
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2015

Consistency Checking of Natural Language Temporal Consistency Checking of Natural Language Temporal

Requirements using Answer-Set Programming Requirements using Answer-Set Programming

Wenbin Li
University of Kentucky, wli9840122@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Li, Wenbin, "Consistency Checking of Natural Language Temporal Requirements using Answer-Set
Programming" (2015). Theses and Dissertations--Computer Science. 34.
https://uknowledge.uky.edu/cs_etds/34

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Wenbin Li, Student

Dr. Jane Huffman Hayes, Major Professor

Dr. Mirosław Truszczyński, Director of Graduate Studies

Consistency Checking of Natural Language Temporal Requirements using Answer-Set
Programming

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy in the

College of Engineering at the
University of Kentucky

By
Wenbin Li

Lexington, Kentucky

Directors: Dr. Jane Huffman Hayes
Mirosław Truszczyński

Professors of Computer Science
Lexington, Kentucky 2015

Copyright c© Wenbin Li 2015

ABSTRACT OF DISSERTATION

Consistency Checking of Natural Language Temporal Requirements using Answer-Set
Programming

Successful software engineering practice requires high quality requirements. Inconsistency
is one of the main requirement issues that may prevent software projects from being suc-
cess. This is particularly onerous when the requirements concern temporal constraints.
Manual checking whether temporal requirements are consistent is tedious and error prone
when the number of requirements is large. This dissertation addresses the problem of iden-
tifying inconsistencies in temporal requirements expressed as natural language text. The
goal of this research is to create an efficient, partially automated, approach for checking
temporal consistency of natural language requirements and to minimize analysts’ work-
load.

The key contributions of this dissertation are as follows: (1) Development of a partially
automated approach for checking temporal consistency of natural language requirements.
(2) Creation of a formal language Temporal Action Language (TeAL), which provide a
means to represent natural language requirements precisely and unambiguously. (3) De-
velopment of a front end to semi-automatically translate natural language requirements into
TeAL. (4) Development of a translator from TeAL to the ASP language.

Validation results to date show that the front end tool makes the task of translating
natural language requirements into TeAL more accurate and efficient, and the translator
generates ASP programs that correctly detect the inconsistencies in the requirements.

KEYWORDS: Temporal Requirements, Consistency Checking, Knowledge Representa-
tion, Natural Language Processing, Answer Set Program

Author’s signature: Wenbin Li

Date: April 30, 2015

Consistency Checking of Natural Language Temporal Requirements using Answer-Set
Programming

By
Wenbin Li

Director of Dissertation:
Jane Huffman Hayes
Mirosław Truszczyński

Director of Graduate Studies: Mirosław Truszczyński

Date: April 30, 2015

ACKNOWLEDGMENTS

I would like to thank my advisors, Professor Hayes and Professor Truszczyński, for their

guidance and advice throughout my doctoral studies. Their support was invaluable through-

out my research and career pursuit. I would also like to thank Dr. Marek and Dr. Post for

their service on my committee and assistance in my research.

I would like to offer thanks to fellow graduate students Dr. Sultanov, Dr. Hays, Dr.

Kidwell, Dr. Kong, Jesse Yanneli and David Brown for their assistance and collaboration.

I would like to thank my parents, Zhengfei Li and Huiqi Shen, for their love and support

my entire life.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Organization of the Thesis . 4

Chapter 2 General Approach . 5

Chapter 3 Related Work . 11
3.1 Information Retrieval and Natural Language Processing 11
3.2 Requirements Specification . 14
3.3 Model Checking and Answer Set Programming 17
3.4 Requirements Validation . 21

Chapter 4 Temporal Action Language TeAL . 26
4.1 Syntax of TeAL . 26
4.2 Semantics of TeAL . 37

Chapter 5 TeALGenerator . 61
5.1 Data Flow of TeALGenerator . 61
5.2 Detecting Ambiguity and Incompleteness 80

Chapter 6 From TeAL to clingcon language . 82
6.1 Generation of Σ(∆N) . 83
6.2 Generation of Π(AD(∆N), n) . 85
6.3 Generation of Π(TC(∆), h) . 90

Chapter 7 Empirical Studies . 107
7.1 Empirical Study 1: Understandability of TeAL and ASP 108
7.2 Empirical Study 2: Quality of TeALGenerator Outputs 115
7.3 Empirical Study 3: Performance of TeAL2ASP 124

Chapter 8 Conclusions and Future Work . 129

Bibliography . 131

iv

Vita . 141

v

LIST OF FIGURES

2.1 Steps in the Consistency Checking Process . 7

4.1 Example of transition graph . 45
4.2 Example 1 of Satisfiability of Temporal Conditions 49
4.3 Example 2 of Satisfiability of Temporal Conditions 50
4.4 Example 3 of Satisfiability of Temporal Conditions 51
4.5 Example 4 of Satisfiability of Temporal Conditions 52
4.6 Example of Check Points . 54

5.1 Example of Stanford Parse Tree . 65
5.2 Generation of TGTree . 71
5.3 Example of TGTree . 72

6.1 Example of check points on timed path . 92

7.1 Results of Understandability Score (RS) . 113

vi

LIST OF TABLES

5.1 Output of Senna . 63
5.2 Stanford Dependencies . 66
5.3 Constraint Patterns . 69
5.4 Linked TGTree and Parse Tree Nodes . 73

7.1 Results for Prec, Rec, and T1 . 112
7.2 Results of Paired t-test Analysis for T1 , Prec, and Rec (ASP versus TeAL) 113
7.3 Dependent Variables . 116
7.4 Results for Mean Values of Prec1, Rec1, and F1 120
7.5 Results for Mean Values of Prec2, Rec2, and F2 121
7.6 Results for Mean Values of TER . 121
7.7 Results for TDS . 121
7.8 Results for Mean Values of T2 . 122
7.9 Results of Mean Nalues for Dependent Variables (TeAL versus ATeAL) 122
7.10 Results of t-test Analysis for Dependent Variables (TeAL versus ATeAL) . . . 122
7.11 Results of the Study; Six Problems, Four Types of Parameter Settings 127

vii

Chapter 1 Introduction

I proposed, designed, and implemented an efficient and partially automated approach for

checking temporal consistency of software requirements given as natural language text.

The approach is not fully automated as some tasks require human analyst feedback. My

main motivation was to develop methods and techniques to minimize analysts’ workload

and improve the quality of requirements.

1.1 Motivation

High quality requirements are essential for successful software projects. Studies have

shown that 60 - 70% of software project failures are related to defects (or faults) in software

requirements [3]. Ambiguity, inconsistency, and incompleteness are common defects that

prove harmful to the quality of requirement specifications [10].

A recent study shows that inconsistency accounts for 13% of all requirement defects

[45]. Consistency checking must be performed to uncover these defects so that the soft-

ware system can be implemented as specified. However, consistency checking tasks are

generally performed manually, and they are time-consuming and error-prone because of

the complexity and the number (dozens or hundreds) of requirements.

Several techniques have been proposed that use formal methods to check consistency

automatically [53, 47, 46, 86, 77, 19]. These techniques assume that requirements have

already been specified as formalized theories. However, requirements given as formal the-

ories are rare. A vast majority of software projects are specified in natural language. The

natural language requirements need to be translated into formal theories. However, manual

translation requires a high-level of understanding of the target formalism, something ana-

lysts typically do not have. Moreover, the task is labor-intensive and error-prone even if

undertaken by analysts with a good preparation in formal methods. Automated approaches

1

for formalizing requirements also pose many challenges related to the fact that natural lan-

guage text is often ambiguous, incomplete, and difficult to process. In addition, validating

the correctness of translation requires the same high level of familiarity with formal meth-

ods as generating a formal theory representing the requirements.

In this thesis I focus on consistency checking of temporal requirements because many

software projects implement systems that support real-time operations, and temporal re-

quirements are common in such systems. For example, an e-commerce system requires

that a payment be received a specified time prior to submitting an order for processing.

Another example is a safety-critical pacemaker system that requires pacing to occur within

milliseconds of certain detected events. Moreover, as these examples implicitly suggest,

high quality of temporal requirements is essential. Errors in specifying, interpreting, or

implementing temporal requirements can lead to disastrous consequences. If two or more

requirements related to the pacing of the heart are inconsistent, a negative heart event might

not trigger a necessary lifesaving pacing event. One real world example that shows the se-

rious consequences of ignoring the quality of requirements is the AEGIS combat software

disaster [32], in which two-hundred and ninety people lost their lives. Some requirements

were not specified for the AEGIS software system, and hence were never implemented.

Some of the missing AEGIS requirements concerned timing.

In this thesis I propose and describe a semi-automated approach for temporal require-

ment consistency checking. The key element of this approach is Temporal Action Lan-

guage (TeAL), a formal language that I created. On the one hand, TeAL has syntax aligned

with linguistic patterns people use to express temporal constraints in natural language. The

syntax facilitates the comprehension and verification of correctness of TeAL statements.

On the other hand, the semantics of TeAL support the translation to lower-level logic for-

malism. The overall approach consists of two main phases: (1) developing a TeAL theory

from natural language requirements, and (2) translating the TeAL theory into lower-level

logic formalism and using existing tools for processing.

2

For the first phase, I designed and implemented a tool, TeALGenerator , for generating

TeAL-like statements from natural language requirements. The outputs of TeALGenerator

are referred to as “AlmostTeAL” because they may contain inaccuracies or may be missing

some information. Analysts need to verify AlmostTeAL statements and generate correct

TeAL statements from them. For the second phase, I designed and implemented a trans-

lator to automatically translate TeAL theory to a lower-level logic formalism, Answer Set

Programming (ASP) [66, 72]. I selected an existing tool, clingcon [35], to process the

ASP program and determine if there are inconsistencies among the requirements. The

clingcon was chosen due to its ability to handle linear constraints on large numeric do-

mains.

1.2 Contributions

The semi-automated approach described in this thesis aims to minimize the time and effort

analysts spend on the consistency checking task by reducing the task to that of generating

Temporal Action Language (TeAL) theories. The contributions include:

1. Temporal Action Language (TeAL) as a key component of the approach.

• TeAL serves as an intermediate level between natural language requirements

and low-level logic formalism, bridging the gap between the two abstraction

levels.

• TeAL can be used as a formal language to specify requirements in the first

place.

2. TeALGenerator , a tool to build TeAL-like statements (AlmostTeAL) from natu-

ral language requirements. AlmostTeAL statements are used as the guideline and

analysts can revise these statements into correct TeAL statements.

3. A translator, TeAL2ASP , for translating TeAL theories into Answer Set Program-

ming (ASP) [66, 72]. An existing tool, clingcon [35], uses these ASP programs as

3

input and generates outputs that indicate the consistency (or the lack of consistency)

of TeAL theories.

• The correctness of the translation algorithm in TeAL2ASP is proved: analyz-

ing the output of TeAL2ASP indicates if the input TeAL theory is consistent

or not.

4. Experimental studies that determine the readability of AlmostTeAL and measure the

efficiency of generating TeAL statements with the assistance of AlmostTeAL.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 presents the general ap-

proach. Chapter 3 discusses related work. Chapter 4 presents the syntax and semantics

of the intermediate language TeAL. Chapter 5 discusses the front-end tool for generating

TeAL. Chapter 6 presents the translation from TeAL to the low-level logic formalism.

Chapter 7 discusses the empirical studies. Chapter 8 concludes the thesis and outlines

future work.

Copyright c© Wenbin Li, 2015.

4

Chapter 2 General Approach

The key idea of the semi-automated approach discussed in this thesis is to use an interme-

diate language, Temporal Action Language (TeAL), to support the process of formalizing

requirements given in natural language text.

Natural language requirements are ambiguous and rely on implicit information [16].

It is very difficult, if not impossible, to automatically construct a formal theory based on

a set of imprecise requirements and to ensure that the formal theory captures the mean-

ing of these requirements. However, a formal theory that specifies the natural language

requirements precisely is necessary for automating the analysis of a software system.

It is an analysts’ task to decide if a given formal theory is a precise specification of a

set of natural language requirements. However, that requires strong background in logic

formalisms. Even if analysts have such background, poor readability of typical logic lan-

guages in which formal theories are given makes the validation of the formal theory an

ineffective, error-prone and time consuming task.

My approach introduces an intermediate language to bridge the gap between natural

language and low-level logic formalism. To address the issues discussed above, the inter-

mediate language must be close in syntax to natural language to support the validation of

formal theories given in this language, yet it must have precise semantics to allow auto-

mated translation to lower-level logic formalism. To the best of my knowledge, no formal

language that satisfies these requirements exists. I introduced Temporal Action Language

(TeAL), a key component in my approach, as a candidate for the intermediate formalism.

The creation of TeAL theories requires analysts’ involvement because of the ambiguity of

natural language. But the task of checking if theories are consistent can be fully automated

due to the formal nature of TeAL. I have designed and performed experiments to compare

the readability of TeAL and a lower-level logic formalism. The results show that it is easier

5

for analysts to work with TeAL than with the low-level logic formalism (these experiments

are discussed in detail in Chapter 7). I also created TeALGenerator , a tool that gener-

ates “close-to-TeAL” (AlmostTeAL) statements automatically. Experimental results show

that analysts generate TeAL theories more efficiently with the assistance of AlmostTeAL

statements. The experiments are discussed in Chapter 7.

Details of the approach are illustrated using the motivating scenario below:

A system consists of three subsystems, A, B, and C. Subsystem C “controls” the system

and sends data to and receives data from Subsystems A and B. When C is not sending

or receiving, it is idle. Subsystem C expects a “heartbeat” message from the other two

subsystems every N milliseconds. If such a message is not received, Subsystem C begins

to perform a sequence of activities to mitigate degradation of the system. Subsystems A

and B alternate reading messages from Subsystem C, writing to a hardware device, and

responding to messages from Subsystem C. This is done in a timed sequence. Subsystem

A must write to the hardware device within K milliseconds of receiving a message from

Subsystem C. Subsystem B must write to the hardware device within M milliseconds of

receiving a message from Subsystem C.

This scenario describes a software system. A requirement specification document can

be created based on this scenario. Some of the requirements this document could contain

are listed below:

• R1: The system contains three subsystems A, B, and C.

• R2: Subsystem C can send data to and receive data from Subsystems A and B.

• R3: Subsystems A and B can send heartbeat messages to Subsystem C.

• R4: If a heartbeat message is not received from Subsystem A every N milliseconds,

Subsystem C shall initiate degradation actions.

6

Figure 2.1: Steps in the Consistency Checking Process

• R5: Subsystem A must write to the hardware device within K milliseconds after

receiving a message from Subsystem C.

Requirements R1, R2, and R3 do not contain temporal information. Requirements R4

and R5 specify bounds on times when an action may or may not occur, such as “initi-

ate degradation every N milliseconds” and “write within K milliseconds.” Thus, they are

temporal requirements.

As mentioned earlier, TeAL divides the approach introduced in this thesis into two

phases: generating TeAL theory from natural language requirements, and processing the

TeAL theory to check consistency. The first phase generates TeAL theory based on the

requirements above. As Figure 2.1 shows, this phase contains four steps, and only Step 1

and Step 4 require analysts’ involvement.

Step 1 uses existing Information Retrieval (IR) techniques [75, 20] to extract require-

ments that contain temporal information. Most of these requirements contain keywords

such as before and within, or patterns such as do action every x seconds. It is feasible to

7

detect many, if not all, of the temporal requirements based on these keywords and patterns.

Given a set of temporal requirements, non-temporal requirements that are related to

them and that might contain relevant system information must be identified as well. An IR

tool, REquirements TRacing On target (RETRO) [44], is useful in this task. The RETRO

tool can identify requirements that may be relevant to the temporal requirements based

on common terms. Analysts must verify whether the requirements found in this step are

truly relevant and must ensure that all relevant requirements have been identified. By the

end of this step, all requirements that are necessary for modeling the software system are

identified.

For Steps 2 and 3, I designed and implemented a tool TeALGenerator . Step 2 identifies

the system elements that are necessary for generating TeAL theories. Step 3 constructs

these elements into AlmostTeAL. The front-end tool uses Natural Language Processing

(NLP) tools including Stanford Parser [52, 24] and the semantic role labeler Senna [21].

The elements that must be identified in Step 2 for formalizing requirements include

agents, actions, fluents, and temporal constraints.

An agent is a component of a software system that can act and accomplish tasks for the

user of the software [76]. In this case, there are three agents: Subsystems A, B, and C.

An action is an event that can change the state of a software system. Each action

involves an agent that executes it, and has duration and effects. In this case, Subsystems

A and B can perform actions such as “send heartbeat message to Subsystem C,” “write

to a hardware device,” and “receive message from Subsystem C.” Subsystem C can also

perform the actions “receive heartbeat message” and “send message to subsystems A and

B.”

A fluent is a property of a software system that can be changed because of the occur-

rence of actions or the passage of time. For example, “Subsystem C is idle” is a fluent, it

can be changed by the actions “receive messages from Subsystem A/B.”

A temporal constraint may specify time bounds on actions, frequencies with which

8

actions must occur, or the occurrence of actions in time. Such temporal constraints may

refer to multiple discrete time points. For example, R4 specifies that the frequency with

which the action “receive heartbeat message from Subsystem A” should occur is “once

every N milliseconds.” In R5, the time bound on the action “write to hardware device” is

“within K milliseconds after receiving a message from Subsystem C.”

Step 3 focuses on the relations among the elements identified in Step 2 and uses these

relations to construct AlmostTeAL statements. Step 3 defines the preconditions and effects

of these elements. For instance, in this step TeALGenerator detects that in R4, if the

precondition “heartbeat message is received every N milliseconds” is not met, then the

consequence is “subsystem C initiate degradation actions.” (Step 3 is discussed in detail in

Chapter 4.)

Step 4 requires the involvement of an analyst whose task is to convert AlmostTeAL

statements to TeAL statements that correctly represent input requirements. The involve-

ment includes adding missing elements and removing inaccuracies in the auto-generated

AlmostTeAL statements. For instance, at the end of this step analysts will have the follow-

ing TeAL statement for R5:

if received(sysC ,msg , sysA)

then commence write(sysA, dev)

noLaterThan K millisecond after;

Phase 2 uses a correct TeAL theory as input and outputs a result that indicates whether

the requirements are inconsistent. This phase is fully automated and hidden from analysts.

For Step 5, I designed and implemented a translator, TeAL2ASP , to translate the TeAL

theory into low-level logic formalisms1. I chose Answer Set Programming (ASP) [66, 72]

as the formalism used in this approach. ASP is a logic-based formalism which maps real-

life problems to logic expressions and offers tools to reason with these logic expressions
1I acknowledge the assistance of David Brown with the implementation of TeAL2ASP .

9

automatically. For instance, R5 is modeled in ASP by means of several clauses such as:

sat(C3,receive(sysA,msg , sysC),write(sysA, dev), C):-

happen(totrue(receive(sysA,msg , sysC)), C1),

horizon$ >= time(C) +K, happen(com(write(sysA, dev)), C2).

The output of Step 5 is ready to be processed by ASP solvers. The readability of the output

is not a concern because analysts will not need to read it. I chose a solver, clingcon [35], as

the tool for processing the output of TeAL2ASP because clingcon is designed to handle

large numeric domains. The translation to ASP is discussed in detail in Chapter 6.

In Step 6, the output of Step 5 is processed by the ASP solver automatically. The

output illustrates if the requirements are consistent.

In Step 7, the result generated by the ASP solver is analyzed and tracked back to the

original natural language requirements. The result tells analysts if the requirements are

consistent or not. However, analysts may require more details. For example, knowing

that there is an inconsistency somewhere among fifty temporal requirements may not be

very useful. Identifying five problematic requirements that may be responsible for the

inconsistency is much more useful. The task of identifying problematic requirements is

included in future work.

Copyright c© Wenbin Li, 2015.

10

Chapter 3 Related Work

This chapter provides an overview of related work. I discuss information retrieval (IR),

natural language processing (NLP), requirements specification, model checking, answer

set programming (ASP), and requirements validation techniques.

3.1 Information Retrieval and Natural Language Processing

Information retrieval (IR) and natural language processing (NLP) techniques are relevant to

the process of generating AlmostTeAL. IR techniques are used for extracting requirements

that contain necessary information for constructing a TeAL theory and NLP techniques are

used for extracting it.

Information Retrieval

IR techniques are useful for searching, analyzing, and extracting domain information from

natural language requirements.

The vector space retrieval method is one of the most commonly used information re-

trieval algorithms [8]. Vector space retrieval can be used to calculate the similarity between

the query, a formal statement of information that users seek, and a document, the source of

information. The first step in using vector space retrieval is assigning weights to keywords

and representing documents as vectors of these weights. Then, the relevancy ranking is cal-

culated based on the frequency of terms (words) from a query in a document. The higher

the relevance ranking, the higher the similarity between the query and the document.

Two measures, recall and precision, are used to measure the efficiency of IR algorithms.

Recall measures the percentage of the relevant documents that are found, while precision

measures the percentage of the found documents that are relevant. Finding documents

relevant to the temporal requirements will be efficient if recall and precision are high.

11

Existing IR techniques can be used in the process of identifying temporal requirements

within a set of natural language requirements. Nikora and Balcom [75] developed a pro-

gram to identify Linear Temporal Logic (LTL) [42] patterns from natural language require-

ments. The requirements that contain these patterns may share some characteristics, such

as temporal prepositions. Nikora and Balcom preprocessed the natural language require-

ments and applied vector space retrieval. Their experiments showed that LTL patterns

were retrieved with high accuracy. Cleland-Huang, Settimi, Zou, and Solc developed an-

other program that can be used to find temporal requirements [20]. Their program identifies

non-functional requirements by using special keywords. Since temporal requirements of-

ten share similar keywords such as “before” and “after,” their program can be tailored to

identify temporal requirements.

IR techniques and their application to traceability can be useful in collecting domain in-

formation that is related to temporal requirements. Hayes, Dekhtyar, Sundaram, Holbrook,

Vadlamudi, and April introduced a tool REquirements TRacing On target (RETRO) [44].

RETRO uses the vector space retrieval method. It is capable of finding the requirements

that share keywords with temporal requirements. Analysts can check the requirements

found by RETRO and decide if these requirements contain useful information.

RETRO determines if two files are related based on their similarity. Term frequency-

inverse document frequency (TF-IDF) is one of the most frequently used weighting meth-

ods for vector space models. It is also the weighting method used in RETRO. Term fre-

quency measures how many times a term is used in a document. Inverse document fre-

quency measures how important a term is among a set of documents [8].

Natural Language Processing

Natural language processing (NLP) is another area that is closely related to the process of

generating AlmostTeAL.

Stanford Parser [52, 24] is one of the most frequently used tools for natural language

12

processing, it is a Java implementation of a probabilistic natural language parser. A natural

language parser is a program that analyzes the grammatical structure of sentences. This

research makes use of the following functionalities of Stanford Parser: Parts-of-Speech

tagging, chunking, parsing, and the Stanford dependencies. Each are discussed next.

Parts-of-Speech (POS) tagging [84] is the process of marking words or phrases in a

text with particular parts of speech. The tagging is based on the context and the defini-

tion of the words or phrases. Words are classified as nouns, verbs, adjectives, etc., and

phrases as noun/verb phrase, subject/object, etc. POS tagging provides useful information

for identifying system elements in this research.

Chunking [52] is another widely used natural language processing technique which sep-

arates a sentence into meaningful pieces (e.g., noun groups, verb groups) rather than single

words. Chunking does not provide the internal structure of the sentence. My approach

makes use of chunking to identify phrases.

Parsing analyzes the grammatical structure of a sentence and generates a parse tree. The

parse tree illustrates the syntactic relation among the sentence words. Two types of parse

trees are commonly used: constituency-based parse tree and dependency-based parse tree.

The constituency-based parse trees contain two kinds of nodes: terminal and non-terminal.

All interior nodes are non-terminal nodes (e.g., noun/verb phrase) and all leaf nodes are

terminal nodes (e.g., noun/verb). The dependency-based parse trees contain only terminal

nodes (e.g., noun/verb). Given a sentence, its dependency-based parse tree contains fewer

nodes than its constituency-based parse tree. Parsing and POS tagging are closely related

and provide syntactic information in this research.

The Stanford dependencies [52] provide a simple and uniform representation of seman-

tic relations between words. These dependencies are designed to be easily understood. All

dependencies are binary and contain the name of the relation, governor, and dependent,

where the relation holds between the governor and the dependent. For instance, given a

sentence “The message is sent by the server” and a dependency agent(sent , server), the

13

relation is agent , the governor is sent , and the dependent is server . This typed depen-

dency means that server performs the action represented by the passive verb sent . Stand-

ford dependencies contain more than fifty relations. My approach makes use of Stanford

dependencies to understand relations among nouns, verbs, and phrases.

Semantic Role Labeling (SRL) [39] is another natural language processing technique

that detects semantic relations. SRL identifies semantic arguments that are related to the

verbs (predicates) in a sentence. Moreover, SRL classifies the arguments into different

roles. For instance, given a sentence “server sends a message to the node,” the verb send

is identified as the predicate, the role of server is agent (sender), the role of message is

theme (what to send), and the role of node is recipient. Senna [21] is a semantic role

labeler which also supports POS tagging and chunking. Another semantic role labeler

is the Semantic parser [13]. It uses a converter to transform constituent parse trees into

dependency graphs. Most actions, fluents, and their arguments are identified by SRL in my

approach.

3.2 Requirements Specification

Much research focuses on specifying requirements using formal languages. It is necessary

to examine these languages and understand the difference between them and TeAL.

Action languages are formal languages that focus on representing actions, their effects,

and their preconditions. However, action languages do not support the representation of the

temporal constraints in software systems, including the concept of action duration. Baral

and Gelfond proposed an action language AL [9]. The semantics of AL are based on

the “inertia axiom” assumption. This assumption states that “things remain the same until

something happens to make things change.” A system specified by AL can be modeled as a

transition system. The nodes of the transition system represent the states of the system and

the arcs of the transition system represent actions that cause changes. Action languages are

fundamental to TeAL because TeAL is constructed as an extension of the action language

14

AL. I made extension to both the syntax and semantics of AL so that TeAL can describe

complex temporal relationships.

Modular Action Language (ALM) [36] is an extension of AL which supports definition

of actions and fluents with more detail. The language ALM divides the declaration of

actions and fluents into multiple modules. Each action or fluent has its own modules and

the information such as preconditions and effects are organized based on these modules.

Giunchiglia and Lifschitzs proposed another action language C [41]. The semantic of

this action language is based on the “causality principle.” The causality principle claims

that “everything must be caused.” This principle means that when a proposition is true

there must be a reason for it to be true.

