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ABSTRACT OF DISSERTATION

PREFERENCES: OPTIMIZATION, IMPORTANCE LEARNING AND STRATEGIC
BEHAVIORS

Preferences are fundamental to decision making and play an important role in artificial
intelligence. Our research focuses on three group of problems based on the preference
formalism Answer Set Optimization (ASO) [27]: preference aggregation problems such as
computing optimal (near optimal) solutions, strategic behaviors in preference representa-
tion, and learning ranks (weights) for preferences.

In the first group of problems, of interest are optimal outcomes, that is, outcomes that
are optimal with respect to the preorder defined by the preference rules. In this work, we
consider computational problems concerning optimal outcomes. We propose, implement
and study methods to compute an optimal outcome; to compute another optimal outcome
once the first one is found; to compute an optimal outcome that is similar to (or, dissimilar
from) a given candidate outcome; and to compute a set of optimal answer sets each signif-
icantly different from the others. For the decision version of several of these problems we
establish their computational complexity.

For the second topic, the strategic behaviors such as manipulation and bribery have
received much attention from the social choice community. We study these concepts for
preference formalisms that identify a set of optimal outcomes rather than a single winning
outcome, the case common to social choice. Such preference formalisms are of interest in
the context of combinatorial domains, where preference representations are only approxi-
mations to true preferences, and seeking a single optimal outcome runs a risk of missing
the one which is optimal with respect to the actual preferences. In this work, we assume
that preferences may be ranked (differ in importance), and we use the Pareto principle
adjusted to the case of ranked preferences as the preference aggregation rule. For two im-
portant classes of preferences, representing the extreme ends of the spectrum, we provide
characterizations of situations when manipulation and bribery is possible, and establish the
complexity of the problem to decide that.

Finally, we study the problem of learning the importance of individual preferences
in preference profiles aggregated by the ranked Pareto rule or positional scoring rules.
We provide a polynomial-time algorithm that finds a ranking of preferences such that the
ranked profile correctly decided all the examples, whenever such a ranking exists. We



also show that the problem to learn a ranking maximizing the number of correctly decided
examples is NP-hard. We obtain similar results for the case of weighted profiles.

KEYWORDS: Artificial Intelligence, Preference Reasoning and Learning, Answer Set
Optimization, Manipulation and Bribery
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Chapter 1 Introduction

Preferences appear in every scenario requiring a decision to be made among multiple

choices. When choosing a restaurant to have dinner at, people consider the menu, price,

location, opening hours and table size. When selecting a college to attend, students take

into account the rank of the college, the reputation of the department, its location, the fac-

ulty and the cost. When buying a house people may inspect the location, the price, the size,

whether it has a garage, and how large the backyard is.

Preferences are fundamental to decision making and play an important role in artificial

intelligence (AI), economics, operations research and databases. In AI, preferences play

a role whenever the decision support is needed in, recommendation systems, multi-agent

systems, product configuration, and planning. For example, if the online retailers under-

stand a customer’s preferences, they can recommend the most desirable products to him or

her, and robot vacuums, like the Roomba, can plan an optimal cleaning path if they have

the user’s preferences.

There are many important questions about preferences. For instance, how to collect

preferences from people? How to represent preferences accurately and concisely with a

model which is easy for computation? How to compute optimal choices according to the

preferences? How to construct people’s preferences based on the observation of their be-

haviors? Given that preferences may come with conditions, from multiple agents, may

concern combinatorial domains, and have different importance levels, preference represen-

tation, reasoning and learning are nontrivial.

There are two typical models for preferences. In one model, preferences are repre-

sented by utility functions which map the feasible choices of the decision making problem

to numeric values. In the other, preferences are partial orders over feasible choices deter-

mining whether one choice is better than another. People rarely express their preferences
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by utility functions especially when there are a large number of alternatives over multiple

attributes. Moreover, in most cases it is not necessary to gather the quantitative informa-

tion by how much one choice is better than another. Instead of rating all choices directly,

it is normally more natural for people to provide their preferences in a qualitative way. For

instance, given two alternatives, it is usually not difficult for people to answer which one

is better (but not necessarily, by how much one is better than the other). However, with

a large number of alternatives, it requires too many pairwise comparisons to express the

entire preference order explicitly. In many situations, the set of alternatives has a combina-

torial structure. That is, outcomes are described in terms of values they assume on several

attributes (or variables). Thus, for decision making, each alternative is uniquely charac-

terized by a vector of the values these attributes take. The size of combinatorial domains

grows exponentially with the number of variables. Therefore, representing preferences by

listing all alternatives with their utility or rank in the preference order is infeasible. To

circumvent the problem of size, one resorts to implicit representation languages that aim

to provide concise and intuitive approximations to agents’ true preferences. The survey by

Domshlak et al. [40] and the monograph by Kaci [69] discuss several of them.

Many of these approaches express preferences by describing desirable properties of

outcomes in terms of the values of attributes. For example, when ordering a dinner, people

may express their preference stating that dinners with beef are better than dinners with fish

when having beer. When planning a vacation, they may like vacations in London more than

vacations in Paris. If it is raining, they may prefer reading at home to any outdoor activities.

Such preference statements can be represented with graphical or logical representations.

One well known graphical representation is offered by conditional preference networks

(CP-nets) [13, 12] with its extensions and variants [14, 11, 15]. CP-nets represent pref-

erence relations in a compact, intuitive and structured manner using conditional ceteris

paribus (all else being equal) preference statements. Each preference statement expresses

the user’s preference over a single variable. A statement “I prefer X = x1 to X = x2” means
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that given two alternatives with the same value for every attribute except for X , the user

prefers the one with x1 for X to the one with x2. If these two alternatives have different

values on some other variables, they cannot be compared based on this single preference

statement. A conditional statement “I prefer X = x1 to X = x2 if Y = y1” is interpreted

exactly as above but applies only to the alternatives that have the value y1 for Y . CP-nets

consist of a directed graph with attributes (variables) as nodes that describes the parent

dependence between variables. Each node (variable) in the graph is associated with a con-

ditional preference table expressing the local preferences conditioned on values taken by

parent variables.

The basic idea of logic-based representations is to distinguish the outcomes satisfying

a formula expressing people’s desirable properties from the outcomes violating it. This

idea can be found in formalisms such as penalty logic [85], possibilistic logic [41], and

discrimin and lexmin logics [8]. The goals with different priorities can be modeled by

assigning ranks or weights to the formulas. When comparing two alternatives, the penalty

logic compares the sum of weights for the violated goals, while the possibilistic logic

compares the maximum weight of the violated goals. The leximin ordering compares the

cardinalities of satisfied goals at each level of priority, and the discrimin ordering considers

the sets of falsified goals.

Our work is based on the logic-based preference formalism called Answer Set Optimiza-

tion (ASO) [27] introduced by Brewka, Niemelä and Truszczyński in 2003. The formalism

is a combination of answer set programming [80] and qualitative preferences similar to

those used in possibilistic logic. The ASO programs contain two parts, a generator which is

an answer set program defining the feasible solutions and a selector which is a set of pref-

erence rules. The preference program compares the solutions based on their satisfaction

degree on the preference rules, using to this end the Pareto principle. The ASO programs

also allow preference rules with ranks that model importance of preferences in an intuitive

and accurate way. In our work, we also propose and study a weighted version of ASO that
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uses numerical values to represent the importance of preferences, and applies voting rules

to aggregate preferences. Our research focuses on three group of problems in the ASO

formalism: preference aggregation problems such as computing optimal (near optimal) so-

lutions, strategic behaviors in preference representation, and learning ranks (weights) for

preferences. Some basic optimization problems for ASO formalism were studied in the

original paper that introduced it [27]. Our results concern problems not studied before and

alternative computational methods.

1.1 Motivation

In our work, we focus on the following three areas of research concerning preference repre-

sentation and reasoning: optimization of preferences, including computing sets of optimal

outcomes with properties useful in decision making; strategic behaviors when preferences

are aggregated by the Pareto rule, possibly in its ranked version; and learning the impor-

tance of preference rules when a user or a group are making decisions.

Preference aggregation is a fundamental aspect of preference reasoning. In many prac-

tical problems, hard constraints still leave many feasible solutions and a mechanism is

needed for selecting those which have desirable properties. A typical approach consists of

eliciting from the user her preferences on the space of solutions, and returning to the user

only those solutions that “score" high on the user’s preference criteria. In most cases, only

the solutions that are optimal, with respect to these criteria, are of interest.

To help the user make that selection, one needs computational support for the key pref-

erence reasoning tasks such as computing an optimal solution, and computing an alternative

optimal solution once the first optimal solution was found. In some cases, the user can give

examples of what might be desirable or what has to be avoided. Given such examples, the

reasoning support system should return optimal solutions that come close to examples that

are desirable (or, are dissimilar from those that are undesirable). The problem of computing

similar/dissimilar solutions was identified as important in the setting of problems defined
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by hard constraints, and was studied for answer sets of programs by Eiter, Erdem, Erdogan

and Fink [42]. Another computational reasoning task arises when preference optimization

still leaves a significant number of choices. This is often the case when outcomes come

from combinatorial domains, which are almost always large, and when outcomes subject to

conflicting preferences are aggregated by weak aggregation mechanisms such as the Pareto

principle. In such cases, to help the user make the final selection, it is useful to present her

with a small and diverse sample of optimal outcomes.

The second part of our work studies the strategic behaviors in preference aggregation.

In a common preference reasoning scenario, a group of agents is presented with a set of

configurations or outcomes. These outcomes come from a combinatorial domain, that is,

they are characterized by several multivalued attributes and are represented as tuples of

attribute values. Each agent has her individual preferences on the outcomes. The problem

is to aggregate these preferences, that is, to define a “group" preference relation or, at the

very least, to identify outcomes that could be viewed by the entire group as good con-

sensus choices. This scenario has received much attention in the AI and decision theory

communities [40, 64, 69].

In this scenario, the goal is to aggregate diverse preferences of a group of agents into

a single consensus preference ordering on outcomes or, for some applications, into a set

of consensus optimal outcomes. This process may cause agents behave strategically. They

may misrepresent their true preferences, or coerce others to do so, in order to secure con-

sensus preference aggregation outcomes that are more favorable to them. Since such strate-

gic behaviors may have a negative effect on the group overall welfare, it is important to

characterize situations when they can occur and to understand how to defend against them.

This is the second topic in our work.

The third problem we study concerns preference learning. The problems discussed

above are based on the preferences which are total orders over the candidates. However,

in many cases, it is impractical to collect complete preferences from people. Instead, one
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might try to learn the preferences based on observations. That problem has received much

attention [60, 59, 20, 33, 39]. In some cases, preferences have different importance. For

example, people may think that the safety is more important than the appearance when buy-

ing a car. Therefore, if their preferences on safety and appearance conflict, they may want

to consider the preferences on safety first. For group decision making, it is common that

agents are not equally important. In a job interview, the interviewers may include recruiters

and various-level managers. The opinion from some of them may play a decisive role on

whether a candidate can get the job. In our work, we assume that individual preferences

are known but not their importance. Our goal is to develop methods of learning the impor-

tance. Similar problems are considered in the social choice community. An example is the

possible winner problem in an election with uncertain weights [7]. However, the problem

of learning the importance of preferences has not been studied so far. We propose a formal

statement of this problem and present several results.

1.2 Contributions

In this section, we outline the results we obtained in the three areas discussed above.

Basic optimization problems were considered in the original paper on answer set op-

timization (ASO) [27], such as deciding whether a given outcome is optimal and how to

compute an optimal outcome. The first group of our contributions concerns optimization

problems subject to additional conditions, their computational complexity, and effective

computing methods to solve them. These computational methods are built on the basis of

answer set programming [81, 83] and answer-set programming tools.

In particular, we show that for ASO programs, the problems of the existence of opti-

mal answer sets that are similar to (respectively, dissimilar from) a given interpretation are

Σ
p
2-complete. Further, we show that the problem of deciding the existence of k optimal

solutions at distance at least d from each other is Σ
p
2-complete, assuming that d is part of

the input and k is fixed. If d is fixed, the problem is in ∆
p
2 . Second, we design techniques
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to solve optimization problems for ASO programs. To this end, we propose two main ap-

proaches to support optimization tasks in ASO. Both take advantage of answer set solvers.

One approach is fully declarative. It relies on representations of optimization problems as

disjunctive logic programs. The other approach reduces optimization tasks to be solved

to an iterative process of answer set computations on specially designed answer set pro-

grams. Finally, we propose methods to generate random instances of ASO programs for

testing and present experimental results. The results provide insights into the feasibility

of the two approaches and suggest a class of challenging bench-marks for disjunctive ASP

solvers. We presented this work on the international conference of Logic Programming and

Nonmonotonic Reasoning 2013 and it was published in the proceedings of that conference

[96].

In the second part, we study manipulation and bribery problems in preference for-

malisms which have attracted a substantial amount of attention from the social choice

community. Preference formalisms identify a set of optimal outcomes rather than a sin-

gle winning outcome, the case common to social choice. Such formalisms are of interest in

the context of combinatorial domains, where preference representations are only approxi-

mations to true preferences, and seeking a single optimal outcome runs a risk of missing

the one which is optimal with respect to the actual preferences. In this work, we assume

that preferences may be ranked (differ in importance), and we use the Pareto principle

adjusted to the case of ranked preferences as the preference aggregation rule. For two im-

portant classes of preferences, representing the extreme ends of the spectrum, we provide

characterizations of situations when manipulation and bribery is possible, and establish the

complexity of the problem to decide that. Our results shows that deciding the existence

of manipulation or bribery is not tractable. We presented this work on the international

conference of Algorithmic Decision Theory 2015 and it was published in the proceedings

of that conference [97].

In preference learning, the third area of our study, we proposed a polynomial time algo-
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rithm to decide, given a preference profile and a set of pairwise ordered candidates (exam-

ples), whether the preferences can be ranked such that the ranked profile orders candidates

consistently with the examples. The algorithm computes a rank assignment with minimal

number of ranks for the profile if it is consistent with the examples. We also consider the

same problem in the voting theory setting with positional scoring rules as the aggregation

mechanism. We proved that it can be decided in polynomial time whether, given an elec-

tion and a set of examples, there exists a weight assignment such that the weighted election

is consistent with all ordered candidates. For both preference profiles and voting profiles,

we proved that the problem to decide whether a rank/weight assignment exists such that

the ranked/weighted profile is consistent with at least k examples is NP-complete.

1.3 Outline

Here is a brief outline of the thesis. Before presenting our work, we start with a brief dis-

cussion of the related work in Chapter 2 and provide the technical preliminaries in Chapter

3. The preliminaries mainly discuss the preference formalism of Answer Set Optimiza-

tion, and also provide a general introduction of the computational complexity. Our three

research topics are then presented in Chapter 4, 5 and 6. Chapter 4 introduces our work on

preference aggregation and presents results on the computational complexity and methods

of finding optimal and near optimal solutions based on answer set optimization. Chapter

5 presents our work on preference misrepresentation, specifically, the manipulation and

bribery problems in the setting of preference with combinatorial domain in a multi-agent

scenario. In Chapter 6, we introduce our work on learning ranks in a preference setting and

learning weights in the social choice voting setting when the preference profile and some

examples are given. Finally, the summary of our contributions and potential future work

are discussed in Chapter 7.

Copyright c© Ying Zhu, 2016.
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Chapter 2 Related Work

Our work is based on the logic-based preference formalism Answer Set Optimization (ASO)

[27] introduced by Brewka, Niemelä and Truszczyński in 2003 which is a combination of

answer set programming [62] and qualitative preferences similar to those used in possi-

bilistic logic. The answer set program defines the feasible solutions and the qualitative

preferences define the preference ordering on solutions. The optimal outcome of an ASO

problem is a non-dominated answer set, which means there is no answer set strictly bet-

ter than it exists. Our research addresses three aspects of the ASO formalism: preference

aggregation problems, strategic behaviors in preference representation, and learning ranks

(weights) for preferences.

In this section, we introduce the related work for logic-based preference representa-

tions, preferences in answer set programming, preference learning for other preference

representations, like lexicographic order and CP-nets, and strategic behaviors in voting.

2.1 Logic-based Preference Representation

The basic idea of logical preference statements is to discriminate between models satisfying

formulas expressing the desirable properties and models violating them. This idea can be

found in formalisms such as penalty logic [85], possibilistic logic [41], and discrimin and

lexmin logics [8]. These languages represent preferences by a set of weighted formulas

of the form T = {(φi,αi) | i = 1, . . . ,n}, where φi is a propositional logic formula and

αi is a numerical value representing the importance of φi. For penalty logic, αi is an

integer representing the penalty of falsifying the preference formula φi. The outcomes are

compared based on the sum of penalties they have. For the other three languages, αi, now

restricted to the interval (0,1], represents the importance of φi. The larger αi is, the more

important φi is. Possibilistic logic compares outcomes based on the most important formula
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they violate. The leximin logic compares the outcomes according to the cardinalities of

falsified formulas at each level of importance. The discrimin logic compares the outcomes

based on the sets of falsified formulas at each level of importance.

The specific importance values are immaterial in these three languages and the impor-

tance information can be represented by ranks. Preferences can be grouped into levels

based on their importance, each level gathering formulas of the same importance, and

different levels consisting of formulas with different importance. Thus, theories with k

importance values can be written as:

ϕ1 > ϕ2 > · · ·> ϕk,

where ϕ1 is a set of formulas with the highest importance value, ϕ2 is a set of formulas

with the next highest importance value, etc.

In the possibilistic logic, the conjunction of formulas in ϕi is denoted by Φi. The

complete relation over all outcomes is represented as follows:

Φ1∧·· ·∧Φk > Φ1∧·· ·∧Φk−1 > · · ·> Φ1 > ¬Φ1.

This means that the outcomes satisfying all Φis are preferred to the outcomes satisfying

only Φ1 to Φk−1. And the outcomes satisfying Φ1 to Φk−1 are better than the outcomes

satisfying only Φ1 to Φk−2. The position of an outcome in this order is determined by the

most important formula it violates.

For lexmin logic, given two outcomes ω and ω ′, we say ω is preferred to ω ′ if and only

if there is ϕl such that

| {φi | φi ∈ ϕ j,ω 2 φi} |=| {φi | φi ∈ ϕ j,ω
′ 2 φi} |

for every j < l and

| {φi | φi ∈ ϕl,ω 2 φi} |<| {φi | φi ∈ ϕl,ω
′ 2 φi} | .

The lexmin logic determines the order between outcomes by the number of falsified

formulas on each importance level. The discrimin logic looks at the falsified formulas
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Table 2.1: An example of lexmin logic

Outcomes
# of formulas falsified
{beef} {soup}

S1 = {beef ,soup} 0 0
S2 = {beef ,salad} 0 1
S3 = {fish,soup} 1 0
S4 = {fish,salad} 1 1

themselves. Given two outcomes ω and ω ′, we say ω is preferred to ω ′ in discrimin logic

if and only if there is ϕl such that

{φi | φi ∈ ϕ j,ω 2 φi}= {φi | φi ∈ ϕ j,ω
′ 2 φi}

for every j < l and

{φi | φi ∈ ϕl,ω 2 φi} ⊂ {φi | φi ∈ ϕl,ω
′ 2 φi}.

Let us consider an example to illustrate these languages. Assume an agent needs to

make a decision about what to have for lunch, and she is given four choices:

S1 = {beef ,soup},S2 = {beef ,salad},

S3 = {fish,soup},S4 = {fish,salad}.

She has two preferences φ1 : beef and φ2 : soup where φ1 is more important than φ2. The

preferences with two importance levels can be represented as {beef} > {soup}. In the

possibilistic logic, the complete preference order over outcomes is

beef ∧ soup > beef > ¬beef .

Thus S1 � S2 � S3 ≈ S4.
1 In the lexmin logic, the number of falsified formulas for each

outcome is shown in Table 2.1 inducing a total order of outcomes: S1 � S2 � S3 � S4.

For the discrimin logic, the falsified formulas for each outcome are shown in Table 2.2

inducing a partial order of outcomes: S1 � S2 | S3 � S4.
1We denote strict preference by �, equivalence by ≈, and incomparability by |.
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Table 2.2: An example of discrimin logic

Outcomes
# of formulas falsified
{beef} {soup}

S1 = {beef ,soup} {} {}
S2 = {beef ,salad} {} {soup}
S3 = {fish,soup} {beef} {}
S4 = {fish,salad} {beef} {soup}

The ASO formalism represents conditional preferences by expressions constructed of

propositional formulas. In a way similar to that of possibilistic logic. Preferences are

aggregated by the Pareto principle. As ASO programs are the main focus of our work we

discuss them in detail in Chapter 3.

2.2 Preferences in Answer Set Programming

In recent years, a large number of papers have studied preferences in answer set program-

ming [62]. Some of the existing answer set solvers have (numerical) optimization facilities.

For instance, Smodels with weight constraints has maximize and minimize statements op-

erating on weights of atoms in answer sets [88] and dlv has weak constraints [29]. Other

approaches allow for expressing various types of preferences among rules [37, 43]. Unlike

in the approaches introducing preferences over rules and literals, Brewka [22, 26] investi-

gated the problem of specifying preference over alternatives in a disjunction by introducing

a new connective called ordered disjunction. Several generic optimization problems for

formalisms extended with the ordered disjunction were discussed in [23].

In another paper [24], Brewka proposed a preference description language which de-

scribes complex preferences among answer sets. The language generalizes the rule based

preferences of ASO in two respects:

• it allows us to combine qualitative and numerical penalty based preference informa-

tion within a single framework, and

• it allows us to use different preference aggregation methods.
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A preference handling framework asprin introduced in [25], allows users to specify ways

to aggregate preferences. It provides #minimize directives [88], weak constraints [76],

ASO [27], and the language for specifying preferences in planning domains [89]. Another

framework closely related to ASO programs is that of qualitative optimization problems

[47]. It provides an abstract view on preference formalisms that model hard constraints

and preferences on feasible outcomes.

2.3 Preference Learning

With the increased attention on preferences, learning and predicting preferences has be-

come an active research topic in areas such as machine learning, data mining, and rec-

ommender systems. Generally speaking, the learning problem is to extract a preference

structure by observing the choices the user makes selecting from multiple alternatives. The

problems of preference learning can be formalized within different settings based on the

preference representation and the type of information provided to the learning process.

Since the preferences are generally represented by utility functions and binary rela-

tions, two general approaches to preference learning have been proposed: to learn utility

functions [20, 30, 31, 65, 67], and to learn preference relations modeling preference orders

[59, 68, 34].

The latter approach typically consists of learning a concise implicit representation of

the preference relation. It assumes a specific language for expressing preference orders.

The languages for which learning methods were investigated include CP-nets [12] (learn-

ing dependencies and conditional preference tables), lexicographic preference model [56],

lexicographic preference trees [10] and forests of lexicographic trees. To learn a lexi-

cographic preference model, Dombi et al. [39] proposed an algorithm which guides the

user through a sequence of queries involving test examples. Schmitt and Martignon [87]

introduced a greedy variable permutation algorithm guaranteeing to find a lexicographic

preference model that is compatible with the learning examples, if one exists. Although it
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takes polynomial time to determine whether there exists a lexicographic preference model

consistent with a set of examples, they also showed that the corresponding optimization

problem of minimizing the disagreement is NP-hard. Other work shows results of learning

“best guess” lexicographic preference models through approximation algorithms and learn-

ing lexicographic preference trees [10, 58, 94, 95]. For CP-nets, Chevaleyre [33] studied

both passive and active learning, Koriche and Zanuttini [73, 72] proposed an active learning

algorithm from consistent examples, and Liu et al. [77] proposed an approach for learning

CP-nets from inconsistent examples. An algorithm for generating an acyclic CP-net en-

tailing all examples is introduced in [38]. Other results show that the problem of learning

CP-nets is intractable even under some simplifying assumptions [75, 74, 66].

2.4 Strategic Voting in Social Choice Theory

Social choice theory [1, 2] studies how to aggregate individual preferences, opinions or

welfares to achieve a group decision or social welfare. For instance, people use elections

to select their leader, establish the laws, and decide the policies. In many settings, the

preferences from different people are often not weighted equally.

Aggregating preferences means mapping a collection of preferences relations, each

representing the preference of a member of a decision-making group, into a collective

preference relation. In many cases, we are only interested in the winner (the most pre-

ferred alternative of the consensus preference ordering), or a subset of the most preferred

alternatives rather than the complete collective preference. Voting is a general method of

preference aggregation [16]. Given a set of candidates and a set of voters with preferences,

a voting rule is defined as a function from the preference profiles to candidates that spec-

ifies the winner of the election. A positional scoring rule computes a numerical value for

each candidate on every preference order based on its position on the preference. Let the

number of candidates be n. The rule can be defined as a vector of integers (s1, . . . ,sn) such

that s1 ≥ s2 ≥ ·· · ≥ sn. For each preference (vote), a candidate receives score sk if it is
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ranked at position k. The winner is the candidate with the maximum sum of scores. Some

well known positional scoring rules are:

• Plurality: Each voter gives 1 score to his/her most preferred candidate and 0 to all

other candidates ((1,0, . . . ,0)).

• Veto: Each voter gives 0 score to his/her least preferred candidate and 1 to all other

candidates ((1, . . . ,1,0)).

• k-Approval: Each voter gives 1 score to the top k candidates on the preference order

((1, . . . ,1,0, . . . ,0)).

• Borda: Each voter assigns scores from n−1 (with n the number of candidates) down

to 0 to the candidates according to the preference order ((n−1, . . . ,0)).

Some other voting rules include:

• Maximin: Let N(c1,c2) be the number of votes that rank candidate c1 before can-

didate c2. The score of candidate c is defined as minc′ 6=cN(c,c′). Candidates are

ordered by their scores.

• Copeland: The score of a candidate is the number of candidates it beats in pairwise

elections. The candidate with the highest score wins.

• Bucklin: For any candidate c and integer l, let N(c, l) be the number of votes that

rank c among the top l positions. The score of candidate c is defined as min{l :

N(c, l) > n/2} where n is the number of votes. Candidates are sorted in ascending

order of their scores.

Researchers in social choice theory have studied extensively the properties of these and

other voting rules. An important topic in computational social choice is to study the resis-

tance of voting systems to manipulative attacks that seek to influence the election result,

such as control, manipulation, and bribery.
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Here is an example of manipulation in election with Borda count as the voting rule:

given three candidates A, B and C,

104 voters vote for : A > B >C

98 voters vote for : B > A >C

7 voters vote for : C > B > A.

According to the Borda count, the candidate which is positioned at the top receives 2 points,

the candidate at position 2 gets 1 point and the last candidate has no point. Therefore the

candidate B wins with 307 points, the candidate A gets 306 and C gets 14 points. The

voters with vote A > B >C do not get their top choice winning. Some of them may realize

that by putting B lower in their vote, they will decrease B’s score and may in this way push

A to the top. If only one of them changes her vote to A >C > B, A and B will be tied with

306 points each. If more than one voter in the first group change their votes to A >C > B,

A wins right away. However, the danger of manipulation is that if there are many voters

vote insincerely, the result of the election can be skewed significantly.

In manipulation, a voter decides to cast a vote which is different from his or her true

preference in order to obtain a more desirable outcome. The classical work of Gibbard

and Satterthwaite [63, 86] established the main impossibility result stating that for three

or more candidates, no reasonable voting rule (not dictatorial and every candidate has a

chance to be the winner) is robust to manipulation (or strategy proof ). However, some

researchers argued that one of the key desiderata on the class of rules considered in the

Gibbard-Satterthwaite result, the requirement that a rule be resolute (that is, always re-

turning a single winner) is in many cases unreasonable [61, 70, 90] and at odds with so-

cially desirable requirements of equal treatment of candidates and voters [90]. This critique

opened the door to research of strategy proofness of voting rules that are irresolute, that

is, may return several winners. Early results identifying situations in which multi-winner

rules are strategy proof, as well as those when impossibility results similar to that of Gib-
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bard and Satterthwaite still hold, were found by Gärdenfors [61] and Kelly [70]. Additional

results along these lines are surveyed by Taylor [90] and Barberà [3]. More recently strat-

egy proofness of irresolute rules have been studied by Brandt [17], Brandt and Brill [18],

and Brandt and Geist [19]. It turns out that how preferences on candidates are extended

to preferences on sets is essential for the possibility of strategic behaviors. In particular,

Brandt et al. found several strategy proof irresolute rules for the so-called Kelly, Fishburn

and Gärdenfors extensions.

Classical social choice theory focuses on the problem to decide whether attacks are

possible. However, researchers realized recently that even if elections are vulnerable to

attackers, it may still be difficult to find the proper actions for the attackers, because the

computational hardness of identifying them could serve as a barrier against such strategic

behaviors.

In control, an election chair tries to control the election result by adding/deleting either

candidates or voters. The complexity of this problem was studied first by Bartholdi, Tovey,

and Trick [6]. Many researchers obtained results for this problem with many different

voting rules in varied settings [52, 51].

The study to discover on which voting rule the manipulation is computationally difficult

to execute was also started by Bartholdi, Tovey, and Trick [5], continued by many other

researchers [35, 82, 46, 98, 21, 93, 36]. Faliszewski provided a overview of the research

on manipulation [54].

In bribery, an external agent with a limited budget attempts to affect the outcome of an

election by offering payments to some voters for changing their votes. The computational

study of this problem was initiated by Faliszewski, Hemaspaandra, and Hemaspaandra [49]

and extended in other papers [53, 45].

Another problem which is quite related to manipulation and bribery is named the pos-

sible winner problem introduced by Konczak and Lang [71] and further studied by other

researchers [4, 92, 91, 9, 7]. An informal definition of this problem is that given an election
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with incomplete information (preferences are partial orders), decide whether it is possible

to extend the partial preference orders to complete linear orders so that some specific candi-

date is a winner. This problem models the situation where we have incomplete information

and want to know whether some candidate still has a chance to be the winner. Similarly, a

problem named necessary winner studies whether a given candidate is guaranteed to be the

winner no matter how the votes are completed [71, 92].

The preference aggregation scenario and the problem of strategic misrepresentation of

preferences are similar to strategic voting in social choice theory. In social choice, the

concern is to determine a winner (sometimes, a strict ordering of the candidates) based

on the votes cast by a group of voters. If we think of voters as agents, of candidates as

options, and of votes as preferences, the connection is evident and was noted before [32].

However, the distinguishing aspect of the voting problem considered in social choice is

that the number of options (candidates in an election) is small and preferences (votes) are

specified explicitly. The main research goals are to design voting rules (procedures to

determine a winner or winners based on votes), to identify socially desirable properties

that voting rules should have, and to determine which voting rules have which properties.

