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ABSTRACT FOR DISSERTATION 

 

 

INTERFACIAL ENGINEERING OF BIOMASS HYDROLYSIS BY CELLULASE 
ENZYMES AND MECHANISTIC MODELING OF HYDROLYSIS OF CELLULOSE 

SUBSTRATES 

Lignocellulosic biomass is a sustainable and renewable energy resource that can 
be converted to fuels and other commodity chemicals, but this conversion is currently 
limited by its recalcitrance to enzymatic degradation. Because of this recalcitrance, the 
major challenges in the commercialization of enzymatic hydrolysis processes are the 
relatively low hydrolysis rates, limited cellulose conversion under some conditions, and 
high cost of enzymes. 

  
Enzymatic hydrolysis is influenced by the structure of the biomass after 

pretreatment and the mode of enzyme action, but has also been shown to be enhanced by 
surfactant additives. The objective of this work was to elucidate the mechanism of 
hydrolysis by studying the activity of cellulase enzymes and the effects of non-ionic 
surfactant Tween-80 on the interactions of model cellulose (varying in surface 
morphology and crystallinity) and lignin films with cellulases. The primary tool used to 
measure the binding and activity of cellulase enzymes derived from Trichoderma reesei 
was a quartz crystal microbalance with dissipation monitoring (QCM-D). The nonionic 
surfactant Tween-80 was found to reduce the adsorption of cellulases onto all types of 
cellulose films. Tween-80 had no significant effect on hydrolysis of amorphous 
LiCl/DMAc cellulose films whereas the hydrolysis rate decreased with increase in 
Tween-80 concentration for type II crystalline NMMO cellulose films. On lignin, co-
adsorption of Tween-80 and cellulase resulted in an apparent net reduction in the amount 
of cellulase adsorbed on lignin. Sequential adsorption experiments suggested that Tween-
80 was able to reduce and displace adsorbed cellulases. Thus, Tween-80 was found to 
compete effectively with cellulase enzymes for binding to hydrophobic surfaces such as 
lignin without significantly impeding hydrolysis of cellulose, which explains how it is 
able to enhance overall conversion for bulk biomass hydrolysis. 



 
To gain fundamental understanding of the hydrolysis process, a kinetic model 

based on the processive action of cellulase enzymes was developed and applied to QCM-
D data.  The model makes a distinction between surface cellulose units and bulk sites that 
only become accessible as hydrolysis proceeds.  The model predictions during binding 
and enzymatic hydrolysis under various scenarios are discussed along with future 
possible work. 
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CHAPTER 1 

INTRODUCTION 

Transition from a society dependent on fossil fuels to renewable resources is 

viewed as an important contribution to the development of a sustainable industrial society 

and effective management of greenhouse gas emissions[1]. The production of ethanol and 

commodity chemicals from lignocellulosic biomass promises to decrease fossil fuel use 

and increase domestic markets for agriculture and forestry commodities [1-3]. Primary 

consideration involves the production of ethanol from renewable resources as it 

represents an important, renewable liquid fuel for motor vehicles that can be blended with 

gasoline [4]. The use of ethanol and gasoline mixture as an alternative motor fuel has 

been steadily increasing around the world for a number of reasons. Domestic production 

and use of ethanol for fuel can decrease dependence on foreign oil, reduce trade deficits, 

create jobs in rural areas, reduce air pollution, and reduce global climate change carbon 

dioxide buildup. Biofuels derived from plant sources are not generally regarded as 

sources of greenhouse-gas emissions because the amount of carbon dioxide emitted 

during their use is equivalent to that of absorbed by plants during photosynthesis [5].  

Interest in ethanol from biomass such as corn starch emerged in the 1970s when 

the price of fossil fuel rose. In the United States, the Energy Independence and Security 

Act (EISA) of 2007 mandate the production of 16 billion gallons (136.27 L) per year of 

bioethanol by the year 2022 [6]. Biofuel production grew exponentially reaching a 

capacity of 13.5 billion gallons (as of 2010) making the U.S. the world’s leading biofuel 

producer and exporter. In the U.S., bioethanol is primarily produced from corn starch 
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feedstock. Although corn-based based-ethanol is a promising substitute to gasoline 

production mainly in the transportation sector, the amount available is not sufficient to 

replace a considerable portion of the one trillion gallons of fossil fuel presently consumed 

worldwide each year. Furthermore, the ethical concerns about the use of food crops as 

fuel raw materials have encouraged research efforts to work on more acceptable sources 

containing lignocellulosic biomass that are derived mainly from agricultural residues, 

industrial wastes, forest biomass and other inedible feedstock alternatives [7, 8]. As a 

result, abundant availability and renewability of lignocellulosic biomass has made it a 

topic of much interest and motivated research in use of lignocellulosic biomass as a 

source of energy via breakdown to sugars that can then be converted to fuels. For this 

purpose, enzyme systems from fungi have been widely investigated for the 

depolymerization of cellulosic biomass into monosaccharide building blocks [3].  

One of the major limitations of enzymatic hydrolysis is the consistently high cost 

of the enzymes involved in the conversion of the cellulose component of biomass into 

fermentable sugars. This is primarily due to the comparatively high enzyme loadings 

commonly required to overcome the substrate features and enzyme related factors 

limiting effective hydrolysis [9-11]. For any enzyme source, developing economically 

viable cellulosic ethanol processes will require making significant inroads to overcome 

the factors that limit hydrolysis of biomass [12]. Efforts to reduce the costs by improving 

the activity of cellulase enzymes to catalyze the hydrolysis of cellulose have been 

hindered by incomplete understanding of enzyme-substrate interactions. In this work, we 

address the biophysics of the action of the enzymes on model biomass surfaces, with a 
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goal of establishing clear links between the biomass surface chemistry and interactions 

with cellulase enzymes and additives used in hydrolysis systems.  

1.1 Lignocellulose biomass 

Lignocellulosic biomass is an attractive material for bioethanol fuel production 

since it is the most abundant renewable resource. There are several groups of raw 

materials that are differentiated by their origin, composition and structure such as 

forestland materials include mainly woody biomass namely, hardwoods and softwoods; 

agricultural residues that cover food and non-food crops and grasses such as switch grass; 

and municipal and industrial wastes from residential or non-residential sources such as 

food wastes and paper mill sludge [13, 14].  

Lignocellulose consists of plant cell wall materials primarily made up of 

cellulose, hemicellulose and lignin. Cellulose and hemicelluloses make up approximately 

70% of the entire biomass and are tightly linked to the lignin component through covalent 

and hydrogen bonds that make the structure highly robust and resistant to enzymatic 

treatment. Table 1.1 presents biochemical compositions for several suitable feedstock 

materials for bioethanol production.  

1.2 Cellulose, Hemicellulose and Lignin 

Cellulose is a linear polysaccharide of glucose residues (D-

anhydroglucopyranose) linked by β-1, 4 glucosidic bonds formed between the carbon 

atoms C(1) and C(4) of adjacent glucose units. Anhydrocellobiose is the repeating unit of 

cellulose in which the adjacent glucose moieties are rotated 180° with respect to their 
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immediate neighbors. The neighboring glucose residues interact via intra-molecular 

hydrogen bonds, which give rigidity to the chains, and the polymer chains link via inter-

molecular hydrogen bonds to form microfibrils which results in crystalline cellulose. The 

microfibrils are bound together by van der Waals forces and hydrophobic interactions 

[15] and are embedded within hemicellulose and lignin to form the basis of the plant cell 

wall. Figure 1.1 shows the structure and composition of cellulose fibers. Cellulose 

consists of both crystalline and amorphous forms and its supramolecular chemistry is 

complex due to varying patterns of inter and intra chain hydrogen bonds. Four different 

polymorphs of cellulose are known, namely cellulose I, II, III and IV some of which 

contain sub-classes. Cellulose I is the form found in nature and occur in two polymorphs 

Iα and Iβ. Cellulose II is formed from cellulose I either by regeneration (dissolution and 

deposition of cellulose) or mercerization. Cellulose III1 and III11 are obtained by 

treatment of cellulose I or II with liquid ammonia or amines. Cellulose IV is formed by 

heating cellulose III[16, 17]. 

Hemicellulose consists of different monosaccharide units and is a highly branched 

polymer composed primarily of hexose (glucose, galactose and mannose) and pentose 

(xylose and arabinose) units [18, 19]. Its backbone chain is primarily composed of xylan 

β (1-4) linkages that include xylose and arabinose. It is chemically bonded and serves as 

an interface between the lignin and cellulose. 

Lignin is a rigid aromatic network biopolymer with a high molecular weight 

bonded via covalent bonds to cellulose and hemicellulose conferring rigidity and a high 

level of compactness to the plant cell wall [20]. Lignin is composed of three phenolic 
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monomers of phenyl propionic alcohol namely, coumaryl, coniferyl and sinapyl alcohol. 

Extensive cross-linking and structural heterogeneity of lignin provide mechanical support 

to the plant cell wall and allows lignin to act as a barrier to protect the cells against 

microbial attack [11, 21]. This causes difficulty in the breaking of biomass into its 

components and blocks the exposure of cellulosic matter to enzymes. Lignin components 

substantially deactivate cellulase enzymes and hence influence enzymatic hydrolysis. 

This negative impact caused by lignin has led to interest in lowering the lignin inhibitory 

effect [22]. For example, the adsorption of cellulases to lignin requires a higher enzyme 

loading because this binding generates a non-productive enzyme attachment and limits 

the accessibility of cellulose to cellulases.  

1.3 Biomass conversion process  

Lignocellulosic biomass can be converted into fuels and chemicals via two 

different approaches, biochemical or thermochemical conversion [23]. Thermo-chemical 

conversion involves partial oxidation to produce carbon monoxide (CO) and hydrogen 

(H2), which can be catalytically converted to alcohols, hydrocarbons and other products.  

While thermochemical conversion is an established process for any hydrocarbon source, 

it is relatively energy-intensive because it requires high temperature processing for both 

syngas generation and for catalytic generation of products.  Biological conversion of 

biomass involves enzymatic hydrolysis of cellulose and hemicellulose to sugars that are 

subsequently fermented into alcohol and other valuable products. Biochemical 

conversion of lignocellulosics to bioethanol consists of four major unit operations: 

pretreatment, hydrolysis, fermentation and product separation. A simplified process 

description of biochemical lignocellulose conversion is shown in Figure 1.2.  
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1.3.1 Pretreatment 

The first step in bioconversion of lignocellulose to bioethanol is size reduction 

and pre-treatment. Pretreatment is aimed at degrading the protective layers to facilitate 

enzymatic hydrolysis of carbohydrate-based components. At the molecular level, access 

to the cellulose chains of microfibrils is restricted by lignin and hemicellulose. In the 

pretreatment step the recalcitrance is reduced by depolymerizing and solubilizing 

hemicellulose, thereby exposing the cellulose chains which can then be hydrolyzed by 

cellulases [24]. A successful pre-treatment must meet the following requirements [9, 25, 

26]: (i) maximize digestibility of lignocellulose material or the ability to subsequently 

form sugars by hydrolysis, (ii) avoid degradation or loss of carbohydrates, (iii) avoid 

formation of byproducts inhibitory to subsequent hydrolysis and fermentation processes, 

(iv) have a low capital and operating cost compared to product of interest, and (v) work 

for a variety of feedstocks. 

Several different pretreatment methods have been used to remove the recalcitrant 

cell wall material of lignocellulosic biomass, namely, mechanical, biological or 

thermochemical. There has been considerable advancement in development of 

pretreatment processes, and many reviews are available that provide detailed overviews 

of the types of pretreatments available [25, 27, 28].  Table 1.2 illustrates some of the 

pretreatment methods that have been examined over the years. An ideal pretreatment 

process would involve complete separation and isolation of each component from a 

lignocellulosic substrate; however, pretreated lignocellulosic substrates usually contain 

some amount of hemicellulose and lignin associated with the cellulosic rich stream 

obtained after pretreatment.  Although most of these treatments can liberate 
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hemicellulose and cellulose from the cell wall, some of them remain economically 

unfeasible due to key technical issues. 

1.3.2 Hydrolysis 

When pretreatment is complete, the biomass is prepared for hydrolysis (a process 

also known as saccharification). During this reaction, the polysaccharide chains of 

cellulose and hemicellulose are hydrolyzed into fermentable monomer molecules for 

conversion to bioethanol. There are two different types of hydrolysis processes that 

involve either acidic (dilute or concentrated sulfuric acid) or enzymatic hydrolysis. Dilute 

acid hydrolysis (1-3% sulfuric acid) requires a high temperature of 200-240 °C to disrupt 

cellulose crystals [29]. It is followed by hexose and pentose degradation and formation of 

inhibitory compounds like furfural, hydroxymethyl furfural (HMF), acetic acid and 

formic acid which impacts sugar recovery and ethanol yields [7]. Unlike dilute acid 

hydrolysis, concentrated acid hydrolysis (70% sulfuric acid) is not followed by high 

concentrations of inhibitors and produces a high yield of free sugars (90%), however, it 

requires large quantities of acid as well as costly acid recycling, which makes it 

commercially less attractive [30]. These issues have driven development of research to 

improve enzymatic hydrolysis. Enzymatic hydrolysis of natural lignocellulosic materials 

is a very slow process and results in solubilization of less than 20% of the originally 

present glucan; therefore some form of pretreatment to increase accessibility to 

enzymatic hydrolysis is included in most process concepts for biological conversion of 

lignocellulose. Pre-treatment, under appropriate conditions, retains nearly all of the 

cellulose present in the original material and allows close to theoretical yields upon 

enzymatic hydrolysis [31]. Enzymatic hydrolysis uses cellulolytic enzymes produced 
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from microorganisms to catalyze the depolymerization of cellulose into glucose 

oligomers, dimers, and monomers. Trichoderma reesei is one of the most efficient and 

productive fungi used to produce industrial grade cellulolytic enzymes. During the 

enzymatic hydrolysis of cellulosic substrates, several factors restrict the sustained 

catalytic activity of the cellulase mixture. It has been suggested that these limitations are 

due to both substrate- and enzyme-related factors which will be discussed later in this 

chapter [32]. The cost of bioethanol production from lignocellulosic materials is 

relatively high when based on current technologies, and the main challenges are low 

glucose yield and the high cost of the hydrolysis process [7].  

1.3.3 Fermentation and Product recovery 

The hydrolysate obtained from the hydrolysis step can be fermented by 

microorganisms to produce ethanol. Industrial yeast Saccharomyces cerevisiae has been 

utilized in corn-based and sugar-based industries as the primary fermentative strain for 

bioethanol production [33]. One of the challenges associated with fermentation is the 

effective use of sugars other than hexose. In response to this inability of Saccharomyces 

cerevisiae to ferment pentose sugars, extensive efforts have been employed to develop 

genetically engineered microorganisms that are capable of fermenting pentose and hexose 

sugars simultaneously. Subsequently, bioethanol obtained from a fermentation 

conversion requires further separation and purification of ethanol from water through a 

distillation process. Fractional distillation is a process implemented to separate ethanol 

from water based on their different volatilities. Thus, water can be separated via a 

condensation procedure and ethanol distillate captured at a concentration of >95% [34]. 
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1.4 Cellulases 

Cellulases refer to a complex of enzymes produced from fungi and bacteria that 

synergistically hydrolyze cellulose into its constituents, monosaccharide (glucose) and 

disaccharide (cellobiose). Many microorganisms in nature produce a set of enzymes 

capable of degrading cellulose, but only a few microorganisms are particularly 

recognized for their efficiency. Among these, Trichoderma reesei (T. reesei) soft-rot 

fungi have been extensively investigated for the depolymerization of cellulosic biomass 

into monosaccharide building blocks [3, 35, 36]. This complex was crudely pictured as an 

enzyme known as ‘C1’ decrystallizing cellulose, followed by a consortium of hydrolytic 

enzymes, known as ‘Cx’, which break down cellulose to glucose [35]. This early concept 

of cellulase activity has been modified and the combined action these enzymes is now 

described in terms of three major classes of cellulase enzymes: first, endoglucanases 

which act randomly on soluble and insoluble cellulose chains; second, exoglucanases, 

which include cellobiohydrolases (CBHs) that act processively to preferentially liberate 

cellobiose from the ends of cellulose chain; and finally, β-glucosidases, which liberate D-

glucose from cellobiose [37].  

Cellulases secreted by T. reesei consist of two cellobiohydrolases, Cel 7A (CBH 

I) and Cel 6A (CBH II), five endoglucanases Cel 7B (EG I), Cel 5A (EG II), Cel 12A 

(EG III), Cel 61A (EG IV), Cel 45A (EG V) and two β-glucosidases[38]. The enzymes 

involved in the hydrolysis of lignocellulose are called glycosyl hydrolases (GH). These 

enzymes can be further classified into families with structurally-related features arising 

from individual amino acid sequences and maintained in the Carbohydrate-Active 

Enzymes Database (CAZy) for GH enzymes and other relevant carbohydrate-active 
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proteins [39, 40]. Presently, 133 glycosyl hydrolase families have been identified. 

Cellualses are modular enzymes that are composed of independently folded, structurally 

and functionally discrete units referred to as domains or modules. Most cellulolytic 

enzymes contain two domain structure consisting of a catalytic domain (CD) and a 

cellulose binding domain (CBD – or carbohydrate binding module, CBM), which are 

bound together by a flexible linker [41]. Crystal structures have been determined for the 

catalytic domain structures of T. reesei CBH I, CBH II and EG I. The structural 

differences of the catalytic domains of cellobiohydrolases and endoglucanases suggest 

that their action on cellulose substrates is dictated by the shape of their active site. 

Endoglucanases have an open active site, which enables action in the middle of the 

glucan chain, while exoglucanases have tunnel shaped structure which hydrolyze only 

chain ends [36, 42]. The open cleft structure of EGs and the tunnel structure of CBHs are 

shown in Figure 1.3. 

Cellulase binding onto crystalline cellulose has been widely studied with the main 

focus on cellulose binding module (CBM)-cellulose interactions. It is generally accepted 

that the primary role of CBM is to facilitate physical contact of the enzyme to the 

cellulose, increasing the effective concentration of the enzyme at the substrate. Cellulose 

surfaces have hydrophilic and hydrophobic faces. The cellulose surface is often 

considered highly hydrophobic because of hydrogen bonding among cellulose chains. On 

the hydrophobic faces, pyranose rings are fully exposed at the fibril surface. Cellulases 

interact with the cellulose surface through the cellulose binding domain and the catalytic 

domain.  CBMs are currently distributed into families, ranging from small peptides (30-

40 amino acids) to modules consisting of over 200 residues [43, 44].  
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There are several basic surface and intermolecular forces which control the 

adsorption of proteins onto solid/liquid interfaces. These interactions are usually non-

covalent, i.e. mediated by hydrogen bonding, electrostatic or hydrophobic interactions. 

The most hydrophobic residues in proteins are those containing aromatic groups like 

tryptophan, phenylalanine and tyrosine.  When these are exposed at the surface of the 

protein molecule, they form binding sites through hydrophobic interaction and hydrogen 

bonding.  Fungal CBMs from T. reesei belong to family 1 and are characterized by a 

small wedge shaped fold featuring a cellulose binding surface with three exposed 

aromatic residues. Sequence comparison of T. reesei CBMs have shown that the three 

conserved tyrosines (Y5, Y31 and Y32) are involved in the binding to cellulose [45]. The 

aromatic rings in these amino-acid residues are spaced so that they may stack with every 

other pyranose rings on a cellulosic chain [46].  In a study by Lehtio et al. [47] binding of 

family 1 and family 3 CBMs was shown (by transmission electron microscopy) to occur 

preferentially on the hydrophobic (110) planes of Valonia cellulose (Iα) and more 

recently T.reesei Cel 7A was shown to degrade crystalline cellulose exclusively from the 

hydrophobic faces of a cellulose crystals [48]. Nimlos et al. [49] demonstrated with 

molecular simulation that the CBM from TrCel7A binds preferentially to the 

hydrophobic surfaces. They also suggest that family 1 CBM may also be able to transfer 

from hydrophilic crystal surfaces, to hydrophobic surfaces. Palonen et al. [50] observed 

that CBMs greatly increase enzyme binding to cellulosic surfaces, although the catalytic 

modules are also capable of low binding to cellulose.  The overall efficiency of cellulases 

is markedly enhanced by the presence of CBMs. Additionally, Lehito et al. [47] observed 

fully reversible binding of family 1 CBM to crystalline cellulose at 4 °C. Reversibility of 
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CBM binding to the cellulose is an important issue as it will allow the hydrolysis reaction 

to proceed longer by reducing the enzyme loss due to unproductive binding. 

The presence of hydrophobic groups on cellulases can also lead to general 

adsorption and non-productive binding to cellulose or lignin. Several authors have 

identified the negative consequences of enzyme binding to the lignin fraction of 

lignocellulose [51-56]. Non-productive enzyme adsorption onto the lignin components in 

biomass is a major inhibitory mechanism preventing efficient hydrolysis of the cell wall 

carbohydrates. The phenomenon is detrimental for process economics, since higher 

enzyme loadings are required to overcome the inhibitory effect and enzyme recycling is 

hindered after a completed reaction [57]. Palonen et al. [58] showed that the carbohydrate 

binding modules (CBMs) of T. reesei enzymes, Cel7A and Cel5A, significantly increase 

enzyme binding onto lignin and indicated that hydrophobic interactions are involved in 

non-productive binding to lignin. In a study by Börjesson et al. [59] TrCel7B (EG I) was 

found to bind more onto isolated lignin than TrCel7A (CBH I), although the catalytic 

modules of both enzymes bound to lignin to a similar degree. The difference in binding 

of the full-length enzymes was explained by the more hydrophobic character of the 

TrCel7B CBM.  Three types of interactions have been suggested to mediate enzyme 

binding onto lignin: hydrophobic interactions [58-61], ionic interactions [51], and 

hydrogen bonding interactions [51, 62, 63]. However, the exact mechanisms by which 

cellulases interact with lignin and result in the reduction in hydrolysis effectiveness have 

yet to be fully resolved. 
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It would be beneficial to be able to decrease the non-productive adsorption of 

cellulases to lignin in commercial hydrolysis applications. It has been reported that the 

addition of additives such as proteins and surface active chemicals (surfactants) to the 

reaction mixture can decrease the non-productive binding of cellulases onto lignin and 

block the binding sites from the enzymes [59, 60]. Addition of BSA into the reaction 

mixture has been shown to increase the hydrolysis of lignocellulosic materials 

presumably because the BSA adsorbed to the lignin leaving more cellulase available for 

conversion [60, 64]. Anionic and non-ionic surfactants [60, 65] as well as 

lignosulphonates [66] have also been shown to improve the enzymatic hydrolysis of 

lignocellulose. Pretreatment of lignocellulosic biomass in the presence of additives prior 

to enzymatic hydrolysis has been shown to decrease the cellulase enzyme concentration 

required to achieve a desired conversion [67, 68]. A possible mechanism for the 

improved hydrolysis was suggested to be reduced non-productive enzyme adsorption to 

lignin. Despite the research carried out on this topic, more information about the effect of 

additives on binding of cellulases to cellulose and lignin is still required. 

1.5 Factors affecting enzymatic hydrolysis of cellulose 

 The typical time course of the enzymatic hydrolysis of the lignocellulosic material 

is characterized by a rapid initial rate of hydrolysis followed by slower and/or incomplete 

hydrolysis. There are several factors that have been identified to affect the enzymatic 

hydrolysis of cellulose due to the heterogeneous nature of the hydrolysis process 

(enzymes are dissolved in liquid phase and cellulose exists as a solid phase). These 
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factors are divided into two groups: enzyme related factors and substrate related factors 

[32].  

Several factors associated with the nature of the cellulase enzyme system have 

been suggested to be influential during the hydrolysis process. These include end product 

inhibition, thermal deactivation, synergism, adsorption and irreversible adsorption of 

enzymes. Synergy between cellulolytic enzymes occurs when the combined action of two 

or more enzymes leads to a higher rate of action than the sum of their individual actions 

[32]. The two most often reported synergy types involve cooperative action of either 

endo-glucanses (EG) and exo-glucanses (CBH), in so called endo-exo synergy [69], or 

the two complementary CBHs, i.e. acting from the reducing and the non-reducing end of 

the cellulose chain, in exo-exo synergy [70, 71]. Studies regarding synergy between 

purified cellulolytic enzymes confirm that the synergy between enzymes can be of 

significant benefit in increasing the hydrolysis rate, but the effect is substrate-dependent, 

with some enzyme mixtures showing cooperative action on amorphous substrates, but not 

on microcrystalline cellulose.  

End-product inhibition is an important enzyme related factor influencing the 

hydrolysis process. The cellulase complex is inhibited by cellobiose, a dimer of glucose. 

The effects of product inhibition have been studied extensively [72-74], but the actual 

inhibition mechanism are still under debate. The magnitude depends strongly on the 

source of enzymes, the enzyme-substrate ratio [72], and the nature of the substrate [38]. 

One of the most important parameters for the design and operation of bioreactors for 

lignocellulosic conversion is enzyme dosing of the cellulase enzymes to obtain high 
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specific rates of cellulose conversion. As a general rule, the conversion of the substrate 

increases with increase of enzyme concentration, but the increase in conversion is not 

proportional to the increase of enzyme loading (Figure 1.4) [75].  Converse et al. [76] 

observed reduction in the activity and the concentration of the adsorbed enzyme and 

proposed a slow deactivation of the adsorbed enzyme to be the rate limiting factor.  At 

the current conversion rates for enzymatic hydrolysis, one needs to use a high enzymatic 

loading to achieve conversion rates high enough to make the implementation of this 

technology feasible. There is a need to develop alternative techniques so as to obtain 

higher conversion rates at lower enzyme loading. 

To better understand the enzymatic depolymerization of cellulose, it is important 

that the general chemical and physical features of the cellulose substrates be accurately 

understood. Structural substrate characteristics play key roles in determining both the 

rates and degree of hydrolysis and these include: crystallinity of cellulose, degree of 

polymerization, available/accessible surface area, structural organization and presence of 

associated materials such as hemicellulose and lignin [32, 77].  

