
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Computer Science Computer Science 

2014 

A HyperNet Architecture A HyperNet Architecture 

Shufeng Huang 
University of Kentucky, theremetony@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Huang, Shufeng, "A HyperNet Architecture" (2014). Theses and Dissertations--Computer Science. 18. 
https://uknowledge.uky.edu/cs_etds/18 

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Shufeng Huang, Student 

Dr. James Griffioen, Major Professor 

Dr. Miroslaw Truszczynski, Director of Graduate Studies 



A HyperNet Architecture

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By
Shufeng Huang

Lexington, Kentucky
Director: Dr. James Griffioen and Dr. Kenneth L. Calvert, Professor

of Computer Science
Lexington, Kentucky

2014
Copyright c© Shufeng Huang 2014



ABSTRACT OF DISSERTATION

A HyperNet Architecture

Network virtualization is becoming a fundamental building block of future Internet
architectures. By adding networking resources into the “cloud”, it is possible for
users to rent virtual routers from the underlying network infrastructure, connect
them with virtual channels to form a virtual network, and tailor the virtual network
(e.g., load application-specific networking protocols, libraries and software stacks on
to the virtual routers) to carry out a specific task. In addition, network virtualization
technology allows such special-purpose virtual networks to co-exist on the same set
of network infrastructure without interfering with each other.

Although the underlying network resources needed to support virtualized networks
are rapidly becoming available, constructing a virtual network from the ground up and
using the network is a challenging and labor-intensive task, one best left to experts.

To tackle this problem, we introduce the concept of a HyperNet, a pre-built, pre-
configured network package that a user can easily deploy or access a virtual network
to carry out a specific task (e.g., multicast video conferencing). HyperNets package
together the network topology configuration, software, and network services needed
to create and deploy a custom virtual network. Users download HyperNets from
HyperNet repositories and then “run” them on virtualized network infrastructure
much like users download and run virtual appliances on a virtual machine. To support
the HyperNet abstraction, we created a Network Hypervisor service that provides a
set of APIs that can be called to create a virtual network with certain characteristics.

To evaluate the HyperNet architecture, we implemented several example Hyper-
Nets and ran them on our prototype implementation of the Network Hypervisor.
Our experiments show that the Hypervisor API can be used to compose almost any
special-purpose network – networks capable of carrying out functions that the current
Internet does not provide. Moreover, the design of our HyperNet architecture is
highly extensible, enabling developers to write high-level libraries (using the Network
Hypervisor APIs) to achieve complicated tasks.

Keywords: HyperNet, virtual network, network hypervisor, programmable router,
SDN



A HyperNet Architecture

By
Shufeng Huang

Dr. James Griffioen, Dr. Kenneth L. Calvert

Director of Dissertation

Dr. Miroslaw Truszczynski

Director of Graduate Studies

Jan. 28, 2014



ACKNOWLEDGMENTS

I am very thankful to all the people who had helped me to finish my doctoral study.

My thanks first go to my Ph.D. advisor Dr. James Griffioen. Thanks for advising

and helping me becoming a better researcher in Computer Science. Thanks for

arousing my curiosity about computer networking when I decided to pursue a Ph.D.

Thanks for encouraging me whenever I encountered troubles in research. Thanks for

spending time to review all my papers. Thanks for sending me to conferences where

I got to know lots of people with the same research enthusiasm. I could not have

achieved what I have achieved now without his professional guidance. I would also

like to thank Dr. Kenneth Calvert for co-advising me. Every conversation during our

weekly research project meeting was a great learning experience for me.

I would also like to thank the other members of my committee: Dr. Raphael

Finkel, Dr. Robert Heath, and Dr. Hank Dietz for their expertise, criticism,

availability and intellectually stimulating conversations. Special thanks to Dr. Finkel

for guiding me with a research project when I first joined University of Kentucky.

I would also like to expressed my appreciation to Hussamuddin Nasir, Lowell Pike,

William Marvel from the Lab for Advanced Networking for their excellent technical

assistance with my projects, from machine maintenance, to help configure routers, to

fixing technical bugs in testbeds, and other associated problems.

I had a pleasurable time in Kentucky with many fellow colleagues. Thanks for

the stimulating discussions, knowledge and ideas, and collaboration on experimental

research projects. Thanks for making life in the lab colorful.

iii



I am also thankful to all my professors who had me in class and answered my

questions. Thanks to all the staff in the CS department and in the Graduate school.

You have all helped make my experience here at UK fulfilling.

Thanks to my family, my parents who raised me and sent me to the U.S., my uncle

who introduced me to computer science when I was very young, and my grandma

who always brings laughter to the family. I would not finish my doctoral study if it

were not for your support.

Finally and most importantly, I would like to thank my beautiful, wonderful wife,

Lei. You have carried the burden with me, and you have brought joy to my everyday

life. I am lucky to have you, and it is only because of you that we made it through

this part of our journey.

iv



Contents

Acknowledgments iii

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Virtual Networks . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Building Virtual Networks . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Specifying the Network . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Supporting New Functionality . . . . . . . . . . . . . . . . . . 5

1.3 The HyperNet Approach . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Example HyperNet Packages . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 14
2.1 Virtualization Technology . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Hypervisors and Virtual Machines . . . . . . . . . . . . . . . . 15
2.1.2 Virtual Appliances . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 From Virtual Machines to Virtual Infrastructure . . . . . . . . 18
2.1.4 Other Virtualization Approaches . . . . . . . . . . . . . . . . 20
2.1.5 Cloud Services . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 Deploying Cloud Services . . . . . . . . . . . . . . . . . . . . . 22

2.2 Virtual Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 ProtoGENI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 ORCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 PlanetLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Programmable Network Infrastructure . . . . . . . . . . . . . . . . . 29
2.3.1 Active Networks . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 NetServ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Service-Centric Networks . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 OpenFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Composable Network Stacks . . . . . . . . . . . . . . . . . . . . . . . 33

v



2.4.1 X-Kernel Protocol Stacks . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Tau protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 The SILO Project . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Virtual Network Infrastructure Providers (VNIPs) 39
3.1 Assumptions about VNIPs . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Basic VNIP Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 VNIP API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 HyperNet Packages 47
4.1 The HyperNet Abstraction . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Establishing Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 The HyperNet Architecture . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 The HyperNet Usage Model . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 HyperNet Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 The Network Hypervisor 59
5.1 Building a Virtual Network . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Step 1: Specify Participants . . . . . . . . . . . . . . . . . . . 60
5.1.2 Step 2: Identify Attachment Points . . . . . . . . . . . . . . . 61
5.1.3 Step 3: Define the Topology . . . . . . . . . . . . . . . . . . . 63
5.1.4 Step 4: Load Software on Nodes . . . . . . . . . . . . . . . . . 64
5.1.5 Step 5: Deploy and Start the Virtual Network . . . . . . . . . 65
5.1.6 Step 6: Monitor the HyperNet network . . . . . . . . . . . . . 65

5.2 Discovering/Defining the Topology . . . . . . . . . . . . . . . . . . . 66
5.2.1 Attachment Point View . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 Key Resource View . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Detailed Topology View . . . . . . . . . . . . . . . . . . . . . 69

5.3 The Design of a Network Hypervisor . . . . . . . . . . . . . . . . . . 70
5.3.1 VNIP Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Network Hypervisor API Calls . . . . . . . . . . . . . . . . . . 72
5.3.3 The HyperNet Library . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Configuring HyperNet Packages . . . . . . . . . . . . . . . . . . . . . 84
5.5 HyperNet Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Joining a HyperNet . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.1.1 Voluntary Join . . . . . . . . . . . . . . . . . . . . . 89
5.5.1.2 Involuntary Join . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Participant Usage Models . . . . . . . . . . . . . . . . . . . . 94
5.5.2.1 Model 1: Specialized End System Applications . . . 94
5.5.2.2 Model 2: Virtual Application Gateways . . . . . . . 95
5.5.2.3 Model 3: IP-in-IP Tunnels . . . . . . . . . . . . . . . 97
5.5.2.4 Model 4: Virtual Appliances . . . . . . . . . . . . . . 97

5.6 HyperNet DNS Systems . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.7 Scalability of the Network Hypervisor . . . . . . . . . . . . . . . . . . 100

vi



6 A Prototype Implementation 102
6.1 The Information Base . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 The Location Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 The Topology Server/Routing Server (TS/RS) . . . . . . . . . . . . . 105

6.3.1 Finding a Central Node . . . . . . . . . . . . . . . . . . . . . 106
6.4 Random Topology Generator . . . . . . . . . . . . . . . . . . . . . . 107
6.5 Hypervisor Performance . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5.1 Experimental Context . . . . . . . . . . . . . . . . . . . . . . 108
6.5.2 Build Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5.3 HyperNet Deployment Time . . . . . . . . . . . . . . . . . . . 110
6.5.4 Concurrency Test . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Example HyperNet Packages 117
7.1 A Multicast HyperNet . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Multicast Results . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 A MobileNet HyperNet . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 MobileNet Results . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 A Multiplayer Gaming HyperNet . . . . . . . . . . . . . . . . . . . . 126

7.3.1 Multiplayer Game Results . . . . . . . . . . . . . . . . . . . . 129
7.4 An OpenFlow Load-balancing HyperNet . . . . . . . . . . . . . . . . 130

7.4.1 Load Balancing Results . . . . . . . . . . . . . . . . . . . . . 132

8 Conclusion and Future Work 138
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 144

Vita 151

vii



List of Tables

5.1 Steps needed to Build a Virtual Network . . . . . . . . . . . . . . . . 60

7.1 Time Required to create a Multicast Virtual Network . . . . . . . . . 121
7.2 Network Performance of Multicast versus Multiple Unicast . . . . . . 123

viii



List of Figures

2.1 Type I and type II Hypervisor model . . . . . . . . . . . . . . . . . . 15
2.2 Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Virtual Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Virtual Appliances built on Type I Hypervisor . . . . . . . . . . . . . 18
2.5 Virtual Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Flack Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Types of virtual network infrastructure providers: HIPs and IRs . . . 40

4.1 The HyperNet Architecture . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Relationship among Roles in a HyperNet Environment . . . . . . . . 55

5.1 Attachment Point View . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Key Resource View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Infrastructure Provider’s view of its managed networks III . . . . . . 69
5.4 Network Hypervisor API Layers . . . . . . . . . . . . . . . . . . . . . 71
5.5 Internet Participant and Infrastructure Participant Joining a HyperNet

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Third-Party Participant Joining a HyperNet Network . . . . . . . . . 93
5.7 Model 1: Specialized End System Application . . . . . . . . . . . . . 94
5.8 Model 2: Tun/Tap Interface . . . . . . . . . . . . . . . . . . . . . . . 96
5.9 Model 3: IP-in-IP Tunnel . . . . . . . . . . . . . . . . . . . . . . . . 97
5.10 Model 4: Virtual Appliance . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Hypervisor Implementation . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Time spent building a HyperNet Ring Topology . . . . . . . . . . . . 110
6.3 Deploy Time for Ring Topologies in a GENI Aggregate . . . . . . . . 112
6.4 Time spent in deploying 50 HyperNet Topologies with concurrent

requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5 Time spent in deploying 100 HyperNet Topologies with concurrent

requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6 Time spent in deploying 200 HyperNet Topologies with concurrent

requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Time spent in deploying HyperNet Topologies with sequential requests 116

7.1 (Generated) Physical Topology of the VNIP . . . . . . . . . . . . . . 118
7.2 Reserved Multicast Topology . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 A MobileNet HyperNet . . . . . . . . . . . . . . . . . . . . . . . . . . 124

ix



7.4 MobileNet vs normal TCP Performance . . . . . . . . . . . . . . . . . 125
7.5 Multiplayer Gaming HyperNet . . . . . . . . . . . . . . . . . . . . . . 130
7.6 OpenFlow Load Balancing Topology . . . . . . . . . . . . . . . . . . 131
7.7 Load Balancer A total performance with no loss on either path. . . . 133
7.8 Load Balancer A per-flow performance with no loss on either path. . 134
7.9 Load Balancer A total performance with 5% loss on the left path. . . 135
7.10 Load Balancer A per-flow performance with 5% loss on the left path. 136
7.11 Load Balancer B per-flow performance with 5% loss on the left path. 137
7.12 Load Balancer B per-flow performance with 5% loss on the left path. 137

x



Chapter 1

Introduction

The huge success of the Internet over the past few decades has clearly demonstrated

the wisdom of the early designers, who decided to create a simple best-effort packet

delivery network and then couple that with (intelligent) programmable computers at

edges of the network. One consequence is that applications running on end systems

define the network’s functionality not the network itself. This architecture enabled

innovation on end systems that has allowed the Internet to be adapted and enhanced

far beyond the imagination of the Internet designers.

However, it has become increasingly clear that certain innovations will require

new functionality in the network itself. For example, due to the need for trustworthy

communication, some argue that the Internet should provide intrinsic security in

which the integrity and authenticity of communication is guaranteed [1]. Some

argue that additional processing of packets should be provided within the network

so that users can define their own processing, thereby choosing how their packets

are processed by the network [2]. To support the increasing number of mobile end

systems (mainly cell phones) on the Internet, some argue that the Internet should be

re-designed to support network mobility at scale [3]. Yet there are other proposals

addressing new network types such as vehicular networks [4] and ad-hoc networks [5].

Meanwhile, the existing Internet has several other recognized problems. Well-known

Internet problems range from lack of address space [6] to routing problems [7, 8, 9],

1



to lack of support for mobility [10], to lack of security [11, 12, 13, 14, 15].

Although there are many arguments on how to realize a next generation Internet

[16, 17], it is widely agreed that the future Internet should be highly flexible and

programmable to support more innovation within the network itself. A promising

technique that offers users the ability to program the network in safe, user-specific,

ways is virtualization. Although virtual networks are beginning to emerge, the tools

and interfaces for users to create virtual networks are severely lacking.

This thesis proposes a new HyperNet abstraction that simplifies the

task of creating, deploying and using special purpose virtual networks –

virtual networks that are tailored to the needs of particular applications,

and are also tailored to the set of participants and users of the virtual

network.

1.1 Virtualization

Propelled by the need to efficiently and cost effectively support web services, virtual-

ization technology has recently gained widespread popularity and use. Virtualization

enables one to create multiple virtual instances of a device from a single physical

device, allowing – for example – multiple virtual web server machines to be hosted

on the same physical machine.

Virtual computers, referred to as Virtual Machines (VMs), have not only become

a key part of data centers hosting web services, but are now also commonly found on

desktop users’ machines. Virtual machines not only share the same set of physical

resources (i.e., run on the same physical machine), but more importantly, VMs are

also isolated from each other so that problems in one VM will not affect the execution

of other VMs.

Virtualization has also changed the way people create, package, share and deploy

software. The best example of this is a virtual appliance[18]. Virtual appliances

2



encapsulate all the pieces of a software system – including the operating system,

application libraries, and configuration files – into a single package that can be easily

run by users who would otherwise not be able to (or not want to) assemble and

configure a complex software system. For example, bringing up and hosting a Content

Management System (CMS) today no longer requires an expert to install, configure,

and initialize the appropriate OS, web servers, databases, file systems, and CMS

software. Instead, an average user can download a fully-configured and ready-to-run

content management appliance from a virtual appliance “store” and simply “run” it

on a virtual machine.

1.1.1 Virtual Networks

Recently the concept of virtualization has been extended from computers to network

devices (e.g., network routers, switches, and links). Early examples of virtual routers

were based on virtualized PCs acting as network routers. PlanetLab [19, 20], for

example, allows users to reserve “slivers” (virtual machines) from physical machines

scattered all across the world and connect them together via overlay links to form a

“slice” (an overlay network). The virtual routers in the overlay can be programmed

and controlled by users, enabling users to deploy custom code on the virtual routers

in order to create application-specific networks. In Emulab [21], users can obtain real

or virtual PCs from a cluster of resources for use as emulated network routers. The

emulated routers are then connected using Virtual Local Area Networks(VLANs)[22].

Again, because users have complete control of the emulated routers, they can deploy

their own protocols and network services to create a virtual network with customized

functionality. The emerging GENI network [23, 24, 25] is perhaps the best example,

offering a wide rang of (virtualized) network resources to create virtual networks that

span the continent. Like PlanetLab and Emulab, users can design application-specific

topologies and run application-specific code on the routers that comprise the network.

3



More recently, router vendors have begun to support virtualization of commercial

network hardware. Examples include Juniper routers, which support the creation

of multiple “logical routers” from a single physical router [26]. A variety of other

router vendors now support OpenFlow [27] protocols and controllers. By leveraging

existing tunneling technologies such as the Generic Routing Encapsulation (GRE)

protocol [28] and the Multiprotocol Label Switching (MPLS) [29], users can create

virtual links between virtual routers anywhere in the world. Moreover, one can easily

imagine a future in which many, if not most, ISPs offer virtualized network resources

for a fee.

The ability to reserve virtualized, and in some cases programmable, routers

at locations all across national backbone networks and edge networks makes it

possible for multiple wide area “virtual internets” to share the same underlying

physical infrastructure and operate simultaneously without interfering with each

other. Moreover, each of these virtual internets has the potential to use its own

unique set of protocols and services tailored to a particular purpose. The power and

flexibility of virtual networks makes it a perfect way to either try out new functionality

or create and operate new services that are not possible today. In short, it is becoming

increasingly clear that network virtualization will be a fundamental building block

for future networks.

1.2 Building Virtual Networks

Although virtual networks bring many advantages, creating and building a virtual

network is not an easy task.

1.2.1 Specifying the Network

As anyone who has used one of the existing virtual network infrastructures can attest,

creating a fully functional virtual network is anything but easy. For example, in the

4



current GENI [23] environment, setting up a GENI experiment (a virtual network on

GENI infrastructure) is an involved process consisting of several steps. The user must

first discover the set of possible GENI network resources (e.g., routers, switches, PCs,

and links.) that can be reserved. The user must then define the virtual topology

by selecting a subset of the available resources to be used in the network, along

with the network links that connect the resources together (specified in a Resource

Specification (“RSpec”) file). The user must then identify and load the software (e.g.,

operating systems, protocols, libraries, applications, services, etc.) that will provide

the functionality for the virtual network. Once the software is loaded, the user must

configure the system (as well as the software stacks) and launch necessary services. To

run a particular application on the network, the user then needs to load and execute

application-specific services and programs on the end system in the network.

While virtual machines can be configured with certain resources (e.g., memory

or disk space), the number of configuration parameters is relatively small. A

virtual network, on the other hand, can be instantiated in an endless number of

ways depending on the resources (virtual routers and links) selected for inclusion.

Determining which virtual routers to include in the virtual network and how those

routers should be interconnected into a topology is a non-trivial process in and of

itself. Moreover, having identified and allocated the virtual network resources, one

must load, configure, and initialize the software for all the resources that make up

the virtual network, which will differ from resource to resource. In short, creating a

virtual network is a task best left to network experts.

1.2.2 Supporting New Functionality

While ISPs might see a niche market and decide to create a special-purpose network

for a particular type of traffic, it is unlikely that the average user will create

virtual networks tailored to their needs and users. Expertise is needed to create,

5



maintain, and operate virtual networks. Unfortunately, ISPs have little incentive to

invest in a customized virtual network that does not have sufficient payback. For

example, ISPs may invest in virtual networks to support widely-used applications of

general interest to paying customers (e.g., a video conferencing network for large

corporate customers), but they will have little desire to build networks for less

profitable applications (e.g., a virtual network for a little-used application with few

potential customers). Moreover, the application-specific network that ISPs deploy for

high-margin applications will likely be long-running networks – permanent services

available to all users. ISPs are unlikely to dynamically create a virtual network

tailored to the specific users of a given session, but instead will support users in

general (e.g., an ISP will create a single long-running video conferencing network

used by all video conferences, as opposed to dynamically creating and deploying a

network designed especially for the specific set of participants in some personal video

conference). Application-specific virtual networks that are tailored only for small

groups of participants and designed only for specific network applications will play a

very important role in the future Internet and thus, new models are needed for an

average user (instead of a network expert) to easily create and dynamically deploy a

highly-tailored virtual network.

1.3 The HyperNet Approach

Ideally, to create a virtual network, one would like an abstraction similar in spirit to

that of a virtual appliance, where all that one has to do to create their own virtual

network is obtain a file containing a virtual network specification (i.e., the logical

equivalent of a virtual appliance) and run it on virtual network infrastructure. Such

a “virtual network” should contain the virtual network topology, the software and

services needed by the network, and all the configuration information needed by the

virtual network. All the pieces of a virtual network, along with the expertise needed

6



to combine them together, need to be encapsulated so that deploying such a virtual

network is as easy as running a virtual appliance. The average user should not only

be able to join a special-purpose virtual network, but the user should also be able to

deploy his own specialized networks. While virtual machines have benefited from the

concept and abstraction of a virtual appliance, the same cannot be said of virtualized

network infrastructure where an analogous abstraction does not yet exist.

We take an approach similar in spirit to that of a virtual appliance, which we call

a HyperNet Package.

In the simplest case, a HyperNet Package is used as follows: the user responsible

for setting up the virtual network obtains a copy of the HyperNet Package1 (say by

downloading it from a “HyperNet App Store”, much like users download virtual

appliances). The user double-clicks on the downloaded file to “run it”, which

invokes a local program that executes the HyperNet Package. The user is then

prompted for configuration information (assuming configuration information such as

“a list of participants” is required and was not previously specified in a configure

file). Executing the HyperNet Package results in communication with various

virtual network infrastructure providers to allocate resources needed by the HyperNet

Package, instantiation of the virtual network topology as specified by the HyperNet

Package, and deployment of the appropriate software onto the reserved virtual routers.

The HyperNet Package ultimately produces a functional virtual network waiting for

users to join. Users that want to participate in the newly created virtual network must

obtain the “end host” software – included in the HyperNet Package – and invoke it

to join the virtual network. The end host must specify the virtual network identifier

the end host wants to join (i.e., a unique “name” for the virtual network that is

returned when the network was created) and any other credential information (e.g.,

1We use the term HyperNet Package to refer to the software package that can be downloaded and
run, and HyperNet Network or HyperNet Virtual Network to refer to the resulting virtual network
that is deployed when the HyperNet Package runs.

7



a “password”) needed to join the network. As users join the HyperNet network, the

HyperNet Package verifies that they are permitted to join, and their packets begin

flowing across the virtual network. When the application session ends (which may

be a few minutes or a few months or years later), the creator or other authorized

individual tears down the virtual network.

In order to make virtualized networks usable to the largest audience possible2, the

HyperNet abstraction must be simple to use, yet powerful enough to support a wide

range of applications. There are several challenging problems that must be addressed

in the definition and implementation of such an abstraction including (1) determining

where the abstraction fits into the overall network virtualization picture (which is still

emerging), (2) defining the interfaces (APIs) used to launch a HyperNet Package and

then access a HyperNet network, (3) deciding the set of capabilities a HyperNet

Package should support, (4) addressing the topology generation issues associated

with deploying a HyperNet network, (5) solving the participant joining problems (i.e.,

creating a convenient interface for Internet participants to join a virtual network), (6)

ensuring the security of HyperNet networks, and (7) providing the building blocks

needed to support a variety of economic eco-systems in which HyperNet networks

can thrive. Throughout the remainder of this thesis, we will describe our solutions to

these problems and present an initial prototype that demonstrates the feasibility of

our approach.

1.4 Example HyperNet Packages

To illustrate the HyperNet abstraction, consider a HyperNet Package that enables

any web server to deploy its own Content Distribution Network (CDN) tailored to

the clients of that server. In our example, the CDN HyperNet Package decides where

to place the content caches so that content is placed as close to the clients as possible.

2We envision three classes of users: builders, creators, and participants, which will be described
later.

8



Unlike conventional CDNs that rely on DNS tricks at the source to redirect packets

to CDN caches, the CDN HyperNet network operates at the IP level, running code

on routers to intercept packets en route to the server and redirects them to a nearby

CDN cache without DNS involvement. The HyperNet Package also includes an end

system API that the web server can use to push content into the CDN network.

The HyperNet Package might even come with a pre-installed and pre-configured web

server that pushes content into the CDN by default.

One can imagine a wide variety of other example HyperNet Packages, each

designed for a different purpose and set of users. To get a feel for the types of

HyperNet Packages that might be useful, consider the examples listed below:

Audio/Video Net

An audio/video conferencing HyperNet Package would create a multicast

infrastructure among the participants. The HyperNet Package might use

a queuing strategy tailored to a specific codec that intelligently drops less

important packets when network congestion arises, and thus improves the

overall quality of service.

CDN Net

A CDN HyperNet Package would allow any user (typically a content provider)

to create a special-purpose Content Distribution Network, storing the provider’s

content near the participants for fast lookup and retrieval.

Game Net

A game HyperNet Package would include a game server that provides minimum

delay to all participants (game players) and create priority queues on each

router, ensuring that packets carrying critical game actions receive higher

priority than other packets.

9



Wireless Net

A wireless HyperNet Package, designed for wireless end systems, might contain

code to be loaded into wireless access points to alleviate the problems that arise

because of a weak signal or packet loss over the first/last hop wireless link.

Bit-escrow Net

A bit-escrow HyperNet Package would deploy code into routers to cache packets

(i.e., “bit escrow”) as they pass through the router. The cached packets would be

stored only for a short period of time, but during that interval the router would

respond to retransmission requests directly from the cache, thereby reducing

the time required to recover from lost packets.

Backup Net

A backup HyperNet Package might create multiple paths between the client

and the backup server to maximize the throughput across the network, thereby

reducing the time required to complete a backup.

FS Net

A distributed (disconnected) file system HyperNet Package might deploy code

along the paths between the participants to ensure file transfers are both

reliable and efficient, transferring files hop-by-hop and supporting disconnected

operation (e.g., a laptop that loses connectivity for some time).

Home Net

A home HyperNet Package would deploy code into the ISP’s first hop router to

prioritize traffic being sent over the limited-bandwidth channel coming into the

home. This would allow home network users to ensure that low priority bulk

transfers (e.g., Youtube video streams) do not interfere with higher priority

traffic (e.g., Skype phone calls or interactive sessions like ssh).

10



None of these networks is particularly novel in and of itself. Similar types of special-

purpose networks have been proposed in the context of active and programmable

networks for many years[30, 31, 32]. What makes these networks interesting is not

the fact that they can be constructed, but rather the way they are constructed. In

particular, the goal of HyperNet Packages is to identify all code and expertise needed

to create one of these networks and capture it in a self-contained object that can then

be “unpacked” and deployed into an underlying virtual network infrastructure with

little or no human (or application) intervention. As a result, even an average user

can deploy special-purpose virtual networks.

1.5 Contributions of the Thesis

The contributions of our proposed HyperNet approach include:

• A Virtual Network Package Abstraction: Everything needed to deploy a virtual

network is contained in a single HyperNet Package. The user simply needs

to download the package and “run” it. As a result, even an average user can

deploy virtual networks via the HyperNet abstraction.

• Virtual Network Infrastructure Providers: We define a Virtual Network In-

frastructure Provider (VNIP) abstraction to capture the characteristics of new

infrastructure providers that are beginning to emerge. We define a VNIP’s

services, its responsibilities, and also its relationship to other VNIPs and other

components in the HyperNet architecture. We also define a standard interface

for VNIPs to use to communicate with other components of the HyperNet

architecture. We also give examples of emerging real-world virtual network

infrastructure providers.

• A Simple Interface: The design of our HyperNet architecture offers an API that

developers can use to easily compose an application-specific virtual network

11



package and distribute the package so that average users can deploy customized

virtual networks.

• Decoupling Service Providers from Resource Owners: In our HyperNet archi-

tecture, the resource owners (e.g., today’s ISPs) are no longer the only creators

of the network. Instead, ordinary users can also become the Network Creators,

creating virtual networks and providing network services. In fact, we expect

more virtual networks will be created by ordinary users than by ISPs. Moreover,

the virtual networks can be at small scale for short time durations, supporting

a small group of participants. This will encourage smaller, lightweight, special-

purpose virtual networks to appear, bringing new functionalities that have never

been seen in the Internet.

• A New Business Model: We have already seen the huge success of Apple’s

App Store. We can think of the virtual network infrastructure provided by

VNIPs as the HyperNet platform (akin to the IOS platform). With the help of

a Network Hypervisor (akin to the IOS APIs), one can imagine a future where

new HyperNet developers appear, creating additional HyperNet Packages to

run on the HyperNet platform. Normal users can then buy HyperNet Packages

from the HyperNet App Store and deploy them on VNIPs.

While the road to deployment and use is a long one, an ecosystem built around

deployment and use of specialized virtual-network-based applications will encourage

innovation from users, and show the way to a more adaptable next generation Internet

that can change to meet the needs of future applications. As an initial step towards

realizing a HyperNet architecture, this thesis describes the design of the HyperNet

architecture in detail but leaves the security concerns and the economic infrastructure

built on the HyperNet architecture as future work.

12



In the rest of this thesis, we begin by presenting related work in Chapter 2,

including different kinds of virtualization technologies and past efforts made towards

a “programmable Internet” such as active networks and service-centric networks.