Temporal Action Logic (TAL) [27] is a class of logics that supports reasoning about

actions and temporal changes. A TAL narrative consists of two parts: the narrative back-

ground and the narrative specification. The narrative background contains information that

is common to all narratives in a domain, including the generic definition of actions and

fluents, and the causal dependencies among the actions/fluents. The narrative specification

contains information that is specific to particular instances, such as when actions actually

do take place in a narrative, and the initial states. I did not choose TAL as the intermediate

language in this thesis because TAL lacks obvious ways to represent complex temporal

relationships, such as “send message within 2 seconds after receiving a message,” between

actions. Another reason is that validating TAL statements is a difficult task for analysts

who lack a strong background in logics.

Temporal logics are another class of formalisms that allow users to represent and an-

alyze systems in terms of time. Because of this, temporal logics can be used for formal

verification of hardware and software systems [51]. Computational tree logic (CTL) [30]

is a temporal logic that uses a tree-like structure as its model of time. This model shows

that there are multiple paths in the multiple futures and one of these paths may be realized.

Linear temporal logic (LTL) [42] is a temporal logic that uses a structure with a single

15

future (a path). It is easy to express properties such as “some condition will be true eventu-

ally” or “some condition cannot be true until something happens” in LTL. Both CTL and

LTL are used by model checking techniques for describing temporal properties. TeAL is

not designed based on CTL or LTL because some common temporal requirements (e.g.,

perform an action within 10 seconds) are hard to represent in temporal logics.

Situation calculus [68] and event calculus [55] are also formalisms that support tempo-

ral reasoning. The basic elements of situation calculus are actions, fluents, and situations.

A situation represents a sequence of actions. The symbol do represents the situation result-

ing from an action. For instance,

do(send(message), do(generate(message), S0))

represents the situation resulting from “generating and sending a message.” Addition-

ally, like the other formalisms that reason about actions and changes, situation calculus

uses formulas to represent action effects and preconditions. Event calculus allows users

to specify temporal information such as: the value of fluents at given time points, and the

actions that take place at given time points. The predicate HoldsAt(f, t) is used to deter-

mine if the value of a fluent f is true at time point t. The predicates Initiates(a1, f, t1)

and Terminates(a2, f, t2) represent that the action a1 makes f true at t1 and a2 makes f

false at t2. Event calculus also uses Happens(a, t) to represent that a happens at t, with-

out describing its effect. The problem with using situation calculus and event calculus is

similar to TAL: these languages are not easy to read and validate. However, the predicates

discussed above are useful in describing temporal information in ASP programs. In the

approach introduced in this thesis, TeAL theories must be translated into ASP programs.

These ASP programs contain predicates that are close to the predicates discussed above.

Software Cost Reduction (SCR) [48] is a well known requirement specification tech-

nique that describes the system as a state transition machine. An SCR requirement specifi-

cation can be used to specify various requirements, such as functional and temporal require-

16

ments. However, the distance between natural language requirements and a state transition

machine prevents SCR from being used as the intermediate language in this thesis.

There are languages designed for formalizing policies. Some policies specify when

certain events may or may not occur. These policies are very close to temporal require-

ments. Gelfond and Lobo proposed a language for specifying policies [38]. This language

supports the representation of fluents, actions, and two types of policy statements: Au-

thorization Policy, which describes whether certain actions are permitted; and Obligation

Policy, which describes whether certain policies are obligated. Another logic-based policy

specification language is introduced by Craven, Lobo, Ma, Russo, Lupu, and Bandara [22].

The major difference from the previous study proposed by Gelfond and Lobo is that this

work allowed policies to include temporal information.

3.3 Model Checking and Answer Set Programming

Model checking and answer set programming (ASP) techniques are closely related to the

processing of the low-level logic formalism in my approach. I selected ASP as the tar-

get formalism to which TeAL theories are translated. I also considered translating TeAL

theory into a program accepted by a model checker.

Model Checking

Model checking is one of the most commonly used techniques for validating temporal con-

straints [69]. Model checking techniques are more frequently used in analyzing hardware

systems, but can also be used to verify software systems. The techniques can be used to

determine whether properties hold based on the specification of a system.

Clarke, Emerson, and Sistla’s study [19] is a pioneering work in the model checking

field which provided an early example of using temporal logic in model checking. Clarke,

Emerson, and Sistla modeled a concurrent system as a finite-state machine and created the

specifications of this system in temporal logic. They then checked if any property viola-

17

tion can occur in the finite-state machine. The size of the finite-state machine was large:

the finite-state machine had hundreds of states. The results showed that model checking

can be applied to such large systems with reasonable efficiency. This study gave rise to

much subsequent research. Bounded model checking [12] is one of them. This technique

addresses the state explosion problem. The state explosion problem limits the applicabil-

ity of model checking because whenever the complexity of a system increases, the size of

the system model increases exponentially. This problem must be addressed, otherwise the

efficiency of applying model checking to most real-world problems will be unacceptable.

Unlike the study discussed above, the bounded model checking algorithms check whether a

property is violated within a fixed number of steps instead of assuming that the system may

run forever. This technique combines model checking and satisfiability solving techniques

because it specifies the system as a boolean satisfiability problem. The bounded model

checking algorithm determines that, for every system model and every property, there ex-

ists a completeness threshold k such that if there is no violation detected within k steps,

then there is no violation for all boundaries greater than the threshold. Clarke, Biere, Raim

and Zhu studied the complexity of computing this threshold [18]. The approach introduced

in this thesis is close to the concept of bounded model checking, because the approach also

checks if there is inconsistency within a threshold (it is called time horizon in this thesis)

instead of checking consistency for arbitrarily long time. Details of consistency checking

are discussed in Chapter 4.

Model checking techniques can also model the system as timed automata. Yovine ex-

amined different model checking techniques that specified real-time systems as timed au-

tomata [89]. A timed automaton uses a set of clocks to represent the temporal properties

in real-time systems. The complexity of model checking in Yovine’s study increases expo-

nentially with the number of clocks used in the timed automaton.

Many model checkers have been implemented. The NuSMV model checker [17] is a

model checking tool based on Binary Decision Diagrams. It allows users to represent prop-

18

erties to be verified in LTL or CTL. It also supports LTL extended with “past operations”

(e.g., Y for previous and X for next). The SPIN model checker [50, 49] describes the

system to be verified in Process Meta Language, and the properties to be verified in LTL.

SPIN can also simulate possible execution paths through the system. The Uppaal toolbox

[56] is a model checker designed for verification of real-time systems. Unlike the other

model checkers discussed in this section, Uppaal models the system in timed automata.

Answer Set Programming

Answer-set programming (ASP) [66, 72] is a computational knowledge representation for-

malism that is used to represent and solve search problems. ASP is based on the stable

model (answer set) semantics of logic programming [37], and search problems are reduced

to computing answer sets.

An answer set program consists of rules of the form:

A← B1, . . . , Bm, not C1, . . . , not Cn. (3.1)

where A,B1, . . . , Bm, C1, . . . , Cn are grounded atoms. The left side of the arrow is the

head, and the right side is the body. If the body is empty, then the rule is a fact. If the head

is empty, then the rule is a constraint. A stable model of an answer set program has the

following property: for every rule in the answer set program, if all of the positive atoms in

the body (B1, . . . , Bm) are in the stable model, and none of the negative atoms in the body

(C1, . . . , Cn) is in that stable model, then A must be included in the stable model.

Answer set programs also include choice rules such as:

{b, c, d} ← a. (3.2)

This rule means: if a is in a stable model, then one of b,c,d must be included in that stable

model as well. The rule above can be extended with numerical bounds:

1{b, c, d}2← a. (3.3)

19

This rule means: if a is in a stable model, then at least one and at most two of the atoms

b,c,d must be included in that stable model. The definition of a stable model was extended

to the rules above by Niemelä [74].

Answer sets are generated by answer set solvers, the software that processes answer-

set programs. The answer set solvers are built based on the technology of SAT solvers

[62, 71]. Many answer set solvers have been implemented, including: smodels [73], assat

[64], clasp [34], and aspps [29].

Although answer set solvers are capable of solving search problems, these solvers are

not sufficiently efficient when the input program has many variables with large domains.

A solver grounds a program with variables before processing it. Grounding means re-

placing a variable with all of its possible values. This may cause a combinatorial explosion

of clauses. For instance, given a rule:

p(X, Y) ← q(X), r(Y). (3.4)

where both X and Y have one hundred possible values, grounding removes these two vari-

ables by replacing this rule with ten thousand rules. Variables like the ones in the exam-

ple generate too many ground instantiations and the answer set solver’s capability may

be exceeded. Optimization algorithms have been introduced for grounding techniques.

Mellarkod, Gelfond, and Zhang introduced an approach that integrates ASP and con-

straint logic programming [70]. This approach presented a knowledge representation lan-

guage AC (C), an extension of ASP , and a new solver designed for AC (C). The solver,

ACSolver , created constraint programs using variables with large ranges and solved these

constraint programs using an integrated constraint solver. Another variant of answer set

solver is clingcon [35]. The clingcon solver also combines answer set programming with

constraint solving and prevents the solver from being overwhelmed by a huge number of

grounding instantiations.

20

3.4 Requirements Validation

Requirements validation techniques attempt to prevent or identify inconsistency, incom-

pleteness, and incorrectness in a set of requirements. Much research uses formal methods

to automate the process of analyzing software systems. These techniques should be exam-

ined because the approach introduced in this thesis uses formal methods as well.

Many requirements validation techniques use model checking to validate software sys-

tems. One study used the SPIN model checker to automatically verify UML Statechart

Diagrams [57]. This study focused on the translation from UML Statechart Diagrams to

PROMELA, the input language of SPIN . The study covered several important properties

for real-time systems, such as concurrent behavior, sequentialization, and non-determinism.

Knapp, Merz, and Rauh [54] proposed a prototype tool, HUGO/RT , for performing the

model checking task. This study focused on checking real-time object-oriented system de-

sign. Instead of modeling the system as a finite-state machine, Knapp et al. [54] converted

timed state machines and temporal constraints into observer timed automaton and timed

automata that represent the model, respectively. The timed automata were checked against

the observer timed automaton. The major difference between this thesis and the studies

above is that this thesis assumes that requirements are given in natural language, while

these studies assumed that requirement formal specifications have already been created.

There are research projects that use ASP to validate software systems. Lee and Palla

proposed an approach for reformulating situation calculus and event calculus in an ASP

program [58]. Lee and Palla proved that reasoning in situation calculus and event calculus

can be reduced to computing answer sets using existing answer set solvers. Lee and Palla

also developed a program to reformulate a TAL narrative in an ASP program [59]. They

introduced the translations from TAL to both clasp and clingcon. The results illustrated

that clingcon processes the translated TAL program more efficiently because clingcon has

advantages in handling large numeric domains. The approach introduced in this thesis

uses TeAL instead of TAL, but the TeAL theories represent “time” as large numeric do-

21

mains, and clingcon handles the “time” domain better than clasp. Baral et al. discussed

how to represent actions, their effects, and their precondition in ASP [9]. The study used

predicates occur(. . .) to represent that an action happens at a certain time, and predicates

holds(. . .) to represent that a system property holds at a certain time. In this thesis, TeAL

theory reuses Baral and Gelfonds’ Action Language [9] to describe the effects and precon-

ditions of actions. This information is translated into ASP in a similar way.

Some requirements validation techniques do not rely on ASP or model checking. Gior-

dano, Martelli, and Schwind [40] proposed an approach to validate planning problems. The

study modeled planning problems in Dynamic Linear Time Temporal Logic (DLTTL), an

extension of temporal logic, and represented the DLTTL theories as satisfiability problems.

Heitmeyer, Labaw and Kiskis [47] developed a program for consistency checking. They

assumed that requirements are specified in SCR, and they generated finite-state automaton

based on these SCR requirements. This technique can automatically detect errors including

type errors, non-determinism, and circular definitions. Duran, Ruiz, Bernárdez, and Toro

proposed a technique that uses XML and EXtensible Stylesheet Language Transformation

(XSLT) to perform automatic verification [28]. They developed a model of a software

system in XML and used XSLT as the requirements verification language. Heimdahl and

Leveson developed a program to check completeness and consistency of state-based re-

quirements [46]. In this program, the requirements are formalized in Requirement State

Machine Language (RSML). RSML is very similar to Statechart, a diagram that extends

state-transition diagrams [43].

Li, Viriyasitavat, Ruchikachorn, and Martin [23] presented an automated framework for

verifying service workflow requirements using propositional logic. The requirements are

supposed to be given in SWSpec [87], the requirements specification language in service

workflow environments. The SWSpec describes the sequence of events using Computa-

tional Tree Logic (CTL) [30]. The framework automates the process of verifying SWSpec

formulas by translating them into propositional logic. The concept of modeling require-

22

ments using an intermediate formal specification and translating the specification into lower

level logic formalism is the same as my approach.

Mashkoor and Matoussi [67] proposed an approach to validate a semi-formal require-

ment model. The semi-formal requirement model is difficult for customers to verify with-

out any assistance. This approach tries to solve the problem through a gradual introduction

of formalism into the requirement model. First, this approach uses KAOS (Knowledge

Acquisition in autOmated Specification) [85] to analyze the requirements and build a data

model based on first-order temporal logic. Then the KAOS model is translated into an

Event-B [6] formal specification, which is based on first order logic. Their approach then

validates the Event-B specification automatically. The idea of gradual introduction of for-

malism is similar to the approach introduced in this thesis.

Like the ASP and model checking techniques discussed above, the major difference

between those studies and this thesis is that analysts’ workload is not considered. Correct

formal specifications are assumed to be inputs, but generating and validating these specifi-

cations is a tedious task. In fact, improving the efficiency of generating TeAL theories is

one of the key problems addressed by this thesis.

Cabral and Sampaio [14] introduced an approach for formalizing the use cases given in

a controlled natural language Attempto Controlled English (ACE) [33]. Cabral and Sam-

paio assumed that the use cases were given in ACE . The advantage of using controlled

natural languages is that these languages are close to natural language, have a formal syn-

tax and semantics, and can be translated into an existing formal language. Cabral and

Sampaio’s approach translates the use cases into a formal model, which can be used as

input for a model checker. Processable English (PENG) [80] is another controlled natu-

ral language that is close to ACE . Schwitter, Ljungberg, and Hood [81] developed a text

editor that assists users in creating PENG sentences. The idea of using controlled natural

language as the intermediate level between natural language and low-level logic formalism

is very close to the use of TeAL in my approach. However, my approach also concerns the

23

process of creating TeAL statements, including identifying system information from natu-

ral language requirements and constructing TeAL using such information. It is possible to

use controlled language requirements instead of natural language requirements as the input

to my approach, but this is not required.

There are research projects that use Natural Language Processing techniques to validate

software requirements given in natural language. Fliedl, Kop, Mayr, Winkler, Weber, and

Salbrechter [31] introduced an approach for the linguistic analysis of requirements texts.

This approach uses semantic tagging and chunk-parsing techniques to identify system in-

formation from natural language text. The information this approach identifies includes

actor and condition, which is close to the agent and precondition I want to identify in my

approach.

Deeptimahanti and Babar [26] described a tool, UML Model Generator from Analysis

of Requirements (UMGAR), for generating UML models from natural language require-

ments. Deeptimahanti and Babar extract the necessary information, actors and their ac-

tions, using natural language processing techniques such as Stanford parser [52, 24]. The

same type of information is also identified in my approach.

Weston, Chitchyan, and Rashid [88] proposed a tool framework for automatically pro-

cessing natural language requirements into a formalized model. This tool framework in-

cludes a natural language processing tool ARBORCRAFT [7] and EAMiner [78], a tool

for identifying the parts of a program that affect other parts of the system in natural lan-

guage documents. ARBORCRAFT measures the similarity among requirement docu-

ments, and creates a feature tree based on these similarities. Analysts have the option

to modify the feature tree based on their domain knowledge. My approach identifies the

related non-temporal requirements by measuring their similarity among temporal require-

ments. My approach requires analysts to provide feedback to the results as well. EAMiner

uses grammatical patterns in this process. For example, “mobile phones” can be detected

by the pattern “noun with qualifiers,” where qualifiers can be adjectives (e.g., mobile). In

24

my approach the phrases with specific patterns (e.g. within followed by a time period) are

identified as well.

Copyright c© Wenbin Li, 2015.

25

Chapter 4 Temporal Action Language TeAL

As mentioned earlier, Temporal Action Language TeAL is a critical component in the ap-

proach discussed in this thesis. The TeAL, as an intermediate language that bridges the gap

between natural language and logic formalism, must satisfy the following requirements: (1)

have a syntax close to natural language expressions appearing in requirement statements,

and (2) have a precise semantics.

I designed TeAL as an extension of the action language AL [9]. I chose AL as the basis

of TeAL because detecting inconsistencies means finding the logical or temporal conflicts

among actions, and the action language AL is designed to describe the effects of the actions

and to reason about them. Another advantage of AL is its intuitive syntax. Consequently,

analysts do not need much training to interpret or write TeAL statements. The limitation

of AL is that AL is created for describing the effects of the actions and not for representing

temporal constraints. I extended the syntax of AL to support the temporal constraints in

temporal requirements so that TeAL can meet the requirement on expressiveness.

4.1 Syntax of TeAL

A TeAL theory is a triple ∆ = 〈Σ,AD ,TC 〉, where Σ is the signature of the theory, AD

is an action description that defines actions and their effects, and TC is the set of temporal

constraints. The pair 〈Σ,AD〉 can be viewed as a theory in AL [9] with modifications that

will be discussed below. The AL theory 〈Σ,AD〉 does not contain any temporal informa-

tion.

Signature

Structured similarly to an AL signature, a TeAL signature Σ = 〈S,C,FL,AC ,AG〉 de-

fines the names of domains (the set S of sorts), the entities of each domain (the set C of

26

constants), the names of system properties (the set FL of fluents), and the names of actions

(the set AC of actions). One difference between TeAL and AL is that Σ also identifies

sorts whose entities can perform actions (the set AG of agents). I use a series of statements

to describe the signature of a TeAL theory. Each statement involves a keyword.

A sort declaration has the form:

sort s1, . . . , sk; (4.1)

where s1, . . . , sk are names of sorts. For example, the statement:

sort server, node; (4.2)

specifies two sorts: server and node. These two sorts can also be declared in two separate

statements.

Constant declarations define domains of sorts. A constant declaration has the form:

constant s con1, . . . , conk; (4.3)

where s is a sort declared in a sort declaration and con1, . . . , conk is a list of constants. For

example, the statement:

constant node nodeA, nodeB , nodeC ; (4.4)

declares that the node sort consists of three elements: nodeA, nodeB , and nodeC . All

constants in TeAL are defined in this way.

Agents are special sorts in that their elements can perform actions. Thus, AG is a subset

of S. An agent declaration has the form:

agent ag1, . . . , agk; (4.5)

where ag1, . . . , agk are sorts that have been declared in the sort declaration statements. For

example, the statement:

agent server , node; (4.6)

27

specifies that the elements of the sorts server and node are agents and so, can perform

actions.

Fluents are used to describe logical properties of a system at any given time. Each

of them can be assigned a logical value true or false. Fluents can be inertial or not.

If a fluent is inertial, then its logical value does not change unless an action that affects

it is performed. If a fluent is not inertial, then its logical value can change without the

occurrence of any action. For example, non-inertial fluents may change due to passing

time. A fluent declaration has the form:

fluent fluentName(s1, . . . , sk); (4.7)

where fluentName is a string that represents a fluent name and (s1, . . . , sk) is a sequence

of sort names defining the arguments of the fluent. A fluent may or may not have attributes.

The sequence above is empty when the fluent has no attributes. For example, the statement:

fluent connected(server , node); (4.8)

declares a fluent with two arguments of sorts server and node. The attributes can be

instantiated as specific constants based on the constant declarations.

Actions are specified in the same way as fluents except that the first attribute of an

action must be its agent. An action declaration has the form:

action actionName(s1, . . . , sk); (4.9)

where actionName is a string that represents an action name and s1, . . . , sk is a list of sort

names, in which s1 must be an agent sort. For example:

action (server , node); (4.10)

declares an action to establish a connection. This action is executed by a server.

28

Action Description

The action description (AD) of a TeAL theory uses statements introduced in AL [9] to

specify the action domain: the causal dependencies among actions and the relationships

among fluents, the prerequisites of actions, and action effects. The three types of statements

included in AD are:

State constraints L if P (4.11)

Dynamic causal laws a causes E if P (4.12)

Executability conditions impossible a1, . . . , ak if P (4.13)

where E, L, P are lists of fluents and their negations, and a, a1, . . . , ak are actions. Ex-

pression (4.11) captures the constraint that every state satisfying P must also satisfy L.

Expression (4.12) specifies the effects E of action a executed in a state satisfying P . Fi-

nally, expression (4.13) specifies that the conditions P must not hold in a state in order for

actions a1, . . . , ak to be executable.

Below, I show the AD part of the TeAL theory that represents a system which contains

three subsystems A, B, and C. Subsystem C can send messages to Subsystems A and B, A

and B can also send messages to C.

% A message can not be received if it is not sent .

impossible receive(sysC ,msg , sysA) if not sent(sysA,msg , sysC);

impossible receive(sysC ,msg , sysB) if not sent(sysB ,msg , sysC);

impossible receive(sysA,msg , sysC) if not sent(sysC ,msg , sysA);

impossible receive(sysB ,msg , sysC) if not sent(sysC ,msg , sysB);

% The sent fluent is set to true as an effect of the send action.

send(sysA,msg , sysC) causes sent(sysA,msg , sysC);

send(sysB ,msg , sysC) causes sent(sysB ,msg , sysC);

29

send(sysC ,msg , sysA) causes sent(sysC ,msg , sysA);

send(sysC ,msg , sysB) causes sent(sysC ,msg , sysB);

% The sent fluent is set to false as an effect of the receive action.

receive(sysA,msg , sysC) causes not sent(sysC ,msg , sysA);

receive(sysB ,msg , sysC) causes not sent(sysC ,msg , sysB);

receive(sysC ,msg , sysA) causes not sent(sysA,msg , sysC);

receive(sysC ,msg , sysB) causes not sent(sysB ,msg , sysC);

% If a sent message has not been received, it cannot be sent again.

impossible send(sysC ,msg , sysA) if sent(sysC ,msg , sysA);

impossible send(sysC ,msg , sysB) if sent(sysC ,msg , sysB);

impossible send(sysA,msg , sysC) if sent(sysA,msg , sysC);

impossible send(sysB ,msg , sysC) if sent(sysB ,msg , sysC);

Initial Constraints. To define the initial conditions of a system in AD , I use initial con-

straints. Initial constraints are not a part of AL, where the initial conditions of a system

are specified differently.

An initial constraint is a statement:

initially L; (4.14)

where L is a fluent or its negation. By default the value of a fluent is considered to be false

unless an initial constraint specifies it to be true. For example:

initially inMode(system, idle);

declares that the system is in the “idle” mode when the system starts.

30

Temporal Constraints

The third component TC in a TeAL theory is the key feature that distinguishes TeAL from

AL. Expressions of TC specify temporal constraints and action durations.

Prompts. A TeAL theory is capable of describing actions in more detail than AL. While

AL disregards the amount of time that an action takes, TeAL allows for specifications of

the durations of actions, and the moments when actions start or end. TeAL introduces

prompts to indicate the time moments when the corresponding events occur. The basic

form of a prompt is:

prompt operator action (4.15)

where the prompt operator can take the values commence and terminate. The prompt

operator commence represents the time moments when actions start. The prompt oper-

ator terminate is used to indicate the time moments when actions are completed. For

example, the prompts:

commence send(serverA,msg , nodeA)

terminate send(serverA,msg , nodeA)

indicate the time moments when the action send(serverA,msg , nodeA) was initiated and

completed, respectively.

It should be noted that I assume that in TeAL theories time is discrete, and I repre-

sent time moments as consecutive integers. The distance between two neighboring time

moments represents the smallest unit of time appearing in the TeAL theory. At present I

assume that only one time unit is used in all temporal constraints. The support of multiple

time units is part of the future work.

Consecutive Prompts. It is possible that temporal relationships involve the same action

that is performed multiple times. The keywords next and previous are used in TeAL to

31

refer to the closest occurrence of the action after and before the time moment when the the-

ory is being examined. I call this time moment the current time moment. This time moment

is discussed in detail later when I describe the semantics of TeAL. The keywords next

and previous are also useful when there is a need to mention two successive occurrences

of the prompt in the same TeAL statement. The general form of a consecutive prompt is:

prompt operator next | previous Action (4.16)

For example, the expression

terminate previous (serverA, nodeA)

defines a prompt that indicates the most recent occurrence of terminate (. . .) strictly

before the current time moment. Similarly,

commence next (serverA, nodeA)

indicates the earliest occurrence of commence (. . .) strictly after the current time moment.

It should be noted that the current syntax does not allow the iteration of next or previous.

The introduction of iterated next and previous operators is part of future work.

Temporal Conditions. The basic component of a temporal constraint is a temporal con-

dition. Temporal conditions are used to represent temporal relationships between the oc-

currence times of two events. The temporal conditions use keywords such as at, after,

noLaterThan, and startTime to specify the relationships and the times. For example,

the temporal condition

terminate next send(sysA,msg , sysC)

at X second after

terminate send(sysA,msg , sysC)

32

represents the requirement that “sysA sends a message to sysC once every X seconds.”

Similarly, the temporal condition

commence send(sysA,msg , sysC)

noLaterThan X second after startTime

represents the requirement that “sysA sends a message to sysC within X seconds after the

system starts.” The Backus Normal Form for a temporal condition follows:

〈tempCond〉 ::= 〈timeRef 1〉 [when1] | [when2]

when1 ::= 〈timeComp〉〈timeMod〉

when2 ::= 〈timeComp〉[〈timeMod〉]〈timeRef 2〉

〈timeComp〉 ::= earlierThan | at | laterThan | noEarlierThan

| noLaterThan

〈timeMod〉 ::= X unit before | X unit after

〈timeRef 1〉 ::= 〈prt〉 | 〈L〉

〈timeRef 2〉 ::= 〈prt〉 | startTime | L

〈unit〉 ::= second

〈L〉 ::= fluent or its negation

Here X is a positive integer. I use timeRef 1 and timeRef 2 to specify time moments. The

term startTime represents the time moment when the system starts; prt determines the

time moment when the corresponding event occurs; a fluent F appearing in a temporal

condition represents the time when a change that makes F to be true occurs. Similarly, the

negation of a fluent in a temporal condition represents the time when a change that makes

F to be false occurs [61]. The time given by timeRef 2 can be modified by X unit before

or X unit after (timeMod), where Term unit refers to the time unit that is used in the

TeAL theory. As I have discussed above, for now I assume that a TeAL theory only uses

one time unit. In the examples below, that unit is second .

