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Conditional preference networks (CP-nets) exploit the power of ceteris paribus rules to
represent preferences over combinatorial decision domains compactly. CP-nets have much
appeal. However, their study has not yet advanced sufficiently for their widespread use
in real-world applications. Known algorithms for deciding dominance—whether one out-
come is better than another with respect to a CP-net—require exponential time. Data for
CP-nets are difficult to obtain: human subjects data over combinatorial domains are not
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I address such limitations to make CP-nets more useful. I show how: to generate CP-nets
uniformly randomly; to limit search depth in dominance testing given expectations about
sets of CP-nets; and to use local search for learning restricted classes of CP-nets from
choice data.
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Chapter 1 Introduction

This dissertation involves models of computational preferences in the field of artificial

intelligence—in particular, a class of models known as conditional preference networks

(CP-nets). Increasingly, through advances in artificial intelligence, we entrust the details

of our lives to machines. In the near future it seems likely that autonomous vehicles will

deliver our packages and chauffeur us. Smart homes and other assistive technologies will

provide for the elderly, the disabled, and the young, as well as many of us who are usu-

ally quite capable of caring for ourselves, but who nevertheless prefer not to do our own

cooking, cleaning, and maintenance. Already, various mobile applications are helping plan

our schedules, suggesting activities, and influencing our decisions and social interactions

on a wide scale through such innovations as recommender systems and AI-based decision

support systems.

Of course, there is more than one way that such a future could play out. Dystopian

science fiction novels and films continually remind us that this could all be a Faustian

bargain. Already, many of us wonder if our smart phones, fitness bands, and various other

clanging, buzzing devices have in fact changed our lives for the better. On the other hand,

one can envision a more promising future, in which disabled people can participate in

society more equitably and in which all of us can focus our energies on the pursuits and

relationships that we value most, leaving the frustrating drudgery to machines.

For this second, brighter future to be possible, the machines must have some way of

knowing what we want. Suppose I step into my autonomous vehicle in a few years. What

type of route do I prefer, the scenic route or one that is more direct? Would my answer

always be the same? Presumably, it would sometimes differ depending on various con-

ditions. If my schedule that day were busy, I may prefer the more direct route. On the

other hand, if the car were taking care of the driving, perhaps a more peaceful route would
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allow me complete my presentation, or at least arrive at my destination less harried, more

prepared to meet the challenges at hand.

Computational models such as CP-nets provide a way to represent such preferences.

A machine can then use such a representation—a mathematical model—to reason about

what I would prefer under various circumstances. The machine could then recommend

alternatives to me, or even act as my proxy, making decisions on my behalf. I’m sorry

Tom. I’m afraid I can’t do that. Yes, the scenic route would be nice, but—don’t forget—you

have a class to teach! As we will see, CP-nets have much to offer. On the other hand,

matters involving computational complexity have thus far stymied the integration of CP-

net models and algorithms into actual applications. This thesis addresses some of those

problems so that machines of the near future can better understand our preferences and

adapt to us.

Section 1.1 offers a brief introduction to how one can go about modeling preferences

mathematically. Section 1.2 discusses the major computational problems that go along

with such models. Section 1.3 introduces our primary topic in this dissertation, conditional

preference networks. Section 1.4 discusses some of the challenges to the adoption of CP-

nets. An overview of subsequent chapters follows.

1.1 Preferences

Modeling, capturing, and reasoning with preferences is a fundamental topic that spans

artificial intelligence, including constraint programming [90], social choice [22], recom-

mendation systems [85], machine learning [38], and multi-agent systems [41]. Preferences

have also been studied in philosophy, economics, psychology, and other disciplines. Let us

consider two example applications that motivate our later discussions.

Example 1. Consider that a foodservice distributor has created a decision support system

for its salespersons. The system advises representatives on when to contact food service op-

erators, along with questions to ask, issues to address, and products to recommend. Among
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the many features of the system is one that tracks the preferences of each customer. What

items does the customer buy? When do they buy each item? Which items are purchased

together? If a particular item is not available, what else does that affect in the order? Such

data are mined to construct a profile that can support the activity of the sales representative

and increase the customer’s satisfaction. For example, the system may have learned that

when a certain pastry chef buys pecans, she also increases her order of brown sugar. It

may also have learned that she prefers a particular variety of pecans (Pawnee) to others

(e.g., Schley). Thus, if more brown sugar has been ordered than usual, the representative

may be prompted to ask about pecans and specifically to mention the Pawnee variety if

these are in stock.

Example 2. Next consider that a team of engineers has designed a home automation system

to provide support to persons of advanced age who wish to continue living independently.

The system enforces a set of (hard) constraints, such as that indoor temperature must be

within a range commensurate with human health and that rooms must be sufficiently well-

lit when the subject is moving through the house. Aside from these, however, the system

allows the subject maximal determination over his environment. That is, subject to con-

straints, control of the home is governed by the subject’s preferences. We expect that such

preferences will sometimes be conditional; for example, the subject may prefer to converse

by video with a friend on a particular night of the week, but play a favorite video game on

some other night.

Systems such as these require some way to model, learn, reason with, and perhaps ag-

gregate preferences. Preferences involve at least one subject, sometimes known as the user

or decision maker, and a set of objects O, known as candidates, outcomes, or alternatives,

depending on the context. Formal definitions will follow in Chapter 2, but for now, we

can say informally that a subject prefers the first object (o) to the second (o′) if the first

is “better” or makes her “happier” or “more satisfied” than the other in a given setting.

Symbolically, one can write this as o � o′. Such expressions of course also have a dual
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form, because we can just as easily say that the second object is “worse” or makes her less

happy, which one can write as o′ ≺ o.

1.1.1 Utility, Strict Preference, and Indifference

A common assumption in economics is that the subject associates with each object a real-

valued utility that depends on the value or happiness that the object provides. Under this

assumption, o � o′ suggests that the utility of the first object exceeds that of the second;

that is, u(o) > u(o′). A natural idea, then, would be to model this utility function u : O → R

explicitly—either the value of each object to the subject or, perhaps even better, what the

subject’s utilities should be if she had perfect information. In many settings, however, it

is difficult to assign numerical values even when the preference is apparent. Suppose a

subject would like to play the board game Monopoly with a friend. All things being equal,

she prefers to play this game with Sarah rather than Tamara. However, she may be unable

to quantify just how much she prefers Sarah to Tamara in this context. She may find it

difficult or discomfiting to assign values to her two friends. As observed in Section 1.2.2,

it is in fact possible to use utility functions to model preferences. Throughout most of

this work, however, preferences are modeled qualitatively, leaving the underlying utilities

implicit, something for economists to ponder.

Sometimes a subject may be equally happy with two objects. In that case, we say that

the subject is indifferent as to the two and write o ∼ o′. Note that this does not necessarily

imply that the two objects are the same (in which case one could write o = o′) or that he

is unable to distinguish the two. When a friend tells us that he is equally happy with fair

weather and snow, we do not generally assume that he is unable to distinguish the two.

On the other hand, if two objects really are the same, we will assume that the subject is

indifferent; i.e., o = o′ =⇒ o ∼ o′.

The possibility of indifference allows us to speak of weak preferences, in contrast to

those that are strict (or strong). For example, a subject may say that one object is “at
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least as good as” the second, which one can write, o % o′. In this case the subject may

either strictly prefer the first object (o � o′) or may be indifferent (o ∼ o′). Additional

information would be needed to determine which of these is the case. If we were to later

learn that the subject regards the second object as at least as good as the first (o′ % o), we

could then reason that the subject is indifferent as to the two objects, assuming the subject’s

preferences are expressed in a consistent way.

1.1.2 Incomparability, Incompleteness, and Missing Information

In some cases, a subject may find it impossible to compare two objects. When this occurs,

we refer to the two objects as incomparable and write o ‖ o′. Incomparability can occur

when two objects are vividly different or when some multicriteria decision is involved. For

example, if each of two candidates in a political election has one quality that a voter admires

and one quality she despises, she may find it difficult to compare the two. Incomparability

can also occur when the subject lacks information about the objects. For example, a diner

perusing a menu in some foreign language that he hardly understands may be unable to

compare various items on the menu. This does not mean, however, that he is equally happy

with all of the items. In other words, incomparability is not the same as indifference; it

simply means that the subject is unable to state a preference.

It is important, however, to distinguish a lack of information by the subject from the

lack of information of an observer, for example, an artificial agent1 that is assisting the

subject through recommendations [80]. Incomparability and missing information are thus

related, but not identical. If we, as an outside observer, know that the subject is unable to

compare two objects because the subject has a lack of information, then we may say that

the subject finds the two objects incomparable. However, if we simply do not know the

subject’s preferences, then we cannot say with any certainty that the subject finds the two

objects incomparable. He may prefer one to the other or be indifferent. This can occur
1In this work, except where otherwise noted, agent refers to an artificial intelligence application.
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when we have not yet asked the subject about his preferences, when he has declined to

reveal them to us because of a lack of trust, or when he simply has never thought about his

preference over this pair of objects. In such cases one may write o ? o′.

A related situation arises when the subject does in fact have a preference, but the model,

while consistent with that preference, does not include it in the representation. For example,

consider that a subject prefers o � o′, o � o′′, and o′ � o′′. Suppose further than we

model this preferences o � o′ ∧ o � o′′, but omit the relationship between o′ and o′′

from the model—perhaps out of a desire for a more succinct representation. Observe that,

mathematically, the model is a partially ordered set (poset) of objects, while the subject’s

true preferences are a linear extension of that poset (see Figure 1.1). In this case, then,

incomparability arises not from the subject herself, nor from the observer’s knowledge of

the subject, but from how the preferences are modeled.

o o′ o′′

(a) True preference

o o′ o′′

(b) Preference model

Figure 1.1: A Subject’s Preference Order and a Model Consistent with that Order

Thus, in discussions about preferences, incompleteness has different meanings. How-

ever, it also has an unambiguous mathematical meaning: We say that a preference relation

is incomplete if any two objects in the set are incomparable; otherwise, the relation is com-

plete. Most often in this work, we will reserve the words complete and incomplete for

situations where we have in mind the mathematical concept.

1.1.3 Transitivity and Inconsistent Preferences

Ordinarily we regard preferences as transitive. That is, if there are three objects, and the

subject prefers the first to the second and the second to the third, then we can infer that the

subject also prefers the first to the third, even if we have not asked her explicitly to compare
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these two objects directly. That is, we say that o � o′ ∧ o′ � o′′ =⇒ o � o′′, and may

write o � o′ � o′′ to emphasize this. Moreover, if transitivity is violated—if a subject tells

us that he strictly prefers the first object to the second, the second to the third, and the third

to the first—we say that the subject’s preferences contain a cycle (see Figure 1.2). Through

the transitive property, we can see that each object is strictly preferred to itself. We call

such preferences inconsistent and may reason that the one who holds them is irrational.

o

o′

o′′

Figure 1.2: A Preference Cycle

Customarily, we also regard indifference as transitive. That is, o ∼ o′ ∧ o′ ∼ o′′ =⇒

o ∼ o′′; hence we may write o ∼ o′ ∼ o′′, chaining the ∼ operator as we do for �. However,

in human preferences this assumption does not always hold. Consider the example, cited

by Peter C. Fishburn [36], of a person’s preferences over the amount of sugar in coffee (see

Figure 1.3). Suppose that the subject is accustomed to coffee with no sugar. Nonetheless,

if asked in a taste test to choose between a cup of coffee without sugar and one with only 1

grain of sugar, we expect that she would be indifferent. Similarly, she would be indifferent

to a choice between a cup with 1 grain and one with 2 grains; the difference would again

be imperceptible. However, given a choice between a cup of coffee with no sugar and a

cup with ten spoonfuls of sugar, it is unlikely that she would still be indifferent! Formally,

0 ∼ 1 ∼ 2 ∼ · · · ∼ 1000 6=⇒ 0 ∼ 1000. In most of the discussion that follows, however,

we will assume that transitivity holds for indifference (and hence also weak preferences)

as well as strict preferences.

On the other hand, incomparability, in the sense that it is used in this work, is not

transitive. Consider a café owner who strictly prefers oranges to bananas, but has never

heard of durians, a fruit native to southeast Asia. Because he has never before encountered

this particular fruit, he cannot compare it to either oranges or bananas. Thus, oranges ‖
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0 grains

∼

1 grain

∼

2 grain

∼ · · · ∼

1000 grains

Figure 1.3: Intransitive Indifference

durians and durians ‖ bananas, but these facts do not imply that oranges ‖ bananas. In fact,

in this case we have already established that the subject has a strict preference: oranges �

bananas. Thus, one should not write expressions of the form o ‖ o′ ‖ o′′ because this

incorrectly suggests transitivity, which in general does not hold for incomparability.

1.1.4 Factored Outcomes and Ceteris Paribus Preferences

Throughout this work, the objects over which a subject holds preferences will be char-

acterized by features (or attributes). Example 1 mentions a pastry chef who sometimes

purchases pecans. Pecans can be characterized by various features, such as variety (e.g.,

Pawnee or Schley) and whether they have already been shelled (shelled or unshelled).

When objects are factored in this way, they are typically called outcomes, because they are

the outcome of how their characteristic features have been instantiated. For clarity, such

features may be written in smallcaps, with their associated values in italics.

When outcomes are factored, a subject may hold ceteris paribus preferences over the

features. When the chef says that she prefers Pawnee pecans, she does not necessarily

mean that she prefers every Pawnee order to every Schley. Other factors may also affect

her happiness with the order, such as price, quality, expected date of delivery, and so on.

However, if all other factors are held constant, she prefers the Pawnee to other varieties.

All else being equal (Latin ceteris paribus), she prefers one variety to another.

Ceteris paribus preferences can be conditional or unconditional. Suppose the buyer

does in fact always prefer the Pawnee variety to the Schley. In that case, the preference

does not depend on any other factor, so it is said to be unconditional. One can write this

preference as Pawnee � Schley. Note that the notation here is identical to that used for
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preferences over outcomes. Context, however, makes it clear that the preference is of the

ceteris paribus type, because Pawnee and Schley describe one attribute of a pecan rather

than fully instantiated outcomes.

Often a preference does depend on the value of additional other features. Suppose

the chef prefers that pecans be shelled prior to shipping if they are Pawnee, but shipped

unshelled if they are Schley. In this case the ceteris paribus preferences are conditional.

One can write this as Pawnee : shelled � unshelled and Schley : unshelled � shelled, where

the : operator indicates the dependency.

1.2 Preferences over Combinatorial Domains

In Sections 1.1.1–1.1.3 we considered how to model a subject’s preferences over a set of

objects as a mathematical relation.2 In Section 1.1.4 we considered that the objects could

be multi-featured outcomes. Features complicate things. Consider an assistive robot that

must visit a deli and purchase lunch for a client. The client has a busy schedule and cannot

be contacted during the process. The deli offers a combinatorial number of alternatives.

That is, customers have a choice of breads, meats, cheeses, vegetables, condiments, and so

on. Of all possible sandwiches that can be assembled, which does the busy client prefer

most? Suppose the client has asked for a tuna salad sandwich with only cucumber and

tomato, but no tuna is available that day. What is her next best alternative? If turkey is

selected instead of the tuna, will she still prefer cucumber and tomato, or some different

set of toppings? Suppose further that the robot does not have the luxury of stopping by

a deli, but must choose instead from a vendor who offers a set of preassembled, wrapped

sandwiches. Further suppose that the offering of sandwiches varies from day to day. Given

today’s choices, which one will the client prefer most? Note that the client may also have

specific constraints—e.g., religious requirements, or a minimum or maximum number of

calories, or some maximum amount that she is willing to spend on a sandwich.
2Henceforth, when we speak of preferences, we will assume that they are those of a particular subject.
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A variety of methods have been proposed for modeling preferences over combinatorial

domains. We first discuss two non-compact representations, the preference graph and the

partial order graph, because these inform our later discussions (Section 1.2.1). We then

consider some examples of compact models such as GAI value functions and soft con-

straints (Section 1.2.2). In Section 1.2.3 we introduce some of the more common problems

in preference handling: learning preferences, finding most preferred outcomes, reasoning

with preference models, and aggregating preferences.

1.2.1 Non-compact Representations

If the objects over which a subject holds preferences are conceived as factored outcomes

(see Section 1.1.4) then one can observe that the number of these outcomes will be expo-

nential in the number of features. Consider some foodservice product from Example 1 that

can be fully described by 10 binary features (e.g., type, color, brand, gluten-free, etc.). The

total number of outcomes is then 210 = 1024. If the number of features is increased to 20,

the number of outcomes is 220, greater than one million. This does not mean, of course, that

each such outcome is available for purchase or even that it presently exists in the physical

world. Nonetheless, it is possible to conceive of each outcome and thus plausible that a

subject may hold preferences over it. Indeed, if customers prefer an object that does not

yet exist, this is valuable information.

We can conceive of a matrix or graph that represents a subject’s preferences over every

pair of outcomes (see Figure 1.4a). In the example, the entry 1 in the cell in row ab and

column ab indicates that ab � ab; the entry 0 in row ab and column ab indicates that

ab � ab. If outcomes are labeled with n binary features, there would be 2n outcomes in

all, requiring a matrix with 22n entries. If we limit ourselves to strict preferences, then we

reduce the number of such entries by about half: because o � o′ implies o′ � o and o � o

for all i, we can limit our attention to the cells of the upper triangular representing distinct

unordered pairs of outcomes (as in Figure 1.4b).

10



� ab ab ab ab
ab 0 0 0 0
ab 1 0 1 1
ab 1 0 0 0
ab 1 0 1 0

(a) Full Preference Relation

� ab ab ab ab
ab - 0 0 0
ab - - 1 1
ab - - - 0
ab - - - -

(b) Full Strict Relation

ab

ab ab

ab

(c) Preference Graph

Figure 1.4: Non-compact Representations of the Same Strict Preference Relation

If the preferences can be modeled consistently by ceteris paribus rules, as introduced

in Section 1.1.4, we can reduce the number of entries even further. In that case, it is

sufficient to represent only the relationship between pairs of outcomes that differ in the

value of just one variable. By exploiting transitivity in this way, we can represent a set of

preferences as a graph in which each vertex represents a conceivable outcome. A directed

edge from one vertex to another means that the second vertex is strictly better than the first

(or weakly better if indifference is allowed). Furthermore, such an edge can exist only if

the two vertices differ in the value of just one feature. To compare outcomes that differ

in more than one feature, we check for a path connecting the two along directed edges.

For example, in Figure 1.4c, the path from ab to ab indicates that ab � ab. Such a graph

is known as a preference graph [16] or sometimes as the outcome graph. Note that the

preference graph takes the geometric shape of a hypercube if all of the features are binary.

Another noncompact representation is a type of polytope known as the partial order

graph [83]. In this representation, vertices represent all (or some subset of) strict partial

orders over objects rather than the objects themselves. Such objects are not necessarily fac-

tored outcomes. Moreover, it is possible also to represent non-strict and even inconsistent

orders, such as o � o′ � o′′ � o (see Figure 1.2), as vertices.

1.2.2 Compact Preference Formalisms

The representations discussed in Section 1.2.1 require polynomial space in the number of

outcomes, which is exponential in the number of features n. If n is large, such a rep-
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resentation is infeasible. We are thus interested in compact models for which the space

requirement is polynomially bounded in the number of features. Various compact pref-

erence formalisms have thus been designed that leverage closed-form functions or logical

rules to enable models that scale as the number of features increases. Compact preference

formalisms are not without their drawbacks. Observe that there are more explicit represen-

tation instances than there are compact ones for an order over n objects, so not all explicit

representations can be represented compactly. Moreover, many graph problems that can be

solved in polynomial time in an exponentially large graph turn out to be PSPACE-complete

in a graph that compactly represents the exponentially larger original graph [9, 42, 61].

General additive independence (GAI) value functions [8, 35, 44] assign numerical value

to the utility of each outcome to the subject as expected by the agent. In general such

functions are not compact, but GAI value functions leverage a property known as additive

independence to enable the utility of an outcome to be computed efficiently by summing

a series of separate utility functions, one for each feature. If the total added utility of the

first outcome is greater than that of the second, one can infer from the model that o � o′.

However, not all utility functions are additive. Moreover, as discussed in Section 1.1.1, it

is not always clear how to assign numerical values to human preferences.

Preferences can also be modeled as a constraint satisfaction program (CSP) through

methods that employ soft constraints. In Example 2 it was observed that a home automation

system would likely enforce hard constraints, such as that indoor temperature must not get

so low as to let pipes burst. Aside from such hard constraints, the system also takes into

account the preferences of the resident. Perhaps he prefers 70 ◦F rather than 65 ◦F indoors.

Such a preference can also be modeled as a constraint. In contrast to the requirement that

the temperature must not be allowed to drop below a certain threshold, however, the desire

for a comfortable room would be modeled as a soft constraint—something to be optimized

with a constraint solver along with other features that affect the resident’s comfort, but not

something the system must achieve under all circumstances or report failure. A number of
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soft constraint formalisms exist, such as fuzzy, weighted, and probabilistic constraints. A

more general method known as semiring-based soft constraints encompasses most of these

other approaches and has specifically been applied to model and work with preferences [13,

14, 90]. However, this method requires finding a particular semiring value for each variable

assignment in each constraint, again introducing the problem of quantifying preferences

that often can be expressed more naturally in a qualitative way.

1.2.3 Common Problems in Preference Handling

Certain problems are inherent in an application such as those described in our opening

examples. First, the system needs some way to obtain a model of the subject’s preferences.

The possibilities for learning this include:

• Direct construction. The subject or a human expert working closely with the sub-

ject explicitly constructs a preference model based on the subject’s introspection.

This approach is problematic for several reasons. It requires a significant amount of

knowledge about the mathematical model. Also, the subject may not have time for

this, and if an outside consultant is hired, the cost would likely be prohibitive except

for high-value domains. Moreover, repeated psychological studies have shown that

human beings cannot reliably introspect on our own preferences [3, 77, 78, 103].

• Active elicitation. An agent (computer system) poses a series of queries to the

subject. A model is then inferred from the subject’s replies. An advantage of this ap-

proach is that a model of the subject’s preferences is available to the system from the

outset. A disadvantage is that the process of answering repeated queries can be te-

dious. Moreover, if this process is shortened or terminated early (e.g., by a frustrated

user), the resulting model may not adequately reflect the subject’s preferences.

• Passive learning. A third approach is to observe what a subject does over time. This

is the approach envisioned in Example 1, where we consider that a model of a chef’s
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preferences over foodservice items could be learned from customer order data. An

advantage of this approach is that it does not demand anything of the subject at the

outset; the user can begin using the system immediately. The disadvantage is that

weeks or months may be required before the system can learn a suitable model.

Hybrid approaches to learning are also possible. For example, a system could initialize the

preference model by posing only a few queries to the subject and then refine this model

over the succeeding months using the passive learning approach. In some settings, it may

be advisable to consider that a subject’s preferences may change over time. Such a model

would need some way of continually learning new information about the subject’s prefer-

ences, while simultaneously “forgetting” outdated information, particularly if it were found

to conflict with more recently observed preferences.

Once a model is available, algorithms are required to draw inferences from the model

about the subject’s preferences. Common problems of this sort include:

• Optimization. What is the (a) most (or least) preferred outcome?3 Similarly, what

are the k-best (worst) outcomes?

• Reasoning. Given some pair of outcomes that the subject may not have considered

previously, which (if either) is the subject likely to prefer?

• Aggregation. If preference models are available for more than one subject, one be-

comes interested in whether the preferences can be aggregated to produce outcomes

for the group that meet some criteria of optimality (e.g., Pareto efficiency). As such,

preference aggregation is closely related to social choice topics such as voting.

3This assumes, of course, that optimal outcomes are defined with respect to the model, which turns out
to be the case with CP-nets.
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Variety

Shelled

Pawnee � Schley

Pawnee : shelled � unshelled
Schley : unshelled � shelled

(a) Conditional preference network

shelled Pawnee

shelled Schley unshelled Schley

unshelled Pawnee

(b) Preference graph

Figure 1.5: CP-net and Induced Preference Graph

1.3 Conditional Preference Networks

We now turn to the preference formalism that will be our focus in the discussions that fol-

low, the conditional preference network (CP-net). First proposed by Boutilier et al. [16],

CP-nets exploit conditional ceteris paribus preference rules (1.1.4) to enable a compact

representation of the preference graph (1.2.1). We define CP-nets formally in Chapter 2,

but at this point it is helpful to introduce them with examples corresponding to the applica-

tions in Examples 1 and 2 at the beginning of the chapter.

The CP-net in Figure 1.5a models the preferences described in Section 1.1.4. Recall

that the chef prefers the Pawnee variety of pecans to the Schley. If the pecan does happen

to be a Pawnee, she prefers that it be delivered shelled; otherwise, she prefers the pecans

unshelled. The nodes in Figure 1.5a represent the features over which the subject holds

preferences. The directed edge from variety to shelled indicates that the subject’s ceteris

paribus preference for whether the pecan is shelled or unshelled depends on the variety.

We refer to variety in this case as the parent of shelled. In contrast, the preference over

variety is unconditional, so that node has no parents. The boxes beside each node are

conditional preference tables (CPTs) specifying the ceteris paribus rules over each node

given the values of all combinations of values of the parent nodes.
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The CP-net in Figure 1.5a induces the preference graph shown in Figure 1.5b. Each

rule in the CP-net induces a non-empty set of edges in the preference graph. For example,

the rule

Schley : unshelled � shelled (1.1)

corresponds to the directed edge (shelled Schley, unshelled Schley) in the preference graph,

and the rule

Pawnee � Schley (1.2)

corresponds to the edges (shelled Schley, shelled Pawnee) and (unshelled Schley, unshelled

Pawnee).

The ceteris paribus rules, by their nature, specify preferences for outcomes that differ

in just one feature. The transitive closure of these rules sometimes allows us to compare

outcomes that differ in more than one feature. For example, suppose only two items are in

stock, unshelled Pawnee and shelled Schley. In that case, we anticipate that the pastry chef

will prefer the unshelled Pawnee: Equation 1.1 entails that shelled Schley is less preferred

than unshelled Schley, and Equation 1.2 entails that unshelled Schley is less preferred than

unshelled Pawnee. Thus, we have:

shelled Schley ≺ unshelled Schley ≺ unshelled Pawnee. (1.3)

Such a ranking is known as an improving flipping sequence and is the basis for reasoning

about the relationship between arbitrary outcomes with respect to a CP-net. Note that

every such improving flipping sequence corresponds to a path along directed edges in the

preference graph. In this case, the flipping sequence counts as a proof that the subject

prefers unshelled Pawnee to shelled Schley, and we say that the first outcome dominates the

other. Later, we will also be interested in the length of a shortest such sequence connecting

two outcomes. In this case we say that the ordered pair of outcomes (unshelled Pawnee,

shelled Schley) has a flipping length of 2.
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Now consider a slightly more complex CP-net corresponding to Example 2. Suppose

our automated home has windows with blinds that the system can open and close automat-

ically, as well as sensors that report weather conditions in realtime. Suppose also that the

subject prefers that the blinds be open during the day and closed at night, with certain ex-

ceptions. For example, he prefers the blinds always be open when it is snowing. He prefers

both snow and fair weather to rain. The subject’s preferences as described can be modeled

with the CP-net in Figure 1.6. In terms of this simple model, three features contribute to

Weather Time

Blinds

fair � rain
snow � rain

fair, day : open � closed
fair, night : closed � open
rain, day : closed ∼ open
rain, night : closed � open
snow, day : open � closed
snow, night : open � closed

Figure 1.6: A CP-net with Indifference over Multivalued Domains

the subject’s happiness—weather, time of day, and the state of the blinds—with 12 pos-

sible outcomes in all (fair day with blinds closed, rainy night with blinds closed, etc.).

Such features are modeled as variables with discrete domains. For example, the variable

Weather has a multivalued domain consisting of fair, rain and snow, while the other two

variables are binary. The edges from Weather and Time to Blinds indicate that the prefer-

ence over Blinds depends on these other two features. Note that the subject’s preference

over Weather is unconditional because it does not depend on any other factor. Moreover,

the CPT for Time is empty, because we have no information on the subject’s preferences for

day versus night. In this particular example, we model lack of information as incompara-

bility. Finally, observe that on a rainy day, the resident of the smart home is equally happy

with the blinds open or closed, expressed here in the form of a rule specifying indifference.
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Again, care should be taken to distinguish incomparability from indifference. While we

are told that the subject is equally satisfied with open or closed blinds on a rainy day, we

should not assume, in the absence of additional information, that he is also equally happy

with day and night. He may well prefer one to the other. Moreover, indifference here is

transitive, while incomparability is not. Finally, it is worth noting that the preferences here

are modeled deterministically rather than as probability distributions.

