trees of the four classes: UIUP, UICP, CIUP, and

CICP (as discussed in Chapter 5). We show experimentally that they are effective

on various domains and datasets and generate trees that accurately approximate the

preference order being modeled. To support our experiments, following Bräuning and

Eyke [17], we generated a library of datasets of preference examples deriving them

from datasets of examples developed by the machine learning community to support

research on the classification problem.

PLP-trees are in some aspects similar to decision trees. When learning a decision

tree, a problem that may arise is that of overfitting. To reduce its effect, Breiman [18]

proposed learning a random forest, that is, a set of uncorrelated decision trees learned

from randomly selected sets of examples. The random forest learning algorithm [18]

has two key steps. First, it generates several decision trees, randomizing the attributes

used in their construction. Then, to classify an instance, the algorithm aggregates

the predictions made by individual trees in the forest by the majority rule.

We adapted both the notion of a decision forest and the idea to aggregate their

77

elements to the setting of PLP-trees. A PLP-forest is a collection of PLP-trees.

PLP-forests consisting exclusively of UIUP, UICP, CIUP or CICP trees are called

UIUP, UICP, CIUP or CICP PLP-forests, respectively. PLP-trees in a PLP-forest

are learned using randomly selected small fragments of a training set. To predict if

one outcome is preferred over another, we apply the pairwise majority rule (PMR),

a simple and effective voting rule studied in social choice. We adjust algorithms

learning PLP-trees to the setting of PLP-forests and study their effectiveness both in

terms of time and accuracy.

The key findings supported by our results are: (1) PLP-trees and PLP-forests

are expressive preference models. Experiments with the datasets we constructed

from commonly used machine learning classification domains showed that the accu-

racy of learned models typically exceeded 85%, often exceeded 90%, and in some

cases was as high as 95%. (2) PLP-forests aggregated by PRM provide in general

higher accuracy than PLP-trees. (3) PLP-trees and PLP-forests learned by a greedy

approximation method have accuracy comparable to best-agreement PLP-trees and

PLP-forests learned by maximizing the number of correctly handled examples in the

training set. Moreover, because of overfitting arising in “best-agreement” trees and

forests, in some cases, heuristic approaches offer an even better accuracy. (4) Approx-

imation learning methods are fast and can work with large datasets; methods based

on learning best-agreement trees can also be effective in practice, especially when we

learn PLP-forests, where we bound the number of examples each tree in the forest is

learned from.

This chapter is organized as follows. In Section 6.2, we begin with reviewing

PLP-trees and their classification, extending them to domains with arbitrary multi-

valued (that is, not necessarily binary) attributes. We also recall the complexity of

the problem to learn PLP-trees [62]. We also discuss the preference learning library

that we use in our experiments. Next, we discuss algorithms to learn PLP-trees. We

78

consider two types of algorithms — finding best-agreement PLP-trees and finding

PLP-trees based on the greedy heuristics. We then present and discuss empirical

results on the performance of our PLP-tree learning algorithms. In Section 6.3, we

introduce PLP-forests and specify the pairwise majority rule to aggregate trees in a

PLP-forest. This is followed by an analysis of experimental results using the same

datasets as before. We conclude the chapter with a brief summary and a look into

possible directions for future work.

6.2 Partial Lexicographic Preference Trees

We study the four classes of PLP-trees: UIUP, UICP, CIUP, and CICP. Among

UICP trees, of practical interest are those where the number of parents are bounded

by some fixed integer k independent of p, and the CPTs are complete. We call this

type of trees UICP-k PLP-trees. In this case, the sizes of the CPTs and, consequently,

the sizes of the trees are polynomial in the number of attributes. In practice, when

deciding a preference order at an attribute, humans rarely condition them on more

than two attributes of higher importance. Consider the domain of cars over three

binary attributes: Capacity, Price and Safety, with values high (11) and low (01), high

(12) and low (02), and high (13) and low (03), respectively. An example of UICP-1

PLP-trees over cars is shown in Figure 6.1.

X1

X2

X3

11 > 01

11 : 12 > 02

01 : 02 > 12

13 > 03

Figure 6.1: UICP-1 PLP-tree

79

We now discuss the complexity of the problem to learn PLP-trees. The problem

assumes that we are given a collection of examples, that is, expressions (α, β,�) and

(α, β,≈), where α and β are outcomes. Examples of the first type are strict examples

and of the second type equivalence examples. A PLP-tree T satisfies a strict example

(α, β,�) if α �T β. Similarly, T satisfies an equivalence example (α, β,≈) if α ≈T β.

The objective of the problem is to compute a PLP-tree (of a specified type) that

satisfies the maximum number of examples from the input set. We refer to this

problem as MaxLearn.

The MaxLearn problem is NP-hard for each of the four classes of PLP-trees we

discussed (when applicable, assuming that we learn collapsed representations). This

is an easy consequence of the fact that the corresponding decision versions of the

problem (asking for the existence of a PLP-tree of a given type satisfying at least k

examples from the input set, where k is another input parameter) are NP-complete

[62].

Preference Learning Library

We now describe the datasets we used in our study of learning algorithms we present

later. These datasets were generated from publicly available classification datasets

developed by the machine learning community. When constructing the datasets, we

limited the number of attributes in outcomes to ten and the sizes of attribute domains

to four.

Classification datasets associate with each outcome α a label l(α). If there is

a total (pre)order relation on the labels, say �, we can use this relation to produce

preference examples out of classification examples. Namely, for each pair of outcomes

α and β from the classification dataset, if l(α) � l(β), we take (α, β,�) as a strict

example, and if l(α) = l(β), we take (α, β,≈) as an equivalence example.1 Through-

1Clearly, our preference datasets do not contain incomparability examples. This is not a limita-
tion in our work as the preference models we learn represent total preorders.

80

Table 6.1: Classification datasets in UCI Machine Learning Repository used to gen-
erate preference datasets

Preference Datasets Original Datasets in UCI MLR

BreastCancerWisconsin Breast Cancer Wisconsin

CarEvaluation Car Evaluation

CreditApproval Credit Approval

GermanCredit Statlog (German Credit Data)

Ionosphere Ionosphere

MammographicMass Mammographic Mass

Mushroom Mushroom

Nursery Nursery

SPECTHeart SPECT Heart

TicTacToe Tic-Tac-Toe Endgame

Vehicle Statlog (Vehicle Silhouettes)

Wine Wine

out the chapter, we write p for the number of attributes in a dataset, X for the set

of outcomes, E for the set of examples, and E� and E≈ for the sets of strict and

equivalence examples, respectively.

At present, our preference library consists of twelve datasets obtained from the

classification datasets listed in Table 6.1. In ten of them there is a natural order on

the labels. For the other two of them namely, Vehicle and Wine, there is no domain-

specific natural order on the labels. In these two cases, to generate examples we fixed

a preference order on the labels arbitrarily (see below). We discuss three preference

datasets (CarEvaluation, Vehicle and Wine) in detail and provide a summary de-

scription of the remaining ones in Table 6.2, where we use | · | to denote the size of a

set.

CarEvaluation The CarEvaluation dataset has 1728 outcomes over 6 attributes.

To generate equivalent and strict examples for the dataset, we assume that outcomes

labeled by “vgood” are better than those by “good,” which are better than those by

“acc,” which are preferred to those by “unacc.”

Vehicle The Vehicle dataset has 455 outcomes over 10 attributes. To generate

equivalent and strict examples for the dataset, we assume that outcomes labeled by

81

Table 6.2: Description of datasets in the library

Dataset p |X | |E�| |E≈|
BreastCancerWisconsin 9 270 9,009 27,306

CarEvaluation 6 1,728 682,721 809,407

CreditApproval 10 520 66,079 68,861

GermanCredit 10 914 172,368 244,873

Ionosphere 10 118 3,472 3,431

MammographicMass 5 62 792 1,099

Mushroom 10 184 8,448 8,388

Nursery 8 1,266 548,064 252,681

SPECTHeart 10 115 3,196 3,359

TicTacToe 9 958 207,832 250,571

Vehicle 10 455 76,713 26,572

Wine 10 177 10,322 5,254

“bus” are better than those by “opel,” which are better than those by “saab,” which

are preferred to those by “van.”

Wine The Wine dataset has 177 outcomes over 10 attributes. To generate equivalent

and strict examples for the dataset, we assume that outcomes labeled by “1” are better

than those by “2,” which are better than those by “3.”

Algorithms

We propose and evaluate both best-agreement and greedy algorithms for the MaxLearn

problem. For these algorithms and experiments, we focus on solving the MaxLearn

problem where the given the set of examples contains only strict examples. The

learning algorithms are essentially to learn PLP-trees that approximate the original

total preorders of at most five equivalent clusters of outcomes. A small PLP-tree

with three or more nodes will already specify a preorder of more clusters. Our algo-

rithms typically learn bigger trees. Thus, learning these tie-breaking trees provides

finer-grained approximations of the original orderings and better understanding of

the distribution of the outcomes according to the agents’ preferences.

To find the best-agreement model, that is, to compute a PLP-tree (of a specified

82

type) that maximizes the number of satisfied examples, we used answer-set program-

ming (ASP) [66, 70] and its gringo/clasp grounder-solver tool [43]. This approach

consists of two logical programming modules: the data module describing the dataset

(i.e., attributes, domains, outcomes and examples), and the rule module applying an

optimization statement to search for a PLP-tree that correctly decides as many exam-

ples as possible. Given an instance of the MaxLearn problem expressed as the two

modules, the ASP tool gringo/clasp computes an answer set encoding the PLP-tree

that is a solution to the input instance.

Our method to solve the MaxLearn problem approximately, that is, to compute

a PLP-tree that satisfies many (but perhaps not the maximum possible) number of

examples is based on a greedy approach.

Algorithm 3 provides a detailed description of the method. When the Boolean

parameter ∆ is set to true, the algorithm learns UI trees, otherwise, it learns CI trees

with conditional importance of attributes. The algorithm starts with a non-empty

container (e.g., a stack or a queue) C of one item (E�,A, n,∆) and an unlabeled

node T set to n. We now describe the remainder of Algorithm 3 for each value of ∆

(learning UI and CI trees, respectively).

UI The algorithm pops an item (E�,A, n,∆) from C, and picks the root attribute

Xl and CPT (Xl) that correctly handles the most examples in E . Next, it updates

the set A of available attributes and the set E of remaining examples to be decided,

and creates the next node n′. Then, the algorithm creates and pushes the item

(E�,A, n′,∆) onto C. The algorithm repeats until all strict examples in E� are

decided, either correctly or not. For UIUP trees, the CPT (Xl) has only a single local

preference. For UICP-1 trees, the table could contain only one local preference as

in the UIUP case, or it could be a CPT (Xl) of preferences on Dl dependent on one

parent attribute (cf. Figure 5.1b).

CI As in the case of UI trees, the algorithm pops an item from C, and picks

83

(Xl, CPT (Xl)) for the root, where CPT (Xl) contains only one local preference. Hav-

ing updated A and E , for each value of Xl, the algorithm constructs a node and par-

titions E . Next, when the algorithm pushes all items (E�i ,A, ni,∆) onto to container

C, the choice of C could make a difference on the CIUP tree to be learned. This is

because the local preference learned for an attribute is fixed for that attribute which

could appear elsewhere in the tree. To this end, we implemented C using stack and

queue in our experiments to have the learning algorithm for CIUP trees work either

in a breadth-first or a depth-first manner. We hereby denote by CIUPB (CIUPD)

the class of CIUP trees learned by the breadth-first (depth-first, respectively) imple-

mentation of the greedy algorithm. However, for the most general type of CI trees,

the CICP PLP-trees, the choice does not influence the quality of the learned models.

Our greedy method is similar to the greedy method proposed by Schmitt and

Martegnon [76] to learn the so called UIFP trees.2 Schmitt and Martegnon provided

a worst-case performance bound for their method. Given a set E of preference exam-

ples, let OPT(E) be the minimum number of examples falsified by a UIFP tree, and

GREEDY(E) be the number of examples falsified by the UIFP tree computed by the

greedy approach. Schmitt and Martegnon proved that for every set E of preference

examples over p-attribute outcomes,

GREEDY(E) ≤ p ·OPT(E).

This result does not give a tight bound on the performance of the greedy method.

Schmitt and Martegnon [76] proved that no polynomial-time algorithm learning UIUP

trees that would be accurate to within a constant factor c is possible unless P=NP.

We conjecture that the same holds for more general classes of trees, although it may

be that p in the upper bound can be replaced by a slower growing function of p. We

2They are UIUP trees in which the order on the values of the domain of every attribute is fixed
a priori and must be used in the tree.

84

Algorithm 3: The greedy algorithm that learns a PLP-tree

Input: C: a container of items (E�,A, n,∆), where E� is the set of strict
example to be decided, A the set of available attributes, n an
unlabeled node to consider next, and ∆ a Boolean value indicating the
type of PLP-trees (UI or CI) to be learned, and T = n: an unlabeled
node for which a PLP-tree is to be learned.

Output: A PLP-tree T over A.
1 (E�,A, n,∆)← Pop an item from C;
2 if E� = ∅ then
3 Label n as a leaf;
4 if C is empty then
5 return;
6 end

7 else
8 (Xl, CPT (Xl))← Pick Xl ∈ A and CPT (Xl) that correctly decides the

maximum number of examples in E�;
9 Label n with tuple (Xl, CPT (Xl));

10 E� ← E�\{e ∈ E� : αe(Xl) 6= βe(Xl)};
11 A ← A\{Xl};
12 if ∆ = true then
13 Create an edge u and an unlabeled node n′ such that u = 〈n, n′〉;
14 Push item (E�,A, n′,∆) onto C;

15 else
16 for i← 1 to |Dl| do
17 Create an edge ui and an unlabeled node ni such that ui = 〈n, ni〉;
18 E�i ← {e ∈ E� : αe(Xl) = βe(Xl) = xl,i};
19 Push item (E�i ,A, ni,∆) onto C;

20 end

21 end

22 end
23 greedy(C, T);

leave these questions for future work and focus here on experimental evaluation of

the accuracy of our learning algorithms.

Experiments

First, we consider learning UIUP PLP-trees using the best-agreement and greedy

methods. The goal is to compare the accuracy of both methods. This is important as

the best-agreement method, because of its complexity, can only be used on relatively

85

small example sets.

For a dataset D (where D is one of the twelve datasets we studied), we fix the

size of the training set to t, where 1 ≤ t ≤ 250. Then, we randomly pick TRD ⊂ E�,

where |TRD| = t, as the set of training examples, and TED = E� \TRD as the set of

testing examples. Then, from TRD, we train a UIUP PLP-tree TBA using the best-

agreement method (that is, TBA decides the maximum possible number of examples

in TRD), and a UIUP PLP-tree TG using our greedy heuristics. Finally, we test

the models TBA and TG, on the testing examples in TED and compute the accuracy

of each method, the percentage of strict examples in TED decided correctly by the

corresponding tree. For each t, 1 ≤ t ≤ 250, we repeat this process 20 times and

compute the average accuracies. We do this for all 12 datasets. Figure 6.2 shows the

learning curves (the accuracies as the function of the size of the training set) for the

the best-agreement method (BA-UIUP) and the greedy algorithm (G-UIUP) for the

datasets CarEvaluation, Ionosphere, Mushroom and Wine. We show the accuracies

for the two methods on all datasets when t = |TRD| = 250 in Table 6.3.