In out work, we study the strategic behaviors in preferences representation, the situations

when they can occur and how hard to determine that.

Copyright c© Ying Zhu, 2016.
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Chapter 3 Preliminaries

3.1 Preferences

A preference over a set X of options is a total preorder on X . We will typically denote is by

�, possibly annotated with superscripts or subscripts. Each total preorder �, determines

two associated relations: strict preference, denoted by �, where x � y if and only if x � y

and y 6� x, and indifference, denoted by ≈, where x≈ y if and only if x� y and y� x. The

indifference relation ≈ is an equivalence relation on X and partitions X into equivalence

classes, X1, . . . ,Xm, which we always enumerate from the most to the least preferred. Using

this notation, we can describe a total preorder � by the expression

�: X1 � X2 � ·· · � Xm.

For example, a total preorder � on X = {a,b,c,d,e, f} such that a≈ d, b≈ e≈ f and

a� b� c (these identities uniquely determine �) is specified by an expression

�: a,d � b,e, f � c.

(we omit braces from the notation specifying sets of outcomes to keep the notation simple).

For every x ∈ X , we define the satisfaction degree of x in �, written d�(x), as the unique

i such that x ∈ Xi. We denote the total preorder over options on a preference p by x �p y.

Let p be a preference, x�p y if dp(x)≤ dp(y).

A profile over X is a set of preferences over X . A ranked profile is a profile in which

every preference p is assigned a positive integer, the rank r(p) of p. The preferences with

a lower rank are more important than the preferences with a higher rank. We write (P,r)

for a profile P ranked by a ranking function r which maps a preference to a positive integer.

An unranked profile is a special case of the ranked profile where all preferences have the

same rank.
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To obtain the collective preorder over options, the preferences are aggregated by the

Pareto principle. For a ranked profile (P,r), and a set of options X , we define the preoder

�P,r on options by setting x�P,r y if

1. x≈p y (dp(x) = dp(y)) for every preference p ∈ P, or

2. there is a preference p ∈ P such that x�p y (dp(x)< dp(y)) and for every preference

p′ ∈ P such that r(p′)≤ r(p), x�p′ y (dp(x)≤ dp(y)).

The relation �P,r is a preorder and we write ≈, |, and � (preserving annotations) for the

corresponding equivalence, incomparability, and strict preference relations. For a ranked

profile (P,r), x ∈ X is equivalent to y ∈ X , written x ≈P,r y, if x �P,r y and y �P,r x; x is

incomparable with y, written x |P,r y, if x 6�P,r y and y 6�P,r x; and x is strict Pareto-preferred

to y, written x �P,r y, if x �P,r y and y 6�P,r x. An option x ∈ X is Pareto optimal in (P,r)

if there is no y ∈ X such that y �P,r x. We denote the set of all options in X that are

Pareto-optimal in (P,r) by Opt(P). Virtually all preference aggregation techniques select

“group optimal” elements from those that are Pareto-optimal. From now on, we omit the

term “Pareto” when speaking about the preference relation�P,r on X and optimal elements

of X determined by this relation, as we do not consider any other preference aggregation

principles.

We also use �P to represent the preorder over options on a ranked profile (P,r) where

r(p) = 1 for every p ∈ P (also called an unranked profile or an equally ranked profile).

If a preference is a total strict order over a set of options X , it is also known as a vote

and the options are called as candidates. The importance of a vote is represented by a

non-negative numerical value which is called as weight. A voting profile is a set of votes.

3.2 Answer Set Optimization

Our work is based on the logic-based preference formalism Answer Set Optimization (ASO)

[27] introduced by Brewka, Niemelä and Truszczyński in 2003 which is a combination of
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answer set programming and conditional preferences. An answer set optimization (ASO)

program P over a (propositional) vocabulary σ consists of two parts: a generator Pgen and

a selector Ppref [27]. The generator is a propositional non-disjunctive answer set program1

or a propositional theory over σ . We consider the propositional case only and assume all

programs are finite.

Propositional interpretations of the vocabulary σ represent candidate outcomes. The

generator of an ASO program P over σ represents hard constraints on candidate outcomes.

It describes the space of feasible outcomes of P, which we refer to simply as outcomes of

P. These outcomes are answer sets [62] of the generator, if the generator is represented

as a program, or models of the generator, if the generator is represented as a propositional

theory. We represent outcomes (answer sets or models) and, more generally, candidate

outcomes (interpretations) over a vocabulary σ , as subsets of σ .

The choice of the formalism for the generator does not affect our results. In particular,

the complexity results we present in the following chapters do not depend on the exact

form of the generator as the complexity of model generation task is the same for the two

types of generators we allow. Therefore, we often remain vague about how generators

are represented. However, in the experimentation part of the Chapter 4, for the sake of

concreteness we consider as generators propositional CNF theories. Similarly, for the most

part, we use the generic term “outcome” rather than the more specific “answer set” and

“model.”

The selector of an ASO program P over a vocabulary σ is a set of preference rules or

preferences of the form:

C1 > · · ·>Ck← a1, . . . ,an,¬ b1, . . . ,¬ bm (3.1)

where ai’s and bi’s are atoms over σ and Cis are propositional formulas over σ . The expres-

sion a1, . . . ,an,¬ b1, . . . ,¬ bm is understood as the conjunction a1∧ ·· · ∧ an∧¬ b1∧ ·· · ∧
1Allowing disjunctive programs as generators is possible, but affects the complexity results as well as

the effectiveness of computational methods used.
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¬ bm. The selector represents preferences or soft constraints of the problem. Informally, the

preference rule above reads: among outcomes that satisfy a1∧ ·· ·∧an∧¬ b1∧ ·· ·∧¬ bm

(that is contain a1, . . . ,an and do not contain any of b1, . . . ,bm), those that satisfy C1 are

preferred over those that satisfy C2, etc.

The formal semantics of preference rules is based on the notion of the satisfaction

degree. Let p be a preference rule of the form (3.1) and S a candidate outcome. As we

defined above, the satisfaction degree of S on p is dp(S) = min{i : S |=Ci}.2 If S does not

satisfy a1∧·· ·∧an∧¬ b1∧·· ·∧¬ bm or if it does not satisfy any of the options Ci, then p

is irrelevant to S and the satisfaction degree of S on p, dp(S), is set to 1.3 Preference rules

are aggregated by the Pareto principle as described above. Given an ASO program P and

two candidate outcomes S1 and S2, we denote S1 is preferred over S2 on Ppref by S1 �P S2.

We denote the set of all optimal outcomes in P by Opt(P).

To illustrate the ASO formalism, we present the same example used before. Let us

assume that Pgen is any theory generating 4 outcomes:

S1 = {beef ,soup}, S2 = {beef ,salad},

S3 = {fish,soup}, S4 = {fish,salad}.

For example, we can take for Pgen an answer set program:

1{beef ,fish}1

1{soup,salad}1

which means for any answer set of Pgen, exactly one atom from each set {beef ,fish} and

{soup,salad} is true. Or we can represent Pgen as a propositional theory:

(beef ∨fish)∧¬(beef ∧fish)∧ (soup∨ salad)∧¬(soup∧ salad).

2The notation |= represents the standard satisfiability relation from propositional logic (we recall that
outcomes are interpretations).

3Other ways to treat irrelevance are possible. In addition, the user can always overwrite the default
treatment. Indeed, irrelevance is described by the formula I =¬(a1∧·· ·∧an∧¬ b1∧·· ·∧¬ bm)∨¬(C1∨ . . .∨
Ck). The user can “attach” this formula to any of the options (say, replace Ci with Ci∨ I) or insert it anywhere
in the sequence. Therefore, we do not provide any motivation for the default treatment of irrelevance we use
in the paper. Instead, we refer to the paper where ASO was introduced [27].
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Assuming Ppref = {p1, p2} where

p1 : beef > fish

p2 : soup > salad,

the vectors of the satisfaction degrees on preferences r1 and r2 for the four outcomes are

VS1 = (1,1), VS2 = (1,2), VS3 = (2,1), VS4 = (2,2), respectively. Thus, S1 is the optimal

outcome, S4 is the worst outcome, and S2 and S3 are in between S1 and S4, and are incom-

parable (S1 � S2 ∼ S3 � S4).

The formalism we just presented is rather weak in that it is based on the Pareto Prin-

ciple. Consequently, it renders many outcomes generated by Pgen optimal. To strengthen

it one may consider ranked preferences, that is, preferences that differ in importance. A

ranked ASO program is a tuple (Pgen,Ppref ), where Pgen is as before and Ppref is a collection

of ranked preference rules, that is, rules of the form

C1 > · · ·>Ck
j← a1, . . . ,an,¬ b1, . . . ,¬ bm (3.2)

where the notation is as above, the only difference being the presence of a positive integer

j indicating the rank (with 1 being the highest rank possible.) For a preference rule p, we

write r(p) to denote its rank.

If we modify the preferences of the example described above as Ppref = {p1, p2} where

p1 : beef > fish 1←

p2 : soup > salad 2←,

the preorder over outcomes becomes S1 � S2 � S3 � S4.

3.3 Computational Complexity Classes

In our work, we analyze the computational complexity for the problems of computing op-

timal (near optimal) outcomes, deciding whether manipulation and bribery is possible, and
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learning ranks (weights). In this section, we give a brief introduction of the computational

complexity classes [84]. Informally, in the computational complexity theory, a complexity

class is a set of problems of related complexity. A typical complexity class has a definition

of the form: the set of problems that can be solved by an abstract machine M using O( f (n))

of resource R where n is the size of input. For instance, the class P is a set of decision prob-

lems can be solved in polynomial time by a deterministic Turing machine. The class NP

is the set of decision problems whose solutions can be determined by a non-deterministic

Turing machine in polynomial time. A decision problem is in the class co-NP if its com-

plement is in the class NP. The polynomial hierarchy is a hierarchy of complexity classes

that generalize the classes P, NP and co-NP. The class Σ
p
k+1 is the set of decision problems

whose solutions can be determined in polynomial time by a non-deterministic Turing ma-

chine with a Σ
p
k oracle. A decision problem is in the class Π

p
k+1 if its complement is in the

class Σ
p
k+1. The class ∆

p
k+1 is the set of decision problems that can be solved in polynomial

time by a deterministic Turing machine with a Σ
p
k oracle. The class PSPACE is the set

of decision problems that can be solved by a deterministic Turing machine in polynomial

space. A computational problem is complete for a complexity class if it is in this class and

every problem in this class can by reduced to it in polynomial time.

Copyright c© Ying Zhu, 2016.
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Chapter 4 Optimal Solutions for Answer Set Optimization Problems

In this chapter, we present our work on preference aggregation based on the preference

formalism of answer set optimization (ASO). Of main interest to us are computational

problems concerning optimal outcomes. We propose, implement and study methods to

compute an optimal outcome; to compute an optimal outcome that is different from a given

outcome; to compute an optimal outcome that is similar to (or, dissimilar from) a given

candidate outcome; and to compute a set of optimal outcomes each significantly different

from the others. For the decision versions of several of these problems we establish their

computational complexity.

4.1 Problems and Complexity

The two fundamental optimization problems for any preference framework concern the

existence of an optimal outcome and an optimal outcome different from a given candidate

outcome (interpretation). We state them below for ASO programs.

OPT-OUTCOME Given an ASO program P, decide whether an optimal outcome S for P

exists.

DIFF-OPT-OUTCOME Given an ASO program P and a candidate outcome (an interpreta-

tion) S, decide whether P has an optimal outcome S′ such that S′ 6= S.

Clearly, if the generator of an ASO program P has outcomes, P has an optimal outcome.

Thus the complexity of deciding whether an optimal outcome exists is the same as the

complexity of deciding whether the generator Pgen is satisfiable (with respect to the se-

mantics of choice). That latter problem is NP-complete for both generator formalisms and

therefore, so is the former (we recall that generators are either propositional formulas or

non-disjunctive logic programs).
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Theorem 1. The OPT-OUTCOME problem is NP-complete.

For computing an optimal outcome, another problem is fundamental.

OPT-TEST Given an ASO program P, and an outcome S for P, decide whether S is an

optimal outcome for P.

This problem has been studied by Brewka et al. [27], who proved it to be coNP-complete.

The proof consists of showing that the complement of that problem, deciding whether a

given outcome S of P is not an optimal outcome of P, is NP-complete. The witness used

by the non-deterministic polynomial-time algorithm needed for the membership part is an

outcome S′ of P strictly better than S. Computing such better and better witnesses until an

optimal outcome is reached forms the basis of an algorithm to compute optimal outcomes

(we discuss this matter in more detail in the next section).

The DIFF-OPT-OUTCOME problem is essential to many other problems we consider

here as it concerns the existence of optimal outcomes other than a given interpretation

(in particular, other than a given optimal outcome). We now show that the DIFF-OPT-

OUTCOME problem is NP-complete.

Theorem 2. The DIFF-OPT-OUTCOME problem is NP-complete.

Proof. Let us consider an ASO program P and a candidate outcome (an interpretation) S

(over the vocabulary of P). An optimal outcome for P that is different from S exists if and

only if Pgen has an outcome M such that S 6� M. Indeed, if P has an optimal outcome S′

different from S, then S 6� S′ and we can take S′ for M. Conversely, let M be an outcome

of P such that S 6�M. Thus, P has an optimal outcome S′ such that S′ �M. It follows that

S 6= S′.

This property shows that the problem is in NP. To decide the problem, we need to guess

an interpretation M, check that it is an outcome for P and verify (in polynomial time) that

S 6�M.
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The hardness can be proved by reduction from the outcome existence problem. For

the sake of concreteness, we assume that generators are propositional theories (a similar

argument can be provided for the case when generators are logic programs). Given a propo-

sitional theory P, it is NP-hard to decide whether P is satisfiable. We construct an ASO

program P′ and an interpretation S so that P′ has an outcome M satisfying S 6� M if and

only if P is satisfiable.

To this end, we introduce a new atom a and construct P′ as follows. We set S = /0,

P′gen = P and P′pref = {a > ¬a}. There is a correspondence between models of P and

outcomes of P′. If M is a model of P, then M and M∪{a} are outcomes for P′. In the other

direction, if S′ is an outcome for P′, S′\{a} is a model of P.

(⇐) If P is satisfiable, let M be a model of P. According to the correspondence, M and

M∪{a} are outcomes for P′. Let S′ = M∪{a}. Since S = /0, S′ � S and so, S 6� S′.

(⇒) Let S′ be an outcome for P′ such that S′ 6� S. Clearly, M = S′ \ {a} is a model of P

and so, P is satisfiable.

Next, we consider the problems of finding optimal outcomes that are similar to a given

interpretation, or dissimilar from a given interpretation. In each problem we assume that

the distance between outcomes is determined by some measure of distance between inter-

pretations, say ∆.

SIM-OPT-OUTCOME Given an ASP program P, an interpretation S and a non-negative

integer d, decide whether P has an optimal outcome S′ such that ∆(S,S′)≤ d.

DISSIM-OPT-OUTCOME Given an ASP program P, an interpretation S and a non-negative

integer d, decide whether P has an optimal outcome S′ such that ∆(S,S′)≥ d.

The complexity of these problems depends on the complexity of deciding whether ∆(S,S′)≤

d. Assuming that this problem is in P, the problems to find a similar/dissimilar optimal out-

come are Σ
p
2-complete for several natural metrics ∆. The details depend on the definition
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of ∆. The theorems we present below assume that the Hamming distance HD is used to

measure how far from each other are the outcomes.

Theorem 3. The SIM-OPT-OUTCOME problem is Σ
p
2-complete when the Hamming distance

HD is used for ∆.

Proof. (Membership) The problem is in Σ
p
2 because, given an ASO program P, an in-

terpretation S and a non-negative integer d, we can guess an interpretation S′, verify in

polynomial time that it is an outcome of P (an answer set or a model, accordingly), then

use a coNP-oracle for the OPT-TEST problem to verify that S′ is an optimal outcome and,

finally, verify in polynomial time that HD(S,S′)≤ d.

(Hardness) We provide a detailed argument in the case when generators are logic programs

(the case of propositional theories is similar).

The following problem is Σ
p
2-hard [27]: Given an ASO program P and an atom l, decide

whether P has an optimal outcome M, such that l ∈ M. We will prove the hardness part

of the assertion by constructing an ASO program P′, an interpretation S and a nonnegative

integer d so that P′ has an optimal outcome S′ with HD(S,S′) ≤ d if and only if P has an

optimal outcome M such that l ∈M.

To this end, we define d as the number of atoms in P, and introduce d +1 fresh atoms

a1,a2, . . . ,ad+1. We construct an ASO program P′ and an interpretation S as follows. We

define

P′gen = Pgen∪{a1←¬l,a2←¬l, . . . ,ad+1←¬l},

and set P′pref = Ppref and S = /0. It is clear that the mapping

π(M) =


M i f l ∈M

M∪{a1, . . . ,ad+1} otherwise

is a bijection between the outcomes for P and P′ (as it is indeed a bijection between answer

sets of Pgen and P′gen). Since no atom ai appears in the selector Ppref (= P′pref ), M and π(M)
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have the same satisfaction degrees on Ppref and P′pref . Thus, for every two outcomes M and

M′ of P, M �P M′ if and only if π(M)�P′ π(M′). Since π is a bijection between outcomes

of P and P′, it follows that M ∈ Opt(P) if and only if π(M) ∈ Opt(P′).

(⇒) Let M be an optimal outcome for P such that l ∈ M. We set S′ = M. Since l ∈ M,

π(M) = M By our comments above, S′ is an optimal outcome of P′. Since |S′| = |M|, the

number of elements in S′ is at most d. Since S = /0, we have HD(S,S′)≤ d.

(⇐) Let S′ be an optimal outcome for P′ and HD(S,S′) ≤ d. Let us consider any of the

new atoms, say ai. If ai ∈ S′, then a j ∈ S′, for every j, 1 ≤ j ≤ d + 1. Thus |S′| ≥ d + 1

and HD(S,S′)≥ d+1, a contradiction. It follows that ai /∈ S′ for any 1≤ i≤ d+1, and so,

l ∈ S′. Let M = S′. It follows that S′ = π(M) and so, M is an optimal outcome for P and

l ∈M.

Theorem 4. The DISSIM-OPT-OUTCOME problem is Σ
p
2-complete when the Hamming dis-

tance HD is used for ∆.

Proof. (Membership) The problem is in Σ
p
2 because, given an ASO program P, an in-

terpretation S and a non-negative integer d, we can guess an interpretation S′, verify in

polynomial time that it is an outcome of P (an answer set or a model), use a coNP-oracle

for the OPT-TEST problem to verify that S′ is an optimal outcome of P and, finally, verify

in polynomial time that HD(S,S′)≥ d.

(Hardness) In the reduction we use the same problem as before and reason in a similar way.

Specifically, given an ASO program P and an atom l, we construct an ASO program P′,

an interpretation S, and a nonnegative integer d so that P′ has an optimal outcome S′ with

HD(S,S′)≥ d if and only if P has an optimal outcome M such that l ∈M.

We define d as the number of atoms in P plus 1. We introduce d new atoms a1,a2, . . . ,ad

and construct the program P′ as follows. We set

P′gen = Pgen∪{a1← l,a2← l, . . . ,ad ← l}
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and P′pref = Ppref . Finally, we set S = /0. This time, it is clear that the mapping

π(M) =


M i f l 6∈M

M∪{a1, . . . ,ad} otherwise

is a bijection between outcomes of P and P′. As before, since no atom ai appears in the

selector Ppref (= P′pref ), M and π(M) have the same satisfaction vectors with respect to Ppref

(= P′pref ). Thus, for any outcome M of P, M ∈ Opt(P) if and only if π(M) ∈ Opt(P′).

(⇒) Let M be an optimal outcome of P such that l ∈ M. We define S′ = π(M). Clearly,

S′ = M∪{a1, . . . ,ad}. By our comments above, S′ is an optimal outcome for P′. Moreover,

since |S′| ≥ d and |S|= 0, we have HD(S,S′)≥ d.

(⇐) Let S′ be an optimal outcome for P′ and HD(S,S′)≥ d. Since |S|= 0, |S′| ≥ d. Thus,

S′ contains at least one atom a j. Consequently, l ∈ S′ and for every i = 1, . . . ,d, ai ∈ S′.

Let M = S′ \{a1, . . . ,ad}. Clearly, M is an outcome of P, l ∈M and S′ = π(M). Moreover,

since S′ is an optimal outcome of P′, M is an optimal outcome of P.

Next, we consider the SIM-OPT-OUTCOME and DISSIM-OPT-OUTCOME problems un-

der the assumption that d is fixed and not a part of input. The resulting problems are

concerned with the existence of an optimal outcome very close to a given interpretation

(within a fixed distance d), and with the existence of an optimal outcome that is not in the

close vicinity of a given interpretation (is not within a fixed distance d).

Theorem 5. The SIM-OPT-OUTCOME problem with a fixed d is in ∆
p
2 (with HD as ∆).

Proof. To show the problem is in ∆
p
2 , we present an algorithm to decide it that relies on calls

to a coNP-oracle and works in polynomial time. The algorithm considers all interpretations

at distance at most d from S. For each interpretation it checks whether it is an outcome of

P and, if so, whether it is an optimal outcome of p. That last task requires a call to a

coNP-oracle for the problem OPT-TEST. If an optimal outcome is found in the process, the

algorithm outputs YES. Otherwise, it outputs NO. Since the number of interpretations S′
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such that HD(S,S′)≤ d is given by(
n
1

)
+ · · ·+

(
n
d

)
= O(nd),

where n denotes the number of atoms in P, the algorithm indeed works in polynomial time

(counting the time for oracle calls as 1).

Theorem 6. The DISSIM-OPT-OUTCOME problem with a fixed d is NP-complete (with HD

as ∆).

Proof. Let O = {O : O an outcome of P and HD(S,O)< d}. We have the following prop-

erty. The ASO program P has an optimal outcome S′ such that HD(S,S′) ≥ d if and only

if P has an outcome M such that for every O ∈ O , O 6�M. Indeed, if P has such an out-

come M, then any optimal outcome S′ of P such that S′ �M (such outcomes exist) satisfies

S′ /∈ O , that is, HD(S′,S) ≥ d. Conversely, assume that P has no such outcome M, that

is, that for every outcome M of P there is an outcome O ∈ O such that O �M. Then ev-

ery optimal outcome S′ of P belongs to O , that is, every optimal outcome S′ of P satisfies

HD(S,S′)< d.

(Membership) First, we note that we can compute O in polynomial time. Indeed, based on

the previous proof, there are O(nd−1) interpretations at distance at most d−1 from S. For

each of them, verifying whether it is an outcome of P takes polynomial time and so, the

claim follows.

Let us now consider the following algorithm: (1) guess an interpretation S′; (2) verify that

S′ is an outcome of P; and (3) for every O ∈ O , verify the condition O 6� S′. Based on

the property proved above, this nondeterministic algorithm correctly decides the problem

DISSIM-OPT-OUTCOME (with fixed d), and the tasks (2) and (3) take polynomial time.

Thus, the DISSIM-OPT-OUTCOME problem (with a fixed d) is in NP.

(Hardness) We provide a detailed argument in the case when generators are propositional

theories. Given a propositional theory P, it is NP-hard to decide whether P is satisfiable. We
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construct an ASO program P′ and an interpretation S such that P′ has an optimal outcome

S′ with HD(S,S′)≥ d if and only if P is satisfiable.

To this end, we introduce d new atoms a1, . . . ,ad and construct P′ by setting P′gen = P and

P′pref = {ai > ¬ai : i = 1, . . . ,d}. We also set S = /0.

(⇒) Let M be a model of P. Then S′ = M ∪{a1, . . . ,ad} is a model of P′gen (ai’s do not

appear in P and P′gen = P). Thus, S′ is an outcome of P′. Moreover, it is an optimal outcome

of P′ as its satisfaction degree on each preference in P′pref is 1. Since S = /0, HD(S,S′)≥ d.

(⇐) Let S′ be an optimal outcome for P′. It follows that S′ is an outcome of P′, that is a

model of P′gen. Thus, P (= P′gen) is satisfiable.

As an aside, we note that the DISSIM-OPT-OUTCOME problem with d = 1 is the same

as the DIFF-OPT-OUTCOME problem.

Similarly to questions about the existence of optimal outcomes within (or outside) a

small sphere around S given by a fixed distance d that we just studied, it is also of interest

to know if an ASO program P has optimal outcomes within (or outside) a large sphere

around S given by the distance n−d, where n is the size of the vocabulary and d is fixed.

Theorem 7. The SIM-OPT-OUTCOME problem with the distance bound given by n− d,

where d is fixed and n is the number of atoms in the input ASO program is NP-complete.

Proof. (Membership) Let O = {O : O an outcome of P and HD(S,O) > n−d}. As in the

earlier proofs, O can be computed in polynomial time and that S′ is an optimal outcome

of P such that HD(S′,S) ≤ n− d if and only if there is an outcome M of P such that for

every O ∈ O , O 6� M. Similarly as before, these observations yield a non-deterministic

polynomial-time algorithm deciding the problem.

(Hardness) We provide a detailed argument in the case when generators are propositional

theories. Given a propositional theory P, it is NP-hard to decide whether P is satisfiable.

We construct an ASO program P′ and an interpretation S such that there is an optimal
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outcome S′ for P′, S′ 6= S and HD(S,S′) ≤ n− d if and only if P is satisfiable (here n

denotes the number of atoms in P′).

To this end, we introduce d+1 new atoms b,a1, . . . ,ad and construct P′ by setting P′gen = P

and

P′pref =


b > ¬b

¬ai > ai i = 1, . . . ,d.
.

We also set S = /0. We denote by m the number of atoms in P. Thus, n = m+d +1.

(⇒) Let M be a model of P consisting of atoms in P. Then, S′ = M∪{b} is a model of P′gen

and so, an outcome of P′. Since the satisfaction degree of S′ on any preference rule is 1, S′

is an optimal outcome of P′. Thus, HD(S,S′) = |M|+1≤ m+1 = n−d.

(⇐) Let S′ be an optimal outcome for P′ such that HD(S,S′) ≤ n− d. Clearly, S′ is a

model of P′gen and, consequently, M = S′ \ {b,a1, . . . ,ad} is a model of P. Thus, P is

satisfiable.

Theorem 8. The DISSIM-OPT-OUTCOME problem with the distance bound given by n−d,

where d is fixed and n is the number of atoms in the input ASO program is in ∆P
2 .

Proof. Let P be an ASO program, say with n atoms, S an interpretation and d a fixed inte-

ger. To find an optimal outcome S′ such that HD(S,S′)≥ d, we consider all interpretations

S′ such that HD(S,S′)≥ d (similarly as in the previous proofs, we can show that there are

O(nd) of them). For each of them, we check whether it is an outcome of P (can be done in

polynomial time) and if so, whether it is an optimal outcome of P (a call to an oracle for

the problem OPT-TEST). This algorithm runs in polynomial time (counting oracle calls as

1). Thus, the problem at hand is in ∆
p
2 .

Finally, we state and discuss the problem of finding a set of optimal outcomes that are

significantly different from each other. In that problem we are interested in finding sets of

optimal outcomes of cardinality k, where k is a fixed integer.
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k-DIVERSE-OPT-OUTCOMES Given an ASO program P and a nonnegative integer d ≥ 1,

decide whether there is a set O of optimal outcomes for P such that |O| = k, and

∆(S,S′)≥ d for any two distinct S,S′ ∈ O .

Theorem 9. The k-DIVERSE-OPT-OUTCOMES problem is Σ
p
2-complete.

Proof. (Membership) The problem can be decided by (1) guessing k interpretations S1, . . . ,Sk;

(2) verifying that they are outcomes for P; (3) verifying their optimality in P by calls to an

oracle for the OPT-TEST problem; and finally (4) verifying that HD(Si,S j) ≥ d for every

two Si,S j, 1 ≤ i < j ≤ k. The tasks (3) and (4) can be accomplished in polynomial time.

Thus, the problem is in Σ
p
2 .

(Hardness) We provide a detailed argument in the case when generators are logic programs.

Given an ASO program P and an atom l, it is Σ
p
2-hard to decide whether P has an optimal

outcome M such that l ∈ M [27]. We construct an ASO program P′ and a nonnegative

integer d so that there is a set O of k optimal outcomes of P′ with HD(S,S′)≥ d for every

two distinct outcomes S,S′ ∈O if and only if P has an optimal outcome M such that l ∈M.

Let n = m+ 3, where m is the number of atoms in P. We start by constructing an answer

set program P′′ which has exactly k− 1 answer sets and the distance between any two

distinct ones among them is 2n. To this end, we introduce (k−1)n new atoms xi, j, where

i = 1, . . . ,k−1 and j = 1, . . . ,n and define P′′ to consist of the rules

xi,1←¬x1,1, . . . ,¬xi−1,1,¬xi+1,1, . . . ,¬xk−1,1, i = 1, . . . ,k−1

xi, j← xi,1, i = 1, . . . ,k−1, j = 2, . . . ,n.

One can show that the program P′′ has k− 1 answer sets A1, . . . ,Ak−1, where Ai = {xi, j :

j = 1, . . . ,n}.

To construct the ASO program P′ we introduce n+2 fresh atoms a,b, l1, l2, . . . , ln. We

then define P′gen

34



P′gen =



a←¬b

b←¬a

h← B,a for every rule h← B ∈ P′′

h← B,b for every rule h← B ∈ Pgen

li← b, l i = 1, . . . ,n

and

P′pref = Ppref ∪{a > ¬a}∪{b > ¬b}.

Finally, we set d = 2n.

Let M be an answer set of P′′ or of Pgen. We define

π(M) =


M∪{a} if M ∈ AS(P′′)

M∪{b} if M ∈ AS(Pgen), l 6∈M

M∪{b, l1, . . . , ln} if M ∈ AS(Pgen), l ∈M,

where we write AS(Q) for the set of answer sets of an answer set program Q. One can

show that π(M) is an outcome of P′ (an answer set of P′gen), and that every outcome of P′

is of the form π(M), where M is an outcome of P or of P′′.

Moreover, we have two additional properties. First, if M is an outcome (answer set) of

P′′, π(M) is an optimal outcome for P′. To prove that, let us assume that P′ has an outcome

M′ such that M′ �P′ π(M). It follows that the satisfaction degree of M′ on the preference

a > ¬a is 1 and so, a ∈ M′. Consequently, M′′ = M′ \ {a} is an answer set of P′′. Thus,

neither M nor M′ contain any atoms that occur in P and so, M′ ≈P′ π(M), a contradiction.