33

I use the keywords earlierThan, noLaterThan, laterThan, noEarlierThan

and at (timeComp) to specify the relationship between the time moments determined by

timeRef 1 and timeMod timeRef 2. For example, in

terminate dropConn(serA, nodeB)

at 5 second after commence (serA, nodeA)

the temporal condition specifies the relation between the time moments determined by

the prompt terminate dropConn(serA, nodeB) (timeRef 1) and the prompt commence

(serA, nodeA) (timeRef 2). The relation is at 5 second after (timeComp and timeMod).

Here I only provide intuitive explanation of this temporal condition. The detailed semantics

is discussed in next section. This temporal condition means that whenever serA starts to

establish connection to nodeA (commence (serA, nodeA)), serA will drop the connec-

tion to nodeB (terminate dropConn(serA, nodeB)) at 5 seconds later. Another temporal

condition

terminate next dropConn(serA, nodeB)

at 5 second after commence (serA, nodeA)

means that whenever the prompt commence (serA, nodeA) occurs, the next occurrence of

terminate dropConn(serA, nodeB) must be at 5 seconds later. If the temporal condition

is

terminate next dropConn(serA, nodeB)

at 5 second after

then this temporal condition is interpreted with respect to an implicit time moment rep-

resenting the “current time moment.” The time moment determined by terminate next

dropConn(serA, nodeB), timeRef 1, is the first time after the “current time moment” when

terminate dropConn(serA, nodeB) occurs. The temporal condition above is useless by

34

itself and may not be used without context, because the “current time moment” is not spec-

ified. However, in a temporal constraint that consists of multiple temporal conditions, the

“current time moment” may be specified by other temporal conditions. For example, TeAL

expresses the temporal requirement “A connected node should re-identify itself to the server

within 5 seconds after the connection is established, or the server will drop the connection

within 10 seconds” as

if terminate connect(serA, nodeA) and

not terminate next (nodeA, serA) noLaterThan 5 second after

then terminate dropConn(serA, nodeA)

noLaterThan 10 second after;

In this example, the “current time moment” of the temporal condition

not terminate next (nodeA, serA) noLaterThan 5 second after

is determined by the prompt terminate connect(serA, nodeA). This prompt also deter-

mines the “current time moment” of the temporal condition

terminate dropConn(serA, nodeA) noLaterThan 10 second after

Temporal Constraints. A temporal constraint is an expression:

if A1 and . . . and Ak then B1 or . . . or Bm; (4.17)

where A1, . . . , Ak and B1, . . . , Bm are temporal conditions, their negations, or true and

false. Based on propositional logic, temporal constraints that contain other boolean combi-

nations of temporal conditions can be represented as a collection of the temporal constraints

above. Thus, TeAL does not provide explicit ways to model them directly.

Below, I show the TC part of the TeAL theory that represents the example requirements

from Chapter 2. The requirement R4, If a heartbeat message is not received from Subsystem

35

A every K seconds, Subsystem C shall initiate degradation actions, can be written as:

if terminate previous send(sysA,msg , nodeC)

at K second before and not received(sysC ,msg , sysA)

then commence degrade(sysC);

Similarly, the requirement R5, Subsystem A must write to the hardware device within

K seconds after receiving a message from Subsystem C, can be written as a temporal con-

straint that only consists of one temporal condition:

commence next write(sysA, dev)

noLaterThan K second after terminate receive(sysC ,msg , nodeA);

Duration Specification

TeAL uses duration specifications to specify the duration of actions:

duration Action x unit ; (4.18)

where x is a positive number and unit refers to time units such as millisecond or second .

Common Shorthands

I allow the following shorthands in TeAL:

impossible pr 1, . . . , prk if C; (4.19)

where C is a temporal condition or its negation. This is equivalent to:

if pr 1 and . . . and prk and C then false; (4.20)

I also allow to write:

pr causes C2 if C1; (4.21)

where C1 and C2 are temporal conditions or their negation. This is equivalent to:

if pr and C1 then C2; (4.22)

36

4.2 Semantics of TeAL

As mentioned above, TeAL contains three parts: the signature (Σ), the action description

(AD), and the set of temporal constraints (TC). The first two parts, Σ and AD , do not

involve temporal information. They are concerned with the states of the system and the

effects of actions. The semantics of 〈Σ,AD〉 is based on the semantics of AL [9]. It uses

the concept of a transition graph of an AL theory. The transition graph T shows all possible

ways for the system described by the TeAL theory ∆ to evolve.

Because TeAL supports different action durations, it is necessary to specify when ac-

tions start or end, and the temporal relationship between these two events. Since both the

start and end of an action change the system, these two events can be viewed as two ac-

tions. These new actions have their own preconditions and effects, such as “once an action

is started, it is in progress,” and “an action can be finished only if it has already started.” A

complete TeAL theory must specify these preconditions and effects. As mentioned earlier,

TC uses prompts, commence Action and terminate Action, to specify the times when

Action starts and ends. These prompts can be used to represent the new “start” and “end”

actions. The use of prompts as new actions gives us a connection between the occurrence

of actions and the times when these actions occur.

To formalize the connection, I introduce the normalized TeAL theory

∆N = 〈ΣN ,ADN ,TC 〉

based on the original TeAL theory ∆ = 〈Σ,AD ,TC 〉. The normalized signature ΣN re-

places the original actions in Σ with the new ones (prompts), and defines additional fluents

that are associated with the prompts. The normalized action description ADN differs from

AD . It extents AD by new statements that specify the relationships among the prompts.

The temporal constraints do not change. I will now give a precise description of ΣN and

ADN .

37

Normalized Signature ΣN . Although the signature of TeAL is very similar to that of

AL, the use of prompts introduces additional system effects and constraints. In order to

build a normalized system description, the signature of TeAL must be extended to a nor-

malized signature ΣN . The sets of sorts, agents, and constants remain the same, but the

sets of actions and fluents need to be changed. The normalized signature ΣN is given by

〈S,C,AG ,FL+,ACN〉, where FL+ is the extended set of fluents, and ACN is the set of

prompts viewed as actions in the normalized action description ADN .

Extended fluent sets FL+. The use of prompts as new actions introduces additional pre-

conditions and effects of these prompts. The commence prompts viewed as actions have

common effects ”the action is in progress” and ”the agent is executing the action,” and

common preconditions ”the action is not in progress” and ”the agent is not executing any

action.” The terminate prompts have opposite effects and preconditions. I introduce two

types of special fluents to F+ to describe these common effects. They are of the form:

inProgress Action (4.23)

engaged Ag (4.24)

where Action is an action and Ag is an agent. The fluent inProgress Action indicates

that the action is being executed. For example:

inProgress (serverA, nodeA)

means that the server is establishing a connection to the node. As will be discussed below,

the logical value of inProgress Action becomes true as the result of the commencing of

the action, and becomes false immediately after the action was terminated.

The second special fluent engaged Ag indicates that the agent Ag is executing an

action. The logical value of engaged Ag is true at the time moment after the agent

commences any action and until the time moment when the action is terminated. In this

38

time interval Ag cannot commence any other actions. For example,

engaged serverA

means that the server is executing an action, which prevents it from commencing any other

action before finishing the current one.

Thus, the fluent set FL+ in ΣN extends the fluent set FL in Σ by adding two sets of

fluents: the inProgress fluents for all actions declared in Σ, and the engaged fluents for

all agents declared in Σ.

FL+ = FL ∪ {inProgress Action : Action ∈ AC} ∪ {engaged Ag : Ag ∈ AG}.

Thus, the fluents in FL+ have three syntactic forms:

fluentName(s1, . . . , sk)

inProgress Action

engaged Ag

Normalized prompt set ACN . In a normalized TeAL theory prompts play the role of

the actions in AL. For each action declaration statement:

action actionName(s1, . . . , sk); (4.25)

In a TeAL theory ∆, we include in ACN the prompt expressions:

commence actionName(s1, . . . , sk).

terminate actionName(s1, . . . , sk). (4.26)

In ACN , commence Action represents the action of starting Action. Similarly, the

prompt terminate Action represents the action of terminating Action.

I also add a pair of virtual prompt expressions totrue(F) and tofalse(F) to ACN ,

where F can be replaced by any fluent in FL+. These two prompts indicate that the fluent F

39

is about to become true or false, respectively. Their effects (F becomes true or false) take

place at the next time moment. The difference between virtual and regular prompts is that

virtual prompts do not involve agents. Thus, the prompts totrue and tofalse can be used as

prompts associated with changes in the system caused by other factors but prompts (such

as passing time). In this way, every change in the system has a prompt associated with it.

For instance, in the requirement “a message becomes old if it has been received 10 minutes

before” there is no regular prompt that changes the fluent old to true, but totrue(old) can

be used in this case.

To recap, the action set ACN is constructed as follows:

ACN = {commence Action : Action ∈ AC}

∪ {terminate Action : Action ∈ AC}

∪ {totrue(P) : P ∈ FL+} ∪ {tofalse(P) : P ∈ FL+}.

Normalized action description ADN . To construct a normalized action description, I

replace actions with prompts in the action language laws.

The three types of statements included in ADN become:

State constraints L if P (4.27)

Dynamic causal laws pr causes E if P (4.28)

Executability conditions impossible pr1, . . . , prk if P (4.29)

where E, L, P are lists of fluents and their negations, pr is a terminate prompt, and

pr 1, . . . , prk are commence prompts. State constraints do not change because they do not

involve actions. I replace the original actions in dynamic laws with terminate prompts

because this expression specifies the effect of completing an action. I replace the actions

in executability conditions with commence prompts because this expression specifies the

cases when actions cannot start.

40

In addition, the use of prompts in TeAL requires the normalized TeAL theory to in-

clude additional statements representing the preconditions and effects that are applied to

all prompts.

Intuitively, starting an action Action (that is, executing commence Action) requires

that inProgress Action be false (negation be true) and results in inProgress Action

being true. Similarly, terminating Action (that is, executing terminate Action) requires

that the fluent inProgress Action be true and results in inProgress Action being false.

I assume that no agent can perform multiple actions at the same time. The corresponding

constraint is that an action cannot be commenced by an agent Ag if engaged Ag is true.

The following expressions specify the constraints above. Because these expressions apply

to all actions, the task of adding these expressions can be easily automated.

1. For every action Action in AC , add the following dynamic causal law to ADN :

commence Action causes inProgress Action;

terminate Action causes not inProgress Action;

terminate Action causes not engaged Ag ;

2. For every action Action in AC , add the following executability condition to ADN :

impossible commence Action if inProgress Action;

impossible terminate Action if not inProgress Action;

impossible commence Action if engaged Ag ;

There are also statements that need to be added for totrue(F) and tofalse(F). These

statements specify the effect of these two types of prompts.

totrue(F) causes F ;

tofalse(F) causes not F ;

41

Transition Graph

Given a normalized TeAL theory ∆N , its signature Σ(∆N) and action descriptionAD(∆N)

form an action language AL theory 〈Σ(∆N), AD(∆N)〉. I define the semantics of this AL

theory as a transition graph following the approach developed for AL by Baral and Gelfond

[9] .

Complete and consistent sets of (possibly negated) fluents in FL+ describe the state of

the system. A transition is a triple 〈s, prs , s′〉, where s is the origin state, s′ is the goal state,

and prs is a set of prompts (they play the role of actions in AL). TeAL allows concurrent

prompts, thus prs can represent one prompt or multiple prompts that cause the state of

the system to change from s to s′. The arc between s and s′ is labeled with prs . The

preconditions of every prompt in prs are satisfied by s and the effects of every prompts in

prs are satisfied in s′. The only difference from the transition graph of Baral and Gelfond

[9] is that, in TeAL, I use prompts in the role of actions.

Formally, given a TeAL theory ∆, the transition graph described by its normalized

theory ∆N , T∆N , is the pair 〈S,R〉, where:

1. S is the set of all states over FL+ defined in the ∆N such that, for every state con-

straint “L if P in ∆N ,” a state s in S satisfies L if s satisfies P .

2. R is the set of triples 〈s, prs , s′〉 where prs represents a set of prompts, such that:

– for every dynamic causal law “pr causes E if P ” in ∆N , if the state s satisfies

P and the prompt set prs contains pr , then the state s′ satisfies E.

– for every executability condition “impossible pr 1, . . . , prk if P ,” if s satisfies

P , then for every i such that 1 ≤ i ≤ k, pr i /∈ prs .

For instance, assuming that ∆N contains the expressions:

terminate send(sysA,msg , sysC) causes sent(sysA,msg , sysC)

terminate send(sysB ,msg , sysC) causes sent(sysB ,msg , sysC)

42

then for any transition 〈s, prs , s′〉 in T∆N , if prs contains

terminate send(sysA,msg , sysC)

terminate send(sysB ,msg , sysC)

then the two fluents that represent the effects

sent(sysA,msg , sysC)

sent(sysB ,msg , sysC)

must hold in s′. For another example, let us take the expression:

impossible commence receive(sysC ,msg , sysA) if not sent(sysA,msg , sysC);

in ADN . Then for any transition 〈s, prs , s′〉 in T∆N , if prs contains the prompt commence

receive(sysC ,msg , sysA), then sent(sysA,msg , sysC) must hold in s.

Path and Timed Path

Paths in the transition graph T∆N represent ways in which the system described by ∆N may

evolve. Questions such as whether there is a plan (sequence of actions) that transforms the

system from a given state s to another state s′′ can be stated as questions about the existence

of a path from s to s′′ in the transition graph T∆N .

I define a path in T∆N to be a sequence

〈s0, pr 0; s1, pr 1; . . . ; sk−1, prk−1; sk〉

that satisfies the following conditions:

– s0 . . . , sk are states.

– pr 0, . . . , prk−1 are sets of prompts.

– For every initial expression “initially F ,” the state s0 satisfies F .

43

– For each i = 0, . . . , k − 1, 〈si, pr i, si+1〉 is an edge in T∆N .

The temporal constraints and duration specification expressions can be interpreted as

constraints on the times of occurrences of prompts. To take the temporal aspects of ∆N

into account, I define a timed path p as a sequence:

〈0; s0, pr 0, t0; s1, pr 1, t1; . . . ; sk−1, prk−1, tk−1; sk, tk〉 (4.30)

where 〈s0, pr 0; s1, pr 1; . . . ; sk−1, prk−1; sk〉 is a path in T∆N and 0 ≤ t0 < t1 < . . . < tk.

This sequence starts from the initial state s0. The prompts in pr i take place at time moments

ti and the system is in state si+1 during the time period (ti, ti+1]. The next set of prompts

happens at time moment ti+1. The first time moment of p is 0. The time tk is the horizon

of p. I denote it as h(p). We analyze the system in the interval [0, tk]. I assume that all time

parameters ti, 0 ≤ i ≤ k, are normalized to the same time unit and are integers.

Below is an example of a path based on the transition graph derived from the require-

ments introduced in Chapter 2. The fluents involved in this example are:

inProgress send(sysC ,msg , sysA), engaged sysC ,

inProgress receive(sysA,msg , sysC), engaged sysA,

inProgress send(sysB ,msg , sysA), engaged sysB ,

inProgress write(sysA, dev), sent(sysC ,msg , sysA)

The atoms presented for each state are the fluents that are true in the state. The fluents that

do not appear are false in the state. The path is given by:

〈0; s0, pr 0, t0; s1, pr 1, t1; . . . ; s4, pr4, t4; s5, t5〉 (4.31)

where the states and prompts are as follows:

– s0: All fluents are false

– pr 0: commence send(sysC ,msg , sysA)

44

Figure 4.1: Example of transition graph

– s1: inProgress send(sysC ,msg , sysA), engaged sysC

– pr 1: terminate send(sysC ,msg , sysA)

– s2: sent(sysC ,msg , sysA)

– pr 2: commence receive(sysA,msg , sysC)

– s3: inProgress receive(sysA,msg , sysC), engaged sysA

– pr 3: terminate receive(sysA,msg , sysC), commence send(sysB ,msg , sysA)

– s4: inProgress send(sysB ,msg , sysA), engaged sysB

– pr 4: commence write(sysA, dev)

– s5: inProgress write(sysA, dev), engaged sysA

This path represents a scenario that involves six states and five transitions: system C sends

a message to system A, system A receives the message and begins to write it to the device.

System B sends a message to system A at the same time when system A receives the

45

message. We can make it a timed path by labeling each prompt with a time moment, which

shows when these changes happen. Let us consider a labeling {t0, t1, t2, t3, t4, t5}, where

t5 = 20 seconds. Since t5 represents the horizon, the last time moment in the scenario is

the 20th second. This labeling must satisfy all temporal constraints to make the timed path

valid. For instance, if the send(sysC ,msg , sysA) action starts at t0 and ends at t1, the value

of t1 − t0 must be equal to the duration of send(sysC ,msg , sysA). We can also check if

the temporal constraint “Subsystem A must write to the hardware device within K seconds

after receiving a message from Subsystem C” is satisfied on this timed path by checking if

t4 − t3 ≤ K holds. The time moments t3 and t4 represent when the events “Subsystem

A receives a message from Subsystem C” and “Subsystem A writes to the hardware device”

occur. Because of the temporal constraint, for a time path to be valid in T∆N , we must have

t4 − t3 ≤ K.

It should be noted that different timed paths can be created for a path, representing the

same order of events but different times when they occur.

Satisfaction of a Temporal Condition on a Timed Path

Let us consider a temporal condition

C = α timeComp timeMod β

where α and β are prompts or fluents (β can be empty), timeComp can be earlierThan,

at, laterThan, noEarlierThan, noLaterThan, timeMod can be X unit before,

X unit after, or empty.

If α is a prompt, then let occur(α, u) represent the statement “α has occurred at time

u.” If α is a fluent F or the negation of F , then let occur(α, u) represent the statement

“totrue(F) has occurred at time u” or “tofalse(F) has occurred at time u.” Given a timed

path p with horizon h(p), I will now define the relation p, t |= occur(α, u) meaning that

occur(α, u) holds on p at time t, where t ∈ [0, h(p)].

46

– If α is prtSymb A, then p, t |= occur(α, u) holds if there is i ∈ [0, k − 1] such that

ti = u and α ∈ pr i. It is possible that t0=0.

– If α is prtSymb previous A, then p, t |= occur(α, u) holds if there is i ∈ [0, k− 1]

such that ti < t, u = ti, α ∈ pr i, and there is no j such that ti < tj < t and α ∈ pr j .

It is possible that t0=0.

– If α is prtSymb next A, then p, t |= occur(α, u) holds if there is i ∈ [0, k− 1] such

that t < ti, u = ti, α ∈ pr i, and there is no j such that t < tj < ti and α ∈ pr j .

Next, I define the relation p, t |= C to represent that “the temporal condition C holds on

p at time t.” Let us consider that Timeα(t) represents the set of time moments determined

by α with respect to time moment t. The set of time moments Timeα(t) is defined as

follows:

– Timeα(t) = {u : p, t |= occur(α, u)}.

According to the definition of p, t |= occur(α, u) above, if α is prtSymb A, then the ele-

ments in Timeα(t) do not depend on t. If α is prtSymb previous A or prtSymb next A,

then there is only one element in Timeα(t) and it depends on t.

Let us consider that Timeβ(t) represents the set of time moments determined by β and

timeMod with respect to time moment t. The set of time moments Timeβ(t) is defined as

follows:

– If β is empty and timeMod = “x unit after,” then Timeβ(t) has one element: t+x,

x time units after time t.

– If β is empty and timeMod = “x unit before,” then Timeβ(t) has one element:

t− x, x time units before time t.

– If β is not empty and timeMod = “x unit after,” then Timeβ(t) = {v + x : p, t |=

occur(β, v)}

47

– If β is not empty and timeMod = “x unit before,” then Timeβ(t) = {v − x : p, t |=

occur(β, v)}

The elements in Timeβ(t) can be greater than the horizon h(p) or smaller than the start time

0. If β is not empty, the elements in Timeβ(t) are based on the time moments determined

by β. If β is empty, the element in Timeβ(t) is determined by the “current time moment,”

t.

The relation timeComp represents the comparison between the elements in Timeα(t)

(elα) and the elements in Timeβ(t) (elβ). The relation is defined as follows:

– In the case that timeComp = at, if “elα=elβ ,” then elα is in relation timeComp with

elβ .

– In the case that timeComp = laterThan, if “elα>elβ ,” then elα is in relation

timeComp with elβ .

– In the case that timeComp = earlierThan, if “elα<elβ ,” then elα is in relation

timeComp with elβ .

– In the case that timeComp = noEarlierThan, if “elα≥elβ ,” then elα is in relation

timeComp with elβ .

– In the case that timeComp = noLaterThan, if “elα≤elβ ,” then elα is in relation

timeComp with elβ .

Given C = α timeComp timeMod β, if β is a prompt without previous or next, or

if β is empty or startTime, then the relation p, t |= C is defined as follows:

– p, t |= C if there is no element elβ ∈ Timeβ(t) such that elβ ≤ h(p), and neither

horizon h(p) nor any element in Timeα(t) is in relation timeComp with elβ .

– p, t 6|= C if there exist an element elβ ∈ Timeβ(t) such that elβ ≤ h(p), and neither

horizon h(p) nor any element in Timeα(t) is in relation timeComp with elβ .

48

Figure 4.2: Example 1 of Satisfiability of Temporal Conditions

If β is a prompt with previous or next, then the relation p, t |= C is defined as follows:

– p, t |= C if Timeβ(t) is not empty, and there is no element elβ ∈ Timeβ(t) such

that elβ ≤ h(p), and neither horizon h(p) nor any element in Timeα(t) is in relation

timeComp with elβ .

– p, t 6|= C if there does not exist any element in Timeβ(t), or there exist an element

elβ in Timeβ(t) such that elβ ≤ h(p), and neither horizon h(p) nor any element in

Timeα(t) is in relation timeComp with elβ .

It should be noted that given a timed path p, the occurrences of prompts are only determined

within the horizon h(p). If the satisfiability of a temporal condition C at time t requires a

prompt occur (or not occur) after h(p), then we consider C to be satisfied at t because we

have no evidence that this prompt does not occur (or occurs) after h(p). This concept will

be illustrated in the examples below.

I will now illustrate the definition of p, t |= C with examples. Given a temporal condi-

tion C:

commence send(args) noLaterThan 10 second after

the prompt commence send(args) is α, and β is empty. According to the definitions

above,

Timeα(t) = {u : p, t |= occur(commence send(args), u)}

Timeβ(t) = {t+ x}

49

Figure 4.3: Example 2 of Satisfiability of Temporal Conditions

Let us consider a timed path p1 (Figure 4.2), where the horizon h(p1) = 30, and commence

send(args) occurs at 15. That is, Timeα(t) has one element elα = 15 for any t on p1. We

have p1, t |= C for any t ∈ [5, 30], because for any t in this interval, elα ≤ t+10. However,

p1, t 6|= C for any t ∈ [0, 4]. It should be noted that p1, t |= C for any t ∈ [21, 30] even if

there is no occurrence of commence send(args) on p1, because h(p1) ≤ t + 10. In this

case the horizon is not large enough for us to assert that commence send(args) does not

occur early enough after the horizon. In other words, we consider C to be satisfied at any

t ∈ [21, 30] because we have no evidence that C is violated in this interval.

If we change the commence send(args) in C to be commence next send(args),

then p1, t |= C in the interval [5, 14] and [21, 30] and p1, t 6|= C in the interval [0, 4] and

[15, 20]. The change of the satisfiability in [15, 20] is because of the next keyword. For any

t ∈ [15, 20], Timeα(t) is empty because the next occurrence of commence send(args)

does not exist, and the horizon h(p1) does not satisfy h(p1) ≤ t+ 10 either.

For another example, let C be:

commence receive(args)

noLaterThan 10 second after

commence previous send(args)

the prompt commence receive(args) is α, and β is commence previous send(args).

Let us consider a timed path p2 (Figure 4.3), where the horizon h(p2) = 30, commence

send(args) occurs at 15, and commence receive(args) occurs at 28. That is, Timeα(t)

has one element elα = 28, Timeβ(t) has one element 15 for any t ∈ [16, 30]. We have

50

Figure 4.4: Example 3 of Satisfiability of Temporal Conditions

p2, t |= C for any t ∈ [18, 30], because for any t in this interval, elα ≤ t + 10. However,

p2, t 6|= C for any t ∈ [16, 17]. We also have p2, t 6|= C for any t ∈ [0, 15], because for

these time moments the previous occurrence of commence send(args) does not exist.

Similar to the example above, p2, t |= C for any t ∈ [21, 30] even if there is no occurrence

of commence receive(args) on p2, because h(p2) ≤ t+ 10.

The examples above show temporal conditions C = α timeComp timeMod β where β

is empty or β involves previous or next. The satisfiability these examples above depends

on t. That is, there may exist t′ and t′′∈[0, h(p)] such that p, t′ |= C and p, t′′ 6|= C. We call

such temporal conditions local.

If we change the temporal condition C to be:

commence next receive(args)

noLaterThan 10 second after

commence previous send(args)

and change the timed path to p3 (Figure 4.4), where commence receive(args) occurs at

18, then p3, t |= C in the interval [16, 17] and p3, t 6|= C in the interval [18, 20]. This is

because the next occurrence of commence receive(args) exists for the time moment in

[16, 17], but not for the time moments in [18, 20].

51

Figure 4.5: Example 4 of Satisfiability of Temporal Conditions

If we change the temporal condition C to be:

commence receive(args)

noLaterThan 10 second after

commence send(args)

the prompt commence receive(args) is α, and β is commence send(args). Let us con-

sider a timed path p4 (Figure 4.5), where the horizon h(p4) = 30, commence send(args)

occurs at 5 and 15, and commence receive(args) occurs at 10 and 28. That is, Timeα(t)

has two elements 10 and 28, Timeβ(t) has two element 5 and 15 for any t ∈ [0, h(p4)].

We have p4 |= C because for both elements in Timeβ(t) there is elα = 10 such that

elα ≤ elβ + 10.

If we change C to be:

commence next receive(args)

noLaterThan 10 second after

commence send(args)

then p4 6|= C. This is because for the commence send(args) occurs at 15, the next

occurrence of commence receive(args) is at 28, and 28 > 15 + 10. Since p4, t2 6|= C, we

have p4 6|= C.

The two examples above show temporal conditions C = α timeComp timeMod β

where β is a prompt without previous or next. The satisfiability of these temporal con-

ditions does not depend on t. That is, for any t′ and t′′∈[0, h(p)], p4, t
′ |= C if and only if

52

p, t′′ |= C, p, t′ 6|= C if and only if p, t′′ 6|= C. We call such temporal conditions as global

temporal conditions.

Consistency Checking

If p, t |= C for every t (0 ≤ t ≤ h(p)), then C is satisfied by p or C holds on p, written

as p |= C. Let I = [0, h] represent the set of time moments from 0 to h. If a timed path p

can be found in the transition graph T∆N such that for every temporal constraint C in TC ,

p |= C, and h(p) = h, then the TeAL theory is consistent on I .