This experiment shows that, when the number of training examples is small,

the greedy approach achieves accuracy comparable with that of the best-agreement

method. The results summarized in Table 6.3 show that (1) the greedy algorithm

already achieves accuracy exceeding 85% on six datasets (notably, accuracy of 95.5%

on Wine); and (2) the greedy algorithm performs very close to the best-agreement

method, with the difference within 2 percentage points on all but two datasets, Iono-

sphere and Mushroom. Examining the learning curves in Figure 6.2, we observe that,

on all datasets but Ionosphere and Mushroom, the greedy algorithm works well com-

pared with the best-agreement method across the range of the training set sizes. The

learning curves for the two datasets on which the greedy method lags behind the

best-agreement one are shown in Figure 6.2e and Figure 6.2g.

Since the best-agreement method quickly fails as the training sample size grows,

86

Table 6.3: Accuracy (percentage of correctly handled testing examples) for UIUP
PLP-trees learned using the best-agreement and the greedy methods on the learning
data (250 of E�)

Dataset BA-UIUP G-UIUP

BreastCancerWisconsin 88.4 88.2

CarEvaluation 84.8 83.6

CreditApproval 91.1 89.3

GermanCredit 72.2 72.2

Ionosphere 87.0 79.6

MammographicMass 87.5 86.8

Mushroom 84.8 70.3

Nursery 91.8 91.7

SPECTHeart 93.2 92.6

TicTacToe 72.1 71.9

Vehicle 76.8 76.6

Wine 96.0 95.5

in experiments with large learning sets we only used the greedy heuristics to learn

PLP-trees from the classes UIUP, UICP-1, CIUP (including CIUPB and CIUPD),

and CICP. As demonstrated above, the greedy heuristic is a good alternative to the

best-agreement method. For a dataset D, we generate TRD ⊂ E� as the training

set, and use TED = E� \ TRD as the testing set. We learn UIUP, UICP-1, CIUPB,

CIUPD and CICP trees based on TRD using the greedy heuristics, and then we test

the the trees learned on the testing set TED, computing their accuracy. In Table 6.4,

we present results of accuracy on testing using 70% of E� in the training phase. (As

in the previous experiment, we computed the learning curves by varying the size of

the training set up to 70% of the size of E�. The curves show similar behavior to

those presented earlier — the accuracy increases with the size of the training set, but

gets close to the maximum accuracy already for relatively small training sets.)

From Table 6.4 we note that, for the greedy algorithm, (1) for all datasets, there

is a clear gain in the accuracies for the UIUP models using larger training sets;

(2) for all but one dataset (Ionosphere), the UICP-1 models, which allow for simple

conditional preference statements, are more accurate than the UIUP models; (3) both

87

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(a) BreastCancerWisconsin

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(b) CarEvaluation

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(c) CreditApproval

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(d) GermanCredit

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(e) Ionosphere

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(f) MammographicMass

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(g) Mushroom

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(h) Nursery

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(i) SPECTHeart

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(j) TicTacToe

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(k) Vehicle

Sample size

50 100 150 200 250

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.4

0.5

0.6

0.7

0.8

0.9

1

BA-UIUP

G-UIUP

(l) Wine

Figure 6.2: Learning UIUP PLP-trees

the CIUPB and CIUPD models are more accurate than the UIUP models for all but

one dataset (MammographicMass); and (4) the most general class CICP achieves the

best accuracies among all four classes of PLP-trees across all datasets.

The size of a PLP-tree is measured by the total number of preferences in the

CPTs in the tree. Clearly, for UIUP, CIUP and CICP trees, it is also the number

88

Table 6.4: Accuracy percents on the testing data (30% of E�) for all four classes of
PLP-trees, using models learned by the greedy algorithm from the learning data (the
other 70% of E�)

Dataset UIUP UICP-1 CIUPB CIUPD CICP

BreastCancerWisconsin 90.7 91.4 91.0 90.7 91.4

CarEvaluation 85.8 86.0 85.8 85.9 86.0

CreditApproval 91.4 91.7 91.6 92.0 92.2

GermanCredit 74.3 74.6 74.3 74.5 75.7

Ionosphere 87.1 86.9 87.2 88.5 90.4

MammographicMass 88.2 89.5 87.3 86.9 90.0

Mushroom 71.6 74.2 77.1 75.6 76.6

Nursery 92.9 93.0 93.0 93.0 93.0

SPECTHeart 93.4 94.9 95.4 94.8 95.7

TicTacToe 73.9 74.5 74.4 75.4 76.2

Vehicle 79.2 80.4 80.3 80.0 81.2

Wine 95.5 97.8 97.8 97.5 97.8

of non-leaf nodes in the tree. For UICP trees it is the total number of rows in all

conditional preference tables in the tree. It is desirable to learn trees that are accurate

but small. Trees of a small size provide insights into the structure and properties of

the preference order of a user.

The size of a PLP-tree learned by the greedy algorithm is bounded by the number

of training examples. On the other hand, it never exceeds the size of the largest

possible tree for a domain it models. These maxima are shown for each dataset in

Table 6.5. The maximum for CI trees is the common maximum for UICPB, UICPD

and CICP trees. The last column in the table shows the size of the training example

set used (70% of all examples).

Table 6.6 shows average size of trees learned by our greedy algorithm (for each

dataset and for each class of trees considered). The results indicate that the learned

trees have indeed relatively small sizes when compared to the upper bounds implied

by Table 6.5. The difference is drastic for CIUPB, CIUPD and CICP trees, where

trees we learn have sizes that are small fractions of the maximum possible size they

potentially might have. For UIUP trees and UICP-1 trees, the difference is smaller

89

Table 6.5: Maximum sizes of trees for all the classes and the training sample sizes for
all datasets

Dataset UIUP UICP-1 CI |E�train|
BreastCancerWisconsin 9 33 87,381 6,306

CarEvaluation 6 21 853 477,904

CreditApproval 10 37 91,477 46,255

GermanCredit 10 37 349,525 120,657

Ionosphere 10 19 1,023 2,430

MammographicMass 5 17 341 554

Mushroom 10 37 91,477 5,913

Nursery 8 29 7,765 383,644

SPECTHeart 10 19 1,023 2,237

TicTacToe 9 25 9,841 145,482

Vehicle 10 37 349,525 53,699

Wine 10 37 349,525 7,225

(these trees because of their structure are very small to start with), yet even there

is some cases the learned trees have sizes below 80% of the maximum size and occa-

sionally are much smaller (for instance for the Wine dataset). These small-size trees

can provide explicit insights into the importance the user assigns to attributes when

deciding between outcomes, and into how her preferences of attributes depend on

preferences on the more important ones.

We also observe that the sizes of learned CIUPB trees are always smaller than

the sizes of the learned CI trees of the other two types. In some cases (datasets

GermanCredit, Nursery, TicTacToe, Vehicle), they are significantly smaller. Given

that the accuracies of learned CIUPB and CIUPD trees are very close to each other,

and the accuracies of the learned CIUPB and CICP trees differ by more than 2

percentage points in only one case (GermanCredit), the results suggests that CIUPB

trees provide a a particularly attractive preference model. The results are well aligned

with the intuition that when using CIUP trees, agents build them level by level in a

breadth-first fashion.

Another important observation concerning our greedy algorithms is that they

work fast even on large training sets. This is demonstrated in Figure 6.3, where

90

Table 6.6: Sizes of trees learned by the greedy algorithm from the training data (70%
of E�)

Dataset UIUP UICP-1 CIUPB CIUPD CICP

BreastCancerWisconsin 6.7 21.8 19.8 28.0 25.7

CarEvaluation 6.0 17.0 73.2 108.9 109.5

CreditApproval 9.0 24.7 31.3 78.6 81.1

GermanCredit 9.7 36.0 49.8 210.3 190.0

Ionosphere 9.6 17.2 19.8 31.5 30.6

MammographicMass 4.5 14.7 8.3 10.8 10.0

Mushroom 7.6 20.7 15.7 22.7 16.3

Nursery 8.0 25.7 56.2 121.0 116.9

SPECTHeart 8.4 13.7 13.0 18.4 19.0

TicTacToe 8.0 21.8 36.8 126.8 115.2

Vehicle 9.0 32.7 33.9 101.3 105.4

Wine 5.1 13.3 14.2 16.9 14.6

Sample size

500 1000 1500 2000 2500 3000

T
ra

in
in

g
 T

im
e
 (

s
)

10

20

30

40

50

60

70

80

90

100

110

120

BA-UIUP

G-UIUP

G-UICP-1

G-CIUPB

G-CIUPD

G-CICP

(a) BreastCancerWisconsin

Sample size

500 1000 1500 2000 2500 3000

T
ra

in
in

g
 T

im
e
 (

s
)

10

20

30

40

50

60

70

80

90

100

110

120

BA-UIUP

G-UIUP

G-UICP-1

G-CIUPB

G-CIUPD

G-CICP

(b) Vehicle

Figure 6.3: Training time comparison: best-agreement vs. greedy

we show the effectiveness of the greedy method for datasets BreastCancerWisconsin

and Vehicle, and contrast it with highly limited range of applicability of the best-

agreement method. For other datasets, we observe a similar behavior.

Closing this section, we provide a brief comparison between PLP-trees and decision

trees, a commonly-used classification model in machine learning. Decision trees can

be used as classifiers that, given two outcomes, can tell if an outcome is better or

worse than another. Our experimental results show that decision trees are generally

better than PLP-trees, although the difference is mostly within 3 percentage points,

91

on predicting preferences between outcomes in the testing phase. However, PLP-trees

offer not only a quick way to determine dominance (the order between two outcomes)

but also insights into the structure of the reasoning process of the decision maker.

They point to importance of attributes and conditional dependencies between them,

and explicitly identify optimal outcomes. This information is hard to glean out of

the decision-tree model for the dominance relation.

6.3 Partial Lexicographic Preference Forests

As we see from Table 6.4, our approximation method achieves high accuracy (above

85%) on most of the datasets for all four types of PLP-trees. However, on some

datasets such as Mushroom, PLP-trees that we learn have accuracy below 80% across

all classes of trees. In an effort to improve on this, we introduce the notion of a PLP-

forest, that is, a collection of PLP-trees. Let F = {T1, . . . , Tn} be a PLP-forest. We

say that F is a C PLP-forest, where C is one of the four classes UIUP, UICP-1, CIUP

and CICP, if F consists exclusively of C PLP-trees.

Aggregating PLP-Trees in a PLP-Forest

We use the pairwise majority rule (PMR) to aggregate orders defined by trees in a

forest. The choice of PMR as the aggregation rule is motivated by three considera-

tions. First, plurality was used in the related work on random forest learning that

motivated and influenced our ideas behind PLP forests and PLP forest learning. Sec-

ond, the task we have at hand is to determine the preferences between outcomes, so

PMR is well aligned with this task (the outcome that “wins” on more orders “wins”

overall). Finally, the PMR is intuitive and easy to implement.

Let us denote by NF (o1, o2) = |{T ∈ F : o1 �T o2}| the number of trees in the

forests where the outcome o1 is preferred to the outcome o2. Given a forest F , and

92

two outcomes o1 and o2, we say that o1 �PMR
F o2 iff NF (o1, o2) > NF (o2, o1), and that

o1 ≈PMR
F o2 iff NF (o1, o2) = NF (o2, o1).

In some cases, PMR may lead to the so-called Condorcet’s Paradox, where the

strict �PMR
F relation contains a cycle. Earlier empirical studies, however, conclude

that there is little evidence for occurrences of Condorcet’s Paradox. Among these

studies, one recent work by Mattei et al. on the Netflix dataset showed that the

Condorcet’s Paradox has a low occurrence percentage of less than 0.11%[68]; that

is, on average, out of one thousand elections they ran there was about one election

where Condorcet’s Paradox accrued. Aligned with this empirical conclusion, our

datasets are created in a way that Condorcet’s Paradox is prevented from happening.

Other possible aggregators are positional scoring rules (adjusted for total preorders),

Copeland’s method, among others. We will leave this and discuss it later in the

chapter as part of the future work.

Experimentation

To further boost up performances, we now show empirical results of learning PLP-

forests.

First, we show results for UIUP PLP-forests using the best-agreement learning

and the greedy heuristics. In each experiment, we randomly partition a dataset into

training set (70%) and testing set (30%), learn a forest of 5000 trees, where each

tree is learned from 50 randomly selected examples from the training set, and then

test the forest against the testing set. We repeat it 20 times and report the average

accuracy. We present these results in Table 6.7 (we write BA and G to indicate the

method used).

We see that G+Forest outperforms G+Tree on all but one dataset (i.e., Iono-

sphere). This indicates the gain of using a forest of diverse trees against a single

tree for UIUP. Similarly, we observe that BA+Forest outperforms G+Forest on all

93

Table 6.7: Accuracy percents on the testing data (30% of E�) for UIUP trees and
forests of 5000 UIUP trees, using the greedy and the best-agreement algorithms from
the learning data (the other 70% of E�)

Dataset G+Tree G+Forest BA+Forest

BreastCancerWisconsin 90.7 93.4 95.1

CarEvaluation 85.8 91.9 89.2

CreditApproval 91.4 91.5 93.1

GermanCredit 74.3 75.4 77.9

Ionosphere 87.1 83.0 92.5

MammographicMass 88.2 89.1 90.8

Mushroom 71.6 78.8 90.2

Nursery 92.9 93.2 94.0

SPECTHeart 93.4 93.7 94.9

TicTacToe 73.9 75.1 77.2

Vehicle 79.2 82.7 81.9

Wine 95.5 95.8 96.9

Table 6.8: Accuracy percents on the testing data (30% of E�) for all four classes of
PLP-forests of 5000 trees, using the greedy algorithm from the learning data (the
other 70% of E�)

Dataset UIUP UICP-1 CIUPB CIUPD CICP

BreastCancerWisconsin 93.4 94.1 93.7 94.1 94.0

CarEvaluation 91.9 88.3 91.4 89.7 91.4

CreditApproval 91.5 91.6 92.8 92.9 93.0

GermanCredit 75.4 73.8 76.1 76.1 76.2

Ionosphere 83.0 87.9 89.3 89.4 89.5

MammographicMass 89.1 90.1 90.0 90.1 90.2

Mushroom 78.8 87.2 92.2 92.2 91.8

Nursery 93.2 89.9 93.3 93.4 93.4

SPECTHeart 93.7 93.5 93.6 93.6 93.7

TicTacToe 75.1 75.2 76.6 76.5 76.9

Vehicle 82.7 81.8 83.2 83.2 83.4

Wine 95.8 95.4 97.5 97.8 97.8

datasets but one (CarEvaluation). This points to another advantage of PLP forest

learning: they achieve good accuracy even when individual trees are learned from

small example sets and so, the best-agreement learning becomes practical.