1.4 CP-nets: Challenges to Adoption

Each method of modeling preferences—CP-nets, GAI functions, soft constraints, etc.—has

its strengths, weaknesses, and unique characteristics. The choice of a preference modeling

language for an application may be compared to an engineer’s choice of a programming

language or software application; various factors such as the specifics of the project and

the practitioner’s familiarity with the available tools may influence this decision.

There is much to like about CP-nets. They let us concisely model preferences over

factored domains with exponentially many conceivable alternatives. They capture visually

the if-then rules that many of us think we employ when we reason about such alternatives.

They are qualitative; that is, they only ask us to specify whether one thing is better than

another, without assigning a numeric weight as to precisely how much we prefer it. Finally,

the problem of determining the optimal (most preferred) outcome with respect to a CP-net

can be answered efficiently (in time linear in the number of features) if the graph is free of

cycles and CPTs are complete.

On the other hand, while many academic papers discuss CP-nets (over 800 to date,

according to Google Scholar) and many interesting applications have been proposed—

automated negotiation [7], interest-matching in social networks [102], cybersecurity [15],

and as aggregation primitives for making group decisions [63, 74, 104], among others—

we are not yet aware of their use in real-world applications. There are several reasons for

this. First, as we discuss in Section 3.4, determining dominance—whether one arbitrary
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outcome is better than another with respect to a CP-net—is known to be computationally

hard in many cases. This is significant, since one doubts that, say, a decision support sys-

tem implementation would be particularly useful if it sometimes required several days to

determine whether a customer preferred one item that was in stock over another! Second,

the study of how to learn CP-nets is still in its relative infancy. Some algorithms have been

proposed. However, as we discuss in Section 3.5, the proposals to date either make unreal-

istic assumptions or rely on methods that do not scale to networks of realistic size. Third,

while academic papers do sometimes evaluate their proposed learning or reasoning algo-

rithms experimentally, the methods for these evaluations turn out to be problematic. As we

discuss in Section 3.6, human subjects data for CP-nets at present is non-existent, and the

situation with preference data over multi-feature domains is hardly any better. Experiments

using synthetic datasets have been equally problematic, because they have relied on naı̈ve

eneration methods that suffer from statistical bias.

This thesis addresses several of these limitations in an effort to make CP-nets more use-

ful and to further their adoption in engineering applications. Chapter 2 consists of formal

definitions. In Chapter 3, I discuss the work of previous researchers to provide an overview

of the state of the art for CP-nets research. In Chapter 4, I show how to encode, count,

and generate CP-nets uniformly at random. Because the computational time for determin-

ing dominance depends on flipping length, in Chapter 5 I use the generation method to

study the expected flipping length of a dominance testing problem given certain parame-

ters that are easy to compute and show how to use this expectation to limit search depth in

certain cases. In Chapter 6, I show how to use local search to learn tree-shaped CP-nets

from choice data. A concluding chapter summarizes contributions and some interesting

possibilities for future research.

Copyright c© Thomas E. Allen, 2016.
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Chapter 2 Definitions

Preferences were introduced informally in Chapter 1. The present chapter is a more formal

introduction of the terms, notation, and concepts used in the research that is discussed in

subsequent chapters. Section 2.1 reviews ordered sets. Section 2.2 reviews graph theo-

retic concepts and classes of digraphs commonly encountered in working with CP-nets.

Section 2.3 introduces notation for outcomes over multi-featured domains. Section 2.4

formalizes preferences on factored outcomes, CP-nets, and related concepts such as dom-

inance testing and flipping lengths. Section 2.5 concludes with tables of commonly used

acronyms and notation.

2.1 Ordered Sets

The reader is presumed to be familiar with elementary set, order, and graph theoretic con-

cepts. Those less familiar with such topics are referred to a textbook, such as that of Rosen

[88]. Nonetheless, since terminology and notation tend to differ among communities,1 a

brief review is in order.

Preferences as considered in this work involve ordered finite sets. A linear order here

refers to a strict total order on a set, i.e., an irreflexive, antisymmetric, transitive, total

binary relation. Thus, if I is a linear order on S , then, for all a ∈ S , b ∈ S , just one of

the following is true: a I b, b I a, or a = b. The expression a I b is read, “a is ordered

before b,” and in this case a = b is read, “a is the same as b.” Note that the = operator here

indicates that a and b refer to the same element; it should not be confused with ∼, discussed

below. A set thus ordered is known as a ranking. We denote the set of all such rankings

(the permutations or symmetric group) of a finite set S as S(S ).
1“You keep using that word. I do not think it means what you think it means.” –Inigo Montoya
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A partial order differs from a linear order in that the relation is not total; that is, some

elements in the set may be incomparable. Thus, if B is a partial order on S , then, for all

a, b ∈ S , just one of the following is true: a I b, b I a, a = b, or a ‖ b. The expression

a ‖ b is read, “a cannot be compared to b.” (Other authors sometimes use Z or × to denote

incomparability.) A set thus ordered is a partially ordered set or poset. Note that every

ranking is also a poset. If a poset is not a ranking, the ordering is said to be incomplete.

A linear order I on S is said to be a linear extension or linearization of a partial order

B on S if and only if (a, b) ∈ B =⇒ (a, b) ∈ I for all a ∈ S , b ∈ S . That is, if a is

ordered before b in the poset, then a must also be ordered before b in the linear extension.

However, if a ‖ b in the poset, then it must either be the case that a I b or b I a in the linear

extension. For example, let S = {a, b, c} and let B = {(a, c), (b, c)} be a partial order on S ;

i.e., a I c, b I c, and a ‖ b. Then (the only) two linear extensions of B are a I b I c and

b I a I c. A ranking that extends a poset in this manner is also said to be compatible with

that poset. Note that an infix ordering operator such as I can be chained, e.g., a I b I c,

only for rankings; I is not chained for an order that may be incomplete.

A preorder is a reflexive, transitive binary relation. Informally, a preordered set differs

from a poset in that “ties” are allowed between pairs of distinct elements. That is, if D is a

preorder on S , then, for all a, b ∈ S , just one of the following is true: a B b, b B a, a ∼ b,

or a ‖ b, where ∼ is read, “a is ordered equally with b.” For a preorder, a = b =⇒ a ∼ b,

but the converse does not hold. Note that every poset is also a preordered set, and every

preordered set is also consistent, i.e., closed under transitivity. If a binary relation on a set

is intransitive, it is said to be inconsistent.

2.2 Graphs

A directed graph (digraph) is a pair G = (V, E) in which V is a set of nodes (also known

as vertices) and E is a set of directed edges (or arcs). When no confusion can result, we

may drop the qualifier and refer to a directed edge simply as an edge. Each edge (u, v) ∈ E
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A B

C

(a) Cycle

A B

C

(b) Loop

A B

C

(c) Edge A to B

A B

C

(d) Edge B to A

Figure 2.1: Labeled Digraphs

consists of an ordered pair of nodes, u ∈ V , v ∈ V . While digraphs may have cycles,

such as that in Figure 2.1a, the graphs in this work are free of loops such as that shown

in Figure 2.1b; thus, we assume u , v for all (u, v) ∈ E. Throughout this work, we also

assume all graphs are labeled; that is, the digraph of Figure 2.1c is distinguished from

that of Figure 2.1d. An undirected graph differs from a digraph in that E is composed of

unordered pairs of nodes {u, v}. With the exception of Chapter 6 or as otherwise noted, the

graphs in this work are assumed to be directed.

Let G = (V, E) be a digraph and v ∈ V an arbitrary node in G. If there exists a node

u such that (u, v) ∈ E, then u is said to be a parent of v. Formally, the parents of v are

defined as: Pa(v) = {u : (u, v) ∈ E}. If there exists a node u such that (v, u) ∈ E, then u is

said to be a child of v. Formally, the children of v are defined as: Ch(v) = {u : (v, u) ∈ E}.

The indegree of a node v is its number of parents |Pa (v)| and the outdegree is its number of

children |Ch (v)|. A set of digraphs G on V is said to have bounded indegree c if no node in

any digraph in the set has more than c parents; i.e., |Pa (v)| ≤ c for all v ∈ V for all G ∈ G.

A path from s to t is a sequence of edges, 〈(u0, u1), (u1, u2), . . . , (u`−1, u`)〉, where u0 = s

and u` = t, such that (uk, uk+1) ∈ E and 0 ≤ k < `.2 The length ` of a path is the number of

its edges. If p is a path, |p| denotes path length. We denote by PathG the set of all paths in

G and by PathG(s, t) those from s to t. The expressions s t (“there exists a path from s

to t”) and t f s (“t is reachable from s”) are true if and only if there exists a path from s

to t. If no path exists, we may write ` = ∞. A digraph is said to contain a cycle if and only

if there exists u ∈ V such that u u.
2Note that, for technical reasons, paths of length 0 are excluded from this definition.
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In general, more than one path may connect a pair of nodes. Indeed, if s and t participate

in a cycle (s t ∧ t s), then there are infinitely many such paths. Thus, one is often

interested in the shortest path, defined as:

minpathG(s, t) = arg min
|p|

{p : p ∈ PathG(s, t)} .

Definition 3 (Diameter). The diameter of a digraph is the length of the longest shortest

path between any pair of nodes,

Diam(G) = max
s,t ∈V

∣∣∣minpathG(s, t)
∣∣∣ .

Definition 4 (APL). The average path length [27] of a digraph with n nodes is

APL(G) =
1

n(n − 1)

∑
s,t

d(s, t),

where n = |V | and each d(s, t) = |minpathG(s, t)|, the shortest path between the pair of

nodes s and t, provided such a path exists; otherwise, d(s, t) = 0.

In this work the density of a graph G is always defined with respect to a particular set

of graphs G. Specifically, density(G) is the ratio of the number of edges in graph G to the

maximum number of edges of any graph in the set G. The resulting value is thus a rational

number between 0 and 1 inclusive.

Definition 5 (Maximally and almost maximally dense graphs). If density(G) = 1, then G

is said to be maximally dense with respect to the set. A graph G′ obtained by removing just

one edge from a maximally dense graph is said to be almost maximally dense.

A directed acyclic graph (DAG) is a digraph that does not contain a cycle. That is,

PathG(v, v) = ∅ for all v ∈ V . In Figure 2.1, note that only the digraphs shown in 2.1c and

2.1d are DAGs. The digraphs shown in Figures 2.1a and 2.1b are not DAGs since they

contain respective paths 〈A, B, A〉 and 〈C,C〉.

A directed tree (or arborescence [45]) is a digraph such that, for just one node s, called

the root, and every other node t, s, t ∈ V , s , t, there exists just one path from s to t. Note
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that every directed tree is also a DAG, but the converse does not hold. It can be shown that

every node of a directed tree has just one parent, with the exception of the root. A directed

forest (or tree-shaped graph) is a digraph in which each node has at most one parent; thus,

a directed tree is also a directed forest. A chain is a directed tree with just one leaf; i.e., the

edges impose a ranking on the nodes.

A polytree is a digraph such that the underlying undirected graph does not contain a

cycle [16, 28, 82]. Formally, consider that for each directed graph G = (V, E) one can

construct an undirected graph G′ = (V, E′), such that (u, v) ∈ E =⇒ {u, v} ∈ E′. Then, if

G′ is acyclic, G is a polytree. Note that every DAG is a polytree, but the converse does not

hold. Further note that the graph need not be connected, and that a node may have more

than 1 parent.

A directed path singly connected graph (DPSCG) is a digraph with “at most one di-

rected path between any pair of nodes” [16]. That is, |Paths (s, t)| ≤ 1 for all s, t ∈ V . Note

that while every polytree is a DPSC graph, the converse does not hold. A max-δ-connected

graph has at most δ directed paths between any pair of nodes. That is, |Paths (s, t)| ≤ δ

for all s, t ∈ V . Note that a DPSC graph is also max-δ-connected (with δ = 1), and every

max-δ-connected graph is also a DAG.

1 2

3 4

5 6

Chain

1 2

3 4

5 6

Directed tree

1 2

3 4

5 6

Polytree

1 2

3 4

5 6

DPSCG

1 2

3 4

5 6

DAG

1 2

3 4

5 6

Digraph

Figure 2.2: Common Classes of Digraphs (n = 6)

Finally, a digraph is an antichain if it has no directed edges (E = ∅). Figure 2.2 il-

lustrates some of the common classes of graphs encountered in discussing CP-nets. The

relationship between these classes of graphs can be summarized thus:

chains ⊆ directed trees ⊆ polytrees ⊆ DPSCGs ⊆ DAGs ⊆ digraphs.
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2.3 Outcomes

Recall from Section 1.1.4 that in this work we are interested in multi-featured preferences.

Indeed, in many settings, such as the smart home of Example 2, the object actually results

from specifying a value for each feature (e.g., whether the window blinds are open or

closed). When an object is factored into features, it is known as an outcome.

Let O be a finite set of outcomes characterized by the values of several features rep-

resented by variables V = {X1, . . . , Xn} with associated domains Dom(Xi) = {xi
1, . . . , x

i
di
},

di = |Dom (Xi)|, such that O ≡ Dom(X1)× · · · ×Dom(Xn). The domain of a binary variable

has just two values; if di > 2, then is Xi is multivalued. The variables are homogeneous

if all domains are of the same size d = d1 = · · · = dn; otherwise they are heterogeneous.

For simplicity, variables may also be denoted with different uppercase letters, with their

respective values in lowercase (e.g., A = {a1, a2}, B = {b1, b2, b3}), or in specific examples

with variables in smallcaps and values in italics: e.g., fruit = {apple, banana, tomato}.

Moreover, if a variable Xi is binary, its values may be denoted Dom(Xi) = {xi, xi}.

The values that a variable can take may be constrained to a proper subset of its domain.

When Xi is constrained to just one value xi
j, then it is said to be assigned that value, in

which case one may write, Xi = xi
j. A set of variables U ⊆ V can similarly be constrained

and assigned. An assignment to all variables U = V (a full instantiation) designates a

single outcome o ∈ O. The set of assignments to U ⊆ V is denoted by Asst(U), where

Asst(U) = Dom(Xh1) × · · · × Dom(Xhm), Xhk ∈ U, m = |U |, 1 ≤ k ≤ m.

The expression o[Xi] denotes the projection of an outcome o ∈ O onto a variable Xi.

We also generalize the use of the postfix [·] operator so that if Q is an outcome or set

of outcomes and W is a variable or set of variables, then Q[W] denotes the projection of

outcomes Q onto variables W. Similarly, the expression o[−Xi] is the projection of o onto

V \ {Xi}, and in general Q[−W] is the projection of Q onto V \ Q. Moreover, when each

variable is indexed with a natural number i, i.e., when V = {X1, . . . , Xn}, then o[i], o[−i],

Q[i] and Q[−i] are understood to mean o[Xi], o[−Xi], Q[Xi], and Q[−Xi] respectively.
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The expression uxi
k denotes the combination of u ∈ Asst(U) and xi

k ∈ Dom(Xi), where

Xi < U. In general, if w and u are assignments to disjoint sets W and U, w ∈ Asst(W),

u ∈ Asst(U), W ∩ U = ∅, then wu denotes the combination of w and u.

Example 6. Let V = {A, B,C}, Dom(A) = {a1, a2, a3}, Dom(B) = {b1, b2}, and Dom(C) =

{c1, c2}. Then Asst({B,C}) = {b1c1, b1c2, b2c1, b2c2}, a3b1c1[A] = a3, a3b1c1[{B,C}] = b1c1,

and a3b1c1[−C] = a3b1.

Definition 7 (Hamming distance). The Hamming distance of a pair of outcomes HD(o, o′),

o ∈ O, o′ ∈ O, is the number of variables in the outcomes for which the values differ, i.e.,

HD(o, o′) = |{ Xi : o[Xi] , o′[Xi] }| . (2.1)

For example, HD(a3b1c1, a1b1c1) = 1 and HD(a1b1c1, a2b2c2) = 3. One can observe that

HD(o, o′) = HD(o′, o) for all o, o′ ∈ O and that HD(o, o′) = 0 if and only if o = o′. Finally,

0 ≤ HD(o, o′) ≤ n, where n = |V |.

We denote by On the set of all outcomes on n binary features and by On,d all outcomes

on n d-ary features. We denote by O2
n and O2

n,d all ordered pairs of outcomes on n binary

and d-ary features. O2
n | h and O2

n,d | h are the same sets restricted to pairs with Hamming

distance h, 0 ≤ h ≤ n; for example, O4 | 2 = {(o, o′) : HD(o, o′) = 2, o ∈ O4, o′ ∈ O4}.

2.4 Preferences and CP-nets

A preference relation takes the form of a preorder if it can model outcomes over which

a subject may be indifferent. In this work, however, strict (though not necessarily total)

preferences are assumed. We thus model preferences as a partial order.

Definition 8 (Preference). A strict preference relation �S is a partial order on a set of

outcomes O by a subject S.

When no confusion would result, the subscript will be omitted and � used as an infix

operator, where o � o′ indicates that the subject strictly prefers o to o′. Equivalently one
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may write o′ ≺ o, because o � o′ ⇐⇒ o′ ≺ o. In a preference relation, as for partial

orders in general, the infix ‖ operator denotes incomparability. Recall from Section 2.1

that since preferences are posets, just one of the following is true: o � o′, o ≺ o′, o = o′,

or o ‖ o′. We assume O is finite and can be factored as described in Section 2.3. Note

that for d-ary variables |O| = dn; that is, exponential space is required to store � (see

1.2.1). However, because O is factored, a conditional preference network (CP-net) [16]

can compactly model �.

Definition 9 (CP-net). A conditional preference network is a digraph on V = {X1, . . . , Xn}

in which each node is labeled with a conditional preference table. An edge (Xh, Xi) indicates

that the preferred value of Xi in � depends on the value of its parent variable Xh.

Definition 10 (CPT). A conditional preference table CPT(Xi) consists of conditional ce-

teris paribus preference rules (CPRs) u : �i specifying a linear order on Dom(Xi) for

assignments to the parents of Xi in the dependency graph, u ∈ Asst(Pa(Xi)).

Formally, CPT(Xi) implements a function f : Asst(Pa(Xi)) → S(Dom(Xi)). If f (u) is

defined for all u ∈ Asst(Pa(Xi)), i.e., a preference over Xi is specified for every assignment,

the CPT is said to be complete; otherwise it is incomplete. Unless otherwise specified, we

assume CPTs are complete. The expression CPT(Xi|Xh = xh
k) denotes all rules of CPT(Xi)

of the form uxh
k : �i where xh

k ∈ Dom(Xh), Xh ∈ Pa(Xi), u ∈ Asst(Pa(Xi) \ {Xh}). Figure 2.3

illustrates a simple chain-shaped, binary-valued CP-net.

Weather Activity Friend

fair � rain fair : cycling � table tennis
rain : table tennis � cycling

cycling : emily � henry
table tennis : henry � emily

Figure 2.3: A Simple CP-net N
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The size of a CPT is defined as the number of rules it contains, and the size of the

CP-net is the sum of the sizes of its CPTs. If domains are d-ary and CPTs are complete,

a node with m parents has dm CPRs. Thus, the size of the description is exponential in

the maximum indegree of G. To provide a compact model of � (see 1.2.2), indegree is

assumed to be bounded by a small constant [16], i.e., |Pa (Xi)| ≤ c for all Xi. We assume

that domain size is similarly bounded.

The term dependency graph (or graph) denotes the digraph G of a CP-net apart from

its CPTs (tables). A chain, tree-shaped, or polytree CP-net is one for which the graph

takes the respective shape of a chain, directed forest, or polytree (Section 2.2). It is often

assumed that the graph of a CP-net is acyclic (i.e., a DAG); if the CP-net may have a cycle,

this is usually qualified, e.g., generally cyclic CP-nets.

As discussed in Section 1.2.1, a CP-net induces an exponentially larger graph known

as the preference graph (or outcome graph), which we now define formally:

Definition 11 (Preference graph). The induced preference graph (PG) of a CP-net N is a

digraph H = (O, C) in which (o′, o) ∈ C if and only if there exists a CPR u : �i in the

CPT of a node Xi in N, such that (o[Xi], o′[Xi]) ∈ �i, o[Xi] , o′[Xi], o[−Xi] = o′[−Xi],

u ∈ Asst(Pa(Xi)), u = o[Pa(Xi)] = o′[Pa(Xi)], o ∈ O, o′ ∈ O, and Xi ∈ V . A directed edge

from o′ to o thus indicates that HD(o, o′) = 1 and that o′ ≺ o.

If variables are binary, |O| = 2n and H takes the geometric shape of a directed hyper-

cube, sometimes known as a Hamming cube [31]. Figure 2.4 depicts the induced preference

graph for the CP-net of Figure 2.3. (Note that FCH, for example, denotes the outcome 〈fair,

cycling, henry〉.) The rule fair � rain in the CPT of Weather in N induces the edges along

“dimension” Weather in H: (RCH, FCH), (RTH, FTH), (RCE, FCE), and (RTE, FTE).

This must be the case, since the subject always prefers fair weather to rain, regardless of

the activity or companion. Similarly, the rule table tennis : henry � emily in CPT(friend)

induces the directed edges, (FTE, FTH) and (RTE, RTH). Whatever the Weather, the sub-

ject prefers henry to emily as the Friend for Activity table tennis.
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FCE

FCH

FTE

FTH

RCE

RCH

RTE

RTH

Figure 2.4: Induced Preference Graph H of CP-net N (see Figure 2.3)

The CPRs allow direct comparison between outcomes that differ in the value of just

one variable. Comparing outcomes that differ in more than one variable requires finding

a path in the preference graph from the less to the more preferred outcome. For example,

the outcomes RCE and FCH differ in two variables; thus no single rule specifies whether

the subject would prefer a rainy day cycling with Emily or a fair day cycling with Henry.

However, note that a path connects the two outcomes:

RCE ≺ RTE ≺ RTH ≺ FTH ≺ FCH. (2.2)

Such a path is a known as an improving flipping sequence (FS), since traversing an edge

of the preference graph flips the value of a variable such that the subject is more satisfied

with the resulting outcome.3 Paths such as RCE FCH result from the transitive closure

of the ceteris paribus rules of the CP-net. The existence of such a path counts as a proof

that FCH � RCE. Note that multiple paths may connect a pair of outcomes. For example,

FCE � RCE since RCE ≺ RTE ≺ FTE ≺ FCE; however, there is also a shorter, more direct

path, RCE ≺ FCE.
3While the term flip is perhaps better suited to binary domains (e.g., flip a coin), it is also used of

multivalued variables both in everyday speech (e.g., flip a die) and in the preference handling literature. Note
that the semantics of the rule u :�i allow us to flip directly to any more preferred value in Dom(Xi) given
u. In particular, if CPT(B) contains the rule a1 : b1 � b2 � b3, one can flip directly from o′[AB] = a1b3 to
o[AB] = a1b1 without first having to visit o′′[AB] = a1b2.
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Definition 12 (Flipping sequence). A flipping sequence is a path in the induced preference

graph of a CP-net.

In general, if there exists an improving flipping sequence from o′ to o, then we write

N |= o � o′ and say the CP-net entails the dominance of o over o′ in the induced order. If

no path exists in either direction, i.e., if N |= o 6� o′ and N |= o′ 6� o, then we can reason

that the two outcomes are incomparable with respect to the CP-net; i.e., N |= o ‖ o′. The

search for such a path is known as dominance testing (DT).

Definition 13 (DT problem). A dominance testing problem is a decision problem for which

the input is a triple (N, o, o′) consisting of a CP-net N on V = {X1, . . . , Xn} and outcomes o

and o′, o ∈ O, o′ ∈ O, O ≡ Dom(X1) × · · · × Dom(Xn). The answer is in the affirmative if

and only if N |= o � o′.

We denote by DT(N ,O) the set of all DT problem instances (N, o, o′), such that N ∈ N ,

o ∈ O, and o′ ∈ O, and by DT(N ,O | θ) the set of instances satisfying one or more

conditions θ. For example, DT(N ,O HD(o, o) = h, APL(G) = 0.5) denotes the set of DT

problem instances (N, o, o′), such that N ∈ N , o ∈ O, o′ ∈ O, for which the Hamming

distance between the outcomes is h and the average path length of the dependency graph is

0.5.

Definition 14 (Flipping length). The flipping length is the length of the shortest path be-

tween a pair of outcomes in the induced preference graph H of a CP-net N,

FL(N, o′, o) = minpathH(o′, o). (2.3)

If no such path (flipping sequence) exists, then the flipping length is undefined.

When the flipping sequence is undefined, we may write FL(N, o′, o) = ∞.
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In Chapter 5 we will be interested in the longest flipping length, which we call the

diameter of the preference graph Diam(H) (see Definition 3).4 In the example shown in

Figure 2.4, the longest flipping sequence is the one given in Equation 2.2; consequently,

Diam(H) = 4. Note that the outcomes (RCE, FCH) that produce this diameter have Ham-

ming distance 2. We will also be interested in the longest flipping length that connects any

pair of outcomes with a given Hamming distance h.

Definition 15 (h-Diameter). The h-diameter of the induced preference graph H is

Diamh(H) = max
o,o′

∣∣∣minpathH(o, o′)
∣∣∣ , (2.4)

such that HD(o, o′) = h, o ∈ O, o′ ∈ O.

One can confirm from Figure 2.4 that while Diam(H) = Diam2(H) = 4, the shortest path

between any two outcomes that differ in all three variables is Diam3(H) = 3.

Definition 16 (Mean flipping length). If I ⊆ DT(N ,O) is a non-empty set of DT problem

instances, then MFL(I) is the mean flipping length for I,

MFL(I) =
1
|I |

∑
I∈I

FL(N, o, o′) (2.5)

such that o , o′ and FL(o, o′) is defined, where N, o and o′ are the three elements of tuple

I = (N, o, o′).

Similarly, MFL(I | θ) denotes the mean flipping length for instances I that satisfy a set of

conditions θ. For example, MFL(I | HD(o, o′) = 2) denotes the mean flipping length for

all I ∈ I with Hamming distance 2.

We denote by Nn the set of all CP-nets on n binary features, and by Nn,d the set of CP-

nets on n d-ary features. Nn | c and Nn,d | c indicate the same sets restricted to dependency

graphs with indegree at most c.
4Confusingly, this longest flipping length is sometimes called the diameter of the CP-net [61]. However,

that usage lends itself to confusion between the diameter of the induced preference graph and the diameter
of the dependency graph, Diam(G), which in this case of course is 2.
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Shoes

black : black � tan
tan : tan � black

black : black � tan
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(a) Consistent CP-net N

(black, black)

(black, tan) (tan, tan)

(tan, black)

(b) Consistent PG H

Belt

Shoes

black : black � tan
tan : tan � black

black : tan � black
tan : black � tan

(c) Inconsistent CP-net N′
(black, black)

(black, tan) (tan, tan)

(tan, black)

(d) Inconsistent PG H′

Figure 2.5: Cyclic CP-nets and Induced Preference Graphs

Finally, one can observe that if H (not to be confused with G) contains a cycle, the in-

duced order on the outcomes is inconsistent. Consider the CP-nets in Figure 2.5. CP-net N

in Figure 2.5a expresses a preference for coordinating the color of leathers. (The customary

rule of fashion is that a black belt should be matched with black shoes, tan with tan, and so

on.) The induced preference graph expresses this convention as one would expect. If the

subject discovers that he is wearing a black belt and tan shoes, he can improve by switching

either shoes or belts. Having made the switch, the outcome is then one of the two incompa-

rable optima. A CP-net could just as easily enforce anti-coordination by inverting the order

in all four conditional preference rules. However, in CP-net N′ in Figure 2.5c, observe that

only the CPT for shoes is inverted. The unfortunate result, depicted in Figure 2.5d, is an
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Table 2.1: Commonly Used Acronyms

Acronym Meaning Section

APL average path length 2.2

CP-net conditional preference network 2.4

CPR conditional preference rule 2.4

CPT conditional preference table 2.4

DAG directed acyclic graph (labeled) 2.2

DPSCG directed path singly connected graph 2.2

DT dominance testing 2.4

FS flipping sequence (improving) 2.4

HD Hamming distance 2.3

PG Preference graph 2.4

irrational subject who is forever changing shoes and belts in endless hope of improvement.