Crystallinity of cellulose is considered to be an important structural parameter that 

affects enzymatic hydrolysis [77-79]. Based on the change of the degree of crystallinity 

during enzymatic hydrolysis it has been suggested that the amorphous component of 

cellulose is hydrolyzed first leaving the more recalcitrant crystalline component to be 

hydrolyzed, thus resulting in an increased crystallinity index and possibly explaining the 

slowdown in hydrolysis rate [77]. However, some researchers think that crystallinity of 

cellulose may not be a key factor determining the rate of enzymatic hydrolysis [32, 36, 
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80, 81]. One reason for the controversy is that different types of cellulose with different 

degrees of crystallinity have been employed in different studies. In addition, it has been 

suggested that treatments that were found to cause a change (decrease)  in crystallinity 

also resulted in an increase in specific surface area, which may have been the cause of 

any increase in hydrolysis rate [82]. Some researchers concluded that  pore size of the 

substrates compared to the diameter of enzyme molecules is the main structural factor 

influencing enzymatic hydrolysis extent [83, 84]. Grethlein et al. [83] showed that initial  

rate of the hydrolysis by cellulolytic enzyme of T.reesei is correlated with pore volume of 

the substrate. A relationship between accessible surface area of pores and digestibility 

was also found [85].  The effect of the degree of polymerization (number of glycosyl 

residues per cellulose chain) is essentially related to crystallinity. It has been reported that 

the degree of polymerization of the cellulose substrates is marginally reduced by various 

cellulase components following hydrolysis. However, regardless of the substrate being 

hydrolyzed, there seems to be a “leveling off” of the cellulose degree of polymerization, 

which is correlated with the increased recalcitrance of the residual (crystalline) cellulose 

[32]. Also, removal of lignin and hemicellulose by the pretreatment methods results in 

extensive changes in the structure and accessibility of cellulose. Their removal leaves the 

cellulose more accessible and more open to swelling on contact with cellulases.  Even 

though the factors that affect cellulose hydrolysis substantially have been identified, it is 

important to stress that many factors are interrelated during a hydrolysis process, and as a 

result, the influence of each factor is difficult to quantify in isolation. Consequently, 

digestibility of biomass is highly dependent on the contribution of the composition of the 
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substrate, type of pretreatment, and dosage and efficiency of the enzymes used for 

hydrolysis. 

1.6 Mechanistic modeling 

Given the complexity of enzymatic degradation of cellulose, the multiple 

enzymes involved and changing substrate features, the enzymatic cellulose hydrolysis 

process is one of the bottlenecks and the key cost center in the commercialization of 

cellulosic ethanol production. Most studies are being conducted to reduce the cost by 

improving the understanding of the process, testing enzymes and various substrates under 

different conditions to determine optimal hydrolysis conditions. Among the many aspects 

of enzymatic hydrolysis, understanding of the mechanism and enzymatic kinetics is 

important and can be used as a forecasting tool in designing more economical 

saccharification processes [86]. There are two principle approaches to modeling cellulose 

hydrolysis by cellulase enzymes, empirical and mechanistic modeling [36, 86]. Empirical 

models, based on experimental results relate the factors using a mathematical correlation, 

without any insight into the underlying mechanism. These are easy to develop and are 

useful in enzyme characterization and substrate preparation but require large sets of 

experimental data [75, 87-89]. The second approach involves formulation of mechanistic 

models which attempt to capture some of the underlying phenomenon with simplifying 

assumptions. Rate expressions are described using Michaelis-Menten type enzyme 

kinetics with or without considering the effects of enzyme adsorption and product 

inhibition.  An extensive summary of the models of enzymatic hydrolysis of cellulose 

from the perspective of the development of an aggregate understanding of the action of 

the cellulase enzymes is presented elsewhere [36, 86]. These models are reasonably 
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accurate in predicting cellulose hydrolysis.  However, a key limitation of most models is 

that while adsorption, substrate reactivity and accessibility change throughout 

conversion, these kinetic models often do not consider dynamic changes in properties that 

directly affect the enzyme-substrate interactions and rate of hydrolysis. 

Rate expressions generally described using Michaelis-Menten (MM) type enzyme 

kinetics that hold good for homogenous enzymatic reactions in solution cannot be 

directly applied since cellulose is an insoluble substrate. Due to insoluble nature of 

cellulose, large fractions are not exposed to cellulases in the reaction mixture during the 

hydrolysis. Few studies have described the cellulose polymers as cellulose chains 

embedded in a solid substrate. Zhou et al. [90] used time scale analysis to study the 

synergistic behavior of exo- and endo-acting cellulases and examined the hydrolytic time 

evolution of a solid substrate. Levine et al. [91] described the cellulose polymers as 

individual discrete species, essentially tracking the concentration for each chain length. 

Griggs et al. [92] developed a kinetic model describing the distinct mode of action of the 

cellulase enzymes, distribution of chain lengths for the insoluble cellulose substrate using 

a population balance approach. Although these models improved our understanding of 

cellulose hydrolysis, some are validated using experimental data from the literature which 

tend focus on one specific aspect of the hydrolysis process to the exclusion of other 

simultaneously occurring phenomenon.  It is necessary to consider many factors which 

affect the rate and extent of hydrolysis of biomass for developing mechanistic models 

such as the effect of enzyme adsorption, substrate heterogeneity and product inhibition. 

In this work, a mathematical model is designed in a way to appropriately describe the 

hydrolysis process, identify and understand the most crucial aspects of the hydrolysis 
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process, and consequently lead towards suggestions how to improve the hydrolysis 

process.  

1.7 Research hypothesis and approach 

Designing methods to enhance cellulose hydrolysis and enzyme recovery requires 

a mechanistic understanding of the interplay that the CBM, the surface chemistry of the 

substrate, and the effect of additives on binding on hydrolysis. Based on the binding 

studies of family 1 CBDs by molecular dynamics [49], transmission electron microscopy 

[47], and atomic force microscopy [48] it can be proposed that the CBMs interact with 

surfaces rich in hydrophobic and aromatic character.  We hypothesize that non-

productive binding may occur on other surfaces rich in hydrophobic and aromatic 

character, such as lignin, and the adsorption of binding inhibitors (additives) to those sites 

for non-productive binding may provide molecular leverage for displacement of 

cellulases onto productive sites. Control of productive cellulase binding is relevant to 

enzyme recovery as well as maximizing hydrolysis activity. In dilute fungal cellulases, 

reversibility of CBD binding has been found to range from about 25% to 100% 

depending on species, substrate and conditions of saccharification [93, 94]. The approach 

in the literature to reducing nonproductive binding focuses primarily on genetic 

manipulation of enzymes and feedstock [95]. In this work, we propose to use the surface 

science approach to model surfaces (thin films) and investigate the binding of cellulase 

enzymes to cellulose and lignin, and the role of surfactants to suppress the binding 

cellulases to surfaces differing in surface chemistry. We hypothesize that this approach 

will be more capable of being generalized to reverse engineer the best pretreatment of 

biomass to favor the appropriate surface for controlled binding. 

19 
 



The advent of advanced techniques to synthesize an array of model thin films 

coupled with analytical methods provides real-time detection of enzyme adsorption and 

enzymatic hydrolysis of cellulose. Recently, surface sensitive techniques such as quartz 

crystal microbalance with dissipation monitoring (QCM-D) [96-98], ellipsometry [99], 

neutron reflectometry [100] and surface plasmon resonance (SPR) [101] have been 

applied to monitor hydrolysis of cellulose thin films as well as enzyme binding onto 

cellulose or lignin at the interfacial level. Among the surface analysis techniques, QCM-

D is the widely used technique for hydrolysis and enzyme binding studies of 

lignocellulose substrates including pure cellulosic films [96, 98], cellulose-lignin 

bicomponent films [97] and films made of lignocellulosic nanofibrils [102], and protein 

binding on lignin films [55, 103]. QCM-D is a highly sensitive balance; it measures small 

changes in the resonant vibration frequency of a quartz crystal sensor under electrical 

simulation due to the mass addition (adsorption) or loss (degradation) onto the crystal. In 

addition to measuring changes in frequency due to adsorbed material it also measures 

dissipation in signal after ceasing electrical stimulation which gives a measure of the 

viscoelasticity of the adsorbed layer. 

This dissertation addresses enzyme-substrate interactions in biomass hydrolysis 

with an overall goal of quantifying at the interfacial level, the binding of cellulase 

enzymes to cellulose and lignin in response to the surface chemistry and the presence of 

binding inhibitors. Many bulk adsorption and activity studies have been performed with 

various enzymes and substrates, and suggest that additives (e.g. polyethylene glycol [59], 

bovine serum albumin [64] or surfactants [60]) can enhance both conversion to sugars 

and enzyme recovery particularly when lignin is present. While a variety of surfactants, 
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proteins and polymers have been used to promote desorption of T. ressei cellulases, we 

propose to use the most common nonionic based polyethylene glycol based surfactant, 

Tween-80. More specifically, the aims of this work were to: 

1. Prepare model cellulose films differing surface chemistry (morphology and 

crystallinity) and measure binding and activity of cellulases on these films.    

2. Measure the effects of binding inhibitors (surfactants) on binding and activity 

of cellulases. 

3. Prepare model lignin films and measure the binding of cellulases to those 

films to identify and test inhibitors to nonproductive cellulase binding to 

lignin. 

In this document, chapter 2 outlines the key instrumental techniques used to 

complete this research. Chapter 3 reports the experimental procedures used to prepare 

model cellulose films differing in surface chemistry following the binding and activity of 

cellulases to those films studied using QCM-D. Three kinds of model cellulose films 

were prepared in this work by dissolving cellulose in various solvents.  The films are 

named after the solvent used for dissolution or the surface morphology of the cellulose 

films, specifically as NMMO, LiCl/DMAc and cellulose nanocrystal (CNC) films.  Data 

obtained in the experimental studies were compared and evaluated against a mechanistic 

mathematical model describing the hydrolysis process. Chapter 4 reports the effects of 

nonionic surfactant Tween-80 on binding and cellulase hydrolytic activity on NMMO 

and LiCl/DMAc cellulose films. In chapter 5, an experimental method used to prepare 

model lignin films was described and the effects of Tween-80 on cellulase binding to 
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lignin films are reported. Chapter 6 reports the effect of enzyme concentration on 

hydrolysis of NMMO cellulose films followed by fitting the experimental data to the 

surface kinetic model. Finally, chapter 7 reports the conclusions and a suggestions for 

future work. 
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1.8 Figures and Tables 

 

 

Figure 1.1. Schematic presentation of cellulose fiber structure [Reproduced with 
permission from the U.S. Department of Energy Genomic Science program, available at 

http://genomicscience.energy.gov [104]]. 

 

 

 

Figure 1.2. Schematic overview flowsheet for the biochemical conversion of biomass to 
bioethanol. 
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Figure 1.3. Three dimensional surface representations of the active sites of 
endoglucanases E2 from T.fusca (left) and exoglucanase CBH II from T.reesei (right) 

[105]. [Molecular surface diagrams prepared using PyMOL Molecular Graphics System, 
Schrodinger LLC, version 1.1r1]. 

 

 

Figure 1.4. Effect of different initial enzyme concentration on reaction progress. The 
plots are generated to demonstrate the conversion vs time progress for different enzyme 
loadings, the data are not from hydrolysis experiments (Similar trends reported by Sattler 
et al., 1989). 
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Table 1.1. Typical biochemical compositions of potential lignocellulosic biomass 
feedstocks (% dry weight) [Adapted from Limayem and Ricke [106]]. 

Feedstock Cellulose Hemicellulose Lignin Others 

Agricultural residues 37-50 25-50 5-15 12-16 

Hardwood 45-47 25-40 20-25 0.8 

Softwood 40-45 25-29 30-60 0.5 

Grasses 40-55 35-50 - - 

Switch grass  40-45 30-35 12 - 
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Table 1.2. Various methods for pretreating lignocellulose biomass and their 
characteristics 

Pretreatment Characteristics Ref 
Acid 
treatment 

- Practical and simple technique.  
- Does not require thermal energy.  
- Effective hydrolyze of hemicelluloses with high sugar 

yield. 
- Synthesis of furfural/hydroxymethyl furfural toxic 

inhibitors 
- Requires recovery steps 

[26, 
107] 

Alkaline 
treatment 

- High total sugar yield including pentose and hexose 
sugars. 

- Effective against hardwood and agricultural residues. 
- High pressure and temperature hinder chemical operation. 
- Commercial scalability problem 
- Formation of salts of calcium and magnesium 

[108-
110] 

Ammonia 
fiber 
explosion 
(AFEX) 

- Effective against agricultural residues mainly corn stover 
without formation of toxic end-products. 

- Not suitable for high-lignin materials. 
- Costly and requires ammonia recovery  

[111-
114] 

Organosolv 
treatment 

- Pure lignin obtained and used as value added product 
- Solvents inhibit enzymatic hydrolysis 
- Removal of solvents necessary to reduce operational costs 

[115, 
116] 

Steam 
explosion 
with catalyst 

- Effective against agricultural residues and hardwood. 
-  High hemicelluloses fractions removal 
- Not really effective with softwood 

[117-
119] 

Sulfite 
pretreatment 
to overcome 
recalcitrance 
(SPORL) 

- Effective against high-lignin materials, both softwood and 
hardwood. 

- Highest pretreatment energy efficiency 
- Minimum of inhibitors formation 
- High cost of chemical recovery systems 

[120, 
121] 

Alkaline wet 
oxidation 

- The combination of oxygen, water, high temperature and 
alkali reduce toxic inhibitors. 

- High delignification and solubilization of cellulosic 
material 

- Low hydrolysis of oligomers 
- Formation of acids which act as enzyme inhibitors 

[122, 
123] 

Fungal 
bioconversion 

- Environmentally friendly 
- Low use of energy and chemicals 
- A part of fermentable sugars are utilized as carbon source 
- Slow process 

[124, 
125] 
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CHAPTER 2 

METHODS AND MATERIALS 

This chapter gives an outline of the principles of the key instrumental techniques 

used in this work, including Atomic Force Microscopy (AFM), ellipsometry, Quartz 

Crystal Microbalance with Dissipation (QCM-D), X-ray Photoelectron Spectroscopy 

(XPS) and X-ray Diffraction (XRD).  

2.1 Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) is most often used to obtain topographical 

information about a surface with nanometer-level resolution.  Developed in the mid-

1980s, AFM has become one of the most successful tools in surface science.  The basic 

components of an AFM are depicted in Figure 2.1. A sharp tip at the free end of a 

cantilever is brought into contact with the sample surface. The tip interacts with the 

surface, causing the cantilever to bend. A laser spot is reflected from the cantilever onto a 

positon-sensitive diode detector. As the cantilever bends, the positions of the laser spot 

changes. In idealized experimental conditions (e.g. in ultrahigh vacuum), when the 

cantilever tip approaches the sample surface, Van der Waals forces start acting upon it.  

Figure 2.2 shows a schematic of the expected interaction forces as the tip approaches the 

sample.  At the right side of the curve the tip and sample are separated by a large 

distance. As they approach, the tip and sample atoms first weakly attract each other. This 

zone of interaction is known as the “non-contact” regime. Closer still, in the “intermittent 

contact” regime, the repulsive van der Waals force becomes important. When the 

distance between tip and sample is just a few angstroms, the forces balance, and the net 
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force drops to zero. When the total force becomes positive (repulsive), the atoms are in 

the contact regime.   

Depending on the type and size of surface being imaged, several different AFM 

operating modes, namely, contact and dynamic modes are possible [126, 127]. The 

dynamic mode is further divide into tapping and non-contact modes. In the contact mode 

the AFM tip scans the surface in contact with surface. In the dynamic mode the cantilever 

is vibrating at or near its resonance frequency and measuring the changes in amplitude or 

frequency near the sample. In this work, the non-contact mode is used, and is discussed in 

detail.  

The noncontact mode works via the principle of “amplitude modulation” 

detection. The corresponding detection scheme exploits the change in the amplitude ‘A’ 

of the oscillation of a cantilever due to the interaction of a tip with a sample. The 

mechanism of noncontact AFM can be understood in terms of a force gradient model 

[128]. According to this model, in the limit of small A, a cantilever approaching a sample 

undergoes a shift in its natural frequency, f0, towards a new value given by 

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑓𝑓0  �1 − 𝐹𝐹′(𝑧𝑧)
𝑘𝑘0

�
1/2

  (2.1) 

where feff is the new effective resonance frequency of the cantilever of nominal stiffness 

k0 in the presence of a force gradient F’(z) due to sample. The quantity z represents an 

effective tip-sample separation while df = feff – f0 is typically negative, for the case of 

attractive forces. If the cantilever is initially forced to vibrate at an fset > f0, then the shift 

in the resonance spectrum of the cantilever towards lower frequencies will cause a 
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decrease in the oscillation amplitude at fset as the tip approaches the sample. This change 

in A is used as the input in the non-contact feedback. To obtain an image in non-contact 

mode, the user initially chooses a value Aset as the set-point such that Aset < A(fset) when 

the cantilever is far away from the sample. The non-contact feedback then moves the 

cantilever closer to the sample until its instantaneous oscillation amplitude, A, drops 

to Aset at the user-defined driving frequency fset. At this point the sample can be scanned 

in the x–y plane with the control system keeping A = Aset = constant in order to obtain an 

image.  

AFM is a non-destructive technique capable of operation in a variety of 

environments, including insulated, fluid, and high vacuum conditions. Additionally, the 

only requirements for the substrate are a clean, flat, near defect-free surface. The 

dimensions of the AFM tip affect the resolution of the AFM image. Sharper tips with a 

small radius of curvature yield higher resolution images because the tip dimensions are 

typically smaller than the features on the surface.  Because AFM can yield high 

resolution images in a number of different environments and using a variety of 

underlying substrates, AFM measurements has been applied to a wide range of synthetic 

and biopolymer films [129, 130]. Non-contact mode has the advantage that the tip never 

makes contact with the sample and therefore cannot disturb or destroy the sample. Both 

topographic images (dependent on the height of the cantilever above the surface) and 

phase contrast images (dependent on the rate of energy dissipation due to the interaction 

of the cantilever with the surface) are used to observe sample features.  In this work, 

tapping mode AFM was used to characterize the dimensions and homogeneity of 

cellulose films and to characterize the changes in cellulose model surface structure and 
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morphology before and after enzymatic hydrolysis.  In this work, an Agilent 5500 

scanning probe microscope from Agilent Technologies, Palo Alto, CA, USA was used. 

The images were scanned in non-contact mode in air using silicon cantilevers (Tap300Al-

G from Budget sensors, Bulgaria) and the resonant frequency of the cantilever was 300 ± 

100 kHz. No image processing was done except flattening, which was performed using 

Gwyddion software (version 2.20). 

2.2 Ellipsometry 

Ellipsometry is a non-destructive optical technique that provides information 

useful in determining the optical parameters (refractive index, n, and extinction 

coefficient, k) and thickness of thin films [131]. Ellipsometry measures a change in 

polarization as light reflects or transmits from a material structure. The experimental 

setup consists of a light source, polarization analyzer, sample, and detector. The light 

source is polarized, creating a known ellipticity (ρ) – the ratio between the s- and p-

polarized light. As light hits the surface, it is split into reflected and refracted components 

dependent upon the optical properties (e.g. polarizability) and thickness of the film. 

Relative to the incident beam, the reflected light has shifted amplitudes and phases as 

determined by an analyzer and detector, as illustrated in Figure 2.3. The principal 

equation in ellipsometry relates the ellipticity to the experimentally determined change in 

the amplitude (ψ) and the phase (Δ) of the polarized light: 

𝜌𝜌 = tan(𝛹𝛹) 𝑒𝑒𝑖𝑖∆ =  𝑟𝑟𝑝𝑝
𝑟𝑟𝑠𝑠

  (2.2) 
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The amplitudes of the s and p components, after reflection normalized to their initial 

value, are denoted by rs and rp, respectively. Application of the Fresnel equations to the 

case depicted in Figure 2.3 yields the ratio rp/rs given by Equations. 2.3 and 2. 4, where 

the subscripts refer to the layer above and below each interface (0 for air and 1 for the 

film).  

𝑟𝑟𝑝𝑝 =  𝑛𝑛1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0−𝑛𝑛0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1
𝑛𝑛1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0+𝑛𝑛0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1

  (2.3) 

𝑟𝑟𝑐𝑐 =  𝑛𝑛0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0−𝑛𝑛1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1
𝑛𝑛0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0+𝑛𝑛1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1

   (2.4) 

where n is the refractive index. However, ellipsometry is an indirect method in that the 

experimentally determined values of ψ and Δ must be coupled with models that fit the 

optical parameters as a function of the film thickness. The optical and thickness 

parameters of the model are tuned until the calculated and experimentally measured ψ 

and Δ values agree, thereby yielding the refractive index, extinction coefficient, and 

thickness of the film [131]. Normally, a model analysis must be performed. Direct 

inversion of Ψ and Δ is only possible in very simple cases of isotropic, homogeneous 

infinitely thick films. In all other cases a layer model must be established, which 

considers the optical constants (refractive index) and thickness parameters of all 

individual layers of the sample including the correct layer sequence. Using an iterative 

procedure (least-squares minimization) unknown optical constants and/or thickness 

parameters are varied, and Ψ and Δ values are calculated using the Fresnel equations.   

In short, the procedure is as follows. First, a measurement is performed to collect 

information about the sample in the form of ellipsometric angles. Second, a model is built 
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up using what is known about the measured sample to define a layered structure with 

layer thicknesses and optical properties as close to the real values as possible. In the case 

of materials with known optical properties, database values from earlier measurements 

can be used in the model. In the case of materials with unknown optical properties, the 

refractive index is often described using Cauchy relationship. The Cauchy relationship is 

given as,  

𝑛𝑛(𝜆𝜆) = 𝐴𝐴 + 𝐵𝐵
𝜆𝜆2

+  𝐶𝐶
𝜆𝜆4

    (2.5) 

 where the three terms A, B and C are adjusted to match the wavelength-dependent 

refractive index of the material. Third, some of the parameters (film thickness, optical 

properties) in the model are defined as variables, to be changed in the fitting process. 

Fourth, the mean square error (MSE) value is calculated, which is used as a measure for 

the quality of the fit. Fifth, the parameters defined as variables are changed using an 

optimization algorithm in order to decrease the MSE value. Step four and five are 

repeated until a minimum value of the MSE is reached. The calculated Ψ and Δ values, 

which match the experimental data best, provide the optical constants and thickness 

parameters of the sample.  In this work, the thickness of the films was measured using a 

variable angle spectroscopic ellipsometer (M-2000, JA Woollam Co., Inc.). 

2.3 Quartz crystal microbalance with dissipation (QCM-D) 

QCM-D a nanomechanical acoustic-based analytical technique, provides in situ, 

real-time characterization of the interactions at solid/air and solid/liquid interfaces and is 

widely used in the areas of materials science, biophysics, and environmental and life 

sciences [132]. With QCM-D, simultaneous measurement of resonance frequency change 
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and energy dissipation change is performed by periodically switching off the driving 

power of oscillation of the sensor crystal and recording the decay of damped oscillation 

as the adsorption and/or structural changes take place at sensor crystal surface. While the 

changes in frequency provide information about the changes in mass, the changes in 

dissipation provide structural information about the viscoelastic properties of adsorbed 

films in real time. The minimum detectable mass change is typically ~1 ng cm-2. A quartz 

crystal microbalance (QCM) crystal consists of a thin quartz disc sandwiched between a 

pair of metal electrodes typically composed of gold (Figure 2.4). The piezoelectric 

behavior, or the mechanical stress caused by application of electrical current, of quartz is 

the basis of the QCM. During a QCM experiment, an external driving oscillating circuit 

is applied to the quartz crystal through its gold electrodes and excites the crystal. The 

crystal starts to oscillate in shear mode at its fundamental resonant frequency. An applied 

stress, such as a change in the mass on the crystal or the medium contacting the crystal 

surface, leads to a change in the resonant frequency of the oscillating crystal [133-135].  

 In 1959, Sauerbrey [136] reported results regarding the adsorption of rigid thin 

films onto the surface of a quartz electrode in the gas phase and derived an equation 

relating the frequency shift, Δf, of an AT-cut oscillating piezoelectric crystal induced by 

added mass. This relationship is now known as the Sauerbrey equation: 

    ∆𝑚𝑚 =  −𝐶𝐶𝑓𝑓
𝑛𝑛
∆𝑓𝑓 =  −  

𝐴𝐴�𝜌𝜌𝑞𝑞𝜇𝜇𝑞𝑞
2𝑛𝑛𝑒𝑒02

∆𝑓𝑓  (2.6) 

where Δm is the mass per unit area, n is the index of the frequency overtone, Δf is the 

change in frequency, Cf is a constant (0.177 mg·m-2·Hz-1 for a 5 MHz crystal), A is the 

active area of measurement, ρq is the density of quartz, μq is the shear modulus of quartz, 
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and f0 is the resonant frequency of the bare crystal and is dependent on the cut and 

thickness of the quartz [137]. For the QCM-D used in this work, the fundamental 

resonant frequency (e.g. n = 1) is ~5 MHz. Higher resonant frequencies for the oscillating 

crystal are possible (e.g. 15, 25, 35 MHz), where the higher resonant frequency is the 

product of the fundamental frequency (e.g. 5 MHz) and an odd overtone number (n = 3, 

5, 7, 9…).   

Strictly speaking, the Sauerbrey equation can only be used to estimate the mass 

change of a rigid adsorbed layer on the resonator surface in air or vacuum. When a 

viscoelastic film is deposited on the resonator surface in liquid medium, the oscillation of 

the resonator is expected to be damped by the adsorbed layer. If the damping in the 

deposited film becomes sufficiently large, the linear relationship between Δf and Δm is no 

longer valid. Therefore, another parameter is defined to characterize the viscoelastic 

properties of the adsorbed layer. The energy dissipation during the oscillation of 

resonator can be described with the dissipation factor (D) [138] 

∆𝐷𝐷 =  𝐸𝐸𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
2𝜋𝜋.𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑

  (2.7) 

where Edissipated is the energy dissipated during one oscillation, and Estored is the energy 

stored due to elastic deformation.  A larger value of D reflects the formation of a softer 

and more swollen layer, whereas a smaller D indicates a relatively rigid and dense layer 

adsorbed on the resonator surface [139].  In this work, all of the studies on the cellulase 

behavior at the cellulose surface are conducted on a quartz crystal microbalance with 

dissipation (QCM-D) from Q-sense AB.  When the quartz resonator is immersed in a 
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Newtonian fluid the frequency response of the resonator can be quantitatively described 

by the Kanazawa-Gordon equation [140] 

∆𝑓𝑓 =  −𝑓𝑓0
3
2� (𝑛𝑛𝜌𝜌𝑙𝑙𝜂𝜂𝑙𝑙)

1
2�

�𝜋𝜋𝜌𝜌𝑞𝑞𝜇𝜇𝑞𝑞�
1 2�

  (2.8) 

where ρl and ηl are the density and viscosity of the fluid, respectively. On the other hand 

the change in dissipation factor in a Newtonian fluid can be expressed as [141] 

∆𝐷𝐷 =  2 �𝑒𝑒0
𝑛𝑛
�
1/2 (𝜌𝜌𝑙𝑙𝜂𝜂𝑙𝑙)

1
2�

�𝜋𝜋𝜌𝜌𝑞𝑞𝜇𝜇𝑞𝑞�
1 2�

  (2.9) 

Equation 2.8 and 2.9 show that Δf and ΔD are related not only to the inherent properties of 

the quartz crystal but also to the solvent viscosity and density. 