Second, we show results for the greedy heuristics and the five types of PLP-forests

(under the same setting as before).

The results are shown in Table 6.8. Comparing with Table 6.4, we see that UICP-

94

1 trees do not lend themselves well to the use in forests, the accuracies for individual

UICP-1 trees are higher than for forests of UICP-1 trees for five out of 12 datasets.

However, for all other types of trees, the idea of learning forests of such trees is very

effective. We get improvements in the accuracy on all datasets but one for UIUP and

CIUPD trees, and in all but two datasets for CIUPB and CICP trees. In the case of

the dataset Mushroom, the improvements provided by forest learning are particularly

significant.

We also studied how the accuracy of PLP-forests changes with the number of their

PLP-trees. In Figure 6.4, we show the results for UIUP and CICP PLP-forests for

all twelve datasets.

Examining Figure 6.4, we note that with even smaller forests, consisting of 2000

forests, the accuracies are already very close to those we observe for forests consisting

of 5000 trees. That suggests that much larger forests would not offer any additional

boost in the accuracy. The figure also shows that the number of trees needed in a

forest in order to offer a better accuracy than that of an individual tree varies (for

only one case with dataset Ionosphere and class UIUP, we do not see forests of trees

surpass individual trees in accuracy).

6.4 Conclusions

In this chapter, we presented results considering problems concerning learning partial

lexicographic preference trees, or PLP-trees. We showed that PLP-trees are expressive

preference models that can be used to accurately model preferences arising in practical

situations, and that high-accuracy PLP-trees can be effectively computed. We also

proposed and studied a variant of the model based on the concept of a PLP-forest,

a collection of PLP-trees, where the preference order specified by a PLP-forest is

obtained by aggregating the orders of its PLP-trees. We proposed and implemented

the best-agreement and greedy algorithms to learn PLP-trees and PLP-forests. To

95

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(a) BreastCancerWisconsin

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(b) CarEvaluation

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(c) CreditApproval

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(d) GermanCredit

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(e) Ionosphere

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(f) MammographicMass

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(g) Mushroom

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(h) Nursery

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(i) SPECTHeart

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(j) TicTacToe

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(k) Vehicle

Forest size

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
c
c
u

ra
c
y
 o

n
 T

e
s
ti
n

g
%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UIUP PLP-Trees

UIUP PLP-Forests

CICP PLP-Trees

CICP PLP-Forests

(l) Wine

Figure 6.4: Forests of UIUP trees vs. forests of CICP trees

support experimentation, we used datasets that we adapted to the preference learning

setting from existing classification datasets.

Our results demonstrated the potential of both approaches. For learning single

trees, our results show the effectiveness of the greedy heuristics and identify learning

CIUPB trees as leading to both high accuracy and small tree sizes. Learning PLP-

96

forests improves accuracy and yields effective preference models even when individual

trees are learned from small example sets. That allows us to use the best-agreement

method for learning PLP forests, the method inapplicable when example sets are

large.

Looking into the future, we are interested in expanding our preference learning

library by creating real-world datasets through conducting experiments involving hu-

man subjects. We also plan to extend the theoretical results on the worst-case bound

for the greedy method to more general classes of PLP-trees. Finally, we intend to

implement and experiment with other aggregators for PLP-forests, and compare with

our results using the desirable and intuitive majority rule.

Copyright c© Xudong Liu, 2016.

97

Chapter 7 Aggregating Lexicographic Preference Trees

Aggregating votes — preference orders over candidates or alternatives — is a funda-

mental problem of decision theory and social choice. We study this problem in the

setting when alternatives are described as tuples of values of attributes. Such spaces

of alternatives are called combinatorial. They are characterized by large sizes that

make explicit enumerations of alternatives from the most to the least preferred infea-

sible. Instead, typically votes are specified implicitly in terms of some compact and

intuitive preference representation mechanism. In our work, we assume that votes are

given as lexicographic preference trees and consider two preference-aggregation prob-

lems, the winner problem and the evaluation problem. We study them under the

assumption that positional scoring rules (such as k-approval and Borda) are used for

aggregation. We develop computational complexity results for these two problems.

We also propose computational methods to solve them. They are based on encod-

ings of the problems in Answer-Set Programming and as instances of the Weighted

Partial Maximum Satisfiability problem, and exploit off-the-shelf solvers available for

these two formalisms. Finally, we present results of an experimental study of the

effectiveness of these methods.

7.1 Introduction

Preferences are an essential component of decision making, social choice, knowledge

representation, and constraint satisfaction. Fundamental problems of preference rea-

soning are to aggregate individual preference orders of a group of agents (the votes of

agents in the group) into a consensus best candidate (the winner), and to identify can-

didates with strong consensus support from the group (“good” alternatives). These

problems have been studied extensively in social choice [6]. Aggregation methods

98

known as positional scoring rules, which include such well-known rules as plurality,

k-approval and Borda, are among the best understood and the most widely used ones.

When the number of alternatives is small, the simplest and most effective way to

describe a preference order (a vote) is to enumerate the alternatives from the most to

the least preferred. Moreover, given a collection of such votes, for many aggregation

rules, including all positional scoring rules, computing winners and “good” candidates

is easy — it can be done in polynomial time. The situation changes when alternatives

are characterized in terms of attributes (or issues), and are specified by tuples of

attribute values. Spaces of such alternatives, often called combinatorial domains,

are large. Indeed, the number of alternatives grows exponentially with the number

of attributes. This large size of combinatorial domains brings up two problems.

First, it is no longer feasible to describe votes by enumerating alternatives in the

order of preference. Thus, formalisms offering compact and intuitive representations

of votes are needed. Several such preference formalisms have been developed over

the years including penalty logic [25], possibilistic logic [29], conditional preference

networks (CP nets) [12], preference trees [36, 64], and lexicographic preference trees

[11].1 Second, when votes are given as expressions in some preference formalism,

computing the winner or a “good” candidate is no longer easy. In fact, it is known

that for many preference formalisms these problems are NP-hard even when positional

scoring rules are used to aggregate votes. Issue-by-attribute aggregation addresses

the computational hardness problem but often leads to results different from those

obtained by applying common voting rules [31].

In this chapter, we assume that votes are represented as lexicographic prefer-

ence trees, or LP-trees, for short [11], and that they are aggregated by some simple

positional scoring rules such as Borda, k-approval and a refinement of the latter,

(k, l)-approval. Given this setting, we study computing the best alternative, and the

1Kaci [50] offers a comprehensive discussion of preference formalisms.

99

related problem to decide whether an alternative with the score exceeding a given

threshold (a “good” alternative) exists. We refer to the former problem as the winner

problem and to the latter one as the evaluation problem. In our setting, these prob-

lems are often computationally hard. For Borda, the winner problem is NP-hard and

the evaluation problem is NP-complete [56]. For k-approval, for some specific values

of k, both problems are in P but, for some other, they are NP-hard and NP-complete,

respectively [56]. Further, when (k, l)-approval is used, for several values of k and l,

the problems are similarly hard.

Nevertheless, because the winner and the evaluation problems arise in practice

and the positional scoring rules are common, computational tools for the two problems

are needed. To develop such tools, we encode the problems in answer-set programming

(ASP) [67, 71] and weighted partial maximum satisfiability (WPM-SAT) [4, 3], and

apply to the encodings the ASP solvers clingo [42] and clingcon [72], and a WPM-

SAT solver toulbar [2]. We chose the two ASP solvers as they represent substantially

different approaches to computing answer sets. The clingo solver is a native ASP

solver developed along the lines of satisfiability solvers. The clingcon solvers enhances

clingo with specialized treatment of some common classes of numeric constraints by

delegating some reasoning tasks to a CP solver Gecode [77]. As problems we are

considering involve numeric constraints, a comparison of the two solvers is of interest.

We study all the resulting methods experimentally. To support the experimentation

we propose and implement a method to randomly generate LP-trees of some restricted

form.

The main contributions of our work are complexity results and algorithms for the

winner and the evaluation problems when votes are specified as LP-trees. Specifically,

we present new complexity results for the two problems for several positional scoring

rules: k-approval (for specific values of k), variants of Borda, and (k, l)-approval (for

specific combinations of values of k and l). Next, we propose algorithms for the two

100

problems based on their ASP and WPM-SAT encodings and using ASP and WPM-

SAT solvers. Finally, we provide an experimental evidence of the effectiveness of the

proposed computational methods.

7.2 Computing Ranks

We now show how the rank of an outcome in an LP-tree is computed. As we consider

positional scoring rules, the scores of an outcome in an LP-tree or an LP-profile under

these rules follow directly from its rank in the tree.

Given an LP-tree T and an outcome o ∈ CD(I), the computation of the rank

r(T, o) of o in T is given in Algorithm 4, where T ′(xj) is the left (more-preferred)

subtree of T ′, and T ′(xj) is the right (less-preferred) subtree of T ′. Note that in each

case we need to update the CPT’s in the subtrees accordingly. Clearly, Algorithm 4

takes O(p). Conversely, it is also easy to compute the outcome at a given rank in a

tree.

Algorithm 4: Compute the rank of an outcome in an LP-tree

Input: LP-tree T and outcome o
Output: the rank r of o in T

1 r←0;
2 T ′←T ;
3 for i←1 to p do
4 Let Xj be the root attribute of T ′ with preference xj > xj;
5 if o(Xj) = xj then
6 T ′←T ′(xj);
7 else
8 r←r + 2p−i;
9 T ′←T ′(xj);

10 end

11 end
12 return r

Now computing the scores of an outcome for the rules k-approval, (k, l)-approval

and Borda is straightforward. We have the following.

101

1. k-approval: skApp(T, o) = 1, if r(T, o) < k; 0, otherwise.

2. (k, l)-approval: sklApp(T, o) = a, if r(T, o) < k; b, if k ≤ r(T, o) < k + l; 0,

otherwise.

3. Borda: sBorda(T, o) = m− r(T, o)− 1.

7.3 The Problems and Their Complexity

We consider only effective implicit positional scoring rules, that is, rules defined by

an algorithm that given m (the number of alternatives and, at the same time, the size

of the scoring vector) and a rank r, 0 ≤ r ≤ m − 1, (1) returns the value wr of the

scoring vector, and (2) works in time polynomial in the sizes of r and m. The rules

k-approval, (k, l)-approval and Borda are examples of effective implicit positional

scoring rules:

1. k-approval: wkApp(r,m) = 1, if r < k; 0, otherwise.

2. (k, l)-approval: wklApp(r,m) = a, if r < k; b, if k ≤ r < k + l; 0, otherwise.

3. Borda: wBorda(r,m) = m− r − 1.

Let us fix an effective implicit positional scoring rule D with the scoring vector w.

Given an LP profile V , the winner problem for D consists of computing an alternative

o ∈ X with the maximum score sw(V , o). Similarly, given a profile V and a positive

integer R, the evaluation problem for D asks if there exists an alternative o ∈ X such

that sw(V , o) ≥ R. In each case, w is the scoring vector of D for m alternatives; we

recall that it is given implicitly in term of an algorithm that efficiently computes its

entries.

We apply the voting rules listed above to profiles consisting of LP-trees or LP

profiles, for short. We distinguish four classes of profiles, UI-UP, UI-CP, CI-UP and

CI-CP depending on the type of LP-trees they consist of.

102

Remark The restriction to effective implicit positional scoring rules is essential in

the context of combinatorial domains. It is because an explicit specification of the

scoring vector has size equal to the number of alternatives and is exponential in the

number of attributes. If it were to be given explicitly, it would have to be a part of

input. The sheer size of the scoring vector would then make both the winner and the

evaluation problems trivially solvable in polynomial time. However, most interesting

positional scoring rules are effective implicit, which means that they can be described

concisely as an algorithm (implicit) and at the same time provide a fast access to any

weight in the scoring vector (effective). In this setting, the complexity of the winner

and the evaluation problems is no longer obvious, and it is precisely this setting that

models practical situations, where scoring vectors are based on regular patterns.

k-Approval

If k = 2p−1 the evaluation problem is in P for all four classes of profiles of LP-trees

[56]. However, if k equals 2p−2 or 2p−3, the problem is NP-complete, again for all four

types of profiles [56] (in fact, the result holds for a larger set of values k, we refer for

details to the paper by Lang et al. [56]). Clearly, in each case where the evaluation

problem is NP-complete, the winner problem is NP-hard.

We first show that the two problems are in P even when the deviation of k from

2p−1 is given by a polynomial in p. In other words, if k = 2p−1+f(p) or k = 2p−1−f(p),

where f(p) is a polynomial in p such that f(p) ≥ 0 for p ≥ 1, both the winner and

the evaluation problems for k-approval can be solved by polynomial time algorithms.

The next two results address the two cases for k, respectively.

Theorem 16. Let f be a polynomial such that f(p) ≥ 0 for p ≥ 1, and let k =

2p−1 + f(p). Given a profile of n LP-trees over p binary attributes X1, . . . , Xp, the

winner under k-approval can be computed in time polynomial in the size of the profile.

103

Proof. Let P be a profile of n LP-trees. The score sk(o) of an alternative o under

k-approval in P is given by

sk(o) = s′(o) + s′′(o),

where s′(o) is the score of o under the 2p−1-approval (the number of votes that place

o in the upper half of the order), and s′′(o) is the number of votes that place o as one

of top f(p) votes in the lower half (we omit references to the profile to simplify the

notation).

To find the highest possible score s′(o), we define xi = 0, if the number of votes

with the root labeled with Xi and with 0 preferred to 1 is strictly larger than the

number of votes with the root labeled with Xi with 1 preferred to 0. We define

xi = 1 similarly. If xi does not get set to 0 or 1, it is set to u (undefined). We

call the resulting p-tuple a partial alternative and denote it by PA. Since it is the

root that decides whether an LP-tree contributes 1 to the score of an alternative, it

is clear that any alternative consistent with PA achieves the highest possible score

under 2p−1-approval, that is, the highest possible s′-score. Finding this score, say W ′,

can then be accomplished by (1) finding an alternative o consistent with PA, and

(2) finding its score s′(o). Clearly, both (1) and (2) together can be done in time

bounded by a polynomial in the size of the profile.

Next, we consider s′′. Let us denote by A the set of all alternatives o with s′′(o) >

0. To this end, it is enough to find in each tree T in P alternatives with ranks

2p−1 + 1, . . . , 2p−1 + f(p). Since finding an alternative of a given rank in an LP-tree

can be accomplished in time polynomial in p, the set A can indeed be computed in

time polynomial in the size of the profile.

