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ABSTRACT OF DISSERTATION 

 
 
 

NANOHARVESTING AND DELIVERY OF BIOACTIVE MATERIALS 

USING ENGINEERED SILICA NANOPARTICLES 

 

Mesoporous silica nanoparticles (MSNPs) possess large surface areas and ample 

pore space that can be readily modified with specific functional groups for targeted binding 

of bioactive materials to be transported through cellular barriers. Engineered silica 

nanoparticles (ESNP) have been used extensively to deliver bio-active materials to target 

intracellular sites, including as non-viral vectors for nucleic acid (DNA/RNA) delivery 

such as for siRNA induced interference. The reverse process guided by the same principles 

is called “nanoharvesting”, where valuable biomolecules are carried out and separated from 

living and functioning organisms using nano-carriers. This dissertation focuses on ESNP 

design principles for both applications.  

To investigate the bioactive materials loading, the adsorption of antioxidant 

flavonoids was investigated on titania (TiO2) functionalized MSNPs (mean particle 

diameter ~170 nm). The amount of flavonoid adsorbed onto particle surface was a strong 

function of active group (TiO2) grafting and a 100-fold increase in the adsorption capacity 

was observed relative to nonporous particles with similar TiO2 coverage. Active flavonoid 

was released from the particle surface using citric acid-mediated ligand displacement. 

Afterwards, nanoharvesting of flavonoids from plant hairy roots is demonstrated using 

ESNP in which TiO2 and amine functional groups are used as specific binding sites and 

positive surface charge source, respectively. Isolation of therapeutics was confirmed by 

increased pharmacological activity of the particles. After nanoharvesting, roots are found 

to be viable and capable of therapeutic re-synthesis. In order to identify the underlying 

nanoparticle uptake mechanism, TiO2 content of the plant roots was quantified with 

exposure to nanoparticles. Temperature (4 or 23 °C) dependent particle recovery, in which 

time dependent release of ESNP from plant cells showed a similar trend, indicated an 

energy independent process (passive transport). 

To achieve the selective separation and nanoharvesting of higher value 

therapeutics, amine functionalized MSNPs were conjugated with specific functional 

oligopeptides using a hetero-bifunctional linker. Fluorescence spectroscopy was used to 

confirm and determine binding efficiency using fluorescently attached peptides. Binding 

of targeted compounds was confirmed by solution depletion using liquid chromatography–

mass spectrometry. The conjugation strategy is generalizable and applicable to harvest the 

pharmaceuticals produced in plants by selecting a specific oligopeptide that mimic the 

appropriate binding sites. 



     

 

For related gene delivery applications, the thermodynamic interaction of amine 

functionalized MSNPs with double-stranded (ds) RNA was investigated by isothermal 

titration calorimetry (ITC). The heat of interaction was significantly different for particles 

with larger pore size (3.2 and 7.6 nm) compared to that of small pore particles (1.6 nm) 

and nonporous particles. Interaction of dsRNA also depended on molecular length, as 

longer RNA (282 base pair) was unable to load into 1.6 nm particles, consistent with 

previous confocal microscopy observations. Calculated thermodynamic parameters 

(enthalpy, entropy and free energy of interaction) are essential to design pore size 

dependent dsRNA loading, protection and delivery using MSNP carriers. While seemingly 

diverse, the highly tunable nature of ESNP and their interactions with cells are broadly 

applicable, and enable facile nano-harvesting and delivery based on a continuous uptake-

expulsion mechanism. 

 

KEYWORDS: Engineered silica nanoparticle, Nanoharvesting, Nucleic acid delivery, 

Cellular interactions, Functional oligopeptide, Conjugation 
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CHAPTER 1.  GENERAL INTRODUCTION AND SCOPE  

1.1 General Introduction  

The use of plant-derived natural compounds for therapeutic and medicinal 

application is well known throughout the history of mankind and recorded as early as 2600 

B.C. [1-3]. Plants primarily synthesize two types of metabolites: primary metabolites that 

are essential to normal plant growth, development and reproduction through biosynthesis 

and breakdown of proteins, fats, carbohydrates and nucleic acids; and secondary 

metabolites, which are not directly involved in plant vitality but are produced to respond 

to a plant’s particular environment and as a defense mechanism against predators [1, 4]. 

Secondary metabolites are subdivided into many groups, of which alkaloids, terpenoids 

and flavonoids are the most prevalent and have tremendous therapeutic and medicinal 

applications [5-7]. Flavonoids are polyphenolic compounds, normally found in different 

organelles of plant cells and perform functions including the inhibitory activity against 

disease-inflicting organisms and herbivores [5]. Because these secondary metabolites often 

bind to human receptors to induce favorable responses to diseases and pathogens, they 

provide a vast reservoir for new drug development and therapeutic applications [8]. 

Despite their rich history and future potential, new drug development based on 

plant-derived natural products is in decline recently due to challenges including the 

identification, analysis and large scale production of targeted compounds [8, 9]. Secondary 

metabolite production in plant cells is strictly regulated by controlled transcription of 

biosynthetic genes and overproduction of targeted compounds depending largely on the 

internal and/or external signals that leads to controlled transcription [10]. Recently, 

techniques for environmental and genetic modification of plant systems have been 



2 

 

developed (especially in hairy root cultures) by external manipulation of biosynthetic 

pathways in order to enrich targeted metabolites [11-13]. Hairy root plant cell cultures have 

swift and spontaneous regrowth potential, and increased yields of bioactive compounds in 

hairy roots has been achieved by genetic transformation [14]. Genetic alterations of 

biosynthetic pathways in plants are traditionally observed by cloning desired genes by 

protein sequencing and verifying the gene expression through recombinant protein in an 

appropriate host, a very slow and tedious method that requires random testing of many 

genes [2]. As a result, traditional therapeutics extraction methods that involve maceration 

of the whole tissue pose a significant obstacle for the long term economic viability of plant-

derived biomolecule isolation project. To overcome this limitation, nanoparticulate carriers 

can be utilized to transport metabolites out of living plants (termed as nanoharvesting [15, 

16]), where particles can be engineered to penetrate inside the cells, bind desired 

metabolites and exit without killing the plants. 

Although nanoharvesting was preliminary demonstrated for flavonoids in 

Arabidopsis plants by nonporous titania nanoparticles (average diameter < 3 nm) [15], 

nonporous particles provide low surface area and tenability, and separation of particles 

after exposure to plants is particularly difficult. As a result, designing a viable and 

industrially profitable nanoharvesting process using nonporous particles is unlikely. On the 

other hand, a porous nano-carrier with high surface area such as mesoporous silica 

nanoparticles (MSNPs), with their surface modified to include biomolecule affinity and 

cell membrane penetration property, will be feasible to isolate large amount of metabolites 

during nanoharvesting. Silica surface is particularly amenable to modify with varieties of 

inorganic and organic active groups on its surface [17, 18], thus engineering of MSNPs for 
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the purpose of nanoharvesting is conceivable. Moreover, MSNP surface can also be 

modified with functional groups that selectively binds with a single or specific classes of 

biomolecules with high value pharmaceutical and medicinal compounds, which can 

provide extremely high selectivity during biomolecule separation from organic mixtures or 

nanoharvesting from transgenic plants, rendering the later-separation step completely 

redundant. 

Regarding genetic modification in plants, a significant portion of hereditary 

alteration and gene expression growth were achieved by delivering nucleic acids and recent 

technologies have utilized gene delivery and RNA interference (RNAi) extensively. As an 

example, this technique was successfully implemented to cause poppy plants, Papaver 

somniferum, to produce benzylisoquinoline alkaloid instead of the natural product 

morphine [19]. On the other hand, DNA delivery is one of the most useful methods for 

non-viral gene therapy [20]. Nucleic acids (DNA fragments and small interfering (si) RNA) 

delivery to targeted intracellular locations of eukaryotic cell by an extracellular carrier is 

necessary to obtain desired genetic modification and RNAi, respectively [21-23]. External 

carriers are principally required for nucleic acids delivery to intracellular sites since 

DNA/RNAs are extremely susceptible to enzymatic degradation (by nucleases) as soon as 

they enter through the cell membranes. Ideal carriers for nucleic acid delivery provide 

protection against enzymatic degradation in addition to high loading capacity and 

controlled release at the targeted sites [24]. Highly tunable properties of MSNPs to create 

mesopores with different sizes can be utilized efficiently for pore size dependent 

protection, where large enzyme molecules can be excluded from entering optimally 

determined pore sizes with loaded nucleic acids. Foreign DNA delivery to plants using 
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functionalized MSNPs were demonstrated in tobacco leaves and Arabidopsis roots [25, 

26]. However, siRNA delivery to plants are less explored to date but it promises huge 

opportunity in terms of genetic transformation. Another rapidly developing related field 

regarding nucleic acid delivery to living organisms is RNAi mediated pest control, where 

double-stranded (ds) RNA related to specific insects’ mortality can be utilized for bio-

based control of their population in contrast to chemical insecticides [27, 28]. The 

application of MSNPs for these purposes remains relatively unexplored. 

In light of these and related applications, this dissertation will be centered on the 

design of mesoporous silica nanoparticles (MSNPs) for controlled interactions with whole 

cells, and the controlled binding and release of target bioactive compounds. Silica 

nanomaterials can be synthesized in a variety of morphological forms with precise size and 

surface properties control, and are a versatile platform for biomolecule separation and 

transport purposes [29, 30]. MSNPs with high surface area and tunable surface properties 

suitable for biomaterial accommodation have been deployed for drug delivery and 

biomedical applications [31]. In addition, silica nanocomposites with a variety of other 

active materials (polymer, metal oxides etc.) have been prepared with improved thermal, 

physical and chemical properties, but the main challenge is maintaining surface properties 

of pure silica nanomaterials after nanocomposite formation [32, 33]. Another way to 

incorporate active groups onto silica nanomaterials while retaining favorable properties of 

silica is to functionalize the silica surface with them [34]. Surface functionalization of silica 

nanoparticles with amine (-NH2) group provides colloidal stability, enhances their 

biocompatibility and facilitates their internalization by living cells [35, 36]. Also, amine 

functionalization provides silica nanomaterials with much needed positive charge to 
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covalently bind negatively charged nucleic acids for nucleic acid loading [37]. By loading 

nucleic acids onto amine functionalized MSNPs, an effective carrier for gene and RNA 

delivery can be designed, where MSNP-based efficient nucleic acid carrying systems 

combine three capabilities: loading, protection from nucleases and controlled release at the 

target sites.  
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1.2 Scope of the Work and Dissertation Outline  

The dissertation is focused on designing engineered silica nanoparticles (ESNP) for 

transporting biomolecules across the cell membrane of living organisms in nanoharvesting 

and nanodelivery applications. Tuning and modification of silica surface properties start 

with the synthesis of nanoparticles (providing desired particle size, shape and pore size) 

and culminates in several post-synthesis modification stepwise to provide various active 

and functional groups on the surface, predominantly inside the mesopores. The specific 

mesoporous silica nanoparticles (MSNPs) used in this work were synthesized with varying 

pore size (2.2, 4.1 and 7.9 average pore diameter) and particle size 140-170 nm (suitable 

for cell membrane penetration), along with nonporous particles with 190 nm diameter as 

controls. Particles were functionalized/conjugated with active groups (titania, amine and 

oligopeptides) to facilitate biomolecule adsorption and loading on silica surface. Titania 

functionalization was used to provide an active group for the complexation of plant-derived 

therapeutic polyphenolic compounds, amine functionalization to provide positive charge 

for membrane penetration and binding to nucleic acids for delivery, and functional 

oligopeptides were conjugated for selective separation and nanoharvesting. Finally 

thermodynamic interactions of amine functionalized MSNPs with various pore sizes with 

double stranded (ds) RNA (two different lengths: 84 and 282 base pair long) were studied 

to design facile engineered silica nanoparticle-based nucleic acid delivery systems. 

Research projects investigated in this dissertation and their potential contributions are 

presented schematically in Figure 1.1 to provide a clear visual guide to the readers. A detail 

chapter-by-chapter outline is provided below.  
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Figure 1.1  A schematic diagram of the outline of research projects carried out in this 

dissertation and the respective contributing research sectors.  

 

The dissertation is divided into 8 chapters including this Chapter 1, where a brief 

introduction of the study is provided along with defining the scope of the investigation and 

the outline of the dissertation. In Chapter 2, a detailed background and literature review 

for the dissertation topics is provided, including different types of silica nanoparticulate 

materials, silica surface functionalization techniques for various applications, interactions 

of biomolecules with engineered silica surfaces, aspects of nanoparticle interaction with 

living cells and tissues, and finally designing nanoparticulate carriers for biomolecule 

delivery to cells. In the first section of Chapter 2, MSNP synthesis strategies for particles 

with controlled particles size and shape, and introduction of pores with well-defined 

geometry and shape is reviewed. Both nanoparticles suitable for interaction with cells and 

microparticles for visualization are discussed. Relevant procedures for surface 

functionalization of MSNPs, and surface interactions with MSNP surfaces are discussed. 
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The next section of Chapter 2 reviews interactions of MSNPs with cells, especially plants, 

including internalization, intracellular transport and export mechanism. Finally, carrier 

design is discussed to allow biomolecule (chiefly RNA and DNA) delivery to cells with 

loading, transport, protection from biological defense mechanism, and controlled release 

at target sites. 

The remaining chapters detail the specific projects conducted towards fulfilling the 

main aim of the dissertation, design of engineered mesoporous silica for nanoharvesting 

and delivery. One requirement for nanoharvesting is to create selective sites for binding of 

target compounds, and Chapter 3 describes the development of a method for 

functionalizing MSNPs with titania (TiO2) for chelation with and isolation of flavonoids. 

Based on measurements of flavonoid adsorption by solution depletion, an optimized TiO2 

grafting density on MSNPs is determined. For recovery of flavonoids from the particles 

without damaging the TiO2 sites, a method based on citric acid mediated ligand 

displacement is developed. Antiradical activity of surface bound and recovered flavonoid 

is confirmed. University of Kentucky undergraduate student William Wallace made 

significant contribution in particle synthesis and functionalization during this project. This 

work is published in ACS Applied Materials and Interfaces (Khan et al., ACS appl. Mater. 

Interfaces, 2017, 9, 32114-32125 [38]) and reproduced here with permission from the 

American Chemical Society. 

Based on the optimized engineered silica nanoparticle design in Chapter 3, titania 

and amine functionalized MSNPs are deployed in Chapter 4 to isolate flavonoids from 

living Solidago nemoralis (goldenrod) hairy root cultures (nanoharvesting), where roots 

were genetically modified to overproduce quercetin-derived flavonoids. The chapter 
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provides experimental evidence that the four criteria for an ideal nanoharvesting process 

are met by these particles: efficient uptake of nanoparticles, excellent metabolite binding, 

rapid nanoparticles recovery to maintain minimal exposure time, and cell viability after 

exposure to the nanoparticles. MSNPs with sizes suitable for plant cell uptake (< 200 nm) 

are synthesized and functionalized with both TiO2 and positively charged amine group to 

provide the binding site for flavonoids and facilitate their uptake inside root cells, 

respectively. Nanoparticle internalization inside hairy roots is confirmed by fluorescent 

microscopy after tagging the particles with fluorophore rhodamine B isothiocyanate 

(RITC). Presence of metabolites on particle surface after exposure to hairy roots were 

confirmed by increased radical scavenging activity and flavonoid-specific nicotinic 

receptor ligand displacement activity. Finally, viability of roots and ability of roots to 

continue to synthesize active flavonoids were demonstrated to ensure continuous 

production and harvesting. This project was carried out in collaboration with Naprogenix 

Inc. Mr. Jatinder Sambi of Nanoprogenix provided the roots from continuous cultures, and 

periodically checked and re-cultured flavonoid overproducing roots. He also performed 

measurement of flavonoid biosynthesis of roots after nanoharvesting. Dr. Trent Rogers of 

Naprogenix measured ligand displacement activity of root extracts and nanoparticles 

exposed to roots. A manuscript on this project is published in Materials Science and 

Engineering C (Khan et al., Mater. Sci. Eng. C, 2020, 106, 110190 [39]), which is 

reproduced with permission from Elsevier.  

As a continuation of nanoharvesting by engineered silica nanoparticles, the detailed 

mechanisms of particle internalization, intracellular transport and expulsion during 

nanoharvesting are studied in Chapter 5. Nanoparticles uptake is quantified by the 
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chemical analysis of the Ti-content of roots after exposure to nanoparticles, and expulsion 

by fluorescent spectroscopy of particles (fluorophore RITC labeled) in solution. 

Fluorescence micoroscopy is used to establish time and concentration dependent 

nanoparticle uptake inside hairy roots. Temperature (4 and 23 ºC) dependent uptake and 

recovery experiments are used to distinguish between activated (energy mediated) or 

surface charge dependent direct penetration (by passive diffusion) through cell membranes. 

Finally, recovery of fluorescent nanoparticle is performed in the solution of non-

fluorescent particles (exchange) to demonstrate dynamic and spontaneous nature of 

nanoparticle uptake and expulsion. The findings are valuable for further optimizing design 

parameters (types and extent of functionalization) of nanoparticles for nanoharvesting 

applications. This project was also conducted in collaboration with Naprogenix Inc., and 

Mr. Jatinder Sambi cultured and provided S. nemoralis hairy roots. 

While Ti-complexation is a route for binding compounds with catechol-like groups 

such as flavonoids, selective separation of biomolecules from a biological mixture can be 

more generally achieved by using a peptide or protein that has specific host-guest 

interaction with a target molecule. This approach has been used in stationary phases such 

as chromatography columns, but the technique can be extended to nanoharvesting. In this 

case, selective isolation of therapeutics from living transgenic plant cultures can be 

achieved by conjugating the particles with oligopeptides that mimic biomolecules’ binding 

sites. In Chapter 6, a highly controllable strategy is developed for conjugation of 

oligopeptide Gly-Gly-Gly-Gly (GGGG or 4G), Arg-Ser-Ser-Val (RSSV) and its derivative 

4RSSV (RSSVRSSVRSSVRSSV) to amine-functionalized MSNPs (with 8 nm pore 

diameter) by using a heterobifunctional linker Sulfo-NHS-LC-diazirine. The linker has an 
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amine reactive NHS ester group at one end and long-wavelength (350-370 nm) UV-

activable diazirine group at the other end, which remain dormant until exposure to UV 

light. This combination provides great control over binding efficiency and allows the 

design of processes that compensate for slow diffusion of reactants into mesopores. 

Preservation of peptide functionality upon surface binding is demonstrated from increased 

binding of β-estradiol, which indicates their mimicry of human estrogen binding sites. This 

project was accomplished in collaboration with Naprogenix, Prof. Luke Bradley’s lab in 

the Department of Neuroscience and Prof. Bert Lynn’s lab in the Department of Chemistry. 

Prof. Bradley provided purified oligopeptides and Prof. Lynn performed β-estradiol 

analysis for quantitation of binding using LC-MS. 

The delivery of nucleic acids into eukaryotic cells using amine functionalized 

MSNPs can be effectively carried out by pore size selective loading, protection from 

enzymatic hydrolysis and controlled release. Thermodynamic interactions of nucleic acids 

with surface bound amine functional groups is an important factor to be considered during 

nanoparticle design for nanodelivery purpose. In Chapter 7, thermodynamics of double 

stranded RNA binding with amine-functionalized MSNPs is measured by isothermal 

titration calorimetry as a function of RNA length (84 and 282 base pairs) and pore size 

(nonporous, 1.6, 3.2 and 7.6 nm). The thermodynamic parameters (enthalpy, entropy, 

stoichiometry and free energy of binding) are evaluated by fitting single or double distinct 

binding site model to the isotherms derived from raw heat curves during injection. The 

results are interpreted in terms of the nature of binding (enthalpy or entropy dominated), 

heat release and reorientation of molecules, and equilibrium stoichiometric binding ratio. 

This study is an essential part of a larger project regarding siRNA delivery to insects using 
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engineered silica nanoparticles in collaboration with Dr. Bruce Webb’s laboratory in 

Entomology Department of University of Kentucky. Emily Nadaeu and Emrah Ozel 

performed the synthesis of 84 and 282 base pair dsRNA for this work.  

The dissertation concludes in Chapter 8 with concluding remarks and suggestions 

for extensions of this work in new directions. Future directions involve using more highly 

dispersed titania as a functional group for flavonoid adsorption and loading; developing 

magnetic core-mesoporous silica shell nanoparticles in nanoharvesting for external 

magnetic field enhanced control during cellular transport; targeting other high value 

biomolecules for the selective separation and nanoharvesting using specific peptide/protein 

functionality; and delivering nucleic acids to cells using amine functionalized MSNPs. The 

supporting information for Chapter 3 to 7 is provided in Appendices A to E, respectively. 
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CHAPTER 2. BACKGROUNDS  

2.1 Silica Particles  

Silicon is the second most abundant element in earth’s crust and its oxide silica 

(SiO2) is plentiful in Earth’s surface. Silica has been used from ancient time to manufacture 

glass and ceramic materials. In silica materials, each Si-atom is tetrahedrally coordinated 

with four O atoms and a network of Si-O-Si exist throughout the materials that provides 

for mechanical and thermal stability. Recent innovations made it possible to synthesize 

varieties of silica materials (particles, films, membranes etc.) from Si-alkoxide based 

precursors using sol-gel synthesis techniques [40, 41]. The mild conditions used for sol-

gel processing (near-ambient temperature and pressure, mild pH) also allows the 

incorporation of pores within silica particles using various surfactant templates. The ability 

of the silica framework to withstand harsh condition also allows organic templates to be 

removed while keeping silica framework intact (giving rise to mesoporous silica 

nanoparticles, MSNPs), thus providing extremely high porosity with the preservation of 

bulk silica properties in the particles [42, 43].  

Mesoporous silica has a high surface area terminated with hydroxyls, which can be 

functionalized with a wide variety of active groups. Different kinds of mesoporous silica 

materials are used as supports for different inorganic and organic active groups such as 

transition metal oxides and enzymes for catalytic and biocatalytic applications, and 

artificial lipid membranes and embedded proteins for biomimetic analyte detection and 

transport [44-47]. Because of their tunable surface chemistry, MSNPs are used in 

biosensing, separations, biomolecule transport and catalytic applications, as they provide 

optical transparency to allow sensing of biomaterials and a surface which can be tailored 
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with other functional groups [18]. The ability of silica materials to be functionalized with 

numerous active groups extend the versatility of their applications. Throughout the 20th and 

21st centuries, a vast number of silica particles have been developed for innumerable 

applications and some major classes are outlined below.  

2.1.1 Nonporous Silica Nanoparticles (SNPs) 

SNPs are the simplest types of silica particulate materials widely used as fillers, 

abrasives, and rheological modifiers [48], but here they provide a standard case where 

internal mass transport limitations associated with mesopores are avoided. During 

biomolecule loading and adsorption, nonporous silica nanoparticles provide information 

about physicochemical processes on outer surface of the particles, contrasting with the 

loading inside mesopores [49]. Synthesis of nonporous silica nanoparticles (SNPs) from 

alkoxysilane precursors (subsequently named the sol-gel synthesis procedure) was first 

reported by Stöber et al. using ammonia as catalyst, tetraalkyl orthosilicates (a.k.a. 

tetraalkoxysilanes) as precursors, and ethanol/water mixed solvents [50]. A schematic 

diagram of the formation of SNPs is presented in Figure 2.1a, where silica precursor 

condensed into a Si-O-Si networks after hydrolysis to yield SNPs which follow a 

nucleation-growth kinetic mechanism. Since Stöber’s initial report, detailed instigations of 

several process parameters (temperature, ammonia, water and Si-alkoxide concentrations) 

on particle size were performed by different researchers showing that particle sizes from 

20-800 nm can be obtained [32, 51]. Although Stӧber particle preparation mechanism is 

already well-established, its thorough understanding is still important for the synthesis of 

mesoporous silica nanoparticles with various morphology. Particle growth was found to 
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occur by a surface reaction controlled condensation of Si-alkoxide monomer or small 

oligomers and aggregation of smaller sub-particulates after concentration-dependent 

nucleation [52-55]. In this dissertation, SNPs are utilized as a control case for titania 

functionalization and flavonoid adsorption in Chapter 3 and for thermodynamic 

interaction with RNA after amine functionalization (Chapter 7). 

 

Figure 2.1  General synthesis strategy of the silica nanoparticles used in this dissertation: 

(a) nonporous silica nanoparticles, (b) mesoporous silica nanopartilces (pore size < 4 nm) 

and (c) mesoporous silica nanopartilces (pore size > 4 nm). TEOS: silica source, CTAB: 

surfactant, TIPB: pore swelling agent. 
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2.1.2 Nonporous Silica Microspheres  

Nonporous silica microspheres are the expanded versions of SNPs that are of 

interest here as a base case nonporous control for studies of mesoporous silica microspheres 

by microscopy methods. During the Stöber process, it is generally agreed that nucleation 

begins from partially hydrolyzed TEOS monomers to form primary particles, generate 

larger particles through a combination of aggregation and slow growth at the surface [53, 

56]. The size of particles formed by aggregation is tuned and limited by colloidal forces, 

as described by DLVO theory [57]. Since DLVO forces favor submicron particles, and 

since the rate of surface reaction is very slow compared to nucleation and aggregation 

(below a certain size) it is very difficult to obtain nonporous silica particles larger than 1 

µm by the batch Stöber method [58]. However, larger (> 5 µm) nonporous silica particles 

(silica microspheres) are useful to contrast biomolecules at external surfaces with internal 

diffusion and transport, such as in florescence recovery after photobleaching (FRAP) 

measurements [46, 59]. Nakabayashi et al. [60] reported a semi-batch method for the 

synthesis of nonporous silica microspheres up to 6.6 µm in diameter by an electrolyte (KCl) 

mediated modified Stöber process. In their process, TEOS in dilute ethanol solution was 

fed very slowly to another ethanol solution of ammonia and KCl, which prevented new 

nucleation and promoted surface condensation [60]. We have successfully used this 

method before to synthesize nonporous silica microspheres  > 6 µm to measure 

biomolecule external surface diffusivity using FRAP [46]. The particles were also used to 

measure the surface diffusivity of dsRNA as control case for their mobility inside the pore 

[61], which is the basis of obtaining RNA delivery and leading to the much more 
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fundamental investigations of thermodynamic interactions between silica nanoparticles 

and RNAs (as presented in Chapter 7). 

2.1.3  Mesoporous Silica Nanoparticles (MSNPs)  

MSNPs have tunable shape, size and high surface area, and their native hydroxyl 

terminated surfaces can be easily functionalized with other active groups for biomolecule 

loading and transport, making them useful for applications ranging from controlled drug 

delivery to theranostics [29, 62-64]. Because of their high surface area and pore volume, 

MSNPs are ideal for loading a high quantity of sensing elements for biomolecules, which 

indeed makes it possible to amplify signals for detection at very small concentration. 

MSNPs are suitable for loading a large dose of drugs based on porosity and facile 

functionalization of their surface with other active groups for biomolecule loading [65].  

The general synthesis strategy of MSNPs involves surfactant self-assembly or co-

assembly with inorganic precursors followed by silica condensation (Figure 2.1b-c). This 

process gives rise to particles with different shapes and sizes (dependent on synthesis 

conditions), and highly ordered pore structures (lamellar, hexagonal or cubic) with high 

surface area and pore volume. Before self-assembly, silicate poly-anions interact with 

surfactant head-groups through electrostatic and hydrogen bonding interactions and the 

final mesophase assembles itself into the lowest free energy state to provide the final 

micellar mesostructure [66]. Pore orientation in MSNPs is an important factor for the 

accessibility to biomolecule during loading and release. Different particle morphology, 

pore structures and orientations are obtained based on the types of surfactant used, the 

solution compositions and conditions such as pH and ionic strength of the solution [67, 

68]. For example, by changing alkoxide molar ratio and concentration, varieties of pore 
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orientation (cubic, 2D hexagonal, disordered or mixed) have been obtained [69]. The final 

particle size (important for cellular internalization and expulsion) can be controlled by 

manipulating hydrolysis and condensation of silica precursor [70] (much like SNPs) by 

changing pH or temperature of the solution, or adding other chemicals. 

The final MSNPs with void pores are obtained following surfactant template 

removal by high temperature calcination or solvent extraction (usually by an organic 

solvent at low pH and elevated temperature). High temperature calcination generally 

reduces the number of hydroxyl groups on silica surface, thus reduce their potential for 

later functionalization by other active groups. Hence, we use solvent extraction of the 

template (by acidic ethanol washing) in this dissertation. Surfactant removal is usually 

ensured by spectroscopic characterization techniques like infrared spectroscopy, where 

disappearance of infrared absorption peaks corresponding to surfactant functional groups 

indicated complete surfactant removal. It is very important to ensure complete surfactant 

removal from the particles before applications in cells because residual surfactant can have 

large influence on cellular interactions, which are mostly detrimental on cell viability [62]. 

We have ensured the removal of surfactants and other organics after synthesis using Fourier 

transform infrared (FTIR) spectroscopy for all MSNPs.  

The synthesis, engineering and cellular application of MSNPs for biomolecule 

harvesting/delivery is the essence of this dissertation. The opportunities for different 

applications arise from the tremendous multifunctional properties of MSNPs, and relevant 

features for this dissertation are depicted in Figure 2.2 in light of their interactions with 

living cells. Surface functionalization with transition metal oxides (as active group), 

functional organic moieties (oligopeptides), and amine groups were all accommodated by 
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the versatile properties of MSNPs. The amine groups serve multiple purposes for 

biomolecule loading, MSNP delivery/harvesting in cells, and fluorescent molecule 

attachment for intracellular detection.  

 
Figure 2.2  Multi-functionality of mesoporous silica nanoparticles (MSNPs) allowing their 

use for nanoharvesting and delivery. Relevant features include functional groups for small 

drug molecule loading via adsorption or chelation, peptide conjugation, nucleic acids 

loading, adding amines to promote cellular uptake for nanoharvesting and delivery, and 

possible magnetic core incorporation for controlled movement.  

 

2.1.3.1 Small Pore (< 4 nm) MSNPs  

Small pore MSNPs are a general class of MSNPs produced by the surfactant 

templated sol-gel processes when small molecules, generally ionic surfactants, are used. 

The pore size in MSNPs depends on the size of the surfactant, especially the length of the 

hydrocarbon tail. The most common surfactant used for “Mobile Crystalline Material” 

(MCM-41 and MCM-48) type MSNPs is cetyltrimethylammonium bromide (CTAB), 

which provides cylindrical pores in MCM-41 (hexagonal columnar pore symmetry) of 2.5-
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3 nm diameter [69, 71]. The general synthesis strategy for surfactant templated sol-gel 

synthesis of small pore MSNPs are presented in Figure 2.1b, with CTAB as an example. 

Adjusting the surfactant tail length from 8 to 18 carbon has been shown to allow for tuning 

of pore diameter from 1.5 to 3.8 nm [72, 73]. The pores are generally highly oriented in 

hexagonal, cubic or radially oriented symmetry based on the surfactant, alkoxide, water, 

ethanol concentration and molar ratio. Engineered CTAB templated MSNPs (< 3 nm pore 

size) are utilized extensively in this dissertation for small molecule therapeutics 

(flavonoids) loading and isolation in Chapter 3. The particles are also used for 

nanoharvesting of small biomolecules from living plant cultures (Chapter 4) and to study 

their interactions with plant cells during nanoharvesting (Chapter 5). They are also used 

to study the pore size dependent thermodynamic interaction with RNA by isothermal 

titration calorimetry (ITC) in Chapter 7. 

2.1.3.2 Large Pore (> 4 nm) MSNPs  

Because biomolecules such as polynucleic acids, lipid bilayers and proteins have 

characteristics sizes larger than the default pore diameter obtained by cationic surfactant 

templating, many strategies have been developed to produce larger pores. One approach is 

to use larger block copolymer pore templates such as Pluronic surfactants [74], but this 

tends to not give good control over particle morphology and pore orientation. An 

alternative strategy for increasing the pore size of CTAB-templated MSNPs is to use an 

auxiliary nonpolar organic molecule during the sol-gel process to swell the hydrocarbon 

cores of the micelle templates, and thus to create large pores after template removal [75]. 

Blin and Su have reported expanding pore diameter of CTAB templated mesoporous silica 
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(not particles) up to 4.9 nm using decane and trimethylbenzene (TMB) as pore expanders 

[76]. Corma et al. reported another pore expansion strategy by using tetramethyl 

ammonium ions (TMA+) and hydrothermal treatment (150 ºC) with CTAB templated 

silica, where the TMA+ was thought to partition to the surfactant/silica interface, thereby 

expanding pore size up to 6.6 nm [77]. Initial studies of these organic pore expanders used 

to synthesize either bulk mesoporous silica or uncontrolled MCM-41 powders rather than 

morphology-controlled MSNPs. It was only recently that large pore MSNPs have been 

developed using micelle swelling agents. Han and Ying reported MSNPs with pore sizes 

of 5-20 nm based on fluorocarbon surfactant templating and TMB micelle swelling, but 

the resultant particle diameter was relatively large (400-500 nm) [78]. Subsequently, many 

researchers reported the synthesis of large pore MSNPs, but the resultant particles were 

either still too large for cellular internalization [79, 80] or had irregular non-spherical 

shapes [81, 82]. 

Only recently, Gu et al. reported the synthesis of MSNPs with <150 nm particle 

diameter and up to 4.5 nm pore diameter by using octyltrimethylammonium bromide 

(OTAB) as surfactant and N,N-dimethylhexadecylamine (DMHA) as pore expanding 

agent [83]. Continued efforts to simultaneously control micelle structure, swelling and 

particle morphology led to a report of ~170 nm MSNPs with average pore diameter up to 

8.2 nm using CTAB template expanded by triisopropylbenzene (TIPB) [84]. Very recently 

in 2016, ultra-large pores of  > 20 nm were reported for CTAB-templated MSNPs with 

TMB as pore swelling agent after a long hydrothermal treatment at 140 ºC [85]. Schematic 

representation of the synthesis of large pore MSNPs by pore swelling technique is 

presented in Figure 2.1c, for CTAB and TIPB as an example. 8 nm porous particles are 
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used for functional oligopeptide attachment in Chapter 6 in this dissertation. We have also 

utilize this technique for synthesizing large pore MSNPs (with ~ 4 and 8 nm pore size) by 

the method of Gu et al. [83] and Yamada et al. [84], respectively, for studying pore size 

dependent interaction with RNA in Chapter 7.  

2.1.4 Mesoporous Silica Microspheres 

To expand the range of applications of the pore space of silica materials, it is 

possible to synthesize mesoporous silica microspheres with diameter greater than several 

micrometers and tunable pore size from 2-12 nm [59]. These (along with nonporous silica 

microspheres) have large enough size for direct visualization of functional groups and 

biomolecule distribution in a confocal microscope, thus provide opportunities to directly 

visualize pore accessibility and to measure transport properties (diffusivity) of 

biomolecules confined inside pores [46]. 

Spherical silica microspheres (SBA-15) of diameter  > 5 µm can be synthesized 

from acid catalyzed reaction of TEOS templated by Pluronic P123 [59]. Nonionic triblock 

copolymer P123 provides larger pore diameter compared to ionic surfactants, and the pore 

size can be tuned by hydrothermal treatment from 3-15 nm [86]. Tunable pore sizes of 

hexagonal cylindrical pores were obtained based on different degrees of solvation of the 

ethylene oxide block of P123 molecule depending on the reaction temperature [43]. To 

obtain microspheres, CTAB has been used as secondary surfactant to control particle size 

and spherical morphology. Although we have not directly used mesoporous silica 

microspheres in this dissertation, they have relevancy here as a large amount of information 
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regarding biomolecular interaction inside silica mesopores can be obtained from 

microscopic techniques only suitable for silica microsphere. 

2.1.5 Core-Shell and Magnetic Silica Nanoparticles 

In addition to being able to control pore structure and particle morphology, 

additional functionality has been created in magnetic core-shell type silica nanoparticles 

for applications in diagnostics and therapeutics (e.g. as magnetic resonance imaging (MRI) 

contrast agent), and in vivo delivery vehicle for therapeutics [87]. Magnetic Fe3O4 core-

mesoporous silica shell nanoparticles are particularly important in designing magnetic 

field-induced drug release system. The general synthesis strategy of these of particles is to 

synthesize the magnetic nanocrystal or nanosphere first and creating a mesoporous shell 

by sol-gel synthesis with ionic surfactant (for example: CTAB) template after stabilization. 

These particles have numerous theranostic (therapeutic and diagnostic) applications mainly 

in MRI and drug delivery as well as controlled separation of biomolecules. Although 

magnetic MSNPs were not directly applied to any of the applications in this dissertation, 

their implication as future directions stemming from this work is significant as 

incorporation of magnetic core to the engineered MSNPs developed here will provide extra 

dimension in biomolecule isolation and transport. Incorporation of magnetic core in 

MSNPs is proposed as a future direction in Chapter 8.   
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2.2 Silica Surface Functionalization and Engineering  

The pure silica surface remains negatively charged at physiological conditions, but 

this can present challenges for biological applications [62]. Proper surface modification 

with a positively charged group (such as amine) is important for cellular uptake, expulsion 

and intermediate trafficking of nanoparticles. Surface modification is also important for 

enhanced internalization and endosomal escape as well as less collision with unwanted 

intracellular organelles during their pathways between entry and exit [62]. Surface 

functionalization helps nanoparticles in camouflaging themselves (stealth entry) and 

reducing unwanted binding. It also dictates the ultimate fate of nanoparticles inside the 

cells and whether the nanoparticles will exit the cell (via mechanisms such as exocytosis) 

or not. Surface functionalization is also the only alternative for protein loading, when 

protein do not adsorb by electrostatic interactions alone. 

Surface functionalization of silica nanoparticles offers the opportunity to tune 

chemical properties at the interface, which enables facile loading of hydrophilic or 

hydrophobic drugs, enhanced binding with specific cellular targets and controlled uptake 

and release of target compounds. Two kind of surface functionalization strategies are 

generally followed: post-synthesis grafting, and co-condensation or co-precipitation (one 

pot) depending on application requirements [62]. During post-synthesis functionalization, 

active groups are attached to the silica surface after silica particle synthesis, generally 

through alkoxy- or chloro- silane condensation with hydroxyl groups. The main advantages 

of post-synthesis functionalization is the retention of mesopososity and mesostructure, and 

easy grafting of organic groups. The main drawbacks are the potential for a nonselective 

inhomogeneous distribution of functional groups and partial blocking of pore openings. 

The effectiveness of post-synthesis functionalization also depends on the preparation route 
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(especially template removal method) of parent MSNPs. Calcination (heating in the 

presence of air or oxygen) usually leads to complete template removal, but tends to reduce 

surface silanol density. On the other hand, solvent (acid) extraction preserves surface 

silanol density but may be less effective for template removal [88].  

In co-condensation, functional groups are directly incorporated into the material by 

mixing an organosilane with the silica precursor (such as TEOS) and surfactant template. 

To avoid loss of the organic function group, the template should be removed by solvent 

extraction in this method [89]. This method increases the likelihood of achieving a 

homogeneous distribution of functional groups, but some of the functional groups may be 

buried in the silica matrix (and not usable). The range of conditions giving an ordered, 

well-defined pore structure may also be limited in the co-condensation approach [90]. 

Another highly desirable functionalization technique is to selectively attach 

functional groups only on the outer surface of MSNPs while leaving the internal pore 

surface intact for biomolecule loading [17, 91]. During co-condensation synthesis, if the 

organofunctional silane is added at the end of particle synthesis, it may be possible to attach 

the functional groups only in the external surface of MSNPs [89]. For post-synthesis 

grafting, leaving the template in place during functionalization and limiting the time of 

reaction of the organoalkoxysilane are strategies to give external functionalization. 

Alternatively, bulky molecules such as polyethylene glycol (PEG) can be used to block the 

pores prior to functionalization, which was successfully used for carboxylic acid, amine 

and hydrocarbon functional groups for MSNPs with pore diameter up to 5.5 nm [92-94]. 

The functionalization and surface modification of MSNPs carried out in the projects 
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presented in Chapter 3 to 7 are described below along with a few competing approaches, 

and their relative advantages and disadvantages.  

2.2.1 Amine Functionalization 

Polycationic surface functionalization of MSNPs has been shown to enhance 

nanoparticle uptake as well as their endosomal escape capability [95, 96]. Silica surface 

functionalization with amines is used to create interactions of biomolecules with silica, to 

provide structural/conformational stability of proteins, to facilitate adsorption of negatively 

charged nucleic acids (DNA/RNA), and also to provide a site for conjugation, such as with 

fluorescent tags [97-99]. In addition, for other applications, amine functionalized MSNPs 

have been used for loading and release of drug molecule that possess carboxylic/carbonyl 

groups [100, 101]. 

The most common amine functionalization method is post-synthesis grafting by 

amino-alkyl-alkoxysilane condensation on MSNP surface, e.g. with aminopropyl-

triethoxysilane (APTES). Amine grafting densities, degree of coverage (monolayer/ 

multilayer) and polymerization depend on the aminosilane type and concentration, solvent 

type (polar/non-polar), and the presence and concentration of water [94, 102, 103]. Polar 

solvents like ethanol tend to provide more uniform layer-type coverage whereas nonpolar 

solvents like toluene are used for more isolated tridentate grafting. In the presence of excess 

trace water, highly heterogeneous, branched or ladder-like polymerized aminosilane 

grafting is obtained (Figure 2.3) [102]. In actual grafting scenarios a mixture of isolated, 

uniform and ladder like grafting occurs as it is very difficult to remove water from a 

hydrophilic surface like silica. Hence, it should be carefully considered whether to provide 



27 

 

a large amount of amine groups to provide maximum surface coverage or to use bare 

minimum to prevent any unwanted condensed structures. The degree of reduction in both 

surface area and pore size indicates whether uniform grafting is obtained or any resulting 

pore blockage occurs [104]. Post-synthesis amine functionalization of MSNPs is used 

heavily in this dissertation. In Chapter 4 and 5 (during nanoharvesting), amine 

functionalization is used to promote cell membrane penetration and as binding site for 

fluorescent molecules. Chapter 6 involves using amine groups as conjugation sites for 

functional peptide attachment and positively charged amine groups are used for the 

interaction with negatively charged RNA in Chapter 7. Amine coverage on silica surface 

is quantified to interpret the state of grafted amine on different MSNPs. 

 
Figure 2.3  Different modes of post-synthesis grafting of aminosilane on silica surface: (a) 

isolated tridentate, (b) uniform cross-linked monolayer, (c) multilayer and (d) ladder-like 

oligomeric structures. Adapted from Bauer et al. [102] and Liu et al. [105]. 

 

2.2.2 Titania (TiO2) Functionalization 

MSNPs also serve as ideal support and host materials for the incorporation of 

various transition metal oxides (Ti, Cr, V) due to their high surface area, tunable surface 

properties, and thermal stability for application in catalysis, separations, optics and 
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electronics [106]. Titania (TiO2) loaded silica is probably the most widely used mixed 

oxide system starting from the synthesis of titanosilicate-1 and 2 (TS-1 and TS-2) zeolites 

in the 1980’s and 90’s as oxidation catalysts for small molecules [107, 108]. Later, Ti-atom 

was incorporated in mesoporous silica to utilize the large pore size for higher diffusion of 

large reactants and products [109, 110]. Although titania functionalization of MSNPs has 

mainly been used for catalytic and photocatalytic applications, titania coordinates with 

several classes of biomolecules including phosphates and catechol-containing molecules, 

which provide wonderful opportunities for using titania functionalized MSNPs as high 

surface area adsorbents [111]. Besides this, titania on the silica surface has been shown to 

interact with biomolecules through outer sphere binding mechanisms including charge 

transfer and electrostatic interactions [112]. Titania also binds various amino acids and 

polypeptides, which provides tremendous opportunity for peptide functionalization and 

protein delivery applications [113]. 

Strategies to incorporate Ti into silica frameworks can be divided into two broad 

categories similar to other functionalizations: one pot and post synthesis. A one pot co-

condensation route is often used incorporate Ti-atoms in silica frameworks mainly to 

obtain oxidation/epoxidation catalysts or photocatalysts [33, 114, 115]. This method is not 

suitable for adsorption applications because well-dispersed surface-associated sites are 

required in contrast to crystallites formed during high temperature calcination. Also, due 

to higher reactivity of Ti-alkoxides in the presence of water, proper stabilization techniques 

are needed such as sub-stoichiometric water addition to prehydrolyze the silica precursor, 

ligand addition, or non-hydrolytic route in one pot synthesis [116]. A large quantity of 

isolated and uniform tetra-coordinated Ti-sites were incorporated in the silica matrix of 
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cetyltrimethylammonium bromide (CTAB)-templated mesoporous silica thin films in our 

group using a post-synthesis grafting approach with complexation to a carbohydrate 

surfactant to stabilize the Ti-precursor [117]. Post synthesis processes generally involves a 

non-polar solvent, which provides a low-water stabilized environment for the alkoxides. 

Still, obtaining isolated tetra-coordinated Ti-sites in silica mesostructures is elusive as seen 

in Figure 2.4, where the effect of Ti-precursor concentration is shown schematically. 

Increasing the precursor concentration (in order to increase Ti-coverage) usually form thick 

TiO2 clusters and crystals, which are not suitable for adsorption applications. 

 
Figure 2.4  Schematic diagram of the post synthesis titania functionalization with 

increasing titania-precursor concentration starting from little titania coverage with most of 

the surface empty (left) to ideal monolayer coverage to thick titania deposition rendering 

the pores almost inaccessible and blocked. Adapted from Beyers et al. [114]. 

Titania functionalization is used in this dissertation for designing high capacity 

materials for biomolecule adsorption (Chapter 3) and for the nanoharvesting of 

polyphenolic compounds in Chapter 4. We have used a post synthesis TiO2 

functionalization technique involving hydrolysis of Ti-precursor in ethanol, which is not 

supposed to provide isolated titania grafting. On the other hand, ligand assisted 

functionalization (one-pot or post-synthesis) of silica particles can provide isolated tetra-

coordinated Ti-sites, which is proposed as a future direction in Chapter 8.  

Pore
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2.2.3 Functional Protein and Peptide Attachment 

Protein and oligopeptide attachment and interaction with silica nanoparticles 

provides a platform for biosensing, bioseparation, biocatalysis and biochemical synthesis 

applications. MSNPs with immobilized enzymes, proteins and oligopeptides have been 

used for highly diverse applications including highly specific biosensing applications, in 

detection and separation of antibodies, and also promoting cellular internalization during 

biomolecule delivery [118-120]. In this dissertation (Chapter 6), we are using oligopeptide 

conjugation to high surface area of MSNPs to design high capacity and selective 

biomolecule isolation carriers. The most general conjugation strategy of peptides with the 

MSNP surface will use so-called zero length linkers, which covalently attaches an amine 

group to a carboxylic group to form an ester bond [121]. One of the highly utilized 

conjugation agents is 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) with N-

hydroxysuccinimide (NHS) esters, which was used for the conjugation of the N-terminus 

of peptide/proteins to carboxylic acid-functionalized silica nanoparticles [122-125]. 

However, functionalization with carboxylic groups render the particles neutral or 

negatively charged and an application where the particles will be applied for cellular 

internalization (nanoharvesting or delivery) may encounter difficulty in utilizing weakly 

charged particles. Hence, a peptide conjugation strategy based on a group that is positive 

at physiological pH (amine) is necessary where the N-terminus of the peptide will be 

attached to the amine moieties of MSNPAs with the preservation of particle positive 

charge. Various linkers are available for this purpose, which are discussed below with 

relative pros and cons, and selection criteria.  
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2.2.3.1 Linkers for Conjugation 

Linkers are used to covalently attach functional biomolecules such as peptides to 

surfaces, and to provide spacers between the surface and the bio-functional group to 

minimize the alteration of functionality due to surface interactions. Some of the linkers 

have bonds cleavable by redox reaction, pH change or UV light, which can be used to 

analyze and confirm attachment efficiency, and for targeted release [24, 126, 127]. 

However, the most important factor to consider during conjugation of functional groups is 

the type of spacer to use in order to provide distance between proteins/peptides and the 

surface. The spacers are generally inert molecular units (such as aliphatic hydrocarbon 

chains) or other functionalities. Bifunctional linkers with or without spacers are available 

for peptide conjugation, which can be mainly divided into two types: homo-bifunctional 

and hetero-bifunctional. Homo-bifunctional linkers such as bis(sulfosuccinimidyl)suberate 

(BS3) have two amine-reactive NHS ester groups at the either end, which can react with 

amine functionalized particles at one end and with the amine terminal group of a peptide 

at the other. The challenge of using this type of linker is that rapid hydrolysis of one end 

can occur, while the other end is being used for binding [128]. Controlling the rate of 

reaction with both the peptide and the surface can also be challenging.  

