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ABSTRACT OF DISSERTATION

Peer-to-Peer based Trading and File Distribution for Cloud Computing

In this dissertation we take a peer-to-peer approach to deal with two specific issues,

fair trading and file distribution, arisen from data management for cloud computing.

In mobile cloud computing environment cloud providers may collaborate with each

other and essentially organize some dedicated resources as a peer to peer sharing

system. One well-known problem in such peer to peer systems with exchange of

resources is free riding. Providing incentives for peers to contribute to the system

is an important issue in peer to peer systems. We design a reputation-based fair

trading mechanism that favors peers with higher reputation. Based on the definition

of the reputation used in the system, we derive a fair trading policy. We evaluate the

performance of reputation-based trading mechanisms and highlight the scenarios in

which they can make a difference.

Distribution of data to the resources within a cloud or to different collaborating

clouds efficiently is another issue in cloud computing. The delivery efficiency is de-

pendent on the characteristics of the network links available among these network

nodes and the mechanism that takes advantage of them. Our study is based on the

Global Environment for Network Innovations (GENI), a testbed for researchers to

build a virtual laboratory at scale to explore future Internets.

Our study consists of two parts. First, we characterize the links in the GENI



network. Even though GENI has been used in many research and education projects,

there is no systematic study about what we can expect from the GENI testbeds from

a performance perspective. The goal is to characterize the links of the GENI networks

and provide guidance for GENI experiments.

Second, we propose a peer to peer approach to file distribution for cloud comput-

ing. We develop a mechanism that uses multiple delivery trees as the distribution

structure, which takes into consideration the measured performance information in

the GENI network. Files are divided into chunks to improve parallelism among differ-

ent delivery trees. With a strict scheduling mechanism for each chunk, we can reduce

the overall time for getting the file to all relevant nodes. We evaluate the proposed

mechanism and show that our mechanism can significantly reduce the overall delivery

time.

KEYWORDS: Peer-to-Peer, Trading, File Distribution, GENI, Cloud Computing
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Chapter 1

Introduction

Data management is an important task in cloud computing. We target two aspects

of the data management problem. One is the data storage and the other is the data

delivery. For data storage, we specifically target the mobile cloud computing envi-

ronment, in which data are typically stored close to their mobile users. To increase

the coverage of geographical locations, different cloud providers may share and trade

their computing and storage resources. They collaborate with each other and es-

sentially organize some dedicated resources as a peer to peer sharing system. One

well-known problem in such peer to peer systems with exchange of resources is free

riding, which can lead to performance deterioration and even collapse of the whole

system, if the total resource contributed by peers is less than that used by them. Pro-

viding incentives for peers to contribute to the system is an important issue in these

systems. It can be complicated to design an incentive mechanism that is considered

to be fair by peers. We design a reputation-based fair trading mechanism and develop

a fair trading policy to provide incentives for collaborating clouds to contribute to

the system.

Distribution of data to the resources within a cloud or to different collaborating

clouds efficiently is another issue in cloud computing. The delivery efficiency is depen-
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dent on the characteristics of the network links available among these network nodes

and the mechanism that takes advantage of them. Our study is based on the Global

Environment for Network Innovations (GENI) [38, 39, 40], a testbed for researchers

to build a virtual laboratory at scale to explore future Internets. Our study consists of

two parts. First, we characterize the links in the GENI network. Even though GENI

has been used in many research and education projects, there is no systematic study

about what we can expect from the GENI testbeds from a performance perspective.

The goal is to characterize the links of the GENI networks and provide guidance for

GENI experiments. The information collected can be helpful for designing GENI

experiments in selecting where resources should be reserved. Second, we propose a

peer to peer approach to file distribution for cloud computing. Instead of delivering

a file to all concerned nodes using the traditional client-server model, we develop a

mechanism that uses multiple delivery trees as the distribution structure, which takes

into consideration the measured performance information in the GENI network. Files

are divided into chunks to improve parallelism among different delivery trees. With a

strict scheduling mechanism for each chunk, we can reduce the overall time for getting

the file to all relevant nodes.

1.1 Reputation and Incentives for Peer-to-Peer Networks

A peer to peer system relies on the cooperation of peers to accomplish tasks. It can

distribute load to peers and get rid of the bottleneck typically existing at the server of

a client-server system. We have seen many applications of the peer to peer paradigm,

such as file sharing and multimedia streaming [1]. Instead of getting large media

files from a central server, peers can download them from other peers and therefore

achieve much better performance.

More recently, the peer to peer approach has been adopted for implementing

efficient backup systems [2, 3, 4, 5, 6]. As the size of hard disk on a PC becomes

2



larger, we have more space in the local disk than we need. While having multiple

copies of the same file on the same disk does not improve the reliability of the data,

we can use spare space to trade with other users and use them as backup for each

other. There are two benefits with this peer to peer backup system. One is that with

the peer to peer backup system, we can have multiple copies of important files on

different machines of different clouds in different locations. If privacy is a concern, we

can always encrypt the file stored at remote locations. In case of the machine crash

or disk failure, we will not have a local copy of those important files. However, we

still can obtain the remote backup copy from other peers. The replication of objects

is also beneficial in another scenario. Consider that the data stored on the disk needs

to be accessed remotely from a laptop when the user is on a trip. Because the local

disk may not be one hundred percent on-line, it is possible that the user cannot get

the data when needed. With the replication, the user can try to find the data at

replicated peers. If any of the peers is on-line, the user will be able to get the data.

This can greatly increase the availability of the useful data.

One well-known problem with peer to peer systems is free riding [7]. If peers

just consume the resources of the system without contributing enough to the system,

the overall resources of the whole system will gradually diminish. It will cause the

deterioration of the performance of the system and can even lead to the collapse of the

whole system. For example, in a peer to peer backup system, if the space contributed

by a peer is less than the space used by it, the total available space of the system will

decrease over time. Finally, it may become hard for a peer to find space to backup

its files. The negative effect is that the peer will be less willing to contribute space.

The vicious cycle will cause the system to collapse. Therefore, it is very important to

design some mechanisms to provide incentives for peers to contribute in such systems.

The goal is to maintain a healthy cooperation among peers so that everybody has

enough space to use as backup when needed.

3



One common and simple way to design such an incentive mechanism is to require

each peer to contribute at least as much storage space as it will use. While it is

intuitively simple and in most cases effective, it does not consider quality aspect of the

storage space. For example, one peer may be on-line almost all the time and provides

very fast upload/download speed because of a high-speed Internet connection, while

the other peer is connected to the Internet on and off with a slow connection. The

quality of storage space on the first peer is considered higher than that on the second

peer. It is unfair to the first peer if it is required to contribute the same amount of

storage as the second peer.

In this dissertation, we propose a reputation-based fair trading mechanism for

peer to peer backup systems. The quality of the storage space of a peer is observed

by other peers and is measured as its reputation. We design a framework for peers

to derive reputation about other peers through either direct observations of its own

or indirect recommendations from others. When two peers want to exchange storage

space for backup, the amount of storage space traded will be based on their reputation.

Instead of trading equal amount of storage space between peers, the reputation-based

trading mechanism favors peers with higher reputation. Based on the definition of

the reputation used in the system, we derive a fair trading policy. It is interesting to

notice that the optimal solution is not the same as the intuitive policy that requires

a peer to get the storage space proportional to its reputation.

1.2 Characterizing the GENI Networks

The Global Environment for Network Innovations (GENI) is a project sponsored by

National Science Foundation (NSF) with the aim to provide a collaborative environ-

ment to build a virtual laboratory for exploring future internets at scale [38, 40].

It has been transitioning from the development phase to the stage in which we pay

more attention to deployment and adoption to provide support for research and ed-
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ucational experiments. It has attracted many universities and industrial partners to

contribute their efforts towards developing a global federated network testbed. An

experimenter can reserve both computing resources (such as PCs, virtual machines

(VMs)), and networking resources (such as ION links, OpenFlow switches, VLANs,

and GRE tunnels). They have full control of their slice and can install customized

OS images on machines in the experiment. Recently, the GEMINI [57] and GIMI [58]

projects developed instrumentation and measurement support, making it easy for

experimenters to collect performance data about GENI experiments.

GENI consists of many aggregates, each of which manages a set of resources [41].

Typically, a GENI aggregate is administrated and controlled by an institution which

can impose its own policies about the allocation of the resources. As more GENI

racks are deployed on university campuses across the United States, GENI has grown

to have tens of aggregates with resources available for network experiments [42]. The

progress of GENI helps encourage researchers to use GENI as a testing environment

for their research projects, as evidenced by new GENI projects on shakedown exper-

iments [59].

The first step to design a GENI experiment is to set up a topology. There are a

lot of choices when determining what and where GENI resources should be reserved

for the experiment. An experiment can reserve all resources from a single aggregate.

Alternatively, an experiment can use resources distributed over a wide geographical

area. One decision that needs to be made in designing a GENI experiment is whether

to use resources from one aggregate or from multiple aggregates. It depends on

the types of experiments to be performed. Some experiments such as multimedia

applications may have a strict end-to-end delay requirement that cannot be satisfied

by nodes distributed over a wide area. They may have to get resources from a single

aggregate. On the other hand, there are experiments that need to test the behavior

of protocols on how they react to the cross traffic from the real world. It may be
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preferable to have resources from multiple aggregates. There is also a question about

which aggregates to choose to put the experimental nodes.

While experimenters have a good understanding of what they want for their ex-

periments, it is not so clear what they can get from the GENI networks. To make this

decision, we need to have a good understanding of underlying networks. We focus

on available bandwidth and measured latency of links in the network. For example,

if an experimenter sets up a topology including nodes from Utah emulab, Kentucky

emulab, and GENI racks from Wisconsin and Northwestern, what will be bandwidth

and latency between two nodes from two different aggregates? They can be tested

after the experiment has been set up, either by using some simple utilities (ping,

iperf [61], etc), or with the help of instrumentation and measurement tools such as

GEMINI [57] and GIMI [58]. It may take some time to finish the task. Further, we

may want to know more about the bandwidth and latency. Do they change a lot

over time? What kind of distribution do they follow? Are they aggregate dependent?

What exactly can we get from links within an aggregate versus from multiple ag-

gregates? How different are the bandwidth and latency of links within an aggregate

versus from multiple aggregates? We collect and analyze the measurement data and

try to answer these questions. We may want to have these questions answered or at

least have a rough idea about them before we make a decision on how to set up an

experiment.