Unfortunately, if the graph G of a CP-net has cycles, finding optima and proving consis-

tency are known to be PSPACE-complete [42]. On the other hand, when G is acyclic, CPTs

are complete, and indifference is disallowed—assumptions that we will adopt throughout

most of this work—then the optimum outcome is unique, computationally easy to find, and

the resulting order on O is guaranteed to be consistent [16].

2.5 Commonly Used Notation and Abbreviations

The chapter concludes with references for the reader. Table 2.1 provides the meaning of

common acronyms. Table 2.2 summarizes notation commonly used throughout this work.

The Section column specifies the chapter, section, or subsection where the operator or term

is defined or discussed, if applicable.
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Table 2.2: Commonly Used Notation

Symbol Most Likely Semantics Section(s)

% is at least as good as; weak preference relation 1.1; 2.4

� is better than, preferred to; strict preference relation 1.1; 2.4

�i linear order on the domain of Xi 2.4

‖ is incomparable to; incomparability 1.1.1; 2.1

∼ is ordered equally with; indifference 1.1.1; 2.1

set complement (e.g., U ≡ V \ U); Boolean negation (x ∨ x)

\ set difference

× set multiplication, i.e., Cartesian product

|= models; preferentially entails 2.4

αt,i, j,k Boolean action variable 5.6.2

ε probability of noise for every CPR; other small quantity 5.5

θ set of conditions or constraints 2.4

ξ Boolean clause 5.6.2

φd(m) number of d-ary functions F j with m inputs 4.2

χd(m) number of degenerate d-ary functions F j with m inputs 4.2

ψd(m) number of non-degenerate d-ary functions F j with m inputs 4.2

ω Boolean CNF formula 5.6.2

A dagcode, a tuple that encodes a DAG 4.3

A j an element of dagcode 4.3

A< j partial dagcode A 4.3

an,c number of DAGs parameterized by n and c 4.3

an,c,d number of CP-nets parameterized by n, c, and d 4.4

Asst(·) set of all assignments to variables 2.3

Continued on the following page
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Table 2.2: Commonly Used Notation (continued)

Symbol Most Likely Semantics Section(s)

B all vectors consisting of n bits 6.2

B vector of n bits {0, 1} encoding the CPTs of CP-net in TNn 6.2

C edges of PG corresponding to ceteris paribus rules 2.4

c bound on the indegree of any node in a graph 2.2

d domain size (when homogeneous) 2.3

di size of domain of variable Xi; a member of Dom(D) 2.3

Diam(·) diameter of graph, i.e., longest path between any two nodes 2.3

Diamh(H) h-diameter of a preference graph H 2.4

Dom(·) domain of a variable 2.3

DT(N ,O) set of all DT problems (N, o, o′), N ∈ N , o, o′ ∈ O 2.4; 5.1

DT(N ,O | θ) set of all DT problems (N, o, o′) satisfying conditions θ 2.4; 5.1

E set of pairwise outcome comparison data 6.1

E set of edges in a graph 2.2

Et comparison (ot, o′t) in E such that ot � o′t 6.1

F cpt-code; tuple of function vectors F j 4.2

F j function vector corresponding to a CPT 4.4

F< j partial cpt-code 4.3

FL(N, o, o′) flipping length; i.e., length of a shortest flipping sequence 2.4

G directed graph, esp. dependency graph of a CP-net 2.2

H preference graph (a Hamming cube if binary) 1.2.1; 2.4

h index, esp. of a parent node; Hamming distance 2.4

HD(·, ·) Hamming distance; i.e., number of variables that differ 2.3

I set of DT instances 2.4

Continued on the following page
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Table 2.2: Commonly Used Notation (continued)

Symbol Most Likely Semantics Section(s)

I DT instance (N, o, o′) 2.4

i index, esp. of a variable or node representing a feature 2.3

j index, e.g., of a child node, encoding, etc. 2.3; 4.3

k bound on flipping length for DLDT; index 5.5

L square matrix consisting of all flipping lengths 5.2

Ln all Prüfer codes with n − 1 integers ranging from 1 to n + 1 6.2

L average path length; other length; Prüfer code 5.2; 6.2

` index; length of a sequence, data set, or path 2.2; 6.1

M adjacency matrix of a graph 5.2

m number of parents of a node; number of inputs to a function 2.4

MFL(I) mean flipping length of a set of DT instances 2.4; 5.1

MFL(I | θ) mean flipping length of DT instances satisfying conditions θ 2.4; 5.1

N a set of CP-nets 2.4

N a particular CP-net 2.4

n number of features, variables, nodes 2.3

Nn binary acyclic CP-nets with n nodes 5.1

Nn,d d-ary acyclic CP-nets with n nodes 5.1

Nn | c binary acyclic CP-nets with n nodes and indegree bound c 5.1

Nn,d | c d-ary acyclic CP-nets with n nodes and indegree bound c 5.1

TNn tree-shaped CP-nets on n binary nodes 6.2

O set of conceivable outcomes 2.3

On set of outcomes over n binary features 2.3

On,d set of outcomes over n d-ary features 2.3

Continued on the following page
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Table 2.2: Commonly Used Notation (continued)

Symbol Most Likely Semantics Section(s)

O2
n all pairs of outcomes over n binary features 2.3

O2
n | h all pairs of outcomes over n binary features with HD h 2.3

O2
n,d | h all pairs of outcomes over n d-ary features with HD h 2.3

Pa(·) parents of a node 2.2

S(·) symmetric group; set of all rankings, permutations 2.2

S , T , U various sets

S the subject, preference holder 1.1; 2.4

Tn set of all treecodes Ln × Bn 6.2

t index of items in a sequence; timestep in SATplan 5.6.2; 6.1

u node in a graph; utility function; assignment to parents 1.1.1; 2.2

V set of features, variables, nodes 2.2; 2.3

v node in a graph 2.2

Xi a particular feature, variable, node 2.3

zt,i, j Boolean state variable 5.6.2

Copyright c© Thomas E. Allen, 2016.
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Chapter 3 Related Work

This chapter provides an overview of the present state of the research involving CP-nets.

Because most of that research applies various restrictions to the formalism, Section 3.1

summarizes restrictions that can be applied to models, such as limiting the shape of the

network, the size of domains, etc. Section 3.2 discusses the problem of finding optimal

outcomes given a CP-net and also that of finding the k-best outcomes. Section 3.3 consid-

ers the problem of checking whether a CP-net is consistent. Section 3.4 discusses problems

related to reasoning with CP-nets, such as dominance testing, ordering queries, and heuris-

tic methods, as well as the complexity of the reasoning problems. Section 3.5 considers the

problem of learning CP-nets from outcome comparison data or elicited queries and what is

known about the complexity of the respective problems. Section 3.6 discusses experiments

with CP-nets, including efforts to generate CP-nets randomly, experimental validation of

algorithms, and available datasets. Section 3.7 concludes the chapter with a discussion of

some proposed extensions to the CP-net formalism.

3.1 General and Restricted CP-net Models

CP-nets have already been discussed along with examples in Sections 1.3 and 2.4. The

CP-net formalism was originally proposed by Craig Boutilier along with coauthors Ronen

I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole, initially in conference

proceedings (1999) [17] and later extended for publication in the Journal of Artificial Intel-

ligence Research (2004) [16]. In their most general form, without extensions such as those

discussed in Section 3.7, CP-nets are allowed to have cycles in the dependency graph, with

only two constraints on the geometry: loops are disallowed, and a small constant bound on

indegree is assumed. Moreover, the features that characterize the outcome space, so long

as they are discrete, can be multivalued, CPTs can be partially specified (i.e., incomplete),
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and CPRs can express a weak total order over the domain of the local variable. While such

general models can represent a broader range of problems, reasoning with such models

may be intractable and there is no guarantee that the resulting order on outcomes will be

consistent.

Almost always, however, one or more restrictions are applied to the set of possible

CP-net models, either as a requirement for algorithms or as an aid in proving theoretical

results. Restrictions can be applied to the dependency graph, domains, CPTs, or CPRs.

Recall from Sections 2.2 and 2.4 that the dependency graph of a CP-net can be restricted

to a subclass of digraphs, such as DAGs, polytrees, etc. Table 3.1 lists some of the more

common restrictions to the structure of the dependency graph. By far the most common

of these is to exclude cycles; in fact, unless qualified (e.g., generally cyclic CP-nets), one

can usually assume that the dependency graph is a DAG. Recall from Section 2.4 that,

regardless of the type of graph, a bound on indegree is always assumed for CP-nets to

ensure a compact model.

Similar restrictions can be applied to the variable domains, such as a bound on the

cardinality of the largest domain or on the number of different cardinalities when domains

are heterogeneous. A rather common restriction is that all variables must be binary [29, 61,

65, 104]. Another common restriction [16] is that CPTs must be complete, i.e., each CPT

is fully specified with a linear order over the local variable for every assignment to parents.

Algorithms for learning are an interesting exception in which it is common to output a

CP-net that is likely to be incomplete [29, 48, 58]. Finally, almost all researchers disallow

indifference, restricting attention to CP-nets that can model only strict preferences.

3.2 Finding Most Preferred Outcomes

A common problem in working with preferences is to find the (or in some cases, such as

Figure 2.5b, an) outcome that the subject most prefers. For other compact formalisms (see

Section 1.2.2), optimization problems of this type are known to be hard [32, 71]. However,
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Table 3.1: CP-nets Characterized by Dependency Graph

Dependency Graph Resulting Class of CP-net References
Chain Chain CP-net [16]
Antichain Separable CP-net (SCP-net) [66]
Directed forest Tree (or Tree-structured) CP-net [11, 16, 59]
Polytree Polytree CP-net [16]
DPSCG Directed path singly connected CP-net [16]
Max-δ-connected Max-δ-connected CP-net [16]
DAG Acyclic CP-net [16]
Digraph CP-net (or generally cyclic CP-net) [16, 42, 61]

Boutilier et al. [16] proved that the problem of outcome optimization is easy in acyclic,

complete CP-nets. In such cases the most preferred outcome is unique and can be found in

linear time in the number of nodes using a forward sweep algorithm that they describe.

Brafman et al. [20] proved that the related problem of finding the k-best outcomes in an

acyclic CP-net (presumably with complete CPTs) can be computed in polynomial time in

the number of variables, assuming the solutions can be linearized in a particular way, which

they call a contextual lexicographical linearization. If CPTs are incomplete, however, the

complexity of finding the most preferred and k-best outcomes is believed to be an open

problem [16].

3.3 Checking for Consistency

As noted in Section 2.4, CP-nets can induce an intransitive order on outcomes in certain

cases. In particular, as noted in Section 2.4, inconsistency can sometimes arise if the de-

pendency graph contains a cycle (see Figure 2.5). Domshlak and Brafman [30] showed

that consistency checking could be conducted efficiently for a wide class of cyclic, bi-

nary CP-nets. As later shown by Goldsmith et al. [42], however, the general problem is

PSPACE-complete. More recently, Santhanam et al. [93, 94] have reduced the problem to

one of model checking in the form of the CRISNER CP-nets reasoning tool.
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3.4 Reasoning with CP-nets

Given a pair of distinct outcomes, the reasoning problem involves determining which

outcome, if either, is preferred. Section 3.4.1 discusses dominance testing, the strongest

method of reasoning. Section 3.4.2 then considers the weaker method or ordering queries.

Finally, heuristic methods are discussed in Section 3.4.3.

3.4.1 Dominance Testing

Recall from Section 2.4 that, given a CP-net N with strict preferences and a pair of out-

comes o and o′, dominance testing (DT) determines whether there exists an improving

flipping sequence from o′ to o. If so, the CP-net said to entail that the first outcome domi-

nates the second, written N |= o � o′.

For arbitrary, possibly cyclic CP-nets, DT is known to be PSPACE-complete [42], and

in certain cases (in particular, chain CP-nets) flipping lengths can be Ω(2n/2), i.e., exponen-

tial in the number of nodes n, provided tables are incomplete and domains are multivalued,

even for chain CP-nets [16]. However, Boutilier et al. showed that, in the most general case,

dominance testing can be formulated as a STRIPS-type planning problem. More recently,

Kronegger et al. [61] have established several fixed parameter tractability (FPT) results for

dominance testing in a generalized class of CP-nets (GCP-nets) (similar to those studied

by [42]). Many of their FPT results also apply to CP-nets.

Several tractable subclasses for DT are known. Boutilier et al. [16] showed that DT can

be conducted in Θ(n2) time for binary valued tree CP-nets with their DT-Tree algorithm,

which also returns a flipping sequence if one exists. They claim that the algorithm remains

complete, with the same time complexity, when CPTs are incomplete. Bigot et al. [11]

subsequently described an algorithm they claim can answer dominance in O(n) time for

the same class of CP-nets (except that CPTs must also be complete), an unexpected result,

since the flipping length is O(n2) for such CP-nets. Thus, while the decision problem can

be answered in linear time, computing the flipping sequence itself requires quadratic time.
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Table 3.2: Computational Difficulty of Dominance Testing

Graph Domains CPTs DT Complexity Running Time References
Directed Forest Binary Complete P O(n) [11]
Directed Forest Binary * P O(n2) [16]
Directed Forest * * NP-hard ? [16]
Polytree Binary * P O(22cn2c+3) [16]
DPSCG Binary * NP-complete ? [16]
Max-δ-connected Binary * NP-complete ? [16]
* * * PSPACE-complete ? [42]
*No restriction

In the case of polytree CP-nets, Boutilier et al. [16] showed that DT could be answered

in polynomial time via their reduction to planning. Specifically, the algorithm requires time

O(22cn2c+3) where c is the assumed bound on indegree in the dependency graph. How-

ever, even when variables are binary, DT for directed-path singly connected CP-nets is

NP-complete if CPTs are complete (and NP-hard otherwise). The problem remains NP-

complete when the number of paths between any two nodes in the graph is polynomially

bounded (i.e., max-δ-connected graphs). Table 3.2 summarizes the computational com-

plexity and running times of DT algorithms for various classes of CP-nets.

3.4.2 Ordering Queries

Because dominance testing is hard in many cases, Boutilier et al. [16] also introduced

a weaker, incomplete method of reasoning with CP-nets. Rather than asking whether a

flipping sequence exists between a pair of outcomes, the method searches for local rules

that would contradict the existence of such a sequence. Given a CP-net N and a pair of

outcomes o and o′, o is said to be consistently orderable over o′ if N 6|= o′ � o. They call

this search for local contradictions an ordering query and show that it can be completed

in linear time in the number of variables, provided CPTs are complete. (The complexity

of ordering queries for incomplete CP-nets seems to be an open problem. However, the

authors note that they suspect it is hard.) Let N |=oq o � o′ denote that o is consistently

orderable over o′ with respect to CP-net N. Note that N |=oq o � o′ =⇒ N 6|= o′ � o.
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However, when N 6|=oq o � o′ ∧ N 6|=oq o′ � o, it could still be the case that N |= o � o′,

N |= o′ � o, or N |= o ‖ o′.

To better understand the nature of this method of ordering, recall that a CP-net induces

a partial order on outcomes. If o is consistently orderable over o′, it means only that o is

ordered before o′ in some linear extension of the induced partial order (see Section 1.1.2).

However, if o dominates o′, then it follows that o is ordered before o′ in every such linear

extension.

3.4.3 Reductions and Heuristic Methods

In general, DT involves a search for a flipping sequence that connects the two outcomes.

Any of the familiar search methods in AI, e.g., iteratively deepening depth-first search,

can be employed. Boutilier et al. [16] introduced two methods of pruning the search tree,

suffix fixing and forward pruning, that work in all cases, as well as a heuristic method,

least-variable flipping, that is incomplete except for binary-valued tree-shaped CP-nets. In

addition to the reduction to STRIPS-type planning [16], DT problems can also be reduced

to model checking [92, 93] (similar to their reduction for the consistency problem; see

Section 3.3). Finally, Li et al. [68] have proposed a heuristic approach to DT in acyclic,

generally multivalued CP-nets that they call DT*. While the algorithm is inspired by A*,

it does not seem to guarantee optimality; i.e., it does not always return a shortest flipping

sequence.

3.5 Learning CP-nets

Recall from Section 1.2.3 that, aside from direct construction by the subject, which is

problematic since it relies on introspection, learning a CP-net can take the form of active

elicitation or passive learning from data. The earliest work on learning CP-nets seems to be

that of Athienitou and Dimopoulos for the MPREF-2007 conference [6]. They introduced

a passive learning algorithm that attempts to recover a CP-net that entails all examples
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in a set of outcome comparison data. However, as observed by Lang and Mengin [65],

entailment is an exceptionally strong requirement. Suppose a subject has a linear order

on the outcome space, arising from some utility function (see 1.1.1). Arguably, then, the

goal is not to “recover” some presumed original CP-net, but to learn a CP-net such that

the observed comparison data are consistent with the learned model. They proposed three

notions of consistency for CP-nets. Lang and Mengin were also among the first to study the

complexity of the learning problem. To establish a lower bound, they proposed a simple

class of so-called separable CP-nets (SCP-nets) for which the dependency graph is an

antichain, i.e., a graph with no edges. In a later paper [66] they succeeded in proving that,

while it was possible to answer in polynomial time whether there exists a binary-valued

SCP-net that entails all examples, the problem of deciding whether there exists such a

network that is weakly consistent with all examples is NP-complete.

Meanwhile, Koriche and Zanuttini explored a somewhat different learning problem,

that of active elicitation. They framed the problem as one of Angluin-style learning, at-

tempting to elicit CP-nets via adaptively generated swap queries, i.e., comparisons in which

the two outcomes differ in the value of just one variable (as in flipping sequences) [58, 59].

Among their contributions was introducing the concept of query complexity. Rather than

defining complexity in terms of computation size, they defined an attribute efficient algo-

rithm as one for which the number of queries is polynomial in the number of variables.

They also described Angluin-style membership and equivalence queries for CP-nets: the

relationship between the two types of queries is analogous to that of ordering queries and

dominance testing for reasoning with CP-nets. Koriche and Zanuttini showed that it was

not possible to learn a CP-net with equivalence queries alone, but that membership queries

were also required. They presented an algorithm showing it was possible to learn binary-

valued tree-structured CP-nets in an efficient manner given this definition.

Dimopoulos et al. continued work on the problem of learning CP-nets passively from

data, improving on their research from a few years before. They introduced an algorithm
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that attempted to learn an acyclic, binary-valued CP-net that was consistent with all out-

come comparisons in a preexisting database [29]. Their algorithm first attempted to identify

variables over which the subject’s preferences were unconditional (those with 0 parents),

then variables with 1 parents, 2, and so on, until a node for each variable had been added

to the model.

A crucial step for each node involves determining whether a prospective set of nodes

could be the parents of the node under consideration. To determine this, the authors pro-

pose constructing a 2SAT instance, which is solvable in linear time, such that the solution

provides a CPT and establishes a position in the network for the node that is consistent with

all available comparison data. However, in some cases the algorithm may output failure in-

stead of a CP-net. Additionally, in the worst case the algorithm could iterate an exponential

number of times in the number of variables. They also proved that the problem of learn-

ing a CP-net consistent with comparison data was hard even for acyclic, binary CP-nets to

which other simplifying assumptions had been applied.

Recently Guerin et al. [47, 48] have proposed an elicitation algorithm for learning CP-

nets from user queries. The algorithm is similar in many respects to that of Dimopoulos

and Athienitou, but employs active elicitation rather than passive learning. The algorithm

is also distinctive in that it allows subjects to introspect on their preferences by asking for

a default, most-preferred value for each variable.

One of the problems inherent in learning preferences from human subjects is the pos-

sibility of noise or comparison data that are ultimately inconsistent through transitive clo-

sure. Liu et al. [70] propose maximizing the number of outcome comparisons that can be

included using a branch-and-bound approach. The method they propose—which is not

restricted to binary-valued domains—first learns a preference graph for the subject, then

constructs a CP-net from the preference graph. They claim that their algorithm runs in time

polynomial in the size of the preference graph. However, recall that the size of the pref-

erence graph is exponential in the number of features. Moreover, because the algorithm
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employs a branch-and-bound method, it seems unlikely that it is polynomial even in the

size of the preference graph; it seems more likely that the worst-case running time is actu-

ally doubly exponential in the number of features. In their conclusion, Liu et al. mention

the possibility of exploiting an approximation method rather than branch-and-bound for

learning CP-nets from possibility inconsistent data. While this is an interesting proposal, I

am not yet aware of any algorithm that exploits such a method or of theoretical results on

the complexity of the problem of approximating CP-nets.

Finally, Cornelio et al. have explored the possibility of updating a learned CP-net after

additional data have been collected, without recreating it entirely [25, 26].

3.6 Experiments with CP-nets

Proposed CP-net algorithms are typically evaluated with theoretical proofs, experiments,

or both; Table 3.3 summarizes several studies involving CP-net learning or reasoning and

the methods of evaluation. Ideally, algorithms would be evaluated at least in part using ac-

tual CP-nets obtained from human subjects. Unfortunately, no such datasets are presently

available [3]. Datasets from which CP-nets can be learned are also problematic. The

PrefLib preference data repository [75], for example, provides only two combinatorial

preference datasets. One consists of approval ballots and ratings for candidates in the

2002 French election; the other consists of hotel reviews submitted to the Trip Advisor

travel site. However, it is unclear how these could be used to construct CP-nets for an

experiment, and to date neither dataset has been cited in any CP-net study. The SUSHI

preference dataset [53], consisting of user’s ratings, ranking, and the feature composition

of different types of sushi, has been adapted by at least one team of authors for their CP-net

learning algorithms [69, 70]. However, this sort of adaptation, while fairly common in the

computational social choice and preference learning communities, involves numerous data

modeling decisions that can undermine the validity of such experiments [81, 84]. While

Allen et al. [3] describe a rigorous psychological experiment on whether human prefer-
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Table 3.3: Evaluation Methods for Proposed CP-net Algorithms
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Allen [1] X X X X
Bigot et al. [11] X X
Bigot et al. [12] X X
Boutilier et al. [16] X X
Dimopoulos et al. [29] X X
Eckhardt and Vojtáš [33, 34] X X
Guerin et al. [47] X X
Koriche and Zanuttini [58, 59] X X
Kronegger et al. [61] X X X
Li et al. [68] X X X
Liu et al. [69, 70] X X X X
Santhanam et al. [92] X X X

ences can be consistently modeled with CP-nets, the results of that experiment are not yet

available. Therefore, due to the lack of suitable real-world data, researchers often rely on

synthetic datasets. However, as discussed in detail in Chapter 4, synthetic data are also

problematic due to naı̈ve generation methods.

3.7 Extensions to the Formalism

We conclude with a brief discussion of a few of the many proposed extensions to the CP-net

formalism—GCP-nets, TCP-nets, mCP-nets, and PCP-nets.

• General CP-nets (GCP-nets) dispense with the explicit graphical structure of clas-

sical CP-nets and consist only of a set of conditional preference rules. Such a for-

malism is helpful for networks that may contain cycles and be highly complex in the

interrelationships among nodes. As such, GCP-nets can facilitate the proof of certain

complexity results and were employed both in the PSPACE-completeness proofs of

Goldsmith et al. [42, 43] and in the FPT results of Kronegger et al. [61].
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• Tradeoffs-enhanced CP-nets (TCP-nets), introduced by Brafman et al. [19], ex-

tends the CP-net formalism by allowing the model to reflect the relative importance

assigned to the features. In addition to the directed edges indicating conditional de-

pendencies, the model includes two additional types of edges: importance arcs, di-

rected edges showing that one variable is more important to the subject’s satisfaction

than the other, and conditional importance arcs, indicating the relative importance of

variables given the values assigned to other nodes in the graph. While the proposed

formalism is highly expressive, its greater complexity (at least for human users) has

perhaps limited its adoption.

• mCP-nets were conceived by Rossi et al. [89] as a formalism for representing the

preferences of multiple agents. The preferences of m individual agents are repre-

sented as a partial CP-net, and the semantics of the aggregated mCP-net are related

to voting. Recently, Lukasiewicz and Malizia [72] have studied the computational

complexity of various problems involving mCP-nets.

• Probabilistic CP-nets (PCP-nets) were proposed by Cornelio [26] and later refined

by Bigot et al. [11] and Cornelio et al. [25]. Whereas CP-nets are deterministic,

PCP-nets assign a probability to every conditional preference rule. PCP-nets are

presently limited to O-legal structures with strict preferences over binary domains

and complete CPTs. Such networks assume that the probabilities of each node are

independent and hence that the probabilities of edges can be calculated using the

product rule. Cornelio [26] has also explored the connection between PCP-nets and

Bayesian networks. Based on this close relationship with Bayesian networks, Bigot

et al. [12] have subsequently shown that PCP-nets can be learned in polynomial time

from a set of optimal outcomes when the dependency graph is tree-shaped.

Copyright c© Thomas E. Allen, 2016.
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Chapter 4 Generating CP-nets Uniformly at Random

Methods for generating random data have long been of interest to computer scientists—

Alan Turing advocated for a random number generator in the 1951 Ferranti Mark I com-

puter [55]—and continue to be an active topic of research. Random generation not only of

numbers, but of combinatorial objects such as spanning trees and paths in directed graphs

have been studied across both mathematics and computer science [62]. However, methods

for generating complex preference models such as CP-nets in a uniform manner have not

yet received attention.

There is considerable value in being able to generate CP-nets uniformly at random,

including: enabling experimental analysis of CP-net reasoning algorithms, unbiased black-

box testing, effective Monte Carlo algorithms, analysis of all CP-nets to better understand

their properties, and simulations for decision making or social choice experiments. Com-

plementing theoretical results with empirical experiment, whether from real data or from

data generated according to a distribution, may provide a window into feasible algorithms

that provide good results in practice; biased generation may heavily skew these results.

Experimental research in preference handling requires the use of real-world or simu-

lated data. Real-world data are often messy, not openly available, notoriously difficult to

collect reliably, hard to interpret, and nonexistent for CP-nets [3, 75]. Principled methods

exist to generate simulated data in social choice and preference handling using generative

cultures [10, 73, 100]. Such cultures have their drawbacks and limitations [81, 84], but

provide a first step in experimentation for fields where data are hard to gather. While gen-

erative cultures over strict, linear orders are well defined in social choice, there is not an

analog for preferences over more complex structures such as CP-nets. To generalize any

statistical cultures used in social choice, we need to be able to generate samples uniformly

at random from a specified set of CP-nets.
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This chapter introduces a method for generating acyclic CP-nets uniformly at random.

A key idea of this method is that the structure of a CP-net is equivalent to a tuple of sets

representing the parents of nodes in the network. We will consider how to enumerate all

such dagcodes, as these tuples are known [99],1 and how to calculate the number of CP-

nets—the possible graphs and conditional preference tables (CPTs)—that extend a partial

dagcode. The resulting novel recurrence makes it possible to generate the graph and CPTs,

node by node, such that all CP-nets with a given domain size and bound on indegree are

equiprobable.

Section 4.1 highlights two problems, bias and degeneracy, that result from commonly

used naı̈ve generation methods. Section 4.2 shows how to encode and avoid degeneracy in

the CPTs. Section 4.3 explains how to encode and count the dependency graphs. These

results are then brought together in Section 4.4 to create an algorithm that samples the

space of CP-nets uniformly. Section 4.5 shows how to sample uniformly from outcomes

and the set of dominance testing problem instances. Note that in this chapter it is assumed

that domains are homogeneous but possibly multivalued, i.e., d = d1 = · · · = dn, where

di = |Dom (Xi)|, for all Xi ∈ V , and that the CPTs are complete, i.e., have dm rules, one

for every assignment to the m parents, m = |Pa (Xi)|. Notation is discussed in detail in

Chapter 2; in particular, see Table 2.2.