On the other hand, hetero-bifunctional linkers such as N-sulfosuccinimidyl-6-(40-

azido-20-nitrophenylamino)hexanoate (sulfo-SANPAH) provide amine reactive groups at 

one end and UV active groups at the other end. This and other hetero-bifunctional linkers 

provide greater control over binding because the UV-active group remain dormant during 

conjugation of the other end. The only problem with UV-active nitrophenilo-azide groups 

is that they are activated by short wavelength UV radiation (~280 nm), which can cause 
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deactivation of protein molecules through free radical creation. Recently, hetero-

bifunctional linkers with diazirine groups (such as sulfo-succinimidyl-6-(4,4'-

azipentanamido)hexanoate (sulfo-NHS-LC-diazirine or SNLD)) have been developed that 

are activated to react with amine groups at much higher UV wavelength (~365 nm). 

A schematic diagram for peptide attachment using BS3 and SNLD is presented in 

Figure 2.5, which shows the relative advantages of using a hetero-bifunctional linker like 

SNLD to provide adequate binding control and efficiency. We have used SNLD to 

conjugate functional peptides to amine functionalized MSNP surface in Chapter 6 in this 

dissertation.  
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Figure 2.5  Schematic representation of the peptide conjugation on amine functionalized 

MSNPs using (a) homo-bifunctional amine reactive linker BS3 that undergoes rapid and 

competitive hydrolysis yielding very low attachment, and (b) hetero-bifunctional amine 

reactive and UV-activable linker SNLD providing highly controllable conjugation (without 

any competing hydrolysis reaction). 
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2.2.4 Competing Approaches for Surface Engineering 

Besides the surface engineering techniques discussed above and used in this 

dissertation, there are some other techniques for surface functionalization. For context, a 

brief outline of the other approaches for related applications is presented here, along with 

a summary of some of their advantages and shortfalls. Numerous functional groups like 

vinyl groups, carboxylic acids, fluorescent dyes, hydrophobic and hydrophilic 

biomolecules, and aromatic groups were grafted on to silica surface in a self-assembled 

monolayer fashion using alkoxysilane or chlorosilane condensation [129]. Other positively 

charged groups can be incorporated on MSNP surface, but most of them are polymers (such 

as chitosan) that do not provide the control and ease of functionalization by aminosilanes. 

Functionalizing MSNP surface with phosphate group by alkoxymethylsilane phosphonate 

is another technique, which provide the particles with highly negative charge required for 

strong metal ion binding and breaking up cytotoxic intracellular aggregation [130]. 

Thiol (-HS) functionalization is another technique to attach biomolecules to silica 

surface, which provide negative charge at physiological pH. Post-synthesis thiol 

functionalization is normally carried out by the condensation reaction of mercapto-

alkoxysilane. Hetero-bifunctional conjugation agent with maleimide groups are thiol-

reactive (much like NHS esters for amine), which can be used to load biomolecules on thiol 

functionalized silica [131]. They also can be used to conjugate cysteine terminated proteins 

and peptides. It should be noted that maleimide functionality remains after conjugation 

(unlike NHS esters, which detaches from the molecules) and sometimes provides 

protection against non-specific binding due to their hydrophilic nature [132]. Another 

advantage of thiol functionalization is the ability of thiol groups to undergo thiol-ene click 
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chemistry, which allows binding with broad classes of biomolecules that is vinyl 

terminated [133, 134]. However, negatively charged functionalization is not appropriate 

for an application like nanoharvesting or nanodelivery (where positive charge is required 

for cellular internalization). Also, thiol functionalization cannot be used for negatively 

charged nucleic acid loading. 

Molecular imprinting is the techniques of creating specific molecular recognition 

sites in an inorganic/organic matrix through using same molecule as a template. 

Molecularly imprinted silica nanomaterials (especially particles) has vast number of 

applications in selective adsorption, separation, sensing and catalysis [135, 136]. The 

technique provides selective isolation of molecules of interests and can be a competing 

technique for functional polypeptide attachment. Several articles have reported Stöber 

particles with molecularly imprinted polymer shells for selective separation of different 

organic molecules [137-139]. However, it is not easy to create molecular imprinted sites in 

mesoporous materials with preservation of high surface area. Besides, there are several 

disadvantages and difficulties associated with molecular imprinting techniques including 

requirement of large amount of high quality imprinting molecules, inability to 

macromolecule imprinting, low binding and mass transfer, leakage of templates, and 

difficulty avoiding heterogeneous binding sites [140, 141]. It is also extremely difficult to 

imprint water soluble biological macromolecules (proteins, nucleic acids) in their natural 

environment to ensure conformational stability [142].  
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2.3 Biomolecule Interactions with Nanoparticles 

Understanding the interaction of different classes of biomolecules with inorganic 

surfaces is of absolute necessity in order to design proper nanoparticulate vehicles for 

bioactive material transport across cell barriers. Useful information required to obtain from 

experimental and modeling investigations are: the region of the biomolecule responsible 

for surface interaction, nature of the contact, preferential orientation and selection of 

surfaces, and conformational changes upon binding [65]. Owing to their properties, 

MSNPs can serve as hosts and delivery vehicle for different kinds of therapeutics and 

bioactive materials [62]. Interaction of biomolecules with solid surfaces is not only 

dependent on solid-liquid interface properties but also solution pH, concentration, and ionic 

strength [113]. The role of water in biomolecule interaction is prominent as water acts as 

co/competitive adsorbent with the molecule, which modulates the chemical behavior of the 

surface greatly [113, 143]. At room temperature and pressure, silica is hydroxyl terminated 

and surface silanol density is close to 5 -OH groups/nm2 [65], which renders the surface 

amenable to varieties of surface modification as described in Section 2.2. High density of 

surface hydroxyl groups also modulate surface interactions with biomolecules along with 

controlling hydrophilicity [144, 145]. Besides, biomolecule interaction and recognition on 

a specific surface involves the complex interplay between electrostatic interactions, H-

bonding, and dispersive hydrophobic interactions. It is not a trivial task to isolate effects 

of each interaction. 

 Hence, a general understanding of biomolecule-biomolecule and biomolecule-

silica surface interactions is important for designing functional nanoparticles in 

nanoharvesting and delivery application. Selective biomolecule recognition and separation, 

loading in pores, and delivering them in a time dependent and controlled manner require 
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complete understanding of complexation/decomplexation interactions. Understanding the 

interaction of nucleic acid derivatives (nucleotides, base-pairs and DNA/RNA sequences) 

with solid surfaces is also highly important in gene therapy, DNA/RNA devices, 

purification, and hybridization techniques [65]. The solid-solvent interaction strongly 

influence the degree and energy of biomolecule adsorption. Understanding the protein-

surface interaction with engineered MSNPs also allows us to understand their behavior in 

protein rich surroundings such as biological media and inside cells, which is tremendously 

important in designing nanoparticles for biomolecule transport. Although covalent bonding 

is utilized to conjugate peptides, to attach fluorescent groups, and to stabilize the protein 

conformation [146], we are focusing on the physical interactions of biomolecules with 

functional silica surfaces here. 

2.3.1 Binding Mechanisms of Biomolecules 

The complexation between a biomolecule (A) and a surface (B) can be expressed 

using Equation 2.1, representing the two-step thermodynamic processes of noncovalent 

bond formation and solvent (water) reorganization [147]. 

A•xH2O + B•yH2O ↔ A•B•(x+ y - z)H2O + zH2O                           (2.1) 

Hence, binding or adsorption mechanism can be divided into two broad categories 

based on water shell retention after biomolecule binding: inner-sphere and outer-sphere 

binding [148]. Outer-sphere adsorption typically happens through electrostatic interaction 

and a layer of water remains between the surface and biomolecule. On the other hand, 

inner-sphere bonding happens through covalent or coordination binding and no water layer 

remain between the surface and the biomolecule. In Figure 2.6, inner and outer sphere 
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complexation is shown for relevant systems here (TiO2 and amine functionalized surface 

for flavonoid and nucleic acid, respectively). Several other non-covalent interactions such 

as π-π, cation/anion-π, dispersive forces and hydrophobic forces are important in 

identifying and describing surface-ligand binding. Another important factor in surface 

binding is cooperativity, which can be positive or negative, where occupation of one 

binding site with a molecule strengthen or weaken neighboring binding sites [149]. It is 

worth noting that weak forces like van der Waals forces, dipole-dipole, ion-dipole and 

induced dipole can have combined effects in soft matter, colloid and surface science, and 

are sometimes as prominent as covalent or ionic bonding [150]. They are the inherent 

attractive forces (except when very close to each other) between particles and represent 

forces to overcome to maintain colloidal stability. In absence of other repulsive forces 

(electrostatic repulsion), van der Waals forces are primarily responsible for particle 

aggregation is solution [151]. Biomolecule adsorption on charged particle surface 

sometimes neutralizes some of the surface charge and can cause aggregation during 

nanoharvesting and delivery applications, which as a result, should be carefully considered 

when designing particles. These are often very weak interactions and masked by associated 

stronger interactions (such as H-bonding), but can produce surprising results if not 

carefully considered. Here we are focused on the most relevant interactions for this 

dissertation: coordination, electrostatic interactions, hydrogen bonding and hydrophobic 

interactions between biomolecule and functionalized silica surface and how they primarily 

affects the design of ESNP. 
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Figure 2.6  Examples of biomolecules’ interaction with surfaces used in this dissertation 

showing inner and outer sphere complexation: (a) TiO2 surface produces both inner- 

(covalent) and outer- (H-bonding) sphere complex whereas (b) positively charged amine 

produces outer sphere complex (H-bonding, ion pairing/electrostatic interactions) with 

nucleic acids. 

 

2.3.1.1 Coordination 

Some biomolecule tend to form strong coordination complexes with transition 

metal oxide surface especially TiO2. It was reported that peptide and other biomolecule 

(especially polyphenolics) adsorption on TiO2 surface happens through coordination of 

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

OH

Ti

H-bonding
Covalent 
bonding

Outer sphere 
complexation Inner sphere 

complexation

-

-

-

-

-

-

-

-
-

-
-

-

-

-

-

-

-
-

-

-

-

-

-

-
- -

-
-

-

-

-
+

++
+ +

+ +

+

+
+

+ +
+

+

+
+

NH2

H+

NH2

H+

NH2

H+

NH NH2

H+

NH2

H+

NH2

H+

NH2

H+

NH2

H+

NH2

H+

NH NH2

H+

NH NH2

H+

NH2

H+

NH2

H+

-

- - -

OH OH

-- - -

-

-

-

--

NH2

H+

-

+

+
+

+ -
+

-
+

+ +

H-bonding Ion pairing

Outer sphere complexation

(a)

(b)



40 

 

carbonyl group with surface Ti atoms [113]. As a transition metal, Ti create complexes 

with vast classes of biomolecules containing hydroxyaromatic (phenoxy) and hydroxyl 

groups, and thus show strong binding affinity to produce inner sphere complexes (Figure 

2.7). This strong binding capabilities can be utilized to bind and separate biomolecules 

from their host environment as well as from solution, which will be investigated in 

Chapter 3 for polyphenolic flavonoids. TiO2 also shows strong coordination binding 

capability towards poly-carboxylic acids (citric acid), which is used to displace 

polyphenolic flavonoids in Chapter 3 after adsorption on TiO2 functionalized silica, thus 

enable to recycle or reuse the particles. There are also some unexpected or unwanted 

coordination binding should be considered especially when polar solvent like dimethyl 

sulfoxide (DMSO) is used with water to solubilize hydrophobic compounds. DMSO 

strongly chelates cations [152], which can interfere when estimating the primary binding 

processes. Similar unwanted coordination can happen for phosphate ions (esp. when using 

a phosphate buffer), which also should be considered. 
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Figure 2.7  Schematic representation and list of vast classes of compounds that produces 

coordination complexes with Ti. 
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Ionic bonding is the non-covalent interaction between cationic and anionic sites of 

different molecules, driven by electrostatic interactions, which generally form outer sphere 

complexes [153]. In aqueous medium, it is generally entropy driven and endothermic for 

polyelectrolytes arising from the large amount of counterion released as water. The 

electrostatic interaction between cationic and anionic moieties of one molecule or surface 

toward the aromatic rings of another molecule may also be very important. Many π-π 

stacking interactions are also electrostatic in nature due to interaction of aromatic ring with 

opposite partial charge [154].  
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Many biomolecules’ adsorption onto silica surfaces happens through mixed 

electrostatic interactions and outer-sphere complex (Si−O−···(HX)+) formation, where 

(HX)+ represents protonated biomolecule [155]. Cell membrane interaction with amine 

functionalized silica surfaces is primarily happens through electrostatic interactions, where 

positively charged particles bind with negatively charged cell membrane lipid molecules 

moieties [156]. The mode of many amino acids and peptides adsorption onto hydrophilic 

surface is also strongly influenced by electrostatic attraction, and hence is pH dependent 

[113]. Electrostatic attractive interaction of proteins are sometimes also pH dependent, as 

some of the proteins and enzymes show positive charge at physiological pH and thus are 

attracted towards negatively charged silica surface. During nucleic acid binding to 

positively charged surface (amine groups), the majority of contributions come from the 

electrostatic interaction (ion pairing) between surface positive charge and nucleic acids’ 

negative charge (Figure 2.6). 

Hence, a major emphasis should be given to surface charge (zeta potential) and 

solution pH and ionic strength, all of which modulate electrostatic interactions between the 

ESNP surface and biomolecules. Since surface charge is modulable by changing pH of the 

solution, the nature of interactions can be changed (for example: electrostatic to H-

bonding) as desirable during electrostatic interaction. Here, besides electrostatic 

interactions for cell-membrane penetration (in Chapter 4 and 5), this work also deals with 

the electrostatic interaction between positively charged amine group and negatively 

charged nucleic acid for DNA/RNA loading, protection and release. It is particularly 

important to understand the nature of electrostatic interactions in relation to other non-
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covalent forces when estimating the thermodynamic nature and parameters of DNA 

binding by isothermal titration calorimetry (Chapter 7). 

2.3.1.3 Hydrogen Bonding 

Hydrogen bonding (H-bonding) is probably the most important type of non-

covalent binding. It is often considered as a strong dipole-dipole interaction, which exists 

between lone pair electron of electronegative atoms and a hydrogen atom. Contributions 

from H-bonding should always be considered during any interactions between biomolecule 

and surfaces. Direct measurement of interaction energies associated with H-bonding are 

difficult, can possibly be determined only in gas phase analysis [157]. Host-guest 

complexes in biological macromolecules often form via several simultaneous H-bonds, 

creating significant difficulties to isolate and analyzing the binding. H-bonding of 

molecular interactions in water (H2O to H2O) is probably very similar to that of between 

Si-OH and H2O, which makes detection and analysis of only H-bonding interactions 

difficult in systems involving silica. Silica, owing to its high surface silanol density, forms 

both strong and weak H-bonding with adsorbed water and H-bonding primarily regulates 

the water layer and interaction with other biomolecules [143]. Due to the presence of H-

bonding, the silica surface is strongly hydrophilic and during biomolecular interaction on 

silica surfaces the presence of an adsorbed water layer should be considered. 

H-bonding happens during nucleic acid interactions with polyamines, when amine 

groups are fully deprotonated [158]. Thus H-bonding is also modulable like electrostatic 

interactions by changing solvent pH. It should be noted that in confined silica surfaces (i.e. 

MSNPs), Si–OH groups show less propensity for H-bonding compared to unconstrained 
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silica surfaces, which has to be considered for mesopores of the particles. Here, the 

presence of H-bonding along with other interactions is analyzed by isothermal titration 

calorimetry (ITC) measurements between nucleic acids and MSNPAs (Chapter 7). 

2.3.1.4 Hydrophobic Interactions 

Hydrophobic interactions are mostly solvent (water) driven, as the solvation shell 

around one cavity of two lipophilic molecules in close proximity is favored compared to 

two cavities of separated lipophilic molecules [159]. The formation of micelles, aggregates, 

and protein folding are often described as the reduction of water accessible surface area 

through hydrophobic interactions [160]. Peptides also adsorb on hydrophobic surfaces 

through hydrophobic interactions [113]. There are some innovative strategies to adsorb 

nonionic surfactant molecules to silica surface by using hydrophobic interaction with 

another ionic surfactants (co-adsorption). Cationic surfactants generally have higher 

adsorption affinity toward silica surface, which non-ionic surfactants do not show. 

However, once an ionic surfactant is adsorbed onto silica surface, non-ionic surfactants 

also adsorb through hydrophobic interaction with ionic surfactant tails [117]. 

Hydrophobicity is generally measured by its octanol-water partition coefficient. It is worth 

noting that large biomolecules like proteins and nucleic acids have water molecules in their 

cavities and thus it is not straightforward to explain their adsorption on a surface solely 

based on lipophilicity. Hydrophobic molecules are preferentially attractive to a surface 

from aqueous solution and as a result produces very high non-specific binding solely due 

to hydrophobic interaction, which create a tremendous challenge in quantifying other 

specific interactions. We expect the analyte in Chapter 6 (β-estradiol) to show high degree 
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of non-specific binding to the particles due to its hydrophobic nature. Hydrophobic 

interactions should also contribute during nanoharvesting and delivery of lipophilic 

molecules like flavonoids in Chapter 4. 

2.3.2 Thermodynamic Nature of Equilibrium Binding Process 

Physicochemical binding processes must satisfy the laws of thermodynamics and 

as a result, a process only occur when the Gibbs free energy change (ΔG) is favorable 

(negative). Since, there are two components of Gibbs free energy change, which are 

enthalpy change (ΔH) and entropy change (ΔS) as shown in Equation 2.2 (Gibbs-

Helmholtz equation), minimization of Gibbs free energy can be achieved either from large 

enough favorability from enthalpy change or the process has to have entropic favorability. 

ΔG = ΔH – TΔS                                                      (2.2) 

where T is the isothermal temperature of the experiments. 

Thus, two inherent equilibrium binding processes arise from thermodynamic points 

of view: enthalpy dominant process and entropy driven process. Careful determination and 

analysis of the thermodynamic nature and associated parameters (free energy, entropy and 

enthalpy change) is important in designing engineered nanoparticles and selecting proper 

functional groups in order to isolate a particular biomolecule. A phenomena that usually 

exists in most cases of non-covalent binding is the so-called “enthalpy-entropy 

compensation”. This arises from the fact that strong enthalpic binding usually restricts the 

mobility of bound molecules and thus exhibits an unfavorable entropic contribution, and 

vice versa [161, 162]. Enthalpy-entropy compensation exists whenever a plot of TΔS versus 

ΔH produces a straight line [147, 163]. The linear correlation can be expressed as: 
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TΔS = αΔH + TΔS₀                            (2.3) 

where, α is the slope of the curve and TΔS₀ is the y-intercept. TΔS₀ represent the stability 

of formed complex in absence of any enthalpic stabilization (ΔH = 0). The physical 

meaning of the slope, α, is found by differentiating Gibbs-Helmholtz equation and using 

Equation 2.3, which yields the following Equation 2.4 [147]. 

d(ΔG) = d(ΔH) - d(TΔS) = (1 – α) d(ΔH)                (2.4) 

Hence, the slope α represents the contribution of enthalpic gain to the free energy 

change, as some of the enthalpy is nullified by accompanying entropy loss and vice versa, 

which in combination with intercept TΔS₀ are used as a quantitative, empirical measure of 

conformational changes and desolvation (water release) upon binding, respectively [147]. 

A Gibbs free energy change is also associated with the kinetics of binding 

(formation of an activated complex) by the following Equation 2.5. 

 ΔG = - RT*ln(Ka)                         (2.5) 

where, Ka is the equilibrium coefficient for forming the activated state and R is the gas 

constant. Analyzing both enthalpy and entropy changes and their relative contributions in 

addition to the free energy change are important as these two contributions can be different 

for same free energy change. As an example, even though some host molecules seemed to 

produce the same free energy change when binding to two ions, calorimetric investigation 

revealed two very fundamentally different processes [164]. Usually, dehydration/water 

release, structural rearrangement and electrostatic repulsion are endothermic, and chemical 

reaction, electrostatic attraction and H-bonding formation are exothermic [165]. For 

example, during large peptide or protein binding, ion pairs formed by deprotonation of 

amine and carboxylic acid moieties are entropy driven but due to extensive H-bonding, 
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enthalpic contribution can become significant and provide partial electrostatic 

contributions to free energy [166]. Non-covalent interactions (electrostatic, H-bonding, π-

π interactions etc.) are exothermic, and desolvation and conformational changes are 

endothermic and associated with large positive entropy change [167, 168]. Multiple 

interactions within a single complexation process and the associated occurrence of 

conformational change is not easy to isolate and analyze.  

For a process to be enthalpy driven, the enthalpy change should be highly favorable 

(exothermic) to compensate for unfavorable entropy change. Positive cooperativity 

between binding sites produces greater binding strength and as a result associated with 

greater enthalpic energy release and entropic penalties, and vice versa for negative 

cooperativity [169]. On the other hand, several binding processes are entropy driven even 

though association of molecules inherently does not have entropic favorability. As 

mentioned earlier for polyelectrolytes, ion pairing in the aqueous solution is completely 

dominated by entropy driven processes, associated with large positive ΔH due to 

desolvation of interacting ion upon association [166, 170]. The dominant physical 

interactions of nucleic acids with other cations are entropy driven, as associated with large 

amount of counterion release as water, and their associated enthalpic penalties. Entropic 

contribution is usually harder to quantify, as they are often confused with several non-

covalent interactions.  

In this dissertation, the thermodynamic nature of binding between several classes 

of biomolecules and different ESNP are important to understand for nanoharvesting and 

delivery applications. Although thermodynamic parameters are not directly measured for 

the interactions in Chapter 3 to 6, general understanding from a thermodynamic point of 
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view is necessary. Interaction of polyphenolic flavonoids to TiO2-functionalized particles 

(Chapter 3 and 4) are due to coordination complex formation, which is expected to be 

highly enthalpy driven. Interaction of nucleic acids with MSNPAs is measured directly in 

Chapter 7, in order to find the underlying thermodynamic parameters. We expect the 

interaction to be complex based on the literature studies on nucleic acid interaction with 

polycations in solution, characterized by concentration-dependent heats of interaction 

(changing exo-/endothermic heat signals) and multifaceted due to involvement of several 

interactions [171-174].  

2.3.3 Energy of Interactions 

Energy of interaction is the total energy contributed during the interaction of two 

systems being considered arising from all the process combined. It needs to be determined 

when designing appropriate systems based on biological systems for drug design, and 

selecting host materials for their delivery [166]. Interaction energy for non-covalent 

binding is difficult to determine because of its small magnitude. Weak interactions are 

sometimes estimated by a competitive binding assay with another strongly interacting 

ligand for the same site, and estimating the binding energy from the difference. Non-

covalent forces act less freely on a surface due to constraints in free energy as compared to 

in solution and thus require higher care during experimental design for estimation. 

Methods used for estimating energies and thermodynamics of interaction are 

traditional spectroscopic techniques and NMR [175]. On the other hand, surface plasmon 

resonance can measure the kinetics of binding processes in addition to binding energies 

[176]. Chemical force microscopy (such as atomic force microscopy or AFM) can directly 
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measure associated non-covalent forces [177]. However, recent developments in 

isothermal titration calorimetry (ITC) allow it to provide reliable thermodynamics of the 

binding process in the form of entropy, enthalpy and free energy changes [161, 166]. 

Cooperative binding between two sites also poses a high degree of difficulty in estimating 

binding energy corresponding to one of them, but ITC data can be fitted with different 

models (cooperative, multiple sites) to isolate these processes. The technique is very 

important in estimating and quantifying molecule-molecule and surface-molecule 

interactions and discussed in more detail below. 

2.3.3.1 Isothermal titration calorimetry (ITC) 

Isothermal titration calorimetry (ITC) directly measures measures heat of 

interaction (ΔH), and through modeling the corresponding free energy change (ΔG) in a 

physicochemical process at constant temperature. ITC utilizes a power compensation 

technique to maintain constant temperature in a cell (where physical or chemical process 

take place) compared to a reference cell of equal volume kept at same temperature, by a 

heater/cooler assembly (see Figure 2.8) [178]. The detector can sense infinitesimal 

temperature change in the sample cell with respect to reference cell and an opposite power 

is applied as compensation using the heater/cooler assembly. Heat generation/consumption 

during the process is calculated based on this supplied power and the raw signal generated 

by ITC equipment is the power needed to continuously keep the system isothermal during 

the process. During a typical experimental run, a syringe is used to inject a solution to the 

sample cell in a stepwise or continuous manner. The whole assembly is situated in an 

adiabatic jacket to absolutely minimize any heat transfer with the surroundings. Raw data 
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with every injection (called “thermograms”) can be processed and integrated heat per mole 

of chemical versus mol ratio of ligand and receptor (called “isotherms”) can be fitted with 

various binding models in order to decouple thermodynamic processes and to estimate the 

underlying thermodynamic parameters. As mentioned before, ITC will be used to study 

thermodynamic interactions between dsRNA and MSNPA in Chapter 7. Next, a brief 

description of equilibrium binding models and data fitting is provided. 

 
Figure 2.8  Schematic diagram of the low volume Nano-ITC with all the major component 

shown (not drawn to scale). Adapted from TA Instrument getting started guide [179]. 
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The simplest of the ITC binding models is the single site independent binding 

model (so called “Wiseman Isotherm”), which assume a Langmuir type equilibrium 

(Equation 2.6) between a ligand (X) and receptor (M) with single set of identical binding 

sites [180]. Single site binding model is used for uniphasic sigmoidal ITC isotherms (only 

one exothermic or endothermic phase). For the binding reaction shown in Equation 2.7, 

overall mass balance (Equation 2.8) and energy balance (Equation 2.9) yield the amount 

of heat released presented in Equation 2.10. 

𝐾𝑎 =
𝛩

(1−𝛩)[𝑋]
                              (2.6) 

𝑀 + 𝑛𝑋 ↔ 𝑀𝑋𝑛                           (2.7) 

[𝑋]𝑡 = [𝑋] + 𝑛𝛩[𝑀]𝑡                               (2.8) 

𝑄 = 𝑛𝛩[𝑀]𝑡𝛥𝐻𝑉0                                  (2.9) 

𝑄 =
𝑛[𝑀]𝑡𝛥𝐻𝑉0

2
[1 +

[𝑋]𝑡

𝑛[𝑀]𝑡
+

1

𝑛𝐾𝑎[𝑀]𝑡
− √(1 +

[𝑋]𝑡

𝑛[𝑀]𝑡
+

1

𝑛𝐾𝑎[𝑀]𝑡
)

2

− 4
[𝑋]𝑡

𝑛[𝑀]𝑡
   ]   (2.10) 

where n is the number of binding sites, [X]t and [X] are the total and equilibrium ligand 

concentration, [M]t and [M] are the total and equilibrium receptor concentration, Θ is the 

fraction of binding site occupied by ligand, and V0 is the active cell volume. For full 

derivation of Equation 2.10, interested readers can refer to the literature [180, 181]. 

Equation 2.10 can be used to find the amount of heat released during the ith injection by 

the following equation, derived from displaced volume. 

 𝛥𝑄𝑖 = 𝑄𝑖 +
𝛥𝑉𝑖

𝑉0
[

𝑄𝑖+𝑄𝑖−1

2
] − 𝑄𝑖−1                  (2.11) 
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where ΔVi is the volume of ith injection. Now, three binding parameters ΔH, n and Ka can 

be fitted for each binding site using a least squared error curve fitting using the equations. 

 Biphasic binding isotherms (having two different exothermic or endothermic 

regions or one endothermic and one exothermic region), when produced by ITC 

interactions, usually indicate either a sequential binding or binding to two distinct types of 

sites. Both kinds of model have been used to analyze ITC data [182]. For binding with two 

sets of distinct sites, Langmuir equilibrium, mass balance and energy balance equation is 

provided below. 

𝐾𝑎1 =
𝛩1

(1−𝛩1)[𝑋]
 and 𝐾𝑎2 =

𝛩2

(1−𝛩2)[𝑋]
                      (2.12) 

[𝑋]𝑡 = [𝑋] + (𝑛1𝛩1 + 𝑛2𝛩2)[𝑀]𝑡                                   (2.13) 

𝑄 = [𝑀]𝑡𝑉0(𝑛1𝛩1𝛥𝐻1 + 𝑛2𝛩2𝛥𝐻2)                                 (2.14) 

where, subscript “1” and “2” correspond to first and second types of binding sites. 

Equation 2.12 to 2.14 can be solved numerically along with Equation 2.11 to find the heat 

for every injection and fitted with experimental isotherms to estimate six thermodynamic 

parameters ΔH1, n1, Ka1, ΔH2, n2 and Ka2 simultaneously.  

 Both single site and two site binding models are used in Chapter 7, for the analysis 

of thermodynamic interactions between RNA and MSNPA. Finally, mathematical 

derivation for other binding models such as sequential binding, three or more binding sites, 

dimer dissociation, cooperative binding etc. is available in literature but not presented here 

as they are not relevant to this dissertation.  
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2.4 Engineered Nanoparticle Interactions with Cells  

Both nanoharvesting and delivery applications in this dissertation involve 

nanoparticle (ESNP) interaction with living cells and tissues. Hence, a thorough 

understanding is needed of detailed mechanisms of nanoparticle interaction with cells, 

pathways of engineered nanoparticles inside eukaryotic cells, and the ultimate fate of the 

nanoparticle (expulsion or entrapment). Major pathways (internalization or uptake, 

intracellular transport and expulsion or exit) of functionalized MSNP interaction with cell 

are depicted in Figure 2.2 along with various surface modification performed in this 

dissertation to regulate the interactions with cells for nanoharvesting and delivery 

applications.  

The response of biological systems (esp. cells) with engineered nanoparticles are 

widely varied, which mainly depend on the types of cells and/or the nature of the 

nanoparticles used [62]. Effects of nanomaterials in living cells and corresponding cell 

responses are indeed very complex depending mainly on the properties of nanomaterials 

such as shape, size, concentration, surface composition and pore size, and full knowledge 

of this field is still developing [36, 183, 184]. Nanoparticle interaction with biological 

systems are also complicated due to size and other property distribution among a 

population of particles, which renders it very difficult to establish a cut-off value for a 

certain response. Generally, nanoparticle interaction with cells can be explained from a 

broader energetic point of view, and the process which involves less energy penalty is 

ultimately favored [62, 184].  

When nanoparticles were exposed to animal or plant cells (eukaryotic cells in 

general), they are generally internalized at first based on the surface properties and size of 

the nanoparticles and/or cell types. After uptake or internalization, nanoparticles are 
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transported via intra- or intercellular pathways and finally either get immobilized in/with 

certain organelles or exit via different expulsion mechanisms. During nanoparticle design, 

special emphasis should also be put on toxicity of nanoparticles after cellular uptake and 

uptake/ expulsion mechanisms, and a short residence time inside the cells is desirable to 

minimize toxicity. 

The lipid bilayer cell membrane is the most important cellular component that 

nanoparticles encounter first during uptake and last during expulsion. Nanoparticle entry 

and exit mechanisms through cell membrane is a vast research area but can be divided into 

two major types: activated and non-activated. In order to show the difference between 

them, schematic diagrams for both are presented in Figure 2.9. Non-activated penetration 

(also called direct penetration) happens mainly for charged particles, which when comes 

in the vicinity of the membrane disturb the regular membrane orientation and can pass 

through the membrane, while the membrane itself recovers its regular orientation (Figure 

2.9a). Direct membrane penetration mechanism should be the same during both uptake and 

expulsion. On the other hand, activated mechanisms during uptake and expulsion 

(endocytosis and exocytosis) are different fundamentally, as uptake involves wrapping the 

particles, while during expulsion wrapped vesicle gets fused with cell membrane (Figure 

2.9b). Both endo- and exocytosis require energy to happen, as vesicle formation and 

merging both involve expenditure in energy.  



55 

 

 

Figure 2.9  Schematic representation of (a) lipid exchange membrane penetration for 

charged MSNPs in comparison with (b) activated (energy-mediated) uptake and expulsion 

mechanism (endo- and exo-cytosis, respectively). Part (a) is adapted from Wong et al. 

[156]. 

 

2.4.1 Cellular Uptake 

Nanoparticle internalization by cells is a complex process, far beyond relying on a 

simple factor like size of the nanoparticles [185]. Other factors contributing to cellular 

uptake of nanoparticles are surface chemistry and the shape of the particles. Uptake is also 

dependent on cell types (for example: plant and animal cells behave differently). It was 

reported that colloidal stability of the nanoparticles in cell media in addition to charge 

driven interaction with cell membrane is important for cellular uptake [36]. Nanoparticles 
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often bind to proteins in cell cultivation media (forming a protein corona), which 

sometimes stabilize the particles against weak aggregation forces [186]. As mentioned 

before, nanoparticles are often internalized by energy dependent (activated) mechanism or 

endocytosis similar to the internalization of nutrients and other biomolecules by the cells. 

Some endocytosis process involve taking up fluid and particles together (micropinocytosis 

and pinocytosis), which usually involve formation of vesicle with size ranging from 0.2 to 

5 µm. Activated internalization get switched off at low temperature (4 ºC), which helps to 

identify and differentiate between active and passive uptake [26]. Cellular uptake is 

generally the first step for nanoparticle interaction with living cells, where nanoparticles 

are to be used as carrier for biomolecule transport and should be studied in detail. Below, 

an elaborated description is provided for nanoparticle uptake in plant cells (which is most 

relevant to nanoharvesting) along with a brief description on animal cell uptake for 

contrast. 

2.4.1.1 Uptake in Plant Cells 

Nanoparticle uptake mechanisms in living plants and plant cells are still a poorly 

understood topic and there are widespread disputes among researchers. As a whole, plant 

cells possess cell walls around their cell membrane (in contrast to protoplasts) and as a 

result show different behavior during nanoparticle uptake. Cell walls have pore with 

dimeter < 20 nm, and hypothetically any nanoparticle size greater than this should not be 

internalized by plants. However, researchers have reported internalization of larger sized 

MSNPs (up to 200 nm) inside whole plant tissue [26, 187]. Therefore, it was reasoned that 

larger nanoparticles have the ability to create pores in cell walls in order to penetrate [188]. 



57 

 

Once cell walls are penetrated, nanoparticles interact with cell membrane by activated and 

passive mechanism (endocytosis and direct penetration, respectively), as mentioned before 

depending on the particle properties [26, 156] as found by nanoparticle internalization by 

isolated plant cells (protoplasts) [189]. Since activated mechanisms of uptake are energy 

dependent, they can be halted at 4 ºC and uptake experiment at different temperature (23 

and 4 ºC) can be used to differentiate activated and passive mechanisms (Chapter 5). 

Nanoparticle uptake in plant roots are most relevant here, as hairy root cultures will be used 

for nanoharvesting of polyphenolic flavonoids. Nanoparticle uptake in plant roots is mostly 

associated with nutrient uptake, and since the primary uptake pathway of nanoparticles in 

plants are through roots, using hairy roots in nanoharvesting (Chapter 4) is inherently 

advantageous, as roots are already equipped to facilitate nanoparticle internalization. 

Nanoparticle uptake in hairy roots is also the first condition to be met during the 

nanoharvesting process. In this dissertation, ESNP uptake in hairy root is confirmed by 

fluorescence microscopy (Chapter 4) and quantified by Ti-content (present for target 

metabolite binding) analysis of calcined roots following exposure in Chapter 5. 

2.4.1.2 Uptake in Animal Cells 

Although not directly applied in this dissertation, uptake mechanisms and pathways 

in animal cells (especially human cell lines) provides a better-understood counterpart to 

uptake in plants during nanoharvesting. It is also important to study during nucleic acid 

delivery to animal cells using MSNPAs. Non-functionalized MSNPs internalization by 

animal cells (esp. human cell lines) is typically an energy dependent process with 

phagocytosis, micropinocytosis and clathrin-mediated processes being dominant [62, 183]. 
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Internalization also happens by membrane penetration and passive diffusion, which is 

called direct penetration as described in Figure 2.9a [190]. Animal cells have shown faster 

internalization for large particles (> 500 nm) compared to small nanoparticles (~80 nm) 

[191] unlike plant cells. The cause of this is two-fold: larger particles create higher 

association force with lipid headgroups of cell membranes and it takes less energy to engulf 

larger particles due to small surface curvature [192], whereas in plant cells uptake of larger 

particles is slower probably due to an additional barrier in cell walls. This phenomena was 

also observed for uptake of differently sized particles in human melanoma cells; particles 

with larger aspect ratio (length:diameter) show higher degree of internalization due to more 

contact area (longitudinal) with cell membranes [193]. The internalization route also 

depends on the size of mesopores as shown for MCM-41 and SBA-15 types mesoporous 

silica [194]. Surface functionalization also plays a critical role during endocytosis of 

MSNPs in animal cells. It was reported that the mechanism of endocytosis of amine-

functionalized MSNPs (receptor mediated) is different compared to bare MSNPs, which 

are internalized by nonspecific adsorptive route [195]. 

2.4.2 Nanoparticle Toxicity 

During nanoparticle interaction with cells, they can produce mild to acute toxicity 

in the cells and the organism at large. At the sub-cellular level, toxicity arise from 

intracellular injuries through various interactive mechanisms of the nanoparticles with 

biological systems such as membrane disruption, antioxidant depletion, dysfunction and 

damage of vital part like mitochondria and DNA [62]. The size of nanoparticles is one 

crucial factor besides concentration that determines the toxicity of nanoparticles in 



59 

 

biological systems, and the general consensus is that smaller particles are generally more 

toxic than their larger counterparts due to exerting higher oxidative stress [191, 192, 196]. 

Toxicity is also dependent on the cell types being used because of different uptake and 

transport mechanism [62]. Plants suffer from two different types of toxicity upon particle 

uptake: cytotoxicity (toxicity toward cells) and phytotoxicity (toxicity toward plant 

growth). Phytotoxicity of plant seedlings and mature plants by engineered nanoparticles is 

widespread, stemming from the blockage of water uptake and transport pathways [197]. 

This effects is so multifaceted based on plant types and nanoparticle properties, it is 

recommended to study toxicity on a case-by-case basis [188]. MSNPs were also found to 

be less toxic to human cells compared to nonporous silica particles due less surface silanol 

groups in contact with the cell membrane surface [198]. Toxicity studies of hairy roots 

after exposure to engineered MSNPs are a vital and integral part of this dissertation as one 

of the requirements of nanoharvesting is the viability of hairy roots after exposure to 

nanoparticles. During nanoharvesting in Chapter 4, toxicity of hairy roots upon ESNP 

uptake were is studied by re-culturing and observing regrowth of the roots.  

2.4.3 Nanoparticle Transport after Uptake 

Transport route after uptake is important to determine the efficacy of designed 

nanoparticles for biomolecule delivery or other applications. For example, during 

nanoharvesting ESNP must travel to the biomolecule rich organs (primarily vacuoles) after 

uptake in order to gain access to target compounds. Similarly, during gene delivery 

particles need to reach the proximity of cell nuclei for targeted release. As mentioned 

before, nanoparticles internalized by activated mechanisms usually stay entrapped in a 
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vesicle, which then transforms into an endosome. Exit from the endosomal vesicles 

(endosomal escape) is important for the nanoparticles to reach targeted sites. Two kinds of 

nanoparticle transport happen after internalization: intracellular transport and transport 

outside cells (a.k.a. translocation) [199, 200]. Both are immensely important as they 

determine the ultimate fate of the particles, whether they will get entrapped inside or come 

out of the cell, which is tremendously important for minimal toxicity. After uptake in plants 

through the roots, nanoparticles can be transported through the transport tissues to other 

organs such as stems or leaves. Nanoparticles can also move from cell to cell through the 

space between the cell wall and membrane. Due to the importance with respect to this 

dissertation, intracellular transport, endosomal escape and extracellular transport are 

discussed separately below. 

2.4.3.1 Intracellular Transport 

Intracellular transport of nanoparticles consists of different steps from entry into 

the cell, which involve membrane penetration, vesicle entrapment, endosome creation and 

lysosomal degradation [62]. Particles taken up by active route (endocytosis) often exist in 

early endosomes, which then travel along microtubules and follow lysosomes to fuse with 

late endosomes and finally exit through fusion with the cell plasma membrane [201]. Some 

of the nanoparticles can escape from early endosomes and become free in the cytosol, 

which can get trapped inside various organelles subsequently. Intracellular transport and 

organelle distribution of nanoparticles are sometimes dependent on their uptake pathways, 

where vesicular contents can be secreted at different steps of endo-lysosome pathways [95]. 

The ability of designed particles to exit the intracellular vesicle are immensely important 
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for biomolecule delivery application and sometime particles are engineered to provide 

these capabilities. In the sub-section below endosomal escape is discussed separately. It 

should be noted that charged particles following their uptake by direct penetration travel 

freely through the cytoplasm and are not trapped in early vesicles. Their pathways inside 

the cells should be different as opposed to non-charged particles, whose only 

internalization mechanism is energy mediated [156]. 

2.4.3.2 Endosomal Escape 

Endocytosed nanoparticles remain in the endosomal vesicles rather than roaming 

free in the cytoplasm, which creates a major issue for delivering biomolecules in the 

targeted intracellular sites [202]. However, the ability of the particles to penetrate out of 

endosomal vesicles is very important to obtain an efficacious delivery system, and research 

is still ongoing in his subject. Several methods of endosomal escape have been proposed 

in literature. As endosomal vesicles are acidic, disturbing the proton concentration is the 

most reliable method for obtaining endosome free nanoparticles [120]. Another approach 

is to functionalize the particles with polycationic cell-penetrating peptide (e.g. poly-

arginine) or other positively charged group that shows capability of rupturing endosomal 

vesicles [95, 203]. The ability of particles functionalized with polycations to escape 

endosome has huge significance in this dissertation, as MSNPAs are positively charged 

and as a result should be able to escape the vesicles even if they are endocytosed. The size 

of nanoparticles also plays a crucial role in determining their endosomal escape 

capabilities, with larger sizes tending to escape more easily [204]. With relatively larger 
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size (~170 nm), positively charged particles in Chapter 4 should be able to escape 

endosomal vesicles. 

2.4.3.3 Extracellular Transport 

Internalized nanoparticles in plants are often transported from roots to other parts 

(stem, leaves) through the transport (vascular) tissues and channels [197, 205]. In plants, 

once nanoparticles enter through the cell wall, they can be transported through the 

interconnected space between the cell wall and membrane. There can be repeated entry and 

exit from cell to cell for transport and localization. Extracellular transport in hairy roots is 

very important during nanoharvesting (Chapter 4), as cell-to-cell (repeated) transport is 

the way nanoparticles reach to the internal parts of the roots and come out in solution. 

2.4.4 Nanoparticle expulsion after uptake 

Much effort has been put into investigating nanoparticle uptake and transport 

throughout the years, but prolong exposure or entrapment of nanoparticles inside the cells 

are responsible for toxicity in both animal and plant cells [201]. Thus studying the 

underlying expulsion/exit mechanism of nanoparticles is also important in order to design 

smart nanoparticulate carriers that exit the cells swiftly after their intended purpose 

(biomolecule binding or delivery) is served. Golgi apparatus excretion or lysosomal 

exocytosis was described as a possible mechanism for MSNPs exit after internalization 

[206]. Nanoparticle recovery is also an essential component of biomolecule nanoharvesting 

and delivery processes, as expulsion of the nanoparticles is the final crucial steps during 

these applications.  
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Like uptake, expulsion of nanoparticles are equilibrium process as silica 

nanoparticle uptake and expulsion was found to reach equilibrium within 2 h of exposure 

[16]. Positive surface charge is very important for nanoparticle excretion, similar to 

nanoparticle internalization [207], where particles can penetrate out of the cell membrane 

directly (shown in Figure 2.9a). For non-charged particles, the major exit pathway is 

exocytosis, an activated mechanism where nanoparticle containing vesicles (late 

endosomes) get fused with the cell membrane to expel internal nanoparticles (Figure 2.9b). 

Like uptake, nanoparticle expulsion should be dependent on cell type and particle 

properties such as size, shape and surface properties. Another largely unexplored major 

factor is the intracellular interaction after uptake and before expulsion, and varieties of 

biomolecule adsorption (such as protein) inside cells [16]. We investigate the uptake, 

transport and expulsion pathways of engineered MSNPs inside hairy roots during 

nanoharvesting (Chapter 4) in order to identify the mechanism of uptake and exit. 

2.4.4.1 Exocytosis 

Nanoparticles after endocytosis are usually wrapped in vesicle (early endosome), 

which carry them towards lysosomes where degradation happens and non-degradable 

particles (silica) are eventually exocytosed. Exocytosis is often found associated with 

cellular waste-disposal systems, where nanoparticle-containing vesicles are transported to 

the cell membrane and turned inside out following fusion. This process is thought to be 

regulated by Lipid rafts (regularted by cholesterol) [208]. Exocytosis is also an energy 

dependent process (activated), and as a result can also be inhibited by metabolic inhibitors. 

The rate of exocytosis (along with endocytosis) is concentration dependent as they are 



64 

 

dynamic processes [201]. Exocytosis can also be stopped at 4 °C, to differentiate it from 

non-activated mechanism or direct expulsion (Chapter 5).  
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2.5 Designing Nanoparticulate Carriers for Biomolecule Delivery to Cells 

 Biomolecule targeted and controlled delivery to cells, tissues and organs has 

become an integral part of modern therapeutic and regenerative medicine. Due to their 

large size and structure as well as inherent immunity of cells towards foreign materials, 

biomolecules generally cannot penetrate and survive inside living cells in their active forms 

to produce intended results. Hence, inorganic, organic and polymeric carriers 

(nanoparticles) have emerged as delivery vehicles for numerous biomolecules such as 

proteins, nucleic acids and small/large molecular drugs [209]. During the past decades, 

numerous investigations were carried out in order to study the interactions between a wide 

variety of biomolecules and mesoporous silica systems for loading and controlled release 

of the molecules [65]. Based on nanoparticle interactions with molecules and cells, they 

can undergo binding with verities of compounds inside cells once internalized and 

generally stay inside vesicles and endosomes after activated uptake. In order to design 

perfect delivery vehicle, nanoparticles should have the capability to escape endosome, 

evade enzymatic hydrolysis and unwanted binding to other intracellular compounds, reach 

the target intracellular sites, and finally release their cargo in a controlled way [62]. An 

ideal drug delivery carrier should have the following characteristics: (i) sufficient loading, 

(ii) minimal toxicity, (iii) no premature release, (iv) release in targeted sites and (v) 

controlled release with a predetermined rate [24]. As mentioned before, surface 

functionalized MSNPs are good candidates for biomolecule delivery based on their tunable 

surface properties, pore size, particle size and surface functionalization. Part of this 

dissertation involves designing amine-functionalized MSNPs (Chapter 7) for nucleic acid 

delivery, where pore size dependent interaction of double stranded (ds) RNA is 

investigated by isothermal titration calorimetry (ITC) in order to understand the 
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fundamental physicochemical processes during delivering dsRNA using engineered 

MSNPs. As a result, fundamental understanding of nucleic acid (DNA/RNA) delivery 

processes and design requirements for ideal carrier design is very important, which will be 

introduced and discussed briefly.  

2.5.1 Carriers for Nucleic Acid Delivery 

Polynucleic acid (DNA/RNA) delivery to targeted intracellular sites is essential for 

gene therapies and selective gene expression/silencing for various diseases [210, 211]. 

However, nucleotides face tremendous odds in reaching the vicinity of cell nuclei (delivery 

sites) as almost all cells have intrinsic defense against foreign nuclear materials. There are 

mainly two kinds of barriers (extracellular and intracellular) a nucleic acid delivery system 

naturally encounters when it is introduce to the body [212]. To be successful, an ideal 

nucleic acid delivery vehicle in mammalian systems should have the following 

characteristics: (i) protection against blood serum nucleases, (ii) stealth properties against 

immunity, (iii) dodging non-specific binding, (iv) avoiding clearing mechanisms from 

body before delivery, (v) transport from blood vessel to target tissue, (vi) cellular uptake 

and (vii) reaching target intracellular sites to release nucleic acid [213]. Engineered MSNPs 

have been shown to possess properties to meet the criteria to be a perfect nucleic acid 

carrier and release agent. Useful MSNP properties for nucleic acid delivery are 

schematically presented in Figure 2.10, which mainly include tunable pore characteristics, 

easy surface functionalization, and lipid encapsulation for providing stealth properties. 

Two fundamentally different kinds of nucleic acid delivery systems exists based on the 
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properties of DNA and RNA, and their slightly different applications [214]. A brief 

discussion on DNA and RNA delivery is presented below separately.  

 
Figure 2.10  Conceptual representation of the tunable surface properties for nucleic acid 

loading, protection and release, and surface functionalization for cell targeting and 

internalization. 

 

2.5.1.1 DNA Delivery 

Nonviral carriers for DNA are important systems for delivery to affected cells to 

alter the function of that cell, tissue or organ in the human body to achieve gene therapy 

[212]. Naked or unprotected DNA delivery is the most used nonviral gene delivery systems 

[20]. During DNA delivery, the vehicle must deliver the DNA molecule inside the nuclei 

and should have the capability to pass through/penetrate nuclear pores/walls even when 

they are inside the cells [212]. After reaching into the nuclei, nanoparticles should then 

release the DNA, which then get transcribed to induce the intended response. Thus, there 
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are two kinds of efficiency that in combination determine the overall efficacy of DNA 

delivery process: the fraction of DNA transported to the target site, and the fraction DNA 

that transcribed in nuclei [215]. Thus, and ideal DNA carrier should have the capability of 

penetrating through both cell and nuclear membranes, and MSNPAs can serve this purpose 

as lipid membrane penetration mechanism by charged particles are universal regardless of 

their location. 