We understand that the distinction between single aggregate and multiple aggre-

gates is not absolute. In a single aggregate experiment, the links generally have lower

latency and higher bandwidth. To make them suitable for an experiment that needs

more realistic topology that has a wide variety of delays and bandwidths, we can add

delay nodes in the middle of the topology to do traffic shaping, increasing the delay

or reducing the bandwidth, or both. This adds an element of simulations/emulations,

instead of pure experimentations. The resulting topology will have some character-
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istics of multi-aggregate experiments. On the flip side of the coin are experiments

using multiple aggregates. For large network experiments, the number of nodes usu-

ally exceeds the number of aggregates available. We have to allocate multiple nodes

within an aggregate. Thus, even in a multi-aggregate experiment, we may still have

links within an aggregate. In either case, we need to have an idea about delays and

bandwidth of both single-aggregate links and cross-aggregate links.

Performance measurement has been done on campus, regional and national back-

bone networks [60]. However, we have not seen a systematic study about the perfor-

mance of GENI networks, especially from an experimenter’s perspective. The goal of

this study is to characterize the links of GENI networks and provide some insights

for GENI experimenters into what they can expect to get from GENI networks. The

information will be helpful to the decision making process for reserving resources from

appropriate places to satisfy the need of experiments.

We present our study on performance of GENI networks and the tradeoff between

single aggregate and multiple aggregates in the design of GENI experiments from

the performance perspective. We will analyze how the links behave differently over

a period of time. The data collected will shed some light on the design process for

choosing where the nodes in the experiment should be located.

1.3 File Distribution in the Cloud

Cloud computing can provide infrastructure, platform and software as a service to

meet the needs of users on demand. It has many attractive features, such as no

up-front investment, no need to administrator a large number of machines, no worry

about the upgrade/recycle outdated equipment, etc. We have witnessed that more

users and enterprises are moving to the cloud to meet their computing needs and use

the services provided by the cloud.

One category of applications especially suitable for the cloud environment is the
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parallel processing of big data, such as those using MapReduce. Due to the virtu-

alization, an application can request variable numbers of virtual machines (VMs) to

process the data file in parallel, depending on the performance goal of the users. We

can increase the number of VMs requested if we want to get the results faster. On

the other hand, we may reduce the cost by requesting less VMs if we can afford to

get the results later. One of the tasks in these applications is to distribute the big

data file to all the VMs processing them. It can become the bottleneck for reducing

the turnaround time. In the GENI environment, we also see quite often that we need

to install a certain package on all the experimental machines in a slice. We have to

distribute the file to all the VMs involved.

The traditional method uses a client server model to send the file from the origin

machine to all VMs in turn. The overall time can grow linearly with the number of

VMs that need the file. In this dissertation, we adopt a peer to peer approach to

deal with this problem. While the pure peer to peer method can reduce the delivery

time from linear to logarithmic, we propose an approach that divides the origin file

into blocks and can further reduce the the delivery time to a constant, no matter how

many receivers there are in the system. This can significantly improve the overall

performance for the applications that process big data file in the cloud computing

environment.

1.4 Organization of this Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we review the re-

lated work regarding the topics of our research. In Chapter 3, we propose a reputation-

based fair trading mechanism for peer-to-peer backup systems. Our approach provides

incentives to encourage fair trading and improves system performance. In Chapter

4, we characterize the GENI networks and analyze the tradeoff between using single

aggregate and multiple aggregates in designing GENI experiments. The analysis of

8



data collected will shed light on the decision process for designing GENI experiments.

In Chapter 5, we propse a block-based peer-to-peer file distribution in the cloud. We

design a scheduling algorithm that can significantly reduce the distribution time in the

cloud. Finally, we conclude the dissertation and outline our future work in Chapter

6.

Copyright c© Ping Yi 2014
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Chapter 2

Related Work

In this chapter, we will discuss related work on peer-to-peer backup systems, reputa-

tions and incentives, GENI networks, and peer-to-peer based file distribution.

2.1 Peer-to-Peer Backup Systems

Peer-to-peer communication is an alternative approach to the traditional client-server

model. Peer to peer networks can be divided into two categories, either unstruc-

tured or structured. Nodes in an unstructured peer-to-peer network pick their neigh-

bors randomly. Examples of unstructured peer-to-peer networks include Napster [8],

Gnutella [10], and KaZaa [9]. Query of data in an unstructured peer-to-peer networks

is done through flooding. Typically, the request will be sent to a certain number (e.g.,

7) of neighbors, which in turn forward the request to their own neighbors. The pro-

cess will continue until the pre-set TTL expires. The node having the data will send

a response back to the original node making the request. One potential problem with

an unstructured peer-to-peer network is that it is possible that data cannot be found

even if there is a copy in the network. Another drawback is that flooding may create

a lot of traffic and it is not easy to determine what an appropriate TTL value should

be set to.
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Nodes in a structured peer-to-peer network are organized into a certain kind of

structure, such as a ring, a mesh, butterfly, etc. If an object exists in a structured

peer-to-peer network, it can always be found by a pre-determined number of steps.

Performance measures used to distinguish different structured peer-to-peer networks

include the number of neighbors for each node and the number of search steps to

find the data. For a structured peer-to-peer network with n nodes, the number of

neighbors can be
√

n, log(n), etc, and the number of search steps can be
√

n, log(n),

or some constant number. Examples of structured peer-to-peer networks include

Chord[12], CAN[15], Tapestry[16], Pastry[13], Koorde[17], Skipnet[18], EpiChord[19],

and OpenDHT[20].

Peer-to-peer networks have been used as a structure to organize backup systems.

Each peer contributes some storage space to the system. In exchange, it can use

storage space from other peers to backup its data.

Here we present several representative projects on peer-to-peer backup systems, in-

cluding pStore[2], PeerStore[3], Pastiche[4], and Cooperative Internet Backup Scheme[5].

(1) pStore

pStore[2] is a secure distributed backup system that makes use of unused hard

drive space in PCs and supports CVS-like versioning system. pStores is built on a

distributed hash table (DHT), which provides efficient retrieval of the backed up data.

DHT is also used for retrieving the metadata that can be used to locate the backup

data in the peer-to-peer network.

When a user wants to insert a file into the peer-to-peer backup system, pStore

computes a namespace-filename identifier that is specific for that file and that user.

It allocates a namespace for each user based on the private key. The namespace-

filename identifier is a hash value of user’s private key, pStore pathname, filename,

and salt. So even if two users have the same file name, the resulting identifiers will be

different. The file is encrypted and divided into blocks that are digitally signed. The
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meta-data indicating how to reassemble the blocks is signed and distributed together

to the peer-to-peer backup system. A user can retrieve a file by providing the filename

and the version. First the meta-data is retrieved and then all the blocks belonging to

the file are retrieved and assembled.

The three primary design goals of pStore are reliability, security and resource

efficiency. Reliability is provided through replication. Every block is replicated and

have multiple copies stored on several different nodes in different locations. If some

nodes become unavailable, they can still be retrieved from other nodes. Security is

ensured by using encryption and content hashes. Data can only be decrypted by its

owner, who can also verify the integrity by examining the digital signature. Only the

owner can delete the data remotely. pStore achieves the resource efficiency by sharing

stored data and exchanging data only when necessary.

(2) PeerStore

PeerStore[3] is a peer-to-peer backup system that decouples the meta-data man-

agement from the actual backup data storage. The meta-data layer is based on a

DHT, which provides fast searching and duplicate detection. The actual data storage

is based on a unstructured peer to peer system. It uses a symmetric trading scheme,

requiring that a peer that wants to backup its file must also be willing to provide

storage space for the peer storing its data. This decoupling design can reduce the

management cost caused by maintaining the structure of the DHT. When a node joins

or leaves the network, only the metadata needs to be migrated to other nodes. Actual

data blocks do not need to be copied because of duplication. Since the metadata is

relatively small, the maintenance cost is therefore reduced.

There are other benefits with this design. In addition of using different kinds

of peer-to-peer systems to implement these two layers, the metadata layer and the

storage layer can impose different strategies. For example, in PeerStore, the metadata

layer adopts an aggressive strategy to keep the information up-to-date. At the same
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time, the storage layer introduces a fair trading policy that requires the storage space

traded between partners are close.

Similar to pStore, files are also divided into blocks and the system will generate a

unique identifier for each block. However, PeerStore uses a different method to create

the ID for a block. It applies a cryptographic hash function twice to the content of

the block. The hash value is also used as the symmetric key to encrypt the block.

Only the owner of the block knows the hash value, so nobody else can decrypt the

content.

(3) Pastiche

Pastiche[4] is a peer-to-peer backup system built on top of three enabling technolo-

gies: 1) Pastry[13], a structured peer-to-peer network that provides scalable, efficient

routing for object location; 2) content-based indexing, a mechanism for finding com-

mon data among different files; 3) convergent encryption, an encryption technique

allowing nodes to use the same encrypted representation for common data without

sharing keys.

In Pastiche, when a node wants to make a backup of its data, it will first have to

find a set of buddies. A buddy is defined as a node that shares a significant amount

of data. In Pastiche, each node should maintain five buddies. The goal of using

buddies rather than other nodes for backup is to reduce the storage space because

the shared content only needs to be stored as one copy at each buddy using convergent

encryption. A node can restore its data from any of its buddies whenever it wants.

Similar to other peer-to-peer backup systems, files in Pastiche are divided into

chunks for backup. The difference lies in how the chunks are created. It uses the

content-based indexing technique to identify the boundary regions called anchors [21]

so that common shared data areas can be found among buddies. Anchors are deter-

mined using Rabin fingerprints[22].

When two nodes have identical chunks to backup, these chunks only need to be
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stored once. This is done with the help of convergent encryption. The content of the

a chunk is hashed and the result is called the chunks handle, Hc. A secret encryption

key, Kc, is generated from Hc. The content of the chunk is encrypted with Kc. To

identify this chunk, another hash function is applied to Hc to get the public chunk

ID, Ic. To enable every node that owns the chunk to decrypt the content, the handle

will be included in the file’s meta-data handle list. In addition, the meta-data also

contains information about ownership, permission, creation and modification dates,

etc. The meta-data is encrypted and written to the disk as actual data.

Pastiche uses Pastry for finding buddies of a node. A node sends out a signature

consisting of a list of chunk IDs that describes a node’s current file system. Those

nodes with many common content will reply and be selected as buddies. In order to

reduce the size of the signatures sent out, a node can send out a subset of its signature

(called abstract) to other nodes.

(4) Cooperative Internet Backup Scheme

The Cooperative Internet Backup Scheme[5] developed at HP lab uses a decen-

tralized peer-to-peer scheme to backup data on the hard drives of the participating

computers. It relies on a centralized computer as a matchmaker to find partners.

The centralized server also keeps track of nodes in the system. Nodes in the system

register with matchmaker about their partners and other storage information. When

a node needs to find partners for backup, it will send queries to the matchmaker.

The matchmaker will recommend partners to the node. It is up to the node itself

to contact potential partners to have an agreement as a backup for each other. It is

also possible to break an existing partnership to enable a new node to have a partner.

For example, node A wants to find a partner, but the matchmaker cannot find any

node for it. However, we know there is an existing partnership between B and C.