4.1 Naı̈ve Generation, Bias, and Degeneracy

If one wants to generate CP-nets without regard for the resulting distribution, many simple

random methods exist. For example, initialize a CP-net with n nodes, no edges, and empty

CPTs; choose a random subset of pairs (Xh, Xi), h < i, inserting an edge from each Xh to Xi;

generate a CPT for each Xi with d|Pa(Xi)| rules, each a random permutation of the d values

of Xi; and randomly permute the n labels. One suspects that something along these lines is

meant when a paper states, “We generated 1000 CP-nets at random.” However, this naı̈ve
1I use dagcode rather than DAG code (as in [99]) so as to better emphasize whether I am referring to the

encoding or to the DAG itself.
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A B

C D

c1d1 : a2 � a1

c1d2 : a2 � a1

c2d1 : a1 � a2

c2d2 : a1 � a2

a1d1 : b1 � b2

a1d2 : b1 � b2

a2d1 : b1 � b2

a2d2 : b2 � b1

c1 � c2
c1 : d1 � d2

c2 : d2 � d1

(a) Degenerate CP-net

A B

C D

c1 : a2 � a1

c2 : a1 � a2

a1d1 : b1 � b2

a1d2 : b1 � b2

a2d1 : b1 � b2

a2d2 : b2 � b1

c1 � c2
c1 : d1 � d2

c2 : d2 � d1

(b) Equivalent Non-Degenerate CP-net

Figure 4.1: An Example of Degeneracy in CP-nets

approach to generation leads to two problems, degeneracy and bias. Let us first consider

the problem of degeneracy, which occurs when one or more dependencies in the graph are

not reflected in the conditional preference rules (CPRs).

Example 17. Consider the CP-net in Figure 4.1. The edge (D, A) in Figure 4.1a indicates

that the preference over the values of A depends on the value of D. However, in examining

the CPT of A closely, one can observe that the preference over A does not in fact depend on

D. The preferences can thus be represented by the simpler CP-net shown in Figure 4.1b.

Degeneracy in synthetic datasets is problematic for two reasons. First, dependencies in

the graph, such as edge (D, A) in Example 17, can be fictional; that is, the presence of an

edge in the graph does not necessarily express any factual information about the induced

preference order. Second, if degeneracy can occur, multiple, apparently different CP-net

models can map to the same induced preference order.
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B

A

b � b

b : a � a
b : a � a

(a) One Edge

ab

ab ab

ab

(b) Induced PG

A

B b � b

a � a

(c) No Edge

Figure 4.2: Degeneracy Can Violate Basic Assumptions of an Experiment

Example 18. Suppose a researcher wants to test a new DT algorithm to understand how

running time varies as the number of edges in the network increases. (Also, he thinks a nice

bar chart will impress reviewers.) As a first step, he generates two sets of CP-nets using a

naı̈ve approach. The CP-nets in each set have binary domains and two nodes; the first set

has just one edge, and the second set has no edge. However, if each CPR is assigned in the

manner of a coin flip, an expected 50% of the CP-nets in the first set will be degenerate like

the one in Figure 4.2a. As such, its induced preference graph, shown in Figure 4.2b, will be

identical to that of the no-edge CP-net in Figure 4.2c. Thus, one of the basic assumptions

of the experiment, that the two sets induce different preference orders, is violated.

Naı̈ve generation methods also result in another problem that can violate the basic as-

sumptions of experiments: statistical bias. To understand this bias, consider the following

dependency graphs and their associated CP-net counts2 as shown in Figure 4.3. Both graphs

have 5 nodes and 5 edges, but the number of CP-nets associated with each graph differs

greatly. Observe that for the chain-shaped graph on the left, when d = 2, there are just two

ways to choose each of the n CPTs such that they are consistent with the dependency graph.

The CPT of root E could be [e1 � e2] or [e2 � e1]. The other nodes, each of which has

only one parent, also have two (non-degenerate) possibilities for their CPT; e.g., CPT(A)

could be [b1 : a1 � a2, b2 : a2 � a1] or [b1 : a2 � a1, b2 : a1 � a2]. However, in the
2The CP-net counts for G and G′ are ψd(0)(ψd(1))4 and (ψd(0))4ψd(4), respectively, where ψd(m) is the

number of non-degenerate CPTs with m parents and d-ary domains, as discussed in Section 4.2.
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E B A D C

Chain-shaped graph G

D′ A′ B′

E′

C′

Star-shaped graph G′

(a) Dependency Graphs that Differ in Maximum Indegree

d CP-nets with G CP-nets with G′

2 32 1.03× 106

3 7,776 1.39× 1066

4 7,962,624 7.16× 10358

5 24,883,200,000 6.38× 101307

(b) Number d-ary CP-nets for Dependency Graphs above

Figure 4.3: How Naı̈ve Generation Can Lead to Bias

case of the star-shaped graph on the right, CPT(A′) has d4 = 16 rules, each with d! = 2

possible orderings. In all, over one million CP-nets have the graph on the right, while only

32 have the graph on the left. Further observe that the ratio of this imbalance very rapidly

increases with the domain size d. Thus, if the algorithm above in fact generated the two

graphs with equal likelihood, it would grossly oversample CP-nets with the first graph,

while correspondingly undersampling those with the second.

However, the naı̈ve algorithm does not even generate the two DAGs with equal likeli-

hood. Because there are 5! = 120 ways to permute the labels of the first DAG, but only 5

ways to permute those of the second, the star-shaped DAG on the right would be generated

24 times as often as the chain-shaped DAG on the left. Despite this, the CP-nets in the

star-shaped case would still be greatly undersampled.

53



CPT(A)
c1d1 : a2 � a1

c1d2 : a2 � a1

c2d1 : a1 � a2

c2d2 : a1 � a2

In1 In2 F
0 0 1
0 1 1
1 0 0
1 1 0

Figure 4.4: CPT and Corresponding Boolean Function

4.2 Counting and Generating the CPTs

The notion of a degenerate CPT introduced in Section 4.1 can be generalized with the help

of a bijection (a mapping that is one-to-one and onto) with discrete multivalued functions.

One can model each CPT(Xi) as a function f : {0, . . . , d − 1}m → {0, . . . , d! − 1}, where

m = |Pa (Xi)|. The inputs correspond to the values of the m parents of Xi. The output

corresponds to one of the d! orders of the domain of Xi.

Observe that if variables are binary (d = 2), f is a Boolean function. In that case the

values xh
1 and xh

2 of each parent Xh can map to 0 and 1 respectively. The two possible linear

orders xi
1 � xi

2 and xi
2 � xi

1 can correspond to outputs 0 and 1. One can thus model the

degenerate CPT of node A from Example 17 with the truth table in Figure 4.4.

If variables are multivalued, the mapping is similar, as illustrated in Figure 4.5 for a

CPT with two parents and three-valued domains. Note that the inputs to the multivalued

function are in the range (0 . . d − 1), while the outputs are in the range (0 . . d! − 1). For

mapping the outputs, one can use Lehmer codes [67] (see also the discussion of the factorial

number system by Knuth [56, 3.2.2 Alg. P]), as illustrated in the table on the right-hand

side of Figure 4.5 for d = 3.

Thus, any CPT can be encoded as an equivalent function vector F of length dm. Note

that the values in the input columns of Figures 4.4 and 4.5 are only for the benefit of the

human reader and need not be represented explicitly. The entries in a function vector are or-

dered according to a radix d positional numbering system, where each digit corresponds to

the value of a parent variable. Of course, to produce the corresponding CPT from a vector,

one would also need to know the labels of the variable, parent variables, and domains.
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CPT(C)
a1b1 : c1 � c2 � c3
a1b2 : c1 � c2 � c3
a1b3 : c1 � c3 � c2
a2b1 : c1 � c2 � c3
a2b2 : c1 � c2 � c3
a2b3 : c1 � c3 � c2
a3b1 : c1 � c2 � c3
a3b2 : c1 � c2 � c3
a3b3 : c3 � c2 � c1

In1 In2 F
0 0 0
0 1 0
0 2 1
1 0 0
1 1 0
1 2 1
2 0 0
2 1 0
2 2 5

Decimal Factoradic Lehmer Ranking �i

rank numeral code of Dom(Xi)

0 000! (0, 1, 2) x1 � x2 � x3

1 010! (0, 2, 1) x1 � x3 � x2

2 100! (1, 0, 2) x2 � x1 � x3

3 110! (1, 2, 0) x2 � x3 � x1

4 200! (2, 0, 1) x3 � x1 � x2

5 210! (2, 1, 0) x3 � x2 � x1

Figure 4.5: Multivalued CPT and Mapping

The mapping helps us formalize the notion of degeneracy introduced in Section 4.1.

Definition 19 (Degeneracy). A function f (u) is vacuous3 in variable uk if and only if its

output never depends on uk; i.e., for all u ∈ {0, . . . , d − 1}m,

f (u1, . . . , uk−1, 0, uk+1, . . . , um)

= f (u1, . . . , uk−1, 1, uk+1, . . . , um)

= · · · = f (u1, . . . , uk−1, d − 1, uk+1, . . . , um).

Function f is degenerate if it is vacuous in a variable; otherwise, it is non-degenerate. By

extension, a CPT is degenerate (respectively vacuous in a parent variable) if function f to

which it maps is degenerate (respectively vacuous in an input).

Let us denote by φd(m) the total number of distinct CPTs for a node with m parents.

Let us denote by χd(m) the number of those that are degenerate, and by ψd(m) the number

that are non-degenerate. It follows immediately from Definition 19 that

φd(m) = χd(m) + ψd(m). (4.1)

First consider binary domains, d = 2. Because CPTs and Boolean functions are in

one-to-one correspondence, φ2(m) is equivalent to the number of Boolean functions of m

inputs, and ψ2(m) is equivalent to the number of non-degenerate Boolean functions. Hu
3Such a variable is sometimes said to be vacated or fictional [79].
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Table 4.1: Values of φ2(m) and ψ2(m) for m = 0 to 5

m φ2(m) χ2(m) ψ2(m)
χ2(m)
φ2(m)

ψ2(m)
φ2(m)

0 2 0 2 0.0000 1.0000

1 4 2 2 0.5000 0.5000

2 16 6 10 0.3750 0.6250
3 256 38 218 0.1484 0.8516
4 65,536 942 64,594 0.0144 0.9856
5 4,294,967,296 325,262 4,294,642,034 0.0001 0.9999

[51, §2] (see also the work of Harrison [50] and O’Connor [79]) proved that for Boolean

functions

φ2(m) = 22m
, (4.2)

and

ψ2(m) =

m∑
k=0

(−1)m−k

(
m
k

)
22k
. (4.3)

Table 4.1 shows the values of φ2(m) [98, A001146] ψ2(m) [98, A005530], and ψ2(m) [98,

A000371] for small m, as well as the ratios of ψ2(m) and χ2(m) to φ2(m), approximated

to four decimal digits. From these ratios, one may conjecture the results in the limit, also

proved by Hu [51, §10],

lim
m→∞

χ2(m)
φ2(m)

= 0, (4.4)

lim
m→∞

ψ2(m)
φ2(m)

= 1. (4.5)

Let us now generalize these results to homogeneous domains of arbitrary size d > 0.

Theorem 20 (Number of CPTs). For every non-negative integer d, m,

φd(m) = d!dm
. (4.6)

Proof. Each rule of CPT(Xi) specifies one of d! linear orders of Dom(Xi). The number

of CPRs is |Asst (Pa(Xi))| = dm, where m = |Pa (Xi)|. Because each rule can be assigned

independently, φd(m) = d!dm
. q
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Is-CPT-Degenerate( N, Xi )

Input: CP-net N
Node Xi

Output: returns true if CPT(Xi) is degenerate, false if non-degenerate

1: for all Xh ∈ Pa(Xi) in CP-net N do . Iterate over parents
2: vacuous← true . Assume for now Xh is fictional
3: for all xh

k ∈ Dom(Xh), k > 1 do . All domain values except xh
1

4: if CPT(Xi | Xh = xh
k) , CPT(Xi | Xh = xh

1) then
5: vacuous← false . Output depends on Xh, so
6: break . move on to next parent
7: end if
8: end for
9: if vacuous then

10: return true . Since CPT(Xi) is vacuous in parent Xh, it is degenerate
11: end if
12: end for
13: return false . CPT(Xi) depends on all parents; thus it is non-degenerate

Figure 4.6: Algorithm: Decide Whether a CPT Is Degenerate

Theorem 21 (Number of Non-degenerate CPTs). For every non-negative integer d, m,

ψd(m) =

m∑
k=0

(−1)m−k

(
m
k

)
d!dk

. (4.7)

Theorem 22 (Convergence to Non-degeneracy). For every non-negative integer d, m,

lim
m→∞

χd(m)
φd(m)

= 0, (4.8)

lim
m→∞

ψd(m)
φd(m)

= 1. (4.9)

The proofs of Theorems 21 and 22 very closely follow the rather lengthy proofs of Hu

[51][§10] for Boolean functions, except that φd is needed in place of φ2; the primary change

is to replace every occurrence of 22k
with d!dk

.

Figure 4.6 describes an algorithm that decides whether a CPT is degenerate. The loop

in Line 1 iterates over the m parents of Xi. If the preference over Xi is the same for all

values of parent Xh,

CPT(Xi | Xh = xh
1) = CPT(Xi | Xh = xh

2) = · · · = CPT(Xi | Xh = xh
m), (4.10)
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then the CPT is vacuous in Xh. In that case the inner loop completes with variable vacuous

still set to true, and the program exits at Line 10 to report that the CPT is degenerate.

However, if Equation 4.10 does not hold, then vacuous will be set to false at Line 9, the

inner loop will terminate early, and execution will proceed to the next parent variable. If the

main loop terminates, the CPT depends on every parent variable; thus, it is non-degenerate.

Because every CPT has a corresponding function vector F of length dm, as discussed

above, it is possible to test F for degeneracy directly without having to keep track of the

parent labels or to parse expressions such as a2b3 : c1 � c3 � c2. The algorithm described

in Figure 4.7 returns true if such a vector is degenerate.

Theorem 23 (Degeneracy Can Be Decided Efficiently). Is-Function-Degenerate runs in

polynomial time.

Proof. The outermost loop at Line 1 executes at most m times, and the nested for loop at

Line 3 executes at most d − 1 times. The while loop at Line 7 requires some discussion.

The variables r and s iterate over indices corresponding to all d-ary inputs of the form

(α0, . . . , αh−1, 0, αh+1, . . . , αm−1),

(α0, . . . , αh−1, k, αh+1, . . . , αm−1),

where α j ∈ {0, . . . , d−1}, for j ∈ {1, . . . ,m−1}, j , k. Observe that r and s are non-negative,

strictly increase on each iteration (see Lines 11–12 and Lines 15–16), and are bounded by

dm. Thus, the while loop at Line 7 executes at most dm−2 times, and the overall running

time of the algorithm is O(mdm−1). Note that the size of the input is O(dm), i.e., the length

of vector F. Therefore, the running time is polynomial in the size of the input. q

Note that in the proof the assumption is made, as usual, that arithmetic and memory

operations can be performed in constant time. However, because the elements of F are

integers in the range {0, . . . , d! − 1}, this assumption may not hold if d is arbitrarily large.

Recall our assumption that d is a small constant. Also, as a practical matter, observe that d!
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Is-Function-Degenerate( F, d,m )

Input: F output vector with dm rows
d domain size
m number of inputs

Output: returns true if F is degenerate, false if non-degenerate

1: for h← 0 to m − 1 do . Iterate over the m inputs
2: vacuous← true . Assume vacuous in input h until proved otherwise
3: for k ← 1 to d − 1 do . Iterate over all domain values except 0
4: r ← 0 . Indexes entries for which Inh = 0
5: s← dhk . Indexes entries for which Inh = k
6: t ← dh . Count down until time to skip “column” Inh

7: while s < dm do
8: if F[r + 1] , F[s + 1] then . Note indexing starts at 1
9: vacuous← false . Output depends on input h

10: else
11: r ← r + 1 . Continue sequential search through F
12: s← s + 1
13: t ← t − 1
14: if t = 0 then
15: r ← r − dh + dh+1 . Skip “column” Inh

16: s← s − dh + dh+1

17: t ← dh

18: end if
19: end if
20: end while
21: if not vacuous then
22: break . F depends on Inh, so move on to next input
23: end if
24: end for
25: if vacuous then
26: return true . Since F is vacuous in input h, it is degenerate
27: end if
28: end for
29: return false . F depends on all m inputs; therefore it is non-degenerate

Figure 4.7: Algorithm: Decide Whether Function Vector F is Degenerate
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Table 4.2: Odds of Generating a Degenerate Function at Random on a Given Attempt

χd(m)
φd(m)

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

d = 2 0 0.500 0.375 0.148 0.014 7.6 × 10−5

d = 3 0 0.028 4.2 × 10−5 3.0 × 10−14 3.8 × 10−42 4.3 × 10−126

d = 4 0 7.2 × 10−5 5.5 × 10−17 1.7 × 10−66 4.0 × 10−265 5.0 × 10−1060

d = 5 0 4.8 × 10−9 5.2 × 10−42 3.6 × 10−208 1.0 × 10−1039 5.6 × 10−5198

can be represented by a 64-bit unsigned integer for d ≤ 20, since 20! < 264. Note also the

proof of O’Connor [79], that deciding whether a Boolean function is vacuous in a variable

(and hence degenerate) is Co-NP-complete. However, this assumes the input takes the form

of arbitrary Boolean expressions, whereas in our case the input is already exponential in m,

since it is assumed that CPTs are complete.

Let us now consider how to leverage these results to generate non-degenerate CPTs

in an efficient, uniformly random manner. For tiny values of d and m, one can choose

uniformly from a modest-sized table of non-degenerate functions (e.g., ψ2(4) = 64594).

For larger values, one can use rejection sampling, generating a random integer in the range

(0 . . d! − 1) for each of the dm elements of vector F and repeating this process in the

unlikely event (e.g., < 0.0001 for m > 4 and very rapidly converging to 0 as m increases)

that the result is degenerate (see Table 4.2). With probability ψd(m)/φd(m), asymptotic to

1, a non-degenerate CPT is obtained on a given attempt. Finally, observe that it is possible

to generate all non-degenerate CPTs by generating all φd(m) vectors F and outputting the

corresponding CPT only when Is-Function-Degenerate(F) answers false.

4.3 Encoding and Counting Dependency Graphs

This section considers how to model the dependency graph as a dagcode [99], inspired by

Prüfer codes for labeled trees [60]. The encoding makes it easier to count the number of

ways to complete a partially constructed DAG in order to avoid bias. In this section the

dagcode is first treated as an abstraction and then related to the dependency graph.
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Dagcode-to-DAG( A )

Input: dagcode A = 〈A1, . . . , An−1〉

Output: corresponding DAG G

1: n← length(A) + 1
2: Q← {1, . . . , n}
3: initialize DAG G with n nodes and no edges
4: for j← n − 1 downto 1 do . Iterate over dagcode: A j is the parent set
5: i← max

(
Q \

⋃ j
k=1 Ak

)
. of Xi, where i is the largest unused label

6: for all h ∈ A j do
7: insert edge to Xi from its parent Xh

8: end for
9: Q← Q \ {i}

10: end for
11: output DAG G

Figure 4.8: Algorithm: Generate a DAG from its Dagcode

Definition 24 (Dagcode). For any positive integer n, a dagcode A = 〈A1, . . . , An−1〉 is a

tuple of n − 1 subsets A j ⊂ {1, . . . , n} that satisfy the cardinality constraint∣∣∣∣∣∣∣⋃k≤ j

Ak

∣∣∣∣∣∣∣ ≤ j (4.11)

for all j, 1 ≤ j < n.

Observe from Definition 24 that tuples 〈{1}, {1, 3}〉 and 〈{3}, ∅〉 are valid dagcodes (in

which n = 3), but 〈{1, 2}, ∅〉 and 〈∅, {1, 2, 3}〉 are not, since each violates the cardinality

constraint. Steinsky [99] proved that dagcodes correspond one-to-one with DAGs and de-

scribed efficient algorithms for converting dagcodes to DAGs and vice versa. The algorithm

shown in Figure 4.8 maps an encoding A to its corresponding graph G.4

Applied to CP-nets, each subset A j ⊂ {1, . . . , n} in the dagcode corresponds to the

parents of some node Xi in the dependency graph: i.e., h ∈ A j =⇒ Xh ∈ Pa(Xi). Note
4I have modified the algorithm of Steinsky [99] slightly so as to remove the node with the largest rather

than the smallest label. One can confirm that this change has no effect on the one-to-one correspondence
between dagcodes and DAGs. Removing the node with the smallest label offers a closer analogue to Prüfer
codes. However, DAGs, unlike (undirected) trees, impose a topological ordering on the nodes. By removing
the node with the largest label, I map an encoding such as 〈{1}, {1, 2}, {1, 2, 3}〉 to a graph in which the node
labels are topologically ordered 1 I 2 I 3 I 4, which I find more aesthetically appealing than 4 I 3 I 2 I 1.
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that the root node with the smallest label is implicit; informally, it is helpful to consider

every dagcode as having an implicit element A0 ≡ ∅. The order in which the remaining

n−1 parent sets Pa(Xi) occur in the dagcode depends on the order of the child node Xi with

respect to other nodes in the graph and the relative size of node label i, as follows:

1. If Xh is an ancestor of Xi in the DAG, the encoded parent set Pa(Xh) is ordered before

Pa(Xi) in the dagcode.

2. If h < i and Xh is neither an ancestor nor a descendant of Xi, then Pa(Xh) is ordered

before Pa(Xi).

Example 25. The dagcode 〈{1}, {1, 3}〉 corresponds to a DAG with n = 3 nodes depicted

below.

X1

X2 X3

The subsets {1} and {1, 3} indicate that one node has parent X1 and another has parents X1

and X3; the third (implicit) node is a root. The mapping from parent sets to their children

can be recovered from Dagcode-to-DAG (Figure 4.8) [99, adapted] working right to left

as follows: A2 = {1, 3} corresponds to the parents of X2 since 2 is the largest unassigned

label not in {1} ∪ {1, 3}. A1 = {1} corresponds to the parents of X3 since 3 is the largest

unassigned label not in {1}. The remaining root node is X1.

Observe that a DAG has bounded indegree c if and only if

|A j| ≤ c (4.12)

for all A j in the corresponding dagcode: every node Xi in the DAG corresponds to the

parent set of an element A j in the dagcode, with the exception of a root with indegree 0.

The generation method in Section 4.4 depends on counting the number of extensions to

a partially specified graph. Consider a partial encoding A<3 = 〈{1}, {2}, 〉 of a graph with
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n = 4 nodes and bound c = 1 on indegree. Here the could be any subset of {1, 2, 3, 4} of

cardinality 0 or 1 such that the resulting dagcode is valid, viz., ∅, {1}, {2}, {3}, or {4}.5 One

can generalize this as follows.

Definition 26 (Partial dagcode). A partial dagcode A< j = 〈A1, . . . , A j−1, , . . . , 〉 is a

dagcode for which only elements A1 through A j−1 have been specified, such that∣∣∣∣∣∣∣⋃
`≤k

A`

∣∣∣∣∣∣∣ ≤ k (4.13)

for all k, 1 ≤ k < j, and all Ak ⊂ V, V = {1, . . . , n}.

A partial dagcode is said to respect a bound c on indegree when

|Ak| ≤ c (4.14)

for all Ak, where c is an arbitrary non-negative integer.

The algorithm shown in Figure 4.9 generates all extensions to A< j by recursively com-

bining A< j with each A j such that the resulting partial dagcode A< j+1 satisfies the constraints

on cardinality and indegree. To generate all DAGs with n nodes and bound c on indegree,

All-DAGs(n, c, 1, 0, ∅, A<1) is called.

Theorem 27. All-DAGs generates each DAG exactly once.

Proof. Because dagcodes are in one-to-one correspondence with DAGs [99, Cor. 1], it

suffices to show that each dagcode is generated exactly once. For this let us use the re-

cursion invariant: Each time Line 1 is reached, A< j is valid; that is, for all k, 1 ≤ k < j,∣∣∣⋃`≤k A`

∣∣∣ ≤ k and |Ak| ≤ c to satisfy Equations 4.13 and 4.14. The proof will show that

under this assumption, Figure 4.9 generates each A j such that the invariant holds for A< j+1.

Base case: Observe that for j = 1 the invariant holds trivially for the empty dagcode

A<1 = 〈 , . . . , 〉, since |∅| ≤ 0.
5Note that while a partial dagcode specifies the parents of some nodes, the mapping from parent sets to

their children in general cannot be determined until the dagcode is fully specified.
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All-DAGs( n, c, j, q,U, A< j )

Inputs: n number of nodes
c bound on indegree
j index of current element A j

q current value of |U |
U current value of A1 ∪ · · · ∪ A j−1

A< j partial dagcode

1: if j = n then
2: Dagcode-to-DAG(A<n)
3: return
4: end if
5: for all s, t ≥ 0, s ≤ q, s + t ≤ c, q + t ≤ j do
6: for all S ⊆ U, |S | = s do
7: for all T ⊆ U, |T | = t do
8: A j ← S ∪ T ; include A j with A< j to form A≤ j

9: All-DAGs(n, c, j + 1, q + t,U ∪ A j, A≤ j)
10: end for
11: end for
12: end for

Figure 4.9: Algorithm: Generate All DAGs that Extend Dagcode A< j

Inductive hypothesis: Assume the invariant holds for A< j, 1 ≤ j < n. Let U =
⋃

k< j Ak

and q = |U |. Observe that the invariant will also hold for A< j+1 so long as one chooses

A j ⊂ V such that |U ∪ A j| ≤ j and |A j| ≤ c. One can select each element of A j either

from U or U. Let A j = S ∪ T , where S ⊆ U and T ⊆ U. Let s = |S | and t = |T |;

hence, 0 ≤ s ≤ q and 0 ≤ t ≤ n − q. Observe that |U ∪ A j| ≤ j ⇐⇒ q + t ≤ j, and

|A j| < c ⇐⇒ s + t ≤ c. Line 5 iterates over all (s, t) that satisfy these conditions. Lines

6–7, then, iterate over all A j = S ∪ T such that the invariant holds for A< j+1. Thus, each

A j is generated such that A< j+1 is valid. Furthermore, since no pair (s, t) is ever repeated in

the outer loop and S ∩ T ≡ ∅, no subset A j = S ∪ T is ever repeated.

Termination: Since j increments with each descent, recursion bottoms out at j = n,

and a DAG corresponding to fully specified dagcode A = A<n is output. After all valid

combinations 〈A1, . . . , An−1〉 are output, All-DAGs terminates. q
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From All-DAGs it is possible to derive a new recurrence for the number of DAGs that

is more easily extended to CP-nets than those of Robinson [87] and Steinsky [99]. Let

us denote by an,c the number of DAGs (respectively dagcodes) with n nodes and bound

c on indegree, and by an,c( j, q) the number of extensions to a partial dagcode A< j, where

q ≡
∣∣∣⋃k< j Ak

∣∣∣. That is, an,c( j, q) is the number of ways to choose the remaining elements

A j, . . . , An−1 such that the cardinality and indegree constraints in Equations 4.13 and 4.14

are satisfied.

Theorem 28 (Number of DAGs). For all non-negative integers n and c,

an,c = an,c(1, 0). (4.15)

For all j, 0 < j < n,

an,c( j, q) =

∑
s≥0, t≥0,

s≤q, s+t≤c,
q+t≤ j

(
q
s

) (
n − q

t

)
an,c( j + 1, q + t). (4.16)

For j = n,

an,c( j, q) = 1. (4.17)

Proof. (Strong induction.) In the proof of Theorem 27, the proof employed a form of

strong induction on j increasing. To show that Equation 4.16 is correct, let us again use

strong induction, this time on j decreasing.

Base case ( j = n): One DAG is generated at Line 3; hence, an,c(n, q) = 1 for all q, as

claimed in Equation 4.17.

Inductive hypothesis: Assume an,c( j′, q′) gives the correct count for j′ > j and all q′.

The proof will show that the resulting count for an,c( j, q) is also correct. Observe that,

whatever the size of set U ⊂ V , the loop at Line 6 iterates over the
(

q
s

)
ways to choose

s elements from U. Similarly, the loop at Line 7 iterates over the
(

n−q
t

)
ways to choose t

elements from U. Note that the number of DAGs generated in the body of the outermost

loop depends on s and t, which differ on each iteration. Thus, for all (s, t) as defined in
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Table 4.3: Number of DAGs an,c with n Nodes and Bound c on Indegree

n c=0 1 2 3 4 5 6
1 1
2 1 3
3 1 16 25
4 1 125 443 543
5 1 1,296 13,956 26,566 29,281
6 1 16,807 695,902 2,556,342 3,605,817 3,781,503
7 1 262,144 50,741,797 435,055,552 922,125,667 1,112,308,744 1,138,779,265

Line 5, one can take the sum of the DAGs generated in the loop body, obtaining the result

given in Equation 4.16.