A description of Virtual Network Infrastructure Providers (VNIPs) is provided in

Chapter 3, including a list of assumptions made of VNIPs and VNIP services. Chapter

4 gives an overview of the HyperNet architecture followed by a detailed description

of the various components in the HyperNet architecture in Chapter 5, including

the design of the Network Hypervisor service, the Network Hypervisor APIs and

HyperNet Libraries, the process that a HyperNet Package takes to create and deploy

a virtual network, and the participant usage models in the architecture. A prototype

implementation of the Network Hypervisor service as well as some example HyperNet

Packages are presented in Chapter 6 and Chapter 7, followed by some closing thoughts

and conclusions in Chapter 8.

13



Chapter 2

Related Work

This chapter describes current and previous work related with HyperNets. Section 2.1

talks about virtualization technologies, including hypervisors, virtual machines,

virtual appliances, commercial cloud services and platforms for building network

services on the cloud. Section 2.2 introduces state-of-the-art techniques used in

providing a virtual network infrastructure, including various tools used to facilitate

the creation and management of virtual networks in GENI. The next two sections talk

about previous approaches taken towards a “programmable network”. Section 2.3

describes programmable network infrastructure, including past Active Networks

research along with more recent projects such as NetServ, Service-centric Networks,

and OpenFlow. Section 2.4 focuses on composable network stack approaches,

including the X-kernel protocol stack, the Tau protocols, and the NC State Silo

project.

2.1 Virtualization Technology

A variety of commercial and open source efforts now offer powerful and highly

configurable virtualization solutions. Examples include VMWare, OpenStack, Citrix

Xen, VirtualBox, and many others [33, 34, 35, 36, 37]. The idea of virtualization

is to generate multiple instances of resources (computation power, memory, storage,

etc) out of one physical device. These virtual instances of resources share the same

14



underlying physical device but yet are protected from one another. In the following

section we briefly highlight some of the most common approaches to virtualization,

pointing out their advantages and drawbacks.

2.1.1 Hypervisors and Virtual Machines

Virtualization is typically achieved through a software layer called a hypervisor

(or virtual machine monitor) running directly on the physical hardware (called a

Type I hypervisor) or on a traditional operating system (called a Type II hypervisor).

Hardware-assisted virtualization is also possible, but typically only appears in high-

end servers. The hypervisor creates the illusion of multiple virtual machines.

A Virtual Machine (VM) [38] mimics the behavior of a physical machine,

running its own operating system and applications much like a physical machine.

Unlike a physical machine, a virtual machine does not have full access to all the

resources on a physical device, but rather is sandboxed to a subset of the physical

resources reserved for the VM.

OS

Apps

OS

AppsApps 

OS 

Virtual Machine Virtual Machine Virtual Machine

Type I Hypervisor(VMware ESX, Xen, etc)

Hardware(CPU,memory,disk space,etc)

...

(a) Type I Hypervisor

OS OS

Apps

OS

Virtual Machine

AppsApps 

OS(Linux,Windows,Mac, etc)

Hardware(CPU,memory,disk space,etc)

Type II Hypervisor(VMware,VirtualBox,etc)

Virtual Machine Virtual Machine

...

(b) Type II Hypervisor

Figure 2.1: Type I and type II Hypervisor model

15



Fig. 2.1(a) illustrates multiple virtual machines running on a Type I hypervisor

while Fig. 2.1(b) illustrates multiple VMs running on a Type II hypervisor. Type I

hypervisors run on the bare hardware, creating what looks like multiple instances of

the bare hardware. Because OS and application code runs unmodified on the physical

CPU, it requires that the hardware have the ability to catch privileged instructions

and then reimplement them in the hypervisor. Type II hypervisors typically run on a

“host OS”. Before executing any application or OS code, the Type II hypervisor scans

the binary code to find any privileged instructions and any instructions that cause

branches/jumps. It then replaces those instructions with calls back to the hypervisor,

the hypervisor then emulates the instructions in the context of the virtual machine

that issued the instruction. Besides privileged instructions, a hypervisor also needs

to emulate memory mapping (such as segmentation and paging) to support a VM.

• Virtual Machines (VMs), as we have defined them thus far, offer “true

virtualization” in the sense that they try to mimic all aspects of a physical

Hardware(CPU,memory,disk space,etc)

Type I Hypervisor(VMware ESX, Xen, etc)

...

...

...

Virtual
Machine

Virtual Virtual
Machine Machine

Figure 2.2: Virtual Machine

machine. As a result, they can be used to run any operating system (e.g.,

MS Windows, Apple OS X, Linux, etc). Examples of Type I hypervisors

that offer this type of “true virtualization” include IBM’s zOS [39] on its

p and z-series machines, the Citrix XenServer [40] and the VMware ESX

hypervisor architecture [41]. Examples of Type II hypervisors that offer

“true virtualization” include VMware Workstation [42], VirtualBox [43] and

KVM [44].

16



• A light weight form of virtualization that does not mimic a physical machine

is Operating System level Virtual Containers. In this case the “containers” are

Container Container Container

Host OS

Hardware(CPU,memory,disk space,etc)

...

Figure 2.3: Virtual Containers

isolated from one another, but provide an OS abstraction rather than a physical

machine abstraction. As a result, containers only execute applications, not

entire OSes. As shown in Fig 2.3, all containers sitting on top of the hosting

operating system share the same OS kernel. A virtual container partitions

processes and system state, replicates the file system, creates multiple file

system roots, and replicates I/O devices to create pseudo devices. As a result,

virtual containers create the look-and-feel of “virtualization” while underneath

the containers is the same OS. Examples of virtual containers include BSD

Jails [45], OpenVZ [34], and LXC [35].

Although virtualization allows users to run multiple systems on the same

hardware, the user must install and set up the OS and all the software in every

VM, which is a time consuming and often error prune task. To simplify the

software installation setup and configuration steps, the virtualization community has

developed the concept of a Virtual Appliance (VA).

2.1.2 Virtual Appliances

A Virtual Appliance is a pre-built, pre-configured, ready-to-run application

packaged along with the (optimized) operating system needed to run the application.

The optimized operating system is sometimes called a JeOS, or Just enough operating

17



system, because it contains only the OS features needed to support the specific

application. In other words, JeOS is a super light weight OS tailored only for the use

of a specific application. Thus, compared with a general-purpose operating system, a

JeOS requires a much smaller footprint, fewer patches, and is more secure and easy

to maintain.

Hardware(CPU,memory,disk space,etc)

Type I Hypervisor(VMware ESX, Xen, etc)
virtual machine virtual machinevirtual machine

...

...

...

Appliance
Virtual

Appliance
Virtual Virtual

Appliance

Figure 2.4: Virtual Appliances built on Type I Hypervisor

Fig. 2.4 shows multiple Virtual Appliances running on the same hardware. By

comparing this figure with Fig. 2.1, we can see that a Virtual Appliance is basically a

pre-built, pre-configured super-slim JeOS plus an application (stack) running on the

JeOS1.

2.1.3 From Virtual Machines to Virtual Infrastructure

Resource Pool

Virtual Infrastructure Platform

VM1 VM2 ...VA3VM3VA2VA1

Figure 2.5: Virtual Infrastructure

1As an example, an Ubuntu-based Drupal Virtual Appliance [46] installation package is no more
than 170M Bytes in size.

18



To increase availability and resilience of a virtualized system, one can use

multiple physical devices to implement the virtualization. Virtual Infrastructure

is a software layer built on a pool (set) of physical resources (including servers,

storage, and network2) that enables the dynamic sharing of resources among multiple

appliances, as depicted in Fig. 2.5. A virtual infrastructure aggregates physical servers

along with the networks and storage into a unified pool of physical resources that can

be utilized by appliances when and where they are needed. It has the following

components:

• A Type I hypervisor on each server (machine)

• Virtual Infrastructure services such as resource management and consolidated

backup to optimize available resources

• Automated solutions that provide special capabilities to optimize a particular

IT process such as provisioning or disaster recovery.

Examples of virtual infrastructure services include:

• vMove: moving running virtual appliances from one physical server to another

without user knowledge.

• Distributed Resource Scheduler : monitoring utilization across resource pools

and intelligently aligning resources with business needs.

• High availability : in cases when one server is down, appliances will fail over to

another server without being noticed by users.

• Consolidated backup: achieving efficient backup by offloading the backup

workload from production VMs to proxy servers in the virtual infrastructure.

2Note that in a virtual infrastructure, the network is only used to enable the migration of
appliances. There is no (or limited) explicit sharing of network resources (i.e., routers and switches)
in virtual infrastructure at present.

19



2.1.4 Other Virtualization Approaches

Interestingly enough, if we say virtual machines realize virtualization in a “bottom-

up” fashion (the same set of hardware supports the execution of multiple software

stacks, including operating systems), there are other virtualization approaches that

are taken in a “top-down” fashion. The most well-known example is a Java Virtual

Machine (JVM). A JVM is a virtualized software platform used to execute Java

programs. Every Java program is first compiled into an intermediate language called

Java bytecodes that is interpreted and executed by the JVM. Interpreting bytecodes

is slow. To improve the performance of Java, most Java systems support a Just In-

Time Compiler (JIT) that translates Java bytecode into native machine language that

can be executed directly on the physical machine. The .NET Framework compiles

and executes C++/C#/VB code in the same way as JVM. First, code is converted

to the Microsoft Intermediate Language (MS-IL) — akin to Java bytecodes. Then by

using a JIT compiler similar to JVM, the Common Language Runtime (CLR) of the

.NET Framework converts MS-IL to native machine language. These virtualization

approaches enable one to execute the same code on hardware regardless of the

operating system or the hardware being used. In some way, this leads to the idea of

executing code on routers, which later on becomes one of the efforts made towards a

programmable network – the Active Networks Approach, which will be described in

Section 2.3.

2.1.5 Cloud Services

The term cloud is used as a metaphor to depict the Internet as an abstraction of the

virtualized resources it contains. “The Cloud” refers to a shared pool of computing

resources, storage services and higher level applications/services that can be accessed

over the Internet (say, via a web browser) to perform a service for users on-demand.

Despite various concerns about security, users have been rapidly embracing “the

20



cloud” because of the convenience it offers, such as on-demand software, resource

pooling, broad network access, rapid elasticity, and measured service. Traditionally,

a user would purchase a license from a software provider and then install and run the

software on a dedicated on-site server (or servers). With cloud computing, users can

now purchase software services from the cloud on demand and use those services via

the Internet. This allows users to avoid dealing directly with licensing costs, hardware

costs, and maintenance costs, while allowing access to the service from anywhere.

Cloud computing service providers maintain their pool of computing resources in

such a way that it is very convenient for users to expand their reservations (purchase

more resources) to accomplish their tasks, thus providing rapid elasticity. Usage

is measured, which is analogous to how traditional utility services are consumed3.

Studies have already proven that cloud computing can help reduce IT budgets [47].

The services provided by cloud computing can be categorized into three groups:

software as a service (SaaS), platform as a service (PaaS), and infrastructure as

a service (IaaS). SaaS provides a way for users to run their applications over the

Internet from centralized servers rather than from on-site servers. Traditionally, users

purchase licences from software providers and then install and run the software in

a dedicated server. With SaaS, users pay the software provider a subscription fee

for the service. The software is hosted from the software provider’s servers and is

accessed by the users over the Internet. Google Docs [48] is an example of SaaS.

PaaS refers to products that are used to deploy applications. PaaS offers users a

way to access applications provided by platform providers themselves or third party

providers. Google AppEngine [49] is an example of PaaS. IaaS is the essence of cloud

computing. It is the base for both SaaS and PaaS. Infrastructure providers provide

the physical storage space and processing capabilities in the cloud. This category

3There is some confusion about cloud computing, grid computing, and utility computing.
Generally speaking, grid computing focuses on how a group of computers cooperate to finish a
huge task; utility computing focuses on packaging computer resources as a metered service.

21



includes cloud storage, managed hosting, and development environment that allow

users to build applications. Amazon’s EC2 [50] is an example of IaaS.

In short, cloud computing provides users a cheaper and easier way to manage their

applications than using the traditional model. Due to the large amount of resources

in the cloud, cloud computing can be potentially optimized to boost the execution

of applications and thus is more efficient than the traditional model. However,

the overall performance of cloud computing depends not only on the efficiency of

the computing part, but also relies on the efficiency of the networking part. In

other words, if the Internet does not provide fast, reliable, Quality-of-Service (QoS)

guaranteed delivery, the overall performance of cloud computing will be reduced.

Moreover, it is the users’ responsibility to configure the resources in the cloud to

build any new services, which is a hard task that is typically left to experts. Big

companies will only build new services with mass appeal.

2.1.6 Deploying Cloud Services

Cloud computing makes it easier and cheaper for service providers to provision

computing resources and to flexibly extend resources on the fly. Virtual appliances

make it easy to configure software stacks on a single node. However, it is still a

challenging and time-consuming task when it comes to building and configuring an

entire network infrastructure which contains many nodes. Chef [51] is designed to

facilitate the creation and deployment of cloud services. In Chef, rules for configuring

each node to reach a pre-defined state are expressed in the form of a “run list”. A

node might be an application load balancer, an application server, an application

database cache, an application database, or a monitoring node. Each node of the

infrastructure is pre-loaded with a Chef-client. The Chef-client is in charge of fetching

the run list of that node from a centralized Chef-server. In addition, the Chef-client

also ensures that the run list of a node is achieved in compliance with the policy set

22



by the Chef-server. A run list is a list of “recipes” and a recipe simply states which

application (or “resource”) a node should install, what configuration a node should

have, etc. Recipes are stored in “cookbooks” to realize code re-use and modularity.

In addition, Chef also provides a “search” function so that the configuration of the

service infrastructure can adapt automatically with the addition or removal of nodes

to/from the infrastructure. As a result, to setup and configure a cloud service, the

user only needs to define policies and recipes in the Chef-server.

In some sense, Chef is trying to achieve the same goal as HyperNets: to ease

the process of building and deploying a virtualized infrastructure. However, the

HyperNet architecture is different from Chef in the following ways. First, Chef only

deals with cloud service infrastructure and thus, is more specialized. In other words,

Chef only cares about the infrastructure used within a network service (a network

service infrastructure might include multiple service load balancers, applications,

databases and database caches). How end systems reach the service infrastructure

is not Chef’s concern. The HyperNet architecture, however, can be used to create

a virtual network that covers the end-to-end communication between any two end

systems (participants) in the network. Secondly, the HyperNet architecture tries to

answer the question of “how to tailor a network to match the requirement of a specific

type of application and a specific set of participants” and thus is designed with APIs

to help a HyperNet builder achieve this. Chef, on the other hand, only provides

interfaces for one to customize the inner structure of a cloud service.

2.2 Virtual Networks

More recently, the concept of virtualization has been extended from computers to

networking devices. Emerging network testbeds allow users to reserve virtualized

network devices that act like virtual routers, and connect them together with virtual

links to form a virtual network. The GENI [23] network is probably the best example

23



of a virtual network provider that is available to users today. This section describes

some of the virtual network infrastructures available in GENI and the current tools

provided by each of them.

GENI (Global Environment for Network Innovation) is a testbed network designed

to give researchers the opportunity to experiment with new network protocols and

architectures at scale. Currently GENI includes the following control frameworks:

ProtoGENI [52], PlanetLab [20], ExoGENI (previously known as ORCA) [53] and

ORBIT [54]. Because GENI is still under development, the list of tools that users can

leverage to build their experimental network (“slice” in GENI terminology) is rather

limited. However, there are tools and services that assist with resource discovery and

allocation, tools to load software onto the nodes (“slivers”) in a slice, and tools to

help instrument and monitor an experiment. In the following, we introduce some of

the GENI control frameworks and the corresponding tools that help users managing

resources in those control frameworks.

2.2.1 ProtoGENI

ProtoGENI is one of the control frameworks that supports the GENI Aggregate

Manager (AM) API [24]. Its predecessor is Emulab [21]. Each virtual network

instance in ProtoGENI is called a “slice” and each programmable node in a slice

is called a “sliver”. A sliver may be a virtual machine or a physical machine.

ProtoGENI uses an XML file called a “RSpec (Resource Specification)” file to

request resources, describe the topology, and configure (programmable) routers. By

using ProtoGENI API calls, users upload their RSpec files to ProtoGENI, which

in turn allocates, sets up, and deploys the virtual networks specified in the RSpec

file. Currently ProtoGENI provides API calls to: (1) discover available resources;

(2) query information about resources; (3) create/delete/update/renew a sliver; (4)

register/unregister/shutdown/renew a slice; and (5) check the status of a sliver/slice.

24



Network resources in ProtoGENI are grouped into aggregates spread across locations

in the United States.

Flack [55] is a web-based GUI originally designed to create slices in Proto-

GENI [52]. Flack has since been extended to interoperate with other types of

aggregates including PlanetLab, ORCA and Openflow [56]. Flack’s interoperability is

due in large part to its support for the GENI Aggregate Manager (AM) API [24] which

allows interoperability across different types of GENI aggregates. Flack provides a

listing of all the resources available at the various aggregates. Using Flack, users

can “drag” resources onto a canvas, linking them together to form the topology for

their experimental network (slice). The output of Flack is an RSpec describing the

topology. The RSpec can then be given to the aggregate managers who will reserve,

allocate, and then initialize the requested resources. Flack provides users with control

over the type of operating system used on nodes and the types of bandwidth and delay

offered by the links that make up the topology. Flack also allows users to provide a

tar file containing software to be loaded onto the node when it is initialized.

Figure 2.6: Flack Interface

The most significant advantage of the Flack interface is that it gives the user a

25



visualized idea about where (geographically) the resources are reserved, what types

of resources are reserved (for both virtual routers and virtual links), and what the

logical topology looks like, as shown in Fig 2.6.

Although the Flack interface makes it easy for users to create virtual networks

and even load software on the nodes in a virtual network, it does not help users

determine which resources should be included in the network, nor does it help setup

or configure the network. Users still need to manually log onto each reserved node

and do node-specific configuration (e.g., change routing tables, configure software,

run node-specific commands, etc.) after the virtual network is created via Flack.

Moreover, Flack only helps to allocate and connect GENI resources together, users

must manually create channels/tunnels between non-GENI resources and the GENI

resources allocated to a slice. Since the majority of users are located on non-GENI

nodes/resources, there is a need to support a regular Internet user who wishes to

connect to and use GENI.

2.2.2 ORCA

ORCA [53] is another GENI Control Framework. It uses Flukes [57], a Java-based

GUI similar to Flack, to create, inspect, and manage experiments on ORCA. Flukes

features are similar to Flack, except that unlike Flack, Flukes uses ORCA’s native

resource description language (NDL-OWL) to manage its resources as opposed to

GENI RSpecs. Recent enhancements to ORCA have enabled it to connect RSpecs

to NDL-OWL, but at its base level, ORCA still uses NDL-OWL. By using the NDL-

OWL interface, users are able to specify things not available in RSpecs, e.g., to define

and configure node groupings, to specify functional dependencies between nodes by

configuring node boot sequences, or to specify post-boot script templates. However,

like Flack, experimenters are still responsible for much of the configuration and setup

after the resources have been allocated and become available for use.

26



2.2.3 PlanetLab

PlanetLab consists of a collection of machines hosted by members of the PlanetLab

consortium. All PlanetLab machines run a common software package that includes

a Linux-based operating system. It has mechanisms for bootstrapping nodes and

distributing software updates. Tools like the PlanetLab User Shell (plush) [58], a

command line tool, can be used to set up and deploy experiments in PlanetLab. The

PlanetLab Experiment Manager tool [59] is used to simplify the deployment, execution

and monitoring of experiments. It also supports an XML-RPC interface that allows

other experimenter tools and services to be developed. The PlanetLab Application

Manager [60] is used to help deploy, monitor and run applications on Planetlab. The

application manager manages, installs, upgrades, starts/stops, monitors and controls

an application. Gush [61] and Raven [62] are examples of tools being developed to

support experimentation in PlanetLab. The goal of Gush is to provide an extensible

execution management system for GENI. The implementation of Gush was recently

extended to also support ProtoGENI.

Two main components in the Gush architecture are the controller and the clients.

The Gush controller runs on a user’s end system and the Gush clients run on each of

the GENI nodes accepting commands from the controller. The controller receives and

responds to inputs provided by the user via a CLI and configuration scripts. Users

describe their experiment in an application specification XML document, and, based

on this document, Gush locates, contacts, and prepares resources for use. Gush users

can easily load specific software onto nodes as well as execute commands either from

the Gush CLI or from configuration scripts. Because each Gush client runs a heart-

beat protocol with the Gush controller to monitor the health of each GENI node, the

Gush system is able to quickly report a failed node and find a replacement for that

node.

Unlike the previous tools, Gush does not help to create the RSpec (i.e. to define the

27



slice or its topology), but rather assumes this has been done with some other tool. In

order for a user to leverage Gush’s software loading capabilities, the user must write a

Gush script and create the associated tar files using Gush’s XML-based configuration

language. Finally Gush, like the other tools, lacks support for connecting to and

interacting with real world users on non-GENI nodes.

Raven [62] (previously Stork [63] in Planetlab) is another tool in GENI that is

specifically designed to support long-term experiments. It provides configuration

management tools and resource management tools for long-term experiments where

both software and resources can change during the lifetime of the experiment. It

provides interfaces for administrators to enter instructions that will be applied to

each individual system. Just like Gush, Raven also provides helper tools to assist

experimenters in monitoring and managing their experiments.

Although some additional tools have begun to emerge for GENI, there is a

significant learning curve required to utilize them effectively. Moreover, the decisions

about topology and resource allocation are still very visible to the experimenter.

While the topology is important, the details of the topology often are not important

to the experimenter. For example, if a user wants to develop a new interactive

multiplayer gaming network with a centralize controller, the user will not care about

the specific nodes chosen to be part of the network. Instead, the user will simply want

to know that the topology connects the various players of the game (participants) to

a node that is centrally located relative to the participants. In other words, the user

would like to be able to select the “type of topology”, not necessarily know the details.

With the existing GENI tools, the experimenter is responsible for identifying,

selecting, and then loading, all the software needed by the network. Networks are

complex systems with multiple layers of software. In most cases, experimenters have

no desire to (re)create all these software layers. Instead they would like to leverage

existing software and services to the greatest extent possible, only modifying or

28



enhancing the layer of software that is the focus of their experiment. In other words,

they would like to select an existing software stack, and have that stack automatically

deploy as the software system for the experimental network.

Finally to get real-world participants to use an experimenter’s new network

requires support to “connect them into the slice” even though they are on machines

that are not GENI-enabled. In other words, experimenters would like the ability to

include non-GENI-enabled nodes in the topology. This typically requires some sort

of tunneling over IP to link these nodes into the GENI network.

2.3 Programmable Network Infrastructure

Beginning in the mid 90’s, a significant amount of research was directed toward

the goal of creating a network infrastructure that is programmable. Much of

the research was focused on programming abstractions, especially languages, for

expressing application-specific processing to be carried out in the network.

2.3.1 Active Networks

The existing Internet architecture pushes all functionality to end nodes and keeps

the network as simple as possible. The idea behind active networks, however, is

to let custom programs be executed within the network, on routers. The idea first

emerged in the 90’s when the computational power of network devices dramatically

increased and people realized that they can put more computational tasks into routers

and switches. Generally speaking, there are two major advantages of using active

networks: (1) they enable a wide range of new applications that leverage computation

in the network and (2) they accelerate the pace of network innovation by separating

service from the underlying infrastructure.

A capsule-based active network pushes the programmability of active networks

to an extreme: every active packet (or capsule) in the network carries programming

29



code (or instructions) that can be read and executed by intermediate forwarding

nodes which in turn change the functionality of the network. The ANTS toolkit [64],

designed by Wetherall et al., allows end users to send out capsules containing any

program the user wants. A capsule includes an ANTS-specific header immediately

following the IP header (since capsules do not want to stop non-activated nodes from

forwarding them). Besides version, type and the actual type-specific programming

code fields, the ANTS header also includes the previous address to enable an active

node to go back to the previous active hop to fetch program code. The ANTS

approach assumes there are no programs in the active nodes initially. A lightweight

code distribution system pre-transfers the programs to active nodes. The code-

distribution control plane is separated from the data plane of capsules. The type field

in the ANTS header is actually an MD5 hash of the corresponding program code.

Thus, a type identifier names an implementation, not an interface. The previous

address field enables program code delivery even when capsules (and their code) are

created on-the-fly. The combination of the above two ensures that capsules can be

carried by reference and also loaded on demand.

Many Active Network papers talk about how active nodes should be designed

and programmed. Some focus on how to make the router flexible in terms of

extending their services for active networks. Some focus on how to build an

Execution Environment (EE) that provides more security, fine-grained IO control,

and is easier for composing service. Others focus on innovative active services and

active applications that can be built in an Active network, with quite a few arguments

on whether putting active applications on top of active services is better or letting

both be executed directly on a well-designed EE is better. The research produced

a wide range of active network platforms, execution environments, active services

and active applications. To deploy an active application/service, we need to first

decide which execution environment should be used, which might in turn rely on

30



some particular active network platforms. This layered stack makes the maintenance

and configuration of active networks complicated.

Active networks have not achieved widespread adoption for a number of reasons.

First, the security concerns associated with executing arbitrary user code in the

network have discouraged ISPs from enabling programmability in their networks.

Second, running a program every time a packet arrives at a router introduces

significant performance issues. Third, it is unclear how to charge users for this feature.

Emerging virtual network infrastructure avoids or answers some of the problems

that have plagued active networks. Because slices are private and isolated, security

concerns are greatly diminished. Because slice resources are reserved/purchased,

billing can be more easily integrated.

2.3.2 NetServ

The NetServ [65] Project is a collaboration between Columbia University, Bell Labs,

Deutsche Telekom Laboratories and DoCoMo Labs Europe. The purpose of this

project is to provide an extensible architecture for core network services for the next

generation Internet. The key idea of NetServ is service modularization. By using

NetServ, the functions and resources on a network node are divided into small and

reusable building blocks. New network services can be composed and implemented

by combining the functionality of building blocks available from multiple network

nodes. To efficiently manage the building blocks (or service modules which are

composed of multiple building blocks), a virtual services framework is created as

one of the key pieces of the NetServ Architecture. The framework offers security,

portability across hardware platforms, and the ability to control resource allocation

among modules. Moreover, the framework supports adding and removing service

modules at runtime [65]. The NetServ group implemented a prototype version of

their network using a Click modular router [66] as the base router platform and

31



a Java-based dynamic module system OSGi [67] as the virtual services framework.

They showed that using Java as the execution environment can result in tolerable

processing time delays.

2.3.3 Service-Centric Networks

Service-centric networks [68, 69], proposed by Wolf et al., base the communication

abstractions of the future Internet on the processing (including transfer) of informa-

tion rather than the process of sending data. By giving the network some clues about

the semantics of the information that is to be transferred, the network can provide

more advanced services as opposed to blindly forwarding bits. In their Information

Transfer and Data Services (ITDS) architecture, (by having processing as a first-

class networking feature) an end system application can specify the information

transfer that is desired and the network can then determine the appropriate handling

of the data. A list of initial information transfer characteristics is proposed

in [68]: Streaming vs. Random Access, Point-to-Point vs. Multi-Point, Interactive

vs. “Canned”, Bandwidth-Sensitive vs. Delay-Sensitive. These characteristics can

together determine a packet flow class. Based on these characteristics, a network node

with processing power can decide to receive, store, process (modify), and transmit

the data. Before an end-to-end connection is set up, end systems communicate

with a service controller. The service controller maps communication requirements

onto multiple service nodes. When the required service is unavailable, the service

controller passes the request to neighbor service controllers. To make the whole

service more scalable, a hierarchy of service controllers may be created. However,

since the service requires that state be maintained for each flow on each service node,

there are potential scalability issues that are not addressed by the authors.

32



2.3.4 OpenFlow

OpenFlow [27] explores the power of providing a programmable control plane. It

allows a network manager to specify how flows of packets (defined by an n-tuple of

fields from a packet such as the ingress interface, source IP, destination IP, IP protocol,

source port, destination port, and IP type of service) are handled (e.g., dropped or

forwarded to a specific port) at each OpenFlow switch. The OpenFlow protocol

defines a control mechanism through which the flow classification and forwarding

tables in an OpenFlow switch can be dynamically configured by an OpenFlow

controller (a centralized management component in an OpenFlow network). Due

to its scalability constraints, OpenFlow is typically used in campus networks or

enterprise networks. Although OpenFlow eases the task of managing the network

from controlling every packet of the network in a distributed way (the Active Network

approach) to controlling network packets in units of flows on a centralized controller,

the user still needs to write OpenFlow controllers that deal with each specific flow.

2.4 Composable Network Stacks

Active networks try to control/program the network at the granularity of one packet.

This fine-grain control gives the user a lot of flexibility but at the same time, adds

a lot of complexity to the system. Composable Network Stacks try to support

composable/tailored protocol stacks. Their goal is complete flexibility in the design

of the protocol. Several of these systems attempted to automate the process of stack

composition – automatically adjusting the stack to the needs of the current application

or service.

2.4.1 X-Kernel Protocol Stacks

X-Kernel [70] focuses on layering and efficient implementation of communication

protocols. Three primitive communication objects are defined in the X-Kernel:

33



protocols, sessions, and messages. Protocol objects can be static or passive; common

examples include the protocols currently used in the IP stack. Session objects are

passive but can be generated dynamically, representing connections. Message objects

are active objects that move through the session and protocol objects in the kernel.