The matchmaker can recommend to break up the partnership between B and C and

set up one partnership between A and B and another between A and C. While the
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number of partners of B and C does not change at all, A gets two new partners. The

relation of partnership is symmetric, but not transitive.

Each participating node usually has multiple partners in diverse geographical lo-

cations to improve reliability. Different partners may have different agreements. The

general rule of fairness between partners is ensured by equal exchange of disk space.

The partnership is dynamic in the sense that the partners of a given node may change

over time.

A logical disk consisting of spaces at the partners of a given node is the concept

used in the backup system. It is based on Reed-Solomon error-correcting codes[23].

For any k data blocks, it generates m redundant blocks. The k +m blocks are stored

at partners and its own disk. As long as any k out of k + m blocks can be retrieved,

it will be able to recover the original k blocks. Each node can determine a reliability

level it wants to achieve and decide an appropriate m.

To verify that a partner fulfills its obligation of up time, a node can periodically

challenge its partner. If a node is not satisfied with the result, it can cancel the

partnership after a grace period of two weeks. Then it can find new partners.

2.2 Reputation and Incentives for Peer-to-Peer Backup Systems

Trust and reputation have been studied for a long time. Earlier work on trust in

computer science has focused on security, mainly for developing formal logic to analyze

flaws in cryptographic protocols. Later a systematic model about the trust and

reputation for distributed systems was established [24]. It gave a concrete definition

of trust and reputation and how to distinguish them. It provided a framework to

evaluate and combine recommendations to get an assessment of trustworthiness of a

peer. This model and framework has been used in other application domains [25, 26,

27, 29].

Trust and reputation mechanisms have also been studied in peer-to-peer sys-
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tems [31, 32, 33, 34]. For example, reputation was studied in the Gnutella peer-

to-peer network [27]. The main goal was to prevent attacks and increase the P2P

network security. A Bayesian network-based trust model was proposed to represent

different aspects of trust in a peer-to-peer storage system [28]. It considered multiple

performance aspects of a peer, such as upload speed, download speed, and file qual-

ity. The Bayesian network was used to derive the trustworthiness of a peer based on

direct interactions of itself and recommendations from other peers. However, it did

not discuss the fair trading policies for peer-to-peer storage systems.

2.3 GENI Networks

GENI has involved many universities and industry partners and grown significantly

in recent years. It consists of multiple control frameworks [47, 48] and has resources

mainly on university campuses in the United States and several sites in other coun-

tries. Figure 2.1 1 shows the current GENI aggregates that are available for users to

reserve network and computing resources for their experiments. It developed many

tools supporting experimenters, such as Flack [46, 45] of ProtoGENI [47].

Several early GENI projects investigated performance measurement [69, 70, 71, 72,

73] in the GENI environment. They have different focuses and generally emphasize on

developing tools to enable users to collect performance data. The GIMS project was

an early measurement work, targeting at the capability of high-speed packet capture

for GENI [70]. The LAMP project [71] was based on the earlier work of PerfSonar and

intended to provide a common extensible format for data storage and exchange for

measurement in GENI. The OnTimeMeasure project provided active measurement

as an on-demand measurement service for fault analysis in GENI experiments [72].

The S3 project emphasized scalability of active measurements and provided a web

interface to schedule their measurements of GENI experiments [73].

1Picture from http://portal.geni.net
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Figure 2.1: Current GENI aggregates

More recently, two major instrumentation and measurement efforts are under way

in GENI. One is the Large-scale GENI Instrumentation and Measurement Infrastruc-

ture (GIMI) project [58], which makes use of OML library to instrument resources

based on the ORBIT control framework. It can filter and process measurement flows,

and consume measurement flows. It can also archive measurement data to iRODS

for further processing. The other is the GENI Measurement and Instrumentation

Infrastructure (GEMINI) project [57]. It is based on earlier INSTOOLS system [69]

and perfSONAR system [74]. It started with supporting ProtoGENI, but can now

support nodes from other control frameworks as well. All these GENI measurement

systems emphasize on building tools to support users to collect measurement data

after their experiments have been set up. In contrast, our work focuses on examining

behaviors of different kinds of links in GENI networks and helps users in the design

process of their experiments.
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Figure 2.2: An Example of Tree-based Peer-to-Peer Multicasting

2.4 Peer-to-Peer based File Distribution

Peer to peer based file distribution has been used in multimedia streaming applica-

tions. There are two main categories of peer-to-peer based delivery mechanisms.

(1) Tree-based P2P Multicast Streaming

In tree-based P2P multicast, peers are first organized in an overlay network that

contains a set of complementary multicast trees[76]. Figure 2.2 shows an example in

which all nodes are connected by two complementary trees, one is by solid arrows and

the other by hollow arrows. After the multicast trees are built, the server can split

its files into different packet groups. Packets from each group only go to one tree. In

Figure 2.2, the server separates its files into odd packets and even packets, and sends

odd packets to one tree and even packets to the other tree. It is time consuming to

build appropriate multicast trees. After building the multicast trees, the file transfer

usually can be implemented easily.

(2) Mesh-based Multicast Streaming

Another category is mesh-based multicast streaming. Peers are also organized as

an overlay network, but not necessarily in the form of trees. This offers more flexible
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ways for building the delivery structure. Since packets are not sent in trees, it is pos-

sible that duplicate packets are received by some nodes. One solution is that instead

of sending packets from a sender to a receiver, senders can periodically broadcast

their file list and let the receivers choose which packets they want to download. This

clearly avoids packet duplications, but also makes the file transfer procedure more

complicated.

Although the implementation of the mesh-based approach is more complex, its

performance is significantly better than the tree-based method [77, 78]. It is also

more fault-tolerant than the tree-based method because if a single node fails in the

multicast tree, the streaming quality of all its descendants will be seriously affected.

Another disadvantage of the tree-based approach is that the streaming speed is limited

by the slowest peer in the multicast tree.

In addition to multimedia streaming, BitTorrent File Sharing is another applica-

tion that uses peer-to-peer approach for file distribution [75]. The goal of a BitTorrent

system is to deliver content as efficiently as possible in a peer-to-peer network. A spe-

cial torrent file is created for each file that will be distributed using the BitTorrent

system. A peer can join the torrent session after it downloads the torrent file from a

website. A peer can download from multiple peers in parallel. Bittorent deploys the

principle called tit-for-tat, implying the downloading speed of a peer is determined

by how much you have uploaded to other peers. This principle encourages peers to

contribute to the overall system.

Copyright c© Ping Yi 2014
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Chapter 3

A Reputation-Based Fair Trading

Mechanism for Peer-to-Peer

Backup Systems

Peer-to-peer based backup systems can improve the reliability and availability of

important files of the user by using spare disk space. We focus on the free riding

problem that may cause the performance deterioration or system collapse. The goal

is to develop a fair trading policy that takes into consideration of the reputations

of users and provides incentives for users to contribute high quality service to the

backup system.

3.1 The Basic Idea

In a peer-to-peer backup system, the basic operation is the trading of storage spaces

between peers. Peer A allocates a certain amount of storage space for peer B to

backup its files or exchange for storage space with other peers. In return, peer B

allocates a certain amount of storage space for peer A. In traditional trading mech-

anisms, all peers exchange equal amount of storage spaces despite their differences
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in quality (such as on-line time, download/upload speeds) of the storage spaces they

provide. It is obviously unfair to a peer with high quality storage space.

To deal with this problem, we propose a reputation-based fair trading mechanism

that takes into account the quality of storage space. The observation of the quality

of storage spaces of a peer is done by other peers and represented as its reputation.

The basic idea behind the reputation-based fair trading is that the amount of storage

space exchanged between peers should depend on their reputation. To that end, we

design a framework for peers to build up reputation of other peers. Peers will use the

direct observations of their own and the recommendations from others to derive the

reputation values of other peers.

There are two approaches to reputation-based trading. A simple approach is that

a peer will only trade with peers of the same reputation. This will eliminate the

unfairness of trading mechanisms that do not consider reputation. A problem with

this approach is that a peer can only find a limited number of other peers with the

same reputation. To avoid this problem, we take a different approach that allows

peers with different reputations to trade with each other. This will increase the pool

of potential peers to trade with. Also the diversity of trading peers is beneficial to

the overall health of the peer-to-peer system.

The key to designing such a trading mechanism is that given the reputations of

peers, the trading policy should be considered to be fair by all peers. The design goal

is to make sure that there is no performance penalty for a peer to trade with peers

of different reputations. We will derive an optimal solution to the fair trading policy

problem and analyze its relationship with other trading policies.

3.2 A Framework for Deriving Reputation of Peers

Reputation reflects the quality of a peer as observed by other peers. It can include

many aspects, such as capabilities, honesty and reliability. In this dissertation, we
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focus on the metric called the on-line rate, which measures the percentage of the time

during which a peer is connected with the Internet and provides the backup service.

A peer can derive the reputation of others in two ways. One is through direct

observation. The other is to collect recommendations from other peers. We start with

the first one, i.e., peer i can build its estimate of the reputation of peer j through

its own experience. Suppose that peer i has stored some files at peer j. Then peer

i can actively probe peer j to see whether the files are available, or passively record

the interaction experience with peer j. If the total number of times peer i interacts

with peer j is tij and the number of successful interactions is sij, then the reputation

of j observed by peer i through direct observation is

dij =
sij

tij
. (3.1)

Peer i may also ask recommendations from other peers to calculate the reputation

of peer j. This is useful when peer i does not have enough experience with peer j, or

peer i wants to get a more comprehensive picture about peer j. The recommendation

from peer k about peer j comes in the form of 〈dkj, tkj〉. While dkj is enough for

a single value recommendation, tkj gives the information about the total number of

observations peer k has made of peer j. Peer i will summarize all the recommendations

from a selected set of peers S together to determine the overall recommendation as

follows.

eij =

∑

k∈S

wik ∗ dkj ∗ tkj

∑

k∈S

wik ∗ tkj

. (3.2)

The wik is the weight that peer i gives peer k. It reflects how heavily peer i

depends on peer k. Initially, all wik = 1 for all k. In which case, the above equation

is equivalent to
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eij =

∑

k∈S

dkj ∗ tkj

∑

k∈S

tkj

. (3.3)

The eij is essentially the ratio of the number of successful interactions by all k ∈ S

over the total number of interactions by all k ∈ S.

As peer i gets more experience with the peers in S, it will give different weights

to these peers. They reflect the trustworthiness of these peers. For example, if peer i

gives weight 1 to both peers k1 and k2 in S and gives weight 0 to all other peers. We

will get eij =
dk1j∗tk1j+dk2j∗tk2j

tk1j+tk2j
.