Since the Sauerbrey equation is not valid for the viscoelastic layer, theoretical 

representations based on Voigt model can be applied in such situations [142]. Assuming 

that the adsorbed layer is surrounded by a semi-infinite Newtonian fluid under no-slip 

conditions and is homogenous with a uniform thickness, the complex shear modulus (G) 

of the adsorbed layer can be described by 

𝐺𝐺 =  𝐺𝐺′ + 𝑖𝑖𝐺𝐺″ =  𝜇𝜇𝑒𝑒 + 𝑖𝑖2𝜋𝜋𝑓𝑓𝜂𝜂𝑒𝑒 (2.10) 

where G’ is the storage modulus, G” is the loss modulus, µf is the shear modulus of the 

film, ηf is the viscosity of the film, and f is the frequency of oscillation. Application of the 

Voigt model to the case of a single layer of viscoelastic polymer adsorbing to a model 
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surface from bulk solution leads to the following expressions for the frequency Δf and 

dissipation ΔD changes: 

∆𝑓𝑓 ≈ 1
2𝜋𝜋𝜌𝜌0ℎ0

� 𝜂𝜂3

�2𝜂𝜂3
𝜌𝜌3𝜔𝜔

+ ℎ1𝜌𝜌1𝜔𝜔 − 2ℎ1 �
𝜂𝜂3

�2𝜂𝜂3
𝜌𝜌3𝜔𝜔

�

2

𝜂𝜂1𝜔𝜔2

𝜇𝜇1+𝜂𝜂12𝜔𝜔2�  (2.11) 

∆𝐷𝐷 ≈ 1
𝜋𝜋𝑒𝑒𝜌𝜌0ℎ0

� 𝜂𝜂3

�2𝜂𝜂3
𝜌𝜌3𝜔𝜔

+ 2ℎ1 �
𝜂𝜂3

�2𝜂𝜂3
𝜌𝜌3𝜔𝜔

�

2

𝜂𝜂1𝜔𝜔2

𝜇𝜇1+𝜂𝜂12𝜔𝜔2�   (2.12) 

where ρ0 is the density of the quartz crystal, h0 is the crystal thickness, η3 and ρ3 refer to 

the viscosity and density of the bulk fluid in contact with soft film, and  h1, ρ1, µ1 and η1 

denote the thickness, density, shear modulus and viscosity of the soft film, respectively. 

Consequently, application of the Voigt model to data obtained from a QCM-D yields 

quantitative thickness, shear modulus, and viscosity values of the soft film [142].  For 

solid surfaces coated with a polymer layer immersed in liquid media, the interfacial 

properties would be significantly influenced by the polymer behavior at the interfaces. So 

far, the characterization and analysis of cellulose behavior at the solid/liquid interfaces 

still remain a great challenge, particularly for the dynamic polymer behavior. Sauerbrey 

equation can be used to extract the areal mass density of the film if it is rigid; meaning 

the mass adsorbed on the surface is firmly attached with no oscillatory effect. To make 

the distinction more quantitative, the ratio of ΔD/(-Δf)  is considered. If ΔD/(-Δf) < 4*10-

7 Hz -1 for a 5 MHz crystal then the film can be approximated as a rigid [143].  In this 

study, the Sauerbrey equation is valid because the ratio of ΔD/(-Δf) was relatively small 

(1-5*10-7) during cellulase and Tween-80 treatments on cellulose and lignin films. 

36 
 



2.3 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) is one of the most established methods 

for determining the elemental composition and the chemical state of solid surfaces and 

thin films. XPS exploits x-ray photons to excite electrons from the core levels of the 

atoms of a solid into the vacuum, thus probing the electronic structure with sensitivity to 

elemental composition and chemical state.  A typical setup involves an ultra-high vacuum 

chamber containing a monochromatic X-ray source, sample, electron analyzer, and 

electron detector.  XPS is based, in principle, on a very simple process. When a solid 

surface is irradiated with soft x-ray photons, an incident photon of energy hω can be 

absorbed by an electron with binding energy EB below the vacuum level: the entire 

photon energy is transmitted to the electron, which is then promoted to an unoccupied 

state above the vacuum level. As a result, photoelectrons are ejected into the vacuum with 

kinetic energy EK. 

 EK = hω - EB - Φw  (2.13) 

Here, Φw is the work function of the material and represents the minimum energy 

required to remove an electron from the solid; it can be seen as an energy barrier that 

electrons need to overcome in order to escape from the surface into the vacuum. The 

ejected electrons can originate from core levels or from the occupied portion of the 

valence band; however, due to the relatively high photon energy (typically in the range 

between 100-200 eV and 2000eV), attention is primarily focused on core level electrons. 

A typical XPS spectrum is obtained at a given photon energy by recording the number of 

photoelectrons as a function of the kinetic energy and can be plotted as a function of the 
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binding energy by making use of Equation 2.13. The spectrum consists of a succession of 

distinct lines, reflecting the sequence of occupied core levels in the system under 

investigation. Since the binding energies of core levels are different for and characteristic 

of each element, and no two elements share the same set of binding energies, 

photoemission spectra can serve as “fingerprints” of the respective elements [144].  The 

binding energy is also sensitive to the oxidation state of the nucleus, and in some cases to 

bonding configurations (for instance for carbon) and therefore can provide additional 

information about the state of the surface.  In this work, analysis was conducted using a 

Thermo Scientific K-Alpha photoelectron spectrometer using monochromatic Al Kα 

radiation with photon energy of 1486.6 eV. The measurement was carried out by placing 

the films at an angle of ~45° relative to the incident beam. 

2.4 X-ray diffraction  

X-ray scattering techniques are a family of non-destructive analytical techniques 

which reveal information about the crystallographic structure, chemical composition, and 

physical properties of materials and thin films. These techniques are based on observing 

the scattering intensity of an x-ray beam hitting a sample as a function of incident and 

scattered angle, polarization, and energy. X-ray diffraction techniques are based on the 

principle of the interference of the diffracting monochromatic X-ray beams from 

structures that have a long range order. The comprehensive description of scattering from 

crystals is given by the dynamic theory of diffraction [145]. W. L. Bragg observed that 

for a certain specific wavelengths and incident angles, crystalline solids produced intense 

peaks (Bragg peaks) of reflected x-rays and explained this result by modeling the crystal 

as a set of discrete parallel planes separated by a constant parameter known as the 
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interplanar distance (d). It was proposed that the incident x-ray diffraction would produce 

a Bragg peak if their reflections off the various planes interfered constructively. This 

gives the formula for Bragg condition: nλ = 2d sinθ, where, θ is the scattering angle, λ is 

the characteristic wave length and n is an integer. Figure 2.5 shows the schematic of the 

x-ray diffraction where the diffracted rays interfere.  

In this work, X-ray diffraction (XRD) was performed on microcrystalline 

cellulose powder and model cellulose thin films using a Bruker D8 Advance instrument. 

The radiation source was Cu (Kα) radiation, with a wavelength of 1.54 Å. The angular 

scanning range was 2θ = 2° to 40° with 0.02° steps. However, for thin films no 

crystallinity data was obtained using the conventional x-ray diffraction method.  This 

may be a result of the small amount of material present in thin films, which makes it 

challenging to collect sufficient signal to measure crystallinity.  Small crystallites also 

broaden x-ray peak, which provides an additional challenge. Grazing incidence wide 

angle x-ray scattering (GIWAXS) measurements were performed at Advanced Photon 

Source (Argonne National Lab, IL, USA) to measure the crystallinity of cellulose thin 

films with a more powerful source. GIWAXS uses a reflection geometry having a 

shallow angle of incidence of the x–ray beam onto the sample surface. The photons from 

the x-ray are scattered by the electrons in the atoms of the thin film which are then 

collected by a detector (Figure 2.6). Typically semicrystalline polymer films such as 

conjugated polymers are efficiently studied with GIWAXS [146, 147]. X-ray scattering 

from polycrystalline polymer films is considered to be complex due to the combination of 

disordered and packing defects in the crystalline domains and preferential orientation of 

the domains.  For a given sample with a preferred out-of-plane orientation and isotropic 
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in-plane orientation, the diffraction pattern will consist of spots for each crystallographic 

plane for a narrow orientation distribution. If the films comprise of partial preferential 

orientation, scattering pattern will show arcing (Figure 2.7)[146]. Figure 2.8 (a, b, c) 

shows the GIWAXS scattering patterns exhibited for cellulose nanocrystal, NMMO and 

LiCl cellulose films.  
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2.5 Figures and Tables 

 

Figure 2.1. Schematic illustration of main components of AFM. 

 

 

Figure 2.2. Typical force-distance curve for AFM measurement and schematic 
representing the zones of contact. 
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Figure 2.3. Schematic of an ellipsometry measurement, where polarized light reflects and 
refracts at each interface, which leads to multiple beams exiting from a thin film for each 

incident electromagnetic beam. 

 

 

 

Figure 2.4. Schematic working principle of QCM in which voltage applied to a quartz 
crystal coated with gold induces oscillation whose frequency and dissipation 

characteristics are dependent on the adsorbed layer attached to one crystal face. 

 

 

Figure 2.5. Schematic of Bragg diffraction in which incident photons of wavelength λ 
undergo constructive interference when they hit a material with atomic spacing d at 

incidence angle θ. 
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Figure 2.6. Schematic drawing of the experimental setup in GIWAXS geometry. The 
sample surface is placed horizontally. The incident angle denoted by αi and the exit angle 

αf. 

 

Figure 2.7. Illustrations of example diffraction patterns for different microstructures. a) 
Highly oriented films produce an ellipse (spot); b) Films with partial orientation produce 

an arc. 
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Figure 2.8. 2D-GIWAXS images of cellulose thin films. a) Cellulose nanocrystal film b) 
NMMO cellulose film (both films are partially orientated represented by arc pattern) c) 

LiCl cellulose film (the films have no orientation). 
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CHAPTER 3 

ENZYMATIC HYDROLYSIS OF MODEL CELLULOSE FILMS: EFFECT OF 

SURFACE STRUCTURE AND MECHANISTIC MODELING OF ENZYMATIC 

HYDROLYSIS 

3.1 Summary 

 Substrate properties have been speculated to be the limiting factor in hydrolysis of 

cellulose.  To understand how cellulose structural properties impact cellulase-cellulose 

interactions, three kinds of model cellulose films with different surface structures and 

degrees of molecular ordering (crystallinity) were prepared by spin coating cellulose 

suspensions onto solid substrates and characterized using AFM. QCM-D was used to 

study the kinetic behavior of cellulases on those cellulose films. It was observed that the 

three cellulose surfaces were hydrolyzed in distinct ways and that the mechanism 

appeared to be influenced by the structure of the cellulose substrate. In this work, the 

kinetic behavior of hydrolysis was modeled using surface-based reaction kinetics; the 

distinct feature of the proposed model is that the cellulose substrate is considered to 

consist of bulk and exterior accessible surfaces with only a portion of cellulose substrate 

being accessible to enzymes at a given time. The time evolution of substrate accessibility 

to cellulases was modeled based on the cellulase mediated erosion of a cylindrical 

particle. The rate constants for the adsorption and cellulase hydrolysis (k2) were obtained, 

which indicated that films deposited from LiCl/dimethylacetamide (amorphous, k2 = 2.22 

± 0.35 min-1) were hydrolyzed 5 times faster than films deposited from N-

methylmopholine-N-oxide (NMMO) (semi-crystalline, k2 = 0.44 ± 0.11 min-1), while the 
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cellulose nanocrystal (CNC) (crystalline, k2 = 0.029 ± 0.0002 min-1) films were 

hydrolyzed very slowly suggesting that it is more difficult for the cellulase enzymes to 

hydrolyze crystalline cellulose substrates even when they present a high surface area for 

binding of enzymes. 

3.2 Introduction 

Enzymatic hydrolysis of plant carbohydrates has developed as the most prominent 

technology for conversion of lignocellulosic biomass to soluble sugars for subsequent 

fermentation into bioethanol [148]. Lignocelluloses are composed of cellulose, 

hemicelluloses and lignin in an intricate structure, which is recalcitrant to decomposition. 

This leads to difficulties within the conversion process. To reduce the recalcitrance of 

lignocellulosic biomass and make it more accessible to hydrolytic enzymes, researchers 

have developed a number of different biomass pretreatment methods as summarized in 

published reviews [28, 149, 150]. The principal framework of plant cells is cellulose, 

consisting of chains of glucose linked by β-1,4 linkages. Cellulose chains aggregate 

through hydrogen bonding and pyranose ring stacking into tightly packed crystalline 

elementary microfibrils, and these fibrils in turn are further aggregated into higher order 

supermolecular assemblies [16].  In plant cell walls, cellulose occurs in both crystalline 

and amorphous forms. The enzymatic hydrolysis of cellulose to glucose requires a system 

of cellulase enzymes working synergistically: endoglucanases randomly cleave internal 

bonds in the cellulose chain, exoglucanases (cellobiohydrolases) cleave off cellobiose 

from the reducing and non-reducing chain ends of the cellulose polymers and β-

glucosidases convert cellobiose to glucose [151]. The factors that affect enzymatic 
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hydrolysis of biomass have been divided into two groups: biomass structural features 

(including chemical compositions and physical structure of lignocellulose) and enzyme 

mechanism.  The chemical structural features are the compositions of cellulose, 

hemicellulose, lignin, and acetyl groups bound to hemicellulose. The physical structural 

features consist of accessible surface area, crystallinity, degree of polymerization, pore 

volume, and biomass particle size. Although structural features that limit the enzymatic 

hydrolysis of biomass have been widely studied, the molecular mechanisms of biomass 

recalcitrance are still not completely clear [32, 36].  

The initial degree of crystallinity of cellulose is considered to be an important 

structural parameter that affects the rate of enzymatic hydrolysis [78, 79, 152, 153]. A 

completely amorphous sample is hydrolyzed much faster than partially crystalline 

cellulose [154].  This observation has led to the hypothesis that amorphous domains in a 

partially crystalline cellulose sample are hydrolyzed first, leaving crystalline parts at the 

end, thus resulting in an increased crystallinity index [79, 155]. However, some 

researchers think that crystallinity may not be a key factor determining the enzymatic 

hydrolysis, [32, 80, 81] thus making this a controversial theory. Another important 

criterion influencing the rate and extent of enzymatic hydrolysis of lignocellulose is 

surface accessibility [36, 83-85, 156-159], as the enzymatic hydrolysis of cellulose is a 

surface-dominated phenomenon, and direct physical contact between cellulose and 

cellulase enzymes is a prerequisite for hydrolytic reactions to occur. Cellulose particles 

have external and internal surfaces, the external surface area determined by overall fibril 

dimensions, and the internal surface area depending on capillary structure including 

intraparticle pores as well as interparticulate voids. Grethlein [83], showed that initial 
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enzymatic hydrolysis rates are strongly correlated with the reactive surface area available 

to enzymes, which greatly increases during pretreatment. It is likely that the enzymatic 

hydrolysis of cellulose can occur only on the external surface of the cellulose fibrils, 

Arantes and Saddler [156, 157] suggested that disruption of the highly ordered and tightly 

packed regions of the cellulose structure facilitates the exposure of inaccessible cellulose 

chains buried within these regions, thereby enhancing enzyme access to cellulose. They 

also suggested that the rate limiting step during hydrolysis is the limited accessibility of 

the enzymes to the cellulose chains due to the physical structure of the cellulose 

substrate.  Recently, Hu et al. [160] studied the influence of various substrate 

physicochemical characteristics on the effectiveness of enzyme synergism. They 

observed a strong relationship between cellulose accessibility and the degree of 

synergism, with greater synergism observed on less-organized cellulose. Sinitsyn et al. 

[85] found a linear relationship between crystallinity index and accessible surface area 

with initial hydrolysis rate for pure cellulose substrates, but, in the case of lignocellulosic 

substrates, a linear correlation was observed only with accessible surface area. The fact 

that the cellulose structure affects cellulase activities has long been documented.  

However, determination of the key rate limiting factors for hydrolysis has remained 

challenging as the structure of cellulose depends on pretreatment methods and conditions. 

The goal of this study is to elucidate the relationship between cellulose structure and 

enzyme hydrolytic activity.  

One approach which has been gaining traction for studying the effects of 

structural features of biomass at a more fundamental level is the use surface science 

techniques. Surface sensitive techniques such as quartz crystal microbalance with 
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dissipation monitoring (QCM-D) [96-98], ellipsometry [99], neutron reflectometry [100] 

and surface plasmon resonance (SPR) [101] have been applied to measure adsorption and 

activity of cellulases onto cellulose at the interfacial level. For this purpose thin films of 

lignocellulose biomass components have been prepared by dissolution or dispersion in 

various solvents, and adsorption and hydrolysis by cellulase enzymes measured using 

quartz crystal microbalance with dissipation (QCM-D) monitoring[96-98, 161-164].  In 

the present study, three kinds of model cellulose surfaces were prepared by dissolution of 

microcrystalline cellulose in three solvents systems: N-methylmorpholine-N-oxide 

(NMMO), dimethylacetamide / lithium chloride (LiCl) and sulfuric acid, and the last of 

which gives rise to cellulose nanocrystals (CNC).  Ahola et al. [96] studied enzymatic 

hydrolysis kinetics of different cellulose structures using QCM-D. They found that nature 

of the cellulose substrate (crystallinity and morphology) significantly influence the 

hydrolytic activity of cellulase enzymes. Empirical equations based on QCM-D data were 

used to quantify and compare binding and hydrolysis rates among different substrates. 

However, empirical models are based on data correlation without explicit definitions for 

enzyme substrate interactions and provide limited mechanistic insight. 

Previously, mechanistic models for enzymatic hydrolysis have been developed 

which include the cellulase adsorption onto cellulose described by a Langmuir equation 

and simplified representations of the solid cellulose substrate (as soluble, digestible and 

inert fractions)[86]. Recently, models have been developed in which the cellulose is 

represented as a heterogeneous substrate, having both exterior and interior surfaces. The 

time evolution of solid substrate morphology and enzymatic chain fragmentation were 

both considered in the work of Zhou et al.[90, 165, 166]. They found that cellulose 
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saccharification kinetics strongly depend on substrate morphology while at the same time 

morphology is affected by enzymatic degradation. Levien et al.[91] developed a non-

equilibrium mechanistic model for cellulose hydrolysis that took into account surface 

area by modeling cellulose as polydisperse spheres. The ability to capture the rate of 

change in available surface area was demonstrated, but the model failed to capture the 

decrease in the rate of hydrolysis with time. Griggs et al.[92] developed a model using a 

population balance approach which provides a kinetic description of the evolution of the 

enzyme accessible cellulose by cellulase mediated erosion of a cylindrical particle 

comprised of cellulose chains. They suggested that an improved understanding of 

cellulose hydrolysis can be achieved by comparing the distribution of cellulose chain 

lengths measured experimentally to model results. In the present study, results from both 

mechanistic modeling and experimental studies will be employed to examine the rate of 

enzymatic hydrolysis of cellulose substrates and their dependence of crystallinity and 

accessibility. Surface based kinetic model was developed based on cellulose mediated 

erosion of cylindrical fiber that considers the action of cellulase enzymes on cellulose 

surfaces and the time evolution of substrate accessibility to cellulases.  The model was fit 

to the QCM-D data to determine the model parameters. The effects of cellulose film 

structure on binding and activity; the kinetic rate constants that govern the adsorption and 

hydrolysis of cellulases on the cellulose surfaces are reported.  

3.3 Materials and Methods  

3.3.1 Materials: Microcrystalline cellulose (~20 µm) from Sigma Aldrich was used as the 

cellulose raw material.  Sodium acetate (>99%), acetic acid (>99.7%), sulfuric acid (95-
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98%),  and N-methylmorpholine-N-oxide de (NMMO) (50 wt% aqueous solution) were 

purchased from Sigma Aldrich; lithium chloride (99.8%), methanol, water (deionized 

ultra-filtered), hydrogen peroxide (30%), concentrated ammonia hydroxide (25%), 

nochromix powder, and N,N-dimethylacetamide (DMAc) (≤0.01% water) from Fischer 

Scientific; and polyethyleneimine (average Mn~1200, 50 wt. % in water) and dimethyl 

sulfoxide (>99.8%)  from Acros Organics. Commercial cellulase (Celluclast®, Sigma 

Aldrich) derived from Trichoderma reesei (> 700 EGU/g) in the form of an aqueous 

solution was used as the enzyme source.  All reagents and the enzyme were used as 

received. Gold coated quartz sensors supplied by Q-Sense AB, Gothenburg, Sweden were 

used as the base supports for preparation of cellulose films for QCM-D experiments. 

Polished silicon wafers (500 µm thick) supplied by University Wafer, Boston, MA were 

used as base supports for ellipsometry measurements. 

3.3.2 Cellulose films processed in a lithium chloride solution of dimethylacetamide 

(LiCl/DMAc): Microcrystalline cellulose was dissolved in LiCl/DMAc by an activation 

and dissolution method based on the procedure from Aulin et al. [167]. Activation helps 

in opening up the polymer chains to enhance the diffusion of the solvent. To accomplish 

this, 0.5 g of cellulose was immersed in 10 ml deionized water while stirring overnight to 

allow cellulose to swell. Thereafter, the suspension was filtered to remove water and then 

extracted with 10 ml methanol by immersion for 30 min with magnetic stirring followed 

by filtration.  Methanol extraction was repeated a total of three times. The methanol 

exchange helps to expel the residual water, thus avoiding the collapse of the pore 

structure and enhancing penetration of DMAc. The cellulose was then solvent exchanged 

with DMAc by three rounds of immersion in 10 ml DMAc for 30 min with stirring 
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followed by filtration. This 0.5 g solvent exchanged cellulose was then added to 18 ml of 

DMAc which was heated to  160 °C, and then leaving the solution to cool to 100 °C. 

Then 1.5 g of LiCl was added to the mixture and then left to cool to 25 °C while stirring 

for 12-15 hours. The cellulose was diluted with 80 ml of DMAc to reduce the viscosity, 

heated to a temperature of 110 °C and then spin coated onto quartz sensors.  

Prior to spin-coating the quartz sensors were first cleaned by UV ozone treatment 

(BioForce, Ames, IA) for 10 minutes, and then cleaned with a 5:1:1 mixture of water, 

ammonia (25%) and hydrogen peroxide (30%), heated to 75 °C for 15 minutes, and 

finally rinsed with deionized water. After rinsing with deionized water the sensors were 

then dried under a stream of nitrogen and underwent another 10 minutes of UV ozone 

treatment. This is consistent with the sensor cleaning protocols recommended by the 

manufacturer, Q-sense. Silicon wafers with a naturally occurring silicon oxide layer were 

also used as the base support for the preparation of cellulose films. Silicon wafers were 

cleaned in nochromix solution to remove organic residues from the wafer surface, then 

rinsed with deionized water and dried under nitrogen. The silicon oxide layer was 

obtained by oxidizing the silicon wafer in an oven at 1000 °C for 30 minutes [168]. 

Cleaned supports were then immersed in a diluted polyethyleneimine solution (1% in 

water) for 15 minutes before spin coating which served as an anchoring layer for 

cellulose deposition. Finally, the cellulose solution was spin coated onto the polymer 

coated sensors with a spin coater (WS-400BZ-6NPP/Lite, Laurell Technologies 

Corporation) at 3000 rpm for 45 seconds. The cellulose coated substrates were then 

placed in deionized water for 30 min to remove any excess LiCl and DMAc, dried in an 
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oven at 50 °C, and stored in a desiccator until used for characterization or QCM-D 

studies.  

3.3.3 Cellulose films processed using N-methylmorpholine-N-oxide (NMMO): Cellulose 

films were deposited from NMMO using a method developed based on procedures 

reported by Gunnars et al. [168], Falt et al. [169] and Turon et al. [98].  The base 

supports were cleaned and coated with polymer as mentioned above before deposition of 

cellulose film. For the dissolution of cellulose, the as-received 50% aqueous NMMO 

solution (4.4 ml) was preheated to 115 °C before addition of cellulose powder (0.1 g). 

Cellulose was added to the preheated NMMO solution and care was taken so that the 

temperature did not rise above 125 °C. Solutions prepared at high temperatures (above 

125 °C) turn dark, making them unusable. At low temperatures cellulose does not 

dissolve and appears to be a yellow cloudy solution, whereas a completely dissolved 

solution appears clear and brown in color. After the cellulose was dissolved, 13.5 ml 

DMSO was added to reduce the viscosity of the solution and to give an overall 

concentration of 0.5 wt. % cellulose. Cellulose films were prepared from this solution by 

spin coating onto polymer coated supports with spin coater at 3000 rpm for 45 seconds. 

The cellulose films were then precipitated in deionized water for 30 min, dried in an oven 

at 50 °C, and stored in a desiccator until used for characterization or QCM-D studies.  

3.3.4 Cellulose Nanocrystal films: Colloidal suspensions of cellulose nanocrystals were 

prepared by sulfuric acid – catalyzed degradation of microcrystalline cellulose (20 µm).  

The concentration of sulfuric acid used was 64% (w/v) and the ratio of cellulose to acid 

was 1:8.75 (g/ml) [170, 171]. The suspension was hydrolyzed for 1 hr. at 45 °C. The 
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reaction was quenched at the end of the hydrolysis by adding 10-fold of deionized water, 

and then vigorously stirred for 10 min. The suspension was centrifuged (at 4500 rpm for 

10 min, Eppendorf centrifuge, Model 5702) and washed with equal amount of deionized 

water to remove excess sulfuric acid. The centrifuge step was stopped after at least five 

washings, or until the supernatant became turbid. The resultant suspension was dialyzed 

in a regenerated cellulose tube with a cutoff molecular weight of 14,000 Da until the 

wash water maintained at constant neutral pH. The suspension was further dispersed by 

an ultrasound treatment with a micro-tip probe (Qsonica Sonicator, Model Q500) for 5 

minute intervals for a total of 20 minutes. The ultrasonic treatment was carried out in an 

ice bath with intermediate cooling intervals to avoid overheating. The sulfur content of 

the nanocrystal powders was determined using X-ray photoelectron spectroscopy.  

3.3.5 Cellulose Thin Film Characterization: The thickness of model cellulose thin films 

cast onto silicon wafers was measured using a variable angle spectroscopic ellipsometer 

(M-2000, JA Woollam Co., Inc.).  The surface topography and material distribution of 

the cellulose thin films on QCM sensors (QSX301, Q-sense, Göteborg, Sweden) was 

characterized by AFM (Series 4500, Agilent Technologies).  The support base and the 

cellulose thin layer coating on the sensor were scanned in tapping mode using a silicon 

cantilever (TAP 300AI-G, Budget Sensors) with a spring constant of 40 N/m and a 

driving frequency of 300 kHz.  X-ray photoelectron spectroscopic (XPS) analysis was 

conducted using a ThermoScientific K-Alpha photoelectron spectrometer using 

monochromatic Al K-α radiation with photon energy of 1486.6 eV to determine the 

surface composition of the nanocrystal film. Grazing incidence wide angle x-ray 

scattering  measurements of cellulose thin films were conducted at beamline 8-ID-E of 
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the Advanced Photon Source (Argonne National Laboratory, IL, USA) using 7.35 keV 

energy photons (1.6868 Å), with an incident angle at 0.2°. The beam size was 50 μm (V) 

x 100 μm (H). The cellulose films spin coated on silicon wafer were used for 

measurements. Line cuts were performed to obtain the intensity of the diffraction peaks 

as a function of 2θ by integration over a phi (φ) angle range between 10 – 20° in the out-

of-plane direction.  