Second, if M is an outcome of P (an answer set of Pgen), π(M) is an optimal outcome

of P′ if and only if M is an optimal outcome of P. To prove it, let us consider an optimal

outcome M of P and assume that M′ �P′ π(M), for some outcome M′ of P′. Since b ∈
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π(M), b ∈ M′. Let M′′ = M′\{b, l1, . . . , ln}. It follows that M′′ is an outcome for P and

M′′ �P M, a contradiction. Conversely, if M is not optimal for P then we have M′ �P M,

for some outcome M′ for P. Clearly, π(M′) �P′ π(M) and so, π(M) is not an optimal

outcome of P′.

(⇐) Let M be an optimal outcome of P such that l ∈ M. Based on the comments above,

π(M),π(A1), . . . ,π(Ak−1) are optimal outcomes of P′. By the definition, π(M) = M ∪

{b, l1, . . . ,n} and π(Ai) = Ai∪{a}, 1≤ ß≤ k−1. Thus, HD(π(M),π(Ai))≥ 2n = d (each

atom in Ai∪{l1m . . . , ln} belongs to exactly one of π(M) and π(Ai)). Moreover, for all i and

j such that 1 ≤ i 6= j ≤ k− 1, we have HD(Ai,A j) = 2n = d and so, HD(π(Ai),π(A j)) =

2n = d. Thus, P′ has k optimal outcomes, each two distinct ones at distance at lest d from

each other.

(⇒) Let O be a set of optimal outcomes for P′ such that |O| = k and HD(S,S′) ≥ d,

for any S,S′ ∈ O . Answer sets of P′′ can only contribute k− 1 optimal outcomes to O .

Thus, at least one outcome in O is of the form π(M) where M is an outcome of P. By

our observation above, that M is an optimal outcome of P. Let us assume that l /∈ M.

Then, π(M) = M ∪ {b}. Let O be any other element of O (we recall that k ≥ 2). If

O = π(M′), where M′ is an outcome of P, then M′ is an optimal outcome of P. Since

HD(π(M),π(M′)) ≤ m+ n < 2n = d, a contradiction. Thus, O = π(Ai), for some i =

1, . . . ,k−1. It follows that HD(π(M),π(Ai))≤m+2+n < 2n = d, a contradiction. Thus,

l ∈M.

Theorem 10. The k-DIVERSE-OPT-OUTCOMES problem with a fixed d is in ∆
p
2 .

Proof. Let us assume that we have constructed optimal outcomes S1, . . . ,Si of P, for some

0≤ i < k, so that for every 1≤ j 6= l ≤ i, HD(S j,Sl)≥ d.

1. If i = k, we return S1, . . . ,Sk and terminate.

2. Otherwise, we compute the set O of all outcomes S of P such HD(S,S j) < d, for

some j = 1, . . . , i.
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3. If there is an outcome S′ of P such that for every S ∈ O , S 6� S′

a) compute one such S′

b) and then, compute an optimal outcome S′′ of P such that S′′ � S′

c) set Si+1 = S′′ and i = i+1, and repeat steps 1, 2 and 3

4. Otherwise (in that case, we have that for every outcome S′ of P there is an outcome

S ∈ O such that S � S′; thus, every optimal outcome of P is in O), for every k-

element subset O ′ of O , check if every S ∈ O ′ is an optimal outcome of P and if for

every different S,S′ ∈ O ′, HD(S,S′) ≥ d; if such a subset O ′ is found, return it and

terminate, if not, terminate with failure.

The correctness of this algorithm is clear. Next, we note that since k and d are fixed, there

are O(nd−1) interpretations S such that HD(S,S j) < d, for some j = 1, . . . , i. For each of

them, it takes polynomial-time to check if it is an outcome of P and a single call to an

coNP-oracle to check if it is optimal (the problem OPT-TEST is coNP-complete). Thus,

step 2 can be accomplished by a polynomial-time algorithm with a coNP-oracle (counting

each oracle call, here only one, as taking unit time). Moreover, |O|= O(nd−1).

We discuss the computational tasks involved in step 3 in detail in the next section. We

show there that they all can be accomplished in polynomial time with the assistance of an

NP-oracle.

Step 4 can be accomplished by a polynomial-time algorithm with an NP-oracle for

deciding whether an outcome of P is optimal because there are only O(nk(d−1)) sets O ′ to

consider.

4.2 Computational Methods

In this section, we study two methods to solve the four optimization problems we dis-

cussed above: finding one optimal solution; given a candidate solution, finding a different
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optimal solution; given a candidate solution, finding a similar/dissimilar optimal solution;

and finding a diverse set of optimal solutions. We describe them under the assumption that

the generator is an answer set program but the discussion extends to the case when we use

propositional theories for generators. The first method uses an iterative way to find optimal

outcomes for an ASO problem. The second method encodes each optimization problem as

a single disjunctive logic program.

4.2.1 Iterative Method

The iterative method separates the optimization problem into a series of easier tasks which

can be modeled as answer set programs and solves them by ASP solvers. This idea was in-

troduced by Brewka, Niemelä and Truszczyński in 2003 [27] to solve the OPT-OUTCOME

problem. To find an optimal outcome for a given ASO program P, the iterative method

first randomly picks an outcome for P, and computes an outcome which is strictly better

than it. If such outcome exists, it repeats the process to find a “better” outcome from the

achieved one. This process eventually terminates on an optimal outcome for P. In our

work, we extend this method to apply on ranked preference profiles, and provide computa-

tional methods for solving the optimization problems with additional conditions discussed

in Section 4.1.

Before introducing the algorithm, we first define two problems which are fundamental

in the algorithm and can be modeled as a single answer set program.

FIND-BETTER Given an ASO program P, and an interpretation S, find an outcome for P

that is strictly better than S.

FIND-NOTWORSE-DIFF Given an ASO program P, and an interpretation S, find an out-

come for P that is not worse than and is different from S.

The FIND-BETTER problem was discussed in the original paper introduced ASO programs

[27]. It can be solved by constructing a certain answer set program Π1(P,S) and, then,
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finding its answer sets by means of ASP tools. Given an ASO program P (assume Pgen is

an answer set program) and an interpretation S, the program Π1(P,S) is defined to be the

union of Pgen and the following rules:

1. Add facts rule(r) for each preference r ∈ Ppref .

2. Add facts v0(r,d)← for each preference r ∈ Ppref , where d is the satisfaction degree

of r in S.

3. For each preference ri ∈ Ppref and C j in ri, introduce a new atom ci, j and add rules to

capture the conditions under which C j is satisfied.

4. For each preference ri ∈ Ppref in the form 3.1 in Chapter 3, add rules

body(ri) ← a1, . . . ,an,¬ b1, . . . ,¬ bm

head(ri) ← ci,1

· · ·

head(ri) ← ci,k

v1(ri,1) ← rule(ri),not body(ri)

v1(ri,1) ← rule(ri),not head(ri)

v1(ri,1) ← ci,1,body(ri)

v1(ri,2) ← not ci,1,ci,2,body(ri)

· · ·

v1(ri,k) ← not ci,1,not ci,2, . . . ,not ci,k−1,ci,k,body(ri).

5. Include rules

← not better

better ← v0(R,V0),v1(R,V1),V0 >V1

← v0(R,V0),v1(R,V1),V0 <V1.
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In Π1(P,S), the facts v0 represents the satisfaction degrees for S, v1 represents the satisfac-

tion degree for the outcome S′ of Π1(P,S) (S′ is also an outcome for Pgen), and the last three

rules restrict that S′ �P S. Therefore if Π1(P,S) has an answer set S′, it is an outcome for

P that is strictly better than S. If Π1(P,S) is unsatisfiable, such outcome does not exist and

so, S is optimal.

With ranked preferences, the Π1(P,S) is constructed in the same way except that we

replace the last three rules defined in step 5 with the following rules:

← not better

better ← not failAt(L), betterAt(L)

betterAt(L) ← v0(R,V0),v1(R,V1),V0 >V1,rank(R,L)

failAt(L) ← betterAt(L),v0(R,V0),v1(R,V1),V0 <V1,rank(R,L0),L0 ≤ L.

and add the fact rank(r, j) for each preference r ∈ Ppref in the form 3.2 in Chapter 3. The

fact better means S′ (the outcome for Π1(P,S)) is strictly better than S. It is implemented

by defining that there is a rank l such that S′ is better than S on some preference with rank

l (the fact betterAt(L)) and S′ is not worse than S on any preference with a rank l′, l′ ≤ l.

The fact failAt(L) is true if S′ is better than S on some preference with rank L and S′ is

worse than S on some preference with the same rank or a higher rank.

To solve the FIND-NOTWORSE-DIFF problem, we build an answer set program Π2(P,S)

in a similar way as Π1(P,S). Let A be the set of atoms in Pgen and assume S is represented

by a set of true atoms, the program Π2(P,S) is constructed from Π1(P,S) by:

1. Adding a rule ← {l : l ∈ S},{not l : l ∈ A , l 6∈ S} to restrict that the outcome for

Π2(P,S) has to be different from S.
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2. Replacing the rules defined in step 5 when building Π1(P,S) with the following rules

worse ← v0(R,V0),v1(R,V1),V0 <V1

better ← v0(R,V0),v1(R,V1),V0 >V1

← worse,not better.

If Π2(P,S) has an outcome S′, the new atom worse is true if and only if S′ is worse than S on

some preference rule. Similarly, better means S′ is strictly better than S on some preference

rule. The last rule defines a contradiction if S′ is worse than S on Ppref . Therefore S′ is not

worst than and different from S. The problem has no outcome if Π2(P,S) is unsatisfiable.

Similarly, in the ranked version, we construct Π2(P,S) by replacing the three rules

defined in the second step described above by the following rules:

worseAt(L) ← v0(R,V0),v1(R,V1),V0 <V1, level(R,L)

failAt(L) ← worseAt(L),v0(R,V0),v1(R,V1),V0 >V1, level(R,L0),L0 ≤ L

← worseAt(L),not failAt(L).

and adding the fact level(r, j) for each preference r ∈Ppref in the form 3.2 in Chapter 3. The

fact worseAt(L) means S′ (the outcome for Π2(P,S)) is worse than S on some preference

rule with rank L. While the fact failAt(L) is true if S′ is worse than S on some preference

rule with rank L, and S′ is better than S on some preference rule with the same rank or a

higher rank. The last rule defines the contradiction if S�P S′.

Understanding how to solve these two basic problems, we can start to describe the

iterative method for the optimization problems discussed in Section 4.1.

Computing One Optimal Solution

An optimal outcome is a outcome which is not dominated by any other outcome. Given an

ASO program P = (Pgen,Ppref ) (assume Pgen is an answer set program), the OPT-OUTCOME

problem can be solved by following the algorithm using an ASP solver:
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1. Compute an outcome S0 for Pgen. If Pgenis unsatisfiable, return no outcome.

2. Let S = S0.

3. Loop

a) Compute an outcome S′ for Π1(P,S). If Π1(P,S) is unsatisfiable, return S as the

solution for the OPT-OUTCOME problem. Otherwise, let S = S′.

According to the definition of Π1, its output is strictly better than its input. From any

start point, this iterative improvement process obtains a better outcome on each loop, and

eventually terminates as the space of outcomes is finite. When it does, the last outcome

generated is an optimal one. Let S be the output of the algorithm. If S is not optimal for

P, there exists an outcome S′ such that S′ �P S, then the problem Π1(P,S) is satisfiable and

the algorithm will not stop and output S at this point. Therefore S is an optimal outcome

for P.

Computing a Different Optimal Solution

For the DIFF-OPT-OUTCOME problem, according to Theorem 2, we know that given an

ASO program P and an interpretation S, there is an optimal outcome S′ for P such that

S′ 6= S if and only if there is an outcome M for Pgen which is not worse than and is different

from S. That is because, if such M exists, there is an optimal outcome M′ for P dominating

M and M′ 6= S, then M′ is a solution for the DIFF-OPT-OUTCOME problem. Given an ASO

program P = (Pgen,Ppref ) and an interpretation S, the algorithm consists of the following

steps:

1. Compute an outcome S0 for Π2(P,S). If Π2(P,S) is unsatisfiable, return no solution.

2. Let S′ = S0.

3. Loop
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a) Compute an outcome M for Π1(P,S′). If Π1(P,S′) is unsatisfiable, return S′ as

the solution for the DIFF-OPT-OUTCOME problem. Otherwise, let S′ = M.

The algorithm is the same as the one solving the OPT-OUTCOME problem, only except

using an outcome of Π2(P,S) as the start point for the iterative improvement process. Let

S′ be the output of the algorithm, it has been shown in section 4.2.1 that it is optimal for P.

Let us assume that S′ = S. Based on the algorithm, either S′ = S0 or S′ �P S0. According

to the definition of Π2, S 6= S0 and S 6�P S0. If S′ = S0, then S = S0, a contradiction. If

S′ �P S0, S�P S0, a contradiction. Therefore, S′ is optimal for P and different from S.

Computing a Similar or Dissimilar Optimal Solution

To solve the SIM-OPT-OUTCOME and DISSIM-OPT-OUTCOME problems, given an ASO

program P, an interpretation S and a distance d, deciding whether there is an optimal out-

come S′ such that S′ 6= S and HD(S,S′)≤ d (HD(S,S′)≥ d), we introduce two techniques.

The basic idea of the first technique is iteratively computing optimal outcomes, until a sim-

ilar/dissimilar one is found. The second technique computes similar/dissimilar outcomes

until an optimal one is found.

A Straightforward Method To be specific, the first technique keeps a set O of outcomes

which are not the solution for the problem and initializes O as {S}. It computes an optimal

outcome M which is different from every O ∈ O , and checks whether HD(S,M) ≤ d (or

respectively HD(S,M)≥ d). If M satisfies the distance condition, the algorithm returns M.

Otherwise, it adds M into O and repeats the process until some similar/dissimilar optimal

outcome is found or no more optimal outcome exists. The list O can get very large.

Given an ASO program P, an interpretation S and a distance d, the algorithm as follows:

1. Let O = {S}.

2. Loop
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a) Compute an optimal outcome M for P such that M is different from every O ∈

O . If no solution, return unsatisfiable.

b) If HD(S,M) ≤ d (or respectively HD(S,M) ≥ d), return M as the solution for

the SIM-OPT-OUTCOME (DISSIM-OPT-OUTCOME) problem.

c) Otherwise, add M to O .

The pivotal problem in this algorithm is the first step in the loop and we define it as a new

problem.

FIND-OPT-DIFF-SET Given an ASO program P and a set O of interpretations, find an

optimal outcome for P which is different from every O ∈ O .

The FIND-OPT-DIFF-SET problem is similar to the DIFF-OPT-OUTCOME problem and can

be solved in a similar way. To solve the DIFF-OPT-OUTCOME problem, given an ASO pro-

gram P and an interpretation S, the algorithm first computes an outcome S0 for P which is

not worse than and is different from S (a solution for the FIND-NOTWORSE-DIFF problem),

and then start from S0, finds an optimal outcome for P using the iterative improvement

process. Inspired by this algorithm, the FIND-OPT-DIFF-SET problem can be solved in the

same way only now S0 should be not worse than and different from every O ∈ O . We

introduce a new problem to compute such S0.

FIND-NOTWORSE-DIFF-SET Given an ASO program P, and a set O of interpretations,

find an outcome for P that is not worse than and is different from every O ∈ O .

To solve the FIND-NOTWORSE-DIFF-SET problem, we construct an answer set program

Π3(P,O) in a similar way as constructing Π2(P,S) for the FIND-NOTWORSE-DIFF problem.

Given an ASO program P and a set O of interpretations, let A be the set of atoms in Pgen

and assume every O∈O is represented by a set of atoms, the complete process to construct

the program Π3(P,O) is defined as the following:

1. Include Pgen.
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2. Add facts rule(r) for each preference rule r ∈ Ppref .

3. For each O ∈ O , add v0(O,r,d) ← for each preference r ∈ Ppref , where d is the

satisfaction degree of r in O.

4. For each preference ri ∈ Ppref and C j in ri, introduce a new atom ci, j and add rules to

capture the conditions under which C j is satisfied.

5. For each preference ri ∈ Ppref in the form 3.1 in Chapter 3, add rules

body(ri) ← a1, . . . ,an,¬ b1, . . . ,¬ bm

head(ri) ← ci,1

· · ·

head(ri) ← ci,k

v1(ri,1) ← rule(ri),not body(ri)

v1(ri,1) ← rule(ri),not head(ri)

v1(ri,1) ← ci,1,body(ri)

v1(ri,2) ← not ci,1,ci,2,body(ri)

· · ·

v1(ri,k) ← not ci,1,not ci,2, . . . ,not ci,k−1,ci,k,body(ri).

6. Include rules

worse(O) ← v0(O,R,V0),v1(R,V1),V0 <V1

better(O) ← v0(O,R,V0),v1(R,V1),V0 >V1

← worse(O),not better(O).

7. For every O ∈ O , add a rule←{l : l ∈ O},{not l : l ∈A , l 6∈ O}.

The difference from Π2(P,S) is that Π3(P,O) includes the facts representing the satisfac-

tion degree for all O ∈ O (in step 3), the rules restricting S′ (the outcome for Π3(P,O)) is
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different from every O ∈ O (in step 7), and a contradiction if S′ is worse than any O ∈ O

(in step 6). Therefore the outcome for Π3(P,O) is different from and not worse than any

O ∈ O .

Similar to Π2(P,S), in the ranked version, we construct Π3(P,S) by replacing the rules

defined in step 6 described above by the following rules:

worseAt(O,L) ← v0(O,R,V0),v1(R,V1),V0 <V1, level(R,L)

failAt(O,L) ← worseAt(O,L),v0(O,R,V0),v1(R,V1),V0 >V1, level(R,L0),L0 ≤ L

← worseAt(O,L),not failAt(O,L).

and adding the fact level(r, j) for each preference r ∈ Ppref in the form 3.2 in Chapter 3.

Given an ASO program P = (Pgen,Ppref ) and a set O of interpretations, the complete

process to solve the FIND-OPT-DIFF-SET problem is the following:

1. Compute an outcome S0 for Π3(P,O). If Π3(P,O) is unsatisfiable, return no solution.

2. Let S′ = S0.

3. Loop

a) Compute an outcome M for Π1(P,S′). If Π1(P,S′) is unsatisfiable, return S′ as

the solution for the FIND-OPT-DIFF-SET problem. Otherwise, let S′ = M.

The other steps in the algorithm for the SIM-OPT-OUTCOME and DISSIM-OPT-OUTCOME

problems are trivial.

An Alternative Method The first technique computes optimal outcomes one by one and

checks the distance condition, while the second technique iteratively finds outcomes satis-

fying the distance condition and then checks their optimality. Given an ASO program P,

an interpretation S and a distance d, the algorithm is described below:
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1. Let O =∅.

2. Loop

a) Compute an outcome M for P such that M is different from S and every O ∈

O , and HD(S,M) ≤ d (or respectively HD(S,M) ≥ d). If no solution, return

unsatisfiable.

b) Check whether M is optimal for P. If it is, return M as the solution for the

SIM-OPT-OUTCOME (DISSIM-OPT-OUTCOME) problem, otherwise, add M to

O .

Similar to the straightforward method, the set O records the outcomes which cannot be the

solution. The second step in the loop, checking whether M is optimal for P, can be im-

plemented by running Π1(P,M). If Π1(P,M) has a solution, M is not an optimal outcome,

otherwise, it is. To implement the first step in the loop, we first need to know how to find

an outcome which is similar to (dissimilar from) a given interpretation.

FIND-SIM Given an ASO program P, an interpretation S and a nonnegative integer d, find

an outcome M for P such that M 6= S and HD(S,M)≤ d.

FIND-DISSIM Given an ASO program P, an interpretation S and a nonnegative integer d,

find an outcome M for P such that M 6= S and HD(S,M)≥ d.

To solve the FIND-SIM and FIND-DISSIM problems, we construct an answer set program

Π4(P,S,d) by modifying Pgen. Assume A = {l1, . . . , ln} are the atoms in Pgen and S is

represented by a set of atoms with the truth value. The program Π4(P,S,d) is constructed

in the following way:

1. Include Pgen.

2. Add facts si← if li ∈ S.

3. Add rule←{l : l ∈ S},{not l : l ∈A , l 6∈ S}.
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4. Add rule {d1, . . . ,dn}d for the FIND-SIM problem, or d{d1, . . . ,dn} for the FIND-

DISSIM problem.

5. For each i ∈ [1..n], add rules

← di, li,si

← di,not li,not si

← not di, li,not si

← not di,not li,si.

In the program Π4(P,S,d), atoms di is true if and only if S and M (the outcome for

Π4(P,S,d)) have different values on atom li. The number of dis with the truth value is the

Hamming distance between S and M. The rule {d1, . . . ,dn}d (or respectively d{d1, . . . ,dn})

restricts there are at most (least) d of dis are true. This is equivalent to that the Hamming

distance between S and M are at most (least) d. Similar to Π2(P,S), the rule ← {l : l ∈

S},{not l : l ∈A , l 6∈ S} guarantees that the outcome for Π4(P,S,d) is different from S.

In the algorithm, we can compute an outcome M for P such that M is different from any

O∈O (O = {S}) and HD(S,M)≤ d (or respectively HD(S,M)≥ d) by running Π4(P,S,d).

If M is not optimal for P, we need to compute another outcome M′ for P such that M′ is

different from S and M, and HD(S,M′)≤ d (or respectively HD(S,M′)≥ d). Therefore we

have the following two problems.

FIND-SIM-DIFF-SET Given an ASO program P, an interpretation S, a set O of interpre-

tations and a nonnegative integer d, find an outcome M for P such that M 6= S,

HD(S,M)≤ d, and M 6= O for every O ∈ O .

FIND-DISSIM-DIFF-SET Given an ASO program P, an interpretation S, a set O of inter-

pretations and a nonnegative integer d, find an outcome M for P such that M 6= S,

HD(S,M)≥ d, and M 6= O for every O ∈ O .
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The FIND-SIM-DIFF-SET and FIND-DISSIM-DIFF-SET problems can be solved by adding

rules to Π4(P,S,d) which restrict the outcome is different from every O ∈O . The program

Π5(P,S,O,d) for these two problems is a union of Π4(P,S,d) and the following rules:

← {l : l ∈ O},{not l : l ∈A , l 6∈ O} f or each O ∈ O.

The program Π4(P,S,d) is a special case of Π5(P,S,O,d) where O is empty. The alter-

native method for the SIM-OPT-OUTCOME and DISSIM-OPT-OUTCOME problems can be

implemented by Π5(P,S,O,d) (O can be empty) and Π1(P,M) (M is an intermediate re-

sult).

A variant of the alternative method changes the first step in the loop to computing a

“local” optimal outcome M for P such that M is different from S and every O ∈ O and

HD(S,M) ≤ d (or respectively HD(S,M) ≥ d). Given a ASO program P, we construct a

new ASO program P′ where P′gen = Π4(P,S,d) and P′pref = Ppref . Therefore the outcomes

for P′ are different from and similar to (dissimilar from) S. The variant method is imple-

mented by the following process:

1. Let O =∅.

2. Loop

a) Compute an optimal outcome M for P′ such that M is different from every

O ∈ O . If no solution, return unsatisfiable.

b) Check whether M is optimal for P. If it is, return M as the solution for the

SIM-OPT-OUTCOME (DISSIM-OPT-OUTCOME) problem, otherwise, add M to

O .

In the loop, the method first computes an optimal outcome M for P′, which satisfies the

distance condition but may be not optimal for P, and then checks whether M is the solu-

tion. It uses the set O to record all failed candidates. The problem to compute an optimal
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outcome which is different from a set of interpretations is defined as FIND-OPT-DIFF-SET

and has been introduced in the straightforward method.

In the experiments, we implemented both versions for the alternative method.

Computing a Diverse Set of Optimal Solutions

To solve the k-DIVERSE-OPT-OUTCOMES problem, we also provide two techniques. To

find k optimal outcomes such that every two of them are far from each other, one technique

uses the straightforward backtracking algorithm which iteratively computes optimal out-

comes until a diverse set is found. On the other hand, the second technique first computes

a diverse set of outcomes, then checks whether every outcome is optimal.

A Straightforward Method The straightforward backtracking algorithm works in the

following way. Let O be a set of optimal outcomes found so far, with every two different

outcomes in O at distance at least d from each other. Given that, the algorithm computes

an optimal outcome M which is far from every O ∈ O . If such an M is found, the search

for such answer is suspended, M is included in O and the algorithm repeats the process of

trying to expand O . Otherwise, O is not contained in any diverse set of optimal outcomes

of cardinality k. Thus, the algorithm pops back the last optimal outcome added into O ,

and computes a new optimal outcome that could be included in O (by resuming the search

suspended most recently). The algorithm terminates when the size of O is k or when there

are no suspended calls to an ASP solver (the entire search space was covered). The set O

is set to empty initially.

Given an ASO program P and a nonnegative integer d, the algorithm is:

1. Let O,O1, . . . ,Ok =∅.

2. Loop
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a) If |O| = k, return O as the solution for the k-DIVERSE-OPT-OUTCOMES prob-

lem.

b) Let i = |O|+1. Compute an optimal outcome M for P such that M is different

from every O ∈ Oi, and HD(M,O′)≥ d for every O′ ∈ O .

c) If such M exists, add M to O and Oi.

d) Otherwise, if O =∅, return unsatisfiable; else, pop back the last element in O

and set Oi =∅.

In the algorithm, O is the set to record the diverse optimal outcomes, and the sets Ois are

used to avoid an endless loop. In every iteration of the loop, we try to compute an optimal

outcome M which can be included in O . It is clear that M has to be far from every O ∈ O .

Moreover, we may already tried to include an outcome M′ to O but failed. That means

O ∪{M′} cannot be extended to a diverse optimal set. Therefore we do not want to test

M′ again. To avoid an infinite loop, we use Oi to record the outcomes already been tested

to add into O where i = |O|+ 1. When computing M, M has to be different from every

O ∈ Oi. When O is changed (an element in O is popped out), the set Oi is reset to empty.

To implement this algorithm, the key point is how to find an optimal outcome which is

different from every O ∈O and far from every O ∈O ′, where O and O ′ are two given sets

of interpretations.

FIND-OPT-DIFF-DISSIM-SET Given an ASO program P, two sets of interpretations O and

O ′ and a nonnegative integer d, find an optimal outcome M for P such that M 6= O

for every O ∈ O , and HD(M,O′)≥ d for every O′ ∈ O ′.

Since the FIND-OPT-DIFF-DISSIM-SET problem is to compute an optimal outcome, it can-

not be modeled by a single polynomial-size answer set program. Inspired by the DISSIM-

OPT-OUTCOME problem, we introduce two techniques to solve it based on the techniques

we discussed in section 4.2.1.
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The first technique for the DISSIM-OPT-OUTCOME problem uses a straightforward

method which iteratively computes optimal outcomes and checks whether the distance

condition is satisfied. We modify that algorithm to solve the FIND-OPT-DIFF-DISSIM-SET

problem as iteratively computing optimal outcomes which is different from every O ∈ O ,

and checking whether it is far from every O ∈ O ′.

Given an ASO program P, two sets of interpretations O and O ′ and a nonnegative

integer d, the first algorithm for the FIND-OPT-DIFF-DISSIM-SET problem is:

1. Loop

a) Compute an optimal outcome M for P such that M is different from every O ∈

O . If no solution, return unsatisfiable.

b) If HD(M,O)≥ d for every O ∈ O ′, return M as the solution for the FIND-OPT-

DIFF-DISSIM-SET problem.

c) Otherwise, add M to O .

The corresponding algorithm for the DISSIM-OPT-OUTCOME problem is a special case of

this one with O = {S} and O ′ = {S}. The problem in the first step of the loop, to find

an optimal outcome which is different from each of the given interpretations, has been

defined as FIND-OPT-DIFF-SET and solved when we discussed the first technique for the

DISSIM-OPT-OUTCOME problem.

The second technique to solve the DISSIM-OPT-OUTCOME problem computes dissimi-

lar outcomes iteratively and checks whether it is optimal. Similarly, to make the algorithm

apply to the FIND-OPT-DIFF-DISSIM-SET problem, we modify it as computing the out-

comes which is different from every O∈O and far from every O∈O ′, and checks whether

it is optimal.

Given an ASO program P, two sets of interpretations O and O ′ and a nonnegative

integer d, the modified algorithm for the FIND-OPT-DIFF-DISSIM-SET problem is:
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1. Loop

a) Compute an outcome M for P such that M is different from every O ∈ O , and

HD(M,O′)≥ d for every O′ ∈ O ′. If no solution, return unsatisfiable.

b) Check whether M is optimal for P. If it is, return M as the solution for the

FIND-OPT-DIFF-DISSIM-SET problem, otherwise, add M to O .

Still, the corresponding algorithm for the DISSIM-OPT-OUTCOME problem is a special case

of this one with O = {S} and O ′= {S}. To implement this algorithm, we need to first solve

the problem in the first step of the loop.

FIND-DIFF-SET-DISSIM-SET Given an ASO program P, two sets of interpretations O and

O ′ and a nonnegative integer d, find an outcome M for P such that M 6= O for every

O ∈ O , and HD(M,O′)≥ d for every O′ ∈ O ′.

When introducing the second technique for the DISSIM-OPT-OUTCOME problem, we de-

fined the FIND-DISSIM-DIFF-SET problem which can be solved by an answer set program

Π5(P,S,O,d). The FIND-DIFF-SET-DISSIM-SET problem can be solved in a similar way

by constructing an answer set program Π6(P,O,O ′,d). Given an ASO program P, two sets

of interpretations O and O ′ and a nonnegative integer d, let A = {l1, . . . , ln} be the atoms

in Pgen, the program Π6(P,O,O ′,d) is constructed in the following way:

1. Include Pgen.

2. For every O ∈ O , add rule←{l : l ∈ O},{not l : l ∈A , l 6∈ S}.

3. For every O ∈ O ′, add facts sO,i← if li ∈ O.

4. For every O ∈ O ′, add rule d{dO,1, . . . ,dO,n}.
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5. For every O ∈ O ′ and every i ∈ [1..n], add rules

← dO,i, li,sO,i

← dO,i,not li,not sO,i

← not dO,i, li,not sO,i

← not dO,i,not li,sO,i.