Peer i may combine dij and eij by a weighted sum to determine the overall repu-

tation value about peer j as follows.

rij = α ∗ dij + (1 − α) ∗ eij, (3.4)

where 0 ≤ α ≤ 1. It is the weight that peer i puts on its own observation.

3.3 Fairness of Trading Policies

With the reputations established among peers, the next step is to develop trading

policies based on the reputations. Ideally, these polices should be considered to be

fair by all peers. However, fairness is a concept hard to define because it typically

depends on the goal defined by some measures. In this section, we first define the

measure of interest. Then we give a definition of fairness based on the measure and

derive an optimal trading policy based on the definition.

To illustrate the fair trading policy, we assume that the reputation accurately

reflects the on-line time of a peer. If a peer has reputation of 0.65, we assume that it

will be on-line 65% of the time. Consequently, the probability that a document stored

at it is available at a given time is 0.65. The measure of interest is the availability

23



of a document, defined as the probability that the document is available, either at

the original peer, or at other backup peers. In the derivation, we assume that a peer

always keeps a local copy of a document even if it is replicated at other peers. So

a document is not available only if neither the origin peer nor the backup peers are

on-line.

Assume that peer A wants to trade with peer B, and their reputations are rA

and rB, respectively. The question we want to answer is if A provides space sA, how

much space sB peer A should get from peer B. The goal we want to achieve is that

if A trades the same amount of space with a peer of exactly the same reputation, it

should achieve the same availability.

If A trades space sA with a peer of the same reputation, it will get sA back from

the peer. The probability that one peer is not available is 1 − rA. The probability

that neither is available is (1−rA)2. So the availability of the document when trading

with a peer of same reputation is

Rsame = 1 − (1 − rA)2. (3.5)

If A trades space sA with peer B which has a lower reputation rB, peer A is

supposed to get more space as compensation. For example, we can assume that

sB = k ∗ sA with k ≥ 1. We describe the derivation treating k as a positive integer.

After A gets k ∗ sA space, it can trade it with k different peers of reputation rB and

get sA space from each. So the availability of the document when trading with a peer

of different reputations is

Rdiff = 1 − (1 − rA) ∗ (1 − rB)k. (3.6)

The goal we want to achieve is that the availability of the document will be the

same no matter what the trading partner is. That is, we want Rsame = Rdiff . That
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is,

1 − (1 − rA)2 = 1 − (1 − rA) ∗ (1 − rB)k. (3.7)

Therefore, we have

k = log(1−rB)(1 − rA). (3.8)

So the optimal trading policy will let A get

sB = sA ∗ log(1−rB)(1 − rA). (3.9)

This policy will also be called reputation-based fair trading policy in the rest of

this chapter. It is interesting to notice that this trading policy is not the same as the

simple trading policy (called proportional trading) which lets each peer get a space

proportional to its reputation. While we believe that it is a reasonable policy, it

does not fulfill the purpose of keeping the availability of documents the same even

when a peer trades space with other nodes of different reputations. To highlight the

relationship between the reputation-based fair trading policy and the proportional

trading policy, we make some approximation in the above derivation process. From

equation (3.7), we get

1 − rA = (1 − rB)k

The right-hand side can be approximated as

(1 − rB)k = 1 −







k

1






rB +







k

2






r2
B − . . . + (−1)krk

B ≈ 1 − k ∗ rB

So we have

1 − rA ≈ 1 − k ∗ rB

That is

k = rA/rB. (3.10)
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So we have the proportional trading policy as follows.

sB = sA ∗ rA/rB. (3.11)

It can be considered as an approximation of the optimal trading policy.

3.4 Trading Process

We use the deed concept introduced in [14] for describing the trading process. A

deed represents the right of a peer to use space at other peers. Deeds can be used

to store data, kept for future use, traded with other peers that need them, or split

into smaller deeds. When a peer wants to replicate data to other peers in the P2P

backup system, it will first find whether it holds deeds of other peers. If the space is

large enough, it will use the deeds to replicate data on other peers. Otherwise, it will

contact other peers and propose a trade of storage space. In order to get the deed

with space large enough to store its data, it will contribute some of its local storage to

the peer willing to store a copy of the data. If the contacted peer accepts, the trade

is successful. Otherwise the node will try to find other peers. The deed that the peer

gives to the other peer is determined by the trading policies. In particular, for the

reputation-based fair trading, the sizes traded are determined by formula (3.9). Only

both peers accept, the trade is successful. The peer that needs to store data may

have to contact multiple peers before a successful trade can be made.

3.5 Performance Evaluation

We evaluate the effect of different trading policies on the availability of documents by

letting a peer trade storage space with peers of different reputations. We compare the

proposed reputation-based fair trading mechanism with the following trading policies:

1) equal trading, under which a peer trades equal amount of space with another peer
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Figure 3.1: Comparison of trading policies by a peer with reputation 0.7

no matter what their reputations are; and 2) proportional trading, under which a peer

gets space that is proportional to its reputation. We also include a no trading case

as a baseline for comparison.

Figure 3.1 illustrates the differences between different trading policies with regard

to the availability. We have a peer with reputation of 0.7. It can trade with other

peers with reputations ranging from 0.05 to 0.95. If it does not trade with any

other peers, the availability of documents will be 0.7. If it uses equal trading policy

to trade with other peers, the availability depends on the reputation of the peer it

trades with. The availability has a slight improvement over no trading in the case

of trading with peers with low reputations, and close to 1 when trading with peers

having a reputation close to 1. So equal trading obviously favors the peers having a

smaller reputation value. The reputation-based fair trading policy makes sure that

the availability is the same as trading with peers of the same reputation. It always

achieves the availability of 1-(1-0.7)*(1-0.7) = 0.91. The proportional trading policy
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Figure 3.2: Comparison of trading policies by a peer with reputation 0.3

is the closest to the reputation-based fair trading policy. We notice that it is lower

when trading with peers of a lower reputation and higher when trading with peers

of a higher reputation than the reputation-based fair trading policy. So it still favors

the peers with a lower reputation.

Figure 3.2 shows the availability of documents of a peer having reputation 0.3.

When it trades with other peers with different reputations, it shows similar patterns.

The only difference is that the equal trading and the proportional trading policies

cross with the reputation-based fair trading policy at point of 0.3, instead of 0.7.

This is because it is the point that determines whether the peers it trades with have

a lower or higher reputation. Again the reputation-based fair trading makes sure

that the availability of documents is the same no matter what peers it trades with,

while proportional trading and equal trading always favors the peers with a lower

reputation.

We will next show how trading can help improve the availability of documents for
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a peer. We explore the cases in which different percentage of storage spaces can be

used for trading. Figure 3.3 shows the availability of documents when the percentage

of space for trading varies from 0% to 99%. We show three different types of peers,

peers with high reputation (80% of time on line), peers with medium reputation (50%

of time on line) and peers with low reputation (20% of time on line). We limit the

number of backup copies to 3. When the percentage of space for trading is small,

they do not have enough space for backup copies. So the availability is close to its

on-line time. For example, for peers with high reputation, the availability is close to

0.8. When the percentage of space for trading increases, peers can trade more space

and replicate their documents in other peers. This increases the availability of their

documents. When they have a lot of space to trade, they can get enough backup

space to replicate all their documents. So the availability increases close to 1. The

observation is that the trading helps improve availability. The more space is used for

backup, the higher the availability is.
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Figure 3.4 compares reputation-based fair trading with equal trading for peers

with high reputation. When the percentage of space for trading is very small, most

of their documents will be stored locally. The availability of documents is close for

the two policies when peers have very small percentage of space for trading. Both

trading strategies have the same availability of 0.8 when the peers have 0% of space

for trading. When they have a lot of space for trading, they can replicate all their

files. Therefore, the availability of both policies is also the same. The interesting part

is that when the space is limited, the reputation-based fair trading gives more space

to peers with high reputation and therefore they have higher availability values than

equal trading. This can become an incentive for peers to improve their on-line rate.

Figure 3.5 compares reputation-based fair trading with equal trading for peers

with medium reputation. The difference between the two policies are much smaller.

It can be explained by the fact that the effect of peers with higher reputation and

the effect of peers with lower reputation cancel each other for reputation-based fair
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trading. The space they get from other peers using the two different trading policies

are almost the same. So the availability of documents is also almost the same.

Figure 3.6 shows the case for peers with low reputation. We can see that the

availability is better than no trading (which is 20% availability). Again we see the

pattern both policies have the similar availability at both ends, 0% of space for trading

and the range of more than 92% of space for trading. In between, reputation-based fair

trading gives them less space, and therefore, they have lower availability values than

equal trading. Similarly, this can become an incentive for peers with low reputation

to improve their on-line time and provide better service.

Copyright c© Ping Yi 2014
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Chapter 4

Characterizing the GENI Networks

and the Tradeoff between Single

Aggregate and Multiple

Aggregates

4.1 Introduction

We are interested in the performance of two kinds of links in GENI networks. One is

the links that connect two nodes within a GENI aggregate. Typically, these nodes are

located in the same room, or same GENI rack, or even the same (virtualized) physical

machine. The other is the links that connect two machines (physical or virtual)

located in two different GENI aggregates. The geographical distance between these

two nodes can be as close as in the the same room, or as far as from east coast to west

coast, or even located in different continents. They demonstrate a much wider variety.

We are interested in observing their behavior over time and the tradeoff between using

single aggregate links or cross-aggregate link in designing GENI experiments.
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4.2 Designs and Methodologies

Figure 4.1: The single-aggregate experiment

To measure the performance of links within an aggregate, we design a 11-node

topology as shown in Fig. 4.1. In GENI, multiple virtual machines (VMs) can be

allocated from a single raw physical machine/computer (PC). We want to measure

both the links that connect two VMs from the same physical machine and the links

that connect two VMs from two different physical machines. Theoretically, three

VMs are enough because we can have two VMs from the same physical machine and

the other one from a different physical machine. We can create both kinds of links

with these three machines. However, if we create a topology with three VMs, most

likely we will end up with three VMs from the same physical machine due to the

allocation algorithm used in GENI aggregates. Even though we can bind a VM to
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a specific physical machine, the submission through the GENI Flack interface is not

well supported at the time of experimentation. Our strategy is to specify a topology

as shown in Fig. 4.1 with enough number of nodes so that they have to be allocated

to different physical machines. We understand that we do not have to measure all

the links. Rather we select four links as representatives.

To measure the performance of links from different aggregates, we select 10 ag-

gregates and set up a mesh topology as shown in Fig. 4.2. We have one VM from

each of 10 aggregates. They are connected by 21 links (GRE tunnels) to form a mesh

topology. We did not use any special layer-2 connections such as ION connections in

the topology. We installed the iperf [61] on each virtual machine.

uky

clemson

gatech

mu

wisc

nyu

nw

uiucutah

gpo

Figure 4.2: The multi-aggregate experiment

For each link, we collected two performance measures, bandwidth and latency.