We now compute sk(o) for all alternatives in A. Given the size of A, the task can

be computed in time bounded by a polynomial in the size of the profile. Let W be

104

the maximum of these scores achieved, say, by an alternative o. If W ≥ W ′, then o is

a winning alternative (has the best score among those in A and the score of any other

alternative does not exceed W ′). Otherwise, any alternative consistent with PA can

be taken for the winner (indeed, in such case, the highest possible score to achieve

under k-approval is W ′).

Theorem 17. Let f be a polynomial such that f(p) ≥ 0 for p ≥ 1, and let k =

2p−1 − f(p). Given a profile of n LP-trees over p binary attributes X1, . . . , Xp, the

winner under k-approval can be computed in time polynomial in the size of the profile.

Proof. Let P be a profile of n LP-trees. Similarly as in the proof of the previous

result, the score sk(o) of an alternative o under k-approval is given by

sk(o) = s′(o)− s′′(o),

where s′(o) is the score of o under the 2p−1-approval (the number of votes that place

o in the upper half of the order), and s′′(o) is the number of votes that place o as

one of the bottom f(p) votes in the upper half (we omit references to the profile to

simplify the notation).

Let us denote by A the set of alternatives o such that s′′(o) > 0. As before, this

set can be computed in time bounded by a polynomial in the size of the profile. Let

t = |A|. If every alternative is in A (that is, t = 2p), then, we compute an alternative

with the highest k-approval score by computing the scores of all alternatives in A and

selecting the one with the highest score. Since the size of A is polynomial in the size

of the profile, the task takes polynomial time (in the size of the profile).

The case when t < 2p is harder. To address it, let us assume that we have

computed the set B of top t + 1 alternatives according to their s′-score (the 2p−1-

approval score). Next, let o be an alternative in B with the maximum k-approval

score sk(o).

105

We claim that o is also an alternative with the maximum k-approval score over all

alternatives. Indeed, consider an arbitrary alternative o′. If o′ ∈ B, then sk(o) ≥ sk(o)

(by the way o was selected). Thus, let us assume that o′ /∈ B. Since |B| > |A|, there

is at least one alternative o′′ ∈ B \ A. As o′′ ∈ B, sk(o) ≥ sk(o
′′). Moreover,

as o′′ /∈ A, sk(o
′′) = s′(o′′) − s′′(o′′) = s′(o′′). Finally, since o′′ ∈ B and o′ /∈ B,

s′(o′′) ≥ s′(o′). Combining these three inequalities, we obtain that sk(o) ≥ s′(o′).

Since s′(o′) ≥ s′(o′)− s′(o′′) = sk(o
′), we get sk(o) ≥ sk(o

′). Thus, the claim follows.

Clearly, t + 1 is bounded by a polynomial in the size of the profile. Thus, once

B is computed, finding an alternative in B with the highest k-approval score can be

done in time polynomial in the size of the profile. To complete the proof, it suffices

then to show how to compute B in polynomial time.

To this end, for each i = 1, . . . , p, we set di to the absolute value of the difference

between the numbers of trees in the profile with the root labeled with Xi and with

0 (respectively, with 1) as the preferred value. We also select any alternative that

has the highest s′-score (we explained in the previous proof how to compute it in

polynomial time) and denote it by o. Finally, we compute the score of o and denote

it by W ′ (to use the notation from the previous proof).

Let S ⊆ {1, . . . , p} be a set of attribute indices, and let oS be an alternative

obtained from o by “flipping” its values in positions in S. Every alternative can be

described in these terms. This is useful as the s′-score of oS is easy to compute.

Namely, we have

s′(oS) = W ′ − w(S),

where w(S) =
∑

i∈S di is the weight of S.

It follows that B is determined by t+ 1 smallest-weight subsets of {1, . . . , p}. We

will now show that given a list D = {d1, d2, . . . , dp} and an integer t, the t+1 smallest-

weight subsets of {1, . . . , p} can be computed in time bounded by a polynomial in p

and t.

106

Let r be an integer such that 2r ≥ t+ 1. Let us assume that Lr is the set of t+ 1

smallest-weight subsets of {1, . . . , r}. Let

L′r+1 = Lr ∪ {S ∪ {r + 1} : S ∈ Lr}

and let Lr+1 be the collection of t + 1 smallest-weight subsets S of L′r+1. We will

show that Lr+1 contains t+ 1 smallest-weight subsets S of {1, . . . , r+ 1}. Indeed, let

us consider S ⊆ {1, . . . , r + 1} such that S /∈ L′r+1. If S ⊆ {1, . . . , r}, then S /∈ Lr.

Thus, w(S) ≥ w(S ′), for every S ′ ∈ Lr. If r + 1 ∈ S, then S = R ∪ {r + 1}, for some

R ⊆ {1, . . . , r}. Since S /∈ L′r+1, R /∈ Lr. Thus, w(R) ≥ w(R′), for every R′ ∈ Lr

and so, w(S) ≥ w(R′ ∪ {r + 1}) for all R′ ∈ Lr. In each case, it follows that there

are at least t + 1 sets S ′ in L′r+1 such that w(S) ≥ w(S ′). Thus for every S ′ ∈ Lr+1,

w(S) ≥ w(S ′).

Clearly, the list Lp consists of t+ 1 smallest weight subsets of {1, . . . , p}. Thus, it

can be taken for B. To compute it, we first find the smallest r such that 2r ≥ t + 1

(such an r exists as we are now considering the case when t < 2p). We then construct

the collection U of all subsets of {1, . . . , r} (this collection has no more than 2t

elements and can be constructed in time bounded by a polynomial in p and t). Next,

we construct Lr by selecting from U its t+1 smallest-weight elements. Since |U | ≤ 2t,

this task also can be accomplish in polynomial time (in p and t).

From now on, we construct Lr+1, Lr+2, . . . Lp recursively, as described above. Since

each step of the construction can be accomplished by the same polynomial-time al-

gorithm (form the collection L′, select its t+ 1 smallest-weight elements to form the

next L), and since the number of steps is bounded by p, the total time needed to

construct B (Lp) is bounded by a polynomial in p and t.

For the k-approval rule, we summarize the results in Table 7.1, where Table 7.1a

presents our results as discussed above, and results in Table 7.1b were obtained by

107

Table 7.1: k-Approval

UP CP
UI P P
CI P P

(a) k = 2p−1 ± f(p)

UP CP
UI NPC NPC
CI NPC NPC

(b) k = c · 2p−M and k 6= 2p−1

others [56].

(k, l)-Approval

To the best of our knowledge, the complexity of the 2-valued (k, l)-approval rule has

not been studied. It is evident that (k, l)-approval is an effective implicit positional

scoring rule. It turns out that, as with the k-approval rule, for some values of the

parameters, the evaluation problem for (k, l)-approval is NP-complete. Preliminary

results we obtained have been published [59]. We describe cases where k = l = 2p−c,

where c is a constant and 1 < c < p. If a = 2 and b = 1, we refer to the rule

(2p−2, 2p−2)-approval as 2K-approval. We show proof of NP-completeness of the

evaluation problem for (2p−2, 2p−2)-approval.

Theorem 18. The following problem is NP-complete: decide for a given UI-UP

profile V and an integer R whether there is an alternative o such that sw(V , o) ≥ R,

where w is the scoring vector of the (2p−2, 2p−2)-approval rule.

Proof. We can guess in polynomial time an alternative o ∈ X and verify in polynomial

time that Sw(V , o) ≥ R (this is possible because (k, l)-approval is an effective implicit

scoring rule; the score of an alternative in a vote can be computed in polynomial time

once its position is known, and the position can be computed in polynomial time be

traversing the tree representing the vote). So membership in NP follows. Hardness

follows from a polynomial reduction from the problem 2-MINSAT 2 [51], which is

2Let N be an integer (N > 1), the N -MINSAT problem is defined as follows. Given a set Φ of
n N -clauses {c1, . . . , cn} over a set of propositional variables {X1, . . . , Xp}, and a positive integer l

108

NP-complete. Given an instance 〈Φ, l〉 of the 2-MINSAT problem, we construct the

set of attributes I, the set of alternatives X , the profile V and the threshold R.

Important observations are that o is among the top first quarter of alternatives

in an LP-tree L if and only if the top two most important attributes in L are both

assigned the preferred values; and that o is among the second top quarter of alterna-

tives if and only if the most important attribute is assigned the preferred value and

the second most important one is assigned the non-preferred one.

(1). We define I = {X1, . . . , Xp}, where Xis are all propositional letters occurring

in Φ. Clearly, the set X of all alternatives over I coincides with the set of truth

assignments of variables in I.

(2). Let Ψ be the set of formulas {¬ci : ci ∈ Φ}. For each ¬ci ∈ Ψ, we build a + b

UI-UP trees. For instance, if ¬ci = X2∧¬X4, then we proceed as follows. Firstly, we

build a− b duplicate trees shown in Figure 7.1a. Secondly, we construct b duplicate

trees shown in Figure 7.1b. Thirdly, we build another b duplicate trees shown in

Figure 7.1c. (In all three figures we only indicate the top two attributes since the

other attributes can be ordered arbitrarily.) Denote by Vi the set of these a+b UI-UP

trees for formula ¬ci. Then V =
⋃

1≤i≤n Vi and has n ∗ (a+ b) votes.

(3). Finally, we set R = (n− l) ∗ (a2 − ab+ b2) + l ∗ ab.

Note that the construction of V ensures that if o |= ¬ci, Sw(Vi, o) = a2 − ab+ b2;

otherwise if o 6|= ¬ci, Sw(Vi, o) = ab. We have a2 − ab + b2 > ab since (a − b)2 > 0.

Hence, there is an assignment satisfying at most l clauses in Φ if and only if there

is an assignment satisfying at least n − l formulas in Ψ if and only if there is an

alternative with the (2p−2, 2p−2)-approval score of at least R given the profile V .

Since the first equivalence is clear, it suffices to show the second. Let o be an

assignment satisfying l′ formulas in Ψ. We have Sw(V , o) − R = (l′ + l − n) ∗ (a2 −

ab+ b2) + (n− l′ − l) ∗ ab = (l′ + l − n) ∗ (a2 − 2ab+ b2) = (l′ + l − n) ∗ (a− b)2. It

(l ≤ n), decide whether there is a truth assignment that satisfies at most l clauses in Φ.

109

follows that Sw(V , o) ≥ R if and only if l′ + l − n ≥ 0 if and only if l′ ≥ n− l.

X2 12 > 02

X4 04 > 14

(a)

X4 14 > 04

X2 02 > 12

(b)

X4 04 > 14

X2 02 > 12

(c)

Figure 7.1: UI-UP LP-trees

This hardness proof applies to more general classes of LP-trees, namely UI-CP,

CI-UP and CI-CP, and the winner problem for those cases is NP-hard. Below we show

the proof of NP-completeness of the evaluation problem for (2p−3, 2p−3)-approval.

Theorem 19. Let w be the scoring vector (a, . . . , a, b, . . . , b, 0 . . . , 0) with the numbers

of a’s and b’s each equal to 2p−3. The problem of deciding for a given UI-UP profile

V and an integer R whether there is an alternative o such that sw(V, o) ≥ R is

NP-complete.

Proof. We can guess in polynomial time an alternative o ∈ X and verify in polynomial

time that Sw(V, o) ≥ R. So membership in NP follows.

Hardness follows from a polynomial reduction from the NP-complete problem

3-MAXSAT [74]. Let Φ be a set of n 3-clauses {c1, . . . , cn} over {X1, . . . , Xp}, l

an integer such that 0 ≤ l ≤ n. Given an instance of 3-MAXSAT I = 〈Φ, l〉, we

construct the set of attributes X, the set of alternatives X , the profile V and the

threshold R as follows.

(1) X = {X1, . . . , Xp}. X is then the set of all alternatives over X.

(2) Let Ψ be the set of formulas {¬ci : ci ∈ Φ}. For each ¬ci ∈ Ψ, we build

multiple UI-UP LP-trees. Assume there is ci = ¬X1 ∨ ¬X2 ∨ ¬X3 ∈ Φ. Then we

have ¬ci = X1 ∧ X2 ∧ X3 ∈ Ψ. For ¬ci, we build a2 duplicate trees of type 7.2a,

a2 duplicate trees of type 7.2b, a2 duplicate trees of type 7.2c, a2 duplicate trees of

110

Table 7.2: (k, l)-Approval

UP CP
UI P P
CI P P

(a) k = l = 2p−1

UP CP
UI NPC NPC
CI NPC NPC

(b) k = l = 2p−c and 1 < c < p

type 7.2d, a2−ab duplicate trees of type 7.2e, a2−ab duplicate trees of type 7.2f and

(a − b)2 duplicate trees of type 7.2g. Denote by Vi the set of 7a2 − 4ab + b2 UI-UP

LP-trees for formula ¬ci. Then V =
⋃

1≤i≤n Vi and has n ∗ (7a2 − 4ab+ b2) votes.

(3) We set R = a3 ∗ l + (3a2b− 3ab2 + b3) ∗ (n− l).

Note that the construction of V ensures that if o |= ¬ci, Sw(Vi, o) = 3a2b −

3ab2 + b3; otherwise if o 6|= ¬ci, Sw(Vi, o) = a3. We have a3 > 3a2b − 3ab2 + b3 since

a3 − (3a2b − 3ab2 + b3) = (a − b)3 > 0. Therefore, there is an assignment satisfying

at least l clauses in Φ iff there is an assignment falsifying at least l formulas in Ψ iff

there is an alternative scoring at least R with respect to profile V and our scoring

vector w. Since the first equivalence is obvious, it suffices to show the second one.

(⇒) Assume o is the assignment that falsifies l′ (l′ ≥ l) formulas in Ψ, its score

Sw(V, o) = a3∗l′+(3a2b−3ab2 +b3)∗(n−l′). Then Sw(V, o)−R = a3∗(l′−l)+(3a2b−

3ab2 + b3) ∗ (l− l′) = a3 ∗ (l′− l)− (3a2b− 3ab2 + b3) ∗ (l′− l) = (a− b)3 ∗ (l′− l) ≥ 0.

Thus, Sw(V, o) ≥ R.

(⇐) Suppose o is the alternative such that Sw(V, o) ≥ R. Prove by contradiction.

Assume o falsifies l′ formulas in Ψ and l′ < l. Then Sw(V, o)−R = (a−b)3∗(l′−l) < 0,

which implies that Sw(V, o) < R. Contradiction! Therefore, it must be that l′ ≥ l.

For the (k, l)-approval rule, we capture our results as Table 7.2.

111

X1 11 > 01

X2 12 > 02

X3 03 > 13

(a)

X1 01 > 11

X2 02 > 12

X3 03 > 13

(b)

X1 01 > 11

X2 12 > 02

X3 03 > 13

(c)

X1 11 > 01

X2 02 > 12

X3 03 > 13

(d)

X1 01 > 11

X3 13 > 03

X2 02 > 12

(e)

X1 11 > 01

X3 13 > 03

X2 02 > 12

(f)

X2 12 > 02

X3 13 > 03

X1 01 > 11

(g)

Figure 7.2: UI-UP LP-trees

b-Borda

By b-Borda we mean a positional scoring rule with the scoring vector 〈b, b−1, b−2, . . .〉.