Check Points. Let us recall that a valid path in T∆N becomes a timed path when times

are assigned to states. A timed path is valid if all temporal constraints are satisfied at every

time moment on this timed path. However, checking the satisfiability at every time moment

is infeasible. Instead, we can check the satisfiability of temporal conditions at a finite set of

check points and reduce the task of checking satisfiability along a timed path to checking

satisfiability at every check point.

I define two types of check points. The first type, state determined check points, com-

prise the time moments when the system changes state. The time when the system changes

state is defined as the last time moment when the system is still in its present state. These

are also the times when prompts occur. Additionally, the start time, time moment 0, is

also regarded as a state defined check point. The second type of check points, condition

determined check points, comprise the time moments when nothing changes in the sys-

tem, but the satisfaction of a temporal conditions might change. Each temporal condition

determines a group of condition determined check points.

Both types of check points are necessary for checking the satisfiability of temporal

constraints on a timed path. For example, let us consider a timed path p5 (Figure 4.6) such

that h(p5) = 15 and commence send(args) occurs on p5 at time moments t0 = 2, t3 = 8,

53

Figure 4.6: Example of Check Points

t4 = 10. Given a temporal condition C:

commence next send(args) noLaterThan 3 second after

the time moments when commence send(args) occurs (t0, t3, t4) and the start time 0

are state determined check points. Checking the satisfiability of C at these check points

shows that C is satisfied on p5 at 0 and t3. However, C is violated at t0 and t4. The

condition determined check points for C are “3 seconds before the time moments when

commence send(args) occurs” (t1 = 5, t2 = 7) and “2 seconds before the horizon”

(t5 = 13). Checking the satisfiability of C at these check points shows that C is satisfied at

t1, t2, and t5. The results of both types of check points show that C is satisfied on p5 at any

time moments in [0, t0), [t1, t4), [t5, h(p5)], and violated at any time moments in [t0, t1),

[t4, t5). If we do not check the satisfiability of C at the state determined check points t0

and t4, we will not find that C is violated in [t0, t1), [t4, t5).

If we change C to be:

commence next send(args) laterThan 3 second after

then C is violated in [0, t0) and [t1, t4). If we do not check the satisfiability of C at the

condition determined check points t1, then we will not find that C is violated in [t1, t4). If

we do not check the satisfiability of C at the state determined check points 0, then we will

not find that C is violated in [0, t0).

I will now provide a precise definition of check points of both types. Let us consider

that C represents a temporal condition α timeComp timeMod β. The value of timeComp

54

can be earlierThan, at, laterThan, noEarlierThan, and noLaterThan. The value

of timeMod can be x unit before, x unit after. The timeMod can be empty. Take a

timed path p, I denote the set of check points on p with regard to C as:

CP(C, p) = state(C, p) ∪ condition(C, p)

where the notation state(C, p) represents the set of state determined check points, and

condition(C, p) represents the set of condition determined check points.

I denote the sets of all times when α and β occur on p as Tα and Tβ , respectively. The

set state(C, p) includes Tα, Tβ , and 0, the start time of the system.

state(C, p) = Tα ∪ Tβ ∪ {0}

The definition of condition(C, p) depends on the values of α, β and timeComp timeMod .

Given a timed path p with horizon h(p), we use the following definition to represent the set

of time moments that is x seconds after or before the times when α occurs (x ≥ 0).

Tα + x = {ti + x | ti + x ≤ h(p), ti ∈ Tα}.

Tα − x = {ti + x| ti − x ≥ 0, ti ∈ Tα}.

The condition determined check points introduced because of α are:

– all elements of Tα + 1 if α = prtSymb previous A.

If α = prtSymb previous A, then for every t ∈ [tj + 1, tj+1 + 1) where tj, tj+1 ∈ Tα, the

previous occurrence of prtSymb A, α, indicates the same time moment tj . Similarly, if β

is not empty, the condition determined check points introduced because of β are:

– all elements of Tβ + 1, if β = prtSymb previous B.

If β is empty, the condition determined check points introduced because of timeComp

and timeMod are given as following:

55

– if timeMod = x unit after, timeComp = earlierThan or noEarlierThan, then

the condition determined check points are all elements of (Tα − (x− 1)).

– if timeMod = x unit after, timeComp = laterThan, then the condition determined

check points are all elements of (Tα − x).

– if timeMod = x unit after, timeComp = noLaterThan, then the condition deter-

mined check points are all elements of (Tα − x).

– if timeMod = x unit after, timeComp = at, then the condition determined check

points are all elements of (Tα − x) ∪ (Tα − (x− 1)).

– if timeMod = x unit before, timeComp = earlierThan or noEarlierThan, then

the condition determined check points are all elements of (Tα + (x+ 1)).

– if timeMod = x unit before, timeComp = laterThan or noLaterThan, then the

condition determined check points are all elements of (Tα + x).

– if timeMod = x unit before, timeComp = at, then the condition determined check

points are all elements of (Tα + x) ∪ (Tα + (x+ 1)).

Theorem 1 Let p be a timed path, C = α timeComp timeMod β be a temporal condition,

and CP(C, p) = {c0, . . . , ck} where c0 < . . . < ck.

– For every i, 0 ≤ i ≤ k − 1, if p, ci |= C, then for every t ∈ [ci, ci+1), p, t |= C.

Proof. Given a temporal condition C = α timeComp timeMod β, the satisfiability of C

on a timed path p at time t is determined by the relation between two sets of time moments

Timeα(t), which is determined by α, and Timeβ(t), which is determined by timeComp,

timeMod and β.

If there is a time moment dif ∈ [ci, ci+1) such that the satisfiability of C at dif is

different from the satisfiability at ci, then either Timeα(dif), the set of time moments

56

determined by α at time dif , is different from Timeα(ci), or Timeβ(dif) is different from

Timeβ(ci).

If α = prtSymb previous A and ci ∈ Tα, then [ci, ci+1) only has one element ci

because condition(C, p) includes the set of time moments Tα + 1, and ci + 1 is an element

of Tα + 1. It is impossible that the satisfiability at dif and ci is different because of α. This

is a contradiction.

If α = prtSymb previous A and ci /∈ Tα, then Timeα(dif) includes at most one

element cj such that cj < dif , cj ∈ Tα, and there is no ck such that cj < ck < dif and

ck ∈ Tα. This element cj represents the latest time moment before dif when prtSymb A

occurs. If Timeα(dif) is empty, then prtSymb A does not occur before dif . In this case,

prtSymb A does not occur before ci as well, and Timeα(ci) is also empty. Similarly,

Timeα(ci) includes at most one element c′j such that c′j < ci, c′j ∈ Tα, and there is no c′k

such that c′j < c′k < ci and c′k ∈ Tα. This element c′j represents the latest time moment

before ci when prtSymb A occurs. If Timeα(ci) is empty, then because dif ∈ [ci, ci+1) and

ci /∈ Tα, Timeα(dif) is empty as well. If both Timeα(dif) and Timeα(ci) are not empty,

and cj and c′j are different, then there must be ci < cj < dif < ci+1, which means that a

check point cj exists between ci and ci+1. This is a contradiction.

If α = prtSymb next A, then Timeα(dif) includes at most one element cj such that

cj > dif , cj ∈ Tα, and there is no ck such that cj > ck > dif and ck ∈ Tα. This ele-

ment cj represents the earliest time moment after dif when prtSymb A occurs. Similarly,

Timeα(ci) includes at most one element c′j such that c′j > ci, c′j ∈ Tα, and there is no

c′k such that c′j > c′k > ci and c′k ∈ Tα. This element c′j represents the earliest time

moment after ci when prtSymb A occurs. If cj and c′j are different, then there must be

ci ≤ dif < cj < ci+1, which means that a check point cj exists between ci and ci+1. This

is a contradiction.

If α = prtSymb A, then the elements of Timeα(dif) and Timeα(ci) are the same. It is

impossible that the satisfiability at t and ci is different because of α. This is a contradiction.

57

The discussion above also applies to the cases that β = prtSymb previous B, β =

prtSymb next B, and β = prtSymb B.

If β is empty, the condition determined check points are introduced based on timeComp

and timeMod .

If timeComp is at and timeMod is x second after, then the check points divide the

timed path into four types of intervals.

– The first type of intervals is [0, cfα − x), where cfα is the smallest element of Tα such

that cfα > x. For any time t in this interval, the temporal condition is violated.

– The second type of intervals is [h(p)− x+ 1, h(p)], where h(p) is the horizon of the

timed path p. For any time t in this interval, the temporal condition is satisfied.

– The third type of intervals is [ciα− x, ciα− x+ 1), where ciα can be any element in Tα

such that ciα > x. It is impossible to find a time dif because these types of intervals

have only one element ciα − x.

– The forth type of intervals is [ciα − x + 1, cjα − x), where cjα is the smallest element

in Tα such that cjα > ciα. For any time t in these intervals C is violated.

It is impossible to find a time dif in these types of intervals.

If timeComp is noLaterThan and timeMod is x second after, then the check points

divide the timed path into four types of intervals. The first two types are the same as above.

It is impossible to find a time dif in these two types of intervals. The third type of intervals

is [ciα−x, ciα), where ciα can be any element in Tα such that ciα > x. For any time t in these

intervals C is satisfied. The forth type of intervals is [ciα, c
j
α − x), where cjα is the smallest

element in Tα such that cjα > ciα + x. For any time t in these intervals C is violated. It is

impossible to find a time dif in these two types of intervals.

If timeComp is laterThan and timeMod is x second after, then the check points

divide the timed path into four types of intervals like the case in which timeComp is

58

noLaterThan and timeMod is x second after. The only difference is that the sec-

ond type is [h(p) − x + 2, h(p)] instead of [h(p) − x + 1, h(p)]. The temporal condition

is satisfied at every time moment in the first, second and forth types of intervals, and is

violated at every time moment in the third type of intervals.

If timeComp is noEarlierThan and timeMod is x second after, then the check

points divide the timed path into four types of intervals. The first two types are the same

as above. The difference is that the first type is [0, cfα − x + 1) instead of [0, cfα − x). It is

impossible to find a time dif in these two types of intervals. The third type of intervals is

[ciα − x + 1, ciα), where ciα can be any element in Tα such that ciα > x − 1. For any time t

in these intervals C is violated. The forth type of intervals is [ciα, c
j
α − x + 1), where cjα is

the smallest element in Tα such that cjα > ciα + x − 1. For any time t in these intervals C

is satisfied.

If timeComp is earlierThan and timeMod is x second after, then the check points

divide the timed path into four types of intervals like the case in which timeComp is

noEarlierThan and timeMod is x second after. The temporal condition is satisfied

at every time moment in the second and third types of intervals, and is violated at every

time moment in the first and forth type of intervals.

If timeComp is at and timeMod is x second before, then the check points divide the

timed path into four types of intervals.

– The first type of intervals is [0, cfα + x), where cfα is the smallest element of Tα. For

any time t in this interval, the temporal condition is violated.

– The second type of intervals is [ceα + x + 1, h(p)], where h(p) is the horizon of the

timed path p and ceα is the largest element of Tα such that ceα < h(p) − x. For any

time t in this interval, the temporal condition is violated.

– The third type of intervals is [ciα + x, ciα + x+ 1), where ciα can be any element in Tα

such that ciα < h(p) − x. It is impossible to find a time dif because these types of

59

intervals have only one element ciα + x.

– The forth type of intervals is [ciα + x + 1, cjα + x), where cjα is the smallest element

in Tα such that cjα > ciα and cjα < h(p) − x. For any time t in these intervals C is

violated.

It is impossible to find a time dif in these types of intervals.

In the cases that timeMod is x second before and timeComp is noLaterThan,

laterThan, noEarlierThan or earlierThan, the check points divide the timed path

into four types of intervals like the cases above. For each interval, the temporal condition

is either satisfied or violated on the entire interval.

Based on the discussion above, for any temporal condition C, CP(C, p) satisfied the

properties:

– for every i, 0 ≤ i ≤ k − 1, if p, ci |= C, then for every t ∈ [ci, ci+1), p, t |= C.

– for every i, 0 ≤ i ≤ k − 1, if p, ci 6|= C, then for every t ∈ [ci, ci+1), p, t 6|= C.

That is, CP(C, p) includes sufficient check points. Theorem 1 is proved. 2

Corollary 2 Let p be a timed path,C = α timeComp timeMod β be a temporal condition,

and CP(C, p) = {c0, . . . , ck} where c0 < . . . < ck. If for every i, 0 ≤ i ≤ k, there is

p, ci |= C, then p |= C.

Copyright c© Wenbin Li, 2015.

60

Chapter 5 TeALGenerator

The approach introduced in this thesis consists of two phases: generating a TeAL theory

based on the requirements given in natural language, and checking the consistency of the

requirements based on this TeAL theory. The analysts’ involvement is only necessary in

the first phase. This phase consists of four steps:

1. Extracting relevant requirements

2. Identifying system elements

3. Constructing “close-to-TeAL” statements (AlmostTeAL)

4. Converting AlmostTeAL statements to correct TeAL statements

I designed and implemented a tool, TeALGenerator , to automate the process of gener-

ating AlmostTeAL statements from natural language requirements. The tool uses my code

and Natural Language Processing (NLP) tools including Stanford Parser [52, 24] and the

semantic role labeler Senna [21]. The TeALGenerator assumes that all requirements that

are necessary for modeling the system have been found in step 1, and performs steps 2 and

3 automatically. The output of TeALGenerator is AlmostTeAL statements that analysts

need to verify in step 4. High quality AlmostTeAL statements make the task easier.

5.1 Data Flow of TeALGenerator

I assume that the input of TeALGenerator is a set of text files, with each file contain-

ing a natural language requirement. The TeALGenerator first processes each file with

Senna and the Stanford Parser (the outcomes of these tools are described below). Then

TeALGenerator identifies system concepts from the outcomes of Senna and Stanford

Parser. The system concepts include actions, fluents, temporal constraints, non-temporal

61

constraints, and relations among the constraints. TeALGenerator uses such information

to generate AlmostTeAL statements. For example, given a requirement “If the system is

not in safe mode or a message is received in last 10 second, . . . ,” the TeALGenerator

generates the AlmostTeAL expression:

if not in(system, safeMode) or

receive(,message) noEarlierThan 10 second before

then . . . ;

The action receive(,message) is identified using Senna; the fluent in(system, safeMode),

the temporal constraint noEarlierThan 10 second before, the non-temporal constraint

if . . ., the disjunction relationship or, and the negation not, are identified using the Stan-

ford Parser. The details are discussed below.

Output of Senna

The output of Senna illustrates the predicates in the sentence, the semantic arguments as-

sociated with them, and the roles of these arguments. The predicates can be used as action

names in AlmostTeAL. The roles of arguments represent the argument types. Actions

such as update(system, data) and some fluents, such as received(receiver ,msg , sender),

can be identified in this way.

For instance, Senna processes the text “If the system is not in safe mode or a message

is received in last 10 second” and generates the results in Table 5.1.

The first column shows the original text. The second column shows the Parts-Of-

Speech (POS) [84] tags for each word. The tags in this example include: IN (preposition

or subordinating conjunction), DT (determiner), NN (noun), VBZ (3rd person singular

present), RB (adverb), JJ (adjective), CC (coordinating conjunction), VBN (verb, past

participle), CD (cardinal number), and NNS (noun, plural). The third column shows the

chunks, or short phrases, in the input text. The tags in this column are the phrase level

62

Table 5.1: Output of Senna

Text POS Chunk Predicate received Args
If IN S-SBAR

the DT B-NP
system NN E-NP

is VBZ S-VP
not RB O
in IN S-PP

safe JJ B-NP
mode NN E-NP
and CC O
a DT B-NP B-A1

message NN E-NP E-A1
is VBZ B-VP

received VBN E-VP received S-V
in IN S-PP B-AM-TMP

last JJ B-NP I-AM-TMP
10 CD I-NP I-AM-TMP

seconds NNS E-NP E-AM-TMP

tags used in the Penn Treebank Project [65]. The tags in this example include: SBAR (a

clause introduced by a possibly empty subordinating conjunction), S (simple declarative

clause), NP (proper noun, singular), VP (proper verb), and PP (prepositional phrase).

The prefixes of the tags (B and E) represent the beginning and the end of phrases. The

POS tags and chunks can be used to determine if a predicate is an action or a fluent. The

fourth column shows the predicates Senna found in this requirement. In our example, this

column only has one value, for there is only one predicate identified: received . The fifth

column shows the two arguments Senna identified for received . Senna uses the tagsA1 and

AM TMP to represent the type of the arguments. For the predicate received ,A1 marks the

argument that represents the received object (a message), AM TMP marks the argument

that represents the time when received happened (in last 10 seconds). Senna uses the tag

A0 for agents. The tag A0 does not appear in Table 5.1 because the sample text does not

specify the agent that receives the message.

The TeALGenerator reads the Senna outputs generated for all requirements and saves

63

all information in a sennaInfo object. The algorithm for reading the output of Senna is

given as Algorithm 1.

Algorithm 1 Read the Senna output
Data: output of Senna, sennaInfo

Result: sennaInfo

foreach word w in the text processed by Senna do

if w is a predicate then

foreach argument arg of w do
get its text, role, position in the sentence, pos tag, chunk tag;

save all information to sennaInfo;

end

end

end

Output of Stanford Parser

The Stanford Parser generates a parse tree and a list of Stanford Dependencies (SD) for

each sentence in the given text. Each parse tree has a ROOT node. For example, Figure

5.1 shows the subtree that corresponds to the text “If the system is not in safe mode or a

message is received in last 10 second:” This figure shows the tags (NN , VBZ , . . .) for

the words, and the Penn Treebank tags (SBAR, VP , . . .) for the phrases. Every subtree in

Figure 5.1 represents a phrase. For example, the subtree (NP (JJ safe) (NN mode)) (the

subtree rooted in the node “7. NP” in Figure 5.1) represents “safe mode.”

A Stanford dependency is given in the form of reln(gov , dep). It represents that a

grammatical relation (reln) holds between a governor (gov) and a dependent (dep). For

example, nsubj (is , system) means that system is the syntactic subject (nsubj) of a clause,

and prep in(is ,mode) means that in is a prepositional modifier (prep in) of is . Table 5.2

includes the fifteen typed dependencies identified in the text “If the system is not in safe

mode or a message is received in last 10 second.” The numbers after the governor and the

64

Figure 5.1: Example of Stanford Parse Tree

dependent show the position of these words in the text. The detailed definition of these

relations can be found in the Stanford Dependencies Manual [25].

Identifying System Information

The TeALGenerator identifies two types of system elements: vocabulary and constraints,

based on the outputs of Senna and Stanford Parser. The vocabulary refers to the constants

of the system and information about actions and fluents, including their names and argu-

ments. These types of information are used for constructing the signature Σ and the action

description in TeAL. Constraints refer to the non-temporal constraints in AD and the tem-

poral constraints in TC .

Identifying Vocabulary

The first task of TeALGenerator is to identify the predicates in the input requirements.

These predicates will be used as actions and fluents in AlmostTeAL statements. The

65

Table 5.2: Stanford Dependencies

ID Relation Governor Dependent
1 mark is-4 If-1
2 det system-3 the-2
3 nsubj is-4 system-3
4 advcl report-22 is-4
5 neg is-4 not-5
6 amod mode-8 safe-7
7 prep in is-4 mode-8
8 det message-11 a-10
9 nsubjpass received-13 message-11

10 auxpass received-13 is-12
11 conj and is-4 received-13
12 advcl report-22 received-13
13 amod seconds-17 last-15
14 num seconds-17 10-16
15 prep in received-13 seconds-17

TeALGenerator uses the output of Senna and the Stanford Parser to identify the predi-

cate names and arguments.

As mentioned earlier, the output of Senna identifies the predicates in the input text,

the semantic arguments associated with these predicates, and the roles of these arguments.

In the example text “If the system is not in safe mode or a message is received in last 10

seconds,” Senna identifies the predicate received and its two arguments: a message and in

last 10 seconds.

If the Parts-Of-Speech tag of the predicate word is VB (receive), VBZ (receives), or

VBG (receiving), the predicate is considered as an action. Otherwise, if the chunk that

contains this word is a noun phrase (a received message), the predicate is considered as a

fluent. If the chunk is a verb phrase (is received), then the predicate is still considered as

an action. In the sample text, the received predicate (node 3 in Figure 5.3) is considered

as an action. The TeALGenerator applies a stemming process to reduce received to its

root form: receive. The TeALGenerator also performs a stop word removal process for

each argument to filter out the most common, short function words such as the and a. In

66

this case, the predicate becomes receive(,message). The first argument is blank because

Senna does not detect its agent. If Senna processes the text “A received message . . .,”

TeALGenerator will consider the received predicate as a fluent received(,message).

Senna can identify predicates that are related to verbs. However, a limitation of Senna is

that it cannot identify fluents such as in(system, safeMode) from the text “system is in safe

mode.” This is because “is” is not considered as a predicate. In TeALGenerator , the flu-

ents such as in(system, safeMode) are identified using the typed dependencies generated

by the Stanford Parser. The TeALGenerator identifies the fluent in(system, safeMode)

through the typed dependencies nsubj (is , system) and prep in(is ,mode). The typed de-

pendency nsubj (is , system) shows that system is a subject. The type prep in means that

“in” is a preposition. These two typed dependencies are connected together because of the

word is . Because system is in a mode describes a property of the system, TeALGenerator

generates a new predicate in(system,mode) as a fluent. The fluent is further changed to

in(system, safeMode) because the Stanford parse tree (Figure 5.1) shows that “safe mode”

is a noun phrase.

Identifying Constraints

The TeALGenerator uses a set of tree regular expressions (Tregex) patterns [60] and the

Stanford parse tree to identify constraints. The Tregex is a utility that matches regular

expression patterns in trees. Stanford Parser provides a method for matching a Tregex pat-

tern to text. For example, “do action within x seconds after” is a frequently used temporal

constraint in requirements. This constraint can be represented as a Tregex pattern:

(PP < ((IN < within) . . . (CD$ + NNS)))

The symbol A < B means that A is immediately dominated by B, and A$ + B means

that A is the immediate left sibling of B. The pattern is composed of a number of tags

[65]: PP (prepositional phrase), IN (preposition), CD (cardinal number), and NNS (noun,

plural). This regular expression can be matched to a prepositional phrase which starts with

67

a preposition within and ends with a number and noun sequence, such as 10 seconds. Thus,

(PP < ((IN < within) . . . (CD$ + NNS))) can be used to extract the phrase “within

10 seconds.” Similarly, “do action in last x time units” can be represented as the Tregex

pattern:

((IN < in)..((JJ < last)$ + (CD$ + NNS)))

where JJ is the tag for “adjective.” The symbol A..B means that A precedes B.

This method is based on the fact that there are linguistic patterns frequently used in

temporal requirements. I collected temporal constraints from different datasets, summa-

rized a set of temporal patterns, and created their regular expressions. For each pattern,

there is a translation string that represents the way to translate it into TeAL. For instance,

I have

noEarlierThan $CD $NNS before

for the “in last x time units” pattern. The translation string is discussed below.

There are also patterns that represent non-temporal constraints. The patterns

(SBAR < ((IN < if)$ + S))

and

(SBAR < ((WHADVP < (WRB < when))$ + S))

(SBAR < ((WHADVP < (WRB < once))$ + S))

are used for matching texts of the form “if something” or “when something.” These texts

are commonly used for representing preconditions.

I collected twenty linguistic patterns from real software projects. Thirteen patterns

can be used to identify temporal constraints, and seven patterns are for non-temporal con-

straints. I created TeAL statements for all requirements that contain these linguistic pat-

terns, and concluded the translation strings based on these TeAL statements. Table 5.3

shows all patterns and their translation strings, and explains the meaning of these patterns.

68

Table 5.3: Constraint Patterns

Pattern Translation String Explanation

(PP < ((IN < within).. noLaterThan within the next

(CD$ + NNS))) $CD $NNS after x time units

(PP < ((IN < after)$ + S)) after $S after some event

happened

((IN < in)..((JJ < last)$+ laterThan $CD some event has happened

(CD$ + NNS))) $NNS before in last x time units

(SBAR < ((IN < before)$ + S)) before $S before some event

happens

FRAG < (ADVP < (NP < at $CD $NNS before x time units prior to

(CD$ + NNS) + (RB < prior))

$ + PP < (to < to))

((NP < (CD$ + NNS))$+ at $CD $NNS x time units before

(PP < (IN < before)$ + (S))) before

(VP < (NP < (NN < interval)) at $CD $NNS after at an interval of x

$ + ((IN < of) + (NP previous$VP time units

< (CD$ + NNS))))

(PP < ((IN < within)$+ noLaterThan within x time units of

(NP < ((NP < (CD$ + NNS)$+ $CD $NNS before

(PP < (IN < of))))))

((NP < (CD$ + NNS))$+ at $CD $NNS after x time units after

(PP < (IN < after)$ + (S)))

(VP < (NP < QP < ((DT < at $CD $NNS after once every x time units

every)$ + (CD$ + NNS)))) previous $VP

(NP < (((QP < ((IN < at)$+ laterThan $CD at least x time units after

(JJS < least)$ + CD))$ + NNS) $NNS after

$ + (PP < ((IN < after)$ + S))))

69

Table 5.3, continued

Pattern Translation String Explanation

(NP < (((QP < ((IN < at)$+ laterThan $CD at least x time units

(JJS < least)$ + CD))$ + NNS) $NNS before before

$ + (PP < ((IN < before)$ + S))))

((IN < in)..((JJ < first) noLaterThan $CD in the first x time units

$ + (CD$ + NNS))) $NNS after startTime

(SBAR < ((IN < if)$ + S)) if $S then if some event happens

(SBAR < ((WHADVP < if $S then when some event

(WRB < when))$ + S)) happens

(SBAR < ((WHADVP < if $S then once some event

(WRB < once))$ + S)) happens

(VP < (VBZ < makes)$+ causes $S something makes some

(NP < S)) event happen

(VP < (VBZ < causes)$+ causes $S something causes some

(NP < S)) effect

(VP < (SBAR < ((IN < impossible not $VP cannot do something

unless)$ + S))) if not $S unless

(S < (VP < ((VBZ < prevents) impossible $NP something prevents

$ + NP))) if $VP some event

TGTree

Based on the vocabulary and constraints identified using Senna and the Stanford Parser,

TeALGenerator creates a tree, TGTree, to represent the system information and how

each piece of information is related to the others. Vocabulary and constraints are modeled

as two types of TGTree nodes: predicate nodes and constraint nodes. The TGTree is

70

Figure 5.2: Generation of TGTree

created based on both types of TGTree nodes and the relationships among these nodes

(Figure 5.2). Figure 5.3 shows a TGTree that represents the text “If the system is not in

safe mode or a message is received in last 10 second.” This TGTree consists of five nodes,

where the node 3 (received(,message)) is identified by Senna, and the other four pieces

of information are identified using Stanford Parser.