A set of support routines facilitate the implementation of protocols. For example, the

buffer manager routines manipulates messages. The map manager routines maintain

bindings from identifiers (such as those extracted from message headers) to kernel

objects. The event manager routines manage the timing of any procedure (e.g., so

that a protocol can timeout). Last, the X-Kernel provides infrastructure to support

communication objects. The relationship between communication objects can be

represented by a simple textual graph description language. The “relationship graph”

can be read by a composition tool which in turn generates the C code that creates

and initializes the protocols described in the graph. Each object is implemented in a

object-oriented style, i.e., each object has pointers to object-specific functions. More

specifically, the protocol object can create a session by itself (the open function), or

can pass its capability to a lower level protocol and ask it to create a session (the

open enable function), or tell its upper level protocol that it has created a session

on its behalf (open done function). In addition, the protocol object can also pass a

message to one of its sessions via the demux function. The session object can either

pass a message down to a low-level session via the push function, or pass a message

up to a high-level session via the pop function (called by the demux function). A

user-space process is also treated as a protocol in the X-Kernel protocol stack design,

i.e., the user must export those operations that a protocol or session may invoke.

2.4.2 Tau protocols

Layering has been widely acknowledged as an efficient way to make protocols

more efficient. However, it has also been identified as a performance impediment

34



because it requires that messages be processed sequentially. The Tau (Transport and

up) protocol [71, 72], proposed by Calvert et al., achieves modularity in protocol

implementations. They focus on end systems, and thus, transport layer and higher

protocols. The term protocol module is used to refer to the object that implements

the functions defined by a protocol specification. The idea includes two parts,

explicit metaheaders and generic interfaces. Explicit metaheaders is an extension

of the metaprotocol in O’Malley and Peterson’s architecture in the sense that in the

simplest case, it adds one byte in the header (of course, the metaheader could be more

complicated than one byte), indicating the total number of headers in the packet.

Since each header has fixed size, this metaheader contains sufficient information to

permit the protocol headers on a data unit to be located all at once. To isolate

protocol functions from the details of the infrastructure, a small number of generic

interfaces is created. Five classes of interfaces are defined. The Data Outgoing (DO)

interface is used whenever user data goes from one module to another on its way

down to the transmitting substrate. The Data Incoming (DI) interface is used for

user data that comes in the opposite direction. The Header Outgoing and Header

Incoming interfaces are the analogues of DO and DI for headers. The Control-Only

(CTL) interface is used to pass local control and synchronization information (such as

passing a pointer to per-session state information to another module). This separation

of control functions from data-manipulation protocol functions enables each protocol

function module (except for data-handling functions) in Tau to operate independently

and concurrently on any given message. Modules are no longer stacked unless they

needed to be. Thus, Tau achieves high execution performance, especially when the

system has multiple cores.

35



2.4.3 The SILO Project

The SILO [73, 74] Project focuses on cross-layer (or cross-service) interactions. The

design goals of SILO are (1) construct a framework of fine-grain building blocks

along with explicit support for combining elemental functions in a highly configurable

manner to achieve flexibility and extensibility; (2) use a fine-grained modularization

of networking functions to enable a scalable, unified Internet; (3) explicitly build in

the ability for functional blocks to interact with each other to facilitate cross-service

interactions; (4) treat security functions as easily pluggable components to smoothly

integrate security features; (5) offload small but computationally intensive functions

to secondary CPUs to take advantage of new performance-enhancing techniques.

“Services” are the fundamental building blocks in SILO. A service is a well-

defined atomic function performed on application data that accomplishes a specific

communication task. This fine-grained definition provides more flexibility compared

with current protocols which typically embed complex functionality. Any services

can be selected to accomplish a particular task, but the order that those services are

applied is not tied to layers; instead, it is tied to a set of more general precedence

constrains. SILO separates a service and its implementation, which the authors

call a method (so that multiple methods could be associated with one service).

A method that implements a service must implement the service-specific interfaces

(as described in the service specification), as well as any service-specific knobs. A

silo is actually an ordered subset of methods, each of which represent a different

service. In the SILO architecture, a control agent in each node is responsible

for composing such a silo. Besides composing a silo, a control agent is also in

charge of adjusting all service and method-specific knobs to facilitate cross-service

interactions. SILO also defines a minimum set of precedence constrains: Requires,

MustOccurAbove, MustOccurImmediatelyAbove, MustNotOccurImmediatelyAbove

to guide the service composition. By explicitly requiring each method to provide a

36



minimum control interface, and a minimum set of precedence constraints [74], SILO

bypasses the potential unmanageable and unmaintainable consequences caused by

cross-layer interaction.

2.5 Summary

The use of virtualization has made the development, deployment and management

of applications a lot easier than the traditional model. Developers no longer need to

worry about platforms and hence can focus on features of the applications they are

developing. Virtual Infrastructure has enabled the sharing of a network of resources

and the migration of virtual appliances among them. Currently the focus of virtual

infrastructure is on enterprise server networks and the resources it deals with are

mostly virtualized servers and storage (network is assumed to be robust and is

used as a reliable connectivity provider among servers). Although the design of a

HyperNet Package is not intended to facilitate a virtual infrastructure, the concept

of a Network Hypervisor service can also be used in building a delivery network for

virtual infrastructure.

Programmable Network Infrastructure and Composable Network Stack proposals

show previous efforts towards making a programmable Internet. They are not directly

related to the design of the HyperNet architecture but are great examples of potential

platforms for building/operating HyperNet Packages. Moreover, they also suggest

what a future programmable network device might look like or be capable of. We

are not interested in dynamic composition of protocols as used in SILO because it

is extremely challenging to compose an optimal stack on the fly. Instead, we want

experts to compose a set of stacks and include them in a HyperNet Package along

with some simple rules describing when each of the stacks should be used. Moreover,

the HyperNet Package should not only include stacks, but also applications. Thus,

the HyperNet Package is a complete package which contains both the protocol stacks

37



necessary to build a network (or network services) and the applications that will use

them.

38



Chapter 3

Virtual Network Infrastructure
Providers (VNIPs)

Before describing our HyperNet Architecture, it is important to take a moment to

understand the evolving network virtualization efforts and the roles ISPs will play

in offering virtualization services in the future. In order for HyperNet networks to

provide end-to-end support between participants, we must understand the challenges

and possibilities of the emerging virtual network providers.

We envision a future where there exist providers who offer virtual network

infrastructure for a fee (or possibly some other form of compensation — say the

right to monitor your traffic and sell that information to advertisers). We call

these providers Virtual Network Infrastructure Providers (VNIPs). Because network

virtualization is still a relatively young technology, there is not much standardization

across the various virtualization systems. While we fully expect that some type of

standardization will occur over time – the GENI Aggregate Manager API [24] being

a prime example of such an effort – we do not expect that all network virtualization

infrastructure will look the same, offer the same set of services, have the same API, or

operate under the same set of policies. Thus, we expect that each VNIP will offer a

different set of services and have a different API for accessing those services. However,

in order to create end-to-end networks, it must be possible for a HyperNet Package

to reserve and use resources from heterogeneous VNIPs. Consequently, we need to

39



make some basic assumptions of all VNIPs. We will discuss our required common set

of services in the later part of this chapter.

We envision two types of VNIPs. The first type of VNIP is a Hardware

Infrastructure Provider (HIP) who owns and operates physical network hardware

(routers, switches, PCs acting as routers, wired and wireless channels, etc) that can

be virtualized and assigned to different virtual networks.

Regional

HIPs

HIPs
Backbone

IRs

HIP: Hardware Infrastructure Provider

Sliver

IR:

Programmable Router

Infrastructure Reseller

Figure 3.1: Types of virtual network infrastructure providers: HIPs and IRs

The second type of VNIP is an Infrastructure Reseller (IR) who does not own

the hardware, but rather purchases the virtual network resources from hardware

infrastructure providers (HIPs) and then resells them. Just as a travel agent does not

own airplanes but resells flights from various airlines to create a complete flight for a

customer, IRs can compose and resell HIP resources in more appealing/useful ways.

Fig. 3.1 illustrates the two types of VNIPs: HIPs and IRs. A “sliver” in the graph is

simple a virtual node (along with the resources) reserved out from a physical node.

To abstract the types of devices for use by a HyperNet network, we define four

types of virtualized resources that a hardware infrastructure provider can make

available for use:

40



• Programmable Routers (PRs) can be programmed via one of several standard-

ized interfaces1. PRs may be virtual or physical routers, but are reserved for

use by the HyperNet network. Here “Programmable” means the authorized end

users (or the HyperNet Package that acts on their behalf) can load any program

on the PR and run it. This gives the HyperNet Package complete control over

the processing of packets that pass through the PR. Many of the current VNIPs

(e.g., GENI, PlanetLab, Emulab) provide such programmable routers (typically

in the form of a Linux PC).

• Way Points (WPs) are non-programmable routers that a user can only tunnel

packets through en route to a PR or end system. An example of a way point

could be an OpenFlow switch whose forwarding table can be tweaked by the

HyperNet Package to forward (tunnel) network packets to some next hop. Just

like a programmable router (PR), a Way Point may be virtual or physical,

but they are exclusively reserved for use by the virtual network created by the

HyperNet Package. Unlike a PR, a way point only allows the HyperNet Package

to configure the routing table (or forwarding table) in the way point. A way

point is not “programmable” by the end user. If we consider programmable

routers as a way of controlling how each packet in the network is processed, then

the way points can be seen as a light-weight way of controlling how network

packets (typically in units of flows) are routed. Compared with programmable

routers, Way Points provide a light weight way of defining paths – which is

often all that is needed.

• Programmable Servers (PSs) are virtualized resources offered by the VNIP

that provide computation and storage at locations inside the network. Pro-

grammable servers typically have huge amounts of disk space and high

1For now we assume that a programmable router provides a Unix-like user interface, and if
granted, users have superuser access to install or run any program on it. Other interfaces may also
be supported in our future HyperNet implementations.

41



processing power, and are capable of dealing with service requests and sending

back results. The platform provided by a Programmable Server can vary, from

an OS-level abstraction to an application-as-a-service abstraction. For example,

the platform might provide a content management service interface, or a web

hosting service interface, or possibly a bare virtual machine on which users can

install a customized operating system.

• Links. Links may be physical cables, fibers or wireless channels that “physically”

connect resources together, or they may be virtual channels. VNIPs allow links

to be allocated and set up for the HyperNet Package to connect resources owned

by the VNIP. VNIPs must also support links that connect to other VNIPs. Note

that some VNIPs will own hardware that is not directly connected. For example,

PlanetLab consists of hardware nodes spread across the world and interconnects

its infrastructure using “links” that traverse the existing TCP/IP Internet (i.e.,

IP tunnels). In this case the VNIP is using conventional IP routers as resources

in the topology, but we assume these are completely hidden/unobservable by

the user of the VNIP (i.e., the HyperNet Package). Examples of such links

would be GRE (Generic Routing Encapsulation) tunnels. While it is unlikely

that there exists a physical channel from every virtualized router to every other

virtualized router, it is possible (in fact likely) that a VNIP (HIP or IR) would

offer full N × N connectivity between virtual routers via virtual channels,

thereby significantly increasing the number of potential paths and indirectly

complicating the HyperNet Package’s task of selecting a optimal topology for

the virtual network. Also, note that, although physical links based on IP have

no ability to offer QoS, virtual channels between virtual routers may be able

to offer QoS guarantees, which need to be reserved during the network creation

phase.

Much like the current Internet, we envision several tiers of hardware infrastructure

42



providers, some offering long-haul backbone virtualized network resources, others

offering regional resources, and still others offering local virtualized resources.

Creating a virtual network will generally involve obtaining and linking together

resources from several of these infrastructure providers.

3.1 Assumptions about VNIPs

In order for HyperNet Packages to be able to communicate with and reserve resources

from VNIPs, we need to make some basic assumptions about VNIPs and the APIs

they provide. These assumptions are not critical and could be relaxed or modified if

VNIPs were to change or converge to a standard in the future. Given that current

VNIPs are connected to the existing TCP/IP Internet, we assume that the Internet

Protocol (IP) is supported by all VNIPs and can be used to identify and access the

(virtual) resources offered by VNIPs, including physical nodes, end systems, PRs and

WPs. In other words, in our architecture, IP is guaranteed to be available for users,

VNIPs and hypervisor servers to communicate with each other. However, assuming

IP does not imply the software that will be loaded onto the virtual nodes has to use

IP protocols. For the HyperNet Package, we only use IP as the control channel to

identify and communicate with the resources (i.e., to deliver HyperNet Packages and

software Images, and to control HyperNet virtual networks). The actual data channel

can use HyperNet-specific protocols.

To help HyperNet Packages discover appropriate resource to include in the virtual

network, we assume that a VNIP knows:

• Location Information about the resources. This location information can be

represented by an IP address or a geographical location or even a covered area

(e.g., a zip code or a city/building name).

43



• Static information about its resources, such as the resource type (virtual/phys-

ical router, virtual/physical PC, etc) and resource capability (total amount of

CPU/memory/disk, link capacity, etc).

• Dynamic information about its resources, such as current available bandwidth,

current delay/loss rate of a physical link. That information can be monitored by

substrate resources and kept in a local repository [75]. The VNIP may further

summarize the information into long term average statistics and store them in

a centralized database.

It is not critical that this information be real time, but the more accurate it is,

the better HyperNet Packages will be at selecting good resources to use.

• Physical topology information about its resources. Knowing the physical

topology can help a HyperNet Package allocate the most appropriate resources

and can avoid issues of placing multiple virtual resources on the same physical

resource. The physical topology can be queried by the HyperNet Package but

the VNIP may apply its own policy regarding how much information to give

back to customers.

3.2 Basic VNIP Services

We assume that there are a set of basic functionalities that all VNIPs provide,

including:

• API calls to reserve and free resources.

• API calls to connect the reserved resources together to form a virtual network.

In our design, a VNIP provides two API calls to reserve virtual links:

Tunnel createTunnel(Node a, Node b);

Tunnel createTunnel(Node a, Node b, NodeSet tunnel points);

44



The createTunnel() call returns a tunnel connecting Node a and Node b. If no

tunnel points are provided, it is up to the underlying VNIP to decide how to

connect the two nodes. Alternatively, user can specify the intermediate hops of

a tunnel by defining the tunnel points between Node a and b. There can be two

types of tunnels returned: a base tunnel and a composite tunnel.

– Base Tunnel : A base tunnel is a tunnel that appears to be a direct

connection, with no information about intermediate hops. There are three

types of base tunnels: (1) a physical link direct connecting two neighboring

nodes. (2) an overlay tunnel (e.g., GRE tunnel) that travels through the

Internet, connecting two programmable nodes. (3) a tunnel that travels

through multiple hops of the underlying VNIP. However, the VNIP (for

privacy reasons) does not want the user to know the two nodes are not

directly connected to one another.

– Composite Tunnel : A composite tunnel has either user-specified or user-

discoverable (in this case, the tunnel is created without specifying the

tunnel points) tunnel points within the tunnel. A user can issue further

calls to discover the tunnel points within the composite tunnel.

• API calls to discover the physical topology. This facility enables HyperNet

packages to learn what resources are available and how they are (physically)

connected.

• API calls to start, stop, and renew (the reservation) of a virtual network.

• API calls to pay for usage of the resources.

• API calls to detect errors/failures in the infrastructure.

45



VNIPs may apply different information hiding policies. For example, one VNIP

may choose to expose its full physical topology to its users while another VNIP may

only give back a partial topology upon a “discover topology” request from its user.

3.3 VNIP API

To provide the basic VNIP services described above, each VNIP may provide its

own API calls for its users to use. Although the appearance (i.e., name, parameters

and return types) of the API calls may differ from one another, in our design, we

assume that a set of common VNIP API calls can be summarized for every VNIP to

follow. In fact, the GENI community is making a big effort towards such a common

set of API calls [76]. The GENI AM API works well across several different GENI

control frameworks including Planetlab, ProtoGENI, InstaGENI and ExoGENI. Our

architecture simply leverages the GENI AM API as the VNIP API.

46



Chapter 4

HyperNet Packages

Emerging virtualization infrastructure, be it virtualized cloud resources or virtualized

network resources such as routers, switches, and links, requires a new abstraction to

efficiently program and utilize the infrastructure. In the following, we introduce a

new abstraction, called a HyperNet Package, that enables average users to effectively

use these new and emerging programmable infrastructures.

4.1 The HyperNet Abstraction

The HyperNet abstraction is inspired, in many ways, by virtual appliances [77].

A virtual appliance (section 2.1.2) encapsulates the components and configuration

of a purpose-built software system into an “appliance” that can be run on a

virtual machine (VM). The virtual appliance configuration specifies the necessary

characteristics of the VM needed to execute the virtual appliance, while the packaged

software components include everything from the operating system and networking

stacks to libraries to applications, as well as all their configurations. The result is

a single package that can easily be “run” by normal users who would otherwise not

be able (or want) to assemble such a complex system. For example, anyone who has

tried to set up a content management system (CMS) from scratch knows that it is a

tedious process and takes a great deal of expertise and knowledge. Because of virtual

appliances, bringing up and hosting a CMS today no longer requires the expertise

47



to install, configure, an initialize the appropriate OS, web servers, databases, file

systems, and CMS software. Instead, a normal user can download a fully configured

and ready-to-run content management “appliance” from a virtual appliance “store”

and simply run it in a virtual machine. All the expertise is contained in the virtual

appliance.

Because virtual appliances run on VMs, they are highly portable and can be run

on any platform that supports VMs. While this advantage is indeed a consequence

of virtualization, it is not necessarily the main contribution of virtual appliances.

Instead, one can argue that the key contribution of the virtual appliance abstraction

is its ability to bundle software and expertise into a package that can be run by

the average user who would otherwise not be able to set up such a complex system.

Unfortunately, a similar abstraction for virtualized networks does not exist. Ideally,

one would like a similar abstraction, where all that is needed to run a custom,

application-specific network is to obtain the appropriate virtual network “appliance”

(i.e., file/package) and “run” it.

Given such an abstraction, one could imagine companies or individuals putting

together a wide range of special-purpose virtual networks customized for a particular

application or application domain, or designed to support a particular set of service

requirements (QoS), network sizes, sets of participants, etc.

To illustrate the HyperNet abstraction, consider a video conferencing network,

in which a conference organizer downloads a HyperNet Package from a web site

(e.g., a “HyperNet market”, similar to Apple’s “app store” concept), and uses it to

create a virtual network specifically designed for video conferencing and tailored to the

participants of her conference. For example, the HyperNet Package might be designed

for MPEG video [78] and include code (deployed on virtual routers at strategic

locations) that gives priority to packets containing I frames over those containing

48



P and B frames1. It might be equipped with congestion marking techniques that

provide explicit feedback to endpoints so that the video transmission can be adjusted

by the end system applications [79]. Moreover, because it is designed for a specific set

of participants, the HyperNet Package can build source-specific or shared multicast

tree topologies, and then automatically deploy code in routers to implement multicast

routing and forwarding protocols. The HyperNet Package may also include code to

track the virtual network usage for each individual participant for billing purposes.

The key point is that the average user can easily “deploy” a personal, highly tailored

virtual network and begin using it right away. It no longer requires an expert to

deploy rather complicated special-purpose networks.

One can easily imagine a wide variety of HyperNet Packages, each designed for a

different purpose. Examples include: Video Net that multicasts live video streams to

its subscribers; Game Net that guarantees small delay between the game server and

each player; Content Distribution Net that picks content caches near the participants;

Home Net that prioritizes the incoming and outgoing traffic traveling though the

limited-bandwidth home gateway. Note also that a HyperNet Package needs not

provide any new or custom services. A HyperNet Package may simply implement a

regular IP network, but one that is private to (i.e., exclusive for) its users.

None of the HyperNet Package examples shown above are novel in or of themselves.

Similar ideas have been proposed in the context of active and other programmable

networks for some time. The key is not the ability to create such special-purpose

virtual networks, but rather the way those networks are created. Our goal is to

make it possible to package the expertise of network architects and designers into

self-contained HyperNet Packages so that non-expert users can easily create virtual

networks as if they were experts. HyperNet Package developers define the structure

1I frames are intra frames, which contain the information of a full picture in a video and can
be decoded independent of P and B frames. Thus, an I frame is more important in MPEG video
decoding than P and B frames which only include information about changes from other frames.

49



of the virtual network and the software to run on the virtual routers. As a result,

the average user can simply download and use a HyperNet Package without having

to know how the network is setup, configured, or operated.

4.2 Establishing Context

The first thing a virtual appliance must do is to establish the context it needs in

order to offer its services. For example, a virtual appliance that acts as firewall, or an

intrusion detection system, or a network nanny begins by specifying the characteristics

of the virtual machine (VM) on which it must be run. In particular, the appliance

will need at least two network interfaces: one facing the Internet and one facing the

local area network (LAN). A virtual appliance that offers a video game experience

needs to ensure that the VM has the necessary graphics/display capabilities needed

to offer the game.

A similar problem arises in the context of HyperNet Packages. When a HyperNet

Package is about to start up, it needs to create a topology from the available resources

which involves discovering the available resources, selecting the ones to be used,

and initializing them. It also means providing abstractions/methods by which the

participating parties can access/use the newly created virtual network. In other

words, a HyperNet Package must contain code that can create a virtual network

topology from the available resources. Once created, the HyperNet Package needs

to load application-specific software onto the resources, configure the software and

start it. The HyperNet Package must load different types of software on the nodes

depending on whether they are routers or end systems. Finally the HyperNet Package

must be able to “watch” or “monitor” the resulting network to react to any failures

or changes that need to occur (e.g., a new participant wants to join the network).

In short, a HyperNet Package is essentially a program that establishes the virtual

network and monitors it. The question is “what does this program look like?” and

50



“where does it run?”. In the following section we describe the HyperNet architecture

including the design of a HyperNet Package and the platform (Network Hypervisor)

on which it is run.

4.3 The HyperNet Architecture

... ...

config

SDN
Providers

xbox

Wii

xbox

Wii
xbox

Server

Cache

Cache

Cache

app software

config
topology specs

creation 
scripts

app software protocol
stacks

topology specs
creation 
scripts

Game Net CDN NetVideo Net

IR API

Regional HIP APILocal HIP API

Network Hypervisor

Hypervisor API

Wii

Server
Game

protocol
stacksapp software

protocol
stacks

config
topology specs

creation 
scripts

Hypervisor

HyperNet

Backbone HIP API

Figure 4.1: The HyperNet Architecture

Fig. 4.1 illustrates the HyperNet architecture. At the heart of the architecture

is the Network Hypervisor, which performs a role similar to that of a hypervisor

for virtual machines. The Network Hypervisor is the platform on which HyperNet

Packages run. The Network Hypervisor is responsible for loading and executing the

HyperNet Package. The “program” in the HyperNet Package includes the logic

needed to obtain network resources from virtual network infrastructure providers,

connect resources together to form the topology required by the HyperNet Package,

51



load the necessary software and/or configuration files on each node of the topology,

and then monitor and adapt the topology over time as network conditions change

and network participants come and go.

Below the Network Hypervisor reside the virtual network infrastructure providers

(VNIPs) described earlier, which provide the resources needed by the HyperNet

Package. The Network Hypervisor serves as a common interface to the various VNIPs,

which typically have their own particular interface/API.

Running on the Network Hypervisor are any number of HyperNet Packages, each

representing a special-purpose virtual network. Each HyperNet Package contains all

the application-specific software, configuration files, topology specification code, and

monitor code needed to create the virtual network and monitor it as it runs. HyperNet

Packages interact with the Network Hypervisor via the Network Hypervisor API. The

Network Hypervisor API attempts to hide the details of the underlying VNIPs from

the HyperNet Package, allowing the HyperNet Package to be written independent of

the specifics of any particular VNIP. In addition the Network Hypervisor monitors the

underlying VNIPs and provides “upcalls” to the HyperNet Package (akin to interrupts

in an operating system) so the HyperNet Package can adapt to changes in network

characteristics or network membership.

Once a HyperNet Package is deployed and running, participants can join or

leave the virtual network at any time. Any such membership changes are reported

to the HyperNet Package via an upcall from the Network Hypervisor. In this

sense, the Network Hypervisor serves as the rendezvous point for all virtual network

changes/modifications. All virtual network instantiation/teardown requests from the

HyperNet Packages and all participant join/leave requests are handled by the Network

Hypervisor. As a result the Network Hypervisor service must be able to scale to handle

the potentially large number of requests that it may need to service. Fortunately, the

Network Hypervisor is highly parallelizable, allowing us to use cloud-like services to

52



expand or contract the capacity of the Network Hypervisor.

Although Fig. 4.1 shows a single Network Hypervisor, the architecture allows any

number of Network Hypervisors (owned and operated by different entities) to coexist.

While all Network Hypervisors offer the same API to HyperNet Packages, they

differ in the business relationship they form. Each Network Hypervisor establishes

business relationships with the VNIPs it interacts with. It also creates business

relationships with virtual network creators and virtual network participants so it can

charge for the resources they use. Instead of the users (virtual network creators and

virtual network participants) purchasing services directly from VNIPs (which would

significantly increase the management overhead for VNIPs), the Network Hypervisor

acts as a broker between the network’s users and the VNIPs. The Network Hypervisor

purchases services in bulk or on demand from the VNIPs with which it has business

relationships. It then resells the services to its users (virtual network creators and

virtual network participants), thereby avoiding the need for the virtual network

creator and every virtual network participant to develop a business relationship with

every VNIP. Consequently, Network Hypervisors can compete by arranging different

business relationships with the same set of VNIPs. Although we expect the Network

Hypervisor to offer these type of business models and broker functionalities — the

economics and transaction processing needed to support this functionality is beyond

the scope of this thesis and is left as future work.

4.4 The HyperNet Usage Model

Consider the video conference HyperNet Package described earlier in section 1.4.

Imagine that end user A wants to have a video conference with end user B. User A

begins by downloading a video conferencing HyperNet Package from the HyperNet

market. The HyperNet Package is in the form of an executable application. User

A then executes the HyperNet Package and when prompted, enters A’s and B’s IP

53



addresses to indicate they will be participants in the video network (A and B’s IP

address could also be specified in a config file to avoid the prompts). The HyperNet

Package then creates a virtual network specifically designed for video conferencing and

tailored to the participants of this conference, in this case, end users A and B. As

described earlier, the HyperNet Package might be designed for MPEG video and will

load code onto routers that gives preference to packets containing I frames over those

containing P and B frames. It may enable router features that use congestion marking

techniques to provide explicit feedback to endpoints so that the video transmission

can be adjusted by end applications. Moreover, because it is designed for the network

connection only between A and B, the virtual network topology would be specifically

designed to satisfy certain video quality. For example, multiple source-routed paths

between A and B could be simultaneously used to increase the overall throughput.

The HyperNet Package could also include code to track the virtual network usage

for each individual participant to charge accordingly, or it may simply pass along

all resource usage to the conference organizer user A. In short, the result is a video

conferencing virtual network that is tailored to process specific codecs and is optimized

for the participants A and B.

After the video conference network is deployed, B can join the network using

information about the virtual network, including the name of the virtual network, and

any credentials that B needs in order to legitimately join (e.g., a unique participant ID

or a password). B also needs to download the corresponding HyperNet End System

package (which contains the video conferencing software) in order to send and receive

messages on the new network.

The key point here is that any user can easily “deploy” a special-purpose HyperNet

Package and start to use the tailored virtual network right away. The HyperNet

Package – being a self-contained implementation of the video network – does all the

rest. As a result, even non-expert users can deploy rather complicated special-purpose

54



networks.

4.5 HyperNet Roles

There are six roles involved in building and using a HyperNet Package. Specifically,

a HyperNet system consists of Virtual Network Infrastructure Providers (VNIPs),

Network Hypervisor Providers, HyperNet Builders, Network Creators, HyperNet

Participants, and the HyperNet Marketplace. The relationship among those roles

is illustrated in in Figure 4.2.

Negotiate/Reserve

Download HyperNet

Execute HyperNet

Network
Creator

HyperNet
ParticipantHyperNet

Builder

Upload HyperNet

Join HyperNet

VNIP VNIP ...... VNIP

Network Hypervisor
Provider

Marketplace

Figure 4.2: Relationship among Roles in a HyperNet Environment

A HyperNet Marketplace is a rendezvous point where HyperNet Builders trade

their HyperNet Packages with Network Creators and HyperNet Participants, much

the same as today’s App store concept.

The Network Creator is the entity that downloads a HyperNet Package from the

market and then runs it on the Network Hypervisor. Because all the expertise that

is needed to create a virtual network is encapsulated in the HyperNet Package, a

55



network creator can be an average user. A network creator does not need to be a

HyperNet Participant in the virtual network it is creating, but it can be if it wants

to.

A HyperNet Participant is an end system that joins and uses the virtual network.

Just like a network creator, a participant must also obtain (purchase/download) a

copy of the HyperNet Package from the HyperNet marketplace and execute it. The

only difference is that a participant only executes the end system part of a HyperNet

Package, which we call a “HyperNet End System Package”. A HyperNet End System

package helps a participant join the virtual network and it contains software needed

to communicate across the virtual network.