Let m = 2p denote the number of alternatives in X (I) (where, as always, I =

{X1, . . . , Xp}). If b ≥ 2p − 1, b-Borda can be reduced to the (standard) Borda rule.

In the most restrictive case of UI-UP profiles, the evaluation problem for the Borda

rule is in P, and it is NP-complete for the three other classes of profiles [56].

When b < 2p−1, we show that for some values of b, the winner and the evaluation

problems under the b-Borda rules are NP-hard and NP-complete, respectively, no

matter what the type of LP-trees used in profiles. The cases of UI-CP, CI-UP and

CI-CP trees are handled by a fairly direct reduction from the corresponding problems

under the Borda rule. The case of UI-UP profiles requires a different argument (the

winner and the evaluation problems under the standard Borda rule are, as we noted,

in P). We start with the latter.

112

We denote by half-Borda the b-Borda rule with b = 2p−1−1, where p is the number

of attributes in I. We have the following theorem on half-Borda.

Theorem 20. The evaluation and the winner problems under half-Borda for UIUP-

profiles are NP-complete and NP-hard, respectively.

Proof. We show that the evaluation problem is NP-complete. The membership in

NP is obvious. The NP-hardness follows from a polynomial reduction from the 2-

MINSAT problem.

Given a 2-MINSAT instance (Φ, l), where Φ consists of 2-clauses C1, . . . , Cm over

variables X1, . . . , Xp, we construct an instance of our problem as follows.

First, we introduce a new binary variable Xq and define the set of attributes I by

setting I = {X1, . . . , Xp, Xq}.

Second, for each Ci ∈ Φ, we now build a set Pi of 12 UI-UP LP-trees over I. As

an example, let Ci be ¬X2 ∨ X4
3. The fragment of the profile determined by Ci is

given by the multi-set

Pi = {Bi1 , Bi2 , Bi1 , Bi2 , Bi1 , Bi2 , B
′
i1
, B′i2 , B

′′
i1
, B′′i2 , B

′′
i1
, B′′i2},

where the trees Bi1 , Bi2 , B
′
i1
, B′i2 , B

′′
i1

, and B′′i2 are shown in Figure 7.3. In other words,

the profile Pi contains three copies of Bi1 and Bi2 , one copy of B′i1 and B′i2 , and two

copies of B′′i1 and B′′i2 . We define the overall profile P as the collection of all profiles

Pi, 1 ≤ i ≤ m. That is, P =
⋃

1≤i≤m Pi. Clearly, we have 12 ·m UI-UP LP-trees in

the profile P .

Finally, we set the threshold value R = 15a · (m − l) + 3a · l, where we use a to

denote 2p−1.

Let o be an outcome over I. Let B be a UIUP tree over I, Xj the most important

attribute of B. We define the half-Borda score of o in tree B, denoted by sHB(B, o),
3We will build Pi according to what Ci contains: the two atoms in Ci are the labels of the top

two levels of trees, and whether the atom is negated affects the preference on that atom.

113

to be 0 if outcome o has the non-preferred value on Xj; sBorda(B|I\{Xj}
, o|I\{Xj}

),

otherwise. We now compute the half-Borda score of o according to whether it satisfies

Xq and Ci. If o |= Xq ∧ ¬Ci, that is, o |= Xq ∧X2 ∧ ¬X4, we have

sHB(Pi, o) = (2p − 1 + 2p−1 + 1) ∗ 3︸ ︷︷ ︸
three copies of Bi1

and Bi2

+ (0)︸︷︷︸
B′i1

and B′i2

+ (2p − 1 + 2p−1 + 1) ∗ 2︸ ︷︷ ︸
two copies of B′′i1

and B′′i2

= 15a.

If o |= Xq ∧ Ci, we need to consider three cases:

(1). If o |= Xq ∧ ¬X2 ∧X4, we have

sHB(Pi, o) = (0) ∗ 3︸ ︷︷ ︸
three copies of Bi1

and Bi2

+ (2p − 1 + 2p−1 + 1)︸ ︷︷ ︸
B′i1

and B′i2

+ (0) ∗ 2︸ ︷︷ ︸
two copies of B′′i1

and B′′i2

= 3a.

(2). If o |= Xq ∧ ¬X2 ∧ ¬X4, we have

sHB(Pi, o) = (0) ∗ 3︸ ︷︷ ︸
three copies of Bi1

and Bi2

+ (2p−1 − 1 + 1)︸ ︷︷ ︸
B′i1

and B′i2

+ (2p−1 − 1 + 1) ∗ 2︸ ︷︷ ︸
two copies of B′′i1

and B′′i2

= 3a.

(3). If o |= Xq ∧X2 ∧X4, we have

sHB(Pi, o) = (2p−1 − 1 + 1) ∗ 3︸ ︷︷ ︸
three copies of Bi1

and Bi2

+ (0)︸︷︷︸
B′i1

and B′i2

+ (0)︸︷︷︸
two copies of B′′i1

and B′′i2

= 3a.

Thus, for o |= Xq ∧ Ci, we have sHB(Pi, o) = 3a.

Similarly, we can compute that sHB(Pi, o) < 15a, if o |= ¬Xq∧¬Ci; and sHB(Pi, o) <

114

3a, if o |= ¬Xq ∧ Ci.

We now show that there exists an outcome over I with score at least R if and

only if there exists an assignment over I that satisfies at most l clauses in Φ.

(⇐) We assume there is an assignment v over I satisfying at most l clauses in Φ.

Define an outcome o = (v, 1q). It is clear that sHB(P, o) ≥ R.

(⇒) We assume there is an outcome o over I such that sHB(P, o) ≥ R. If o |= ¬Xq,

we could flip the value on Xq from 0q to 1q, and obtain o′ such that sHB(P, o′) >

sHB(P, o) ≥ R. Assuming o′|I satisfies l′ (l′ > l) clauses in Φ, we have that sHB(P, o′) =

15a · (m− l′) + 3a · l′ > R; thus, l′ < l. A contradiction! Otherwise, if o |= Xq, we are

done.

Corollary 21. Theorem Theorem 20 holds for b-Borda when b = 2p−c − 1, where c

is a constant and 1 ≤ c < p.

Corollary 21 holds because we can construct c to be 1 and then the proof of

Theorem 20 follows.

Theorem 22. Let b = 2p−c − 1, where p is the number of attributes and c a fixed

integer such that 1 ≤ c < p. The evaluation and the winner problems under b-Borda

for profiles consisting of CI-UP trees (UI-CP and CI-CP trees, respectively) are NP-

complete and NP-hard, respectively.

Proof. We only show an argument for the class CI-UP. The reasoning for other two

types of profiles is similar. Moreover, we only show that the evaluation problem

(under the restriction to profiles consisting of CI-UP trees) is NP-complete. Indeed,

it directly implies that the corresponding variant of the winner problem is NP-hard.

As in other arguments before, the membership in the class NP is evident. Thus,

we focus on the hardness part of the argument. To show NP-hardness, we construct

a reduction from the evaluation problem under Borda when profiles consist of CI-UP

trees (Bordaev
CI−UP , for short). That problem is known to be NP-complete [56].

115

X2 12 > 02

X4 04 > 14

X1 11 > 01

... 1 > 0

Xp 1p > 0p

Xq 1q > 0q

(a) Bi1

X2 12 > 02

X4 04 > 14

X1 01 > 11

... 0 > 1

Xp 0p > 1p

Xq 1q > 0q

(b) Bi2

X2 02 > 12

X4 14 > 04

X1 11 > 01

... 1 > 0

Xp 1p > 0p

Xq 1q > 0q

(c) B′i1

X2 02 > 12

X4 14 > 04

X1 01 > 11

... 0 > 1

Xp 0p > 1p

Xq 1q > 0q

(d) B′i2

X4 04 > 14

X2 12 > 02

X1 11 > 01

... 1 > 0

Xp 1p > 0p

Xq 1q > 0q

(e) B′′i1

X4 04 > 14

X2 12 > 02

X1 01 > 11

... 0 > 1

Xp 0p > 1p

Xq 1q > 0q

(f) B′′i2

Figure 7.3: UI-UP LP-trees

Given an instance 〈I, P, l〉 of Bordaev
CI−UP , where I is a set of p attributesX1, . . . , Xp,

P = 〈T1, . . . , Tm is a profile of m CI-UP trees over I, and l is a positive integer, we

construct an instance 〈I,P , `〉 of our problem as follows.

First, we define I = {Y1, . . . , Yc, X1, . . . , Xp}, where Y1, . . . , Yc are new attributes.

Second, we construct a UI-UP tree T built of c nodes labeled Y1, . . . Yc (from top to

bottom), with the node labeled with Yi having a local preference 1 > 0. Then, for

each Ti ∈ P , 1 ≤ i ≤ m, we form a CI-UP tree T ′i by connecting the bottom node

116

Table 7.3: b-Borda

UP CP
UI P NPC
CI NPC NPC

(a) b = 2p − 1

UP CP
UI NPC NPC
CI NPC NPC

(b) b = 2p−c − 1 and 1 ≤ c < p

of T (the one labeled wit Yc) by a “straight-down” edge to the root of Ti. We define

V = {T ′1, . . . , T ′, }. Finally, we set ` = l.

It is simple to verify that under the profile P there is an alternative with the

Borda score of at least l if and only if under the profile P there is an alternative with

the b-Borda score of at least `.

For the b-Borda rule, we include the complexity results in Table 7.3, where Ta-

ble 7.3b shows existing results by others [56], and Table 7.3a presents results obtained

by us.

7.4 The Problems in Answer-Set Programming

The winner and the evaluation problems are in general intractable in the setting

we consider. Yet, they arise in practice and computational tools to handle them

are needed. We develop and evaluate a computational approach based on answer-

set programming (ASP) [67]. We propose several ASP encodings for both problems

for the Borda, k-approval, and (k, l)-approval rules (for the lack of space only the

encodings for Borda are discussed). The encodings are adjusted to two ASP solvers

for experiments: clingo [42], and clingcon [72] and demonstrate the effectiveness of

ASP in modeling problems related to preference aggregation.

117

Encoding LP Trees As Logic Programs

In the winner and evaluation problems, we use LP-trees only to compute the ranking

of an alternative. Therefore, we encode trees as program rules in a way that enables

that computation for a given alternative. In the encoding, an alternative o is repre-

sented by a set of ground atoms eval(i, xi), i = 1, 2, . . . , p and xi ∈ {0, 1}. An atom

eval(i, xi) holds precisely when the alternative o has value xi on attribute Xi.

If Xi is the attribute labeling a node t in vote v at depth dvi , CPT (t) determines

which of the values 0i and 1i is preferred there. Let us assume P(t) = {t1, . . . , tj}

and Inst(t) = {tj+1, . . . , t`}, where each tq is labeled by Xiq . The location of t is

determined by its depth dvi and by the set of values xij+1
, . . . , xi` of the attributes

labeling Inst(t) (they determine whether we descend to the left or to the right child

as we descend down the tree). Thus, CPT (t) can be represented by program rules as

follows. For each row u : 1i > 0i in CPT (t), where u = xi1 , . . . , xij , we include in the

program the rule

vote(v, dvi , i, 1) : - eval(i1, xi1), . . . , eval(ij, xij),

eval(ij+1, xij+1
), . . . , eval(i`, xi`)

(7.1)

(and similarly, in the case when that row has the form u : 0i > 1i).

In this representation, the property vote(v, dvi , i, ai) will hold true for an alter-

native o represented by ground atoms eval(i, xi) precisely when (or if, denoted by

“: -” in our encodings) that alternative takes us to a node in v at depth dvi labeled

with the attribute Xi, for which at that node the value ai is preferred. Since, in

order to compute the score of an alternative on a tree v all we need to know is

whether vote(v, dvi , i, ai) holds (cf. our discussion below), this representation of trees

is sufficient for our purpose.

For example, the LP-tree v in Figure 3.3 is translated into the logic program in

118

Figure 7.4 (voteID(v) identifies the id of the vote (LP-tree)).

1 voteID(1).

2 vote(1,1,1,1).

3 vote(1,2,2,1) :- eval(1,1).

4 vote(1,3,3,1) :- eval(2,1), eval(1,1).

5 vote(1,3,3,0) :- eval(2,0), eval(1,1).

6 vote(1,2,3,0) :- eval(1,0).

7 vote(1,3,2,0) :- eval(1,0).

Figure 7.4: Translation of v in logic rules

Encoding Positional Scoring Rules In ASP

Encoding the Borda evaluation problem in clingo

The evaluation and the winner problems for Borda can be encoded in terms of rules

on top of those that represent an LP profile. Given a representation of an alternative

and of the profile, the rules evaluate the score of the alternative and maximize it or

test if it meets or exceeds the threshold.

We first show the encoding of the Borda evaluation problem in clingo (Figure 7.5).

Parameters in the evaluation problem are defined as facts (lines 1-4): predicates at-

tribute/1 s representing three attributes, numIss/1 the number of attributes, thresh-

old/1 the threshold value, together with val/1 s the two values in the attributes’

binary domains. Line 5 generates the search space of all alternatives over three bi-

nary attributes. It expresses that if X is an attribute, exactly one of eval(X,Y) holds

for all val(Y), i.e., exactly one value Y is assigned to X.

Let o be an alternative represented by a set of ground atoms eval(i, xi), one atom

for each attribute Xi. Based on the representation of trees described above, for

119

1 attribute(1). attribute(2). attribute(3).

2 numIss(3).

3 val(0). val(1).

4 threshold(5).

5 1{ eval(I,M) : val(M) }1 :- attribute(I).

6 wform(V,I,W) :- vote(V,D,I,A), eval(I,A), numIss(P), W=#pow(2,P-D).

7 wform(V,I,0) :- vote(V,D,I,A), eval(I,M), A != M.

8 goal :- S = #sum [wform(V,I,W) = W], threshold(TH), S >= TH.

9 :- not goal.

Figure 7.5: Borda evaluation problem encoding in clingo

every tree v we get the set of ground atoms vote(v, dvi , i, ai). The Borda score of an

alternative in that tree corresponds to the rank of the leaf the alternative leads to

(in a “non-collapsed” tree), which is determined by the direction of descent (left or

right) at each level. Roughly speaking, these directions give the binary representation

of that rank, that is, the Borda score of the alternative. Let us define sB(v, o) as a

function that computes the Borda score of alternative o given one vote v. Then one

can check that

sB(v, o) =

p∑
i=1

2p−d
v
i · f(ai, xi), (7.2)

where f(ai, xi) returns 1 if ai = xi, 0 otherwise. Thus, to compute the Borda score

with regard to a profile V , we have

sB(V, o) =

n∑
v=1

p∑
i=1

2p−d
v
i · f(ai, xi). (7.3)

In the program in Figure 7.5, lines 6 and 7 introduce predicate wform/3 which

computes 2p−d
v
i · f(ai, xi) used to compute Borda score. According to equation (7.3),

if attribute I appears in vote V at depth D and A is its preferred value, and if the

value of I is indeed A in an alternative o, then the weight W on I in V is 2P−D, where

P is the number of attributes; if attribute I is assigned the less preferred value in o,

then the weight W on I in V is 0. The Borda score of the alternative is then equal to

the sum of all the weights on every attribute in every vote, and this is computed using

120

1 $domain(1..4).