2.5.1.2 RNA Delivery 

Double stranded (ds) RNA delivery to silence certain gene expression is called 

RNA interference (RNAi), which is the most prominent RNA delivery reason to date. 

Using this technique, RNAi can be used to silence or alter virtually any gene expression 

and as a result has huge potential to treat some diseases that is otherwise considered 

untreatable [213]. Although longer dsRNA can be delivered, the overwhelming number of 

RNAi application involve small interfering RNA (siRNA), which generally inhibit protein 

translation selectively in order to silence gene expression. The steps and requirements for 

siRNA delivery are similar to that of DNA delivery, except that the delivery site is outside 

of cell nuclei. To date numerous nanoparticle-based siRNA delivery vehicles have been 

investigated in literature including functionalized MSNPs [216, 217]. Recent 

developments in making MSNPs with large pores (as described in Section 2.1) provide 

pore size-based protection along with high loading capacity of siRNA. Hence, RNA is 

selected as model compound in Chapter 7 to study nucleic acid interaction with amine 

functionalized MSNPs.  
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2.5.2 Primary Requirements for Biomolecule Carriers in Cellular Delivery 

As mentioned earlier, nucleic acids and other biomolecules by themselves cannot 

penetrate cell membrane (due to large size and negative charge) and as a result require a 

delivery vehicle to enter into living cells [218]. Efficiency of delivery system primarily 

depends on the quantity of biomolecules loaded for delivery, protection against 

intracellular enzymes (fraction actually reached to delivery sites) and delivery with 

appropriate rates. As a result, three primary necessities should be fulfilled by any delivery 

vehicle in order to act as proper carrier: loading, protection and release, which are discussed 

below in detail. MSNPAs also provide binding sites for fluorescent dye to be used for bio-

imaging during targeted delivery.  

2.5.2.1 Biomolecule Loading 

Loading is the first step for biomolecule delivery, which is performed outside the 

cells in order to load a sufficient amount of biomolecules inside the porous space or cavities 

of nanocarriers. Biomolecule loading inside pores of MSNPs as a function of pore size and 

surface functionalities is highly explored research topics during the recent decades. 

Adsorption was found to be the most widespread method for protein and nucleic acid 

loading in bare and surface functionalized MSNPs [219, 220]. For example, nucleic acid 

interactions with the surface can be divided into three parts: electrostatic interaction, 

solvent reorganization and water release, and H-bonding formation [65, 165]. Conversely, 

protein and enzyme attachment techniques into MSNPs include covalent bonding, 

encapsulation and adsorption. When proteins do not naturally adsorb onto silica surface 

through electrostatic interactions, surface functionalization of MSNPs is used to load 
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proteins [221]. Sometimes loading inside the pores also provides biomolecules the 

conformational stability against adverse surroundings [222]. Another prevalent technique 

is to encapsulate biomolecules during particle synthesis by the addition in sol-gel solution 

with the help of stabilizing agent such as sugars or liposomes [223, 224]. Sometimes amine 

to amine covalent linking is used to load molecules on to silica surface following post 

synthesis amine functionalization of silica surface.  

Normally biomolecule loading by adsorption is quantified by solution-depletion 

methods by UV-vis or fluorescence spectroscopy, whereas recent advances also allow us 

to directly visualize them and measuring their transport inside the pores using confocal 

microscopy [46, 59, 225-228]. Protein loading can also be quantified using standard protein 

assays but this method is not always applicable to short chain peptides. Fluorescently 

labeled biomolecules allow quantification of localization and transport, whereas naturally 

fluorescent compounds can be measured for their activity and transport. 

2.5.2.2 Protection from Enzymatic Hydrolysis 

Once inside living organisms, biomolecule can be degraded by protective enzymes 

(proteases, nucleases, etc.) either in the bloodstream or inside cells, and an ideal 

biomolecule carrier should protect against this action. While pore end capping of MSNPs 

after biomolecule loading was explored for protection, cap opening at target site is a 

significant challenge [229]. On the other hand, pore size dependent protection from 

enzymatic hydrolysis is carried out by selecting a pore size large enough to accommodate 

selected biomolecules while blocking degradation enzymes’ entry into the pore [220]. Pore 

size-dependent nucleic acid protection is presented schematically in Figure 2.11, which 
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shows that an optimum pore size (larger than nucleic acid molecular diameter but less than 

the size of nuclease molecules) is required for protection. Smaller pore size only allows 

adsorption on outer surface of the particles, whereas very large pores permit enzymes to 

enter into the pores, and in both of these cases adequate protection is not provided. 

 
Figure 2.11  Schematic diagram of pore size dependent nucleic acid loading and protection 

from cellular enzymes. 

 

2.5.2.3 Controlled and Targeted Intracellular Release 

Release is the final step in the biomolecule delivery process that culminates a 

delivery process starting from nanoparticulate carrier design. Engineered MSNPs are 

potent controlled release carriers, in which controlled targeted release can be obtained by 
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pH, light, temperature, redox, competitive binding, biological inputs and chemical signal 

switched release [230]. Besides these single-responsive release systems, researchers have 

developed multiple responsive controlled release systems where two or more stimuli 

simultaneously trigger release [24]. Biomolecule release from bare MSNPs is highly 

dependent on the diffusional rate of drug release from the pores, so the pore structure and 

pore orientation are extremely important in designing MSNP-based delivery systems [18, 

231-233]. However, non-functionalized MSNPs cannot block the pores to prevent 

premature drug release. Several surface engineering techniques have evolved to bind the 

molecule tightly or block the pores for cargo release upon responding to external stimuli. 

One strategy for controlled and targeted drug release is to use biodegradable polymeric 

drug carrier, where drug release is induced by hydrolytic degradation. Any surface 

functional group that has strong electrostatic interaction with a biomolecule slows down 

the release rate thus providing opportunity of a slow release, whenever needed [234]. 

Nucleic acids are primarily bound to MSNPAs using electrostatic interaction and surface 

bound nucleic acids are mobile, which should enable their release, with control based on 

loading quantity and surface functionalization. Double stranded (ds) RNA adsorption 

thermodynamics and its relationship to effective release will be explored further in 

Chapter 7.
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CHAPTER 3. ADSORPTION AND RECOVERY OF POLYPHENOLIC 

FLAVONOIDS USING TiO2 FUNCTIONALIZED MESOPOROUS SILICA 

NANOPARTICLES  

Reproduced with permission from Khan, M.A. et al., ACS Appl. Mater. Interfaces 2017, 

9, 37, 32114-32125. Copyright 2017 American Chemical Society. 

 

3.1 Summary 

Exploiting specific interactions with titania (TiO2) has been proposed for the 

separation and recovery of a broad range of biomolecules and natural products, including 

therapeutic polyphenolic flavonoids which are susceptible to degradation, such as 

quercetin. Functionalizing mesoporous silica with TiO2 has many potential advantages 

over bulk and mesoporous TiO2 as an adsorbent for natural products, including robust 

synthetic approaches leading to high surface area, stable separation platforms. Here, TiO2 

surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and 

characterized as a function of TiO2 content (up to 636 mg TiO2/g). The adsorption 

isotherms of two polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 

mg/mL in ethanol), and a 100-fold increase in the adsorption capacity was observed 

relative to functionalized nonporous particles with similar TiO2 surface coverage. An 

optimum extent of functionalization (approximately 440 mg TiO2/g particles) is interpreted 

from characterization techniques including grazing incidence x-ray scattering (GIXS), high 

resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which 

examined the interplay between the extent of TiO2 functionalization and the accessibility 

of the porous structures. The recovery of flavonoids is demonstrated using ligand 

displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% 



 

 

74 

 

recovery can be achieved in a multistep extraction process. The radical scavenging activity 

(RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-

picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention 

of antioxidant activity by both particle-bound and recovered quercetin. These mesoporous 

titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially 

deliver degradation-sensitive natural products to biological systems.   
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3.2 Introduction 

The interaction of titania (TiO2) with specific biomolecules (peptides such as 

histidine, catechols, dopamine, reactive dyes and various other nitrogen containing 

compounds) has been exploited for their analysis, separation and recovery [113, 235-238]. 

For example, concentration and subsequent analysis of phosphoproteins [239, 240], 

phosphopeptides [241, 242] and phospholipids [243] from mixtures has been achieved by 

exploiting the specificity of bidentate complexation of phosphates to TiO2-based 

adsorbents. Similarly, the ability to selectively concentrate and separate some polyphenolic 

flavonoids (such as quercetin and its derivatives), presumably through bidentate 

coordination of the 3', 4'-dihydroxy (catechol) moiety with Ti, has also been demonstrated 

using bulk TiO2 or TiO2-functionalized platforms [15, 244, 245]. Designing processes for 

the recovery and delivery of therapeutic secondary plant metabolites, such as the anti-

oxidant quercetin, is of particular interest on the basis of their anti-tumor, anti-thrombosis, 

anti-inflammatory, anti-cancer properties, and their applications to the reduction of 

oxidative stress and cardiovascular diseases [246-249]. The medicinal uses of quercetin 

and other secondary plant metabolites are of increasing interest due to recent advances in 

drug delivery that enhance their stability and bioavailability [250-252]. While TiO2-based 

adsorbents can be used to recover compounds from plant extracts following conventional 

solvent extraction [253, 254], direct adsorption of polyphenolic flavonoids on TiO2 

nanoparticles in plant cell tissues suggests an alternative approach to metabolite recovery, 

a technique called “nanoharvesting” [15]. 

While bulk TiO2 nanoparticles have been synthesized and demonstrated for 

biomolecule adsorption [236, 255], mesoporous TiO2 nanomaterials with high surface area 
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are potentially a more efficient platform to achieve large scale biomolecule separation 

process. However, the synthesis of mesoprous TiO2 nanoparticles is non-trivial due to rapid 

hydrolysis of TiO2 precursors, uncontrollable crystallization during thermal treatment and 

structural breakdown at high temperature resulting in low specific surface area (~100 m2/g) 

[256, 257]. To overcome this limitation of using TiO2 alone, TiO2 can be grafted onto 

mesoporous silica nanoparticles (MSNPs), which have high surface areas (> 600 m2/g 

[258]), tunable pore structures and particle sizes, and are readily functionalized to tailor 

their surface properties. MSNPs are broadly applied in catalysis, chromatography, 

biomolecule loading, separation and drug-delivery based on advances in metal oxide 

synthesis and surface functionalization [29, 46, 59, 259]. To exploit the properties of 

hydrophilic silica nanoparticles for the recovery of hydrophobic plant metabolites, 

functionalization of silica with groups that specifically bind the metabolites is required [34, 

260]. The current study combines the high surface area and controlled pore structure of 

MSNPs with the specificity of TiO2 for polyphenolic flavonoids to design TiO2-

functionalized MSNPs (MSNPT) for biomolecule recovery.  

Previous efforts to functionalize mesoporous silica with TiO2 have primarily 

targeted the adsorption and photo-degradation of organic compounds such as pollutants 

[114, 258, 261, 262]. Thus, the incorporation of TiO2 in MSNPs has involved high 

temperature calcination of the materials after composite formation to achieve maximum 

nanocrystalline anatase TiO2, the most photo-catalytically active form. This crystallization 

process has the net effect of reducing the TiO2 surface coverage. In contrast, highly 

dispersed amorphous TiO2, which favors adsorption applications, can be obtained in the 

absence of calcination [263, 264]. In addition to post-synthesis surface modification, 
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alternative techniques for metal oxide incorporation in MSNPs include nanoparticle 

impregnation and metal oxide layer deposition inside the mesopores, processes that are 

complicated and expensive for the synthesis of bulk adsorbent materials [265-267]. In 

contrast, our laboratory has previously applied a TiO2 functionalization procedure on 

nonporous Stöber silica nanoparticles (SNP, average particle diameter 450 nm) by 

following a modified version of the method reported by Hanprasopwattana et al. [268], in 

which TiO2 was deposited on particle outer surface as a layer by one-pot hydrolysis of 

precursor titanium (IV) ethoxide (TEO) [244]. A maximum quercetin adsorption of 2 mg 

quercetin/g particle was observed at near-monolayer coverage for these TiO2-

functionalized SNPs (SNPT). Moreover, the radical scavenging activity of particle-bound 

quercetin was compared with that of free quercetin and the effect of binding with TiO2 on 

quercetin activity was found to be minimal. However, desorption and recovery of active 

flavonoids from the TiO2 functionalized surface was not investigated. 

Here, TiO2 functionalized mesoporous silica nanoparticles (MSNPT), broadly 

applicable as advanced adsorbents for biomolecules that interact with TiO2 through 

bidentate binding, are synthesized and characterized with a goal of relating the extent of 

amorphous TiO2 functionalization to TiO2 accessibility and pore morphology. Specifically, 

the effects of functionalization on particle surfaces, pore order, and pore accessibility are 

studied by high resolution-transmission electron microscopy (HRTEM), grazing incidence 

small angle x-ray scattering (GISAXS) and nitrogen adsorption. Also, the amorphous 

nature of the incorporated TiO2 (thought to indicate high dispersion for biomolecule 

adsorption) is confirmed by grazing incidence wide angle x-ray scattering (GIWAXS). For 

the model polyphenolic flavonoids, quercetin and rutin, the characterization techniques 
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were used to interpret the observed adsorption behavior as a function of extent of the TiO2 

functionalization. Solvent systems compatible with MSNPTs were developed for the 

recovery of flavonoid from the flavonoid-TiO2 complexed nanoparticles using ligand 

displacement by ethanolic citric acid, expected to be a generalizable approach to 

biomolecule recovery. Specific to the stability concerns with flavonoids, the radical 

scavenging activity (RSA) of particle-bound and recovered quercetin shows the retention 

of activity throughout the adsorption and desorption steps. 
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3.3 Materials and Methods 

3.3.1 Chemicals and Reagents 

Tetraethyl orthosilicate (TEOS, 99%) and H2O2 (35 wt% in water) were obtained 

from Acros Organics; tri-block copolymer Pluronic F127 (bio-grade), quercetin (≥ 95%, 

HPLC grade), rutin (> 95%), citric acid (≥ 99.5%) and titanium (IV) ethoxide (TEO, 

technical grade) from Sigma-Aldrich; 2,2-diphenyl-1-picrylhydrazyl (DPPH, 95%) from 

Alfa-Aesar; cetyltrimethylammonium bromide (CTAB, 99.8%) from MP Biomedicals; 

ethyl acetate (≥ 99.5%) from EMD Millipore; acetone (≥ 99.5%) from BDH analytical; and 

Nochromix powder, titanium reference solution (1000 ppm in 10% HCl), ethanol (200 

proof), acetonitrile (HPLC grade), methanol (HPLC grade), ultrapure deionized ultra-

filtrated (DIUF) water, H2SO4 (95-98% in water), 12 N HCl (ACS grade), and 29.3 wt% 

NH4OH solution from Fisher Scientific. 

3.3.2 Mesoporous Silica Nanoparticle (MSNP) Synthesis 

Ordered mesoporous silica nanoparticles were synthesized by a modified Stöber 

method based on the method of Kim et al. [69], where CTAB was used as a structure 

directing agent and TEOS and F127 as silica source and dispersing agent, respectively. 

Initially 0.5 g of CTAB and 2.05 g of F127 were dissolved in a mixture of 96 mL of DIUF 

water, 43.1 mL of ethanol and 11.9 mL of NH4OH solution (29.3 wt%) and the solution 

was stirred until solutes dissolved completely. Then, 1.9 mL of TEOS was added to the 

solution and stirred vigorously for exactly 1 min at room temperature. The solution was 

then aged for 24 h without stirring at room temperature for complete silica condensation. 

The particles were removed from the solution using a high-speed centrifuge (Beckman-
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Coulter) at 17,000 rpm and were washed 3 times with DIUF water and ethanol with 

intermittent centrifugation, and dried at 80 ºC in air overnight. Finally, template free silica 

particles were obtained by washing in 200 mL acidic ethanol (HCl, 1.5 M) for 24 h (acidic 

ethanol wash) followed by repeated centrifugation and washing with DIUF water and 

ethanol. Template free particles were dried overnight at 84 ºC. 

3.3.3 Nonporous Stöber Particles (SNP) Synthesis 

SNPs were synthesized according to the method reported by Bogush et al. [51]. 10 mL 

of DIUF water and 6.75 mL of 28.5% NH4OH (0.5 M in ethanol) were added to 183 mL 

of ethanol. The solution was stirred for 5 min. Then, 7.6 mL of TEOS was added rapidly 

and the solution stirred for 24 h at room temperature. The particles were separated from 

the solution by centrifugation (17,000 rpm) followed by washing with DIUF water and 

ethanol 3 times. Finally, separated particles were dried in an oven at 84 ºC overnight. 

3.3.4 TiO2 Functionalization 

MSNP were functionalized with TiO2 according to a modified version of the method 

used by Schlipf et al. and originally reported by Hanprasopwattana et al., using TEO as the 

TiO2 precursor [244, 268]. A 100, 400, 600, 900, 2000, or 2600 µL  of TEO in 7.15 mL of 

ethanol were prepared in a nitrogen-filled glove bag. In a 250 mL round bottom flask, 500 

mg MSNP was sonicated in 100 mL of ethanol for 15 min before 142.5 mL of ethanol was 

added and the solution in the round bottom flask was heated with continuous magnetic 

stirring. Once the solution started boiling, the previously prepared TEO solution and 1.62 

mL of DIUF water were added to the flask and the solution was refluxed (78 ºC) for 1.5 h 
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under vigorous mixing. The particles were then removed from solution by centrifugation 

(17,000 rpm) and washed with ethanol 3 times. Final particles were washed in ethanol 

overnight to remove excess unbound TiO2, and dried overnight at 84 ºC. 

SNPs were functionalized by the same method as MSNPs but 100 μL or 600 μL of 

TEO were used instead. After functionalization, particles were centrifuged with repeated 

ethanol washing followed by overnight stirring in ethanol and drying overnight at 84 °C. 

3.3.5 Nanoparticle Characterization 

The morphology and shape of bare and functionalized particles were characterized 

using a Hitachi S-4300 Scanning Electron Microscope (SEM). The samples for SEM 

characterization were prepared by dispersing the particles onto double sided carbon tape 

attached to a 15 mm aluminum stub. Samples were dried in a desiccator for 24 h after 

excess silica materials were blown off with dry nitrogen gas. Prior to analysis, the samples 

were coated with Au-Pd alloy using an Emscope SC400 sputtering system. Average and 

standard deviation of particle diameters were calculated by considering 20 random particles 

analyzed using ImageJ Software. Transmission electron microscopy (TEM), high 

resolution (HR) TEM and scanning transmission electron microscopy (STEM) imaging 

were performed using a JEOL 2010F TEM at a voltage of 200 kV. Samples were prepared 

3 days in advance by sonicating approximately 5 mg of particles in 2 mL of ethanol for 15 

min. Then a lacey carbon 300 mesh copper grid (Ted Pella, 01895-F) was dipped into the 

particle solution for 2-3 seconds, briefly dried in air, and left in a desiccator for 3 days 

before analysis. Average pore diameter, pore size distribution and surface area were 

estimated from nitrogen adsorption conducted at -196 ºC using a Micromeritics TriStar 300 
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instrument. Samples were degassed at 135 ºC for a minimum of 4 h under flowing dry N2 

gas before the adsorption experiment. The specific surface area was estimated using the 

Brunauer, Emmett and Teller (BET) isotherm, and average pore diameter and pore size 

distribution were estimated by the method of Barrett, Joyner and Halenda (BJH) using the 

adsorption branch. Micropore volume and external surface area were estimated using the 

method described in Jaroniec et al. [269]. To confirm the successful removal of surfactant 

from MSNP pores, Fourier transform infrared (FTIR) spectroscopy was conducted using a 

Thermo Nicolet Nexus 470 with a deuterated triglycine sulfate (DTGS) detector before and 

after acidic ethanol wash. For the analysis, 0.5 g of anhydrous KBr was mixed with 

particles (0.5-1.0 wt %) and the mixture was crushed using a mortar and pestle. A small 

amount of sample was pressed in a die until it became a translucent, rigid pellet. The pellet 

was then placed in a FTIR pellet holder, purged with dry nitrogen, and a spectrum collected 

in transmission mode. Energy dispersive x-ray spectroscopy (EDS) elemental mapping 

were carried out for MSNPT using a Zeiss EVO MA-10 SEM. The samples for EDS 

measurements were prepared using exactly the same method as SEM samples, but 12.7 

mm aluminum stubs were used instead of 15 mm. A Bruker-AXS D8 Discover 

diffractometer at a x-ray wavelength of 1.54 Å (scanning speed of 0.5 °/min in 2θ 

increments from 1.5º to 6º) was used to perform low angle XRD analysis after putting the 

particles in a powder sample holder and tapping flat with a spatula. The data was analyzed 

with the Bruker Diffrac-Suite software. 

The grazing incidence small-angle x-ray scattering (GISAXS) and grazing 

incidence wide angle x-ray scattering (GIWAXS) patterns of particles were collected in 

order to determine the mesostructure and crystallinity of incorporated TiO2. GISAXS and 



 

 

83 

 

GIWAXS experiments were conducted separately at the Advanced Photon Source at 

Argonne National Laboratory at beamline 8-ID-E using an x-ray wavelength of 1.148 Å 

(10.82 keV) [270]. Nanoparticle samples were prepared 3 days in advance by sonicating 5 

mg of particles in 2 mL of water and dispersing the solution on a borosilicate glass slides 

(Fisher Scientific) cleaned with Nochromix solution, prepared by following the 

instructions of the supplier. The samples were mounted on the sample holder and the holder 

was put in a vacuum chamber. X-rays were allowed to enter the chamber through a mica 

window and was incident on the samples. Scattered x-ray exited the chamber through a 

Kapton window and data were collected with a Pilatus 1M pixel array detector for 10 sec 

exposure time.  The sample to detector distance was 2185 and 228 mm for GISAXS and 

GIWAXS, respectively. GISAXS and GIWAXS patterns were collected at 0.20° and 0.17° 

incident angle, respectively, at room temperature. The beam size was 100 µm × 50 µm 

(H×V) and 200 µm ×20 µm (H×V) for GISAXS and GIWAXS, respectively. Images were 

corrected for detector nonuniformity and converted to q-space using the GIXSGUI package 

for MATLAB [271]. Integrated profiles of x-ray intensity vs. q were computed from the 

2D GISAXS and GIWAXS patterns after integration along the polar angle in the detector 

plane (ϕ) using the GIXSGUI package. 

3.3.6 Chemical Analysis of Titanium Content 

The amount of TiO2 on the functionalized particles (both MSNP and SNP) surface 

was quantified by a sulfuric acid / hydrogen peroxide assay [244, 272]. 25 mg of TiO2-

functionalized particles were mixed vigorously with 25 mL of 2 M H2SO4 for 20 min at 90 

ºC and then the solution was filtered through a PTFE syringe filter (0.02 µm). 1µL of H2O2 
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solution was added to 1 mL of the resulting filtrate, and the mixture was allowed to sit. 

After 10 min, the absorbance of the resultant yellow solution was measured using a BioTek 

(Winooski, VT) plate reader at 407 nm. The absorbance was compared with a calibration 

curve previously prepared with titanium reference solution, to find the amount of TiO2 on 

silica particles. Particles were named according to the measured amount of TiO2 (mg/g 

particle) for convenience, i.e. when X mg TiO2 is present per g MSNP, it is called MSNPT-

X and Y mg TiO2 is present per g SNP, it is called SNPT-Y. To quantify the potential 

leaching of TiO2 from the functionalized MSNPs into solution during quercetin recovery, 

fuming sulfuric acid was added to particle free solution to achieve a final solution 

concentration of sulfuric acid of 2 M. After 30 min of digestion, the amount of TiO2 in 

solution was determined by UV-Vis spectrophotometry by the same method used after 

particle dissolution in 2 M H2SO4. 

3.3.7 Flavonoid Adsorption 

Adsorption of flavonoids quercetin and rutin on MSNPTs was measured by 

following similar procedure used by Schlipf et al. [244]. The UV-Vis absorbance of 

quercetin and rutin (371 and 369 nm, respectively) in ethanol was used to quantify the 

concentration of flavonoids in solution. For adsorption experiments, 25 mg of particles 

were pre-wetted under vortex mixing in a series of 2 mL centrifuge tubes with 1 mL of 

ethanol for 24 h, centrifuged for 5 min at 17000×G in an AccuSpin Micro 17 centrifuge 

(Fisher Scientific) and supernatants were discarded. Then, 1 mL of flavonoid solutions in 

ethanol (0.05-10 mg/mL) were added to these pre-wetted particles. After vortex mixing for 

24 h in the dark, the particles were centrifuged again and 200 µL of supernatant was 
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analyzed using the plate reader. The initial flavonoid solution was also analyzed in the 

same way and a calibration curve was plotted, which was used to find the amount of 

adsorbed flavonoid on to the particle surface by solution depletion using Equation A.1 

(Appendix A). 

3.3.8 Quercetin Recovery from MSNPs 

Quercetin loaded particles were re-suspended in 1 mL of different solvents (ethyl 

acetate, acetone, acetonitrile, 1% w/v HCl in ethanol, 1% w/v HCl in methanol and 1-40% 

w/v citric acid in ethanol) intended for quercetin recovery. After 24 h of vortex mixing, the 

particles were centrifuged and the supernatant was analyzed in the well plate reader by 

same method as adsorption. The amount of quercetin retained on the particles and percent 

recovery was estimated by subtracting the recovered amount from the initial amount of 

quercetin present on the particle using Equation A.2 and A.3.  

3.3.9 Activity Determination for Free, Particle Bound and Recovered Quercetin 

The activity of quercetin in ethanol solution (fresh quercetin), was determined by 

mixing 100 µL of quercetin solution in ethanol (0-0.5 mg/mL) with 1 mL of 2,2-diphenyl-

1-picrylhydrazyl (DPPH) solution (0.1 mg/mL) in ethanol in 2 mL vials. The vials were 

covered and after 10 min of reaction in the dark, the absorbance was measured at 517 nm 

(DPPH solution absorbance peak). The initial DPPH absorbance was measured by adding 

100 µL of ethanol with 1 mL of DPPH solution (0.1 mg/ml). Radical scavenging activity 

(RSA) was calculated from the percent decrease in DPPH absorbance according to 

Equation A.4. The activity of quercetin recovered from MSNPTs in 20% w/v ethanolic 

citric acid solution (recovered quercetin) was measured by an identical procedure, where 
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the quantity of quercetin in the ethanolic citric acid solution was known (Section 3.3.8). 

Control experiments were performed with only ethanolic citric acid solution (20% w/v) to 

demonstrate that citric acid in ethanol does not possess any RSA. For RSA measurement 

of particle-bound quercetin, quercetin-containing particles with a known amount of 

quercetin were dispersed in ethanol (1 mL) by sonication so that the final concentration of 

quercetin in the particle solution is known. 100 µL of the particle solution was added to 

DPPH solution and activity of particle bound flavonoid was measured using the same 

method. RSA of MSNPTs (without quercetin) were also measured for comparison and the 

activities of recovered and particle-bound quercetin reported relative to the corresponding 

amount of fresh quercetin. Adsorption, desorption and activity measurements were 

performed in triplicate.  
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3.4 Results and Discussion 

3.4.1 Material Characterization 

MSNPs were synthesized by a modified Stöber method using CTAB as structure 

directing compound, and TEOS and pluronic F127 as silica precursor and dispersing agent, 

respectively. Successful removal of the surfactants was confirmed by FTIR analysis 

(Appendix Figure A.1). The disappearance of CH2 stretching bands (2800-3000 cm-1) 

from CTAB after acidic ethanol washing indicates the complete removal of the surfactant. 

Specific surface area, average pore diameter and pore volume of the particles were 

determined using nitrogen adsorption (Table 3.1). The average pore diameter was 2.8 ± 

0.23 nm, which is in the expected range of literature values when CTAB is used as structure 

directing agent [273]. The specific surface area determined by the BET method was 950 ± 

51 m2/g and the BJH pore volume from the adsorption branch was 1.21 ± 0.09 cm3/g for 

non-functionalized MSNP. 

Table 3.1  BET specific surface area, BJH pore volume and average pore diameter of TiO2 

functionalized and non-functionalized mesoporous silica nanoparticles. 

Particle Type BET Surface 

Area (m2/g) 

BJH Pore 

Volume (cm3/g) 

Average Pore 

Diameter 

(nm) 

MSNP 950 ± 51 1.21 ± 0.09 2.8 ± 0.23 

MSNPT-59 850 1.03 2.6 

MSNPT-140 790 0.81 2.5 

MSNPT-162 780 0.77 2.4 

MSNPT-270 640 0.57 2.4 

MSNPT-425 630 0.59 2.2 

MSNPT-636 260 0.23 2.1 

SNP 16 - - 

 

Following template removal, MSNPs were functionalized with TiO2 by the 

hydrolysis of TEO, yielding MSNPTs. Different degrees of functionalization were 
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achieved by varying the amount of TEO. The quantity of grafted TiO2 on the MSNP surface 

was determined following chemical dissolution of the particles, and by EDS elemental 

analysis of the MSNPTs (results reported in Appendix Table A.1). Both methods agree 

within statistical limits, but EDS measurements had greater uncertainty. Thus, the reported 

extents of TiO2 functionalization are based on the bulk measurement of TiO2 content 

determined from chemical analysis (see Section 3.3.6 for the naming convention of 

functionalized particles). 

The amount of TiO2 incorporated on the particles (mg TiO2/g particle) after 

functionalization are reported in Figure 3.1. An approximately linear relationship between 

the amount of TEO used and degree of functionalization on nonporous silica particles 

(SNPs) has been observed previously [244] and appears to describe the extent of 

functionalization of MSNP up to 4.3 g TEO/g particle. A greater degree of 

functionalization is found for 5.7 g TEO/g particle. 

 

Figure 3.1  Amount of TiO2 grafted onto MSNPTs as a function of the amount of precursor 

(TEO) used for functionalization. Results were measured in triplicate by chemical analysis 

of dissolved MSNPTs. 
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The effect of the degree of TiO2 functionalization on particle morphology was 

examined using scanning electron microscopy (SEM). MSNPs before and after TiO2 

functionalization were spherical in shape (Appendix Figure A.2). Changes in the average 

diameter of the MSNPs with functionalization were within the batch to batch variation of 

the synthesized MSNPs, with an initial diameter of 165 ± 19 nm (Table A.1). From TEM 

images of bare and functionalized particles (Figure 3.2), nonfunctionalized MSNPs show 

highly ordered cubic structures. This ordered mesostructure was also visible for lower 

degree of functionalization (MSNPT-59 and MSNPT-110), but is not apparent with higher 

incorporation of TiO2 in the nanostructures (MSNPT-270 (Figure 3.2d) and greater). 

Starting with MSNPT-110, increasing TiO2 functionalized resulted in increasing 

nanocrystal growth at the exterior of the nanoparticles. In the case of MSNPT-636 (Figure 

3.2e), a continuous outer layer of TiO2 is observed. The size of the nanocrystals was 

observed to increase with increasing TiO2 functionalization, as determined by high 

resolution (HR) TEM (Appendix Figure A.3). Dark-field STEM, in conjunction with EDS 

spectral line scan was used to further verify the uniform distribution of TiO2 inside the 

particles (Appendix Figure A.4 for MSNPT-110). Although uniformly distributed, the 

presence of the outer nanocrystals/layer complicates a straightforward quantification of 

TiO2 only inside the mesopores. The effect of porosity on functionalization was examined 

by incorporating TiO2 on the surface of nonporous SNPs (190 ± 30 nm), at both 5.4 mg 

and 13.7 mg of TiO2/g particles. At similar grafting conditions, the nonporous particles 

incorporated an order of magnitude less TiO2 than MSNPs (Appendix Figure A.5). TEM 

images for SNPT-13.7 shows no nanocrystal growth for nonporous particles (Figure 3.2f) 
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or corresponding increase in particle diameter, and the smoothness of the surface of SNPT-

13.7 was verified using HRTEM (Appendix Figure A.6). 

 

Figure 3.2  TEM images of (a) bare MSNP, (b) MSNPT-59, (c) MSNPT-110, (d) MSNPT-

270, (e) MSNPT-636 and (f) SNPT-13.7 (scale bar = 100 nm for all images). 

 

The analysis of surface area, pore properties and TEM images of MSNPTs provide 

a consistent picture of the effect of increasing TiO2 grafting in these porous materials. N2 

sorption analysis of the MSNPTs indicates that the surface area, average pore diameter, 

and pore volume decrease with increasing TiO2 loading (Table 3.1). Figure A.7a shows 

that the N2 sorption isotherm for MSNP is a type IV isotherm with clear capillary 

condensation, which indicates uniform mesoporosity [69]. The capillary condensation step 

was retained for MSNPT-59, but for all other MSNPTs, a sharp capillary condensation step 

was not evident, consistent with broadening and a reduction in total pore volume in the 

pore size distributions (Figure A.7b). Standard reduced adsorption (αs) plots drawn using 

100 nm

(a) (b) (c)

(d) (e) (f)



 

 

91 

 

literature procedures [269, 274] (Figure A.7c) indicate no micropores (< 2 nm [274]) in 

any MSNPTs, and the external surface area decreases gradually with increasing TiO2. The 

gradual reduction in surface area and pore diameter and absence of microporosity with 

increasing functionalization are consistent with monolayer-like coverage in the pores, and 

the TEM images of MSNPT-110 (Figure 3.2c) indicates uniform incorporation of TiO2 

inside of its mesopores. Table 3.1 also shows that BET surface area and BJH pore volume 

decrease dramatically for MSNPT-636 (to 255 m2/g and 0.23 cm3/g) after decreasing 

gradually up to MSNPT-425 (to 629 m2/g and 0.59 cm3/g). From TEM images (Figure 

3.2e), we can see that a full layer of TiO2 encapsulates MSNPT-636, leading to a large drop 

in pore accessibility. Prior studies of TiO2 loading onto mesoporous silica mostly used high 

temperature calcination to obtain anatase TiO2, but consistent with our observations, they 

show that surface area, pore size and pore volume decrease with higher TiO2 loading [258, 

261, 275]. Complete encapsulation with a high amount of amorphous TiO2 loading is 

surprising, and has not previously been reported for anatase TiO2, even when use of a large 

amount of precursor (10 g per g particles) caused a precipitous drop in surface area (987 to 

157 m2/g), as reported by Chendrowski et al. [276].  

Mesostructure disruption within mesoporous silica after anatase TiO2 loading has 

been reported based on a reduction in intensity of the small angle XRD peak after loading 

[258, 272, 275]. Here, only low temperature treatments were used, and GISAXS 

experiments were conducted to observe the effects of amorphous TiO2 loading on 

mesopore ordering. Appendix Figure A.8 shows GISAXS patterns of MSNPs before and 

after functionalization with different amounts of TiO2. For bare MSNP, the GISAXS 
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pattern shows concentric semicircular rings of uniform intensity (also inset of Figure 3.3a) 

as expected for a layer of isotropically oriented particles on the glass substrate.  

Integrated 1D patterns were extracted from 2D GISAXS images by angular 

integrating (0º < ϕ < 180º) using GIXSGUI MATLAB software, and intensity was plotted 

as a function of the magnitude of the scattering vector q in Figure 3.3a. The integrated 

GISAXS profile for MSNPs showed diffraction peaks at q = 0.18 Å-1 and 0.21 Å-1, indexed 

to the (211) and (220) reflections, which in conjugation with the small angle XRD profile 

(Appendix Figure A.9, indexed as 211, 220, 321, 400, 420 and 332 reflections) indicative 

of a Ia3̅d cubic mesoporous structure [277], (Figure 3.3a) consistent with other reports of 

cubic mesostructure prepared using CTAB [69]. GISAXS peaks diminish in intensity 

gradually with increasing TiO2 loading. This may be caused both by a reduction in contrast 

between silica framework and (TiO2-coated) pores, and a reduction in long-range order. 

The curve for MSNPT-59 is similar to MSNP, except with broader peaks and smaller d-

spacing. MSNPT-110 is a mixture of poorly resolved phases (two broad peaks overlapping) 

and no mesophase could be assigned at higher TiO2 loadings (Figure 3.3a). Peak 

broadening indicates that the coherence length contributing to scattering decreases with 

increasing TiO2 functionalization. The average number of layers contributing to a 

diffraction peak, N, was quantified by Scherrer analysis adapted to GISAXS [278]. For 

MSNP,  N was calculated to be 29, while N decreased to 16 for MSNPT-59, and even 

further (N = 12) for higher functionalization (MSNPT-110 and higher). Although the 

presence of TiO2 reduced diffracted intensity for higher functionalization (> MSNPT-59), 

cubic structures are assumed for quantification of structural properties for all particles.  
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The d-spacing, lattice constant and pore wall thickness calculated from GISAXS 

peaks and BJH pore diameter for MSNP and MSNPTs are presented in Appendix Table 

A.2. The reduction in coherent scattering length and d-spacing suggests some degree of 

restructuring of the silica matrices during the solvothermal functionalization process. The 

estimated wall thicknesses calculated for cubic mesostructures [69] were validated by 

measuring them directly from TEM images as shown in Appendix Figure A.10 and were 

in good agreement. The cubic lattice constant and pore wall thickness decrease gradually 

with increasing TiO2 functionalization (Appendix Table A.2). Since all MSNPTs 

underwent the same hydrothermal treatment but different pore sizes and wall thicknesses 

were found, the changes in these characteristics were caused by the presence of TiO2, which 

is consistent with TiO2 being deposited into the mesopores of the MSNPTs.  
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Figure 3.3  Integrated data from (a) GISAXS and (b) GIWAXS pattern (incident angles, αi 

= 0.20º and 0.17º, respectively) showing change of mesostructured and crystallization of 

MSNP after TiO2 functionalization. The insets show (a) the 2D GISAXS pattern of non-

functionalized MSNP and (b) 2D GIWAXS pattern of TiO2 functionalized MSNP with 

highest crystallization (MSNPT-362). Miller indices are for (a) cubic mesostructure and 

(b) anatase TiO2 crystalline phase, respectively. 
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Among possible modes of metal oxide incorporation into mesoporous materials, 

formation of a dispersed amorphous oxide layer inside the mesopores is highly desirable 

for biomolecule adsorption, but difficult to synthesize and characterize [264, 265]. In order 

to ensure maximum dispersed phase, we identified and evaluated the crystalline phase of 

TiO2 after functionalization using GIWAXS. Although TEM images indicate some TiO2 

nanocrystallites in MSNPT-110 (Figure 3.2c and Figure A.3b), 2D GIWAXS patterns 

(Appendix Figure A.11) do not indicate significant crystallinity up to MSNPT-198, 

suggesting that those samples contain primarily amorphous TiO2. With increasing TiO2 

functionalization, GIWAXS crystallinity was first found for MSNPT-270, intensified for 

MSNPT-362 and diminished slightly for MSNPT-425. For MNSPT-636, no crystallinity 

was detected. This observation is in contrast with the literature involving anatase TiO2 

loading on mesoporous silica, where crystallinity generally continues to increase with 

increasing TiO2 [258, 261, 262, 272]. Integrated GIWAXS patterns are presented in Figure 

3.3b. The broad feature in the GISAXS profiles from 1.0 ≤ qy ≤ 2.6 is from amorphous 

material combined with the borosilicate glass slide (Appendix Figure A.12). The 

integrated profiles for MSNPT-270, 362 and 425 contain sharp diffraction peaks at q values 

of 1.79 Å-1, 2.66 Å-1, 3.30 Å-1 and 3.73 Å-1, indexed to the (101), (004), (200) and (211) 

planes of anatase TiO2, respectively [279]. GIWAXS analysis of SNPT showed no 

crystallinity for any degree of functionalization (data not shown), indicating that crystalline 

TiO2 is able to form at the exterior of MSNPT at high loadings due to the presence of 

mesopores.  

Average crystallite size was calculated using the Scherrer equation modified for an 

area detector as described by Smilgies [278]. The average nanocrystal sizes were estimated 
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to be 7.4 nm, 10.3 nm and 6.2 nm for MSNPT-270, MSNPT-362 and MSNPT-425, 

respectively. Since the calculated average nanocrystal size is larger than the average pore 

diameter of bare MSNP and no crystallinity was detected for the highest loading (636 mg 

TiO2/g particles), anatase TiO2 formed only on the outer MSNP surface. In contrast, TiO2 

deposited inside the mesopores (e.g. MSNPT-59, Figure 3.2b) is not crystalline and 

perfectly suitable for biomolecule adsorption. 

3.4.2 Flavonoid Adsorption on MSNPTs 

The effect of extent of functionalization on the performance of the MSNPTs as 

adsorbents for biomolecules was examined for the model system of quercetin, a plant-

derived polyphenolic flavonoid which is capable of bidentate binding with TiO2 via the 

catechol moiety, resulting in a color change upon binding [15]. Binding of a second plant-

derived flavonoid, rutin (quercetin-3-o-rutinoside, Appendix Figure A.13), was also 

investigated to understand the effect of glycosylation. Flavonoid adsorbed on MSNPTs 

was quantified by solution depletion and adsorption isotherms constructed as a function of 

equilibrium concentration. Figure 3.4 presents the adsorption results for both quercetin 

and rutin on MSNPT-86 per g particle. The isotherms exhibit saturation behavior, as 

described by Langmuir isotherms (Equation A.5 and summarized in Table A.3), where 

qm accounts for maximum monolayer sorption and KL accounts for solute-solid binding 

affinity. Similar binding constants were determined for quercetin and rutin adsorption on 

MSNPT-86 (KL of 10.6 mL/mg and 13.2 mL/mg, respectively). This similarity is consistent 

with literature indicating that flavonoids do not use the 3-hydroxy group in the C-ring 

(where rutin is glycosylated) for TiO2 chelation [280], unlike some other metal 
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complexation (i.e. quercetin-Ag chelation reported by Jurasekova et al. [281]). The 

maximum loading of rutin was approximately 40% of that of quercetin on a molar basis, 

which may reflect its larger size and therefore the larger surface area it occupies relative to 

quercetin. Given that the isotherms suggest a similar mechanism of binding of the two 

flavonoids, quercetin is the focus of the remaining binding studies. 

 

Figure 3.4  Comparison between quercetin and rutin adsorption isotherms for MSNPT-86 

(data points and solid line represent experimental values and corresponding Langmuir fit, 

respectively). 

 

Quercetin adsorption isotherms on MSNPT of varying TiO2 content are presented 

in Figure 3.5a. Bare silica nanoparticles have very little affinity towards hydrophobic 

polyphenolic flavonoids (maximum capacity 0.7 mg quercetin/g particle). The adsorption 

capacity of the particles increases steadily with the grafted TiO2 amount up to a maximum 

of 232 mg quercetin/g particle for MSNPT-440 (Figure 3.5a). Beyond this TiO2 content 

(i.e., MSNPT-636), the specific adsorption capacity decreased consistent with the 

reduction in accessible surface area. The maximum quercetin loading observed for 

MSNPT-440 is about 100 times the value reported for nonporous SNPT [244], and is 
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attributed to the high dispersion of TiO2 over a large surface area in MSNPT. When the 

quercetin capacity is normalized by the specific surface area of the particles (Figure 3.5b), 

the areal capacity is found to increase with TiO2 loading up to MSNPT-440, and then to 

decrease for MSNPT-636. Normalizing the adsorption capacity by the amount of TiO2 

grafted provides a measure of the accessibility of the TiO2. The adsorption capacity per 

mass of TiO2 on particle surface decreases with increasing loading (Figure 3.5b). This 

trend is consistent with the morphology of TiO2 present in the MSNPTs, going from well 

dispersed monolayers to surface-bound nanocrystals to a pore blocking layer as TiO2 

loading increases, which is also evident from Figure A.14 (normalization by both surface 

area and TiO2 amount). The adsorption isotherms for MSNPT were fit with the Langmuir 

model and the best-fit parameters are presented in Appendix Table A.3. The binding 

constant, KL, found for MSNPT-59 is 8.8 mL/mg, and increases with TiO2 loading up to 

21.1 mL/mg for MSNPT-162. This is consistent with strong binding of quercetin with the 

highly dispersed amorphous TiO2 present at loadings below 200 mg/g. For higher 

functionalization (MSNPT-362 or higher), the binding affinity is lower, even though 

capacity continues to increase up to a maximum at MSNPT-440. This lower affinity can 

be explained by more of the TiO2 in these materials being present in crystallites and 

encapsulating layers that bind quercetin less efficiently. 
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Figure 3.5  Quercetin adsorption isotherms and Langmuir model fitting on TiO2 

functionalized MSNP: (a) measured quercetin adsorption isotherms (points) for MSNPT 

with varying TiO2 content and corresponding Langmuir fits (dashed curves), and (b) 

maximum areal quercetin loading (open squares) and quercetin loading per TiO2 (open 

circles) with curves as visual guides. 

 

The role of porosity on TiO2 functionalization and subsequent quercetin binding 

can be examined by comparing the adsorption behavior of flavonoids on MSNPTs with 

that of SNPTs reported by Schlipf et al [244]. Given the small surface area of SNP (Table 

3.1), it is not surprising that specific quercetin adsorption of SNPT particles is much lower 

than that of MSNPT. However, the areal capacities for quercetin reported by Schlipf et al. 

increase with TiO2 loading from 0.09 mg/m2 to 0.27 mg/m2, and the capacity per TiO2 
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values decrease from 1.7 to 0.17 mg quercetin/mg TiO2 [244]. Both ranges and trends are 

similar to those found in Figure 3.5b but absolute magnitudes are much greater due to the 

high surface areas of the MSNPT samples. MSNPTs also showed 10 times greater 

flavonoid adsorption capacity compared to a recent report using mesoporous amine-

functionalized silicates [282] because of the superior binding capability of TiO2 for 

flavonoids compared to amines [244]. For flavonoid adsorption, there is a trade-off 

between increasing capacity by adding TiO2 to the surface and losing capacity by 

aggregation of and pore blocking by excessive TiO2. These factors lead to the maximum 

in specific capacity in Figure 3.5a. 

3.4.3 Quercetin Recovery from MSNPTs 

The Langmuir parameters, KL in Table A.3 indicate a strong interaction between 

TiO2 and flavonoids when adsorbed from ethanol – on the order of 104 mL/mmol for well-

dispersed samples containing less than 200 mg TiO2/g and 103 mL/mmol for higher TiO2 

loading. This is very useful for harvesting of flavonoids, but to design a successful 

flavonoid isolation process, an approach to recovery has to be developed. In addition, 

quercetin is potentially unstable and susceptible to activity loss depending on the solvent 

used [254]. Solvents such as ethyl acetate, acetone, acetonitrile and acidic (HCl) alcohol 

that were used to recover polyphenolic compounds from other solid matrices [283-285] 

might not be able to displace strongly bound flavonoids from TiO2. Moreover, while 

addition of HCl can be used for extraction from non-metal matrices, it has the potential to 

leach TiO2 from MSNPTs [286]. Hence, an alternative compatible solvent system for 

quercetin desorption from TiO2 was sought. Zhao et al. studied rutin extraction from plant 
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sources using deep eutectic solvents, and reported that those containing citric acid exhibited 

efficient extraction [287]. Also, as a biocompatible ligand, citric acid binds with metal 

oxides such as TiO2 without causing TiO2 leaching in a wide range of pH (2.0 to 7.5) [288, 

289]. Thus, it can be hypothesized that citric acid, being a polydentate ligand with strong 

chelating capability with TiO2, can aid flavonoid recovery process by displacing flavonoids 

from the particle surface without leaching TiO2. Also, adsorption of citric acid on TiO2 is 

a strong function of solution pH, with highest adsorption (> 0.25 mg/m2 surface) found at 

pH 2.0 [288]. Thus at low pH (2.0-3.0) citric acid will have the most potential to displace 

flavonoids from the TiO2 surface. 

When several polar organic solvents were screened at 1 mL/25 mg of quercetin-

bound MSNPTs, very small flavonoid recovery was obtained (< 5%) as seen in Figure 

3.6a. Acidic methanol and ethanol increased recovery, but in the case of acidic ethanol, the 

solution turned reddish orange instead of the light yellow color of dissolved quercetin. The 

most likely cause for this color shift was leaching of quercetin-bound Ti4+ which is known 

to produce a reddish orange complex [15, 244]. When MSNPTs were tested for TiO2 

leaching in acidic ethanol, 9 mg TiO2/g particle was leached from MSNPT-270 after 24 h 

of mixing. The peak for quercetin in the UV-vis spectrum after acidic ethanol recovery 

(Appendix Figure A.15) showed a significant red shift due to Ti complexation. On the 

other hand, citric acid did not produce measurable TiO2 leaching from MSNPT, and no 

shift was observed in the position of the UV-vis peak of the quercetin recovered by 

ethanolic citric acid (Appendix Figure A.15), consistent with no TiO2 leaching. 
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Figure 3.6  Recovery of quercetin from TiO2 functionalized MSNP (MSNPT-86) using 

various solvents: (a) Comparison of recovery using different solvents when 1 mL was used 

for 25 mg quercetin adsorbed particles, and (b) Quercetin desorption isotherm in 20% w/v 

ethanolic citric acid solution compared to adsorption isotherm from ethanol solution (points 

and curves represent experimental data and Langmuir fit respectively). 