Finally, observe that all dagcodes parameterized by n, c extend the fully unspecified

dagcode A<1 = 〈 , . . . , 〉, for which j = 1 and q = 0. Thus, an,c = an,c(1, 0), the result

given in Equation 4.15. q

One can verify that for DAGs with unbounded indegree (c ≥ n − 1), the recurrence

yields the sequence 1, 1, 3, 25, 543, 29281, 3781503, 1138779265, . . . , as expected ([98,

A003024]). Table 4.3 gives values of an,c from Equation 4.15 for n = 1 to 7 and c < n.

4.4 Generating CP-nets

The insights of Section 4.2 can be used to extend All-DAGs (Figure 4.9) to obtain a new

algorithm that generates All-CP-nets, presented in Figure 4.10. CP-nets with the same

dependency graph differ if any rule of a CPT differs. To generate all combinations of CPTs,

one needs only introduce a new innermost loop iterating over the possibilities, as described

at the end of Section 4.2. Note that since the dagcode is partial, there is not yet enough

information to construct the CPT: the parents are known, but the label of the child to which

they belong and its domain values are not. However, observe that sufficient information is

available to iterate over the corresponding function vectors F j, since the number of parents

(|A j| = s + t) and the size (d) of every domain is known, so we do that instead.
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All-CP-nets( n, c, d, j, q,U, A< j, F< j )

Inputs: n number of nodes
c bound on indegree
d size of domains
j is the index of current elements A j, F j
q = |U |, where U = A1 ∪ · · · ∪ A j−1

A = 〈A1, . . . , An−1〉 partial dagcode
F = 〈F0, . . . , Fn−1〉 partial CPT code

1: if j = n then
2: Build-CP-net( A<n, F<n )
3: return
4: end if
5: for all s, t ≥ 0, s ≤ q, s + t ≤ c, q + t ≤ j do
6: for all S ⊆ U, |S | = s do
7: for all T ⊆ V \ U, |T | = t do
8: if j > 0 then
9: A j ← S ∪ T

10: include A j with A< j to form A≤ j

11: end if
12: for all vectors F j of length d|A j | with elements in the range (0 . . d! − 1) do
13: if not Is-Function-Degenerate(F j) then
14: All-CP-nets(n, c, d, j + 1, q + t, U ∪ A j, A≤ j, F≤ j)
15: end if
16: end for
17: end for
18: end for
19: end for

Note: The boxes highlight the differences from the algorithm in Figure 4.9.

Figure 4.10: Algorithm: Generate All CP-nets that Extend A< j

Each F j is included in a tuple F = 〈F0, . . . , Fn−1〉 that I call a cpt-code. (The expressions

F< j and F≤ j, analogous to A< j and A≤ j, are used here for a partial cpt-code.) Since a root

node is implicit in the dagcode, F contains an additional element F0 corresponding to that

node’s CPT,6 and All-CP-nets is invoked with j = 0 instead of 1:

All-CP-nets(n, c, d, 0, 0, ∅, 〈 , . . . , 〉, 〈 , . . . , 〉). (4.18)

When j = n, the encoding is complete: A and F fully and uniquely characterize a CP-net
6Note that the algorithm also creates an additional element A0 ≡ ∅ for the dagcode.
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Build-CP-net( A, F )

Input: A = 〈A1, . . . , An−1〉 dagcode defining graph
F = 〈F0, . . . , Fn−1〉 cpt-code defining CPTs

Output: the corresponding CP-net N

1: n← length(A) + 1
2: Q← {1, . . . , n}
3: initialize CP-net N with n nodes, no edges, empty CPTs
4: for j← n − 1 downto 1 do . Iterate over dagcode: A j is the parent set of
5: i← max

(
Q \

⋃ j
k=1 Ak

)
. Xi, where i is the largest unused label

6: for all h ∈ A j do
7: insert edge to Xi from its parent Xh

8: end for
9: construct CPT(Xi) from A j, F j

10: Q← Q \ {i}
11: end for
12: i← the only remaining element in Q
13: construct CPT(Xi) from F0

14: output CP-net N

Note: The boxes highlight the differences from the algorithm in Figure 4.8.

Figure 4.11: Algorithm: Construct CP-net from its Encoding

N. Build-CP-net is then called, as shown in Figure 4.11 (analogous to Dagcode-to-DAG

in Figure 4.8) to decode it—the DAG from A, the CPTs from F.

Theorems 27 and 28 can similarly be extended to CP-nets.

Theorem 29. All-CP-nets generates each CP-net exactly once.

Proof. Observe that All-CP-nets (Figure 4.10) is identical to All-DAGs (Figure 4.9) in-

sofar as the graph is concerned. In the proof of Theorem 27, it has already been shown

that each DAG is generated just once and that the algorithm terminates. Thus All-CP-

Nets generates CP-nets for every possible dependency graph with n nodes and bound c on

indegree.
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The principle difference from All-CP-nets is the inclusion of a new innermost loop at

Line 12 iterating over all possible function vectors F j, such that F j is non-degenerate. Note

that these correspond to all possible CPTs for the current node via the mapping described

in Section 4.2. Further note that each possible CPT for the root node is also generated in

the innermost loop, since the algorithm is called with j = 0. Thus, if A< j and F< j are valid,

A≤ j and F≤ j will also be valid, and each A j and F j will be generated exactly once, for all

j, such that 0 ≤ j < n. Therefore every non-degenerate CP-net with n nodes, bound c on

indegree, and d-ary domains will be generated exactly once. q

Let us denote by an,c,d the number of CP-nets with n nodes, bound c on indegree, and

d-ary domains; and by an,c,d( j, q), where q ≡
∣∣∣⋃k< j Ak

∣∣∣, the number of those that extend A< j.

Theorem 30 (Number of CP-nets). For all non-negative integers n, c, and d,

an,c,d = an,c,d(0, 0). (4.19)

For all j, 0 ≤ j < n, ∑
s≥0, t≥0,

s≤q, s+t≤c,
q+t≤ j

(
q
s

) (
n − q

t

)
ψd(s + t) an,c,d( j + 1, q + t). (4.20)

For j = n,

an,c,d( j, q) = 1. (4.21)

Note that the loop at Line 12 executes ψd(s + t) times, since the indegree of the node

modeled by A j is s + t. Otherwise, the proof is nearly identical to that of Theorem 28.

Proof. (Strong induction.) Base case ( j = n): One CP-net is generated at Line 3; hence,

an,c,d(n, q) = 1 for all q, as in Equation 4.21.

Inductive hypothesis: Assume an,c,d( j′, q′) gives the correct count for j′ > j and all q′.

The proof will show that the resulting count for an,c,d( j, q) is also correct. The loop at Line 6

iterates over the
(

q
s

)
ways to choose s elements from U. The loop at Line 7 iterates over the
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Table 4.4: Number of Binary CP-nets with Complete CPTs and Unbounded Indegree

Nodes Number of CP-nets

1 2
2 12
3 488
4 481776
5 157549032992
6 4059976627283664056256
7 524253448460177960474729517490503566696576

(
n−q

t

)
ways to choose t elements from U. The innermost loop at Line 12 executes φd(s + t)

times. However, the call to Is-Function-Degenerate (Figure 4.7) in Line 13 guarantees that

Line 14 is reached just ψd(s + t) times, once for each non-degenerate CPT. The number of

CP-nets generated in the body of the outermost loop at Line 5 depends on s and t, which

differ on each iteration. Thus, for all (s, t) one can take the sum of the CP-nets generated

in the loop body, to obtain Equation 4.20.

Finally, observe that all CP-nets parameterized by n, c, and d extend the empty dagcode

A<0 and empty cpt-code F<0, for which j = 0 and q = 0. Thus, an,c,d = an,c,d(0, 0), the result

given in Equation 4.19. q

Table 4.4 shows the number of binary CP-nets with unbounded indegree (c ≥ n− 1) up

to 7 nodes (cf. Sloane [98, A250110]). Table 4.5 gives some intuition as to the magnitudes

of an,c,d as bounds on indegree and size of domains increase. From the values, it is evident

that generating all CP-nets is feasible only for tiny n, c, and d. To generate larger random

instances, I propose an efficient method that relies on Equation 4.20. Algorithm Random-

CP-net, as shown in Figure 4.12, generates a dagcode one A j at a time, such that all CP-nets

(as opposed to DAGs) are equally likely. To satisfy the cardinality constraint, the algorithm

keeps track of node labels U =
⋃

k< j Ak that already occur in A< j, choosing s labels for A j

from U and the other t from U, subject to constraints on cardinality and indegree. It also

chooses a non-degenerate function F j for the CPT (see Section 4.2). To avoid bias, (s, t)
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Table 4.5: Values of an,c,d for Small Values of n, c, and d

n c = 0 c = 1 c = 2 c = 3 c = 4 c = 5

d = 2
1 2
2 4 12
3 8 128 488
4 16 2000 56240 481776
5 32 41472 1.31 × 107 1.95 × 109 1.58 × 1011

6 64 1.08 × 106 5.21 × 109 2.06 × 1013 2.76 × 1017 4.06 × 1021

7 128 3.36 × 107 3.16 × 1012 4.50 × 1017 1.54 × 1024 6.71 × 1032

d = 3
1 6
2 36 2556
3 216 2.43 × 106 7.73 × 1010

4 1296 3.63 × 109 7.79 × 1018 3.16 × 1032

5 7776 7.46 × 1012 1.67 × 1027 5.67 × 1054 1.70 × 1096

6 46656 1.95 × 1016 6.28 × 1035 2.70 × 1077 4.91 × 10160 1.25 × 10286

7 279936 6.20 × 1019 3.65 × 1044 2.70 × 10100 4.52 × 10225 5.95 × 10476

d = 4
1 24
2 576 1.59 × 107

3 13824 2.38 × 1013 5.79 × 1029

4 331776 5.61 × 1019 7.01 × 1052 4.99 × 10118

5 7.96 × 106 1.82 × 1026 1.81 × 1076 1.88 × 10208 5.39 × 10472

6 1.91 × 108 7.50 × 1032 8.17 × 1099 1.89 × 10298 3.14 × 10827 7.01 × 101886

7 4.59 × 109 3.76 × 1039 5.71 × 10123 3.98 × 10388 5.81 × 101182 5.85 × 103301

is chosen such that all extensions to A< j are equally likely, using a table precomputed by

Compute-Distribution (Figure 4.13). Build-CP-net (Figure 4.11) outputs the result.

Theorem 31. For all non-negative integers n, c, and d, Random-CP-Net(n, c, d) generates

each CP-net N with uniform probability P(N) = 1/an,c,d.

Proof. Line 1 randomly selects one of the ψd(0) = d! possibilities for the CPT of the

root node implicit in A; thus, P(F0) = 1/d!. Each A j, F j, 0 < j < n, is then generated,

conditioned on U j =
⋃

k< j Ak and q j = |U j|. Line 5 chooses integers s and t with probability

(
q j

s

) (
n − q j

t

)
ψd(s + t)

an,c,d

(
j + 1, q j + t

)
an,c,d

(
j, q j

) . (4.22)
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Random-CP-net( n, c, d )

Input: n number of nodes
c bound on indegree
d size of the domains

Output: CP-net N generated uniformly at random

1: F0 ← random constant function with d! outputs . For CPT of a root node
2: U ← ∅
3: q← 0
4: for j← 1 to n − 1 do . Iterate over dagcode
5: s, t ← values in cols. 1–2 of a row of DISTn,c,d( j, q)

selected randomly according to the weights in col. 3 . Weighted selection
6: S ← subset of size s selected randomly from U
7: T ← subset of size t selected randomly from U
8: A j ← S ∪ T
9: U ← U∪ T

10: q← q + t
11: repeat
12: F j ← random function with |A j| inputs, d! outputs . CPT for current node
13: until F j is non-degenerate . Note the odds in Table 4.2
14: end for
15: Build-CP-net(A, F) . See Figure 4.11

Figure 4.12: Algorithm: Generate a CP-net Uniformly at Random

Then, given s, t, and U, Lines 6–13 choose S , T , and F j with probability

1(
q j

s

) 1(
n − q j

t

) 1
ψd(s + t)

. (4.23)

Multiplying Equations 4.22 and 4.23 and simplifying gives us the probability of generating

A j and F j given U j in Lines 5–13:

P(A j, F j|U j) =
an,c,d

(
j + 1, q j + t

)
an,c,d

(
j, q j

) =
an,c,d

(
j + 1, q j+1

)
an,c,d

(
j, q j

) , (4.24)

since q j + t = q j+1 for j = 1 to n − 1 (Line 10). Since A and F uniquely characterize a

CP-net, P(N) = P(A, F). Altogether, iterating through all values of j in the for loop at

Line 4, the probability of generating N is:

P(N) = P(F0)P(A1F1|U1)P(A2F2|U2) · · · P(An−2Fn−2|Un−2)P(An−1Fn−1|Un−1) (4.25)

=
1
d!

an,c,d (2, q2)
an,c,d (1, q1)

an,c,d (3, q3)
an,c,d (2, q2)

· · ·
an,c,d (n − 1, qn−1)
an,c,d (n − 2, qn−2)

an,c,d (n, qn)
an,c,d (n − 1, qn−1)

. (4.26)
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Compute-distribution( n, c, d )

Input: n number of nodes
c bound on indegree
d size of the domains

Output: DISTn,c,d values of s, t and weights P(s, t | j, q)

1: for j← n − 1 downto 1 do
2: for q← j downto 0 do
3: DISTn,c,d( j, q)← table with 0 rows and 3 columns
4: for all s, t ≥ 0, s ≤ q, s + t ≤ c, q + t ≤ j do

5: weight ←
(
q
s

) (
n − q

t

)
ψd(s + t)

an,c,d( j + 1, q + t)
an,c,d( j, q)

6: append row [s, t,weight] to DISTn,c,d( j, q)
7: end for
8: sort rows on col. 3; assert that col. 3 sums to 1 (optional)
9: end for

10: end for
11: return DISTn,c,d

Figure 4.13: Algorithm: Compute Tables for Uniform CP-net Generation

One can use Equation 4.20 to verify that

an,c,d(0, 0) = d! an,c,d(1, 0). (4.27)

Also, q1 = |
⋃

k<1 Ak | = 0. One can thus rewrite the first term of Equation 4.26 as

P(F0) =
1
d!

=
an,c,d(1, q1)
an,c,d(0, 0)

. (4.28)

Further observe that the numerator of the last term is an,c,d(n, qn) = 1. All terms except the

first then cancel out, leaving us with

P(N) =
1

an,c,d(0, 0)
=

1
an,c,d

(4.29)

which proves the case. q

Theorem 32. Compute-dist (Figure 4.13) runs in time and space polynomial in the number

of nodes n.
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Proof. Observe that the nested loops are bounded by n. One can compute an,c,d( j, q) with

the help of a table. This computation need only be performed once for each j and q, and

the ranges of j and q are similarly bounded by n. q

Algorithm Random-CP-Net is also efficient. Random subset sampling and proportional

(i.e., weighted) sampling can be performed efficiently [21, 55, 3.4.2], and with high prob-

ability the inner loop will execute just once, as discussed in Section 4.2 (see Table 4.2 in

particular).

4.5 Generating Outcomes and DT Problem Instances

Generating outcomes, pairs of outcomes, and DT problem instances is straightforward, but

it is discussed here briefly for the sake of completeness. To sample uniformly at random

from a set of outcomes O = Dom(Xi)×· · ·×Dom(Xn), one need only select, independently,

a value xi
ji

uniformly from each domain Dom(Xi) and combine these to form the outcome

o = x1
j1 x2

j2 · · · x
n
jn

.

To sample uniformly from the set of distinct pairs of outcomes O2
n,d, one can simply

select two outcomes o and o′, o ∈ On,d, o′ ∈ On,d as before, and repeat selection of o′ in the

unlikely event that o = o′.

To sample uniformly at random from pairs with Hamming distance h, O2
n,d | h, one can

select o from O in the usual manner, select a random subset U of size h from variables V ,

and for each variable Xk ∈ U, flip the value of o[k] to another value selected uniformly

randomly from Dom(Xk) such that o′[k] , o[k].

Finally, since it follows from Definition 13 that the space of DT problem instances is

DT
(
Nn,c,d,On,d | h

)
= Nn,c,d ×O2

n,d | h , (4.30)

to select an instance uniformly at random, one needs only to generate a pair of outcomes

(o, o′) ∈ O2
n,d | h as described above and then generate a CP-net N ∈ Nn,c,d uniformly ran-

domly using algorithm Random-CP-net(n, c, d) as described in Section 4.4. The resulting
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set of triples I = {(N1, o1, o′1), . . . , (Nt, ot, o′t)}, t = |I |, is thus a representative sample of

DT
(
Nn,c,d,On,d | h

)
.

4.6 Conclusion

This chapter has presented an efficient and provably uniformly random method for gener-

ating CP-nets. The method allows for bounds on indegree and multivalued domains. The

recurrence of Theorem 30 can also be adapted to generate CP-nets from other distributions.

For example, to generate the DAGs without weighting these by the number of CPT com-

binations, one can simply remove the ψd(s + t) factor. Similarly, it is possible to generate

tree-shaped CP-nets by changing the condition s+t ≤ c in Line 4 of Figure 4.13 to s+t = 1.

The method described in this chapter has been implemented in C++ using the GnuMP

library (Granlund et al. 2014), allowing generation of thousands of CP-nets per second.

The code is available under a free and open source license.

Copyright c© Thomas E. Allen, 2016.
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Chapter 5 Depth-Limited Dominance Testing

Despite their advantages and conceptual beauty, one of the chief objections to CP-nets is

that the problem of dominance—deciding whether one outcome is better than another with

respect to the network—is computationally hard. As discussed in Section 3.4.1, deciding

dominance in CP-nets is known to be PSPACE-complete in general [42], and in certain

instances it is hard even to verify a solution [16]. Except for special cases (e.g., tree-shaped

CP-nets), dominance testing in CP-nets necessitates a search, with possible backtracking,

for a path in the exponentially larger induced preference graph of the CP-net.

This chapter argues that it is reasonable to limit the depth of this search. The exper-

iments described here show that most of the time the flipping length is not much longer

than the Hamming distance between the outcomes; a solution, if it exists, is likely to be

found at relatively shallow depth in the search tree with respect to the number of variables.

Using parameters such as Hamming distance (HD) and average path length (APL), both of

which are easy to compute, one can estimate a priori (via statistical experiments) a depth

to which the search tree must be traversed to find a solution with high confidence. One can

then adapt existing DT algorithms to bound the depth of searches to this learned depth.

This technique of improving the efficiency of algorithms through learning a set of pa-

rameters for which the algorithm is well-behaved is widely used in practical applications

and is known as algorithm configuration [52]. Using algorithm configuration to specify

search strategies based on easily computable properties of input instances has led to many

practical refinements to heuristics for known hard problems such as SAT [105] and plan-

ning [86].

Section 5.1 offers a brief review of the problem, related research, and useful notation.

Section 5.2 discusses an experiment that exhaustively explores tiny cases (n ≤ 4 nodes) to

more fully understand expected flipping length. Sections 5.3 and 5.4 discuss experiments
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that employ sampling to gain insights into expected flipping length in larger problem in-

stances. Section 5.5 shows that very long transitive sequences are unreliable if the learned

model is too noisy. Section 5.6 introduces the notion of limited dominance along with algo-

rithms for depth-limited dominance testing (DLDT). A conclusion follows in Section 5.7.

5.1 Preliminaries

Many decision-making applications involve finding the optimal, i.e., most preferred, out-

come.1 Section 1.2 discussed the possibility of an assistive robot that purchases its busy

client a sandwich from a deli. Certain ingredients may be unavailable (e.g., tuna salad),

thus constraining the domains of some features that describe the set of possible alterna-

tives. If the client’s preferences can be modeled as a CP-net, choosing the most preferred

sandwich for her is computationally easy, even if some domains are constrained [16] (see

Section 3.2), and this is an advantage of CP-nets over other compact preference models,

such as soft constraints [32] and preference trees (P-trees) [71].

Section 1.2 also discussed the related problem of selecting the best sandwich from a

set S of preassembled, wrapped sandwiches, S ⊂ O, where |S | � |O|. In that case it

may be necessary to perform a pairwise comparison of all
(
|S |
2

)
preassembled alternatives.

In CP-nets the method of deciding whether an arbitrary outcome o is preferred to another

outcome o′ is known as dominance testing (DT). DT is also employed by some CP-net

learning algorithms, such as those of Dimopoulos et al. [29] and Guerin et al. [47], as

discussed in Section 3.5.

Figure 5.1 revisits another example, from Section 2.4. Suppose the same assistive robot

also plans activities for its busy client, using this CP-net as a model of her preferences. The

robot can take into account the weather forecast, availability of friends, whether a table can

be reserved at the table tennis club, and so on. Would the client prefer a fair day cycling
1Note that in some settings, such as multi-participant decision making with diverses stakeholders, e.g.,

negotiated decisions, such optima are not well defined. Recall, however, that the preferences in this work are
assumed to be those of an individual.
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Weather Activity Friend

fair � rain fair : cycling � table tennis
rain : table tennis � cycling

cycling : emily � henry
table tennis : henry � emily

12
34

Figure 5.1: CP-net Describing Client’s Preferences on Activities (Figure 2.3 Revisited)

FCE

FCH

FTE

FTH

RCE

RCH

RTE

RTH

2

4

1
3

Figure 5.2: Flipping Sequence in Induced Preference Graph (Figure 2.4 Revisited)

with Henry or a rainy day cycling with Emily? Because the alternatives differ in the value

of more than one variable, the conditional preference rules (CPRs) of the CP-net do not

afford a direct comparison. However, with the help of the annotated Figures 5.1 and 5.2

one can observe that the CP-net induces the transitive sequence 〈rain, cycling, emily〉 ≺

〈rain, table tennis, emily〉 ≺ 〈fair, table tennis, emily〉 ≺ 〈fair, table tennis, henry〉 ≺ 〈fair,

cycling, henry〉. From this, the robot is able to reason that the client would prefer a fair day

cycling with Henry and sends Henry a message on her behalf asking if he would like to go

cycling that day.

Such transitive sequences are known as flipping sequences. In general, DT involves the

search for such a sequence from the less to the more preferred outcome along a path in

the preference graph induced by the rules of the network. Note that the branching factor

of this search is O(dn) since at any outcome in H one can flip at most n variables to any
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Table 5.1: Computational Difficulty of Dominance Testing (Table 3.2 Revisited)

Graph Domains CPTs DT Complexity Running Time References
Directed Forest Binary Complete P O(n) [11]
Directed Forest Binary * P O(n2) [16]
Directed Forest * * NP-hard ? [16]
Polytree Binary * P O(22cn2c+3) [16]
DPSCG Binary * NP-complete ? [16]
Max-δ-connected Binary * NP-complete ? [16]
* * * PSPACE-complete ? [42]
*No restriction

of the d − 1 different values in their domain. Such paths can be exponentially long [16],

and computing the length of a longest path is itself hard [42]. Moreover, even if this length

is known in advance or polynomially bounded in the number of variables, it is still hard

in general to tell whether o is preferred to o′ [61]. Tractable subclasses of the problem

exist. For instance, if the network has the shape of a directed tree, with binary variables

and complete CPTs, dominance can be answered in linear time in the number of nodes

[11]. DT can also be performed in linear time in any CP-net if the outcomes differ in the

value of just one variable. (See Table 5.1, revisited from Section 3.4.1.)

Some methods of pruning the search tree are known. Boutilier et al. [16] showed how

to use a method known as suffix fixing (SF) to prune regions of the search tree that cannot

contain a solution. They also introduced a best-first search strategy known as least vari-

able flipping (LVF); however, LVF is complete only for restricted subclasses such as tree

and polytree CP-nets. Moreover, Li et al. [68] showed in their experiments that LVF failed

to find an increasing proportion of the solutions as n increased, with about 20% incom-

pleteness for acyclic binary CP-nets with 20 nodes. The latter also proposed a specialized

heuristic DT algorithm known as DT*, which has been adapted for use in the experiments

described in this chapter. A number of reductions have also been proposed for DT, includ-

ing automated planning [16] and model checking [92]; such approaches rely on heuristics

inherent in the respective solver, which is usually treated as a black box.
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Table 5.2: Cardinalities of O2 and DT(N,O)∣∣∣O2
∣∣∣ = |O|2 |DT(N,O)| = |N | |O|2

|On| = 2n
∣∣∣O2

n

∣∣∣ = (2n)2 = 22n∣∣∣On,d

∣∣∣ = dn
∣∣∣O2

n,d

∣∣∣ = (dn)2 = d2n∣∣∣O2
n | h

∣∣∣ = |On|
(

n
h

)
= 2n

(
n
h

) ∣∣∣O2
n,d | h

∣∣∣ = dn(d − 1)h
(

n
h

)
∣∣∣DT(Nn,d | c,On,d)

∣∣∣ = d2nan,c,d

∣∣∣DT(Nn,d | c,On,d | h)
∣∣∣ = dn(d − 1)h

(
n
h

)
an,c,d

While good heuristics can reduce the effective branching factor, the depth of solutions

and the depth to which an algorithm explores the search tree when no solution exists are of

considerable importance. Note that while Boutilier et al. [16] proved flipping lengths could

be exponential in n in chain CP-nets with multivalued domains and incomplete CPTs, Kro-

negger et al. [61], found in their randomly generated GCP instances that flipping length

was usually of the same order of magnitude as n. However, it is unclear if either of these

results extend to binary CP-nets or to those with complete tables. We also desire a more

nuanced understanding of flipping lengths that can be applied to DT heuristics. In particu-

lar, if one can predict the flipping length of DT instances in advance, then this enables us

to constrain search depth to some depth k at which, say, 99% of the solutions are expected

to be found. This enables a heuristic approach in which one sacrifices finding solutions to

a very small number of problems that require exhaustive search, but in return is able to find

the vast majority of the solutions with fewer computational resources.

Some notation introduced in Chapter 2 is useful in discussing DT. Nn is the set of all

complete, acyclic CP-nets on n binary variables. Nn,d | c is the set of complete CP-nets on

n d-ary variables and bound c on indegree in the dependency graph, and an,c,d denotes the

cardinality of this set. O2
n is the set of all pairs of outcomes on n binary variables. HD(o, o′)

denotes the Hamming distance, i.e., the number of variables in which o and o′ differ. O2
n,d | h

is the set of all pairs of outcomes on n d-ary variables with Hamming distance h. DT(N,O)

is the set of all DT problem instances (N, o, o′), N ∈ N , o ∈ O, o′ ∈ O under consideration.
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DT(N,O, C) is the set of such instances that also satisfy condition C. FL(N, o, o′) is the

flipping length, i.e., the length ` of the shortest path from o′ to o in the induced preference

graph H. If no flipping sequence exists, ` is undefined, written ` = ∞. MFL(N,O) is

the mean flipping length for DT(N,O). Let us denote by o[i] the value of variable Xi in

outcome o, and by o[−i] the assignment to the other n − 1 variables. The function [P],

where P is a Boolean predicate, evaluates to 1 if P is true and 0 if P is false. Chapter 4

showed how to compute |Nn,d | h| = an,c,d (Theorem 30). To this one can add the helpful

identities in Table 5.2 for outcomes, pairs of outcomes, and DT instances, which are easily

verified. Further notation is discussed in Chapter 2; see Table 2.2 in particular.

5.2 Experiment 1: An Exhaustive Consideration of Tiny Cases

To understand the problem as fully as possible for small n, I first studied all DT instances

up to n = 4 binary variables—123,334,656 instances.2 For this experiment, I thus generated

the sets N1 to N4 consisting respectively of all binary acyclic CP-nets with 1 to 4 nodes.

I uncompacted each CP-net N ∈ Nn to obtain its induced preference graph H, and ap-

plied the Floyd–Warshall all-pairs-shortest-path algorithm [24, 37, 101] to H to determine

the flipping length FL(N, o′, o) for all pairs of outcomes O2
n. I then aggregated solutions

according to the Hamming distance between outcomes and other prospective parameters.