2 attribute(1). attribute(2). attribute(3).

3 numIss(3).

4 val(0). val(1).

5 threshold(5).

6 1{ eval(I,M) : val(M) }1 :- attribute(I).

7 wform(V,I,W) :- vote(V,D,I,A), eval(I,A), numIss(P), W=#pow(2,P-D).

8 wform(V,I,0) :- vote(V,D,I,A), eval(X,M), A != M.

9 weight(V,I) $== W :- wform(V,I,W).

10 $sum{ weight(V,I) : voteID(V) : var(I) } $>= TH :- threshold(TH).

Figure 7.6: Borda evaluation problem encoding using clingcon

the aggregate function #sum built in the input language of clingo (rule 8). Rule 9 is

an integrity constraint stating that contradiction is reached if predicate goal/0 does

not hold in the solution. Together with rule 8, it is ensured that the Borda evaluation

problem is satisfiable if and only if there is an answer set in which goal/0 holds.

The encoding for the Borda winner problem for clingo replaces rules 7 and 8 in

Figure 7.5 with the following single rule:

#maximize[wform(V,I,W) = W].

The #maximize statement is an optimization statement that maximizes the sum

of all weights (W ’s) for which wform(V,I,W) holds.

Encoding the Borda evaluation problem in clingcon

In this encoding, we exploit clingcon’s ability to handle some numeric constraints by

specialized constraint solving techniques (by means of the CP solver Gecode [77]). In

Figure 7.6 we encode the Borda evaluation problem in clingcon.

121

Lines 2-8 are same as lines 1-7 in Figure 7.5. Line 9 defines the constraint variable

weight(V,I) that assigns weight W to each pair (V ,I) and line 10 defines a global

constraint by use of $sum declares that the Borda score must be at least the threshold.

Line 1 restricts the domain of all constraint variables (only weight/2 in this case) to

[1,4] as weights of attributes in an LP-tree of 3 attributes are 20, 21 and 22.

The encoding for the Borda winner problem for clingcon replaces rules 10 in

Figure 7.6 with the following one rule:

$maximize{weight(V,I):voteID(V):attribute(I)}.

The $maximize statement is an optimization statement that maximizes the sum

over the set of constraint variables weight(V,I).

Encoding the k-approval evaluation problem in clingo

One method to aggregate LP-trees according to k-approval can be designed reusing

the Borda encodings for both problems and solvers. Given an alternative o, we can

first compute sB(v, o) in every vote v and then compare sB(v, o) with m − k. If

sB(v, o) ≤ m−k, sk(v, o) = 1; otherwise, sk(v, o) = 0. This method, however, is later

turned out not quite effective for clingo in the sense that the rules to calculate Borda

scores using aggregating predicate #sum result in large ground propositional theories

that is hard for clingo to solve. We managed to work around this ineffectiveness

by coming up with encodings using a heuristic that reduce the size of the ground

programs for clingo. The heuristic is described in Theorem 23.

Theorem 23. Given an LP-tree v and a positive integer k, we can construct in O(p2)

time a Boolean formula φ of length O(p2) such that sk(v, o) = 1 for an alternative o

122

iff o satisfies φ.

Proof. The algorithm is as follows.

1. φ is a disjunction of conjunctions of literals over attributes built as follows.

2. Compute the k-th preferred alternative ~dk in time linear in p. Denote by IO~dk

the importance order ~dk induces. Assume IO~dk
= Xi1 BXi2 B . . .BXip .

3. The first conjunction C1 = li1 ∧ . . .∧ lij , where each lik , 1 ≤ k ≤ j, is Xik (resp.

¬Xik) if ~dk(Xij) = 1ij (resp. ~dk(Xij) = 0ij).

4. For every attribute Xij ∈ IO~dk
such that ~dk assigns it with its less preferred

value (e.g., if 1ij > 0ij ,
~dk(Xij) = 0ij), we have a conjunction Cij = li1 ∧ . . . ∧

lij−1
∧lij , where each lik , 1 ≤ k ≤ j−1, is Xik (resp. ¬Xik) if ~dk(Xij) = 1ij (resp.

~dk(Xij) = 0ij) and lij is Xik (resp. ¬Xik) if ~dk(Xij) = 0ij (resp. ~dk(Xij) = 1ij).

In order to compute the k-th preferred alternative ~dk, we need some auxiliary

predicates to help the computation. We define predicates voteK/4 and evalK/4 that

are basically copies of vote/4 and eval/4 in the logic representation of LP-trees except

that evalK/4 describes ~dk. A predicate evalK(V,D,I,M) means that in vote V the

k-th ranked alternative assigns value M to attribute I at depth D. For the example

LP-tree in Figure 3.3, we have the follow ancillary logic program in Figure 7.7.

123

1 voteK(1,1,1,1).

2 voteK(1,2,2,1) :- evalK(1,1,1,1).

3 voteK(1,3,3,1) :- evalK(1,2,2,1), evalK(1,1,1,1).

4 voteK(1,3,3,0) :- evalK(1,2,2,0), evalK(1,1,1,1).

5 voteK(1,2,3,0) :- evalK(1,1,1,0).

6 voteK(1,3,2,0) :- evalK(1,1,1,0).

Figure 7.7: Auxiliary data in logic rules for computing ~dk

We now present the encoding of the k-Approval evaluation problem in clingo

(Figure 7.8), where k = 5.

1 attribute(1). attribute(2). attribute(3).

2 numIss(3).

3 val(0). val(1).

4 k(1,1). k(2,0). k(3,0).

5 threshold(5).

6 evalK(V,D,I,M) :- vK(V,D,I,M), k(D,0).

7 evalK(V,D,I,1-M) :- vK(V,D,I,M), k(D,1).

8 1{ eval(I,M) : val(M) }1 :- attribute(I).

9 rank(V,1) :- vote(V), numIss(N),

N{eval(I,M) : evalK(VV,D,I,M) : V==VV}N.

10 rank(V,1) :- vote(V), k(D,1),

D-1{eval(I,M) : evalK(VV,DD,I,M) : A==AA : DD<=D-1}D-1,

1{eval(I,M) : evalK(V,D,I,MM) : M!=MM}1.

11 goal :- S = #sum [rank(V,Y) = Y], threshold(TH), S >= TH.

12 :- not goal.

Figure 7.8: k-Approval evaluation problem encoding in clingo

7.5 The Problems in Weighted Partial Maximum Satisfiability

In this section, we call “the evaluation and the winner problems based on a positional

scoring rule r” by “the r problems.” We show an algorithm that translate the posi-

124

tional scoring rule problems into Weighted Partial Maximum Satisfiability instances.

We first translate the positional scoring rule problems to Weighted Terms Maximum

Satisfiability instances, which are then transformed into Weighted Partial Maximum

Satisfiability instances.

Weighted Partial Maximum Satisfiability

Definition 34. Let X be a set of Boolean variables {X1, . . . , Xq}, Ψ a set of weighted

terms of the form

{(t1, w1), . . . , (tn, wn)},

where each term is a conjunction of literals on X. The Weighted Terms Maximum

Satisfiability (WTM) problem is to find an assignment of X that maximizes the sum

of the weights of the satisfied terms in Ψ.

Definition 35. Let X be a set of Boolean variables {X1, . . . , Xp}, a weighted partial

formula Φ 4 is a multi-set of weighted clauses over X of the form

{(c1, w1), . . . , (cn, wn), (cn+1, wn+1), . . . , (cn+m, wn+m)},

where each wi, 1 ≤ i ≤ n, is a positive integer and wn+1 = . . . = wn+m = σ =

1 +
∑n

i=1wi. Clause cj is hard if wj = σ; soft, otherwise.

Definition 36. Let X be a set of Boolean variables {X1, . . . , Xp}, Φ a weighted

partial formula, the Weighted Partial Maximum Satisfiability (WPM) problem is to

find an assignment of X that maximizes the sum SW of weights of satisfied clauses

in Φ. If SW < m ∗ σ, it means that at least one hard clause is falsified and we say

that Φ is unsatisfiable.

Clearly, the WPM problem generalizes the SAT problem [40], the MAXSAT prob-

lem [24] and the Partial MAXSAT problem [24].

4This definition is slightly adapted of the commonly used [4, 3].

125

Translating a WTM instance into an equivalent WPM instance

Now we show how a WTM instance Ψ can be translated into a WPM instance Φ

in polynomial time such that a solution to Φ projected onto Ψ’s alphabet XΨ is a

solution to Ψ.

Theorem 24. Given a WTM instance Ψ, a WPM instance Φ can be computed in

time O(nq) such that any solution to Φ restricted to XΨ is a solution to Ψ.

Proof. The translation algorithm is detailed in Algorithm 5.

Let XΨ be {X1, . . . , Xq}, XΦ be {X1, . . . , Xq, C1, . . . , Cn}. Assume v is a solution

to the WPM instance Φ over XΦ, we show that the restriction, v|XΨ
, is a solution

to the original WTM instance Ψ. Let S = {ti1 , . . . , tis} be the set of terms in Ψ

satisfied by v (or, equivalently, v|XΨ
). It is clear that v satisfies {Cik : tik ∈ S} and

falsifies {Cik : tik 6∈ S}; since, otherwise, v would not have the maximal sum SW for

Φ. Denote by xi the number of literals in term ti. Let v′ be an arbitrary assignment

such that SW v′ < SW v, and S ′ = {tj1 , . . . , tjr} the set of terms in Ψ satisfied by v′.

According to Algorithm 5, we have SW v =
∑s

k=1wik +
∑n

k=1 σ +
∑n

k=1(
∑xk

o=1 σ)

and SW v′ =
∑r

k=1wjk +
∑n

k=1 σ +
∑n

k=1(
∑xk

o=1 σ). Then, we have SW v − SW v′ =∑s
k=1 wik −

∑r
k=1 wjk > 0. Thus, we know v|XΨ

is a solution to the original WTM

instance Ψ.

Encoding Borda problems in WTM and WPM

The LP-tree in Figure 3.3 under Borda is translated to a WTM instance in Figure 7.9.

Then the WTM instance in Figure 7.9 is transformed into a WPM instance in

Figure 7.10.

126

Algorithm 5: Compute equivalent WPM instances from WTM instances

Input: a WTM instance Ψ
Output: an equivalent WPM instance Φ

1 Φ← ∅;
2 σ ← 1 +

∑n
i=1 wi;

3 foreach (ti, wi) ∈ Ψ do
4 introduce a new variable Ci and Φ← Φ ∪ (Ci, wi);
5 Φ← Φ ∪ (Ci ∨

∨
lj∈ti ¬lj, σ);

6 foreach lj ∈ ti do
7 Φ← Φ ∪ (¬Ci ∨ lj, σ);
8 end

9 end
10 return Φ

(X1, 4)
(X1 ∧X2, 2)
(X1 ∧X2 ∧X3, 1)
(X1 ∧ ¬X2 ∧ ¬X3, 1)
(¬X1 ∧ ¬X3, 2)
(¬X1 ∧ ¬X2, 1)

Figure 7.9: The WTM instance of the LP-tree v

Encoding k-approval problems in WTM and WPM

The LP-tree in Figure 3.3 under 5-Approval is translated to a WTM instance in

Figure 7.11.

(¬X1 ∧ ¬X2 ∧ ¬X3, 1)

(X1, 1)

Figure 7.11: The WTM instance of the LP-tree v under 5-Approval

Then the WTM instance in Figure 7.11 is transformed into a WPM instance in

Figure 7.12.

127

(C1, 4)
(¬C1 ∨X1, 12)
(¬X1 ∨ C1, 12)
(C2, 2)
(¬C2 ∨X1, 12)
(¬C2 ∨X2, 12)
(¬X1 ∨ ¬X2 ∨ C2, 12)
(C3, 1)
(¬C3 ∨X1, 12)
(¬C3 ∨X2, 12)
(¬C3 ∨X3, 12)
(¬X1 ∨ ¬X2 ∨ ¬X3 ∨ C3, 12)
(C4, 1)
(¬C4 ∨X1, 12)
(¬C4 ∨ ¬X2, 12)
(¬C4 ∨ ¬X3, 12)
(¬X1 ∨X2 ∨X3 ∨ C4, 12)
(C5, 2)
(¬C5 ∨ ¬X1, 12)
(¬C5 ∨ ¬X3, 12)
(X1 ∨X3 ∨ C5, 12)
(C6, 1)
(¬C6 ∨ ¬X1, 12)
(¬C6 ∨ ¬X2, 12)
(X1 ∨X2 ∨ C6, 12)

Figure 7.10: The WPM instance of the LP-tree v

(C1, 1)

(¬C1 ∨ ¬X1, 3)

(¬C1 ∨ ¬X2, 3)

(¬C1 ∨ ¬X3, 3)

(X1 ∨X2 ∨X3 ∨ C1, 3)

(C2, 1)

(¬C2 ∨X1, 3)

(¬X1 ∨ C2, 3)

Figure 7.12: The WPM instance of the LP-tree v under 5-Approval

128

7.6 Experiments

Here we present and analyze the experimental results from solving the Winner prob-

lem and the Evaluation problem using two Answer Set Programming solvers clingo

(version 4.2.1) and clingcon (version 2.0.3) and one Constraint Satisfaction Problem

solver toulbar (version 0.9.6.0-dev).

All our experiments were performed on a machine with an Intel(R) Core(TM) i7

CPU @ 2.67GHz and 8 GB RAM running Ubuntu 12.04 LTS.

We first consider the winner problem. In the study, we consider the computation

time with a fixed number of attributes (5/10/20) and for each number of attributes

we range the number of votes in a profile up to 3000 for {Borda, 2p−2-approval, 2K-

approval} × {clingcon, clingo, toulbar}. Then we fix the number of votes (1000) and

vary the number of attributes up to 20, again for same set of settings. Each time

result in seconds is computed as the mean of 20 tests over different randomly generated

profiles of LP-trees.

Structure of the Simple LP Trees

To experiment with the programs presented above and with clingo and clingcon

solvers, we generate logic programs that represent random LP-trees and profiles of

random LP-trees. Our algorithm generates encodings of trees from the most general

class CI-CP under the following restrictions: (1) Each LP-tree has exactly two paths

with the splitting node appearing at depth ds =
⌊
p
2

⌋
; (2) Each non-root node at depth

≤ ds + 1 has exactly one parent; (3) Each node at depth > ds + 1 has exactly two

parents, one of which is at depth < ds.
5

The algorithm starts by randomly selecting attributes to label the nodes on the

path from the root to the splitting node and then, similarly, labels the nodes on each

5The restrictions are motivated by the size of the representation considerations. They ensure
that the size of generated LP-trees is linear in the number of attributes.