 

When 1 mL of ethanolic citric acid solution was used at pH 2-3 for quercetin 

desorption from 25 mg of MSNPT-86 after saturation adsorption, Figure 3.6a shows that 

quercetin recovery (estimated using Equation A.3) increased with increasing citric acid 
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concentration up to 20% w/v citric acid in ethanol, but did not increase for 40% w/v citric 

acid presumably because TiO2 surface was saturated with citric acid. Moreover, Figure 

3.6b compares the desorption isotherm of quercetin in 1 mL of 20% w/v ethanolic citric 

acid from MSNPT-86 compared to adsorption isotherm onto MNSPT-86 in 1 mL ethanol 

solution. The isotherm shows that in the presence of the citric acid solution, the particles 

retained 37 mg/g particle, which is 35% of the maximum quercetin loading (105 mg 

quercetin/g particle) in ethanol. The Langmuir model fit to the desorption data (solid curve 

in Figure 3.6b) gave KL = 0.93 ml/mg in ethanolic citric acid - much less compared to in 

ethanol (10.6 mL/mg). Thus the interaction between TiO2 and quercetin is, as 

hypothesized, disrupted in the presence of citric acid and quercetin can be recovered in 

solution. Using the desorption isotherm, recovery processes can be designed based on the 

ratio of ethanolic citric acid solution:particles and the number of recovery stages used. For 

example, in a multistep recovery process with 1 mL of 20% w/v citric acid used per 25 mg 

particles at each stage, 91% recovery of quercetin can be achieved from saturated MSNPT-

86 in 5 stages. The effect of the extent of TiO2 functionalization on quercetin recovery was 

examined. The maximum quercetin loading on MSNPT-362 is higher (171 mg/g particle) 

than that of MSNPT-86, but the recovery using a single 20% w/v ethanolic citric acid 

solution extraction step was 47%, compared to 65% for MSNPT-86. However, the 

corresponding absolute recoveries for MSNPT-362 relative to MSNPT-86 were greater (80 

mg/g particle compared to 68 mg/g particle).  

To determine the mechanism by which citric acid promotes desorption, linearized 

Langmuir plots (1/qe vs. 1/Ce) were analyzed (Appendix Figure A.16) for the adsorption 

(in ethanol) and desorption (in 20% w/v citric acid) of quercetin on MSNPT-86 and 
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MSNPT-362. They gave the same y-intercept values with and without citric acid (0.01 g 

particle/mg quercetin for MSNPT-86 and 0.006 g/mg for MSNPT-362, respectively), 

which indicates that quercetin and citric acid compete for adsorption on the same surface 

sites [290]. Thus, citric acid competes with and displaces quercetin molecules from already 

occupied TiO2 surface sites to allow for recovery from MSNPT surfaces. 

3.4.4 Activity of Particle Bound and Recovered Quercetin.  

Radical scavenging activity (RSA) is the ability of a flavonoid to neutralize the free 

radicals produced in a cellular environment to prevent cellular oxidative stress. Here, RSA 

values of MSNPT bound quercetin and quercetin recovered using ethanolic citric acid were 

measured and compared with those of fresh quercetin in ethanol (0-0.5 mg/ml). The RSA 

of recovered quercetin is only slightly lower than that of fresh quercetin (Figure 3.7), 

showing that adsorption on particles and citric acid recovery does not significantly alter the 

activity of quercetin. The reduction after recovery in citric acid can be explained by the 

low pH of the solution, which reduces the favorability of proton donation, resulting in 

slightly reduced RSA. Both electron donation from C-ring double bond and proton 

donation from hydroxyl group contribute to the antioxidant activity of flavonoids, and thus 

the radical scavenging activity of flavonoids decreases with decreasing pH [291, 292]. 
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Figure 3.7  Radical scavenging activity of particle bound quercetin on MSNPT-110 and 

MSNPT-232 (particle solution in ethanol) and recovered quercetin in ethanolic citric acid 

solution (20% w/v) compared to the fresh quercetin solution in ethanol (curves are visual 

guides). 

 

Quercetin activity also measured when it is bound to MSNPT (Figure 3.7). Two 

different TiO2 functionalized particles (MSNPT-110 and MSNPT-232) were selected to 

determine whether TiO2 loading affects flavonoid activity. Activity profiles for particle 

bound quercetin showed that the amount of TiO2 does not affect flavonoid activity but that 

the RSA activity of particle-bound quercetin is lower compared to fresh quercetin, as 

observed previously for non-porous TiO2 functionalized silica particles [244]. Previous 

investigations of the activity of flavonoids complexed with metals have concluded that 

metal flavonoid complexes maintain radical scavenging activity but in reduced quantity, as 

both the metal and the free radical compete for the hydroxyl groups in flavonoids [293]. 

Thus, when quercetin is bound to TiO2 through its two hydroxyl groups, the reduced proton 

donating ability translates to reduced radical scavenging activity. It is very important to 
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note that MSNPT alone has some apparent RSA (about 9% and 11% for MSNPT-110 and 

MSNPT-232), which is also in accordance with the previous study with SNPT, where bare 

particles showed 2% RSA [244]. Since nonporous silica nanoparticles possesses much less 

surface TiO2 their RSA was lower than that of MSNPT. TiO2 can produce OH• and O2
•⁻ 

reactive oxygen species, which have the potential to bind with the DPPH free radicals in 

the RSA assay [294, 295].   
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3.5 Conclusion 

TiO2 functionalized mesoporous silica nanoparticles were synthesized using 

surfactant-modified Stöber method followed by TiO2 deposition on the silica surface. 

Different degrees of TiO2 grafting were achieved by varying amount of TiO2 precursor. 

Surface area, pore volume and average pore diameter decreased with increasing TiO2 

grafting. TEM images showed the TiO2 nanocrystal formation outside the particles for 

moderately high loadings of TiO2 but STEM images indicated the presence of highly 

dispersed TiO2 throughout the particles. Peak intensity decreases observed in GISAXS 

pattern after functionalization suggested reduction in contrast and possible restructuring 

during the solvothermal functionalization process due to the grafting of TiO2 inside the 

mesopores. GIWAXS provides evidence for anatase formation only with TiO2 particles on 

their outer surface, while TiO2 mainly dispersed in mesopores was amorphous. The 

alteration of the form of the deposited TiO2 with extent of functionalization was 

demonstrated, which complements existing knowledge on the formation of mesoporous 

titanosilicate materials previously focused on maximizing the formation of photocatalytic 

anatase. 

The functionalized and non-functionalized MSNP were used to adsorb a polyphenolic 

flavonoid quercetin and its derivative rutin dissolved in ethanol. Bare MSNPs showed very 

little affinity towards flavonoids and flavonoids adsorption capacity increased with 

increasing TiO2 functionalization up to a maximum (440 mg TiO2/g particle), a trend that 

is attributed to highly dispersed amorphous TiO2 first forming within the pores followed 

by crystallite formation at the surface, and finally pore blocking with increasing TiO2 

grafting. Accessibility of Ti-sites was preserved due to the high level of dispersion in the 

particles, thus giving as much as 100 times the capacity of nonporous particles, 
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demonstrating the superiority of TiO2-functionalized mesoporous particles in designing 

large scale flavonoid isolation processes.  

The suitability of quercetin recovery using ethanolic citric acid (20% w/v) was 

demonstrated, in which citric acid produced high recovery by acting as a displacing ligand 

for flavonoids. Radical scavenging activity (RSA) of the recovered and particle-bound 

quercetin was measured for various quercetin concentration and compared with the activity 

of free quercetin. Quercetin retains most of its RSA in particle-bound form irrespective of 

TiO2 loading, and also when recovered using ethanolic citric acid. The results presented 

here confirm that TiO2 functionalized nanoparticles have strong affinity towards 

polyphenolic flavonoids, and that the high surface area of MSNP can be employed to 

isolate large amount of flavonoids in order to design efficient and economically viable 

process. The knowledge gathered for adsorption and recovery of flavonoids on MSNPTs 

will provide background for the isolation of numerous biomolecules that bind with TiO2 

and facilitate using the nanoparticles to directly isolate biomolecules in situ from living 

plant cells. 
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CHAPTER 4. NANOHARVESTING OF BIOACTIVE MATERIALS FROM LIVING 

PLANT CULTURES USING ENGINEERED SILICA NANOPARTICLES 

Reproduced with permission from Khan, M.A. et al., Materials Science and Engineering 

C, 2020, 106, 110190. Copyright 2020 Elsevier. 

4.1 Summary 

Plant secondary metabolites are valuable therapeutics not readily synthesized by 

traditional chemistry techniques. Although their enrichment in plant cell cultures is 

possible following advances in biotechnology, conventional methods of recovery are 

destructive to the tissues. Nanoharvesting, in which nanoparticles are designed to bind and 

carry biomolecules out of living cells, offers continuous production of metabolites from 

plant cultures. Here, nanoharvesting of polyphenolic flavonoids, model plant-derived 

therapeutics, enriched in Solidago nemoralis hairy root cultures, is performed using 

engineered mesoporous silica nanoparticles (MSNPs, 165 nm diameter and 950 m2/g 

surface area) functionalized with both titanium dioxide (TiO2, 425 mg/g particles) for 

coordination binding sites, and amines (NH2, 145 mg/g particles) to promote cellular 

internalization. Intracellular uptake and localization of the nanoparticles (in Murashige and 

Skoog media) in hairy roots were confirmed by tagging the particles with rhodamine B 

isothiocyanate, incubating the particles with hairy roots, and quenching bulk fluorescence 

using trypan blue. Nanoharvesting of biologically active flavonoids was demonstrated by 

observing increased antiradical activity (using 2, 2-diphenyl-1-picrylhydrazyl radical 

scavenging assay) by nanoparticles after exposure to hairy roots (indicating general 

antioxidant activity), and by the displacement of the radio-ligand [3H]-methyllycaconitine 

from rat hippocampal nicotinic receptors by solutes recovered from nanoharvested 

particles (indicating pharmacological activity specific to S. nemoralis flavonoids). Post-
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nanoharvesting growth suggest that the roots are viable after nanoharvesting, and capable 

of continued flavonoid synthesis. These observations demonstrate the potential for using 

engineered nanostructured particles to facilitate continuous isolation of a broad range of 

biomolecules from living and functioning plant cultures. 
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4.2 Introduction 

Plant cells are capable of synthesizing valuable secondary metabolites, in the form 

of small organic molecules that are potential and proven therapeutics that cannot readily 

be made by traditional synthetic chemistry [2, 9, 296]. Recent progress has been made in 

increasing the yields of target metabolites in plant cell cultures with genetic or 

environmental modification. Genetic sequencing and manipulation of biosynthetic 

pathways provide a vast resource of potential therapeutic agents [8, 11-13, 297]. It is also 

possible to select mutant plant cells for survival on the basis of their overproduction of 

bioactive metabolites to generate a population of mutants with a specific pharmacological 

phenotype [298]. Flavonoids, a class of secondary metabolites known to be active 

antioxidants with medicinal, therapeutic and pharmacological applications, have recently 

been enriched in hairy root cultures by genetic transformation [14, 246-248, 299, 300]. 

However, these potential therapeutics are usually present in low concentrations, making 

recovery and purification expensive and complicated. The shortage of commercially viable 

separation technologies is a main bottleneck in the discovery and application of plant 

metabolites [301-305]. The conventional method of recovery of natural products from plant 

cells is to harvest the whole tissues and chemically recover the targeted materials from 

macerated tissues, usually by solvent extraction. Besides the destruction of the expensive 

genetically modified plant cell cultures, the activity of labile biomolecules can be reduced 

depending on the solvent used for the extraction process [254]. Thus, new techniques are 

required to continuously isolate metabolites from living plant cultures without whole tissue 

harvesting. 
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Nanoharvesting, in which nanoparticles are used to carry biomolecules out of living 

plant cells, can provide continuous harvesting from living and functioning source plants. 

This is the reverse process of the delivery of bioactive materials (drugs, nucleic acids, etc.) 

to cells [213, 215, 306], but is guided by the same principles in that a nanoparticle must 

gain entry to the cell with minimal toxicity. Kurepa et al. [15] reported the use of nonporous 

2.8 ± 1.4 nm TiO2 nanoparticles to harvest quercetin-derived flavonoids directly from 

Arabidopsis thaliana plants based on a high degree of chelation of these molecules by TiO2 

[113, 235], but this is the only report of nanoharvesting to date. 

While they are effective in nanoharvesting, nonporous TiO2 nanoparticles lack the 

high surface area desirable for adsorption, and mesoporous TiO2 nanoparticles are not 

readily synthesized as a robust, stable platform [256, 257]. Additionally, requirements for 

stabilization of small nanoparticles limit the functional groups that can be utilized, and the 

recovery of 3 nm TiO2 particles from solution is difficult due to their small size [307]. To 

overcome these limitations, TiO2 can be dispersed on mesoporous silica nanoparticles 

(MSNPs) using post-synthesis TiO2
 functionalization [258, 262, 266, 272]. MSNPs, which 

include both nanosized and nanostructured silica particles, have high surface area (~1000 

m2/g) and tunable pore size, and silica surface can be easily modified with other functional 

groups as necessary. Moreover, MSNPs can be synthesized with a magnetic metal oxide 

core, which provides the opportunity for facile recovery of the particles using an external 

magnetic field [30]. 

Although MSNPs are broadly applied in catalysis, chromatography, and 

biomolecule loading and cellular delivery [26, 29, 34, 46, 59, 308], hydroxyl-terminated 

bare silica has limited, nonspecific affinity for most plant metabolites. Thus, to exploit the 
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surface properties of MSNPs for nanoharvesting, functionalization of silica with a 

metabolite binding group such as TiO2 is necessary. Previous efforts to incorporate TiO2 

in MSNPs have primarily focused on the adsorption and/or photo-degradation of organic 

compounds using large-size silica nanoparticles and non-spherical silica mesotructures 

[114, 258, 261, 262, 309, 310], which are not suitable for cellular internalization. In 

contrast, we recently demonstrated facile TiO2 functionalization of MSNPs (average 

particle diameter ~170 nm), where TiO2 was deposited inside the mesopores by hydrolysis 

of a TiO2 precursor [38]/Chapter 3. TiO2 functionalized MSNPs exhibited a high capacity 

for the model flavonoid quercetin, over 100 times greater than functionalized nonporous 

silica. A solvent-based ligand displacement method was developed for flavonoid recovery 

after binding, and quercetin was found to retain most of its antiradical activity throughout 

the adsorption and desorption steps. Hence, these particles are hypothesized to be capable 

of isolating flavonoids in high quantity if internalized in flavonoid-rich cells during 

nanoharvesting, and to provide for the recovery of active flavonoids. 

In addition to binding and releasing active flavonoids, an ideal nanoharvesting 

process should also provide for efficient uptake of nanoparticles into plants with minimal 

toxicity. Internalization of MSNPs by plant cells were primarily investigated for 

gene/protein delivery using MSNP carriers [25, 26, 311, 312], where valuable guidance 

can be found for the design of nanoparticles for internalization. The interaction of the 

particles with plant cells and the ability to extract metabolites depends on the particle shape, 

size, surface area, adsorption capacity, degree of aggregation, and bulk pH and ionic 

strength [313]. Particle size and surface chemistry are two critical properties for 

nanoparticle cellular uptake. Nanoparticle uptake is also dependent on the plant species 
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[314, 315], and the uptake mechanisms are still under investigation. Endocytotic uptake in 

root cells is believed to occur through a variety of mechanisms sometimes associated with 

nutrient uptake [184, 189]. Nanoparticles smaller than the pores in plant cell walls (5-20 

nm) can directly pass into the cell membrane. Larger particles can be internalized through 

endocytosis or direct penetration [26, 312]. Further, surface functionalization of MSNPs 

with amine (-NH2) groups is often used to promote cell membrane penetration through 

charge interactions, to enhance their colloidal stability, and thus - facilitate their 

internalization by living cells [35, 36]. Amine groups not only provide positive charge for 

lipid cell membrane penetration during uptake [156, 184], but also act as binding sites for 

fluorescent molecules [316], which are used for visualization of cellular uptake via 

fluorescence imaging.  

Nanoharvesting also requires that the internalized nanoparticles be recovered from 

the living plant cells. Internalized particles can escape from cellular systems using vesicle 

fusion with cell membranes or through direct membrane penetration (probably due to 

electrostatic interactions) [201, 317]. Moreover, plant cells must remain viable and capable 

of re-synthesizing the target biomolecule (i.e., flavonoids) after nanoparticle uptake and 

release to maintain a continuous nanoharvesting system. Prolonged interaction between 

particles and plants has been reported to create toxicity in some cases [197]. The effect of 

silica nanoparticle concentration on the cell viability of A. thaliana plant root cells was 

studied by Slomberg and Schoenfisch, who observed that particles between 14 and 200 nm 

in diameter are taken up and not phytotoxic at concentrations up to 1 mg/mL [187]. A. 

thaliana roots were also found to be viable after 7 days of uptake of anatase TiO2 
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nanoparticles [15, 318]. The toxicity of MSNPs functionalized with TiO2 and/or amines to 

hairy root cultures is unknown. 

In this study, the application of high surface area engineered MSNPs are reported 

for the nanoharvesting of polyphenolic flavonoids from living Solidago nemoralis hairy 

roots. Dual surface functionalization (with TiO2 and amines) is used to facilitate metabolite 

binding and cellular uptake, respectively. The accessibility and order of mesopores of the 

MSNPs (designed with 2.8 nm diameter pores for loading and 170 nm diameter to permit 

uptake) after surface functionalization are studied by scanning electron microscopy (SEM), 

X-ray diffraction (XRD) and nitrogen adsorption. Quercetin is used as a model flavonoid 

to evaluate the adsorption capacity and the subsequent recovery of active biomolecules 

from particle surfaces using ligand displacement (in 20% w/v ethanolic citric acid 

solution). Cellular uptake and localization of engineered nanoparticles fluorescently 

labeled with rhodamine B isothiocyanate (RITC) from Murashige and Skoog (MS) media 

by S. nemoralis hairy root cultures are visualized using fluorescent microscopy, using 

trypan blue (TPB) to quench extracellular fluorescence [319, 320]. Nanoparticles from the 

hairy root cultures are isolated using centrifugation. Antiradical activity and radio-ligand 

displacement activity ([3H]-methyllycaconitine) - from rat hippocampal nicotinic receptor 

membranes (characteristics of S. nemoralis flavonoids [321]) are measured to demonstrate 

the presence of active surface-bound flavonoids and flavonoids recovered in solution. 

Hairy roots are re-cultured following nanoharvesting to examine continued cell viability 

and the ability of the cultures to re-synthesize flavonoids, as measured by antiradical 

activity of root extracts. All of these studies provide proof of concept that engineered 

MSNPs represent a promising platform for in situ recovery of small molecule drug 
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candidates from living plant cell tissues, and thus are a viable route to advance the concept 

of nanoharvesting. 
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4.3 Materials and Methods 

4.3.1  Chemicals and Reagents 

Tetraethyl orthosilicate (TEOS, 99%), sucrose (grade I, ≥ 99.5%), 2-(N-

morpholino) ethanesulfonic acid hydrate (MES hydrate, ≥ 99.5%) and H2O2 (35 wt% in 

water) were purchased from Acros Organics; Pluronic F127 (tri-block copolymer, bio-

grade), quercetin (> 95%), trypan blue (TPB, 0.4% in 0.81% NaCl and 0.06% K2HPO4), 

titanium (IV) ethoxide (TEO, technical grade), (3-Aminopropyl)triethoxysilane (APTES, 

99%), ethylenediaminetetraacetic acid (EDTA, ≥ 99%), citric acid (CA, ≥ 99.5%), nicotine 

(≥ 99.5%), sodium azide (NaN3, 99%), phenylmethanesulfonyl fluoride (PMSF, ≥ 98.5%), 

phosphate buffer saline tablets (PBS, pH 7.4) and rhodamine B isothiocyanate (RITC, 

mixed isomers) from Sigma-Aldrich; cetyltetramethylammonium bromide (CTAB, 99.8%) 

from MP Biomedicals; [3H]-methyllycaconitine (3H-MLA) from American Radiolabeled 

Chemicals; 2,2-diphenyl-1-picrylhydrazyl (DPPH, 95%) and fluorescamine from Alfa-

Aesar; NaOH pellets (≥ 97%) from EMD Millipore; Acetone (≥ 99.5%) from BDH 

analytical; Ti reference solution (1000 ppm in 10% HCl), ultrapure deionized ultra-filtrated 

(DIUF) water, methanol (HPLC grade, 99.9%), ethanol (200-proof), 36 N H2SO4 (95-98% 

in water), tris-HCl buffer (molecular biology grade, ≥ 99%), NaH2PO4 (certified ACS 

grade), 12 N HCl (ACS grade) and 29.3 wt% NH4OH solution from Fisher Scientific; and 

Murashige and Skoog (MS) media supplemented by vitamin B5 and antibiotic cefotaxime 

sodium (~ 95%) from PlantMedia (BioWorld, Dublin, OH, USA).   
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4.3.1.1 Solidago nemoralis Hairy Roots 

Hairy roots were generated from stem explants of seedlings using Agrobacterium 

rhizogenes mediated genetic transformation reported earlier in detail [14]. After 

Agrobacterium treatment, explants were transferred onto half-strength MS media in agar 

plates supplemented with 400 mg/L cefotaxime and 3% sucrose, where hairy roots were 

generated within 2 to 3 weeks. Roots were than excised and maintained in continuous 

culture on MS media supplemented with 250 mg/L cefotaxime and 3% sucrose.  

4.3.1.2 Animals 

Adult, male Sprague-Dawley rats (body weight approximately 200-225 g) were 

purchased from Harlan Laboratories (Indianapolis, IN, USA). Handling, care and use of 

animals were performed according to the National Institute of Health Guide for Care and 

Use of Laboratory Animals after the approval of all protocols by the Institutional Animal 

Care and Use Committee (IACUC) at the University of Kentucky. 

4.3.1.3 Engineered Silica Nanoparticles 

Functional mesoporous silica nanoparticles were synthesized using a surfactant 

templated sol-gel process and post-synthesis grafting with TiO2 and amine, successively, 

using techniques previously established in literature [38, 69, 125, 322]. Some of the 

particles were tagged with fluorescent RITC for visualization after internalization by the 

hairy roots [94, 323]. The detailed procedures for particle synthesis, functionalization, and 

fluorescent group attachment are provided in Appendix B). 
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4.3.2 Material Characterization  

A Hitachi S-4300 Scanning Electron Microscope (SEM) was used to examine the 

particle morphology. Particles were mounted onto a 15 mm aluminum stub using double 

sided carbon tape, excess materials were blown off with dry N2, and the samples were 

stored in a desiccator for 24 h. Prior to SEM analysis, the particles were coated with 

conductive Au-Pd alloy using an Emscope SC400 sputtering system. Average and standard 

deviation of particle diameters were calculated using 20 random particles with ImageJ 

Software. Surface characterization was performed from nitrogen adsorption conducted at -

196 ºC using a Micromeritics TriStar 3000. Samples were degassed at 135 ºC for 4 h under 

flowing N2 gas before analysis. The specific surface area, average pore diameter and pore 

size distribution were estimated using the Brunauer, Emmett and Teller (BET) isotherm 

and by the method of Barrett, Joyner and Halenda (BJH), respectively. Micropore volume 

and external surface area were estimated using the comparative adsorption method 

described by Jaroniec et al. [269, 274]. Fourier transform infrared (FTIR) spectroscopy was 

conducted by a Thermo Nicolet Nexus 470 spectrometer with a deuterated triglycine 

sulfate (DTGS) detector. 0.5 g of anhydrous KBr and particles (0.5-1.0 wt %) were crushed 

with a mortar-pestle, and some of this powder was pressed into a pellet for transmission 

analysis with N2 purging. XRD was performed using a Bruker-AXS D8 Discover 

diffractometer with a Cu K source ( = 1.54 Å) at 0.5 °/min for 2θ from 1.5° to 6º. XRD 

samples were prepared in a powder sample holder and tapped flat with a spatula.   
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4.3.2.1 TiO2 Quantification 

The amount of TiO2 on the particle surface was determined using an H2SO4/H2O2 

assay [244, 272]. 25 mg of TiO2-functionalized particles were mixed vigorously with 25 

mL of 2 M H2SO4 for 20 min at 90 ºC and then the solution was filtered through a PTFE 

(0.02 µm) syringe filter. 1 µL of H2O2 was added to 1 mL of the resulting filtrate, and after 

10 minutes, the absorbance was measured using a BioTek plate reader (Winooski, VT) at 

407 nm in a 96 well plate. The absorbance was calibrated using samples prepared using a 

Ti-reference solution. 

4.3.2.2 Amine Quantification 

The amount of amine groups on the functionalized particle surface was determined 

by a previously reported fluorescamine assay after particle dissolution [324, 325]. 30 mg 

of particles were dissolved over an 8 h period in 30 mL of 0.02 M NaOH at room 

temperature under vigorous stirring. 100 μL of this solution and 1.0 mL of 1.0 mM 

fluorescamine in acetone were mixed with 2.0 mL of PBS solution at pH 7.4. The emitted 

fluorescence intensity of this solution was measured at 480 nm after excitation at 366 nm 

using a Varian Cary Eclipse fluorescent spectrophotometer. The calibration curve was 

prepared using known amounts of APTES. 

4.3.3 Adsorption and Recovery of the Flavonoid Quercetin 

Quercetin adsorption onto particles was measured using the method of Schlipf et 

al. [244]. For each measurement, 25 mg of particles was pre-wetted under vortex mixing 

with 1 mL of ethanol for 24 h in a 2 mL tube, centrifuged for 5 min at 17,000×g (AccuSpin 
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Micro 17, Fisher Scientific), and the supernatant was discarded. Then, 1 mL of quercetin 

solution in ethanol (0.05-10 mg/mL) was added to the pre-wetted particles for vortex 

mixing (24 h) in the dark. The particles were centrifuged again and 200 µL of supernatant 

was analyzed using the plate reader. A calibration curve was plotted using known 

concentrations of quercetin, and was used to find the amount of adsorbed flavonoid on to 

the particle surface by the solution depletion method. For quercetin recovery, quercetin-

loaded particles were re-suspended in 1 mL of recovery solvent (20% w/v ethanolic CA). 

After 24 h of vortex mixing, the particles were centrifuged and the supernatant was 

analyzed in a plate reader. 

4.3.4 Nanoparticle Uptake in Hairy Roots 

Hairy roots cultures which overproduce flavonoids, obtained from stem explants of 

seedlings using A. rhizogenes induced genetic transformation, were studied in continuous 

culture for a period of 4-6 weeks [14]. Roots were periodically checked for flavonoid 

content indicated by radical scavenging activity, and only those found to be overproducing 

flavonoids were used for nanoharvesting experiments. Sterile nanoparticles of desired 

functionalization were sonicated in MS media for 1 h to make a uniform 10 mg/mL master 

solution, which was diluted to different concentrations (1 μg/mL, 10 μg/mL, 100 μg/mL, 1 

mg/mL and 2.5 mg/mL) for root uptake experiments. Growing portions of Solidago 

nemoralis hairy roots were cut from agar plate cultures and rinsed carefully with sterile 

water. Roughly 500 mg of hairy roots were placed in sterile NalgeneTM centrifuge tubes 

and 10 mL of a desired nanoparticle solution and the antibiotic cefotaxime (200 mg/L) 
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were added, followed by vortex shaking in the dark for 48 h. Uptake experiments for each 

concentration of nanoparticles were performed in triplicate.  

4.3.4.1 Fluorescence Imaging 

Fluorescence microscopy of RITC tagged amine-functionalized nanoparticles was 

performed using a Nikon Ti-U inverted microscope. Half of the roots exposed to 

fluorescent nanoparticle solutions were submerged in trypan blue (TPB) solution (0.04 %) 

for 10 min and then rinsed with water. Roots with and without TPB treatment were sliced 

in petri dishes using razor blades, and smashed gently onto glass slides with cover slips 

before bright field and fluorescence imaging. For some of the roots, a drop of TPB solution 

was added on top of the sliced roots and the images were taken when the roots were in TPB 

solution. 

4.3.5 Nanoparticle Separation and Flavonoid Recovery 

After 48 h exposure, nanoparticles were recovered from hairy roots by 

centrifugation (7,000 rpm) for 15 min. Whole roots were then separated and kept in sterile 

conditions for viability studies. The remaining solution was centrifuged again at high speed 

(17,000 rpm) and the pellets re-suspended in 1 mL of ethanol for particle activity 

measurements. Flavonoids were recovered from the particle surface by suspending 

nanoharvested particles in ethanolic CA solution (20% w/v) followed by 24 h of vortex 

shaking (see Section 4.3.3).  
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To verify that the centrifugation step was not responsible for antioxidant activity 

on recovered particles, one experiment was performed in which hairy roots and particles 

were centrifuged for 15 min (without prior incubation in the vortex mixer). 

4.3.6 Hairy Root Extract Preparation 

Solidago nemoralis hairy roots extract was prepared using the method discussed 

elsewhere [12]. Briefly, roots were removed from the cultures, rinsed with growth medium, 

flash frozen in liquid nitrogen, and lyophilized for 24 h and stored at -80 ºC. For extraction, 

100 mg/mL lyophilized tissue was shaken overnight in extraction solvent (0.1 M HCl in 

methanol) and the extracts were filtered to remove remaining plant material and dried in a 

Labconco rotary evaporator (Kansas City, MO, USA) under reduced pressure and stored 

at -80 ºC. 

4.3.7 Activity Determination 

4.3.7.1 Radical Scavenging Activity (RSA) 

For RSA determination, 100 µL of the flavonoid solution in ethanol (0-0.5 mg/mL) 

was mixed with 1 mL of DPPH solution (0.1 mg/mL in ethanol) in a 2 mL vial. The vials 

were covered immediately and after 30 min the absorbance was measured at 517 nm. The 

initial DPPH absorbance was measured by adding 100 µL of ethanol with 1 mL of DPPH 

solution, and RSA was calculated from the percent decrease in DPPH absorbance. RSA of 

flavonoids recovered by ethanolic CA was determined using the same procedure. For RSA 

of particle-bound flavonoids, particles with a known amount of bound flavonoids (Section 
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4.3.3) were dispersed in 1 mL of ethanol by sonication and 100 µL of the solution was 

added to DPPH.  

For RSA measurement of plant extracts, 50 μL of 2 mg/mL extract solution in 

methanol was added to 450 μL of tris-HCl buffer and 50 μL of the resultant solution were 

added to a 96 well plate in triplicate. 100 μL of 0.1 mM DPPH solution in methanol was 

added to each well and the plate was then kept in the dark for 30 min. Absorbance was 

measured at 517 nm and RSA of root extracts calculated from the percent decrease in 

DPPH absorbance. 

4.3.7.2 Specific Radio-Ligand Binding Displacement Activity 

Radio-ligand binding displacement activity of nanoharvested particles and their 

eluents was performed by displacing 3H-MLA from rat hippocampal membranes [321, 

326]. Membranes were prepared from freshly harvested hippocampal tissues from adult, 

male Sprague-Dawley rats by homogenizing the tissues in sucrose buffer (0.32 M sucrose 

with 50 mM NaH2PO4, 0.1 mM EDTA, 0.1 mM PMSF and 0.01% w/v NaN3) at pH 7.4 

using a glass homogenization tube and Teflon pestle. The homogenate was washed two 

times at 1000×g for 10 min and the supernatants re-centrifuged at 50,000×g for 20 min. 

The pellet was re-suspended in ice-cold buffer and the protein content was determined by 

the Pierce Method in Bicinchoninic Acid Kit (Sigma-Aldrich). Final protein content was 

adjusted to 3 mg/mL using extra buffer solution and samples were frozen at -80 ºC before 

use. Individual samples were screened for displacement activity in quadruplicate against 2 

nM solution of 3H-MLA. 100 μL of samples containing nanoparticles or nanoparticle 

eluents were added in quadruplicate to a 96 well plate containing membranes (1 mg/mL 
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protein content). After 15 min of incubation, 3H-MLA was added and the plate was 

incubated for further 2 h, before harvesting onto a 96 well GF/B filter array and rapidly 

washed 3 times with 350 μL of 50 mM tris-HCl buffer (pH 7.4) and dried overnight. 

Finally, 35 μL of scintillation fluid (Microscint 20, Packard Inc.) was added to each filter 

and the plate was counted using a scintillation counter (Packard TopCount NXT). Non-

specific binding in the presence of 300 μM nicotine was subtracted from total binding to 

find specific binding.  

4.3.8 Viability and Flavonoid Synthesis of Hairy Roots after Nanoparticle Exposure  

Viability of Solidago nemoralis hairy roots after exposure to particles was studied 

by re-culturing them (at least 10 roots for each nanoparticle type and concentration) on 

agar plates containing MS media supplemented by 3% sucrose and 250 mg/L cefotaxime. 

Re-cultured root growth and viability were observed after every week up to four weeks. To 

measure the flavonoid re-synthesis capability of nanoharvested roots, extracts were 

prepared in triplicate after regrowth and RSA of the extracts measured and compared to a 

control (roots not treated with nanoparticles).  
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4.4 Results and Discussion 

4.4.1 Nanoparticle Characterization 

Spherical MSNPs (approximately 170 nm diameter) were synthesized by a 

modified Stöber method using CTAB, TEOS and Pluronic F127 as structure directing 

agent, silica precursor, and dispersant, respectively. Complete removal of the organic 

surfactants was confirmed by FTIR analysis by the disappearance of the peak 

corresponding to CH2 stretching (2800-3000 cm-1) after acidic ethanol wash (Figure B.1 

in Appendix B) [38], thus preventing any toxic effects of surfactants from impacting cell 

viability. Surface characteristics (BET area, average pore diameter and BJH pore volume) 

of the dried particles were determined using nitrogen adsorption and are presented in Table 

4.1. Average pore diameter (2.76 ± 0.23 nm) falls in the expected range of values obtained 

from the literature when CTAB is used as a templating agent [273]. The BET specific 

surface area and BJH pore volume were 953 ± 51 m2/g and 1.21 ± 0.09 cm3/g for non-

functionalized MSNPs, confirming their potential as high surface area platforms for 

biomolecule adsorption. In a previous study, MSNPs were functionalized with a range of 

TiO2 amounts via the hydrolytic condensation of TEO, and optimum capacity for the model 

flavonoid quercetin (in mg quercetin/g particle) was observed at a TiO2 incorporation of 

425 ± 9.2 mg/g particles [38]. This sample is labeled MSNPT in Table 4.1. TEM and 

STEM imaging of these particles shows that there is a tradeoff between the creation of 

binding sites with by TiO2 functionalization in the mesopores of ordered cubic MSNPs and 

the blocking of pores with increased TiO2 functionalization, where the sample with the 

greatest quercetin loading (MSNPT) has titanium both inside the pores and at the particle 

surface [38]. The average nanocrystal size for MSNPT is larger than the average pore 
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diameter from nitrogen adsorption, which suggests that nanocrystallites form only on the 

particle outer surface, and that TiO2 in the pores is amorphous (a suitable form for 

adsorption). Reduction in pore diameter occurred not only due to TiO2 deposition but also 

due to restructuring and contraction of silica matrices (indicated by reduced d-spacing) 

resulting from the solvothermal functionalization process. The presence of uniformly 

distributed amorphous TiO2 (confirmed by wide angle XRD [38]) was also evident from 

peak broadening and reduced contrast in low angle XRD patterns after TiO2 loading, 

consistent with other literature for TiO2 incorporation in mesoporous silica [258, 272, 275]. 

Both MSNPs and MSNPTs were functionalized by amine (-NH2) groups using an 

aminosilane precursor, APTES, resulting in materials referred to as MSNPA and 

MSNPTA, respectively. For MSNPA and MSNPTA, the amount of amine on the particle 

surface (presented in Table 4.1) corresponds to 0.0038 mmol/m2 and 0.0012 mmol/m2 on 

bare silica and TiO2-functionalized silica, respectively. Based on the reported area of an 

amine group in monolayer coverage (50 Å2 surface area/amine functional group) [324], the 

particle coverage of amines corresponds to 114% and 37% of monolayer coverage for 

MSNPA and MSNPTA, respectively. The reduced monolayer coverage on TiO2 

(MSNPTAs) is probably due to smaller surface area and lower pore size of MSNPTs 

compared to bare MSNPs. After amine functionalization, XRD peaks were broadened and 

less resolved (Figure B.2), but this effect was not as drastic as after TiO2 functionalization 

[38]. MSNPs retain their mesostructure after amine functionalization, which is in 

agreement with literature observation for other types of mesoporous silica [100, 101].  

Similarly, MSNPs retained their spherical shape after TiO2 and/or amine 

functionalization (Figure 4.1) and functionalization did not measurably affect particle 
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diameter (Table 4.1). The effect of functionalization on the surface properties of MSNP 

was studied using nitrogen sorption isotherms, BJH pore size distribution, and αs-plots, as 

shown in Figure B.3. The nitrogen sorption isotherm for MSNPs is a type IV isotherm 

with clear capillary condensation, which indicates a well-ordered mesostructure [69]. For 

all functionalized particles, the capillary condensation step was not evident, suggesting 

mesopore disruption in presence of TiO2 and amine groups. The pore size distribution of 

MSNPs showed a clear peak at around 2.2 nm, but for all types of functionalized particles, 

the peak sharpness (Figure B.3b) and the average pore diameter decreased, as reported in 

Table 4.1. Prior studies of TiO2 [258, 261, 275] or amine [103, 327] loading onto 

mesoporous silica are consistent with our observations, where surface area, pore size and 

pore volume decreased after functionalization. MSNPTAs are less common, and in this 

case showed an additional surface area reduction (approximately 50%) relative to the 

starting MSNPTs. The standard reduced adsorption (αs) plots (Figure B.3c) [269, 274] 

show no micropore formation (pores < 2 nm). The external surface areas were also 

measured from αs-plots to be 137.2 m2/g for MSNP, and were reduced to 120.8 m2/g, 77.9 

m2/g and 65.3 m2/g for MSNPT, MSNPA and MSNPTA, respectively. The gradual 

reduction in surface area and pore diameter and the absence of microporosity after both 

functionalization steps are consistent with monolayer-like coverage in the pores, providing 

surfaces appropriate to provide positive charge (to promote cell uptake) and adsorption 

sites for biomolecule binding. 
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Figure 4.1  SEM image of (a) MSNP, (b) MSNPT, (c) MSNPA and (d) MSNPTA (scale 

bar 500 nm for all images). 

 

Table 4.1  BET specific surface area, BJH pore volume and average pore diameter of TiO2 

functionalized, amine functionalized, and TiO2-amine functionalized mesoporous silica 

nanoparticles (MSNPs) with optimum TiO2 content compared to non-functionalized 

MSNPs. 

Particle 

types 

Average 

particle 

diameter 

Amount 

of TiO2 

Amount of 

amine 

BET 

surface 

area 

BJH 

pore 

volume 

Average 

pore 

diameter 

nm mg/g 

particle 

mmol/g 

particle 

m2/g cm3/g nm 

MSNP 165 ± 19a - - 953 1.21 2.76 

MSNPT 185 ± 29 425 ± 9.2b - 629 0.59 2.21 

MSNPA 172 ± 26 - 2.00 ± 0.16b 400 0.57 2.50 

MSNPTA 174 ± 32 407 ± 13 0.65 ± 0.07 325 0.33 1.97 
Standard deviation values resulted from ameasurement of 20 particles selected randomly (using 

ImageJ Software) and bquadruplicate measurement for chemical analysis. 

 

4.4.2 Nanoparticle Uptake in Hairy Roots and Hairy Root Viability 

Plant cells are inherently different from animal cells in that they have rigid cell 

walls. It has been proposed that the cell wall may place a size limit on nanoparticle uptake 

based on the size of naturally occurring pores [189, 197, 312]. Silica nanoparticles with 

much larger size (up to 200 nm [187]) than the pores were shown to be internalized by 

1 µm

500 nm

(c)

(a) (b)

(c) (d)
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plant cells, but the penetration mechanism through plant cell walls is still unknown. 

Enlargement of pores or new pores/channel creation after the disruption of cell wall 

proteins and polysaccharides are speculated to be the pathways for nanoparticle entry 

[312]. The exact uptake mechanism of nanoparticles through the cell membrane is also still 

unknown or disputed; endocytosis, direct penetration and pore creation by nanoparticles 

have all been proposed as mechanisms for nanoparticle uptake in plant cells [26, 189, 314]. 

Direct penetration occurs for strongly positively charged nanoparticles (creating a hole in 

the membrane is universal for positively charged particles, regardless of shape, size and 

chemical composition) and after that the nanoparticle can localize in lysosomes, 

endosomes, cytoplasm, mitochondria, endoplasmic reticulum and cell nuclei [184]. 

Although nanoparticle transport through a cell membrane reaches equilibrium given 

sufficient time [184], smaller particles are transported faster than larger ones [328]. Bare 

and/or amine-functionalized silica nanoparticles (< 200 nm) or TiO2 nanoparticles (< 140 

nm) were reported to be internalized by plant cells [26, 187, 329, 330], but the effect of 

combined amine and TiO2 functionalization on internalization of nanoparticles is 

unknown. Thus, MSNPTAs were tagged with RITC for visualization of uptake in hairy 

roots by fluorescence microscopy. To confirm internalization, fluorescence of RITC on 

particles outside of cells [320] was quenched by trypan blue (TPB) added after uptake and 

fluorescence microscopy was performed, by rinsing off TPB from the roots [331] and also 

without rinsing [320].  

At 100 μg/mL MSNPTA loading, fluorescent images (Figure 4.2) showed 

evidence for nanoparticle internalization. The bright field images (Figure 4.2a and c) show 

clear outlines of cells with green chloroplasts inside. The corresponding fluorescent image 
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(Figure 4.2b) of the root cells after 24 h of nanoparticle exposure showed bright 

fluorescence, which remained after TPB treatment (Figure 4.2d), conclusively indicating 

nanoparticle association and partial internalization by the cells. In contrast, the images of 

root cells that were not exposed to nanoparticles (Figure B.4b) without TPB addition 

showed no fluorescence. The faint red fluorescence (much less intense than fluorescence 

of labelled nanoparticles in Figure 4.2d) observed when TPB solution was added to the 

roots without any nanoparticle treatment (Figure B.4d), is attributed to the auto-

fluorescence of TPB in contact with outer cell membranes [331, 332].  

 

Figure 4.2  Bright field (left) and corresponding fluorescence microscopic image (right) of 

Solidago nemoralis hairy roots after RITC-tagged MSNPTA uptake: (a) & (b) without and 

(c) & (d) with trypan blue addition for 100 µg/mL nanoparticle solution (exposure time 

150 ms). 

 

(a) (b)

(c) (d)

100 μm 100 μm

100 μm 100 μm
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The fluorescent image presented in Figure 4.2b shows some nanoparticles in 

aggregates, also visible in less quantity after TPB treatment (Figure 4.2d). These particles 

were observed more closely to verify internalization and localization in magnified 

fluorescence images with or without TPB (Figure 4.3). Nanoparticles were found in 

clusters as well as scattered throughout the cells (Figure 4.3a). After TPB addition and 

rinsing, images of the roots (Figure 4.3b) still show intracellular localization, but the 

reduction in the number of fluorescent spots indicates some particles (or clusters) were 

quenched. Particle entry into the plant cells and cluster formation inside the cells has been 

reported based on particle surface chemistry (hydrophobicity) [205]. For MSNPs, Torney 

et al. found endocytosis clusters inside tobacco plant protoplasts [25], whereas Chang et 

al. reported direct penetration (energy independent) for amine functionalized MSNPs into 

Arabidopsis plant roots [26]. It is also possible that TPB entered and neutralized RITC in 

some of the viable cells, which can explain reduced intracellular fluorescence after TPB 

treatment. When particles enter plant cells, the cell membrane structures can be disrupted, 

increasing the cell wall permeability [189], and allowing TPB entry. 
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Figure 4.3  Magnified fluorescence image showing intracellular localization of MSNPTAs 

for 100 µg/mL nanoparticle concentration (a) in absence of trypan blue and (b) in the 

presence of trypan blue. 

 

At a higher particle concentration (1 mg/mL), the fluorescent images were too 

bright for individual clusters to be seen (Figure B.5 in Appendix B). After TPB addition, 

almost all of the cells were still very brightly fluorescent, suggesting a higher amount of 

particle internalization, which indicates a concentration-dependent equilibrium in particle 

uptake. Finally, because imaging in the presence of a TPB-containing solution has been 

used to confirm particle internalization [333], fluorescent images were collected after 

adding a drop of TPB solution to the roots to ensure quenching of extracellular particles 

(Figure B.6). The bright field images in TPB solution are bluish in color suggesting cells 

are completely covered with TPB solution. The corresponding fluorescent images appear 

similar to those for which TPB was rinsed before imaging. Since extracellular particle 

(a)

(b)

10 μm

10 μm
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fluorescence quenching by TPB is very fast (< 2 min [331]), images taken after rinsing the 

TPB solution provided additional evidence for particle internalization and localization. 

Another requirement for the nanoharvesting process is to not only isolate flavonoids 

from hairy root cultures but also to maintain viable roots capable of regrowth. Uptake and 

translocation of engineered nanomaterials in vascular plants, and associated phytotoxicity 

and cytotoxicity were discussed by Miralles et al. [189], where several factors were 

identified as contributors to toxicity, such as nanoparticle surface characteristics and 

possible metal ion leaching. They advise that viability should be studied case-by-case. TiO2 

nanoparticles have been reported to inhibit plant leaf growth and transpiration by reducing 

root water transport, to delay photosynthesis by acting as photocatalysts, and to disrupt cell 

function and microtubule networks by generating reactive oxygen species (ROS) [315, 334, 

335]. Cell membrane disruption during the uptake process can also lead to cellular 

dysfunction [184]. 

The viability of hairy roots exposed to 2.5 mg/mL nanoparticle concentration, the 

same experimental conditions used for nanoharvesting experiments, was demonstrated 

over a period of two weeks after particle exposure and reculturing in petri dishes containing 

agar (Figure 4.4). The results are consistent with the absence of an effect on root growth 

after exposure to nanoparticles. This is shown in Figure B.7 (Appendix B), where data are 

shown for hairy roots treated with 0 (control), 10 µg/mL, and 1 mg/mL nanoparticle 

solutions after 0, 2 and 4 weeks of re-culturing. Root viability is similar to the control over 

the concentration range tested.  
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Figure 4.4  Viability of Solidago nemoralis hairy roots culture after exposure to 2.5 mg/mL 

functionalized MSNPs for 48 h and re-culturing: (a) control after 0 week, (b) only TiO2 

functionalized MSNPs after 0 weeks, (c) TiO2-amine functionalized MSNPs after 0 week, 

(d) control after 2 week, (e) only TiO2 functionalized MSNPs after 2 weeks and (f) TiO2-

amine functionalized MSNPs after 2 weeks. 

 

4.4.3 Nanoparticle Recovery and Flavonoid Activity Measurements 

Genetically modified S. nemoralis hairy roots synthesize polyphenolic flavonoids 

that are detectable from their radical scavenging activity RSA (antiradical activity using 

DPPH assay), a broad measure of their ability to reduce oxidative stress [336]. Also, 

flavonoids from S. nemoralis have demonstrated specific bioactivity in their ability to 

displace 3H-MLA from nicotinic receptors [321]. After the nanoharvesting process, 

nanoparticles were recovered from the solution in contact with the hairy root cultures by 

centrifugation. Particles were analyzed for RSA directly. Particles were also washed with 

ethanolic citric acid (CA) and the activity of flavonoids recovered in the solution was 

tested. We have previously demonstrated ethanolic CA for the effective recovery of 

(a)

(f)(e)
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flavonoids from TiO2-functionalized mesoporous silica [38], presumably by ligand 

displacement of the chelated flavonoid. CA is ubiquitous in nature (found blood plasma at 

~1 mM) and has tremendous advantages over other extraction agents for its excellent 

biocompatibility. For these reasons, CA is widely used in living systems for mineral 

dissolution and detoxification [288]. Moreover, the citrate ion provides very good surface 

binding, enhances water solubility and reduces aggregation [289], and as a result can 

increase the bio-availability of hydrophobic flavonoids.  