3.3.6 Cellulose Thin Films/ Cellulase Interactions Measured by Quartz Crystal 

Microbalance with Dissipation (QCM-D):  A quartz crystal microbalance (Q-Sense 

model E4) equipped with four temperature controlled flow modules was used to measure 

changes in mass per unit area and in the viscoelasticity properties of the cellulose thin 

films from the change in frequency (∆f) and dissipation (D) of the cellulose-coated quartz 

crystal resonator.  The oscillation frequency and dissipation energy were measured 

simultaneously after the application of an AC voltage across the electrode, which caused 

the piezoelectric quartz crystal vibrate. The resonance frequency change (∆f) is 

proportional to the mass absorbed on the crystal surface by the Sauerbrey equation [138]  

∆𝑚𝑚 =  −𝐶𝐶𝑓𝑓
𝑛𝑛
∆𝑓𝑓    (3.1) 

where, Δm is the mass per unit area, n is the index of the frequency overtone, Δf is the 

change in frequency, Cf is a constant (0.177 mg·m-2·Hz-1 for a 5 MHz crystal).  The 

QCM-D acquires frequency signal at the fundamental resonance (5 MHz) and at a 

multiple of resonance (overtone frequency).  The third overtone frequency was used to 

avoid edge effects (unstable frequency signal at the edge of the sensor measured at the 

fundamental frequency). 
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The mass change of cellulase thin films in response to cellulase activity was 

measured by QCM-D.  Prior to contacting the cellulose thin films with cellulase, the 

cellulose-coated QCM sensors were equilibrated with an acetate buffer (0.1 M, pH 5) at a 

flow rate of  0.2 ml min-1 until a constant baseline frequency measurement was reached 

(< 2 Hz hr-1).  The temperature of the QCM chamber was controlled at 25 ± 0.02 °C.  All 

liquid solutions were degassed for 30 min using an ultra-sonicator (Cole-Parmer 8890, 

IL) prior to injection into the flow cell. The enzyme solution was prepared by diluting the 

commercial cellulase mixture with acetate buffer (pH – 4.7, 0.1 M) 200 times, which is 

equal to a protein concentration of 45 mg/ml determined by Bradford assay. When 

enzyme solutions were injected (0.2 ml min-1) into the QCM flow module containing the 

cellulose thin films, both cellulase binding and cellulose hydrolysis were monitored 

simultaneously.   The change in oscillation frequency and dissipation energy was 

recorded throughout the experiment.     

3.3.7 Model fitting and error analysis: To verify the proposed kinetic model (see below), 

the experimentally measured frequency change was fitted to the modeled frequency by 

nonlinear regression using the lsqcurvefit function in Matlab. The rate parameters in the 

model k1, k-1, k2, α0, A, and B (defined below) were estimated as explained in the Results 

section. The confidence intervals (95%) of the fitted parameters were determined using 

the nlparci function in Matlab and standard errors are reported. 

3.4 Kinetic models 

Cellulose fibril based kinetic model 
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The objective was to develop a kinetic hydrolysis model appropriate to cellulase 

enzyme activity on model cellulose thin films measured by QCM-D [96, 172]. The 

frequency change response by QCM-D is assumed to be proportional to the concentration 

of bound enzyme-substrate complex (ES) and the amount of cellulose substrate (ST) 

present on the quartz sensor surface. Therefore, the frequency change (Δf) can be 

represented by Equation (3.2): 

∆𝑓𝑓 =  −A[𝐸𝐸𝐸𝐸]�����
𝐸𝐸𝑛𝑛𝑧𝑧𝐸𝐸𝐸𝐸𝑒𝑒 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑟𝑟𝑝𝑝𝑎𝑎𝑖𝑖𝑐𝑐𝑛𝑛

+ B([𝐸𝐸𝑇𝑇]0 − [𝐸𝐸𝑇𝑇])�����������
𝐻𝐻𝐸𝐸𝑎𝑎𝑟𝑟𝑐𝑐𝐻𝐻𝐸𝐸𝑐𝑐𝑖𝑖𝑐𝑐

   (3.2) 

where, A and B are constants representing the frequency response to enzyme and 

cellulose units on the surface, respectively; [ES] is the concentration of cellulose-bound 

enzyme on the sensor; [ST]0 is the initial total concentration of cellulose on the sensor; 

and [ST] is the total concentration on the sensor at a given time.  Note that binding of 

mass to the sensor causes a negative frequency change. Equation (3.2) is used to link the 

experimentally observed frequency changes to the changes in individual species at the 

sensor surface based on the model discussed below. 

Unlike the traditional Michaelis-Menten enzyme kinetic scheme in which the 

enzyme (E) binds to the substrate (S) to form a substrate-bound enzyme (ES), and the 

enzyme is recovered after the product (P) is formed, the kinetic model developed here is 

based on the processive mechanism of cellulase enzymes. Several cellulase components 

form a cellulase cocktail which synergistically hydrolyses cellulosic substrates, and the 

nature of the cellulolytic enzyme system employed determines the mode of action of 

cellulase, activity of each enzyme component, and synergistic action among the enzyme 

components [173]. As it is difficult to distinguish the function of each component by 

QCM-D, the cellulase system is assumed to have a single combined activity in the 
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hydrolysis of cellulose and is represented as a single enzyme (E). The model is developed 

based on current theoretical understanding of processive cellulase action: first, the 

enzyme (E) binds to the unoccupied cellulose substrate (S) to form a productive enzyme 

substrate complex (ES), where the enzyme is threaded with the cellulose chain and 

completes catalytic cycles releasing the product (P) until eventually the complex 

dissociates. The binding scheme may be reversible for the formation and dissociation of 

complex ES.   

The distinct feature of the proposed model is that that rather than assuming that 

the substrate is easily accessible and that all sites are always available for binding and 

reaction, the cellulose substrate is considered to consist of bulk and exterior accessible 

surfaces with only a portion of cellulose substrate being accessible to enzymes at a given 

time.  The exterior surface is gradually exposed as hydrolysis proceeds (structure 

represented in Figure 3.1a). The interfacial surface sites concentration is given by Si. The 

surface concentration of cellulose is modeled to change with time as the hydrolysis 

progresses.  As layers of substrate are solubilized, the reaction interface moves towards 

the interior of the substrate, new surface is exposed, and the total substrate concentration 

is reduced. The reaction scheme is presented in equations 3.3, 3.4 and 3.5 and the 

instantaneous concentration of available substrate (S) for enzyme binding is given by 

substrate balance at the interface in equation 3.6.  

    𝐸𝐸 + 𝐸𝐸 
𝑘𝑘1
𝑘𝑘−1�⃖����⃗

 𝐸𝐸𝐸𝐸           (3.3) 

 𝐸𝐸𝐸𝐸 
𝑘𝑘2→  𝐸𝐸𝐸𝐸 + 𝑃𝑃 − 𝐸𝐸𝑖𝑖   (3.4) 

𝐸𝐸𝑏𝑏𝑏𝑏𝐻𝐻𝑘𝑘  →  𝐸𝐸𝑖𝑖    (3.5) 

[𝐸𝐸𝑖𝑖] =  [S] + [𝐸𝐸𝐸𝐸]              (3.6) 
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The above reaction scheme leads to differential equations for enzyme-bound and 

interfacial sites (equations 3.7 and 3.8).   

d[ES]
dt

= k1[E][S] −  k−1[ES]   (3.7) 

d[𝑆𝑆𝑑𝑑]
dt

= −k2 ∗ [𝐸𝐸𝐸𝐸] + rate of  exposure  (3.8) 

The rate of exposure of the new interfacial sites from bulk sites for a cylindrical cellulose 
particle is given by equation 3.9 (for the derivation see Appendix I): 

𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒 = k2 ∗ �1 − [𝑆𝑆𝑑𝑑]
[𝑆𝑆𝑇𝑇]�

1
2� ∗ [𝐸𝐸𝐸𝐸]  (3.9) 

 The rate of exposure is assumed to be equal to the rate of loss of bulk substrate: 

d[𝑆𝑆𝑏𝑏]
dt

= −k2 ∗ �1− [𝐸𝐸𝑖𝑖]
[𝐸𝐸𝑇𝑇]�

1
2� ∗ [𝐸𝐸𝐸𝐸]  (3.10) 

As the total cellulose substrate is considered to consist of interfacial and bulk sites (i.e., 

ST = Si+ Sb), the initial proportion of interfacial substrate to the total substrate 

concentration, α0, is defined by equation 3.11. 

𝛼𝛼0 = �𝑆𝑆𝑑𝑑,0
𝑆𝑆𝑇𝑇,0

�             (3.11) 

The parameters k1, k-1, k2, α0, A and B were obtained by fitting the frequency profile data 

to the model. The initial total substrate concentration was measured based on the amount 

of dry mass of cellulose coated on the sensor surface. The initial interfacial substrate 

concentration was calculated using equation 3.11. The initial bulk substrate concentration 

was calculated from the difference between initial total substrate concentration and initial 

interfacial substrate concentration. 

Cellulose nanocrystals network based kinetic model 
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For films made up of discrete, uniformly accessible fibrils of cellulose, the 

mechanism of hydrolysis and the time evolution of substrate accessibility to cellulases 

was modeled based on a model build around cellulase mediated erosion of a cylindrical 

particle. For nanocrystalline films, it is instead assumed that the cellulose film is made of 

a network of cellulose nanocrystals with radius ‘r’ and length ‘l’ (structure represented in 

Figure 3.1b). If Np is the number of particles per unit volume of film, Si and ST represents 

the surface site concentration (g/m3) and total site concentration (g/m3), If ρsurface is the 

surface density of cellulose (g/m2) and ρcellulose is the bulk density of cellulose (g/m3). The 

rate of exposure and the change in radius of the nanocrystals are given by 

𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒 = 𝑘𝑘2𝐸𝐸𝐸𝐸 �1 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑑𝑑𝑠𝑠𝑑𝑑
𝜌𝜌𝑠𝑠𝑑𝑑𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟

�  (3.12) 

d[𝑟𝑟]
dt

= −𝑘𝑘2𝐸𝐸𝐸𝐸
1

𝜌𝜌𝑠𝑠𝑑𝑑𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑑𝑑𝑁𝑁𝑝𝑝2𝜋𝜋𝑟𝑟𝐻𝐻
     (3.13) 

Detailed description of the terms and the derivation of rate of exposure are 

provided in Appendix II. These equations along with the rate expressions based on the 

reaction scheme detailed above are combined and solved to fit the frequency profile for 

the nanocrystal films.  

3.5 Results and discussion 

AFM topography images were recorded to determine the morphology and surface 

roughness of the cellulose films.  Three types of cellulose thin films were prepared by 

dissolution or dispersion using different solvents. Figure 3.2 (a, c and e) illustrates AFM 

images of cellulose surface prepared from NMMO solution showing a fibrillar structure 

(referred to as NMMO films), from dimethylacetamide/lithium chloride solvent which 
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exhibits a non-fibrillar structure with no preferential orientation (referred to as LiCl 

films), and cellulose nanocrystal films which display randomly oriented nanocrystals 

with dimensions of about 20 nm in width by 200-400 nm in length (referred to as CNC 

films).  The root mean square roughness (rms) of the cellulose films determined over an 

area of 1 µm × 1 µm. The thicknesses of the cellulose films measured using ellipsometry 

are listed in table 3.1. These structural features are consistent with those reported in 

literature [96]. 

Cellulose found in biomass after pretreatment is thought to be imperfect, and 

contain crystalline regions (crystallites) and amorphous regions. A parameter termed the 

crystallinity index has been used to describe the relative amount of crystalline material. 

Figure 3.3 shows the XRD spectrum of microcrystalline powder, with peaks assigned to 

indicate their crystal lattice assignments, assuming the Iβ phase is aligned with the fiber 

axis. Crystallinity index was calculated from the ratio of the height of the (002) peak 

(I002)and the height of the minimum (IAM) between the (002) and the (101) peaks by 

method proposed by Segal et al. [174]. Using this method the Crystallinity index of 

microcrystalline cellulose powder was calculated to be 80%. Efforts to determine the 

crystallinity of model cellulose films using conventional x-ray diffraction were 

unsuccessful due to small amount of cellulose material present in the films and possibly 

broadening of the reflections due to reduction in the mean crystallite size. Therefore, 

grazing incidence wide angle x-ray scattering technique using synchrotron radiation was 

used to characterize the degree of crystallinity of model cellulose films. The diffraction 

patterns of the model cellulose films obtained were very diffuse. Analysis of the 

diffraction patterns indicated that the NMMO and CNC films showed a broad peak 
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between 2θ value of 20° and 25° corresponding to the (002) crystal plane of cellulose 

crystal I organization. The 101 peak between 13° and 18° was not observed for these 

cellulose films. The crystallinity index of the NMMO and CNC films was not calculated 

due to lack of a complete diffraction pattern data for the films. However, cellulose films 

prepared using similar procedures were reported to show type I crystal organization for 

nanocrystal films and type II crystal organization for NMMO films. It was also reported 

that the degree of crystallinity was higher for CNC films than for NMMO films [167]. 

Though the data collected here is not sufficient to provide information about the 

crystalline form of cellulose films, the presence of the 002 peak obtained confirms that 

the NMMO and CNC films have some degree of crystallinity. The LiCl films did not 

show any diffraction patterns using the grazing incidence wide angle x-ray scattering 

technique suggesting that the films lack crystalline ordering which was consistent with 

results observed in literature [167].  

To investigate the effect of the structure and morphology of different cellulose 

model films, the binding and cellulose degradation kinetics were studied using QCM-D. 

Initially all the cellulose films were allowed to equilibrate with flowing buffer solution to 

attain a baseline frequency (ΔF= 0 Hz). Following this, the buffer solution was replaced 

with cellulase enzyme solution (200 times diluted cocktail in 0.1 M acetate buffer, pH 4.7 

at 25°C). Figure 3.4 displays the typical frequency and dissipation profiles obtained with 

QCM-D after enzyme injection, which consists of a rapid binding phase indicated by a 

sharp drop in frequency (addition of mass) followed by more gradual increase in 

frequency (mass loss) due to enzymatic hydrolysis.  
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The change in dissipation reveled information about the changes in the 

viscoelasticity (and by inference morphology) of the film. Initially, steady baseline 

dissipation was reached suggesting a stable equilibrated film of cellulose, when the 

enzyme solution was injected a rapid increase in dissipation was observed indicating the 

adsorption of soft enzyme and its coupled water. The dissipation reached maximum at a 

certain point following the minimum in frequency followed by a decrease as the cellulose 

film gets depleted resulting in a more rigid surface [98].  The maximum is most likely 

due to further softening of the film as hydrolysis begins and new interfacial sites are 

exposed.  

Figure 3.4a shows the frequency profile of cellulase binding and hydrolysis on 

NMMO cellulose film. As seen in the Figure 3.4a a minimum frequency drop of -50 Hz 

was observed when the cellulase mixture initially absorbed onto the NMMO cellulose 

surface.  At the minimum, the rates mass change due to adsorption and hydrolysis are 

equal and after the initial adsorption stage, the frequency increases until reaching a 

plateau. Figure 3.4b, shows that during the enzymatic degradation of LiCl film, a similar 

trend is observed to the one observed for NMMO film. The minimum frequency drop 

was observed to -40 Hz. However, the hydrolysis was completed much faster (in ~10 

min) than for NMMO cellulose films (60 min) after the enzyme binding.  For CNC films, 

though the enzyme adsorption and hydrolysis phases were observed (Figure 3.4c), the 

trends were different compared to NMMO and LiCl cellulose films. The magnitude of the 

drop in minimum frequency was -690 Hz suggesting the enzyme clearly adsorbed much 

more onto the CNC films, and subsequent degradation of the film was much slower. The 

magnitude of the change in dissipation profile also showed a rapid increase indicating a 
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thick and dissipative enzyme layer on the nanocrystal film. The structure and morphology 

changes of the cellulose films after enzyme treatment were investigated with AFM 

(Figure 3.2. b, d, and f) and it was found that the roughness was reduced considerably by 

hydrolysis: from 12 nm to 2.56 nm for NMMO, 1.88 nm to 0.87 nm for LiCl, and 8 nm to 

3.43 nm for CNC films respectively.  These results are consistent with previously 

reported studies of enzymatic hydrolysis of model cellulose films [96, 98, 164, 175]. The 

different trends in frequency and dissipation profiles observed for CNC films can be 

explained based on differences in the mechanism of binding and hydrolysis. Kittle et 

al.[175]  investigated the water content of regenerated and nanocrystal films based on 

solvent exchange studies using QCM-D and showed that nanocrystal films contained five 

time more water than regenerated films, suggesting the nanocrystal films have higher 

porosity. They also studied the accessibility of these films using cellulase mixture as a 

probe and demonstrated that nanocrystals are more accessible than regenerated cellulose 

films. In another study, Jiang et al.[164] investigated the adsorption and hydrolysis of 

nanocrystal films with different sulfate group densities using QCM-D. They reported that 

sulfate groups slow down or inhibit the enzymatic hydrolysis of cellulose substrates. 

From XPS measurements on the CNC films used in this study, the sulfate ion 

concentration was determined to be negligible (<0.5%) suggesting that the effect of 

sulfate groups was not significant on enzymatic hydrolysis and larger adsorption of 

cellulase enzymes on the CNC surface is due to higher accessibility to the pore surface.  

Note that if the films were not dialyzed for a long enough time, residual sulfate groups 

were observed to inhibit hydrolytic activity, which is consistent with the observations of 

Jiang et al. [161]. 
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Based on the time taken for the three films to hydrolyze, it can be qualitatively 

suggested that the CNC films were hydrolyzed much slower than the LiCl and NMMO 

films.  However, quantitative measurements are not directly comparable due to the 

differences in the magnitude of frequency change due to binding and hydrolysis. In such 

cases, modeling the kinetics of binding and hydrolysis helps us to quantify and compare 

the kinetic parameters among different substrates. To describe the detailed molecular 

mechanisms occurring at the cellulose surface we developed a surface kinetic model 

based on the interactions between enzymes and degradable solid substrate, as described 

above. In this model, it is assumed that the enzyme (E) adsorbs to cellulose substrate (S) 

and complexes to form enzyme bound substrate complex (ES) in one concerted step, 

neglecting that the association process is likely to involve multiple distinguishable steps 

[176]. The substrate is represented as a cylindrical fiber with embedded cellulose chains 

and the model was focused on capturing the time course of available cellulose for 

hydrolysis.  Initially a fraction of the total substrate (α0) is assumed to be accessible at the 

start of the reaction and with hydrolysis of surface sites, new sites are exposed and the 

total substrate concentration is reduced. The developed model was fitted to match the 

QCM-D frequency data for all three films and determine the kinetic rate parameters (k1, 

k-1, k2) and other model parameters (A, B, α0). The model requires the specification of the 

interfacial and bulk substrate concentration. This is not trivial for an insoluble substrate 

coated in the form of a thin film, so here we use the dry mass of cellulose coated on the 

sensor surface measured by QCM-D in the absence of buffer as the measure of the total 

substrate concentration (ST,0, g/m2).  Using the parameter α0, the initial interfacial 
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substrate concentration was determined according to equation 3.11. Thus, the parameter 

α0 gives us the measure of the initial accessible fraction of total substrate.  

Figures 3.5, 3.6 and 3.7 show the best fit plots of the fibril-based model to 

experimental data for NMMO, LiCl and CNC films respectively. It was observed that the 

model fits the NMMO and LiCl cellulose film QCM data well. However, for the CNC 

film frequency profile was not perfectly captured. The time dependent concentration 

profiles of the ES complex, total substrate (ST) and interfacial substrate (Si) for all three 

films are provided in Figures 3.8, 3.9 and 3.10. Table 3.2 below shows the fitted 

parameters obtained from the model fitting.  

For the same cellulase mixture, the hydrolysis rate constant for LiCl films (k2 = 

2.22 ± 0.35 min-1) was found to be 5 times higher than for NMMO films (k2 = 0.44 ± 

0.11 min-1).  While the frequency profile of the CNC films was not fit perfectly by the 

fibril-based model, the estimated rate constant was found to be much lower (k2 = 0.05 ± 

0.01 min-1) compared to LiCl and NMMO films, suggesting that it is indeed more 

difficult for the cellulase enzymes to hydrolyze the crystalline cellulose substrate. The 

rate of adsorption was found to be similar for NMMO and LiCl films, and α0 which 

indicates the fraction of initial accessible substrate for enzyme binding was also similar 

order for NMMO (0.18) and LiCl (0.29) cellulose surfaces suggesting these films have 

similar binding affinity for cellulase enzymes. For the CNC films, α0 was much larger 

(0.8) suggesting a higher accessible surface. The parameters A and B represent the 

frequency response to enzyme and cellulose units on the surface. As the frequency 

change due to the amount of cellulose coated on the sensor surface was converted into 

mass units using the Sauerbrey relation, the value of parameter B (or 1/B, g m-2 Hz-1) is 
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ideally expected to be related to the Sauerbrey coefficient (C = 1.7*10-4 g m-2 Hz-1) which 

represents the cellulose units removed from surface due to hydrolysis. The value 1/B for 

NMMO (0.15 g m-2 Hz-1) and LiCl (0.24 g m-2 Hz-1) and CNC (0.64 g m-2 Hz-1) films 

was much larger in magnitude compared to the Sauerbrey coefficient suggesting a 

correction factor might be needed to account for the exact amount cellulose units 

removed. . Similarly, the value of parameter A, which represents frequency change 

associated with enzyme occupied substrate and depends on the molecular weight of 

enzyme, was found to be similar for NMMO and LiCl films but different for CNC films. 

This difference suggests that the proposed fibrillar  model may not consistently model the 

behavior of the CNC system and may need modifications to fit the frequency profile for 

CNC films.  

The main distinctive feature of CNC films is that they consist of a network of 

nanocrystals having a defined surface area. To capture the adsorption and hydrolysis 

kinetics of CNC films with cellulases accurately, the cellulose film was considered as a 

porous film composed of a network of randomly oriented cellulose nanocrystals with 

radius ‘r’ and length ‘l’. The adsorption and hydrolysis mechanism was considered to be 

similar to the previous fibril-based model, and the time course of change in substrate 

concentration per unit volume of the cellulose nanocrystals was modeled. As the 

interfacial sites on the cellulose particles get hydrolyzed, new sites from the bulk are 

exposed thus resulting in a decrease of radius of the nanocrystals and an increase in total 

surface area. A detailed description of the rate equations and rate expressions is available 

in the model section. The parameters associated with the cellulose substrate are the initial 

surface accessible concentration Si,0 (g/m3) and the total substrate concentration ST,0 
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(g/m3). The surface density of cellulose is calculated assuming the substrate surface 

consists of homogenous lattice of cellobiose units. The surface density (ρsurface) was 

calculated to be 183×10-5 g/m2 (surface density calculation shown in Appendix III).  The 

bulk density (ρcellulose) of cellulose was assumed to be 1.5 g/cm3. The parameter Np 

(defined as the number of particles per unit volume), radius r and the length of the 

particles l were manually adjusted by trial and error. Figure 3.11 shows the best fit of 

frequency obtained using a particle radius of 3 nm, length 500 nm and Np 4.27×1016 

particles/m3. The enzyme binding and hydrolysis trends were captured using the cellulose 

nanocrystal network model with these parameters. Table 3.3 lists the kinetic parameters 

obtained using the cellulose nanocrystal network model for the nanocrystal film. 

From the fitted parameter values it was observed that the hydrolysis rate constant 

(k2 = 0.029 ± 0.0002 min-1) estimated using the cellulose nanocrystal kinetic model was 

of a similar order of magnitude compared to the fibril-based kinetic model (k2 = 0.05 ± 

0.01 min-1). Thus, it can be suggested that irrespective of the model used to match the 

QCM data, the results indicate that the crystalline structure of cellulose significantly 

slows down rate of hydrolysis. The reason is that crystalline substrates contain stronger 

inter-chain H bonds that need to be broken by the cellulase enzymes than in an 

amorphous substrate, which makes crystalline cellulose resistant to enzymatic hydrolysis. 

Beckham et al.[177] used free energy methods to calculate the amount of work that 

cellulases must conduct to decrystallize cellulose as a function of cellulose polymorph 

and showed that the decrystallization work for cellulose II and III chains is substantially 

lower than that for equivalent chains in cellulose I, which is in agreement with the results 

from the present study. The adsorption rate constant for the CNC films was found to be 
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smaller than for NMMO and LiCl films, suggesting hindered diffusion through the pores 

of the nanocrystalline films. The best fit was obtained using a particle radius of 3 nm 

even though the nanocrystals appeared to be much larger in dimension from the AFM 

image (Figure 3.2. d).  This would be consistent with the nanocrystals being composed of 

smaller primary particles, although more detailed study would be required to confirm 

this. A large value for Np was needed to provide a large initial surface area for the model 

to capture the enzyme binding extent. This indicates the binding and hydrolysis kinetics 

is strongly dependent on the accessible surface area and that this is an important 

parameter for enzymatic hydrolysis. 

Irrespective of the film geometric model, the same enzyme adsorption and 

hydrolysis mechanism was assumed for all films.  Enzyme binding is typically 

considered to be one of the important rate limiting factor in enzymatic hydrolysis, and the 

amount of surface bound cellulases has been shown to be directly correlated to cellulose 

hydrolysis rates [86, 178]. However, in the case of nanocrystal films, the high available 

surface area resulted in an increased enzyme binding, but this did not translate into an 

enhanced overall hydrolysis rate.  The high degree of crystallinity was found to be most 

important factor dictating the slow hydrolysis rate (k2). Thus, pretreatments that are able 

to both reduce crystallinity and increase accessibility of cellulose are likely to have the 

most benefit towards the overall rate of hydrolysis of cellulose. 