TGTree Node. Vocabulary and constraints are modeled as two types of TGTree nodes:

predicate nodes and constraint nodes. In the TGTree in Figure 5.3, node 3 (received(. . .))

and node 4 (in(system, safeMode)) are of type predicate. These two nodes store the vo-

cabulary information. Node 1 (if . . .) and node 5 (noEarlierThan . . . before) are of

type constraint . Node 1 represents a non-temporal constraint, and node 5 represents a

temporal constraint. Node 2 (or) shows that the relationship between node 3 and node 4 is

disjunction.

The list of TGTree node attributes is given below:

– predicate: points to the predicate that is mapped to this node. The value can be

NULL.

71

Figure 5.3: Example of TGTree

– node: points to the linked node in the Stanford parse tree.

– isNegation: tells if the context represented by this node contains negation.

– isDisjunction: tells if there is disjunction among the children of this node.

– isConjunction: tells if there is conjunction among the children of this node.

– isNonTempRelation: tells if the context represented by this node is a precondition.

– isTempRelation: tells if the context represented by this node is a temporal condition.

– isAction: tells if the predicate mapped to this node (if exist) is an action.

– isFluent: tells if the predicate mapped to this node (if exist) is a fluent.

– content: tells the context represented by this node.

– startPosition: gives the position of the first character of the covered phrase in the text.

– endPosition: gives the position of the last character of the covered phrase in the text.

A TGTree node is a predicate node if its predicate attribute is not NULL. The boolean

attributes isAction and isFluent illustrate if a predicate node represents an action or a

fluent. Similarly, the boolean attributes isTempRelation and isNonTempRelation show

if a constraint node represents a temporal or non-temporal constraint. If a TGTree does

72

not store vocabulary or constraint information, then it is a node of relation type. The

relation nodes represent the relation among the other two types. The boolean attributes

isDisjunction and isConjunction show if the relation is conjunction or disjunction. The

isNegation attribute is true if the corresponding text contains negation. For example, the

TGTree node that represents the node 4 (not in(system, safeMode)) in Figure 5.3 has this

attribute valued as true. A TGTree node also has attributes that are common for all tree

nodes, such as isRoot , isLeaf , parent , and children.

As is shown in the TGTree (Figure 5.3), each TGTree node has its content . For exam-

ple, the content of node 5 is noEarlierThan 10 second before, and the content of node

3 is received(,message). This attribute is used during the construction of AlmostTeAL

statements. The evaluation of content is discussed below.

The node attribute points to a node in the parse tree generated by the Stanford Parser.

For example, each TGTree node in Figure 5.3 is linked to a parse tree node in Figure 5.1.

For each linked pair of nodes, the phrase represented by the parse tree node is “covered”

by the linked TGTree node. Table 5.4 shows the linked parse tree node for each TGTree

node in the TGTree (Figure 5.3): The structures of TGTree trees are determined by the

Table 5.4: Linked TGTree and Parse Tree Nodes

TGTree Node Parse Tree Node Covered Phrase
1 1. SBAR If the system is not in safe mode or a message

is received in last 10 seconds
2 2. S the system is not in safe mode or a message

is received in last 10 seconds
3 8. S a message is received in last 10 seconds
4 3. S the system is not in safe mode
5 12. PP in last 10 seconds

“covered phrases.” Given two TGTree nodes n1, n2 and their covered phrases c1, c2, if c1

is a substring of c2, then n1 is a child (or grandchild) of n2. In the example in Table 5.4,

node 3 is the parent of node 5, but node 4 and node 3 are siblings.

The TeALGenerator saves all TGTree nodes in a list, cList .

73

TGTree Predicate Node. The TeALGenerator creates a TGTree node of predicate type

for each predicate identified by Senna. The algorithm for generating predicate nodes based

on Senna is given as Algorithm 2. This algorithm uses the Senna output sennaInfo and

the parse tree generated by Stanford parser. The node 3 (received(. . .)) in Figure 5.3 is

identified using this algorithm.

Algorithm 2 Generating predicate nodes based on Senna
Data: sennaInfo, parseTree, cList

Result: cList

foreach predicate p in sennaInfo do
create TGTree node c;

get the node n in parseTreethat links to c;

c.node = n;

c.predicate = p;

c.startPosition = the start position of n;

c.endPosition = the end position of n;

if the POS tag of p.head is VB VBZ, or VBG then
c.isAction = true;

end

else

if the chunk tag of p.head is VP then
c.isAction = true;

end

else
c.isFluent = true;

end

end

add c to cList;

end

74

The algorithm for generating predicate nodes based on Stanford parser is given as

Algorithm 3. This algorithm uses the parse tree and the typed dependencies generated by

the Stanford parser. The node 4 (in(system, safeMode)) in Figure 5.3 is identified using

this algorithm.

Algorithm 3 Generating predicate nodes based on Stanford parser
Data: parseTree, typeDependency, cList

Result: cList

foreach typed dependency td in typeDependency do

if td.reln == prep x then

foreach typed dependency td2 in typeDependency do

if td2.dep == td.gov then
create new TGTree node c;

get the node n in parseTree that links to td;

c.node = n;

c.predicate = td.gov;

c.startPosition = the start position of n in parseTree;

c.endPosition = the end position of n in parseTree;

c.isFluent = true;

add c to cList;

end

end

end

end

The generated TGTree node links to a Stanford parse tree node that is the lowest com-

mon ancestor of all the arguments of the predicate. In Figure 5.1, the node “8. S” is the

lowest ancestor of a message and received in last 10 seconds. Thus, the TGTree node 3 in

Figure 5.3 links to “8. S” and covers the text “a message is received in last 10 seconds.”

75

Similarly, the node “3. S” in Figure 5.1 is the lowest ancestor of system and mode. In this

case the TGTree node 4 in Figure 5.3 links to “3. S” and covers the text “the system is not

in safe mode.”

TGTree Constraint Node. The TeALGenerator tries to find matching phrases for all

the patterns I created. For each matching phrase, TeALGenerator creates a constraint

type TGTree node. The algorithm for generating constraint nodes is given as Algorithm

4. This algorithm uses the Stanford parse tree and the pattern list I created.

Algorithm 4 Generating constraint nodes
Data: parseTree, patternList, cList

Result: cList

foreach temporal pattern r in patternList do

if r has a match rp in parseTree then
create new TGTree node c;

if r is a temporal pattern then
c.isTempRelation = true;

end

else
c.isNonTempRelation = true;

end

c.node = rp.root;

c.startPosition = the start position of rp.root;

c.endPosition = the end position of rp.root;

c.content = the translation string of r;

add c to cList;

end

end

A constraint type TGTree node is linked to the matching parse tree node. For example,

76

the TGTree for “in last 10 seconds” (node 5 in Figure 5.3) is linked to the node “12. PP”

in Figure 5.1. The content of a constraint type TGTree node is set as the corresponding

translation string, and the tags marked with $ sign mean that these tags will be replaced

with the corresponding text in the requirements when AlmostTeAL is generated.

TGTree Construction. The TeALGenerator builds a TGTree based on all the predicate

and constraint TGTree nodes. The root of the TGTree covers the whole sentence. Then

the TGTree nodes are constructed based on the texts they cover. The text that is covered

by a child node must be a substring of the text covered by the parent node. In the example

in Figure 5.3, node 5 is the child of node 3 because of the texts they cover.

The algorithm for constructing a TGTree is given as Algorithm 5. It uses the cList

that includes all predicate and constraint TGTree nodes.

Algorithm 5 Constructing a TGTree

Data: cList

Result: TGTree

foreach TGTree node n1 in cList do
find the node n2 such that n2 covers n1

and there is no n3 such that n2 covers n3 and n3 covers n1;

add n1 to n2.children;

n1.parent = n2;

if n1.parent = null then
n1.isRoot = true;

end

if n1.children = null then
n1.isLeaf = true;

end

end

After the TGTree is built, the TeALGenerator creates TGTree nodes of relation type

77

based on Stanford Dependencies. The TeALGenerator identifies three types of relations

among constraints: negation, conjunction, and disjunction.

The algorithm for identifying conjunction, disjunction is given as Algorithm 6. This

algorithm uses the type dependencies generated by Stanford Parser and the TGTree gen-

erated in Algorithm 5.

Algorithm 6 Identifying conjunction, disjunction
Data: typeDependency, TGTree

Result: TGTree

foreach typed dependency td in typeDependency do

if td.reln == conj or or conj and then
get the lowest TGTree node that covers td.gov, n1;

get the lowest TGTree node that covers td.dep, n2;

get the lowest common ancestor, n3;

create new tempCond node n4;

set n4 to be the new parent of n1 and n2;

add n4 to n3.children;

if td.reln == conj and then
n4.isConjunction = true;

end

else
n4.isDisjunction = true;

end

end

end

For disjunction and conjunction relationships, the useful dependencies are conj or and

conj and . Given the sample text and the dependency conj or(is , received) (No. 11 in

Table 5.2), TeALGenerator creates a new TGTree node which is of type “Disjunction.”

The two TGTree nodes that represent the predicates receive and in become the children

78

of this new TGTree node. The text of the new node covers the texts of both its children.

The new node is then inserted into the TGTree based on the text it covers. By default, I

assume that the relationship between the children TGTree nodes under the same parent is

conjunction, because many sentences do not present the conjunction relation explicitly.

The negation relation is identified through the dependency neg(x, not). Given such a

dependency, the TeALGenerator checks if there is a TGTree node that matches the word

x. In the “system is in mode” example above, if there is a dependency neg(is , not), then

the TGTree node that corresponds to this phrase is marked as negation.

Generating AlmostTeAL

The TeALGenerator constructs the signature Σ of AlmostTeAL based on the predicate

TGTree nodes. In the example “If the system is not in safe mode or a message is received in

last 10 seconds” two predicate TGTree nodes are created: action node receive(,message)

and fluent node in(system, safeMode). The TeALGenerator identifies three sorts from

the arguments of these nodes, and each sort has one constant:

sort systemSort , safeModeSort , messageSort ;

constant systemSort system;

constant safeModeSort safeMode;

constant messageSort message;

The declaration of the action is:

action receive(,messageSort);

The declaration of the fluent is:

fluent in(systemSort , safeModeSort);

The TeALGenerator constructs AlmostTeAL statements based on the structure of the

TGTree. The process of creating AlmostTeAL statements is based on a depth-first search.

79

For a TGTree node of constraint type, its content attribute is the translation string of the

pattern that matches this node. If the content attribute contains tags that are marked with

$ sign, then these tags must be replaced with the corresponding text in the requirements.

For example, given a constraint TGTree node for the in last 10 seconds text, its content

attribute is

noEarlierThan $CD $NNS before

Thus TeALGenerator will output noEarlierThan 10 second before because the tags

CD NNS match “10 seconds.” For a TGTree node of predicate type, its content attribute

is of the form

predicateName(Arg1, . . . ,Argn)

TeALGenerator outputs the content attribute without any change.

From the tree given in Figure 5.3, the TeALGenerator generates the AlmostTeAL

expression:

if not in(system, safeMode) or

receive(,message) noEarlierThan 10 second before

5.2 Detecting Ambiguity and Incompleteness

During the process of identifying system information, TeALGenerator may also detect

ambiguity and incompleteness and use this information to assist analysts’ work.

The approach to detect ambiguity is similar to that of identifying constraints. I identi-

fied a set of “ambiguity patterns” based on existing ambiguity detection research [11] and

my own experience. For instance, given a pattern “do action every x seconds,” it is not clear

if the action is performed at an interval of exactly x seconds, or at most x seconds. Another

example is the “in last 10 seconds” phrase above. The TeALGenerator assumes that this

phrase means noEarlierThan 10 second before. But some analysts may consider this

80

phrase as laterThan 10 second before. This problem must be clarified by the analysts

before a correct TeAL theory is generated.

Detecting incompleteness is based on the assumptions of TeAL, such that each action

must have effect on the system, and that each action must have an agent. If Senna finds

a predicate without any agent (for instance, receive(,message)), then TeALGenerator

will remind analysts that an agent is missing. Another case of incompleteness is that

TeALGenerator identifies a fluent such as in(system, safeMode), but it does not appear

in the “effect” part (after then) in any AlmostTeAL statements. The TeALGenerator

will remind analysts that this fluent is not affected by any action.

The TeALGenerator also checks if there are missing arguments by comparing dif-

ferent predicates. These predicates may be identified from different requirements. For

instance, TeALGenerator uses Stanford Dependencies to decide the types of some argu-

ments. With the typed dependency prep from(receiver , sender), the tool decides that the

receive action has an argument whose type is “receive from.” This information is useful

because it is very possible that a requirement does not contain information about all the

arguments. For example, given the predicate receive(,message), Senna does not con-

sider that the action has an argument representing where the message comes from. With

the argument “receive from” identified from the other requirements, the action predicate

receive(,message) can be changed to receive(,message,). This reminds analysts that a

third argument representing “receive from somewhere” is missing.

Copyright c© Wenbin Li, 2015.

81

Chapter 6 From TeAL to clingcon language

Once analysts confirm that a TeAL theory is correct, their task in the process of generating

TeAL theory is complete. The next step is to generate an answer set program based on

the TeAL theory. An answer set program is a logic-based formalism which maps search

problems to logic expressions and offers tools to reason with these logic expressions auto-

matically. I designed TeAL as an extension of the action language AL [9], and there is the

translation from AL to ASP .

This step is fully automated by my translator TeAL2ASP . The translation is designed

so that there is a correspondence between a valid timed path of a TeAL theory and an

answer set of the answer set program translated from that TeAL theory.

I chose clingcon [35] as the tool for processing the answer set programs translated

from TeAL theories. The clingcon programs combine ASP programs with constraints

over integers. The use of these constraints makes clingcon more efficient in handling large

numeric domains.

As I have discussed in Chapter 4, given a TeAL theory ∆ = 〈Σ,AD ,TC 〉, I extend

it to a normalized theory ∆N = 〈ΣN ,ADN ,TC 〉. I write Σ(∆N) to denote the signature

of ∆N , AD(∆N) to denote the action description of ∆N , and TC (∆) to denote the set of

temporal constraints. The translation of ∆N , Π(∆N), is a clingcon program that consists

of three parts: Π(Σ(∆N)), Π(AD(∆N)), and Π(TC (∆)), expressing the three components

of ∆N , respectively. The clingcon program Π(AD(∆N)) involves a parameter, say NS ,

that represents the number of states on paths. Answer sets of Π(Σ(∆N)) ∪ Π(AD(∆N))

represent timed paths with NS + 1 states (the initial state and the NS states after it) in

the transition graph of ∆N . I write Π(AD(∆N), n) to represent the program Π(AD(∆N))

with NS set to n. The program Π(TC(∆)) involves another parameter, say H , that repre-

sents the horizon of timed paths. I write Π(TC(∆), h) to denote the program Π(TC(∆))

82

with the horizon value set to h. I will discuss the generation of the programs Π(Σ(∆N)),

Π(AD(∆N), n), and Π(TC(∆), h) below.

6.1 Generation of Σ(∆N)

The program Π(Σ(∆N)) is the translation of Σ(∆N), the normalized signature of the TeAL

theory ∆. The program Π(Σ(∆N)) defines sorts, their extensions, fluents, actions, and

agents. These elements are translated into atoms and rules in Π(Σ(∆N)).

For every constant declaration “constant s con1, . . . , conk;” in Σ(∆N), where s must

be a sort declared in Σ(∆N), I include in Π(Σ(∆N)) the statements:

s(con1). . . . s(conk). (6.1)

In clingcon, these statements define the extension of the predicate s, and indicate that

constants con1, . . . , conk are of sort s.

For every agent declaration “agent ag1, . . . , agk;” in Σ(∆N), where ag1, . . . , agk are

sorts that are declared as agents, I include in Π(Σ(∆N)) the statements:

agent(Ag):- ag1(Ag).

. . . (6.2)

agent(Ag):- agk(Ag).

These statements define the extension of the predicate agent , and indicate that all constants

of the sorts ag1, . . . , agk are agents.

For each fluent declaration “fluent fluentName(s1, . . . , sk);” in Σ(∆N), I include in

Π(Σ(∆N)) the statement:

fluent(fluentName(C1, . . . , Ck)):- s1(C1), . . . , sk(Ck). (6.3)

This defines the space (set) of fluents. I use the fluent predicate to indicate that a valid flu-

ent fluentName(. . .) must include constants C1, . . . , Ck that are of correct sorts s1 . . . , sk.

83

In normalized TeAL theories prompts play the role of actions in AL. For each prompt

“commence actionName(s1, . . . , sk)” or “terminate actionName(s1, . . . , sk)” in the

signature Σ(∆N), I include in Π(Σ(∆N)) the statements:

act(actionName(C2, . . . , Ck)):- s2(C2), . . . , sk(Ck). (6.4)

action(Ag , actionName(C2, . . . , Ck)):- s1(Ag), s2(C2), . . . , sk(Ck). (6.5)

prompt(com(action(Ag ,Ac))):- action(Ag ,Ac). (6.6)

prompt(ter(action(Ag ,Ac))):- action(Ag ,Ac). (6.7)

These rules define the space (set) of prompts. Because TeAL assumes that each ac-

tion must have an agent, I use the act predicate to represent the actions in AC with-

out specifying their agents. I use the second rule to specify the agents (Ag) of these

actions. For instance, act(send(message, receiver)) stands for “sending message to the

receiver,” and action(sender , send(message, receiver)) specifies that it is sender that

performs this action. The third and forth rules declare the commence and terminate

prompts, where com(action(Ag ,Ac)) represents the commence action(Ag ,Ac) prompt,

and ter(action(Ag ,Ac)) represents the terminate action(Ag ,Ac) prompt. Additionally,

I include in Π(Σ(∆N)) the statements:

prompt(totrue(F)):- fluent(F). (6.8)

prompt(tofalse(F)):- fluent(F). (6.9)

to define that for every fluent F , totrue(F) and tofalse(F) are prompts.

Introduction of engaged and inProgress. Because ΣN includes two types of special

fluents engaged Ag and inProgress Act for all agents Ag in AG and actions Act in AC ,

I include in Π(Σ(∆N)) the statements:

fluent(engaged(Ag)):- agent(Ag). (6.10)

84

fluent(progress(action(Ag , actionName(C2, . . . , Ck))))

:- ag1(Ag), s2(C2), . . . , sk(Ck). (6.11)

6.2 Generation of Π(AD(∆N), n)

Next I describe the translation of the action theory laws. The translation of state constraints,

dynamic causal laws, and executability conditions follows Baral and Gelfond’s work [9].

Predicate state. Following Baral and Gelfond, I introduce a new predicate state in

Π(AD(∆N), n). The program Π(AD(∆N), n) uses the following statement to identify

the state predicate with integers from 0 to n.

state(0..n). (6.12)

Introduction of holds and happen. As in Baral and Gelfond’s work, I include two pred-

icates, holds and happen in the clingcon program to represent the relationships among

fluents, prompts, and states. The Π(AD(∆N), n) program uses the predicate:

holds(F, S) (6.13)

to represent that the value of fluent F is true at state S. The Π(AD(∆N), n) program also

uses the predicate:

happen(Pr , S) (6.14)

to represent that prompt Pr happens at state S, and changes the system to the next state.

Translation of action description AD(∆N). For every state constraint

L if P ;

I include in Π(AD(∆N), n) the following rule:

holds(L, S):- holds(P, S), state(S),fluent(P),fluent(L). (6.15)

85

If P is the negation of a fluent P ′, then I replace holds(P, S) with -holds (P ′, S). I applies

this method to all negation fluents in ∆N . If P is a conjunction of fluents P1, . . . , Pk, then

I include in Π(AD(∆N), n) the following rule:

holds(L, S):- holds(P1, S),fluent(P1), . . . , holds(Pk, S),fluent(Pk),

state(S),fluent(L). (6.16)

If P is a disjunction of fluents P1, . . . , Pk, then I include in Π(AD(∆N), n) the following

rule:

holds(L, S):- 1{holds(P1, S), . . . , holds(Pk, S)}, state(S),

fluent(P1), . . . ,fluent(Pk),fluent(L). (6.17)

If L is a conjunction of fluents L1, . . . , Lk, then I include in Π(AD(∆N), n) the following

rule:

k{holds(L1, S), . . . , holds(Lk, S)}:-

holds(P, S),fluent(L1), . . . ,fluent(Lk),

state(S),fluent(P). (6.18)

If L is a disjunction of fluents L1, . . . , Lk, then I include in Π(AD(∆N), n) the following

rule:

1{holds(L1, S), . . . , holds(Lk, S)}:-

holds(P, S),fluent(L1), . . . ,fluent(Lk),

state(S),fluent(P). (6.19)

For every dynamic causal law

Pr causes E if P ;

86

I could include in Π(AD(∆N)) the following rule:

holds(E, S + 1):- happen(Pr , S), holds(P, S), state(S)

prompt(Pr),fluent(P),fluent(E), S <= n− 1. (6.20)

This is the standard way to translate dynamic laws to logic program rules. However, it

should be noted that a fluent may change because of two reasons: the occurrence of a

regular prompt, and passing time. While the rules above cover the first case, we can use

virtual prompts totrue(. . .) and tofalse(. . .) to cover both cases by assuming that whenever

a regular prompt that changes the value of a fluent occurs, the corresponding virtual prompt

must occur as well. This assumption can be enforced by the following rules:

:- happen(Pr , S), not happen(totrue(F), S),

state(S), prompt(Pr), prompt(totrue(F)). (6.21)

:- happen(Pr , S), not happen(tofalse(F), S),

state(S), prompt(Pr), prompt(tofalse(F)). (6.22)

The following rules describe how totrue(. . .) and tofalse(. . .) change fluents.

holds(F, S + 1):- happen(totrue(F), S),fluent(F), state(S),

S <= n− 1. (6.23)

-holds (F, S + 1):- happen(tofalse(F), S),fluent(F), state(S),

S <= n− 1. (6.24)

Thus the following rules are sufficient for capturing all dynamic causal laws

Pr causes E if P ;

where E can be a fluent F or its negation. If E represents a fluent F , then the rules are:

happen(totrue(F), S):- happen(Pr , S), holds(P, S), state(S),

prompt(Pr),fluent(P),fluent(F). (6.25)

87

If E represents the negation of a fluent F , then the rules are:

happen(tofalse(F), S):- happen(Pr , S), holds(P, S), state(S),

prompt(Pr),fluent(P),fluent(F). (6.26)

For every executability condition

impossible pr 1, . . . , prk if P ;

I include in Π(AD(∆N)) the following rule:

:- happen(Pr1, S), . . . , happen(Prk, S), holds(P, S),

state(S),fluent(P), prompt(Pr 1), . . . , prompt(Prk). (6.27)

Because of the existence of totrue() and tofalse() prompts and the assumption above,

I use rules that are slightly different from Baral and Gelfond’s work [9] to represent the

change of fluents and the inertial axioms.

holds(F, S + 1):- holds(F, S), not happen(tofalse(F), S),

fluent(F), state(S). (6.28)

-holds (F, S + 1):- -holds (F, S), not happen(totrue(F), S),

fluent(F), state(S). (6.29)

:- not holds(F, S), not -holds (F, S),fluent(F), state(S). (6.30)

The rules 6.28 and 6.29 specify that a fluent will not change unless something (prompts

or passing time) makes it change. I use totrue() and tofalse() because we ensure that no

matter whether a fluent F is inertial or not, totrue(F) must happen at state S in order

for holds(F, S + 1) to become true, and tofalse(F) must happen at state S in order for

holds(F, S + 1) to become false. The rule 6.30 means the value of a fluent must be either

true or false. It ensures that states are complete.

88

The following rule guarantees that at each state at least one prompt occurs, because

only prompts can change the states of the system.

1{happen(Pr , S) : prompt(Pr)}:- state(S). (6.31)

The constraint above is typically implicit in textual requirement documents and in TeAL.

However, it must be made explicit in the clingcon program.

For every initial constraint initially F , Π(AD(∆N), n) includes the rule:

holds(F, 0):- init(F). (6.32)

If F is the negation of a fluent F ′, then Π(AD(∆N), n) includes the rule:

-holds (F ′, 0):- init(F ′). (6.33)

Given an integer n and a normalized TeAL theory ∆N , Σ(∆N) ∪ AD(∆N) is an AL

theory. Because the translation of Σ(∆N) ∪ AD(∆N) is essentially that of Baral and Gel-

fond [9], the following theorem is a restatement of their result (Theorem 2, page 11 [9]).

Theorem 3 If a sequence p = 〈s0, pr0, . . . , sn−1, prn−1, sn〉 is a valid path in T∆N , then

Π(Σ(∆N)) ∪ Π(AD(∆N), n) has an answer set A such that for every i, 0 ≤ i ≤ n,

1. for every fluent f , holds(f, i) ∈ A if and only if f ∈ si

2. for every prompt pr , happen(pr, i) ∈ A if and only if pr ∈ pr i

Conversely, ifA is an answer set of Π(Σ(∆N))∪Π(AD(∆N), n), then there is a valid path

p = 〈s0, pr0, . . . , sn−1, prn−1, sn〉 in T∆N such that for every i, 0 ≤ i ≤ n,

1. for every fluent f , f ∈ si if and only if holds(f, i) ∈ A

2. for every prompt pr , pr ∈ pr i if and only if happen(pr, i) ∈ A

89

6.3 Generation of Π(TC(∆), h)

As I have discussed in Chapter 4, my program aims to detect inconsistencies within a given

time horizon. The value of time horizon must be given in the clingcon program. I write

Π(TC(∆), h) to indicate that in the program Π(TC(∆)) the horizon value is h.

The program Π(TC(∆), h) uses the following statement to define the time domain and

represent that the value of the horizon is h:

$domain(0..h). (6.34)

The $domain defines the possible values of integer variables in this clingcon program. The

$ sign means that the time domain is treated separately when Π(TC(∆), h) is grounded. In

the clingcon program described below I use time(C) as a constraint variable to represent

the time moment assigned to the check point C. These variables are valued as integers in

[0, h]. They are not grounded like the other variables. The integer constraints associated

with these variables are marked with $ and are solved in clingcon by a dedicated constraint

solver Gecode [79]. For example, given a rule

time(C1)$ ≤ time(C2). (6.35)

the Gecode solver will need to assign integer values int1 and int2 to variables time(C1)

and time(C2) so that the inequality int1 ≤ int2 holds. The use of Gecode prevents

the generation of huge numbers of ground instances of rules. The range of the integers is

defined by the statement $domain(0..h), which means that the values assigned to time(C1)

and time(C2) must be less or equal to h and greater than or equal to 0. This ensures that

all check points are assigned time moments within the horizon.