129

Figure 7.13: Simple CI-CP tree

of the two paths (different labeling can be produced for each of them). Then, for

each non-root node, the algorithm selects at random one or two parent nodes (as

appropriate based on the location of the node). Finally, the algorithm decides local

preferences (for each combination of values of the parent attributes) randomly picking

one over the other. In each step, all possible choices are equally likely. We call CI-CP

LP-trees satisfying these restrictions simple. Each simple LP-tree has size linear in

p. Figure 7.13 depicts a CI-CP tree of 4 attributes in this class.

Solving the Winner Problem

We refer to 7.14 for the empirical results on solving the Winner problem. Each point

in a figure represents an average of computation time spent on solving 20 different

Winner problem instances given randomly generated LP profiles.

It is clear that our experiments on the winner problem for the three voting rules

with fixed number of attributes are consistent with the property that the problem

is solvable in polynomial time. All three solvers scale up well. Figures 7.14(a),(c)

130

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Number of Votes

M
e

a
n

 T
im

e
 (

s
e

c
)

Borda+Clingo

Borda+Clingcon

Borda+Toulbar

(a) Borda, fixed #attributes(10)

0 5 10 15 20 25
0

50

100

150

200

250

300

Number of Issues

M
e
a
n
 T

im
e
 (

s
e
c
)

Borda+Clingo

Borda+Clingcon

Borda+Toulbar

(b) Borda, fixed #votes(1000)

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Number of Votes

M
e

a
n

 T
im

e
 (

s
e

c
)

2
p−2

−Approval+Clingo

2
p−2

−Approval+Clingcon

2
p−2

−Approval+Toulbar

(c) 2p−2-Approval, fixed #attributes(10)

0 5 10 15 20 25
0

50

100

150

200

250

300

Number of Issues

M
e
a
n
 T

im
e
 (

s
e
c
)

2
p−2

−Approval+Clingo

2
p−2

−Approval+Clingcon

2
p−2

−Approval+Toulbar

(d) 2p−2-Approval, fixed #votes(1000)

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Number of Votes

M
e

a
n

 T
im

e
 (

s
e

c
)

(2
p−2

,2
p−2

)−Approval+Clingo

(2
p−2

,2
p−2

)−Approval+Clingcon

(2
p−2

,2
p−2

)−Approval+Toulbar

(e) 2K-Approval, fixed #attributes(10)

0 5 10 15 20 25
0

50

100

150

200

250

300

Number of Issues

M
e
a
n
 T

im
e
 (

s
e
c
)

(2
p−2

,2
p−2

)−Approval+Clingo

(2
p−2

,2
p−2

)−Approval+Clingcon

(2
p−2

,2
p−2

)−Approval+Toulbar

(f) 2K-Approval, fixed #votes(1000)

Figure 7.14: Solving the winner problem given simple LP-trees

131

and (e) depict the result for the cases with 10 attributes. When we fix the number

of votes and vary the number of attributes the time grows exponentially with p (cf.

Figures 7.14(b),(d) and (f)), again consistently with the computational complexity of

the problems (NP-hardness).

Generally clingo is better compared to clingcon in solving the winner problem for

the three scoring rules. Moreover, clingo outperforms toulbar in solving the winner

problem for the Borda rule, while toulbar performs better than clingo for the two

approval rules.

For the winner problems, our experiments demonstrates that profiles of LP-trees

of practical sizes can be effectively handled by our solvers, up to 3000 votes per profile

over up to 20 attributes. But going beyond 20 attributes remains a challenge.

Solving the Evaluation Problem

The evaluation problem can be reduced to the winner problem, as an evaluation

problem instance has an answer YES if and only if the score of the winner equals or

exceeds the threshold. Thus, the evaluation problem is at most as complex as the

winner problem.

For the evaluation problem, we compare its experimental complexity with that of

the winner problem. For each of the 20 randomly generated profiles of 1000 votes,

we compute the winning score WS and set the threshold for the evaluation problem

with a percentage of WS , starting with 5% and incremented by 5% for the following

tests until we reach the full value of WS . We run one more test with the threshold

WS + 1 (there is no solution then and the overall method allows for the experimental

comparison of the hardness of the winner and evaluation problems). That allows us

to study the effectiveness of solvers. We again present and compare average time

results.

First, we note that for clingo, the evaluation problem is harder than the winner

132

1 4 8 12 16 20 21
0

20

40

60

80

100

120

140

160

180

200

Threshold

M
e

a
n

 T
im

e
 (

s
e

c
)

Evaluation+Clingo

Winner+Clingo

Evaluation+Clingcon

Winner+Clingcon

Evaluation+Toulbar

Winner+Toulbar

(a) 2p−2-Approval (1000votes/13attributes)

1 4 8 12 16 20 21
0

20

40

60

80

100

120

140

160

180

200

Threshold

M
e

a
n

 T
im

e
 (

s
e

c
)

Evaluation+Clingo

Winner+Clingo

Evaluation+Clingcon

Winner+Clingcon

Evaluation+Toulbar

Winner+Toulbar

(b) 2K-Approval (1000votes/13attributes)

1 4 8 12 16 20 21
0

50

100

150

200

250

300

350

400

450

Threshold

M
e

a
n

 T
im

e
 (

s
e

c
)

Evaluation+Clingo

Winner+Clingo

Evaluation+Clingcon

Winner+Clingcon

Evaluation+Toulbar

Winner+Toulbar

(c) Borda (1000votes/4attributes)

Figure 7.15: Solving the evaluation problem given simple LP-trees

problem in the entire range for Borda (Figure 7.15(c)). We attribute that to the fact

that the encodings of the evaluation problem have to model the threshold constraint

with the #sum rule which, in clingo, leads to large ground theories that it finds

hard to handle. In the winner problem encodings, the #sum rule is replaced with an

optimization construct, which allows us to keep the size of the ground theory low.

Second, we notice that, except for Borda and clingo, the evaluation problem is

easier than the winner problem when the threshold values are smaller than the win-

133

ning score and the evaluation problem becomes harder when the thresholds are close

to it. We refer to Figures 7.15(a), (b) and (c).

Thirdly, in all cases clingcon outperforms clingo on the evaluation problems (cf.

Figures 7.15(a), (b) and (c)). It is especially clear for Borda, where the range of

scores is much larger than in the case of approval rules. That poses a challenge for

clingo that instantiates the #sum rule over that large range, which clingcon is able

to avoid.

Finally, we compare the effectiveness of clingcon and toulbar on solving the eval-

uation problems. Generally, clingcon performs better for the Borda rule, whereas

toulbar is better for the two approval rules. Again, to see this, we refer to Figures

7.15(a), (b) and (c).

7.7 Conclusions

Aggregating votes expressed as LP-trees is a rich source of interesting theoretical

and practical problems. In particular, the complexity of the winner and evaluation

problems for scoring rules is far from being fully understood. First results on the topic

were provided by Lang et al. [56]; our work exhibited another class of positional

scoring rules for which the problems are NP-hard and NP-complete, respectively.

However, a full understanding of what makes a positional scoring rule hard remains

an open problem.

Importantly, our results show that ASP tools are effective in modeling and solving

the winners and the evaluation problems for some positional scoring rules such as

Borda, 2p−2-approval and 2K-approval. When the number of attributes is fixed the

ASP tools scale up consistently with the polynomial time complexity. In general,

the tools are practical even if the number of attributes is up to 15 and the number

of votes is as high as 500. This is remarkable as 15 binary attributes determine the

space of over 30,000 alternatives.

134

Finally, the preference aggregation problems form interesting benchmarks for ASP

tools that stimulate advances in ASP solver development. As the preference aggrega-

tion problems involve large domains, they put to the test those features of ASP tools

that attempt to get around the problem of grounding programs over large domains.

Our results show that the optimization statements in clingo in general perform well.

When they cannot be used, as in the evaluation problem, it is no longer the case. The

solver clingcon, which reduces grounding and preprocessing work by delegating some

tasks to a constraint solver, performs well in comparison to clingo on the evaluation

problem, especially for the Borda rule (and we conjecture, for all rules that result in

large score ranges).

In the future work we will expand our experimentation by developing methods to

generate richer classes of randomly generated LP-trees. We will also consider the use

of ASP tools to aggregate votes given in other preference systems such as CP-nets

[12] and answer set optimization (ASO) preferences [22].

Copyright c© Xudong Liu, 2016.

135

Chapter 8 Conclusion and Future Work

The research in my dissertation is about various aspects of preferences: preference

modeling, preference learning, and preference reasoning. Preferences is a major re-

search component studied in artificial intelligence (AI) and decision theory, and is

closely related to the social choice theory considered by economists and political sci-

entists. In my dissertation, I explore emerging connections between preferences in AI

and social choice theory. Most of my research is on qualitative preference representa-

tions that extend and combine existing formalisms such as lexicographic preference

trees (LP-trees) [11], answer-set optimization theories (ASO-theories) [22], possibilis-

tic logic [29], and conditional preference networks (CP-nets) [13]; on learning problems

that aim at discovering qualitative preference models and predictive preference infor-

mation from practical data; and on preference reasoning problems centered around

qualitative preference optimization and aggregation methods. Applications of my

research include recommender systems, decision support tools, multi-agent systems,

and Internet trading and marketing platforms.

I introduced partial lexicographic preference trees (PLP-trees) extending the lan-

guage of lexicographic preference trees (LP-trees). I also proposed preference trees

(P-trees) as a generalization of PLP-trees. Both PLP-trees and P-trees are intuitive

qualitative preference languages over combinatorial domains, and often compactly

represent total preorders over outcomes in such large domains. I studied the expres-

sive power of the two languages and showed that they are closely related to existing

preference formalisms.

For preference learning, my research focused on learning PLP-trees. I studied

various learning problems for PLP-trees and obtained results on these problems both

theoretically and experimentally. My results showed that PLP-trees are highly ac-

136

curate in modeling preferences arising in practice, and can be effectively learned.

To reduce the overfitting of PLP-trees, I introduced the formalism of PLP-forests,

collections of PLP-trees. My empirical results on learning PLP-forests showed that

PLP-forests are more expressive and accurate than PLP-trees.

Finally, for preference reasoning, I studied preference aggregation problems (e.g.,

winner determination) in the setting of LP-trees, a special case of PLP-trees that

represent total orders. Applying aggregation methods in social choice theory, I showed

that the aggregation problems are generally NP-hard. For these hard problems, my

empirical study using answer-set programming (ASP) tools, designed specifically for

solving NP-hard problems, showed that ASP solvers are effective on large instances.

8.1 Future Work

My long-term research goal is to study computational problems related to preferences,

and develop applications that help people or software agents make better decisions.

Particularly, I intend to embed theories and practices on preferences into areas in-

cluding data science, and automated planning and scheduling.

Data science Discovering preference models from large data sets and reasoning

about them can be of great value when decisions need to be customized for indi-

vidual users. For instance, e-Commerce companies want to make quality marketing

decisions on what customers would be interested in purchasing at a future time.

I propose to introduce contextual information and human-in-the-loop into existing

learning methods (e.g., collaborative filtering and content-based filtering used in rec-

ommender systems), in order to provide context-aware and user-centered predictions.

On the collective level, I mean to leverage social science methods (e.g., voting rules)

to combine individual models for joint decisions. I plan to build preferential data

sets and develop predictive systems, with collaborators or sponsors from fields such

as machine learning, computer vision, psychology, cognitive science, and behavioral

137

science.

Automated planning and scheduling In planning and scheduling, constraints

and preferences of agents may be more faceted than simply “fastest” or “cheapest.”

I propose to design mathematical models allowing intuitive representations of these

individual accommodations. Furthermore, I intend to implement systems that au-

tomate the acquisition of user constraints and preferences, and the computation of

optimal plans or schedules based on these user-specific information. This line of

research potentially promotes collaboration with researchers of expertise in travel

scheduling, manufacturing, and traffic control.

Copyright c© Xudong Liu, 2016.

138

Bibliography

[1] Kenneth J. Aarrow. Social Choice and Individual Values. John Wiley and Sons,
1951.

[2] D Allouche, S de Givry, and T Schiex. Toulbar2, an open source exact cost
function network solver. Technical report, Technical report, INRIA, 2010.

[3] Carlos Ansótegui, Maŕıa Luisa Bonet, and Jordi Levy. Solving (weighted) partial
maxsat through satisfiability testing. In Theory and Applications of Satisfiability
Testing, pages 427–440. 2009.

[4] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. A new algorithm for
weighted partial maxsat. In AAAI, 2010.

[5] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009.

[6] K.J. Arrow, A. Sen, and K. Suzumura. Handbook of Social Choice and Welfare,
Vol 1. Elsevier, 2002.

[7] Fahiem Bacchus and Adam J. Grove. Graphical models for preference and util-
ity. In Philippe Besnard and Steve Hanks, editors, UAI, pages 3–10. Morgan
Kaufmann, 1995.

[8] J.J. Bartholdi, C.A. Tovey, and M. A. Trick. The computational difficulty of
manipulating an election. Social Choice and Welfare, 6:227–241, 1989.

[9] J.J. Bartholdi, C.A. Tovey, and M. A. Trick. Voting schemes for which it can
be difficult to tell who won the election. Social Choice and Welfare, 6:157–165,
1989.

[10] J.J. Bartholdi, C.A. Tovey, and M. A. Trick. How hard is it to control an elec-
tion? Mathl. Comput. Modelling (Special Issue on Formal Theories of Politics,
16(8/9):27–40, 1992.

[11] Richard Booth, Yann Chevaleyre, Jérôme Lang, Jérôme Mengin, and Chat-
trakul Sombattheera. Learning conditionally lexicographic preference relations.
In ECAI, pages 269–274, 2010.

[12] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: A
tool for representing and reasoning with conditional ceteris paribus preference
statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.

[13] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and David
Poole. Cp-nets: a tool for representing and reasoning with conditional ce-
teris paribus preference statements. Journal of Artificial Intelligence Research,
21(1):135–191, 2004.

139

[14] Ronen I. Brafman and Carmel Domshlak. Introducing variable importance trade-
offs into cp-nets. In UAI, pages 69–76, 2002.

[15] Steven J. Brams and Peter C. Fishburn. Approval Voting. Springer-Verlag, 2007.

[16] Felix Brandt, Vincent Conitzer, , and Ulle Endriss. Computational social choice.
MIT Press., 2012.

[17] Michael Bräuning and H Eyke. Learning conditional lexicographic preference
trees. Preference learning: problems and applications in AI, 2012.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[19] Gerhard Brewka. Complex preferences for answer set optimization. In KR, pages
213–223, 2004.

[20] Gerhard Brewka, Salem Benferhat, and Daniel Le Berre. Qualitative choice logic.
Artificial Intelligence, 157(1):203–237, 2004.

[21] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set pro-
gramming at a glance.