The HyperNet Builder is the individual or company with the expertise to

write/develop a HyperNet Package. Much like there are “IPhone app developers” for

IPhones, there will be HyperNet Builders that design and sell HyperNet Packages.

They are network experts and are well-versed with the Network Hypervisor API calls.

A HyperNet Package contains two parts: the HyperNet router part and the HyperNet

end system part. The HyperNet router part2 is downloaded and run by the Network

Creator to create the virtual network and initialize the routers that comprise the

network. The HyperNet end system part (that we call a HyperNet End System

package) is downloaded and run by a HyperNet participant in order to join and make

use of the virtual network. HyperNet Builders upload their HyperNet packages to the

HyperNet Marketplace where those packages can be downloaded by Network Creators

and HyperNet Participants.

The bottom layer of the system are the Virtual Network Infrastructure Providers

(VNIPs), which provide the (virtual) resources that will be used to construct the

virtual network. The Network Hypervisor is the entity that executes HyperNet

Packages and creates the virtual networks. We expect Network Hypervisors to be

2In the rest of the thesis, if not specifically specified, a HyperNet Package means the router part
of the HyperNet Package.

56



offered as a service by one or more Network Hypervisor Providers (NHPs). Although

the architecture allows multiple Hypervisor providers to coexist, all Hypervisors must

support the same Network Hypervisor API. NHPs can still differ from each other by

establishing different business relationships with different VNIPs.

Gregor et, al. [80] proposed similar ideas for a “virtual network world”, but they

assumed that ISPs, rather than average users would create and operate the virtual

networks. In particular, the authors defined the following business roles: Physical

Infrastructure Provider (PIP), Virtual Network Provider (VNP), Virtual Network

Operator (VNO), and Service Provider (SP). The PIP owns and manages the physical

infrastructure (the substrate) and provides raw bit and processing services which

support network virtualization. VNPs are responsible for assembling virtual resources

from one or multiple PIPs into a virtual topology. The VNO is responsible for the

installation and operation of a VNet over the virtual topology provided by the VNP,

and thus provides the tailored connectivity service needed by the SP. The SP is an

expert that uses the virtual network as the basis to offer a new network service. This

can be a value-added service and then the SP acts as a application service provider, or

a transport service with the SP acting as a network service provider. Carapinha et al

define similar business roles in their network virtualization model. These papers try

to emphasize why and how network virtualization can stimulate network innovation,

which directly leads to the business roles necessary in their model. In our design,

however, we go one step further: by separating a network service from its provider,

we make it possible for anyone to create a specialized network. More precisely, the

HyperNet architecture allow us to separate the provider of a network service (i.e., a

HyperNet Builder) from the creator of that network service (i.e., a Virtual Network

Creator). As a result, even a non-professional user can create and run a new network

service. This design creates a potentially huge market for both HyperNet Builders

and Network Creators (look at the success of Apple’s App store) and also opens the

57



gate for network innovation — especially for small networks since network creators

no longer need to be large service providers who normally offer long-term network

services for potentially huge number of users all over the world. Instead, individual

network creators can create small networks (both in terms of scale and duration)

which last a short period of time and are only for personal use, e.g., a QoS-enhanced

video conference network or a low-delay gaming network.

58



Chapter 5

The Network Hypervisor

The Network Hypervisor provides a unified platform on which HyperNet Packages can

“run” to create application or service-specific virtual networks using the resources of

the underlying VNIPs. The Network Hypervisor’s role is to provide API calls that

make it easy for HyperNet Builders to create the desired virtual network topologies.

In this chapter, we explore the operations (API calls) that a Network Hypervisor

should support to help HyperNet Builders create HyperNet Packages.

We begin by describing the steps needed to build a HyperNet Package. We then

discuss the problem of discovering and reserving the VNIP resources needed to build

the HyperNet Package. Having identified the tasks a Network Hypervisor needs to

do, we present a set of Network Hypervisor API calls that achieve those goals.

5.1 Building a Virtual Network

Creating an application or service-specific virtual network involves a series of steps

that the HyperNet Builder wants to control (via calls to the Network Hypervisor).

Table 5.1 briefly shows the necessary steps involved in building a virtual network. In

the following sections we describe each of the steps, the issues that make each step

different, and some possible solutions for implementing each step.

59



Table 5.1: Steps needed to Build a Virtual Network

Step Title Description
1 Identify participants Specify which participants should be part of

the HyperNet network.
2 Identify attachment points Find the best attachment point for each par-

ticipant to connect to the HyperNet network.
3 Define the topology Find the best way to connect attachment

points to form a topology for the HyperNet
network.

4 Load software on nodes Load HyperNet-specific software stacks, con-
figuration files, and runtime scripts onto
specified programmable nodes in the Hyper-
Net network.

5 Deploy and start the network Reserve the corresponding programmable
nodes and virtual links from the VNIPs and
deploy the HyperNet network.

6 Monitor the network Monitor the usage of the network so as to
detect changes and failures, send feedbacks,
and charge users.

5.1.1 Step 1: Specify Participants

The purpose of this step is to specify which participants should be part of the

HyperNet network. This step may require each participant to send a “join request”

message to the hypervisor. This “join” message will allow the hypervisor to verify

the participant’s identify and record the participant’s location information, so that it

is later possible for the hypervisor to map this participant to candidate “attachment

points” (see Section 5.1.2) that are close to it.

To support this step, the Network Hypervisor needs to offer an interface for

participants to join a virtual network (so as to record information such as IP address,

end system type, connection type, or platform). It should also be secure enough so

that it is hard for a malicious user to illegitimately join the HyperNet network.

To add participants to the virtual network, we designed a join() API function call

to help a HyperNet Builder to implement the “end system” part of a HyperNet

60



package, which is used by a HyperNet Participant to join a HyperNet Network.

The HyperNet Participant sends a join request to the Network Hypervisor via this

API call. Each join request contains a participant ID which is predefined by the

Network Creator from a large address space (large enough so that it is hard to forge).

The Network Creator gives the participant ID list to the Network Hypervisor and

also tells each participant its own participant ID (via offline communication, e.g.,

email). This participant ID is a per-participant secret that is only known by the

participant and the Network Hypervisor. All the Network Hypervisor needs to do

is to match the participant ID from a join request with the list from the Network

Creator. Alternatively, the Network Creator could simply define one single secret

that is going to be used by all participants. The Network Hypervisor’s job is then to

match the secret in the join request to make sure the joining participant is approved

to join. The Network Hypervisor then forwards the information about the participant

to the HyperNet Package and lets the HyperNet Package decide how to deal with the

participant (e.g., assigning a HyperNet-specific address, a nearby attachment point

router, or choosing a tunneling technique to use).

5.1.2 Step 2: Identify Attachment Points

A HyperNet Participant’s Attachment Point is a programmable node from the VNIP’s

resource pool. The Attachment Point serves as the entry point for the participant to

communicate with a virtual network. Attachment Points are chosen to provide the

best possible “entrance” for a participant to communicate with a HyperNet virtual

network. Thus, a programmable router that is closest to the participant should be

chosen as the attachment point to bring the virtual network as close as possible to

the participant.

To find attachment points near each participant, the Network Hypervisor will

need a component or service that has the ability to identify the network locations of

61



participants relative to a VNIP’s PR resources (i.e., it must find the network distance

between a participant and potential attachment point candidates). Moreover, the

service must be scalable enough to handle large numbers of participants scattered all

over the world.

Similar problems have been studied in the past, but in a slightly different context.

For example, in today’s Content Distribution Networks (CDNs), the content providers

want to find the best content caches to serve subscribers. The content caches should be

both close enough to the content subscribers to reduce network latency and powerful

enough to quickly satisfy requests from subscribers. The solution used by many CDNs

is to play Domain Name System (DNS) tricks. Upon receiving a DNS request for a

web page, the local DNS server redirects the request to a CDN mapping server (the IP

address of the CDN mapping server is pre-configured into the local DNS server by the

CDN provider). Knowing information about the location of local DNS servers, the

CDN mapping server can approximate an end-user’s network location by assuming

the user is near the DNS server from which the request arrived. The CDN mapping

server then chooses a nearby available caching server that is capable of responding to

the request. Thus, a CDN network provider is able to choose the best content caches

for its customers.

Our Network Hypervisor implementation could take a similar approach to solve

this problem in the context of the Network Hypervisor. In this case, the Network

Hypervisor would first need to find the local DNS server for the participant (via

DNS reverse lookup using the participant’s IP address). Knowing the participant’s

local DNS server, the hypervisor could then choose the programmable router that is

closest to the local DNS server as the “entry point” for the participant. The problem

is that the Network Hypervisor needs to maintain a mapping from local DNS servers

to nearby programmable nodes. However, creating such a mapping requires network

location information about both programmable nodes and DNS servers (and, like the

62



CDN solution, this solution relies on cooperation with the DNS system).

An alternative way is for the Network Hypervisor to delegate this mapping task

to the corresponding underlying VNIPs. In this way, the Network Hypervisor would

pass the request on to the VNIPs and let the VNIPs determine whether they have

programmable routers that are near the participant. Because two VNIPs may both be

close to a particular participant, the (estimated) distance from the participant to the

nearest programmable router must also be provided to help the hypervisor select the

appropriate programmable router. Yet another alternative is to create a third-party

service that is responsible for learning the location of VNIP resources and being able

to find resources near participants. For our prototype implementation we took this

approach, implementing a third party service which we describe in Section 6.2.

5.1.3 Step 3: Define the Topology

Given the list of VNIP resources, the HyperNet Builder must create an appropriate

virtual network topology. Determining the best way to interconnect the VNIP

resources is a significant challenge. The topology of the virtual network should be

designed based on the available resources, the functionality of the virtual network,

and the participating end systems.

Section 5.2 examines this problem of resource discovery and topology specification

in detail. We developed a set of Network Hypervisor APIs for a HyperNet Builder to

use to explore the underlying VNIPs’ physical topology, as well as to accomplish tasks

such as finding the shortest path between PRs, and finding a central point among

a set of PRs. In addition, we also built a HyperNet Topology Library to make it

easy for a HyperNet Builder to build a topology of a certain shape, e.g., a shared

tree, a source-specific tree, a ring, a star, or a mesh network. The list of API calls in

the HyperNet Topology Library can be extended by HyperNet Builders to add more

functionality to explore the underlying topology in the future. In short, the basic

63



set of Network Hypervisor APIs we provide (described in Section 5.3) is fine-grained

enough for a HyperNet Builder to create a topology of any shape.

5.1.4 Step 4: Load Software on Nodes

After the topology of a virtual network is defined, the HyperNet Builder needs

to load specific software packages, configuration files, and libraries onto specific

programmable nodes in the topology. A mechanism needs to be designed to load

application-specific code onto VNIP nodes and on participants’ end systems.

We assume that the HyperNet Builder, as an experienced programmer, knows

which network code (including the protocol stacks, application-specific code and any

services that runs on a VNIP node) should be used in which circumstances. For

example, in the case of a High-Definition video broadcasting HyperNet network, when

a participant with a small screen cell phone connects to the virtual network via a

wireless link, a special appliance should be loaded on the attachment point PR which

connects to the participant to deal with video compression and high loss rate. As a

result, the HyperNet Package (designed by the HyperNet Builder) should be able to

load any pre-defined and pre-configured software packages (e.g., virtual appliances)

onto any reserved programmable node. We developed an API call “loadApp()” (a

more detailed description will be given in Section 5.3) for a HyperNet Builder to load

and execute any application (e.g., code, scripts, and configurations) onto any reserved

programmable nodes.

HyperNet Participants do not use “loadApp()” to load appliances. Instead, we

ask a HyperNet Participant to download and use a HyperNet End System package,

which includes all the software necessary for a participant to join and use a HyperNet

virtual network.

64



5.1.5 Step 5: Deploy and Start the Virtual Network

This step involves reserving the specified VNIP resources and setting up virtual links

among them. Once the virtual network has been defined (say via the RSpec in GENI),

it simply needs to be specified to the VNIP to be deployed. If the virtual network

includes programmable nodes in multiple VNIPs, then the network specification

(i.e., an RSpec file in GENI) needs to be provided to all involved VNIPs. The

programmable nodes needed to create inter-VNIP virtual links must also be identified

in the network specification so that special virtual links (e.g., a GRE tunnel) could

be created connecting programmable nodes in different VNIPs.

5.1.6 Step 6: Monitor the HyperNet network

HyperNet Monitoring is necessary to (1) detect and react to changes in participants,

(2) give feedback to the Network Creators so that the Network Creators are aware

of the resource utilization, node health, and participant status1, (3) catch errors

happening in the virtual network so that proper actions can be taken in time and (4)

keep a record of the resources used for billing purposes. Since network monitoring

is out of the scope of this thesis, we omit the analysis of the challenges in this step.

However, we can imagine that with the help of network monitoring, the Network

Hypervisor will be able to not only find the best paths/topology based on static

information (e.g., number of hops), but also based on real-time dynamic information

(e.g., live traffic graphs). Today, network monitoring is already happening in ISPs [81].

We expect future VNIPs will also maintain their own monitoring infrastructure and

report that information to the Network Hypervisor.

1Feedback is also useful to HyperNet Builders to debug the HyperNet Packages they are creating.

65



5.2 Discovering/Defining the Topology

Each HyperNet Package will only use a subset of the resources available from VNIPs.

The question is “how does a HyperNet Package discover and define/specify the set of

resources it wants to include in its virtual network?” In general, HyperNet Packages

have little desire to “see” all the possible resources a VNIP has (and VNIPs may

not want to “show” all of their resources and connections). Instead, HyperNet

Packages typically want to know as little as possible about the underlying VNIP

resources and the VNIP physical topology. Only in cases where the details make a

big difference does the HyperNet Package want to “drill down” to the details of the

VNIP’s resources/physical topology.

To accommodate multiple levels of detail, the Network Hypervisor begins by

providing the HyperNet Builder with a high-level, abstract, view of only the VNIP

resources that are immediately needed by the HyperNet Package, namely, Attachment

Points for the HyperNet Participants (the HyperNet Participant list can be pre-

defined by a Network Creator via, e.g., a configuration file, which we will describe

later). The Network Hypervisor then uses the concept of a Transparent Tunnels to

connect attachment points together. The key feature of a Transparent Tunnel is

the ability to “drill down” to see the details (i.e., the resources) used to create the

tunnel, and to modify or adjust those resources if greater control is desired. Typically,

HyperNet Packages will view the VNIP topology at any of three levels of detail, as

described in the following sections.

5.2.1 Attachment Point View

Fig. 5.1 shows a topology in which only Attachment Points in the VNIP are visible.

Under this view, the VNIP only finds and reveals the nearest PR to every participant.

We call the links connecting Attachment Points “Transparent Tunnels”. If a VNIP

controls all the PRs and WPs along a transparent tunnel along the path, then it

66



Participant Programmable Router (Attachment Point)

Transparent Tunnel over IP Transparent Tunnel within VNIP

Figure 5.1: Attachment Point View

is possible for the HyperNet Builder to provision the capacity of the transparent

tunnel. On the other hand, a Transparent Tunnel may traverse the existing Internet

(i.e., IP routers) where the VNIP has little control. Examples include GRE tunnels

between participants and their attachment points. In this case, a transparent tunnel

only provides a means of connectivity to the HyperNet Participants. VNIPs have no

control over (and often no information about) the QoS of such tunnels.

5.2.2 Key Resource View

For those HyperNet Builders who want to reserve certain types of programmable

routers/servers and/or control the network topology, the Network Hypervisor provides

a second level view of its topology and resources. Fig. 5.2 illustrates an example

network in which the HyperNet Package wants to utilize a programmable server,

centrally located between the attachment points and near a PR of its own. In this

view, the HyperNet Package asks to see resources that meet certain requirements

and then selects some subsets and maps them into the topology using Transparent

Tunnels. Again, transparent tunnels may contain hidden PRs, Way Points, and

67



Programmable Router (PR)

Transparent Tunnel over IP

Transparent Tunnel within VNIPProgrammable Server (PS)

Participant

Figure 5.2: Key Resource View

IP-based routers within them. Consequently, it is possible for multiple transparent

tunnels to traverse a single physical link. In this model, a HyperNet Builder only needs

to reserve and control a small set of strategically selected programmable routers and

servers, as well as the transparent tunnels connecting them. All the path selection

and traffic engineering tasks within the transparent tunnels are left to the VNIP.

The programming tasks for HyperNet Builders under this model are simplified since

HyperNet Builders only need to pick and program key programmable routers and

servers with application-specific network functionality. Again, the HyperNet Builder

can design the HyperNet Package such that it is required that a Network Creator

defines an initial participant list to use this HyperNet package. Thus, the HyperNet

Package can initialize the HyperNet network by picking the best attachment point

PRs and the best key PRs specifically for the pre-defined participants.

We expect that Attachment Point View and Key Resource View will be used by

most of the “entry level” HyperNet Builders.

68



5.2.3 Detailed Topology View

For those advanced HyperNet Builders who desire to choose the paths in a transparent

tunnel themselves, the Network Hypervisor offers a third view of its resources. Fig. 5.3

illustrates this Detailed Topology View. In this view, the transparent tunnels become

Participant Programmable Router (PR)

Programmable Server (PS)

Way Point
Transparent Tunnel

Figure 5.3: Infrastructure Provider’s view of its managed networks III

visible and the HyperNet Builder can discover the PRs and Way Points a transparent

tunnel contains. A transparent tunnel may actually “hide” an entire network of

PRs and Way Points, which become visible in this view. In other words, a tunnel

is not just a sequence/path of PRs and WPs but rather is an entire network. By

exploiting the “hidden” details within transparent tunnels, a HyperNet Builder is

offered greater control over the resulting virtual network. In this case, the Network

Hypervisor provides APIs to (1) expose transparent tunnels and (2) modify the set

of PRs/WPs used in a tunnel (i.e., to change the path used by a tunnel). We expect

that this model will be used mostly by advanced HyperNet Builders.

69



Not only can transparent tunnels between programmable routers and pro-

grammable servers be customized, transparent tunnels between participants and their

attachment point PRs can also be customized. Of course, this customization requires

that the network devices between the participant and its attachment point routers

be controlled by the VNIP.

5.3 The Design of a Network Hypervisor

The Network Hypervisor is a key component of the HyperNet architecture. It is

the glue that connects the HyperNet Packages with Virtual Network Infrastructure

Providers. The Network Hypervisor is responsible for executing HyperNet Package,

obtaining network resources from VNIPs, connecting resources to form the topology

required by each HyperNet Package, helping to load the necessary software and

configuration files on each node of the topology, and monitoring and adapting the

topology over time as network conditions change and HyperNet Participants come

and go. Fig. 5.4 illustrates the Network Hypervisor in relationship to HyperNet

Packages, the HyperNet Library used by HyperNet Packages, and VNIPs.

The bottom half of the Network Hypervisor contains different VNIP handlers

that the hypervisor uses to talk with different VNIPs. The top half contains a set

of Hypervisor API calls that a HyperNet Package can invoke to (1) select, customize

and reserve (programmable) nodes and links, (2) explore the physical topology and

build virtual networks of certain shapes, (3) register, deploy and tear down HyperNet

virtual networks, and (4) communicate with end systems to accomplish joining and

leaving networks, sending and receiving packets. Building on the Network Hypervisor

API calls, we implemented a set of HyperNet Library calls that offer a higher-

level programming interface to HyperNet Builders. Example library calls include

building a tree topology, loading non-standard routing protocols (e.g., multicast

70



...... ......

Hypervisor API:

Topology Lib:

VideoNet GameNet HomeNet MuticastNet

buildRPTree, buildSPTree
buildRing, buildStar
buildMesh, ......

loadRoutingProtocol
Routing Lib:

setAddress
setRoutes, ......

App Lib:
loadCMApp
loadCCApp
loadPFApp, ......

......
More Libs

updatePR
addPR
findPR

loadAPP
removePR

Topology Management:
addTunnel
updateTunel
removeTunnel
getShortestPath

findCentralNode
seeTopo, drillDown

HyperNet Management:
getConfig, registerHyperNet

buildTopo, updateTopo
tearDown

End System Management:
join, leave

checkJoin, addGW

HIP

VNIP Providers

Router Management:

HyperNet
Library

N
et

w
or

k 
H

yp
er

vi
so

r

Packages
HyperNet

Handler 1
HIP

Handler 2
HIP

Handler 3 Handler 4
HIP

Figure 5.4: Network Hypervisor API Layers

routing protocols), setting up static routing tables for a user-defined path, and loading

special-purpose networking applications onto nodes/topologies.

In the following we take a closer look at the Network Hypervisor and the API

calls it offers.

5.3.1 VNIP Handlers

A VNIP handler is the interface that the Network Hypervisor uses to talk to an

underlying VNIP. As mentioned earlier, we envision the existence of multiple VNIP

providers in the future Internet. The Network Hypervisor needs to be able to handle

the various protocols offered by each individual VNIP in order to communicate with

them.

A VNIP handler’s job includes: (1) connecting Network Hypervisor API calls into

the appropriate VNIP call (e.g., reserve/remove/update a node/link, load a file onto

a node, etc.), (2) fetching the topology/resource-availability information from the

71



VNIP so that the Network Hypervisor maintains the topology information (more on

this in chapter 6), and (3) retrieving network usage statistics and monitoring data

from the VNIP.

5.3.2 Network Hypervisor API Calls

The Network Hypervisor API calls are designed to give HyperNet Builders the

“programing” tools/environment they need to programmatically create and deploy

application-specific virtual networks. The API calls are roughly divided into

four classes: (1) Router Management, (2) Topology Management, (3) HyperNet

Management and (4) End System Management. Figure 5.4 shows the API calls

associated with each of the classes.

Router Management calls are used to find and add programmable routers into the

topology. Router Management API calls include:

node findPR(Participant p, Restriction r)

findPR finds the nearest attachment point for for participant p, satisfying

restriction r.

The Network Hypervisor first selects a small set of VNIPs that are thought

to be close to participant p. In our current Internet, a participant p can be

identified by its IP address. A VNIP can compute/keep a list of its best PRs

for every possible IP network, much like a CDN provider keeps a list of its

best caches for every DNS server. Each of the selected VNIPs then sends back

to the hypervisor its recommended attachment point, as well as the expected

network performance between the participant and the attachment point. A

lightweight probing mechanism can be used by each VNIP to generate the

performance result (e.g., ping for RTT, traceroute for number of hops, etc.).

The probe messages will be generated from each VNIP towards the participant.

The performance results will be collected by each VNIP and then reported to

72



the hypervisor. The hypervisor examines the returned probing statistics and

chooses the attachment point with the best performance (i.e., the closest PR

towards the participant). The restriction parameter r could be used to specify

the desired capacity of the attachment point, such as the CPU, memory/disk

space, and the number of available network interfaces on the attachment point.

Node addPR(Node pr)

This function reserves a programmable router pr. The data structure “Node”

allows the caller to specify the type of the programmable router (PC or VM)

and the capacities of the PR (CPU cores, memory size, disk space, etc.). If the

virtual network is not yet deployed, the instantiation of this PR is postponed

until the user calls buildTopo(). If the virtual network is already deployed, the

instantiation of this new PR is postponed until the user calls updateTopo(). This

API call will fail if the hypervisor does not think that a PR with the specified

capacity is available from the VNIP. Errors/failures might also happen at the

time of deployment when the VNIP tries to reserve the PR for the HyperNet

Package, which will result in an error message returned in the buildTopo() call

or in the updateTopo() call.

The current addPR() API call does not consider business models but we can

imagine that this function call is the primary method by which a HyperNet

virtual Network Creator pays for resources. As a result, one might consider

adding other parameters (e.g., credentials) to this function call in the future to

support various business transactions.

Node updatePR(Node pr)

This function updates the characteristics/capacity of a programmable router

pr that is already in the network. The Network Hypervisor identifies an

existing PR via the “virtual id” field of that pr. Again, the actual effect is

73



deferred until the user actually deploys or updates the network via buildTopo()

or updateTopo(). This API call will fail if the hypervisor thinks that the newly

requested characteristics are unavailable.

Node removePR(Node pr)

This function removes a programmable router pr from the network, along with

all virtual links that connect pr.

Boolean loadApp(Node pr, Application app)

This function loads an application app onto a programmable router node pr.

The app may be a self-extracting software package or a virtual appliance.

loadApp() can be used both before a virtual network is deployed and after

a virtual network is deployed. In the first case, app is simply “registered” with

the Network Hypervisor. Only after the network is deployed is the application

uploaded onto the corresponding PRs and executed. In the latter case, the

Network Hypervisor immediately uploads and executes the application on the

corresponding PR2.

The HyperNet Package might want to load additional software onto existing

programmable routers after the HyperNet network is deployed and running.

Sometimes the HyperNet Package will not know how to configure the routers

until the network is up and running and participants have joined. For

example, when a participant has joined, a new (IP) address is assigned to the

corresponding HyperNet Participant as well as the new (GRE) interface on the

chosen gateway router. In order that all other routers in the virtual network to

know how to route to the newly joined participant, proper routing table entries

need to be added (unless there is a dynamic routing protocol running in the

2We assume that the Network Hypervisor has the necessary privileges, credentials, ssh keys, etc
to copy software onto programmable nodes and execute it. Network Creators might need to provide
this information when they first create a HyperNet network, or the Network Hypervisor might use
its own credential to allocate/reserve/control resources.

74



virtual network). This configuration cannot be done when the network is first

deployed.

HyperNet Participants are responsible of finding, downloading, and executing

the corresponding HyperNet End System package to join and use the HyperNet

network. The HyperNet End System package includes all the software that is

necessary to run on the HyperNet Participants’ end systems in order to use

the HyperNet network. Hence, software that runs on end systems is not loaded

using loadApp() API call. Instead, it is included in the HyperNet End System

package, which runs on a HyperNet Participant’s end system.

API calls related to Topology Management include:

Link addTunnel(Node pr1, Node pr2, NodeSet way points, Restriction r)

This function reserves a Transparent Tunnel between two nodes pr1 and pr2

that travels through a set of specified way points or PRs, satisfying restriction

r.

This call results in all the way points specified being configured with proper

forwarding table entries (or VLAN configurations) that forward packets from

pr1 to pr2 following the node order defined in NodeSet way points. Because a

way point is a restricted form of a programmable router, the list of way points

can contain programmable routers. when this occurs, the PR will simply be

treated as if it were a WP. When way points is null, it returns a transparent

tunnel connecting pr1 and pr2 and follows the default path provided by the

underlying VNIP (typically the shortest path). Restriction specifies the capacity

of the transparent tunnel, such as its bandwidth, delay and loss rate. This

call will fail if pr1 and pr2 are not already included in the topology. If the

underlying VNIP decides that the required restriction can not be met, then an

75



error will be returned at the time of deployment (e.g., returned by buildTopo()

or updateTopo()).

Link updateTunnel(Link myTunnel)

This function updates the properties of an already reserved tunnel myTunnel.

Properties of a “Link” structure include the tunnel id defined by the two end

points of the tunnel, bandwidth, latency, and packet loss rate.

Link removeTunnel(Link myTunnel)

This function removes an existing tunnel myTunnel from the virtual network.

A tunnel will no longer be available to forward packets after being removed

from the virtual network.

Path getShortestPath(Node a, Node b)

This API call finds the path with the smallest hop count between Programmable

Routers a and b. The returned Path is an ordered list of programmable nodes.

All nodes in the returned path are Programmable Routers. The virtual links in

the returned path connecting the returned PRs are all transparent tunnels.

Node findCentralNode(NodeSet nodes)

This API call enables a HyperNet Builder to find a PR that is centrally located

in the middle of a group of PRs. The “Central Node” is defined as the

Programmable Router at the center of the given PRs. “Center” might mean

that it provides the minimum number of network hops to all given PRs, or

it might mean that it provides the minimum average RTT to all given PRs.

This function is very useful in cases where a centralized server is needed, or a

Rendezvous Point (say for a multicast tree) is needed. For example, to create a

virtual network for a real-time online first person shooter game where each of

the player wants low delay to the game server, a centralized node needs to be

chosen.

76



Graph seeTopo()

This API call gives HyperNet Builders the ability to see the entire topology

available from all VNIP providers. This call returns both the topology

information as well as the resource availability information (e.g., whether

a programmable node is already reserved; or the “weight” value of a link

indicating how congested that link is). Instead of giving partial topology

information (as in getShortestPath() and findCentralNode()), this API call

returns the entire topology available from all VNIPs. This advanced API

call gives HyperNet Builders more information about the underlying VNIP

topology, but it introduces more complexity in deciding which programmable

nodes to reserve and which tunnels to create. This API call needs support from

the underlying VNIP and the underlying VNIPs can control/limit what gets

returned (VNIPs may decide to hide part of their physical networks from the

user for security reasons, much like ISPs do today).

PathSet drillDown(Link myTunnel)

This function explores path choices within the transparent tunnel myTunnel.

Each returned path contains a number of way points (or PRs) contained in the

transparent tunnel. This is the main function for a HyperNet Builder to “drill

down” a transparent tunnel to explore the potential path choices. Depending on

the VNIP’s policy, it may not reveal all the path choices to the user. Moreover,

if myTunnel only contains a directly connected physical link or it traverses

through a set of IP routers over which the VNIP has no control, this API call

returns null.