As discussed in Chapter 4, we need to check if temporal conditions are satisfied on

timed paths, but it is not necessary to check every time moment. For every temporal condi-

tion, we can find a finite set of check points such that checking the satisfiability of temporal

conditions on these check points is equivalent to checking the satisfiability at every time

moment on the path (Theorem 1).

90

As mentioned in Chapter 4, there are two types of check points: state determined check

points associated with states, and condition determined check points associated with tem-

poral constraints. The number of state determined check points equals to n+1, where n is

the number of states, because the start time is also regarded as a state determined check

point. The number of condition determined check points is a priori unknown. Because of

this, I include the following rule in Π(TC(∆), h) to declare the upper bound of the number

of candidate check points:

check(0..h). (6.36)

The check() predicate has a range from 0 to h. This rule indicates that the number of

candidate check points equals to the number of time moments on the timed path. My

translation introduces a certain number of check points and numbers them consecutively

(check point 0, check point 1, etc., up to check point k, for some k ≤ h). Checking the

satisfiability of temporal constraints on these k sufficient check points will be enough to

determine if the timed path is valid. The enumeration of check points is consistent with

their times.

I use a predicate chp(C) to represent a sufficient check point C. Each of these check

points has a time assigned to it. The following rule ensures that the time assignment of

check points is based on the sequence of the check points on the path. I use time(C1) and

time(C2) to represent the times assigned to C1 and C2.

:- chp(C1), chp(C2), C1 > C2,

time(C1)$ < horizon, time(C1) ≤ time(C2). (6.37)

Figure 6.1 shows an example in which the horizon of the timed path p is 21. The upper

bound of the number of candidate check points is set to be 20, but there are only six suf-

ficient check points (k = 5). Four state determined check points (chp(0), chp(1), chp(3),

chp(5)) map the start time and the states s0, s1, and s2. There are also two condition de-

91

Figure 6.1: Example of check points on timed path

termined check points (chp(2) and chp(4)). The order of check points and the order of the

times assigned to these check points are consistent.

The state determined check points are the time moments when prompts occur and

change the system. These time moments are the last time moments before the states change.

In Π(TC(∆), h) I use a predicate statechp(C, S) to represent that the state S is mapped

to a state determined check point C. An atom statechp(Ci, Sj) indicates that if a prompt

occurs at state Sj , then this prompt occurs at time(Ci), the last time moment when the

system is still in Sj . The rule enforcing that mapping is:

1{statechp(C, S) : check(C)}1 :- state(S). (6.38)

It means that a state must be mapped to one and only one state determined check point.

The rule below specifies that every state determined check point needs to be checked

chp(C) :- statechp(C, S). (6.39)

In Π(TC(∆), h) I include two predicates prompthappen and fluentholds as the “check

point” version of happen and holds . They specify that “a fluent holds at a check point” and

92

“a prompt happens at a check point.” Their definitions are:

prompthappen(Pr , C) :- happen(Pr , S), statechp(C, S). (6.40)

fluentholds(F,C) :- holds(F, S), statechp(C, S). (6.41)

Each temporal condition gives rise to its condition defined check points. In Π(TC(∆), h)

I use atoms chpAt(ID ,CP) to represent that “a set of condition determined check points

ID is defined by the state determined check point CP .”

Let us discuss a temporal conditions “β at 2 unit before α,” where α and β are

prompts. The clingcon program needs to ensure that a check point exists 2 units before

the time when α occurs. I use chpAt(cpid1,CP1) to represent the existence of such a

condition determined check point cpid1, where CP1 represents the state determined check

point when α occurs. We need to specify that this chpAt() atom is associated with cpid1

because temporal conditions may use the same set of state determined check points to

define different condition determined check points.

I include the following statements in Π(TC(∆), h) for these check points:

chp(CP2):- time(CP2)$ == time(CP1)− 2, check(CP2),

prompthappen(α,CP1). (6.42)

chpAt(cpid1,CP1) :- check(CP2), time(CP2)$ == time(CP1)− 2,

prompthappen(α,CP1). (6.43)

:- prompthappen(α,CP1), not chpAt(cpid1,CP1),

0$ <= time(CP1)− 2. (6.44)

The first rule specifies that 2 units before the time moment when α happens is a condition

determined check point. The second rule states that chpAt(cpid1,CP1) is true if there

is a condition determined check point CP2 at 2 units before the state determined check

point CP1, the time moment when α happens. The third rule means that the condition

determined check point CP2 must be checked.

93

For another example, I will discuss the temporal condition “γ at 5 unit after α.” In

this case, the clingcon program needs to ensure that a check point exists at 5 units after the

time when α occurs. I include the following statements in Π(TC(∆), h):

chp(CP2):- time(CP2)$ == time(CP1) + 5, check(CP2),

prompthappen(α,CP1). (6.45)

chpAt(cpid2,CP1) :- check(CP2), time(CP2)$ == time(CP1) + 5,

prompthappen(α,CP1). (6.46)

:- prompthappen(α,CP1), not chpAt(cpid2,CP1),

horizon$ >= time(CP1) + 5. (6.47)

to ensure that there is a condition determined check point CP2 at 5 units before the state

determined check point CP1, the time moment when α happens.

Translation of next and previous

The next and previous occurrences of prompts, next prompt and previous prompt , are

defined by means of predicates next and previous:

previous(prompthappen(Pr, S1), S):-

prompthappen(Pr, S1), statechp(S), S > S1,

{prompthappen(Pr, S2) : statechp(S2) : S2 > S1 : S2 < S}0. (6.48)

next(checkhappen(Pr, S1), S):-

prompthappen(Pr , S1), statechp(S), S1 > S,

{prompthappen(Pr, S2) : statechp(S2) : S1 > S2 : S2 > S}0. (6.49)

The predicate previous((Pr , S1), S) represents that for state S, the previous occurrence of

Pr is at state S1. Similarly, next((Pr , S1), S) means that for state S, the next occurrence

of Pr is at state S1.

94

Translation of Temporal Constraints

As I have discussed in Chapter 4, there are local temporal conditions whose satisfaction

depends on time moments, and there are global temporal conditions whose satisfaction

does not. The Π(TC(∆), h) program includes rules for both types.

The Π(TC(∆), h) program uses sat(ID , arguments ,CP) to represent that “the tem-

poral condition ID is satisfied at the check point CP .” The translation assigns a unique

ID for each temporal condition. The arguments are the actions and fluents involved in

the temporal condition. I will now illustrate the translation of temporal conditions with

examples.

Based on the discussion in Chapter 4, a temporal conditionC = α timeComp timeMod

β is local if β is empty or β involves previous or next. Given a local temporal condi-

tion cond1 = α at c unit after βn, where βn stands for “the next occurrence of β,”

Π(TC(∆), h) includes the following rules:

sat(cond1, α, β,CP1):- not -sat (cond1, α, β,CP1), chp(CP1). (6.50)

-sat (cond1, α, β,CP1):- next(prompthappen(β,CP2),CP1),

not prompthappen(α,CP3), chp(CP1),

time(CP3)$ == time(CP2) + c, chp(CP2),

chp(CP3), horizon$ >= time(CP2) + c. (6.51)

-sat (cond1, α, β,CP1):- not next(prompthappen(β,CP2),CP1),

chp(CP1), chp(CP2). (6.52)

For another example of local temporal condition, let us consider that cond2 represents

α at c unit after. Then, Π(TC(∆), h) includes the following rules:

sat(cond2, α,CP1):- not -sat (cond2, α,CP1), chp(CP1). (6.53)

95

-sat (cond2, α,CP1):- not prompthappen(α,CP2),

time(CP2)$ == time(CP1) + c,

chp(CP1), chp(CP2),

horizon$ >= time(CP1) + c. (6.54)

Based on the discussion in Chapter 4, a temporal conditionC = α timeComp timeMod

β is global if β is a prompt without previous or next. For global temporal conditions the

sat() predicate is not enough. This is because the satisfiability of these temporal conditions

does not depend on any specific time moment. They are either satisfied on the whole timed

path or not. For instance, given a global temporal condition cond3 as “α at c unit after

β,” p, t |= cond3 holds if for any time moment v such that β occurs at v and v + c ≤ h(p),

there is a time moment u=v + c such that α occurs at u. To check the satisfiability of

cond3, we need to check the satisfiability of a local temporal condition cond3′ = “α at c

unit after” on all check points when β occurs. If cond3′ is satisfied on a check point CP ,

we say cond3 is partially satisfied at CP . I introduce the l sat (cond3, arguments ,CP)

predicate to represent the statement “cond3 is partially satisfied at the check point CP .”

The satisfiability of a global temporal condition is based on its partial satisfiability at all

check points.

For the global temporal condition cond3 = α at c unit after β, cond3 is satisfied on

a timed path p if cond3 is partially satisfied at all check points on p. To implement this

condition, the Π(TC(∆), h) program includes the following rules:

l sat (cond3, α, β,CP1):- not -l sat (cond3, α, β,CP1), chp(CP1). (6.55)

-l sat (cond3, α, β,CP1):- prompthappen(β,CP1), chp(CP1),

not prompthappen(α,CP2),

time(CP1) + c $ == time(CP2),

chp(CP2), horizon $ >= time(CP1) + c. (6.56)

96

sat(cond3, α, β,CP):- chp(CP),

{-l sat (cond3, α, β,CP1) : chp(CP1)}0. (6.57)

-sat (cond3, α,CP):- chp(CP),

1{-l sat (cond3, α, β,CP1) : chp(CP1)}. (6.58)

The predicate l sat (cond3, α, β,CP1) states that given a check point CP1 such that β

occurs at time(CP1), there is α that occurs at time(CP1)+c, c time units after time(CP1).

I use the predicate -l sat (cond3, α, β,CP1) to represent that β occurs at time(CP1) but

α does not occur at “time(CP1) + c” even if this is possible before the horizon is met. The

predicate sat(cond3, α, β,CP) means that if -l sat (cond3, α, β,CP1) does not hold for

any check point, which means there are no check points on which cond3 is violated, then

cond3 is satisfied. If there is at least one such check point, then the temporal condition is

violated.

Given a temporal constraint of the form

if A1 and . . . and Ak, then B1 or . . . or Bm;

Π(TC(∆), h) includes the following rule to check that for each check point, the temporal

constraint is satisfied.

:- sat(A1, args ,CP), . . . , sat(Ak, args ,CP),

-sat (B1, args ,CP), -sat (Bm, args ,CP), chp(CP). (6.59)

This rule means that: for each sufficient check point CP , if all the temporal conditions

A1, . . . , Ak are satisfied on CP , then at least one of B1, . . . , Bm shall be satisfied on CP

as well.

Translation of Duration Specification

For each duration specification:

duration Action x unit (6.60)

97

Π(TC(∆), h) includes the following rules:

dur(Action, x). (6.61)

sat(cCom,Action, S):- dur(Action, x), horizon$ >= time(S) + x,

prompthappen(com(Action), S), chp(S). (6.62)

sat(cTer ,Action, S):- next(prompthappen(ter(Action), S1), S),

time(S1)$ == time(S) + x, chp(S),

dur(Action, x). (6.63)

:- sat(cCom,Action, S), check(S),

not sat(cTer ,Action, S). (6.64)

:- dur(Action, x), prompthappen(com(Action), S),

next(prompthappen(ter(Action), S1), S),

time(S1)$! == time(S) + x. (6.65)

where cCom and cTer are IDs TeAL2ASP assigns for temporal conditions. The rules

above represent a temporal constraint such that: for each commence Act , there must be

the next occurrence of terminate Act at x units later. These rules ensures that on a valid

timed path, every action that can end must end.

Based on Theorem 3, given a TeAL theory ∆, answer sets of the program Π(Σ(∆N))∪

Π(AD(∆N), n) represent valid paths of ∆. The translation of Π(TC(∆), h) ensures that

the time assignments of check points (time(Ci) = x) in an answer set of Π(∆N)(h,n)

represent the temporal information in a valid timed path.

Theorem 4 Let ∆ denote a TeAL theory, ∆N its normalized theory, h and n integers such

that 0 < n ≤ h. Let A be an answer set of the program Π(Σ(∆N)) ∪ Π(AD(∆N), n). Let

p = 〈0; s0, t0, pr0; . . . , sn−1, tn−1, prn−1; sn, tn〉 be a timed path such that

– for every fluent f , f ∈ si if and only if holds(f, i) ∈ A

98

– for every prompt pr , pr ∈ pr i if and only if happen(pr , i) ∈ A

If p is a valid timed path of ∆N , then the program A ∪ Π(TC(∆), h) has an answer

set B such that for every i, 0 ≤ i ≤ n, there is j, 1 ≤ j ≤ n, statechp(j, i) ∈ B, and

time(j) = ti.

If the programA∪Π(TC(∆), h) has an answer setB such that for every statechp(j, i) ∈

B there is ti = time(j), then p = 〈0; s0, t0, pr0; . . . , sn−1, tn−1, prn−1; sn, tn〉 is a valid

timed path of ∆N .

Given a TeAL theory ∆, TeAL2ASP reads it and generates a program that is ready

to be processed by clingcon. The translation introduced in this chapter ensures that the

answer sets generated by clingcon represent valid timed paths of ∆. If there is at least one

answer set, then we can say that there is a valid timed path, and ∆ is consistent within the

given horizon. If clingcon cannot find any answer set, then ∆ is inconsistent.

Proof. This proof exploits the properties of constraint answer set [35] and splitting set

[63]. The concepts of constraint answer set and splitting set are given below.

The definitions of constraint logic program and constraint answer set [35] are critical

tools for the proof because a grounded clingcon program Π(∆N)(h,n) is a constraint logic

program. Let AtomR denote a set of propositional atoms. Let VarC denote a set of con-

straint variables with respective domainD such that each constraint variable vc in VarC has

an associated domain dom(vc) ⊆ D. Let AtomC denote a set of constraint atoms, where

each constraint atom is an expression that includes constraint variables. Each constraint

atom specifies which evaluation of the constraint variables makes this constraint atom true

or false. A grounded logic program P over AtomR ∪AtomC is a constraint logic program

if for each r ∈ P there is head(r) ∈ AtomR.

For a constraint logic program P over AtomR ∪ AtomC and an assignment Assign:

VarC → D, the constraint reduct PAssign is the set of original rules simplified by taking

into account the values of the constraint atoms, where the values of the constraint atoms

99

are determined by Assign. The logic program PAssign is a regular logic program because

it does not contains any constraint variables. A set X ⊆ AtomR is a constraint answer set

of P with respect to Assign if and only if X is an answer set of PAssign [35].

According to the definition of constraint logic program, a grounded clingcon program

Π(∆N)(h,n) is a constraint logic program because its variables time(CP i) are constraint

variables with domain [0, h]. Let E denote the assignments time(CP i)$ == inti, where

0 ≤ inti ≤ h. We have: a set AnsE is a constraint answer set of Π(∆N)(h,n) with respect to

E if and only if AnsE is an answer set of Π(∆N)E(h,n), the constraint reduct of Π(∆N)(h,n)

with respect to E. Because only Π(TC(∆), h) contains constraint variables, Π(∆N)E(h,n)

is equal to Π(Σ(∆N)) ∪ Π(AD(∆N), n) ∪ Π(TC(∆), h)E , where Π(TC(∆), h)E is the

constraint reduct of Π(TC(∆), h).

A grounded program Π(∆N)E(h,n) contains two parts, Π(Σ(∆N))∪Π(AD(∆N), n) and

Π(TC(∆), h)E . The timed paths defined by Π(∆N)E(h,n) are based on the paths defined by

the answer set of Π(Σ(∆N))∪Π(AD(∆N), n). The concept of splitting set can be used to

describe the relationship between Π(Σ(∆N)) ∪ Π(AD(∆N), n) and Π(TC(∆), h)E .

A splitting set of a grounded logic program P is a set of atoms U such that, for every

rule r ∈ P , if head(r) ∩ U 6=∅ then all the atoms in r are included in U . The set of rules

whose all atoms are included in the splitting set U is the bottom of P , written as bU(P). The

set of other rules in P , P\bU(P), is the top of P with respect to U , written as tU(P). Let

X denote an answer set of bU(P). For the set of rules r in tU(P) such that their negative

atoms neg(r) are not elements of X , we define

Rule(tU(P), X) =

{r′ | head(r′) = head(r), pos(r′) = pos(r)\X, neg(r′) = neg(r)}

Let Y denote an answer set of Rule(tU(P), X). The pair 〈X, Y 〉 is a solution to P with

respect to U . A set Ans is an answer set of P if and only if Ans = X∪Y for some solution

〈X, Y 〉 to P with respect to U [63].

100

Let L denote the set of ground atoms in Π(Σ(∆N)) ∪ Π(AD(∆N), n). Based on the

definition of a splitting set, L splits Π(∆N)E(h,n), and Π(Σ(∆N)) ∪ Π(AD(∆N), n) is the

bottom of Π(∆N)E(h,n) with respect to the splitting set L, written as

bL(Π(∆N)E(h,n)) = Π(Σ(∆N)) ∪ Π(AD(∆N), n)

The top of Π(∆N)E(h,n) relative to L is Π(TC(∆), h)E .

An answer set of Π(∆N)E(h,n), AnsE , is A ∪ B such that A is an answer set of the

program Π(Σ(∆N)) ∪ Π(AD(∆N), n), B is the answer set of eL(E,A), where

eL(E,A) = Rule(Π(∆N)E(h,n)\bU(Π(∆N)E(h,n)), A)

= Rule(Π(TC(∆), h)E, A)

and A and B are consistent (A ∪ B does not contain atoms a and -a at the same time).

Based on the definition of eL(E,A), A ∪B is an answer set of A ∪ Π(TC(∆), h)E .

With the definitions of constraint answer set and splitting set, we have: Π(∆N)(h,n)

has a constraint answer set A ∪ B with respect to E if and only if B is an answer set of

eL(E,A).

Lemma 5 implies that given a timed path p with time assignment E, if p is valid, then

eL(E,A) has an answer set which satisfies the condition in Theorem 4. Similarly, Lemma 6

implies that given a time assignment E, if eL(E,A) has an answer set, then the timed path

that satisfies the condition in Theorem 4 is valid. In conclusion, eL(E,A) has an answer

set if and only if there is a valid timed path p.

We have: Π(∆N)(h,n) has a constraint answer set if and only if there is a valid timed

path p. 2

It follows that to complete the proof, it suffices to prove Lemmas 5 and 6.

Lemma 5 If p is a valid timed path, then eL(E,A) has an answer set which satisfies the

condition in Theorem 4.

101

Proof. Let p denote a valid timed path. Based on the Theorem 3, a timed path

p = 〈0; s0, pr 0, t0; s1, pr 1, t1; . . . ; sn−1, prn−1, tn−1; sn, tn〉

is a valid path if and only if Π(AD(∆N), n) has an answer set A such that: for any i ∈

[0, n], fluent f ∈ si if and only if holds(f, i) ∈ A, and prompt pr ∈ pr i if and only if

happen(pr , i) ∈ A. Let M(eL(E,A)) denote a model of eL(E,A).

Given a temporal condition C, if p, t |= C, then based on the rules (6.38) and (6.39),

for each i such that 0 ≤ i < n, the assignment of constraint variables, E, ensures that there

is one and only one atom statechp(j, i) in M(eL(E,A)).

Based on the rules (6.40) and (6.41), for each holds(f, i) and happen(pr, i)

fluentholds(f, j) ∈ M(eL(E,A))

prompthappen(pr, j) ∈ M(eL(E,A))

Based on the rules (6.42), (6.43) and (6.44)

chpAt(CP,C) ∈M(eL(E,A))

Let C be α timeComp timeMod β. If p |= C, then for any happen(β, i) ∈ A,

statechp(i′, i) ∈M(eL(E,A)), and prompthappen(β, i′) ∈M(eL(E,A)), we have:

happen(β, j) ∈ A

statechp(j′, j) ∈ M(eL(E,A))

prompthappen(α, j′) ∈ M(eL(E,A))

where the relation between i′, j′ is specified by timeComp timeMod .

If C is a temporal condition in which β involves previous and next, then based on

the rules (6.50) - (6.52), if p, t |= C, then

sat(C, α, β,CP) ∈M(eL(E,A))

102

If p, t 6|= C, then

-sat (C, α, β,CP) ∈M(eL(E,A))

If C is a local temporal condition with only one prompt, then based on the rules (6.53) and

(6.54), if p, t |= C, then

sat(C, α,CP) ∈M(eL(E,A))

If p, t 6|= C, then

-sat (C, α,CP) ∈M(eL(E,A))

If C is a global temporal constraint, then based on the rules (6.55) and (6.56), for every

check point CP such that (β,CP) ∈M(eL(E,A)), we have:

l sat (C, α, β,CP) ∈M(eL(E,A))

For every check point CP such that (β,CP) /∈M(eL(E,A)), we have:

-l sat (C, α, β,CP) 6∈M(eL(E,A))

Based on the rules (6.57) and (6.58), if p, t |= C, then there does not exist any check

point CP such that -l sat (C, α, β,CP) ∈M(eL(E,A)), thus we have

sat(C, α, β,CP) ∈M(eL(E,A))

If p, t 6|= C, then there exists at least one check point CP such that -l sat (C, α, β,CP) ∈

M(eL(E,A)), thus we have

-sat (C, α, β,CP) 6∈M(eL(E,A))

In conclusion, for any temporal condition C, if C is satisfied at a check point CP , then

we have

sat(C, arguments ,CP) ∈M(eL(E,A))

103

If C is violated at a check point CP , then we have

-sat (C, arguments ,CP) ∈M(eL(E,A))

If a temporal constraint is satisfied on p, the rule (6.59) will not be violated.

Let eL(E,A)R denote the reduct of eL(E,A) relative to M(eL(E,A)). It means that

eL(E,A)R is the set of rules obtained from eL(E,A) by first dropping every rule r such

that at least one of the negative atoms neg(r) is an element of M(eL(E,A)), then dropping

the negative atoms from the bodies of all remaining rules.

Let C be a temporal condition α timeComp timeMod β in which β involves previous

and next. If p, t |= C, then the rules (6.51) and (6.52) are dropped. The atom

-sat (C, α, β,CP1) is dropped from the body of the rule (6.50). If p, t 6|= C and the

time moment indicated by β exists, then the rules (6.50) and (6.52) are dropped. The atom

prompthappen(α,CP3) is dropped from the body of the rule (6.51). If p, t 6|= C and the

time moment indicated by β does not exist, then the rules (6.50) and (6.51) are dropped.

The atom next(prompthappen(β,CP2),CP1) is dropped from the body of the rule (6.52).

Let C be a temporal condition with only one prompt. If p, t |= C, then the rule (6.54)

is dropped. The atom -sat (C, α,CP1) is dropped from the body of the rule (6.53). If

p, t 6|= C, then the rule (6.53) is dropped. The atom prompthappen(α,CP2) is dropped

from the body of the rule (6.54).

Let C be is a global temporal constraint. If p, t |= C, then the rule (6.56) is dropped.

The atom -l sat (C, α, β,CP1) is dropped from the body of the rule (6.55). If p, t 6|= C,

then the rule (6.55) is dropped. The atom prompthappen(α,CP2) is dropped from the

body of the rule (6.56).

Because M(eL(E,A)) satisfies the above rules in eL(E,A)R, and the constraints in

eL(E,A)R are not violated, M(eL(E,A)) is a model of eL(E,A)R.

Let us assume that for some M ′, a model of eL(E,A)R, there is

M ′(eL(E,A)) ⊂M(eL(E,A))

104

Let a denote an atom such that a ∈ M(eL(E,A)) and a /∈ M ′(eL(E,A)). If a is

statechp(c, s), then the rule (6.38) is violated. If a is prompthappen(pr, s), then the rule

(6.40) is violated. Similarly, if a is fluentholds(f, s), then the rule (6.41) is violated. If a is

chpAt(cp, c), then the rule (6.43) is violated. If a is sat(c, α, cp) or -sat (c, α, cp), then the

rules (6.50)− (6.54) (if C is local) or the rules (6.57)− (6.58) (if C is global) are violated.

Thus, we get a contradiction.

Consequently,M(eL(E,A)) is the minimal among the models of eL(E,A)R. It follows

that M(eL(E,A)) is an answer set of eL(E,A). 2

Lemma 6 If eL(E,A) has answer set, then the timed path p which satisfies the condition

in Theorem 4 is valid.

Proof. If the reduced program Π(∆N)E(h,n) with respect to E has A ∪M(eL(E,A)) as

an answer set, then eL(E,A) has an answer set M(eL(E,A)). Let C denote a temporal

condition α timeComp timeMod β.

– If sat(c, arguments , cp) ∈M(eL(E,A)), then for every check point cpi, if

prompthappen(β, cpi) ∈ M(eL(E,A))

then there is cpj such that time(cpi) is in relation timeComp timeMod with time(cpj),

and prompthappen(α, cpj) ∈M(eL(E,A)).

That is: if p, time(cp) |= occur(β, time(cpi)), then we have

p, time(cp) |= occur(α, time(cpj))

Thus p, time(cp) |= C.

– If -sat (c, arguments , cp) ∈M(eL(E,A)), then there exists cpi such that

prompthappen(β, cpi) ∈ M(eL(E,A))

105

but for any time(cpj) such that time(cpi) is in relation timeComp timeMod with

time(cpj), prompthappen(α, cpj) 6∈M(eL(E,A)).

That is: p, time(cp) |= occur(β, time(cpi)), but there is no time(cpj) such that

p, time(cp) |= occur(α, time(cpj)). Thus p, time(cp) 6|= C

In conclusion, if an atom sat(c, argument , cp) ∈ M(eL(E,A)), then C is satisfied on

p at time time(cp). If an atom -sat (c, argument , cp) ∈ M(eL(E,A)), then C is violated

at time time(cp).

Because there is no rule of the form (6.59) violated in Π(∆N)(h,n), the corresponding

temporal constraints must be satisfied on p at every check point. It means that all temporal

constraints are satisfied on p and p is a valid timed path. 2

Copyright c© Wenbin Li, 2015.

106

Chapter 7 Empirical Studies

The approach introduced in this thesis is designed to reduce analysts’ workload in the con-

sistency checking task. It is necessary to prove that the efficiency of this semi-automated

approach exceeds that of the manual approach. The cornerstone of this approach is the

introduction of an intermediate level, TeAL, between the natural language requirements

and the low-level logic formalism. It is necessary to prove that TeAL is easier for analysts

to use than the low-level logic formalism.

This approach divides the task of consistency checking into two phases: generating

TeAL theories from natural language requirements and processing the TeAL theories to get

results; the efficiency of both phases must be measured. Analysts’ involvement is necessary

in the first phase of the approach to ensure that a correct TeAL theory is generated, so it is

necessary to measure if TeALGenerator facilitates this process by producing high quality

AlmostTeAL statements. The second phase is fully automated and hidden from analysts,

so the correctness and the performance of the translation must tested.