The preference graph and its relationship to a CP-net is discussed in Sections 1.2.1 and

1.3 and Section 2.4 (see also Definition 11 and Figures 1.5 and 2.4). Figure 5.3 provides

an overview of how the DT instances are generated and solved for this experiment. The

outer loop iterates from n = 1 to 4, calling All-CP-nets in Line 3 to generate the complete

set of acyclic binary CP-nets with n nodes, as discussed in Chapter 4 (Figure 4.10 in par-

ticular). Each CP-net N, in turn, is then uncompacted into its induced preference graph H,

as modeled by a sparse adjacency matrix M using the algorithm Uncompact described in

Figure 5.4. Note that the columns and rows of the matrix correspond to all outcomes O.
2∑4

n=1|Nn||On|
2 = (2)(2)2 + (12)(4)2 + (488)(8)2 + (481776)(16)2 = 123334656.
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Tiny-Cases

Output: database of DT instances and flipping lengths

1: initialize database
2: for n← 1 to 4 do
3: for all N ∈ {All-CP-nets(n, n − 1, 2, 0, 0, ∅, A<1, F<1)} do
4: M ← Uncompact( N )
5: L← Floyd-Warshall-All-Pairs-Shortest-Paths( M )
6: store (n,N,L) in database
7: end for
8: end for
9: return database

Figure 5.3: Initial Experiment: All DT Instances Up to n = 4

Uncompact( N )

Input: N CP-net
Output: M Adjacency matrix of corresponding preference graph

1: O ←×Xi∈V Xi

2: initialize |O| × |O|-matrix M
3: for o← First(O) to NextToLast(O) do
4: for o′ ← Next(o) to Last(O) such that HD(o, o′) = 1 do . upper triangular
5: Xi ← variable that differs in o and o′ . since HD(o, o′) = 1
6: u← o[Pa(Xi)] . assignment to parents
7: R← ranking �i from CPT(Xi | Pa(Xi) = u)
8: if (o[Xi], o′[Xi]) ∈ R then . u : o[i] � o′[i]
9: M[o′, o] = 1

10: else if (o′[Xi], o[Xi]) ∈ R then . u : o′[i] � o[i]
11: M[o, o′] = 1
12: end if
13: end for
14: end for
15: return M

Figure 5.4: Algorithm: Uncompact CP-net to Obtain Preference Graph
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B

A

b � b

b : a � a
b : a � a

(a) CP-net N

ab

ab ab

ab

(b) Induced Preference Graph H

ab ab ab ab
ab 0 0 1 0
ab 1 0 0 0
ab 0 0 0 0
ab 0 1 1 0

(c) Adjacency Matrix M
that Models H

ab ab ab ab
ab 0 ∞ 1 ∞

ab 1 0 2 ∞

ab ∞ ∞ 0 ∞

ab 2 1 1 0

(d) Floyd–Warshall Output
FL(N, o, o′)

ab ab ab ab
ab 0 0 1 0
ab 1 0 1 0
ab 0 0 0 0
ab 1 1 1 0

(e) Answers to DT Instances
[N |= o ≺ o′]

Figure 5.5: CP-net, Adjacency Matrix, and Preference Graph

In constructing the matrix, the assumption is made that the variables Xi ∈ V are ordered

by their indices i, 1 ≤ i ≤ n, and that xi is ordered before xi in each domain Dom(Xi), for all

i. It is further assumed that outcomes are ranked lexicographically, such that o is ordered

before o′ if there exists h, 1 ≤ h ≤ n such that o[h] is ordered before o′[h] in the domain of

Xh and that o[ j] = o′[ j] for all j, 1 ≤ j < h. Let us denote respectively by First(O), Last(O),

and NextToLast(O) the minimum, maximum, and penultimate outcomes according to this

lexicographic ranking, and by Next(o) each outcome that covers (immediately follows) o.

Note that if the outcomes are represented as binary numerals, then First(O) ≡ 0, Last(O) ≡

2n − 1, NextToLast(O) ≡ 2n − 2, and Next(o) = o + 1 for all o, 0 ≤ o ≤ 2n − 2.

An entry M[o, o′] = 1 in the adjacency matrix indicates that the preference graph con-

tains an edge from o to o′. The outcomes o and o′ thus differ in the value of just one vari-

able, and a conditional preference rule (CPR) of the CP-net directly specifies that o′ � o.

Otherwise, if M[o, o′] = 0, then there is no edge from o to o′ in H. Figure 5.5a–c pro-

vides a simple example of a CP-net N with 2 nodes, its induced preference graph H and
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Hamming distance
h = 1 h = 2 h = 3 h = 4

Fl
ip

pi
ng

L
en
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h

` = 6 39,360
` = 5 539,328
` = 4 891,648 2,856,080
` = 3 11,184,768
` = 2 17,906,304
` = 1 15,416,832

|DT (N4,O4 | HD(o, o′) = h ∧ FL(N, o, o′) = ` )|

Figure 5.6: Number of DT Solutions Given Hamming Distance and Flipping Length

corresponding adjacency matrix M.3 Applying the Floyd–Warshall algorithm produces the

output shown in Figure 5.5d. Note that the elements of that matrix give the flipping lengths

FL(N, o, o′) for each pair of outcomes. An entry of ∞ indicates that there is no improving

flipping sequence from o to o′. While, for technical reasons, flipping sequences of length

0 are excluded, the values of 0 along the diagonal indicate that o = o′. From the matrix

of flipping lengths it is then straightforward to obtain statistics, such as the mean flipping

length for a set of CP-nets or mean flipping length given some specified parameter, such

as Hamming distance. One can also obtain the answers to all DT instances by cloning the

matrix and replacing each ∞ with a 0 and subsequently each non-0 element with a 1, as

shown in Figure 5.5e.

Figure 5.6 summarizes the results for DT problem instances with 4 variables that entail

dominance. The rows of the table correspond to the flipping length ` and the columns

correspond to the Hamming distance h. Each entry at position (`, h) corresponds to the

number of DT problems with that flipping length and Hamming distance,

|DT(N4,O4 | HD(o, o′) = h ∧ FL(N, o, o′) = `)| ,

o ∈ O4, o′ ∈ O4, N ∈ N4, ` ∈ Z+. The entries that are left blank correspond to a count of 0.

Since no DT instance had a flipping length ` > 6, the blank rows for higher values of ` are
3Note that in the figure, A maps to X2 and B to X1.
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not shown. Also, note that DT instances that did not entail dominance are excluded from

the table, since in that case the flipping length∞ is undefined.

The table entries shown in Figure 5.6 for n = 4 (and also those for n = 2 and n = 3,

which are similar) provide important insights into the space of DT problems that can be

extended to all CP-nets through simple proofs. First, notice that if the Hamming distance

is 1, then the flipping length, if defined, is also 1.

Theorem 33 (Flip Comparisons). For every DT instance (N, o, o′) that entails dominance,

HD(o, o′) = 1 if and only if FL(N, o, o′) = 1. (5.1)

Proof. Note that the claim follows directly from the ceteris paribus semantics of CP-nets.

Consider that if HD(o, o′) = 1, there exists a variable Xi such that o[i] , o′[i] and o[−i] =

o′[−i]. Thus, we need only check the rule in CPT(Xi) that corresponds to the values of the

parents of Xi in the dependency graph, u :�i, where u = o[Pa(Xi)], if such a rule exists. If

CPTs are complete, u :�i exists, and in all cases the rule will be unique. In the rule exists,

we need only check the respective ordering of o[i] and o′[i] in �i. If (o[i], o′[i]) ∈ �i, then

o � o′ and FL(N, o, o′) = 1. Otherwise, if (o[i], o′[i]) ∈ �i or, in the case of incomplete

tables, if no such rule exists, then o � o′ and the flipping length is undefined. q

Since DT instances with Hamming distances of 0 and 1 do not necessitate a search, we can

henceforth limit attention to Hamming distances in the interval (2 . . n).

Next observe that the flipping length is always at least the Hamming distance.

Theorem 34 (Range of HD). For every DT instance (N, o, o′) that entails dominance

FL(N, o, o′) ≥ HD(o, o′). (5.2)

Proof. FL(N, o, o′) ≮ HD(o, o′) since each flip changes the value of just one variable.

However, the value of a variable can change more than once in a flipping sequence if the

assignment to parents changes. The proof is by example. Note that in the flipping sequence

in Figure 5.2, the value of Activity changes twice. q
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Next observe that if the Hamming distance is even (respectively odd), the flipping

length, if a path exists from o′ to o in H exists, will also be even (respectively odd). A

definition is helpful in stating this formally.

Definition 35 (Parity). The parity of outcomes o and o′ is the parity of their Hamming

distance. If FL(o, o′) mod 2 = 0, the parity of o and o′ is even; otherwise, it is odd.

Theorem 36. For every binary-valued DT instance (N, o, o′) that entails dominance, the

parity of the flipping length is the parity of the outcomes.

Proof. It suffices to observe that in each flip (ot, ot+1), 0 ≤ t < `, o′ = o0, o = o`, the parity

of ot and o (the goal) is inverted, provided that the variables are binary. A sequence from

o′ to o thus has an even (odd) number of flips if and only if HD(o, o′) is even (odd). q

Note however that this result does not generalize to multivalued variables, since for

d ≥ 3, a flip does not necessarily change the Hamming distance HD(ot, o). The proof is a

simple counter-example. Consider the three-valued CP-net below.

A B

a1 � a2 � a3 a1 : b2 � b3 � b1

a2 : b1 � b2 � b3

a3 : b2 � b3 � b1

Observe that the shortest flipping sequence from a3b3 to a1b1 is a3b3 � a2b3 � a2b1 �

a1b1. Thus, while the (a3b3, a1b1) has even parity (the values of both variables differ, hence

Hamming distance is 2), the flipping length is odd, and no shorter path is available since

one cannot flip B from b3 to b1 without first flipping A to a2.

From the values in each column h of the table in Figure 5.8, one can compute the mean

flipping length ˆ̀ given Hamming distance h, as shown in Figure 5.7. From the data one

can observe that the mean flipping length MFLh(N4,O4) is close to the Hamming distance.

Furthermore, by calculating the ratio of each count to the total counts in each column and
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Hamming distance h 1 2 3 4

Mean Flipping Length ˆ̀ 1.0 2.1 3.1 4.0

Figure 5.7: Mean Flipping Length ˆ̀ = MFL(N4,O4 | HD(o, o′) = h)

computing the cumulative sum on ` ascending, we obtain the empirical distribution shown

in Figure 5.8. Moreover, since the data for n ≤ 4 reflect all DT instances, for these we have

the cumulative density function (c.d.f.) of the flipping length ` itself, conditioned on the

value of h.

` h = 1 h = 2 h = 3 h = 4

6 1.000 1.000 1.000 1.000
5 1.000 0.998 1.000 1.000
4 1.000 0.998 0.954 1.000
3 1.000 0.951 0.954
2 1.000 0.951
1 1.000

Figure 5.8: Cumulative Density Function (c.d.f.) Resulting from Figure 5.6

This suggests a useful notion in searching for a flipping sequence. Consider a setting

in which we are performing DT on an instance (N, o, o′) and have already searched the

implicit preference graph to a depth of k. With the help of a table such as the one in

Figure 5.8, we could then compute the probability that a path from o′ to o of length ` ≥ k+2

exists. For example, suppose the algorithm had searched to a depth of 4 flips for a DT

instance with n = 4, HD(o, o′) = 2. We would then know that the odds that N |= o � o′

were only about 2 in 1000. We could then either continue the search to depth k + 2 or, if

the cost of computational resources was too high, halt the search and report that it was very

likely the case, but not guaranteed, that o � o′.

In addition to Hamming distance, observe that the average path length of the depen-

dency graph APL(G) (see Definition 4) also serves as an important parameter for estimating

flipping length. In graphs for which the value of APL(G) is relatively low (such as DAGs of

unbounded indegree), the values of flipping length also tend to be lower (closer to h). Con-
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versely, in graphs for which the value of APL(G) is relatively high, one can observe that

flipping sequences tend to be longer. The three-dimensional bar chart in Figure 5.9 illus-

trates the mean flipping length ˆ̀ given average path length L = APL(G) of the dependency

graph and the Hamming distance h = HD(o, o′) of the pair of outcomes.4

Note that the values of h and L are not distributed uniformly across problem instances;

Hamming distances h, for example, are distributed binomially. Figures 5.10a and 5.10b

illustrate the distribution of h with respect to O2
4, and the distribution for APL(G) with

respect to N4.

Finally, let us consider the maximum value that FL(N, o, o′) can take. In the analysis of

N1, N2, N3, and N4 (see Figure 5.6 for N4), the longest flipping lengths for any DT instance

were 1, 2, 4, and 6, respectively. In each case, a chain CP-net induced a sequence of that

length.5 Recall from Section 2.2 that a chain is a directed tree with just one leaf. Thus,

every node except the root in the dependency graph of a chain CP-net has just one parent,

and every node except the leaf has just one child. Chain CP-nets also feature prominently

in the proofs of Boutilier et al. [16] that flipping lengths can be Θ(n2) for complete, binary,

acyclic CP-nets and Ω(2n/2) for CP-nets with incomplete tables and multivalued domains.

One can also observe that chains have the maximum average path length of any graph [49].

Thus, because of their relatively long flipping lengths, chain CP-nets are of interest to us

despite the fact that, because chains are trees, DT can be conducted for such problems in

polynomial time (see Table 5.1).

I generated binary chain CP-nets with n = 1 to 12 nodes, uncompacting each6 into

its corresponding preference graph and applying the Floyd–Warshall algorithm as in Fig-

ure 5.3 to compute the diameter of H. For n = 1 to 12, I found that binary chain CP-nets

had maximum flipping lengths of 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, and 42, consistent with

the formula b(n + 1)2/4c, as in Sloane [98, A002620]. In all of my experiments involving
4For n = 4 the range of APL(G) does not include the value 3

4 .
5Note that in some cases other graphs had maximum flipping lengths as long as those of chain CP-nets.
6Because every chain CP-net on n binary nodes with complete CPTs is the same up to symmetry, it is

only necessary to generate one instance for each integer n.
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Figure 5.9: Mean Flipping Length ˆ̀ as a Function of HD h and APL L
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Figure 5.10: Distribution of Parameter Values over DT Problem Instances (n = 4)
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complete binary7 acyclic CP-nets, including those described in the sections that follow, I

have not yet encountered a flipping length that exceeds these values for a given n. Hence,

the following can be stated as an interesting open problem.

Conjecture 37. Let (N, o, o′) be an arbitrary DT instance, where N is a complete CP-net

on n binary variables. Then, for all n, N, o, o′, the longest flipping length is

max(FL(N, o, o′)) =

⌊
1
4

(n + 1)2
⌋
. (5.3)

Note that this is consistent with the Θ(n2) asymptotic lower bound shown by Boutilier

et al. [16]. If the conjecture holds, Θ(n2) would also be a tight upper bound. An immediate

result would be that dominance testing in such CP-nets would be “only” NP-complete.

5.3 Experiment 2: Sampling CP-nets and Solving DT for all Outcomes

the exhaustive analysis of tiny cases suggests that a flipping sequence, if it exists, is prob-

ably not much longer than the Hamming distance between the two outcomes. Does this

result extend to larger values of n and d? Unfortunately, the exhaustive analysis of the sort

found in Section 5.2 is infeasible for n > 4, because |N5| = a5,4,3 = 157549032992, and for

multivalued domains d > 2 even for 3 nodes because |N3,3| = a3,2,3 = 77274933336 (see

Tables 4.4 and 4.5). Thus, for larger cases one must rely on random sampling. Fortunately,

with algorithm Random-CP-net (see Figure 4.12) one can sample the space of DT problem

instances DT
(
Nn,d | c,On,d | h

)
provably uniformly randomly (see Sections 4.4 and 4.5).

On the systems available to us, the method of uncompacting a CP-net (see Figure 5.4)

and applying the Floyd–Warshall algorithm is feasible up to n = 9 for binary domains. For

the second experiment, I thus generated 100 binary-valued CP-nets with n ranging from 5

to 9. Because it is assumed that indegree is bounded by a small constant (see Section 2.4),

I also varied this bound from c = 1 to c = 4, such that c < n. The generation method

of Chapter 4 does not let us specify a bound on APL; however, it can be shown that APL
7The bound does not hold for multivalued domains in general.
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decreases as the bound c on indegree increases. Thus, by varying c, one can observe the

affect of APL L indirectly. Figure 5.11 summarizes the procedure for the experiment for

CP-nets with 5–9 binary variables.

Tables 5.3 and 5.4 for 9 nodes correspond to the one shown in Figure 5.6 for 4 nodes. In

this case, however, the counts are for the sampled instances rather than for all DT instances.

Also, for variables with 5 or more nodes, the results have been aggregated by the bound on

indegree. Note once again that most flipping lengths are relatively close to the Hamming

distance. Also, note that as c increases, APL decreases, and flipping lengths tend to become

even more tightly compacted to the Hamming distance. Table 5.5 shows how the mean

flipping length varies as a function of the number of variables n, bound on indegree c, and

Hamming distance h (shown only at the extremes and in the middle).

Small-Cases

Output: database of DT instances and flipping lengths

1: initialize database
2: d ← 2 . binary domains
3: for n← 5 to 9 do . number of features
4: for c← 1 to 4 do . indegree bounded by small constant
5: N ← ∅ . generate a set N of 100 CP-nets
6: for t ← 1 to 100 do
7: N ← N ∪ Random-CP-net(n, c, d) . Figure 4.12
8: end for
9: for all N ∈ N do . solve DT for all O2

n,d
10: M ← Uncompact( N ) . preference graph
11: L← Floyd-Warshall-All-Pairs-Shortest-Paths( M ) . flipping lengths
12: store (n, c, d,N,L) in database
13: end for
14: end for
15: end for
16: return database

Figure 5.11: Second Experiment: Sample CP-nets, Solve for All Outcome Pairs
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Table 5.3: Number of DT Solutions Given HD and FL (n = 9; c = 1 and c = 2)

c = 1
` h = 2 3 4 5 6 7 8 9

25 0 0 0 1 0 0 0 0
24 0 0 4 0 0 0 0 0
23 0 0 0 9 0 0 0 0
22 0 0 8 0 12 0 0 0
21 0 0 0 48 0 16 0 0
20 0 0 44 0 104 0 0 0
19 0 0 0 202 0 120 0 0
18 0 0 152 0 558 0 0 0
17 0 80 0 1058 0 432 0 0
16 64 0 1204 0 1997 0 0 0
15 0 1168 0 4362 0 928 0 0
14 512 0 7024 0 5055 0 0 0
13 0 5952 0 16309 0 1896 0 0
12 2048 0 23400 0 20549 0 0 0
11 0 15984 0 51610 0 19804 0 0
10 4480 0 60584 0 76520 0 20718 0
9 0 37056 0 132888 0 99784 0 16800
8 10112 0 131112 0 223220 0 108332 0
7 0 74672 0 298704 0 341624 0 0
6 19968 0 253984 0 694896 0 0 0
5 0 131328 0 1011008 0 0 0 0
4 32704 0 1100480 0 0 0 0 0
3 0 906496 0 0 0 0 0 0
2 552704 0 0 0 0 0 0 0

c = 2
` h = 2 3 4 5 6 7 8 9

25 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
20 0 0 1 0 0 0 0 0
19 0 1 0 8 0 2 0 0
18 0 0 14 0 30 0 4 0
17 0 8 0 94 0 58 0 0
16 6 0 158 0 290 0 33 0
15 0 203 0 851 0 412 0 7
14 94 0 1837 0 2206 0 321 0
13 0 1707 0 7813 0 2954 0 90
12 516 0 11952 0 17816 0 1608 0
11 0 8036 0 42090 0 22445 0 265
10 2068 0 48054 0 81215 0 20089 0
9 0 28123 0 140292 0 106837 0 14930
8 7043 0 136226 0 258900 0 111016 0
7 0 74623 0 362912 0 383570 0 0
6 18952 0 313374 0 815841 0 0 0
5 0 161057 0 1192476 0 0 0 0
4 39560 0 1263972 0 0 0 0 0
3 0 993672 0 0 0 0 0 0
2 574848 0 0 0 0 0 0 0
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Table 5.4: Number of DT Solutions Given HD and FL (n = 9; c = 3 and c = 4)

c = 3
` h = 2 3 4 5 6 7 8 9

25 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
17 0 0 0 4 0 2 0 0
16 0 0 13 0 24 0 3 0
15 0 18 0 96 0 47 0 1
14 9 0 228 0 367 0 36 0
13 0 280 0 1681 0 680 0 10
12 123 0 3674 0 5851 0 633 0
11 0 3479 0 19562 0 11557 0 177
10 1193 0 29654 0 56318 0 16179 0
9 0 21310 0 121814 0 108505 0 18376
8 6032 0 137546 0 304463 0 145982 0
7 0 82642 0 463686 0 513799 0 0
6 22154 0 416183 0 1076618 0 0 0
5 0 215657 0 1513546 0 0 0 0
4 52419 0 1515996 0 0 0 0 0
3 0 1114108 0 0 0 0 0 0
2 602816 0 0 0 0 0 0 0

c = 4
` h = 2 3 4 5 6 7 8 9

25 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
15 0 0 0 3 0 1 0 0
14 0 0 16 0 23 0 2 0
13 0 47 0 186 0 49 0 0
12 41 0 696 0 724 0 41 0
11 0 983 0 4476 0 2522 0 31
10 413 0 10452 0 20579 0 7902 0
9 0 10268 0 63580 0 71631 0 18795
8 3788 0 93478 0 252293 0 161735 0
7 0 68424 0 454199 0 602739 0 0
6 21149 0 458186 0 1297174 0 0 0
5 0 255975 0 1817701 0 0 0 0
4 65124 0 1768986 0 0 0 0 0
3 0 1239046 0 0 0 0 0 0
2 632864 0 0 0 0 0 0 0
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Table 5.5: Mean Flipping Length Given n, c, and h (for n = 5 to 9)

Hamming distance h = 2
n h c = 1 2 3 4
5 2 2.24 2.17 2.16 2.15
6 2 2.25 2.23 2.22 2.18
7 2 2.36 2.24 2.26 2.23
8 2 2.42 2.29 2.30 2.27
9 2 2.43 2.34 2.35 2.33

Hamming distance h = dn/2e

n h c = 1 2 3 4
5 3 3.32 3.24 3.20 3.17
6 3 3.40 3.37 3.32 3.24
7 4 4.67 4.49 4.41 4.31
8 4 4.91 4.67 4.58 4.43
9 5 6.07 5.92 5.73 5.51

Hamming distance h = n
n h c = 1 2 3 4
5 n 5.00 5.01 5.00 5.00
6 n 6.00 6.01 6.01 6.00
7 n 7.00 7.02 7.00 7.00
8 n 8.00 8.03 8.01 8.00
9 n 9.00 9.06 9.02 9.00
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5.4 Experiment 3: A Consideration of Larger Instances

As n increases, it is no longer practical to uncompact the CP-net into its preference graph

or to use the Floyd–Warshall algorithm. To gain insight into the flipping lengths for larger

cases, one thus has to sample from the outcome space as well as the space of CP-nets.

Figure 5.13 describes the third experiment. For selected Hamming distance h, I gener-

ated and stored 100 outcome pairs in set P . Recall that in the first two experiments, flipping

lengths depended significantly on Hamming distance. Also recall that values of h are not

distributed evenly across the space of outcome pairs O2
n,d. Instead, the peak of the binomial

distribution seen in Figure 5.10a for n = 4 nodes becomes much sharper as n increases, as

seen in Figure 5.12 for n = 15. The loop at Line 5 thus chooses values of h at the both

extremes of the distribution as well as in the middle. Consider that if we did not explicitly

constrain h and sampled from O2
15, for example, instead of O2

15 | 2, then the probability of

obtaining a pair of outcomes with Hamming distance 2 on a given attempt would be

P(HD(o, o′) = 2) =
|O2

15 | 2|

|O2
15|

=
215

(
15
2

)
(215)2 ≈ 0.0032; (5.4)

thus stratified sampling, as in the approach here, is important.
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Larger-Cases

Output: database consisting of DT instances and flipping lengths

1: initialize database
2: d ← 2 . binary domains
3: for n← 10 to 15 do . number of features
4: P ← ∅
5: for h ∈ {2, dn/2e, n} do . Hamming distance
6: for t ← 1 to 100 do . generate 100 outcome pairs
7: P ← P ∪ random outcome pair (o, o′) ∈ O2

n,d | h
8: end for
9: end for

10: for c← 1 to 4 do . indegree bounded by small constant
11: N ← ∅
12: for t ← 1 to 100 do . generate 100 CP-nets
13: N ← N ∪ Random-CP-net(n, c, d)
14: end for
15: end for
16: for all N ∈ N do . iterate over sampled CP-nets
17: for all (o, o′) ∈ P do . iterate over sampled outcome pairs
18: ` ← Iterative-DT*(N, o, o′,∞) . compute flipping length
19: store (n, c, d, h,N, o, o′, `) in database
20: end for
21: end for
22: end for
23: return database

Figure 5.13: Third Experiment: Sample Outcome Pairs and CP-nets

Generate-CP-net is then called to generate 100 CP-nets for each value of n and c as

for the first two experiments. The nested loops at Line 16 and Line 17 iterate over all DT

instances N ×P , such that the same outcome pairs are applied to every CP-net N. Finally,

observe that Line 18 calls Depth-Limited-DT* rather than the Floyd–Warshall algorithm

to perform DT and determine the flipping length for each instance. Depth-Limited-DT*,

adapted from the DT* algorithm of Li et al. [68], is discussed in Section 5.6. Note that

for this experiment the depth limit k is set to ∞ and search continues indefinitely until a

solution is found or the algorithm reports false indicating that no flipping sequence exists

at any depth. I performed a similar experiment for multivalued domains of size d = 3.
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Table 5.6: Mean Flipping Length Given n, c, and h (Binary Variables, n = 10 to 15)

Hamming distance h = 2

n h c = 1 2 3 4
10 2 2.75 2.48 2.27 2.34
11 2 2.57 2.47 2.42 2.43
12 2 2.52 2.40 2.57 2.52
13 2 2.44 2.58 2.52 2.51
14 2 2.60 2.54 2.58 2.56
15 2 2.81 2.38 2.58 2.59

Hamming distance h = dn/2e

n h c = 1 2 3 4
10 5 6.50 6.47 6.14 5.79
11 6 7.82 7.61 7.33 7.00
12 6 7.82 8.03 7.62 7.07
13 7 9.61 9.19 8.82 8.38
14 7 10.21 9.45 8.93 8.41
15 8 10.86 10.73 10.01 9.53

Hamming distance h = n

n h c = 1 2 3 4
10 10 10.00 10.12 10.04 10.00
11 11 11.00 11.26 11.08 11.01
12 12 12.00 12.32 12.07 12.01
13 13 13.00 13.37 13.14 13.02
14 14 14.00 14.38 14.10 14.07
15 15 15.00 15.39 15.10 15.04

The experiment is the same as shown in Figure 5.13, except that it assigns variable d to

3 in Line 2 and that it specifies in Line 3 that n ranges from 5 to 10 instead of 10 to 15.

Tables 5.6 and 5.7 show results similar to those in the previous experiment for smaller

values of n.
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Table 5.7: Mean Flipping Length Given n, c, and h (Multivalued Variables d = 3)

Hamming distance h = 2

n h c = 1 2 3 4
5 2 2.42 2.42 2.37 2.27
6 2 2.40 2.55 2.45 2.31
7 2 2.52 2.74 2.54 2.46
8 2 2.72 2.97 2.62 2.55
9 2 2.76 2.62 2.66 2.61
10 2 2.71 2.78 2.74 2.59

Hamming distance h = dn/2e

n h c = 1 2 3 4
5 3 3.67 3.66 3.42 3.38
6 3 3.96 3.80 3.52 3.47
7 4 5.52 5.47 4.81 4.72
8 4 5.80 5.71 5.09 4.78
9 5 7.16 7.08 6.42 5.97
10 5 8.37 7.28 6.67 6.19

Hamming distance h = n

n h c = 1 2 3 4
5 5 5.83 5.64 5.42 5.43
6 6 7.19 6.80 6.66 6.51
7 7 8.69 8.16 7.74 7.55
8 8 10.20 9.41 8.85 8.72
9 9 11.14 10.65 9.99 9.90

10 10 12.68 11.97 11.13 10.91
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5.5 Are Preferences Really Transitive?