RSA was measured directly from solutions containing suspended MSNPTs or 

MSNPTAs recovered from the nanoharvesting process (Figure 4.5). Both MSNPTs and 

MSNPTAs were used in nanoharvesting, where the positive charge of the amine groups (in 

MSNPTAs) is expected to be necessary for localization in the cell. Additional control 

experiments included RSA measurements for particles exposed only to the media, and 

particles exposed to media in which hairy roots has been grown (but not incubated with 

hairy roots directly). All particles were vortexed in their respective solution (media only, 

media after 24 h of incubation with hairy root cultures (left-over media), and media in 

which particles and hairy roots were incubated together for 24 h). For MSNPTAs, 

nanoparticles exposed to roots showed a statistically significant increase in activity 

compared to particles exposed to leftover solution after shaking with roots and control (no 

roots), consistent with the color change of the particles after exposure to roots (Figure B.8 

in Appendix B). This color change suggests that active metabolites bound to the particles. 

For MSNPTs, no significant activity difference was found among particles exposed to 

roots, particles exposed to leftover solution, and particles exposed only to media (Figure 

4.5). Thus, internalization of the nanoparticle, which was mediated by the amine 
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functionalization on the particle surface, is necessary for nanoharvesting of these 

flavonoids to occur. Flavonoids in plants are localized throughout plant cells, with 

quercetin derivatives accumulating in the plasma membrane, but also found in the nucleus 

[337]. The mechanism of nanoparticle uptake and release are investigated in Chapter 5, 

but positively charged particles have previously been shown to be taken up by direct 

penetration of cell membranes [156, 184]. After particles are internalized, flavonoids bind 

to the TiO2 groups of the particles [38], presumably through complexation of their cis-diol 

group with Ti, and then carried out of the cells during particle expulsion. 

 

Figure 4.5  Radical scavenging activity (RSA) of MSNPs functionalized with only TiO2 

and TiO2-amine group when nanoparticles (25 mg, 2.5 mg/mL in MS media) were exposed 

to 500 mg hairy roots, leftover solution and control solution (error bars are standard 

deviation from quadruplicate measurements and statistically significant difference in mean 

(p ≤ 0.05) from unpaired t-test shown by ‘asterisk’). 

 

Several additional controls were investigated to demonstrate that uptake of particles 

in the hairy root cultures was necessary to observe RSA. Centrifugation of particles in the 

presence of hairy roots (without incubation of the roots and particles) did not result in any 

increase in particle activity (data not shown), suggesting that prolonged interaction during 
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vortex shaking is necessary to allow particles to enter and leave cells. Roots were also 

subject to vortex shaking and centrifugation in the absence of nanoparticles.  No 

measurable RSA was found in the supernatant of any of the experiments conducted, which 

proves that metabolites were not secreted by the roots and subsequently bound to the 

particles in solution. Metabolites chelating to MSNPTAs inside of cells is consistent with 

the elemental analysis of internalized NaYF4 nanoparticle clusters, which provided 

evidence for phosphate attachment to the particle surface [338]. Similarly, silica 

nanoparticles were shown to adsorb nutrients from the cellular environment [187], thus 

making the nutrients unavailable to plant cells. Regarding potential mechanisms of particle 

recovery from the hairy root cultures, there is an strong tendency in cells with internalized 

nanoparticles towards cell membrane regeneration and repair, leading to the spontaneous 

direction of some of the endocytosed materials towards the cell membrane [339]. Also, 

endosomal and recycling pathways often gradually reduce the intracellular concentration 

of internalized materials [339, 340]. Particles inside endocytotic vesicles can be removed 

by fusion with the cell membrane [201] or can become free in the cytoplasm after 

endosomal escape, which is reported to happen within 12 h for endocytosed mesoporous 

silica nanoparticles [183]. These free particles, along with those that directly penetrate the 

cell membrane, can be steadily exocytosed from the cellular interior by secretary vesicles 

formation and fusion with the cell membrane [341]. Exocytosis, like endocytosis, reaches 

thermodynamic equilibrium, but is faster for smaller nanoparticles [184, 186]. More than 

50% of internalized nanoparticle were observed to be transported to the cell periphery and 

subsequently expelled out of mammalian cells within one to two hours [186, 342]. 
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To show that biologically selective compounds could be nanoharvested using 

MSNPTAs (since both amine and TiO2 are required for nanoharvesting), we demonstrated 

that eluted flavonoids specifically bind 7 nicotinic receptors in rat hippocampal cell 

membranes. Root extracts from the genetically modified S. nemoralis hairy roots used in 

this study were previously shown to contain specific flavonoids that selectively bind 7 

nicotinic receptors [321]. Binding to 7 receptors is presented as the percent displacement 

of 3H-MLA from hippocampal membrane and compared to the binding of only 3H-MLA 

without adding anything (as control). Non-specific binding was measured in the presence 

of excess nicotine and subtracted from total binding to find the specific binding. Specific 

binding of 3H-MLA in the presence of extract or nanoharvested compounds (nanoparticle 

and recovered in solution) is presented as percent of specifically bound 3H-MLA in the 

control. The percentage of specifically bound 3H-MLA (Figure 4.6a) decreased in the 

presence of increasing plant extract concentration, showing that flavonoids present in the 

extract have nicotinic receptor activity as predicted for specific flavonoids from S. 

nemoralis [321].  
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Figure 4.6  [3H]-methyllycaconitine (3H-MLA) binding displacement activity of (a) 

Solidago nemoralis hairy root extracts and (b) TiO2 and amine functionalized MSNPs (25 

mg, 2.5 mg/mL) and their eluent in ethanolic citric acid (20% w/v) exposed to 500 mg 

hairy root compared to control (error bars are standard deviation from quadruplicate 

measurements and statistically significant difference in mean (p ≤ 0.05) from unpaired t-

test shown by ‘asterisk’). 

 

MSNPTAs exposed to hairy roots show a high degree of displacement of 3H-MLA, 

but nanoparticles that were not exposed to roots or exposed to only leftover solution show 

no statistically significant displacement of 3H-MLA compared to control (Figure 4.6b), 
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suggesting that polyphenolic flavonoids active towards 7 nicotinic receptors are present 

on only the particle surface that was able to enter into and bind metabolites from hairy 

roots. The displacement is the same as a solution containing 0.16 mg/mL of root extract 

(Figure 4.6a). Similarly, the average displacement by compounds recovered in solution 

(ethanolic CA) from nanoparticles exposed to roots was higher compared to that of the 

nanoparticles not exposed to roots or exposed to root left-over solution only (Figure 4.6b), 

although the differences are not as high as the activity measured directly from the particles. 

The single washing step by ethanolic CA may not have been sufficient to remove all the 

flavonoids from the particle surface [38].  

4.4.4 Flavonoid Re-Synthesis Potential of Roots after Nanoharvesting 

We have shown that S. nemoralis hairy roots remain viable and capable of regrowth 

after exposure to 2.5 mg/mL MSNPs, irrespective of the type of functionalization (TiO2 

and/or amine). To determine whether nanoharvested roots have the ability to synthesize 

new flavonoids, we made extracts of nanoharvested roots after 2, 10 and 17 days of re-

culturing. Extracts from fresh roots were prepared to measure concentration-dependent 

RSA, which shows RSA increases with increasing extract concentration (data not shown). 

RSAs of roots exposed to nanoparticles are presented in Figure 4.7, where roots exposed 

to MSNPT (TiO2 only) and MSNPTA (TiO2 and amine) along with control roots (no 

particles) were re-cultured. After 2 days of exposure, roots exposed to MSNPTA (but not 

MSNPT) gave an extract showing less RSA activity suggesting that a fraction of the 

metabolites were nanoharvested, which again supports our hypothesis that both amine and 

TiO2 functional groups are required for flavonoid removal from plant cells. The root extract 
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activity remained roughly the same after 10 days, which probably is due to the readjustment 

of roots to the new culturing environment. After 17 days of exposure, roots exposed to 

MSNPTA regained their original activity (higher than after 2 and 10 days), and RSA was 

statistically the same when compared to control roots and roots exposed to MSNPT. This 

increase in activity of root extracts indicates flavonoid re-synthesis after nanoharvesting. 

Thus, in situ product removal from plant culture, hypothesized as one way to increase the 

rate of production of secondary metabolites by biosynthesis in plants [305], has been 

demonstrated. 

 

Figure 4.7  Comparative radical scavenging activity (RSA) of Solidago nemoralis hairy 

root extracts after exposure to control (no nanoparticles), only TiO2 functionalized MSNPs 

and TiO2-amine functionalized MSNPs (error bars are standard deviation from triplicate 

measurements and statistical difference in mean (p ≤ 0.05) from unpaired t-test represented 

by ‘asterisk’). 
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4.5 Conclusion 

The use of engineered mesoporous silica nanoparticles in a nanoharvesting process, 

which is broadly applicable for several classes of biomolecules, was demonstrated for 

Solidago nemoralis plant hairy root cultures. MSNPs with uniform, well-defined pores 

were successfully synthesized and functionalized with amines and TiO2 to promote both 

cellular nanoparticle uptake and polyphenolic compound binding (respectively).  

The first requirement for nanoharvesting, the uptake of functionalized nanoparticles 

in hairy roots was demonstrated by fluorescence microscopy of RITC-tagged MSNPTA. 

To further demonstrate that particles are indeed internalized within root cells, the 

fluorescence of extracellular particles was quenched by trypan blue (TPB) solution. The 

next requirements for nanoharvesting were demonstrated by showing that the particles 

could be readily recovered after hairy root uptake, and that the roots were viable and 

capable of synthesis of new flavonoids after nanoharvesting, as demonstrated by post-

uptake growth studies and plant extract activity analysis. Finally, to demonstrate that the 

compounds recovered on the surface of the MSNPTAs are active flavonoids, the increase 

in radical scavenging activity (RSA) was analyzed after nanoharvesting. Nanoparticles 

exposed to roots and their eluents in ethanolic citric acid solution were also tested for 

biological activity, where both particles and recovered compounds were able to displace 

radiolabeled 3H-MLA from rat hippocampal cell membrane nicotinic receptors. 3H-MLA 

displacement from nicotinic receptors proves that the nanoharvested compounds are 

polyphenolic flavonoids that exhibit the type of bioactivity found in plant extracts.  

The ability of particle-bound flavonoids from S. nemoralis to bind to nicotinic 

receptors on synaptic membranes suggests a new direction for treatment, where particles 

after nanoharvesting can be directly applied for biomolecule delivery to their cellular 
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targets [321]. Furthermore, mesoporous silica layers can be coated onto magnetic 

nanoparticles to create functional magnetic core-shell particles, for enhanced recovery [30, 

87]. The magnetic core will facilitate particle recovery from living plant cells, while the 

TiO2 functionalized mesoporous silica coating can act as a high surface area adsorbent in 

separation processes. The synthesized engineered particles are expected to represent a 

platform technology for the isolation and delivery of a broad range of therapeutic 

biomolecules in living tissues. 
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CHAPTER 5. MECHANISM OF ENGINEERED SILICA NANOPARTICLE 

INTERACTION WITH LIVING PLANT CULTURES DURING 

NANOHARVESTING OF BIOMOLECULES  

5.1 Summary 

Cellular uptake, intracellular transport and expulsion mechanisms of engineered 

silica nanoparticles (ESNP) are important to understand when designing novel processes 

involving biomolecule isolation and delivery. Nanoharvesting, where ESNP nanocarriers 

are used to transport and isolate valuable therapeutics out of living plant cell cultures (e.g. 

hairy roots), is an example of a developing technology to obtain biomolecules such as 

secondary metabolites that are most effectively synthesized in plants. Feasibility of 

nanoharvesting with ENSP has been demonstrated, but the mechanisms of ESNP entry and 

transport in, and expulsion from plant cells are still unknown, which makes optimization 

of the particle properties difficult. Here, by changing external variables temperature and 

properties of ESNP (surface functionalization and charge), insights into the ESNP uptake 

and recovery process in hairy root cells are revealed. The ESNP uptake into hairy roots is 

quantified via Ti-content (part of the ESNP), and time-dependent expulsion from the roots 

using fluorescence spectroscopy of particles labeled with rhodamine B isothiocyanate 

(RITC). The results suggest that functionalization and surface charge (regulated by the 

attachment of amine groups) play the biggest role in the effectiveness of uptake and 

recovery. Comparison of ESNP interactions at 4 ºC and 23 ºC (thought to differentiate 

between activated process and direct cell wall penetration) show that ESNP functionalized 

only with Ti are taken up and expelled by thermally activated mechanisms, while amine-

functionalized, positively charged particles are taken up and expelled mainly by non-

activated routes (such as direct penetration of cell walls). Amine-functionalized ESNP 
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were also found to be transported spontaneously into and out of plant cells by the dynamic 

exchange experiment between fluorescent and non-fluorescent particles, suggesting 

tremendous promise as a biomolecule delivery systems as well as for isolating therapeutics 

from plant cell cultures.  



 

 

147 

 

5.2 Introduction 

A number of valuable therapeutics can only be economically synthesized in plant 

cell cultures, but development of this technology requires new methods of product isolation 

that do not destroy valuable and slow-growing cultures [343]. A novel process called 

nanoharvesting offers such an approach for isolation of biomolecules from living and 

functioning plant cultures using nanoparticulate carriers. Kurepa et al. first reported 

nanoharvesting of flavonoid compounds from plant cultures using small titania (TiO2) 

nanoparticles without significant harm to the host plants [15]. Subsequently, our group 

developed engineered silica nanoparticles (ESNP) functionalized with TiO2 and 

demonstrated their high capacity for flavonoids [38]. Addition of amine functionalization 

gave ESNP highly positive charge, which was shown to be active for nanoharvesting of 

polyphenolic flavonoids from Solidago nemoralis hairy roots, where TiO2 and amine 

functional groups were hypothesized to bind flavonoids and facilitate internalization by 

root cells, respectively (Chapter 4) [39]. Consistent with this concept, particles were able 

to harvest active metabolites only when both functional groups were present. However, the 

mechanism of this process (entering into plant cells and emerging with bound target 

compounds) has not been explored. Understanding particle uptake, intracellular transport, 

and expulsion is important to the development of nanoharvesting as a plant biotechnology 

platform, and also for designing vectors for delivery of biomolecules (such as polynucleic 

acids) to plants by these ESNP [344]. 

ESNP have been investigated extensively as advanced materials, including for 

delivering drugs, proteins, and nucleic acids into cells due to their high surface area and 

tunable characteristics including size, shape, pore structure, and surface functionalization 

[62, 345, 346].  However, ESNPs are just beginning to be explored for selective removal 
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of compounds from biological systems, such as the extraction of proteins and peptides from 

HeLa cells recently reported by Slowing et al. [16] and Zhang et al. [347]. Most of the 

work regarding plant cells (in particular) has focused on environmental and toxicological 

implications of nanoparticles for plants [188, 189, 197, 348] and polynucleic acid delivery 

to plants, and also isolating plant produced metabolites using nanoparticles [25, 26, 312, 

349].  

The interaction of nanoparticles with plant cells is a complex process, which has 

been demonstrated to be dependent upon particle shape, size, surface charge, composition, 

degree of aggregation, concentration, adsorption capacity for intracellular compounds, and 

ionic strength and pH of the bulk solution [193, 197, 313, 314, 328]. Although particle size 

and surface properties (charge) are the two most critical factors for cellular uptake, the 

extent of uptake still depends heavily on the plant species [314]. However, silica particles 

up to 200 nm in diameter have been shown to be taken up by Arabidopsis thaliana root 

cells without significant cytotoxicity up to large particle concentrations (1000 ppm) [187], 

and amine-functionalized MSNPs are readily internalized by A. thaliana roots [26]. 

The presence of cell wall primarily represents the main difference between uptake 

in animal and plant cells, as larger particles were reported to be internalized faster in the 

former [191, 192], while smaller particles are taken up faster in plants [328]. Although 

some articles performed uptake and release studies on plant cell protoplasts by removing 

cell walls [25, 339, 350], protoplasts are very poor representative of plant cells in actual 

living tissues [351], and interaction of nanoparticles with whole plant tissues should be 

studied for nanoharvesting and other applications. Plant cell walls possess rigid structures 

with pores ranging from 5 to 20 nm, but nanoparticles much larger than this were reported 
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to enter into plant cells. Pore creation or enlargement, piercing and loosening of the cell 

wall matrix by free radicals generated by the particles have been proposed as mechanisms 

for the internalization of particles larger than intrinsic cell wall pores [188, 189, 312, 352, 

353]. Nanoparticle entry through cell membranes is also a complex process and a variety 

of activated and passive mechanisms have been proposed similar to animal cell studies 

[314]. Nanoparticle uptake is often associated with nutrient uptake and controlled by 

plasma membrane receptors for regulation in roots [189]. Surface functionalization of 

particles with positively charged groups has been shown to promote lipid membrane [62] 

and plant cell wall penetration [26], and has been found essential in nanoharvesting. A 

mechanistic investigation of our ESNP and hairy roots interaction should be carried out in 

order to identify complete route in and out of plant cells [39]. 

In addition to uptake, intracellular transport and expulsion of nanoparticles are 

important to reduce prolonged plant cell exposure to nanoparticles (and potential resulting 

toxicity), ensure plant viability, and carry away desired compounds – all requirements 

established for viable nanoharvesting and delivery applications [39]. Most nanoparticles 

adsorb proteins and lipids from plant media or once inside the cells. Hence, during transport 

and expulsion one should consider the protein corona around the nanoparticles rather than 

the pristine particles themselves [201]. Like uptake, excretion mechanisms depend on cell 

types and species, and on nanoparticle size, shape and surface modification. However, 

surface charge is probably the decisive factor governing transport and expulsion [201]. 

Secretary vesicle formation (lysosomal excretion) and fusion with the cell membrane is the 

mechanism for activated expulsion of nanoparticles, whereas passive penetration is thought 

to happen through electrostatic interactions in the reverse process of internalization. 
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Once particles get expelled from root cells during nanoharvesting, they can undergo 

repeated internalization-expulsion cycles or travel through the intercellular space, and 

finally exit the roots themselves into the medium [16]. Nanoparticles have been found to 

travel from cell to cell by either repeated uptake-expulsion cycles or through intercellular 

spaces [205, 330]. ESNP were also found to travel from plant roots to aerial tissues by 

transport tissues [354]. Particle localization in root parts away from the tips can be ascribed 

to intercellular migration following uptake inside the roots [26]. In plant roots, vascular 

tissues can aid nanoparticle transported from root tips to other parts [355], but the kinetics 

of uptake and localization of ESNP in hairy roots remains to be investigated. Although 

there have been some studies involving nanoparticle uptake and translocation inside plants 

as mentioned above, there is still a need for better mechanistic understanding of 

nanoparticle expulsion, and the comprehensive interaction (in and out) between ESNP and 

plant tissues. The kinetics of nanoparticle uptake and expulsion, and the underlying 

mechanisms and pathways for nanoparticle excretion are still elusive [197, 201].  

Here, the kinetics and mechanisms of ENSP uptake and release from hairy roots of 

Solidago nemoralis are investigated. Fluorescently tagged particles are used to 

qualitatively monitor particle uptake in the root cells. Uptake is quantified by taking 

advantage of the presence of Ti in the particles (present for nanoharvesting of flavonoids 

containing enediol groups). This avoids the limited sampling possible using microscopy-

based techniques, and the need for digestion of whole plant tissues [187, 356, 357]. Ti 

content is measured after calcination of tissues and dissolution of the resulting ash. 

Expulsion following uptake in solution is measured using fluorescence spectroscopy of 

RITC-tagged particles in solution. Temperature dependent quantification of ESNP uptake 
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and release at 4 ºC and 23 ºC is used to differentiate between activated pathways and direct 

penetration. Also, novel exchange experiments involving recovery of RITC-tagged 

particles in solutions of untagged particles are used to demonstrate continuous replacement 

by the uptake of ESNP and the dynamic nature of particle-cell interactions for 

nanoharvesting. Regarding the effects of surface charge on uptake and release, ESNP 

without amines (functionalized with only Ti, expected to give a mild negative surface 

charge) are compared using the methods described above.  
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5.3 Materials and Methods 

5.3.1  Chemicals and Reagents 

Tetraethyl orthosilicate (TEOS, 99%), grade I sucrose (≥ 99.5%), and hydrogen 

peroxide (35 wt% in H2O) were obtained from Acros Organics. Tri-block copolymer 

Pluronic F127 (bio-grade), (3-aminopropyl)triethoxysilane (APTES, 99%), titanium (IV) 

ethoxide (TEO, technical grade) and rhodamine B isothiocyanate (RITC) mixed isomers 

were purchased from Sigma-Aldrich. Acetone (≥ 99.5%) from BDH analytical; NaOH 

pellets (≥ 97%) were obtained from EMD Millipore; cetyltrimethylammonium bromide 

(CTAB, 99.8%) from MP Biomedical; and fluorescamine from Alfa-Aesar. Ultrapure 

deionized ultra-filtrated (DIUF) water, Ti-reference solution (1000 ppm dissolved in 10% 

HCl), 200-proof ethanol, fuming H2SO4 (95-98% in water), 12 N HCl (ACS grade), and 

29.3 wt% NH4OH solution were purchased from Fisher Scientific. For root growth, 

Murashige and Skoog (MS) media with vitamin B5 and antibiotic cefotaxime sodium 

supplement (~ 95%) was obtained from PlantMedia (BioWorld, Dublin, OH, USA).  

5.3.1.1 Solidago nemoralis Hairy Roots. 

Hairy roots of S. nemoralis (goldenrod) were generated from seedlings stem 

explants following genetic transformation mediated by  Agrobacterium rhizogenes 

infection reported in an earlier study [14]. After Agrobacterium treatment, explants were 

re-cultured onto 1/2-strength MS media in agar plates containing 400 mg/L cefotaxime and 

3% sucrose supplement. Generation of hairy roots was observed within 2 to 3 weeks, which 

were than excised and cultivated in continuous culture on MS media with 250 mg/L 

cefotaxime and 3% sucrose supplement until use.  
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5.3.1.2 Engineered Silica Nanoparticles 

Synthesis of functional mesoporous silica nanoparticles (MSNPs) was carried out 

using a surfactant templated sol-gel procedure and functionalized post-synthesis by 

grafting with TiO2 and amine, successively. MSNPs with highly ordered pore structure 

were synthesized by a modified Stöber method first reported by Kim et al. using CTAB as 

templates [69]. Initially, 2.05 g of F127 and 0.5 g of CTAB were dissolved in 96 mL of 

DIUF water mixed with 43 mL of ethanol, and 11.9 mL of 29.3% ammonia. The solution 

was stirred continuously at room temperature until complete dissolution of the surfactants 

occur. 1.9 mL of TEOS was added dropwise to the clear solution with vigorous stirring and 

the solution was kept mixing for exactly 1 min at room temperature (RT) after TEOS 

addition. The solution was then kept stationary at RT for a period of 24 h for silica 

condensation to complete. Synthesized particles were separated and washed 3 times with 

water and ethanol each using repeated ultrahigh speed centrifugation (Beckman-Coulter) 

at 17,000 rpm before drying at 84 ºC in air overnight. Lastly, surfactant template was 

removed from the silica matrices of the particles by washing them in 200 mL of 1.5 M HCl 

solution in ethanol for 24 h (termed acidic ethanol wash) followed by repeated high-speed 

centrifugation and washing with water and ethanol overnight drying at 84 ºC. 

Particles were functionalized with TiO2 using TEO  as precursor to obtain TiO2 

functionalized MSNPs (MSNPTs) according to post-synthesis procedure reported earlier 

[38]. Initially, 500 mg of MSNPs were sonicated in 100 mL of ethanol for 15 min in a 250 

mL round bottom flask. Separately, 2.6 mL of TEO was added to 7.15 mL of absolutely 

dry ethanol in a nitrogen glove bag following multiple purging with dry N2. 142.5 mL of 

ethanol was added to the particle solution before heating the flask with continuous 
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magnetic stirring. Once boiling of the solution began, the previously prepared TEO 

solutions and 1.6 mL of DIUF water were added to the flask. The solution was refluxed for 

1.5 h under magnetic stirring for the functionalization to complete. Functionalized particles 

were recovered by high-speed centrifugation at 17,000 rpm for 5 min and washed in 100 

mL of ethanol for 24 h to remove excess and unbound TiO2 before drying in an oven at 84 

ºC. 

Both bare MSNPs and MSNPTs were functionalized with amine to obtain amine 

functionalized MSNPs (MSNPA) and TiO2-amine functionalized MSNPs (MSNPTAs), by 

APTES condensation on the particle surface using a modified version of literature 

procedures [101, 125, 322, 358]. At first, 200 mg of MSNPs/MSNPTs were dispersed 

uniformly in 25 mL of absolutely dry ethanol by ultra-sonication for 15 min. 0.5 mL of 

APTES was added dropwise to the particle suspension under constant stirring in a dry 

nitrogen glove bag. The solution was stirred in a sealed flask for 24 h at room temperature 

for APTES condensation. Following amine grafting, particles were recovered using 

centrifugation and after repeated washing with ethanol, kept in an oven at 84 ºC for 24 h 

for curing of functional groups. After curing, particles were stirred in excess ethanol (100 

mL) for 24 h to remove any loosely-bound or adsorbed amine functionalities. Washed 

particles were again rinsed 3 times with ethanol using high-speed centrifugation and dried 

at 84 ºC overnight to obtain final functionalized particles. 

5.3.1.3 Fluorescent Tagging 

To add RITC on their surface, 200 mg of amine-functionalized particles (both 

MSNPAs and MSNPTAs) were suspended in 25 mL of ethanol by ultra-sonication for 15 
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min. 3.2 mg of RITC was added to particle suspension and the resultant mixture was stirred 

for 24 h for RITC attachment. After 24 h, the brightly red particles were obtained by high-

speed centrifugation and repeated washing in ethanol until completely clear supernatant 

was observed. The particles were dried in an oven at 84 ºC and then washed in water and 

ethanol for 24 h each to remove any excess dye before final drying in the oven overnight.  

5.3.2 Material Characterization  

 Particle morphology was examined by using a Hitachi S-4300 Scanning Electron 

Microscope (SEM) by dispersing the particles onto a 15 mm aluminum stub using a double 

sided carbon tape (Ted Pella). After dispersing, excess particles were blown off the carbon 

tape surface with dry N2, and the stubs were kept in a desiccator for 24 h. Before SEM 

analysis, the particles were sputter-coated with a conductive film of Au-Pd alloy using an 

Emscope SC400 sputtering instrument. From SEM images, average and standard deviation 

of particle diameters were measured using ImageJ Software by randomly selecting 20 

individual particles. Nitrogen adsorption experiments conducted at -196 ºC using a 

Micromeritics TriStar 300 apparatus were used to characterize surface area, pore volume 

and average pore size of bare and functionalized particles. Before nitrogen adsorption, trace 

moisture was removed from the particle samples by degassing at 135 ºC for 4 h under 

flowing dry N2 gas. The specific surface area was estimated using the Brunauer, Emmett 

and Teller (BET) isotherm and average pore diameter and pore size distribution were 

obtained by the Barrett, Joyner and Halenda (BJH) method. To demonstrate successful 

removal of surfactants from particle pores during acidic ethanol wash, Fourier transform 

infrared (FTIR) spectroscopy was carried out using a Thermo Nicolet Nexus 470 
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spectrometer along with deuterated triglycine sulfate (DTGS) detector. Sample preparation 

for FTIR analysis involve crushing 0.5 g of anhydrous KBr and particles (0.5-1.0 wt %) 

together with a mortar and pestle, and pressing some of the powder into a pellet. Zeta 

potentials of the particles were measured by dynamic light scattering (DLS) using an 

Anton-Paar Lightsizer 500 instrument.  Around 0.1 mg/mL of homogeneous particle 

suspension (by ultrasonication) in acetate buffer (pH = 4.0) was placed in an omega cuvette 

(inverted Ω-shaped capillary tube) for measurement. During placement of solution inside 

the capillary tube, extreme care was taken to exclude air bubbles. 

5.3.2.1 TiO2 Quantification. 

The amount of TiO2 grafted on the particle surface was quantified using a sulfuric 

acid/hydrogen peroxide assay reported elsewhere [244, 272]. For analysis, 25 mg of 

particles were stirred vigorously for 20 min in 25 mL of 2 M H2SO4 solution at 90 ºC to 

induce complete dissolution of surface TiO2. After cooling, the solution was filtered 

through a polytetrafluoroethylene (PTFE) syringe filter with pore size of 0.02 µm. 1 mL of 

the filtrate (with dissolved TiO2) was taken to a vial and 1µL of H2O2 was added. After 10 

minutes, the absorbance was measured at 407 nm in a 96 well plate using a BioTek plate 

reader (Winooski, VT). Amount of TiO2 on the particles was determined using an 

absorbance calibration curve made from Ti-reference solution. 

5.3.2.2 Amine Quantification 

Amine groups on MSNPA and MSNPTA surface was determined chemically by 

dissolving the particles in alkaline solution and using a fluorescence assay as reported 
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earlier [324, 325]. 30 mg of amine functionalized particles were stirred in 30 mL of 0.02 

M NaOH at room temperature over an 8 h period with vigorous stirring. After 8 h (complete 

particle dissolution), 100 μL of this solution was mixed with 1.0 mL of 1.0 mM 

fluorescamine in acetone and 2.0 mL of PBS solution at pH 7.4. The emitted fluorescence 

intensity of this solution was measured immediately at 480 nm emission with excitation 

wavelength of 366 nm using a Varian Cary Eclipse fluorescence spectrophotometer. 

Amount of amine was calculated by comparing with a calibration curve prepared using 

known amounts of APTES. 

5.3.3 Nanoparticle Uptake in Hairy Roots 

Hairy roots cultures obtained from stem explants of seedlings genetically 

transformed using A. rhizogenes were studied in continuous culture for a period of 4-6 

weeks [14]. Sterile nanoparticles of desired functionalization were sonicated in MS media 

for 1 h to make a uniform 10 mg/mL master solution, which was diluted to different 

concentrations (1 μg/mL, 10 μg/mL, 100 μg/mL, 1 mg/mL and 2.5 mg/mL) for root uptake 

experiments. Growing portions of S. nemoralis hairy roots were cut from agar plate cultures 

and rinsed carefully with sterile water. Roughly 300 mg of hairy roots were placed in sterile 

Falcon centrifuge tubes and 15 mL of a desired nanoparticle solution and the antibiotic 

cefotaxime (200 mg/L) were added, followed by vortex shaking in the dark for 24 h. For 

time dependent uptake experiment, multiple batches of roots were exposed to 1 mg/mL 

MSNPTAs for different times (15 min – 48 h). 
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5.3.3.1 Fluorescence Imaging 

Fluorescent microscopy of roots after RITC tagged MSNPTAs was performed 

using a Nikon Ti-U inverted microscope. Roots were sliced in petri dishes using razor 

blades, and smashed gently onto glass slides with cover slips before bright field and 

fluorescence imaging.  

5.3.3.2 Uptake Quantification 

The amount of MSNPT(A) taken up by hairy roots was quantified by calcining the 

roots following exposure to the particles and analyzing the Ti-content in the ash using the 

Ti analysis described earlier (Section 5.3.2.1). After nanoparticles exposure at 4 ºC and 23 

ºC for 24 h (for temperature dependent uptake), roots were initially cleaned with fresh plant 

media and then rinsed repeatedly with water to remove non-internalize particles adhering 

on root surface. Roots were then calcined in a muffle furnace at 500 ºC (with 1 ºC/min 

ramp) for 10 min under air following drying at 120 ºC for 8 h. Ashes were collected 

carefully and dissolved in 2 mL of 2M H2SO4 for 30 min at 90 ºC in a water bath. Ti-

content and corresponding amount of particles taken up by the roots were calculated by 

hydrogen peroxide assay using a calibration curve prepared in presence of root ash from 

300 mg roots and known amount of MSNPTAs. 

5.3.4 Nanoparticle Recovery and Retention after Internalization 

After 24 h of exposure to 15 mL of 2.5 mg/mL RITC-tagged MSNPTAs, roots were 

rinsed with fresh plant media and water repeatedly to remove surface adhering non-

internalized particles. The roots are then placed in 15 mL of fresh plant media either at 4 
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ºC or 23 ºC (for temperature dependent recovery) in Falcon tubes, which were vortex-

shaken in the dark at the desired temperature, and the solution was analyzed periodically 

to quantify time dependent particle recovery (see below). For one set of experiments, roots 

were put in 15 mL of MS media containing 2.5 mg/mL of untagged (non-fluorescent) 

MSNPTAs at 23 ºC to test and quantify the dynamic nature of nanoparticle uptake and 

recovery. 

5.3.4.1  Recovery Quantification 

The amount of RITC-tagged MSNPTAs recovered in solutions with or without 

untagged particles were determined by analyzing a 300 µL aliquot of solutions by 

fluorescent spectroscopy after first saturating the roots with tagged MSNPTA. Samples 

were collected periodically after 15 min to 28 h, and analyzed quickly for fluorescent 

intensity at 582 nm (peak fluorescence) after excitation at 557 nm (peak absorbance) and 

then replaced to the original solution. The amount of particles recovered was estimated by 

constructing a calibration curve of fluorescence intensity vs. concentration with a known 

amount of fluorescently-tagged particles in the respective exchange solution (fresh plant 

media or untagged particle solution). 

5.3.4.2 Retention after Recovery Quantification 

After recovery, the amount of particles retained by the roots was estimated by 

analyzing Ti-content in the roots following calcination and acid dissolution. Roots were 

taken out from recovery solutions and rinsed repeatedly with water to remove any adhering 
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particles, calcined at 500 ºC for 10 min following drying at 120 ºC, and analyzed for Ti 

using the sulfuric acid-hydrogen peroxide assay (see Section 5.3.3.2). 
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5.4 Results and Discussion 

In our previous work [39]/Chapter 4, amine and TiO2 functinalized MSNPs 

(MSNPTAs) were used to harvest polyphenolic flavonoids from living and viable S. 

nemoralis hairy roots. TiO2 functionalization was used to provide binding sites for the 

flavonoids and amine functionalization to promote cellular internalization and expulsion. 

Uptake and intracellular localization was qualitatively demonstrated using fluorescence 

microscopy by tagging the particles with RITC. Active flavonoids were harvested only 

when the particles were functionalized by both TiO2 and amine groups, but not particles 

functionalized with only Ti (i.e. MSNPTs). The presence of flavonoids harvested by 

MSNPTA was determined by antiradical activity (common to many flavonoids), and 

displacement of 3H-methyllycaconitine from rat hippocampal tissue by nicotinic receptor-

active flavonoids specifically found in Solidago nemoralis.  

Before functionalization, mesoporous silica nanopartilces (MSNPs) were 

synthesized using surfactant templated sol-gel synthesis technique using CTAB as 

structure directing agent. After synthesis, surfactant was removed by acidic ethanol 

washing and complete removal was confirmed by FTIR analysis [38], thus ruling out 

effects of residual surfactants or other organics on nanoparticle-cell interactions. MSNPs 

were functionalized with TiO2 and/or amine following synthesis using post-synthesis 

grafting of TEO and APTES, respectively. SEM images of the particles before and after 

functionalization are presented in Figure C.1 of the Appendix. The particles retain their 

spherical shape after functionalization, and their average diameter is similar within 

statistical limits (Table C.1) – close to 170 nm before and after functionalization. The size 

of the particles determines their ability not only to be taken up by cells, but also to permeate 

through tissues [185], which is important for nanoharvesting. Silica nanoparticles up to 200 
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nm in diameter have been shown to be taken up and transported in A. thaliana [187]. Pore 

properties (specific surface area, pore volume and average pore size) are presented in 

Appendix Table C.1 along with amounts of TiO2 and amine grafted on particle surfaces. 

Reductions in surface area and pore volume are consistent with the addition of mass to the 

pore walls by functionalization with both Ti and aminopropyl groups, but the pore diameter 

is not severely affected (2.8 nm for MSNP and 1.97 nm the smallest pore diameter for 

MSNPTAs). These pore texture and loading indicate successful loading of accessible Ti-

sites for flavonoid complexation and amines to impart a positive surface charge (Table 

C.1) [39]. We have utilized the unique opportunities provided by the functional groups of 

MSNPTAs to quantify the amount of nanoparticles internalized into hair roots, recovered 

after switching to fresh media, and retained by the roots after recovery. The concentration 

of particles in the roots was quantified by using Ti as a chemical tracer, and the 

concentration of particles in solution using fluorescence spectroscopy of particles tagged 

with RITC via amines. 

Before providing the results of internalization and expulsion studies, we present a 

brief overview of possible interactions and pathways of nanoparticles through plant root 

cells. Engineered nanoparticle interaction with cells can primarily be divided into three 

parts: uptake (or internalization), intracellular transport, and release (or expulsion) from 

the cells. A conceptual diagram is presented in Figure 5.1 showing all possible major 

pathways for ESNP in and out of plant cells. Entry into the cells occurs through two main 

routes: activated uptake (endocytosis) and direct penetration by passive diffusion [184, 

190]. Wong et al. recently proposed a mechanism for direct penetration in which 

nanoparticles of a critical magnitude of surface charge accentuate the local electrical field 
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near the bilayer and pass through by softening the lipid and exchanging some lipid onto 

the nanoparticle surface [156]. Immediately after activated internalization, particles usually 

stay inside of lipid vesicles (early endosomes), while for direct penetration, particles enter 

into the cytoplasm. Inside the cells, early endosomes usually mature into late endosomes 

while retaining nanoparticles taken in by endocytosis, and entry into the cytoplasm requires 

endosomal escape. Maturation of endosomes is associated with increasing interior acidity, 

and fusion of lysosomes introduces hydrolytic enzymes to degrade foreign materials [201]. 

Depending on their properties, nanoparticles can interact with intracellular organelles and 

get entrapped [188], and a good deal of work has been directed towards engineering 

nanoparticles for endosomal escape or targeting organelles [359]. Non-degradable particles 

(silica) that are not able to escape the endosome are usually transported to and expelled by 

fusion with the cell membrane (exocytosis), sometimes by the formation of exosomes [95]. 

Free particles internalized by direct penetration or escaped from endosomes can also 

undergo exocytosis (activated expulsion) by means of secretary vesicle formation in the 

Golgi apparatus. Golgi apparatus excretion and lysosomal exocytosis (fusion of lysosome 

the with cell membrane) are two distinct events in this mechanism [206]. A final route to 

exit available to charged particles is to escape the cell membrane directly by passive 

diffusion and membrane penetration (similar to direct penetration for particle uptake). 
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Figure 5.1  Schematic representation of possible pathways of MSNPTAs in and out of hairy 

root cells during nanoharvesting with uptake, intracellular transport and expulsion. Capital 

letters indicate a certain mechanism for uptake: (A) endocytosis and (B) direct penetration; 

for transport: (C) vesicle formation, (D) endosomal escape, (E) organelle entrapment and 

(F) secretory vesicle formation; and for expulsion: (G) exocytosis and (H) direct escape 

through passive diffusion. 

 

The ESNP used for nanoharvesting were designed to have a positive surface charge 

to facilitate both entry and release from plant cells. First, both the plant cell wall [360] and 

plasma membrane are negatively charged [361], so positive nanoparticles would be 

expected to accumulate at the cell exterior which aids in cellular internalization [36]. Some 

organic character to the functional groups (in our case, aminopropyl) promotes association 

with lipids to help ESNP transport through membranes [184]. Positively charged particles 

have also been shown to induce endosomal escape, often achieved by functionalizing 

MSNPs with amines or polycations [62, 95, 202, 203]. The drop in pH during endosome 

aging causes protonation of amine groups, leading to destabilization of the endosomal 

membrane and nanoparticle escape [95]. Particle size is also important for endosomal 
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escape and 200 nm was established as maximum value for effective endosomal escape 

[183]. 

Positive charge has been associated with more effective particle expulsion from 

cells by both activated and passive mechanisms. Although nanoparticle expulsion 

mechanisms are not yet fully understood and differ among species [16], they are different 

from internalization – for example, smaller nanoparticles have been shown to be expelled 

faster while larger nanoparticles of the same type were taken up the fastest for a single cell 

type [186]. If particles are expelled by passive mechanisms, a high positive particle charge 

will aid in this route (just as for uptake). Positively charged surface functionalization also 

enhances activated exocytosis [207]. During exocytosis following endocytosis or direct 

penetration, vesicles containing nanoparticles are transported close to the cell membrane, 

and fusion causes the nanoparticles to be expelled. It was reported that positively charged 

particles bind with intracellular proteins and thus can aid in activated excretion as cells 

recognize them as foreign bodies. Polycation (amine and chitosan) functionalized silica 

nanoparticles have been shown to produce multiple vesicles highly prone to cellular 

secretion [95].  

Based on these considerations, positively charged particles (MSNPTAs) were used 

to study concentration and time dependent uptake in S. nemoralis hairy root cells. Figure 

5.2 shows the fluorescence microscopy images along with bright field images for 

concentration dependent uptake of RITC-tagged MSNPTAs in the hairy roots after 24 h of 

exposure. The control (0 mg/mL) showed no fluorescent signal, and only a faint glow could 

be observed for 0.1 mg/mL MSNPTA concentration. For 0.5 mg/mL particle concentration, 

significant amount of particles were observed inside the root tissues. The most prevalent 



 

 

166 

 

location is in the cell walls, which glow uniformly and brightly in all images. The 

distribution of fluorescence in the interior of the cells is more heterogeneous, with only 

some of the cells showing bright interiors with both individual particles and clusters of 

particles. The intensity of both the walls and cell interiors increased at higher particle 

concentration (1 mg/mL and 2.5 mg/mL).   
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Figure 5.2  Concentration dependent bright field (left) and corresponding fluorescence 

microscopic image (right) of Solidago nemoralis hairy roots after RITC-tagged MSNPTA 

uptake for 24 h: (a) & (b) 0 mg/mL (control), (c) & (d) 0.1 mg/mL, (e) & (f) 0.5 mg/mL, 

(g) & (h) 1.0 mg/mL and (i) & (j) 2.5 mg/mL (exposure time 150 ms). 

 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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Time dependent (15 min to 48 h) fluorescent microscopy is presented in Figure 5.3 

for 1 mg/mL particle concentration. Initially (at 15 min), particles accumulate along the 

cell walls, and a few cells show more intense outlines indicating that particles begin to 

move inside at 1 h. More and brighter cells in the sample are observed due to internalization 

at 4 to 8 h. At 24 h, a large number of bright cells are observed, and by 48 h so many 

particles are taken up that it is difficult to distinguish cell walls – this may be because 

constant acquisition time was used for all images to give semi-quantitative information 

about the progress of particle uptake. These observation support the idea that particles 

initially undergo charge driven adsorption into cell walls and membranes and then get 

internalized [36]. 
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Figure 5.3  Fluorescence image of hairy roots showing time dependent uptake of 

MSNPTAs for 1.0 mg/mL nanoparticle concentration after an incubation time of: (a) 15 

min, (b) 1 h, (c) 4 h, (d) 8 h, (e) 24 h and (f) 48 h (exposure time 150 ms). 

  

Uptake of MSNPTAs into S. nemoralis roots was quantified by collecting root 

samples after 24 h of uptake, calcining the roots, and using the Ti-content to determine 

nanoparticle uptake, as summarized in Table 5.1. Internalized particles per gram roots were 

measured by dissolving the ashes (containing particles) in sulfuric acid and using a 

hydrogen peroxide assay for Ti. A calibration curve was constructed with constant amounts 

of root ash and known amounts of particles (Appendix Figure C.1). Consistent with the 

fluorescence microscopy presented in Figure 5.2, the amount of particles taken up by the 

(a) (b)

(c) (d)

(e) (f)
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roots is concentration dependent, with 2.5 mg/mL (used previously for nanoharvesting 

[39]) initial particle concentration induces an uptake after 24 h of 2.6 ± 0.13 mg particles/g 

roots. The uptake appears to reach a plateau as particle concentration increases, and 

applying a Langmuir model to the data (Appendix Figure C.2) gives an equilibrium 

coefficient for particle uptake of 0.26, and a maximum of 6.0 mg/g. These values are much 

smaller than literature results for non-functionalized nonporous silica nanoparticles (70-

150 mg/g roots for 0.25-1 mg/mL [187]). While there might be species-dependent variation 

(A. thaliana in the prior work), this primarily suggests that continuous expulsion of charged 

particles may be occurring along with uptake such that internalization-expulsion is a 

dynamic phenomenon during nanoharvesting with an equilibrium coefficient < 1.0. Zeta 

potential of the MSNPTAs (with uptake experiments performed at various concentration) 

is also provided in Table 5.1, which shows change in negative direction after exposure to 

the roots, consistent with when MSNPTAs were attached with flavonoid quercetin (zeta 

potential -1.5 mV at pH 4.0), suggesting active metabolites being isolated from the roots. 

Table 5.1  Concentration-dependent MSNPTA uptake at 23 ºC in hairy roots following 24 

h exposure determined by calcination and Ti-content analysis and the zeta potential of the 

particles following exposure to the roots. 

Nanoparticle 

concentration 

(mg/mL) 

0.10 0.50 1.0 2.5 10 

Particle in roots 

(mg/g roots) 
0.20 0.36 1.1 ± 0.08a 2.6 ± 0.13a 4.24 

Zeta potential at 

pH 4.0 (mV) 
+5.4 -1.7 -6.8 +4.3 +30.1 

 a The range is determined from triplicate measurements. 
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To differentiate between activated and passive penetration during internalization, 

uptake experiments was performed at 4 ºC and 23 ºC and the results are presented in Table 

5.2 (first row). It should be noted that results in Table 5.2 are from a different set of 

experiments, thus slightly different from that presented in Table 5.1 for 1 mg/mL particles. 

It was reported that all activated mechanisms for uptake in plant cells are effectively 

stopped at 4 ºC because of the large activation energy of protein-mediated endocytosis [26, 

350]. Here, the amount of MSNPTA taken up after 24 h was reduced by roughly half (1.2 

± 0.14 mg/g) at 4 ºC compared to at 23 ºC (2.6 ± 0.15 mg/g), suggesting that activated and 

passive uptake occur in parallel for MSNPTAs. In contrast, for only TiO2 functionalized 

particles (MSNPTs), 1.17 ± 0.08 mg particles were measured inside the roots at 23 ºC after 

24 h of exposure to 2.5 mg/mL solution of particles, whereas only about 15% of this value 

was observed at 4 ºC (Table 5.3), suggesting primarily an activated nanoparticle uptake 

mechanism in the absence of amine groups. These results support the idea that for weakly 

charged particles (MSNPT charge shown in Table C.1), the predominant mechanism of 

uptake is endocytosis [351], which is consistent with the uptake of unmodified particles in 

plant roots for both TiO2 nanoparticles with average diameter of 140 nm and silica 

nanoparticles with average diameter up to 200 nm [187, 330]. Xing et al. also showed that 

silica-terminated nanoparticles are taken up by endocytosis [362].   
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Table 5.2  Effect of temperature on the uptake, recovery and retention of MSNPTAs by 

hairy roots as measured from calcined roots following 24 h of exposure and from fresh 

recovery solution after 24 h of recovery, respectively. Initial particle concentration of 2.5 

mg/mL in 15 mL MS media supplemented by sucrose and antibiotics was exposed to 300 

mg roots. 

Uptake 

temperature  
4 ºC 23 ºC 

Amount taken up 

(mg/g roots) 
1.2 ± 0.14 2.2 ± 0.15 

Recovery 

temperature  
4 ºC 4 ºC 23 ºC 

Recovery media Fresh solution 
Fresh 

solution 
Fresh solution 

Solution 

containing 2.5 

mg/mL particles 

Amount 

recovered (mg/g 

roots)b 

1.15 ± 0.096 2.04 ± 0.23 2.01 ± 0.14 1.93 ± 0.069 

Amount retained 

(mg/g roots) 
0.087 ± 0.023 0.17c 0.16 ± 0.027 2.3 ± 0.13 

a The range is determined from multiple (triple or quadruple) measurements, b recovery is 

the average value ≥ 4 h and c single measurement. 

 

Table 5.3  Effect of temperature on the uptake and retention of MSNPTs by hairy roots as 

measured from calcined roots following 24 h of exposure and 24 h of recovery, 

respectively. Initial particle concentration of 2.5 mg/mL in 15 mL MS media supplemented 

by sucrose and antibiotics was exposed to 300 mg roots. 