They are obtained by running iperf and ping tests on experimental nodes. To avoid

generating too much traffic (mistaken as DoS attacks), we run the iperf test and the

ping test once every hour. For the ping test, we limit the number of ECHO_REQUESTs
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to 10 for every test. After investigating the data collected, we found that the first

ECHO_REQUEST takes substantialy longer time than other requests. One possible rea-

son is due to the ARP request/reply time for the first one, while other requests can

use the ARP cache to save time. In our calculation of the latency, we ignore the first

value and calculate the average of last 9 values in the ping test. In the case of heavy

traffic, ECHO_REQUEST can take a extremely long time. We may end up with only

finishing less than 10 ECHO_REQUEST. Those cases are rare, but did happen several

times during our test. In these situations, we just calculate the average time from

whatever number of ECHO_REQUEST/REPLY finished.

We understand that there may be cross traffic from other applications on the

Internet or other experiments of the GENI testbed. However, we try to prevent the

tests in our own experiment from interfering with each other by shifting the starting

time of the tests that may share nodes or network links. If a node has 4 neighbors,

we can start the iperf and ping tests for these four neighbors at 0, 15, 30, and 45

minutes after the hour, respectively. We ran the tests for ten days and collected 240

data points for each test.

Links in these two experiments can be divided into three categories:

Category 1 (Same PC): the links connecting two VMs that are allocated from the

same physical machine;

Category 2 (Same Aggregate): the links connecting two VMs that are allocated

from two different physical machines located in the same aggregate; and

Category 3 (Different Aggregates): the links connecting two VMs that are allo-

cated from two different physical machines located in two different aggregates.

The first experiment covers the first two kinds of links (category 1 and category

2), while the second experiment covers the third kind of links (category 3).
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4.3 Performance Results

We collected both latency and bandwidth information from these two experiments.

We first calculate the averages of latencies and bandwidths over the 10 day period

for each link. The results are summarized in Table 4.3.

The links in the Same PC category have similar performance. So we only choose

two links (from VM-0 to VM-1, and from VM-6 to VM-7) as representatives. For the

same reason, we only choose two links (from VM-0 to VM-6, and from VM-3 to VM-4)

as representatives for the Same Aggregate category. However, the performance of the

links from the Different Aggregates category varies a lot. So we include the results

for all the links in the second experiment in the table.

4.3.1 Latency

As expected, the average latencies for the links in the Same PC category are the

smallest, measured at 0.042ms and 0.045ms. The latencies for the links in the Same

Aggregate category are about 2.5 times as large, but still in the range of one tenth

of a second. They are both much smaller than the links connecting VMs from two

different aggregates. The lowest latency we got is the link connecting VMs from the

Northwestern aggregate and the UIUC aggregate, measured at 3ms, which are 30

times as large as that of the links from the Same Aggregate category. We see a wide

variety of latencies measured for different cross-aggregate links, ranging from 3ms to

60ms. When designing a GENI experiment, we may take the difference in latencies

into consideration for reserving GENI resources.

While the average latencies give a general idea about the tradeoff between using

nodes from a single aggregate versus from multiple aggregates, it is more interesting

to observe how they change over time. Fig. 4.3(a) shows how the latency of the link

from VM-0 to VM-1 in the first experiment change over the 10 day period. We can

see that it always hovers around 0.045ms, with the highest at 0.084ms at one time
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Table 4.1: Average latency and bandwidth

Category link Avg. Latency Avg. Bandwidth
(ms) (Mbits/second)

1. Same PC
VM-0 to VM-1 0.045 97.3
VM-6 to VM-7 0.042 97.4

2. Same Aggregate
VM-0 to VM-6 0.115 474
VM-3 to VM-4 0.116 469

3. Diff. Aggregates

Utah to Wisconsin 37 89
Utah to Missouri 25 71
Utah to Gatech 58 66
Missouri to Wisconsin 32 90
Missouri to Illinois 18 91
Missouri to Kentucky 46 86
Missouri to Gatech 53 82
Wisconsin to GPO 41 34
Wisconsin to Northwestern 17 90
Wisconsin to Illinois 14 93
Illinois to Northwestern 3 94
Illinois to Kentucky 35 81
Northwestern to GPO 31 39
Northwestern to NYU 25 91
Northwestern to Kentucky 44 85
Kentucky to NYU 34 76
Kentucky to Clemson 52 86
Kentucky to Gatech 60 70
Gatech to Clemson 20 90
Clemson to NYU 25 92
NYU to GPO 20 71
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and with the lowest at 0.034ms three times. It is relatively stable and close to its

average value. Fig. 4.3(b) shows that the link from VM-6 to VM-7 displays the similar

pattern.
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Figure 4.3: Latency of the links connecting two VMs from the same PC

The latencies for the links connecting two VMs from two different PCs within an

aggregate are larger than that of category 1 links as shown in Fig. 4.4. Also larger is

the range these latencies change. However, we still see a very stable pattern in terms

how they change over time.
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Figure 4.4: Latency of the links connecting two VMs from two PCs within an aggre-
gate

The latencies for category 3 links demonstrate a wider variety of patterns. we first
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present the average latency calculated for each link in a different format in Fig. 4.5,

so that we can better observe their relations. In general, the triangular inequality

still holds for most triangles. There are several exceptions, for example, the triangles

among NW, UIUC and UKY, among WISC, UIUC and NW, and among WISC.

UIUC, and MU.
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Figure 4.5: Average latency (ms)

The latency of cross-aggregate links shows different pattern. We can divide them

into three groups. The first group demonstrates the behavior similar to what we

observe in Fig. 4.6. In Fig. 4.6(a) we show how the latency of the link from Kentucky

to Missouri 1 change over time. The absolute range of the change is larger than

those links from categories 1 and 2. However, the percentage of the change is not

large. Fig. 4.6(b) shows how the latency of the link between Northwestern and UIUC

changes over time. We notice that the latency almost stays constant at 3.4 ms, except

1We use abbreviations here to indicate the VMs from a certain aggregate. “Kentucky” means the
VM allocated from the University of Kentucky GENI aggregate. Similarly, “Missouri” means the
VM allocated from the University of Missouri GENI aggregate. We use this convention for naming
other VMs, too.

40



 30

 35

 40

 45

 50

 55

 50  100  150  200  250

La
te

nc
y 

(m
s)

Time in Hours

Latency Over Time

Latency

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 50  100  150  200  250

La
te

nc
y 

(m
s)

Time in Hours

Latency Over Time

Latency

(a) from Kentucky to Missouri (b) from NW to UIUC

Figure 4.6: Latency of the links connecting two VMs from two different aggregates
(group 1)

in a few cases it jumps to 4.5 ms and once up to 11.6 ms.
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Figure 4.7: Latency of the links connecting two VMs from two different aggregates
(group 2)

The second group consists of those links demonstrating behavior similar to the

links between Utah and Georgia Tech (Gatech) and between Gatech and Missouri.

They are quite different from those links from group 1. Fig. 4.7 (a) shows the link

from Utah to Gatech. Notice that the scales on y-axis in the figures are different.

The range of the change in this case is almost 10 times as large as the average value.

The link between Gatech and Missouri is shown in Fig. 4.7 (b). We notice that the
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latency varies significantly. This is probably due to the heavier traffic between the

two sites. We found that about 78% of measured latencies are in the tight range from

32 ms to 38 ms. The rest are distributed in the range from 39 ms to the largest one

at 583 ms. We can end up with a much more unpredictable behavior because the

VMs are allocated from different aggregates.
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Figure 4.8: Latency from NYU to GPO over time (group 3)

A different pattern can be observed on the link between NYU and GPO in Fig. 4.8.

We put it in the group 3. Instead of a few spikes, we can see that the latency stays

at a higher level (around 45 ms) for a while before it goes back to the basic level at

around 8 ms. It demonstrates a clear day and night pattern with 24 hours as a cycle.

Over the 10 days, we can see 10 cycles. After discussing this with people from GPO,

they observe similar pattern. One explanation is that it is more likely to be caused

by using different Internet service providers at different times, rather than caused by

the traffic. We found that about 63% latency values are in the range from 7.7 ms to

9 ms and 25% in the range from 42 ms to 48 ms.

To better understand the characteristics of the links from different categories, we

plot the cumulative distribution function (cdf) of the latencies of these links. Since

the two links from category 1 has similar behavior, we only include the cdf for the
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Figure 4.9: cdf of latencies for links with an aggregate

link from VM-0 to VM-1. We can see that most values are evenly distributed between

0.038ms and 0.05ms in Fig. 4.9(a). For the same reason, we only include the cdf for

the link from VM-0 to VM-6 as the representative for category 2 links. We can see

in Fig. 4.9(b) that most values are evenly distributed between 0.105ms and 0.125ms.
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Figure 4.10: cdf of latencies of group 1 links

In contrary, the cross-aggregate links have a different distribution. For group 1

links, They have a lot of measured values close to a certain bottom value. In the

case of the link from Kentucky to Missouri, more than 90% the latencies are between

46ms and 47ms, as shown in Fig. 4.10 (a). Similarly, the link between NW and UIUC
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has a lot of values close to 3.35 ms as shown in Fig. 4.10 (b). By looking at the data

collected, we can see that the latency is in the range between 3.36 ms and 3.52 ms in

more than 98% cases.
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Figure 4.11: cdf of latencies of group 2 links

For group 2 links, we see the latency values are distributed over a wider range.

The latency of the link from Utah to Gatech is between 49.5ms and 52.5ms in more

than 75% of the cases, as presented in Fig. 4.11(a). These two links also have a

similar feature that the cdf of the latency of the link has a long tail because there are

a significant number of values that are substantially larger than the average.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

P
er

ce
nt

Latency (ms)

cdf of the latency

cdf of the latency

Figure 4.12: cdf of the latency from NYU to GPO (group 3)
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The cdf of the latency of the group 3 link shows a totally different pattern in

Fig. 4.12. We observe two sharp increases, once at 8ms and another at 45ms.

4.3.2 Bandwidth

The latency of the links is only one factor to consider in designing GENI experiments.

The other factor is the bandwidth of the links. If we investigate the bandwidth of

the links closely, we can get a better idea what we can get from the network. From

Table 4.3, we can see that category 1 links have a measured bandwidth of 97.3 Mbps

and 97.4 Mbps. It can be higher because the two VMs these links attached to are

located within the same physical machine. However, due to rate limit of the VMs,

they are most likely capped at 100 Mbps. Fig. 4.13 (a) and (b) shows how the

bandwidth of the link from VM-0 to VM-1 changes over time. Similar to the latency

case, it stays close to the average level, appearing almost like a straight line.