This chapter addresses three research questions:

1. Is TeAL more understandable than low-level logic formalisms such as ASP?

2. Does the TeALGenerator facilitate the task of generating TeAL theories?

3. Is the translation implemented by TeAL2ASP efficient?

I performed three empirical studies to address the research questions above:

– Empirical Study 1 compared the understandability of TeAL and ASP . This study

provided evidence in support of TeAL being easier for analysts to use than ASP .

107

– Empirical Study 2 evaluated the quality of the AlmostTeAL statements generated

by TeALGenerator . This study provided evidence that analysts generated TeAL

statements with better quality with the assistance of AlmostTeAL statements.

– Empirical Study 3 tested TeAL2ASP using six benchmarks. This study illustrated

the efficiency of TeAL2ASP .

7.1 Empirical Study 1: Understandability of TeAL and ASP

The key idea of my approach, introducing TeAL as an intermediate level between natural

language requirements and low-level logic formalisms, is based on the assumption that

TeAL is easier to understand than low-level logic formalisms. If analysts were able to

efficiently comprehend low-level logic formalisms such as ASP , then there would be no

need for the intermediate language approach. Hence, this experiment compares the ability

of human analysts to comprehend formal requirements that are given in TeAL and ASP .

Research Question

The intermediate language TeAL provides an abstraction level between natural language

requirements and the low-level logic formalism ASP . In my approach, the task of gener-

ating an ASP program for software requirements is reduced to generating a TeAL theory.

The improvement introduced by TeAL is largely determined by the understandability of

TeAL and ASP . I designed this study to compare the understandability of these two for-

mal languages. In this study I measured the understandability in two aspects: how quickly

and how accurately analysts can understand the formal statements. I performed this study

on a small scale (with fourteen participants). To study whether TeAL is easier to read than

ASP , I posit the following research questions:

– RQ1.1: Is it easier to understand TeAL statements than to understand ASP state-

ments?

108

– RQ1.2: Does it take analysts less time to understand TeAL statements than to under-

stand ASP statements?

Measures

In this study participants were given a set of natural language requirements and four candi-

date formal statements (in ASP /TeAL) for each requirement. The participants were asked

to select all formal statements that represented the natural language requirement.

This study used one independent variable: Method (abbreviated as M)). There are two

levels of the independent variable: ASP and TeAL.

The dependent variables that address RQ1.1 are: Precision (Prec), Recall (Rec), Un-

derstandability Score (RS), and the time spent on each task (T1). The measure Prec is

defined as the percentage of correct answers that are selected while Rec is the percentage

of selected answers that are correct.

Prec =
of correct answers selected

of selected answers

Rec =
of correct answers selected

of correct answers

The measure RS is a rating on a scale from 1 to 5 indicating the analyst’s subjective

judgment of the understandability of TeAL or ASP statements (1 is not understandable

and 5 is highly understandable). The measures Prec and Rec address the objective aspect

of RQ1.1, and the measure RS addresses the subjective aspect of RQ1.1. I use T1 to

address RQ1.2.

Hypothesis

The null hypothesis for RQ1.1(H0RQ1.1) is that there is no difference in Prec, Rec, and RS

between ASP and TeAL. The alternative hypothesis (H1RQ1.1) is that there is a difference

between these two methods. The null hypothesis for RQ1.2(H0RQ1.2) is that there is no

109

difference in T1 between ASP and TeAL. The alternative hypothesis (H1RQ1.2) is that

there is a difference between these two methods.

Study Design

Each participant received a 30 minute training session that introduced TeAL and ASP .

During the training, the syntax and semantics of both languages were introduced along

with examples. It should be noted that it is impossible to introduce the full details of ASP

syntax and semantics in the 15 minutes allotted. Therefore, the training session did not

cover all ASP concepts. I focused on providing examples of how actions, fluents, and

temporal relationships are represented in ASP . But the semantics of ASP were largely

omitted in the training session. Similarly, when I was introducing TeAL, I focused on its

syntax rather than its semantics. It should be noted that the 15 minute sessions for each

language covered the same topics at the same level of detail and thoroughness to ensure

that no bias was introduced.

After the training session, the main study assignment was administered. Each par-

ticipant received a set of natural language requirements and four formal statements (in

ASP /TeAL) for each requirement. They were asked to select ALL formal statements that

represent the natural language requirement. Participants were also asked to rate the under-

standability (RS) of ASP and TeAL.

Participants were asked to complete the tasks in the computer lab or from their home on

their own time. They were also asked to keep a log of their activities during the completion

of the task.

After completing the main study task, participants were asked to submit the results and

complete a post-study questionnaire that asked for their reaction to requirement analysis

and formal languages.

The study used multiple examples from one dataset: 511 Regional Real-Time Transit

Information System Requirements (511 phone) [5]. This dataset presents the system re-

110

quirements for the Bay Area 511 Regional Real-Time Transit Information System (open

source). These requirements are primarily focused on the performance of the 511 System

and data transfers with the transit agencies.

Threats to Validity

This experiment was subject to a number of threats to validity, mitigated to the best of my

ability. A threat to internal validity is the limited amount of time given to the participants

to learn TeAL and ASP . I was constrained by the amount of time available in the software

engineering course class period. To address this, I separated the training session and the

experiment into separate sessions (separate consecutive class periods). This allowed the

participants more time to understand both formal languages. Also, I simplified the intro-

duction of ASP by omitting its detailed semantics and organizing it into the presentation

of actions, fluents, and temporal relationships. This introduces a bias in favor of ASP (I

could have made ASP much harder for participants if I had spent more time showing the

detailed semantics, etc.).

My work with student participants represented a threat to external validity. However,

these students all had at least three years of background in computer science and they un-

derstood the concepts of software engineering and requirements engineering. Their back-

ground allowed them to perform small tasks of requirement analysis as well as profession-

als [83]. Another threat to validity deals with my use of one dataset. The 511phone dataset

is a set of requirements used in a real project. But the results may still be not representa-

tive enough because the results may differ for a dataset from another domain. To address

this threat one needs to repeat the experiment with datasets from other domains. The third

threat to external validity is the motivation of the participants. Students were given extra

credit to participate. This did not ensure that they answered all questions “seriously” or

thoughtfully.

Dependent variable issues that threaten construct validity were reduced by the use of

111

both objective variables (Prec, Rec) and subjective variables (RS). Another threat to

construct validity is that participants may have guessed the research hypothesis, that is,

they may have assumed that TeAL was the focus of the research before they worked on the

main study assignment. I addressed this validity threat by not telling them that TeAL is my

research area.

A threat to conclusion validity is the low number of subjects in the study. The only way

to overcome this threat is to repeat the work with more participants.

Results and Analysis

Here, I present the results of this study. Table 7.1 and Figure 7.1 present the results of the

study question that addresses if TeAL is more understandable and easier to work with than

ASP .

Table 7.1: Results for Prec, Rec, and T1

Method Prec Rec T1
ASP 0.79 0.92 83s
TeAL 0.84 0.95 60s

Table 7.1 shows the mean values of precision (Prec) and recall (Rec) and the time

that participants spent on selecting correct formal statements (T1). The results of TeAL

are better than those of ASP in all aspects, though the results are very close in this part of

the study. It appears that TeAL has a significant advantage over ASP with respect to time

(T1), that is, it took the participants much less time to work with TeAL than to work with

ASP . TeAL also performed slightly better in terms of Prec and Rec. The Prec values

show that given a natural language requirement, it is more likely for the participants to se-

lect an incorrect statement if the statement is represented in ASP . That the values of Prec

are less than 85% in both TeAL and ASP groups also illustrates that the chance of misun-

derstanding a formal statement cannot be ignored, no matter what target language is used.

The Rec values for both groups are all close to 1, which means the participants managed

112

Figure 7.1: Results of Understandability Score (RS)

to find most correct formal statements for the given natural language requirements.

Figure 7.1 shows that most participants preferred to work with TeAL and not ASP . As

can be seen, all participants considered the understandability of TeAL to be as least as good

as that of ASP . Moreover, 11 out of 14 participants found ASP statements hard to under-

stand (RS ≤ 2). On the contrary, 12 out of 14 participants regarded the understandability

of TeAL as “neutral or better” (RS ≥ 3).

To better understand what went on in my study, I conducted the statistical t-test on

T1, Prec, and Rec (Table 7.2). I report the standard error of difference, t-value, p-value

(alpha = 0.05), and the 95% confidence interval.

Table 7.2: Results of Paired t-test Analysis for T1 , Prec, and Rec (ASP versus TeAL)

Variable N Diff t p 95% CI
T1 14 4.481 5.1484 0.0002 (13.39, 32.75)

Prec 14 0.090 0.6397 0.5335 (-0.25,0.14)
Rec 14 0.046 0.4977 0.6270 (-0.12,0.08)

As can be seen from Table 7.2, there is a statistically significant difference between the

time participants spent on ASP and on TeAL. However, the improvements in precision

and recall are not statistically significant (bolded items represent statistically significant

dependent variables).

113

Based on the results above, a time savings of about 25% is realized if participants

understand TeAL instead of ASP . This is a major benefit of working with TeAL instead

of ASP . It seems intuitive that it is harder to understand an ASP statement than a TeAL

statement. While TeAL can represent temporal relationships by using keywords close to

natural language, such as “laterThan x second after,” ASP can only represent such

relationships using arithmetic formulas, such as: t1 < t2 + 5, where t1 and t2 are two time

moments. In the post-study questionnaire, most participants also told us that they liked the

keywords used in TeAL.

Though there were practical differences in the Prec and Rec of my study, the differ-

ences were not statistically significant. Thus I have not yet validated the effectiveness of

TeAL for understanding formal statements. One possible explanation is that participants

still made mistakes when trying to understand TeAL due to several TeAL statements being

able to express the same meaning, such as:

if terminate print(server ,message)

then terminate send(server ,ACK) noLaterThan 2 second after

terminate send(server ,ACK)

noLaterThan 2 second after terminate print(server ,message)

Thus, participants may have forced themselves to find an additional answer after they had

already found all the correct ones (in the multiple choice questions).

Returning to the research questions of interest, based on the study I found that the

responses are:

– RQ1.1: It is easier to understand TeAL statements than to understand ASP state-

ments. Objectively, the chance of misunderstanding reduces slightly if the target is

a TeAL statement. Subjectively, participants felt more comfortable reading TeAL

than ASP . I can reject the null hypothesis in favor of the alternative (H1RQ1.1).

114

– RQ1.2: Yes. It takes analysts less time to comprehend the meaning of a TeAL state-

ment than an ASP statement. I can reject the null hypothesis in favor of the alterna-

tive (H1RQ1.2).

7.2 Empirical Study 2: Quality of TeALGenerator Outputs

As I have discussed in Chapter 5, I developed the front end TeALGenerator to facilitate

the process of generating TeAL theories. The TeALGenerator reads texts given in natural

language and outputs AlmostTeAL statements. AlmostTeAL statements can be used by

analysts to generate TeAL theories. The efficiency of generating TeAL theories is based

on the quality of these AlmostTeAL statements.

This experiment focused on whether the outputs of TeALGenerator facilitate the task

of generating TeAL theories from natural language requirements.

Research Questions

The quality of the outputs generated by TeALGenerator is critical in this approach, be-

cause it determines how many inaccuracies an analyst needs to detect and correct in order

to generate TeAL statements. The TeALGenerator is useful if analysts are more accurate

and efficient at generating TeAL with the help of AlmostTeAL statements.

– RQ2.1: Does TeALGenerator produce outputs that improve analyst accuracy at

generating correct TeAL statements?

– RQ2.2: Does TeALGenerator produce outputs that improve analyst efficiency at

generating correct TeAL statements?

RQ2.1 and RQ2.2 are important as they directly evaluate the quality of the automated

method for generating AlmostTeAL.

115

Measures

This experiment uses one independent variable: Method (abbreviated as M). There are two

levels of this variable: TeAL and ATeAL (TeAL with the assistance of AlmostTeAL).

RQ2.1 addresses the accuracy of generating TeAL statements. The dependent variables

that address RQ2.1 are: Precision (Prec1), Recall (Rec1), and F-measure (F1) of predi-

cates (for example, send) and constraints (for example, if. . .then, within next 10 seconds);

Precision (Prec2), Recall (Rec2), F-measure (F2) of arguments of the predicates (for ex-

ample, node, message, server as arguments of the action send and the fluent received),

Translation Error Rate (TER) [82], and Translation Difficulty Score (TDS). Table 7.3

shows the abbreviations and ranges of these variables.

Table 7.3: Dependent Variables

Variable Abbr Scale
Predicate Precision Prec1 [0,1]

Predicate Recall Rec1 [0,1]
Predicate F measure F1 [0,1]
Argument Precision Prec2 [0,1]

Argument Recall Rec2 [0,1]
Argument F measure F2 [0,1]

Translation Error Rate TER [0,1]
Translation Difficulty Score TDS {1,2,3,4,5}

Time T time

A major contribution of TeALGenerator is the ability to identify predicates (Pred)

and temporal relationships (Temp). The basic structure of TeAL statements is represented

by these two types of information. The measure Prec1 is defined as the percentage of

correct predicates and temporal relationships that are written, while the measure Rec1

is the percentage of written predicates and temporal relationships (Pred /Temp) that are

correct.

Prec1 =
of correct Pred/Temp written

of Pred/Temp written

116

Rec1 =
of correct Pred/Temp written

of correct Pred/Temp

The measure F1 is a harmonic mean of Prec1 and Rec1:

F1 =
2 ∗Prec1 ∗Rec1

Prec1 + Rec1

The above formula gives equal importance to Prec1 and Rec1.

Identifying the arguments of the predicates is another important task of the front end

TeALGenerator because arguments are also necessary for correct TeAL statements. For

instance, given an action send , the front end needs to identify the arguments representing

the sender, the object that is sent, and the destination.

Similar to the measures above, Rec2 defines the percentage of written arguments that

are correct, Prec2 defines the percentage of correct arguments that are written, and F2 is

the harmonic mean of Prec2 and Rec2.

I use TER to measure how close a generated TeAL statement is to the correct answer.

The measure TER is an error metric for machine translation that measures the number of

edits required to change a system output into a target text:

TER =
of edits

average # of words in target text

where possible edits include the insertion, deletion, substitution of single words, and shifts

of word sequences. I convert each TeAL statement into a sequence of words to use this

measure. For instance, I convert

received(node,msg , server)

within10 second after terminate send(server ,msg , node)

into:

received node msg server within 10 second after terminate send server msg node

and then compare this sequence of words to the sequences given by the participants to

determine how many insertions, deletions, and changes are required.

117

The measure TDS is a rating on a scale from 1 to 5 indicating the participants’ subjec-

tive opinion about the difficulty of translating from natural language to TeAL with/without

AlmostTeAL.

The dependent variable that addresses RQ2.2 is the average time (T) spent on each

question. The measure T evaluates the efficiency of the method.

Hypothesis

The null hypothesis for RQ2.1 (H0RQ2.1) is that there is no difference in the Prec1, Rec1,

F1, Prec2, Rec2, F2, TER, and TDS, between TeAL and AlmostTeAL. The alternative

hypothesis (H1RQ2.1) is that there is a difference between the two methods. Similarly, the

null hypothesis for RQ2.2 (H0RQ2.2) is that there is no difference in the T of TeAL and

AlmostTeAL. The alternative hypothesis (H1RQ2.2) is that there is a difference.

Study Design

The study design is very similar to the previous experiment. This study involved thirty

four participants, all students in computer science courses at the University of Kentucky.

A pre-study questionnaire was given to all the consenting participants to ask about their

experiences in requirement engineering and formal languages. Each participant received a

ten minute introduction about the background of the experiment. Participants were asked

to watch a fourteen minute training video and were given a training document. The training

video introduced the syntax and semantics of TeAL. It focused on the representation of

actions, fluents, and temporal relationships in TeAL. The video included AlmostTeAL

as well. The training document covered everything in the video. The participants were

required to watch the video or read the document before the main study task.

I broke the participants into two groups based on their experience in requirement en-

gineering and formal languages. I randomly divided the participants of each experience

level into two groups of the same size. One group wrote TeAL statements with the help of

118

AlmostTeAL, another group wrote TeAL statements but did not have AlmostTeAL state-

ments.

After the introduction, the main study assignment was administered. Each participant

received a set of eight questions during the main study task. For each, they were instructed

to write down the corresponding TeAL statement of the given natural language require-

ments (with/without AlmostTeAL). Participants were asked to complete the tasks in the

classroom. They were also asked to record the time they spent on each question.

After completing the main study task, participants were asked to submit the results and

complete a post-study questionnaire that asked for their reaction to TeAL, AlmostTeAL,

and the whole experiment process.

The study used examples from two datasets: 511phone system [5], which was used

in the previous experiment, and CM1 [1]. The CM1 dataset is a requirement document

produced by NASA for one of its science instruments. The document was released by

NASA for use by the software engineering research community.

Threats to Validity

Most of the threats to validity are the same as for the previous experiment. For instance, the

limited amount of time given to the participants to learn TeAL is a threat to internal validity.

As a mitigation, I separated the training session and the experiment into separate sessions.

I also used a training video and training document, which the participants watched or read

on their own time.

As in the previous experiment, dependent variables introduce a threat to construct va-

lidity. I use both objective variables (Prec1, Rec1, F1, Prec2, Rec2, F2) and subjective

variables (TDS) to address this threat. Another threat to construct validity is that par-

ticipants may have assumed that the ATeAL method is supposed to perform better than

the TeAL method. I addressed this threat by dividing participants into two groups; each

participant used only one method.

119

My work with student participants introduced the same threat to external validity as

in the previous experiment. However, the students also had the same background as the

participants in the previous experiment. A representativeness threat to external validity

was introduced because it is not possible or practical to sample requirements from every

software system or even from every software domain, yet I tried to ensure that the proposed

approach has been validated on representative requirements that permit generalization of

results. I also mitigated this threat by using two datasets extracted from two different real

projects.

Results and Analysis

Tables 7.4 - 7.7 present the results of the study question “Does the AlmostTeAL tool pro-

duce outputs that improve the accuracy of generating correct TeAL statements?” (RQ2.1).

Table 7.8 addresses the study question “Does the AlmostTeAL tool produce outputs that

improve the efficiency of generating correct TeAL statements?” (RQ2.2).

Table 7.4: Results for Mean Values of Prec1, Rec1, and F1

M Prec1 Rec1 F1
TeAL 84.13% 85.63% 84.58%

ATeAL 89.39% 89.28% 89.11%

Table 7.4 shows the mean values of precision (Prec1), recall (Rec1), and F-measure

(F1) associated with predicates and temporal relationships. The results of ATeAL are bet-

ter than those of TeAL in all aspects. However, the results are very close. The values

of Prec1, Rec1, and F1 also illustrate that participants performed well in capturing the

general structure of TeAL statements; but the possibility of incorrect or missing predi-

cates/constraints cannot be ignored, no matter what target language is used.

Table 7.5 shows the mean values of precision (Prec2), recall (Rec1), and F-measure

(F2). The ATeAL method outperforms TeAL by 30% in precision and 43% in recall.

The results show that it was much more difficult for the participants who did not use

120

Table 7.5: Results for Mean Values of Prec2, Rec2, and F2

M Prec2 Rec2 F2
TeAL 65.25% 58.31% 60.96%

ATeAL 84.89% 83.28% 83.97%

AlmostTeAL to generate correct and complete sets of arguments.

Table 7.6: Results for Mean Values of TER

M TER
TeAL 52.75%

ATeAL 25.11%

Table 7.6 shows the mean values of TER. Participants wrote better TeAL with the

help of AlmostTeAL: the number-of-edits distance from the generated TeAL statements

to the correct TeAL was halved.

Table 7.7: Results for TDS

Participants Selecting Each Score
1 2 3 4 5

TeAL
0 2 7 6 1

0% 12% 44% 38% 6%

ATeAL
0 1 2 5 10

0% 5% 11% 28% 56%

Table 7.7 shows the TDS results. I found that 12% of the participants in the TeAL

group and 5% in the ATeAL group considered the process of creating TeAL “uncomfort-

able” (TDS=2). In the TeAL group, the percentage of participants who found the process

“neither comfortable nor uncomfortable” (TDS=3) was 44%, while only 11% of ATeAL

group felt the same. I found that 38% of the TeAL group considered the process “com-

fortable”(TDS=4), but only 6% of the TeAL group felt “very comfortable” (TDS=5). In

the ATeAL group, the corresponding values were 28% and 56%, respectively. The median

value of TDS was 3 (TeAL group) and 5 (AlmostTeAL group).

Table 7.8 shows the mean values of time spent on each question. Participants spent

40% less time with the help of AlmostTeAL.

121

Table 7.8: Results for Mean Values of T2

T2
TeAL 282 sec

ATeAL 167 sec

Based on the results above, it is clear that AlmostTeAL improves the process of gener-

ating TeAL statements in terms of both accuracy and efficiency.

Table 7.9: Results of Mean Nalues for Dependent Variables (TeAL versus ATeAL)

Variables TeAL ATeAL
Prec1 84.13% 89.39%
Rec1 85.63% 89.28%
F1 84.58% 89.11%

Prec2 65.25% 84.89%
Rec2 58.31% 83.28%
F2 60.96% 83.97%

TER 52.75% 25.11%
T2 282 sec 166 sec

TDS 3.38 4.33

To better understand what went on in my study, I applied the statistical t-test on all the

dependent variables listed in Table 7.9. I report the standard error of difference, t-value,

p-value (alpha = 0.05), and the 95% confidence interval in Table 7.10 (comparing TeAL

and ATeAL). The statistically significant results are shown in bold.

Table 7.10: Results of t-test Analysis for Dependent Variables (TeAL versus ATeAL)

Variables Diff t p 95% CI
Prec1 0.035 1.5244 0.1372 (-0.12, 0.018)
Rec1 0.04 0.9206 0.3641 (-0.12, 0.04)
F1 0.034 1.3522 0.1858 (-0.12, 0.02)

Prec2 0.044 4.4646 <0.0001 (-0.29, -0.11)
Rec2 0.037 6.6968 <0.0001 (-0.33, -0.17)
F2 0.038 6.1219 <0.0001 (-0.31, -0.15)

TER 0.068 4.0557 0.0003 (0.14, 0.42)
T2 21.279 5.4209 <0.0001 (72.01, 158.70)

TDS 0.296 3.2376 0.0028 (-1.56, -0.36)

Though there were practical differences in the Prec1 and Rec1 of my study, the differ-

122

ences were not statistically significant. The high Rec1 and Prec1 values (84%-89%) may

mean that these elements can be identified without AlmostTeAL. Yet the performance

of ATeAL was still slightly better than TeAL: TeALGenerator correctly identified the

constraints that might otherwise have been missed by the participants.

The results of Prec2 and Rec2 show that participants had a difficult time identifying

arguments without AlmostTeAL: they missed about 40% of arguments, while 35% of the

arguments they identified were incorrect. The AlmostTeAL statements greatly improved

both precision and recall to 83%-84%. It appears that AlmostTeAL finds more correct

arguments than the participants. Additionally, the missing pieces in AlmostTeAL, such as

the blank argument in send(node,message,), can remind participants what information

to look for when they read natural language requirements. As can be seen from Table 7.10,

there is a statistically significant difference between the Prec2, Rec2, and F2 results of

TeAL and ATeAL.

The AlmostTeAL statements also reduced the time spent on each question by 40% and

halved the participants’ error rate. The significant decrease of TER, together with the

increase of Prec2 and Rec2, lends support for the effectiveness of ATeAL.

Feedback from participants demonstrates that they prefer ATeAL to TeAL. While 56%

of the participants thought it was difficult to write TeAL statements without any hints

(TDS ≤ 3), 83% of the participants felt the availability of AlmostTeAL statements pro-

vided useful information (TDS ≥ 4).

Returning to the research questions of interest, based on the study I found that the

responses are:

– RQ2.1: Yes. The AlmostTeAL statements generated by TeALGenerator helped

analysts to produce TeAL with fewer errors. I can reject the null hypothesis in favor

of the alternative (H1RQ2.1).

– RQ2.2: Yes. The AlmostTeAL statements generated by TeALGenerator saved

123

time. I can reject the null hypothesis in favor of the alternative (H1RQ2.2).

7.3 Empirical Study 3: Performance of TeAL2ASP

As I have discussed in Chapter 6, I designed and implemented a translator, TeAL2ASP

to translate TeAL theories into ASP . 1 The output of the translator is passed to the ASP

solver clingcon for processing. The results generated by clingcon illustrate if the require-

ments are consistent or not.

Because the process above is fully automated and analysts’ involvement is not required,

the efficiency of this phase depends on the time clingcon takes to generate results. The time

is based on the quality of the translation.

I studied the efficiency of TeAL2ASP using six benchmark examples of requirement

documents specifying (fragments of) real software systems. In some cases I modified these

examples from their original form by varying durations of actions and including additional

temporal constraints because this thesis focuses on temporal requirements. The outline of

these examples and their sample requirements are given below.

CM1. This example is derived from a requirement document produced by NASA for one

of its science instruments. The document was “sanitized” (hence the presence of variables

rather than specific constants) and released by NASA for use by the software engineering

research community [1].

– The Control Component shall send the heart beat message to the Interface of Instru-

ment Control Unit at an interval of E milliseconds.

511Phone. This example is derived from a requirement document for the Regional Real

Time Transit Information System. These requirements focus on the performance of the 511

System and the data transfers with the transit agencies. They are based on the existing

procedures and features of the existing real-time system. [5].
1I acknowledge the assistance of David Brown with the implementation of TeAL2ASP .

124

– If request, then transit agency system sends predictions and vehicle location within

var1 seconds after receiving data request from the 511 System.

MODIS. This example is derived from the open source NASA Moderate Resolution Imag-

ing Spectroradiometer (MODIS) documents [2].

– Each MODIS standard input data shall be produced every var1 seconds.

UAVTCS. This example is derived from a requirement document for an Unmanned Aerial

Vehicle (UAV) Tactical Control System (UAVTCS) of the US Department of Defense for

the control of tactical UAVs. [4]

– The TCS in the Normal Startup Mode shall initialize the system to the Operation

State within 60 seconds from the time power is supplied.

EasyClinic. This dataset describes a variety of artifacts from a small healthcare applica-

tion. It was developed at the University of Salerno to manage a medical ambulatory [15].

– The response time of the service shall be less than A seconds.

iTrust. This dataset is derived from the iTrust project which involves the development of

an application through which doctors can obtain and share essential patient information

and can view aggregate patient data [15].

– An HCP can reassign a previously created lab procedure to a different Lab Techni-

cian if the lab procedure is not yet in time.