[22] Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. Answer set opti-
mization. In IJCAI, pages 867–872, 2003.

[23] Gerhard Brewka, Ilkka Niemela, and Miroslaw Truszczynski. Answer set opti-
mization. In PROC. IJCAI-03, pages 867–872. Morgan Kaufmann, 2003.

[24] David Cohen, Martin Cooper, and Peter Jeavons. A complete characterization
of complexity for boolean constraint optimization problems. In Principles and
Practice of Constraint Programming, pages 212–226. 2004.

[25] Florence Dupin De Saint-Cyr, Jérôme Lang, and Thomas Schiex. Penalty logic
and its link with dempster-shafer theory. In Proceedings of the Tenth interna-
tional conference on Uncertainty in artificial intelligence, 1994.

[26] Yannis Dimopoulos, Loizos Michael, and Fani Athienitou. Ceteris paribus pref-
erence elicitation with predictive guarantees. In IJCAI, volume 9, pages 1–6.
Citeseer, 2009.

[27] József Dombi, Csanád Imreh, and Nándor Vincze. Learning lexicographic orders.
European Journal of Operational Research, 183:748–756, 2007.

[28] Carmel Domshlak, Eyke Hllermeier, Souhila Kaci, and Henri Prade. Preferences
in ai: An overview. Artificial Intelligence, 175(7-8):1037 – 1052, 2011.

[29] Didier Dubois, Jérôme Lang, and Henri Prade. A brief overview of possibilistic
logic. In ECSQARU, pages 53–57, 1991.

140

[30] J. Duggan and T. Schwartz. Strategic manipulability without resoluteness or
shared beliefs: Gibbard-satterthwaite generalized. Social Choice and Welfare,
17:85–93, 2000.

[31] Hélène Fargier, Vincent Conitzer, Jérôme Lang, Jérôme Mengin, and Nicolas
Schmidt. Issue-by-issue voting: an experimental evaluation. In MPREF, 2012.

[32] Peter C. Fishburn. The Theory of Social Choice. Princeton University Press,
1973.

[33] Peter C. Fishburn. Axioms for lexicographic preferences. The Review of Eco-
nomic Studies, 42:415–419, 1975.

[34] Niall M Fraser. Applications of preference trees. In Proceedings of IEEE Systems
Man and Cybernetics Conference, pages 132–136. IEEE, 1993.

[35] Niall M Fraser. Ordinal preference representations. Theory and Decision,
36(1):45–67, 1994.

[36] Niall M Fraser. Ordinal preference representations. Theory and Decision,
36(1):45–67, 1994.

[37] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning. Springer, 2011.

[38] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning: An introduc-
tion. In Preference Learning, pages 1–17. Springer, 2011.

[39] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[40] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

[41] William I Gasarch. The P =? NP poll. Sigact News, 33(2):34–47, 2002.

[42] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schnei-
der. Potassco: The Potsdam answer set solving collection. AI Communications,
24(2):105–124, 2011.

[43] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Schneider. Potassco: The potsdam answer set solving col-
lection. AI Communications, 24(2):107–124, 2011.

[44] A. Gibbard. Manipulation of voting schemes: A general result. Econometrica,
41:587–601, 1973.

[45] Judy Goldsmith, Jrme Lang, Miroslaw Truszczyski, and Nic Wilson. The compu-
tational complexity of dominance and consistency in cp-nets. In In Proceedings
of IJCAI-05, pages 144–149, 2005.

141

[46] Christophe Gonzales and Patrice Perny. GAI Networks for Utility Elicitation. In
Proceedings of the 9th International Conference on the Principles of Knowledge
Representation and Reasoning, pages 224–234, 2004. INT LIP6 DECISION.

[47] Joshua T Guerin, Thomas E Allen, and Judy Goldsmith. Learning cp-net prefer-
ences online from user queries. In Algorithmic Decision Theory, pages 208–220.
Springer, 2013.

[48] Peter Haddawy and Steve Hanks. Representations for decision-theoretic plan-
ning: Utility functions for deadline goals. KR, 92:71–82, 1992.

[49] James L Hein. Discrete Structures, Logic, and Computability. Jones and Bartlett
Publishers, LLC, 2010.

[50] Souhila Kaci. Working with Preferences: Less Is More. Cognitive Technologies.
Springer, 2011.

[51] Rajeev Kohli, Ramesh Krishnamurti, and Prakash Mirchandani. The minimum
satisfiability problem. SIAM J. Discrete Math., 7(2):275–283, 1994.

[52] Frédéric Koriche and Bruno Zanuttini. Learning conditional preference networks.
Artificial Intelligence, 174(11):685–703, 2010.

[53] Mark W. Krentel. The complexity of optimization problems. J. Comput. Syst.
Sci., 36(3):490–509, 1988.

[54] Jérôme Lang and Jérôme Mengin. The complexity of learning separable ceteris
paribus preferences. In IJCAI, pages 848–853, 2009.

[55] Jérôme Lang, Jérôme Mengin, and Lirong Xia. Aggregating conditionally lexi-
cographic preferences on multi-issue domains. In CP, pages 973–987, 2012.

[56] Jérôme Lang, Jérôme Mengin, and Lirong Xia. Aggregating conditionally lexi-
cographic preferences on multi-issue domains. In CP, pages 973–987, 2012.

[57] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Com-
putation. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1997.

[58] Xudong Liu. Aggregating lexicographic preference trees using answer set pro-
gramming: Extended abstract. In The 23rd International Joint Conference on
Artificial Intelligence Doctoral Consortium, (IJCAI-DC), 2013.

[59] Xudong Liu and Miroslaw Truszczynski. Aggregating conditionally lexicographic
preferences using answer set programming solvers. In Algorithmic Decision The-
ory, volume 8176, pages 244–258. Springer, 2013.

[60] Xudong Liu and Miroslaw Truszczynski. Aggregating conditionally lexicographic
preferences using answer set programming solvers. In ADT, pages 244–258, 2013.

142

[61] Xudong Liu and Miroslaw Truszczynski. Preference trees: A language for rep-
resenting and reasoning about qualitative preferences. In Workshops at the
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[62] Xudong Liu and Miroslaw Truszczynski. Learning partial lexicographic prefer-
ence trees over combinatorial domains. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence (AAAI), pages 1539–1545. AAAI Press, 2015.

[63] Xudong Liu and Miroslaw Truszczynski. Reasoning with preference trees over
combinatorial domains. In Proceedings of the 4th International Conference on
Algorithmic Decision Theory (ADT), volume 9346, pages 19–34. Springer, 2015.

[64] Xudong Liu and Miroslaw Truszczynski. Reasoning with preference trees over
combinatorial domains. In Algorithmic Decision Theory, pages 19–34. Springer,
2015.

[65] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating min-
imization problems. Journal of the ACM (JACM), 41(5):960–981, 1994.

[66] Victor W Marek and Miroslaw Truszczyński. Stable models and an alternative
logic programming paradigm. In The Logic Programming Paradigm, pages 375–
398. Springer, 1999.

[67] V.W. Marek and M. Truszczynski. Stable models and an alternative logic pro-
gramming paradigm. In K.R. Apt, V.W. Marek, M. Truszczynski, and D.S.
Warren, editors, The Logic Programming Paradigm: a 25-Year Perspective, pages
375–398. Springer, Berlin, 1999.

[68] Nicholas Mattei, James Forshee, and Judy Goldsmith. An empirical study of
voting rules and manipulation with large datasets. Proceedings of COMSOC,
2012.

[69] K.O. May. A Set of Independent Necessary and Sufficient Conditions for Simple
Majority Decision. Econometrica, 20(4):680–684, 1952.

[70] Ilkka Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-
4):241–273, 1999.

[71] Ilkka Niemelä. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–
273, 1999.

[72] Max Ostrowski and Torsten Schaub. ASP modulo CSP: The clingcon system.
TPLP, 12(4-5):485–503, 2012.

[73] C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Com-
pany, Inc., 1994.

143

[74] Christos Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. In Proceedings of the twentieth annual ACM symposium
on Theory of computing, STOC ’88, pages 229–234, New York, NY, USA, 1988.
ACM.

[75] M. Satterthwaite. Strategy-proofness and Arrow’s Conditions: Existence and
correspondence theorems for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–216, 1975.

[76] Michael Schmitt and Laura Martignon. On the complexity of learning lexico-
graphic strategies. The Journal of Machine Learning Research, 7:55–83, 2006.

[77] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and pro-
gramming with gecode, 2010.

[78] Wikipedia. Social choice theory, 2013.

[79] Nic Wilson. Extending cp-nets with stronger conditional preference statements.
In in Proceedings of AAAI-04, pages 735–741, 2004.

[80] Lirong Xia and Vincent Conitzer. Approximating common voting rules by se-
quential voting in multi-issue domains. In ISAIM, 2012.

[81] Fusun Yaman, Thomas J Walsh, Michael L Littman, and Marie Desjardins.
Democratic approximation of lexicographic preference models. In Proceedings of
the 25th international conference on Machine learning, pages 1200–1207. ACM,
2008.

[82] Ying Zhu and Miroslaw Truszczynski. On optimal solutions of answer set opti-
mization problems. In Logic Programming and Nonmonotonic Reasoning, pages
556–568, 2013.

144

Vita

Xudong Liu Born in Zaozhuang, Shandong, China.

Education
University of Kentucky USA
Doctor of Philosophy, computer science Aug. 2010 – present
GPA:4.00/4.00
Advisor: Dr. Miroslaw Truszczynski
Harbin Institute of Technology China
Bachelor of Engineering, software engineering Aug. 2006 – July 2010
GPA:3.56/4.00
Advisor: Prof. Yushan Sun

Employment
R&D Intern Palo Alto Research Center (PARC), USA
Supervisor: Dr. Christian Fritz Jun. 2015 – Aug. 2015
Graduate Research Assistant University of Kentucky, USA
Advisor: Dr. Miroslaw Truszczynski Aug. 2010 – May 2015

Graduate Teaching Assistant University of Kentucky, USA
Advisors: Dr. Truszczynski, Dr. Pike and Dr. Moore Aug. 2010 – May 2015

Undergraduate Teaching Assistant Harbin Institute of Technology, China
Advisor: Prof. Yushan Sun Aug. 2008 – May 2010

Undergraduate Intern Information Security Lab, Harbin Institute of Technology, China
Advisor: Prof. Yushan Sun Aug. 2009 – May 2010

Professional Services

Student member: AAAI

Student volunteer: AAAI-15

Program committee: IJCAI-16, IJCAI-13

Paper reviewer: JAIR, AAAI-14, ISAIM-14

Local arrangement committee: ADT-15, LPNMR-15, ICLP-11, NonMon@30-10

Refereed Publications

1. Xudong Liu. Modeling, Learning and Reasoning with Qualitative
Preferences. In Proceedings of the 4th International Conference on
Algorithmic Decision Theory (ADT), volume 9346, pages 587-592, 2015.
Springer

2. Xudong Liu and Miroslaw Truszczynski. Reasoning with Preference Trees
over Combinatorial Domains. In Proceedings of the 4th International

145

Conference on Algorithmic Decision Theory (ADT), volume 9346, pages
19-34, 2015. Springer

3. Xudong Liu and Miroslaw Truszczynski. Learning Partial Lexicographic
Preference Trees over Combinatorial Domains. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence (AAAI), pages 1539-1545, 2015.
AAAI Press

4. Xudong Liu and Miroslaw Truszczynski. Preference Trees: A Language for
Representing and Reasoning about Qualitative Preferences. In Proceedings of
the 8th AAAI Multidisciplinary Workshop on Advances in Preference
Handling (MPREF), pages 55-60, 2014. AAAI Press

5. Xudong Liu and Miroslaw Truszczynski. Aggregating Conditionally
Lexicographic Preferences Using Answer Set Programming Solvers. In
Proceedings of the 3rd International Conference on Algorithmic Decision
Theory (ADT), volume 8176, pages 244-258, 2013. Springer

6. Matthew Spradling, Judy Goldsmith, Xudong Liu, Chandrima Dadi and
Zhiyu Li. Roles and Teams Hedonic Game. In Proceedings of the 3rd
International Conference on Algorithmic Decision Theory (ADT), volume
8176, pages 351-362, 2013. Springer

7. Xudong Liu. Aggregating Lexicographic Preference Trees Using Answer Set
Programming: Extended Abstract. In 23rd International Joint Conference on
Artificial Intelligence Doctoral Consortium (IJCAI DC), 2013.

Honors and Awards
Verizon Fellowship Fall 2015 - Spring 2016
Graduate Teaching Assistantship Fall 2014 - Spring 2015, Fall 2012 - Spring 2013
AAAI-15 Student Volunteer and Scholarship Award Jan. 2015
International Student Tuition Scholarship Jan. 2015
Nominee of the Dissertation Year Fellowship Dec. 2014
Harrison D. Brailsford Graduate Scholarship Oct. 2014
Kentucky Opportunity Fellowship Awards July 2013 - June 2014
Nominee of the ACM Award for Outstanding Teaching Assistant 2013
NSF Student Travel Award Aug. 2013
IJCAI-13 Travel Grant Award Aug. 2013
Graduate Research Assistantship Fall 2010 - Spring 2013
Daniel R. Reedy Quality Achievement Fellowship Aug. 2010 - May 2013
UK Student Travel Funding Awards 2013 (IJCAI, ADT), 2014 (AAAI)
Chinese National Endeavor Scholarship Fall 2008
Outstanding Student Scholarships Fall 2006 - Spring 2010

Copyright c© Xudong Liu, 2016.

146

	MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES OVER COMBINATORIAL DOMAINS
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Technical Preliminaries
	2.1 Relations and Orders
	2.2 Combinatorial Domains
	2.3 Propositional Logic
	2.4 Computational Complexity Theory

	3 Related Work
	3.1 Preference Modeling and Reasoning
	3.2 Social Choice

	4 Reasoning with Preference Trees
	4.1 Introduction
	4.2 Preference Trees
	4.3 P-Trees and Other Formalisms
	4.4 Reasoning Problems and Complexity
	4.5 Conclusions

	5 Learning Partial Lexicographic Preference Trees
	5.1 Introduction
	5.2 Partial Lexicographic Preference Trees
	5.3 Passive Learning
	5.4 Learning UI PLP-trees
	5.5 Learning CI PLP-trees
	5.6 Conclusions

	6 Empirical Evaluation of Algorithms to Learn PLP-Trees and PLP-Forests
	6.1 Introduction
	6.2 Partial Lexicographic Preference Trees
	6.3 Partial Lexicographic Preference Forests
	6.4 Conclusions

	7 Aggregating Lexicographic Preference Trees
	7.1 Introduction
	7.2 Computing Ranks
	7.3 The Problems and Their Complexity
	7.4 The Problems in Answer-Set Programming
	7.5 The Problems in Weighted Partial Maximum Satisfiability
	7.6 Experiments
	7.7 Conclusions

	8 Conclusion and Future Work
	8.1 Future Work

	Bibliography
	Vita