The previous calls dealt with the definition of the topology and allocation of

resources within a HyperNet. The following API calls deal with the management of

HyperNets such as registering a HyperNet with the Network Hypervisor:

77



Config getConfig(String configFile)

This API call is used by a HyperNet Package to read the content from a

HyperNet configuration file and return the configuration. Argument configF ile

is the path to the HyperNet configuration file. A HyperNet configuration file

is the mechanism by which a Network Creator specifies features of the network

to be created. It includes information related to the HyperNet network, such

as the name of the HyperNet network, necessary credentials/secrets, and a

pre-defined participant list. A HyperNet configuration file is filled solely by

a Network Creator (A configuration file template is typically provided within

a HyperNet Package to facilitate a Network Creator to accomplish this task).

However, the HyperNet Builder, being the designer of the HyperNet Package,

defines the syntax and semantics of the configuration file.

APIMessage registerHyperNet(Config myConfig)

This API call registers a HyperNet network using the configuration specified in

myConfig. As a result, multiple Network Creators can download and execute

the same HyperNet Package, provide different configuration files while executing

the HyperNet Package to create different HyperNet networks. Thus, different

HyperNet networks (with different names specified in the configuration file) will

be registered using this API call. If a HyperNet network with the same name

is already registered in the Network Hypervisor, then this call will fail and

return an error message. Upon successful registration, the Network Hypervisor

checks the credentials contained inmyConfig and then registers/saves the other

configuration information from myConfig such as the participant list and “join

secret”3.

APIMessage buildTopo(String HyperNetName)

3A secret is set by a network creator who does not know the identities of its HyperNet participant,
but wants its HyperNet network to be accessible by only those who know the secret

78



This function deploys the virtual network associated with HyperNetName.

The HyperNetName is defined by the Network Creator in the configuration

file. The API call reads the virtual network description file (e.g., the RSpec

file in protoGENI) generated by the Network Hypervisor using the previously

described API calls and then deploys the virtual network using the VNIP API.

If the underlying VNIPs are not able to fulfill the deployment task (e.g., there

is not enough resources or some internal error occurred), this API call will fail

and return the detailed error message to the caller.

APIMessage tearDown(String HyperNetName)

This API call tears down a virtual network. It clears all the state information

related to the virtual network in both the Network Hypervisor and all the

programmable nodes reserved from the underlying VNIP. All resources including

PRs, WPs and any virtual links reserved are released and marked “available”

in the VNIP’s resource pool.

The previous calls dealt with managing and defining a HyperNet network. Those

API calls are called from the network part of a HyperNet Package. The following

API calls deal with the management of a HyperNet End System, and thus are called

from the end system part of a HyperNet Package:

TunnelInfo join(String HyperNetName, Credential credential, Info myInfo)

This API call is used by a potential HyperNet Participant to join an existing

HyperNet network. The HyperNet Participant uses this API call via a HyperNet

package running on the participant’s end system. In particular, every HyperNet

Package contains a section of code designed to run on participant machines. We

call this the End System Package, and participants obtain the End System Pack-

age by download the HyperNet Package and extracting the End System Package.

79



This API call sends out a HyperNet join request to the Network Hypervisor and

waits for a “TunnelInfo” structure to be returned (TunnelInfo will be returned

by the Network Hypervisor upon receiving a corresponding “addGW()” API

call described later). TunnelInfo includes information necessary for the end

system to set up a tunnel with its assigned attachment point router. The join

request message includes: the HyperNetName of the HyperNet network, the

(optional) credential of the joiner, and (optionally) the participant’s identity

information myInfo. A participant’s identity information uniquely identifies a

participant within a HyperNet network. An example could be a participantID

assigned by the Network Creator. The participant information can further

include such things as the participant’s IP address, or the participant’s end

system connection type (wired or wireless). The hypervisor, upon receiving

a legitimate join request (via the checkJoin() API call described later), in

turn assigns a HyperNet-specific address to this participant and creates a

tunnel between the participant and the assigned attachment point router. The

hypervisor also informs the HyperNet Participant about its assigned HyperNet-

specific address and the HyperNet attachment point router so the participant

can update its routing table, setting the assigned attachment point router as

the default gateway for all packets destined to the HyperNet virtual network.

JoinRequest checkJoin(String HyperNetName)

This API call is called by the “join request handling code” in the HyperNet

Package to handle “join” requests. It waits for join requests made to HyperNet

network whose name is HyperNetName. Upon receiving a new join request,

this API call returns a “JoinRequest” data structure to the caller. The

hypervisor essentially “wakes up” the “join request handling code” in the

HyperNet Package.

80



Boolean addGW (String HyperNetName, TunnelInfo tunnelInfo)

This API call is used by the “join request handling code” to assign an

attachment point and instruct both the attachment point PR and the joining

participant to establish a tunnel between themselves. The “TunnelInfo” data

structure includes the information about a joiner (identified by its IP address or

participantID), the assigned attachment point for the joiner, and the assigned

HyperNet-specific address for the requester. The HyperNet Package’s “join

request handling code” is in charge of creating the TunnelInfo. Upon receiving

an addGW() API call, the hypervisor will “wake up” a waiting JoinRequest by

matching the information in the TunnelInfo with the JoinRequest, and returning

the TunnelInfo to the corresponding join() API call.

Boolean leave(ID HyperNetName)

This API call is used by an end system to leave a HyperNet network.

Upon receiving a leave request, the Network Hypervisor clears the state

information related to the participant from both the Network Hypervisor and

the participant’s corresponding attachment point PR.

5.3.3 The HyperNet Library

In addition to providing a basic set of API calls to achieve basic node-level and link-

level tasks, our HyperNet architecture also provides a HyperNet Library which offers

advanced topology-level and system-wide functionality that helps HyperNet Builders

develop their HyperNet Packages. All HyperNet Library functions are implemented

using the existing Network Hypervisor API calls or other HyperNet Library API

calls. For example, the buildRing() Library call (which helps build a Ring topology)

makes use of the findPR(), addPR() and addTunnel() Network Hypervisor API calls

to achieve its functionality. The obvious advantage of the HyperNet Library calls

is that they make the HyperNet Builder’s task of composing a HyperNet Package

81



a lot easier. The Library does not sit inside the Network Hypervisor but rather

is dynamically “linked” with the HyperNet Package. As a result, any third party

developer (instead of the Network Hypervisor service provider) can contribute to

make the HyperNet Library more useful. Of course, the Network Hypervisor provider

can also add more HyperNet Library calls at any time to make it more capable. The

current Library offers the following calls:

Topology buildRing(NodeSet nodes);

This Library call creates a topology connecting all the given nodes into a ring.

This call first uses addPR() to reserve all the PRs specified in parameter nodes.

It then reserves transparent tunnels connecting the PRs into a ring using the

addTunnel() hypervisor API call.

Topology buildStar(Node center, NodeSet nodes);

This Library call creates a star topology having the node center as the center

of the star. Each of the nodes in the given NodeSet nodes then connects to the

center with a transparent tunnel, forming a star topology.

Topology buildMesh(NodeSet nodes, int degree);

This Library call creates a mesh topology, connects all the given nodes into a

connected topology. Each node on the connected mesh network has at least

degree number of links connecting it with other nodes. If degree is higher than

the number of nodes, then this library call will create a fully connected graph,

or a “full mesh”, as described next.

Topology buildFullMesh(NodeSet nodes);

This Library call creates a complete graph (or “full mesh”) topology connecting

the given nodes.

Tree buildRPTree(NodeSet nodes);

This Library call creates a Rendezvous-Point-Based tree, with all nodes in

82



NodeSet nodes as leaves. The resulting tree is based on a rendezvous point

which is selected as the central point among the given NodeSet (via the Network

Hypervisor findCentralNode() API call). The tree is formed by the shortest

paths from the given nodes to the chosen rendezvous point.

Tree buildSPTree(NodeSet nodes, Node sender);

This Library call creates a shortest-path tree, with all nodes in NodeSet nodes

as leaves. In this case, the links of the tree are formed by all the shortest paths

from the given node sender to all nodes. When sender is given as NULL, any

node in the tree can be a sender and the tree is formed by combining all shortest

paths between any two nodes in the given NodeSet. Shortest paths are found

by using the getShortestPath() hypervisor API call.

Boolean setAddress(Node pr, Interface intf, Address address);

This Library call is an extension of the loadApp() call. It sets the address of

the interface intf on node pr. Under Linux, it is achieved using the ifconfig

program. This library call is created for a HyperNet Builder to manually

configure the IP addresses used in his HyperNet Package, in cases where a

dynamic address assigning protocol (e.g., DHCP) is not used in the HyperNet

Package.

Boolean setRoute(Node pr, Address dstAddress, Node nextHop);

This Library call is an extension of the loadApp() call. It adds a static routing

entry into the routing table of node pr. This routing entry defines the next

hop node nextHop for every packet destined to dstAddress. Under Linux, it is

achieved by the route program.

Boolean loadRoutingProtocol(Topology myTopo, Protocol myProto);

This Library call loads the specified routing protocol myProto onto each PR

of the given topology. It makes use of the loadApp() call to load pre-configured

83



protocol stacks on to each node in the topology and use those protocol stacks.

For example, to load and run a user space PIM multicast protocol, we define a

pre-configured pimd [82] routing daemon to be loaded onto each node ofmyTopo

via this API call.

Besides the set of HyperNet Library calls we introduced above (which are also

implemented in the Network Hypervisor), we can easily imagine many other HyperNet

Libraries that can be useful in composing different kinds of HyperNet Packages.

For example, an “Application Library” could help the HyperNet Builder load well-

configured applications (software stacks such as a Content-Management App, a

Congestion-Control Traffic Engineering App, or a Packet-Filtering App). Similarly

an “Instrumentation Library” could help the HyperNet Builder load monitoring

tools onto critical nodes in the topology to monitor resource utilization, networking

performance etc. An “OpenFlow Library” that only deals with OpenFlow networks

could help make it easier to, for example, create an OpenFlow controller that does

load balancing. A “Redundancy Library” could help the HyperNet Builder create

backup servers and backup paths, etc. Clearly the Library list could grow long, but

the point is, a third party developer can easily contribute to the HyperNet Library

using the existing basic Network Hypervisor APIs.

5.4 Configuring HyperNet Packages

The main contribution of our HyperNet Package abstraction is that it minimizes the

effort needed by an average user (Network Creator) to deploy and operate a personal

specialized virtual network – the Network Creator only needs to “run” the HyperNet

Package. While that is all it takes to “run” some HyperNet Packages, some other

HyperNet Packages may need to be further configured by the network creator. In

this section, we describe the possible ways in which a Network Creator can further

tailor/configure an application-specific HyperNet network.

84



Network Creators use a HyperNet configuration file to specify configuration

information about the virtual network being created. As mentioned earlier, we provide

a Network Hypervisor API call getConfig() to read the configuration file. Since virtual

networks vary from one another, we leave the design to the HyperNet Builders to

decide the package-specific parameters in the configuration file that a Network Creator

can use to control the virtual network it is creating. As a result, the HyperNet Builder

is the expert who designs the semantics of a HyperNet configuration file and the

Network Creator is the average user who “fill out” the HyperNet configuration file

subject to the semantics defined by the HyperNet Builder. Although the getConfig()

API call reads and parses the entire config file, there are only a small set of parameters

(some are mandatory, some are optional) that a HyperNet Package reads and reports

to the Network Hypervisor via the registerHyperNet() API call. The small set of

configuration parameters includes:

• HyperNetName (mandatory): The name of the HyperNet network the Network

Creator is creating.

• UserCredential (mandatory): The credential that shows one is authorized to

run the HyperNet Package and deploy the virtual network through Network

Hypervisor onto the VNIP. This field might also include payment information

(which is not discussed in this thesis), such as a credit card number.

• ParticipantsList (optional): The addresses or host names of the allowed

HyperNet Participants. The Network Hypervisor can match the addresses of

future join requests with this list to filter out unauthorized participants.

• Expandable (optional): If this parameter is set to 1, then the HyperNet Package

allows participants not listed in the ParticipantList to join.

• HypervisorServer (optional): The address (or domain name) of the specific

Network Hypervisor server that the Network Creator wants to use. We envision

85



the co-existence of multiple Network Hypervisor servers running in parallel

in the future. This option allows a Network Creator to choose a specific

Network Hypervisor to use. Alternatively, a single Network Hypervisor service

provider might use cloud resources to offer an expandable version of the Network

Hypervisor, much like the tricks played in today’s DNS systems where a single

domain name might be mapped to different IP addresses depending on where

the DNS requests came from.

The above parameters gives a HyperNet Network Creator some minimum control

over the way the network is created. In the example of a video conference HyperNet

network where the list of participants is known in advance, the HyperNet Package

only needs the Network Creator to provide a participants list and sets the Virtual

Network to be not expandable. To deploy a “Youtube-like” video sharing HyperNet

network, the HyperNet Package may not ask the Network Creator to provide any

configuration information. Instead, The HyperNet Package may be set to expandable

and allow anyone to join. In most cases, it is expected that the HyperNet Package

comes with a pre-defined configuration file such that the Network Creator needs to do

little or no additional editing of the configuration, e.g., this “configuration template”

can be in the form of an editable file in the HyperNet Package.

At the same time, our design allows the HyperNet Builders to define their own

configuration parameters for their own HyperNet Packages to offer more sophisticated

control to the users of their HyperNet Packages. In the following, we list some possible

parameters that a Network Creator can “tweak” to manipulate the virtual network.

These parameters are specific to the HyperNet Package and will not be interpreted

by the Network Hypervisor (i.e., registerHyperNet() does not send these parameters

to the Network Hypervisor). Note that since these parameters are purely designed

and defined by the HyperNet Builder, they can be anything. HyperNet Builders

can implement more functionality in their HyperNet Packages and provide more

86



parameters far beyond the following list for Network Creators to manage their virtual

networks.

• Maximum number of Gateways/Programmable nodes allowed: This parameter

allows the Network Creator to control the scale (as well as cost) of its virtual

network.

• Expand Policy: Some HyperNet networks might be designed to be expandable

in the sense that as new participants join, the HyperNet Package automatically

adds new programmable routers to the network to optimize the virtual network

topology. Expand policies define rules such as when and where in the network

a PR should be added, when should PRs merge, how many participants can

share a single gateway, etc.

• Height of the Tree: In the case of creating a multicast tree HyperNet network,

intuitively, the “higher” the created tree, the more efficient multicast will be.

For example, if the height of the tree is 1, the multicast sender will directly

connect with each receiver via a transparent tunnel. In this case, “multicast”

is the same as “multiple unicast”. On the other hand, if we discover all

programmable routers in between the sender and each receiver and create a

shortest path tree that maps each of the edges onto a physical link between two

neighboring programmable routers, the resulting tree will be much “higher” and

is much more efficient than the “multiple unicast” tree. This parameter controls

the height of the tree.

5.5 HyperNet Participants

We define three types of participants in the HyperNet architecture: (1) infrastructure

participants, (2) internet participant and (3) third-party participant.

87



An infrastructure participant is a participant that is in the Virtual Network

Infrastructure Provider’s network, i.e., is part of the VNIP infrastructure. As a result,

the underlying VNIP has some control over this type of participant in the sense that

the VNIP can “connect” the participant with any other infrastructure node managed

by the VNIP by creating a virtual (or possibly a physical) tunnel between them.

In some cases the VNIP may be able to control/configure the participant node

for an infrastructure participant (e.g., set up the routing tables). In other cases, the

HyperNet Package may still need to load code onto the infrastructure participant to

do the configuration.

An internet participant is a standard Internet end system like a home PC. It

has conventional Internet access provided by its local ISP and thus can talk to the

Network Hypervisor. Compared with infrastructure participants the only difference

is that the underlying VNIPs (and thus the Network Hypervisor) do not have control

over these participants to automatically map them into the network and configure

their routing tables. Consequently, the HyperNet Package will need to load programs

on the internet participant and the internet participant needs to voluntarily run those

programs in order to “connect” itself to a HyperNet virtual network (i.e., create a

virtual tunnel between the participant and its assigned attachment point).

A third-party participant is also a standard Internet node except that it does not

join on its own. Examples of a third-party participant include existing Internet web

sites, DNS servers, and other conventional Internet servers. HyperNet Packages might

want to “connect” these types of participants into their HyperNet network without

them knowing about it. Consider the case where one wants to redirect Youtube’s

traffic through one’s HyperNet network so that caching and/or compression can be

done in the HyperNet network to achieve better performance.

88



5.5.1 Joining a HyperNet

Different kinds of participants use different mechanisms to join a HyperNet virtual

network. More precisely, infrastructure participants and internet participants use

“Voluntary Join” to join a HyperNet network while third-party participants use

“Involuntary Join” to join a HyperNet network.

5.5.1.1 Voluntary Join

Infrastructure participants and internet participants are typically individuals behind

a PC who are willing to download a HyperNet End System package and proactively

execute that package to join a HyperNet network. For these two types of participants,

joining a HyperNet virtual network means creating a virtual tunnel between the

participant and a programmable router that is already in the HyperNet network,

and assigning a HyperNet address to the participant so that the participant can

communicate with other participants in the HyperNet network using the HyperNet-

specific addresses. To illustrate the joining process, consider the example shown in

Figure 5.5. In this example, an internet participant B wants to join a HyperNet

network created by Network Creator A. Initially (not shown in the figure), A

generates a list of participantIDs, and gives the Network Hypervisor this list (via

the registerHyperNet() API call). A then informs B via some method not specified in

the HyperNet Architecture (e.g., via an email or a phone call) about the new virtual

network (e.g., the HyperNetName) and the participantID generated for B so that

only B knows about its participantID (step 0 in the figure).

Upon receiving the message, B configures the HyperNet configuration file for the

corresponding HyperNet End System package to send a join request to the Network

Hypervisor. Just like the configuration file for a Network Creator to use to create

a HyperNet network, the configuration file for a HyperNet End System package

uses a similar format (which is also designed by the HyperNet Builder) so that the

89



Server
Hypervisor

C

Market

2.5 − Download

B

E

D

3 − send/receive

2 − Tunneling

2 − Tunneling

1 − Request
2 −

 T
unneling 1 

−
 R

eq
ue

st

A

0 − Invitation (Out−of−band)

2 − Tunneling1 − Request

Programmable Router

Network Creator Internet Participant

Infrastructure Participant

HyperNet

HyperNet

Figure 5.5: Internet Participant and Infrastructure Participant Joining a HyperNet
Network

participant can specify, e.g., the name of the HyperNet network he wants to join, his

IP address, his credential, and the hypervisor server he wants to use. The join call

takes the following form:

TunnelInfo join(HyperNetName, Credential, myInfo)

The join request includes the HyperNetName, which uniquely identifies a

HyperNet network, B’s credential which shows that B has paid to use the HyperNet

network, andB’s identity information (inmyInfo) that helps the Network Hypervisor

verify that B is authorized by the Network Creator (by checking B’s participantID),

assign B to an attachment point C, and set up a tunnel between B and C (by making

use of B’s public IP address).

Upon receiving a join request, the Hypervisor Server checks the validity of B’s

credential as well as B’s participantID in the join request. If the included credential

and participantID are valid, the Hypervisor Server then forwards the join request to

90



the HyperNet Package used by A. After receiving the join request, the HyperNet

Package first finds an attachment point C for participant B via the findPR() call. It

then generates a HyperNet-specific address for B to use to communicate within the

virtual network. Finally it sends a “tunneling” message to B containing B’s assigned

attachment point PR and B’s assigned HyperNet-specific address so that B knows

who to tunnel through to communicate with the virtual network. The “tunneling”

message may optionally include additional end system appliances that B needs to

install in order to use the specific virtual network. The HyperNet Package sends the

same message (except the appliance information) to C so that C can work with B to

successfully set up a tunnel. All communication between the HyperNet Package and

Participant B in the joining process goes through the Network Hypervisor.

Any HyperNet Packet sent to B’s HyperNet-specific address will be forwarded to

B via C. After receiving the “routing” message from the HyperNet Package, B will

also set up a local “HyperNet Routing Table” so that any packet destined to any

HyperNet-specific address will be forwarded to B’s HyperNet attachment point C.

When an infrastructure participant D also wants to join this virtual network, it

needs to go through the same process as B, except that when the Network Hypervisor

receives the “routing” message from the HyperNet Package, it does not forward it to

D and its assigned gateway router. Instead, the Hypervisor Server directly sets up a

tunnel between D and the assigned gateway. The Hypervisor Server can achieve this

by, for example, assigning the switch interface so that the infrastructure participant

is connected to the same VLAN as the assigned gateway.

5.5.1.2 Involuntary Join

Infrastructure participants and Internet participants can voluntarily join themselves

to a HyperNet network by invoking the “join()” API call. However, infrastructure

participants and Internet participants can also join third-party sites (third-party

participants) to the HyperNet network via an “involuntary join”. Involuntary joins

91



are useful when a voluntary participant (an infrastructure participant or an Internet

participant) wants to use the HyperNet network to reach a third-party participant

that would otherwise never join the HyperNet network. For example, a voluntary

participant that wants to access a commercial web site like Google, Facebook, or

YouTube is unlikely to get these web sites to join their private HyperNet network. In

such cases, the participant can invoke the Network Hypervisor’s involuntary join call

to “join” these involuntary sites (third-party participants) to their virtual network.

The involuntary join call finds the jumping off point on the virtual network that is

closest to the third-party participant, and then configures the jumping off point to act

as a proxy/NAT box forwarding packets to (and from) the third-party participant.

The third-party participant is unaware that it is using the HyperNet Package to

communicate with the voluntary participant. Finally, the involuntary join API call

configures the voluntary participant to route traffic destined for the third-party

participant via the jumping off point using the HyperNet-specific address of the

jumping off point. This can be achieved by, for example, configuring the local DNS

cache of the voluntary participant so that the third-party participant’s domain name

maps to the jumping off point’s HyperNet-specific address.

An Involuntary join request is issued via the following API call:

NatInfo joinOther(HyperNetID, Credential, myInfo, unknowingParticipant)

Parameter unknowingParticipant (a DNS name or IP address) identifies the

third-party participant which is unaware of its joining. Upon receiving a joinOther()

request, the hypervisor checks the credential and forwards the request to the HyperNet

Package. The HyperNet Package is in charge of finding a gateway router as the

jumping off point for the third-party participant, assigning it a HyperNet address,

and setting up routing table entries on all PRs between the requesting participant

and the jumping off point PR so that a packet sent from the requesting participant

with the third-party’s HyperNet address as the destination address will be forwarded

92



to the jumping off point. In addition, it must set up proper NAT (Network

Address Translation) table entries on the jumping off point, and notify the requesting

participant (either an infrastructure participant or an internet participant) about the

jumping off point. Typically, the HyperNet package will choose the programmable

router that is closest to the third-party participant among the PRs that are already

in the HyperNet virtual network as the jumping off point (see Figure 5.6). After

Server
Hypervisor

B

E

D

2 −
 N

A
T

 Info 1 
−

 R
eq

ue
st

A

2 − NAT Info
1 − Request

Programmable Router

Network Creator Internet Participant

Third−Party Participant

Internet Connection

2 − NAT Info

3 − Routing Entry HyperNet

Virtual Link

Figure 5.6: Third-Party Participant Joining a HyperNet Network

the NAT box tables are setup on the jumping off point and the routing tables are

updated on all PRs between B and E, the selected jumping off point E will intercept

all packets that are destined to D’s HyperNet address, then replace the destination

address with D’s IP address, and the source address as E’s IP address. It will then

send out the packet as a regular IP packet. The third-party participant D replies to

E with a regular IP packet, which again gets translated on E to a HyperNet Packet

with D’s HyperNet address as the source address and the requesting participant’s

HyperNet address (B’s HyperNet address) as the destination address. Third-party

participant join only works for the requesting participant (i.e., only B in this case

is aware of the HyperNet address assigned to D). Other participants need to call

93



joinOther() if they also want to communicate with D through the HyperNet virtual

network. The HyperNet package first checks whether a HyperNet-specific address

and jumping off point PR are already assigned to D and if so, only the routing tables

on all PRs between the requesting participant and the previously assigned jumping

off point PR need to be updated.

5.5.2 Participant Usage Models

Ultimately a participant must communicate over the HyperNet network it joined.

For infrastructure participants, using the HyperNet network for communication is

straightforward because the participant’s OS is fully integrated into the virtual

network (i.e., it uses HyperNet addresses and links). However, internet participants

are not fully integrated so that applications need to explicitly choose to use the

HyperNet (as opposed to the native Internet) interfaces. We envision four possible

ways to implement the end system application code on internet participant nodes.

5.5.2.1 Model 1: Specialized End System Applications

Hardware

End System Device

Overlay tunnels

Virtual Network

Regular Kernel

... ...
HyperNetHyperNet−

App
Specific

Tunnel Packets

Attachment
Point

Figure 5.7: Model 1: Specialized End System Application

94



As indicated by its name, in this model, the HyperNet end system applications are

specifically designed and built for one type of HyperNet network. The applications

that run on the end system have been built to use the HyperNet’s transparent tunnel

to tunnel into the HyperNet network. It uses HyperNet address, speaks HyperNet

protocols, etc. All the applications needed by the user must be included in the end

system part of the HyperNet Package.

As depicted in Figure 5.7, these applications run directly on a conventional kernel.

However, the communication between the special application and the attachment

point is via an application-specific IP overlay that the application must be fully aware

of. Thus, the application needs to be designed so that it supports and knows how

to talk the overlay protocol used to reach the attachment point, which also needs to

know the overlay protocol.

The major advantage of this usage model is that applications can be designed

to run in a standard OS context modulo the need to use the IP overlay for

communication. The downside is that such an application is specifically designed only

for one type of virtual network. Another drawback of this approach is the overhead of

writing HyperNet-specific applications. Ideally, we would like to make use of existing

conventional IP applications communicating over the HyperNet virtual network. The

next three models explore possible ways to leverage conventional applications.

5.5.2.2 Model 2: Virtual Application Gateways

The idea is to create an application gateway that speaks normal IP on one side

and HyperNet protocols on the other. The HyperNet side connects via a tunnel

to the attachment point. One way to implement this is by creating a virtual

interface on the conventional operating system through which a conventional end

system application communicates with the HyperNet network. One possibility is

to use a Tun/Tap interface [83]. Tun/Tap (Figure 5.8) provides a very convenient

interface for intercepting and tweaking IP packets from user space. Conventional

95



Hardware

End System Device

Virtual Network

Regular Kernel

Conventional
App

Tun/Tap

Specialized

In−host communication

Communication with Gateway PR

HyperNet

Attachment
Point

Application Gateway

Figure 5.8: Model 2: Tun/Tap Interface

applications send packets to destinations reached through the Tun/Tap interface.

The Tun/Tap interface intercepts the packet and sends the packet to a user-space

program (the “Specialized Application Gateway” in Figure 5.8). The user-space

program then changes the packet format into a format acceptable for transmission

across the HyperNet network. One big advantage of the Tun/Tap interface is that it

allows end system applications to modify packet headers from user space. Thus, the

user space application gateway can modify the packet header so that it uses a totally

different network layer header specifically designed to be used and understood by the

specialized virtual network (e.g., a HyperNet network that uses non-IP protocols).

In this model, conventional applications can be used, but the HyperNet Builder

needs to provide a specialized application gateway in Figure 5.8 to modify packets

appropriately for transmission across the HyperNet network. Since the protocols (e.g.,

packet format) that a HyperNet network uses are network-specific, the functionality

of the application gateway is also network-specific and thus, can only be designed by

the HyperNet Builder.

96



5.5.2.3 Model 3: IP-in-IP Tunnels

Hardware

End System Device

Virtual Network

Regular Kernel

... ...Conventional
App

Virtual Interface

Virtual Interface

GRE Tunnel

HyperNet

Attachment
Point

Figure 5.9: Model 3: IP-in-IP Tunnel

In the IP-in-IP tunnel model, the connection between the end system and the

attachment point is set up using a GRE tunnel (see Figure 5.9). This model assumes

the HyperNet network uses IP and the GRE tunnel extends the HyperNet network

to the end system. Conventional applications do not need to be changed, but they

do need to use HyperNet IP addresses to talk to PRs in the HyperNet network.

5.5.2.4 Model 4: Virtual Appliances

A virtual appliance is an all-in-one package containing a completely-configured kernel

and pre-built software stack/applications; see Figure 5.10. This means instead of

modifying or configuring the host kernel, which might require root access (e.g.,

creating a Tun/Tap interface requires root access), the HyperNet Builder can collect

all the modifications or configurations necessary and package them into a virtual

appliance.

97



Hardware

End System Device

Virtual Network

Regular Kernel

VirtualApp

... ...

Tunnel

Pre−built Apps

Well−configured OS

HyperNet

Attachment

Point

Figure 5.10: Model 4: Virtual Appliance

In this case, the end system part of the HyperNet Package contains a virtual

appliance that the user can run in a VM to immediately begin using the HyperNet

network. The biggest drawback of this approach is, since a virtual appliance typically

includes an entire kernel (sometimes a trimmed kernel), the size of a virtual appliance

can be quite big (hundreds of megabytes). On the other hand, it can be run on any end

system because it runs in a VM. Indeed, one can imagine many HyperNet Packages

using this approach.