Uptake 

temperature  
4 ºC 23 ºC 

Amount taken up 

(mg/g roots) 
0.17 ± 0.063 1.2 ± 0.081 

Recovery 

temperature  
4 ºC 4 ºC 23 ºC 

Amount retained 

(mg/g roots) 
0.049 ± 0.022 1.1b 0.064 ± 0.041 

a The range is determined from multiple (triple or quadruple) measurements and b single 

measurement. 
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Time dependent recovery of particles into fresh medium after uptake was measured 

by fluorescence spectroscopy of RITC-labeled particles in solution. Initially a calibration 

curve was constructed in plant media (also used for the recovery experiments) with known 

amounts of RITC-tagged MSNPTAs (Appendix Figure C.4). Figure 5.4 shows time and 

temperature-dependent recovery after uptake from a 2.5 mg/mL solution of RITC-tagged 

MSNPTA for 24 h. Similar to uptake, activated expulsion of nanoparticles (exocytosis) is 

also energy dependent and can be switched off at 4 ºC, which can be used to identify 

dominant mechanism for both nanoparticle internalization and expulsion [26]. Three 

different recovery experiments were performed in which particle-loaded roots were rinsed 

and placed into fresh solution (plant media): 4 ºC recovery after uptake at 4 ºC, 4 ºC 

recovery after uptake at 23 ºC and 23 ºC recovery after uptake at 23 ºC. Another recovery 

experiment was performed (termed “Exchange”) in which MSNPTA-RITC were recovered 

from hairy roots into a solution of non-fluorescent MSNPTA solution (2.5 mg/mL), to see 

whether non-fluorescent particles can replace and exchange with fluorescent particles 

inside the root cells. It can be seen from Figure 5.4 that more than 90 % of the fluorescent 

particles inside the hairy roots after uptake were expelled within 2 h, regardless of 

temperature or the presence of untagged MSNPTA in the media.  
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Figure 5.4  Time dependent recovery of fluorescently tagged MSNPTAs in MS media after 

24 h of uptake with initial particle concentration of 2.5 mg/mL: (a) recovery at 4 ºC in fresh 

solution after uptake at 4 ºC, (b) recovery at 4 ºC in fresh solution after uptake at 23 ºC, (c) 

recovery at 23 ºC in fresh solution after uptake at 23 ºC, and (d) recovery at 23 ºC in non-

fluorescent particle solution (2.5 mg/mL) after uptake at 23 ºC. 

 

It has been reported that nanoparticle internalization or recovery reaches 

thermodynamic equilibrium within a certain timeframe [184], which was shown to be 20 

min for single wall carbon nanotube [363]. Cells with internalized nanoparticle have a 

strong tendency to repair their damaged membrane and spontaneously send vesicular 

materials towards the cell membrane [339], where particles can be steadily exocytosed by 

secretary vesicle formation [341]. In mammalian cells, more than half of the internalized 

particles were reported to be transported to the cell membrane and steadily expelled, 
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reaching steady state within 1-2 h [186, 342]. Similar dynamics were found here (Figure 

5.4), suggesting a similar spontaneous particle release process. 

The average recovery of RITC-labeled MSNPTA from roots at steady state (after 

4 h for each time-dependent recovery plot) is presented in Table 5.2 for MSNPTAs to 

elucidate this point more clearly. Regardless of temperature and the presence of untagged 

particles, roughly 90% of the particles inside the roots were expelled at steady state. This 

is roughly consistent (within experimental uncertainty) with the steady-state Langmuir 

constant of 0.26, which would imply about 80% particle expulsion at equilibrium. 

Comparable recovery at 4 ºC and 23 ºC indicates a non-activated mechanism of particle 

expulsion. We were not able to measure the time dependent recovery of particles without 

amine groups (MSNPT), since there were no fluorescent binding groups their surface, but 

the amounts recovered for MSNPT samples can be inferred from the amount retained by 

the roots after recovery experiments were complete (see below).  

After the recovery experiment was complete, the amounts of particles retained by 

the roots were quantified by calcining the roots followed by dissolving the ash in sulfuric 

acid and using the hydrogen peroxide Ti-assay. Regardless of recovery temperature, a 

small amount of MSNPTA was found inside the roots after recovery (Table 5.2), which is 

consistent with the recovered amount found in solution within the experimental 

uncertainty. On the other hand, for MSNPT samples (Table 5.3), although small fractions 

of particles were retained by the roots at 23 ºC, almost all of the particles were retained by 

the roots at 4 ºC (no expulsion) suggesting primarily an activated mechanism of expulsion 

for MSNPT. This result provides important insights into what was found during 

nanoharvesting, where no flavonoid isolation was found in the absence of amine groups 
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(Chapter 4/[39]). This is not because MSNPT are not taken up at all by the root cells; 

rather Tables 5.2 and 5.3 suggests that the difference in uptake (and expulsion) mechanism 

in the absence of amines is responsible for the difference in nanoharvesting effectiveness. 

The distribution of nanoparticles inside cells and their ability to access the cytosol 

prior to excretion depends largely on the uptake pathway [201]. In plant cells, the vacuole 

is the primary place where cells store metabolites and other hydrophobic compounds [339], 

but quercetin derivatives were reported to accumulate in the nucleus, plasma membrane 

and in several endomembrane systems [337], so nanoparticles should be able to travel there 

in order to bind flavonoids during nanoharvesting. The inability of MSNPT to gain access 

to flavonoids can most likely be ascribed to their lack of endosomal escape, which turns 

out to be tremendously important in nanoharvesting. Since MSNPTs are only internalized 

and excreted through activated mechanisms, they probably remain mainly associated with 

endosomes and are not able to fully explore organelles with high flavonoid content. The 

cationic nature of MSNPTA is found to allow the particles to enter and leave the cell by 

direct penetration. This allows the particles to explore the cytosol, endomembrane systems 

and potentially vacuoles of plant cells, thus giving them the opportunity to bind significant 

concentrations of flavonoids prior to release. A first order kinetic analysis is performed on 

the nanoparticle recovery data of Figure 5.4 (see Appendix Figure C.5 and Table C.2), 

which gives an overall first order kinetic constant of 2.5-3.7 h-1 and an average residence 

time inside the cells 16-25 min. Because the steady-state root binding constant is < 1.0, the 

time of interaction with the cell is dominated by expulsion dynamics, with an average 

residence time of < 0.5 h in hairy root tissue prior to release.  
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Both endo- and exocytosis as well as non-activated penetration are dynamic 

processes that occur simultaneously and depends on the particle concentration inside and 

outside of the cells [201]. Uptake and release occur at different sites and through different 

molecular interactions, so the process is not at equilibrium, but the process reaches steady 

state with kinetics consistent with first-order uptake and release. To demonstrate the 

dynamic exchange of particles, roots loaded with RITC-tagged MSNPTA (from 2.5 mg/mL 

solution after 24 h) were placed into plant medium containing 2.5 mg/mL of untagged 

MSNPTA. The dynamics of release of the fluorescent particles were the same as for fresh 

medium (Figure 5.4d), and just like for the experiment with fresh medium, 90% 

fluorescent particles were recovered in solution (Table 5.2). The hypothesis for this 

experiment was that there would be simultaneous uptake of untagged particles at the same 

time that fluorescently tagged particles were expelled. The population of RITC-tagged 

particles reached the same dynamic equilibrium as in the absence of fresh particles, and 

untagged particles continued to be taken up as well. The total amount of particles inside 

the roots after the “exchange” experiment (measured by calcination of the roots and Ti-

assay) was found to be statistically the same as the amount of tagged particles initially in 

the roots (Table 5.2), showing that dynamic exchange happens between non-fluorescent 

and fluorescent particles. This demonstrates definitively that internalization and expulsion 

processes during nanoharvesting of flavonoids from roots are continuous dynamic 

processes with an average residence time in the roots of 1-2 h. Surface functionalization 

with amine groups was found to provide a non-activated route for uptake and release of the 

particles into root cells, while activated endo- and exo- cytosis mechanisms dominated in 

the absence of amines. This suggests that particles with amines are able to directly explore 
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the cytoplasm and flavonoid-containing organelles of plant cells during nanoharvesting, 

thus giving positively charged particles an opportunity to bind and remove metabolites 

from plant cells prior to being excreted. 
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5.5 Conclusions 

The interaction of engineered silica nanoparticles (ESNP, functionalized with TiO2 

and amine groups) with S. nemoralis hairy root cultures was investigated in detail, in order 

to elucidate the mechanism of nanoparticle entry and exit during nanoharvesting of 

polyphenolic flavonoids. The mechanism of nanoparticle uptake and recovery was studied 

by chemical analysis of particles internalized in roots with Ti as a tracer, and by 

fluorescence spectroscopy of RITC-tagged particles recovered solution. Intracellular 

transport and fate of the particles were interpreted from temperature and surface charge 

dependent uptake and recovery experiments.  

Fluorescence microscopy showed strong dependence of particle uptake on 

concentration that followed a Langmuir-like dependence with a steady-state equilibrium 

coefficient of 0.26 and a maximum MSNPTA uptake of 6 mg/g of roots. Time dependent 

uptake imaging showed initial distribution of particles along the cell walls (consistent with 

electrostatic interactions between cell wall components and the cationic particles) followed 

by intracellular localization after 4 to 8 h. When quantified, the amounts of MSNPTAs 

inside the root cells were significantly less than prior literature values for non-

functionalized particles in whole plants, which suggests a dynamic process of the 

functionalized particles in hairy roots involving continuous expulsion as well as uptake of 

particles.  

When particle recovery in solution after uptake was quantified by fluorescence 

spectroscopy, the results showed that around 90% of internalized particles were 

spontaneously expelled from the root cells within 1-2 h. Uptake and recovery experiments 

were also conducted at 4 °C and 23 ºC in order to understand and differentiate between 

possible mechanism of transport (activated or non-activated). With amines present (for 
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MSNPTAs), parallel activated (endocytosis) and non-activated (direct penetration) 

mechanisms were indicated by a reduction by about half in the amount of particles taken 

up at 4 °C. On the other hand, only activated internalization happens for solely TiO2 

functionalized particles (MSNPTs) without any amine groups. The particle escape 

mechanism from the roots was also found to be surface charge dependent. With amines, 

only non-activated (temperature independent) particle recovery was observed, while in the 

absence of amines only an activated mechanism was observed. This is a significant finding 

which provides valuable insights into the importance of particle surface charge for 

successful nanoharvesting, as found for polyphenolic flavonoids previously. These results 

suggest that without amines, particles can enter and leave plant roots, but because they are 

associated with endosomes for most of the time, they are unable to explore the cell interior. 

With amines, however, the particles enter cells by direct penetration, giving them access 

to the cytosol, and organelles where flavonoids are located, thus allowing them to bind 

target compounds to Ti before they are spontaneously excreted. Dynamic exchange 

between fluorescent and non-fluorescent MSNPTAs was also observed during recovery in 

a solution containing non-fluorescent particles, which suggests continuous uptake and 

expulsion processes that facilitate biomolecule nanoharvesting using engineered silica 

nanoparticles (ESNP) with both surface charge modifying amines and flavonoid-binding 

Ti-sites. 
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CHAPTER 6. CONJUGATION STRATEGY FOR OLIGOPEPTIDES TO 

MESOPOROUS SILICA NANOPARTICLES USING DIAZIRINE-BASED 

HETEROBIFUNCTIONAL LINKERS 

6.1 Summary 

Successful strategies for attachment of oligopeptides to mesoporous silica having 

sufficient pore size to load biomolecules should utilize the high surface area of pores to 

provide an accessible, protective environment. Many functionalization strategies involving 

peptide linkers have been proposed, but the resulting functionalization is often not robust 

or well-suited to attachment within within mesopores. A two-step oligopeptide 

functionalization strategy is examined here using diazirine-based heterobifunctional 

linkers. Mesoporous silica nanoparticles (MSNPs) with average pore diameter of ~8 nm 

and surface area of ~730 m2/g were synthesized and amine functionalized. Tetrapeptides 

Gly-Gly-Gly-Gly (GGGG) and Arg-Ser-Ser-Val (RSSV), and a peptide comprised of 4 

copies of RSSV (4RSSV) were covalently attached via their N-terminus to the amine 

groups on the particle surface by a heterobifunctional linker, sulfo-succinimidyl 6-(4,4'-

azipentanamido)hexanoate (sulfo-NHS-LC-diazirine, or SNLD). SNLD consists of an 

amine-reactive NHS ester group and UV-activable diazirine group, providing precise 

control over the sequence of attachment steps. Attachment efficiency of RSSV was 

measured using fluorescein isothiocyanate (FITC)-tagged RSSV (RSSV-FITC). TGA 

analysis shows similar efficiency (0.29, 0.31 and 0.26 mol peptide/mol amine, 

respectively) for 4G, RSSV and 4RSSV, suggesting a generalizable method of peptide 

conjugation. The oligopeptide-functionalized nanoparticles have increased capacity to 

adsorb β-estradiol adsorption relative to nonfunctionalized or amine-functionalized 

MSNPs, confirming accessibility of the peptides. The technique developed here for the 
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conjugation of peptides to MSNPs provides for their attachment in pores and can be 

translated to selective peptide-based separation and concentration of therapeutics from 

aqueous process and waste streams. 
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6.2 Introduction 

Synthetic organic functional groups that can mimic biological specificity of host-

guest interactions have been used for analysis, sensing and isolation of different 

biomolecules, especially in affinity column chromatography [364-367]. Recent progress in 

supramolecular chemistry has resulted in tailor-made organic functionalities with high 

selectivity and specificity toward an array of biomolecules and therapeutic ligands, which 

can be used for their selective separation [368, 369]. Synthetic peptides, in particular, have 

tremendous molecular recognition and selective binding capabilities and a large volume of 

peptide libraries with different binding properties has been developed during the last two 

decades [370-372]. Oligopeptide mimics of biological binding sites (of longer proteins) on 

solid supports are durable, reusable and cost-effective for affinity separations [370].  

Mesoporous silica materials are an ideal support for high affinity functional groups 

due to their high surface area, tunable pore size and ease of surface modification [125, 

373]. Use of mesoporous silica functionalized with affinity binding sites is widespread in 

chromatography [374, 375]. We hypothesize that functional oligopeptide attached or 

conjugated MSNPs can also be used to selectively harvest specific metabolites from living 

plant cells. This would be the reverse process of biomolecule delivery to cells using 

functional peptide or protein conjugated nanoparticles [120, 125, 376, 377]. Plants are the 

natural factories of various therapeutic molecules, which are difficult to synthesize by 

chemical methods, and conventional extraction process involves maceration of the host 

plant cultures in order to gain access to the metabolites [39]/(Chapter 4). During 

nanoharvesting, functionalized nanoparticles enter the plant cell tissue, bind the target 

molecule, and are excreted into the media while keeping the valuable plant cell culture 

viable. A potential benefit of oligiopeptide binding of plant metabolities relative to general 



 

 

184 

 

chelation to TiO2 (Chapter 4) is specificity. In extending the concept of nanoharvesting to 

specific compounds, conjugation of these organic functionalities (oligopeptide) inside the 

pores of MSNPs should provide high stability and capacity.  

The most common biomolecule linking strategy is to functionalize the silica surface 

with amine groups and then to covalently link the amine moieties with the N-terminus of 

peptide/protein molecules. Bifunctional linkers [121, 378-380] for amine-amine 

conjugation can be mainly divided into two types: homo-bifunctional and hetero-

bifunctional. Homo-bifunctional linkers such as bis(sulfosuccinimidyl)suberate (BS3) have 

two amine-reactive NHS ester groups at the either end, which can react with amine 

functionalized particles at one end and with the amine terminal group of a peptide at the 

other [121, 381, 382]. During peptide conjugation to porous particle surface using homo-

bifunctional linkers containing amine reactive NHS groups at both end, competitive rapid 

hydrolysis of ester groups poses huge problems during attachment, and proteins may be 

physically adsorbed rather than attaching covalently [128, 383, 384], unlike simultaneous 

cross-linking of two proteins or peptides in solution. Controlling the rate of reaction of the 

linker with both the peptide and the surface is also challenging and homo-bifunctional 

linkers lack the specificity and precise control of attachment orientation. 

A hetero-bifunctional linker containing an amine reactive end and a UV-activable 

end during peptide conjugation overcomes the limitations of homo-bifunctional linkers. 

The activation of the UV active group by a light source provides precise control over the 

attachment mechanism and location. One of the most common hetero-bifunctional linkers 

for peptide/protein conjugation is phenyl azide based: sulfosuccinimidyl 6-(4-azido-2-

nitrophenyl-amino) hexanoate (sulfo-SANPAH) [383, 385, 386]. The UV-activable end of 
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sulfo-SANPAH is activated at a wavelength < 320 nm (as low as 260 nm) [121, 387], 

which can cause denaturation of proteins. Also, the larger size of the aromatic photoactive 

group in sulfo-SANPAH can create steric hindrance [388]. On the other hand, the diazirine 

group is activated at higher wavelength (340-370 nm), and thus does not cause denaturation 

of proteins/peptides. As a result, diazirine has been used extensively in photolabeling 

agents for proteins [387, 389, 390]. Diazirine-based photoreactive linkers have better 

stability compared to commonly used aromatic azide photo-linkers [391, 392]. The linkers 

can also be designed to provide optimal peptide orientation for ligand attachment from the 

bound surface using spacers. For example, succinimidyl 6-(4,4'-azipentanamido) 

hexanoate (NHS-LC-diazirine) provides a sufficient spacing arm for the biomolecule to 

avoid effects of surface interactions on its properties [393]. The NHS-LC-diazirine linker 

has been shown to be stable under ambient lighting conditions [393, 394]. The derivative 

sulfo-NHS-LC-diazirine (SNLD) contains a charged sulfate group that enhances its 

aqueous solubility and as a result can be used in physiological media [395].  

Covalently linking peptides on the inner surface of the pores of mesoporous silica 

nanoparticles using hetero-bifunctional linkers has not been reported, most likely due to 

the insufficient pore size (< 4 nm) in previously synthesized silica nanoparticles. Large 

pores are required for peptides and linkers to infiltrate the interior surface without pore 

blockage. Surfactant templating with cationic surfactants such as alkyltrimethylammonium 

salts typically produces pore sizes around 3 nm in diameter [38, 69, 71]. Only recently, 

surfactant templated synthesis of MSNPs with < 170 nm particle diameter and pore sizes 

of 4.5 nm to 8 nm has been reported by using pore expanding agents [83, 84]. These 

particles facilitate the conjugation of long peptide sequences and proteins along with 
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sufficient spacer arms to prevent strong surface effects. A study of peptide conjugation to 

the inner surface of silica microbubbles (cavity size 0.55-0.65 mm) using NHS-diazirine 

has been reported [396]. However, the pore size of microbubble is thousands of times larger 

than MSNPs, so there is a need to investigate the use of NHS-diazirine linkers in pores 

comparable in size to peptides and proteins. Based on previous studies [383, 396, 397], we 

hypothesize that oligopeptides will preserve their solution binding properties in expanded 

mesopores (> 4 nm diameter) when a spacer of 1.25 nm (SNLD arm length [398]) is 

provided between surface functional group and the peptide N-terminus. 

This work examines strategies to conjugate functional oligopeptides to large-pore 

amine-functionalized MSNPs (~ 8 nm diameter pores) using diazirine based hetero-

bifunctional linker sulfo-NHS-LC-diazirine (SNLD). The four-amino acid peptide RSSV 

(Arg-Ser-Ser-Val) was selected for this application from a combinatorial peptide library 

based on its ability to bind β-estradiol (equilibrium constant, K = 6 × 104 M-1) via column 

chromatography with good selectivity versus other steroids [141]. Conjugation of the 

peptide 4RSSV (Arg-Ser-Ser-Val-Arg-Ser-Ser-Val-Arg-Ser-Ser-Val-Arg-Ser-Ser-Val), a 

four-repeat peptide of the original RSSV 4-mer, and 4G (Gly-Gly-Gly-Gly) to the 

nanoparticles is investigated to test the versatility of the conjugation strategy for peptides 

of varying length and amino acid sequence. Two conjugation strategies based on first 

attaching the linker to either the particle or peptide are proposed. For Type-1 attachment, 

the linker is first attached to the surface amine group using NHS-ester and then the peptide 

amine group is attached to the linker using UV-activation of diazirine. For Type-2 

attachment, the linker is first attached linker to peptide using NHS-ester followed by 

attachment to surface using UV-activation (Figure 6.1). The anticipated advantage of 
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Type-1 attachment is that unbound linkers can be removed by washing after the first step 

and before attachment to peptides. However, activated diazirine is indiscriminate toward 

N-H or O-H moieties and can result attachment to either terminus of the peptide. Activation 

of the diazirine group under UV light has also been shown to bind the carboxyl moieties 

of proteins to some degree [399]. Another problem with Type-1 attachment in a porous 

system is the possible attachment of the diazirine moiety with another amine group inside 

the pores. Specific attachment of the peptide N-terminus to the linker during first step is 

the main advantage of Type-2 attachment. In addition, the peptide-attached linker can 

diffuse into the pore prior to the photoactived conjugation to the surface, promoting 

reactions within the pores and not just at the surface. Attachment of diazirine to O-H 

moieties of particles provide no disadvantages (in fact it is probably advantageous in 

keeping some of amine groups unattached and positively charged) compared to Type-1 

attachment. However, during the second step of Type-2 attachment, the activated diazirine 

of the peptide-attached linker can react with the C-terminus of another peptide. These 

solution-based complexes would be removed during washing but would result in inefficient 

use of peptide and linker. Considering these pros and cons, the attachment efficiency is 

examined for both of these methods using fluorescent spectroscopy of fluorescein 

isothiocyanate (FITC)-labeled peptide and TGA analysis. The binding capacity of peptide-

conjugated particles for estrogen is measured by β-estradiol adsorption, where the ability 

to increase binding capacity of 4RSSV relative to RSSV is examined. 
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Figure 6.1  Schematic diagram of the peptide attachment strategies using hetero-

bifunctional cross-linker Sulfo-NHS-LC-Diazirine (SNLD): (a) Type 1 – attaching the 

linker to the particle amine group first using the NHS group and then attaching to peptide 

amine group using the UV-reactive diazirine group and (b) Type 2 - attaching the linker to 

the peptide amine group first using the NHS group and then attaching to particle amine 

group using the UV-reactive diazirine group. 
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6.3 Materials and Methods 

6.3.1  Chemicals and Reagents 

Tetrapropyl orthosilicate (TPOS, 95%), phosphate buffer saline (PBS) tablets, (3-

aminopropyl) triethoxysilane (APTES, 99%) and N, N-dimethylformamide (DMF, 

molecular biology grade) were purchased from Sigma-Aldrich. Cetyltrimethylammonium 

bromide (CTAB, 99.8%) was purchased from MP Biomedicals; NaOH pellets (≥ 97%) 

from EMD Millipore; Acetone (≥ 99.5%) from BDH analytical; 1,3,5-triisopropylbenzene 

(TIPB, > 95%), triethanol-amine (TEA, > 98%) and fluorescamine from Alfa-Aesar; 

ultrapure deionized ultra-filtrated (DIUF) water, ethanol (200-proof), 12 N HCl (ACS 

grade) from Fisher Scientific. Heterobifunctional linker sulfo-NHS-LC-diazirine (SNLD, 

PierceTM) was purchased from Thermo-Fisher Scientific and used for peptide conjugation. 

6.3.1.1 Oligopeptide synthesis 

Peptides 4G (GGGG) was obtained from Sigma-Aldrich; RSSV and 4RSSV were 

synthesized by Genscript (Piscataway, NJ), and RSSV-FITC was synthesized by Lifetein 

(Hillsborough, NJ) using solid-phase peptide synthesis and purified to > 95% yield using 

reverse phase high pressure liquid chromatography (RP-HPLC). RSSV-FITC was designed 

(sequence Arg-Ser-Lys(FITC)-Val) by replacing the serine at position 3 with a lysine to 

incorporate the fluorescein isothiocyanate (FITC) fluorescent label while maintaining the 

peptide arginine positive charge for peptide function and the single free amine (N-

terminus) for attachment. All peptide sequences were confirmed to be of the correct 

molecular mass by LC-MSMS analysis following purification. Lyophilized peptide was 
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resuspended in PBS buffer (pH 7.4) to a final concentration of 1.7 mg/mL 4G, 3 mg/mL 

RSSV and 12 mg/mL 4RSSV before conjugation to particles. 

6.3.2 Mesoporous Silica Nanoparticle (MSNP) Synthesis  

MSNPs were synthesized using a modification of the method described by Yamada 

et al. [84], where TIPB was used to swell the CTAB micelles, the pore forming agent, 

during surfactant-templated synthesis. Initially, 0.56 ml of TEA and 3.0 g of CTAB was 

added to 360 mL of DIUF water. The solution was kept stirring at 80 ºC for 2 h for complete 

mixing and emulsion formation and 16 mL of TIPB was added under vigorous mixing. 

After 30 min, a complete colloidal state (oil-in-water) was obtained and 4.77 mL of TPOS 

was added with constant stirring. Then, the solution was stirred vigorously for 12 h to 

obtain white solid particles. The particles were then separated by repeated centrifugation 

and washing and the surfactant was removed by acidic ethanol (2 M HCl in ethanol) 

washing before drying at 84 °C overnight. 

6.3.3 Amine Functionalization and Quantification.  

Amine functionalized MSNPs (MSNPAs) were obtained by condensing APTES on 

the particle surface using modified literature procedures [101, 125, 322, 358]. 200 mg of 

MSNPs were uniformly dispersed in 25 mL of dry ethanol by sonication for 15 min. 0.5 

mL of APTES was added dropwise under constant stirring, and the solution was kept 

stirring in a closed vessel for 24 h at RT. Particles were centrifuged with repeated ethanol 

washing, and cured at 84 ºC for 24 h. After curing, particles were stirred in excess ethanol 
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for 24 h to remove any remaining loosely-bound amine species. The functionalized 

particles were again washed 3 times with dry ethanol and dried at 84 ºC. 

6.3.3.1 Amine Quantification 

The amount of amine groups on the functionalized particle surface was determined 

by a previously reported fluorescamine assay after particle dissolution [324, 325]. 30 mg 

of particles were dissolved over an 8 h period in 30 mL of 0.02 M NaOH at room 

temperature under vigorous stirring. 100 μL of this solution and 1.0 mL of 1.0 mM 

fluorescamine in acetone were mixed with 2.0 mL of PBS solution at pH 7.4. The emitted 

fluorescence intensity of this solution was measured at 480 nm after excitation at 366 nm 

using a Varian Cary Eclipse fluorescent spectrophotometer. The calibration curve was 

prepared using known amounts of APTES. 

6.3.4 Peptide Attachment to MSNPAs 

For Type-1 attachment, 10 mg of MSNPAs were sonicated in 1 mL of PBS solution 

(pH 7.4) for 15 min to make a uniform dispersion and mixed with 3 mg of SNLD in 100 

µL DMF at 4 ºC. The mixture was allowed to stir at 4 ºC overnight and the particles were 

centrifuged afterwards. Particles were washed with fresh PBS solution three times to 

remove excess and unbound linkers and then dispersed in 2 mL of PBS solution containing 

3 mg of RSSV peptide at room temperature with vortex mixing. The solution was then 

stirred overnight to allow adsorption of peptide on particle surface and finally treated with 

UV light (Thorlabs M00284926, =365 nm, 1.2 A) with continuous stirring for 60 min, 

which was selected based on a series of attachment experiments using RSSV-FITC with 
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different UV treatment time (0, 10, 30, 45, 60, 90 and 120 min) (see Section 6.3.6 for 

quantification). After UV treatment, peptide attached particles (MSNPA-RSSV) were 

separated by centrifugation and washed 5 times with fresh PBS solution and dried 

overnight in vacuum at room temperature. 

For the Type-2 attachment, 3 mg of SNLD in 100 µL DMF is mixed with 3 mg of 

RSSV peptide in 1 mL PBS solution first at 4 ºC and the mixer is allowed to stir at 4 ºC 

overnight for the completion of linking with the amine terminal of peptide. 10 mg of 

MSNPAs were dispersed uniformly in 1 mL PBS with sonication and added to the peptide-

linker solution. The combined mixture was allowed to stir overnight for adsorption of 

peptide-linker conjugation on the particle surface and then UV treated for 60 min with 

continuous stirring for the attachment to the particle surface. Finally, peptide attached 

particles were separated by centrifugation, washed thoroughly with fresh PBS solution and 

dried overnight in vacuum at room temperature. 4G and 4RSSV attachment using the Type-

2 method is similar, but 1.7 mg of 4G or 12 mg of 4RSSV was used to keep the molar ratio 

of peptide:amines approximately the same as for RSSV. 

6.3.5 Materials Characterization  

 A Hitachi S-4300 Scanning Electron Microscope (SEM) was used to examine the 

particle morphology. Particles were dispersed onto a 15 mm aluminum stub using double 

sided carbon tape, excess materials were blown off with dry N2, and the samples were 

stored in a desiccator for 24 h. Prior to SEM analysis, the particles were coated with 

conductive Au-Pd alloy using an Emscope SC400 sputtering system. Average and standard 

deviation of particle diameters were calculated using 20 random particles using ImageJ 
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Software. Surface characterization was performed using nitrogen adsorption conducted at 

-196 ºC with a Micromeritics TriStar 3000 gas sorption instrument. Samples were degassed 

at 135 ºC for 4 h under flowing N2 gas before analysis. The specific surface area, average 

pore diameter and pore size distribution were estimated using the Brunauer, Emmett and 

Teller (BET) isotherm and by the method of Barrett, Joyner and Halenda (BJH), 

respectively. To confirm the covalent linkage of peptides, Fourier transform infrared 

(FTIR) spectroscopy was conducted by a Thermo Nicolet Nexus 470 spectrometer with a 

deuterated triglycine sulfate (DTGS) detector. 0.5 g of anhydrous KBr and particles (0.5-

1.0 wt %) were crushed with a mortar and pestle, and some of this powder was pressed into 

a pellet for transmission analysis. Dynamic light scattering (DLS) was used to measure the 

zeta potential of the particles in an Anton-Paar Lightsizer 500 instrument. Initially, a 1 

mg/mL of uniform particle suspensions was made in DIUF water with sonication and 

diluted to around 0.1 mg/mL concentration before measurement. The pH of the solutions 

were adjusted by adding very small amount of 0.1 N of either HCl or NaOH solution in 

water as required to obtain desired pH, which were checked before every measurement 

with a benchtop pH-meter (Accumet Research AR25 dual channel). For measurements, the 

solutions were carefully placed in an Omega Cuvette consisting of an inverted Ω-shaped 

capillary tube without any air bubbles. 

6.3.6 Quantification of Peptide Attachment 

Fluorescein isothiocyanate (FITC) labeled RSSV peptide (RSSV-FITC) was used 

to quantify RSSV attachment efficiency to the particle amine groups by solution depletion 

with fluorescence spectroscopy. During quantification of peptide attachment, the amount 
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of particles and linkers and the solution volume were the same as during RSSV attachment. 

The amount of RSSV-FITC was adjusted to 5.5 mg (instead of 3 mg RSSV) to keep the 

molar ratio of peptide:amine the same. Fluorescence intensity of the solution after 

attachment was measured at an emission wavelength of 520 nm (peak fluorescence) after 

excitation at 495 nm (peak absorbance) and compared to a calibration curve prepared with 

known amounts of RSSV-FITC. Type-1 attachment was quantified using the calibration 

curve of RSSV-FITC (only peptide) fluorescence intensity, whereas Type-2 attachment 

was quantified using the calibration curve of SNLD-RSSV-FITC (peptide conjugated with 

linker) after correcting to account for photo-bleaching (intensity reduction) during the UV 

treatment period. 

Thermogravimetric analysis (TGA) was performed to quantify the amount of 

organic groups (peptides) conjugated to the particle surface with a TA-SDT-Q600 

simultaneous TGA/DSC instrument (TA Instruments). Particle samples were dried at 50 

°C under vacuum overnight before performing TGA analysis from 25 °C to 500 °C with a 

ramp rate of 10 °C/min with constant dry air flow of 100 mL/min. Mass loss due to thermal 

decomposition and combustion of organics were analyzed for MSNPA, MSNPA-4G, 

MSNPA-RSSV and MSNPA-4RSSV compared to bare MSNP from 150 °C to 500 °C to 

determine the amount of amine grafting and peptide conjugation, respectively.  

6.3.7 Estradiol Adsorption to Peptide Attached Particles. 

β-estradiol binding to the particles was carried out in PBS buffer by solution 

depletion with LC-MS measurements. Particles (10 mg) were sonicated in 1 mL of PBS 

buffer (pH 7.4) until a uniform suspension of master solution obtained. A 100 µL aliquot 
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of 1 mg/mL particle suspension was placed in a 500 µL vial and 125 µL of PBS buffer 

added. Subsequently, 25 µL of 10 µM β-estradiol solution in ethanol was added and the 

mixture was incubated for 24 h with constant shaking. After 24 h, particles were separated 

by centrifugation and supernatants were analyzed by LC-MS (QExactive orbitrap mass 

spectrometer equipped with a Shimadzu Nexera UPLC). β-estradiol adsorption on the 

particle surface was quantified by depletion in concentration after exposure to the particles 

and depletions for all particles were normalized with respect to the depletion for MSNPA-

RSSV. 
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6.4 Results and discussion 

MSNPs with large pores (~8 nm average pore size) were synthesized by the method 

of Yamada et al. [84], where CTAB surfactant template was used to create pores and TIPB 

served to expand the micelle pore templates. After synthesis, the surfactants were removed 

from the pores by acidic washing. Particles were then functionalized with amine groups 

using APTES condensation. Spherical particles with average diameter of 146 ± 27 nm were 

obtained after template extraction, as seen in the SEM image presented in Figure 6.2. This 

particle size is suitable for cell uptake [184]. Surface characterization (surface area, pore 

volume and average pore size) was performed using nitrogen adsorption before and after 

amine functionalization (Figure 6.3 and Table 6.1). Nitrogen sorption of particles showed 

Type-IV isotherms (Figure 6.3a), consistent with the presence of mesopores. X-ray 

diffraction pattern did not show any peaks (data not shown), as the orientation of the pores 

is reported to be radial [84], which limits the size of oriented domains. The average pore 

diameter, as determined by the BJH method, was reduced with functionalization (7.9 nm 

to 7.6 nm) (Figure 6.3b). The surface area and pore volume were also reduced after 

functionalization, consistent with amine grafting inside the mesorpores. The large pore size 

of the particles (relative to CTAB-templating alone) allows the amine functional groups in 

the pores to be accessible for covalent attachment to the linkers and peptides. The amount 

of amines on particle surface was estimated by chemical analysis to be 1.53 mmol amine/g 

silica, corresponding to 64% of a monolayer coverage on the particle surface considering 

the projected area per aminopropyl group on the surface [324]. 
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Figure 6.2  SEM image of bare MSNPs (large-pore) showing spherical particles with 

average particle diameter 146 ± 27 nm (average pore size ~8 nm from nitrogen adsorption). 

 

 

Figure 6.3  Surface property characterization of non-functionalized and amine 

functionalized MSNPs: (a) Nitrogen sorption isotherms, (b) BJH pore size distribution. 
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Table 6.1  Surface properties of MSNPs from nitrogen adsorption before and after amine 

functionalization. 

Particle type BET surface area 

(m2/g) 

Total pore volume 

(cm3/g) 

Average pore 

diameter (nm)a 

MSNP 729 2.32 7.9 ± 2.2 

MSNPA 469 1.50 7.6 ± 1.9 

a The range is determined from the full width at half maximum (FWHM) of BJH pore size 

distribution. 

 

Oligopeptides RSSV, 4G and 4RSSV were conjugated to amine functional groups 

on the particle using hetero-bifunctional linker SNLD, which provides a combination of 

amine-reactive chemistry with the photochemistry of diazirine groups for UV-activation. 

The silica pore walls should not hinder UV light within the particles; silica cavities with 

pore walls of much greater thickness (2 µm) have been functionalized using same UV 

treatment process [396]. UV activated conjugation is relatively rapid and efficient 

compared to NHS conjugation [400], and was determined to be optimum for 60 min using 

RSSV-FITC attachment (data not shown).  

For RSSV, two different peptide conjugation strategy were used when a 

bifunctional linker is used as shown in Figure 6.1. For Type-1 attachment, SNLD was first 

conjugated to amine groups on the particles by using amine-reactive NHS moieties, and 

then the peptide N-terminus was attached to the linker using the diazirine end under UV 

treatment. The Type-2 attachment sequence was the opposite of this and the peptide N-

terminus was first attached to the linker NHS end before attaching the diazirine end to 

particle amine groups by UV treatment. FITC-conjugated RSSV (RSSV-FITC) was used 

to evaluate these two oligiopeptide attachment strategies. Fluorophore-tagged 

peptides/proteins are widely used to calculate the attachment efficiency using homo- or 
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hetero-bifunctional linkers [401]. The UV-vis absorbance spectra of RSSV-FITC was 

measured (Figure D.1 of Appendix D), where the absorbance intensities do not change 

with UV treatment up to 120 min of treatment. Fluorescence intensities were used to 

measure RSSV-FITC attachment by solution depletion, while accounting for 

photobleaching of the fluorescent moiety (using a control UV treatment in absence of any 

particles) during the functionalization process. UV illumination caused 25% and 35% 

reduction in intensity for RSSV-FITC and SNLD-RSSV-FITC after 60 min of treatment 

for Type-1 (Figure D.2 and D.3) and Type-2 attachment (Figure D.4 and D.5), 

respectively. 

 Based on the calculation of solution depletion after peptide attachment, attachment 

efficiency of Type-2 conjugation was found to be 0.43 mol peptide/mol amine, whereas 

for Type-1 conjugation it was 0.24 mol peptide/mol amine. Better efficiency of Type-2 

attachment is consistent with literature involving antibody conjugation to polyamine yarns 

using NHS-LC-diazirine [402]. Part of the reason may be the high concentration of 

diazirine groups accessible to amine group in the pores during Type-2 attachment. Thus 

along with lower attachment efficiency, possible attachment to another amine group or the 

wrong peptide moiety makes Type-1 less attractive option. During Type-2 attachment, 

activated diazirine can attach to the carboxyl moiety of another peptide. However, if any 

activated diazirine binds with the C-terminus of another peptide, both of them will be 

removed during particle washing steps. Thus, Type-2 attachment is preferable to preserve 

the functionality of peptide. UV-vis absorbance and fluorescence intensity of the particles 

and the supernatant after Type-2 conjugation using RSSV-FITC with UV treatment is 

provided in Figure 6.4, compared to attachment without UV treatment. The absorbance 
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and fluorescence intensity of the particles increased only when they underwent UV 

treatment, whereas absorbance and fluorescence intensity decreased in the supernatant, 

consistent RSSV-FITC attachment to the particles. It should be noted that the particle 

external surface represents less than 2% of the total surface area and as a result peptide 

attachment should be only 0.02 mol peptide/mol amine if peptides only attach to the outer 

surface amine of the particles. Considering the relative amount of peptide attachment, the 

peptides are conjugated primarily to the amines inside the pores, as hypothesized. 
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Figure 6.4  UV-vis absorbance (left) and fluorescence intensity (right) of (a) & (b) particles 

and (c) and (d) supernatant after RSSV-FITC attachment to the particles. Solid red lines 

and dashed blue lines represent results with or without UV treatment, respectively. 

 

To show covalent linkage (not merely physical adsorption), FTIR spectra of the 

particles after peptide attachment were measured. The FTIR spectra of MSNPs (bare, 

amine functionalized, RSSV-functionalized and 4RSSV-functionalized prepared by Type-

2 attachment) are compared in Figure 6.5, along with the spectra of fresh linker and 

peptides. The FTIR spectra of the bare MPSNs does not contain a peak due to –CH2 

stretching (2800-3000 cm-1), suggesting complete removal of the organic template 

following particle synthesis. For bare MSNPs and MSNPAs, the most prominent peaks 
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were bands corresponding to Si-O-Si and Si-OH vibration, located at 1080 and 960 cm-1, 

respectively [46]. Primary amine peaks are not visible, but amine functionalization was 

quantified by chemical analysis as described previously. The linker, SNLD, has symmetric 

and asymmetric (-C=O from the ester) stretching vibrations at 1788 and 1736 cm-1, 

respectively, whereas peaks at 1223 and 1051 cm-1 can be assigned as asymmetric C-N-C 

and N-C-O stretching vibrations [128]. There are also two peaks correspond to diazirine 

(N=N stretching at 1643 and N-H amide bond stretching 1540 cm-1) [403-406]. After 

peptide attachment, the intensity of –CH2 stretching vibrations (2800-3000 cm-1) increase, 

which indicates the presence of linking spacer between particle surface and peptide, 

whereas peaks corresponding to NHS ester and diazirine group disappeared suggesting 

their conversion during the attachment process. Both MSNPA-RSSV and MSNPA-4RSSV 

showed increased intensity corresponding to arginine side chain stretching vibration, which 

confirms peptide attachment to the particle surface. Specifically, the spectra of the RSSV 

oligopeptides have a characteristic peaks from the arginine side chain (CN3H5
+) 

(asymmetric and symmetric stretching vibrations of 1673 and 1586 cm-1, respectively), -

CH3 bending vibration at 1460 cm-1 from valine and C-OH bending vibration from serine 

side chain (1181 cm-1) [407]. On the other hand, characteristic peaks of the inner groups 

from 4G (CH2 bending at 1435 cm-1, COO- symmetric and asymmetric stretching at 1788 

and 1736 cm-1, and C=O stretching at 1637 cm-1 [408]) remains, while N-H symmetric and 

assymetric stretching peaks (at 3311 and 3276 cm-1 [409]) disappeared., suggesting 

covalent linkage through the N-terminus. 
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Figure 6.5  FTIR spectra of peptide functionalized particles relative to bare MSNPs and 

MSNPAs, as well as fresh linker (sulfo-NHS-LC-diazirine) and peptides. 
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peptide (RSSV, 4G and 4RSSV) / linker conjugated MSNPAs (using Type-2 attachment) 

was quantified by comparing their mass loss from 150 ºC to 500 ºC to MSNPs and 

MSNPAs (Figure 6.6).  For bare MSNPs, 2.6% mass is lost from 150 to 500 ºC (0.278 

mg/mg silica; representing impurities such as residual template and further temperature-

induced condensation of silica) and is subtracted before calculating the organic content of 

the other particles based on mass loss in this temperature range. The amount of 

aminopropyl groups on MSNPAs was found to be 0.494 mg/mg silica (1.04 mmol amine/g 

silica). Hence, TGA analysis underestimates the amount of amine by a factor of 0.67 

compared to that of chemical analysis (see above). The reason for this underestimation may 

be due to the carbon residue on particle surface (which was visually observed on the 

particles). After subtraction of the weight loss of organics for MSNPAs, an additional 

0.132, 0.208 and 0.516 mg/mg silica weight loss (due to removal of peptides and linkers) 

was observed for MSNPA-4G, MSNPA-RSSV and MSNPA-4RSSV, respectively. This 

corresponds to 0.300 mmol 4G/g silica, 0.324 mmol RSSV/g silica and 0.267 mmol 

4RSSV/g silica. The molar attachment efficiency with amine is similar for the three 

peptides: 0.288, 0.311 and 0.257 mol peptide/mol amine for 4G, RSSV and 4RSSV, 

respectively. It is usually difficult to estimate protein length due to the presence of different 

secondary structures, but for oligopeptides an average length of 1.5 Å can be assumed per 

amino acid [410]. Thus a length of 0.6 nm, 0.6 nm and 2.4 nm can be approximated for 

4G, RSSV and 4RSSV, respectively, in addition to 1.25 nm of spacer length from linker 

[398]. Hence, the method of peptide attachment to MSNPAs is robust to amino acid 

sequences and oligopeptide length. It should also be noted that TGA analysis 

underestimated RSSV estimation by a factor of 0.72 compared to estimation by fluorescent 
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measurements, which is close to aminopropyl underestimation for MSNPAs, again due to 

carbon residue on particle surface. Thus, chemical methods are more accurate in estimation 

of peptide attachment, but TGA can provide a reasonable estimation of relative attachment. 

 

Figure 6.6  Thermogravimetric analysis (TGA) profiles of particles showing relative mass 

loss with temperature increase for (a) MSNP, (b) MSNPA, (c) MSNPA-4G, (d) MSNPA-

RSSV, and (e) MSNPA-4RSSV. 

  

All the particles after peptide conjugation (MSNPA-4G, MSNPA-RSSV and 

MSNPA-4RSSV) remain positively charged at physiological pH (Figure D.6), consistent 
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positive charge, these particles should be appropriate for intracellular penetration during 

nanoharvesting or biomolecule delivery applications, where positive charge has been 

shown to be beneficial (Chapter 4).  

A challenge of covalent immobilization of peptides on surfaces is the possible loss 

of the desired selective ligand binding functionality after attachment [370]. Here, 

functionality of surface conjugated peptides were demonstrated from their increased 

binding to β-estradiol (E2) compared to bare MSNPs and MSNPAs, as peptide RSSV was 

shown to have high affinity for E2 [141]. β-estradiol binding to the particles was 

determined by the depletion from 10% ethanolic solution of PBS in the presence of 

particles. Relative depletion of E2 in the presence of MSNPs, MSNPAs, MSNPA-RSSVs 

and MSNPA-4RSSVs compared to that of MSNPA-4G are presented in Figure 6.7, where 

depletion corresponding to MSNPA-4G was assumed as 100%. Although there is high non-

specific binding to bare particles, a statistically significant differences in E2 adsorption 

between peptide-conjugated particles and unconjugated MSNPAs were found. E2 binding 

to only peptide groups was estimated in comparison with binding to only amine groups 

(non-specific adsorption) from the differences in Figure 6.7. Considering the mol 

peptide/mol amine bound on particle surface (from TGA analysis), the binding of E2 per 

mol of 4G, RSSV and 4RSSV peptides is calculated to be 2.16, 2.20 and 3.05 times the E2 

bound per amine group (Figure 6.8). Statistically significant higher binding to 4RSSV on 

the particle surface compared to RSSV validates our hypothesis that repeating a selective 

peptide sequence increases the binding stoichiometry. However, high background binding 

to both MSNPs and MSNPAs shows the difficulties in measuring the selective binding of 

a hydrophobic molecule like E2 in aqueous solution, where their natural abhorrence 
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towards water drives them out of solution. Although hydrophobic interactions are the main 

driving force, hydrogen bonding with silica and aminopropyl groups may also be present 

[411, 412], which make the binding more complicated. However, the difference in binding 

capacity of peptide conjugated particles will be more pronounced compared to MSNPAs 

(and between MSNPA-RSSV and MSNPA-4RSSV) if an affinity chromatographic column 

functionalized by the same peptide is used, as demonstrated for the fractionation of other 

biomolecules [413-415]. High β-estradiol binding capacity also provides an opportunity 

for the removal of these types of compounds from polluted water sources, which are 

notorious endocrine disrupting compounds [416].  

 

Figure 6.7  Adsorption of β-estradiol on particle surface relative to MSNPA-4G from 

solution depletion by adding 25 µL of 10 µM β-estradiol in ethanol to 0.1 mg particle in 

225 µL PBS (10% ethanol in PBS). 
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Figure 6.8  Capacity differences in β-estradiol binding (mol/mol functional group) 

normalized relative to amine group as calculated from β-estradiol adsorption. 
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6.5 Conclusions 

Functional oligopeptide 4G (Gly-Gly-Gly-Gly), RSSV (Arg-Ser-Ser-Val) and 

4RSSV were attached to large pore (7.9 nm diameter) amine functionalized MSNPS using 

a hetero-bifuntional linker, sulfo-NHS-LC-diazirine (SNLD), which contains an amine 

reactive NHS ester group and UV-activable diazirine group. Hetero-bifunctional peptide 

linkers containing a diazirine group provide precise control of the mechanism and 

orientation during attachment with a high activation wavelength (365 nm), which is more 

benign to the protein/peptide compared to other linkers that are activated at lower 

wavelength. Two different conjugation schemes were compared to attach oligopeptide 

RSSV to the MSNPs based on the order of addition (Type-1: functionalize particle with 

linker and then attach the peptide and Type-2: attach the linker to the peptide and then 

functionalize the particle with peptide-linker conjugate). The efficiency of peptide 

attachment was measured by fluorescence spectroscopy using FITC-labeled peptides 

(RSSV-FITC). Higher attachment efficiency per mol amine groups was found for Type-2 

attachment (0.43 mol RSSV/mol amine) compared to Type-1 attachment (0.24 mol 

RSSV/mol amine). Type-2 attachment efficiencies of 4G, RSSV, and 4RSSV on particles, 

as determined by TGA analysis, were similar. This demonstrates that the attachment 

strategy is generalizable and can be used to attach a range of sizes of oligopeptide to 

MSNPA. An increase in capacity of the oligopeptide-functionalized MSNPs for a target 

molecule (β-estradiol) was demonstrated compared to only MSNPAs, although significant 

background adsorption of this hydrophobic molecule was observed.  