For each of these benchmarks, I created its corresponding TeAL representation. I recall

that the temporal constraints in my examples involve constants (parameters). Consistency

of the constraints depends on specific values one chooses for these parameters. In my study,

for each benchmark problem, I considered four parameter settings: (1) underconstrained-

relaxed or UR, the temporal constraints leave much room for the system to evolve, they are

125

“easy” to satisfy; (2) underconstrained-tight or UT , the constraints are still satisfiable but

they restrict significantly the ways in which the system can evolve; (3) overconstrained-

barely or OB , the constraints are inconsistent, but a small relaxation of some of them

would make them consistent; and (4) overconstrained-much or OM , the constraints are

significantly overconstrained and no small relaxations make them consistent. Finally, I

studied three values for the horizon: h = 50, 100, and 200, and set the time-out limit at

7200 seconds.

Threats to Validity

This empirical study was subject to a number of threats to validity. My selection of bench-

marks represented a threat to external validity. The six benchmarks used in this study were

all taken from real projects, but they can not represent the software requirements in other

domains. To address this threat one needs to perform this study using requirements taken

from other projects. A threat to construct validity is introduced by the selection of horizon

values. A horizon value must be large enough to proved evidence of consistency. But a

large horizon requires more time to generate answer sets. I address this threat by estimat-

ing three horizon values: 50, 100, 200, based on the parameter settings. The way to further

overcome this threat is to use more horizon values (150, 300, etc.).

Results and Analysis

Table 7.11 shows the results of my study. For each of the problems, it shows the number

of constraints (Cons), the type of the parameter settings (UR, UT , OB and OM), and the

running time. For problems that are consistent, the table also shows the number of states, n,

for which the constraints were shown to be satisfiable. There were no time-outs when the

theories were consistent. For overconstrained cases, the tool timed out several times (for

one problem for h = 50, for five problems for h = 100, and for all problems for h = 200).

Whenever the tool timed-out, I show in the table the last value of n for which inconsistency

126

Table 7.11: Results of the Study; Six Problems, Four Types of Parameter Settings

Example # Cons Type Horizon
50 100 200

CM1 23

UR 395 sec, 9 states 1139 sec, 17 states 2151 sec, 34 states
UT 429 sec, 9 states 1353 sec, 17 states 2328 sec, 34 states
OB 5962 sec > 2 hours, 40 states > 2 hours, 37 states
OM 5913 sec > 2 hours, 40 states > 2 hours, 37 states

11

UR 564 sec, 9 states 2551 sec, 18 states 3571 sec, 35 states
511 UT 572 sec, 9 states 2732 sec, 18 states 3691 sec, 35 states

Phone OB > 2 hours, 42 states > 2 hours, 38 states > 2 hours, 36 states
OM > 2 hours, 42 states > 2 hours, 38 states > 2 hours, 36 states

MODIS 10

UR 204 sec, 7 states 589 sec, 12 states 1787 sec, 20 states
UT 221 sec, 7 states 594 sec, 12 states 1901 sec, 20 states
OB 4212 sec 7009 sec > 2 hours, 47 states
OM 4204 sec 6878 sec > 2 hours, 47 states

UAVTCS 13

UR 681 sec, 9 states 1677 sec, 17 states 4104 sec, 33 states
UT 696 sec, 9 states 1783 sec, 17 states 4143 sec, 33 states
OB 5813 sec > 2 hours, 42 states > 2 hours, 35 states
OM 5771 sec > 2 hours, 42 states > 2 hours, 35 states

iTrust 12

UR 606 sec, 7 states 1574 sec, 13 states 3945 sec, 24 states
UT 601 sec, 7 states 1591 sec, 13 states 4043 sec, 24 states
OB 6042 sec > 2 hours, 37 states > 2 hours, 25 states
OM 5906 sec > 2 hours, 37 states > 2 hours, 25 states

10

UR 306 sec, 8 states 1025 sec, 14 states 2775 sec, 29 states
Easy UT 323 sec, 8 states 1236 sec, 14 states 2834 sec, 29 states

Clinic OB 6194 sec > 2 hours, 38 states > 2 hours, 31 states
OM 6275 sec > 2 hours, 38 states > 2 hours, 31 states

was successfully demonstrated.

As mentioned in Chapter 4, the choice of the horizon hmay affect my confidence in the

determination that the requirements are consistent, and in general the larger the horizon,

the stronger the evidence of consistency. However, there is a flip side to this observation.

As the results show, the larger the horizon, the more computationally intensive the task

of computing answer sets become. This is because the number of possible values for the

number of states grows with h. Estimating a value for the number of states with which the

constraints are consistent is difficult. So my tool considers all of them in turn starting with

n = 1. If clingcon finds an answer set, I can say that the TeAL theory does not contain

inconsistency within the horizon and terminate. Otherwise, I proceed to the next value of

127

n or terminate (and declare inconsistency) if n = h.

My results also show that if a TeAL theory is consistent, the consistency could be

established within the time limit imposed (even for h = 200). This is a strong indication of

the practical potential of my tool.

The situation is different when a theory is inconsistent. It takes a long time for the tool

to determine inconsistency. The reason is obvious and related to the discussion above. If

a TeAL theory is inconsistent, then for each number of states, n, 1 ≤ n ≤ h, clingcon

will attempt to determine consistency (that is, find an answer set) and eventually fail. How-

ever, especially when n is large, the grounding bottleneck reappears (variables representing

states have to be instantiated). This makes it hard for clingcon to handle large values of n.

The results show that changing the parameter combinations from UR to UT does not

affect the time for computing answer sets. Similarly, there seems to be no such effect when

I change from OB and OM (but here I have fewer data points to draw conclusions).

The study also shows that the number of constraints in TeAL theories has much less

of an effect on the effectiveness of my tool as does the value of h. The problem with the

largest number of constraints, CM1, does not turn out to be more difficult than the other

problems.

Copyright c© Wenbin Li, 2015.

128

Chapter 8 Conclusions and Future Work

Consistency checking of natural language requirements continues to present challenges to

analysts. However, when this problem is focused on temporal requirements, much can be

done to semi-automate the process and minimize analysts’ workload. Although analysts’

involvement is necessary, my approach reduces the task of consistency checking to formal-

izing requirements. Automated tools and the formal language TeAL have been created to

reduce the time and effort required for formalizing.

The following represent the contributions of this dissertation toward the goal of mini-

mizing analysts’ workload of consistency checking:

1. A partially automated approach for consistency checking was developed. I focus on

temporal requirements, and assume that requirements are given in natural language.

2. A formal language Temporal Action Language (TeAL) was created to represent nat-

ural language requirements. Experiments showed that people found TeAL easier to

understand than the ASP language.

3. A front-end tool was created to semi-automatically translate natural language re-

quirements into TeAL. Experiments showed that this tool improved analysts accu-

racy and efficiency at generating TeAL theories.

4. A fully automated translator from TeAL to the ASP language was developed. Per-

formance study showed that inconsistencies can be detected within reasonable time

by analyzing the ASP program.

Future work includes improving the front-end tool. Future studies could develop mod-

ules of common (tacit) knowledge that I expect will improve the accuracy of the translation

process, improve the efficiency of identifying related requirements, or look for methods to

129

improved the results based on the feedback from analysts. Future work also includes im-

proving of the translator. One direction is reducing the time required to run the generated

ASP program. Another direction is creating efficient translation from TeAL to temporal

logic. Last but not least, future work includes allowing analysts to identify the possible

causes of inconsistency.

Copyright c© Wenbin Li, 2015.

130

Bibliography

[1] CM-1 Dataset PROMISE Website, http://promisedata.org/promised/

trunk/promisedata.org/data/cm1-maintain/cm1-maintain.txt,

accessed: 2013-4-18

[2] Modis science data processing software requirements specification version 2,

sdst-089, gsfc sbrs (November 1997), http://www.fas.org/irp/program/

collect/uav tcs.htm

[3] Featuring meta group: Coordinating change management and requirements for busi-

ness adaptability and improved life cycle (April 2006)

[4] Uav tactical control system (May 2010), http://www.fas.org/irp/

program/collect/uav tcs.htm

[5] Regional real–time transit information system system requirements ver-

sion 3.0 (2012), http://www.mtc.ca.gov/planning/tcip/Real-

Time TransitSystemRequirements v3.0.pdf, accessed: 2013-4-18

[6] Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)

[7] Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P., Pohl,

C., Rummler, A.: An exploratory study of information retrieval techniques in domain

analysis. In: Software Product Line Conference, 2008. SPLC’08. 12th International.

pp. 67–76. IEEE (2008)

[8] Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463.

ACM press New York (1999)

131

http://promisedata.org/promised/trunk/promisedata.org/data/cm1-maintain/cm1-maintain.txt
http://promisedata.org/promised/trunk/promisedata.org/data/cm1-maintain/cm1-maintain.txt
http://www.fas.org/irp/program/collect/uav_tcs.htm
http://www.fas.org/irp/program/collect/uav_tcs.htm
http://www.fas.org/irp/program/collect/uav_tcs.htm
http://www.fas.org/irp/program/collect/uav_tcs.htm
http://www.mtc.ca.gov/planning/tcip/Real-Time_TransitSystemRequirements_v3.0.pdf
http://www.mtc.ca.gov/planning/tcip/Real-Time_TransitSystemRequirements_v3.0.pdf

[9] Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Logic-based arti-

ficial intelligence, pp. 257–279. Springer (2000)

[10] Bell, T.E., Thayer, T.: Software requirements: Are they really a problem? In: Pro-

ceedings of the 2nd international conference on Software engineering. pp. 61–68.

IEEE Computer Society Press (1976)

[11] Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-

ification: Linguistic sources of ambiguity. Online at URL http://se. uwaterloo. ca/˜

dberry/handbook/ambiguityHandbook. pdf (2003)

[12] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-

ing. Advances in computers 58, 117–148 (2003)

[13] Björkelund, A., Hafdell, L., Nugues, P.: Multilingual semantic role labeling. In: Pro-

ceedings of the Thirteenth Conference on Computational Natural Language Learning:

Shared Task. pp. 43–48. Association for Computational Linguistics (2009)

[14] Cabral, G., Sampaio, A.: Formal specification generation from requirement docu-

ments. Electronic Notes in Theoretical Computer Science 195, 171–188 (2008)

[15] Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the role

of the nouns in ir-based traceability recovery. In: Program Comprehension, 2009.

ICPC’09. IEEE 17th International Conference on. pp. 148–157. IEEE (2009)

[16] Christel, M.G., Kang, K.C.: Issues in requirements elicitation. Tech. rep., DTIC Doc-

ument (1992)

[17] Cimatti, A., Giunchiglia, E., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.:

Integrating bdd-based and sat-based symbolic model checking. In: Frontiers of Com-

bining Systems, pp. 49–56. Springer (2002)

132

[18] Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability

solving. Formal Methods in System Design 19(1), 7–34 (2001)

[19] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Transactions on Program-

ming Languages and Systems (TOPLAS) 8(2), 244–263 (1986)

[20] Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification

of non-functional requirements with application to early aspects. In: Requirements

Engineering, 14th IEEE International Conference. pp. 39–48. IEEE (2006)

[21] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Nat-

ural language processing (almost) from scratch. The Journal of Machine Learning

Research 12, 2493–2537 (2011)

[22] Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E., Bandara, A.: Expressive policy

analysis with enhanced system dynamicity. In: Proceedings of the 4th International

Symposium on Information, Computer, and Communications Security. pp. 239–250.

ACM (2009)

[23] Da Xu, L., Viriyasitavat, W., Ruchikachorn, P., Martin, A.: Using propositional logic

for requirements verification of service workflow. Industrial Informatics, IEEE Trans-

actions on 8(3), 639–646 (2012)

[24] De Marneffe, M.C., MacCartney, B., Manning, C.D., et al.: Generating typed de-

pendency parses from phrase structure parses. In: Proceedings of LREC. vol. 6, pp.

449–454 (2006)

[25] De Marneffe, M.C., Manning, C.D.: Stanford typed dependencies manual. URL

http://nlp. stanford. edu/software/dependencies manual. pdf (2008)

133

[26] Deeptimahanti, D.K., Babar, M.A.: An automated tool for generating uml models

from natural language requirements. In: Automated Software Engineering, 2009.

ASE’09. 24th IEEE/ACM International Conference on. pp. 680–682. IEEE (2009)

[27] Doherty, P., Gustafsson, J., Karlsson, L., Kvarnström, J.: Tal: Temporal action logics

language specification and tutorial. Linköping Electronic Articles in Computer and

Information Science 3 (1998)

[28] Durán, A., Ruiz, A., Bernárdez, B., Toro, M.: Verifying software requirements with

xslt. ACM SIGSOFT Software Engineering Notes 27(1), 39–44 (2002)

[29] East, D., Truszczyński, M.: Predicate-calculus-based logics for modeling and solving

search problems. ACM Transactions on Computational Logic (TOCL) 7(1), 38–83

(2006)

[30] Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-

poral logic of branching time. Journal of computer and system sciences 30(1), 1–24

(1985)

[31] Fliedl, G., Kop, C., Mayr, H.C., Winkler, C., Weber, G., Salbrechter, A.: Semantic

tagging and chunk-parsing in dynamic modeling. In: Natural Language Processing

and Information Systems, pp. 421–426. Springer (2004)

[32] Fogarty, W.M.: Investigation Report: Formal Investigation into the Circumstances

Surrounding the Downing of Iran Air Flight 655 on 3 July 1988. Department of De-

fense (1988)

[33] Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge

representation. In: Reasoning Web, pp. 104–124. Springer (2008)

[34] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven an-

swer set solver. In: Logic Programming and Nonmonotonic Reasoning, pp. 260–265.

Springer (2007)

134

[35] Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Logic

Programming, pp. 235–249. Springer (2009)

[36] Gelfond, M., Inclezan, D.: Yet another modular action language. In: Proceedings

of the Second International Workshop on Software Engineering for Answer Set Pro-

gramming. pp. 64–78 (2009)

[37] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

ICLP/SLP. vol. 88, pp. 1070–1080 (1988)

[38] Gelfond, M., Lobo, J.: Authorization and obligation policies in dynamic systems. In:

Logic Programming, pp. 22–36. Springer (2008)

[39] Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational lin-

guistics 28(3), 245–288 (2002)

[40] Giordano, L., Martelli, A., Schwind, C.: Reasoning about actions in dynamic linear

time temporal logic. Logic Journal of IGPL 9(2), 273–288 (2001)

[41] Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Pre-

liminary report. In: AAAI/IAAI. pp. 623–630. Citeseer (1998)

[42] Goble, L.: The blackwell guide to philosophical logic (2001)

[43] Harel, D.: Statecharts: A visual formalism for complex systems. Science of computer

programming 8(3), 231–274 (1987)

[44] Hayes, J.H., Dekhtyar, A., Sundaram, S.K., Holbrook, E.A., Vadlamudi, S., April,

A.: Requirements tracing on target (retro): Improving software maintenance through

traceability recovery. Innovations in Systems and Software Engineering 3(3), 193–

202 (2007)

135

[45] Hayes, J.H., Holbrook, E.A., Raphael, I., Pruett, D.M.: Fault-based analysis: How

history can help improve performance and dependability requirements for high assur-

ance systems. In: Fifth International Workshop on Requirements for High Assurance

Systems (RHAS), to be presented in Chicago, IL on November. vol. 8 (2005)

[46] Heimdahl, M.P., Leveson, N.G.: Completeness and consistency analysis of state-

based requirements. In: Software Engineering, 1995. ICSE 1995. 17th International

Conference on. pp. 3–3. IEEE (1995)

[47] Heitmeyer, C., Labaw, B., Kiskis, D.: Consistency checking of scr-style requirements

specifications. In: Requirements Engineering, 1995., Proceedings of the Second IEEE

International Symposium on. pp. 56–63. IEEE (1995)

[48] Heitmeyer, C.L.: Software Cost Reduction. Wiley Online Library (2002)

[49] Holzmann, G.J.: The model checker spin. IEEE Transactions on software engineering

23(5), 279–295 (1997)

[50] Holzmann, G.: Design and validation of computer protocols.(1991)

[51] Kern, C., Greenstreet, M.R.: Formal verification in hardware design: A survey. ACM

Transactions on Design Automation of Electronic Systems (TODAES) 4(2), 123–193

(1999)

[52] Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the

41st Annual Meeting on Association for Computational Linguistics-Volume 1. pp.

423–430. Association for Computational Linguistics (2003)

[53] Klein, M.: An exception handling approach to enhancing consistency, completeness

and correctness in collaborative requirements capture. Advances in Concurrent Engi-

neering: CE96 Proceedings p. 73 (1996)

136

[54] Knapp, A., Merz, S., Rauh, C.: Model checking timed uml state machines and col-

laborations. In: Formal Techniques in Real-Time and Fault-Tolerant Systems. pp.

395–414. Springer (2002)

[55] Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Foundations of knowl-

edge base management, pp. 23–55. Springer (1989)

[56] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on

Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

[57] Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset of

uml statechart diagrams using the spin model-checker. Formal Aspects of Computing

11(6), 637–664 (1999)

[58] Lee, J., Palla, R.: Situation calculus as answer set programming. In: AAAI (2010)

[59] Lee, J., Palla, R.: Reformulating temporal action logics in answer set programming.

In: AAAI (2012)

[60] Levy, R., Andrew, G.: Tregex and tsurgeon: Tools for querying and manipulating

tree data structures. In: Proceedings of the fifth international conference on Language

Resources and Evaluation. pp. 2231–2234. Citeseer (2006)

[61] Li, W., Huffman Hayes, J., Truszczynski, M.: Temporal action language (tal): a con-

trolled language for consistency checking of natural language temporal requirements.

In: NASA Formal Methods, pp. 162–167. Springer (2012)

[62] Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence

138(1), 39–54 (2002)

[63] Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP. vol. 94, pp. 23–37

(1994)

137

[64] Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by sat solvers.

Artificial Intelligence 157(1), 115–137 (2004)

[65] Marcus, M., Kim, G., Marcinkiewicz, M.A., MacIntyre, R., Bies, A., Ferguson, M.,

Katz, K., Schasberger, B.: The penn treebank: Annotating predicate argument struc-

ture. In: Proceedings of the workshop on Human Language Technology. pp. 114–119.

Association for Computational Linguistics (1994)

[66] Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming

paradigm. In: The Logic Programming Paradigm, pp. 375–398. Springer (1999)

[67] Mashkoor, A., Matoussi, A.: Towards validation of requirements models. In: The

Second International Conference on ASM, Alloy, B and Z-ABZ 2010. vol. 5977

(2010)

[68] McCarthy, J., Hayes, P.: Some Philosophical Problems from the Standpoint of Artifi-

cial Intelligence. Stanford University USA (1968)

[69] McMillan, K.L.: Symbolic Model Checking. Springer (1993)

[70] Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and

constraint logic programming. Annals of Mathematics and Artificial Intelligence

53(1-4), 251–287 (2008)

[71] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-

ing an efficient sat solver. In: Proceedings of the 38th annual Design Automation

Conference. pp. 530–535. ACM (2001)

[72] Niemelä, I.: Logic programs with stable model semantics as a constraint program-

ming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273

(1999)

138

[73] Niemelä, I., Simons, P.: Smodels-an implementation of the stable model and well-

founded semantics for normal logic programs. In: Logic Programming and Non-

monotonic Reasoning, pp. 420–429. Springer (1997)

[74] Niemelä, I., Simons, P., Soininen, T.: Stable model semantics of weight constraint

rules. In: Logic Programming and Nonmonotonic Reasoning, pp. 317–331. Springer

(1999)

[75] Nikora, A.P., Balcom, G.: Automated identification of ltl patterns in natural language

requirements. In: Software Reliability Engineering, 2009. ISSRE’09. 20th Interna-

tional Symposium on. pp. 185–194. IEEE (2009)

[76] Nwana, H.S.: Software agents: An overview. The knowledge engineering review

11(03), 205–244 (1996)

[77] Perrussel, L., Charrel, P.J.: Inconsistent requirements: An argumentation view. Inter-

national Journal on Artificial Intelligence Tools 11(03), 303–325 (2002)

[78] Rayson, P.: Wmatrix: A web-based corpus processing environment. (2008)

[79] Schulte, C., Lagerkvist, M., Tack, G.: Gecode. Software download and online mate-

rial at the website: http://www. gecode. org (2006)

[80] Schwitter, R.: English as a formal specification language. In: Database and Expert

Systems Applications, 2002. Proceedings. 13th International Workshop on. pp. 228–

232. IEEE (2002)

[81] Schwitter, R., Ljungberg, A., Hood, D.: Ecole–a look-ahead editor for a controlled

language. EAMT-CLAW03 pp. 141–150 (2003)

[82] Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation

edit rate with targeted human annotation. In: Proceedings of association for machine

translation in the Americas. pp. 223–231 (2006)

139

[83] Tichy, W.F., Padberg, F.: Empirical methods in software engineering research. In:

Software Engineering-Companion, 2007. ICSE 2007 Companion. 29th International

Conference on. pp. 163–164. IEEE (2007)

[84] Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tag-

ging with a cyclic dependency network. In: Proceedings of the 2003 Conference of

the North American Chapter of the Association for Computational Linguistics on Hu-

man Language Technology-Volume 1. pp. 173–180. Association for Computational

Linguistics (2003)

[85] Van Lamsweerde, A.: Requirements engineering: From system goals to uml models

to software specifications (2009)

[86] Van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven

requirements engineering. Software Engineering, IEEE Transactions on 24(11), 908–

926 (1998)

[87] Viriyasitavat, W., Da Xu, L., Martin, A.: Swspec: The requirements ppecification lan-

guage in service workflow environments. Industrial Informatics, IEEE Transactions

on 8(3), 631–638 (2012)

[88] Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically

composable feature models from natural language requirements. In: Proceedings of

the 13th International Software Product Line Conference. pp. 211–220. Carnegie

Mellon University (2009)

[89] Yovine, S.: Model checking timed automata. In: Lectures on Embedded Systems, pp.

114–152. Springer (1998)

140

Vita

Personal Data:

Name: Wenbin Li

Gender: Male

Educational Background:

• Masters in Computer Science, University of Kentucky, 2010.

• Bachelor in Computer Science, Shanghai Jiaotong University, 2006.

Research Experience:

• Ph.D. Research Field: Software Engineering and Artificial Intelligence, 2006 - Present.

Software Verification and Validation Lab,

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

Teaching Experience:

• Teaching Assistant, 08/2006 - 05/2008.

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

Work Experience:

• Research Assistant, 08/2008 - 05/2014.

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

Publications:

• Wenbin Li, Jane Huffman Hayes, and Miroslaw Truszczynski. “Towards More Ef-

ficient Requirements Formalization: A Study,” In Proceedings of 21th International

141

Working Conference on Requirements Engineering: Foundation for Software Qual-

ity (REFSQ 2015)

• Wenbin Li, David Brown, Jane Huffman Hayes, and Miroslaw Truszczynski. “Answer-

Set Programming in Requirements Engineering,” In Proceedings of 20th Interna-

tional Working Conference on Requirements Engineering: Foundation for Software

Quality (REFSQ 2014)

• Hayes, J.H.; Wenbin Li; Rahimi, M., “Weka meets TraceLab: Toward convenient

classification: Machine learning for requirements engineering problems: A position

paper,” Artificial Intelligence for Requirements Engineering (AIRE), 2014 IEEE 1st

International Workshop pp.9,12, 26-26 Aug. 2014

• Wenbin Li, Hayes, J.H., Fan Yang, Imai, K., Yannelli, J., Carnes, C. and Doyle,

M., “Trace Matrix Analyzer (TMA),” Traceability in Emerging Forms of Software

Engineering (TEFSE), 2013 International Workshop, pp.44,50, 19-19 May 2013

• Wenbin Li, Hayes, J.H., “Traceability Challenge 2013: Query+ enhancement for

semantic tracing (QuEST): Software verification and validation research laboratory

(SVVRL) of the University of Kentucky,” Traceability in Emerging Forms of Soft-

ware Engineering (TEFSE), 2013 International Workshop, pp.95,99, 19-19 May

2013

• Ashlee Holbrook, Jane Huffman Hayes, Alex Dekhtyar, Wenbin Li pA study of

methods for textual satisfaction assessment,q in Journal of Empirical Software Engi-

neering (EMSE), February 2013, Volume 18, Issue 1, pp 139-176.

• Cleland-Huang, Jane, Yonghee Shin, Ed Keenan, Adam Czauderna, Greg Leach,

Evan Moritz, Malcom Gethers, Denys Poshyvanyk, Jane Huffman Hayes, and Wen-

bin Li. “Toward actionable, broadly accessible contests in software engineering.”

142

In Proceedings of the 2012 International Conference on Software Engineering, pp.

1329-1332. IEEE Press, 2012. Workshop

• Wenbin Li, Jane Hayes, and Miros?aw Truszczyski. “Temporal Action Language

(TAL): A Controlled Language for Consistency Checking of Natural Language Tem-

poral Requirements.” NASA Formal Methods (2012): 162-167.

• Hayes, Jane Huffman, Hakim Sultanov, Wei-Keat Kong, and Wenbin Li. “Software

verification and validation research laboratory (SVVRL) of the University of Ken-

tucky: traceability challenge 2011: language translation.” In Proceedings of the 6th

International Workshop on Traceability in Emerging Forms of Software Engineering,

pp. 50-53. ACM, 2011.

• Hayes, Jane Huffman, Wei-Keat Kong, Wenbin Li, Hakim Sultanov, Steven Alexan-

der Wilson, Sami Taha, Jody Larsen, and Senthil Sundaram. “Software Verification

and Validation Research Laboratory (SVVRL) of the University of Kentucky: Trace-

ability Challenge,” in Proceedings of 2009 Workshop on Traceability in Emerging

Forms of Software Engineering (TEFSE), 2009.

143

	Consistency Checking of Natural Language Temporal Requirements using Answer-Set Programming
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization of the Thesis

	2 General Approach
	3 Related Work
	3.1 Information Retrieval and Natural Language Processing
	3.2 Requirements Specification
	3.3 Model Checking and Answer Set Programming
	3.4 Requirements Validation

	4 Temporal Action Language TeAL
	4.1 Syntax of TeAL
	4.2 Semantics of TeAL

	5 TeALGenerator
	5.1 Data Flow of TeALGenerator
	5.2 Detecting Ambiguity and Incompleteness

	6 From TeAL to clingcon language
	6.1 Generation of (N)
	6.2 Generation of (AD(N),n)
	6.3 Generation of (TC(),h)

	7 Empirical Studies
	7.1 Empirical Study 1: Understandability of TeAL and ASP
	7.2 Empirical Study 2: Quality of TeALGenerator Outputs
	7.3 Empirical Study 3: Performance of TeAL2ASP

	8 Conclusions and Future Work
	Bibliography
	Vita