5.6 HyperNet DNS Systems

The Internet uses DNS (Domain Name System) to translate human readable names

to/from network formatted IP addresses. Similarly, the HyperNet virtual network

may also need a DNS implementation to support human readable names. There are

basically two ways to achieve domain name translation in our HyperNet architecture:

(1) a single DNS used by all HyperNet Packages (a One-Size-Fits-All DNS) and (2)

a single DNS for each HyperNet network (a One-For-Each DNS).

98



The advantages of a One-Size-Fits-All DNS is that each HyperNet Package does

not need to include the code to create and maintain a DNS. Instead, they can simply

make use of a small number of hypervisor API calls to register and manage their

“domain names”. The disadvantage of this approach is that the Network Hypervisor

needs to create and maintain a HyperNet DNS that can be used by all HyperNet

Packages. While caching and a hierarchical structure (just like the current Internet

DNS) might help solve the scalability issues, we need to carefully design the system

in order to support heterogeneous HyperNet virtual networks with potentially totally

different naming and addressing mechanisms.

For the One-For-Each DNS approach, the main advantage is flexibility. First of

all, for most HyperNet virtual networks with a small number of participants, a DNS

system might not be necessary. The Internet DNS was motivated by the creation of

too many machines connected to the Internet. If there are only two participants in

the Virtual network, a separate DNS seems to be overkill. Secondly, a local HyperNet

DNS name-to-IP file (e.g., /etc/hosts in Linux) is a lot easier and simpler to manage,

and a lot faster than a fully loaded DNS. For virtual networks with few participants,

an editable DNS name-to-IP file could be sufficient to do name translation. Thirdly,

HyperNet virtual networks might use other alternatives to achieve name-to-address

translation. The Internet DNS facilitates general-purpose IP communication. For

special-purpose virtual networks, other alternatives can be used. For example, in a

multi-party video conferencing virtual network, the HyperNet Package could include

a “buddy list” so that the participants can name their own “buddies” (i.e., other

participants). The main disadvantage of the One-For-Each DNS approach is that

for large HyperNet virtual networks requiring a fully functional DNS, the HyperNet

Package needs to handle the creation and maintenance of this separate DNS.

99



5.7 Scalability of the Network Hypervisor

The design of the Network Hypervisor aims to serve a large number of HyperNet

Packages at the same time (e.g., the Network Hypervisor might receive HyperNet

network creations/tear-downs/updates at the same time, and it also needs to always

maintain the runtime status of all active HyperNet networks at any moment). The

Network Hypervisor maintains a table containing all necessary pieces of information

about each active HyperNet network, from the meta data such as HyperNet names,

credentials, etc., to participant-to-gateway mappings. We will describe more details in

Chapter 6. It is unlikely that any aggregation of such information will happen among

HyperNet networks since all HyperNet networks are different from each other, using

different resources, with different participants. Thus, the space (either in memory

or on disk) needed in the Network Hypervisor for all HyperNet networks will grow

linearly with the number of HyperNet networks running.

The participant of our HyperNet architecture can be any Internet user from

anywhere, joining or leaving any HyperNet virtual networks. In regards to scalability

one obvious question is, how many participants can join/leave/participate at the

same time in our system? The current Internet achieves scalability via DHCP and

Local Area Networks – so that the joining and leaving of an Internet user is usually

handled by a local DHCP server and the impact is kept within its local area network.

While it is obvious that the joining or leaving of a participant only has impact on the

targeting HyperNet virtual network it is joining/leaving, our Network Hypervisor also

delegates all the handling of a joining/leaving participant to the HyperNet Package.

The hypervisor only does a light-weight credential check for each joining participant

(or better yet, the hypervisor simply forwards the join request to the HyperNet

Package and let the HyperNet Package do credential check), then it forwards the

joining request to the HyperNet Package via an upcall. The HyperNet Package then

decides how to deal with this new participant – either assigning a new attachment

100



point for the participant or using an existing programmable router as the attachment

point. It may or may not update the topology. After a HyperNet network is deployed,

the updating and maintenance task all relies on the HyperNet Package. Thus, the

scalability of the Network Hypervisor is not so much the issue as the scalability of

each individual HyperNet Package. The hypervisor simply accepts API calls and

carries them out. Caching can always be used to help carry out expensive API calls

such as finding the shortest path and finding the best attachment point PR. The

hypervisor does need to keep track of the resources consumed by each HyperNet

network for billing purposes and as a result, the (memory/disk) space cost grows as

each HyperNet network grows. In theory, the hypervisor could delegate this task to

the underlying VNIPs to spread the work load.

Finally, what is the scalability of each of the hypervisor API calls? For example,

how much time will it take to find a nearby programmable router or to find an

optimum path between two PRs? As mentioned earlier, the hypervisor can distribute

the task of finding nearby PRs to VNIPs by maintaining a IP address to VNIP

mapping (the hypervisor can get this mapping from e.g., the current DNS system).

The size of this mapping increases with the number of VNIPs and the number of IP

address segments. To find the shortest path between two programmable routers, one

can easily use a simple implementation of Dijkstra’s algorithm that has a complexity

of O(N2), with N being the number of nodes in the graph. To find K shortest paths

between two nodes, one can run Dijkstra’s algorithm K times with an approximate

complexity of O(KN2). While it is unrealistic to compute paths on demand, one

can pre-compute the paths and cache them with the assumption that the physical

topology will not change very often. Moreover, the hypervisor can map the task of

finding a PR-to-PR path to concatenating intra-VNIP paths with inter-VNIP paths

to further decrease the amount of time needed (with intra-VNIP and inter-VNIP

paths pre-computed).

101



Chapter 6

A Prototype Implementation

To demonstrate the HyperNet architecture, we have implemented a Network Hyper-

visor prototype using GENI [23] as the VNIP. As mentioned in Section 2.2, GENI

provides an Internet-scale network testbed for researchers to create experimental

networks that are isolated from each other. Multiple control frameworks exist in

GENI, including PlanetLab [20], ProtoGENI [52] (previously known as Emulab [21]),

InstaGENI [84] (an extension of ProtoGENI), ExoGENI (an extension of ORCA [53])

and ORBIT [54]. Each control framework has multiple instantiations called

aggregates. For example, ProtoGENI and InstaGENI have a Kentucky Aggregate,

a Utah Aggregate, and several others. ExoGENI has the UNC RENCI Aggregate

and the BBN Aggregate. Each aggregate has its own aggregate manager to manage

its resources. In HyperNet terms, each aggregate can be thought of as a separate

VNIP. To create a virtual network across multiple aggregates in GENI, an expert

user needs to communicate with all the corresponding aggregate managers to reserve

and connect resources to form a topology. A virtual network instance created in GENI

is called a “slice”, and each programmable node in a slice is called a “sliver”. A sliver

may be in the form of a virtual machine or a physical machine, and can act as either a

PC or a router. While keeping their own proprietary APIs to control and manage the

resources, most of the GENI control frameworks have also implemented the GENI AM

API [76], which provides function calls to: (1) discover available resources, (2) query

102



capacity information about resources, (3) create/delete/update/renew a sliver, (4)

register/unregister/shutdown/renew a slice, and (5) check the status of a sliver/slice.

Hypervisor API

VNIP Handler

VNIP

Topology Server/

Routing Server

Information

BaseManager
Location

Hypervisor

Probing Daemon

(Control Plane)

HyperNet

Figure 6.1: Hypervisor Implementation

Our prototype Network Hypervisor uses the GENI aggregates as VNIPs, making

AM API calls to the aggregates to reserve resources and create topologies. As shown

in Figure 6.1, our Network Hypervisor implementation includes a VNIP handler at

the bottom layer. The VNIP handler talks to different VNIPs (via the VNIP API

provided by each VNIPs – in our case, the GENI AM API1) to discover, manage

and monitor VNIP (GENI Aggregate) resources. The top layer of the hypervisor

implementation is the set of Hypervisor API calls described earlier. The Hypervisor

API helps Network Creators create specialized virtual networks. It also helps the

participants join and use virtual networks. To make use of the VNIP information

and support the Hypervisor API calls, the hypervisor implementation includes three

important components: an Information Base, a Location Manager and a Topology

Server/Routing Server(TS/RS).

1An earlier implementation of the Network Hypervisor used the ProtoGENI API to talk with
ProtoGENI aggregates — just to prove that our implementation is able to support multiple VNIP
protocols.

103



6.1 The Information Base

The Information Base component maintains information about VNIPs needed

to implement various Network Hypervisor API calls. It contains the location

information about each of the underlying VNIPs and the most up-to-date topology

information of the VNIPs. In addition, for each active HyperNet instance (i.e.,

currently executing HyperNet Package), the information base maintains a table which

includes: the HyperNet name, the participant ID list, creator information, active

participants information (e.g., their IDs, IP addresses, HyperNet addresses, and their

corresponding attachment points), the virtual network topology (such as reserved

nodes and links), a credential (which is verified whenever a new participant that does

not have a valid participant ID joins), and other monitoring information such as total

active time, resources consumed, and total cost. A NAT table is also maintained for

each of the running HyperNet networks containing the HyperNet name, third-party

participants (the IP address of the third-party participant), the assigned jumping off

point PRs, and the third-party participants’ assigned HyperNet-specific addresses.

6.2 The Location Manager

The Location Manager determines the the closest attachment point to a participant.

The location manager fetches location information about each VNIP through the

VNIP handler and saves it in the Information Base when the Network Hypervisor

starts up. A VNIP’s location information includes the VNIP’s local view of nearby

end hosts (e.g., IP address prefixes). Just as today’s ISPs configure local DNS servers

for their customers and thus “know” their nearby customers (or at least know that the

local DNS server is next to certain customers), the Network Hypervisor can obtain

this information from its VNIPs. The location manager also coordinates the task of

discovering the network location of a participant among nearby VNIPs. It fetches

104



the information about how close each VNIP is to the participant (i.e., the network

probing result from one of the VNIP infrastructure nodes to the participant). The

location manager also caches the results. Finally the location manager can determine

the PR with the best network performance (e.g., the smallest Round Trip Time) near

a participant and return that programmable node in the findPR() API call. In our

implementation, we consider each of the GENI aggregates as a distinct VNIP since

different aggregates typically sit in different geographical locations, use different sets

of IP addresses, and manage resources only within their own aggregate.

To implement the location manager, we created a long-lived experiment in GENI,

in which we reserved one PR from each aggregate to assist the location management

service. The reserved PRs are used by the Network Hypervisor as a “control

plane” to gather information for the location manager (see Figure 6.1). Since

the Network Hypervisor has control over each of the reserved nodes, the Network

Hypervisor can load a “probing application” onto those nodes and fetch network

performance information between the reserved “probe” nodes and any participant.

The probing results from each of those nodes represent the “closeness/nearness” of

their corresponding aggregates (VNIPs) to the participant. The location manager

then picks an available PR from the closest VNIP which satisfies the capacity

requirements set by the HyperNet Package. In this way, the findPR() API call

discovers the closest PR from a set of VNIPs for each participant.

6.3 The Topology Server/Routing Server (TS/RS)

To support the seeTopo(), getShortestPath(), findCentralNode(), drillDown() Network

Hypervisor API calls (used by HyperNet Packages to explore the topology of the

underlying VNIPs), we designed and implemented the Topology Server/Routing

Server (TS/RS) component. The TS/RS’s job is to obtain the topology information

105



from the underlying VNIPs2, save it in the information base, and implement the

corresponding hypervisor API calls. Since the seeTopo() API call returns a topology

with dynamic information about the availability of the resources in the topology (i.e.,

programmable nodes might be unavailable or links might be congested), the topology

server should update the (available) topology information in the information base

whenever a new HyperNet virtual network is created or a virtual network is torn down.

On the other hand, the underlying VNIP may also sell its resources to customers

other than the hypervisor. Thus, the topology server should also be responsible for

maintaining an up-to-date topology from the VNIP, either by continuously pulling

topology information from the VNIP or having the VNIP pushing updated topology

information to the hypervisor upon any changes. The Routing Server makes use

of the topology information in the information base and accomplishes tasks such as

calculating paths between two nodes, finding a central node among a set of nodes,

and building a multicast tree connecting a set of leaf nodes.

6.3.1 Finding a Central Node

The algorithm to find the central node in between a set of nodes is simple. If the

provided set of nodes are all in the same aggregate, first of all, for each pair of the

nodes in the node set, the hypervisor finds the shortest path between them (assuming

all paths are symmetric and all virtual links have the same distance). Next, the most

popular node (i.e., the node that appears most frequently among all shortest paths)

is chosen as the candidate central node. Finally, the characteristics of the candidate

node is checked. If it satisfies the central node requirements (processing power, disk

space, etc.), it is returned as the central node, otherwise the second most popular node

is chosen as the candidate node. This process is repeated until it finds a candidate

node which satisfies the central node requirements. If the given set of nodes are from

2VNIP topology information contains the topology that a VNIP exposes to the hypervisor via
the VNIP API. It does not have to be the physical topology. In cases where the VNIP wants to hide
part of its physical topology, virtual tunnels can be returned by the VNIP.

106



multiple aggregates, then the TS/RS uses the location manager to figure out the

best aggregate that provides the minimum average RTT to all given nodes. Then an

available PR is selected from that aggregate to serve as the central node.

6.4 Random Topology Generator

In ProtoGENI (as well as in InstaGENI and ExoGENI), any two programmable nodes

in the same aggregate can be directly connected via a VLAN without going through

any other nodes. In other words, ProtoGENI nodes in the same aggregate form a fully

connected graph – which is not reflective of real-world topologies and uninteresting

from an experimental standpoint. Moreover, the connection between two aggregates

in ProtoGENI is typically set up via one, or occasionally more, IP tunnels. Thus, the

best way to connect two programmable nodes in different aggregates is to directly

connect them via an IP tunnel (e.g., ProtoGENI’s solution is a GRE tunnel).

In PlanetLab, the same holds true in the sense that the best way to connect

two PlanetLab nodes is also to directly connect them without going through any

other PlanetLab nodes. The only difference is that this “connection” is accomplished

via an overlay channel (e.g., a TCP connection or a UDP connection) instead of a

VLAN or a GRE tunnel. In short, nodes in both ProtoGENI (as well as InstaGENI

and ExoGENI) and PlanetLab form fully connected topologies and so using them as

VNIPs is uninteresting.

To make the topologies more interesting, we intentionally removed some of the

links from the topology after the Network Hypervisor fetches the topology from GENI.

Removing links from the topology helped us to avoid the uninteresting case where

the topology is fully connected. As a result, the observed topology might not be fully

connected. In our implementation, we developed a random topology generator on top

of ProtoGENI. It randomly generates a topology connecting all available resources

within a ProtoGENI aggregate. The generated topology looks like a physical point-

107



to-point topology, hiding the fact that the resources actually form a fully connected

topology. Next, we program the hypervisor API calls used to explore the underlying

physical topology to return information from this randomly generated topology rather

than the actual fully connected topology.

6.5 Hypervisor Performance

We implemented our Network Hypervisor using Java as the programming language.

We used about 5000 lines of Java code to implement all the hypervisor API calls as

well as the HyperNet library calls described in early chapters. The source code as well

as the HyperNet Builder manual can be found at [85]. To prove that our designed

API calls are useful and adequate to compose a variety of HyperNet Packages, we

implemented four different types of example HyperNet packages, each can be used

to deploy a specialized HyperNet network. We will describe our example HyperNet

Packages in Chapter 7. Our next objective is to measure the performance of our

hypervisor service. More precisely, we wanted to know: (1) how long it takes for the

Network Hypervisor to create the virtual network topology specification that can be

given to the underlying VNIP, (2) how long it takes to deploy a virtual network via

the Network Hypervisor onto the physical infrastructure provided by the VNIP, and

(3) whether the Network Hypervisor can handle concurrent requests. If so, what is

the performance? To answer the above questions, we designed several “stress tests”

that we applied to the Network Hypervisor.

6.5.1 Experimental Context

We implemented our Network Hypervisor on a virtual machine running Ubuntu 12.04,

hosted on an Intel Xeon CPU E5520 running at 2.27 GHz. The virtual machine uses

1GB memory. Because the hypervisor implementation is coded in Java, the HyperNet

Package can be run on any platform. Our Network Creator was a physical PC running

108



MAC OS X, with a 2.4GHZ Intel Core 2 Duo CPU and 8GB DDR3 memory. We

tested with both Java Runtime Environment (JRE) version 1.6 and 1.7 to run the

server as well as the HyperNet Package. The results are similar. Communication

between the Network Creator and the Network Hypervisor is via XML-RPC, with a

round-trip time of about 0.5 milliseconds. As stated earlier, We used several GENI

aggregates as the VNIPs.

6.5.2 Build Time

Build time measures the interval between the time from when the Network Creator

starts executing a HyperNet Package and the time when the Network Creator creates a

topology description file describing the virtual network to be instantiated. In GENI’s

context, the “topology description” file is an “RSpec” file. During this process,

the Network Hypervisor handles HyperNet registration request, initializes all the

corresponding tables for the HyperNet network (including the participant list, the

join request list, the attachment point table and the status table), creates the RSpec

file for the virtual network, saves the file to a per-HyperNet directory and returns the

RSpec to the caller (the Network Creator). This step does not include any queries to

the GENI aggregate manager.

The performance results are shown in Figure 6.2. In this set of experiments, we

use the buildRandomRing() HyperNet library call to create ring topologies. The X

axis shows the number of nodes in the ring topology. The Y axis measures the build

time. The RSpec file has length O(n): there are n nodes and n connection links. From

the results we can see that the time spent creating a ring topology increases with the

number of nodes on the ring. However, to create a ring topology with almost 400

nodes, our Network Hypervisor only used about 8 seconds. Now let us take a look at

the time needed for a VNIP to actually allocate, initialize, and deploy the network.

109



 0

 2000

 4000

 6000

 8000

 10000

 0  50  100  150  200  250  300  350  400

T
im

e 
(m

s)

Number of Nodes in the Ring

Build Time

Figure 6.2: Time spent building a HyperNet Ring Topology

6.5.3 HyperNet Deployment Time

HyperNet deployment time measures the interval between the time when the Network

Hypervisor gives the topology description file to the underlying VNIP and the time

when the VNIP has mapped the description onto the infrastructure, the resources

are reserved, booted, configured, and ready for use. This step is outside the control

of the Network Hypervisor; it is purely the responsibility of the VNIP. It typically

includes:

1. Identifying the nodes that need to be included and then reserving them – in

the GENI context, the RSpec file can specify particular nodes to include; GENI

calls them “bound resources”. The RSpec file can also specify that it only

needs a node, in which case GENI may choose any node; GENI calls these

nodes “unbound resources”. We have done experiments using both bound

and unbound resources and the results are similar. Two types of nodes are

110



currently available in GENI: physical PCs (a category that includes physical

PCs, physical routers, and physical OpenFlow Switches) and Virtual Machines

(VMs) (a category that includes virtual routers and virtual nodes created by

OpenVZ, KVM or Xen).

2. Identifying and reserving the requested virtual links that connect the reserved

nodes. The VNIP typically first finds a physical path between the two nodes,

then it uses its own control plane to configure all switches and/or routers along

the physical path to build a virtual link. Each VNIP has its own techniques.

GENI creates a virtual link within an aggregate using VLANs, and it creates

a virtual link between two nodes in different aggregates using GRE tunnels.

It can also employ stitching, an inter-domain VLAN technique that requires

all aggregates along the way to co-operate to create “stitching VLANs”. In

our experiments, we only use resources from one aggregate – the Kentucky

Aggregate. So GENI only needed to deal with VLAN creations within the

same aggregate. Deploy time on other aggregates should have similar results.

We used the GENI Aggregate Manager API to deploy the virtual network. For

virtual network topologies that span across multiple aggregates, we would do the

deployment requests simultaneously on multiple aggregates, so we assume that

the deploy time should be similar to the case of one aggregate. Stitching VLAN

links between aggregates takes GENI longer time because it needs to calculate

the aggregate-level path between the two aggregates and then configure each

aggregate sequentially (and if one fails, GENI might wait for up to 20 minutes

and then try again). Since stitching is still a new (and not stable) GENI

technique, we did not do any performance test requiring stitching.

The results of deploy time for ring topologies on a GENI aggregate are shown

in Figure 6.3. There is little difference between the time spent in deploying a

ring topology with 3 nodes and a ring topology with 7 nodes. GENI’s control

111



 85000

 90000

 95000

 100000

 105000

 110000

 115000

 120000

 125000

 130000

 135000

 3  3.5  4  4.5  5  5.5  6  6.5  7

D
ep

lo
y 

T
im

e 
(m

s)

Number of Nodes

VNIP (GENI) Performance Test

Physical PC
Virtual Machine

Figure 6.3: Deploy Time for Ring Topologies in a GENI Aggregate

plane (the Aggregate Manager) queries for resources and instructs nodes to boot-

up simultaneously. However, there is a significant time increase (over 30 seconds) if

the requested resources are virtual machines. This delay is because the aggregate

manager needs several extra steps to prepare/configure a virtual machine. For

example, it needs to identify the virtualization techniques to be used to create the

virtual machine and it also needs to create a profile for each virtual machine to specify

the resources (i.e., CPU, Memory, and disk space) to allocate to the virtual machine.

More importantly, if we compare the deploy time with the build time in Figure 6.2,

we can conclude that the build time is almost nothing compared with the deploy

time. Of course, GENI may well improve in the future, and other VNIPs may be

more efficient.

6.5.4 Concurrency Test

Multiple HyperNet Packages could call the Network Hypervisor APIs at the same

time and thus impose a heavy load on the Network Hypervisor. Although we

112



 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20

T
im

e 
(s

)

Number of Nodes in each Ring

Build time for 50 simultaneous ring-topology requests

Figure 6.4: Time spent in deploying 50 HyperNet Topologies with concurrent requests

could implement our Network Hypervisor on multiple hosts with queuing and load

balancing, we were interested in knowing the performance of a single Network

Hypervisor handling concurrent requests.

In this set of experiments, we ran multiple HyperNet packages simultaneously.

Each package asked the Network Hypervisor to create a Ring topology with a

randomly selected number of nodes (from 1 node to 20 nodes). We recorded the

build time for each request.

Figure 6.4 shows the build times when the Network Hypervisor receives 50

concurrent buildRandomRing() requests. Figure 6.5 shows the build times when the

Network Hypervisor receives 100 concurrent buildRandomRing() requests. Figure 6.6

shows the build times when the Network Hypervisor receives 200 concurrent

buildRandomRing() requests. In each set of experiments, the test script creates the

corresponding number of threads and each thread acts as a Network Creator executing

113



 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20

T
im

e 
(s

)

Number of Nodes in each Ring

Build time for 100 simultaneous ring-topology requests

Figure 6.5: Time spent in deploying 100 HyperNet Topologies with concurrent
requests

a package that requests to create a ring topology with a given number (picked from 1

to 20) of nodes. The test script needed 159 ms to create 50 threads, 233 ms to create

100 threads, and 658 ms to create 200 threads.

This series of graphs show that the larger the number of simultaneous requests,

the longer it takes for the Network Hypervisor to fulfill each request. In general, the

larger the number of nodes in the requested topology, the longer the build time. Most

importantly, even when there are 200 requests coming into the Network Hypervisor

simultaneously, the Hypervisor can still manage to handle all the requests in less than

10 seconds apiece. If we increase the number of concurrent threads on the test script,

it is possible that the server will fail with “connection reset” exceptions, because the

XML-RPC library we used in our Network Hypervisor supports a limited number

of concurrent TCP connections. For comparison, we did the same experiment using

sequential requests. In this case, instead of creating 200 threads at the same time, the

114



 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20

T
im

e 
(s

)

Number of Nodes in each Ring

Build time for 200 simultaneous ring-topology requests

Figure 6.6: Time spent in deploying 200 HyperNet Topologies with concurrent
requests

client waits until each thread successfully terminated (a thread will terminate when

the Network Hypervisor reports that it has accomplished the build phase) before

creating the next thread. The result is shown in Figure 6.7. From the result we can

see that the build time for each the request is within 0.5 seconds. The cumulated

build time for all 200 sequential requests is about 7.5 seconds (the graph only shows

the build time for individual request). This result indicates that sequential request

handling out-performs concurrent request handling. The worst case in the sequential

request handling is for a request to wait for 7.5 seconds before it gets executed–which

still out-performs the 10 seconds worst case for concurrent request handling. As a

result, if we want to deploy a production Network Hypervisor, we would want to use

queuing technique to sequentially handle concurrent requests.

115



 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20

T
im

e 
(s

)

Number of Nodes

Build time for 200 sequential ring-topology requests

Figure 6.7: Time spent in deploying HyperNet Topologies with sequential requests

116



Chapter 7

Example HyperNet Packages

To demonstrate the concept of a HyperNet Package, we created several example

HyperNet Packages, including: a Multicast HyperNet, a MobileNet HyperNet, a

GameNet HyperNet, and an OpenFlow Load Balancing HyperNet. We tested all the

packages using the Network Hypervisor implementation described in Chapter 6.

7.1 A Multicast HyperNet

The multicast HyperNet Package dynamically creates an any-to-any multicast

network specifically tailored to the participants in the multicast group. It supports

native IP multicast applications and because it uses tunnels, it works even over, or

between, VNIPs that do not support IP multicast. The HyperNet Package includes

both router software to be loaded onto intermediate routers and an end system

package which is used by a HyperNet Participant to join and use the multicast virtual

network. Generally speaking, the multicast HyperNet Package contains three parts:

a network creator-defined HyperNet configuration file, the software stacks necessary

to support the multicast protocol (in this case, we used the Protocol Independent

Multicast - Sparse Mode (PIM-SM) multicast protocol [30]), and a Java program

that makes use of the Network Hypervisor APIs to build and deploy the Multicast

network.

117



PR

PR

PR

PRPR

PR

PR

PR

PR

PR

PR
PR

PR

PR

PR

Programmable RouterPR Physical Link

Figure 7.1: (Generated) Physical Topology of the VNIP

Before a Network Creator executes the Multicast HyperNet Package, it needs to

first configure the configuration file for the HyperNet Package. The configuration

file includes the name of the HyperNet network, the expected participants of the

network and their corresponding participant IDs, and the credentials of the HyperNet

network which is used by the hypervisor to check the legitimacy of a joiner. The

Multicast HyperNet Package first uploads the HyperNet configuration to the Network

Hypervisor to register the HyperNet network. It then finds an appropriate attachment

point for each expected participant from the configuration file. Next, the HyperNet

Package calls the HyperNet Library API buildRPTree() to create a tree (reserving

all nodes in the tree topology) that connects the attachment point routers as leaves

of the multicast tree. Finally, it loads appropriate multicast software stacks and

configuration files onto each node of the tree, and requests the Network Hypervisor

to deploy the HyperNet network. Figure 7.1 shows our experimental VNIP resource,

118



PR

PR

PR

PR

PR

M1 M3

M4
M2

PR Programmable Router Physical Link

R1
R2 R3

R4

R5

G1 G2 G3

G4

G5

1Gbps GRE Tunnel

Reserved Programmable Node

Participant Node

G0

S

100Mbps Reserved Link

Figure 7.2: Reserved Multicast Topology

119



and Figure 7.2 shows the reserved nodes and links. G0–G5 are attachment point

gateways and M1–M4 are multicast routers connecting the attachment points. S is

the sender of the multicast tree and R1–R5 are receivers of in multicast tree (in fact,

this multicast tree also allows any receiver to send multicast packets to other nodes).

The pseudo code for the HyperNet Package is illustrated in Algorithm 1, with the

actual Java code slightly exceeding 200 lines.

Algorithm 1: The Multicast HyperNet Package

myConfig = readConfig() //Read configuration file
regHyperNet(myConfig) //Register HyperNet
for every participant p in myConfig do

gateway = findPR(p)
gatewayList.add(gateway)

end for

myTree = buildRPTree(gatewayList)
for each programmable router pr in myTree do

loadApp(pr, PIMSMApp) //load PIM Sparse Mode Application onto each pr
end for

buildTopo() //deploy the topology
//Join Request Handling Process
while true do

joinRequest = checkJoin() //get join request
tunnelInfo = createTunnelInfo(joinRequest)
//set up tunnel between gateway and new participant
addGW(tunnelInfo)

end while

Algorithm 2: The Multicast HyperNet End System Package

myConfig = readConfig() //Read End System configuration file
tunnelInfo = join(myConfig) //join request
configInterface(tunnelInfo) //use the returned tunnel

//information to set up tunnel with
//the corresponding gateway

The sender and receivers are all participants in the HyperNet network. They

connect to their corresponding gateway routers via the Multicast HyperNet End

System package. Just like the HyperNet Package, the End System package also

includes a configuration file, in which a participant specifies its participant ID. As

120



shown in Figure 7.2, a legitimate participant successfully joins the multicast HyperNet

network by creating a GRE tunnel from the end system to the corresponding

attachment point.

Our experiment uses the pimd multicast daemon [82] and we ran PIM-SM

multicast on each programmable node, with M1 as the Rendezvous Point selected by

the HyperNet Package code. The pseudo code for the HyperNet End System package

is illustrated in Algorithm 2, with the real code slightly exceeding 50 lines.