All three substrates showed fast initial frequency increase due to hydrolysis 

followed by a decline in the hydrolysis rate throughout the completion of hydrolysis. The 

hydrolysis slowdown in bulk studies has previously been attributed to a loss of enzyme 

activity, either due to enzyme inactivation [76] or due to enzyme inhibition [72-74] by 
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hydrolysis products. However, in this work, neither enzyme degradation not product 

inhibition was required to quantitatively describe hydrolysis even to large extents of 

reaction. This suggests that a significant part of the decrease in hydrolysis rate is in fact 

due to hydrolysis-induced changes in the accessibility of the substrate itself.  Zhang and 

Lynd et al.[36] stated that declining substrate reactivity is caused by the substrate 

heterogeneity during hydrolysis as a result of factors such as less surface area and fewer 

accessible chain ends. This suggests that the hydrolysis of cellulose is a complex 

phenomenon and the role of cellulose ultrastructure on the relationship between cellulase 

binding and activity is not straightforward. From this experimental investigation coupled 

with mathematical modeling, the physical structure and accessibility (which is 

differentiated simply by their surface accessible fraction) are considered to be the key 

factors determining reaction rate. However, substrate structural heterogeneity alone 

cannot explain the whole picture. The proposed models presented were not fully 

comprehensive in that they lacked consideration of the synergistic actions of individual 

cellulase components and enzyme deactivation mechanisms. Nevertheless, the models 

were able to capture trends in the hydrolysis of model cellulose film enzymatic 

hydrolysis kinetics based on simple geometric models that consider the effects of 

gradually exposing additional hydrolysable cellulose units as the hydrolysis reaction 

proceeds.  This model allowed clear quantitative comparisons to be made in the rate 

coefficients for enzymatic hydrolysis (k2) which showed that type I nanocrystalline 

cellulose is hydrolyzed by T. reesei cellulases about an order of magnitude slower than 

type II NMMO-derived cellulose, despite significantly higher accessibility to the 

enzymes.  Amorphous LiCl/DMAc films show the greatest hydrolysis rate – about 5-50 

70 
 



times greater than for their crystalline counterparts, which is consistent with expected 

structural effects. 

3.6 Conclusions 

 Model cellulose films with different morphology and crystallinity were prepared 

and used to investigate the enzymatic hydrolysis kinetics by monitoring the changes in 

frequency in situ using QCM-D. The experimental results showed qualitatively that the 

hydrolysis rate of CNC films was slower than NMMO and LiCl films despite a high level 

of enzyme binding, suggesting that the microstructure of the films has a significant effect 

on the binding and hydrolysis of cellulose. The larger drop in frequency upon cellulase 

binding on CNC films indicated that the nanocrystals films have a much higher surface 

area available for adsorption compared to the NMMO and LiCl cellulose films. A 

mechanistic model coupling enzyme binding and hydrolysis with exposure of new sites 

from embedded cellulose was developed to study the effect of cellulose structure on 

hydrolysis rate. The model prediction showed excellent agreement with experimental 

data and the hydrolysis rate constants obtained from fitting were consistent with 

qualitative results from experiments. The hydrolysis rate coefficient from the best-fit 

model of LiCl films (k2 = 2.22 ± 0.35 min-1) was found to be larger than NMMO  (k2 = 

0.44 ± 0.11 min-1) and CNC (k2 = 0.029 ± 0.0002 min-1) cellulose films. From these 

results it can be suggested that drop in hydrolysis rate of cellulose in bulk studies may be 

due to the nature of the substrate becoming more recalcitrant as amorphous regions are 

consumed due to the strong H-bonding network of crystalline cellulose. In order to 

determine these parameters, two kinetic models were needed.  For NMMO and LiCl 
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films, an approach assuming uniformly accessible cylinder-shaped particles was found to 

be successful, but this approach did not capture the binding features of the CNC films. A 

new cellulose nanocrystal network model was developed to capture the physical features 

of the substrate such as a large accessible surface area. A large number of nanocrystals 

per unit volume with a small initial radius (3 nm) of the cellulose particles were assumed 

to provide a large surface area and provide the best fit of the model to the QCM data. 

These results suggest that the ultrastructure of cellulose (crystallinity and morphology) 

and the accessibility of cellulose are both important factors determining the overall 

reaction rate.  Based on these findings, we can speculate that pretreatments that increase 

accessibility of cellulose without reducing the crystalline fraction are not likely to be as 

successful as those able to increase both accessibility and amorphous cellulose content of 

biomass.   
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3.7 Figures and Tables 

 

Figure 3.1. Schematic representation of the cellulose structure a) fibril based model – 
cellulose surface made of cellulose chains embedded inside a fiber structure, R0 

represents the thickness of the interfacial layer (Si – interfacial layer), R represents the 
radius of the cellulose fiber (Sb – bulk cellulose) b) cellulose nanocrystal model – 

cellulose surface is made of randomly oriented nanocrystals of radius ‘r’ and length ‘l’. 

 

 

Figure 3.2. AFM images of model cellulose surfaces before and after hydrolysis of 
NMMO (a, b), LiCl (c, d) and CNC (e, f) films. The scale bars to the right of each image 

show the z-range. 
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Figure 3.3. X-ray diffraction pattern of microcrystalline powder (using x-ray 
diffractometer) and grazing incidence wide angle x-ray scattering (GIWAXS) profiles of 

the cellulose films. 1D diffraction profile from GIWAXS data were obtained by 
performing line cuts over a phi (φ) angle range between 10 – 20° in the out-of-plane 

direction. 
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Figure 3.4. Frequency and dissipation profiles during the enzymatic hydrolysis of 
cellulose films by a 200x diluted T. reesei cellulase cocktail in pH 4.7 acetate buffer 

(0.1M) for a) NMMO b) LiCl and c) CNC. 
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Figure 3.5. Fitting of the fibril based kinetic model with accessible sites generated by 
hydrolysis (dotted curve) to experimental frequency response QCM-D data (solid curve). 

The result for the NMMO film hydrolysis by cellulase at pH 4.7, 25°C. 

 

 

Figure 3.6. Fitting of the fibril based kinetic model with accessible sites generated by 
hydrolysis (dotted curve) to experimental frequency response QCM-D data (solid curve). 

The result for the LiCl film hydrolysis by cellulase at pH 4.7, 25°C. 
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Figure 3.7. Fitting of the fibril based kinetic model with accessible sites generated by 
hydrolysis (dotted curve) to experimental frequency response QCM-D data (solid curve). 

The result for the CNC film hydrolysis by cellulase at pH 4.7, 25°C. 

 

Figure 3.8. Model concentration profile of ES complex (dashed line), interfacial 
substrate concentration Si (dotted line) and total substrate concentration ST (solid line) 

for NMMO film hydrolysis by cellulase at pH 4.7, 25°C. 
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Figure 3.9. Model concentration profile of ES complex (dashed line), interfacial 
substrate concentration Si (dotted line) and total substrate concentration ST (solid line) 

for LiCl film hydrolysis by cellulase at pH 4.7, 25°C. 

 

Figure 3.10. Model concentration profile of ES complex (dashed line), interfacial 
substrate concentration Si (dotted line) and total substrate concentration ST (solid line) 

for CNC film hydrolysis by cellulase at pH 4.7, 25°C. 
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Figure 3.11. Fitting of the cellulose nanocrystal based kinetic model hydrolysis (dotted 
curve) to experimental frequency response QCM-D data (solid curve). The result for the 

CNC film hydrolysis by cellulase at pH 4.7, 25°C. 
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Table 3.1. Measurements of cellulose film roughness (AFM) and thickness 
(ellipsometry) 

Cellulose film Surface roughness 
rms (nm) 

Thickness 
(nm) 

NMMO cellulose 12 ± 2.45 51 ± 1 

LiCl/DMAc cellulose 1.88 ± 0.1 39 ± 3 

Nanocrystal cellulose 8.05 ± 0.1 57 ± 3 

 

Table 3.2. Kinetic parameters obtained from the fitting of experimental frequency data 
with the modeled frequency for NMMO, LiCl and CNC films 

Parameter NMMO LiCl CNC 
k1 (mM min-1) 264±64 262 ± 25 65.5 ± 15.4 

k 1 (min-1) 0.60 ± 0.12 1.08 ± 0.07 0.11 ± 0.02 
k2 (min-1) 0.44 ± 0.11 2.2 ± 0.35 0.05 ± 0.01 

A (Hz g-1 m2) 32.9 ± 8.8 34.0 ± 5.4 44 ± 13 
B (Hz g-1 m2) 6.49 ± 0.01 4.05 ± 0.35 1.56 ± 0.41 

α0 0.18 ± 0.006 0.29 ± 0.022 0.80 ± 0.05 
 

Table 3.3. Kinetic parameters obtained using the cellulose nanocrystal network model for 
nanocrystal film 

Parameter Value 
k1 (mM min-1) 150 ± 4.5 

k 1 (min-1) 0.0014  ± 0.01 
k2 (min-1) 0.029  ± 0.0002 

A (Hz) 797 ± 30 
B (Hz) 25.4  ± 1.3 
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CHAPTER 4 

QUARTZ CRYSTAL MICROBALANCE WITH DISSIPATION MONITORING 

INVESTIGATION OF EFFECTS OF TWEEN-80 ON HYDROLYTIC ACTIVITY 

OF MODEL CELLULOSE SUBSTRATES 

4.1 Summary 

A number of studies have investigated the hydrolysis of lignocellulosic biomass 

in the presence of surfactants to understand the effects of surfactants on the enhancement 

of cellulose conversion. Several factors such as surfactant type, pretreatment type, lignin 

content, and hydrolysis conditions have been reported to affect hydrolysis process in the 

presence of surfactants. However, the mechanism for enhancement of enzymatic 

hydrolysis of cellulose by surfactants is still not clear. In this study, the role of non-ionic 

surfactant Tween-80 on enzymatic hydrolysis of cellulose is evaluated using a quartz 

crystal microbalance with dissipation modeling (QCM-D). Cellulose thin films with 

different surface morphology and crystallinity are used as substrates. Effects of Tween-80 

on the adsorption of cellulases and hydrolysis are evaluated by changing the addition 

sequence of Tween-80. The results showed  that the adsorption of cellulases is reduced 

on cellulose surfaces when Tween-80 is adsorbed onto cellulose surface prior to cellulase 

introduction. The hydrolysis rate showed no significant effect on hydrolysis of 

amorphous cellulose films deposited from a LiCl/dimethylacetamide solvent system 

whereas the hydrolysis rate decreases with increasing Tween-80 concentration (over the 

range from 0-8 mM) for semicrystalline fibrillar films derived from N-

methylmorpholino-N-oxide. The effect of Tween-80 was found to be a function of 

cellulose substates and substrate type, but it is at best neutral; this suggests that the 
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positive effects of Tween-80 on lignocellulosic biomass are based on allowing 

redistribution of enzymes and reducing nonproductive binding rather than a direct 

enhancement of cellulose hydrolysis. 

Keywords: Non-ionic surfactants, Cellulose, Cellulase, Adsorption, Enzymatic 

hydrolysis 

4.2 Introduction 

Enzymatic hydrolysis is an important and essentail step in the conversion of 

lignocellulosic material to bioethanol and other commodity chemicals. However, 

hydrolysis of lignocellulose into soluble and fermentable sugars is still cosnidered a 

major bottleneck in the biorefinery process . The extent and rate of hydrolysis are mainly 

limited by the recalcitrant and complex structure of  lignocellulosic polymers (cellulose, 

hemicellulose and lignin) along with the requirement of high enzyme dosage in order to 

achieve a high rate and extent of cellulose conversion. Thus, in order to develop an 

effective process for conversion of cellulose into ethanol it is important to identify 

methods to increase enzyme effectiveness [9, 179, 180].  

Different strategies have been applied to improve the effectiveness of the 

enzymes: improvement of  pretreatment technologies to improve accessibility of cellulose 

to enzymes by removing lignin and hemicelluloses [26, 181]; screening of 

microorganisms for new lignocellulose degrading enzymes with better performance 

[182]; protein engineering [183]; and addition of additives to improve enzymatic 

hydrolysis and reduce the amount of enzyme needed [60, 184, 185]. Among the methods 

studied, the application of additives such as surfactants (e.g., Tween, poly(ethylene 
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glycol) (PEG)) and non-catalytic proteins (e.g., bovine serum albumin, BSA) represents a 

promising direction applicable to many cellulases (wild type and genetically modified), 

and has been widely investigated and shown in some studies to significantly increase the 

degree of enzymatic hydrolysis. Ooshima et al. [61] compared the effects of addition of 

non-ionic, anionic and cationic surfactants on the hydrolysis of different types of 

celluloses and found that non-ionic surfactants are most effective in improving cellulose 

conversion. In the presence of Tween-20 and Tween-80, the conversions of cellulose, 

xylan, and total polysaccharide from lime-pretreated corn stover were reported to 

increase by 42, 40, and 42 % (respectively) over 72 h of hydrolysis by cellulases from 

Trichoderma reesei [185]. Eriksson et al. [60] also reported that the addition of 

surfactants during enzymatic hydrolysis of steam-pretreated spruce increases the 

conversion of cellulose into soluble sugars, with nonionic surfactants being most 

effective. Kristensen et al. [180] reported that additives such as BSA, Berol 08, PEG 

6000, and Tween 80 are all able to increase cellulose conversion. They reported that the 

degree of surfactant effect varied with the type and severity of pretreatment. Another 

study reported that addition of PEG increased both the efficiency of enzymatic hydrolysis 

of steam-pretreated spruce and the free cellulase activity in the hydrolysis supernatant 

[186].  Several mechanisms have been proposed to explain the enhancement of cellulase 

hydrolysis including: alteration of the substrate structure by surfactants to make it more 

accessible to enzymes [184, 185]; surfactants changing enzyme-substrate interactions to 

reduce non-productive adsorption of enzymes [60]; and surfactants increasing enzyme 

stability to prevent denaturation of enzymes and loss of activity during hydrolysis [184, 

185].  
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Although additives have been reported several times to improve the hydrolysis of 

cellulose and lignocellulosic substrates, the results of other studies are mixed.  Eriksson 

et al. [60] reported that surfactants only affected lignin-containing substrates but had no 

effect on delignified and cellulose substrates, which was interpreted as surfactant 

reducing unproductive binding of enzymes to lignin. In contrast, Ooshima et al. [61] 

reported that Tween-20 increased the conversion of Avicel by 35%. They attribute this 

effect to surfactant enhancing the synergistic action of endoglucanase and 

cellobiohydrolase on the surface of cellulose. Recently, Zhou et al. [187] reported that the 

conversion of pure cellulose is not consistently improved by surfactants and showed 

inhibition to cellulose conversion at high surfactant concentrations. They proposed that 

the interaction between surfactant and cellulases become significant in the late hydrolysis 

phase thus reducing the productive binding of cellulases onto cellulose and inhibiting the 

overall cellulase activity. So far, a mechanism that can consistently explain how and 

when surfactants affect enzymatic hydrolysis has not been developed. 

Part of the reason that understanding of the enhancement in cellulose hydrolysis 

by surfactants is incomplete is that in most existing studies, the effect of surfactant was 

assessed by measuring the overall production of sugar after an arbitrary time or at 

completion of hydrolysis rather than by continuous kinetic measurements.  The 

hydrolysis of cellulose into sugars by enzymes is a complex process that requires the 

adsorption of cellulase enzymes onto the cellulase surface followed by a hydrolysis 

process involving processive enzymes, desorption and enzyme reattachment. Studies 

focusing on sugar produced at a fixed time point are practically relevant (since batch 

processes of fixed duration are typically used for saccharification) but cannot 
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differentiate between the effects of surfactant on enzyme adsorption, the actual hydrolysis 

rate, and the desorption rate of enzymes.  Prior studies have suggested that the rate of 

adsorption is rapid compared to the actual rate of hydrolytic activity of the enzymes, thus 

making the amount of adsorbed cellulase an important factor in the effectiveness of the 

reaction [188].  

Most commercial cellulase enzymes for biomass hydrolysis are produced from 

T.reesei fungi comprised of three classes of enzymes exoglucanases (cellobiohydrolases), 

endoglucanases and β-glucosidases. Cellobiohydrolases CBH I and II constitute the 

major cellulase components, comprising up to 80% of the total protein content. CBH I 

and II hydrolyze cellulose processively from reducing and non-reducing ends releasing 

cellobiose. Cellobiohydrolase enzymes are modular proteins with two domain structures, 

a carbohydrate binding domain and a catalytic domain. The adsorption of cellulase 

enzymes to cellulose has been attributed to carbohydrate binding domains interacting 

with the hydrophobic face of cellulose [189].  If this is the case, cellulose binding 

domains may also be attracted to other hydrophobic surfaces that cannot be hydrolyzed, 

leading to nonproductive binding.  Surfactants have been proposed to increase overall 

conversion by competing with enzymes for binding to hydrophilic surfaces, thus reducing 

the level of nonproductive binding.  For pure cellulose, this could be either a positive or 

negative factor depending on the density of sites available for nonproductive binding. 

Here, the hypothesis is directly tested that non-ionic surfactants bind to cellulose 

by hydrophobic interactions to reduce the non-productive adsorption of cellulases, and 

thereby enhance overall sugar production.  Addressing these effects calls for a technique 
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capable of directly observing adsorption of and hydrolysis by cellulase enzymes at the 

surface of model biomass thin film substrates.  Quartz crystal microbalance with 

dissipation monitoring (QCM-D) measurements have been shown to be such a technique 

[96, 98, 163, 190, 191]. Substrates consisting of model thin films of pure cellulose have 

allowed QCM-D to provide valuable information on the behavior of cellulose (for 

example swelling [17]) and make it suitable for in situ studies on enzymatic degradation 

of cellulose during simultaneous adsorption and degradation. Previous investigations 

have assessed the effect of substrate crystallinity[96], treatment conditions[98, 163] and 

the action of individual monocomponent cellulases [191] and cellulase mixtures [98] on 

the rate of hydrolysis.  However, they did not address the effects of additives on cellulase 

interactions with model surfaces.   

In this work, we report a study of the effects of Tween-80 on cellulase binding 

and hydrolysis of model cellulose substrates (NMMO and LiCl/DMAc cellulose films) 

using QCM-D. The non-ionic surfactant Tween-80 was chosen as a model additive 

because it was widely investigated and shown to be effective in enhancing overall sugar 

release from cellulose [60, 180, 185, 192, 193]. The specific aim of the present study is to 

quantify at the interfacial level the hydrolytic activity of cellulase and the binding of 

cellulase to cellulose in the presence of Tween-80. The effects of crystallinity of the 

cellulose surface will be investigated by preparing amorphous thin films (from 

LiCl/DMAc) and type II crystalline cellulose thin films (from NMMO) using different 

solvent systems.  The mechanism of Tween-80 on saccharification will be investigated by 

comparing the hydrolysis behavior of T. reesei cellulases on the model cellulose films in 

the presence and absence of Tween-80. The addition sequence of Tween-80 will be 
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varied to investigate the ability of Tween-80 to compete with cellulase for binding, or to 

pre-saturate the surface to inhibit binding.  

4.3 Materials and methods 
 

NMMO and LiCl/DMAc cellulose films were used as model substrates in this study. 

Refer to section 3.3 (Chapter 3 Materials and methods) for the synthesis and 

characterization procedures employed.  QCM-D measurements also followed the same 

approach as described in section 3.3, with the exception that Tween-80 was added at 

varying concentration and different sequences of addition, as described below. 

4.4 Results and Discussion 

The thickness of the cellulose films prepared from LiCl/DMAc and NMMO 

solvent systems were determined by ellipsometry to be 39 and 51 nm respectively. Figure 

4.1 shows an AFM topographic image of cellulose surfaces on sensor surfaces scanned in 

tapping mode. The LiCl/DMAc cellulose films were uniform and displayed structured 

feature in the submicrometer scale with no preferential orientation. The NMMO cellulose 

films were non-uniform and displayed a fibrous structure. The rms surface roughness 

values were determined to be 1.88 ± 0.1 and 7.7 ± 0.5 nm for LiCl/DMAc and NMMO 

cellulose films respectively.  The characteristics of these films are consistent with 

previous findings [167].  Because these morphological features match the literature upon 

which the synthesis procedures are based, we also presume that the crystal structures of 

the cellulose matches prior reports, in which LiCl/DMAc derived films were shown to be 

amorphous, and NMMO derved films were shown to be type II crystalline celluose [167].  
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As noted in Chapter 3, the films did not exhibit reflections in XRD, and GIWAXS only 

indicated the presence of crystallinity in the NMMO films but not multiple reflections 

that would be required for structure assignment.  It may be that the crystallite size of our 

NMMO films is smaller than in the literature, which would have led to less distinct 

diffraction peaks. 

Adsorption behavior of Tween-80 onto LiCl/DMAc cellulose surface was studied 

using QCM-D and is shown in Figure 2. The concentration range of Tween-80 used was 

varied from 0.38 mM to 15.26 mM. Initially, a buffer solution (0.1 M acetate)  was 

passed continuously over the cellulose coated QCM sensor to obtain a steady baseline, 

and at this point frequency and dissipation were initialized to zero. Upon introduction of 

diluted Tween-80 solution, an immediate decrease in frequency was observed indicating 

adsorption of Tween-80 onto the cellulose surface. The adsorption was followed until a 

steady-state plateau was reached.  After equilibrium was reached, the Tween-80 solution 

was switched to buffer solution and continuously rinsed to observe the desorption 

behavior. The desoprtion is represented by an increase in the frequency upon rinsing with 

buffer. The frequency change associated with desorption was quantified by taking the 

difference in the frequency after equilibration was reached upon rinsing and the 

frequency at the previous plateau. The frequency changes due to Tween-80 desorption 

were measured to be 1.45, 3.83, 9.90, 17.07, and 21.92 Hz for Tween-80 concentrations 

of 0.38, 0.76, 3.81, 7.63, and 15.3 mM. Upon rinsing with buffer the increasing 

magnitude of frequency change with Tween-80 suggests that the adsorption is mostly 

reversible, but that some residual Tween-80 remained. 
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The adsorption kinetics of Tween-80 on cellulose shows features that resemble 

non-ionic surfactant adsorption on hydrophilic [194, 195] and hydrophobic surfaces [196, 

197]. Non-ionic surfactants  are physically adsorbed and the adsorption is strongly 

affected by small changes in adsorbate concentration, molecular structure and 

temperature [198].  Torn et al. [199] studied the adsorption of non-ionic surfactants on 

cellulose surfaces and proposed that at low surfacatant concentrations both the head 

group and tail contribute to adsorption (since cellulose is amphiphilic) and that at high 

concentrations lateral attraction between surfactant molecules dominate adsorption. The 

frequency change due to adsorption of Tween-80 on LiCL/DMAc cellulose surfaces after 

reaching equilibrium was estimated from Fig. 4.2. The measured frequency change data 

was fit using a liquid phase BET adsorption isotherm, Eq. 4.2 [200] shown in Figure 4.3.  

𝑞𝑞 =  𝑞𝑞𝐸𝐸 ∗ 𝐾𝐾𝑆𝑆𝐶𝐶𝑑𝑑𝑞𝑞
�1−𝐾𝐾𝐿𝐿𝐶𝐶𝑑𝑑𝑞𝑞�∗�1−𝐾𝐾𝐿𝐿𝐶𝐶𝑑𝑑𝑞𝑞+𝐾𝐾𝑆𝑆𝐶𝐶𝑑𝑑𝑞𝑞�

   (4.2) 

where qm is the monolayer adsorption capacity, KS is the equilibrium adsorption constant 

for the first layer, and KL is the equilibrium constant for the upper adsorbed layers.  The 

maximum monolayer adsorption capacity was found to give a QCM response of 16.2 Hz, 

which corresponds to a monolayer mass of 287 ng/cm2 using the Sauerbrey relation 

(Equation 3.1). Adsorption constants were determined to be 1.92 mM-1
 (KS) and 0.01 

mM-1 (KL). The equilibrium adsorption frequency meaured at 15.3 mM was found to be 

19.6 Hz, which is higher than the monolayer adsorption capacity (16.2 Hz) suggests that 

multilayer binding or surfactant clustering occurs on the cellulose surface.  Using the 

adsorption capacity value, the area occupied by each molecule in a monolayer on the 

cellulose surface was calculated to be 75.9 Å2. Kirby et al. studied the adsorption of 
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Tween-80 at oil/water interface by surface tension measurements and estimated the 

surface coverage of Tween-80 to be 137.1 Å2. The lower area per molecule of Tween-80 

suggest larger adsorption of Tween-80 on cellulose surface, either because of more close 

packing at the solid surface, or the slight roughness of the surface. 

Figure 4.4 shows the typical QCM-D frequency profiles of LiCl/DMAc and 

NMMO cellulose films during hydrolysis with a 200x diluted T. reesei cellulase solution. 

A detailed explanation of the frequency and dissipation profiles is provided elsewhere 

[98]. In short, the cellulose films are equilibrated in buffer medium in the QCM-D 

chamber until no significant change in frequency was observed. The first frequency shift 

corresponds to the adsorption of cellulase onto the cellulose surface after cellulase 

injection into the QCM-D module followed by an increase in frequency due to hydrolysis 

of cellulose substrate by cellulases and then leveling off as the hydrolysable substrate is 

consumed. These results are in agreement with Ahola et al [96] who studied the effects of 

cellulose surface structure on enzymatic hydrolysis by QCM-D. 

From the frequency profile, the minimum frequency attained due to adsorption 

(Fmin), maximum hydrolysis rate, and the maximum frequency upon reaching a plateau 

(Fmax) were quantified. When only cellulase was introduced into the QCM-D chamber the 

minimum frequency should be due to the amount of cellulase adsorbed. The maximum 

hydrolysis rate was determined by plotting the absolute slope of the frequency change 

between two consecutive time points (dΔF/dt) and observing the time where the 

maximum is attained (Figure S4.1 (Appendix IV) shows an example plot of frequency 

change and derivative with time to determine the maximum rate). It was observed that 
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slope initially increases and reaches a maximum and then decrease, but that because of 

noise in the data the maximum slope is not at a single point but spread over a range of the 

time interval, the maximum hydrolysis rate was quantified by measuring the slope from 

the frequency profile over the corresponding time interval. However, it was found that 

the minimum frequency change due to adsorption, the maximum hydrolysis rate and 

maximum frequency value after hydrolysis varied from film to film. The amount of 

cellulose mass coated on the surface of sensor was estimated by measuring the 

fundamental frequency of the sensors before and after cellulose coating using QCM-D. 

From the ratio of maximum value of frequency after hydrolysis and mass of cellulose 

coated on the surface the extent of reaction was quantified. It was found that the 

quantified values varied from batch to batch and there were large variations as reported in 

Table 4.1.  Since no standard methods are available to normalize the QCM-D data and 

compare between batches, the results of further experiments are compared among each 

batch of cellulose films to determine trends in quantified data. Variations in results were 

found for both LiCl/DMAc and NMMO cellulose films.  

The effect of Tween-80 on hydrolysis of cellulose surfaces was investigated by 

changing the addition sequence of Tween-80 by: 1) Sequential adsorption in which 

Tween-80 was adsorbed onto cellulose surface prior to cellulase introduction and 2) Co-

adsorption in which cellulase and Tween-80 are introduced as a mixture in the same 

buffered solution.  