The rules added in step 2 guarantee that the outcomes for Π6(P,O,O ′,d) are different from

every O ∈ O . The fact sO,i is true if the atom li is true in the interpretation O. The rules

added in step 4 restrict that for every O ∈O ′, at least d of dO,is are true. Similar to the pro-

gram Π5(P,S,O,d), the atom dO,i is true if and only if the outcome of Π6(P,O,O ′,d) and

O have different values on the atom li. Therefore these rules guarantee that the Hamming

distance between the outcomes for Π6(P,O,O ′,d) and every O ∈ O ′ is at least d.

The second technique for the FIND-OPT-DIFF-DISSIM-SET problem can be implemented

with the program Π6(P,O,O ′,d). Similar to the situations we discussed for the DISSIM-

OPT-OUTCOME problem, this technique also has a variant which computes “local” optimal

outcomes as the candidates for the final solution. To implement this variant method, given

an instance of the FIND-OPT-DIFF-DISSIM-SET problem, we construct an ASO program P′

where P′gen = Π6(P,O,O ′,d) and P′pref = Ppref . Therefore the outcomes for P′ are different

from every O ∈ O and far from every O ∈ O ′. The variant method is implemented by the

following process:

1. Let O ′′ =∅.

2. Loop

a) Compute an optimal outcome M for P′ such that M is different from every

O ∈ O ′′. If no solution, return unsatisfiable.

b) Check whether M is optimal for P. If it is, return M as the solution for the

FIND-OPT-DIFF-DISSIM-SET problem. Otherwise, add M to O ′′.
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In the loop, the method first computes an optimal outcome M for P′, which satisfies other

conditions but may be not optimal for P, then checks whether P is the solution. If it is not,

the method repeats the process to compute a new candidate. The set O ′′ records all failed

candidates to avoid an endless loop.

Once the FIND-OPT-DIFF-DISSIM-SET problem is solved, the algorithm for the k-DIVERSE-

OPT-OUTCOMES problem can be implemented. However, this algorithm needs to remem-

ber all optimal outcomes that have been found and requires a large amount of storage.

Moreover, it can be improved since it actually tests all permutations for the k diverse op-

timal outcomes. For example, let {S1,S2} be a set of optimal outcomes which cannot be

extended to a k diverse set, the algorithm checks both {S1,S2} and {S2,S1}. We also com-

pare these three implementations in the experiments (the first technique and two variants

for the second technique).

An Alternative Method To solve the k-DIVERSE-OPT-OUTCOMES problem, the idea of

the alternative method is first finding diverse sets, then checking whether every outcome in

the set is optimal. Given an instance of the k-DIVERSE-OPT-OUTCOMES problem, we first

see how to compute k diverse outcomes for P.

FIND-DIVERSE Given an ASO program P, an integer k > 1, and a nonnegative integer d,

find a set O of k outcomes for P such that HD(S,S′)≥ d for every different S,S′ ∈O.

The FIND-DIVERSE problem can be solved by constructing an answer set program Π7(P,k,d)

in the following way:

1. For each i ∈ [1..k], include Pi
gen obtained from Pgen by replacing each l j, j ∈ [1..n],

with li, j.

2. For every different i, j ∈ [1..k], add rule d{di, j,1, . . . ,di, j,n}.
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3. For every i, j ∈ [1..k], i < j, and every h ∈ [1..n], add rules

← di, j,h, li,h, l j,h

← di, j,h,not li,h,not l j,h

← not di, j,h, li,h,not l j,h

← not di, j,h,not li,h, l j,h.

The program Π7(P,k,d) includes k copies of Pgen to generate k outcomes for Pgen and the

rules representing the distance between every two of them is at least d. Therefore the

outcome for Π7(P,k,d) is a combination of k diverse outcomes for P.

Given an ASO program P, and a nonnegative integer d, the algorithm for the alternative

method is:

1. Let P′ be an ASO program where P′gen = Π7(P,k,d) and P′pref = Ppref .

2. Let O =∅.

3. Loop

a) Compute an optimal outcome M for P′ such that M is different from every

O ∈ O . If no solution, return unsatisfiable.

b) Check whether all k outcomes in M are optimal for P. If yes, return M as the

solution for the k-DIVERSE-OPT-OUTCOMES problem. Otherwise, add M into

O .

The algorithm computes optimal outcomes for P′ iteratively, and checks each of them

whether it is a set of optimal outcomes for P.

4.2.2 The Disjunctive Logic Program Encoding

To solve reasoning tasks for ASO programs, the iterative method makes several calls to

an ASP solver. Therefore, it is essentially procedural. Moreover, in some cases, it suffers
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from large memory demands. Our second method compiles the entire computation into a

disjunctive logic program so that a single call to an ASP solver can solve it. The complexity

results guarantee that casting the problems as as disjunctive logic programs is possible.

To this end, we first describe the basic problem of computing an optimal outcome of

an ASO program in terms of a quantified boolean formula (QBF) and then apply a version

of the Eiter-Gottlob translation [44] to produce the program. We provide the details for

the problem of computing a single optimal outcome. Other optimization problems can

be handled similarly, as they essentially differ only in additional constraints one needs to

impose on the generator.

Let P be an ASO program with a generator given as a propositional formula (the case

of an answer set program is similar). We denote by Z the set of atoms in P and assume that

Z = {z1, . . . ,zn}. We introduce two new sets of atoms X = {x1, . . . ,xn} and Y = {y1, . . . ,yn}.

We assume that the sets Z,X and Y are pairwise disjoint. Intuitively, for each i = 1, . . . ,n, xi

and yi are “copies” of zi. We write PX
gen and PY

gen for the copies of the generator Pgen obtained

by replacing its atoms with their copies in X and Y , respectively. In this way, there are

obvious one-to-one correspondence between interpretations over Z that are models of Pgen,

interpretations over X that are models of PX
gen, and interpretations over Y that are models of

PY
gen.

We will now build a logical representation of the preference relation determined by the

selector Ppref . As before, for a formula A occurring in a preference in Ppref , we write AX

and AY for its copies over X and Y , respectively. Let I and J be interpretations over Z and

let p ∈ Ppref , say

p = C1 > · · ·>Ck← B.

We will define a formula ψp(X ,Y ) over the set X ∪Y that will capture the condition that I

is strictly better than J on p. We recall that the interpretation I is strictly better than J on p

if and only if one of the following two conditions holds:

1. Both I and J satisfy the condition R = B∧ (C1∨ ·· · ∨Ck), I satisfies C j for some j,

57



1≤ j ≤ k−1, and J does not satisfy any C j′ , where 1≤ j′ ≤ j;

2. I does not satisfy R, J satisfies R and J does not satisfy C1.

We define auxiliary formulas up(X ,Y ) and vp(X ,Y ) (over X ∪Y ) as follows:

up(X ,Y ) =RX ∧RY∧

((CX
1 ∧¬CY

1 )∨ (CX
2 ∧¬CY

1 ∧¬CY
2 )∨·· ·∨

(CX
k−1∧¬CY

1 ∧·· ·∧¬CY
k−1))

and

vp(X ,Y ) = ¬RX ∧RY ∧¬CY
1 .

Intuitively, these formulas capture the conditions (1) and (2) above, respectively. We now

define ψp(X ,Y ) = up(X ,Y )∨ vp(X ,Y ). Formally, we have the following property.

Proposition 1. Let I and J be interpretations over Z. Then, I is strictly better than J on a

preference p =C1 > · · · >Ck← B if and only if the interpretation IX ∪ JY (over X ∪Y ) is

a model of ψp(X ,Y ).

Proof. Let us notice that for every formulas A over Z, and every interpretation I over Z,

I |= A if and only if IX |= AX if and only if IY |= AY . Thus, if I is strictly better than J on

p then the condition (1) or the condition (2) holds. Say, the condition (1) holds. It follows

that IX |= RX , JY |= RY and, for some i, 1≤ i≤ k−1, IX |=CX
i and JY |= ¬CY

1 ∧·· ·∧¬CY
i .

Since X and Y are disjoint, IX ∪ JY |= up(X ,Y ). The arguments for the case when the

condition (2) holds and for the converse statement are similar.

Let P be a set of preferences, we also define

ϕP(X ,Y ) =
∨
{ψp(X ,Y ) : p ∈ P}

and

FP(X ,Y ) = ϕP(X ,Y )∧¬ϕP(Y,X).
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Directly from the definition of the preference relation determined by an unranked prefer-

ence profile and from Proposition 1 we have the following property.

Proposition 2. Let I and J be interpretations over Z. Then, I is strictly better than J with

respect to an unranked preference profile P if and only if the interpretation IX ∪ JY (over

X ∪Y ) is a model of FP(X ,Y ).

Proof. Based on the Proposition 1, I is strictly better than J on a preference p if and only if

the interpretation IX ∪JY is a model of ψp(X ,Y ). Similarly, we can see there is some p ∈ P

such that I �p J if and only if IX ∪ JY is a model of ϕP(X ,Y ). According to the Pareto

principle, I �P J if and only if I �p J for every p ∈ P and I �p′ J for some p′ ∈ P. The

condition I �p J for every p ∈ P is equivalent to J 6�p I for every p ∈ P which holds if and

only if IX ∪ JY is a model of ¬ϕP(Y,X). Therefore I �P J if and only if IX ∪ JY is a model

of FP(X ,Y ).

Let P = (Pgen,Ppref ) be an unranked ASO program. We now define

Φ(P) = ∃X∀Y (PX
gen∧ (¬PY

gen∨¬FPpref (Y,X))).

From the results obtained above we have the following property.

Theorem 11. Let P be an unranked ASO program. An interpretation I (over Z, the set

of atoms of P) is an optimal outcome for P if and only if IX is an interpretation over X

witnessing the truth of the QBF Φ(P).

Proof. An interpretation I is an optimal outcome for P if and only if no outcome J for P

dominates I. Let IX be an interpretation over X witnessing the truth of the QBF Φ(P).

Then, IX ∪ JY is a model of PX
gen ∧ (¬PY

gen ∨¬FPpref (Y,X)) for any interpretation JY over

Y . Therefore IX ∪ JY |= PX
gen and I is an outcome for P. Also since IX ∪ JY |= ¬PY

gen ∨

¬FPpref (Y,X), the interpretation JY is not an outcome for P or J is not strictly better than I.

Therefore I is an optimal outcome for P. If I is an optimal outcome for P, it is clear that

IX |= PX
gen and IX ∪JY |= ¬FPpref (Y,X) for any interpretation JY over Y and JY |= PY

gen. Thus
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I is an optimal outcome for P if IX ∪ JY is a model of PX
gen∧ (¬PY

gen∨¬FPpref (Y,X)) for any

interpretation JY over Y , which means IX is an interpretation witnessing the truth of the

QBF Φ(P).

For a ranked preference profile, let P = {P1, . . . ,Pl} be a sequence of pairwise disjoint

preference profiles Pi. The rank of a preference rule p ∈ P is the unique index i for which

p ∈ Pi. Let I and J be two interpretations over Z (the set of atoms of P), I �P J if and only

if there is a preference rule p ∈ P such that

1. I �p J

2. I �p′ J for every p′ ∈ P and rank(p′) = rank(p)

3. I ≈p′ J for every p′ ∈ P and rank(p′)< rank(p).

Let us denote I is strictly better than J on the preferences of rank i, Pi, by I �Pi J. Similarly,

we denote I is equivalent to J on the preferences of rank i, by I ≈Pi J. Therefore, for a

ranked profile P, I �P J if and only if there is a rank i such that I �Pi J and I ≈P j J for

every j ∈ [1..i−1].

We recall the interpretation I is equivalent to J on a preference p if and only if one of

the following conditions holds:

1. Both I and J satisfy the condition R = B∧ (C1∨·· ·∨Ck), for some j, 1≤ j ≤ k−1,

both I and J satisfy C j, and neither I or J satisfies any C j′ , where 1≤ j′ < j;

2. Neither I or J satisfies R;

3. I does not satisfy R, J satisfies R and C1;

4. J does not satisfy R, I satisfies R and C1.

Correspondingly, we define formulas wp(X ,Y ), xp(X ,Y ), yp(X ,Y ) and zp(X ,Y ) as follows:

60



wp(X ,Y ) = RX ∧RY ∧

((CX
1 ∧CY

1 )∨ (CX
2 ∧CY

2 ∧¬CX
1 ∧¬CY

1 )∨·· ·∨

(CX
k ∧CY

k ∧¬CX
1 ∧¬CY

1 ∧·· ·∧¬CX
k−1∧¬CY

k−1)),

xp(X ,Y ) = ¬RX ∧¬RY ,

yp(X ,Y ) = ¬RX ∧RY ∧CY
1 ,

and

zp(X ,Y ) = ¬RY ∧RX ∧CX
1 .

Finally we define ωp(X ,Y ) = wp(X ,Y )∨ xp(X ,Y )∨ yp(X ,Y )∨ zp(X ,Y ).

Proposition 3. Let I and J be interpretations over Z. Then, I is equivalent to J on a

preference p =C1 > · · · >Ck← B if and only if the interpretation IX ∪ JY (over X ∪Y ) is

a model of ωp(X ,Y ).

Proof. Let us notice that for every formulas A over Z, and every interpretation I over Z,

I |= A if and only if IX |= AX if and only if IY |= AY . Thus, if I is equivalent to J on p then

one of the four conditions listed above holds. Say, the condition (1) holds. It follows that

IX |= RX , JY |= RY and, for some i, 1≤ i≤ k−1, IX |=CX
i , JY |=CY

i , IX |=¬CX
1 ∧·· ·∧¬CX

i

and JY |=¬CY
1 ∧·· ·∧¬CY

i . Since X and Y are disjoint, IX ∪JY |= wp(X ,Y ). The arguments

for the case when one of the rest three conditions holds and for the converse statement are

similar. Thus I is equivalent to J on p if and only if IX ∪ JY is a model of ωp(X ,Y ).

Let P = {P1, . . . ,Pl} be a ranked preference profile. Then we define

F ′P(X ,Y ) =
∨
{FPi(X ,Y )∧

∧
{ωp(X ,Y ) : p ∈ P1∪·· ·∪Pi−1} : i ∈ [1..l]}.
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Proposition 4. Let I and J be interpretations over Z. Then, I is strictly better than J with

respect to a ranked profile P = {P1, . . . ,Pl} if and only if the interpretation IX ∪ JY (over

X ∪Y ) is a model of F ′P(X ,Y ).

Proof. Based on the Pareto principle, I is strictly better than J with respect to P if and

only if there is a rank i such that I �Pi J and I ≈P j J for every j ∈ [1..i−1]. According to

the Proposition 2, I �Pi J if and only if the interpretation IX ∪ JY is a model of FPi(X ,Y ).

According to the Proposition 3, I ≈p J if and only if the interpretation IX ∪JY is a model of

ωp(X ,Y ). Based on the Pareto principle, I ≈P j J for every j ∈ [1..i−1] if I ≈p J for every

p ∈ P1∪·· ·∪Pi−1. Thus I is strictly better than J with respect to P if and only if IX ∪JY is

a model of F ′P(X ,Y ).

Let P = (Pgen,Ppref ) be a ranked ASO program. Similarly, we define

Φ
′(P) = ∃X∀Y (PX

gen∧ (¬PY
gen∨¬F ′Ppref

(Y,X))).

Theorem 12. Let P be a ranked ASO program. An interpretation I (over Z, the set of atoms

of P) is an optimal outcome for P if and only if IX is an interpretation over X witnessing

the truth of the QBF Φ′(P).

Proof. The proof follows that of Theorem 11.

Since an unranked preference profile is a special case of a ranked preference profile,

we will not explicitly consider unranked profiles for the problems below.

For the DIFF-OPT-OUTCOME problem to compute an optimal outcome of an ASO

program which is different from a given interpretation S, we construct an ASP program

PX
diff (P,S) generating the answer sets of PX

gen which are different from S by adding the fol-

lowing rule to PX
gen:

←{xi : zi ∈ S},{not xi : zi 6∈ S}.

Then we define

Φdiff (P,S) = ∃X∀Y (PX
diff (P,S)∧ (¬PY

gen∨¬F ′Ppref
(Y,X))).
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Theorem 13. Let P be an ASO program and S be a candidate outcome (an interpretation).

An interpretation I (over Z, the set of atoms of P) is an optimal outcome for P such that

I 6= S if and only if IX is an interpretation over X witnessing the truth of the QBF Φdiff (P).

Proof. The proof follows that of Theorem 11.

For the SIM-OPT-OUTCOME and DISSIM-OPT-OUTCOME problems, given an ASO pro-

gram P, an interpretation S and a nonnegative integer d, the target is to find an optimal

outcome S′ for P such that HD(S,S′)≤ d or HD(S,S′)≥ d respectively. The FIND-SIM and

FIND-DISSIM problems defined in Section 4.2.1 compute a similar or dissimilar outcome

for a given ASO program and a given interpretation by an ASP program Π4(P,S,d). The

answer sets of Π4(P,S,d) are answer sets for Pgen which are similar to or dissimilar from

the given interpretation S. Let ΠX
4 (P,S,d) be the copy of Π4(P,S,d) over X , we define

Φsim/dis(P,S,d) = ∃X∀Y (ΠX
4 (P,S,d)∧ (¬PY

gen∨¬F ′Ppref
(Y,X))).

Theorem 14. Let P be an ASO program, S be an interpretation, and d be a non-negative

integer. An interpretation I (over Z, the set of atoms of P) is an optimal outcome for P such

that ∆(S, I)≤ d (or ∆(S, I)≥ d) if and only if IX is an interpretation over X witnessing the

truth of the QBF Φsim/dis(P).

Proof. The proof follows that of Theorem 11.

For the k-DIVERSE-OPT-OUTCOMES problem, given an ASO program P and a non-

negative integer d, we want to find a set of optimal outcomes for P with size k such

that the distance between each two outcomes is at least d. In Section 4.2.1, we define

the FIND-DIVERSE problem to compute a diverse set of outcomes by an ASP program

Π7(P,k,d). The program Π7(P,k,d) contains k copies of Pgen to generate k outcomes for

P. Without loss of generality, let us assume the atoms in Π7(P,k,d) are X1∪·· ·∪Xk where

X i = {xi
1, . . . ,x

k
n}. Then we can define

Φdiv(P,k,d) = ∃X1 . . .Xk∀Y (Π7(P,k,d)∧ (¬PY
gen∨

∧
{¬F ′Ppref

(Y,X i) : i ∈ [1..k]})).
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Theorem 15. Let P be an ASO program, S be an interpretation, d be a non-negative integer,

and k be a positive integer. A set O = {I1, . . . , Ik} is a set of optimal outcomes for P such that

∆(Ii, I j)≥ d for any two distinct i, j ∈ [1..k], if and only if IX1∪·· ·∪ IXk
is an interpretation

over X1∪·· ·∪Xk witnessing the truth of the QBF Φdiv(P).

Proof. The proof follows that of Theorem 11.

4.3 Experiments and Analysis

All the methods we developed were implemented in C/C++. All experiments were con-

ducted on an Intel processor clocked at 2.30GHz with 4GB memory. We experimented with

the two computational methods described in Section 4.2 with the ASP grounder gringo-

3.0.5 and solver claspD-2.0-R6814. In the discussion below we simply write Iterative and

DLP, respectively to denote the two methods described in Section 4.2.

In experiments we used ASO programs in which generators are represented by 3-CNF

formulas. To construct them, we randomly generated 3-CNF formulas with n atoms and 4n

clauses. The numbers of clauses are below the threshold ratio of 4.25n to ensure that with

probability close to 1 generators have models (the space of feasible solutions is not empty).

This is important as we are interested in studying optimization problems of selecting opti-

mal solutions and not the satisfiability problem.

We generated preference rules for each selector through the following three mecha-

nisms:

1. randomly generating 3n preference rules without rank (n being as before the number

of atoms)

2. randomly generating 3n rules with two ranks, half of the rules having rank 1 and half

of the rules having rank 2

3. extracting preference rules from two lexicographic preference trees (LP-trees, for

short) [10].
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In the first two cases, we generate one preference rule by randomly choosing a variable, say

x, and forming the head to be of the form x > ¬x or ¬x > x, choosing between them with

equal probability. Each rule has no condition or has a condition of at most two literals.

With the probability 0.5 it has no condition, having a one literal condition or two literal

condition are equally likely. Literals for the conditions are generated uniformly at random.

LP trees are concise representations of strict total orders [10]. A complete LP-tree is a

complete binary tree where each node corresponds to a variable and is assigned a preference

table representing the preference over this variable conditioned by the values of ancestor

nodes. Every variable appears exactly once on every path from the root to a leaf. Each leaf

corresponds to an outcome. Preferences encoded by LP trees can be represented as ranked

preference rules, with as many ranks as there are atoms in the language. When the two

subtrees for some node are identical, they can be collapsed into one subtree [78]. In the

third case, we generate collapsed LP-trees and transform them to preference profiles. We

subject the LP-trees to some restrictions to make their sizes linear in the number of atoms:

each tree may have at most one node where it splits into two branches, and each node’s

preferences depend on values in at most one ancestor node.

Let us consider the same example we used before to illustrate the LP-trees which gen-

erate the preference rules. An agent wants to have lunch in a restaurant and we want to use

an LP-tree to represent her preferences on the menu. Given three binary variables: M (main

dish), with two values m (beef ) and ¬m (fish); S (side dish) with two values s (soup) and ¬s

(salad); and D (drink) with two values d (beer) and ¬d (white wine). Figure 4.1 shows two

types of LP-trees allowed to be used in the experiment. The LP-tree in Figure 4.1a has no

split, and all atoms are ordered strictly. In this LP-tree, the most important variable for the

agent is main dish with the preference that beef is preferred to fish. No matter what value

the top variable has, the next important variable is side dish and soup is preferred to salad.

The last variable considered by the agent is drink, with beer is better than white wine if the

main dish is beef, and white wine is better than beer otherwise. In Figure 4.1b, the LP-tree
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(a) No split (b) Split to two branches

Figure 4.1: LP-trees

is split to two branches from the top node. The most important variable for the agent is

still main dish with the preference that beef is preferred to fish. If she has beef, the second

most important variable is drink with the preference to beer over white wine, and the least

important variable is side dish where she prefers salad to soup if she had beer, and soup to

salad otherwise. If she has fish, side dish is more important than drink and the preference

for side dish is that soup is preferred to salad, and finally she prefers white wine to beer no

matter what she has for side dish.

The preferences represented by an LP-tree can be equivalently represented by a set

of ranked preference rules. Assuming that node t in level l is labeled with variable Xi

with preference xi > ¬xi, the equivalent preference rule should be xi > ¬xi with rank l

and conditioned by the values assigned in the path from the root to t. In our example, the

equivalent preference profile for the LP-tree in Figure 4.1a is:

m > ¬m 1←

s > ¬s 2←

d > ¬d 3← m

¬d > d 3←¬m
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and the profile for the LP-tree in Figure 4.1b is:

m > ¬m 1←

d > ¬d 2← m

s > ¬s 2←¬m

¬s > s 3← m,d

s > ¬s 3← m,¬d

¬d > d 3←¬m

In the third case, the preference profile for each instance consists of the ranked pref-

erence rules from two randomly generated LP trees (one LP tree has only one optimal

outcome).

We consider five computational problems: OPT-OUTCOME, DIFF-OPT-OUTCOME, SIM-

OPT-OUTCOME, DISSIM-OPT-OUTCOME and k-DIVERSE-OPT-OUTCOMES, and experi-

ment with the iterative and DLP-based methods we developed for them. For the last three

problems, we have several versions of the iterative method. For the SIM-OPT-OUTCOME

and DISSIM-OPT-OUTCOME problems, we have three approaches of the Iterative method

introduced in Section 4.2.1: a straightforward method, an alternative method and a vari-

ant of the alternative method. We denote the straightforward method by OPT-DIST. It

first computes optimal outcomes and then checks the distance condition. The alternative

method and its variant work in the opposite way by first computing the outcomes satisfy-

ing the distance condition and then checking whether they are optimal. To be specific, they

construct a new ASO program generating the similar/dissimilar outcomes of the original

problem. The alternative method computes outcomes of the new ASO program one by one

and checks whether they are optimal for the original problem. It is denoted by DIST(AS)-

OPT. Its variant is denoted by DIST(OPT)-OPT. It computes optimal outcomes of the new

ASO program and checks their optimality for the original problem. For the k-DIVERSE-

OPT-OUTCOMES problem, we proposed two techniques for the iterative method in Section
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4.2.1. The first one uses a straightforward backtracking algorithm which computes eligible

outcomes and adds them to a set of diverse optimal outcomes which have been found. The

process to compute an eligible outcome is similar to computing a dissimilar optimal out-

come and is implemented similarly as in the three approaches we proposed for the DISSIM-

OPT-OUTCOME problem. Therefore the straightforward backtracking technique also has

three versions denoted, as before, by OPT-DIST, DIST(AS)-OPT and DIST(OPT)-OPT. The

second technique constructs an ASP program to generate a diverse set of outcomes and

checks whether each outcome in the set is optimal. We denote this technique by DIV-OPT.

For the problems to find a similar/dissimilar optimal outcome and to find a diverse set

of optimal outcomes, we use the Hamming distance to measure the distance between two

outcomes. We tested our computational methods on datasets constructed with different

values of d ranging from 0.1n to 0.7n, where n is the number of atoms. For instance, when

d is 0.1n, the SIM-OPT-OUTCOME problem asks for an optimal outcome with at most 10%

of atoms having different values than they have in the given candidate.

For each dataset, we generated 40 instances for each parameter set to range from n= 10

to n = 120 with the step of 10. The timeout of solving a problem for each instance is set

as 500 seconds. We only show the results for n = 60 and n = 120. Since the dataset 1 and

dataset 2 are similar, we group them together. Each graph below shows the running times

of all methods to solve one problem for each instances on datasets 1 and 2 or dataset 3 with

n = 60 or n = 120. Given the number of variables n, there are 40 instances in each dataset.

Thus, for each problem, we have two datasets. One consists of 80 instances (datasets 1 and

2 combined) and the other consists of 40 instances of the dataset 3. For each problem, we

find the running times of all applicable methods, sort them and present in a single “cactus”

graph.
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Figure 4.2: Results for the OPT-OUTCOME problem on datasets 1 and 2

4.3.1 Computing One Optimal Solution

Figure 4.2 shows the results for the Iterative and DLP methods solving the OPT-OUTCOME

problem on datasets 1 and 2. The computation time for the both methods increases signif-

icantly (one order of magnitude) when n changes from 60 to 120. This is to be expected.

The problem is NP-hard and our methods take exponential time in the worst case. However,

on the datasets we used, both methods are effective. Moreover, we note that the iterative

method scales up much better than the DLP method.

Figure 4.3 shows the results for the dataset 3. The DLP method times out on all in-

stances even when n is small and we do not show any results for it. It is caused primarily

by very large sized of programs needed to encode multi-ranked preferences.

The iterative method is still effective, but requires more time on instances in the dataset

3 than on instances in datasets 1 and 2, again, due to the presence of many ranks.

4.3.2 Computing a Different Optimal Solution

The results for the DIFF-OPT-OUTCOME problem are shown in Figure 4.4 and 4.5. The

performance of both the Iterative and DLP methods is similar to what we observed on the

OPT-OUTCOME problem. The iterative method still has good performance on all datasets.

The DLP method works well on datasets 1 and 2, but is not applicable on dataset 3.
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Figure 4.3: Results for the OPT-OUTCOME problem on dataset 3
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Figure 4.4: Results for the DIFF-OPT-OUTCOME problem on datasets 1 and 2
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Figure 4.5: Results for the DIFF-OPT-OUTCOME problem on dataset 3
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Figure 4.6: Results for the SIM-OPT-OUTCOME problem on datasets 1 and 2

4.3.3 Computing a Similar Optimal Solution

Next, we show the results of the Iterative and DLP methods on the SIM-OPT-OUTCOME

problem when d = 0.2n. Given a candidate solution, the problem is to find an optimal

solution with at most 20% of atoms having different values than they have in the given

candidate solution. The results presented in Figure 4.6 for datasets 1 and 2 show that all

approaches are effective and the DLP method has the best performance. The DIST(OPT)-

OPT and DIST(AS)-OPT approaches work better than the OPT-DIST approach, because the

former two first filter out the outcomes violating the distance condition using an ASP pro-

gram and get a much smaller search space when the distance condition is relatively tight.

Not surprisingly, the performance of all methods on instances with n = 120 is worse

than their performance with n = 60. We can observe this phenomenon on every problem

and dataset and will not demonstrate it specifically. All methods except the DLP method

time out on some instances with n = 120.

Figure 4.7 shows the results on dataset 3 and the DLP method is not shown still because

of its ineffectiveness on instances with preferences having many different ranks. Interest-

ingly, the OPT-DIST approach, which has the worst performance on datasets 1 and 2, here

works best. The DIST(OPT)-OPT and DIST(AS)-OPT approaches perform much worse and

become impractical for n = 120. For the dataset 3, the preferences for each instances are

generated from two LP-trees and have n ranks. Therefore they have very few number of
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Figure 4.7: Results for the SIM-OPT-OUTCOME problem on dataset 3

optimal outcomes. In this situation, the OPT-DIST approach has a great advantage because

it first computes optimal outcomes and then checks the distance condition. Thus it can get

the result quickly after computing the optimal outcomes. The other two approaches need

to construct an ASO program generating similar/dissimilar outcomes, and check the opti-

mality for each outcome of the new program until an optimal is found. Since there are only

a few optimal outcomes, it is difficult to find one from a large number of candidates.

4.3.4 Computing a Dissimilar Optimal Solution

For the DIS-OPT-OUTCOME problem, we show the results for the same methods as for the

SIM-OPT-OUTCOME problem. This time we set d = 0.6n. Figure 4.8 shows the results for

instances from on datasets 1 and 2 (together), and Figure 4.9 shows the results on dataset

3. On datasets 1 and 2, all methods except the OPT-DIST one perform well for both values

of n. However, on dataset 3, the OPT-DIST approach performs better than the other two

iterative ones, similarly to what we observed for the SIM-OPT-OUTCOME problem.

4.3.5 Computing a Set of Diverse Optimal Solutions

For the k-DIVERSE-OPT-OUTCOMES problem, we tested all four methods (three versions

of the iterative approach and the DLP-based method) setting d = 0.6n, and k = 2 and k = 3.

That is, we wanted to compute two (three, respectively) optimal outcomes at distance 0.6n
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Figure 4.8: Results for the DIS-OPT-OUTCOME problem on datasets 1 and 2
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Figure 4.9: Results for the DIS-OPT-OUTCOME problem on dataset 3

from each other. Results for k = 2 and k = 3 are similar. Therefore, we discuss only the

results for k = 3.