7.1.1 Multicast Results

Table 7.1 shows the amount of time consumed in each step of building the multicast

topology. We created the same multicast tree 8 times. On average, the time consumed

Table 7.1: Time Required to create a Multicast Virtual Network

Build Time
Deploy
Time

Exp. #
Find

Gateway
(s)

Build
Tree
(s)

Deploy
Network (s)

Join (s)

1 2.26 0.518 100 0.685

2 2.26 0.44 101 0.679

3 2.28 0.458 103 0.699

4 2.28 0.416 102 0.673

5 2.28 0.425 102 0.659

6 2.26 0.43 81.6 0.614

7 2.26 0.425 82.5 0.696

8 2.3 0.438 104 0.831

StdDev. 0.015 0.033 9.25 0.06

Avg. 2.27 0.444 97 0.692

to find a gateway router for each expected participant is just over 2 seconds. In our

implementation, in order to choose the nearest attachment point for a participant,

the location manager in the hypervisor made use of two representative nodes in the

Utah aggregate and the UK aggregate to get the average round trip time from each

representative to the participant using 50 ping probes when the HyperNet Package

121



calls the findPR() API call. Figure 7.1 and Figure 7.2 only show the resources in

one aggregate because all participants are found near the Kentucky Aggregate. The

Network Hypervisor chose a random node from the VNIP closest to each participant

as that participant’s attachment point. This step may take longer in the future as we

include more aggregates (VNIPs) in the HyperNet network. We used the algorithm

described earlier to build the RP-based multicast tree. More precisely, we use the

buildRPTree() HyperNet Library call to build a RP-based Tree. As shown in the

table, the time spent in step “Build Tree” is relatively small because we have a small

physical topology (Figure 7.1). However, we expect that even in a larger topology,

the time spent in building an RP-tree will not grow significantly as the number of

nodes increase, because the buildRPTree API call can take advantage of the cached

shortest paths between leave nodes in order to find the rendezvous point and then

build the tree. “Deploy Network” takes most of the overall time for each experiment,

consuming about 100 seconds. For our experimental testbed, this step includes

reserving nodes and links from protoGENI, starting up reserved nodes, uploading

pimd daemon software (1.4 Megabytes) onto each reserved node, configuring pimd

properly on each programmable node and executing pimd. Interestingly, unlike the

other steps, the amount of time spent in this step may vary by as much as 20 seconds

across experiments. Since this step is carried out by ProtoGENI, the hypervisor has

no control over it. Finally, the average time it takes for a participant to join this

multicast network is about 0.7 second. This step is measured from the HyperNet

End System package sending out a join request until the end system receives the

tunnel information (including instructions for setting up a GRE tunnel). To test

the correctness and performance of the multicast tree, we compared the loss rate

experienced by each receiver under different sending rates in cases when the sender

was multicasting and when the sender was sending out multiple unicast UDP flows.

Table 7.2 shows the performance results for multicast vs multi-unicast. Each link in

122



Table 7.2: Network Performance of Multicast versus Multiple Unicast

Sending
Rate

Loss Rate on each Receiver (%)
R1 R2 R3 R4 R5

Multi-
cast

20Mbps 0 0 0 0 0
50Mbps 0.033 0 0 0 0
90Mbps 0.12 0.01 0.34 0.036 0.049

Uni-
cast

20Mbps 15 0.073 0.062 6 5.7
50Mbps 66 75 58 36 76
90Mbps 76 79 76 83 82

the reserved network had a bandwidth of 100Mbps, and the bandwidth of the GRE

tunnel between each participant and its attachment point was 1Gbps. As expected,

in the multicast case, the receivers only experienced minor loss rates even when the

sender is sending out packets at a rate of 90Mbps, which is close to the full capacity of

the network (100Mbps). However, in the multiple unicast case, the sending rate from

the sender to each of the 5 receivers does not exceed 20Mbps for “reliable” delivery

(i.e., with minor loss rate experienced by the receivers). In all of our tests we used

iperf as the network performance testing tool. All results were generated by iperf

clients on the receivers.

7.2 A MobileNet HyperNet

Mobile devices are increasingly being used for data intensive applications such

as browsing web pages, watching videos, streaming music, downloading files, and

installing updates. Because these applications typically run over TCP, performance

can be seriously degraded when the first hop is a lossy or intermittent wireless

link, as is often the cases with mobile devices [86]. Even a loss rate of 0.1% can

significantly affect TCP’s performance. MobileNet addresses this problem by using

a well-known technique called TCP splitting [87] that breaks the TCP connection

into two parts: one TCP connection traversing the wireless link, and another TCP

connection traversing the wired portion of the path. Consider the network shown

123



P

FS

FS

P FS

Lossy Link Inter−SP Link Wired Link

( b )

Kentucky Aggregate
Utah Aggregate

G

( a )

P

Internet

Internet ParticipantProgrammable Router File Server

Figure 7.3: A MobileNet HyperNet

in Figure 7.3(a) in which wireless participant P wants to download data from a

web server S. Because P ’s first hop is a wireless link, even small packet losses over

the wireless link can severely degrade TCP throughput. Figure 7.3(b) shows the

virtual network topology created by MobileNet. The MobileNet HyperNet Package

is designed to load special TCP splitting software onto node G to intercept TCP

communication between P and S in an attempt to improve TCP performance. The

key point is that MobileNet needs to find a programmable router G that is close to

P where the TCP splitting software will be run.

Initially P (voluntarily) joins the virtual network resulting in an “‘upcall” join()

being made to the MobileNet HyperNet Package. By using the findPR() API call,

MobileNet finds a programmable router, G, near P .

MobileNet is an interesting example because it illustrates the need for involuntary

participants. The server S is a standard web server and will not, on its own accord,

join P ’s HyperNet network. Consequently, P must make an involuntary join request

to join S to its network. Thus, P invokes an involuntary join for server S, which

causes an “upcall” to MobileNet to find a programmable router H near S and to

124



set up H as the proxy (jumping-off point) to S. In our experiment S is attached

to the Utah aggregate, so the best H is found to be in the Utah GENI Aggregate.

Next, the HyperNet creates a transparent tunnel connecting G to the jumping-off

point H using the addTunnel() API call. The addTunnel() call identifies the two

aggregates containing G and H , and then talks to the aggregate managers to setup

a GRE tunnel as the transparent tunnel, with routing tables properly set on both

ends. A TCP splitting application (we use a script that leverages “netcat” [88]) is

then loaded onto G using the loadApp() API call. Whenever P communicates with S,

this TCP splitting application intercepts TCP packets and improves the end-to-end

throughput.

7.2.1 MobileNet Results

0

10

20

30

40

50

60

70

80

90

0.1 0.5 1 2 5

T
hr

ou
gh

pu
t (

M
bp

s)

Loss Rate (%)

TCP throughput vs Lossrate with and without the Mobile HyperNet

Normal TCP
MobileNet - 2ms RTT to P

MobileNet - 20ms RTT to P
MobileNet - 50ms RTT to P

Figure 7.4: MobileNet vs normal TCP Performance

In our experiment, G is found to be a PC in the (wired) Kentucky GENI Aggregate

capable of acting as P ’s attachment point in to the virtual network and also as the

TCP-splitting point. H is found to be a PC in the Utah Aggregate acting as the

125



jumping off point PR for S since S is a web server we created using a PC in Utah

Aggregate.

Figure 7.4 shows the performance result of our MobileNet virtual network,

compared with regular TCP’s performance. In all of our experiments, we use a fixed

Round-Trip Time of 100 ms between P and S. We used the traffic control toolkit “tc”

in Linux to control the delay and loss rate of each link. In particular we varied the

loss rate and delay on the first-hop link between P and G. To evaluate normal TCP

performance, traffic simply went between P and S without going through G and H .

For the TCP splitting tests, all traffic went through G and H . To understand how

much the delay of the wireless link between P and G affects MobileNet performance,

we used RTTs between P and G of 2ms, 20ms, and 50ms in our MobileNet tests, and

we varied the loss rate between 0% and 5%.

Looking at the normal TCP curve (the lowest curve on the graph), we see that

TCP performance decreases rapidly, going from 90 Mbps at a 0% loss rate to 4 Mbps

at a 0.1% loss rate and then quickly dropping toward 0 Mbps.

MobileNet (with a 2ms RTT between P and G) set up a split TCP connection

that was able to overcome small amounts of packet loss. The top curve shows that

even at loss rates up to 1%, MobileNet is able to maintain throughputs around 85

Mbps. As expected, moving G away from P (i.e., increasing the RTT between them)

reduces the throughput, but it is still better than normal TCP performance in all

cases.

7.3 A Multiplayer Gaming HyperNet

The multiplayer on line gaming HyperNet Package we created aims to shorten the

network latency between the players and the game server thereby improving the

gaming experience for all players. In this example, we created a gaming hypernet

that automatically deploys a custom virtual network for the OpenArena game [89].

126



OpenArena is an open source multiplayer online game. The game has several publicly

accessible game servers to which participants can connect. However, being an open

source game, it also allows participants to compile and run their own game servers.

Consequently, it is possible for a set of players to identify the best location for a game

server (e.g., a location with the lowest delay for all participants), and then run their

own game server at that location.

The goal of our OpenArena Gaming hypernet was to automatically select the best

location for a game server, run the game server at that location, and then set up an

virtual network to connect the game server to all the participants.

Algorithm 3: Multiplayer Gaming HyperNet Package

myHyperNet = readConfig() //Read configuration file
regHyperNet(myHyperNet) //Register HyperNet network
while participantNum <predefinedtotalNum do

joinRequest = checkJoin() //get join request
Participant p = new Participant(joinRequest)
myHyperNet.participantList.put(p) //add p onto participant list
participantNum++

end while

for every participant p in myHyperNet do
gateway = findPR(p)
gatewayList.add(gateway)
participantGWMap[p] = gateway

end for

//find a central node where we can run a game server
gameServer = findCentralNode(gatewayList)
for every gateway g in gatewayList do

addTunnel(g, gameServer) //create a virtual link
end for

//load Open Arena game server software onto the central node
loadApp(gameServer, OpenArenaServer)
buildTopo() //deploy the topology
Start the Open Arena Server
//connect all participants to the game network
for every participant p in myHyperNet do

tunnelInfo = new TunnelInfo(p, participantGWMap[p])
addGW(tunnelInfo)

end for

The pseudo code for the OpenArena [89] Gaming HyperNet Package is illustrated

127



in Algorithm 3. The HyperNet first reads the configuration file for the HyperNet

network, including the name of the HyperNet network and the password needed to

join the network. Then it registers the HyperNet network using the regHyperNet()

API call. Then the HyperNet waits for join requests from game players. Whenever

a player joins the HyperNet network, the Gaming HyperNet Package keeps a record

of the player’s IP address. A player’s IP address can be found from the join() API

call. When all players have joined (this is decided by checking the total number of

players who have already joined the game), the HyperNet Package then finds a nearby

attachment point router for each of the players via the findPR() API call. Next, it

finds a central node that provides the minimum average delay to all the gateways via

the findCentralNode() API call, which takes the list of participant (player) attachment

points as a parameter. It then creates a virtual channel from each attachment point to

the central node. The HyperNet Package then loads the OpenArena server application

on the central node via the loadApp() API call1. Finally the HyperNet Package

deploys the game network using the build() API call and then starts the OpenArena

game server with the following command on the central node:

./oa_ded.i386 +set dedicated 1

+exec server.cfg

+set net_ip 10.128.2.2

+set net_port 27961

The +set dedicated 1 parameter means this dedicated server is not visible to

the OpenArena master server. In other words, other Internet players are not able

to see this server from their in-game Internet Server list. It is dedicated to only

the three players in our game. The +exec server.cfg parameter means the server is

launched based on the configuration file server.cfg. The server.cfg file defines the

1In our experiment, we were using OpenArena server version 0.8.8, with the actual tar-ball size
of 447 MB. It took about 48 seconds to load the application to the server node.

128



game parameters such as server name, the maximum number of clients allowed, the

maximum sending rate, the maximum allowed ping time from the clients, the game

types(e.g., tournament, team death match, last man standing, etc), and the game

map. The HyperNet carefully configures this file to optimize the gaming experience

for the players. The +set net ip and +set net port parameters simply define the

listening interface and listening port number on the server. Again, the HyperNet is

responsible for finalizing these parameters to make sure that the game server will not

be blocked by firewalls or other networking issues.

At this point, the game virtual network is up and running. Next, the HyperNet

Package figures out the configuration for the corresponding gateways (IP addresses

that need to be assigned, and the routing table entries that need to be added, etc) for

each game player (participant). It then creates a GRE tunnel between each player and

its assigned gateway using the addGW() API call. In our case, the HyperNet Package

reserves 100Mbps bandwidth for all virtual links shown in Figure 7.5, which is more

than sufficient for the maximum game sending rate of 200 Kbps set in server.cfg.

The HyperNet network is fully expandable to allow dynamic game joiners, i.e., by

finding and assigning more gateways to new requesting game players. Moreover, it

can also be designed to locate new game servers according to the current players and

migrate all gaming data from the old server to the new one.

7.3.1 Multiplayer Game Results

In our experiment, we used two VNIPs: the Kentucky Aggregate and the Utah

Aggregate. Three game players are involved: two are located in Kentucky, the other

one is from Utah. As a result, two attachment point PRs are found from Kentucky

Aggregate and one attachment point PR is found from Utah Aggregate for the player

in Utah. We implemented the Game HyperNet Package and compared it with the

standard OpenArena game using existing public game servers. Using the Network

129



Kentucky Aggregate

Utah AggregateG2

G3

GS

P1

P2

Internet

IS

G1

P3

Programmable Router
Internet Participant

(Game Player)

IS:      Internet Game Server GS:    SDN Game Server

Internet Link GRE TunnelSDN Link

Figure 7.5: Multiplayer Gaming HyperNet

Hypervisor API calls, it only took about 120 lines of Java to encode our OpenArena

game HyperNet Package. We then ran our OpenArena game HyperNet Package on

the Network Hypervisor to create a custom game network specifically designed for

our three players. As shown in Figure 7.5, we were able to find an optimal game

server (GS) in ProtoGENI that provided an average round trip time of 22 ms to the

three participants. In comparison, the best public Internet Server (“IS” in the figure)

provided an average round trip time of 212 ms, showing that custom placement of the

game server can provide an order of magnitude improvement in the game’s response

time. Moreover, by using dedicated lines between the game server and the attachment

point PRs, our HyperNet game network also improves the reliability of the game play.

7.4 An OpenFlow Load-balancing HyperNet

To show that our HyperNet Architecture supports the creation of OpenFlow

Networks, we created an OpenFlow Load Balancing HyperNet Package (or OFLBH)

130



C

C

left right

Programmable Router/ Participant

Transparent Tunnel

Internal Connection

OpenFlow Switch

OpenFlow Controller

destination

source

sw1

sw2

Figure 7.6: OpenFlow Load Balancing Topology

that deploys an OpenFlow load balancing network between two end systems using

OpenFlow switches to balance load in ExoGENI. Like ProtoGENI, ExoGENI is

another control framework provided by GENI that supports the GENI AM API.

The OFLBH package reserves two paths between two nodes called “source” and

“destination”, as shown in Figure 7.6. Two OpenFlow switches called “sw1” and

“sw2” are used in the topology to load-balance packets. We used a customized Linux

kernel with Open vSwitch (a software version of an OpenFlow switch that supports

the OpenFlow standards) pre-installed as the operating system on the two OpenFlow

switches. As a result, node “sw1” and node “sw2” understand OpenFlow protocols

and act like physical OpenFlow switches. The HyperNet Package achieves this by

setting the “image” property of each OpenFlow node to load a customized OVS

131



(Open vSwitch) kernel.

The other two nodes “left” and “right” are simply two relay nodes that forward

packets between “sw1” and “sw2”. A load-balancing OpenFlow Controller is loaded

on node “sw1”, which makes the path decision upon arrival of a new traffic flow.

Upon receiving the first packet of a flow from node “source”, node “sw1” will

forward that packet to the load-balancing OpenFlow controller that is in charge of

deciding which path (“left” or “right”) to forward the packet over. After making

the path decision, the controller pushes the corresponding flow entries into “sw1”,

so that the node “sw1” will forward all future packets from the same flow over the

same path. The OpenFlow Switch “sw2” simply follows whatever decision is made

by the controller so that all reverse packets (e.g., the ACK packets from the same

TCP flow) will follow the reverse path of the incoming flow.

The HyperNet Package provides two kinds of load balancers (OpenFlow Load

Balancing Controllers) for a Network Creator to choose from. Load-balancer A makes

path decisions based on the number of flows sent out to each path— it always forwards

a new incoming flow to the path with the fewest active flows (essentially alternating

between the left and right paths in our example topology). Load-balancer B makes

path decisions based on the average per-flow throughput — it always forwards a new

incoming flow to the path with higher average per-flow throughput, since, for TCP

flows, a higher throughput means that the network path is less congested compared

to a flow with lower throughput.

7.4.1 Load Balancing Results

In our experiment, node “source” and node “destination” are two infrastructure

participants in the ExoGENI BBN Aggregate. As a result, all other nodes in

Figure 7.6 are programmable routers in the same Aggregate. After the OFLBH

network was deployed, we started a TCP flow using iperf [90] from node “source” to

132



0

2

4

6

8

10

12

14

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (minute)

Throughput graph with no loss on either path 
 Load Balancing based on flow number

Left Total
Right Total

Figure 7.7: Load Balancer A total performance with no loss on either path.

node “destination” every 5 seconds, with a total number of 20 individual TCP flows.

We name each individual flow such that flow 1 starts 5 seconds earlier than flow 2,

etc. All flows last for 200 seconds. We measured both the individual throughput of

each flow as well as the total throughput on each path (left and right).

Figure 7.7 shows the total throughput on left and right paths under no loss using

Load Balancer A. As we can see, the load balancer makes full use of the bandwidth

on both paths (about 12MBps or 100Mbps).

Figure 7.8 shows the individual flow throughput using load-balancer A when there

is no loss on both left and right paths. From the per-flow performance graph we can

see that for both left and right paths, the throughput of each flow decreases as new

flows arrive. This result is due to TCP’s congestion control mechanism: as new

flows arrive, the network starts to drop packets and TCP automatically adjusts its

congestion window size (and thus, throughput) for each flow. For the duration of

133



0

2

4

6

8

10

12

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (minute)

Throughput graph with no loss on either path 
 Load Balancing based on flow number

Left Path - flow 1
Right Path - flow 2

Left Path - flow 3
Right Path - flow 4

Left Path - flow 5
Right Path - flow 6

Left Path - flow 7
Right Path - flow 8

Left Path - flow 9
Right Path - flow 10

Left Path - flow 11
Right Path - flow 12

Left Path - flow 13
Right Path - flow 14

Left Path - flow 15
Right Path - flow 16

Left Path - flow 17
Right Path - flow 18

Left Path - flow 19
Right Path - flow 20

Figure 7.8: Load Balancer A per-flow performance with no loss on either path.

our experiments (about 200 seconds) we can see that the throughput of all TCP

flows gradually dropped to around 2MBps. TCP’s congestion control mechanism will

eventually balance the sharing of bandwidth such that each TCP flow will use similar

amount of bandwidth.

The per-flow throughput and total throughput performance results for load-

balancer B is similar to the results for load-balancer A when there is no loss for

both paths and thus, we omit the graphs here.

Figures 7.9 and 7.10 show the total performance as well as the per-flow

performance on both paths using load-balancer A when there is 5% loss rate on

the left path. Due to A’s load balancing algorithm, despite the fact that there is 5%

loss rate on the left path, the OpenFlow controller still forwards the new incoming

TCP flows in an alternating pattern onto left and right paths. The result is, 10 flows

are forwarded to the left path and 10 on the right path. The flows on the left path

134



0

2

4

6

8

10

12

14

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (minute)

Throughput graph when the left path has a 5% loss rate. 
 Load Balancing based on number of flows

Left Total
Right Total

Figure 7.9: Load Balancer A total performance with 5% loss on the left path.

achieve very low throughput compared with the throughput of flows on the right

path.

On the other hand, if we use the load-balancer B, which makes load balancing

decisions based on the measured average per-flow throughput, we see that only TCP

flow 1 was directed to the left path from Figure 7.12. Because of the losses on the left

path, the average per-flow throughput is much lower on the left path than the right

path. Therefore no more flows are assigned to the left path after flow 1. TCP flow

1 was able to achieve a throughput of 0.5MBps. The remaining 19 TCP flows were

forwarded to the right path, sharing the total available 12MBps bandwidth. If we

compare Figures 7.9 and 7.11, we can see that in the case of 5% loss on the left path,

load-balancer A achieved a higher overall throughput between “outside” and “inside”

(the sum of total throughput on left and right paths) than load-balancer B. However,

when comparing Figures 7.10 and 7.12, we see that load-balancer B provides better

135



0

2

4

6

8

10

12

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (minute)

Throughput graph when the left path has a 5% loss rate. 
 Load Balancing based on number of flows

Left Path - flow 1
Right Path - flow 2

Left Path - flow 3
Right Path - flow 4

Left Path - flow 5
Right Path - flow 6

Left Path - flow 7
Right Path - flow 8

Left Path - flow 9
Right Path - flow 10

Left Path - flow 11
Right Path - flow 12

Left Path - flow 13
Right Path - flow 14

Left Path - flow 15
Right Path - flow 16

Left Path - flow 17
Right Path - flow 18

Left Path - flow 19
Right Path - flow 20

Figure 7.10: Load Balancer A per-flow performance with 5% loss on the left path.

fairness to all TCP flows going through the load balancing network in the sense that

almost all TCP flows achieved similar throughput; whereas using load-balancer A,

the flows on the right path achieve much higher bandwidth than flows on the left

path. As a result, depending on the different characteristics of each path (loss rate)

and the virtual network users’ needs, the Network Creator might want to choose a

different kind of load-balancer to handle the load balancing task.

136



0

2

4

6

8

10

12

14

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (minute)

Throughput graph when the left path has a 5% loss rate. 
 Load Balancing based on average throughput

Left Total
Right Total

Figure 7.11: Load Balancer B per-flow performance with 5% loss on the left path.

0

2

4

6

8

10

12

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (minute)

Throughput graph when the left path has a 5% loss rate. 
 Load Balancing based on average throughput

Left Path - flow 1
Right Path - flow 2
Right Path - flow 3
Right Path - flow 4
Right Path - flow 5
Right Path - flow 6
Right Path - flow 7
Right Path - flow 8
Right Path - flow 9

Right Path - flow 10
Right Path - flow 11
Right Path - flow 12
Right Path - flow 13
Right Path - flow 14
Right Path - flow 15
Right Path - flow 16
Right Path - flow 17
Right Path - flow 18
Right Path - flow 19
Right Path - flow 20

Figure 7.12: Load Balancer B per-flow performance with 5% loss on the left path.

137



Chapter 8

Conclusion and Future Work

In this thesis, we introduce the concept of a HyperNet. Modeled after a virtual

appliance, a HyperNet is a software package that contains all the necessary pieces

needed to create a special-purpose virtual network, including topology specifications,

protocol stacks, software packages, configuration files, and runtime scripts, so that

all that one needs to do to deploy a virtual network is to download a HyperNet from

the HyperNet market and “run” it. The HyperNet abstraction makes it possible

(and extremely easy) for an average user to create a virtual network, which otherwise

would be a challenging and labor-intensive task even for a network expert.

We introduce a HyperNet Architecture that supports the HyperNet abstraction.

We also define the concept of a Virtual Network Infrastructure Provider (VNIP) which

provides virtual networking resources to users for a fee. We describe our assumptions

about VNIPs and the common set of services provided by VNIPs. We also show

how these services map onto the services provided by today’s existing virtual network

testbed providers (e.g., GENI).

At the heart of the HyperNet architecture is the Network Hypervisor, which

provides the platform for HyperNets to run on. The Network Hypervisor acts as the

broker between HyperNet users (i.e., Network Creators and HyperNet Participants)

and VNIPs. The Network Hypervisor talks to VNIPs on behalf of HyperNet users

with different VNIPs to reserve resources, and it glues the resources together to form

138



a virtual network that might span multiple VNIPs. The Network Hypervisor provides

a set of Hypervisor API calls that HyperNet Builders can use to build a wide range

of HyperNets.

To demonstrate our design, we implement a Network Hypervisor using GENI

as the underlying VNIP. The Network Hypervisor contains multiple components

that help (1) maintain an up-to-date resource information of the underlying VNIPs,

(2) locate network nodes, including end systems (i.e., HyperNet Participants), (3)

calculate paths between network nodes, and (4) support the Network Hypervisor

APIs. Our implementation is extensible in the sense that any third party developer

can contribute by implementing “HyperNet Libraries” based on the provided Network

Hypervisor APIs. We implement a “HyperNet Topology Library” as well as a

“HyperNet Routing Library” to ease the task of creating virtual networks having

common shape and to automatically manage the routing tables of the nodes in a

virtual network. Experimental results show that the Network Hypervisor is able to

quickly create a virtual network topology and can scale as the number of HyperNets

increases, particularly since the Network Hypervisor can be parallelized.

To showcase the power of the HyperNet architecture, we created four HyperNet

examples. Performance results show that each of the virtual networks provides

functionality not present in the current Internet or out-performs what the Internet

can offer. The Multicast HyperNet enables the user to create a multicast network

over the Internet and thus effectively use the network bandwidth via multicasting.

The MobileNet example enables a mobile user to achieve 50Mbps throughput with up

to 5% network loss rate. The Multiplayer Gaming HyperNet drastically shortens the

average RTT from game players to the centralized game server. The OpenFlow Load

Balancing HyperNet enables the user to create multiple paths between source and

destination and to intelligently load balance network traffic going through each path

based on the network condition of each path. The point is not that these special-

139



purpose networks are particularly novel or new, but rather that they can be created

with the HyperNet architecture, and that they can be easily created and deployed.

With the help of the Network Hypervisor APIs and the HyperNet Libraries that we

implemented, it only takes around 200 lines of Java code to implement each of the

HyperNet examples. More importantly, to deploy any of those virtual networks, one

only needs to download the HyperNet Package and execute it.

8.1 Future Work

Our HyperNet system shows great promise as a way to deploy and manage special-

purpose virtual networks, but there remain aspects of the architecture that need

additional study.

The following outlines next steps that would help to bring about a complete

HyperNet architecture:

Devise a business model for the HyperNet architecture

The emergence of VNIP providers will definitely break the current business

model used by existing ISPs. A thorough mechanism/model for how VNIPs

charge Hypervisors, which in turn charge HyperNet users, needs to be designed.

It is also possible for network creators to offer their specialized virtual networks

for a fee to the HyperNet participants. New models that monitor networking

resource usage need to be designed so as to properly charge all types of users

in the HyperNet architecture.

Incorporate an “update” API call in the Network Hypervisor

Dynamic joining and leaving of participants may lead to the need to update the

virtual topology, or a Network Creator might want to renegotiate an allocation.

An updateTopo() API call should be provided by the Network Hypervisor. This

API call should be implemented such that an “update” operation on the virtual

140



network interferes as little as possible with the communication between existing

participants. VNIPs might allow network updates and implement it efficiently.

GENI actually provides very limited support for an “update” operation on an

existing slice.

We believe the HyperNet Package has information about the current virtual

network and will know if it is safe to update the network. Consequently, it

can be designed to apply non-interfering changes to the network (e.g., updating

routing table entries as little as possible) upon the addition or removal of a new

programmable router or a new virtual link.

Runtime control for the network creator

Although the HyperNet abstraction was designed for an average user to create

special-purpose virtual networks with no or trivial effort (e.g., modifying a

simple HyperNet configuration file), in this thesis we did not explore any

runtime interactions between the HyperNet package and the network creator

after a virtual network is created. Advanced network creators might want to

manually interact with the virtual network. For example, they might want

to assign HyperNet-specific addresses to individual participants, or to manage

participants’ memberships (e.g., assigning “managers” who can add/remove

participants), or to pause/stop/restart/save/restore a virtual network. Ad-

ditional Network Hypervisor API calls need to be designed to support such

functionalities. A Network Creator is an average user, so a GUI running on

the Network Creator’s end system or a web interface provided by the Network

Hypervisor could provide a helpful, easy-to-use, interface for a network creator

to control the network at runtime.

QoS Support

Although the most important contribution of HyperNets is that it enables

141



ordinary users to run their own special-purpose virtual networks, many of

the envisioned HyperNets will need QoS support to be useful. As a result,

to make HyperNets more attractive, the Network Hypervisor should offer the

ability to provision resources to ensure they can meet the desired performance

requirements. The API used by the HyperNet Builder might specify QoS

requirements on a per-tunnel or overall basis, and if the VNIP does not support

such provisioning, there must be a standard fallback technique. Either granted

by the underlying VNIP or by the Network Hypervisor, new models and

algorithms are needed to offer QoS support.