Figures 4.5 show the frequency profile of cellulose hydrolysis with and without 

Tween-80 during sequential adsorption using 0.76 mM Tween-80. Qualitatively similar 
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frequency response profiles were observed at different Tween-80 concentrations, but it is 

difficult to represent the differences among experiments using raw data, so the data will 

be reported in terms of processed quantities.  It was observed that from Figure 4.5 that 

upon exchange of buffer with Tween-80 the frequency dropped due to adsorption of 

Tween-80 on the cellulose surface until an equilibrium frequency was reached consistent 

with the adsorption studies (Figure 4.2). After Tween-80 adsorption reached equilibrium, 

the Tween-80 solution was replaced with a cellulase solution (free of Tween-80) and 

adsorption and hydrolytic activity of cellulases was measured. For comparison purposes 

the hydrolytic activity of cellulases in the presence and absence of Tween-80 are shown 

together (Figure 4.5).  Cellulase adsorption on the Tween-80 adsorbed cellulose surface 

was measured by quantifying the difference between the minimum frequency (Fmin) and 

frequency change due to Tween-80 adsorption after equilibrium was attained. 

Figure 4.6 shows the frequency change due to cellulase adsorption on both 

NMMO and LiCl/DMAc cellulose films with varying concentrations of Tween-80 (0-8 

mM) for different trials (where each trial represents a new set of films prepared from the 

same cellulose solution).   It was found that the frequency change decreased with 

increasing concentration of Tween-80. This frequency can be regarded as a measure of 

cellulase adsorption. Taking the difference between the minimum frequency change 

during sequential adsorption and the frequency change associated with pre-adsorption of 

Tween-80 alone as a lower bound on the frequency change due to cellulase adsorption, 

reduction in bound cellulase was found to increase from 16% at 0.76 mM to 33% at 7.6 

mM Tween-80 for NMMO films and 25% at 0.76 mM to 44% at 7.6 mM Tween-80 for 

LiCl films.  Due to large variation in the hydrolysis rates among trials, the hydrolysis rate 
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was normalized using the minimum frequency due to adsorption, which is assumed to be 

proportional to the amount of cellulase adsorbed.  In Figure 4.7, the normalized rates are 

reported as ratios of the normalized rates with Tween-80 to that without Tween-80.  It 

was found that for NMMO cellulose films the hydrolysis rate decreased with increasing 

concentration of Tween-80 for all trials, whereas LiCl/DMAc cellulose films showed no 

significant trend in the effect of Tween-80 on hydrolysis rate for all trials. While there is 

variability in the ratio of the normalized hydrolysis rate, it is clear from these studies that 

pre-adsorption of Tween-80 leads to both a reduction in bound cellulase on both types of 

films, and a reduction in hydrolysis rate per bound cellulase on NMMO films. 

Figure 4.8 shows the frequency profile during cellulose hydrolysis for an NMMO 

film in contact with a mixture of 0.76 mM Tween-80 and cellulase.  The frequency 

profiles looks similar with and without Tween-80. It should be noted that both cellulase 

and Tween-80 adsorb onto the cellulose surface and the minimum frequency change due 

to adsorption is a combined effect which is not directly distinguishable by QCM-D.  To 

study the effect of Tween-80 on cellulase adsorption, the minimum frequency due to 

adsorption was quantified and plotted.  Figure 4.9 shows the plot of quantified adsorption 

values for both NMMO and LiCl/DMAc cellulose films. Both films show a similar trend: 

cellulase adsorption slightly decreased at the lowest Tween-80 concentrations (0.76 mM) 

suggesting that Tween-80 decreased the cellulase binding on cellulose surfaces. At higher 

concentrations of Tween-80, the frequency change was higher than for only cellulase 

adsorption.  However, it should be noted that the minimum frequency in case of co-

adsorption is a combined effect of cellulase and Tween-80 binding and the higher change 

might be due large amounts of Tween-80 adsorbed on the surface. If the difference 
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between the frequency change during coadsorption and the frequency change associated 

with Tween-80 alone is taken as a lower bound on the frequency change due to cellulase 

adsorption, the average reduction in bound cellulase was found to be 11±3% on NMMO 

films and 21±2% on LiCl films.   Figure 4.10 shows plots of the normalized hydrolysis 

rate vs. hydrolysis without Tween-80 as function of Tween-80 concentration. The 

hydrolysis rate decreased with increasing concentration of Tween-80 for NMMO 

cellulose films for all trials, and showed no trend for the LiCl/DMAc cellulose films 

across all trials. 

Overall, these results show that the most consistent effect of adding Tween-80 

(either before or with cellulase) is to reduce binding of cellulase.  Hydrolysis rate 

decreases for partially crystalline films derived from NMMO, and does not change 

significantly for amorphous films derived from LiCl / DMAc.  In bulk studies, the 

conclusions for enhancement of cellulose hydrolysis by surfactants were primarily based 

on the conversion of cellulose measured at a certain time by the amount of sugars 

produced.  In the present study, the conversion of cellulose cannot be measured due to the 

nature of the QCM-D system. Therefore a quantity extent of reaction based on the ratio 

maximum frequency (plateau after hydrolysis) and amount of cellulose coated was 

quantified. The extent of reaction for both co-adsorption and sequential adsorption 

studies are represented in Figures S4.2 and S4.3 (Appendix IV) for NMMO and 

LiCl/DMAc cellulose films respectively. It was found that using this approach a 

consistent trend was not observed suggesting extents for these model films are unaffected 

by Tween-80 within the experimental uncertainties.  
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The mechanism underlying the enhancement of cellulose hydrolysis by the 

addition of surfactants has been a topic of extensive research. Most bulk studies have 

reported that the increase of free enzymes in solution due to reduction of non-productive 

adsorption of cellulase onto lignin contributes to the enhancement of cellulose conversion 

in lignocellulosic substrates [59, 60, 180]. From the findings in this study it was found 

that Tween-80 adsorbs to cellulose surfaces and, from Figures 4.6 and 4.9, decreases 

cellulase adsorption onto cellulose. This result is in agreement with the investigations of 

cellulase adsorption in the presence of surfactants on pure cellulose substrates in which it 

was reported that the amount of free enzyme in solution was larger in the case of 

surfactants than with no surfactant [61, 184, 192, 193].  A key difference in this case is 

that because a flow through system is used, the concentration of cellulase in solution is 

unaffected by the change in adsorbed amount. 

In contrast to prior investigations on enhancement of hydrolysis of pure cellulose 

substrates with surfactants, the current results indicate that Tween-80 inhibited the 

hydrolysis rate of NMMO-derived cellulose films.  A possible explanation for the 

negative effect of surfactant on hydrolysis rate is due to substrate–surfactant interactions. 

The surface of a cellulose is known to contain hydrophobic and hydrophilic regions 

[201], and it is hypothesized that the binding of surfactants onto cellulose through 

hydrophobic interactions prevents the productive binding of cellulases onto cellulose 

resulting in a decreased hydrolysis rate.  Zhou et al.[187] studied the effect of surfactant 

concentration on hydrolysis of microcrystalline cellulose and filter paper and they 

reported that high concentration of surfactant decrease cellulose conversion. They 

proposed the possible mechanism was due to the interaction between surfactant and 
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enzymes forming surfactant-enzyme aggregates at later stages of hydrolysis, thus limiting 

productive adsorption of cellulases. However, in this study we found that the decrease in 

hydrolysis rate was significant when surfactant was introduced as a mixture and when 

pre-adsorbed on cellulose surface suggesting that the substrate-surfactant interactions 

might be the reason for a decrease in hydrolysis rate.   

The finding that the LiCl/DMAc cellulose films show no effect in presence of 

Tween-80 suggests that the effect is not universal, and structural features of cellulose 

might affect the action of surfactant on cellulose hydrolysis.  The lack of an effect for 

amorphous cellulose either reflects the high availability of free chain ends in these films, 

or that because the rate of hydrolysis is high already, Tween-80 has little effect.   Another 

factor to be noted in bulk studies is that the enzyme is added in a limited amount and the 

substrate is in excess during hydrolysis. The conversion in bulk studies does not reach 

100%, and addition of surfactants helps to attain higher conversion (but not necessarily 

higher rate). In this study cellulose thin films were used which have a limited amount of 

cellulose available for hydrolysis and a continuous supply of enzyme in a flow through 

module. If all the cellulose was consumed the conversion would reach 100% across all 

materials (in presence or absence of Tween-80). As a result no difference in conversion 

would be observed.  

The effect of surfactants has been reported to be dependent on various factors 

such as surfactant type, concentration, biomass substrate features and hydrolysis 

conditions [187, 202, 203]. This study supports the mechanism on the positive effect of 

surfactant on lignocellulosic substrates is based on the reduction of non-productive 
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binding. Although no evidence for the enhancement of cellulose conversion was observed 

in this study, it is believed that the interactions between surfactant and biomass surfaces 

(cellulose and lignin) play a significant role in reducing the cellulase binding and at 

higher concentration surfactants inhibit the hydrolysis rate. 

4.5 Conclusions 

The effects of Tween-80 on the adsorption and hydrolysis of T. reesei cellulases 

on model cellulose surfaces was investigated. Two kinds of model cellulose surfaces 

(NMMO and LiCl/DMAc) with different surface morphology and crystallinity were 

prepared and characterized. Tween-80 was found to adsorb onto the cellulose surface 

according to a BET (multilayer) isotherm mostly reversibly, but that some residual 

Tween-80 remained upon rinsing. Cellulase binding decreased in the presence of Tween-

80 on both NMMO and LiCl/DMAc cellulose films. With pre-adsorption of Tween-80 on 

cellulose, the reduction in bound cellulase was found to increase from 16% at 0.76 mM to 

33% at 7.6 mM Tween-80 for NMMO films and 25% at 0.76 mM to 44% at 7.6 mM 

Tween-80 for LiCl films. Co-adsorption of Tween-80 and cellulase resulted in a net 

reduction in the amount of cellulase adsorbed by 11±3% on NMMO films and 21±2% on 

LiCl/DMAc films. 

The hydrolysis rate was observed to decrease with added Tween-80 for NMMO 

cellulose films while no significant effect was observed on the hydrolysis of LiCl/DMAc 

cellulose films. This is surprising in light of some prior studies which suggested an 

increase in conversion of cellulose due to Tween-80 addition.  This study clarifies that 

this effect may not be a result of a direct enhancement in hydrolytic activity, but instead 
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due to increased desorption of cellulase (which would allow it to redistribute in the 

system and thus drive towards higher conversions) and looking at conversion rather than 

rate of hydrolysis.  The high affinity of Tween-80 to lignin rather than cellulose (see 

Chapter 5 for more details) suggests that the reduction in non-productive cellulase 

binding onto hydrophobic surfaces is the best explanation for the enhancement of 

cellulose conversion in lignocellulose substrates. The effect of Tween-80 on hydrolysis of 

pure cellulose was found to be dependent on the cellulose substrate type and surfactant 

concentration, which may also help to explain variance in the literature as a function of 

cellulose pretreatment conditions. 
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4.6 Figures and Tables 

 

Figure 4.1. Atomic force microscopy topography images of a) LiCl/DMAc and b) 
NMMO cellulose surfaces 

a)

b)
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Figure 4.2. Frequency changes of the cellulose coated gold sensor due to adsorption of 
Tween-80. The arrow to the left indicate the time at which Tween-80 was injected and 

the arrow to the right indicate the time at which buffer was introduced. 

 

 

Figure 4.3. Adsorption isotherms of Tween-80 on cellulose surface, Langmuir model 
equation (dotted line) and BET model equation (solid line) 
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Figure 4.4. Frequency profiles during the enzymatic hydrolysis of cellulose films by a 
200x diluted T. reesei cellulase cocktail in pH 4.7 acetate buffer (0.1M) on NMMO and 

LiCl cellulose films 

 

 

Figure 4.5. Frequency profile of cellulose hydrolysis with Tween-80 adsorption and 
without Tween-80 adsorption followed by cellulase hydrolysis 
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Figure 4.6. Plot of quantified frequency change due to cellulase adsorption with Tween-
80 pre-adsorbed on a) NMMO cellulose films and b) LiCl/DMAc cellulose films with 

varying concentration of Tween-80 (0-8 mM). 
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Figure 4.7. Plot of fraction of hydrolysis rate change during sequential adsorption for, a) 
NMMO cellulose films and b) LiCl/DMAc cellulose films with varying concentration of 

Tween-80 (0-8 mM). 
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Figure 4.8. Frequency profile of cellulose hydrolysis with co-adsorption of Tween-80 
(0.76 mM) and cellulase, and cellulose hydrolysis  

-50

-30

-10

10

30

50

70

90

110

0 10 20 30 40 50

Fr
eq

ue
nc

y 
ch

an
ge

, Δ
F 

(H
z)

Time (min)

Cellulase
Tween-80 0.76 mM

Buffer 
rinse

- Cellulase 
- Tween-80 
and Cellulase         
mixture

104 
 



 

Figure 4.9. Plot of quantified frequency change due to cellulase and Tween-80 co-
adsorption on a) NMMO cellulose films and b) LiCl/DMAc cellulose films with varying 

concentration of Tween-80 (0-8 mM). 
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Figure 4.10. Plot of fraction of hydrolysis rate change during co-adsorption for, a) 
NMMO cellulose films and b) LiCl/DMAc cellulose films with varying concentration of 

Tween-80 (0-8 mM). 

 

 

Table 4.1. Variation in Fmin, maximum hydrolysis rate, Fmax, cellulose mass coated and 
extent of reaction values from batch to batch for LiCl/DMAc cellulose films. 
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1 -46 21 0.45 89 106 0.84
2 -42 13 0.31 201 248 0.81
3 -45 25 0.54 241 166 1.45
4 -36 14 0.38 80 102 0.79
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CHAPTER 5 

QCM-D STUDY OF THE EFFECTS OF TWEEN-80 ON CELLULASE ENZYME 

BINDING TO LIGNIN 

5.1 Summary 

Bulk studies on hydrolysis of cellulosic substrates have suggested that additives 

such as nonionic surfactants enhance both conversion of sugars and enzyme recovery 

when lignin is present. However, the specific mechanism underlying the use of 

surfactants is not well understood.  In this study the effect of nonionic surfactant Tween-

80 on the interactions of cellulases with model lignin thin films was investigated using a 

Quartz Crystal Microbalance with Dissipation monitoring.  In-situ studies of single-

component binding show that cellulase is bound to the lignin surface irreversibly, while 

Tween-80 is partially reversible upon rinsing with buffer. Co-adsorption of Tween-80 

and cellulase resulted in a net reduction in the amount of cellulase adsorbed on lignin – 

e.g. 43±2% less cellulase bound with a monolayer of Tween-80. Sequential adsorption 

experiments were carried out by varying the order and concentration of Tween-80 and 

cellulase introduction to lignin surfaces which suggested that Tween-80 was able to 

displace adsorbed cellulases. 

Keywords: Cellulase, Lignin, Nonproductive binding, Tween-80, Enzymatic hydrolysis 
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5.2 Introduction 

Depolymerization of sugar based components of lignocellulosic biomass into 

monomeric sugars by pretreatment and enzymatic hydrolysis is a key enabling 

technology for the production of bioethanol from renewable plant-based resources. 

However, the recalcitrant nature of cellulose, hemicellulose and lignin in biomass 

presents a major challenge and hindrance to enzymatic hydrolysis [148]. Lignin is 

believed to be an obstacle to efficient enzymatic hydrolysis, not only by restricting access 

of cellulases to cellulose, but also by providing sites for non-specific adsorption of 

cellulases resulting in reduced efficacy of cellulase enzymes [32, 55, 67]. Therefore, 

understanding and overcoming the barriers of enzymatic hydrolysis of biomass is 

essential for development of economically viable cellulosic ethanol processes.  

Lignin is the most abundant non-carbohydrate component of biomass. It is a 

heterogeneous phenolic copolymer, containing mainly aromatic functional groups and is 

closely associated with cellulose and hemicellulose to form the structural framework of 

plant cell walls, thus protecting the organism from microbial attack by forming a physical 

and chemical barrier [204]. The inhibitory effect of lignin on enzymatic hydrolysis has 

been widely studied [51, 54, 67]. Rahikainen et al. [54] showed that lignin residues 

isolated by enzymatic and acid hydrolysis from softwood reduce the degree of hydrolysis 

of Avicel and that hydrolysis yield is inversely proportional to lignin content.  Removal 

of lignin from steam pretreated Douglas fir substrate was shown to improve the 

enzymatic hydrolysis of  cellulose, an effect attributed to improved accessibility of the 

cellulose to the cellulases [67]. Inhibition of cellulases by two lignin preparations was 

studied by Berlin et al. [51] who reported 11 - 84% reduction in hydrolysis rate by 
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dissolved lignin and 8 - 58% reduction in hydrolysis rate by lignin isolated by extensive 

hydrolysis of biomass (enzyme residual lignin).  They suggested that higher surface 

hydrophobicity due to lower content of carboxyl and aliphatic hydroxyl groups of 

dissolved lignin was the reason for the range of inhibitory effects observed. Adsorption of 

cellulases to lignin has also been investigated by several groups; adsorption of cellulase 

enzymes on two kinds of  lignin isolated from lodgepole pine (steam-expolded and 

ethanol pretreated) was studied by Tu et al. [56] and they reported that cellulase had a 

higher affinity for ethanol pretreated lignin with higher hydrophobic nature than steam 

exploded lignin. The adsorption capacities and binding affinities of cellulase have been 

found to differ widely among various lignins from pretreated materials suggesting that 

the pretreatment process has a significant effect on cellulase adsorption [205]. Binding of 

Trichoderma reesei cellulase components on lignin using enzymes with and without their 

carbohydrate binding module (CBM) were investigated [58], and it has been reported that 

enzymes with a CBM have higher affinities to lignin than enzyems without CBM, 

suggesting hydrophobic interactions mediated by CBM to be the major driving force for 

non-productive enzyme adsorption on lignin. In addition to hydrophobic interactions, 

electrostatic interactions have been suggested to influence enzyme adsorption onto lignin 

pretreated in the presence of sulfates [206]. Thus, while the negative effects of lignin in 

reducing the activity of cellulases are not fully understood, it has been suggested in 

several prior studies that hydrophobic interactions between cellulase and lignin play a 

important role in reducing cellulase activity by non-prodcutively binding enzymes.  

Enhancement of enzymatic hydrolysis of lignocellulose has been shown in the 

presence of surface-active additives such as non-ionic surfactants [56, 60, 68, 184, 192], 
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polyethyleneglycol (PEG) [59] and bovine serum albumin (BSA) [64].  A seven-fold 

increase in hydrolysis of Sigmacell 100 cellulose by Tween-80 addition was reported by 

Helle et al. [184] who speculated that surfactants enhance enzyme hydrolysis by altering 

the cellulose structure and facilitating release of bound enzyme. Castanon and Wilke 

[192] also reported a 14% increase in extent of hydrolysis from newspaper cellulose and 

also found about three times more recoverable cellulase could be recycled in the presence 

of Tween-80. The effects of various surfactants on enzymatic hydrolysis of steam 

pretreated spruce were compared by Eriksson et al. [60] and the results showed that non-

ionic surfactants had the greatest positive effect. They proposed that the mechanism of 

surfactant action is the steric hindrance of enzyme interactions with lignin, thus 

preventing non-productive binding of cellulase to lignin. This mechanism has been 

supported by experiments showing enhanced hydrolysis in the presence of PEG [59] and 

BSA [64]. Furthermore, the adsorption of cellulase to residual lignin has been implicated 

in low recovery of cellulase following hydrolysis [207].  Recycling of enzymes with 

addition of surfactants by re-adsorption onto fresh lignocellulosic substrates was 

investigated by Tu et al. [208].  They found that up to 96% of the total enzyme could be 

recycled by addition of Tween-80, but the reversibility of cellulase binding is dependent 

on the lignin content and nature of the substrate. Hence, the strategy of reducing non-

productive enzyme binding to lignin by addition of additives not only maximizes 

hydrolysis, but it is anticipated that this approach would also increase the efficiency of 

enzyme recycling. However, the above hypothesis is based on adsorption measurements 

of cellulase to lignocellulose and lignin residues over the period of hydrolysis reaction. A 
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direct measurement of the binding of cellulase to lignin in the presence of additives 

would insights into the mechanism and kinetics of enzyme - lignin interactions. 

The quartz crystal microbalance with dissipation (QCM-D) technique has been 

used to study the adsorption of proteins and macromolecules [209], enzymatic 

degradation of cellulosic [96] and lignocellulosic [97] films.  It enables real-time 

measurements of molecular adsorption and interactions on various surfaces. Previously, 

lignin thin films developed using methods such Langmuir-Blodgett deposition [210] and 

spin coating [211, 212] have been used to investigate the molecular interactions at lignin 

surfaces using QCM-D. Adsorption of different lacasses on cellulose and lignin surfaces 

was studied by Saarinen et al. [103] and the measurements confirmed that laccases are 

highly surface specific. The interactions (electrostatic and hydrophobic) between the 

protein and surface were believed to induce major differences in adsorption depending on 

the substrate. During adsorption of soy proteins on lignin and hydrophobic self-

assembled monolayer (SAM) surfaces,  the adsorbed mass was higher when the proteins 

were in their native state compared to that after chemical denaturation [213].  These 

results suggest that strong nonspecific interactions between the protein and the substrates 

exist, favoring conformational changes at the interface that contribute to exposure and 

rearrangement of hydrophobic and hydrophilic amino acid residues. The effect of lignin 

chemistry on cellulase adsorption was studied using lignin films prepared from steam 

pretreated and non-treated spruce and wheat straw lignin preparations using QCM-D 

[55].  The results showed that Trichoderma reesei Cel7A binds more onto lignin isolated 

from steam pretreated biomass than onto lignin isolated from non-treated lignocellulosic 

biomass.  Recently, Lou et al. [214] investigated the effect of anionic surfactant polymers 
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with different weight fractions and molecular structure on CTec2 cellulase binding to 

lignin films. They showed that the anionic polymers reduced non-productive cellulase 

adsorption on lignin, but that the additives also reduced efficiency of enzymatic 

hydrolysis of cellulose.  Because of this, they suggested non-ionic surfactants to be 

potentially more effective as blocking agents. 

In the present work, we investigate the molecular interactions of T. reesei 

cellulase with lignin in the presence of non-ionic surfactant additive Tween-80 using 

QCM-D, to understand the mechanism of reduction of non-productive cellulase binding.  

Spin coated Kraft lignin films [211] are employed to directly measure cellulase and 

Tween-80 binding on lignin, to test the ability of Tween-80 to prevent cellulase binding 

to lignin, and to quantify the reduction in non-productive binding under different surface 

exposure scenarios. 

5.3 Material and Methods 

5.3.1 Materials 

Sodium acetate (>99%), acetic acid (>99.7%), aqueous ammonium hydroxide (1 

N concentration, <3% w/v), hydrogen peroxide (30%), concentrated ammonium 

hydroxide (25%) and deionized ultrafiltered (DIUF) water were purchased from Fisher 

Scientific; Kraft lignin powder, non-ionic surfactant Tween-80 (average molecular 

weight 1310, viscous liquid) from Sigma Aldrich; and polyethyleneimine (average 

Mn~1200, 50 wt. % in water) from Acros Organics. Commercial cellulase (Celluclast®) 

derived from Trichderma reesei (> 700 EGU/g) in the form of an aqueous solution 

purchased Sigma-Aldrich was used as the enzyme source. Gold coated quartz sensors 
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supplied by Q-Sense AB, Gothenburg, Sweden were used as base supports for lignin thin 

films.  

5.3.2 Lignin films dissolution and deposition procedure 

The lignin thin films were obtained by depositing a 1.25 % solution of Kraft lignin in 

aqueous ammonia onto polymer coated quartz sensors by using a modification of the spin 

coating technique described by Norgren et al [211].  In short, 50 mg of Kraft lignin 

powder was dissolved in 4 ml of 1 N aqueous ammonia, by continuous stirring for 24 

hours at room temperature to ensure complete dissolution. The sensors were first cleaned 

by UV ozone plasma treatment for 10 minutes, and then cleaned with a 5:1:1 mixture of 

water, concentrated ammonia (25%) and hydrogen peroxide (30%) at 75°C for 15 

minutes, and finally rinsed with deionized water. The sensors were then dried under a 

stream of nitrogen and underwent another 10 minutes of UV ozone plasma treatment.  

This was consistent with the sensor cleaning protocols recommended by the 

manufacturer, Q-sense.  Cleaned quartz sensors were then immersed in a diluted 

polyethyleneimine (PEI) solution (0.1 g/L in water) for 15 minutes before spin coating, 

which served as an anchoring layer for lignin deposition [212].  Finally, the lignin 

solution was spin coated onto the PEI-coated sensors with a WS-400BZ-6NPP/Lite 

(Laurell Technologies Corporation) spin coater at 2000 rpm for 1 minute.  

5.3.3 Characterization 

Imaging of the lignin films was performed in air using tapping mode atomic force 

microscopy (AFM, model 5500 SPM, Agilent Technologies) to determine the surface 

morphology and roughness. The images were acquired using silicon cantilevers (supplied 

by Budget Sensors) with drive frequency 300 Hz and tip radius less than 10 nm. Images 

113 
 



were analyzed using Gwyddion software (version 2.20) to measure the roughness. The 

thickness of the films was measured with a spectroscopic ellipsometer (model M-2000V, 

J.A. Woollam Co. Inc.) with a spectral range from 370 nm to 1700 nm. The thickness of 

the films was estimated by fitting the raw data to a Cauchy model using the software 

provided with the instrument. 

5.3.4 Quartz crystal microbalance measurements 

The interactions of the cellulase enzyme and the non-ionic surfactant Tween-80 with 

lignin surfaces was studied using a commercial QCM-D system (model E-4, Q-sense). 

QCM-D measures simultaneously changes in resonance frequency (∆ƒ) and dissipation 

(∆D) at the fundamental resonant frequency (f = 5 MHz) and at overtones of that 

fundamental frequency. The change in resonance frequency relates to the amount of 

adsorbed mass according, as a first approximation, to the Sauerbrey relation: 

∆𝑚𝑚 =  −𝐶𝐶∆𝑒𝑒
𝑛𝑛

  (5.1) 

In Equation 1, Δm is the adsorbed mass, C is a constant characteristic of the crystal (C = 

17.7 ng cm-2 Hz-1 for the crystals at 5 MHz), Δf is the change in the resonance frequency 

of the crystal, and n is the overtone number (n = 1, 3, 5...). The experiments were carried 

out in continuous mode at a flow rate of 0.2 mL/min and at a temperature of 25±0.02 °C.  

Initially, sodium acetate buffer solution (pH 4.7) flowed through the module into which a 

lignin coated sensor was mounted to attain equilibrium in the buffer medium. The 

interpretation of the data is described in detail elsewhere [139, 214]. A frequency drop 

lower than 2 Hz per hour was used as criteria for equilibrium. Once equilibrium was 

attained the buffer solution was replaced by enzyme/surfactant solutions and monitored 
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for changes in frequency (∆ƒ), and energy dissipation (∆D). Concentrations and order of 

addition of surfactant and enzyme solutions will be described below. 