On datasets 1 and 2 (Figure 4.10), similar to the SIM-OPT-OUTCOME and DIS-OPT-

OUTCOME problems, the performance of the OPT-DIST algorithm is the worst, and the

DIST(OPT)-OPT and DIST(AS)-OPT algorithms are still best. The DLP method is effective

but, as the results show, performs worse comparing to the DIS-OPT-OUTCOME problem.

On dataset 3, as we analyzed before, the OPT-DIST approach works best because of the

small number of optimal outcomes. Other approaches also work reasonable well with a

small number of instances timing out when n = 120.
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Figure 4.10: Results for the k-DIVERSE-OPT-OUTCOMES problem on datasets 1 and 2
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Figure 4.11: Results for the k-DIVERSE-OPT-OUTCOMES problem on dataset 3

4.4 Discussion and Conclusions

We studied four kinds of computational problems related to reasoning with preferences in

the ASO formalism: to find an optimal outcome, to find an optimal outcome different from

a given interpretation, to find a similar/dissimilar optimal outcome, and to find a diverse set

of optimal outcomes. We extended results known previously by showing that the problems

of deciding the existence of a similar (dissimilar, respectively) optimal outcome are Σ
p
2-

complete. In this way, all problems considered are located within the second level of the

polynomial hierarchy. Thus, they can be modeled as disjunctive logic programs under

the answer-set semantics and disjunctive ASP solvers can be used to solve them. This

observation formed the basis of one of the approaches we developed and experimented with

in the paper, employing the solvers claspD2. We also proposed a mix of imperative and
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declarative approaches (the iterative method), which consists of an imperative algorithm

that uses ASP solvers for solving some basic optimization tasks that are at the first level of

the polynomial hierarchy.

According to the experimental results, the iterative method is effective on all datasets

for all problems. The complementary methods we proposed show better performance on

different data types. For datasets with no rank or 2 ranks, the method compiling the entire

reasoning task into a disjunctive logic program has a good performance. That points to

the potential of declarative approaches. For instances with very many ranks, the method

based on modeling problems as disjunctive logic programs lags much behind the iterative

one and becomes impractical, the reason being much larger sizes of programs needed do

model comparisons of interpretations when multiple ranks are present.

To summarize, on the one hand, our work demonstrates the effectiveness of ASP tools

in addressing preference optimization problems. On the other hand, it brings up classes of

challenging benchmarks based on problems that are Σ
p
2-complete (ranked ASO programs)

that can stimulate further research on solver enhancements.

In the future work, we will study possible improvements to our second method based

on disjunctive logic program encodings and other methods for the optimization problems.

Copyright c© Ying Zhu, 2016.
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Chapter 5 Manipulation and Bribery in Preference Reasoning

The problem we study in this chapter, misrepresenting preferences by agents to influence

preference aggregation to their advantage, has its roots in strategic voting studied in social

choice [63, 86, 2]. Strategic voting comes in two flavors. Manipulation consists of a voter

misrepresenting her vote to secure a better outcome for herself [63, 86]. Bribery consists

of coercing other voters to vote against their preferences [48].

The way we view preference reasoning corresponds to the setting of irresolute rules in

social choice research. We model agents’ preferences as total preorders on the space D of

outcomes. We assign ranks to preferences as, in real settings, agents will have a hierarchical

structure and some will be more important than others. We select a ranked version of

Pareto efficiency as the principle of preference aggregation. We define the manipulation

and bribery in this setting, and establish conditions under which manipulation and bribery

are possible.

In each case, the key question is whether misrepresenting preferences can improve for a

particular agent the quality of the collection of all preferred outcomes resulting from prefer-

ence aggregation. To be able to decide this question, we have to settle on a way to compare

subsets of D based on that agent’s preference preorder on elements of D, an issue that un-

derlies all research on strategy proofness of irresolute rules. In this paper, we focus on four

natural extensions of a total preorder on D to a total preorder on the power set P(D). For

each of these extensions we characterize a possibility of manipulation or bribery under the

Pareto rule (or ranked Pareto rule, for ranked theories). These results apply directly to the

setting of social choice as they do not depend on any preference representation language.

Since in many cases strategy proofness cannot be assured, following the well established

research in computational social choice [5, 50, 48, 57], we turn attention to study the com-

plexity of deciding whether manipulation or bribery are possible. Indeed, the intractability
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of computing deviations from true preferences to improve the outcome for an agent may

serve as a barrier against strategic behaviors. We look at these questions in the setting of

combinatorial domains, the setting not covered by the earlier results. We use our charac-

terizations results as the main tool in this part of our work.

5.1 Problem Statements

Let us consider a group A of N agents each with her own preference on D and with its rank

in the set. We denote these agents by integers from {1, . . . ,N}, their ranks by r1, . . . ,rN

(lower rank values imply higher importance), and their preferences by �1, . . . ,�N . In this

chapter, sometimes, we write �i,ri for the preference of an agent i, indicating at the same

time, the rank of the agent (the rank of her preference). We write Di
1, . . . ,D

i
mi

for the

equivalence classes of the relation ≈i enumerated, as above, from the most to the least

preferred with respect to �i. We call the sequence (�1,r1, . . . ,�N,rN ) of preferences of

agents in A a (preference) profile of A . For instance,

�1,1: f � a,c,e � b,d

�2,1: a,c � d,e, f � b

�3,2: a � b,c � d � e, f .

is a profile of agents 1,2 and 3. The preferences of agents 1 and 2 are equally ranked and

more important than the preferences of agent 3.

Let P be the profile given above. Considering the preferences of agents 1 and 2, a and c

are indifferent, no outcome can strictly dominate a, c or f , and outcomes b,d,e are strictly

dominated by a and c. According to the preference of agent 3, a is strictly better than c.

Thus, Opt(P) = {a, f}. It is interesting to note that for each of the first two agents, the set

Opt(P) contains at least one of her “top-rated” outcomes. This is an instance of a general

fairness property of the Pareto principle.
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Theorem 16. For every profile P of a set A of agents, and for every top-ranked agent i ∈

A , the set Opt(P) of optimal outcomes for P contains at least one outcome most preferred

by i.

Proof. Let us pick any outcome w ∈ D that is optimal for i (that is, w ∈ Di
1). Clearly, there

is v ∈ Opt(P) such that v�P w. In particular, v�i w. Thus, v ∈ Di
1 and v ∈ Opt(P).

Coming back to our example, it is natural to ask how satisfied agent 3 is with the result

of preference aggregation and what means might she have to influence the result. If she

submits a different (“dishonest”) preference, say

�′3,2: a,c � b � d � e, f

then, writing P′ for the profile (� 1,1,�2,1,�′3,2), Opt(P′) = {a,c, f}. It may be that agent

3 would prefer {a,c, f} to {a, f}, for instance, because the new set contains an additional

highly preferred outcome for her. Thus, agent 3 may have an incentive to misrepresent her

preference to the group. We will call such behavior manipulation. Similarly, agent 3 might

keep her preference unchanged but convince agent 1 to replace his preference with

�′1,1: b � f � a,c,e � d.

Denoting the resulting profile (�′1,1,�2,1,�3,2) by P′′, Opt(P′′) = {a,b, f} and, because of

the same reason as above, this collection of outcomes may also be preferred to {a, f} by

agent 3. Thus, agent 3 may have an incentive to try to coerce other agents to change their

preference. We will call such behavior simple bribery.

We now formally define manipulation and simple bribery. For a profile P = (�1,r1

, . . . ,�N,rN ) and a preference �′i,ri
, we write P�i,ri/�

′
i,ri

for the profile obtained from P by

replacing the preference�i,ri of the agent i with the preference�′i,ri
. Let now A be a group

of N agents with a profile P = (�1,r1 , . . . ,�N,rN ), and let �′i,ri
be a preference of agent i on

subsets of D.
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Manipulation: An agent i can manipulate preference aggregation if there is a preference

�′i,ri
such that Opt(P�i,ri/�

′
i,ri
)�′i Opt(P).

Simple Bribery: An agent t is a target for bribery by an agent i, if there is a preference

�′t,rt
such that Opt(P�t,rt /�′t,rt

)�′i Opt(P).1

Clearly, when deciding whether to manipulate (or bribe), agents must be able to com-

pare sets of outcomes and not just single outcomes. This is why we assumed that the agent

i has a preorder �′i on P(D). However, even when D itself is not a combinatorial domain,

P(D) is. Thus, explicit representations of that preorder may be infeasible.

The question then is whether the preorder �′i of P(D), which parameterizes the defi-

nitions of manipulation and bribery, can be expressed in terms of the preorder �i on D, as

the latter clearly imposes some strong constraints on the former. This problem has received

attention from the social choice and AI communities [55, 61, 70, 3, 28] and it turns out to

be far from trivial. The difficulty comes from the fact that there are several ways to “lift”

a preorder from D to the power set of D, none of them fully satisfactory (cf. impossibility

theorems [3]). In this paper, we sidestep this issue and simply select and study several most

direct and natural “liftings” of preorders on sets to preorders on power sets. We introduce

them below. We write X and Y for subsets of D and � for a total preorder on D that we

seek to extend to a total preorder on P(D).

Compare best: X �cb Y if there is x ∈ X such that for every y ∈ Y , x� y.

Compare worst: X �cw Y if there is y ∈ Y such that for every x ∈ X , x� y.

For the next two definitions, we assume that � partitions D into strata D1, . . . ,Dm, as

discussed above.

Lexmin: X �lmin Y if for every i, 1≤ i≤m, |X ∩Di|= |Y ∩Di|, or if for some i, 1≤ i≤m,

|X ∩Di|> |Y ∩Di| and, for every j ≤ i−1, |X ∩D j|= |Y ∩D j|.
1Bribery is traditionally understood as an effort by an external agent to bribe a group of voters to obtain

a more satisfying result. To stress the difference between this notion and the notion we consider here, we use
the term simple bribery.
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Average-rank:2 X �ar Y if ar�(X)≤ ar�(Y ), where for a set Z ⊆ D, ar�(Z) denotes the

average rank of an element in Z and is defined by ar�(Z) = ∑
m
i=1 i |Z∩Di|

|Z| .

Finally, we describe the classes of profiles that we focus on here. Namely, as the setting

of ranked preferences is rich, we restrict attention to the two “extreme” cases. In the first

one, all agents are equally ranked. In such case, the Pareto principle makes many outcomes

optimal as pairs of outcomes are often incomparable. Nevertheless, all practical aggrega-

tion techniques, can be understood as simply refining the set of Pareto-optimal outcomes.

Thus, improving the quality of the Pareto-optimal set is a desirable objective as it increases

a chance of a more favorable outcome once a refinement is applied. In the second setting,

we assume all agents have distinct ranks. In such case, the Pareto principle is natural and

quite effective, resulting in a total preorder refining the one of the most important agent by

breaking ties based on preferences of lower ranked agents.

5.2 Equally Ranked Preferences

In this section, we discuss the manipulation and simple bribery problems in the case where

all preferences are equally ranked, and study them with respect to each of the four exten-

sions of total preorders on D to P(D) defined above. An equally ranked preference profile

is a profile P = (�1,r1, . . . ,�N,rN ), where r1 = · · ·= rN . To simplify the notation, we write

it as P = (�1, . . . ,�N).

5.2.1 Manipulation

Given a set A of N agents and a profile P = (�1, . . . ,�N), the manipulation problem is to

determine whether an agent i can find a total preorder � such that Opt(P�i/�) �
′
i Opt(P)

where �′i is the total preorder agent i uses to compare subsets of D.

2This method is well defined only if both sets to compare are non-empty. This is not a strong restriction
because our aggregation method returns only non-empty sets of optimal outcomes.
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Theorem 17. Manipulation is impossible for compare best and compare worst on profiles

of equally ranked preferences.

Proof. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked preferences

P = (�1, . . . ,�N). We want to show that for every i ∈ A and every total preorder �,

Opt(P)�cb
i Opt(P�i/�) and Opt(P)�cw

i Opt(P�i/�).

For compare best, let v ∈ Opt(P) be an outcome that is also optimal for i (such a v

exists by Theorem 16). It follows that for every w ∈ D, v �i w. Thus, v �i w, for every

w ∈ Opt(P�i/�). By the definition of �cb
i , Opt(P)�cb

i Opt(P�i/�).

For compare worst, let us assume that there is a total preorder� such that Opt(P�i/�)�
cw
i

Opt(P). It follows from the definition of �cw
i that there is w′ ∈ Opt(P) such that for every

w∈Opt(P�i/�), w�i w′. Thus, w′ /∈Opt(P�i/�) and, consequently, there is v∈Opt(P�i/�)

such that v�P�i/�
w′. It follows that v� j w′, for every agent j 6= i. Since by an earlier ob-

servation, v�i w′, we obtain v�P w′, a contradiction with w′ ∈ Opt(P).

On the other hand, manipulation is possible for every agent using the lexmin comparison

rule precisely when not every outcome in D is optimal. The reason is that by changing her

preference an agent can cause a Pareto-nonoptimal outcome become Pareto-optimal, while

keeping the optimality status of every other outcome unchanged.

Theorem 18. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked prefer-

ences P=(�1, . . . ,�N) and let i∈A . There exists a total preorder� such that Opt(P�i/�)�
lmin
i

Opt(P) if and only if Opt(P) 6= D.

Proof. (⇐) Let us assume that �i is given by

�i: Di
1 �i . . .�i Di

mi
.

Let ` be the smallest k such that Di
k \Opt(P) 6= /0 and let a ∈ Di

` \Opt(P). We will now

construct a preference� for agent i so that Opt(P)∪{a}=Opt(P�i/�). For that preference,
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we have Opt(P�i/�) �
lmin
i Opt(P), which demonstrates that i can manipulate preference

aggregation in P.

To construct �, we first note that since a /∈ Opt(P), there is w ∈ Opt(P) such that

w �P a. Since w �i a and a ∈ Di
`, w ∈ Di

j, for some j ≤ `. Without loss of generality, we

may assume that this w is chosen so that to minimize j.

In the remainder of the proof, we write P−i for the profile obtained from P by removing

the preference of agent i. To simplify the notation, we also write P′ for P�i/�.

Case 1: w≈P−i a. Since w�P a, we have w�i a, that is, j < `. Let us define � as follows:

�: D′1 � . . .� D′mi
,

where D′j = Di
j ∪{a}, D′` = Di

` \ {a}, and D′k = Di
k, for the remaining k ∈ [1..mi]. Thus

a ≈P′ w. We also have that for every w′,w′′ ∈ D \ {a}, w′ �P′ w′′ if and only if w′ �P w′′

(the degrees of quality of outcomes other than a remain the same when we move from P to

P′). Finally, for every w′ ∈ D, a �P′ w′ if and only if w �P′ w′. These observations imply

that Opt(P′) = Opt(P)∪{a}.

Case 2: w�P−i a. Let us define � as follows:

�: D′1 � . . .� D′mi+1,

where D′k = Di
k, for k < j, D′j = {a}, D′`+1 = Di

` \ {a}, and D′k = Di
k−1, for every k ∈

{ j+1, . . . ,mi+1} such that k 6= `+1. Informally, � is obtained by pulling a from Di
`, and

inserting it as a singleton cluster directly before Di
j. Since a is the only outcome moved,

for every w′,w′′ ∈D\{a}, w′ �P′ w′′ if and only if w′ �P w′′ (and similarly, for the derived

relation �P′).

Let us observe that a ∈Opt(P′). Indeed, if for some w′ ∈D, w′ �P′ a, then w′ ∈Di
k, for

some k < j. It follows that w′ ∈ Opt(P) and w′ �i a. Consequently, w′ �P a, contrary to

our choice of w.

Let w′ ∈ Opt(P) and let us assume that w′′ �P′ w′ for some w′′ ∈ D. Since a /∈ Opt(P),

w′ 6= a. If w′′ 6= a, then w′′ �P w′ (indeed, a is the only outcome whose relation to other
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outcomes changes when we move from P to P′). This is a contradiction with w′ ∈ Opt(P).

Thus, w′′ = a. Consequently, w′′ �P′ w′ implies a�P−i w′ and a� w′. By the construction

of �, the latter property implies that w �i w′. Since w �P−i a �P−i w′, w �P w′, a contra-

diction. It follows that w′ ∈ Opt(P′) and, consequently, we have Opt(P)∪{a} ⊆ Opt(P′).

Conversely, let us consider w′ ∈ Opt(P′) such that w′ 6= a. Let us assume that for some

w′′ ∈ Opt(P), w′′ �P w′. If w′′ 6= a, we can get w′′ �P′ w′, a contradiction. If w′′ = a, we

can get a�k w′ for every k ∈A and k 6= i from a�P w′ and a� w′. Thus a�P′ w′ which

contradicts the property that w′ ∈ Opt(P′). It follows that w′ ∈ Opt(P). Thus, Opt(P′) ⊆

Opt(P)∪{a}. Consequently, Opt(P)∪{a}= Opt(P′).

(⇒) If Opt(P) = D, then there is no set S such that S�lmin
i Opt(P).

For the average-rank preorder for comparing sets, an agent can manipulate the result to

her advantage if there are nonoptimal outcomes that are highly preferred by the agent, or

when there are optimal outcomes that are low in the preference of that agent, as the former

can be made optimal and the latter made non-optimal without changing the optimality

status of other outcomes.

Theorem 19. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked prefer-

ences P=(�1, . . . ,�N) and let i∈A . There exists a total preorder� such that Opt(P�i/�)�
ar
i

Opt(P) if and only if:

1. For some j < ar�i(Opt(P)), there exists a′ ∈ Di
j such that a′ /∈ Opt(P); or

2. For some j > ar�i(Opt(P)), there are a′ ∈ Opt(P)∩Di
j and a′′ ∈ Opt(P) such that

a′ 6= a′′, and a′′ �k a′, for every k ∈A , k 6= i.

Proof. (⇐) Let us assume that the first condition holds. Let ` be the smallest k such that

Di
k \Opt(P) 6= /0, and let a′ ∈ Di

` \Opt(P). Reasoning as in the proof of the previous

theorem, we can construct a total preorder � such that Opt(P′) = Opt(P)∪{a′} (where P′

denotes P�i/�). Clearly, ar�i(Opt(P′))< ar�i(Opt(P)) and so, Opt(P′)�ar
i Opt(P) (i can

manipulate).
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If the second condition is satisfied then, let us assume that a′′ ∈ Di
j′ . Then, we have

j′ ≥ j (otherwise, a′′ �P a′, contradicting optimality of a′ in P). Let us construct � as in

the previous argument, but substituting a′′ for a′ (and, as before, we write P′ for P�i/�).

Without loss of generality, we may select a′′ so that j′ be minimized.

We know that a′′ ∈ Opt(P′). Moreover, by the definition, a′′ � a′. Thus, a′′ �P′ a′ and

so, a′ /∈ Opt(P′).

Next, if w ∈ Opt(P) and w �i a′, then w ∈ Opt(P′). To show this, let us assume that

there is w′ ∈ Opt(P′) such that w′ �P′ w. Since w �i a′, w 6= a′′ and w � a′′. The latter

implies that w′ 6= a′. Thus, w′ �P w, a contradiction.

Finally, if w /∈ Opt(P) and a′ �i w, w /∈ Opt(P′). Indeed, if w′ �P w then w′ �P′ w.

Since j > ar�i(Opt(P)), these observations imply that ar�i(Opt(P′))< ar�i(Opt(P)).

(⇒) We set x = ar�i(Opt(P)). By the assumption, there is a total preorder � on D such

that ar�i(Opt(P�i/�))< x. Let us set O = Opt(P�i/�) and let D1 be the set of all elements

w ∈ D such that q�i(w)< x. If D1 \Opt(P) 6= /0, then the condition (1) holds. Thus, let us

assume that D1 ⊆ Opt(P). We denote by O′ the set obtained by

1. removing from Opt(P) every element w ∈ D1 \O

2. removing from Opt(P) every element w /∈ O such that q�i(w) = x

3. including every element w ∈ O\Opt(P) such that q�i(w) = x.

We have ar�i(O
′)≥ x. Moreover, O′ differs from O (if at all) only on elements w such that

q�i(w)> x. If O contains every element w ∈Opt(P) such that q�i(w)> x, then ar�i(O)≥

ar�i(O
′) and so, ar�i(O)≥ x, a contradiction. Thus, there is an element w ∈ Opt(P) such

that q�i(w) > x and w /∈ O. Since O = Opt(P�i/�), it is only possible if the condition (2)

holds.

We consider this problem in the profile with two-level preferences which have exactly

two levels of choices, good or bad. The preference for agent i is represented by �i: Di
1 �i
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Di
2.

Corollary 1. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked prefer-

ences P = (�1, . . . ,�N), and let i ∈A where �i: Di
1 �i Di

2. There exists a total preorder

� such that Opt(P�i/�)�
ar
i Opt(P) if and only if there are outcomes a′,a′′ ∈ D such that

1. a′ ∈ Di
1 \Opt(P), and a′′ ∈ Di

2∩Opt(P); or

2. a′,a′′ ∈ Opt(P), a′ 6= a′′, a′ ≈P a′′, and a′ ∈ Di
2.

Proof. (⇒) By Theorem 19, one of its conditions (1) and (2) holds. Let us assume that

the condition (1) of Theorem 19 holds. It follows that j = 1, and that Di
1 contains an non-

optimal outcome for P, say a′. Moreover, Di
2 must also contain an optimal outcome, say

a′′ (otherwise, ar�i(Opt(P)) = 1). Thus, the condition (1) holds. Next, let us assume that

the condition (2) of Theorem 19 holds. It follows that j = 2, and that there are outcomes

a′,a′′ ∈ Opt(P) such that a′ 6= a′′, a′ ∈ Di
2, and a′′ �k a′, for every k ∈ A , k 6= i. Since

a′ ∈ Di
2, a′′ �i a′ (�i has only two clusters, Di

1 and Di
2, and a′ ∈ Di

2). It follows that

a′′ �P a′. By the optimality of a′ for P, a′ ≈P a′′ follows. Thus, the condition (2) holds.

(⇐) Let us assume that the condition (1) holds. Since a′ ∈ Di
1 \Opt(P), 1 < ar�i(Opt(P))

and the condition (1) of Theorem 19 holds (with j = 1). Next, let us assume that the

condition (1) does not hold but the condition (2) does. It follows that every element in

Di
1 is optimal for P. Since Di

1 6= /0 and a′ ∈ Opt(P)∩Di
2, 2 > ar�i(Opt(P)). Thus, the

condition (2) of Theorem 19 holds (with j = 2).

The main message of these theorems is that when the result of preference aggregation is

a set of optimal outcomes, then even the most elementary aggregation rule, Pareto principle,

may be susceptible to manipulation. Whether it is or is not depends on how agents measure

the quality of a set. If the comparison is based on the best or worst outcomes, manipulation

is not possible (a positive result). However, under less simplistic rules such as lexmin

or average-rank the possibility for manipulation emerges (a negative result that, in some

settings, we later moderate by means of the complexity barrier).
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5.2.2 Simple Bribery

In the same setting, the simple bribery problem is to decide whether an agent i can find

an agent t, t 6= i, and a total preorder � such that Opt(P�t/�) �
′
i Opt(P). Our results on

bribery are similar to those we obtained for manipulation, with one notable exception, and

show that whether bribery is possible depends on how agents measure the quality of sets of

outcomes.

Theorem 20. Simple bribery is impossible for compare best on profiles of equally ranked

preferences.

Proof. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked preferences

P = (�1, . . . ,�N). We need to prove that for every i, t ∈A , t 6= i, and every total preorder

�, Opt(P)�cb
i Opt(P�t/�).

Let v ∈ Opt(P) be optimal for i (such a v exists by Theorem 16). It follows that for

every w ∈ D, v �i w. Thus, v �i w, for every w ∈ Opt(P�t/�). By the definition of �cb
i ,

Opt(P)�cb
i Opt(P�t/�).

The result is proved in the same way as Theorem 17. We stress that it states that no

agent using compare best preorder on sets can successfully bribe any other agent.

The situation changes if agents are interested in the worst outcomes in a set. Unlike in

the case of manipulation, simple bribery may now be possible. Given a set X ⊆ D and a

total preorder �, by Min�(X) we denote the set of all “worst” elements in X , that is the set

that contains every element x ∈ X such that for every y ∈ X , y� x.

Theorem 21. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked pref-

erences P = (�1, . . . ,�N) and let i ∈ A . There exist t ∈ A , t 6= i, and a total preorder

� such that Opt(P�t/�) �
cw
i Opt(P) if and only if for every a ∈ Min�i(Opt(P)), there is

a′ ∈ D such that a′ �i a, and a′ �k a, for every k ∈A , k 6= t.
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Proof. (⇐) To define �, we modify the total preorder �t as follows. For every a ∈

Min�i(Opt(P)), we move a′ (the element satisfying a′ �i a, and a′ �k a, for every k ∈A ,

k 6= t, whose existence is given by the assumption) from its cluster in �t to the cluster of

�t containing a.

First, we note that for every a ∈Min�i(Opt(P)), a′ �P�t/�
a. Second, the only change

when moving from P to P�t/� is in the profile of agent t, and that profile changes by

promoting elements a′ (indeed, for every a ∈Min�i(Opt(P)), a�t a′; otherwise, we would

have a′�P a, contrary to a∈Opt(P)). Thus, some of these elements might become optimal

but their degrees of quality in �i are better than those of their corresponding elements a.

Finally, other elements than the a′s cannot become optimal. These three observations imply

that Opt(P�t/�)�
cw
i Opt(P).

(⇒) Let an agent t 6= i and a total preorder � satisfy Opt(P�t/�)�
cw
i Opt(P). To simplify

notation, we set Q = P�t/�.

Let us consider a ∈ Min�i(Opt(P)). Since Opt(Q) �cw
i Opt(P), a /∈ Opt(Q). It fol-

lows that there is a′ ∈ Opt(Q) such that a′ �Q a. Thus a′ �i a (otherwise, we would have

Opt(P)�i Opt(Q), a contradiction). Moreover, for every k ∈A , k 6= t, a′ �k a.

Simple bribery is also possible when lexmin or average-rank methods are used by

agents to extend a preorder on D to a preorder on P(D). Similarly to Theorem 20, the

following two theorems are literal generalizations of the earlier results on manipulation.

Theorem 22. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked prefer-

ences P = (�1, . . . ,�N) and let i, t ∈ A , t 6= i. There exists a total preorder � such that

Opt(P�t/�)�
lmin
i Opt(P) if and only if Opt(P) 6= D.

Proof. (⇐) Let us assume that �i is given by

�i: Di
1 �i . . .�i Di

mi
,

and �t is given by

�t : Dt
1 �t . . .�t Dt

mt
.
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Let ` be the smallest k such that Di
k \Opt(P) 6= /0 and let a ∈ Di

` \Opt(P). We will now

construct a preference � for agent i so that Opt(P)∪ {a} = Opt(P�t/�) in the way in-

troduced in Theorem 18. For that preference, we have Opt(P�t/�) �
lmin
i Opt(P), which

demonstrates that i can manipulate preference aggregation in P.

(⇒) Obviously, if Opt(P) = D, there is no set S such that S�lmin
i Opt(P).

Theorem 23. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked prefer-

ences P = (�1, . . . ,�N) and let i ∈ A . There exist t ∈ A , t 6= i, and a total preorder �

such that Opt(P�t/�)�
ar
i Opt(P) if and only if:

1. For some j < ar�i(Opt(P)), there exists a′ ∈ Di
j such that a′ /∈ Opt(P); or

2. For some j > ar�i(Opt(P)), there are a′ ∈ Opt(P)∩Di
j, and a′′ ∈ Opt(P) such that

a′ 6= a′′ and a′′ �k a′, for every k ∈A , k 6= t.

Proof. (⇐) Let us assume that the first condition holds. Let ` be the smallest k such that

Di
k \Opt(P) 6= /0, and let a′ ∈ Di

` \Opt(P). Reasoning as in the proof of the previous

theorem, we can construct a total preorder � such that Opt(P′) = Opt(P)∪{a′} (where P′

denotes P�t/�). Clearly, ar�i(Opt(P′))< ar�i(Opt(P)) and so, Opt(P′)�ar
i Opt(P).

If the second condition is satisfied, we have a′ �t a′′ (otherwise, a′′ �P a′, contradicting

optimality of a′ in P). Let us assume that a′′ ∈ Di
j′ . Without loss of generality, we may

select a′′ so that j′ be maximized.

If j′ > ar�i(Opt(P)), Let us construct � as in the theorem 19 argument, but replace �t

with � (and, as before, write P′ for P�t/�).

We know that a′′ ∈ Opt(P′). Moreover, by the definition, a′′ � a′. Thus, a′′ �P′ a′ and

so, a′ /∈ Opt(P′).

Next, if w ∈ Opt(P) and w �i a′′, then w ∈ Opt(P′). To show this, let us assume that

there is w′ ∈ Opt(P′) such that w′ �P′ w. Since w �i a′′ �i a′, w′ 6= a′ and w′ 6= a′′. Thus,

w′ �P w, a contradiction.
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Finally, if w /∈ Opt(P), w /∈ Opt(P′). Since w /∈ Opt(P), w 6= a′ and w 6= a′′. Indeed, it

is clear that if w′ �P w then w′ �P′ w.

Since j′ > ar�i(Opt(P)), these observations imply that ar�i(Opt(P′))< ar�i(Opt(P)).

If j′ < ar�i(Opt(P)), let X be a set of outcomes a such that a ∈ Opt(P), d�i(a) <

ar�i(Opt(P)), a′ �t a �t a′′ and a′′ �k a for every k ∈ A , k 6= t. We construct a total

preorder � by moving every a ∈ X and a′′ before a′ and keeping the relative order among

all a ∈ X and a′′.

By the definition, a′′ � a′. Thus, a′′ �P′ a′ and so, a′ /∈ Opt(P′).

Next, we want to prove that if w ∈ Opt(P) and d�i(w) < ar�i(Opt(P)), then w ∈

Opt(P′). If w �i a′′, similar to the previous argument, w ∈ Opt(P′). If a′′ �i w, let us

assume that there is w′ ∈ Opt(P′) such that w′ �P′ w. If w′ /∈ X and w′ 6= a′′, we can get

w′ �P w contradicting w ∈ Opt(P). Thus w′ ∈ X or w′ = a′′. If a′′ �t w, we can get a�t w

for every a ∈ X . Thus w′ �t w and w′ �P w, a contradiction. If w�t a′, we can get w� a′′

and w� a for every a ∈ X . Thus w� w′ contradicting w′ �P′ w. Thus a′ �t w�t a′′. Since

w′ �P′ w, w′ �k w for every k ∈ A , k 6= t. We already know that w′ ∈ X or w′ = a′′, and

for every a ∈ X , a′′ �k a for every k ∈ A , k 6= t. Thus a′′ �k w for every k ∈ A , k 6= t.