Robust Fault Handling

Any robust system must be designed to deal with failures. The same holds

true for the HyperNet architecture. In our architecture, failures may happen

in a VNIP (e.g., a physical node/virtual node fails, a physical link breaks, or a

virtual link disconnects), in a Network Hypervisor, in a HyperNet participant

(e.g., a participant accidentally loses connection with its assigned attachment

point and wants to reconnect to the network). For some of the failures, the

HyperNet architecture might be able to automatically and seamlessly recover

from them without being noticed by the users. For example, a VNIP may

implement mechanisms to migrate a failed virtual router to a nearby healthy

programmable router while maintaining all the running states of the previous

router at the moment of failure. Similarly, the hypervisor “cloud” might include

features/mechanisms to automatically “redirect” users’ requests to healthy

nearby hypervisor instances in the case of a hypervisor instance failure.

Security

Security is not covered in this thesis, but mechanisms to deal with potential

security threats in the HyperNet architecture need to be designed to ensure a

142



healthy system welcomed by the users. Since anyone can download any number

of HyperNet Packages and deploy them into HyperNet networks, the Network

Hypervisor might implement mechanisms to prevent a Network Creator from

consuming all VNIP resources from other Network Creators. Moreover, since

the same HyperNet Package can be downloaded by potentially a large number

of Network Creators and be deployed into many HyperNet networks, a certain

trust relationship needs to be built between a HyperNet Builder and the

HyperNet Market (or certain security check mechanisms need to be built in the

HyperNet Market platform) to make sure that a maliciously built HyperNet

Package can not be uploaded by a HyperNet Builder (and hence will not be

downloaded and deployed by a Network Creator).

143



Bibliography

[1] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella,
D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste, “XIA: An
Architecture for an Evolvable and Trustworthy Internet,” in Proceedings of the
10th ACM Workshop on Hot Topics in Networks, ser. HotNets-X. New York,
NY, USA: ACM, 2011, pp. 2:1–2:6. [Online]. Available: http://doi.acm.org/10.
1145/2070562.2070564

[2] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine, and
A. Nagurney, “Choice as A Principle in Network Architecture,” SIGCOMM
Comput. Commun. Rev., pp. 105–106, Aug. 2012.

[3] F. Bronzino, K. Nagaraja, I. Seskar, and D. Raychaudhuri, “Network Service
Abstractions for a Mobility-centric Future Internet Architecture,” in Proceedings
of the Eighth ACM International Workshop on Mobility in the Evolving Internet
Architecture, ser. MobiArch ’13. New York, NY, USA: ACM, 2013, pp. 5–10.
[Online]. Available: http://doi.acm.org/10.1145/2505906.2505908

[4] J. Yang and Z. Fei, “Broadcasting with Prediction and Selective Forwarding
in Vehicular Networks,” International Journal of Distributed Sensor Networks,
2013.

[5] J. Yang and Z. Fei, “HDAR: Hole Detection and Adaptive Geographic Routing
for Ad Hoc Networks.” in ICCCN. IEEE, 2010, pp. 1–6. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icccn/icccn2010.html#YangF10a

[6] M. Boucadair, J.-L. Grimault, P. Levis, A. Villefranque, and P. Morand,
“Anticipate IPv4 Address Exhaustion: A Critical Challenge for Internet
Survival,” in Proceedings of the 2009 First International Conference on Evolving
Internet, ser. INTERNET ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 27–32. [Online]. Available: http://dx.doi.org/10.1109/INTERNET.
2009.11

[7] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “BGP Churn Evolution: a
Perspective from the Core,” IEEE/ACM Trans. Netw., vol. 20, no. 2, pp.
571–584, Apr. 2012. [Online]. Available: http://dx.doi.org/10.1109/TNET.2011.
2168610

[8] T. G. Griffin and G. Wilfong, “An Analysis of BGP Convergence Properties,”
in Proceedings of the conference on Applications, technologies, architectures,

144

http://doi.acm.org/10.1145/2070562.2070564
http://doi.acm.org/10.1145/2070562.2070564
http://doi.acm.org/10.1145/2505906.2505908
http://dblp.uni-trier.de/db/conf/icccn/icccn2010.html#YangF10a
http://dx.doi.org/10.1109/INTERNET.2009.11
http://dx.doi.org/10.1109/INTERNET.2009.11
http://dx.doi.org/10.1109/TNET.2011.2168610
http://dx.doi.org/10.1109/TNET.2011.2168610


and protocols for computer communication, ser. SIGCOMM ’99. New York,
NY, USA: ACM, 1999, pp. 277–288. [Online]. Available: http://doi.acm.org/10.
1145/316188.316231

[9] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
Misconfiguration,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 3–16,
Aug. 2002. [Online]. Available: http://doi.acm.org/10.1145/964725.633027

[10] P. Zhang, A. Durresi, and L. Barolli, “A Survey of Internet Mobility,” in
Proceedings of the 2009 International Conference on Network-Based Information
Systems, ser. NBIS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 147–154. [Online]. Available: http://dx.doi.org/10.1109/NBiS.2009.94

[11] S. P. Leblanc, A. Partington, I. Chapman, and M. Bernier, “An Overview of
Cyber Attack and Computer Network Operations Simulation,” in Proceedings of
the 2011 Military Modeling & Simulation Symposium, ser. MMS ’11. San Diego,
CA, USA: Society for Computer Simulation International, 2011, pp. 92–100.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2048558.2048572

[12] M. Nicholes and B. Mukherjee, “A Survey of Security Techniques for The
Border Gateway Protocol (BGP),” Commun. Surveys Tuts., vol. 11, no. 1, pp.
52–65, Jan. 2009. [Online]. Available: http://dx.doi.org/10.1109/SURV.2009.
090105

[13] A. D. Keromytis, “Voice-over-IP Security: Research and Practice,” IEEE
Security and Privacy, vol. 8, no. 2, pp. 76–78, Mar. 2010. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2010.87

[14] S. Furnell, “Remote PC Security: Securing The Home Worker,” Netw. Secur.,
vol. 2006, no. 11, pp. 6–12, Nov. 2006. [Online]. Available: http://dx.doi.org/
10.1016/S1353-4858(06)70451-2

[15] P. Szewczyk and C. Valli, “Ignorant Experts: Computer and Network Security
Support from Internet Service Providers,” in Proceedings of the 2010 Fourth
International Conference on Network and System Security, ser. NSS ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 323–327. [Online].
Available: http://dx.doi.org/10.1109/NSS.2010.42

[16] A. Feldmann, “Internet Clean-Slate Design: What and Why?” SIGCOMM
Comput. Commun. Rev., vol. 37, pp. 59–64, July 2007. [Online]. Available:
http://doi.acm.org/10.1145/1273445.1273453

[17] C. Dovrolis, “What would Darwin Think about Clean-Slate Architectures?”
SIGCOMM Comput. Commun. Rev., vol. 38, pp. 29–34, January 2008. [Online].
Available: http://doi.acm.org/10.1145/1341431.1341436

[18] Virtual Appliance. [Online]. Available: http://en.wikipedia.org/wiki/Virtual
appliance

[19] Planetlab. [Online]. Available: http://www.planet-lab.org/

145

http://doi.acm.org/10.1145/316188.316231
http://doi.acm.org/10.1145/316188.316231
http://doi.acm.org/10.1145/964725.633027
http://dx.doi.org/10.1109/NBiS.2009.94
http://dl.acm.org/citation.cfm?id=2048558.2048572
http://dx.doi.org/10.1109/SURV.2009.090105
http://dx.doi.org/10.1109/SURV.2009.090105
http://dx.doi.org/10.1109/MSP.2010.87
http://dx.doi.org/10.1016/S1353-4858(06)70451-2
http://dx.doi.org/10.1016/S1353-4858(06)70451-2
http://dx.doi.org/10.1109/NSS.2010.42
http://doi.acm.org/10.1145/1273445.1273453
http://doi.acm.org/10.1145/1341431.1341436
http://en.wikipedia.org/wiki/Virtual_appliance
http://en.wikipedia.org/wiki/Virtual_appliance
http://www.planet-lab.org/


[20] L. Peterson, V. Pai, N. Spring, and A. Bavier, “Using PlanetLab for Network
Research: Myths, Realities, and Best Practices,” PlanetLab Consortium, Tech.
Rep. PDN–05–028, June 2005.

[21] W. D. Laverell, Z. Fei, and J. N. Griffioen, “Isn’t it Time You Had an Emulab?”
in Proceedings of the 39th SIGCSE technical symposium on Computer science
education, ser. SIGCSE ’08. New York, NY, USA: ACM, 2008, pp. 246–250.
[Online]. Available: http://doi.acm.org/10.1145/1352135.1352223

[22] Virtual LAN. [Online]. Available: http://en.wikipedia.org/wiki/Virtual LAN

[23] GENI, “Global Environment for Network Innovations - System Requirements
Document,” 2009. [Online]. Available: http://groups.geni.net/geni/wiki/
GpoDoc

[24] L. Peterson, S. Sevinc, J. Lepreau, R. Ricci, J. Wroclawski, T. Faber, S. Schwab,
and S. Baker, “Slice-Based Facility Architecture,” 2009. [Online]. Available:
http://www.cs.princeton.edu/∼llp/arch abridged.pdf

[25] GENI. (2009) GENI Research Plan. [Online]. Available: http://groups.geni.
net/geni/attachment/wiki/OldGPGDesignDocuments/GDD-06-28.pdf

[26] Juniper, “Juniper M7I Router.” [Online]. Available: http://www.juniper.net/
customers/support/products/m7i.jsp

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[28] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic Routing
Encapsulation (GRE),” RFC 2784 (Proposed Standard), Internet Engineering
Task Force, Mar. 2000, updated by RFC 2890. [Online]. Available: http://www.
ietf.org/rfc/rfc2784.txt

[29] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching
Architecture,” RFC 3031 (Proposed Standard), Internet Engineering Task
Force, Jan. 2001, updated by RFC 6178. [Online]. Available: http://www.ietf.
org/rfc/rfc3031.txt

[30] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol Independent
Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised),” RFC
4601 (Proposed Standard), Internet Engineering Task Force, Aug. 2006,
updated by RFCs 5059, 5796, 6226. [Online]. Available: http://www.ietf.org/
rfc/rfc4601.txt

[31] G. Peng, “CDN: Content Distribution Network,” Tech. Rep., 2003.

[32] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
Comparison of Mechanisms for Improving TCP Performance over Wireless
Links,” IEEE/ACM TRANSACTIONS ON NETWORKING, vol. 5, pp. 756–
769, 1997.

146

http://doi.acm.org/10.1145/1352135.1352223
http://en.wikipedia.org/wiki/Virtual_LAN
http://groups.geni.net/geni/wiki/GpoDoc
http://groups.geni.net/geni/wiki/GpoDoc
http://www.cs.princeton.edu/~llp/arch_abridged.pdf‎
http://groups.geni.net/geni/attachment/wiki/OldGPGDesignDocuments/GDD-06-28.pdf
http://groups.geni.net/geni/attachment/wiki/OldGPGDesignDocuments/GDD-06-28.pdf
http://www.juniper.net/customers/support/products/m7i.jsp
http://www.juniper.net/customers/support/products/m7i.jsp
http://www.ietf.org/rfc/rfc2784.txt
http://www.ietf.org/rfc/rfc2784.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc4601.txt
http://www.ietf.org/rfc/rfc4601.txt


[33] Linux VServer. [Online]. Available: http://linux-vserver.org/Welcome to
Linux-VServer.org

[34] OpenVZ Linux Containers. [Online]. Available: http://openvz.org/Main Page

[35] Linux Containers. [Online]. Available: http://linuxcontainers.org/

[36] Parallels Desktop. [Online]. Available: http://www.parallels.com/

[37] Microsoft. Windows Virtual PC. [Online]. Available: http://www.microsoft.
com/en-us/download/details.aspx?id=3702

[38] Virtual Machine. [Online]. Available: http://en.wikipedia.org/wiki/Virtual
machine

[39] IBM. IBM ZOS. [Online]. Available: http://www-03.ibm.com/systems/z/os/
zos/

[40] Citrix. Citrix XenServer. [Online]. Available: http://www.citrix.com/products/
xenserver/overview.html

[41] VMware. VMware ESX Hypervisor Architecture. [Online]. Available: http://
www.vmware.com/products/esxi-and-esx/overview.html

[42] VMware Workstation. [Online]. Available: http://www.vmware.com/products/
workstation/

[43] Oracle. Oracle VirtualBox. [Online]. Available: https://www.virtualbox.org/

[44] Kernel-based Virtual Machine. [Online]. Available: http://www.linux-kvm.org/
page/Main Page

[45] FreeBSD Jails. [Online]. Available: https://wiki.freebsd.org/Jails

[46] Drupal Virtual Appliance. [Online]. Available: http://www.turnkeylinux.org/
drupal7

[47] AberdeenGroup. (2009) Business Adoption of Cloud Comput-
ing. [Online]. Available: http://aberdeen.com/aberdeen-library/6220/
RA-cloud-computing-sustainability.aspx

[48] Google Documents. [Online]. Available: http://docs.google.com

[49] Google App Engine. [Online]. Available: http://code.google.com/appengine/

[50] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2/

[51] OpsCode. (2013) Chef. [Online]. Available: http://www.opscode.com/chef/

[52] “ProtoGENI Network Testbed.” [Online]. Available: http://www.protogeni.
net/trac/protogeni

147

http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://openvz.org/Main_Page
http://linuxcontainers.org/
http://www.parallels.com/
http://www.microsoft.com/en-us/download/details.aspx?id=3702
http://www.microsoft.com/en-us/download/details.aspx?id=3702
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine
http://www-03.ibm.com/systems/z/os/zos/
http://www-03.ibm.com/systems/z/os/zos/
http://www.citrix.com/products/xenserver/overview.html
http://www.citrix.com/products/xenserver/overview.html
http://www.vmware.com/products/esxi-and-esx/overview.html
http://www.vmware.com/products/esxi-and-esx/overview.html
http://www.vmware.com/products/workstation/
http://www.vmware.com/products/workstation/
https://www.virtualbox.org/
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
https://wiki.freebsd.org/Jails
http://www.turnkeylinux.org/drupal7
http://www.turnkeylinux.org/drupal7
http://aberdeen.com/aberdeen-library/6220/RA-cloud-computing-sustainability.aspx
http://aberdeen.com/aberdeen-library/6220/RA-cloud-computing-sustainability.aspx
http://docs.google.com
http://code.google.com/appengine/
http://aws.amazon.com/ec2/
http://www.opscode.com/chef/
http://www.protogeni.net/trac/protogeni
http://www.protogeni.net/trac/protogeni


[53] I. Baldine and J. Chase, “Deploying a Vertically Integrated GENI “Island”:
A Prototype GENI Control Plane (ORCA) for a Metro-Scale Optical Testbed
(BEN),” http://groups.geni.net/geni/wiki/ORCABEN.

[54] GENI-ORBIT. [Online]. Available: http://groups.geni.net/geni/wiki/ORBIT

[55] GENI Flack Web Interface. [Online]. Available: http://www.protogeni.net/
ProtoGeni/wiki/FlackTutorial

[56] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” SIGCOMM, 2008.

[57] ORCA-Flukes. [Online]. Available: https://geni-orca.renci.org/trac/wiki/flukes

[58] J. Albrecht, C. Tuttle, R. Braud, D. Dao, N. Topilski, A. C. Snoeren,
and A. Vahdat, “Distributed application configuration, management, and
visualization with plush,” ACM Trans. Internet Technol., vol. 11, no. 2, pp.
6:1–6:41, Dec. 2011. [Online]. Available: http://doi.acm.org/10.1145/2049656.
2049658

[59] Planetlab Experiment Manager. [Online]. Available: http://research.cs.
washington.edu/networking/cplane/

[60] Planetlab Application Manager. [Online]. Available: http://appmanager.
berkeley.intel-research.net/

[61] J. Albrecht and D. Y. Huang, “Managing Distributed Applications using Gush,”
2010.

[62] J. Hartman and S. Baker, “Raven Provisioning Tool.” [Online]. Available:
http://groups.geni.net/geni/wiki/ProvisioningService

[63] Stork Installation Utility. [Online]. Available: http://www.cs.arizona.edu/
stork/

[64] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse, “ANTS: A Toolkit
for Building and Dynamically Deploying Network Protocols,” in IEEE OPE-
NARCH, 1998.

[65] S. R. Srinivasan, J. W. Lee, E. Liu, M. Kester, H. Schulzrinne, V. Hilt,
S. Seetharaman, and A. Khan, “NetServ: Dynamically Deploying In-Network
Services,” in Proceedings of the 2009 workshop on Re-architecting the internet,
ser. ReArch ’09. New York, NY, USA: ACM, 2009, pp. 37–42. [Online].
Available: http://doi.acm.org/10.1145/1658978.1658988

[66] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The Click Modular
Router,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 217–231, 1999.

[67] OSGi Technology. [Online]. Available: http://www.osgi.org/

148

http://groups.geni.net/geni/wiki/ORBIT
http://www.protogeni.net/ProtoGeni/wiki/FlackTutorial
http://www.protogeni.net/ProtoGeni/wiki/FlackTutorial
https://geni-orca.renci.org/trac/wiki/flukes
http://doi.acm.org/10.1145/2049656.2049658
http://doi.acm.org/10.1145/2049656.2049658
http://research.cs.washington.edu/networking/cplane/
http://research.cs.washington.edu/networking/cplane/
http://appmanager.berkeley.intel-research.net/
http://appmanager.berkeley.intel-research.net/
http://groups.geni.net/geni/wiki/ProvisioningService
http://www.cs.arizona.edu/stork/
http://www.cs.arizona.edu/stork/
http://doi.acm.org/10.1145/1658978.1658988
http://www.osgi.org/


[68] T. Wolf, “Service-Centric End-to-End Abstractions in Next-Generation Net-
works,” in Proc. of Fifteenth IEEE International Conference on Computer
Communications and Networks (ICCCN), Arlington, VA, Oct. 2006, pp. 79–86.

[69] S. Ganapathy and T. Wolf, “Design of a Network Service Architecture,” in Proc.
of Sixteenth IEEE International Conference on Computer Communications and
Networks (ICCCN), Honolulu, HI, Aug. 2007.

[70] N. C. Hutchinson and L. L. Peterson, “The x-Kernel: An Architecture for
Implementing Network Protocols,” IEEE Transactions on Software Engineering,
vol. 17, pp. 64–76, 1991.

[71] K. Calvert, “Beyond Layering: Modularity Considerations for Protocol Archi-
tectures,” International conference on network protocols, pp. 90–97, 1993.

[72] R. Clayton and K. Calvert, “Structuring Protocols with Data Streams,” Second
Workshop on High-Performance Protocol Architectures, 1995.

[73] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The SILO
Architecture for Services Integration, Control, and Optimization for the Future
Internet,” in IEEE ICC, 2007, pp. 24–27.

[74] M. Vellala, A. Wang, G. Rouskas, R. Dutta, I. Baldine, and D. Stevenson,
“A Composition Algorithm for the SILO Cross-Layer Optimization Service
Architecture,” Proceedings of the Advanced Networks and Telecommunications
Systems Conference (ANTS 2007), 2007.

[75] I. Houidi, W. Louati, D. Zeghlache, and S. Baucke, “Virtual Resource Description
and Clustering for Virtual Network Discovery,” Communications Workshops,
2009. ICC Workshops 2009. IEEE International Conference on, pp. 1 –6, jun.
2009.

[76] “GENI AM API.” [Online]. Available: http://groups.geni.net/geni/wiki/GAPI
AM API V3

[77] VMware, “Vmware Virtual Appliances,” http://www.vmware.com/appliances/.

[78] MPEG Video Standards. [Online]. Available: http://mpeg.chiariglione.org/

[79] L. Krishnamurthy, “AQUA: An Adaptive Quality of Service
Architecture for Distributed Multimedia Applications,” 1997. [On-
line]. Available: http://search.proquest.com/pqdtft/docview/304385403/
14229056CF46A5EE93F/1?accountid=11836

[80] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Green-
halgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy, “Network Virtualiza-
tion Architecture: Proposal and Initial Prototype,” in VISA ’09: Proceedings of
the 1st ACM workshop on Virtualized infrastructure systems and architectures.
New York, NY, USA: ACM, 2009, pp. 63–72.

149

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3
http://mpeg.chiariglione.org/
http://search.proquest.com/pqdtft/docview/304385403/14229056CF46A5EE93F/1?accountid=11836
http://search.proquest.com/pqdtft/docview/304385403/14229056CF46A5EE93F/1?accountid=11836


[81] Y. Breitbart, C.-Y. Chan, M. Garofalakis, R. Rastogi, and A. Silberschatz,
“Efficiently Monitoring Bandwidth and Latency in IP Networks,” in In Proc.
IEEE Infocom, 2001, pp. 933–942.

[82] Protocol-Independent Multicast Daemon. [Online]. Available: http://manpages.
ubuntu.com/manpages/maverick/en/man1/pimd.1.html

[83] TUN/TAP Interface. [Online]. Available: http://en.wikipedia.org/wiki/TUN/
TAP

[84] InstaGENI Network Testbed. [Online]. Available: http://groups.geni.net/geni/
wiki/INSTAGENI

[85] HyperNet Source Code and Builder Manual. [Online]. Available: http://
protocols.netlab.uky.edu/∼shufeng/pvn/

[86] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
Comparison of Mechanisms for Improving TCP Performance over Wireless
Links,” IEEE/ACM TRANSACTIONS ON NETWORKING, vol. 5, pp. 756–
769, 1997.

[87] R. Jain and T. J. Ott, “Design and Implementation of Split TCP in the
Linux Kernel,” in GLOBECOM. IEEE, 2006. [Online]. Available: http://dblp.
uni-trier.de/db/conf/globecom/globecom2006nxg.html#JainO06

[88] The GNU Netcat. [Online]. Available: http://netcat.sourceforge.net/

[89] OpenArena Online Shooting Game. [Online]. Available: http://openarena.ws/
smfnews.php

[90] The Iperf Network Measuring Tool. [Online]. Available: http://iperf.sourceforge.
net/

150

http://manpages.ubuntu.com/manpages/maverick /en/man1/pimd.1.html
http://manpages.ubuntu.com/manpages/maverick /en/man1/pimd.1.html
http://en.wikipedia.org/wiki/TUN/TAP
http://en.wikipedia.org/wiki/TUN/TAP
http://groups.geni.net/geni/wiki/INSTAGENI
http://groups.geni.net/geni/wiki/INSTAGENI
http://protocols.netlab.uky.edu/~shufeng/pvn/
http://protocols.netlab.uky.edu/~shufeng/pvn/
http://dblp.uni-trier.de/db/conf/globecom/globecom2006nxg.html#JainO06
http://dblp.uni-trier.de/db/conf/globecom/globecom2006nxg.html#JainO06
http://netcat.sourceforge.net/
http://openarena.ws/smfnews.php
http://openarena.ws/smfnews.php
http://iperf.sourceforge.net/
http://iperf.sourceforge.net/


Vita

Shufeng Huang

• Education

– B.S. in Computer Science, Beijing Normal University, Beijing, China, 2006

• Research Experience

– Designed and implemented a toolkit called “switchspider” that traverses
a network of connected switches and fetches information about IP phones
using SNMP and CISCO MIB, combined with info fetched from Cisco’s
CUCM server (via XML-RPC), providing an integrated information base
for University of Kentucky’s VoIP Phone users.

– Research Assistant, 2007 – 2013, Department of Computer Science,
University of Kentucky

∗ Worked in VOEIS project, co-designed and implemented and IOS app
and a “dataspoke” system that fetches streaming data from buoys
which monitor the environmental variable changes for Kentucky Lake
and Flathead Lake in Montana.

∗ Worked in PoMo project, co-designed and implemented the forwarding
plane as well as the E2L (EID to Locator) service for the PoMo
network.

∗ Worked in the Treasury Project, designed and implemented a new
Remote Backup system with “tracker” in Linux Kernel using RB trees.
Co-designed and implemented a Reliable FEC transport protocol that
aims to minimize per-packet delay.

– Intern at Raytheon BBN Technologies, 2013 summer, Boston

∗ Build the “Network Hypervisor” platform that facilitates the creation
and deployment of virtual networks on GENI (an extension of my
thesis work).

∗ Created advanced OpenFlow tutorials on building a load balancer and
a firewall using Trema.

∗ Created advanced Content-Centric Network (CCN) tutorials on ex-
ploring features of CCN networks, using CCNX toolkit.

∗ Created advanced TCP tutorials on experimenting with the perfor-
mance of different TCP congestion control algorithms.

151



– Intern at RockTech, 2005 summer, Beijing, China

∗ Implemented a Demo website displaying SICAD-generated maps using
JSP

– Implemented Reed-Solomon algorithm as one of the error correction library
in the “sky-fix stone” disk recovery toolkit for Convoy Data Technologies
Co. Ltd., Beijing, China

• Publications

– S. Huang, J. Griffioen and K. Calvert, “Network Hypervisors: Enhancing
SDN Infrastructure”, invited paper in COMCOM Journal, 2014

– S. Huang and J. Griffioen, “Network Hypervisors: Managing the Emerging
SDN Chaos”, 22nd International Conference on Computer Communica-
tions and Networks, 2013

– S. Huang and J. Griffioen, “HyperNet Games: Leveraging SDN Networks
to Improve Multiplayer Online Games”, 18th International Conference on
Computer Games, 2013

– S. Huang, J. Griffioen and K. Calvert, “Fast-tracking GENI Experiments
using HyperNets”, 2nd GENI Research and Educational Experience
Workshop (GREE), 2013

– S. Huang J. Griffioen and K. Calvert, “PVNs: Making Virtual Network
Infrastructure Usable”, Proceedings of the 8th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, 2012

– S. Huang, “Supporting Delay-intolerant Applications”, Poster Proceedings
of the 2008 ACM CoNEXT Conference, 2008

Shufeng Huang

152


	A HyperNet Architecture
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Virtualization
	1.1.1 Virtual Networks

	1.2 Building Virtual Networks
	1.2.1 Specifying the Network
	1.2.2 Supporting New Functionality

	1.3 The HyperNet Approach
	1.4 Example HyperNet Packages
	1.5 Contributions of the Thesis

	2 Related Work
	2.1 Virtualization Technology
	2.1.1 Hypervisors and Virtual Machines
	2.1.2 Virtual Appliances
	2.1.3 From Virtual Machines to Virtual Infrastructure
	2.1.4 Other Virtualization Approaches
	2.1.5 Cloud Services
	2.1.6 Deploying Cloud Services

	2.2 Virtual Networks
	2.2.1 ProtoGENI
	2.2.2 ORCA
	2.2.3 PlanetLab

	2.3 Programmable Network Infrastructure
	2.3.1 Active Networks
	2.3.2 NetServ
	2.3.3 Service-Centric Networks
	2.3.4 OpenFlow

	2.4 Composable Network Stacks
	2.4.1 X-Kernel Protocol Stacks
	2.4.2 Tau protocols
	2.4.3 The SILO Project

	2.5 Summary

	3 Virtual Network Infrastructure Providers (VNIPs)
	3.1 Assumptions about VNIPs
	3.2 Basic VNIP Services
	3.3 VNIP API

	4 HyperNet Packages
	4.1 The HyperNet Abstraction
	4.2 Establishing Context
	4.3 The HyperNet Architecture
	4.4 The HyperNet Usage Model
	4.5 HyperNet Roles

	5 The Network Hypervisor
	5.1 Building a Virtual Network
	5.1.1 Step 1: Specify Participants
	5.1.2 Step 2: Identify Attachment Points
	5.1.3 Step 3: Define the Topology
	5.1.4 Step 4: Load Software on Nodes
	5.1.5 Step 5: Deploy and Start the Virtual Network
	5.1.6 Step 6: Monitor the HyperNet network

	5.2 Discovering/Defining the Topology
	5.2.1 Attachment Point View
	5.2.2 Key Resource View
	5.2.3 Detailed Topology View

	5.3 The Design of a Network Hypervisor
	5.3.1 VNIP Handlers
	5.3.2 Network Hypervisor API Calls
	5.3.3 The HyperNet Library

	5.4 Configuring HyperNet Packages
	5.5 HyperNet Participants
	5.5.1 Joining a HyperNet
	5.5.1.1 Voluntary Join
	5.5.1.2 Involuntary Join

	5.5.2 Participant Usage Models
	5.5.2.1 Model 1: Specialized End System Applications
	5.5.2.2 Model 2: Virtual Application Gateways
	5.5.2.3 Model 3: IP-in-IP Tunnels
	5.5.2.4 Model 4: Virtual Appliances


	5.6 HyperNet DNS Systems
	5.7 Scalability of the Network Hypervisor

	6 A Prototype Implementation
	6.1 The Information Base
	6.2 The Location Manager
	6.3 The Topology Server/Routing Server (TS/RS)
	6.3.1 Finding a Central Node

	6.4 Random Topology Generator
	6.5 Hypervisor Performance
	6.5.1 Experimental Context
	6.5.2 Build Time
	6.5.3 HyperNet Deployment Time
	6.5.4 Concurrency Test


	7 Example HyperNet Packages
	7.1 A Multicast HyperNet
	7.1.1 Multicast Results

	7.2 A MobileNet HyperNet
	7.2.1 MobileNet Results

	7.3 A Multiplayer Gaming HyperNet
	7.3.1 Multiplayer Game Results

	7.4 An OpenFlow Load-balancing HyperNet
	7.4.1 Load Balancing Results


	8 Conclusion and Future Work
	8.1 Future Work

	Bibliography
	Vita