To this point, we have assumed, except for the brief discussion in Section 1.1.3, that pref-

erences are transitive. That is, if a subject prefers o � o′ and o′ � o′′, then we reason

that the subject also prefers o � o′′. This assumption is the basis for constructing flipping

sequences via the ceteris paribus rules of the CP-net. However, let us briefly reconsider

Peter C. Fishburn’s example [36] from Chapter 1. This time, instead of a long sequence

of cups of coffee, each with one more grain of sugar than its predecessor, consider that we

have a similarly long sequence of beverages described by multiple features, such as sweet-

ness, temperature, provenance, and the presence of varied subtle flavorings. The subject’s

preference over the combinatorial domain is described with a CP-net, and a DT algorithm

assures us that the subject will prefer beverage o to o′ due to very long flipping sequence,

as shown in Figure 5.14. We saw in Sections 5.2–5.4 that flipping sequences much longer

than the Hamming distance are rare. However, sequences of length O(n2) certainly exist

even in binary CP-nets with complete tables, and Boutilier et al. [16] showed that in certain

cases flipping lengths can be exponential in n.

Recall that each flip in the sequence is entailed by a particular CPR. As discussed

in Chapter 1, CP-nets are considered to be a static, deterministic formalism. That is, it is

assumed that for each outcome pair that differs in just one feature, the subject always makes

the same choice. One should keep in mind, however, that this determinism is a modeling

decision, not an intrinsic property of the subject’s underlying preferences. Whether N is

constructed by the subject, elicited through queries, or learned from data in any of the

ways discussed in Sections 1.2.3 and 3.5, it is reasonable to allow for the possibility that

o′ = o0

≺

o1

≺

o2

≺ · · · ≺

o` = o

Figure 5.14: An Exceptionally Long Flipping Sequence
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Table 5.8: Noise Model for Maximum Reliable Flipping Lengths

Probability of Noise ε Max Flipping Length `
0.10% 692
0.50% 138
1.00% 68
5.00% 13

the model reflects some margin of error, or noise. If such errors are small, they can be

safely ignored. However, the presence of noise turns out to be particularly problematic for

very long flipping sequences.

Consider that in a flipping sequence, each flip (ot, ot+1) is permitted by a particular CPR

u : �i, where ot[i] , ot+1[i], ot[−i] = ot+1[−i], u = o[Pa(Xi)], 1 ≤ i ≤ n, 0 ≤ t < `. Let

ε ∈ (0, 1) be the probability that each CPR in the CP-net is noisy. The probability p that a

particular flipping sequence of length ` entails dominance despite noise is then

p = (1 − ε)` , (5.5)

which converges to 0 as ` tends to infinity.8 Assuming p ≥ 0.5 and solving for ` gives us

` ≤

⌊
−1

log2(1 − ε)

⌋
. (5.6)

Table 5.8 shows the longest reliable values of ` for varying noise levels ε.

The problem of noise is of course not limited to CP-nets. Any predictive model, if it

admits too much noise, becomes unreliable. The tendency of very long transitive sequences

to accumulate noise, however, is a further reason to limit search depth.

5.6 Depth-Limited Dominance Testing

Sections 5.2–5.5 can be summarized as follows: The deeper the search in DT, the lower

the probability that a path exists, and the higher the probability that the path is unreliable.

It thus seems reasonable in many settings to limit search depth, as we now discuss.
8Here I consider only a single flipping sequence from o′ to o. Multiple paths from o′ to o of length ` are

possible, as in Figure 5.2, but this complicates the analysis.
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Definition 38 (Depth-limited dominance). Let (N, o, o′) be an arbitrary DT instance. For

any positive integer k, N entails the depth-k dominance of o over o′,

N |= o �k o′, (5.7)

if and only if FL(N, o′, o) ≤ k. If a flipping sequence of length ` ≤ k exists, then we also

say the first outcome k-dominates the second, and write o �k o′.

We call the search for such a sequence depth-limited dominance testing (DLDT). A

general algorithm for conducting DLDT is described in Figure 5.15. The algorithm takes

as its input a DT instance, specified depth limit k, and a reference to a blackbox subroutine

DTSolver that returns true if a path of length ` ≤ k exists and may return unknown if the

cutoff is reached before the search tree is fully explored. The loop in Line 2 iterates over

feasible flipping lengths from ` = HD(o, o′) to k in increments of 2 (see Theorems 34 and

36). The algorithm returns the length ` ≤ k of a flipping sequence from o′ to o, if such a

sequence exists, or∞ if o �k o′.

Let us briefly discuss two algorithms that can serve as the DTSolver subroutine. Sec-

tion 5.6.1 shows how to adapt the DT* algorithm proposed by Li et al. [68]. Section 5.6.2

then proposes SAT-DT, a novel approach that solves DT instances of specified flipping

length via reduction to Boolean satisfiability (SAT). The algorithms can easily be adapted

to return the flipping sequence as well if that is desired.

5.6.1 Depth-Limited DT*

DT* employs a heuristic approach to dominance testing. A priority queue is employed,

with a heuristic function on any outcome o* to guide the search. Nodes on the fringe of

the search tree with the lowest positive values of f (o*) are searched first; negative values

of f (o), however, rule out any possibility of finding a solution. Pseudocode, adapted from

Li et al. [68], is provided in Figure 5.16. The boxes emphasize changes that are central to

the iterative approach employed here for DLDT. Note that if the depth limit ` is reached,
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DLDT( N, o, o′, k, DTSolver )

Input: N CP-net
o Goal outcome
o′ Start outcome
k Depth limit
DTSolver Subroutine to solve depth-limited DT instances

Output: ` Flipping length if sequence found, otherwise∞

1: s← 2 if N is binary valued and 1 otherwise
2: for ` ← HD(o, o′) to k step s do . Iterative search depth
3: answer← DTSolver (N, o, o′, `) . Invoke subroutine
4: if answer = true then
5: return ` . Return flipping length ` indicating N |= o �` o′

6: else if answer = false then
7: return∞ . No solution exists at any depth, so halt search
8: end if
9: end for

10: return∞ . No solution with flipping length ` ≤ k

Figure 5.15: Generic Algorithm: Depth-Limited Dominance Testing

no successor nodes in the search tree will be added to the priority queue. If this occurs, the

algorithm returns unknown. If all solutions can be ruled out, it returns false.

5.6.2 DT-SAT

The section concludes with a reduction of DLDT to SAT, as shown in Figure 5.17. For

this reduction outcomes are modeled as states and flips as actions that transition between

states, employing the satisfiability as planning (SATPlan) method of Kautz and Selman

[54]. The variable ω denotes a Boolean formula in Conjunctive Normal Form (CNF),

i.e., a conjunction of clauses, each a disjunction of literals. Initially ω is empty, with an

assumed truth value of true, which we denote with the assignment ω ← >. To write a

clause ξ means to conjoin it to ω to form a new formula, ω ← ω ∧ ξ. When all clauses

have been written thus, a SAT solver is called. It is assumed that the solver returns true if

ω is satisfiable and false otherwise.

102



Depth-Limited DT*( N, o, o′, ` )

Input: N CP-net
o Goal outcome
o′ Start outcome
k Depth limit

Output: result true if N |= o �k o′, false if N |= o′ 6� o; else unknown

1: if f (o′) < 0 then . Heuristic function [68]
2: return false
3: end if
4: cutoff← false
5: insert (o′, 0) into priority-queue with priority f (o′)
6: while priority-queue , ∅ do
7: (o′, ` )← remove-first(priority-queue)
8: if o′ = o then . Goal test
9: return true

10: end if
11: for all Xi ∈ V do
12: if improvable(o′, Xi) ∧ Xi < any-matching-suffix(o′, o) then
13: o′′ ← single-flip(o′, Xi)
14: if not-repeated(o′′) ∧ f (o′′) ≥ 0 then
15: if ` ≥ k then . Can we flip and not exceed depth limit?
16: cutoff← true . Thus will not search complete graph
17: else
18: insert (o′′, ` + 1) into priority-queue with priority f (o′′)
19: end if
20: end if
21: end if
22: end for
23: end while
24: if cutoff = true then
25: return unknown
26: else
27: return false
28: end if

Figure 5.16: Solver Algorithm: Depth-Limited DT*
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DT-SAT( N, o, o′, ` )

Input: N CP-net
o Goal outcome
o′ Start outcome
` Predetermined search depth

Output: Boolean true if N |= o �` o′, otherwise false

1: ω← >
2: for i← 1 to n do . Assert initial and final states
3: ω← ω ∧ z0,i,o′[i]

4: ω← ω ∧ zt,i,o[i]

5: end for
6: for t ← 1 to ` do . Just one state occurs for all t, i
7: for i← 1 to n do
8: ω← ω ∧ JustOne

1≤ j≤d
zt,i, j

9: end for
10: end for
11: for t ← 1 to ` − 1 do
12: for i← 1 to n do
13: for distinct i, j ≤ d do
14: ω← ω ∧ αt,i, j,k ⇒ zt,i, j ∧ zt+1,i,k . Implications of actions
15: for h← 1 to n s.t. h , i do . Framing rules
16: for q← 1 to d do
17: ω← ω ∧ αt,i, j,k ∧ zt,h,q ⇒ zt+1,h,q

18: ω← ω ∧ αt,i, j,k ∧ ¬zt,h,q ⇒ ¬zt+1,h,q

19: end for
20: end for
21: end for
22: end for
23: ω← ω ∧ JustOne

1≤i≤n,1≤ j,k≤d
αt,i, j,k

24: for each CPR in N of the form u : xi
j � xi

k do
25: ω← ω ∧ zt,p1,u1 ∧ · · · ∧ zt,pm,um ⇒ ¬αt,i, j,k . Disallow flip unless CPR permits
26: end for
27: end for
28: answer← SAT-solver(ω)
29: if answer = true then
30: return true
31: else
32: return unknown
33: end if

Figure 5.17: Solver Algorithm: DT-SAT
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States

Let o0, o1, . . . , o`−1, o` be the outcomes in a flipping sequence, such that o′ = o0, o = o`,

HD(ot, ot+1) = 1, ot[i] , ot+1[i], ot[−i] = ot+1[−i], 0 ≤ t < `, 1 ≤ i ≤ n. We denote

by j = ot[i] the value of Xi in the outcome at time t. The outcomes zt,i, j are modeled as

Boolean state variables

zt,i, j ⇐⇒ ot[i] = xi
j, (5.8)

for all (t, i, j), 0 ≤ t ≤ `, 1 ≤ i ≤ n, 1 ≤ j ≤ d. Clauses are written to assert that the

initial and final states, o′ and o, occur at times 0 and ` respectively. It is also asserted that

a variable Xi can have just one state at time t. That is, the variable has at least one state

(value) and at most one state (value). For this it is helpful to define the operator

JustOne
1≤ j≤d

zt,i, j =
(
zt,i,1 ∨ zt,i,2 ∨ · · · ∨ zt,i,d

)
∧

(
¬zt,i,1 ∨ ¬zt,i,2

)
∧

(
¬zt,i,1 ∨ ¬zt,i,3

)
...

∧
(
¬zt,i,1 ∨ ¬zt,i,d

)
∧

(
¬zt,i,2 ∨ ¬zt,i,3

)
...

∧
(
¬zt,i,d−1 ∨ ¬zt,i,d

)
which is used here in a manner analogous to the summation and product operators,

∑
and∏

.

Actions

Boolean variables αt,i, j,k are also defined for each possible action. In a flipping sequence

the value of just one variable changes at each time t. Thus, for all t < `, i ≤ n, and distinct

xi
j, x

i
k ∈ Dom(Xi), there is a possible action corresponding to a flip from xi

j to xi
k. These are

expressed in terms of their implications

αt,i, j,k =⇒ zt,i, j ∧ zt+1,i,k, (5.9)

105



and it is specified that just one action occurs at every timestep t < `. Framing rules are

also written to specify that if an action causes a variable to change, the other n−1 variables

maintain their values from time t to t + 1.

αt,i, j,k ∧ zt,h,q =⇒ zt+1,h,q (5.10)

αt,i, j,k ∧ ¬zt,h,q =⇒ ¬zt+1,h,q (5.11)

Modeling the CPRs

For SATPlan it is more natural to express what action did not occur. The pairwise relation-

ships between domain values in the CPR is thus expressed as a conjunction of actions that

did not occur in a valid flipping sequence of length `.

A rule of the form u : xi
j � xi

k, where u = u1u2 · · · um ∈ Asst(Pa(Xi)), means a flip cannot

occur from xi
j to xi

k in Xi when that node’s parents are assigned the values in u; hence action

αt,i, j,k cannot occur under such circumstances. Let Xp1 , Xp2 , . . . , Xpm denote the parents of

Xi, such that Xp1 = xp1
u1 , Xp2 = xp2

u2 , etc. Observe that at time t in the flipping sequence,

these assignments correspond to the state variables zt,p1,u1 , zt,p2,u2 , etc. Thus, the algorithm

outputs rules of the form

zt,p1,u1 ∧ zt,p2,u2 ∧ · · · ∧ zt,pm,um ⇒ ¬αt,i, j,k. (5.12)

5.7 Conclusion

An oft-cited objection to the use of CP-nets is that the problem of dominance testing, de-

ciding whether one outcome is preferred to another, is NP-hard. Moreover, the proofs of

dominance, so-called flipping lengths, can be exponentially long. In the experiments de-

scribed in this chapter, I have shown that while long sequences exist, they are rarer than

sometimes supposed and tend to occur most often for dependency graphs with long aver-

age path lengths. Expected flipping length also depends on factors such as the number of

variables, maximum indegree of nodes in the dependency graph, domain size, and the Ham-
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ming distance of the outcomes. I have shown that limiting search depth is often reasonable

and showed how to achieve this by adapting an existing heuristic solver to perform itera-

tively deepening, depth-limited search, as well as through a reduction to SAT to leverage

the heuristics in modern solvers. In future work, I hope to show how to leverage parame-

ters such as average path length and Hamming distance to enable portfolio approaches to

dominance testing.

Copyright c© Thomas E. Allen, 2016.
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Chapter 6 Local Search for Learning Tree-Shaped CP-nets

This chapter proposes a novel method for learning tree-shaped CP-nets from choice data.

It is sometimes claimed that CP-nets are “easy to elicit” [16]. That is, we explain CP-nets

to the user, and she introspects on her preferences and writes down the CP-net that best de-

scribes her decision-making process when comparing alternatives. This is a fairly common

assumption in the CP-net literature [18, 30]. Psychologists, however, question our ability

to introspect in this way. They point out that people’s reported preferences are often in-

consistent with their choices and, unexpectedly, that introspection about preferences often

decreases the chooser’s satisfaction with their choice [39, 40, 97, 103].

On the other hand, when presented with alternatives, people often do seem to know

what they want, even if they cannot explain the underlying reasoning process in a con-

trolled experiment. Based on this assumption that we can use our preferences without fully

understanding their underlying form, several recent CP-net elicitation algorithms depend

on choice data—sets of binary choices from some domain. Some algorithms assume that

the choices have been made prior to run time [23, 64], a process known as passive learn-

ing. Others adaptively offer alternatives in an effort to decrease the number of queries

needed. Such active learning paradigms include querying the user about their preferences

directly [23, 29, 47] or Angluin-style learning queries [58]. (See Sections 1.2.3 and 3.5.)

Both in psychological experiments and in many preference data sets, such as those in

the PrefLib repository [75], one can find examples of noisy and inconsistent preferences.

For example, Kamishima and Akaho [53] point out that when consumers were asked to

rank ten sushi items and then later to assign rating scores to the same items, in 68% of the

cases, the ordering implied by the ratings did not agree with the ranking elicited directly

only minutes before. There are many explanations for such phenomena, including a lack of

computational power to compute optima consistently, and a very human desire for variety
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[76]. To our knowledge only Liu et al. [70] have addressed the problem of learning CP-

nets from noisy data. However, their algorithm explicitly builds a preference graph on

the outcomes, which is exponentially larger than the CP-net. The algorithm we present

implicitly represents the preference graph by only constructing the CP-net and is far more

efficient with respect to space.

The approach that we take in this chapter falls into the category of passive learning, in

which the agent unobtrusively records the user’s choices and then fits a CP-net model to

the observed pairwise comparison data. Note that this approach to learning differs from

approaches in which “big data” from large populations are systematically mined in an

effort to predict user behavior. In our case, the data arise, for example, from an individual

for whom we are trying to customize a particular system.

Recall that many problems involving CP-nets and their variants, including learning

a CP-net that is consistent with comparison data (Section 3.5) and using that CP-net to

determine which of two arbitrary outcomes is preferred (Section 3.4), are known to be

computationally hard. However, the dominance problem is known to be easy for CP-nets

for which the dependency structure is a tree. Here we restrict our attention to this subclass

of CP-nets in order to take advantage of efficient dominance testing.

In Section 6.1 we review local search as well as graph theoretic concepts that are needed

to explain our approach. In Section 6.2 we offer a novel encoding for tree-shaped CP-nets

that is useful in defining a neighborhood in which local search can be conducted. In Sec-

tion 6.3 we consider how to evaluate prospective models with respect to a set of possibly

noisy of example data. We discuss the learning algorithm itself in Section 6.4. In Sec-

tion 6.5 we evaluate the algorithm with experiments. A conclusion follows in Section 6.6.

6.1 Background

A tree-shaped CP-net is a conditional preference network (see Definition 9) for which the

dependency graph takes the shape of a directed forest. The term tree in this context is
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A B C

D E

a � a
a : b � b
a : b � b

b : c � c
b : c � c

b : d � d
b : d � d

c : e � e
c : e � e

(a) CP-net N1 (Connected Digraph)

A B C

D E

a � a b � b c � c

b : d � d
b : d � d

c : e � e
c : e � e

(b) CP-net N2 (Disconnected)

Figure 6.1: Tree-shaped CP-nets

potentially confusing, since the digraph may have more than one connected component;

our terminology follows that of Boutilier et al. [16]. Recall from Section 2.2 that a directed

tree is a digraph G = (V, E) such that, for just one node s, called the root, and every other

node t, where s ∈ V, t ∈ V , s , t, there exists just one path from s to t. In contrast, a

directed forest is a digraph in which each node has at most one parent; thus, a directed tree

is also a directed forest, but the converse does not hold. One can observe that the number of

roots is the same as the number of connected components or directed trees that make up the

directed forest. Figure 6.1 depicts two tree-shaped CP-nets, one in which the dependency

graph is a directed tree, the other in which it is a directed forest.

Unless otherwise noted, a CP-net in this chapter is assumed to be tree-shaped. We also

assume here that the domain of each variable is binary and that each conditional preference

table (CPT) of the network is complete, i.e., contains a conditional preference rule (CPR)

for each assignment to the variables that label the node’s parents in the dependency graph,

which in this case will be either a single parent, or the empty set for nodes that are roots.

In this chapter, we represent a directed forest as an undirected tree. A tree, when used

without any modifier, refers to a labeled, undirected graph G = (V, E) in which any two

vertices, u ∈ V , v ∈ V , {u, v} ∈ E u , v, are connected by just one path. Similarly, a
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1 2 3

4 5

6

(a) Tree T1

1 2 3

4 5

6

(b) Tree T2

Figure 6.2: Rooted Trees

forest, if not qualified as directed, is a union of disjoint, labeled, undirected trees. We may

distinguish one node of a tree as a root. In that case, the tree is a rooted tree; otherwise,

the tree is assumed to be unrooted. In this chapter, since we work with both directed and

undirected graphs, we will refer to directed graphs as digraphs and to undirected graphs

simply as graphs. Figure 6.2 depicts two rooted trees.

We denote by E = {E1, E2, . . . , E`} a set of example data. We also refer to these data as

choice data or outcome comparisons. Each element Et = (ot, o′t) of the set is an outcome

pair, ot ∈ O, o′t ∈ O, in which the first element is preferred to the second, i.e., ot � o′t , for

all t, 1 ≤ t ≤ `. Such data are intended as a model of the observed choices of an individual

user over discrete time t. In general such data may be inconsistent; that is, the transitive

closure of E may result in a cycle in which some outcome o is seen to be preferred to itself.

When we say our goal is to learn a CP-net from data E , we mean that we want to

identify, from among a set of models N , one that is most consistent with, or best explains,

E , as described in Section 6.3. Since in general it is infeasible to search the whole space of

|N |models, we will rely on a heuristic approach known as local search, in which the fitness

f (N) of a proposed model N is compared with that of its neighbors, Neigh(N), as discussed

in Section 6.4. The term neighborhood refers to the set of models Neigh(N) ∪ {N}. If a

model is as fit as any model in its neighborhood, i.e., f (N) ≥ f (N′) for all N′ ∈ Neigh(N),
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then we say that it is locally optimal. If a model is as fit as any model in N , it is furthermore

a global optimum. If two or more neighbors are equally fit and are as fit as their respective

neighbors, we say they belong to a plateau. For further discussion of local search, the

reader is referred to a textbook such as that of Russell and Norvig [91].

The GSAT [95] and WalkSAT [96] algorithms for Boolean satisfiability serve as inspi-

rations for the method that we describe in Section 6.4. We are not aware of any previous

work applying local search to CP-nets or related formalisms. Various methods for learning

CP-nets are discussed in Section 3.5. The three algorithms that are most relevant to the

problem that we describe here are those of Dimopoulos et al. [29], which assumes that

example data are consistent and reports failure if no model satisfies E ; of Liu et al. [70],

which like ours identifies optima in the presence of possibly noisy examples, but requires

exponential space, since it explicitly constructs the preference graph while our method ex-

tends to larger problem instances; and finally of Bigot et al. [12], which discusses how to

learn tree-shaped probabilistic conditional preference networks (PCP-nets) from optimal

outcomes, while our method learns a deterministic model from pairwise comparison data.

6.2 Encoding Tree-shaped CP-nets

In Section 4.3 we showed how to encode acyclic dependency graphs as dagcodes. For tree-

shaped CP-nets, however, a simpler encoding is available that facilitates local search by

making it more straightforward to define neighbors. Notice that the dependency graph G =

(V, E) of a so-called tree-shaped CP-net is equivalent to a forest GF of undirected, labeled,

rooted trees. To obtain G from GF , in particular the directions of each edge (Xh, Xi) ∈ E,

one need only traverse each tree in GF from its root. Furthermore, one may notice that

there is a nice correspondence between trees and forests of rooted trees: Any forest with n

nodes can be mapped to an equivalent tree with n + 1 nodes by introducing a new node, r,

inserting edges from r to the root of each tree in forest GF , and distinguishing r as the root

of the newly formed tree with n + 1 nodes. Conversely, to recover the forest from the tree,
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one can simply remove the root and its edges. Observe that trees T1 and T2 in Figure 6.2

correspond to the dependency graphs of N1 and N2 in Figure 6.1 according to this mapping.

Once the digraph of a tree-shaped CP-net with n nodes has been modeled as a tree with

n + 1 nodes, it can be further modeled as a vector of integers known as a Prüfer code.1 As

Arthur Cayley proved in the 1800s, for every integer k, the number of unrooted trees with

k labeled nodes is kk−2. Heinz Prüfer later showed how to encode each such instance as a

sequence of k − 2 integers that has come to be known as a Prüfer code: L = 〈L1, . . . , Lk−2〉,

where L j ∈ {1, . . . , k}, 1 ≤ j ≤ k − 2. Any unrooted labeled tree T can be mapped to its

corresponding Prüfer code L, and vice versa, by straightforward algorithms that we present

in Figures 6.3 and 6.4, which closely follow Kreher and Stinson [60, 3.3].

To encode the CPTs, we could of course use the mapping described in Section 4.4.

Again, however, a simpler mapping is available since we are dealing with tree-shaped CP-

nets with binary variables. Recall from Equation 4.3 that the number of non-degenerate

CPTs of a node with m parents is

ψ2(m) =

m∑
k=0

(−1)m−k

(
m
k

)
22k
. (4.3 revisited)

Moreover, since each node has at most 1 parent, Equation 4.3 evaluates to

ψ2(0) = ψ2(1) = 2 (6.1)

for every CPT of a tree-shaped CP-net composed of binary variables.2 We can thus rep-

resent the CPTs of a tree-shaped CP-net as a vector B of n integers B[i] = 0 or B[i] = 1,

1 ≤ i ≤ n, according to the mapping

xi � xi B[i] = 0

xi � xi B[i] = 1
(6.2)

1Note that a Prüfer code of a tree with n nodes consists of n − 2 integers, each ranging from 1 to n.
There are thus nn−2 trees on n labeled nodes. However, since the tree-shaped dependency graphs described
by Boutilier et al. [16] actually correspond to forests (!), we have to add an additional node n + 1 to the
representation. Thus, in the case of so-called tree-shaped CP-nets, the corresponding Prüfer code actually
consists of n − 1 integers ranging from 1 to n + 1.

2Note that ψd(0) , ψd(1) for d > 2.
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Tree-to-Prüfer-Code( E, n )

Input: E undirected edges of the tree
n number of labeled nodes

Output: L Prüfer code consisting of n − 2 integers

1: d ← 0 vector of length n
2: for all { j, k} ∈ E do . compute the degrees d of the n nodes
3: d[ j]← d[ j] + 1
4: d[k]← d[k] + 1
5: end for
6: for i← 1 to n − 2 do . on ith iteration we have a tree on n + 1 − i nodes
7: j← n
8: while d[ j] , 1 do . find j, the largest labeled node of degree 1
9: j← j − 1

10: end while
11: k ← n
12: while { j, k} < E do . find edge { j, k} ∈ E
13: k ← k − 1
14: end while
15: L[i]← k . store label k in code
16: d[ j]← d[ j] − 1 . reduce the degrees j and k
17: d[k]← d[k] − 1
18: E ← E \ {{ j, k}} . and delete that edge
19: end for
20: return L = 〈L[i], . . . , L[n − 2]〉

Figure 6.3: Algorithm: Tree to Prüfer Code [60]

for each node Xi with no parents and

xh : xi � xi

xh : xi � xi
B[i] = 0

xh : xi � xi

xh : xi � xi
B[i] = 1

(6.3)

for each remaining node Xi with a single parent Xh, Xh ∈ V , Xi ∈ V , 1 ≤ h ≤ n, 1 ≤ i ≤ n.

By combining the encodings for the digraph and CPTs, it is possible to model every

tree-shaped CP-net N as a treecode (L, B) consisting of a Prüfer code L with n − 1 integers

L j ∈ {1, . . . , n + 1}, 1 ≤ j ≤ n − 1, for the dependency graph, and a bit vector B with n

bits for the CPTs. The algorithms of Figures 6.5 and 6.6 show how to map an arbitrary
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Prüfer-Code-to-Tree( L, n )

Input: L Prüfer code consisting of n − 2 integers
n eventual number of labeled nodes

Output: E directed edges composing the tree

1: E ← ∅
2: L[n − 1]← 1
3: d ← vector of n 1s
4: for i← 1 to n − 2 do . compute degrees from L
5: d[L[i]]← d[L[i]] + 1
6: end for
7: for i← 1 to n − 1 do
8: j← n
9: while d[ j] , 1 do . find j, the largest labeled node of degree 1

10: j← j − 1
11: end while
12: k ← L[i]
13: d[ j]← d[ j] − 1 . reduce the degrees of j and k in L
14: d[k]← d[k] − 1
15: E ← E ∪ {{ j, k}} . insert the edge into E
16: end for
17: return E

Figure 6.4: Algorithm: Prüfer Code to Tree [60]

tree-shaped CP-net N to its corresponding treecode (L, B), and vice versa. Also, Figure 6.7

completes the examples in Figures 6.1 and 6.2 by supplying the corresponding treecodes.

In the theorems and proofs that follow, we denote by TNn the set of all complete tree-

shaped CP-nets on n binary variables and by Tn the corresponding set of treecodes

Tn = Ln × Bn, (6.4)

where Ln denotes the set of all Prüfer codes L = 〈L1, . . . , Ln−1〉 with n − 1 integers ranging

from 1 to n + 1 and Bn is the set of all bit vectors B = 〈B1, . . . , Bn〉 with n bits Bi ∈ {0, 1}.

We denote by TC : TNn → Tn the function mapping tree-shaped CP-nets to treecodes, as

implemented by Tree-CP-net-to-Treecode as shown in Figure 6.5.