According to all these, we can get that w ∈ X . If w ∈ X , according to the definition of �,

w′ �P′ w if and only if w′ �P w contradicting to w ∈ Opt(P). Thus for every w ∈ Opt(P)

and d�i(w)< ar�i(Opt(P)), w ∈ Opt(P′).

Finally, if w /∈ Opt(P), w /∈ Opt(P′). Since w /∈ Opt(P), w 6= a′, w 6= a′′ and w /∈ X .

Indeed, it is clear that if w′ �P w then w′ �P′ w.

These observations imply that ar�i(Opt(P′))< ar�i(Opt(P)).

(⇒) We set x = ar�i(Opt(P)). By the assumption, there is a total preorder � on D such

that ar�i(Opt(P�t/�))< x. Let us set O = Opt(P�t/�) and let D1 be the set of all elements

w ∈ D such that d�i(w)< x. If D1 \Opt(P) 6= /0, then the condition (1) holds. Thus, let us

assume that D1 ⊆ Opt(P).

Similar to the proof for Theorem 19, we can construct the set O′ and show that if O
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contains every element w∈Opt(P) such that d�i(w)> x, we can get a contradiction. Thus,

there is an element w ∈ Opt(P) such that d�i(w)> x and w /∈ O. Since O = Opt(P�t/�), it

is only possible if the condition (2) holds.

Theorems 21, 22 and 23 show that a possibility for simple bribery may arise when

compare worst, lexmin and average-rank are used to compare sets of outcomes. There is,

however, a difference between lexmin and the other two methods. For the former, if simple

bribery is possible, then every agent can be the target (can be used as t in the theorem).

This is not the case for the other two methods.

We also provide the possibility for simple bribery with two-level preferences which is

used for later proofs.

Corollary 2. Let A be a set of N agents 1, . . . ,N with a profile of equally ranked prefer-

ences P = (�1, . . . ,�N) and let i ∈A where �i: Di
1 �i Di

2. There exist t ∈A and a total

preorder � such that Opt(P�t/�) �
ar
i Opt(P) if and only if there are outcomes a′,a′′ ∈ D

such that:

1. a′ ∈ Di
1 \Opt(P) and a′′ ∈ Di

2∩Opt(P); or

2. a′,a′′ ∈ Opt(P), a′ ∈ Di
2, and a′′ �k a′, for every k ∈A , k 6= t.

Proof. Similar to Corollary 1, agent i can improve the quality of the optimal outcomes if

and only if ar�i(Opt(P)) > 1 (there is a′′ ∈ Di
2 ∩Opt(P)), and there is a′ ∈ Di

1 \Opt(P)

which can become optimal for P�t/� or there is a′ ∈ Di
2∩Opt(P) which can become non-

optimal for P�t/�.

5.3 Strictly Ranked Preferences

In this section, we discuss the manipulation and simple bribery problems in the setting

in which all agents have distinct ranks and so, can be seen as strictly ranked. A strictly

ranked preference profile can be written as P = (�1,1, . . . ,�N,N) (after possibly relabeling

90



agents). In this section, we will write such profiles as P = (�1, . . . ,�N). Such a preference

formalism generates a total preorder over outcomes. Moreover, all optimal outcomes are

indifferent and share the same quality degree for every preference. In general, proceeding

from the most important preference to the least, the relation between two outcomes is

decided by the first preference, where they have different quality degrees.

Our first two results in this section concern the manipulation problem.

Theorem 24. Manipulation is impossible for compare best, compare worst and average-

rank on profiles of strictly ranked preferences.

Proof. Let A be a set of N agents 1, . . . ,N with a profile P = (�1, . . . ,�N) and i ∈A . Let

us assume the preference of an agent i ∈A is

�i: Di
1 �i Di

2 �i · · · �i Di
mi
.

Since all optimal outcomes are indifferent, we can assume a∈Di
j for every a∈Opt(P). Let

a be any optimal outcome. According to the definitions of compare-best, compare-worst

and average-rank, if Opt(P′) is better than Opt(P) based on the corresponding extension

of �i, then there exists a′ ∈ Opt(P′) such that a′ �i a. Since a′ 6∈ Opt(P), a �P a′. And

because of a′�i a, a� j a′ for some j < i. This can not be changed no matter how i changes

her preference. Thus a�P′ a′ and a′ 6∈ Opt(P′).

For lexmin, agent i can get a better result by making non-optimal outcomes equivalent

or worse to currently optimal outcomes become optimal. The precise description of the

conditions when it is possible is given below.

Theorem 25. Let A be a set of N agents 1, . . . ,N with a profile of strictly ranked prefer-

ences P = (�1, . . . ,�N). For every i ∈A , manipulation is possible for lexmin if and only

if at least one of the following conditions holds:

1. There exists a′ ∈ D\Opt(P), such that for every a′′ ∈ Opt(P), a′′ ≈P/i a′3

3a′′ ≈P/i a′ means a′′ ≈P a′ except for �i.
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2. There exists a′ ∈ D\Opt(P), such that

|{a : a ∈ D,a≈P a′}|> |Opt(P)|,

and for every a′′ ∈ Opt(P) and for every l ≤ i, a′′ ≈l a′

3. There exists a′ ∈ D\Opt(P), such that

|{a : a ∈ D,a≈P a′}|= |Opt(P)|,

for every a′′ ∈ Opt(P) and for every l ≤ i, a′′ ≈l a′, and for some w ∈ D, w ≈P/i a′

and w′ 6≈i a′.

Proof. Let P′ be P�i/�.

(⇐) In case 1, since a′′ �P a′ and a′′ ≈P/i a′, a′′ �i a′. Let us assume that �i is given by

�i: Di
1 �i · · · �i Di

mi
,

and a′′ ∈ Di
j . Let us define � as follows:

�: D′1 � ·· · � D′mi
,

where D′j = Di
j∪{a′}, and D′k = Di

k/{a
′} for every k ∈ [1..mi], k 6= j.

We can get a′′ ≈P′ a′, a′ ∈ Opt(P′) and Opt(P′) = Opt(P)∪{a′}. Thus Opt(P′) �lmin
i

Opt(P).

In case 2, we can construct a total preorder � such that Opt(P′) = {a : a ∈D,a≈P a′}.

Let us assume that �i is given by

�i: Di
1 �i · · · �i Di

mi
,

and a′,a′′ ∈ Di
j . Let us define � as follows:

�: D′1 � ·· · � D′mi+1,

where D′j = {a : a ∈ D,a ≈P a′}, D′j+1 = Di
j\{a : a ∈ D,a ≈P a′}, D′k = Di

k for every

k ∈ [1.. j−1], and D′k = Di
k−1 for every k ∈ [ j+2..mi +1].

92



Since a′ ≈l a′′ for every l < i, a′ �i a′′, we can get a′ �P′ a′′. Thus Opt(P′) = {a : a ∈

D,a≈P a′} and since |{a : a ∈ D,a≈P a′}|> |Opt(P)|, Opt(P′)�lmin
i Opt(P).

In case 3, similarly, Opt(P′) = {a : a ∈ D,a≈P a′}∪w, since | {a : a ∈ D,a≈P a′} |=|

Opt(P) |, Opt(P′)�lmin
i Opt(P).

(⇒) Assume there are i ∈ A and a total preorder �, such that Opt(P′) �lmin
i Opt(P) and

none of the conditions is satisfied. We know that there is a′ ∈Opt(P′) but a′ /∈Opt(P), and

for any a′′ ∈ Opt(P), a′′ �P a′.

1. If a′′ � j a′ where j < i, then a′′ �P′ a′, a contradiction to a′ ∈ Opt(P′).

2. If a′′ �i a′, since case 1 is not satisfied, a′ 6≈P′ a′′ for any a′′ ∈ Opt(P). Since a′ ∈

Opt(P′), a′′ /∈ Opt(P′) for any a′′ ∈ Opt(P). According to the definition of lexmin,

since a′′ �i a′, Opt(P′) 6�lmin
i Opt(P), a contradiction.

3. If a′′ � j a′ where j > i, we can get a′ 6≈i a′′ and a′ 6≈P′ a′′. Since a′ ∈ Opt(P′),

a′′ /∈Opt(P′) for any a′′ ∈Opt(P). According to the definition of lexmin, let a′′ ∈Di
j,

|Opt(P′)∩Di
j| ≥ |Opt(P)∩Di

j|. We can get Opt(P′)∩Di
j = {a : a ∈ D,a ≈P a′}.

Thus if |Opt(P′)∩Di
j| > |Opt(P)∩Di

j|, it satisfies condition 2. If |Opt(P′)∩Di
j| =

|Opt(P)∩Di
j|, there must exists w ∈ D and w ∈ Opt(P′)∩Di

j′ where j′ 6= j. Thus

w≈P−i a′ and w′ 6≈i a′. This satisfies the condition 3.

We will now consider simple bribery. There are rather intuitive conditions describing

when simple bribery is possible for the compare best, compare worst and average-rank set

comparison methods, and somewhat more complicated ones for lexmin.

Theorem 26. Let A be a set of N agents 1, . . . ,N with a profile of strictly ranked pref-

erences P = (�1, . . . ,�N). For every i ∈ A , simple bribery is possible for compare best,

compare worst and average-rank if and only if there exists a′ ∈D such that a′ �i a for every

a ∈ Opt(P).
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Proof. Since all optimal outcomes are indifferent, we can assume a ∈ Di
j for every a ∈

Opt(P).

(⇐) If such a′ exists, according to Theorem 16, i 6= 1. Let t = 1 and assume that �1 is

given by

�1: D1
1 �1 . . .�1 D1

m1
.

We define � as follows:

�: D′1 � . . .� D′m1+1,

where D′1 = {a′}, and D′k = Dt
k−1 \{a

′} for every k ∈ {2, . . . ,m1 +1}. Thus Opt(P�1/�) =

{a′}. Since a′ �i a for every a ∈ Opt(P), we have Opt(P�t/�)�
cb/cw/ar
i Opt(P).

(⇒) If such a′ does not exist, a ∈ Di
1 for every a ∈ Opt(P). Thus there is no P ⊆ D such

that P�cb/cw/ar
i Opt(P).

Theorem 27. Let A be a set of N agents 1, . . . ,N with a profile of strictly ranked prefer-

ences P = (�1, . . . ,�N). For every i ∈A , simple bribery is possible for lexmin if and only

if at least one of the following three conditions holds:

1. There is a′ ∈ D such that for all a′′ ∈ Opt(P), a′ �i a′′

2. There is a′ ∈ D\Opt(P) such that for some t ∈A , t 6= i, and for every a′′ ∈ Opt(P),

a′ ≈P/t a′′

3. There is a′ ∈ D and t, j ∈A such that t ≤ j, t 6= i,

|{a : a ∈ D,a≈P/t a′}|> |Opt(P)|,

for every a′′ ∈ Opt(P), a′ ≈i a′′, a′′ � j a′, and a′′ ≈l a′, for every l < j.

Proof. Let P′ be P�t/�.

(⇐) In case 1, similar to Theorem 26, we can make a′ ∈ Opt(P′) and thus Opt(P′) �lmin
i

Opt(P).
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In case 2, we can get a′′ �t a. Let us assume that �t is given by

�t : Dt
1 �t · · · �t Dt

mt
,

and a′′ ∈ Dt
j . Let us define � as follows:

�: D′1 � ·· · � D′mt
,

where D′j = Dt
j ∪{a′}, and D′k = Dt

k/{a
′} for every k ∈ [1..mt ], k 6= j. Then a′ ≈P′ a′′ and

Opt(P′) = Opt(P)∪{a′}. Thus Opt(P′)�lmin
i Opt(P).

In case 3, we can construct a total preorder� such that Opt(P′) = {a : a∈D,a≈P/t a′}.

Let us assume that �t is given by

�t : Dt
1 �t · · · �t Dt

mt
,

and a′ ∈ Dt
j, a′′ ∈ Dt

j′ where j′ ≤ j. Let us define � as follows:

�: D′1 � ·· · � D′mt+1,

where D′j′ = {a : a ∈ D,a≈P/t a′}, D′k = Dt
k for every k ∈ [1.. j′−1], and D′k = Dt

k−1/{a :

a ∈ D,a ≈P/t a′} for every k ∈ [ j′+ 1..mt + 1]. Since |{a : a ∈ D,a ≈P/t a′}| > |Opt(P)|,

Opt(P′)�lmin
i Opt(P).

(⇒) Assume there are t ∈ A and a total preorder �, such that Opt(P′) �lmin
i Opt(P) and

none of the conditions is satisfied. We know that there is a′ ∈Opt(P′) but a′ /∈Opt(P), and

for any a′′ ∈ Opt(P), a′′ �P a′.

1. If a′ �i a′′, it satisfies the condition 1.

2. If a′′ �i a′, a′ 6≈P′ a′′ for any a′′ ∈ Opt(P). Since a′ ∈ Opt(P′), a′′ /∈ Opt(P′) for any

a′′ ∈ Opt(P). According to the definition of Lexmin, since a′′ �i a′, Opt(P′) 6�lmin
i

Opt(P), a contradiction.

3. If a′≈i a′′, since case 2 is not satisfied, a′ 6≈P′ a′′ for any a′′ ∈Opt(P). Similarly, a′′ /∈

Opt(P′) for any a′′ ∈Opt(P). Let a′′ ∈Di
j, we can get |Opt(P′)∩Di

j| ≥ |Opt(P)∩Di
j|.
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If |Opt(P′)∩Di
j| = |Opt(P)∩Di

j|, there must exists w ∈ D and w ∈ Opt(P′)∩Di
j′

where j′ 6= j. Since we already know w 6�i a′′ and a′′ 6�i w, w≈i a′′, a contradiction

with j′ 6= j. Thus |Opt(P′)∩Di
j| > |Opt(P)∩Di

j|. Since all optimal outcomes are

indifferent, Opt(P′)∩Di
j = {a : a ∈ D,a ≈P/t a′}. Thus |{a : a ∈ D,a ≈P/t a′}| >

|Opt(P)| and it satisfies the condition 3.

5.4 Complexity

So far we studied the problems of manipulation and simple bribery ignoring the issue of

how preferences (total preorders) on D are represented. In this section, we will establish

the complexity of deciding whether manipulation or simple bribery are possible. For this

study, we have to fix a preference representation schema.

First, let us assume that preference orders on elements of D are represented explicitly as

sequences D1, . . . ,Dm of the indifference strata, enumerating them from the most preferred

to the least preferred. For this representation, the characterizations we presented in the

previous section imply that the problems of the existence of manipulation and bribery can

be solved in polynomial time. Thus, in the “explicit representation” setting, computational

complexity cannot serve as a barrier against them.

However, for combinatorial domains explicit representations are not feasible. We now

take for D a common combinatorial domain given by a set U of binary attributes. We view

elements of U as propositional variables and assume that each element of U can take a

value from the domain {true, false}. In this way, we can view D as the set of all truth

assignments on U . Following a common convention, we identify a truth assignment on U

with the subset of U consisting of elements that are true under the assignment. Thus, we

can think of D as the power set P(U) of U .

By taking this perspective, we can use a formula ϕ over U as a concise implicit repre-

sentation of the set M(ϕ) = {X ⊆U : X |= ϕ} of all interpretations of U (subsets of U) that
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satisfy ϕ , and we can use sequences of formulas to define total preorders on P(U) (= D).

A preference statement over U is an expression

ϕ1 > ϕ2 > · · ·> ϕm, (5.1)

where all ϕis are formulas over U and ϕ1∨·· ·∨ϕm is a tautology. A preference statement

p = ϕ1 > ϕ2 > · · · > ϕm determines a sequence (D1, . . . ,Dm) of subsets of P(U), where,

for every i = 1, . . . ,m,

Di = {X ⊆U : X |= ϕi}\ (D1∪·· ·∪Di−1).

These subsets are disjoint and cover the entire domain P(U) (the latter by the fact that

ϕ1∨ ·· · ∨ϕm is a tautology). It follows that if X ⊆U , then there is a unique iX such that

X ∈DiX . The relation �p defined so that X �p Y precisely when iX ≤ iY is a total preorder

on P(U). We say that the preference expression p represents the preorder �p.4

We will now study the complexity of the existence of manipulation and simple bribery

when preferences are given in terms of preference statements. That is, we assume that the

input to these problems consists of N ranked preferences �1,r1, . . . ,�N,rN . We will denote

by (Di
1, . . . ,D

i
mi
) the sequence of indifference strata determined by �i,ri , as defined above.

We refer to these two problems as the existence-of-manipulation (EM) problem and the

existence-of-simple-bribery (ESB) problem, respectively. These problems are parameter-

ized by the method used to compare sets. We denote the methods by cb (compare best), cw

(compare worst), lmin (lexmin) and ar (average-rank).

For equally ranked preference statements, since manipulation is impossible for the com-

pare best and compare worst methods for comparing sets, the problems are (trivially) in P.

Similarly, the problem of deciding whether simple bribery is possible for compare best is

in P, too. The summary of the complexity results for all the cases is given in Table 5.1 and

proved in Theorem 28.
4The partition of D into strata that is determined by �p is not always (D1, . . . ,Dm) as some sets Di may

be empty.
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Table 5.1: Complexity results of manipulation and bribery for equally ranked preferences

EM ESB
cb P P
cw P ΣP

2 -hard, ΠP
2 -hard, in ∆P

3
lmin NP-complete NP-complete
ar ΣP

2 -hard, in PSPACE ΣP
2 -hard, in PSPACE

Lemma 1. The EMar and EBar problems for equally ranked preferences restricted to the

case when the agent seeking manipulation or bribery, respectively, has a two-level prefer-

ence are ΣP
2 -complete.

Proof. For the problem EMar, Corollary 1 states that if P is a profile in which agent i has a

two-cluster preference

�i: ϕ1 �i ϕ2

then agent i can manipulate preference aggregation if an only if there are outcomes M′,M′′⊆

U such that

1. M′ /∈ Opt(P), M′′ ∈ Opt(P), d�i(M
′) = 1, and d�i(M

′′) = 2; or

2. M′,M′′ ∈ Opt(P), M′ 6= M′′, M′ ≈P M′′, and d�i(M
′) = 2.

Let us consider an algorithm that non-deterministically selects two outcomes M′,M′′ ⊆U

and then, with the help of an oracle for the problem to decide whether an outcome is opti-

mal for a profile, verifies that M′ /∈ Opt(P), M′′ ∈ Opt(P), d�i(M
′) = 1, and d�i(M

′′) = 2;

or M′ ∈Opt(P), M′′ ∈Opt(P), M′ 6= M′′, M′ ≈P M′′, and d�i(M
′) = 2. From the comment

above it follows that this non-deterministic algorithm correctly decides whether i can ma-

nipulate. Moreover, it runs in polynomial time (assuming that we count each call to the

oracle as taking constant time). Thus, the membership follows.

For the hardness, we reduce to our problem the problem to decide for a profile P over

a set U and an atom a ∈U whether there is an outcome M ∈Opt(P) such that a ∈M. That

problem is ΣP
2 -complete [27].
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Thus, let us consider a profile P over U . We define the profile P′ = (�′1, . . . ,�′N) as

follows. Assuming that �1 is of the form

�1: ϕ1 �1 . . .�1 ϕm,

we set

�′1: ϕ1∧a�′1 . . .�′1 ϕm∧a�′1 ¬a.

For i = 2, . . . ,N, we set �′i=�i. Then, for every M ⊆U such that a ∈ M, M ∈ Opt(P) if

and only if M ∈Opt(P′). Moreover, P′ has the following property: if M ≈P′ M′ and a ∈M,

then a ∈M′.

Let us assume that U = {a,x1, . . . ,xn−1}. We introduce agents 0, N+1, . . .N+2(n−1).

We define a profile P′′ of the extended set of agents by setting �′′i =�′i, for i = 1, . . . ,N and

by defining preferences of the new agents as follows:

� ′′
0 : ¬a� a

� ′′
N+2i−1 : ¬a∧ xi � a∨¬xi f or each i ∈ [1..n−1]

� ′′
N+2i : ¬a∧¬xi � a∨ xi f or each i ∈ [1..n−1].

We will now show that every set Y ⊆U such that a /∈ Y is optimal in P′′. Indeed, let us

consider Y ′ ⊆U such that Y ′ �P′′ Y . This implies that Y ′ �′′0 Y , and so a /∈ Y ′. Since for

every j = 1, . . . ,n−1, Y ′ �′′N+2 j−1 Y and Y ′ �′′N+2 j Y , x j ∈ Y if and only if x j ∈ Y ′. Thus,

Y = Y ′, which proves optimality of Y in P′′.

We now introduce a fresh element (atom) b and define U ′ =U ∪{b}. We view P′′ as a

profile over U ′ =U ∪{b}. Clearly, for every M ⊆U , M ≈P′′ M∪{b}.

Let us assume that M ⊆U , a ∈M and M ∈ Opt(P). We will show that M ∈ Opt(P′′).

To this end, let us consider M′ ⊆U ′ such that M′ �P′′ M and let us assume first that b /∈M′.

Thus, M′ ⊆ U . Clearly, M′ �P′ M. Since M ∈ Opt(P′), M′ ≈P′ M. Consequently, a ∈
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M′ (otherwise, the degrees of quality of M and M′ on preference �′1 would be different)

and it follows that M′ ≈P′′ M. Next, let us assume that b ∈ M′ and set M′′ = M′ \ {b}.

Then M′′ �P′′ M (the absence or presence of b does not affect the degrees of quality).

Consequently, M′′ ≈P′′ M and so, also M′ ≈P′′ M. It follows that M is optimal in P′′.

Moreover, M ∪{b} is optimal in P′′, too. Since M ≈P′′ M ∪{b}, agent 0 can manipulate

preference aggregation in P′′.

Conversely, let us assume that agent 0 can manipulate preference aggregation in profile

P′′. Since all outcomes that do not contain a are optimal in P′′, it follows that there is an

outcome M ⊆U ′ such that a ∈ M and M ∈ Opt(P′′). Without loss of generality, we can

assume that b /∈M. Therefore, M ⊆U . We will prove that M ∈ Opt(P′). Since a ∈M, that

will imply that P has an optimal outcome containing a.

To show that M ∈ Opt(P′), let us consider any M′ ⊆ U such that M′ �P′ M. If a /∈

M′, then M′ �′′0 M and M′ �′′j M, for j = N + 1, . . . ,N + 2(n− 1). Thus, M′ �P′′ M, a

contradiction. Thus, a ∈ M′. Since M′ and M have the same degrees of quality on all

preferences �′′j , j = 0,N +1, . . . ,N +2(n−1), M′ �P′′ M. Since M ∈ Opt(P′′), M′ ≈P′′ M

and so, M′ ≈P′ M. Thus, M ∈ Opt(P′), as claimed.

The problem EBar is similar to EMar. Corollary 2 states that if P is a profile in which

agent i has a two-cluster preference

�i: ϕ1 �i ϕ2

then agent i can manipulate preference aggregation if an only if there are outcomes M′,M′′⊆

U such that

1. M′ /∈ Opt(P), M′′ ∈ Opt(P), d�i(M
′) = 1, and d�i(M

′′) = 2; or

2. M′,M′′ ∈ Opt(P), d�i(M
′) = 2, and M′′ �k M′, for every k ∈A , k 6= t.

Thus we can guess two outcomes M′,M′′ ⊆U as we did for the problem EMar. The only

difference is in EBar we checked whether M′≈P M′′ and here we guess t and check whether
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M′′ �k M′, for every k ∈A , k 6= t. We can also do this in polynomial time assuming each

call to the oracle taking constant time.

For the hardness, we can reduce the problem EMar to EBar. Consider a profile P = (�1

, . . . ,�m) over U where

�i: ϕ1 �i ϕ2.

We introduce a new agent 0 and construct a profile P′ = (�′0,�′i) as follows. We set

�′0: ϕ1 �′0 ϕ2

and �′i=�i. Since agent 0 and agent i have the same preference, agent 0 can bribe some

other agent (in our case, it can only be agent i) to misrepresent her preference if and only

if agent i in profile P can manipulate. Thus problem EBar is also ΣP
2 -complete.

Theorem 28. The complexity of deciding whether manipulation and simple bribery is pos-

sible for equally ranked preferences with four ways to lift the preorder over outcomes to a

preorder over sets of outcomes is given in the following table:

EM ESB

cb P P

cw P ΣP
2 -hard, ΠP

2 -hard, in ∆P
3

lmin NP-complete NP-complete

ar ΣP
2 -hard, in PSPACE ΣP

2 -hard, in PSPACE

Proof. According to Theorem 17 and 20, manipulation is impossible for compare best and

compare worst, and bribery is possible for compare best, these problems are (trivially) in

P.

Bribery for compare worst:

We want to show that this problem is in ∆P
3 and is both ΣP

2 - and ΠP
2 -hard.
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Let A be a set of N agents 1, . . . ,N with a profile of equally ranked preferences

P = (�1, . . . ,�N) and let i ∈A , Theorem 21 states that there is another agent t such that

Opt(P�t/�) �
cw
i Opt(P) if and only if for every a ∈ Min�i(Opt(P)), there is a′ ∈ D such

that a′ �i a, and a′ �k a, for every agent k, k 6= t. Let us assume

�i: ϕ1 �i · · · �i ϕm,

and Min�i(Opt(P)) = {X : X ∈Opt(P),X |=¬ϕ1∧·· ·∧¬ϕ j−1∧ϕ j}. To find out j, we can

first check whether there exists M ∈ Opt(P) such that M |= ¬ϕ1∧ ·· ·∧¬ϕm−1∧ϕm using

a ΣP
2 oracle [27]. If there exists such outcome, j = m. Otherwise, we check whether there

exists M ∈ Opt(P) such that M |= ¬ϕ1 ∧ ·· · ∧¬ϕm−2 ∧ϕm−1 also using a ΣP
2 oracle. We

will iteratively check the existence of optimal outcome until we find M ∈Opt(P) such that

for every M′ ∈ Opt(P), M′ �i M. This can be achieved by an algorithm using a ΣP
2 oracle

polynomial times. Then we need to check whether for every a ∈Min�i(Opt(P)), there is

a′ ∈ D such that a′ �i a, and a′ �k a, for every agent k, k 6= t. To do that, we can check

whether there exists a ∈Opt(P) and a |= ¬ϕ1∧·· ·∧¬ϕ j−1∧ϕ j such that for every a′ ∈D,

a�i a′ or a�k a′ for some agent k, k 6= t with a ΣP
2 oracle. Thus our problem can be solved

by an algorithm using a ΣP
2 oracle polynomial times, and it is in ∆P

3 .

For the ΣP
2 -hardness, we reduce to our problem the problem to decide for a profile P,

over a set U , and an atom a ∈U whether there is an outcome M ∈Opt(P) such that a ∈M.

This problem is ΣP
2 -complete [27].

Let us consider a profile P = (� 1, . . . ,� N) over U where

�1: ϕ1 �1 . . .�1 ϕm.

We define the profile P′ = (�′1, . . . ,�′N) as follows. We set

�′1: ϕ1∧a�′1 . . .�′1 ϕm∧a�′1 ¬a.

For i = 2, . . . ,N, we set �′i=�i. Clearly, for every M ⊆U such that a ∈M, M ∈ Opt(P) if

and only if M ∈ Opt(P′).

102



We introduce agents 0 and N +1, a new atom b and define U ′ =U ∪{b}. We define a

profile P′′ of the extended set of agents by setting �′′i =�′i, for i = 1, . . . ,N and by defining

preferences of the new agents as follows:

� ′′
0 : ¬a�′0 a∧¬b�′0 a∧b

� ′′
N+1 : b�′N+1 ¬b.

Let M ∈ Opt(P) and a ∈ M. We will show that M,M ∪{b} ∈ Opt(P′′). To simplify,

we write M′ for M ∪ {b}. Let us consider M′′ ⊆ U ′ and M′′ �P′′ M. This implies that

M′′ �′′1 M, and so a ∈ M′′. Since M′′ �′′0 M, M′′ ≈′′0 M. Since M ∈ Opt(P), we can get

that M ∈ Opt(P′), and M′′ ≈P′ M. If M′′ �′′N+1 M, we can get that b ∈M′′, and M �′′0 M′′

contradicts to M′′ �P′′ M. Thus M′′ ≈′′N+1 M and M′′ ≈P′′ M. This implies M ∈ Opt(P′′).

Similarly, let us consider M′′ ⊆U ′ and M′′ �P′′ M′. This implies that M′′ �′′N+1 M′, and

so b ∈ M′′. Since M ≈P M′, we can get M′ ∈ Opt(P), M′ ∈ Opt(P′) and M′′ ≈P′ M′.

If M′′ �′′0 M′, we can get that a /∈ M′′, and M′ �′′1 M′′ contradicts to M′′ �P′′ M′. Thus

M′′ ≈P′′ M′ and M′ ∈ Opt(P′′).

Since M,M′ ∈Opt(P′′), Min�′′0(Opt(P′′)) = {X : X ∈Opt(P′′),a ∈ X ,b ∈ X}. We want

to show that there exist t ∈ [0, . . . ,N+1], for every X ∈Min�′′0(Opt(P′′)), there is a X ′ ⊆U ′

such that X ′ �′′0 X , and X ′ �′′k X for every k ∈ [0, . . . ,N + 1], k 6= t. Let t be N + 1. For

every X ∈ Min�′′0(Opt(P′′)), let X ′ be X \ {b}. Obviously, X ′ �′′0 X , and X ′ ≈P′ X . Thus

if agent N + 1 change her preference to �: ¬b � b, for every X ∈Min�′′0(Opt(P′′)), X /∈

Opt(P′′�′′N+1/�
).

Conversely, let us assume that agent 0 can find another agent to misrepresent her pref-

erence. If for every M ∈ Opt(P′′), a /∈ M, agent 0 cannot improve the quality of optimal

outcomes. Thus there exist some M ∈ Opt(P′′) and a ∈M. Without loss of generality, we

can assume that b /∈M. We want to show that M ∈ Opt(P). Let us consider M′ ⊆U and

M′ �P M. Thus a ∈M′, M′ ≈′′0 M and M′ ≈′′N+1 M. Since M′ �P M and a ∈M, M′ �P′ M.
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If M′ �P′ M, then M′ �P′′ M contradicts to M ∈ Opt(P′′). Thus M′ ≈P′ M, and M′ ≈P M.

That means M ∈ Opt(P).