5.4 Results and Discussion 

The lignin thin films deposited onto the quartz sensor by spin-coating were 

imaged using AFM prior to use in QCM-D measurements. Figure S5.1 (Appendix V) 

shows a tapping mode AFM topography image of a lignin surface over a 1µm × 1 µm 

area. The lignin films were found to be continuous with uniformly spaced pores.  The 

films were relatively smooth with an RMS surface roughness of 0.56 ± 0.1 nm measured 

for 1 µm × 1 µm images. The thickness of the lignin films was determined by 

ellipsometry to be 32 ± 0.3 nm. The refractive index was found to be in the range of 1.4 -

1.6 for wavelengths in the range of 350 – 800 nm. Kraft lignin films prepared by spin 

coating on silica substrates have been found to exhibit a wide range of thicknesses from 

20 - 140 nm and RMS roughness values between 0.5 – 1.1 nm, depending on the solution 

concentration and spinning rate [211]. The current thickness and roughness 

measurements are consistent with the previous lignin films prepared by a similar 

approach, and were used to study the cellulase/surfactant – lignin interactions without 

further modification. The stability of the lignin films was investigated by recording the 

frequency change upon transition from air to buffer in the QCM-D cell and found that the 

lignin films were firmly attached to the base substrate (Figure S5.2, Appendix V). 

The adsorption of cellulase enzymes on the lignin surface was monitored by 

QCM-D. QCM-D measures simultaneously changes in resonance frequency (∆ƒ) and 

dissipation (∆D), which are related to the mass and viscoelastic properties of adsorbed 
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layer, respectively. The binding of cellulase to lignin film was measured by diluting the 

cellulase enzyme solution with acetate buffer (pH – 4.7) 200 times, which is equal to a 

protein concentration of 45 mg/ml determined by Bradford assay. The rapid decrease in 

frequency upon injection of cellulase (Fig. 5.1) suggests that cellulase enzymes adsorbed 

onto the lignin surface without significant transport limitations. The frequency drop was 

accompanied by a dissipation rise due to the soft nature of the hydrated enzyme. The 

maximum frequency drop was measured to be -45 Hz for the cellulase solution without 

Tween-80. An adsorption plateau was reached within a few minutes, after which 

desorption of the enzymes was examined by rising with the cellulase-free acetate buffer. 

Upon buffer rinsing, only a small increase in frequency was observed, indicating that the 

adsorption of cellulase enzymes to the lignin surface is almost completely irreversible 

after ~20 minutes of contact with the lignin surface. This result agrees with previous 

reports by Hoeger et al. [97] and Lou et al. [214] who studied cellulase interactions with 

lignin surfaces and found evidence for limited reversibility of the binding.   

The adsorption behavior of Tween-80 alone at the lignin interface is important to 

measure in order to interpret the effects of the surfactant on enzyme–lignin interactions. 

Therefore, we investigated the adsorption of various concentrations of Tween-80 onto 

lignin films, which were freshly prepared for each measurement.  Figure 5.2a shows the 

adsorption and desorption kinetics of Tween-80 at the lignin interface. Tween-80 

adsorbed quickly onto the lignin surface, with a slight “overshoot” in frequency change 

observed for higher concentrations.  This overshoot is most likely due to trapping water 

with the Tween-80 at the lignin surface, which was lost shortly after contact.  The extent 

of adsorption measured by the plateau frequency reached at long times after surfactant 
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introduction increased with an increase in the concentration of Tween-80 (the changes in 

frequency due to adsorption were measured to be -13.17, -14.75, -17.05, -20.16 and -

37.62 Hz for Tween-80 concentrations of 0.38, 0.76, 3.18, 7.63 and 15.27 mM, 

respectively). Upon rinsing with buffer, the frequency increased until reaching a final 

frequency value of -8.04 ± 0.97 Hz for all concentrations of Tween-80, suggesting that 

the adsorption was mostly reversible, but that some residual Tween-80 remained. The 

adsorption of non-ionic surfactant was studied previously on cellulose and lignocellulosic 

substrates and showed Langmuir type adsorption isotherms for Tween-20 suggesting the 

formation of monolayers [202, 215]. Here, the adsorbed amount was quantified by the 

measured change in frequency values after reaching a plateau frequency, and the results 

are plotted in Figure 5.2b. An initial increase in adsorbed amount with increasing bulk 

concentration is observed, and seems to start to plateau (consistent with a Langmuir-type 

isotherm) below a Tween-80 concentration of 5 mM.  However, increasing the Tween-80 

concentration further results in increasing adsorption of Tween-80, which is more 

consistent with multilayer adsorption. Figure 2b shows the measured frequency change 

data fit using a liquid phase BET adsorption isotherm in the form given by Equation 2 

[200], 

𝑞𝑞 =  𝑞𝑞𝐸𝐸 ∗ 𝐾𝐾𝑆𝑆𝐶𝐶𝑑𝑑𝑞𝑞
�1−𝐾𝐾𝐿𝐿𝐶𝐶𝑑𝑑𝑞𝑞�∗�1−𝐾𝐾𝐿𝐿𝐶𝐶𝑑𝑑𝑞𝑞+𝐾𝐾𝑆𝑆𝐶𝐶𝑑𝑑𝑞𝑞�

   (5.2) 

where qm is the monolayer adsorption capacity, KS is the equilibrium adsorption constant 

for the first layer, and KL is the equilibrium constant for the upper adsorption layers.  The 

maximum monolayer adsorption capacity was found to be 14.3 Hz, and adsorption 

constants were determined to be 33.05 mM-1
 (KS) and 0.04 mM-1 (KL). These parameters 

suggest that even at the lowest concentration studied, the coverage at equilibrium 
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corresponds to 94% of a monolayer, and that the concentration required to form a 

monolayer is only 0.84 mM Tween-80.  Kirby et al.[216] studied the adsorption of 

Tween-80 at oil/water interface by surface tension measurements and estimated the 

surface coverage of Tween-80 to be 1.21 µmol/m2 corresponding to a minimum area of 

137.1 Å2/molecule of Tween-80. In this study, using the monolayer adsorption capacity 

and Sauerbrey realtion the monolayer surface coverage was estimated to be 253 ng/cm2 

(1.93 µmole/m2) corresponding to a minimum area of 85.93 Å2 per molecule of Tween-

80, suggesting larger adsorption of Tween-80 on lignin surface, either because of more 

efficient packing at the solid surface, or the slight roughness of the surface (since the 

sensor area is the relevant quantity in the Sauerbrey equation). 

To evaluate the effect of Tween-80 on cellulase binding to lignin, experiments 

were performed in which Tween-80 was either introduced together with cellulase (co-

adsorption) or after cellulase introduction (which may result in the displacement of the 

adsorbed enzymes). For these experiments the cellulase enzyme concentration was fixed 

(diluted 200X with acetate buffer) and variable concentrations of Tween-80 (0.76, 3.81, 

7.63 and 15.3 mM) were used. 

To investigate the ability of Tween-80 to prevent non-productive cellulase 

binding to lignin and the mechanism of interaction, experiments were first performed by 

introducing cellulase and Tween-80 together. Figure 5.3 displays the shift in frequency 

due to adsorption and desorption of cellulase on lignin when introduced together with 

Tween-80. The frequency change due to coadsorption of both cellulase and Tween-80 

was measured based on the final plateau frequency ~20 min after introduction of the 

mixture in Figure 5.3.  As shown in Figure 5.4, Tween-80 initially decreases the 

118 
 



magnitude of the frequency change upon coadsorption, but it increases for higher 

concentrations compared to single component cellulase adsorption. Reduction in the 

magnitude of the frequency change upon initial adsorption suggests that Tween-80 

reduces the amount of cellulase that can bind to lignin, although adsorption of the 

surfactant itself increases the observed frequency change for high concentrations of 

Tween-80.  The point at which the balance shifts corresponds to where multilayer 

adsorption of Tween-80 is observed in the adsorption isotherm (~5 mM Tween-80). If the 

difference between the frequency change during coadsorption and the frequency change 

associated with Tween-80 alone is taken as a lower bound on the frequency change due 

to cellulase adsorption, the lower three Tween-80 amounts all give the same value, -

25.6±0.7 Hz.  This represents a reduction in bound cellulase of 43±2%.  At the highest 

Tween-80 concentration, the frequency difference is -15.3 Hz, which represents a 66% 

reduction in bound cellulase, although these are upper bounds and may be smaller if less 

Tween-80 binds in the presence of cellulase. 

The frequency change associated with desorption (upon rinsing with buffer) was 

also quantified by taking the difference in the frequency after equilibration was reached 

upon mixing and the frequency at the previous plateau.  As also shown in Figure 5.4, the 

frequency changes observed due to Tween-80 desorption have much smaller magnitudes 

than those due to adsorption, because adsorption of cellulase is irreversible so only a 

fraction of the cellulase can be removed. Comparing the frequency changes due to 

desorption of single component Tween-80 (Figure 5.2a) to that of cellulase and Tween-

80 together (Figure 5.3) suggests that Tween-80 dominates the frequency change upon 

adsorption.  For desorption, as the concentration of Tween-80 in the mixture increased, 
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the amount of cellulase that could be desorbed also increased.  Not only does the change 

in frequency upon buffer rinsing increase with increasing Tween-80, but the general trend 

observed in Figure 5.3 is that the residual frequency after buffer rinsing (at the end of the 

experiments) is smaller in magnitude as the Tween-80 concentration used increases.  The 

residual frequency was nearly constant in the experiments with only Tween-80 (at -7 to -

9 Hz, Figure 5.2a), which suggests that the differences observed at the end of the co-

adsorption experiment in Figure 5.3 are due to differences in adsorbed cellulase.  

Assuming that this is the case, and that Tween-80 always contributes -8 Hz to the 

frequency after rinsing, the three lowest Tween-80 concentrations all give similar 

changes in the amount of residue: 36±3% less residual cellulase after rinsing compared to 

the case without surfactant.  At the highest concentration (15.3 mM Tween-80), the 

residual cellulase is reduced by 48%.  These results are consistent with introducing 

Tween-80 together with cellulase being an effective way to reduce nonproductive 

binding, which would potentially enhance saccharification effectiveness in lignin-

containing biomass. 

In order to explore the ability of Tween-80 to displace the bound cellulase from 

lignin for recovery, QCM-D experiments were performed similar to those in Figure 5.3, 

but with introduction of cellulase, followed by a solution of only Tween-80, followed 

with a final buffer rinse (Figure 5.5). Similar amounts of cellulase adsorbed initially in 

each case suggest that the lignin films are uniform and comparable in surface 

characteristics. After reaching a steady state for cellulase adsorption, each cellulase 

solution was replaced with a Tween-80 solution containing no added cellulase. For the 

smallest Tween-80 concentration (0.763 mM), the frequency increased when it was 
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introduced, suggesting net displacement of material (cellulase) from the surface.  For 

larger concentrations (3.82-15.3 mM), an initially a drop in frequency was observed due 

to the adsorption of Tween-80 on the lignin surface followed by an increase in frequency 

consistent with removal of adsorbed cellulase. After rinsing with buffer, the final 

frequency was less than that measured prior to Tween-80 addition and this suggests that 

the adsorbed cellulase may have been displaced by Tween-80.  The frequency change 

associated with displacement upon rinsing with buffer was quantified (the difference in 

plateau frequency values after Tween-80 adsorption and after buffer rinsing) and plotted 

along with the co-adsorption results in Figure 5.5. Despite the difference in order of 

introduction of components, the frequency change measured for the displacement 

experiments (Figure 5.5) are roughly the same as for the desorption experiments (Figure 

5.3), which suggests that Tween-80 not only prevents cellulase from binding to lignin 

when introduced at the same time, but also can displace cellulase to allow it to be 

recovered and reused. 

To further elucidate the role of Tween-80 in reducing cellulase adsorption at the 

lignin interface, the adsorption of cellulase on lignin surfaces pre-contacted with Tween-

80 was performed, giving the frequency profiles shown in Figure 5.6. For the lower 

concentrations of Tween-80 (0.76-7.63 mM), a drop in frequency was observed upon 

switching from the Tween-80 solution to a solution containing only surfactant-free 

cellulase. However, for the solution containing 15.3 mM Tween-80, an increase in 

frequency was observed before a slight decrease. For the lower three concentrations, the 

trends are consistent with a net addition of mass to the surface upon cellulase 

introduction, and a net decrease for the highest Tween-80 concentration.  Despite 
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differences in the sign of the frequency change upon switching to cellulase, the absolute 

value of the frequency after cellulase introduction is approximately the same (-31 to -34 

Hz).  This can be explained by the desorption measurements for Tween-80 alone, which 

showed that the same amount of residual surfactant is left on the lignin surface upon 

buffer rinsing for all concentrations (Figure 5.2a).  When cellulase is introduced along 

with the buffer (Figure 5.6), adsorption of the cellulase onto lignin surfaces with the same 

amount of residual surfactant (regardless of the concentration initially present), so the 

same frequency is reached.  Note that the frequency at this point is less than the 

frequency observed upon cellulase adsorption in the absence of Tween-80 (-42 to -45 Hz 

from Figure 5.1 and 5.5). This indicates a concentration-independent reduction in 

cellulase adsorption on the lignin surface of 37±2% compared to expected contributions 

from pure components (-8 Hz from Tween-80 and -44.7 Hz from cellulase) due to the 

presence of residual Tween-80 at the interface. Moreover, a very small change in 

frequency after rinsing with buffer following cellulase adsorption suggests that the 

cellulase is strongly bound to the lignin film despite the presence of the residual Tween-

80.  The magnitude of the final frequency after buffer rinsing is 36±3% less than that the 

sum of the residual amounts from adsorption of pure cellulase and Tween-80. 

 Cellulase enzymes produced from Trichoderma reesei have a two-domain 

structure consisting of a catalytic domain and carbohydrate binding domain attached by a 

peptide linker. The carbohydrate binding domain targets the enzyme to the cellulose 

substrate. These binding domains are characterized by hydrophobic amino acids exposed 

on the surface, which may result in non-productive adsorption to the hydrophobic lignin 

surface [217]. As non-productive binding of cellulase enzymes to lignin has been 
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identified as an obstacle restricting hydrolysis, the results observed here supports the 

hypothesis that irreversible binding of cellulase enzymes to lignin is one source of 

reduced efficacy of cellulase enzymes. Addition of non-ionic surfactants is known to 

enhance enzymatic hydrolysis of lignocelluloses [56, 60, 68, 184, 192]. Different 

mechanisms have been proposed that cause the enhancement effect, including increased 

enzyme stability, increased accessibility to substrates, and preventing non-productive 

binding of cellulases to lignin [60, 184]. The mechanism of surfactants in reducing the 

non-productive binding was explained by the hydrophobic tail of the non-ionic surfactant 

binding to lignin through hydrophobic interactions and the hydrophilic head group of the 

surfactant providing a barrier towards binding of the binding domain to lignin [60]. The 

current study provides direct evidence to support the idea that Tween-80 competes with 

cellulase for adsorption onto lignin so that cellulase binding is reduced by either co-

adsorption or pre-exposing the lignin to a Tween-80 solution.  Co-adsorption is most 

effective with moderate  concentrations of Tween-80 but the pre-exposure only depends 

on the residual Tween-80 left behind, which is independent of surfactant concentration 

over the range studied – perhaps because strong binding of Tween-80 to lignin gives 

close to monolayer coverage (q/qm > 94%) even at the lowest concentrations used.   

The interaction of Tween-80 with lignin is also strong enough to partially displace 

cellulases from the lignin surface upon switching from cellulase to surfactant solution, 

suggesting that Tween-80 can be utilized for enzyme recovery and recycling. The results 

indicate that the addition of Tween-80 to a lignocellulosic hydrolysis system at 

concentrations sufficient for monolayer coverage (0.84 mM) could significantly reduce 

enzyme adsorption onto lignin by as much as 43±2% and potentially improve the 
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enzymatic hydrolysis and enzyme recycling. However, it has been reported that the lignin 

sources were found to affect the enzyme adsorption through differences in their 

physiochemical properties as a result of different pretreatment methods [56, 218]. The 

approach used in this study to understand the mechanism that drives the interactions 

between cellulase enzymes and lignin from different pretreatments will help us design 

suitable strategies for effective enzymatic hydrolysis and cellulase recovery. 

5.5 Conclusions 

The effects of Tween-80 on interactions between cellulase and spin coated kraft 

lignin films were studied using QCM-D. Cellulase adsorbed to lignin almost irreversibly, 

while Tween-80 adsorbed strongly but more reversibly. Coadsorption of cellulase and 

Tween-80 reduced the material adsorbed upon adsorption (e.g. 43±2% less cellulase 

adsorption at monolayer Tween-80 coverage). Tween-80 also reduced bound cellulase by 

both displacement from lignin and pre-adsorption (36±3% less residue after rinsing in 

both cases).  These results show that competitive reduction of cellulase binding to lignin 

is a likely mechanism for Tween-80 enhancement of hydrolysis extent and cellulase 

recovery from biomass. 
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5.6 Figures and Tables 
 

 

 

 

Figure 5.1. Frequency and dissipation shifts of the third overtone of the QCM crystal 
during cellulase adsorption onto model lignin film, and upon rinsing with buffer. 
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Figure 5.2. (a) Frequency profiles of Tween-80 adsorption onto model lignin films as a 
function of surfactant concentration and (b) adsorption isotherm of Tween-80 on lignin 
surface based on the frequency change attained after reaching equilibrium (points).  In 

part (b), the curve is a fit of the BET model equation with a regression coefficient of R2 = 
0.99. 
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Figure 5.3. Evolution of the frequency shifts measured by QCM-D due to co-adsorption 
of cellulase and varying concentrations of Tween-80 together onto lignin coated quartz 

sensors. 

 

 

 

 

 

Figure 5.4. Effect of Tween-80 on frequency changes measured between plateaus in the 
QCM-D measurements on lignin-coated sensors.  Magnitudes of frequency changes are 
reported for co-adsorption of cellulase with Tween-80 (a negative change), desorption 
into buffer after co-adsorption, and displacement of cellulase by Tween-80 introduced 

after cellulose binding. 
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Figure 5.5. Frequency changes measured by QCM-D due to adsorption of cellulase on 
lignin followed by introduction of Tween-80. 

 

 

Figure 5.6. Frequency shifts measured by QCM-D due to adsorption of Tween-80 on 
lignin followed by introduction of cellulase. 
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CHAPTER 6 

QUARTZ CRYSTAL MICROBALANCE KINETICS AND MODELING OF THE 

EFFECTS OF CELLULASE CONCENTRATION ON HYDROLYSIS OF MODEL 

CELLULOSE THIN FILMS 

6.1 Summary 

Cellulose is an insoluble structured material recalcitrant to enzymatic hydrolysis 

because of its highly self-associated inter-and intra-molecular hydrogen bonding network. 

The cellulose hydrolysis reaction is heterogeneous in nature (i.e. it occurs between a 

soluble enzyme and an insoluble substrate) and involves more steps than classical 

enzyme kinetics. In this work, QCM-D (a surface based assay technique) has been used 

to study the dynamic interactions between model type II cellulose thin films and cellulase 

enzymes with the goal of establishing a better understanding of the mechanism of 

hydrolysis. The adsorption of cellobiose inhibited cellulases from T. reesei on cellulose 

surface was studied. The frequency decrease due to binding was fitted to a Hill’s 

isotherm model.  The effect of cellulase concentration on the hydrolysis of cellulose films 

was then investigated using QCM-D. A kinetic model was developed that predicts 

adsorption and hydrolysis trends as a function of cellulase concentration and fitted to the 

QCM-D data.  The model provides useful insights into the impact of substrate surface 

area on the hydrolysis rate. When the generation of new interfacial enzyme accessible 

cellulose surface from bulk sites during hydrolysis was considered and represented by a 

term describing rate of exposure in cylindrical cellulose particles, the model achieved 

good agreement with the experimental data for all cellulase concentrations. Using the *The QCM-D experiments were performed by Hsin-Fen Li, former graduate student Department of Chemical and Materials Engineering 
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surface kinetic model, the dynamic behavior of enzyme-substrate complex and change in 

cellulose concentration during hydrolysis was captured, and the rate constants governing 

the hydrolysis mechanism were obtained.  

6.2 Introduction 

Lignocellulosic biomass is considered to be a sustainable non-food feedstock that 

can be utilized to produce biofuels and commodity chemicals [219]. Production of 

bioethanol from lignocellulosic biomass is based on using enzymes from organisms 

capable of digesting biomass to degrade structural polysaccharides into fermentable 

sugars. The efficient utilization of enzymes to degrade cellulose has been hindered by 

several factors such as high cost of enzymes, reduction of hydrolysis rates by a variety of 

factors, and limited understanding of heterogeneous enzyme catalysis [32, 86, 148].  

Economically competitive biofuels can be produced by improving the performance of 

cellulase enzymes through protein engineering and optimizing the physicochemical 

factors that limit the rate of cellulose hydrolysis [106, 220-223]. 

 
Cellulose is an insoluble structured material recalcitrant to enzymatic hydrolysis 

because of its highly self-associated inter-and intra-molecular hydrogen bonding network. 

Cellulase enzymes with multiple components and distinct modes of action have evolved 

to combat this recalcitrance by synergistic action [42, 224-226]. High solids enzymatic 

hydrolysis is at present considered a technological target for biomass conversion to 

improve the process economics by increasing product concentration and decreasing 

capital costs [227, 228]. However, the main drawback in the implementation of this 

approach is that the cellulose conversion decreases with increasing solids concentration 

130 
 



[229-231]. Enzymatic hydrolysis of cellulose in nature is confronted by a number of 

obstacles; one of the key challenges is the slow kinetics of hydrolysis, and the subsequent 

reduction in rate as reaction proceeds.  This effect is accentuated in high solids systems. 

Experimental data on cellulose hydrolysis by cellulases have led to divergent 

interpretations of the decline in cellulase activity as hydrolysis proceeds including 

thermal instability of cellulases [232], product inhibition by cellobiose/glucose [73, 233-

235], inactivation of the adsorbed enzyme [76, 236, 237], transformation of the substrate 

into a less digestible form, and nonproductive binding due to the heterogeneous nature of 

the substrate [32, 238-240].  

The cellulose hydrolysis reaction is heterogeneous in nature (i.e. it occurs between a 

soluble enzyme and an insoluble substrate) and may involve more steps than classical 

enzyme kinetics. Models based on Michaelis-Menten (MM) kinetics have been used to 

describe the enzymatic hydrolysis, and display a good ability to fit bulk kinetic 

measurements under conditions for which they are developed  [86]. Bezerra and 

Dias[241] investigated kinetics of hydrolysis of Avicel by T. reesei Cel7A using different 

enzyme to substrate ratios. It was found that a MM model with competitive inhibition by 

cellobiose fit the data best. Despite this successful application, strictly speaking the MM 

model is derived by applying a steady state assumption that does not necessarily hold true 

for the hydrolysis of heterogeneous lignocellulose substrates.  The MM model is also 

only truly valid if all substrate is fully accessible at all times, which is not necessarily the 

case during enzyme catalyzed hydrolysis of a solid material [242].  

Various mechanistic kinetic models of enzymatic hydrolysis of insoluble cellulose 

have been proposed based on knowledge of the mechanism of action of cellulase 
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enzymes [86, 243, 244]. Gan et al. [234] proposed a model in which the complex 

structure of cellulose is divided into hydrolysable and non-hydrolysable regions defined 

by an inert substrate fraction coefficient. It was found that the inert substrate fraction 

increased during the course of reaction leading to reduction in hydrolysis rate.  Xu and 

Ding [245] formulated models incorporating fractal and jamming theories to the MM 

model to describe the interaction between the reactant and catalyst that are different from 

the homogeneous system, because of the limitations imposed by confining the enzyme to 

the cellulose surface. The models were applied to bulk kinetics of the hydrolysis of 

cellulose by cellobiohydrolase and found to capture the hydrolysis profile.  However, the 

models incorporate parameters such as a time-dependent fractal dimension that are not 

readily interpreted mechanistically or quantitatively predictive of the hydrolysis process. 

Griggs et al. [92] developed a mechanistic model using continuously distributed substrate 

populations and suggested that the surface availability of cellulose is a key rate 

determining factor during hydrolysis.  Westh and co-workers [246, 247] proposed a 

model based on the processive kinetics of cellobiohydrolase Cel7A from Trichoderma 

reesei on amorphous cellulose and showed that the slowdown can be explained by the 

relative rates of the sequential reactions in the hydrolysis process and the occurrence of 

obstacles for the processive movement along a cellulose strand. This model was not 

tested widely on different enzymes and substrates.  The effect of product inhibition has 

been studied widely with a focus on determination of inhibition mechanism and 

inhibition constants [73, 74, 235].  Although bulk kinetic data indicate that product 

inhibition profoundly decreases the rate of hydrolysis, the actual inhibition mechanism is 
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a subject of ongoing debate and its magnitude depends strongly on variety of operating 

conditions (pH, temperature), sources of enzymes and the nature of the substrate. 

While the previous models in literature do not give a complete mechanism of 

cellulose hydrolysis they help in understanding the key factors (substrate and enzyme 

related) that determine the rate of hydrolysis. Despite ongoing studies of enzymatic 

hydrolysis of cellulose, the effect of simple process parameters, such as enzyme 

concentration, on hydrolysis has not been investigated extensively. The effect of enzyme 

concentration has been studied in bulk experiments by Sattler et al. [75] and they 

reported that the formation of glucose can be described by summation of two parallel 

pseudo-first order reactions. The cellulose substrate Sigmacell 50 was defined to consist 

of two cellulose components of easily and difficult hydrolysable cellulose to model the 

product yield as a function of hydrolysis time and enzyme dosage. The results were 

evaluated only for substrate concentration less than 2% substrate and the use of this 

model is limited by the inadequate representations of enzyme-substrate interactions. Most 

kinetic studies are based on utilizing bulk assays and they do not explain the surface 

interactions between the cellulase surface and enzymes. Further, the action of the 

cellulases depends on the availability and accessibility of cellulose substrate to enzymes 

that differs from the total cellulose in a reaction mixture due to the super-molecular 

organization of cellulose chains, which needs careful consideration in developing 

mechanistic models. 

In this work, a surface based assay technique has been used to study the dynamic 

interactions between model cellulose surfaces and enzymes with the goal of establishing 

a better understanding of the mechanism of hydrolysis. Due to the complexity of the 
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lignocellulosic substrates and their composition, model cellulose surfaces have been 

developed for investigation of dynamics of enzymatic hydrolysis and surface activities. 