The algorithms presented in Figures 6.5 and 6.6 map treecodes to CP-nets, and vice-

versa, suggesting that the algorithms are inverses. We now formalize this relationship.
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Tree-CP-net-to-Treecode( N )

Input: N Tree-shaped CP-net with binary variables
Output: L Prüfer code encoding the digraph

B Bit vector encoding the CPTs

1: for i← 1 to n do
2: B[i]← 0 or 1 based on mapping in (6.2) and (6.3)
3: end for
4: relabel nodes V in N with the integers 1 to n
5: R← nodes of digraph G of N that are roots
6: V ← V ∪ {n + 1}
7: E ← E ∪ {(n + 1, r)} for all r ∈ R
8: make edges E undirected
9: L← Tree-to-Prüfer-Code( E, n + 1 ) . Figure 6.3

10: return (L, B)

Figure 6.5: Algorithm: Tree-shaped CP-net to Treecode

Treecode-to-Tree-CP-net( L, B )

Input: L Prüfer code
B Bit vector encoding the CPTs

Output: N Tree-shaped CP-net

1: n← length of B
2: assert that L has length n − 1
3: V ← {1, . . . , n + 1}
4: E ← Prüfer-Code-to-Tree(L, n) . Figure 6.4
5: G = (V, E)
6: traverse G from node n + 1 assigning directions to edges in order of traversal
7: V ← V \ {n + 1} . delete node n + 1 and its edges
8: E ← E \ {(n + 1, k)} for all (n + 1, k) ∈ E
9: initialize CP-net N with digraph G

10: obtain CPTs of N from B using mapping in (6.2) and (6.3)
11: return N

Figure 6.6: Algorithm: Treecode to Tree-shaped CP-net
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T1 =


1 3 2 2︸                  ︷︷                  ︸

L
Prüfer code for N1

1 0 0 1 1︸                         ︷︷                         ︸
B

CPTs for N1



T2 =


3 2 6 6︸                  ︷︷                  ︸

L
Prüfer code for N2

1 0 0 1 1︸                         ︷︷                         ︸
B

CPTs for N2


Figure 6.7: Treecodes Corresponding to the Tree-shaped CP-nets in Figure 6.1

Theorem 39 (Treecode Bijection). TC is a bijection.

Proof. Let N and N′ denote arbitrary tree-shaped CP-nets on n binary variables, where

N ∈ TNn, N′ ∈ TNn, n > 0.

Suppose TC(N) = TC(N′). If so, N and N′ must have the same Prüfer code L, hence

the same digraph G. They also must have the same bit vector B; hence, the CPTs of N and

N′ must also be the same for each node. Thus, N = N′.

Next, let T be an arbitrary treecode in Tn. Recall that for every Prüfer code L =

〈L1, . . . , Ln−1〉, where L j ∈ {1, . . . , n + 1}, 1 ≤ i ≤ n, there exists a labeled, unrooted

tree with n + 1 nodes with labels V = {1, . . . , n + 1}. Since n > 0, there exists a unique node

with largest label n + 1. The graph, as a tree, must be connected and free of cycles, so we

will always be able to traverse it from node n + 1 to every other node, applying directions

to each edge in the direction of traversal. We can then delete node n + 1 along with its

edges. Consider that the resulting digraph will be a directed forest that can serve as the

dependency graph G of a tree-shaped CP-net N. Furthermore, by relabeling each node i as

Xi and specifying that Dom(Xi) = {xi, xi}, 1 ≤ i ≤ n, the digraph will be in its canonical

form. Further consider that once digraph G is available, we will know the parent, if any,

of each node Xi, allowing us to obtain its non-degenerate CPT from Bi via the mapping in
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Table 6.1: Number of Tree-Shaped CP-Nets (Respectively Treecodes) with n Binary Nodes

n |Tn|

1 2
2 12
3 128
4 2000
5 41472
6 1075648
7 33554432
8 1224440064
9 51200000000

10 2414538435584

Equations 6.2 and 6.3. It follows that for all T = (L, B), T ∈ Tn, L ∈ Ln, B ∈ Bn, n > 0,

there exists N ∈ TN such that TC(N) = T .

Therefore, tree-shaped CP-nets are in one-to-one correspond with treecodes. q

Theorem 40 (Number of Tree-shaped CP-nets). For every non-negative integer n, the num-

ber of tree-shaped CP-nets of n binary variables is

∣∣∣TNn

∣∣∣ = 2n(n + 1)n−1. (6.5)

Proof. The set of treecodes Tn consists of all combinations Ln × Bn. Thus, |Tn| = |Ln||Bn|.

Since a Prüfer code L ∈ Ln consists of n − 1 integers ranging from 1 to n + 1 inclusive,

|Ln| = (n + 1)n−1. Also, there are |Bn| = 2n bit vectors of length n. We have already shown

that TNn and Tn are in one-to-one correspondence. Therefore, |TNn| = 2n(n + 1)n−1. q

Table 6.1 gives the computed value of Equation 6.5 for n = 1 to 10 (also see Sloane [98,

A097629]). Note that, as expected, the values are identical to the number of acyclic CP-nets

with n binary variables and bound 1 on indegree, an,1,2 (see Theorem 30 in Section 4.4).

With the help of the encoding and bijection, it is then straightforward to generate all

tree-shaped CP-nets on n binary variables, as illustrated by the pseudocode in Figure 6.8.
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All-Tree-Shaped-CP-nets( n )

Input: n Number of binary variables
Output: N Set of all tree-shaped CP-nets

1: N ← ∅
2: L← vector of n − 1 1s . first treecode lexicographically
3: B← vector of n 0s
4: first← (L, B)
5: repeat
6: N ← Treecode-to-Tree-CP-net(L, B)
7: N ← N ∪ {N}
8: (L, B)← Next-Treecode-Lexicographically(L, B, n) . see pseudocode below
9: until (L, B) = first . when the figurative odometer finally rolls over

10: return N

Next-Treecode-Lexicographically( L, B, n )

Input: L Prüfer code of length n − 1
B bit vector of length n
n positive integer corresponding to the number of variables

Output: (L, B) Next treecode according to lexicographic order

1: k ← n . start with rightmost bit of B
2: while k > 0 do
3: B[k]← B[k] + 1 . increment binary digit
4: if B[k] < 2 then . and carry if necessary
5: break
6: end if
7: B[k]← 0
8: k ← k − 1 . move on to the next most significant digit
9: end while

10: if B is the 0 vector then . we reached all 1s and rolled over, so now get next L
11: k ← n − 1
12: while k > 0 do
13: L[k]← L[k] + 1 . increment (d + 1)-ary digit
14: if L[k] < n + 2 then . and carry if necessary
15: break
16: end if
17: L[k]← 1 . Prüfer code elements start at 1 not 0
18: k ← k − 1 . move on to the next most significant digit
19: end while
20: end if
21: return (L, B)

Figure 6.8: Algorithm: Generate All Tree-Shaped CP-nets
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Random-Treecode( n )

Input: n Number of binary variables
Output: T Random Treecode in Tn

1: initialize vectors L and B to respective lengths n − 1 and n
2: for j← 1 to n − 1 do . generate Prüfer code L
3: L[k]← element drawn uniformly randomly from {1, . . . , n + 1}
4: end for
5: for j← 1 to n do . generate bit vector B
6: B[k]← element drawn uniformly randomly from {0, 1}
7: end for
8: return (L, B)

Figure 6.9: Algorithm: Generate Random Tree-Shaped CP-net

The strategy is to order the treecodes lexicographically. In this lexicographic ordering, we

first compare the Prüfer code L. If the two Prüfer codes are the same, then we compare the

bit vectors B. In each case we first compare the first element of the vector. If it is the same,

we move on to the second, and so on, until we reach the end of the vector. Generating all

treecodes is then equivalent to generating all mixed-radix numerals, as discussed in Knuth

[57, 7.2.1.1]. As each successive treecode is generated in this manner, we call Treecode-

to-Tree-CP-net (Figure 6.6) to obtain the corresponding CP-net and add it to the set to be

returned. After generating all (n + 1)n−12n treecodes, (L, B) will “roll back over” to the first

treecode in the lexicographic ordering in Line 9, not unlike an odometer, and the algorithm

will terminate, returning TNn

We can also generate random treecodes (hence random tree-shaped CP-net models)

uniformly with respect to TNn, as shown in Figure 6.9. Note that since we can choose each

element of L and B independently from their respective ranges {1, . . . , n + 1} and {0, 1},

the resulting instances are provably uniform to the extent that we can generate integers

uniformly at random.
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6.3 Evaluating a Learned Model

A natural idea in discussing CP-net learning is to start with a CP-net NT (a training model)

and generate from it a set of outcome comparisons E =
{
(o1, o′1), (o2, o′2), . . . , (o`, o′`)

}
such

that the training model entails every example, i.e., NT |= ot � o′t for all t, 1 ≤ t ≤ `. The

idea is then to attempt to learn a CP-net NL that recovers the original, such that NL = NT ,

or, if the set of examples is too limited, at least to find a CP-net that entails all of the

comparisons in E .

This approach suffers from two significant problems. First, it assumes that all compar-

isons are entailed by a CP-net. Significantly, this conflicts with the assumption, common

in economics, that preferences arise from an underlying utility function u : O → R. In

that case, every pair of outcomes is comparable provided their respective utilities can be

computed: if u(o) ≥ u(o′), then o � o′. Recall that CP-nets, in contrast, induce a partial

order on O; thus, in general, some pairs of outcomes will be incomparable with respect to

the CP-net, N |= o ‖ o′. Rather than trying to recover some presupposed ideal CP-net or

to learn a model that entails every comparison, a more sophisticated approach, as argued

by Lang and Mengin [65, 66], is to find a model that is consistent with every comparison.

(See also the discussion in Section 3.5.)

Since this point often seems to be misunderstood, we offer an example. Suppose there

are 3 variables with values 0 and 1; i.e., Dom(Xi) = {0, 1}, Xi ∈ {X1, X2, X3}. Further

suppose that the user’s preferences on the outcomes arise from the utility function

u(o) =

n∑
i=1

2o[n−i−1]. (6.6)

We can then see that

000 ≺ 001 ≺ 010 ≺ 011 ≺ 100 ≺ 101 ≺ 110 ≺ 111. (6.7)

From this we could construct E consisting of all
∣∣∣O2

3

∣∣∣ = 28 pairwise comparisons, such that

u(o) > u(o′) =⇒ o � o′. However, through exhaustive analysis, it can be shown that there
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is no tree-shaped CP-net on V , indeed, no CP-net on V , that entails all 28 comparisons.3

Nevertheless, consider that the CP-net N0

X1 X2 X3

1 � 0 1 � 0 1 � 0

while it does not entail (agree with) all of the comparisons, at least does not disagree with

any of them; i.e., for all (o, o′) ∈ E , N0 6|= o′ � o. In this sense, N0 can be said to be

consistent with E , although no CP-net entails every example in E .

Second, the notion of learning as recovering an original CP-net or entailing all examples

fails to account for the possibility of noise. Suppose the preferences of a particular user did

in fact arise from CP-net N0, shown above. Suppose that each day, the user must choose

between a pair of distinct outcomes, o and o′, drawn from the set 000 to 111 inclusive. His

observed choices from Monday through Thursday are

Et=4 = { (101, 100), (111, 101), (111, 011), (100, 000) } . (6.8)

Note that every choice is consistent with CP-net N0. On Friday, he is again asked to choose

between 100 and 101, the same two outcomes he was given on Monday. His preference

has not changed; he still prefers 101 � 100 on account of CPT(X1). However, he picks 100

by mistake. The system dutifully adds (100, 101) to the data to obtain

Et=5 = { (101, 100), (111, 101), (111, 011), (100, 000), (100, 101) } . (6.9)

Observe that the resulting preference order is no longer consistent, since 101 � 100 � 101.

Thus, there is no possibility of finding a CP-net, or for that matter a deterministic utility

function, that is consistent with every example in E .

This suggests the idea of framing CP-net learning as an optimization problem: Can

we identify a model that maximizes agreement with example data? Provided we have an
3Of course, one could define a variable for which the domain contained all 8 values, 000 to 111. The

total ordering can then be entailed by a CP-net with a single node, but in that case no CP-net is needed.
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objective function f to assess the fitness of a model N with respect to the example data, the

learning problem can be stated as

N* = arg max
N

f (N, E) . (6.10)

Many different notions of fitness (optimality) could be considered for the objective

function. For this chapter, we use a simple one, as follows. Let agree denote the examples

for which the CP-net model entails the same ordering as in E ; Conversely, let disagree

denote those for which the model entails the opposite ordering,

agree = {(o, o′) : (o, o′) ∈ E ∧ N |= o � o′} (6.11)

disagree = {(o, o′) : (o, o′) ∈ E ∧ N |= o′ � o} , (6.12)

computed by applying dominance testing to each element in E . Given a non-empty set of

example comparisons E , we define the fitness (score) of a prospective model N as

f (N, E) =
|agree| − |disagree|

|E |
. (6.13)

Note that if (o, o′) ∈ E and N |= o ‖ o′, the pair (o, o′) is not included in either agree or

disagree, but nevertheless reduces the fitness score, which in general can range between -1

and 1 inclusive. To complete the examples given above, the fitness of N0 on all pairs of the

ordering given in Equation 6.7 is (12− 0)/28 ≈ 0.4286. The fitness scores of N0 for Et=4 in

Equation 6.8 and Et=5 in Equation 6.9 are (4 − 0)/4 = 1 and (4 − 1)/5 = 0.6, respectively.

6.4 Learning via Local Search

A chief advantage of the encoding described in Section 6.2 is that it provides a straightfor-

ward way to define neighbors for local search. A pair of tree-shaped CP-nets are neighbors

if their corresponding treecodes differ in just one element. Formally,

Neigh(N) =
{

N′ : HD
(
TC(N), TC(N′)

)
= 1, N′ ∈ TN

}
. (6.14)
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It is also helpful to define the neighbors of a treecode T :

Neigh(T ) =
{
T ′ : HD

(
T, T ′

)
= 1, T ′ ∈ T

}
. (6.15)

For example, given treecode

3 4︸      ︷︷      ︸
L

Prüfer code

0 1 0︸            ︷︷            ︸
B

Bit vector

the neighbors are

1 4 0 1 0 3 1 0 1 0 3 4 1 1 0

2 4 0 1 0 3 2 0 1 0 3 4 0 0 0

4 4 0 1 0 3 3 0 1 0 3 4 0 1 1 .

Theorem 41 (Number of Neighbors). Let n be any positive integer and N be any tree-

shaped CP-net on n binary variables. Then the number of neighbors of N is

|Neigh(N)| = n2. (6.16)

Proof. Consider that to obtain TC(N′) = T ′ = (L′, B′) from TC(N) = T = (L, B) we can

change the value of just one element in (L, B). If we modify a value in Prüfer code L,

there are n−1 elements to choose from and for each there are n new values available, since

L′[ j] ∈ {1, . . . , n+1} and L′[ j] , L[ j]; i.e., the new value must differ from the current value.

Similarly, if we modify B, there are n elements to choose from, but only one new value,

since B′[k] ∈ {0, 1} and B′[k] , B[k]. Thus, the number of treecodes T ′ = (L′, B′), such that

HD(T,T ′) = 1, is (n−1)n+n = n2. Finally, since TC is a bijection, |Neigh(N)| = n2. q

The algorithm Walk-CP-net, presented in Figure 6.10, combines these ideas to en-

able local search for learning tree-shaped CP-nets. Inspired by the GSAT [95] and Walk-

SAT [96] algorithms for solving Boolean satisfiability problems, Walk-CP-net attempts to
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Walk-CP-net( E , n, π, max-strikes, max-restarts )

Input: E Example data
n Number of variables
π Probability of taking a random walk
max-strikes Counter to help detect plateaux
max-restarts Limit of random restarts before algorithm terminates

Output: N* Fittest tree-shaped CP-net encountered

1: N*← null model N⊥ with fitness score f (N⊥, · ) = −∞

2: for restarts← 1 to max-restarts do
3: N ← Treecode-to-Tree-CP-net(Random-Treecode(n)) . Figures 6.6, 6.9
4: strikes← 0
5: repeat
6: if f (N, E) > f (N*, E) then
7: N*← N . The new model is also the new best model
8: strikes← 0 . New height reached, so also reset counter
9: if f (N*, E) = 1 then

10: return N* . N* entails all examples, hence also globally best
11: end if
12: end if
13: if random value in [0, 1] ≤ π then
14: N ← random element of Neigh(N) . Random walk
15: else
16: previous-fitness← f (N, E)

17: N ← arg max
N′

f (N′, E) s.t. N′ ∈ Neigh(N)) . Hill climbing

18: if f (N, E) ≤ previous-fitness then . Possible plateau
19: strikes← strikes + 1
20: end if
21: end if
22: until strikes = max-strikes . Random restart to get off plateau
23: end for
24: return N* . Give up and return the best model encountered

Figure 6.10: Algorithm: Walk-CP-net
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find a balance between random and greedy behavior. The algorithm starts by generating a

random model. By default it is the best model yet encountered, so we distinguish it as N*.

With probability π, a user-selected parameter in the range [0, 1], the algorithm then either

randomly walks (Line 14) or attempts hill-climbing (Line 17). In the case of a random

walk, the algorithm replaces N with a randomly selected neighbor. In the case of greedy

behavior, the algorithm performs dominance testing (DT) on E to evaluate all n2 neighbors.

However, while DT is NP-hard for CP-nets in general, it is easy for tree-shaped CP-nets on

binary variables, the class of models that we consider here.

If hill climbing is possible, Walk-CP-net chooses a neighbor with the highest score.

Note that if N is locally optimal, the fitness level may stay the same or even decrease. In

that case, it is possible that the search has reached a plateau. To avoid becoming stranded

there, the algorithm increments a strikes counter. However, if fitness is strictly better, and

the new model turns out to be the best yet encountered, the counter is reset to 0 in Line 8.

When the counter eventually reaches max-strikes, a user-selected parameter, the al-

gorithm performs a random restart, choosing a (potentially distant) model uniformly at

random. The number of random restarts is also controlled by a user-selected parameter,

max-restarts. When this limit is also eventually reached, the algorithm terminates, return-

ing N*, the best model encountered. The algorithm can also terminate early, in Line 10, if

it encounters a model that entails all examples in E . In that case, N* is provably a global

optimum, so we halt the search.

6.5 Experiments

As discussed in Section 3.6, real-world data relevant to CP-nets are in short supply, and the

datasets that are occasionally used for CP-net learning are problematic. Thus, as with most

research involving CP-nets, we used synthetic data to evaluate our algorithm. Figure 6.11

describes how the choice data E are generated. The algorithm first generates an archetypal

tree-shaped CP-net NT uniformly at random. DT is then employed to identify pairs in O2
n
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Generate-Choice-Data( n, `, p, q )

Input: n Number of binary variables
` Number of comparisons to return; i.e., |E | ≈ `
p Probability of answering o � o′ or o′ � o randomly when o ‖ o′

q Probability of answering incorrectly; i.e., o′ � o when actually o � o′

Output: E Example data with ` comparisons specifying o � o′ for all (o, o′) ∈ E
NT Tree-shaped CP-net used to generate E

1: NT ← Treecode-to-Tree-CP-net(Random-Treecode(n))
2: for all o ∈ On or subset of On of size

⌊√
`
⌋

do

3: for all o′ ∈ On or subset of size
⌈√
`
⌉

such that o , o′ do
4: if NT |= o � o′ then . model specifies o � o′

5: u← o
6: v← o′

7: else if NT |= o′ � o then . model specifies o′ � o
8: u← o′

9: v← o
10: else . model specifies o ‖ o′

11: x← uniform random number in [0, 1]
12: if x < p/2 then . With probability p, we flip a coin,
13: u← o . to choose between o � o′

14: v← o′

15: else if x < p then
16: u← o′ . and o′ � o.
17: v← o
18: else
19: continue . The rest of the time, we do not give any answer if o ‖ o′.
20: end if
21: end if
22: y← uniform random number in [0, 1]
23: if y < q then . With probability q
24: E ← E ∪ {(v, u)} . answer differently than expected.
25: else
26: E ← E ∪ {(u, v)} . The rest of the time, answer as intended.
27: end if
28: end for
29: end for
30: E ← random sample of size ` selected uniformly from E
31: return (E ,N)

Figure 6.11: Algorithm: Generate Choice Data
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for which NT entails a preference. When feasible, we iterate over all pairs of outcomes.

When |O2
n | is too large, we specify some number ` of outcome pairs to be selected from O2

n

at random.

DT is applied to each resulting problem instance (NT , o, o′) to determine an ordering,

if one exists. If the CP-net does not entail an ordering, i.e., if o ‖ o′, then by default

the algorithm does not include the pair in E . However, this behavior can be customized

by setting a user-specified parameter p. With probability p ∈ [0, 1], when NT |= o ‖ o′,

the algorithm will guess o � o′ or o′ � o at random. (The rest of the time, i.e., with

probability 1− p, the algorithm does not report a preference for pairs that are incomparable

with respect to NT .) This behavior is analogous to that of a subject who sometimes has to

choose between two outcomes even though he has little information to indicate which is

better. Note, however, that choosing in this randomized manner introduces noise into the

choice data, since if p > 0, the resulting transitive closure of E is likely to contain a cycle.

Noise can also be introduced via a separate parameter, q. With probability q ∈ [0, 1], the

algorithm will misreport the preference, analogous to a subject who on occasion makes an

incorrect choice. Again, note that even small, non-zero values of q are likely to cause E to

be inconsistent. While it is possible to specify non-zero values of p and q simultaneously,

we did not do this for our experiments.

For the first experiment, we generated an original CP-net NT on n = 4 variables. The

choice data E consisted of all pairs (out of 120 possible) for which the original CP-net

entailed a preference. We generated 100 such datasets and ran the Walk-CP-net learning

algorithm on the data multiple times to compare the performance of each learned model

to that of the original model NT . Since no noise was introduced into the example data,

the original model always had a fitness score of 1.0. We ran the learning algorithm 100

times for each of the 100 data sets, varying the max-restarts parameter. The bar chart

in Figure 6.12 shows the mean fitness score achieved for 10, 50, 100, and 500 restarts,

respectively.
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Figure 6.12: Walk-CP-net Experiment 1 (No Noise)

For the second experiment, we used parameter p to introduce varying degrees of noise.

Note that once noise is introduced, it is possible—in fact, likely—that some tree-shaped

CP-net N* other than the original CP-net NT offers a better fit to E . To provide an ora-

cle for the learning problem, we thus used the algorithm Find-Best-Tree-Shaped-CP-net

shown in Figure 6.13. The oracle iterates over all N ∈ TNn tree-shaped CP-nets to find a

model that has maximum fitness with respect to E . The learned model NL is then com-

pared to the model obtained from the oracle rather than to the original or the one selected

by the oracle. Note that when too much noise is introduced, it is often the case that no

model performs well, including the original. We generated 100 datasets with noise level

p = 0.02 and ran the learning algorithm 100 times on each, again varying the max-restarts

parameter. The bar chart in Figure 6.14 shows the mean fitness score achieved relative to

the oracle for 10, 50, 100, and 500 restarts, respectively.
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Find-Best-Tree-Shaped-CP-net( E , n )

Input: E Example data
n Number of binary variables

Output: N Optimal tree-shaped CP-net with respect to E

1: N ← All-Tree-Shaped-CP-nets( n )
2: BestScore← −∞
3: for all N ∈ N do
4: agree = {(o, o′) : (o, o′) ∈ E ∧ N |= o � o′}
5: disagree = {(o, o′) : (o, o′) ∈ E ∧ N |= o′ � o}

6: score =
|agree| − |disagree|

|E |
7: if score > BestScore then
8: BestScore← score
9: BestModel← N

10: end if
11: end for
12: return BestModel

Figure 6.13: Algorithm: Find a Best Tree-Shaped CP-net Globally
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Figure 6.14: Walk-CP-net Experiment 2 (Noise Level p = 0.02)
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The third experiment was similar to the second, except that we set noise parameter q,

rather than p. That is, rather than randomly “guessing” an ordering for some incomparable

pairs of outcomes, the answer for an entailed pair of outcomes is reversed with probability

q. The bar chart in Figure 6.15 shows the mean fitness score achieved relative to the oracle

for q = 0.03. Keep in mind that the comparison metric is the fitness score relative to the

oracle for each generated data set E , and that when example data are noisy, even the oracle

usually achieves a fitness score less than 1.0.

Finally, we generated larger problem instances (Table 6.2). Since consulting the oracle

was infeasible for these, we did not include noise. For this experiment we generated tree-

shaped CP-nets with 10, 15, and 20 nodes, with 100 CP-nets in each set. For each CP-net,

we generated a choice set E consisting of 45 comparisons entailed by the original CP-net.

We then repeatedly ran Walk-CP-net for each of the 100 datasets, increasing the maximum

number of restarts by about 50% on each iteration. We continued this until we reached a

5 10 50 100 500
0

0.2

0.4

0.6

0.8

1

0.74
0.81

0.92
0.96

1

Maximum Number of Restarts

M
ea

n
Fi

tn
es

s
R

el
at

iv
e

to
O

ra
cl

e

Figure 6.15: Walk-CP-net Experiment 3 (Noise Level q = 0.03)
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Table 6.2: Walk-CP-net Experiment 4 (No Noise)

Variables Restarts Mean Fitness Mean DT Calls†

10 10 0.86 4
10 15 0.89 8
10 22 0.92 14
10 33 0.94 25
10 49 0.95 43

15 10 0.77 9
15 15 0.80 16
15 22 0.83 29
15 33 0.85 52
15 49 0.87 89
15 73 0.88 149
15 109 0.90 250
15 163 0.92 410
15 244 0.93 670
15 366 0.94 1090
15 549 0.95 1762

20 10 0.72 14
20 15 0.75 27
20 22 0.77 49
20 33 0.80 88
20 49 0.82 151
20 73 0.83 254
20 109 0.85 425
20 163 0.86 701
20 244 0.88 1150
20 366 0.90 1873
20 549 0.90 3031
20 823 0.91 4882
20 1234 0.91 7809
20 1851 0.93 12459
20 2276 0.93 19819

†To the nearest thousand

fitness threshold of 0.95 or (in the case of n = 20 nodes) reached a preset time limit. We

also recorded the number of calls to the DT solver, in this case the DT-Tree algorithm [16].
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6.6 Conclusion

In this chapter we have considered the problem of learning CP-nets from noisy, possibly

inconsistent choice data using local search. We proposed a novel and elegant encoding for

tree-shaped CP-nets and showed how to use this encoding to define a neighborhood for

local search. Tree-shaped CP-net models are of interest because, once such models are

learned, dominance testing can be conducted with them in polynomial time, in contrast to

CP-nets in general, for which dominance testing is known to be NP-hard. We described a

local search algorithm inspired by Walk-SAT that allows for a balance between greedy im-

provement and randomized search. The experiments suggest that the approach is resilient

in the presence of noise. Our work represents first steps toward a difficult and important

problem for which no satisfactory solution yet exists. In future work, we plan to extend

our encoding to tree-shaped CP-nets with multivalued variables and to polytrees, and to ex-

plore whether other encodings, such as the dagcodes and cpt-codes described in Chapter 4,

could also be used to define neighbors for local search.

Copyright c© Thomas E. Allen, 2016.
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Chapter 7 Conclusion

In this dissertation I have addressed three of the major problems involving conditional pref-

erence networks: reasoning with CP-nets to determine the ordering of an arbitrary pair of

outcomes, learning CP-nets from pairwise comparison data, and generating CP-nets uni-

formly at random. In Chapters 4 and 6, I introduced two novel encodings for CP-nets, one

that generalizes to acyclic models with constraints on indegree and multivalued domains

and a separate encoding that is specific to tree-shaped CP-nets with binary domains and

complete tables. The encodings enabled us to study the expected flipping lengths of dom-

inance testing instances in Chapter 5 and also to define neighbors for learning CP-nets via

local search in Chapter 6. A better understanding of the dominance and reasoning prob-

lems, in turn, enables us to develop more effective heuristics and opens the door to new

areas of research involving CP-nets, such as applying portfolio techniques to learning and

reasoning with CP-nets and analyzing the average time complexity of algorithms. I hope

to give these problems further attention in future research. In future research, I also hope

to develop methods of learning CP-nets that generalize to more complex models. We ob-

served that databases of CP-nets from human subjects are not yet available. This hinders

research for the computational preferences and social choice communities as a whole. The

problem is remedied only through learning algorithms that scale to real-world problems.

Finally, I hope to integrate CP-nets into real-world applications, in particular those involv-

ing assistive technologies and intelligent environments.

Copyright c© Thomas E. Allen, 2016.
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