We have proved that our problem is ΣP
2 -hard. It is easy to see that the complement of

our problem is ΠP
2 -hard. Since our problem is in ∆P

3 , the complement problem is as hard as

the original one. Thus our problem is ΠP
2 -hard.

Manipulation and bribery for lexmin:

We want to show that these two problems are NP-complete.

We recall that both problems concern profiles of preference statements over a set of

atoms U , with subsets of U (viewed as truth assignments) as the set of outcomes. According

to Theorems 18 and 22, manipulation (bribery) for a profile P is possible if and only if

Opt(P) 6= P(U).

Clearly, we can decide whether Opt(P) 6= P(U) by the following non-deterministic

algorithm: guess two outcomes M,M′ ⊆U , and check that M′ �P M. That latter task can

be executed in polynomial time. Indeed, for a given set M ⊆U and a propositional formula

ϕ over U , checking M |= ϕ takes polynomial time. This allows us to compute the quality

degrees of M and M′ for all preference statements in P and, consequently, to compare them

with respect to the profile P, in polynomial time. It follows that the manipulation (bribery)

problem is in NP.

For the NP-hardness, we show that the SAT problem can be reduced to the problem

to decide whether Opt(P) 6= P(U). To this end, let us consider a SAT instance ϕ over a

set U of atoms. We introduce a new atom a and define U ′ =U ∪{a}. We define a profile

P = (�) over U ′ (a one-agent profile) as follows:

�: a∨¬ϕ � ϕ ∧¬a.

To complete the argument, we show that Opt(P) 6=P(U) if and only if ϕ is satisfiable. Let

us assume that M is a model of ϕ and let M′ = {a}. Clearly, M′ �P M, that is M /∈Opt(P).

Conversely, if there is an outcome M ⊆U ′ that is not optimal in P′, then d�(M′) = 2, that

is M is a model of ϕ ∧¬a. It follows that ϕ is satisfiable.
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Table 5.2: Complexity results of manipulation and bribery for strictly ranked preferences

EM ESB
cb P ∆P

2 -complete
cw P ∆P

2 -complete
lmin ∆P

2 -hard ∆P
2 -hard

ar P ∆P
2 -complete

Manipulation and bribery for average-rank:

We want to show that these two problems are ΣP
2 -hard and in PSPACE.

Lemma 1 provides a lower bound for the complexity for the the general case. Since

both problems are clearly in PSPACE, we obtain the result.

For strictly ranked preferences, for the compare best, compare worst and average-rank

methods, the manipulation is impossible and so, deciding its existence is trivially in P. On

the other hand, simple bribery is possible for all set comparison methods. The complete

complexity results are given in Table 5.2 and proved by Theorem 29.

Lemma 2. Given a Boolean formula ϕ(x1, . . . ,xn) such that ϕ∧xn, ϕ∧¬xn are satisfiable,

deciding whether xn = 1 is in ϕ’s maximum satisfying assignment is ∆P
2 -complete.

Proof. To show this problem is in ∆P
2 , we can first check whether ϕ ∧ x1 is satisfiable. If it

is, we know that x1 = 1 is in ϕ’s MSA, and we can check whether ϕ ∧x1∧x2 is satisfiable;

otherwise, x1 = 0 is in ϕ’s MSA and we check whether ϕ ∧¬x1 ∧ x2 is satisfiable. In a

similar way, we can get the values of x2, . . . ,xn in ϕ’s MSA by n SAT checks. Then we can

see whether xn = 1 is in ϕ’s MSA.

To prove the hardness, we reduce a ∆P
2 -complete problem to this one. Given a Boolean

formula ϕ(x1, . . . ,xn), it is ∆P
2 -complete to decide whether xn = 1 is in ϕ’s MSA. We

construct a Boolean formula ψ = (ϕ ∧ (xn∨¬xn+1))∨ (¬x1∧ ·· · ∧¬xn−1∧¬xn∧ xn+1)∨

(¬x1 ∧ ·· · ∧¬xn−1 ∧ xn ∧¬xn+1). Formula ψ is satisfiable and M1,M2 |= ψ where M1 =

{¬x1, . . . ,¬xn−1,¬xn,xn+1} and M2 = {¬x1, . . . ,¬xn−1,xn,¬xn+1}.

(⇐) We show that if xn = 1 is in ϕ’s MSA, then xn+1 = 1 is in ψ’s MSA.
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Let M be ϕ’s MSA. Then M′ is a model for ψ where M′ = M∪{xn+1}. Assume M′′

is the MSA of ψ and M′′ 6= M′, then M′′ 6|= ϕ ∧ (xn∨¬xn+1) and M′′ = M1 or M′′ = M2.

Since M2 is lexicographically larger than M1, M′′ = M2. Since M′ |= xn ∧ xn+1, M′ is

lexicographically larger than M′′ and M′′ cannot be the MSA. Thus M′ is the MSA of ψ

and xn+1 = 1 in M′.

(⇒) We show that if xn = 1 is not in ϕ’s MSA, then xn+1 = 1 is not in ψ’s MSA.

There are two possibilities. One is ϕ is unsatisfiable. In this case, ψ has two models

M1 and M2, and M2 is the MSA of ψ . Since M2 |= ¬xn+1, xn+1 = 1 is not in ψ’s MSA.

The other possibility is xn = 0 is in ϕ’s MSA. Let M be ϕ’s MSA. Then M′ is a model for

ψ where M′ = M ∪{¬xn+1}. Let M′′ be the MSA of ψ . If M′′ = M′, xn+1 = 1 is not in

ψ’s MSA. If M′′ 6= M′, then because of the similar reason M′′ = M2. Since M2 |= ¬xn+1,

xn+1 = 1 is not in ψ’s MSA.

Theorem 29. The complexity of deciding whether manipulation and simple bribery is pos-

sible for strictly ranked preferences with four ways to lift the preorder over outcomes to a

preorder over sets of outcomes is given in the following table:

EM ESB

cb P ∆P
2 -complete

cw P ∆P
2 -complete

lmin ∆P
2 -hard ∆P

2 -hard

ar P ∆P
2 -complete

Proof. According to Theorem 24, manipulation is impossible for compare best, compare

worst and average-rank. Thus these problems are in P.

Manipulation for lexmin:

Let A be a set of N agents 1, . . . ,N with a profile of strictly ranked preferences P =

(�1, . . . ,�N). According to Theorem 25, we want to show that for any i ∈ A , deciding

whether at least one of the following conditions holds:
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1. There exists a′ ∈ D\Opt(P), such that for every a′′ ∈ Opt(P), a′′ ≈P/i a′

2. There exists a′ ∈ D\Opt(P), such that

|{a : a ∈ D,a≈P a′}|> |Opt(P)|,

and for every a′′ ∈ Opt(P) and for every l ≤ i, a′′ ≈l a′

3. There exists a′ ∈ D\Opt(P), such that

|{a : a ∈ D,a≈P a′}|= |Opt(P)|,

for every a′′ ∈ Opt(P) and for every l ≤ i, a′′ ≈l a′, and for some w ∈ D, w ≈P/i a′

and w′ 6≈i a′.

is ∆P
2 -hard.

Given a Boolean formula ϕ(x1, . . . ,xn) and ϕ ∧xn, ϕ ∧¬xn are satisfiable, according to

Lemma 2, it is ∆P
2 -complete to decide whether xn = 1 is in ϕ’s MSA. We introduce a new

atom xn+1 and construct the profile P = (�1,1, . . . ,�n,n,�n+1,n+1) as follows. We define

�i,i: ψ ∧ xi > ψ ∧¬xi > ¬ψ

for i ∈ (1..n), and

�n+1,n+1: xn+1 > ¬xn+1

where ψ = ϕ ∧ (xn∨¬xn+1). Let i = n+1.

(⇐) We show that if xn = 1 is in ϕ’s MSA, then there exists a′ ∈ D, a′ /∈ Opt(P), and

a′′ ≈P/i a′ for every a′′ ∈ Opt(P).

Let M be the MSA of ϕ , M1 be M ∪ {xn+1} and M2 be M ∪ {¬xn+1}. Since M |=

xn, M1,M2 |= ψ . We want to show that M1 is the optimal outcome for P. If it is not,

there is M′ ∈ D such that M′ �P M1. Then M′/{xn+1} is lexicographical larger than M, a

contradiction with M is the MSA of ϕ . Thus M1 is the optimal outcome for P, M1 �P M2,

and M2 ≈P/i M1.
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(⇒) We show that if xn = 1 is not in ϕ’s MSA, then none of the three conditions is satisfied.

Since ϕ is satisfiable, let M be the MSA. Thus xn = 0 is in M. Let M′ be M∪{¬xn+1},

M′ is an outcome for P. We want to prove that M′ is the optimal outcome for P. Assume

there is M′′ such that M′′ �P M′. If M′′ �P/n+1 M′, M′′/{xn+1} is lexicographical larger

than M, a contradiction with M is the MSA of ϕ . If M′′ ≈P/n+1 M′ and M′′ �n+1 M′, then

M′′ = M∪{xn+1}, M′′ 6|= ψ and M′ �P/n+1 M′′. Thus M′ is the optimal outcome for P.

1. For any a≈P/n+1 M′, a = M′. Thus the first condition is not satisfied;

2. For any a ≈l M′ for every l ≤ n + 1, a = M′. Thus the second condition is not

satisfied;

3. Similarly, the third condition is not satisfied.

Bribery for compare best, compare worst and average-rank:

Let A be a set of N agents 1, . . . ,N with a profile of strictly ranked preferences P =

(�1, . . . ,�N). According to Theorem 26, we want to show that for any i ∈ A , deciding

whether there exists a′ ∈ D such that a′ �i a for every a ∈ Opt(P) is ∆P
2 -complete.

To show this problem is in ∆P
2 , assume preference�i,i is in the form ϕ i

1 >ϕ i
2 > · · ·>ϕ i

mi

and ϕ i
1∨ϕ i

2∨ ·· · ∨ϕ i
mi

is a tautology. We first check whether ϕ1
1 is satisfiable, if it is not,

continue to check whether ϕ1
2 is satisfiable until find the first ϕ1 which is satisfiable and

denote it by ϕ1
j1 . Then we check whether ϕ1

j1 ∧ϕ2
1 is satisfiable and in a similar way to find

ϕ2
j2 . By polynomial number of SAT checks, we can get ϕ1

j1,ϕ
2
j2, . . . ,ϕ

N
jN , and for any a∈D,

a ∈Opt(P) if and only if a |= ϕ1
j1 ∧ϕ2

j2 ∧·· ·∧ϕN
jN . By checking whether ϕ i

1∧·· ·∧ϕ i
ji−1 is

satisfiable, we can decide whether there exists a′ ∈D such that a′�i a for every a∈Opt(P).

For hardness, given a Boolean formula ϕ(x1, . . . ,xn) and ϕ ∧xn, ϕ ∧¬xn are satisfiable,

according to Lemma 2, it is ∆P
2 -complete to decide whether xn = 1 is in ϕ’s MSA. We

construct the profile P = (�1,1, . . . ,�n,n,�n+1,n+1) as follows:

�i,i: ϕ ∧ xi > ϕ ∧¬xi > ¬ϕ
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for i ∈ (1..n), and

�n+1,n+1: ¬xn > xn.

Let i = n+1.

(⇐) We show that if xn = 1 is in ϕ’s MSA, then there exists a′ ∈ D such that a′ �i a for

every a ∈ Opt(P).

Since ϕis satisfiable, any outcome which is not a model of ϕ is not optimal for P.

Let M be the MSA of ϕ , M is the unique optimal outcome for P because for any M′ |= ϕ ,

M�P/n+1 M′ and also M�P M′. Since M |= xn and there exists M′′ 6=M and M′′ |=ϕ∧¬xn,

we can get M′′ �i M.

(⇒) We show that if there exists a′ ∈D such that a′ �i a for every a ∈Opt(P), then xn = 1

is in ϕ’s MSA.

If there exists a′ ∈ D such that a′ �i a for every a ∈ Opt(P), it can only be the case

a′ |= ¬xn and a |= xn for every a ∈ Opt(P). It is easy to see that a |= ϕ . We want to show

that a is the MSA for ϕ . Let M be the MSA. Assume M 6= a, then M �P/n+1 a and also

M �P a, a contradiction with a ∈ Opt(P). Thus M = a and xn = 1 is in M.

Bribery for lexmin:

Let A be a set of N agents 1, . . . ,N with a profile of strictly ranked preferences P =

(�1, . . . ,�N). According to Theorem 27, we want to prove that for any i ∈ A , deciding

whether at least one of the following three conditions holds:

1. There is a′ ∈ D such that for all a′′ ∈ Opt(P), a′ �i a′′

2. There is a′ ∈ D\Opt(P) such that for some t ∈A , t 6= i, and for every a′′ ∈ Opt(P),

a′ ≈P/t a′′

3. There is a′ ∈ D and t, j ∈A such that t ≤ j, t 6= i,

|{a : a ∈ D,a≈P/t a′}|> |Opt(P)|,

for every a′′ ∈ Opt(P), a′ ≈i a′′, a′′ � j a′, and a′′ ≈l a′, for every l < j.
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is ∆P
2 -hard.

Given a Boolean formula ϕ(x1, . . . ,xn) and ϕ ∧ xn, ϕ ∧¬xn are satisfiable, according

to Lemma 2, it is ∆P
2 -complete to decide whether xn = 1 is in ϕ’s MSA. We introduce a

new atom xn+1 and construct the profile P = (�1,1, . . . ,�2n,2n,�2n+1,2n+1) as follows. We

define

�2i−1,2i−1: ϕ ∧ xi > ϕ ∧¬xi > ¬ϕ

�2i,2i: ϕ ∧ xi > ϕ ∧¬xi > ¬ϕ

for i ∈ (1..n), and

�2n+1,2n+1: ¬xn > xn.

Let i = 2n+1.

(⇐) We show that if xn = 1 is in ϕ’s MSA, then there exists a′ ∈ D, a′ �i a′′ for any

a′′ ∈ Opt(P).

Let M be the MSA of ϕ . Since any M′ ∈ D, M �P/2n+1 M′. Thus M is the optimal

outcome for P. Since ϕ ∧¬xn is satisfiable, let M′′ |= ϕ ∧¬xn. Thus M′′ �2n+1 M.

(⇒) We show that if xn = 1 is not in ϕ’s MSA, then none of the three conditions is satisfied.

Since ϕ is satisfiable, let M be the MSA. Thus xn = 0 is in M. We know that M is the

optimal outcome for P.

1. Since M |= ¬xn, there is no M′ �2n+1 M and the first condition is not satisfied.

2. If there is a ≈P/t M, t 6= i, we can get a = M. Thus the second condition is not

satisfied.

3. Since |Opt(P)| = 1, |O′| > 1. There does not exist a and a′ such that a 6= a′ and

a≈P/t a′. Thus |O′| 6> 1 and the third condition is not satisfied.
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5.5 Conclusions and Future Work

We studied manipulation and simple bribery problems arising when one aggregates sets

of ranked preferences. As a preference aggregation method we used the Pareto rule. We

considered two extreme cases of that general setting. In one of them, all preferences are

equally ranked, in the other one the preferences are strictly ranked. In the scenario we

investigated, agents submit preferences on elements of the space of outcomes but, when

considering manipulation and simple bribery, they need to assess the quality of sets of such

elements. In the work, we considered several natural ways in which a total preorder on

a space of outcomes can be lifted to a total preorder on the space of sets of outcomes.

For each of these “liftings”, we found conditions characterizing situations when manipu-

lation (simple bribery) are possible. These characterizations show that in many cases it is

impossible for any agent to strategically misrepresent preferences (compare best and com-

pare worst for manipulation, in both equally ranked and strictly ranked settings; compare

best for simple bribery in the equally ranked setting; and, somewhat surprisingly, average-

rank for manipulation in the strictly ranked setting). In those cases, the Pareto principle is

“strategy-proof”.

However, in all other cases, it is no longer the case. Manipulation and simple bribery

cannot be a priori excluded. To study whether computational complexity may provide a

barrier against strategic misrepresentation of preferences, we considered a simple logical

preference representation language closely related to possibilistic logic and answer-set op-

timization. For sets of preferences given in this language (in the settings of equally ranked

or strictly ranked preferences) and for each way of lifting preorders from sets to power

sets for which manipulation and simple bribery are possible, we proved that deciding the

existence of manipulation or simple bribery is intractable.

Our work leaves several interesting open problems. First, methods to lift preorders from

sets to power sets can be defined axiomatically in terms of properties for the lifted preorders

to satisfy. Are there general results characterizing the existence of manipulation (simple
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bribery) for lifted preorders specified only by axioms they satisfy? Second, we do not

know the exact complexity of the problems EBcw, EMar and EBar for the equally ranked

preferences, nor for EMlmin and EBlmin for the strictly ranked preferences (the superscript

indicates the set comparison method used). Finally, in the setting of equally ranked pref-

erences, most aggregation rules of practical significance properly extend the Pareto one.

We conjecture that at least for some of these rules, one can derive results on existence of

manipulation and simple bribery from our results concerning the Pareto rule.

Copyright c© Ying Zhu, 2016.
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Chapter 6 Importance Learning for Preferences

The general objective of preference learning is to predict unknown preferences from ob-

served user’s behavior. The preference learning problem attracts significant attention in

the study of preferences. However, in many situations where we aggregate preferences, not

only preferences but also their importance matters. The problem of learning the importance

of preferences has not yet been considered. In this chapter, we study this problem. Given a

preference profile over a set of outcomes, and a set of examples that represent a collective

preorder on the outcomes, we want to determine whether there is an assignment of ranks

(or weights) for which the resulting ranked (weighted) profile correctly orders all examples

(or possibly many examples). In other words, we want to discover the importance of pref-

erences in the profile that would explain observations. We consider the learning problem

with ranked preference profiles and weighted voting profiles.

6.1 Problem Statements

We start by formulating precise terms the two versions of the problem we will study. First,

we deal with the fully qualitative case, when preferences are ranked. Let us recall (cf.

Chapter 3) that a ranked profile is a pair (P,r), where P is a set of preferences and r is a

ranking function assigning positive integers to preferences in P. The number of ranks in a

ranked profile (P,r) is denoted by range(P,r) = maxp∈Pr(p). We say a ranked profile (P,r)

is gap-free if for every i = 1, . . . ,range(P,r), there exists p ∈ P such that r(p) = i. For a

gap-free ranked profile (P,r), range(P,r)≤ |P|.

Theorem 30. Let P be a preference profile over a set of outcomes O. For every ranking

function r, there is a ranking function r′ such that (P,r) and (P,r′) define the same total

order over O and (P,r′) is gap-free.
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Proof. Let (P,r) be a ranked profile, and (P,r′) be a ranked profile with minimal number of

ranks for the ranked profiles which define the same total order over O with (P,r). If (P,r′)

is not gap-free, there exists i, i≤ |P|, such that r′(p) 6= i for every p∈ P. Let r′′ be a ranking

function such that r′′(p) = r′(p) for each p ∈ P such that r′(p) < i, and r′′(p) = r′(p)−1

for each p ∈ P such that r′(p) > i. It is clear that (P,r) and (P,r′′) define the same total

order over O, and range(P,r′′)< range(P,r′), a contradiction with (P,r′) is a ranked profile

with minimal number of ranks that defines the same total order over O as (P,r).

Given a set O of outcomes, an example is an expression 〈x,y,R〉, where x,y ∈ O and

R ∈ {�,≈, |}. Given a ranked profile (P,r) and an example 〈x,y,R〉, we say the example is

decided by (P,r) if xRP,ry. If R ∈ {�, |}, we also say the example is decided on rank i by

(P,r) if x≈p y for every p ∈ P, r(p)< i and

1. If R = �, x�p y for some p ∈ P such that r(p) = i, and x�p y for every p ∈ P such

that r(p) = i;

2. If R = |, x�p y and y�q x for some p,q ∈ P such that r(p) = r(q) = i.

Given a preference profile P, a set E of examples (we assume P and E are over a set of

outcomes O) and a ranking function r, we say the ranked profile (P,r) is consistent with E

if (P,r) decides all examples in E. Similarly, we say the profile P is consistent with E if

there exists a ranking function r such that (P,r) is consistent with E.

Theorem 31. Let P be a preference profile and E be a set of examples. If P is consis-

tent with E, there exists a ranking function r such that (P,r) is consistent with E and

range(P,r)≤ min(|P|, |E|+1).

Proof. Let r be a ranking function for P such that (P,r) is consistent with E. According

to Theorem 30, there exists a ranking function r′ such that (P,r′) is consistent with E and

(P,r′) is gap-free. Thus range(P,r′)≤ |P|.
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Let r be a ranking function for P such that (P,r) is consistent with E, and (P,r) has a

minimum possible range. We want to prove that every rank in (P,r) decides some example

in E except the lowest rank. Assume i is a rank in (P,r) which is not the lowest rank

and does not decide any example in E. Then every example is decided above or below

rank i. For every example 〈x,y,R〉 which is decided below rank i, x ≈p y for every p ∈ P

such that r(p) = i. Let r′ be a ranking function such that r′(p) = r(p) for every p ∈ P and

r(p) 6= i+1 and r′(p) = i for every p∈ P and r(p) = i+1. Then (P,r′) is consistent with E.

If range(P,r)= i+1, then range(P,r′)= i and range(P,r′)< range(P,r), a contradiction. If

range(P,r)> i+1, (P,r′) is not gap-free and so, not of minimum range. Since range(P,r)=

range(P,r′), (P,r) does not have a minimum range, a contradiction.

Then every rank in (P,r) except the lowest rank decides some example in E. Therefore

range(P,r)≤ min(|P|, |E|+1).

The two problems we will study in the ranked profile setting can be stated as follows.

RANK-CONSISTENCY Given a preference profile P and a set E of examples, decide whether

P is consistent with E.

A more practical version of the problem, its approximation version, asks for a ranking

function such that the corresponding ranked profile decides at least k examples.

RANK-MATCH-MANY Given a preference profile P, a set E of examples, and a positive

integer k, decide whether there is a ranking function r such that (P,r) decides at least

k examples from E.

The RANK-MATCH-MANY problem can be used to compute the best ranking function, that

is, the ranking function such that the corresponding ranked profile decides the maximum

number of examples.

Next, we move on to the quantitative importance representation, where the importance

of preferences are represented by weights rather than ranks. A weighted profile (P,w) is
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a profile in which every preference p ∈ P is assigned a non-negative number, the weight

w(p) of p, by the weight assignment w. The preferences with a larger weight are more

important than the preferences with a smaller weight. In our study of this setting, we

further restrict preferences to be strict total orders, that is, votes, and call a preference

profile a voting profile. We use positional scoring rules studied in social choice as the

mechanism to aggregate preferences (votes).

Definition 1. An effective positional scoring rule F is determined by a function f : {1,2, . . .}×

{1,2, . . .} → {0,1, . . .} such that for every n ≥ 1 and m > n, f (n,m) = 0, for every n ≥ 1

and 1≤ m < m′ ≤ n, f (n,m)≥ f (n,m′), and f can be computed in polynomial time in its

first argument.

Given a vote p (over the set O, say, of n outcomes which are called candidates in this

setting), the score sF
p (c) of a candidate c in p is given by f (n,rp(c)), where rp(c) is the

rank of c in p. The score of a candidate in a weighted profile (P,w), sF
P,w(c) is given by

sF
P,w(c) = ∑

p∈P
sF

p (c) ·w(p).

The scores in a profile determine a total preorder on candidates (the higher the score, the

more preferred the candidate). We denote this preorder by �F
P,w and we write rF

P,w(c) for

the rank of a candidate c in that preorder. Whenever the rule F is clear from the context,

we drop it from the notation.

Given an effective positional scoring rule F and a weighted profile (P,w), the preorder

�F
P,w and the corresponding rank function rF

P,w can be computed in polynomial time (in the

size of the profile).

For a voting profile over a set O of candidates (outcomes), an example is an expression

〈x,y,R〉, where x,y ∈ O and R ∈ {�,≈}. Since �F
P,w is a total preorder for any effective

positional scoring rule F , we do not allow incomparability examples, as they will not be

observed. Given a weighted profile (P,w) and an effective positional scoring rule F , we
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say a strict example 〈x,y,�〉 is decided by (P,w) under F if sF
P,w(x) > sF

P,w(y), and an

equivalence example 〈x,y,≈〉 is decided by (P,w) under F if sF
P,w(x) = sF

P,w(y).

Given a voting profile P, a set of strict and equivalence examples E (where we assume

P and E are over a set of candidates O), an effective positional scoring rule F and a weight

assignment w, we say the weighted profile (P,w) is consistent with E under F if all exam-

ples in E are decided by (P,w) under F . Also, we say that P is consistent with E under F

if there exists a weight assignment w such that (P,w) is consistent with E under F.

Let F be an effective positional scoring rule. The two problems discussed above in the

ranked profile setting can be stated as follows for the setting of weighted profiles of votes.

WEIGHT-CONSISTENCY-F Given a voting profile P and a set of strict and equivalence

examples E, decide whether P is consistent with E under F .

WEIGHT-MATCH-MANY-F Given a voting profile P, a set of strict and equivalence ex-

amples E, and a positive integer k, decide whether there is a weight assignment w

such that (P,w) decides at least k examples from E under F .

6.2 Learning Ranks for Preferences

6.2.1 The Consistency Problem

For the RANK-CONSISTENCY problem, we show that it can be solved by a polynomial time

algorithm. If the profile P is consistent with the examples E, the algorithm finds a ranking

function so that all examples are decided by the ranked profile. Moreover, the number of

ranks is minimized.

Proposition 5. Let (P,r) be a ranked profile and 〈x,y,≈〉 be an example. Then 〈x,y,≈〉 is

decided by (P,r) if and only if x≈p y for every p ∈ P.

Proof. Directly from the definition.
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Given a preference profile P and a set E of examples, an algorithm to decide the con-

sistency of P with E could first check all equivalence examples. If there is an equivalence

example 〈x,y,≈〉 ∈ E and a preference p ∈ P such that x 6≈p y, then (by Proposition 5), P

is inconsistent with E. Otherwise (also by Proposition 5), for any ranking function r, all

equivalence examples are decided by (P,r) and so the consistency of P with E depends

only on the consistency of P with the set of non-equivalence examples in E.

Thus, from now on we will assume that all examples in E involve either� or | relations.

To solve the consistency problem under this assumption about the example set, we first

describe an algorithm to determine the preferences that cannot have rank 1 in any ranked

profile consistent with the examples. Given a preference profile P and a set E of examples,

we say a preference p is non-rank-1 if for any ranking function r such that r(p) = 1, (P,r)

is not consistent with E.

Before introducing the algorithm, we establish a few auxiliary facts.

Proposition 6. Let (P,r) be a ranked profile and 〈x,y,�〉 be an example. If y�p x for some

p ∈ P and r(p) = 1, then 〈x,y,�〉 is not decided by (P,r).

Proof. Directly from the definition.

Proposition 7. Let (P,r) be a ranked profile and 〈x,y, |〉 be an example. If x�p y, for every

p ∈ P such that r(p) = 1, and x�q y, for some q ∈ P such that r(q) = 1, then 〈x,y, |〉 is not

decided by (P,r). Similarly, if y �p x, for every p ∈ P such that r(p) = 1, and y �q x, for

some q ∈ P such that r(q) = 1, then 〈x,y, |〉 is not decided by (P,r).

Proof. If x �p y, for every p ∈ P such that r(p) = 1, and x �q y, for some q ∈ P such that

r(q) = 1, then the definition implies that x�P,r y, and so, the example 〈x,y, |〉 is not decided

by (P,r). The other part of the assertion can be proved in a similar manner.

Inspired by the two propositions above, non-rank-1 preferences could be determined in

the following way. Given a preference profile P and a set E of examples, let U denote the
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set of all non-rank-1 preferences identified so far (initially empty). First, let us consider an

example 〈x,y,�〉. For every ranked profile (P,r) that is consistent with E, we have x�P,r y.

Thus, no preference p such that y �p x holds can have rank 1 according to Proposition

6. Each such preference is added to U . After checking all strict examples, we move

on to incomparability examples. For an incomparability example 〈x,y, |〉, if x �p y for

every p ∈ P\U , any preference q ∈ P\U with x �q y cannot have rank 1 according to

Proposition 7. Similarly, if y�p x for every p ∈ P\U , any preference q ∈ P\U with y�q x

cannot have rank 1 also by Proposition 7. Therefore such preferences are included in U

and we move on to the next incomparability example. After checking all incomparability

examples, we repeat this process checking all incomparability examples again. In every

iteration, all incomparability examples are checked and the process terminates when there

is no preference added to U in some iteration. The loop is necessary because when U

is changed, an incomparability example that has not “pushed” a preference out of rank 1

before, may do so now.

We will now describe formally an algorithm NotTopRanked(P,E) where P is a pref-

erence profile and E is a set of examples. The algorithm returns the set of all non-rank-1

preferences.

1. U =∅.

2. For each 〈x,y,�〉 ∈ E,

a) if y�p x, for some p ∈ P, U =U ∪{p}.

3. Loop until no change in U

a) For each 〈x,y, |〉 ∈ E,

i. if x�p y for every p ∈ P\U , U =U ∪{q : q ∈ P,x�q y}.

ii. if y�p x for every p ∈ P\U , U =U ∪{q : q ∈ P,y�q x}.
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4. Return U .

Since U is expanded by at least one preference in each iteration, there are at most m iter-

ations where m is the number of preferences. Thus, the algorithm terminates and runs in

polynomial time.

Theorem 32. Let P be a preference profile, E be a set of strict and incomparability ex-

amples, and U = NotTopRanked(P,E). For every ranking function r such that (P,r) is

consistent with E, r(p)> 1 for every p ∈U.

Proof. By Proposition 6, after Step 2, for every q ∈U , r(q) > 1. We will now prove that

after ever iteration of loop 3(a), for every q ∈ U , r(q) > 1. Our comment above shows

that the condition holds before any iterations of the loop 3(a) take place. Let us assume a

particular iteration of the loop 3(a), and assume that just before it, the condition holds. That

is, for every q ∈U , r(q) > 1. Consider a preference q moved to U in this iteration. There

must be an example 〈x,y, |〉 such that x�p y, for every p ∈ P\U , and x�q y (or y�p x, for

every p ∈ P\U , and y�q x). Since (P,r) is consistent with E, (P,r) decides 〈x,y, |〉. Thus,

by Proposition 7, r(q)> 1.

Next, we prove if NotTopRanked(P,E) = P, P is inconsistent with E.

Theorem 33. Let P be a preference profile, E be a set of strict and incomparability exam-

ples, and U = NotTopRanked(P,E). If U = P, P is inconsistent with E.