The functional oligopeptide conjugation to “large pore” MSNPs appropriate for 

biomolecule loading was demonstrated using a versatile and robust hetero-bifunctional 

linking strategy, which provides precise control of binding moieties of peptide molecule. 
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High capacity platforms for selective separation of biomolecules with therapeutic value 

can be designed by selecting oligopeptides that mimic the specific binding sites of 

biomolecules. For example, MSNPAs can be used to selectively isolate different small 

molecular therapeutics from living plants, a technique recently demonstrated by using 

engineered silica nanoparticles. Further, high capacity adsorbents for the removal of 

specific therapeutics in polluted water sources can be developed based on oligopeptide-

functionalized silica particles. 
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CHAPTER 7. THERMODYNAMIC INTERACTION OF RNA WITH AMINE 

FUNCTIONALIZED MESOPOROUS SILICA NANOPARTICLES 

7.1 Summary 

Functionalized mesoporous silica nanoparticles (MSNPs) are ideal carriers for 

nucleic acids and oligonucleotides for gene delivery and RNA interference (RNAi) 

applications due to their low toxicity, tunable pore and particle morphology, high loading 

capacity and ease of surface modification. As one example, MSNPs have been proposed 

as carriers for the delivery of double stranded (ds) RNA in insects for RNAi mediated pest 

control. With the advent of MSNPs with pores large enough for biomolecule access, RNA 

loading, release and mobility in cationic, amine functionalized MSNPs (MSNPAs) have 

been demonstrated to be strongly dependent on pore diameter and RNA length. This 

investigation examines the thermodynamic driving force for RNA-MSNPA interactions 

and the nature of binding of RNA, extending knowledge of solution-based nucleic acid-

polycation interactions to RNA confined in nanopores. The interactions of 84 and 282 base 

pair (bp) dsRNA with MSNPAs of varying pore diameter (nonporous, 1.6 nm, 3.2 nm and 

7.6 nm) are studied using isothermal titration calorimetry (ITC). RNA interactions with the 

porous particles occur through a two-step process, where the first is an initial endothermic 

interaction driven by entropic contribution from counterion (and water) release from 

positively charged amine moieties and negatively charged RNA molecules. The second 

step is an exothermic regime dominated by short range interactions of RNA within the 

pores. The exothermic heats evolved are significantly larger for 84 relative to 282 bp RNA 

for MSNPAs with 1.6 nm pores, consistent with hindered pore loading of the larger RNA. 

Within 3.2 nm pore particles, the initial entropic contributions are more dominant for 84 

bp RNA, while greater exothermic heat is associated with 282 bp RNA. At the largest pore 
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diameter (7.6 nm), similar interactions with MSPNPAs are found for both 84 and 282 bp 

RNA. Reduction of both endothermic and exothermic enthalpies in the presence of salt for 

both lengths of RNA indicates that electrostatic interaction contribute to both regimes of 

binding. Thermodynamic binding energies (ΔH and ΔG), as determined from fitting 

binding models to the ITC data, are consistent with previous investigations of nucleic acid 

interaction with polycations, suggesting high conformation change and significant 

desolvation during binding. Knowledge of the size-dependent nature of the interactions 

between RNA and functionalized porous nanoparticles will aid in the design of porous 

nanocarriers suitable for functional RNA and functionalized porous nanoparticles will aid 

in the design of porous nanocarriers suitable for functional RNA loading and release. 
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7.2 Introduction 

Nucleic acid (DNA/RNA) research has revolutionized their biomedical 

applications and opened a new horizon for treatments for numerous recalcitrant diseases 

[417-420]. Delivery of oligonucleotides of DNA to targeted intracellular sites (especially 

cell nuclei) is extremely important for gene therapy and associated technologies involving 

genetic interference [210, 211, 421]. Similarly, RNA-based therapy that includes 

regulation of gene expressions involves delivery of RNA to the vicinity of cell nuclei [212, 

218, 422]. A prominent type of RNA delivered for RNA-based treatments is small 

interfering (si) RNA, which is notable for its gene silencing or knocked down capability. 

siRNA is small double-stranded RNA (dsRNA, 20-25 base pair (bp)), delivered to cells for 

targeted silencing of genes (called RNA interference (RNAi)) responsible for varieties of 

hereditary and transmittable diseases, as well as cancer [23, 423]. RNAi technology is also 

developing rapidly for bio-based management of agricultural pests [27], where specific 

insect genes responsible for vitality and mortality can be suppressed and/or switched on, 

respectively, by delivering respective larger dsRNA sequences (up to 1000 bp) [28]. 

Efficient delivery of the nucleic acids to the intracellular target sites is limited by the 

inability of free polynucleic acids to penetrate cell membranes (both are negatively 

charged) and their rapid degradation by the nucleases present in cells [210, 211]. As a 

result, designing protective nanocarriers to efficiently deliver functional nucleotides in 

cells has become the principal challenge in the application of oligonucleotides in areas 

including bio-insecticides [424], genetic manipulation of food crops [425], fighting 

multidrug resistance [426], and gene silencing therapies [427, 428]. 
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A limitation of many of the types of nucleic acid carriers (including exosome 

nanoparticles, polymers, lipid and lipoloid nanoconjugates [22, 213, 215, 429, 430]) has 

been their unacceptable toxicity and poor structural tunability [431]. Thus, mesoporous 

silica nanoparticles (MSNPs) have emerged as promising carriers of nucleic acids and 

polynucleotides based on their tunable pore morphology, high surface area, low toxicity, 

and ease of surface modification [308, 432-435]. Nucleic acid loading is generally achieved 

by functionalizing the silica surface with positively charged groups such as amines (using 

aminopropylsilanes), metal ions, cationic polymers or peptides to adsorb the negatively 

charged nucleic acid through electrostatic interactions and to promote cellular 

internalization [211, 436]. Multiple surface functional groups on siRNA-loaded MSNPs 

have been used to augment binding to specific cells (through targeted ligand and peptide 

moieties [432]) and to prevent particle aggregation (polyethyleneimine (PEI) [437, 438] or 

lipid bilayers [439]).  

Initial studies of MSNPs for oligopeptide and nucleic acid delivery and protection 

focused on surfactant templated materials with typical pore sizes < 4 nm [440-442]. 

Reliable synthesis procedures for MSNPs with larger pores capable of accommodating 

proteins, larger DNA and RNA molecules have only recently been developed [435, 443-

445]. Prior studies have suggested an optimal mesopore size for functional siRNA delivery 

(7-10 nm) [85] and optimal functional group (amine) grafting density to balance loading 

and release [446], but a fundamental basis for these carrier design parameters for large pore 

amine functionalized MSNPs (MSNPAs) has not been developed. The adsorption and 

release of stiff polyelectrolytes such as RNA confined in pores remains an incompletely 
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understood subject, as indicated by a number of recent theoretical and computational 

studies [447-450].  

Previously, we have studied the dependence of mobility of RNA confined in 

nanopores on RNA length (84 bp (24 nm) and 282 bp (80 nm)), and pore size (nonporous, 

3.6 nm, 7.4 nm and 11.8 nm) in amine-functionalized mesoporous silica microspheres 

(MSMs). The diffusivities of these fluorescently labeled dsRNA of inhibitor of apoptosis 

(IAP) genes of Spodoptera frugiperda were measured by fluorescence recovery after 

photo-bleaching (FRAP) using confocal laser scanning microscopy (CLSM) imaging of 

the micron-sized particles [61]. Pore size dictates length-dependent loading of dsRNA, 

where combination of the largest dsRNA (278 bp) and smallest pore size (2.2 nm) results 

in only surface-bound RNA. The mesoporous structure also provides a mobile network of 

dsRNA; the diffusivity of RNA was similar at the surface and in the porous interior of 

MSMs in which RNA length and pore size resulted in significant RNA loading [61]. Only 

MSMs with measurable diffusivity effectively released dsRNA, an important element of 

functional RNA delivery.  

Understanding the nature of the binding between nucleic acid and MSNPAs and 

the associated thermodynamic parameters is vital for the design of effective nanocarriers 

for loading and targeted release. Isothermal titration calorimetry (ITC) is a highly sensitive 

and versatile technique that can be used to determine enthalpies, entropies and equilibrium 

association/ dissociation constants of binding, and has been broadly applied to biomolecule 

interactions such as protein/ligand binding [163]. Previously, interaction of nucleic acids 

with polycations in solution has been investigated by ITC to design complexed particles 

and polymeric vehicle for gene delivery, new diagnostic agents, and for the understanding 
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of DNA packaging in cell nuclei and RNA-protein interactions [171, 172, 174, 451-456]. 

Nucleic acid interactions with polycations are multifaceted, involving electrostatic forces, 

protonation and hydrogen bonding, with a strong contribution of entropy, and sometimes 

without any defined stoichiometry [171, 174]. The ability to extend interpretations of 

solution-based nucleic acid and polycation interactions obtained from ITC to RNA 

confined in charged nanopores has not been explored previously.   

The pore-size dependent interactions of dsRNA with functionalized mesoporous 

silica nanoparticles (MSNPAs) were investigated for dsRNA of two lengths (84 bp and 

282 bp) and over a range of silica pore sizes, (nonporous, 1.6 nm, 3.2 nm and 7.6 nm). The 

nominal dimensions (2.6 nm diameter) of dsRNA are larger than the smallest pore 

dimension of the MSNPAs here, making this pore size range relevant to understanding the 

insertion of dsRNA in a pore. The enthalpic contributions to binding are interpreted directly 

from ITC heat profiles (integrated heat vs. mole bp RNA/mole amine on particle surface) 

after injecting dsRNA (0.334 to 4.5 mM bp) into an aqueous (unbuffered) particle 

suspension of known total amine concentration on particles (0.2 to 3.2 mM amine). The 

nature of the dsRNA-MSNPA surface interactions were further probed by conducting ITC 

experiments for RNA (both lengths) with 7.6 nm porous MSNPAs in 30 mM NaCl, which 

is used to suppress the electrostatic and ionic interactions. Appropriate binding models are 

used to fit the ITC heat profiles, yielding thermodynamic binding parameter (enthalpy, 

entropy and free energy) that allow comparison of thermodynamic driving forces for RNA 

binding across pore sizes and relative to solution-based interactions with polycations. 
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7.3 Materials and Methods 

7.3.1  Chemicals and Reagents 

Tetraethyl orthosilicate (TEOS, 99%) was obtained from Acros Organics. Tri-block 

copolymer Pluronic F127 (bio-grade), phosphate buffer saline (PBS) tablets, (3-

Aminopropyl) triethoxysilane (APTES, 99%) and tetrapropyl orthosilicate (TPOS, 95%) 

were purchased from Sigma-Aldrich. Cetyltetramethylammonium bromide (CTAB, 

99.8%) and nuclease free water (molecular biology grade) was purchased from MP 

Biomedicals; NaOH pellets (≥ 97%) from EMD Millipore; Acetone (≥ 99.5%) from BDH 

analytical; 1,3,5-triisopropylbenzene (TIPB, > 95%), triethanol-amine (TEA, > 98%) and 

fluorescamine from Alfa-Aesar; ultrapure deionized ultra-filtrated (DIUF) water, ethanol 

(200-proof), 12 N HCl (ACS grade), NaCl (99.7%) and 29.3 wt% NH4OH solution from 

Fisher Scientific. N,N-dimethylhexadecylamine (DMHA, ≥ 98%) was purchased from TCI 

America. Octadecyltrimethylammonium bromide (OTAB) was purchased from Chem-

Impex International. Synthesis of dsRNA with 84 and 282 base pair (bp) length was 

performed in Dr. Webbs’s laboratory in Entomology Department and discussed elsewhere 

in detail [457].  

7.3.2 Nanoparticle Synthesis 

7.3.2.1 Nonporous Stöber Particle (SNP) Synthesis 

SNPs were synthesized according to the method reported by Bogush et al. [51]. 10 

mL of DIUF water and 6.75 mL of 29.3% NH4OH were added to 183.25 mL of ethanol. 

The solution was stirred for 5 min. Then, 7.6 mL of TEOS was added rapidly and the 

solution was stirred for 24 h at room temperature. The particles were separated from the 
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solution using high speed centrifugation (17,000 rpm) followed by washing with DIUF 

water and ethanol 3 times each. Finally, separated particles were dried in an oven at 84 ºC 

overnight. 

7.3.2.2 Mesoporous Silica Nanoparticles (MSNPs) Synthesis 

Ordered mesoporous silica nanoparticles with small pores (2-3 nm) were 

synthesized by a modified Stöber method reported earlier [38] and originally based on Kim 

et al. [69], in which CTAB was used as a structure directing compound and TEOS and 

Pluronic F127 as the silica source and dispersing agent, respectively. Initially 0.5 g of 

CTAB and 2.05 g of F127 were dissolved in 96 mL of DIUF water, followed by the 

addition of 43 mL of ethanol and 11.9 mL of NH4OH solution (29.3 wt%) and the solution 

was stirred until complete dissolution of solutes. Then, 1.9 mL of TEOS was added to the 

solution and stirred vigorously for exactly 1 min at room temperature. After that, the 

solution was aged for 24 h without any stirring at room temperature for complete silica 

condensation. The particles were removed from the solution by ultrahigh speed 

centrifugation (Beckman-Coulter) at 17,000 rpm and were washed 3 times with DIUF 

water and ethanol with repeated centrifugation and dried at 84 ºC in air overnight. Finally, 

template free silica particles were obtained by washing in 200 mL acidic ethanol (HCl, 1.5 

M) for 24 hours (acidic ethanol wash) followed by repeated centrifugation and washing 

with DIUF water and ethanol. Template free particles were dried overnight at 84 ºC. 

Synthesis of medium pore MSNPs (4-5 nm) was achieved by following the method 

reported by Gu et al. [83]. Initially, 0.4 mL of DMHA and 0.1 g of Pluronic F127 were 

mixed with 1.02 g of OTAB and 364 mL of water was added. 3.5 mL of 2 M NaOH solution 
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was then added under stirring. The solution temperature was raised to 80 ºC, and kept 

stirring under constant temperature until a clear homogeneous solution was obtained. Then, 

5.0 mL of TEOS was added dropwise. The solution was stirred at 80 ºC for 2 h and cooled 

to room temperature afterwards. The particles were separated by centrifugation and 

repeated washing with water and ethanol. Template-free particles were achieved by the 

acidic ethanol wash described earlier. 

Large pore MSNPs (ca. 8 nm) were synthesized using a modified method described 

by Yamada et al. [84], where TIPB was use as a CTAB pore expanding agent. Initially, 

0.56 mL of TEA and 3.0 g of CTAB was added to 360 mL of DIUF water. The solution 

was kept stirring at 80 ºC for 2 h for complete mixing and emulsion formation and 16 mL 

of TIPB was added under vigorous mixing. After 30 min, complete colloidal state (oil-in-

water) was obtained and 4.77 mL of TPOS was added with constant stirring. Then, the 

solution was stirred vigorously for 12 h at 80 °C to obtain white solid particles. The 

particles were then separated by repeated centrifugation and washing and the surfactant 

was removed by acidic ethanol washing.  

7.3.3 Amine Functionalization 

Amine functionalized SNPs and MSNPs were obtained by condensing (3-

aminopropyl)triethoxysilane (APTES) on particle surfaces using a modified version of the 

methods reported in the literature [101, 358]. 200 mg of the particles (either SNPs or 

MSNPs) were sonicated in 25 mL of dry ethanol for 15 min and a uniformly dispersed 

solution was obtained. 0.1 mL or 0.5 mL of APTES (for SNPs or MSNPs, respectively) 

was added drop wise under constant stirring in nitrogen environment and the solution was 
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kept stirring overnight in a closed environment at room temperature. Particles were 

centrifuged at 17,000 rpm followed by repeated washing with dry ethanol and cured at 84 

ºC overnight. After curing, particles were stirred in excess ethanol for 24 h to remove any 

remaining, loosely bound amine groups. The functionalized particles were again washed 3 

times with dry ethanol and dried in an oven at 84 ºC. Amine functionalized nonporous and 

porous particles were denoted as SNPA and MSNPA-x, respectively, where “x” denotes 

approximate mean pore size. 

7.3.4 Materials Characterization 

 The morphology and shape of bare and functionalized particles were characterized 

using a Hitachi S-4300 Scanning Electron Microscope (SEM). The samples for SEM 

characterization were prepared by dispersing the particles onto a double sided carbon tape 

attached on a 15 mm aluminum stub. Samples were put in a desiccator for 24 h after excess 

silica materials blown off with dry nitrogen gas. Prior to analysis, the samples were coated 

with gold-palladium alloy using an Emscope SC400 with a gold-palladium alloy 

sputtering. Average and standard deviation of particle diameters were calculated by 

considering 20 random particles throughout the SEM image using ImageJ Software. 

Transmission electron microscopy (TEM) imaging were performed using a JEOL 2010F 

TEM at a voltage of 200 kV. Samples were prepared 3 days in advance by sonicating 

approximately 5 mg of particles in 2 mL of ethanol for 15 min. Then a Lacey carbon 300 

mesh copper grid (Ted Pella, 01895-F) was dipped into the particle solution for 2-3 seconds 

and left in a desiccator before analysis.  
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 Average pore diameter, pore size distribution and surface area were estimated from 

nitrogen sorption conducted at 77 K using Micromeritics TriStar 300. Samples were 

degassed at 135 ºC for a minimum of 4 h under flowing dry N2 gas before the nitrogen 

sorption experiment. The specific surface area was estimated using the Brunauer, Emmett 

and Teller (BET) isotherm, and average pore diameter and pore size distribution were 

estimated by the method of Barrett, Joyner and Halenda (BJH) for adsorption branch. To 

confirm the successful removal of surfactant from MSNP pores, Fourier transform infra-

red (FTIR) spectroscopy was conducted using Thermo Nicolet Nexus 470 with a deuterated 

triglycine sulfate (DTGS) detector before and after acidic ethanol wash. For the analysis, 

0.5 g of anhydrous KBr was mixed was the particles (0.5-1.0 wt %) and the mixture was 

crushed using a mortar and pestle. A small amount of the sample was put into the FTIR 

pellet dye to press until samples became translucent, rigid, and solid. The pellet was then 

put in FTIR pellet holder in the sample chamber under a constant flow of dry nitrogen and 

infra-red radiation was allowed to pass through it. The FTIR spectra were recorded using 

Thermo OMNIC software.  

7.3.4.1 Amine Quantification 

 The amount of amine group on the particle surface was determined by a modified 

version of the previously reported method [324], where primary amine groups in 

aminosilane following dissolution in alkaline solution react with fluorescamine to produce 

fluorescent pyrrolinone [325]. 30 mg of functionalized particles were dissolved over an 8 

h period in 30 mL of 0.02 M NaOH solution at room temperature under vigorous stirring. 

100 μL of this solution and 1.0 mL of 1.0 mM fluorescamine in acetone solution were 
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mixed with 2.0 mL of PBS solution at pH 7.4. Maximum fluorescence intensity of this 

solution was measured at emission wavelength of 480 nm after excitation at 366 nm using 

a Varian Cary Eclipse fluorescence spectrophotometer with both excitation and emission 

slits held at 5 nm. Calibration curve was prepared using the same procedure by dissolving 

known amounts of APTES and 30 mg of non-functionalized respective particles. 

7.3.5 Isothermal Titration Calorimetry (ITC)  

Isothermal titration calorimetry (ITC) experiments were performed in a Low 

Volume Nano-ITC instrument (TA Instrument). A suspension of amine functionalized 

nanoparticles was made in nuclease-free water by ultra-sonication for 15 min. dsRNA (84 

and 282 bp) solutions were diluted to desired concentrations using nuclease-free water and 

injected to the nanoparticle solution in a 300 µL ITC sample cell using the injection 

syringe. Both nanoparticle suspension and RNA solution were degassed under vacuum for 

15 min before ITC experiments to remove any gas bubbles. The reference cell was filled 

with degassed DIUF water, which was replaced after every 3 days with fresh water. In a 

typical experiment, 50 µL of RNA solution (0.334 to 4.5 mM bp) was injected into the ITC 

cell containing 300 µL of nanoparticle suspension (0.2 to 3.2 mM amine on particles) with 

20 distinct injections (2.5 µL per injection) sequentially 300 s apart with a stirring rate of 

350 rpm. The cell temperature was maintained at 25 ºC. For ITC experiments in the 

presence of salt, both nanoparticle suspension and RNA solution were made in 30 mM 

NaCl in nuclease-free water. To avoid any minute difference in NaCl concentration 

between syringe and cell, both RNA and nanoparticle solutions were prepared using 

aliquots of same NaCl solution. 
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Before starting the injections, the baseline of heat signal was allowed to stabilize 

for at least an hour to absolutely minimize noise and drift in the baseline level. Raw heat 

data with the injections was recorded with ITCRunTM software (TA Instruments) as raw 

heat rate in µJ/s versus time in seconds. For every RNA concentration (both 84 and 282 

bp), dilution experiments were performed by injecting RNA solution in a cell containing 

300 µL of respective solvent (nuclease-free water with/without NaCl) without any 

nanoparticles. Raw data (thermograms) are presented after correction for baseline drift in 

heat signal by NanoAnalyzeTM software (TA Instruments). 

7.3.6 ITC Data Analysis and Fitting of Binding Models 

After recording raw data, integrated heats (µJ) are calculated for each injection 

from its starting point to its finish, as determined from the return of the heat signal to the 

baseline using NanoAnalyze software. Integrated heats for the corresponding dilution of 

RNA (RNA into corresponding water or aqueous buffer) was also calculated and subtracted 

from the heat of RNA into particles to find the heat of interaction at each injection point. 

Finally, integrated heat profiles (heat/mol bp versus mol bp/mol amine), which are also 

called isotherms, were calculated by dividing the integrated heats (with dilution subtracted) 

at each injection point by the number of mole bp per injection. As standard procedure, the 

first injection point is removed to avoid artifacts arising from initial equilibration and void 

in the syringe tip. 

Independent single or two-site thermodynamic binding models were fitted to uni-

phasic or bi-phasic binding curves, respectively, of the integrated heat profiles using 

NanoAnalyze software. Thermodynamic parameters of binding (association/dissociation 
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constant (Ka/Kd), number of binding sites (n), and enthalpy change (ΔH)) are determined 

by non-linear least squared regression, where there are 3 fit parameters per binding site. 

Initially, n, ΔH and Ka are considered as floating variables during least square fitting 

according to a Wiseman isotherm (single site binding model) [180] or modified Wiseman 

isotherm for two distinct binding sites [174, 453]. ΔG and ΔS are estimated using the 

thermodynamic relation presented in Equation 7.1:  

ΔG = – RT*ln(Ka) = ΔH – TΔS                                    (7.1)  

where T is the isothermal temperature of the experiments. 

When the fitting of the biphasic ITC isotherms using two site models produces 

unrealistic values of parameters (especially ΔH), the enthalpy for one phase of isotherm is 

constrained following the suggestions of previous literature [182]. An isotherm that is 

nearly uniphasic was fit to a one-site independent binding model to roughly estimate either 

ΔH1 or ΔH2 and these values were constrained during two-site model fitting.  
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7.4 Results and Discussion 

7.4.1 Nanoparticle Characterization 

Nonporous silica nanoparticles (SNPs) and mesoporous silica nanoparticles with 

different pore diameter (MSNPs) were synthesized by a silica alkoxide hydrolysis 

technique (modified Stöber method) coupled with surfactant templating and hydrophobic 

pore swelling agents [51, 69, 83, 84]. After synthesis, template surfactants and other 

organics were removed by washing in acidic ethanol and removal was confirmed by FTIR 

analysis (data not shown). Average particle diameter and spherical shape of the particles 

were determined by SEM imaging (Figure 7.1 and Table E.1 in Appendix E). The 

nanoparticles size (< 200 nm) is suitable for cellular internalization and delivery of dsRNA. 

 

Figure 7.1  SEM images of nonporous silica nanoparticles (SNPs) along with mesoporous 

silica nanoparticles (MSNPs) with different pore sizes: (a) SNP, (b) MSNP-2.2, (c) MSNP-

4.1 and (d) MSNP-7.9. Scale bar is 500 nm for all images. 

 

(a) (b)

(c) (d)



 

 

226 

 

Surface characterization was performed by nitrogen adsorption and was used to 

determine BET surface area, total pore volume and average pore diameter (Table 7.1). 

Porous particles synthesized with varying pore diameters (2.2 nm, 4.1 nm, and 7.9 nm) 

possess high surface area and pore volume, which is needed to provide a large capacity for 

RNA loading. Ordered accessible interconnected pores, required for loading RNA, can also 

be observed from TEM images of the particles (Figure E.1). MSNPs are named according 

to their average pore size, for example: MSNP-2.2 means mesoporous silica nanoparticles 

with mean pore size of 2.2 nm. 

Table 7.1  Surface properties characterization results from nitrogen adsorption experiments 

before and after amine functionalization. 

Particle type BET surface area 

(m2/g) 

Total pore 

volume (cm3/g) 

Average pore 

diameter (nm)b 

SNP  14.4a - - 

SNPA  14.4 a - - 

MSNP-2.2 953 1.21 2.2 ± 0.16 

MSNPA-1.6 585 0.57 1.6 ± 0.14 

MSNP-4.1 862 1.37 4.1 ± 0.35 

MSNPA-3.2 366 0.66 3.2 ± 0.38 

MSNP-7.9 729 2.32 7.9 ± 2.2 

MSNPA-7.6 469 1.50 7.6 ± 1.9 

aSurface area determined by considering all particles as regular spheres, bThe average and range 

were determined from the peak and full width at half maximum (FWHM) of the BJH pore 

distribution, respectively. 

 

Particles were functionalized with amines using APTES to provide a positive 

surface charge for anionic dsRNA loading. A previous study [446] involving low extent of 

amine functionalization only on the exterior surface of silica particles or lightly 
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functionalized pores resulted in dsRNA adsorption only on the particle surface, which does 

not offer adequate protection of dsRNA from nucleases during delivery. A modified 

version of the amine functionalization procedure of Schlipf et al. [324] was used to achieve 

amine coverage close to a monolayer on the silica surface, which is not expected to change 

the accessibility of the pores for RNA loading [358]. For comparison, nonporous silica 

nanoparticles that allow only dsRNA adsorption on their surface were synthesized and 

functionalized with amines using the same method. The amine amount used for 

functionalization of nonporous particles was reduced by a factor of five to avoid depositing 

a thick polyaminosiloxane layer. 

The extent of amine modification was determined by dissolution of the particles in 

alkaline solution, followed by reaction with fluorescamine, which produces fluorescent 

pyrrolinone [324, 325]. The specific extent of amine functionalization (mmol/g) and silica 

surface coverage compared to a monolayer decreases with increasing pore size (Table 

E.1). The extent of aminosilane grafting on silica supports, state of grafted amine (isolated, 

layer, branched and ladder type oligomers) and uniformity varies depending on the amount 

of trace water present during the hydrolysis process and the nature of the solvent [94, 102]. 

Cross-linked oligomeric structures form in the presence of significant water, whereas non-

hydrated surfaces can allow isolated tridentate aminosilane grafting (at less than monolayer 

coverage). Layer uniformity also depends on the solvent used; polar solvents like ethanol 

(used here), which induce higher mobility inside of pores, tend to produce more uniform 

functionalization throughout. Based on the volume ratio of precursor to solvent (1 

APTES:50 ethanol) in our functionalization procedure, linear and a few ladder-like 

oligomeric (6-8 repeat units) cross-linked aminopropylsiloxanes are expected, with some 
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tridentate isolated grafted aminopropyl groups [102], consistent with our amine coverage 

which ranges from 64% to 114% of monolayer coverage for MSNPs and 272% for SNPs 

(Table E.1).  

BJH pore size distribution before and after amine functionalization (Figure 7.2) as 

well as surface area, pore volume and average pore diameter after amine functionalization 

(Table 7.1) demonstrate that these particles have uniform and accessible mesoporous 

structures and interconnected pores throughout the particles, which is expected to allow for 

uptake of dsRNA. All MSNPs have characteristic Type-IV nitrogen sorption isotherms 

with clear capillary condensation indicating uniform mesoporosity (Figure E.2). The 

introduction of amine groups caused the reduction of mean pore diameter and BET surface 

area, consistent with the incorporation of the amine groups in the pores of particles. Sharp 

capillary condensation step was only retained for MSNPA-7.6, but not for MSNPA-1.6 and 

MSNPA-3.2, consistent with peak broadening and reduced pore volume. Amine-

functionalized nonporous and mesoporous silica particles are indicated with the prefix 

SNPA and MSNPA-x, respectively, where “x” is the mean pore size of the particles after 

functionalization. dsRNA has been estimated to have a width of 2.6 nm [458], a length per 

base pair of 0.28 nm/base pair (bp) and a persistence length of 64 nm [459]. This would 

mean that an 84 bp and 282 bp dsRNA would be ~24 nm and ~80 nm long, respectively, 

which is 38% and 125% of the persistence length. Both types of RNAs are much longer 

than the largest pore size investigated here. 
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Figure 7.2  Pore size distribution of the particles before and after amine functionalization 

using BJH method from nitrogen adsorption. 

 

7.4.2 RNA Interactions with Functionalized Nanoparticles 

The thermodynamic interaction and loading behavior of dsRNA (84 and 282 bp) 

with amine functionalized nanoparticles as a function of pore size (nonporous, 1.6 nm, 3.2 

nm and 7.6 nm) were investigated by isothermal titration calorimetry (ITC). RNA was 

injected into a cell containing particle suspension, unlike nucleic acid-polycation ITC 

studies in solution [172, 174, 451, 453, 460-462] in which the polycation solution was 

injected into the cell containing RNA. Our approach is similar to previous investigations 

of biomolecule (protein) interaction with nanoparticles [147, 463, 464]. The solution-based 

ITC results for nucleic acid interactions with polycations containing amine groups are 

routinely expressed as the molar ratio of mole amine:mole phosphate (N/P) over the course 

of injecting the cationic polymer into the ITC cell containing nucleic acid [174, 453, 465]. 

Since we are injecting RNA into a suspension of the amine functionalized nanoparticles, 
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the isotherm is expressed as a function of mol base pair:mol amine on particles (P/N ratio). 

ITC profiles for dilutions of 84 bp RNA and 282 bp RNA with different concentration of 

bp are presented in Figure E.3 and Figure E.4, respectively. The exothermic dilution of 

both RNAs, increasing with concentration, is as expected. RNA remains surrounded by 

counterions in water. Dilution results in interactions between fewer RNA molecules, which 

is enthalpically favorable due to more hydrogen bond formation between RNA and water 

in a relatively free environment. The heat of dilution per base pair is less for 282 bp 

compared to 84 bp RNA, probably due to higher degree of solvation of the shorter RNA.  

During interactions of amine-functionalized porous particles with 84 bp RNA 

(Figure E.7, E.9 and E.11), the ITC thermogram consists of at least one region dominated 

by endothermic contributions followed by a region dominated by exothermic contributions. 

At intermediate concentrations, both endothermic and exothermic heats are present in a 

single injection. For 282 bp RNA (Figure E.8, E.10 and E.12), endothermic components 

are not as prominent from the thermogram peaks but they exist nonetheless. ITC isotherms 

for dsRNA (both 84 and 282 bp) interaction with SNPA and MSNPAs are presented in 

Figure 7.3. The smallest amount of heat was evolved for SNPAs due to the low surface 

area and corresponding limited amine groups for interaction with RNA. The observed heat 

of interaction with SNPA are slightly exothermic for 84 bp RNA and slightly endothermic 

for 282 bp RNA (Figure 7.3a). The large conformational change and bending of 282 bp 

RNA bound the particle surface may contribute to endothermic interactions. 
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Figure 7.3  Integrated heat profiles after subtraction of dilution heat plotted against molar 

ratio of bp RNA and amine group in particles: (a) SNPA, (b) MSNPA-1.6, (c) MSNPA-

3.2 and (d) MSNPA-7.6. First injection points were removed from thermodynamic 

analysis. 

 

The interaction of dsRNA with MSNPAs (all three pore sizes) are biphasic as seen 

in Figure 7.3b-d, which means there are two distinct step-wise binding phases (as opposed 

to uniphasic ITC isotherms, where only one saturable interactaction is observed). Hence, 

ITC results can clearly be bifurcated into two different regions: (i) an initial endothermic 

dominant region, followed by (ii) an exothermic dominant region. The endothermic portion 

of the isotherms can be described as an entropy driven ionic binding process associated 

with large amount of counterion release, along with hydration water, from the surface of 
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porous particles as the RNA binds to the amine groups. This endothermic regime was 

observed previously for solution-based nucleic acid and polycation interactions [453, 465]. 

During the first binding step, unfavorable enthalpy change from the RNA-countercation 

and amine-counteranion electrostatic bonds is largely counteracted by the highly favorable 

entropy change of water release. The exothermic heat prevalent in the second phase is due 

to short-range local electrostatic interactions and hydrogen-bonding between deprotonated 

amines and nucleobases [174, 453]. Based on previous interpretations of interactions in 

solution, we infer that deprotonation of some amine groups upon charge-neutralization was 

responsible for enhancing H-bonding during later phase of binding. It should be kept in 

mind that even though one or the other process dominates at various steps during titration, 

these two interactions happen simultaneously and straightforward deconvolution is not 

possible. The second binding regime ultimately reached saturation around 1.5 mol bp/mol 

amine ratio (Figure E.11d), which marks the end of all thermodynamic interactions 

between RNA and MSNPAs.  

Unlike some other studies involving polycations in solution with nucleic acid, there 

is no third endothermic region due to aggregation of cationic polymers after charge 

neutralization upon binding to nucleic acid [453, 466, 467]. Thus, the particles remain as a 

stable colloidal suspension, presumably due to their positive charge, a surface property that 

promotes cellular internalization during RNA delivery. The nature of the ITC isotherms is 

also different than those of 2-propylpentanoic acid titrated into amine functionalized 

mesoporous silica nanoparticles (average pore diameter ~ 6 nm), where only exothermic 

heats were measured [463]. Moreover, for nucleic acid bound to both cationic polymer and 

polyamine dendrimers, the end of the first binding phase is associated with phosphate 
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saturation, which marks the dynamic equilibrium between bound and free RNAs in solution 

[453, 468]. Phosphate saturation (end of first phase) is important, as the dynamic exchange 

of RNAs between the surface and surroundings can be achieved using the same particle to 

RNA ratio to induce RNA release.  

The heat of interaction for 84 and 282 bp RNA is different for the smaller-pore 

materials (MSNPA-1.6 and MSNPA-3.2) but more similar for MSNPA-7.6 (Figure 7.3b-

d). For MSNPA-1.6, the heat is large for 84 bp RNA compared to 282 bp RNA in both 

endothermic and exothermic regions, although the transition point on the isotherm from 

first to second phase was similar (0.11-0.13 mole bp/mole amine). For MSNPA-3.2, the 

shape of isotherms for both 84 bp and 282 bp RNA is similar, with a transition around 0.2 

mole bp/mole amine, but the interaction with the 282 bp RNA is more exothermic 

compared to 84 bp RNA in both regions. Although 84 bp and 282 bp heat of interaction 

with MSNPA-7.6 is similar in the exothermic region, it differs slightly in the first 

endothermic region with 84 bp RNA being comparatively more endothermic.  

The difference in heat as a function of RNA length for MSNPA-1.6 can be 

attributed to the effect of pore size and structure orientation. While RNA would not be 

expected to enter the pores based on its diameter (2.6 nm), the reported pore size of the 

functionalized materials (1.6 nm) represents an average of the pore distribution and pore 

loading is evident relative to the nonporous material.  However, the bicontinuous cubic 

structure (Ia3̅d) of MSNPA-1.6 [38, 69] has high tortuosity, which prevents 282 bp RNA 

from entering the pores completely. MSNPA-3.2 has 2D hexagonal pore structure (p6mm) 

[83] and larger pores, allowing both lengths of RNA to enter the pores more readily. The 

interaction for 282 bp RNA in MSNPA-3.2 is more exothermic (offset in Figure 7.3c) 
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compared to 84 bp RNA because there is relatively little entothermic recovery during each 

injection (Figure E.10), suggesting that its stiffness limits the ability of the 282 bp RNA 

to full enter and explore the pore space. For MSNPA-3.2 (average pore diameter 3.2 nm) 

the pore size is well matched to the RNA molecular diameter for binding the phosphate 

groups to amines on the particle, which may cause steric constraints. For MSNPA-7.6, the 

pore size is large compared to RNA diameter so that the length of RNA is not a factor and 

the heat of interaction per bp is roughly similar. 

7.4.3 Thermodynamic Properties 

Thermodynamic binding parameters for the endothermic and exothermic regions 

of the ITC isotherms were determined from model fitting, with a goal of more clearly 

elucidating the impact of pore size and RNA length on the interactions with MSNPAs. A 

biphasic binding isotherm fits two site binding models, which is equivalent to assuming a 

Langmuir-type equilibria of a macromolecule with two distinct and independent 

association sites for receptors [174]. Two binding site models have been applied to interpret 

nucleic acid interaction with polycations in solution [469]. The accuracy of binding 

parameter estimation (single or double binding site) from ITC data is largely dependent on 

the Wiseman “c-value”, which is the product of the number of binding sites, receptor 

(nanoparticle) concentration and association constant (Ka) [167]. When the c-value is low 

(low affinity systems), it can be difficult to fit models to ITC data, as the proper sigmoidal 

shaped isotherms for saturable binding (one sigmoidal curve per binding site modelled) 

cannot be achieved. Capturing the first sigmoidal curve (for the endothermic region of the 

isotherm) would require lowering the mol bp:mol amine ratio by reducing the RNA 
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concentration titrated into the ITC or increasing the particle concentration. Lowering RNA 

concentration reduces the heat signal and the isotherms at low mole ratio is very noisy (for 

example Figure E.9a). Increasing the concentration of particle (receptor) suspension also 

increases the noise. However, Turnball and Daranas have shown that reasonable estimation 

of thermodynamic binding parameters is possible for an incomplete isotherm provided that 

a sufficient portion of isotherm is used for model fitting [470].  

Thermodynamic binding parameters for 84 and 282 bp RNA interaction with 

SNPAs derived from ITC isotherms by fitting a single site binding model are presented in 

Table 7.2. The value of enthalpy and entropy is in the same range (ΔH = -4 to +10 kJ/mol 

and ΔS = 80 to 130 J/(mol K)) when nucleic acid interacts with other polycations in solution 

[453], and the stoichiometry (n = 1.84 and 3.55 for 84 and 282 bp, respectively) is inverse 

compared to the same literature (n = 0.2 to 0.9), which titrated polycations into nucleic 

acid. The value of n is consistent with the uniphasic isotherm for interactions of aqueous 

DNA (~2000 bp) with poly(diallyldimethylammonium chloride)-modified nonporous 

silica nanoparticles (mean particle diameter 25 to 40 nm) [471]. Using a one binding-site 

model, the binding of DNA to these nonporous particles was slightly exothermic (ΔH = -5 

to -8 kJ/mol charge group) with a value of “n” of 1.2 to 1.8 charge group/base pair. 

Table 7.2  Thermodynamic parameters for 84 and 282 bp RNA interaction with SNPAs as 

determined using a one-binding site model for nonporous particles. 

RNA 

length 
n Ka (M-1) Kd (M) 

ΔG 

(kJ/mol) 
ΔH 

(kJ/mol) 
-TΔS 

(kJ/mol) 
ΔS 

(J/mol.K) 

84 bp 1.84 2.04×104 4.91×10-5 -24.6 -1.74 -22.8 76.6 

282 bp 3.55 9.17×103 1.09×10-4 -22.6 +1.33 -23.9 80.3 
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Estimated thermodynamic parameters for RNA interactions with MSNPAs are 

presented in Table 7.3, and were obtained by fitting two site binding models to biphasic 

ITC isotherms. Following the fitting procedure, the “c-value” was calculated for both 

binding sites using the model parameters and found to be in an acceptable range (1 < c < 

1000 [167]) for estimating thermodynamic binding parameters from ITC data. As stated 

previously, the binding stoichiometry “n” is very low (0.03-0.10) for the first binding phase 

of MSNPAs without a full sigmoidal ITC isotherm, which is consistent with entrance of 

dsRNA into mesopores which are able to accomodate many base pairs while releasing a 

large concentration of counterions in response. The initial region described by the first 

binding site accounts for the high amount of water released as counterion, associated with 

a high entropy change. H is positive because of the disruption of DNA-countercation 

interactions, and release of anions from the double layer inside of amine-modified silica 

mesopores. To compensate, ΔS is higher during the first phase of binding, but the positive 

entropy change for both binding steps is consistent with a large amount of water release 

upon binding in both regimes [472]. A similar entropy-driven binding process was 

observed for other polyelectrolyte interactions, such as poly(styrene sulfonate) and 

poly(allylamine hydrochloride) [473]. Similar ΔS and ΔG values were calculated for two 

different binding modes of DNA interactions with linear or branched polyethylenimine 

(PEI), where the endothermic region of the isotherm was attributed to deprotonation and 

water release and the exothermic region was described as interactions of amine groups with 

the phosphate backbone [460, 461]. 
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Table 7.3  Thermodynamic parameters for 84 and 282 bp RNA interaction with MSNPAs 

as determined using an independent two-binding site model for porous particles. 

MSNPA type MSNPA-1.6 MSNPA-3.2 MSNPA-7.6 

RNA length 84 bp 
282 

bp 
84 bp 

282 

bp 
84 bp 

282 

bp 
84 bp 

282 

bp 

Salt addition No Salt 30 mM NaCl 

First 

binding 

event 

n 0.030 0.040 0.072 0.048 0.109 0.060 0.061 0.052 

Ka (M
-1) 

1.93×

106 

1.06×

106 

1.92×

106 

1.83×

105 

2.34×

105 

1.02×

105 

3.50×

106 

4.86×

106 

Kd (M) 
5.19×

10-7 

9.39×

10-7 

5.20×

10-7 

5.45×

10-6 

4.27×

10-6 

9.76×

10-6 

2.86×

10-7 

2.06×

10-7 

ΔG 

(kJ/mol) 
-35.8 -34.4 -35.8 -30.0 -30.6 -28.6 -37.2 -38.1 

ΔH 

(kJ/mol) 
9.98 1.56 7.13 5.92 10.14 6.51 4.65 1.58 

-TΔS 

(kJ/mol) 
-45.8 -34.9 -43.0 -35.9 -40.8 -35.1 -41.9 -39.7 

ΔS 

(J/mol.K) 
154 121 144 120 137 118 141 133 

Second 

binding 

event 

n 0.221 0.177 0.432 0.347 0.313 0.374 0.370 0.486 

Ka (M
-1) 

9.83×

104 

1.15×

105 

3.64×

104 

7.00×

103 

6.38×

103 

9.90×

103 

1.67×

105 

2.33×

105 

Kd (M) 
1.01×

10-5 

8.67×

10-6 

2.75×

10-5 

1.43×

10-4 

1.57×

10-4 

1.01×

10-4 

5.98×

10-6 

4.29×

10-6 

ΔG 

(kJ/mol) 
-28.5 -28.9 -26.0 -21.9 -21.7 -22.8 -29.8 -30.6 

ΔH 

(kJ/mol) 
-2.71 -1.46 -3.87 -13.8 -8.45 -5.04 -0.863 -0.943 

-TΔS 

(kJ/mol) 
-25.8 -27.4 -22.1 -8.18 -13.3 -17.8 -29.0 -29.7 

ΔS 

(J/mol.K) 
86.5 92.0 74.3 27.4 44.5 59.6 97.2 99.8 
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The second phase of binding of RNA to amine funtionalized particles is 

characterized by significantly higher values of binding stoichiometry, where n is around 

0.2 for MSNPA-1.6 and from 0.3 to 0.43 for MSNPA-3.2 and MSNPA-7.6. Estimated 

parameters (n = 0.18 to 0.43, ΔH = -13.8 to -1.5 kJ/mol and ΔS = 27 to 92 J/mol/K) for the 

second binding phases are in the range of literature values for polycationic (polyaminated 

polymers) interactions with plasmid (p) DNA, dsDNA and siRNA, which was attributed 

mainly to short-range electrostatic interactions and H-bonding [174, 453, 455, 465]. 

Gourishankar et al. studied the interaction of nucleobases separately with Au nanoparticles 

and found only exothermic (H-bonding) interactions with an enthalpy of -1 to -3 kJ/mol 

[474]. Thus, the major contributions of the second phase interaction are short-range 

electrostatic interactions and hydrogen bonding of nucleobases with deprotonated amine 

group and surface. Holzerny et al. investigated dsRNA (~240 bp) interaction with chitosan 

in solution and found exothermic interaction (uniphasic) with an enthalpy of -84 to -102 

kcal/mol RNA (-1.5 to -1.8 kJ/mol bp) [454]. These values also match our estimated 

parameters for second phase binding and suggest that it is dominated by H-bonding and 

short-range electrostatic interactions, which is responsible for threading of RNA further 

and deeper into the pores.  

7.4.4 Effect of Salt Addition 

The presence of salts in solution is known to suppress polyionic interactions due to 

charge shielding. Heat of interactions, either endothermic or exothermic are reduced when 

ionic strength increases [171]. The exothermic heats of dilution are greater in presence of 

salts for both lengths of RNA (Figure E.13) due to a higher concentration of counterions 
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in solution and more opportunity for hydration of salt ions. ITC isotherms for 84 bp and 

282 bp RNA interacting with MSNPA-7.6 in the presence of 30 mM NaCl are presented 

in Figure 7.4. The magnitudes of both the endothermic and exothermic regions of the 

isotherm are reduced in the presence of salt, highlighting the contribution of electrostatic 

interactions in both regimes. Following the fit of the data with a two-site binding model, 

the magnitude of the resulting ΔH’s for both sites decreases considerably (Table 7.3), as 

suggested by the raw data. The enthalpy (ΔH) of the second binding phase is reduced by 

4-6 kJ/mol in the presence of salts. This is consistent with the effect of salt on plasmid-

DNA interactions with poly-lysine, which reduced the enthalpy of binding by 2-6 kJ/mol 

[469]. The contribution of entropy change to binding in the presence of salts increases 

slightly in the endothermic regime, but increases significantly during the exothermic 

regime. Higher entropy change in presence of salts can be attributed to salt ion induced 

breaking of well-ordered ionic shells in water in the presence of additional cations [451, 

475]. The net effect also increases binding free energy (ΔG) in the presence of salt. Lower 

enthalpy and higher free energy of binding in presence of NaCl indicates the opportunity 

of salt mediated loading and release of RNA, which was demonstrated for DNA [165]. 
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Figure 7.4  Integrated heat profiles after subtraction of dilution heat plotted against molar 

ratio of bp RNA and amine group in particles in absence and presence of salt for 1.67 mM 

bp into 0.57 mM amine on particles (0.5 mg/mL MSNPA-7.6): (a) 84 bp RNA and (b) 282 

bp RNA interaction with particles. 

 

7.4.5 Enthalpy-Entropy Compensation 

As observed from the results in Table 7.3, higher unfavorable enthalpies for 

dsRNA interaction with MSNP particles tend to be balanced by higher entropic favorability 

and vice versa. Thus, enthalpy-entropy compensation exists during these interactions. 

Enthalpy-entropy compensation is frequently observed for thermodynamic interactions in 

aqueous solution, including DNA interaction with polycations cobalt(III)hexamine and 

spermidine3+ [476], as analyzed by Ball and Maechling [171]. The physical meaning of 
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enthalpy-entropy compensation can be interpreted from a plot of TΔS versus ΔH, which 

produces a straight line [147, 163] expressed as: 

TΔS = αΔH + TΔS₀                              (7.2) 

where α is the slope of compensation curve and TΔS₀ is the y-intercept. The slope, α, 

represents the contribution of enthalpic gain to the change in ΔG, as strongly binding 

processes usually restrict the mobility of molecules bound and thus associated with 

accompanying entropy loss and vice versa, whereas the intercept, TΔS₀ represents the 

stability of the complex formed in the absence of any enthalpic stabilization (ΔH = 0). 

These values of slope and intercept are used as a quantitative, empirical measure of 

conformational changes and desolvation (water release) upon binding [147, 477]. For a 

rigid cation-binding ligand, α = 0.45-0.65 with TΔS₀ = 8-13 kJ/mol was reported to be 

suggestive of no conformational change and small water release, whereas flexible protein 

interaction with ligands, peptides and Au nanoparticle involve α = 0.9-1.1 and TΔS₀ = 27-

45 kJ/mol (high water release) [147]. A slope value of ~2.0 and TΔS₀ value of 20-30 kJ/mol 

were found during DNA interaction with polycations in solution [171], demonstrating 

significant conformational change with high water release.  

It is also interesting to note that enthalpy-entropy compensation has been observed 

in the ion pairing/electrostatic interaction regime during DNA binding with polycations, 

but not during DNA aggregation (after phosphate saturation) [171, 476]. In Figure 7.5, all 

TΔS from Table 7.3 (for both the one phase and two phase binding models of RNA to 

MSNPAs with and without salt present) are plotted versus ΔH resulting in a linear fit of 

(R2 = 0.87). The slope (α = 1.6) and intercept (TΔS₀ = 30 kJ/mol) are consistent with the 

ion pairing/electrostatic interaction regime of solution-based interactions of nucleic acids 
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and polycations. A high values of the slope (α = 1.6) compared to unity indicates a high 

conformational change of the system (including dsRNA, counterions and hydration water) 

upon binding, whereas large value of TΔS₀ indicates a significant amount of desolvation 

and water release [147], consistent with the explanation of the nature of binding involving 

counterion release with hydration water. Hence, the interpretation for solution based 

nucleic acid binding to polycations remain unchanged for the binding of RNA confined in 

mesopores. 