Category 2 links achieve higher bandwidth, having average values at 474 Mbps

and 469 Mbps. VMs in this case are connected with a gigabit switch. Because of the

traffic from other experiments or load on the shared physical machines, the measured

bandwidth is smaller than the maximal possible value. For the similar reason, we can

see in Fig. 4.13 (c) and (d) that it oscillates quite a lot over time, ranging from 347

Mbps to 533 Mbps. However, the bandwidth of category 2 links is still much large

than that of both category 1 links and category 3 links.

We get a totally different picture for the links connecting two VMs from different

aggregates. Depending on the links, we can get an average bandwidth as low as 34

Mbps and as high as 94 Mbps. Similar to the latency case, we present the results in

the topology in Fig. 4.14. We can see that the bandwidth varies from one to another.

Many links have the available bandwidth at around 90 Mbps, close to the maximal

possible bandwidth, which is 100 Mbps. However, there are several links that have

significant lower bandwidth. For example, the link between Wisconsin and GPO is
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Figure 4.13: Bandwidth of the links connecting two VMs from the same Aggregate
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34 Mbps and the link between Utah and Missouri is 71 Mbps.
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Figure 4.14: Average Bandwidth (Mbits/second)

Cross-aggregate links can also be divided into three groups based on the band-

width. An example of group 1 link is shown in Fig. 4.15. We can see how the

bandwidth of the link from a node at Clemson University to a node at the Univer-

sity of Kentucky changes over time. During the 10-day period, most measures are

around 88 Mbps. There are a few cases in which the bandwidth drops to somewhere

between 5 Mbps and 60 Mbps. This is most likely due to a burst of traffic from other

applications or experiments competing available bandwidth with our tests.

The bandwidth of group 2 links changes more wildly over time, as shown in

Fig. 4.16. This is because these links may compete with heavier traffic from other

applications. Their behaviors are much more unpredictable than those links within

a single aggregate. For the link from Utah to Gatech (Fig. 4.16 (a)), we can get

a bandwidth measure as low as 8.5 Mbps and as high as 90.5 Mbps. Fig. 4.16 (b)

shows the bandwidth of the link between the University of Missouri and Georgia Tech.
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Figure 4.15: Bandwidth of group 1 link from Clemson to Kentucky changes over time

There is a clear top bandwidth measured at around 90 Mbps. However, there are a

significant number of cases in which we get bandwidth way below this top level. It

can be as low as close to 0 Mbps. One observation we made is that there are so many

data points close to the top level bandwidth (90 Mbps) that they form a straight line

on the top in the figure. Most links demonstrate this feature in our experiment.

 0

 20

 40

 60

 80

 100

 50  100  150  200  250

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Time in Hours

Bandwidth Over Time

Bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50  100  150  200  250

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Time in Hours

Bandwidth Over Time

Bandwidth

(a) from Utah to Gatech (b) from Missouri to Gatech

Figure 4.16: Bandwidth of group 2 links connecting two VMs from two different
aggregates

The two exceptions are the link between the University of Wisconsin and GPO

and the link between Northwestern and GPO. They are categorized as group 3 links.
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We show the first one in Fig. 4.17. The bandwidth is distributed wildly between 0

and 87 Mbps. No straight line can be drawn that connects data points on the top.
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Figure 4.17: Bandwidth of the link from Wisconsin to GPO changes over time

To better understand the distribution of values of observed bandwidth, we draw

the cdf of the bandwidth of these links.

In Figure 4.18, we use the link from VM-0 to VM-1 as the representative for

category 1 links and the link from VM-0 to VM-6 as the representative for category

2 links. It is clear that the bandwidth of the links connecting two VMs from the

same PC is distributed in a very narrow range, from 96Mbps to 98Mpbs, as shown in

Figure 4.18(a). The bandwidth of category 2 links has a wider range, from 380Mbps

to 530Mbps. However, it is still relatively concentrated, as shown in Figure 4.18(b).

The bandwidth for the links connecting VMs from different aggregates is dis-

tributed in a much wider range. To compare the characteristics of the measured

bandwidth of the three group cross-aggregate links, we draw the cdfs of their band-

width on the same plot in Fig. 4.19. For the link between Clemson and Kentucky,

more than 96% of the measured values are distributed between 85 Mbps and 90 Mbps.

Only less than 4% cases in which we got the bandwidth that is less than 85 Mbps.

So we can say the bandwidth is pretty much constant. For the link between Missouri
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Figure 4.18: cdf of bandwidth of links within an aggregate

and Georgia Tech, we got the bandwidth above 85 Mbps only 71% of the time. There

are a significant portion (about 29%) of values that are somewhere between 1 and

86 Mbps. For the link between Wisconsin and GPO, half of measured values are

below 25 Mbps and the other half above 25 Mbps. The values of bandwidth do not

concentrate on any narrow range.
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Figure 4.19: cdf’s of the measured bandwidths

In summary, from the data we collected, we can see significant differences between

single-aggregate links and cross-aggregate links in terms of latency and bandwidth.
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Not only the average values are significantly different, but their behaviors over time

can be quite different as well. When designing a GENI experiment, we can make use

of performance data to decide where the nodes in the experiment should be located

to meet the requirement.

Copyright c© Ping Yi 2014
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Chapter 5

Block-Based Peer-to-Peer File

Distribution in the Cloud

5.1 Introduction

Cloud computing is a new paradigm to meet the requirements of users by providing

the computing, storage and networking services as demand from users arise. This

pay-as-you-go model avoids big investment in the front and lets users start using the

services provided by the cloud immediately. The users have greater flexibility and

can easily handle unexpected load, data or computing requirements, because they can

request more resources from the cloud as the need arises. Those applications that

need to process a large amount of data in parallel are especially suitable for taking

advantage of cloud computing.

One of the common issues encountered in cloud computing is to distribute big

data files into processing nodes. For example, web indexing applications may have

each machine to find a subset of keywords from a large file. We have to ship this

file to all the machines so that each of them can process the file independently and

in parallel. In GENI Desktop application, in order to initialize and instrumentize

user experiments, we have to download and install customized software to all nodes
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involved in an experiment. All these applications need to distribute a large file to all

the machines involved efficiently.

The traditional method will let the source to copy the file to all machines one

by one until all the machines have a copy of the file. Assume the bottleneck link is

the access link of the source node (also called origin node/server) of the file and its

bandwidth is B. Further, we assume that the file size is F and we need to distribute

to n machines, either physical machines or virtual machines. The naive sequential

distribution will take n ∗ F/B time. It grows linearly with the number of nodes that

need to receive the file. In this chapter, we will develop a block-based peer-to-peer

distribution technique. It can significantly reduce the delivery time, compared with

the traditional method. We will design scheduling algorithms to arrange the delivery

to all receivers. The novel aspect of the algorithms is that they can achieve constant

distribution time no matter how many receivers need to get the file.

5.2 Peer-to-Peer Based Distribution

The basic idea of our technique is based on the peer to peer distribution. Instead of

letting the original source to send the file to all n receivers, we can let receivers to

send among themselves. We use r1, r2, · · · , rn to represent n receivers.

For example, in Figure 5.1, we show the delivery scheme with 8 receivers, where

the original source (r0) sends the file to r1 first. After that, when r0 sends the file to

r2, we can let r1 send the file to r3 at the same time. The vertical location represents

the time. Similarly, in the next batch, we can let r0, r1, r2 and r3 send at the same

time to r7, r5, r6 and r4, respectively. At last r4 sends to r8. We have four levels, so

the total time is 4 ∗ F/B. If we let the original source send to all 8 receivers, the

total time is 8 ∗ F/B. The peer-to-peer based distribution reduces the delivery time

by half.

In general, we can build such a tree for an arbitrary n. The height of such a tree
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Figure 5.1: Peer-to-peer Delivery Tree

for n nodes is ⌈log2(n + 1)⌉. So the peer-to-peer distribution of the file will grow

logarithmically with n. Figure 5.2 compares the time for distributing the file using

the naive method and the peer to peer method. We can see that when the number

of peers increases, the difference between the two methods will increase.

We can schedule the delivery among these nodes in different ways. However, the

height of the tree cannot be reduced and it is the lower bound of the time to deliver

a copy to all nodes.

5.3 Dividing a File into Blocks

To further reduce the distribution time of a file to all the nodes, we can divide the

file into smaller blocks. Instead of using the whole file as the delivery unit, we can

divide a file into m blocks. Assume they are b1, b2, · · · , bm. The size of each block is

F/m.

When the whole file is the unit of delivery, the original node first delivers the
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whole file to the first node. The first node can deliver the file to other nodes while

the original node is delivering the file to the second node. Notice that the first node

can only start after it receives the whole file. This may take quite some time, especially

for the case we are considering in which a file can be several megabyte or even several

gigabyte large.

Instead, if we divide the file into blocks and use a block as a unit of delivery, we

can significantly reduce the start time of the first node. After the origin node delivers

one block to the first node, it can send the the block to other node while the origin

node sends the same block or other blocks to a different node. Notice that we make

an assumption that a node will not send a block and receive another block at the

same time, because doing so will lengthen the delivery time. The tricky part is to

make sure that all blocks will be finally received by all nodes in the system, so that

each node can recover the original file. For a given node, it is also desirable to get

different blocks from different nodes so that it will not totally depend on a single

other node.
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scheduling algorithm

1: time slot = 0;
2: while not(all receivers get m blocks) do

3: time slot = time slot + 1;
4: expect more = true;
5: mark all blocks as not inspected
6: while expect more do

7: block id = −1;
8: find the block id that has not been inspected, does not have n copies among

receivers, and has the smallest number of copies among receivers
9: if (block id == −1) then

10: expect more = false;
11: else

12: find the sender id that is neither a sender nor a receiver for this time slot,
and has the block with block id

13: find the receiver id that is neither a sender nor a receiver for this time
slot, and does not have the block with block id and have the fewest number
of blocks.

14: if such sender or receiver cannot be found then

15: mark block id as inspected
16: else

17: record a schedule “AT time slot: FROM sedner id, TO: receiver id,
SEND block id”;

18: end if

19: end if

20: end while

21: end while

Figure 5.3: Scheduling Algorithm

We design an algorithm to schedule when each is delivered to what node. To

maximize parallel distribution, we want that a block to be delivered to some receiver

can be further spread to other receivers. At any time slot, we should give priority to

those blocks that have the smallest number of copies in the system. This is called

the rarest first principle. On the other hand, when we need to decide whom should

this block be sent to, we pick the node that has the smallest number of blocks. This

encourages all nodes to participate in the system delivery. Otherwise, the delivery

will be limited to a small number of the nodes having blocks. This is called the fewest

first principle.
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In Figure 5.3, we give the outline of the algorithm for the scheduling algorithm.