Proof. Assume P is consistent with E. Then there is a gap-free ranking function r such

that (P,r) is consistent with E (by Theorem 30). According to Theorem 32, for each p ∈ P

such that r(p) = 1, p 6∈U , a contradiction with U = P.

Next, we show that for every example e = 〈x,y,R〉 in E, x and y are indifferent on P\U

or xRP\U y.
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Lemma 3. Let P be a preference profile, E be a set of strict and incomparability examples,

and U = NotTopRanked(P,E). Then for every example e = 〈x,y,R〉 in E, either x ≈P\U y

or xRP\U y.

Proof. Let e = 〈x,y,�〉 and let us assume that x 6�P\U y. From the definition of �P\U , it

follows that for every p ∈ P\U , x ≈p y, or that there is p ∈ P\U such that y �p x. In the

former case, the assertion holds. In the latter, by the way the algorithm works we have

p ∈U , a contradiction.

Next, let e = 〈x,y, |〉, and let us assume that x 6≈p y for some p ∈ P\U , and that x and y

are comparable on P\U . If x �p y, there is no q ∈ P\U such that y �q x since x and y are

comparable on P\U . Based on the algorithm, p ∈U , a contradiction. Thus y�p x, and we

get a contradiction in the same way. Thus, x and y are incomparable on P\U .

If U 6=P, we assign rank 1 to the preferences in P\U . If xRP\U y holds for every example

〈x,y,R〉 in E, (P,r) is consistent with E, where r is a ranking function such that r(p) = 1

for every p∈ P\U and r(p) = 2 for every p∈U . Otherwise, we need to decide whether the

preferences in U can be ranked such that the remaining examples are decided. If U = ∅,

the remaining examples cannot be decided and the problem is inconsistent. Otherwise, we

define E ′ to be the set of examples 〈x,y,R〉 in E such that x≈P\U y, and proceed recursively.

The formal description of the algorithm follows. We call it Rank(P,E,r). It returns

false if P is not consistent with E, and returns true and a ranking function r such that (P,r)

is consistent with E, otherwise.

1. If E =∅, set r(p) = 1 for each p ∈ P and return true.

2. If P =∅, return false.

3. Set U = NotTopRanked(P,E), and E ′ = {〈x,y,R〉 : 〈x,y,R〉 ∈ E,x≈P\U y}.

4. If U = P, return false.
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5. If Rank(U,E ′,r′) returns false, return false; otherwise, set r(p) = 1 for each p∈ P\U

and r(p) = r′(p)+1 for each p ∈U , and return true.

To show the correctness of the algorithm Rank(P,E,r), we first prove the following two

results.

Lemma 4. Let P be a preference profile, E be a set of strict and incomparability examples,

U = NotTopRanked(P,E) and E ′ = {e = 〈x,y,R〉 : e ∈ E,x ≈P\U y}. If r′ is a ranking

function such that (U,r′) is consistent with E ′, then (P,r) is consistent with E where r is

a ranking function such that r(p) = 1 for every p ∈ P\U and r(p) = r′(p)+ 1 for every

p ∈U.

Proof. Let r be a ranking function for U such that (U,r) is consistent with E ′, and r′ be

a ranking function for P such that r′(p) = 1 for every p ∈ P\U and r′(p) = r(p)+ 1 for

every p∈U . For each example e = 〈x,y,R〉 in E ′, since x≈P\U y and e is decided by (U,r),

e is also decided by (P,r′). For every example e = 〈x,y,R〉 in E\E ′, based on Lemma 3,

xRP\U y. Then every example e ∈ E\E ′ is decided by (P,r′) on rank 1. Thus (P,r′) is

consistent with E.

Theorem 34. Let P be a preference profile, E be a set of strict and incomparability ex-

amples, U = NotTopRanked(P,E) and E ′ = {e = 〈x,y,R〉 : e ∈ E,x ≈P\U y}. Then P is

consistent with E if and only if U is consistent with E ′.

Proof. (⇒) Let r be a ranking function for P such that (P,r) is consistent with E, and r′ be

a ranking function for U such that r′(p) = r(p) for every p ∈U . Assume that an example

e = 〈x,y,R〉 in E ′ is not decided by (U,r′). Since x ≈P\U y, e is not decided by (P,r), a

contradiction. Thus (U,r′) is consistent with E ′.

(⇐) Let r′ be a ranking function for U such that (U,r′) is consistent with E ′, and r be a

ranking function for P such that r(p) = 1 for every p ∈ P\U and r(p) = r′(p)+1 for every

p ∈U . According to Lemma 4, (P,r) is consistent with E.
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Now we provide a formal prove of the correctness of the algorithm Rank.

Theorem 35. Let P be a preference profile and E be a set of strict and incomparability

examples. If P is consistent with E, then Rank(P,E,r) returns true and (P,r) is consistent

with E. If P is inconsistent with E, then Rank(P,E,r) returns false.

Proof. Let n be the depth of recursion for Rank(P,E,r). We prove by induction that the

theorem holds for all possible n’s.

First, let n = 0. That means that Rank(P,E,r) terminates without making any recursive

calls. Thus, one of the following three conditions holds:

1. E = ∅. In this case, the algorithm returns true. This is clearly correct. Moreover,

(P,r) is consistent with E for any ranking function r, in particular, on the function

returned by the algorithm.

2. P = ∅ and E 6= ∅. The algorithm returns false. This is correct. Since E contains

strict and incomparability examples, it is clear that E cannot be decided by (P,r) for

any ranking function r, and P is inconsistent with E.

3. NotTopRanked(P,E) = P. The algorithm returns false. According to Theorem 33,

P is inconsistent with E. Thus, what the algorithm returns is correct.

Next we prove that if the theorem holds whenever the depth of the recursion is k, then it

holds when the depth of the recursion is k+1. Let us consider an execution of Rank(P,E,r),

where the depth of recursion is k+1. Let U =NotTopRanked(P,E) and E ′= {e= 〈x,y,R〉 :

e ∈ E,x≈P\U y}. Since the algorithm does not terminate earlier (the depth of the recursion

is k+1 > 0), we are at step 5. There are two possibilities.

1. Rank(U,E ′,r′) returns false. The depth of recursion for Rank(U,E ′,r′) is k. Based

on the induction hypothesis, U is inconsistent with E ′. According to Theorem 34, P

is inconsistent with E, and that is precisely what Rank(P,E,r) returns.
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2. Rank(U,E ′,r′) returns true. Again by induction, it follows that U is consistent with

E ′ and that for r′ computed by Rank(U,E ′,r′), (U,r′) is consistent with E ′. By Theo-

rem 34, P is consistent with E and, accordingly, Rank(P,E,r) returns true. Moreover,

by Lemma 4, the function r computed and returned by Rank(P,E,r) has the property

that (P,r) is consistent with E.

If a preference profile P is consistent with a set E of examples, the ranking function

computed by the algorithm Rank minimizes the number of ranks.

Theorem 36. Let P be a preference profile and E be a set of strict and incomparability

examples. If Rank(P,E,r) returns true, range(P,r)≤ range(P,r′) for any ranking function

r′ such that (P,r′) is consistent with E.

Proof. Let n be the depth of recursion for Rank(P,E,r). We prove by induction that the

theorem holds for all possible n’s.

We first prove the theorem holds when n = 0. Since Rank(P,E,r) returns true, E = ∅

and r(p) = 1 for every p ∈ P. Since range(P,r) = 1, it is clear range(P,r) ≤ range(P,r′)

for any ranking function r′.

Next we prove if the theorem holds when n = k, then it holds when n = k + 1. Let

U = NotTopRanked(P,E), E ′= {e = 〈x,y,R〉 : e∈ E,x≈P\U y}. Let r be the ranking func-

tion returned by Rank(P,E,r) and r′ be the ranking function returned by Rank(U,E ′,r′).

According to the algorithm, the depth of recursion for Rank(U,E ′,r′) is k and range(P,r) =

range(U,r′)+1. Let s be a ranking function for P such that (P,s) is consistent with E, and

s′ be the ranking function on U induced by s. Then range(P,s)≥ range(U,s′)+1 (by Theo-

rem 32). Since x≈P\U y for every 〈x,y,R〉 ∈ E ′, (U,s′) is consistent with E ′. Then based on

the induction hypothesis, range(U,r′)≤ range(U,s′). Thus range(P,s)≥ range(P,r).
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Based on Theorem 36 and 31, the ranking function r computed by the algorithm Rank

has at most min(|P|, |E|+1) ranks and each rank except the lowest one decides at least one

example.

6.2.2 The Optimization Problem

If a preference profile is inconsistent with a set of examples, that is, if there does not exist

a ranking function such that the corresponding ranked profile decides all examples, an

important problem is to find a ranking function so that the corresponding ranked profile

decides as many examples as possible. This problem is an optimization version of the

RANK-MATCH-MANY problem which we will discuss now.

Theorem 37. The RANK-MATCH-MANY problem is NP-complete.

Proof. The problem is in NP as for every preference p∈ P, we can guess its rank r(p) (and

all these ranks can be chosen from the set {1, . . . , |P|} according to Theorem 30), and then

verify in polynomial time whether the ranked profile (P,r) decides at least k examples from

E (exploiting the fact that dominance testing in ranked profiles is a polynomial-time task).

For the hardness part, we provide a reduction from the vertex cover problem in graphs.

Let G = (V,E) be an undirected graph. A set V ′ ⊆V is a vertex cover of G if every edge in

E is incident to at least one vertex in V ′. Given a graph G and an integer k≤ |V |, the vertex

cover problem is to decide whether G has a vertex cover of size at most k. The vertex cover

problem is known to be NP-complete [79].

Let G = (V,E) be an undirected graph with n vertices and m edges (that is, n = |V | and

m = |E|). We denote by Ev the set of edges in E incident to v in G. For every e ∈ E, we

introduce n+ 1 copies of e, say e1, . . . ,en+1. We denote that set by Ce. Finally, we also

introduce one more object, say c, different from all elements in V ∪
⋃

e∈E Ce.

We now define a set O of outcomes, a profile P over O, and a set E of examples over O
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by setting

O =V ∪
⋃
e∈E

Ce∪{c}

P = {
⋃

e∈Ev

Ce � v� REM : v ∈V}∪{c� REM}.

and

E = {〈c,v,�〉 : v ∈V}∪{〈x,c,�〉 : x ∈Ce,e ∈ E}.

We adopt the convention to write REM as the last option in a preference. By default, REM

stands for the set of all outcomes not included in the more preferred options. We will

denote each preference
⋃

e∈Ev
Ce � v � REM, v ∈ V , by pv, and the preference c � REM

by pc.

Clearly, E consists of n+m(n+1) examples. Let k≤ n. We claim that G contains a ver-

tex cover V ′ such that |V ′| ≤ k if and only if there exists a ranking function r to preferences

in P such that the ranked profile (P,r) decides at least m(n+1)+n− k examples.

(⇒) Let V ′ be a vertex cover for G and |V ′| ≤ k. We define the ranking function r on P by

setting

r(pv) =


1 i f v ∈V ′

3 i f v ∈V\V ′

and r(pc) = 2.

Let us consider an example 〈x,c,�〉, for some x ∈Ce and e ∈ E. Since V ′ is a vertex

cover of G, there is a vertex v ∈ V ′ such that e ∈ Ev. Thus, dpv(x) = 1 and r(pv) = 1.

Since for every p ∈ P such that r(p) = 1, dp(c) = 3 and dp(x)≤ 3, the example 〈x,c,�〉 is

decided by (P,r).

Next, let us consider an example 〈c,v,�〉, where v ∈ V . If v ∈ V ′, the ranked profile

(P,r) does not decide the example. Indeed, r(pv) = 1, dpv(v) = 2 and dpv(c) = 3. Thus,

c 6�(P,r) v. On the other hand, if v /∈ V ′, then r(pv) = 3. Moreover, r(pc) = 2, dpc(c) = 1,

dpc(v) = 2, and for every other preference p (it is of the form pw for some w ∈V , w 6= v),

dp(v) = dp(c). Thus, the ranked profile (P,r) decides 〈c,v,�〉.
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It follows that the ranked profile (P,r) decides n+m(n+ 1)− |V ′| examples. Since

|V ′| ≤ k, (P,r) decides at least n+m(n+1)− k examples, as claimed.

(⇐) For this direction, let us assume that r is a ranking function such that (P,r) decides at

least m(n+1)+n−k examples. If there is e∈ E and x ∈Ce such that (P,r) does not decide

〈x,c,�〉, then (P,r) does not decide any of the examples 〈y,c,�〉, where y ∈Ce. Thus the

number of examples decided by (P,r) is at most n+m(n+1)− (n+1)< n+m(n+1)−k,

a contradiction.

It follows that (P,r) decides all examples 〈x,c,�〉, where e ∈ E, x ∈ Ce. Moreover,

(P,r) decides at least n− k examples 〈c,v,�〉, where v ∈V . Let V ′ consists of all elements

v ∈V such that (P,r) does not decide 〈c,v,�〉. By our observation, |V ′| ≤ k. We will show

that V ′ is a vertex cover for G.

Let us consider an edge e ∈ E and x ∈ Ce, and let v and w be the two endpoints of e.

Since (P,r) decides 〈x,c�〉, and c�pc x, it follows that there is a preference pu, for some

u ∈ V , such that x �pu c and r(pu) < r(pc). It follows that u = v or u = w. Without loss

of generality, we may assume that u = v. Thus, r(pv)< r(pc) and x�pv v�pv c. Since for

all preferences p other that pv and pc, v ≈p c, v �(P,r) c, that is, (P,r) does not decide the

example 〈c,v,�〉. Thus, v ∈V ′. It follows that V ′ is a vertex cover for G.

This result shows that, given an integer k, it is hard to decide whether a preference

profile can be ranked to decide at least k examples. If k is fixed, the problem can be

decided in polynomial time by solving the RANK-CONSISTENCY problem for every set of

examples with size k.

6.3 Learning Weights for Voting

Next we consider the learning problems for voting profiles with an effective positional

scoring rule as the aggregation method. In a weighted voting scenario, each vote is a strict

total order, and a candidate receives scores from every vote based on its position in the vote
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and on the weight of the vote. The weights are represented by numerical values and we

consider both real and integer numbers in our work.

6.3.1 The Consistency Problem

Theorem 38. The WEIGHT-CONSISTENCY-F problem is in P (both when weights are al-

lowed to be reals and when they are restricted to be integers).

Proof. This problem can be modeled as a linear programming problem. We construct a

linear program over variables wp, p∈ P, and ε . Variables wp, p∈ P, are meant to represent

the weights we seek.

For every example 〈a,b,�〉, we include in the program the linear inequality

Σp∈Pwpsp(a)≥ Σp∈Pwpsp(b)+ ε,

and for every example 〈a,b≈〉, similarly, we include the inequalities

Σp∈Pwpsp(a)≥ Σp∈Pwpsp(b)

Σp∈Pwpsp(b)≥ Σp∈Pwpsp(a).

We also include in the program the inequalities wp ≥ 0, for every p ∈ P, 0≤ ε and ε ≤ 1.

We take ε as the objective function and we want to maximize it.

If P is consistent with E under F , there is a solution for this linear program with ε

satisfying 0 < ε ≤ 1. Thus, an optimal solution also has a positive ε . Conversely, if

an optimal solution for the linear programming problem has a positive ε , the profile P

is consistent with examples in E under F . It is also clear that if the linear programming

problem has no solutions or if the optimal solution has ε = 0, P is inconsistent with E under

F . Thus, the consistency of P with E can be decided by solving the linear programming

problem we constructed.

The linear programming problem can be solved in polynomial time. Therefore, the con-

sistency problem can be decided in polynomial time. Moreover, if the answer is yes, there
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is a rational solution to the linear programming problem (as the coefficients are integers)

and so, a rational weight assignment showing the consistency of P. Thus, also an integer

weight assignment showing the consistency of P exists (it can be obtained by scaling up

the rational weight assignment).

This result has a corollary limiting the size of the weights, in the case when a profile is

consistent with a set of examples.

Corollary 3. Given a set P of votes, a set E of strict and equivalence examples, and an

effective positional scoring rule F, if P is consistent with E under F, then there exists

an integer weight assignment w such that (P,w) decides E under F and the size of the

representation of all weights w(p) is polynomial in the size of the input.

Proof. From Theorem 38, we know that we can decide whether P is consistent with E, and

compute an integer weight assignment w in polynomial time in the size of the input. Thus,

the size of the representation of all weights w(p) is polynomial in the size of the input.

6.3.2 The Optimization Problem

In this section, we consider the optimization problem for voting profiles, which decides

whether a voting profile can be weighted to decide at least k examples.

We first discuss a simple instance of the optimization problem where the positional

scoring rule is veto, the number of votes is equal to the number of candidates and every

candidate is ranked at the last position by exactly one vote. Under veto, every candidate

gets one point from a vote except the one placed at the very end of that vote. The veto

rule can be formally defined by the function f such that f (n,m) = 1 for every n ≥ 1 and

1 ≤ m < n, and f (n,m) = 0 for every n ≥ 1 and m ≥ n. Given a set O of candidates, We

use O\{c} � c to denote the vote over O that positions the candidate c at the end and the

remaining candidates in an arbitrary order.
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To prove the complexity of the optimization problem for this special voting profile, we

need a lemma to bound the size of weights for the profile.

Lemma 5. Let O be a set of candidates and P = {O \ {c} � c : c ∈ O} a profile over O.

If E is a set of strict and equivalence examples over O such that some total preorder on O

is consistent with E, then there is a weight function w such that (P,w) is consistent with E

under the veto rule, and for every p ∈ P, w(p)< |O|.

Proof. Let � be a total preorder on O. We will write d(x) for the satisfaction degree of a

candidate x in �. We note that for every x ∈ O, d(x) ≤ |O|. Moreover, directly from the

definition we have that for every x,y ∈C,

x� y if and only if d(x)< d(y),

and

x≈ y if and only if d(x) = d(y).

For every x ∈ O we denote the preference O\{x} � x by px. We now define w(px) =

d(x). It follows that for every x ∈ O,

sveto
P,w (x) =W −d(x), (6.1)

where W = ∑c∈C d(c). It follows that x �veto
P,w y if and only if d(x) < d(y) and x ≈veto

P,w y if

and only if d(x) = d(y). Thus, x �veto
P,w y if and only if x � y and x ≈veto

P,w y if and only if

x≈ y.

In particular, if the total preorder � is consistent with E, the weighted profile (P,w)

is consistent with E under the veto rule. Since for every p ∈ P, w(p) ≤ |O|, the result

follows.

We will use this result to prove that the optimization problem for this special voting

profile under veto is NP-complete.
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Theorem 39. The following problem is NP-complete: Given a set of candidates O, a set of

votes P = {O\{c} � c : c ∈O}, a set of strict and equivalence examples E over O, and an

integer k, 1≤ k ≤ |E|, decide whether there is a subset E ′ of E such that |E ′| ≥ k and P is

consistent with E ′ under the veto rule.

Proof. The problem is in NP because we can guess a subset E ′ of E such that E ′ ≥ k and

a weight assignment w with each weight smaller than |O| and verify in polynomial time

whether the weighted profile (P,w) decides at least k examples from E (cf. Lemma 5).

To prove the NP-hardness, we use a reduction from the feedback arc set (FAS) problem,

which is known to be NP-complete [79]. In the FAS problem we are given a directed graph

G= (V,A) and an integer k. The objective is to decide whether there is a set of edges A′⊆A

such that |A′| ≤ k and G′ = (V,A \A′) is acyclic. We call sets A′ with the latter property

feedback arc sets.

Let G = (V,A) be an arbitrary directed graph and k an integer. We define O = V ,

P = {pv : v ∈V}, where pv =V \{v} � v, and E = {〈b,a�〉 : (a,b)∈ A}. We note that for

every assignment w of weights to preferences in P, sveto
P,w (v) = ∑v′∈V,v′ 6=v w(pv′). We claim

that G contains a feedback arc set A′ such that |A′| ≤ k if and only if there exists a weight

assignment w to P such that (P,w) decides (under the veto rule) at least |A|− k examples

from E.

(⇒) Let A′ be a feedback arc set for G such that |A′| ≤ k. Let 〈v1, . . . ,vn〉 be a topological

ordering of G′ = (V,A \A′). Clearly, the strict order vn � . . . � v1 is consistent with all

examples in E ′{〈b,a �〉 : (a,b) ∈ A \A′}. By Lemma 5, there is a weight assignment w

such that (P,w) decides all examples in E ′. Since |E ′| ≥ |A|− k, the implication follows.

(⇐) Let us assume that w is a weight assignment such that the profile (P,w) decides at

least |A|− k examples from E. Let E ′ be the set of examples that are not decided. Clearly,

|E ′| ≤ k. We define A′ = {(a,b) : 〈b,a�〉 ∈ E ′}. We will show that G′ = (V,A \A′) is

acyclic. Let ε = 〈v1, . . . ,vn〉 be any enumeration of elements in V such that sP,w(vi) <

sP,w(v j) implies i < j. Let (a,b) ∈ A \A′. It follows that the example 〈b,a,�〉 is decided
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and so, sP,w(a) < sP,w(b). Let i and j be the positions of a and b in the enumeration ε . It

follows that i < j. Thus ε is a topological ordering of G′ and so, G′ is acyclic.

This theorem is mainly of technical interest. We will use it to prove the complexity of

the optimization problem under a general effective positional scoring rule.

An effective positional scoring rule F is called trivial if f (n,m) = f (n,m′) for every

1≤m,m′ ≤ n. The optimization problem is in P under a trivial effective positional scoring

rule since every candidate gets the same score no matter how to assign the weights to

votes. For any non-trivial effective positional scoring rule, the optimization problem is NP

complete.

Theorem 40. The WEIGHT-MATCH-MANY-F problem is NP-complete for every non-trivial

effective positional scoring rule F.

Proof. The problem is in NP because we can guess a weight assignment w of size poly-

nomial in the size of input (cf. Corollary 3), compute the scores of every candidate, and

use these scores to verify whether there are at least k examples are decided. As each of the

latter two tasks can be accomplished in polynomial time, the membership in NP follows.

For the hardness part, we use a reduction from the problem in Theorem 39. In that

problem we are given a set O of n candidates, a set P = {pc : c ∈ O} of votes, where

pc = O\{c} � c, a set E of strict and equivalence examples, and an integer k; the objective

is to decide whether there is a weight assignment w such that at least k examples from E

are decided by (P,w) under the veto rule.

We construct the sets O′ and E ′ of candidates and examples by setting O′ = O and

E ′ = E. Next, for each c ∈ O, we fix an enumeration c1, . . . ,cn−1 of elements in O \ {c}

and define votes pi
c, i = 1, . . . ,n−1 by setting

pi
c = ci � . . .� cn−1 � c1 � . . .� ci−1 � c.

Finally, we define Pc = {pi
c : i = 1, . . . ,n− 1} and P′ =

⋃
c∈O Pc. We will show that there

is a weight assignment w on P such that at least k examples in E are decided by (P,w)
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under the veto rule if and only if there is a weight assignment w′ on P′ such that at least

k examples in E ′ (= E) are decided by (P′,w′) under the rule F . (⇒) Let w be a weight

assignment for P such that at least k examples in E are decided by (P,w) under the veto

rule. Clearly, for every x ∈ O, sP,w(x) =W −w(px), where W = ∑c∈O w(pc).

We now define a weight assignment w′ on P′. Namely, for every p ∈ Pc, we set w′(p) =

w(pc). Clearly,

sF
P′,w′(x) = ∑

c∈O
sF

Pc,w′(x).

Since x appears in the last position (position n) in every vote in Px, and since each of these

votes has the same weight w(px),

sF
Px,w′(x) = ∑

p∈Px

αnw(px) = (n−1)αnw(px)

where we denote f (n,m) by αm. For every c ∈ O \ {x}, x appears exactly once in each

position i, 1 ≤ i ≤ n− 1, in votes from Pc. Since each of these votes has the same weight

w(pc),

sF
Pc,w′(x) = (α1 + · · ·+αn−1)w(pc)

Thus,

sF
P′w′(x) = ∑

c∈O
sF

Pc,w′(x)

= (n−1)αnw(px)+A ∑
c6=x

w(pc)

= (n−1)αnw(px)+A(W −w(px))

= AW − (A− (n−1)αn)w(px),

where we denote α1 + · · ·+αn−1 by A (and we recall that we defined W = ∑c∈O w(pc)).

We now observe that since F is non-trivial, A− (n−1)αn > 0. Consequently, for every

x,y ∈C,

sP,w(x)> sP,w(y) if and only if sF
Pc,w′(x)> sF

Pc,w′(y).
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Since (P,w) decides at least k examples in E (under the veto rule), (P′,w′) decides at least

k examples in E ′ (= E) under the rule F .

(⇐) Let w′ be a weight assignment on P′ such that at least k examples in E ′ (= E) are

decided by P′ under F . Let E ′′ ⊆ E be the set of examples that are decided by (P′,w′)

under F . It follows that the preorder �F
P′,w′ is consistent with E ′′. By Lemma 5, there is

a weight assignment w on P such that (P,w) is consistent with E ′′. In other words, (P,w)

decides at least k examples in E.

6.4 Conclusions

In this work, we studied the problem of learning the importance of preferences when the

preferences and a set of pairwise ordered options are given. Two settings are considered,

preference aggregation with Pareto principle and voting with a positional scoring rule. We

proved that for both of these settings, it can be decided in polynomial time that whether

a rank/weight assignment exists such that all given examples are decided by the corre-

sponding ranked/weighted profile. For the ranked profile, we also provided a polynomial

algorithm to solve the consistency problem. It computes a rank assignment with min-

imal number of ranks if the profile is consistent with given examples. If the profile is

not consistent with all examples, we considered an optimization problem which decides

whether a rank/weight assignment exists such that the corresponding ranked/weighted pro-

file can decide at least k examples. For both of ranked and weighted profiles, we proved

that the optimization problem is NP-complete. Therefore, a preference profile cannot be

ranked/weighted easily to decide as many examples as possible.

In the future work, we will implement and evaluate our algorithm solving the RANK-

CONSISTENCY problem for ranked profiles. We will also study heuristic algorithms for

the optimization problem. In the current work, for voting profiles, we only considered the

positional scoring voting rules and the results can be extended other voting rules. We can

also study conditional learning problems, such as learning the importance of preferences
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given that preference a is more important than preference b. Moreover, the active learning

problem is also interesting which studies how to recover the importance of preferences with

minimal number of queries.

Copyright c© Ying Zhu, 2016.
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Chapter 7 Conclusions and Future Work

In this dissertation, we studied the following problems for preferences in the ASO formal-

ism: computing conditional optimal solutions, strategic behaviors for a multi-agent profile,

and importance learning with preferences and pairwise ordered options provided.

In Chapter 4, we studied four kinds of computational problems related to reasoning with

preferences in the ASO formalism: to find an optimal outcome, to find an optimal outcome

different from a given interpretation, to find an optimal outcome which is similar to or

dissimilar from a given interpretation, and to find a diverse set of optimal outcomes. We

provided the computation complexity for deciding these optimization problems and discuss

two methods to compute these optimal solutions. One method separates each optimization

problem to a series of tasks which can be modeled as ASP programs, and solves these basic

tasks using ASP solvers. The other method models each optimization problem as a single

disjunctive logic program and uses disjunctive ASP solvers to solve it. We also designed

three different data sets to experiment with these two methods on all problems when the

preferences are ranked or unranked.

According to the experimental results, when all preferences are equally important, the

method compiling the entire reasoning task into a disjunctive logic program works better.

However, when the preferences have different importance, especially when they are ranked

into many levels, the performance of the declarative method (modeling the problem as a

single disjunctive logic program) drops sharply, since the size of the program increases

dramatically when the importance levels need to be represented in the problem. The other

method shows a good performance for the problems computing an optimal outcome and

a different one, once an interpretation is given. For the other two problems, we proposed

complementary approaches for this method with different regions of good performance. To

conclude, the method modeling problems as disjunctive logic programs shows a potential
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on simple instances (have no rank or a few ranks), and the other method performs very well

on basic problems (finding an optimal solution or a different optimal solution).

To extend the current results, we will study possible improvements to our second

method based on disjunctive logic program encodings. We also intend to study other meth-

ods for the optimization problems.

In Chapter 5, we studied the problem of misrepresenting preferences strategically by

some of the agents in a group. We considered the situation when an agent secure that the

group decision is more desirable to her by misrepresenting her preferences (manipulation)

or coercing another agent to represent his preferences insincerely (simple bribery). We

provided the conditions with which the manipulation and simple bribery are possible and

how hard to decide the possibility when the preferences (or agents) are equally ranked

and strictly ranked. The results show that it is impossible for any agent to strategically

misrepresent preferences, or it is intractable to decide the existence of manipulation or

simple bribery.

Our work leaves several interesting open problems. First, methods to lift preorders

from sets to power sets can be defined axiomatically in terms of properties for the lifted

preorders to satisfy. Are there general results characterizing the existence of manipulation

(simple bribery) for lifted preorders specified only by axioms they satisfy? Second, we do

not know the exact complexity of the problems ESBcw, EMar and ESBar for the equally

ranked preferences, nor for EMlmin and ESBlmin for the strictly ranked preferences (the

superscript indicates the set comparison method used). Finally, in the setting of equally

ranked preferences, most aggregation rules of practical significance properly extend the

Pareto one. We conjecture that at least for some of these rules, one can derive results on

existence of manipulation and simple bribery from our results concerning the Pareto rule.

In Chapter 6, we considered the problem learning the importance of preferences when

the profile and a set of pairwise ordered options are given. For both preference aggregation

with Pareto principle and voting with a positional scoring rule, we studied the problem
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to decide whether a rank assignment for preferences or a weight assignment for votes ex-

ists such that all given outcomes are correctly ordered by the ranked profile or weighted

profile. For a preference profile, we provided a polynomial algorithm to solve this prob-

lem and computes a rank assignment if one exists. For a voting profile, we proved the

problem is NP-complete. If the profile is not consistent with all examples, we consid-

ered an optimization problem to decide whether a rank/weight assignment exists such that

the ranked/weighted profile can satisfy at least k examples. For both of the ranked and

weighted profile, we proved the optimization problem is NP-complete.

In the future work, for voting profiles, we only considered the positional scoring voting

rules and the results can be extended other voting rules. We can also study conditional

learning problem, such as learning the importance of preferences given that preference a is

more important than preference b. Moreover, the active learning problem is also interest-

ing which studies how to recover the importance of preferences with minimal number of

queries.

Copyright c© Ying Zhu, 2016.
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