 

Figure 7.5  Enthalpy-entropy compensation diagram (plot of TΔS vs. ΔH) for dsRNA (both 

84 and 282 bp) interaction with amine functionalized nonporous and mesoporous 

nanoparticles (SNPAs and MSNPAs). 
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7.5 Conclusions 

Length- and pore size-dependent dsRNA interaction with amine-functionalized 

mesoporous silica nanoparticles (MSNPAs) and adsorption of dsRNA inside nanopores 

were investigated using ITC. Although 84 bp dsRNA (2.6 nm × 24 nm rods) was able to 

load into 1.6 nm, 3.2 nm and 7.6 nm MSNPA pores, 282 bp dsRNA (2.6 nm × 80 nm) was 

found incapable of loading inside 1.6 nm pores, interpreted from their very low heat of 

interaction with MSNPA-1.6, but able to enter 3.2 nm and 7.6 nm pores. Significant 

difference between heat of interactions of 84 and 282 bp RNA was observed for MSNPA-

3.2 due to greater steric constraints for pore exploration by the longer RNA. In contrast, 

similar heats of interaction were observed for dsRNA in the pores of MSNPA-7.6. This is 

the first study reporting direct measurements of the heat of interaction of dsRNA into 

MSNPA pores based on the relative dimension of dsRNA in comparison to pore diameter. 

The observations suggest that it should be possible to design efficient dsRNA nanocarriers 

by creating pores that are small enough to protect the RNAs from nucleases during 

delivery, while also providing enough space for dsRNA threading into the pores.  

The interaction of RNA with porous particles is characterized by an initial 

endothermic heat followed by an exothermic region. These ITC data were fit to a two-site 

binding model. This first regime of the interaction of RNA with cationic amine 

functionalized porous particles is attributed to phosphate-amine binding inside of 

nanopores, resulting from the release of large amounts of counterion (and water) associated 

with the RNA and the electrical double layer inside of the pores. The second exothermic 

regime, while still dominated by entropic contributions, involves exothermic hydrogen 

bonding and short range electrostatic interactions between RNA and amine groups. Only 

one binding regime is observed for the interaction of RNA with nonporous particles; this 
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regime mimics the exothermic regime of porous particles. The contribution of electrostatic 

interactions during both binding phases is demonstrated by the enthalpy reduction in 

solutions of high ionic strength.  

This work has implications to the design of RNA/mesoporous silica particles as 

nanocarriers, specifically with respect to the loading, protection, and release of RNA. This 

work identifies concentration regimes where the initial loading of RNA into nanopores of 

the particles becomes saturated, and regimes where confined RNA continues to interact 

through hydrogen bonding and short-range electrostatic interactions with external and 

internal particle surfaces. Since equilibrium between bound and unbound RNA is attained, 

RNA inside the pores remains mobile, as demonstrated by confocal microscopy and FRAP 

technique previously. These results also support the idea that the mobility of dsRNA 

confined in pores is dependent on the dsRNA loading, which can only be observed after a 

certain amount of local charge neutralization. As a result, the identification of the 

thermodynamic interactions and related parameters will aid in designing effective porous 

nanocarriers for loading and delivery of nucleic acid to target intracellular sites during a 

number of genetic manipulation strategies.  

 

 



 

 

245 

 

CHAPTER 8. OVERALL CONCLUSION AND FUTURE DIRECTIONS 

8.1 Overall Conclusion 

 This dissertation addresses engineered silica nanoparticle design principles for 

bioactive materials nanoharvesting and delivery applications, with emphasis on underlying 

molecular and cellular interaction mechanisms. Mesoporous silica nanoparticles (MSNPs) 

were used as a high surface platform and support for biomolecule loading and transport 

across the cellular plasma membrane. Particle surfaces were functionalized by various 

active groups to provide affinity and specificity toward biomolecules as well as positively 

charged groups to facilitate membrane penetration. Initially, in Chapter 3, a nonspecific 

high binding ligand (TiO2) was attached to the MSNP surface by post-synthesis 

functionalization for the adsorption and separation of polyphenolic flavonoids. The high 

loading capacity is utilized for the in vitro loading and release of model flavonoid quercetin 

and its derivatives, which are known for their therapeutic properties. Key findings were the 

determination of conditions to give optimal loading of amorphous, dispersed Ti-sites 

(required for adsorption) inside silica mesopores, and development of a novel flavonoid 

recovery process using citric acid to displace bound flavonoids. The high binding capacity 

of the particles for polyphenolic flavonoids provides the opportunity to isolate them from 

living plant cultures, circumventing both the need for costly chemical synthesis and 

maceration of expensive genetically modified plants during conventional extraction. 

Particles with optimized surface properties (TiO2 for metabolite binding and 

positively charged amine for cell membrane penetration) were used for nanoharvesting of 

flavonoid metabolites from living and functioning Solidago nemoralis hairy root cultures 

in Chapter 4. Particles were shown to penetrate inside root cells and carry the metabolites 
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out, while plant cultures remained viable for continuous bio-synthesis of metabolites. All 

of these features are required for the nanoharvesting application. Harvesting of active 

metabolites was confirmed by observing increased radical scavenging activity 

(characteristic of flavonoids) and nicotinic receptor-related ligand displacement activity of 

the particles after exposure to roots. The concept of nanoharvesting is new and using 

functionalized MSNPs with high surface area is novel, which provides opportunities for 

the selective isolation of many varieties of biomolecules from transgenic plant cultures. 

The ability of these particles to harvest biologically active therapeutics also points to 

another dimension for treatment, where recovered particles after nanoharvesting can be 

directly applied for intracellular biomolecule delivery.  

As a follow-up to the nanoharvesting work, mechanisms of nanoparticle 

internalization into and expulsion from root cells during nanoharvesting was investigated 

in Chapter 5. Uptake of nanoparticles, when quantified using a Ti-assay, showed a 

Langmuir-type relation with concentration. Nanoparticle internalization was also found to 

be time dependent, interpreted from the fluorescent microscopy of roots after exposure to 

particles. Temperature dependent uptake and recovery, which distinguishes between 

activated and non-activated mechanisms, showed different uptake and expulsion process 

based on the presence of positively charged amine group on particle surface. The 

importance of positively charged group in gaining access to metabolites inside the cells 

during nanoharvesting is explicated as a result. Kinetics of nanoparticle uptake and 

expulsion processes during the exchange of non-fluorescent particles and fluorescent 

particles shows a spontaneous reversible particle exchange process during nanoharvesting. 

This study disentangles the inherent interactions of engineered silica nanoparticles with 



 

 

247 

 

plant cells and whole tissue, providing insights into transport and expulsion mechanisms 

not only during nanoharvesting but also in designing novel biomolecule delivery processes. 

Particle surface properties were found to be important for both cellular internalization and 

exit, and influences on both of them should be considered during optimum design of 

particles as nanocarriers.  

It is possible to selectively isolate and separate a compound of interests from a 

biological mixture or plant cultures during nanoharvesting by selecting a surface 

functionality that selectively binds to the molecule in a specific host-guest interaction. In 

order to provide specific surface functionality to MSNPs for selective separation and 

isolation of β-estradiol, an oligopeptide that mimics human estrogen binding sites was 

conjugated to the particle surface in Chapter 6 using a hetero-bifunctional linker sulfo-

NHS-LC-diazirine. This linker is used to link amines on the particle surface to amines at 

the N-terminus of peptides. Preservation of peptide functionality after conjugation was 

demonstrated by increased β-estradiol binding ability of peptide-conjugated particles. The 

hetero-bifunctional linker consisting of UV-activable diazirine group at one end and amine 

reactive NHS ester at the other end provides separate control over diffusion of the peptide 

into pores and its reaction with the surface. Binding efficiency and applicability to different 

peptide sequences were demonstrated by fluorescence spectroscopy and TGA. General 

applicability of this attachment strategy between amines provides the opportunity to 

incorporate any known peptide to target specific biomolecule products. These peptide-

attached particles are also viable candidates for selective nanoharvesting of valuable 

therapeutics from plants as the unconjugated amine groups (roughly 50%) provide the 



 

 

248 

 

necessary positive charge for cellular internalization and expulsion. Nanoharvesting using 

these particles allows for simultaneous harvesting and separation of target molecules. 

Finally, the thermodynamic interaction between nanoparticles and biomolecule is 

immensely important for the loading and controlled release of the molecules during nano-

delivery applications. The thermodynamic interaction between amine functionalized 

MSNPs and double-stranded RNA was investigated using isothermal titration calorimetry 

as a function of pore size (0, 1.6, 3.2 and 7.6 nm) and RNA length (84 and 282 base pairs) 

in order to promote facile RNA delivery (Chapter 7). Complex and biphasic interactions 

between porous particles and RNA were found, initially dominated by entropic favorability 

(endothermic heat) from a large amount of water release, followed by exothermic (still 

entropy-dominant) binding arising from short-range electrostatic interactions. On the other 

hand, interaction with nonporous particles were mainly uniphasic and dominated by short 

range electrostatic interactions. The inability of larger RNA (282 base pair) to enter 

smallest pores, consistent with a previous confocal microscopy study, is indicated by very 

low heats of interactions in both phases. In contrast, 84 base pair RNA was able to enter 

all pore sizes, and 282 base pair RNA in 3.2 nm and 7.6 nm pores. Heats of interactions 

reduce for both binding phases in the presence of salt, suggesting electrostatic interaction 

throughout the binding process. The interaction showed entropy-enthalpy compensation 

due to conformation change of RNA and behaving as a flexible host during binding. The 

end of first endothermic phase marks the end of phosphate saturation on the RNA molecule 

and at this point equilibrium is reached between surface-bound and free RNA consistent 

with high mobility of RNA molecule previously demonstrated by photobleaching. The 

enthalpy and entropy of interaction and saturation points are important parameters for 
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designing mesoporous carriers for loading, protection from enzymatic hydrolysis, and 

controlled release during intracellular nucleic acid (DNA/RNA) delivery. 
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8.2 Future Directions 

There are a number of ways the findings in this dissertation can be expanded into 

new directions in future. As mentioned earlier, the overall goal of this dissertation is to 

design nanoparticulate carriers based on engineered silica nanoparticles (ESNP) with 

optimum properties for biomolecule harvesting and delivery from and to living cells. For 

these purposes, a robust TiO2 surface functionalized MSNP platform was developed with 

high adsorption capacity of polyphenolic flavonoids (Chapter 3) and the same particles 

were utilized for nanoharvesting of flavonoids from living plants enabled by positive 

surface charge (Chapter 4). The mechanisms of nanoparticle entry and exit during 

nanoharvesting were also investigated (Chapter 5). Specific functional oligopeptides were 

conjugated inside of MSNP pores for the selective separation of biomolecules (Chapter 

6), which provides the opportunity to nanoharvest a vast number of therapeutics. Lastly, 

thermodynamic interactions of double stranded RNA with amine functionalized MSNPs 

were studied in detail using isothermal titration calorimetry (ITC) (Chapter 7) for 

designing ideal carriers for delivery. Obviously, there is room for some improvements in 

each of the projects, but future directions from this dissertation should primarily involve 

selective nanoharvesting of high-value therapeutics from plant cultures and RNA delivery 

using functionalized MSNPs. Specific suggestions are provided below.  

In Chapter 3, MSNPs were functionalized by the TiO2 using post-synthesis 

grafting by hydrolysis of a Ti-precursor. Although the adsorption capacity of the particles 

increased a hundred-fold at the optimum degree of functionalization (~ 430 mg/g particles) 

compared to nonporous particles, all Ti-sites were probably not fully accessible based on 

surface area reduction and crystallite formation on the outer particle surface. To provide 

better Ti-dispersion, a ligand-assisted functionalization strategy can be adopted, where Ti-
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precursor will be pre-complexed with the maltoside head-group of a sugar-surfactant 

before functionalization. Previously, our group reported a procedure for the synthesis of 

silica thin film with isolated Ti-sites by using ionic and sugar surfactant n-dodecyl β-D-

maltopyranoside (C12G2) mixed micelle templating of the pores, where C12G2 was pre-

complexed with titanium (iv) isopropoxide (TIP) [117]. A similar procedure can be 

developed for post-synthesis functionalization of MSNPs. An ionic surfactant CTAB 

should be used together with complexed sugar surfactant to enhance its adsorption on silica 

[478]. This functionalization strategy can be extended to MSNPs for the creation of isolated 

Ti-sites on the silica surface. A general schematic diagram of the proposed study is 

presented in Figure 8.1, depicting the process of ligand assisted post-synthesis 

functionalization strategy. After functionalization the degree of Ti-grafting as a function of 

precursor used can be analyzed by chemical analysis (see Chapter 3 to 5), and flavonoid 

adsorption can be performed on the functionalized particles to find the efficiency of surface 

TiO2 coverage. 
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Figure 8.1  Schematic diagram of the proposed ligand assisted TiO2 functionalization of 

MSNP pores as compared to normal functionalization by simple Ti-precursor hydrolysis. 

 

The signature project of this dissertation is to harvest biomolecules from living 

plant cultures using ESNP carriers, as presented in Chapter 4. Particles were 

functionalized with TiO2 and amine to provide binding sites and positive charge, 

respectively, and as a result, can be utilized to harvest other biomolecules that have affinity 

towards TiO2. Several classes of metabolites such as phosphopeptides and amino acids, 

phospholipids, catechol derivatives, dopamine derivatives and alkaloids have been 

investigated for their attraction toward Ti [113, 235, 236], in addition to other flavonoids. 

All of this compounds can be potential targets for nanoharvesting using the ESNP 

developed here. In chapter 6, a strategy of functional oligopeptide/protein attachment to 

MSNPs was developed for the selective isolation of estrogen-like biomolecules, as 

demonstrated for β-estradiol. As mentioned before, oligopeptide conjugated particles can 
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be utilized for the selective nanoharvesting of other classes of biomolecules from 

transgenic plant cultures. For example, preliminary research work has been done for the 

selective separation of monoclonal antibodies from mutant tobacco hairy roots using 

protein A/G conjugated MSNPs.  

We have investigated surface charge dependent nanoparticle entry, transport and 

exit mechanism in plant root cultures during nanoharvesting (Chapter 5). Temperature 

dependent (4 ºC and 23 ºC) uptake and expulsion of particles were studied in order to 

distinguish between activated and passive pathways (energy dependent/independent 

mechanisms) for both nanoparticle internalization and expulsion. Positively charged 

particles (amine functionalized) showed mostly passive uptake and exit, whereas energy 

dependent (endocytosis and exocytosis) mechanisms were prevalent in the absence of 

positive charge. However, the specific endocytosis and exocytosis mechanism was not 

investigated. Endocytosis mechanism usually involve micropinocytosis, pinocytosis, 

phagocytosis and receptor (clathrin/caveolin) mediated processes, whereas exocytosis 

usually happens through late endosome fusion with cell membrane or secretary vesicle 

formation. All of these processes have specific inhibitors, which block only a particular 

pathway that can be used to identify the most important uptake and expulsion mechanisms. 

Pinocytosis, micropinocytosis and clathrin-mediated uptake usually produces intracellular 

vesicles that transform into early endosomes, and without charge mediated endosomal 

escape, particles have no way to gain access to the metabolites. Thus, inhibitor dependent 

identification of mechanisms will help to elucidate why non-charged particles were not 

able to harvest metabolites more clearly. 
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In order to use the peptide conjugated particles (synthesized in Chapter 6) for 

selective nanoharvesting, it is necessary to study whether the particles can be internalized 

in plants and excreted following uptake. Fluorescence microscopy and spectroscopy were 

used to study internalization and expulsion mechanisms in Chapter 5 for TiO2 and amine 

functionalized MSNPs. However, in Chapter 6 we used FITC-tagged peptide to quantify 

binding efficiency, and the same particles can be used to quantify uptake and recovery in 

plants. As a preliminary measure, RSSV-FITC conjugated MSNPAs were used for 

fluorescence microscopy of roots after exposure to the particles. Internalization inside S. 

nemoralis hairy roots is indicated by green fluorescence (Figure 8.2). This result is 

promising to show that fluorescent peptide/protein attached particles can be used to 

quantify uptake and recovery of polypeptide-conjugated MSNPs in other species. 

   

Figure 8.2  Bright field and corresponding fluorescence microscopic image of roots after 

exposure to RSSV-FITC conjugated MSNPAs (1 mg/mL) show uptake in S. nemoralis root 

cells. 

 

In Chapter 7, thermodynamic interactions of RNA binding with amine 

functionalized MSNPs (MSNPAs) were investigated using ITC. The nature of the 

interactions largely validate previous observation regarding mobility of RNA in mesopores 
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once binding saturation is reached [61]. Loading of dsRNA is highly dependent on pore 

diameter and an optimum pore size is necessary based on the size of cell nucleases to induce 

pore size dependent protection. The natural progression of this project will be to deliver 

nucleic acids using MSNPAs and determining the optimum pore size based on delivery 

efficiency. Our collaborators (Dr. Bruce Webb’s laboratory) at the Entomology 

Department of University of Kentucky have demonstrated the efficacy of MSNPA-

mediated delivery of 84 and 282 base pair RNA to insect cells by silencing inhibition of 

apoptosis (IAP) genes [457]. However, RNA delivery to live insects remains to be 

investigated. One of the major route of nucleic acid delivery to insects is oral [479], which 

necessitates protection by MSNPAs to avoid nucleases in the insect gut. Nucleic acid 

delivery to plants for genetic modification, and to mammals for therapeutic purposes is 

also a natural ramification from this work. 

Another important modification during particle design would be the introduction of 

magnetic core-mesoporous silica shell nanoparticles for nanoharvesting and delivery 

applications. Magnetic core-silica shell mesoporous silica nanoparticles (CSNPs) with 

various sizes have been investigated for bio-separation, small molecule isolation, magnetic 

resonance imaging (MRI) and drug delivery purposes, where an external magnetic field 

was employed for the confinement and controlled movement of nanoparticles [480-482]. 

As a preliminary study, CSNPs with average particle size of 70 nm were synthesized by 

surfactant (CTAB) templated sol-gel coating of magnetic iron oxide nanoparticles. 

Scanning electron microscopic images of the particles are presented for bare magnetic 

particles (Figure 8.3). Particle surface characterization was performed by nitrogen 

adsorption, which provided a surface area of 381 m2/g, pore volume of 0.4 cm3/g and 
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average pore diameter of 2.4 nm. In the future, these particles can be engineered to be 

functionalized with active groups for nanoharvesting and delivery applications, where 

particle movement and transport can be controlled by using an external magnetic field. 

 

Figure 8.3  Scanning electron microscopic (SEM) images of (a) magnetic Fe3O4 

nanoparticles and (b) Magnetic Fe3O4 core-silica shell mesoporous nanoparticles (CSNPs). 

 

Finally, ESNP developed in this dissertation can be utilized as a combined 

nanoharvesting-nanodelivery platform where nanoharvested compounds bound to the 

particle surface from plants will be directly applied to the cellular targets in humans. For 

example, flavonoids bound to ESNP in Chapter 4 showed binding to nicotinic receptors 

in rat hippocampal membranes, suggesting that they can be used directly to alleviate neuro-

inflammation [321]. Delivery of the nanoharvested compounds using the same carrier 

ESNP will be possible and desirable due to silica’s low human toxicity, for which they are 

heavily investigated in nano-delivery applications. It should be noted that, although the 

ESNP developed and designed in this dissertation are utilized for nanoharvesting of 

biomolecules from living plants and nucleic acid delivery, they hold tremendous promise 

in the broad field of chemical and materials engineering including bionanotechnology, 

biomaterials and advanced medicine as well as environmental engineering. High surface 
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platform of functionalized silica and associated physicochemical processes involving them 

can be the harbinger for numerous bioactive interfaces in the field of nanotechnology, from 

catalysis and bio-catalysis for reactive separation to drug delivery applications. 
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APPENDIX A. SUPPLEMENTARY MATERIALS OF CHAPTER 3 

A.1 Calculations for Flavonoid Adsorption, Recovery and Activity 

 The amount of adsorbed flavonoid on to the particle surface, 𝑞𝑒(𝑎𝑑𝑠) (mg 

quercetin/g particles) was calculated by the depletion method using Equation A.1. 

𝑞𝑒(𝑎𝑑𝑠) =
𝐶𝑖 − 𝐶𝑒(𝑎𝑑𝑠)

𝑚𝑝
𝑉 × 1000 

 

(A.1) 

where 𝐶𝑖 is the initial concentration (mg/ml); 𝐶𝑒(𝑎𝑑𝑠)is the equilibrium concentration 

(mg/ml) after adsorption; and 𝑚𝑝 and V are the mass of particle (mg) and volume of the 

flavonoid solution (in ethanol, mL) used for adsorption experiment, respectively. 

 The amount of quercetin retained onto the particles after recovery, 𝑞𝑒(𝑑𝑒𝑠) was 

estimated by subtracting the recovered amount from the initial amount of quercetin 

presents on the particle using Equation A.2. 

𝑞𝑒(𝑑𝑒𝑠) = 𝑞𝑒(𝑎𝑑𝑠) −
𝐶𝑒(𝑑𝑒𝑠)

𝑚𝑝
𝑉 × 1000 

(A.2) 

where 𝐶𝑒(𝑑𝑒𝑠)is the equilibrium concentration (mg/ml) in desorption; and mp and V are the 

mass of particle (mg) and volume of solvent (ml) used for desorption experiment, 

respectively. The percent recovery, η (%) was calculated by Equation A.3. 

𝜂(%) =
𝑞𝑒(𝑎𝑑𝑠) − 𝑞𝑒(𝑑𝑒𝑠)

𝑞𝑒(𝑎𝑑𝑠)
× 100 

(A.3) 

Radical scavenging activity (RSA) was calculated by the formula presented in 

Equation A.4. 

𝑅𝑆𝐴(%) =
𝐴𝑖 − 𝐴𝑓

𝐴𝑖
× 100 

(A.4) 

where Ai and Af are the initial and final absorbance of DPPH solution, respectively.  
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A.2 Sorption Isotherm Models 

Langmuir isotherm model equation (Equation A.5):  

𝑞𝑒 =
𝑞𝑚𝐾𝐿𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
 

(A.5) 

where qe is the amount of solute adsorbed at equilibrium; qm is the maximum monolayer 

sorption capacity; KL is the Langmuir constant or binding constant and Ce is the equilibrium 

concentration in solution.  
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Table A.1 Comparison of amount of TiO2 determined by chemical analysis and EDS 

analysis along with average particle diameter of MSNPTs. 

Particle types Average 

particle 

diameter (nm) 

TiO2 determined by 

chemical analysis 

(mg TiO2/g 

particles) 

TiO2 determined by 

EDS elemental 

analysis (mg TiO2/g 

particles) 

MSNP 165 ± 19a - - 

MSNPT-59 164 ± 30 59 ± 1.8b 53 ± 7.6c 

MSNPT-124 199 ± 36 124 ± 3.9 110 ± 22 

MSNPT-162 190 ± 24 162 ± 2.7 160 ± 11 

MSNPT-440 185 ± 29 440 ± 11 380 ± 31 
Standard deviation values resulted from ameasurement of 20 particles selected randomly (using 

ImageJ Software) btriplicate measurement for chemical analysis and cmultiple area scanning for 

EDS analysis. 

 

 

 

Table A.2 Scattering vector (q-values), full width at half maximum (FWHM), d-spacing 

of (211) planes, lattice constant and pore wall thickness calculated from GISAXS peaks 

and BJH pore diameter.  

Particle 

Types 

q-

value 

of 

(211) 

peak  

(Å-1) 

FWHM* 

of (211) 

peak  

(Å-1) 

q-

value 

of 

(220) 

peak  

(Å-1) 

FWHM* 

of (220) 

peak  

(Å-1) 

(211) 

plane d-

spacing, 

d211 

(nm) 

Lattice 

constant, 

a*** 

(nm) 

Wall 

thickness, 

w**  

(nm) 

MSNP 0.184 0.0064 0.210 0.0044 3.42 8.38 1.33 

MSNPT-

59 

0.194 0.0122 0.220 0.0059 3.23 7.91 1.27 

MSNPT-

110 

0.198 0.0156 - - 3.17 7.76 1.25 

MSNPT-

270 

0.210 0.0159 - - 3.00 7.35 1.17 

MSNPT-

362 

0.212 0.0176 - - 2.96 7.25 1.20 

*FWHM: Full width at half maximum of GISAXS peaks 

**Wall thickness, w = 
𝑎

3.092
−

𝐵𝐽𝐻 𝑝𝑜𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
, *** Lattice constant, a = √6𝑑211 [69]. 
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Table A.3 Optimized Langmuir model parameters (qm and KL) found using nonlinear 

regression for MSNPT samples. 

Particle Type Maximum capacity 

qm (mg/g particle) 

Langmuir constant, 

KL (mL/mg) 

MSNPT-59 82.7 8.8 

MSNPT-86 98.7 10.6 

MSNPT-124 106 14.2 

MSNPT-162 117 21.1 

MSNPT-362 176 4.1 

MSNPT-440 236 5.0 

MSNPT-636 65.0 3.1 
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Figure A.1 FTIR analysis showing complete removal of surfactant CTAB (indicated by 

loss of C-H stretching bands from 2800 to 3000 cm-1) during acidic ethanol washing of 

synthesized nanoparticles. 

 

 

Figure A.2 SEM images of TiO2 functionalized and non-functionalized mesoporous silica 

nanoparticles (MSNPT and MSNP, respectively): (a) MSNP, (b) MSNPT-59, (c) MSNPT-

124 and (d) MSNPT-440. 
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Figure A.3 High resolution TEM (HRTEM) images of (a) non-functionalized MSNP, (b) 

MSNPT-110, (c) MSNPT-270 and (d) MSNPT-636 showing the formation of nanocrystals 

with increasing TiO2 content.  
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Figure A.4 Dark-field scanning-transmission electron microscope (STEM) image of 

MSNPT-110. Due to its high electron density relative to SiO2, TiO2 gives the bright spots 

throughout the particles. 

 

 

 

 

Figure A.5 Comparison of TiO2 grafting densities on MSNP and nonporous Stöber 

particles (SNP) with average particle diameter 190 nm. 
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Figure A.6 TEM image of nonporous silica nanoparticles: (a) Low magnification TEM 

image of non-functionalized SNP and (b) TiO2 functionalized SNP (SNPT-13.7), and 

HRTEM images of (c) SNP and (d) SNPT-13.7.  
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Figure A.7a Nitrogen sorption isotherms on non-functionalized and TiO2 functionalized 

MSNP. 

 

Figure A.7b Pore size distributions of non-functionalized and TiO2 functionalized MSNP. 
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Figure A.7c αs-plot for nitrogen adsorption isotherms on non-functionalized and TiO2-

functionalized MSNP showing the absence microporosity after functionalization (α-plot 

determined from the relative pressure vs. standard reduced adsorption table of Jaroniec et 

al. [269]). 
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Figure A.8 2D GISAXS patterns (incident angle, αi = 0.20º) of non-functionalized and 

TiO2 functionalized MSNP: (a) bare MSNP, (b) MSNPT-59, (c) MSNPT-110, (d) MSNPT-

270, (e) MSNPT-362 and (f) MSNPT-636. 
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Figure A.9 Low angle XRD pattern of bare MSNPs with Ia3̅d cubic mesoporous structure 

as indexed (211) and (220), and [inset] (321), (400), (420) and (332) compared to SNPs 

(indices were assigned following Wang et al. [277]). 

 

 

Figure A.10 TEM images of (a) MSNP, (b) MSNPT-59 and (c) MSNPT-110 showing 

mesopore channels (parallel to the yellow line) along (220) planes. Pore wall thickness 

determined from these images are 1.47 nm, 1.42 nm and 1.28 nm respectively (each yellow 

line is 20 nm long). 
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Figure A.11 2D GIWAXS patterns (incident angle, αi = 0.17º) of non-functionalized and 

TiO2 functionalized MSNP: (a) bare MSNP, (b) MSNPT-59, (c) MSNPT-110, (d) MSNPT-

134, (e) MSNPT-198, (f) MSNPT-270, (g) MSNPT-362, (h) MSNPT-425 and (i) MSNPT-

636. 
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Figure A.12 Integrated data from GIWAXS pattern of bare glass slide for comparison to 

angular integration results of MSNPT in the text. 

 

 

 

 

Figure A.13 Chemical structures of flavonoids quercetin and rutin with the three aromatic 

rings A, B and C highlighted in red. 
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Figure A.14 Maximum quercetin loading on TiO2 functionalized MSNP normalized by 

both surface area and amount on TiO2 on particle surface (mg quercetin/m2 surface/mg 

TiO2). 
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Figure A.15 Quercetin solution UV-visible spectra of supernatant solutions after 

adsorption. The results show no peak shift after adsorption and after recovery using 20% 

w/v ethanolic citric acid. However, a significant red shift is observed for recovery using 

1% w/v ethanolic HCl, suggesting Ti-leaching into the strong acid solution and 

complexation with quercetin. 
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Figure A.16 Linearized Langmuir plots (1/qe vs. 1/Ce) for adsorption (in ethanol) and 

desorption (in ethanolic citric acid) of quercetin solution showing competitive adsorption 

between citric acid and quercetin for (a) MSNPT-86, (b) MSNPT-362. 
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APPENDIX B. SUPPLEMENTARY MATERIALS OF CHAPTER 4 

B.1. Nanoparticle Synthesis, Functionalization and Fluorescent Attachment 

B.1.1. Nanoparticle Synthesis 

Ordered MSNPs were synthesized by the CTAB-templated modified Stöber 

method originally reported by Kim et al. [69]. Briefly, 0.5 g of CTAB and 2.05 g of F127 

were dissolved in 96 mL of DIUF water, 43 mL of ethanol, and 11.9 mL of concentrated 

ammonia. 1.9 mL of TEOS was added dropwise to the solution with vigorous mixing and 

the solution was stirred for one minute at room temperature (RT). The solution was then 

kept stationary for 24 h (at RT) to facilitate complete silica condensation. Synthesized 

particles were removed and washed 3 times with water and ethanol by repeated ultrahigh 

speed centrifugation (Beckman-Coulter) at 17,000 rpm and dried at 84 ºC in air overnight. 

Finally, template removal from the silica particles was achieved by washing in 200 mL of 

acidic ethanol (HCl, 1.5 M) for 24 h (acidic ethanol wash) followed by repeated 

centrifugation and washing with water and ethanol before drying at 84 ºC. 

B.1.2. Nanoparticle Functionalization and Fluorescent Group Attachment 

B.1.2.1. TiO2 Functionalization 

MSNPs were functionalized by TiO2 using TEO according to a previously reported 

method [38]. 2.6 mL of TEO was added to 7.15 mL of ethanol under nitrogen. Separately, 

500 mg of MSNPs were sonicated in 100 mL of ethanol for 15 min in a 250 mL round 

bottom flask. Then 142.5 mL of ethanol was added and the solution was heated with 

continuous stirring. Once the solution started boiling, the previously prepared TEO 
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solutions and 1.6 mL of DIUF water were added and the solution was refluxed for 1.5 h 

under vigorous mixing. Functionalized particles were recovered by centrifugation (17,000 

rpm) and washed in ethanol overnight to remove excess unbound TiO2, and finally dried 

at 84 ºC. 

B.1.2.2. Amine Functionalization 

Amine functionalized bare MSNPs and amine-TiO2-functionalized MSNPs 

(MSNPA and MSNPTA, respectively) were obtained by condensing APTES on the particle 

surface using modified literature procedures [101, 125, 322, 358]. 200 mg of MSNPs were 

uniformly dispersed in 25 mL of dry ethanol by sonication for 15 min. 0.5 mL of APTES 

was added dropwise under constant stirring, and the solution was kept stirring in a closed 

vessel for 24 h at RT. Particles were centrifuged with repeated ethanol washing, and cured 

at 84 ºC for 24 h. After curing, particles were stirred in excess ethanol for 24 h to remove 

any remaining loosely-bound amine species. The functionalized particles were again 

washed 3 times with dry ethanol and dried at 84 ºC. 

B.1.2.3. Fluorescent Tagging 

200 mg of amine-functionalized particles were suspended in 25 mL of ethanol and 

sonicated for 15 min, followed by addition of 3.2 mg of RITC. After 24 h of stirring, the 

bright red labelled particles were washed and centrifuged in ethanol repeatedly until the 

supernatant became completely clear, and dried in an oven. The dry particles were then 

washed in water and ethanol for 24 h each to remove excess dye before drying again in the 

oven overnight.
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Figure B.1 FTIR analysis for showing organic surfactant CTAB removal (by loss of peaks 

correspond to C-H stretching vibrations from 2800 to 3000 cm-1) during acidic ethanol 

washing of synthesized nanoparticles. 

 

 

   

Figure B.2 Low angle XRD profiles of MSNPA, MSNPT and MSNPTA compared to bare 

MSNPs with the indices for cubic Ia3̅d mesopore structure (peaks were indexed following 

Wang et al. [277]). 
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Figure B.3 Surface properties characterization of non-functionalized and functionalized 

MSNPs: (a) Nitrogen sorption isotherms, (b) Pore size distribution and (c) αs-plot for 

nitrogen adsorption determined from the relative pressure vs. standard reduced adsorption 

table of Jaroniec et al. [269]. 

0.0

0.5

1.0

1.5

2.0

0.9 1.4 1.9 2.4 2.9 3.4

P
o

re
 v

o
lu

m
e,

 d
V

/d
D

 
(c

m
³/

g-
n

m
) 

Average pore diameter (nm)

MSNP

MSNPT

MSNPA

MSNPTA

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

V
o

lu
m

e 
ad

so
rb

ed
 (

cm
³/

g)
 

Relative Pressure (P/P₀) 

MSNP

MSNPT

MSNPA

MSNPTA

0

200

400

600

0 0.3 0.6 0.9 1.2 1.5

V
o

lu
m

e 
ad

so
rb

ed
 (

cm
³/

g)
 

Standard Reduced adsorption, αs

MSNP

MSNPT

MSNPA

MSNPTA

(a)

(b)

(c)



 

 

280 

 

 

 

Figure B.4 Bright field (left) and corresponding fluorescence microscopic image (right) of 

S. nemoralis hairy roots without any particle uptake: (a) & (b) without trypan blue addition 

and (c) & (d) with trypan blue addition (fluorescence imaging exposure time 150 ms). Scale 

bars are 100 μm for all images. 
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Figure B.5 Bright field (left) and corresponding fluorescence microscopic image (right) of 

S. nemoralis hairy roots after RITC-tagged functionalized MSNP uptake: (a) & (b) without 

trypan blue addition and (c) & (d) with trypan blue addition for 1 mg/mL nanoparticle 

solution (fluorescence imaging exposure time 150 ms). Scale bars are 100 μm for all 

images. 
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Figure B.6 Bright field (left) and corresponding fluorescence microscopic image (right) of 

S. nemoralis hairy roots after RITC-tagged MSNPTA uptake in trypan blue solution for (a) 

& (b) 0 (control), (c) & (d) 100 μg/mL and (e) & (f) 1000 µg/mL nanoparticle solution 

(fluorescence imaging exposure time 150 ms). Scale bars are 100 μm for all images. 
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Figure B.7 Viability of S. nemoralis hairy roots culture treated with MSNPTAs (0-1000 

µg/mL) after reculturing. The top row shows the control (0 µg/mL particles) after (a) 0 

weeks, (b) 2 weeks, and (c) 4 weeks. The middle row shows roots with 10 µg/mL MSNPTA 

after (d) 0 weeks, (e) 2 weeks, and (f) 4 weeks. The bottom row shows roots with 1000 

µg/mL MSNPTA after (g) 0 weeks, (h) 2 weeks, and (i) 4 weeks. Viability is indicated by 

lengthening, thickening, and sprouting new leaves for all roots. 
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Figure B.8 TiO2-amine functionalized nanoparticles (MSNPTA) recovered by 

centrifugation after: 500 μL of (a) 1 mg/mL and (b) 10 mg/mL nanoparticle solutions were 

exposed to 40 mg of S. nemoralis hairy roots compared to nanoparticles exposed to only 

left-over solution from hairy root cultures. 
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APPENDIX C. SUPPLEMENTARY MATERIALS OF CHAPTER 5 

C.1. Kinetic Analysis for Nanparticle Uptake and Release 

An additional kinetic analysis is performed by applying a simple kinetic model to 

the nanoparticle expulsion data (Figure 5.3). In each case, the process of uptake and 

expulsion is reversible (not all particles are expelled) and the process reaches steady state 

after certain amount of time. Assuming that uptake is a pseudo-first order process and that 

expulsion is also first-order, we can analyze the data using the relationship presented in 

Equation C.1. 

𝑙𝑛 (1 −
[𝑁𝑃]𝑡

[𝑁𝑃]𝑠𝑠
) = −(𝑘𝑖𝑛 + 𝑘𝑜𝑢𝑡)𝑡                    (C.1) 

Where, [NP]ss is the steady state of particles expelled, which is estimated from the 

plateau at long times (average value > 4 h as presented in Table 5.2). [NP]t is the particle 

expelled at any time; kin and kout are the first order the rate coefficients for uptake and 

expulsion, which can be found from the early kinetics. 

If [NP]cell,0 = the initial concentration of nanoparticles taken up in the cells (also 

found from Table 5.2) and f = the fraction released at steady state, then: 

𝑓 =
[𝑁𝑃]𝑐𝑒𝑙𝑙,0

[𝑁𝑃]𝑠𝑠
                                  (C.2) 

 Simple first-order kinetics would suggest that: 

𝑘𝑖𝑛

𝑘𝑜𝑢𝑡
=

1−𝑓

𝑓
                                    (C.3) 

 Based on this analysis, the average lifetime of a nanoparticle (τavg = (kin + kout)-1) in 

a cell is obtained, which is the order-of-magnitude estimate of the kinetics of 
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nanoharvesting. The process of nanoharvesting is obviously more complicated but first-

order kinetics can be viewed as a lumped average of all processes going on. Expulsion data 

is fitted according to the first order kinetics linearized equation in Figure C.5 and the 

estimated parameters with average time of nanoharvesting is presented in Table C.2. 
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Table C.1 BET specific surface area, BJH pore volume, average pore diameter and zeta 

potential of TiO2 functionalized, amine functionalized, and TiO2-amine functionalized 

mesoporous silica nanoparticles (MSNPs) with optimum TiO2 content compared to non-

functionalized MSNPs.  

Particle 

types 

Average 

particle 

diameter 

Amount 

of TiO2 

Amount of 

amine 

BET 

surface 

area 

BJH pore 

volume 

Average 

pore 

diameter 

Zeta 

potential 

at pH 4.0 

nm mg/g 

particle 

mmol/g 

particle 

m2/g cm3/g nm mV 

MSNP 165 ± 19a - - 953 1.21 2.76 -2.8 

MSNPT 185 ± 29 425 ± 9.2b - 629 0.59 2.21 -9.6 

MSNPA 172 ± 26 - 2.00 ± 0.16b 400 0.57 2.50 +39.3 

MSNPTA 174 ± 32 407 ± 13 0.65 ± 0.07 325 0.33 1.97 +36.7 

Standard deviation values resulted from ameasurement of 20 particles selected randomly (using ImageJ 

Software) and bquadruplicate measurement for chemical analysis. 

 

 

Table C.2 Estimated kinetic parameters and average time of nanoparticle inside the roots 

from the first order kinetic fitting of nanoparticle recovery data. 

Uptake 

temperature  
4 ºC 23 ºC 

Recovery 

temperature  
4 ºC 4 ºC 23 ºC 

Recovery media Fresh solution Fresh solution Fresh solution 

Solution containing 

2.5 mg/mL 

particles 

kin + kout (h
-1) 2.54 3.51 2.35 3.74 

τavg (min) 23.6 17.1 25.5 16.0 

kin (h
-1) 0.11 0.32 0.21 0.46 

kout (h
-1) 2.43 3.19 2.14 3.28 
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Figure C.1 SEM image of (a) MSNP, (b) MSNPT, (c) MSNPA and (d) MSNPTA (scale 

bar 500 nm for all images). 

 

 

 

Figure C.2 Calibration curve of UV-vis intensity for the determination of Ti-content and 

nanoparticle uptake after calcination of roots, constructed in presence of root ash by mixing 

known quantities of particles with 300 mg of roots and calcining them together. 
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Figure C.3 Uptake of MSNPTA in Solidago nemoralis roots after 24 h as a function of the 

concentration of nanoparticles remaining in solution. The points are data and the curve is 

a Langmuir model fit to the data by nonlinear regression. 

 

 

Figure C.4 Calibration curve of fluorescently tagged MSNPTAs in plant media for the 

determination recovery in solution after uptake in roots. 
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Figure C.5 Kinetic analysis (1st order-linearized) for the time dependent fluorescently 

tagged MSNPTAs recovery in MS media after 24 h of uptake with initial particle 

concentration of 2.5 mg/mL: (a) recovery at 4 ºC in fresh solution after uptake at 4 ºC, (b) 

recovery at 4 ºC in fresh solution at 23 ºC, (c) recovery at 23 ºC in fresh solution after 

uptake at 23 ºC, and (d) recovery at 23 ºC in non-fluorescent particle solution (2.5 mg/mL) 

after uptake at 23 ºC. 
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APPENDIX D. SUPPLEMENTARY MATERIALS OF CHAPTER 6 

 

 

Figure D.1 Absorbance spectra of RSSV-FITC (peak 495 nm) before and after UV 

exposure for 120 min. 

 

 

 

Figure D.2 Calibration curve concentration of RSSV-FITC in solution. 
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Figure D.3 Fluorescence intensity decrease due to photo-bleaching for RSSV-FITC 

solution. There are ~25% intensity decrease even after 5 min of UV treatment. After initial 

drop in intensity, there is no further photo-bleaching. 

 

 

 
Figure D.4 Calibration curve for SNLD-RSSV-FITC solution fluorescent intensity before 

UV treatment. 
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Figure D.5 Fluorescence intensity decrease due to photo-bleaching for SNLD-RSSV-FITC 

solution. There are ~35% intensity decrease gradually up to 60 min of UV treatment. After 

that drop in intensity, there is no further photo-bleaching. 

 

 

Figure D.6 Comparison of zeta potential of MSNPA-RSSV, MSNPA-4RSSV and 

MSNPA-4G with bare MSNPAs measured at wide range of pH (2-11). 
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APPENDIX E. SUPPLEMENTARY MATERIALS OF CHAPTER 7 

 

Table E.1 Particle size, amount of amine grafted and % of monolayer surface coverage by 

amine group for amine functionalized nonporous and mesoporous nanoparticles. 

 SNP MSNP-2.2 MSNP-4.1 MSNP-7.9 

Average particle size (nm)a 190 ± 29 165 ± 19 155 ± 32 146 ± 27 

mg APTES/g SiO2  28.6 798.3 466.8 339.1 

mmol amine/g SiO2  0.129 3.61 2.11 1.53 

mmol amine/g particles  0.125 2.00 1.44 1.14 

mmol amine/m2 surface 0.00897 0.00378 0.00245 0.00211 

% of monolayer coverage 272 114 74 64 

a Average and standard deviation calculated from SEM images by considering random 20 

particles using ImageJ software.  
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Figure E.1 TEM images nonporous silica nanoparticles (SNPs) along with mesoporous 

silica nanoparticles (MSNPs) with different pore sizes: (a) SNP, (b) MSNP-2.2 and (c) 

MSNP-4.1. Scale bar is 100 nm for all images. 
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Figure E.2 Nitrogen sorption isotherms of MSNPs before and after amine 

functionalization compared to that of SNPs. 
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Figure E.3 Heat of dilution of 84 bp RNA for initial RNA concentration of (a) 0.334 mM, 

(b) 0.835 mM, (c) 1.67 mM and (d) 2.25 mM base pair. 
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Figure E.4 Heat of dilution of 282 bp RNA for initial RNA concentration of (a) 0.334 mM, 

(b) 0.835 mM, (c) 1.67 mM and (d) 2.25 mM base pair. 
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Figure E.5 Raw heat rate with time for 84 bp RNA interaction with SNPA for (a) 0.334 

mM bp into 0.2 mM amine, (b) 1.67 mM bp into 0.0625 mM amine, (c) 2.25 mM bp into 

0.2 mM amine, (d) integrated heat per mol bp as a function of mol bp/mol amine, and (e) 

corresponding independent single site binding model fit for 1.67 mM bp into 0.0625 mM 

amine with estimated thermodynamic parameters. 
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Figure E.6 Raw heat rate with time for 282 bp RNA interaction with SNPA for (a) 0.334 

mM bp into 0.2 mM amine, (b) 1.67 mM bp into 0.0625 mM amine, (c) 2.25 mM bp into 

0.0625 mM amine, (d) integrated heat per mol bp as a function of mol bp/mol amine, and 

(e) corresponding independent single site binding model fit for 1.67 mM bp into 0.0625 

mM amine with estimated thermodynamic parameters. 
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Figure E.7 Raw heat rate with time for 84 bp RNA interaction with MSNPA-1.6 for (a) 

0.835 mM bp into 2.0 mM amine, (b) 1.67 mM bp into 1.0 mM amine, (c) 2.25 mM bp 

into 3.25 mM amine, (d) integrated heat per mol bp as a function of mol bp/mol amine, (e) 

corresponding independent single site binding model fit for 2.25 mM bp into 3.2 mM amine 

with estimated thermodynamic parameters, and (f) corresponding two site binding model 

fit for 1.67 mM bp into 1.0 mM amine with estimated thermodynamic parameters. 
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Figure E.8 Raw heat rate with time for 282 bp RNA interaction with MSNPA-1.6 for (a) 

0.835 mM bp into 2.0 mM amine, (b) 1.67 mM bp into 1.0 mM amine, (c) 2.25 mM bp 

into 1.0 mM amine, (d) integrated heat per mol bp as a function of mol bp/mol amine, (e) 

corresponding two site binding model fit for 1.67 mM bp into 1 mM amine with estimated 

thermodynamic parameters, and (f) corresponding independent single site binding model 

fit for 2.25 mM bp into 1.0 mM amine with estimated thermodynamic parameters. 
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Figure E.9 Raw heat rate with time for 84 bp RNA interaction with MSNPA-3.2 for (a) 

0.835 mM bp into 1.44 mM amine, (b) 2.25 mM bp into 2.3 mM amine, (c) 4.5 mM bp 

into 1.44 mM amine, (d) 1.67 mM bp into 0.72 mM amine, (e) integrated heat per mol bp 

as a function of mol bp/mol amine, and (f) corresponding two site binding model fit for 

1.67 mM bp into 0.72 mM amine with estimated thermodynamic parameters. 
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Figure E.10 Raw heat rate with time for 282 bp RNA interaction with MSNPA-3.2 for (a) 

0.835 mM bp into 1.44 mM amine, (b) 1.67 mM bp into 0.72 mM amine, (c) 2.25 mM bp 

into 0.72 mM amine, (d) integrated heat per mol bp as a function of mol bp/mol amine, (e) 

corresponding independent single binding model fit for 0.835 mM bp into 1.44 mM amine 

with estimated thermodynamic parameters, and (f) corresponding two site binding model 

fit for 2.25 mM bp into 0.72 mM amine with estimated thermodynamic parameters. 
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Figure E.11 Raw heat rate with time for 84 bp RNA interaction with MSNPA-7.6 for (a) 

0.835 mM bp into 0.228 mM amine, (b) 1.67 mM bp into 0.57 mM amine, (c) 2.25 mM bp 

into 0.72 mM amine, (d) integrated heat per mol bp as a function of mol bp/mol amine, (e) 

corresponding independent single binding model fit for 2.25 mM bp into 1.82 mM amine 

with estimated thermodynamic parameters, and (f) corresponding two site binding model 

fit for 1.67 mM bp into 0.57 mM amine with estimated thermodynamic parameters. 
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Figure E.12 Raw heat rate with time for 282 bp RNA interaction with MSNPA-7.6 for (a) 

0.835 mM bp into 0.57 mM amine, (b) 1.67 mM bp into 0.57 mM amine, (c) 1.67 mM bp 

into 1.14 mM amine, (d) 2.25 mM bp into 0.57 mM amine, (e) integrated heat per mol bp 

as a function of mol bp/mol amine, and (f) corresponding two site binding model fit for 

2.25 mM bp into 0.57 mM amine with estimated thermodynamic parameters. 

 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8

H
ea

t 
(k

J/
m

o
l)

Mol bp/mol amine

0.835 mM bp into 0.57 mM amine

1.67 mM bp into 0.57 mM amine

1.67 mM bp into 1.14 mM amine

2.25 mM bp into 0.57 mM amine

-0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

 

R
a

w
 H

e
a

t 
R

a
te

 (
µ

J
 /
 s

)

Time (seconds)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

 

R
a

w
 H

e
a

t 
R

a
te

 (
µ

J
 /
 s

)

Time (seconds)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

 

R
a

w
 H

e
a

t 
R

a
te

 (
µ

J
 /
 s

)

Time (seconds)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

 

R
a

w
 H

e
a

t 
R

a
te

 (
µ

J
 /
 s

)

Time (seconds)

(a) (b)

(c) (d)

(e) (f)



 

 

307 

 

 

Figure E.13 Raw heat rate with time and two sites model fitting on integrated heat for 

(left) 84 bp RNA and (right) 282 bp RNA interaction with MSNPA-7.6 in presence of 30 

mM NaCl for (a & b) raw heat rate for RNA interaction with particles, (c & d) 

corresponding heat of dilution in 30 mM NaCl solution and (e & f) integrated heat as a 

function of mole ratio with corresponding two site binding model fit for 1.67 mM bp into 

0.57 mM amine with estimated thermodynamic parameters. 
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