After initializing the time slot variable, the algorithm goes through a while loop

until all receivers get all blocks they need. Each time, it increases the time slot

variable by 1 (Line 3), sets the initial value for expect more variable (line 4), and

marks all blocks as not inspected (line 5). The inner loop will continue as long as

there are more blocks that can be delivered during this time slot (line 6). First find

the block satisfying the condition stated in line 8. We use the rarest first principle in

the selection. If we cannot find such a block, we are done with this time slot (lines

9 and 10). We should exit the inner loop. Otherwise, we will find the sender with

the block and pick the receiver based on the fewest first principle (lines 12 and 13).

Lines 14 to 19 do the bookkeeping work and record the schedule. Outer loop will exit

when all blocks have been delivered to all receivers.

We ran the algorithm with 8 receivers with a file divided into 5 blocks. The result

is shown in the following:

AT: 1: FROM r0, TO: r1, SEND b1

AT: 2: FROM r0, TO: r2, SEND b2

AT: 2: FROM r1, TO: r3, SEND b1

AT: 3: FROM r0, TO: r4, SEND b3

AT: 3: FROM r2, TO: r5, SEND b2

AT: 3: FROM r3, TO: r6, SEND b1

AT: 3: FROM r1, TO: r7, SEND b1

AT: 4: FROM r0, TO: r8, SEND b4

AT: 4: FROM r4, TO: r1, SEND b3

AT: 4: FROM r2, TO: r3, SEND b2

AT: 4: FROM r5, TO: r6, SEND b2

AT: 5: FROM r0, TO: r2, SEND b5

AT: 5: FROM r8, TO: r4, SEND b4

AT: 5: FROM r1, TO: r5, SEND b3

57



AT: 5: FROM r6, TO: r7, SEND b2

AT: 6: FROM r2, TO: r8, SEND b5

AT: 6: FROM r4, TO: r1, SEND b4

AT: 6: FROM r0, TO: r3, SEND b5

AT: 6: FROM r5, TO: r6, SEND b3

AT: 7: FROM r1, TO: r2, SEND b4

AT: 7: FROM r3, TO: r4, SEND b5

AT: 7: FROM r7, TO: r5, SEND b1

AT: 7: FROM r6, TO: r8, SEND b3

AT: 8: FROM r0, TO: r7, SEND b4

AT: 8: FROM r4, TO: r1, SEND b5

AT: 8: FROM r6, TO: r2, SEND b1

AT: 8: FROM r5, TO: r8, SEND b2

AT: 9: FROM r4, TO: r3, SEND b3

AT: 9: FROM r8, TO: r5, SEND b4

AT: 9: FROM r1, TO: r6, SEND b5

AT: 9: FROM r0, TO: r7, SEND b3

AT: 10: FROM r0, TO: r4, SEND b1

AT: 10: FROM r2, TO: r1, SEND b2

AT: 10: FROM r8, TO: r3, SEND b4

AT: 10: FROM r6, TO: r5, SEND b5

AT: 11: FROM r0, TO: r8, SEND b1

AT: 11: FROM r3, TO: r4, SEND b2

AT: 11: FROM r5, TO: r2, SEND b3

AT: 11: FROM r7, TO: r6, SEND b4

AT: 12: FROM r0, TO: r7, SEND b5

If we do not use the peer to peer approach, the delivery time will be 8 ∗ F/B

because we have 8 receivers. If we use peer to peer approach without dividing them
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into blocks, the delivery time will be 4 ∗ F/B based on Figure 5.1. If we divide them

into blocks, the total time is equal to the time of sending 12 blocks. Each block is

one-fifth of the original file and needs 1/5 ∗F/B = F/(5 ∗B) time. So the total time

is: 12 ∗F/(5 ∗B) = 2.4 ∗F/B, which is smaller than the pure peer to peer approach.

The delivery tree for each block is shown in Figure 5.4. Notice that each receiver

gets different blocks from a wide variety of other nodes. For example, receiver r5 gets

block 1 from r7, block 2 from r2, block 3 from r1, block 4 from r8, and block 5 from

r6, respectively. This is similar to the design of disjoint-parent tree for multimedia

streaming using multiple multicast trees. This can reduce the level of dependency of

one node on another so that the failure of a single node will not affect too many other

nodes. We do want to point out that a node does not necessarily get blocks from all

different nodes. For example, receiver r6 gets both block 2 and block 3 from r5.

5.4 The Bandwidth Factor

The scheduling algorithm presented in the previous section assumes that the band-

width between any two receivers and the bandwidth from the origin sender and any

receiver are all the same. So it takes exactly the same time to send one block. In

each time slot we schedule the transmissions, all will finish at the end of the time slot.

However, the bandwidth from the origin sender to each receiver can be different from

each other. They can be different from the bandwidth between different receivers.

We will consider this factor in the scheduling algorithm.

To simplify the problem, we discretize the bandwidth of all these links. Instead

of using the continuous values of bandwidth, we divide all relevant bandwidth into

groups. For example, if the bandwidth is distributed over the range from 0 Mbps to

100 Mbps. We can group all those links that have a bandwidth from 80 Mbps to 100

Mbps together. They will be able to finish the delivery of a block within the time

represented by the size of a block divided by 80 Mbps. We assign a weight of 1 to
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these links. For those links with bandwidth from 40 Mbps to 80 Mbps, it may take

twice as long to send a block. We assign a weight of 2 to those links. Similarly, for

links with bandwidth from 26.7 Mbps to 40 Mbps, the delivery time can be tripled.

So we assign a weight of 3 to those links. We can continue this until we get to a

certain threshold. Those links with a bandwidth smaller than the threshold will take

so long to deliver a block that we just ignore them in the scheduling algorithm. For

the rest of this section, we consider that all links are assigned a weight, representing

the unit of time it takes to deliver a block over this link.

With weights assigned to all links, we need to consider this factor in the algorithm.

There are two implications. One is that not all deliveries will finish in one time slot.

For those links with weight greater than 1, it can take more than one time slot to

finish. During these time slots, both the sender node and the receiver node cannot

be selected to send or receive other blocks. The other implication is that when we

select which sender to send and which receiver to receive a block, we will choose the

link connecting a sender and a receiver with the smallest weight. If there is a tie, we

will choose the receiver with a smaller total weight, which is calculated as the sum of

the weights of the links adjacent to this receiver. We will call it the smallest weight

first principle.

While we still stick with the rarest first principle and the fewest first principle, we

need to put them in a correct order. In order to realize the potential of parallelism

in which multiple nodes send to other nodes at the same time, we put the rarest first

principle in the first place. We always determine which block should be transmitted

first by finding a block with the fewest copies in the system. The second factor is

the smallest weight first principle, which favors the sender and the receiver that can

finish the current task fastest, or the receiver that can potentially send to other nodes

quickly. The last factor we use is the fewest first principle that favors the receiver

with the smallest number of blocks of the file.
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weighted scheduling algorithm

1: time slot = 0;
2: while not(all receivers get m blocks) do

3: time slot = time slot + 1;
4: expect more = true;
5: mark all blocks as not inspected
6: while expect more do

7: block id = −1;
8: find the block id that has not been inspected, does not have n copies among

receivers, and has the smallest number of copies among receivers
9: if (block id == −1) then

10: expect more = false;
11: else

12: find sender id and receiver id such that the weight of the link between
sender id and receiver id is the smallest subject to the condition that they
are not already a sender or a receiver in this time slot, the sender has the
block with block id and the receiver does not have the block with block id;
in case there is a tie, choose receiver id that has a smaller total weight;
if there is still a tie, it will be broken by choosing the one with the fewest
number of blocks;

13: if such sender or receiver cannot be found then

14: mark block id as inspected
15: else

16: record a schedule “AT time slot UNTIL time slot + link weight − 1:
FROM sedner id, TO: receiver id, SEND block id”;

17: end if

18: end if

19: end while

20: end while

Figure 5.5: Weighted Scheduling Algorithm
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The weighted scheduling algorithm is giving in Figure 5.5. The overall structure

is the same as the unweighted algorithm. The main change is line 12, which deals

with which node will be selected as the sender and which node will be selected as the

receiver. The weight of the link is considered, not only for the current delivery, but

also the potential of faster delivery from the receiver node to other nodes. The results

of the scheduling algorithm is a little bit different in that it may need multiple time

slots to send a block. The sender and the receiver are also considered busy during

those time slots.

We run the algorithm with 8 receivers with a file divided into 5 blocks. We consider

a scenario in which the links between the origin server and receivers are relatively

slow, compared with the links between receivers. More specifically, we assume that

the bandwidth of the links from the origin server to these receivers is one-third of the

bandwidth of the links connecting these receivers. Based on the weight assignment

scheme we discussed, we can let the weights from the origin server to all receivers to

be 3, and the weight between any two receivers to be 1.

The result after running the algorithm is shown in the following:

AT 1 UNTIL 3: FROM r0, TO: r1, SEND b1

AT 4 UNTIL 6: FROM r0, TO: r4, SEND b2

AT 4 UNTIL 4: FROM r1, TO: r7, SEND b1

AT 5 UNTIL 5: FROM r1, TO: r2, SEND b1

AT 5 UNTIL 5: FROM r7, TO: r8, SEND b1

AT 6 UNTIL 6: FROM r7, TO: r3, SEND b1

AT 6 UNTIL 6: FROM r8, TO: r6, SEND b1

AT 6 UNTIL 6: FROM r1, TO: r5, SEND b1

AT 7 UNTIL 9: FROM r0, TO: r3, SEND b3

AT 7 UNTIL 7: FROM r4, TO: r1, SEND b2

AT 8 UNTIL 8: FROM r4, TO: r6, SEND b2

AT 8 UNTIL 8: FROM r1, TO: r7, SEND b2
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AT 9 UNTIL 9: FROM r6, TO: r8, SEND b2

AT 9 UNTIL 9: FROM r7, TO: r5, SEND b2

AT 9 UNTIL 9: FROM r1, TO: r2, SEND b2

AT 10 UNTIL 12: FROM r0, TO: r4, SEND b4

AT 10 UNTIL 10: FROM r3, TO: r6, SEND b3

AT 11 UNTIL 11: FROM r6, TO: r7, SEND b3

AT 11 UNTIL 11: FROM r3, TO: r8, SEND b3

AT 12 UNTIL 12: FROM r8, TO: r5, SEND b3

AT 12 UNTIL 12: FROM r3, TO: r1, SEND b3

AT 12 UNTIL 12: FROM r6, TO: r2, SEND b3

AT 13 UNTIL 15: FROM r0, TO: r3, SEND b5

AT 13 UNTIL 13: FROM r4, TO: r7, SEND b4

AT 14 UNTIL 14: FROM r7, TO: r8, SEND b4

AT 14 UNTIL 14: FROM r4, TO: r2, SEND b4

AT 15 UNTIL 15: FROM r4, TO: r5, SEND b4

AT 15 UNTIL 15: FROM r8, TO: r1, SEND b4

AT 15 UNTIL 15: FROM r2, TO: r6, SEND b4

AT 16 UNTIL 16: FROM r3, TO: r4, SEND b5

AT 16 UNTIL 18: FROM r0, TO: r6, SEND b5

AT 17 UNTIL 17: FROM r4, TO: r1, SEND b5

AT 17 UNTIL 17: FROM r3, TO: r2, SEND b5

AT 18 UNTIL 18: FROM r4, TO: r8, SEND b5

AT 18 UNTIL 18: FROM r3, TO: r5, SEND b5

AT 18 UNTIL 18: FROM r1, TO: r7, SEND b5

AT 19 UNTIL 19: FROM r8, TO: r4, SEND b1

AT 19 UNTIL 19: FROM r1, TO: r3, SEND b2

AT 20 UNTIL 20: FROM r2, TO: r4, SEND b3

AT 20 UNTIL 20: FROM r7, TO: r3, SEND b4

Assume the bandwidth between the origin server and the receiver is B. If we do
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not use the peer to peer approach, the delivery time will be 8F/B because we have

8 receivers. If we use peer to peer approach without dividing them into blocks, the

delivery time will be 4F/B. If we divide them into 5 blocks, each block takes 3 time

units to be sent from the origin server to a receiver, i.e., (F/5)/B = 3 time units.

So each time unit is equal to F/(15B). The total time is equal to 20 time units, i.e,

20 ∗ F/(15B) = 1.33F/B, which is smaller than the pure peer to peer approach.

We can draw the delivery tree for each block as shown in Figure 5.6. In the

unweighted case in Figure 5.4, the origin server can be scheduled to send to multiple

receivers in each tree. Notice in the weighted case, the origin server only sends

to one receiver in the first four trees and sends to two receivers in the fifth tree.

This is because the links between the origin server and the receivers are slower and

should be avoided, if possible. The algorithm prefers the delivery among the receivers

themselves.

5.5 Performance Evaluation

5.5.1 Experiment Setup

We evaluate the performance of the proposed methods in this section. The number

of receivers varies from 1 to 128. The file can be divided into 1 to 128 blocks. The

metric we use is the total time from the start until the time every receiver has a copy

of the original file. The unit of time is the time of sending one file (of size F ) from

the original server to one receiver. If we assume the bandwidth is B, the time unit

will be F/B.

We compare our method with two other methods. One is the traditional method

that lets the origin server to send the file to all the receivers individually. The other

method is the pure peer to peer method that lets those receivers having a copy of the

file send to other receivers, but the file is sent as a whole without being divided into

blocks.
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Figure 5.6: Delivery tree for each block in the weighted case
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5.5.2 Unweighted Case

We start with the unweighted case in which all the bandwidths are considered the

same. In Figure 5.7, we divide a file into 4, 8, 16, 32, and 64 blocks and deliver the file

to all receivers. With a given number of blocks, (e.g., 32 blocks), the time increases

when the number of receivers increases from 1 to 128. The smaller the number of

blocks, the faster the time increases. This is because when the number of receivers

is large and the number of blocks is relatively small, we do not have enough number

of blocks to fully realize the benefit of parallel distribution. Another observation is

that given a fixed number of blocks, the time to deliver the file to all receivers grow

slower than both the traditional method and the pure peer-to-peer method.

Given a number of receivers, we would like to know how many blocks we should

divide the file to be delivered. We investigate 128, 64, 32, 16, 8, and 4 receivers,

respectively in Figure 5.8. We can take a look at the case with 32 receivers. When

the number of blocks is 1, the delivery time is 6. When the number of blocks increases
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Figure 5.8: The effect of the number of blocks

to 5, the delivery time is reduced to 2.8 units. When the number of blocks further

increases to 16, the time is further reduced to 2.3 units. When the number of blocks

is equal to the number of receivers, the time is 2.16 units. When the number blocks

is further increased, we do not see much further improvement. When the number of

receivers is 128, 64, 16, 8 and 4, we observe similar behaviors. One rule of thumb for

choosing the number of blocks is that we can have the number of blocks get a value

somewhere greater than half the number of receivers and smaller than the number of

receivers.

In Figure 5.9, we compare our method with the pure peer-to-peer method, which

grows logarithmically and is significantly better than the traditional method. We let

the number of receivers vary from 1 to 256, which is bit larger range than that in the

previous experiments. We use the conclusion from the previous figure to determine

the number of blocks for each case. More specifically, for a given number of receivers,

we divide the file into blocks. The number of blocks is equal to two-thirds of the
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number of receivers. We can see that for the pure peer-to-peer method, the delivery

time increases from 1 to 9 when the number of receivers increases from 1 to 256.

Even though it is much slower than the linear growth of the traditional method, the

delivery time is unbounded when the number of receivers increases. In contrary, with

an appropriate number of blocks chosen for a given number of receivers, we can see

that the delivery time for our method almost stays constant around 2.3 units. Even

when the number of receivers increases further, we do not see any significant increase

of delivery time.

5.5.3 Weighted Case

In the weighted case, we assume that the bandwidth between the origin sender and all

the receivers in the system is half of the bandwidth between two receivers. In other

words, the weight of the links between the origin sender and all the receivers is 2 while

the links between two receivers is 1. Similar to unweighted case, we compare our
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Figure 5.10: The effect of different methods in the weighted case

method with the traditional method and the pure peer to peer method, as shown in

Figure 5.10. The traditional method grows linearly with the number of the receivers.

The pure peer to peer method is significantly better than the traditional method and

grows logarithmically. We notice that the pure peer to peer method performs better

in the weighted case than in the unweighted case. In the setup of our experiment,

the peer to peer transmission between receivers is twice as fast as the transmission

between the origin server and the receivers. Even though the height of the peer to

peer delivery tree is the same, but the time for each level is shorter because we can

design the delivery in such a way at certain levels delivery only happens between

receivers. For the similar reason, our methods with different numbers of blocks also

perform better than their counterparts in the unweighted case. We also observe that

given a certain number of blocks, the time generally becomes larger when the number

of receivers increases.

In Figure 5.11, we examine the effect of the number of blocks on the performance
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Figure 5.11: The effect of the number of blocks in the weighted case

given a certain number of receivers. In general, when the number of blocks increases,

the delivery time decreases. After a certain threshold value, we do not see much

decrease further. For a given number of receivers, we can choose the number of

blocks based on the the number of receivers.

We compare our method in the weighted case with the pure peer-to-peer method

in Figure 5.12. The number of receivers changes from 1 to 256. We let the number

of blocks of the file be two-thirds of the number of receivers. The pure peer-to-peer

method grows logarithmically and there is no up limit when the number of receivers

grows. The delivery time of the file to all receivers using our method dividing the file

into blocks remain constant, even when the number of receivers keeps increasing.
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Chapter 6

Conclusion and Future Work

This dissertation presents my research work on developing a framework for providing

incentives for peers to contribute to a peer-to-peer based storage backup system,

characterizing GENI networks to provide guidance to GENI experimenters where to

reserve resources for their experiments, and designing a block-based peer-to-peer file

distribution mechanism for efficient transfer of big data files in the cloud environment.

In this chapter, I summarize my dissertation work and present my future research

plans.

6.1 Research Accomplishments

Peer-to-peer backup systems rely on the cooperation of their users to provide storage

space. Unfortunately users of these systems can behave selfishly when left to their

own. Providing incentives for peers to contribute more to the system will be beneficial

to the overall health of the system. We design a framework for peers to derive

reputations of other peers and propose a reputation-based trading policy for peers to

exchange storage space. The difficult task is to design policies that are considered

to be fair by all peers. We develop a fair trading policy based on the performance

measure of the availability of documents. We find that the intuitive proportional
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trading policy is not optimal. The performance evaluation shows that the reputation-

based fair trading can provide incentives for peers to improve the quality of service

they provide.

Understanding the GENI networks is an important step in making a good design

for GENI experiments. We focus on the performance aspect of the GENI networks

by collecting latency and bandwidth data from two experiments. Our results are

only a snapshot of the GENI networks over a short period of time. It gives us an

idea what we can get from different kinds of links (within a physical machine, within

an aggregate, across different pairs of aggregates). The observed behaviors and the

collected performance data of the links from different categories provide helpful in-

formation for GENI experimenters. The information provides hints to experimenters

on where they should reserve resources from ever-growing GENI aggregates. As more

researchers and educators use the GENI network testbed, there is a growing need to

better understand all aspects of GENI.

It is a common and important task to transfer big data files from an origin server

outside of a cloud environment to a set of machines that will process these data

in the cloud. The efficiency of these transfers can affect the overall performance

of cloud applications. We explored the peer-to-peer approach to distributing big

data files. While the pure peer-to-peer approach can reduce the delivery time from

linear to logarithmic, we proposed a block-based approach that can further reduce the

delivery time from logarithmic to a constant. We developed a scheduling algorithm

for arranging how each block of a file is transferred between the origin server to

nodes in the cloud and among these nodes themselves. We took into consideration of

the difference in bandwidth of different links and designed a weighted version of the

algorithm. The performance study showed that the delivery time of our mechanisms

does not increase as the number of nodes in the system increases.
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6.2 Future Work

Providing incentives is one approach to encourage cooperations. It relied on the fair

trading policy to award those providing better quality service. Fairness is a hard issue

and has been studied in different contexts, such as fairness in heterogeneous mulitcast

communication, fairness in quality of service routing. We will continue to explore the

fairness issue in the peer-to-peer backup system and extend the framework to the

cloud computing environment.

Our future work on measuring GENI networks will increase the scale and scope of

our data collection, such as collecting data in a longer period of time from more GENI

aggregates and including layer 2 connections (such as ION) of the GENI networks in

our study. We will do more statistical analyses to provide deeper insights into the

characteristics of the links in the GENI networks. Another direction we will pursue

is to use tools such as OnTimeMeasure to do the anomaly event analysis and study

the prediction accuracy.

With a better understanding of the GENI networks, we plan to use GENI as a

testbed for cloud experiments. We will request resources from multiple appropriate

GENI aggregates and use GENI machines as cloud resources. First we will test our

file distribution mechanisms to see how the algorithms perform in a real world of the

Internet environment. With the large geographical presence of GENI resources, we

can even test in a large collaborating cloud settings. Second, we will investigate the

distributed clouds. The computing resources supported by cloud service providers in

a data center is massive. Even with careful reliability consideration with redundant

resources, we still see the report of outages of big data centers. Google, Amazon,

and RackSpace have all experienced outages due to various causes, such as hardware

failure, power failure, and even files. Therefore, a service supported by a single cloud

(from a single cloud service provider) will not meet the requirement of applications

that have high expectation of reliability. We envision that future highly reliable
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applications will need resources from multiple clouds. We will explore other issues,

such as data replication, consistency, and transfer, arising from the collaborations

from this distributed cloud environment, using GENI as the testbed to study the

performance of new protocols and algorithms.
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