The model surfaces offer heterogeneous substrate features that can mimic conditions 

encountered by enzymes during the hydrolysis of lignocellulosic biomass [97] but are 

amenable to processing into thin films. Previously, substrates consisting of thin films of 

pure cellulose have been used to evaluate the dynamics of cellulase activity using 

ellipsometry [248], quartz crystal microbalance with dissipation (QCM-D) [96, 98, 172], 

and atomic force microscopy [249]. Of these, QCM-D has been applied most often 

because it allows one to monitor the in-situ adsorption and hydrolysis during enzymatic 

reactions on deposited cellulose films by detecting minute changes in mass 

adsorbed/desorbed to a quartz sensor via changes in the resonance frequency of a quartz 

crystal. Ahola et al. [96] studied the interaction of cellulase enzymes with different 

cellulose surfaces using QCM-D. They used empirical equations to separately model the 

binding and enzyme activities on different surfaces and found that the nature of cellulose 

substrate strongly influence the dynamics of enzymatic degradation. Empirical models 

are based on data correlation without explicit definitions for enzyme substrate 

interactions and provide limited mechanistic insight or predictive capability. In contrast, 

Maurer et al. [172] [172] [172] developed a mechanistic two-enzyme surface kinetic 

model of cellulase activity elucidated using QCM-D including competitive adsorption, 

irreversible binding, complexation and hydrolytic activity for a binary mixture of 

cellobiohydrolase I and endoglucanase I, and found surface chain end concentration to be 

a major predictor of cellobiohydrolase activity. They used a pseudo-steady-state 

Langmuir-Michaelis-Menten kinetic model to predict the transient trends in the QCM-D 
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experimental data by determining the kinetic constants from single enzyme experimental 

data. They also reported that the cellulose films were degrade completely at a constant 

rate upon exposure to cellulase for 12 -24 hr. However, other QCM-D studies reported 

multiphasic degradation kinetics of cellulose hydrolysis [96, 98] which are consistent 

with those observed in the present study.  

In the present work, a comprehensive model applicable during both adsorption and 

hydrolysis is developed that account for the accessibility of cellulose substrate and 

represents the multiphasic cellulose degradation as a function of bulk cellulase 

concentration. The model is validated with experimental QCM-D data for cellulases 

derived from T.reesei acting on NMMO (model Type II) cellulose surfaces as a function 

of cellulase concentration.  

6.3 Materials and Methods  

6.3.1 Materials. Microcrystalline cellulose (MCC, 20 μm) was purchased from Aldrich.  

N-methylmorpholine-N-oxide (NMMO, 50% w/w aqueous solution), dimethyl sulfoxide 

(DMSO, ≥99.8%), and polyethyleneimine (PEI, approx. M.W. 60,000, 50 wt. % aqueous 

solution branched) were obtained from Acros Organics.  Acetate buffer (0.1 M, pH 5) 

was prepared by diluting glacial acetic acid (Fisher Scientific) in deionized ultrafiltered 

water (Fisher Scientific).  Celluclast® cellulase cocktail (an aqueous mixture consisting 

of endo-glucanases, exo-glucanases, cellobiohydrolases, and β-glucosidases) from 

Trichoderma reesei 26921 was purchased from Sigma Aldrich and diluted in acetate 

buffer (0.1 M, pH 5) to the desired final concentration of 0.01, 0.05, 0.1, 0.5, and 1 % 

v/v.   The protein content of cellulase (Eo, 3.4 µM) was determined by the Peterson 
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method [250] with the protocol provided by Sigma.  Based on protein content, the 

cellulase concentrations correspond to 0.34 µM, 1.7 µM, 3.4 µM, 17 µM and 34 µM 

respectively. 

6.3.2 Preparation of Cellulose Thin Films.  Cellulose thin films were prepared based on 

the method described by Gunnars et al. [168]. A solution of microcrystalline cellulose in 

N-methylmorpholine-N-oxide (NMMO, 50 wt. % aqueous solution in water) was 

prepared by adding cellulose (2 wt. %) at 115 °C.  After a clear solution was obtained, 

dimethyl sulfoxide (DMSO, ≥99.8%) was slowly added to the mixture to make a final 

solution of 0.5 wt. % cellulose.  The temperature of the cellulose solution was reduced to 

70° C, prior to spin coating.  

Gold-coated QCM-D resonators (QSX 301, Q-Sense AB, Göteborg, Sweden) 

were cleaned prior to coating with an ultraviolet cleaner (BioForce, Ames, IA) for 10 

minutes to decompose and volatilize organic contaminants on the sensor surface.  The 

UV-treated QCM-D sensors were immersed in diluted (0.2 % v/v) polyethyleneimine 

(PEI, 50 wt. % aqueous solution) for 15 minutes.   PEI was used as an anchoring 

polymer, as described by Aulin et al., [167] to attach the cellulose to the QCM-D sensor.  

The QCM-D sensors were contacted with de-ionized water for an additional 10 minutes, 

and then dried using nitrogen gas.  Cellulose solution was spin-coated (WS-400BZ-

6NPP/Lite, Laurell Technologies) onto the PEI-coated QCM-D sensors at 4500 rpm for 

40 sec.  After spin-coating, the sensors were immersed in deionized water (30 min), and 

then dried in an oven (50° C, 30 min).  The cellulose-coated sensors were stored in a 

desiccator at room temperature prior to use.   
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6.3.3 Cellulose Thin Film Characterization by Spectroscopic Ellipsometry and Atomic 

Force Microscopy (AFM). The thickness of model cellulose thin film was measured 

using a variable angle spectroscopic ellipsometer (M-2000, JA Woollam Co., Inc.).  The 

surface topography and material distribution of the cellulose thin film on QCM sensor 

(QSX301) was characterized by AFM (Series 4500, Agilent Technologies).  The support 

base and the cellulose thin layer coating on the sensor were scanned in air in tapping 

mode using a silicon cantilever (TAP 300AI-G, Budget Sensors) with a spring constant of 

40 N/m and a driving frequency of 300 kHz.   

6.3.4 Cellulose Thin Films/ Cellulase Interactions Measured by Quartz Microbalance 

with Dissipation (QCM-D).  A quartz crystal microbalance (Q-Sense model E4) equipped 

with four temperature controlled flow modules was used to measure changes in mass per 

unit area and in the viscoelasticity properties of the cellulose thin films from the change 

in frequency (∆f) and dissipation (D) of the cellulose-coated quartz crystal resonator.  The 

oscillation frequency and dissipation energy were measured simultaneously from the 

application of an AC voltage across the electrode, causing the piezoelectric quartz crystal 

vibrate. The resonance frequency change (∆f) is proportional to the mass absorbed on the 

crystal surface by the Sauerbrey equation [138]. The QCM-D acquires frequency signal 

at the fundamental resonance (5 MHz) and at a multiple of resonance (overtone 

frequency).  The third overtone frequency was used to avoid edge effects (unstable 

frequency signal at the edge of the sensor measured at the fundamental frequency). 

The mass change of cellulase thin films in response to cellulase concentration 

(0.34 µM, 1.7 µM, 3.4 µM, 17 µM and 34 µM) was measured by QCM.  Prior to 

contacting the cellulose thin films with cellulase, the cellulose-coated QCM sensors were 
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equilibrated with the acetate buffer (0.1 M, pH 5) at a flow rate of  0.2 ml min-1 until a 

constant baseline frequency measurement was reached (< 2 Hz hr-1), which was obtained 

in approximately 30 min.  The temperature of the QCM chamber was controlled at 30 

±0.02 °C.  All liquid solutions were degassed for 30 min using an ultra-sonicator (Cole-

Parmer 8890, IL) prior to injection into the flow cell.  When enzyme solutions 

(concentration as indicated) were injected (0.2 ml min-1) into the QCM flow module 

containing the cellulose thin films, both cellulase binding and cellulose hydrolysis were 

monitored simultaneously.  The change in oscillation frequency and dissipation energy 

was recorded throughout the experiment.  When the frequency signal and dissipation had 

no significant change (< 2 Hz h-1), the injection solution was switched to acetate buffer to 

rinse and remove any remaining hydrolysate on the sensor surface.   

6.3.5 Model fitting and error analysis. To verify the proposed kinetic model (see below), 

the experimentally measured frequency change was fitted to the modeled frequency by 

nonlinear regression using the lsqcurvefit function in Matlab. The rate parameters in the 

model k1, k-1, k2, n, α0, ST, A, and B were estimated as explained in the Results section. 

The confidence intervals (95%) of the fitted parameters were determined using the 

nlparci function in Matlab and standard errors are reported. 

6.4 Kinetic Model 

The objective was to develop a kinetic model appropriate to cellulase enzymes on 

model cellulose thin films measured by QCM-D [96, 172]. The frequency change 

response by QCM-D is assumed to be proportional to the responses due to the 

concentration of bound enzyme-substrate complex (ES) and the amount of cellulose 
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substrate (S) present on the quartz sensor surface. Therefore, the frequency change (Δf) 

can be represented by Equation (1): 

∆𝑓𝑓 =  −A[𝐸𝐸𝐸𝐸]�����
𝐸𝐸𝑛𝑛𝑧𝑧𝐸𝐸𝐸𝐸𝑒𝑒 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑟𝑟𝑝𝑝𝑎𝑎𝑖𝑖𝑐𝑐𝑛𝑛

+ B([𝐸𝐸𝑇𝑇]0 − [𝐸𝐸𝑇𝑇])�����������
𝐻𝐻𝐸𝐸𝑎𝑎𝑟𝑟𝑐𝑐𝐻𝐻𝐸𝐸𝑐𝑐𝑖𝑖𝑐𝑐

   (6.1) 

where, A and B are constants representing the frequency response to enzyme and 

cellulose units on the surface, respectively; [ES] is the concentration of cellulose-bound 

enzyme on the sensor; [ST]0 is the initial total concentration of cellulose on the sensor; 

and [ST] is the total concentration on the sensor at a given time. Equation (1) is used to 

link the experimentally observed frequency changes to the changes in individual species 

at the sensor surface based on the model discussed below. 

In spite of the heterogeneous nature of the enzymatic hydrolysis of cellulose, 

traditional Michaelis-Menten kinetic schemes coupled with a Langmuir adsorption model 

(given by Equation 2) are a reasonable starting point and have been used to explain the 

kinetics of cellulose hydrolysis in bulk systems [251].  

𝐸𝐸 + 𝐸𝐸 
𝑘𝑘1
𝑘𝑘−1�⃖����⃗

 𝐸𝐸𝐸𝐸
𝑘𝑘2→  𝐸𝐸 + 𝑃𝑃   (6.2) 

However, for heterogeneous systems the classical chemical kinetics assumption of 

all substrate being accessible at all times to enzymes is not valid. Most models represent 

cellulase adsorption onto cellulose using a Langmuir equilibrium equation [252, 253], 

though the implicit assumptions of uniform binding sites and no interactions between 

adsorbing molecules are not consistent with experimental observations from the complex 

interaction between the enzyme and the substrate [244]. Based on the structure of 

cellulases and binding modes for adsorption, the binding capacity and distribution 

coefficients were evaluated using the Hill isotherm [254] 
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       𝛥𝛥𝑓𝑓𝑏𝑏 =  
𝛥𝛥𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚

𝑑𝑑𝑑𝑑𝑠𝑠 ∗𝐸𝐸𝑓𝑓
𝑛𝑛

�𝐾𝐾𝑑𝑑𝑑𝑑
−1+𝐸𝐸𝑓𝑓

𝑛𝑛�
   (6.3) 

where 𝛥𝛥𝑓𝑓𝐸𝐸𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑐𝑐  represents the adsorption capacity (in Hz), Δfb is the frequency change due 

to bound enzyme (Hz), Ef is the free enzyme concentration (µM), Kad is the apparent 

association constant and n is a cooperativity parameter. 

In the current proposed model, unlike the traditional enzyme kinetic scheme in 

which the enzyme (E) binds to the substrate (S) to form a substrate-bound enzyme (ES), 

and the enzyme is recovered after the product (P) is formed, the kinetic model is 

developed based on the processive mechanism of cellulase enzymes. Several cellulase 

components form a cellulase cocktail which synergistically hydrolyses cellulosic 

substrates, and the nature of the cellulolytic enzyme system employed determines the 

mode of action of cellulase, activity of each enzyme component, and synergistic action 

among the enzyme components [173]. As it is difficult to distinguish the function of each 

component by QCM, the cellulase system is assumed to have a single combined activity 

in the hydrolysis of cellulose and is represented as a single enzyme (E). Because 80% of 

the cellulase consistent of processive enzymes, the model is developed based on current 

theoretical understanding of processive cellulase action: first, the enzyme (E) binds to the 

unoccupied cellulose substrate (S) to form a productive enzyme substrate complex (ES), 

where the enzyme is threaded with the cellulose chain and completes catalytic cycles 

releasing the product (P) until eventually the complex dissociates. The binding scheme 

may be reversible for the formation and dissociation of complex ES.   

An important distinction of the model proposed here is that rather than assuming 

that the substrate is easily accessible and that all sites are always available for binding 

and reaction, the cellulose substrate is considered to consist of interior and exterior 
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accessible surfaces with only a portion of cellulose substrate being accessible to enzymes 

at a given time and gradually exposed as hydrolysis proceeds. The interfacial surface sites 

concentration is given by Si. The surface concentration of cellulose is modeled to change 

with time as the hydrolysis progresses.  As layers of substrate are solubilized, the reaction 

interface moves towards the inside of the substrate, new surface is exposed, and the total 

substrate concentration is reduced. Translation of this reaction scheme is presented in 

equations 6.4, 6.5 and 6.6 and the instantaneous concentration of available substrate (S) 

for enzyme binding is given by substrate balance at the interface in equation 6.7.  

   𝐸𝐸 + 𝐸𝐸 
𝑘𝑘1
𝑘𝑘−1�⃖����⃗

 𝐸𝐸𝐸𝐸                 (6.4) 

 𝐸𝐸𝐸𝐸 
𝑘𝑘2→  𝐸𝐸𝐸𝐸 + 𝑃𝑃 − 𝐸𝐸𝑖𝑖   (6.5) 

𝐸𝐸𝑏𝑏𝑏𝑏𝐻𝐻𝑘𝑘  →  𝐸𝐸𝑖𝑖    (6.6) 

[𝐸𝐸𝑖𝑖] =  [S] + [𝐸𝐸𝐸𝐸]              (6.7) 

This reaction scheme leads to differential equations for enzyme-bound and total 

interfacial sites (equations 6.8 and 6.9) where enzyme adsorption on the cellulose surface 

is described by a reaction with apparent order n.   

d[ES]
dt

= k1[E]𝑛𝑛[S] −  k−1[ES]   (6.8) 

d[𝑆𝑆𝑑𝑑]
dt

= −k2 ∗ [𝐸𝐸𝐸𝐸] + rate of  exposure  (6.9) 

Assuming that the cellulose fibers are cylindrical in shape, the rate of exposure of the 
new surface accessible sites from bulk is given by equation 6.10 (for the derivation see 
Appendix I) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒 = k2 ∗ �1 − [𝑆𝑆𝑑𝑑]
[𝑆𝑆𝑇𝑇]�

1
2� ∗ [𝐸𝐸𝐸𝐸]  (6.10) 
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 As the total cellulose substrate is considered to consist of interfacial and bulk sites 

(i.e., ST = Si+ Sb), the initial proportion of interfacial substrate to the total substrate 

concentration, α0, is defined by equation 6.11 and the conversion of the total substrate at 

any time ‘t’ is given by equation 6.12. 

𝛼𝛼0 = �𝑆𝑆𝑑𝑑,0
𝑆𝑆𝑇𝑇,0

�             (6.11) 

𝑋𝑋𝑇𝑇 =  ��𝑆𝑆𝑇𝑇,0�−(𝑆𝑆𝑇𝑇)�
�𝑆𝑆𝑇𝑇,0�

           (6.12) 

6.5 Results and Discussion 

The as-prepared cellulose films were characterized using ellipsometry to 

determine their thickness. They exhibited a thickness of 51±1 nm and refractive index 

varying from 1.45 to 1.6 over a wavelength range of 370 – 1000 nm.  An AFM image of 

the spin coated cellulose film deposited is displayed in Figure 6.1. The films consisted of 

aggregates of cellulose fibrils deposited on the flat sensor surface. The rms surface 

roughness of the films was estimated from the AFM image to be about 7.7 ± 0.5 nm. The 

cellulose films were found to be non-uniform and the sizes of the cellulose domains 

suggest that they are agglomerates of cellulose fibrils and not individual fibrils. 

Incomplete coverage of the surface by cellulose is most likely due to the low 

concentration of the cellulose solutions (0.5 wt% cellulose) from which the films are 

deposited. Cellulose thin films deposited using a similar procedure were reported to have 

an average roughness of 5 nm and thickness in the range of 20-270 nm controlled by 

changing the concentration of cellulose solution, [168] which is consistent with the 

results obtained in this study. 
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QCM-D measurements were performed to study the hydrolysis of the model 

cellulose surfaces by a commonly used enzyme cocktail derived from Trichoderma 

reesei. After equilibrating the sensor in the chamber with flowing acetate buffer (pH 5) at 

30 °C, the change in frequency with time was measured when a cellulase solution (1.7 

µM concentration, diluted in 0.1 M acetate buffer, pH 5) was introduced into the QCM-D 

chamber.  Figure 6.2 shows the frequency profile for this representative case that reflects 

changes due to enzyme adsorption onto the cellulose surface followed by the hydrolysis 

of the cellulose thin film. Initially, a decrease in frequency (increase in mass) was 

observed as the cellulases adsorbed to and complexed with the cellulose surface followed 

by an increase in frequency (decrease in mass) indicating hydrolysis of the substrate. 

Enzyme adsorption and hydrolysis occurs simultaneously, and the change in the 

frequency curve after reaching a minimum (ΔF = -23 Hz) indicates that point at which the 

rate of adsorption on the cellulose surface was surpassed by the rate of mass change due 

to the hydrolytic reaction. As hydrolysis proceeded, the slope of the frequency curve 

slowly decreased, and eventually flattened, suggesting that the thin film surface remains 

unchanged due to substrate depletion. Similar qualitative results were presented by Turon 

et al.[98]. 

To determine the maximum cellulase adsorption capacity on the model cellulose 

surface, adsorption of inactivated cellulases on cellulose was studied using QCM-D. 

Figure 6.3a displays the frequency response during adsorption of cellulase under 

inhibition by 5 g/L cellobiose at cellulase concentrations of 0.34 µM to 34 µM in acetate 

buffer. The kinetics of the inactive cellulase adsorption was found to be very similar for 

all cellulase concentrations studied and attained equilibrium within 60 min. Upon 
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introduction of the inactive cellulase onto cellulose surface a fast initial frequency drop 

followed by a slow change was observed.  This pattern suggests initial direct binding of 

enzymes to the cellulose surface followed by additional binding (frequency decrease) due 

to multilayer adsorption or clustering of cellulases on the cellulose surface. The 

disspation (ΔD) vs. time plot (Figure 6.3b), showed a sharp increase in energy dissipation 

during the initial cellulase binding that ended with a plateau.  Subsequently, an inflection 

was observed associated with an accelerated increase in ∆D, indicating structural changes 

on the cellulose surface due to cellulose clustering.  

The dissipation value is roughly related to the viscosity of the adsorbed layer and 

is caused by a combination of protein adsorption and hydration of the cellulose thin film. 

The hydrolysis rate depends on the concentration of enzyme substrate complex formed by 

direct binding of cellulase; therefore the amount of enzyme adsorbed was quantified 

using the frequency change during the initial adsorption phase. The change in frequency 

profile before the acceleration in dissipation increase and deceleration in frequency 

change due to the effects of clustering and hydration was used as a criterion to determine 

the initial adsorption phase. The time frame with this initial stage (~15-30 min) is also 

more consistent with the time scale for the adsorption stage of the experiments with 

active cellulase than the complete timescale required for clustered cellulase binding in 

Figure 6.3b. The magnitude of frequency was measured at the end of this stage to 

quantify the enzyme binding.  Hill’s equation was fit to the data to obtain the 

cooperativity parameter and maximum cellulase adsorption capacity on the cellulose 

surface. Figure 6.4 shows cellulase adsorption as a function of cellulase concentration in 

solution. The dotted line shows the fit using Hill’s model (R2 = 0.97) and the maximum 
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adsorption capacity 𝛥𝛥𝑓𝑓𝐸𝐸𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑐𝑐
 was determined to be 64.5 Hz. The cooperativity parameter n 

providing the best fit to the data was determined to be 0.49, indicating negative 

cooperativity on binding which suggests the occurrence of steric hindrance effects among 

the cellulases on cellulose surfaces. Negative cooperativity in enzyme binding was also 

reported for adsorption studies of CBH I and CBH II and cellulose binding domains from 

Trichoderma reesei on cellulose [254, 255]. 

Figure 6.5 shows the frequency response measured using QCM-D on cellulose 

surfaces with variable cellulase concentrations of 0.34 µM to 34 µM.  Quantitatively, a 

larger reduction in the initial frequency drop (ΔF = -20 to -35 Hz) was observed with 

increasing cellulase concentration suggesting adsorption of more cellulase on surfaces 

with comparable site concentrations. After the minimum value was reached the frequency 

started to increase at a steady rate after a short ramp up period and the slope of the linear 

region yielded the initial hydrolysis rate (illustrated by the dashed line in Figure 6.2).  

From Figure 6.5, the least amount of enzyme adsorption and the lowest hydrolysis rate 

occurred at the lowest enzyme concentration of 0.34 µM. However, with increasing 

enzyme concentration more complex effects on the QCM-D frequency response were 

observed with respect to hydrolysis and extent of reaction (corresponding to the 

maximum in the frequency response). 

Figure 6.6 displays the measured initial hydrolysis rate as a function of cellulase 

concentration. The hydrolysis rate increases with the cellulase concentration until a 

plateau is reached at 3.4 μM cellulase. These QCM-D results are in good agreement with 

the findings of cellulase adsorption and degradation of cellulose films reported previously 
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by Maurer et al. [248] and Eriksson et al. [99] , where the hydrolysis rates showed a 

strong dependence on the cellulase concentration at low to intermediate concentrations, 

but displayed a tendency to level off at higher cellulase concentrations. This suggests that 

at high cellulase concentrations the enzyme loaded onto the surface fully cover the 

available adsorption sites and the apparent hydrolysis rate reaches a maximum level. 

However, the observed frequency response trends reflect a combination of enzyme 

adsorption and hydrolysis events, and the overall conversion is strongly influenced by the 

cellulase and substrate concentrations. Therefore, the data was fit to the kinetic model 

developed to interpret the raw QCM-D data. 

The effect of cellulase concentration on the hydrolysis of cellulose was initially 

modeled using Michaelis-Menten kinetics as represented by equation 6.2, assuming all 

the substrate is fully accessible for binding and hydrolysis, and enzyme is released after 

hydrolysis. The kinetic model was fit to 90% of the extent of reaction (estimated from the 

maximum in frequency measured) to avoid a large effect on fitting due to the flat 

frequency profile at the end of each measurement. The model parameters were 

determined by fitting the experimental frequency response data. From the preliminary 

evaluation it was found that MM kinetic model showed deviations between the model 

prediction and experimental frequency, and also coupling between the model parameters 

was observed resulting in large uncertainties (fitting plots and fitted model parameters are 

shown in Figure S6.1 and Table S 6.1 (Appendix VI). The best-fit MM kinetic model 

frequency profiles showed a linear increase in frequency suggesting a constant 

degradation rate of cellulose at the lower enzyme concentrations, and low conversions of 

cellulose were predicted over the course of the experiments.  
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The amount of surface bound cellulases has been shown to be directly correlated to 

cellulose hydrolysis  [79, 256], but the role of cellulose structure on cellulase activity is 

not clear. Therefore, a model based on the processive cellulase kinetics and the role of 

cellulose structure on the relationship between cellulase binding and activity detailed in 

the Model Development section was fitted to explain the results obtained in Figure 6.5, 

and to determine the model parameters for cellulose hydrolysis. In order to capture and 

understand the qualitative characteristics of cellulase binding, the parameters that affect 

binding were evaluated independently of cellulose degradation. To capture the adsorption 

kinetics accurately at various cellulase concentrations, the frequency response data during 

the initial adsorption and hydrolysis period were analyzed to obtain the 

adsorption/desorption rate constants (k1 and k-1). Thus, only data at short exposure times 

(t < 10 min) during which cellulase adsorption and initial degradation occur (the linear 

initial region of QCM response) were used to determine the sorption kinetics from the 

experiments without inhibitor.  It should be noted that while some enzymatic hydrolysis 

may occur during the initial adsorption period, the adsorption rate is much greater than 

the hydrolysis rate. It was assumed that the surface concentration of available cellulose 

binding sites was constant during short exposure times, and the value of the parameter A 

associated with the frequency change due to enzyme adsorption was fixed to the 

maximum adsorption capacity obtained from the adsorption isotherm of inhibited enzyme 

(64.45 Hz). The order of the reaction (n) with respect to enzyme concentration was fitted, 

as opposed to first order assumed in MM kinetics. From the fit of the initial kinetic data 

the adsorption rate parameters were determined to be k1 = 2.88 ± 0.03 (mM-n min-1), k-1 = 

0.88 ± 0.01(min-1) and n = 0.22 (Fitting of the initial hydrolysis data shown in Figure 
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S6.2 (Appendix VI)). The value of n from this kinetic analysis (0.22) was observed to be 

less than the value of n obtained from the adsorption isotherm (0.49). A comparison of 

adsorption isotherm with parameters obtained from initial adsorption kinetics, Hill’s 

isotherm fit and experimental data for inhibited enzyme are shown in Figure S6.3 

(Appendix VI). It was observed that the predicted results from the initial adsorption 

kinetics do not match the adsorption model that was fitted independent of the kinetic 

experiments. The differences in the adsorption isotherm fittings may be due to the 

differences in the binding characteristics of the active and inactive enzymes.  

Using the initial adsorption kinetic rate parameters (k1, k-1, and A) the complete 

frequency response data was fitted to determine the hydrolysis rate constant (k2) and the 

other model parameters (B, ST0 and α0). In this study, the amount of cellulose coated on 

the sensor surface (ST0) was an unknown quantity and was estimated as a fitted parameter 

in the model, but was assumed to be constant for all the films.  The cellulose substrates 

are typically deposited in the form of fibrils having both interior and exterior accessible 

surfaces with only a portion of cellulose substrate being accessible to enzymes at a given 

time and thus resulting in exposure of interior surface as the hydrolysis proceeds. In the 

proposed model it is considered that the cellulose substrate consists of interfacial surface 

and bulk sites, and the fraction of total binding sites accessible initially (α0) was allowed 

to vary for each experiment as a fitting parameter. It is assumed that the cellulose fibrils 

cylindrical in structure and bulk sites are gradually exposed as hydrolysis proceeds. The 

frequency response data for five different cellulase concentrations was fitted to the 

proposed model equations (6.1, 6.8-6.11) and the parameters were obtained.  
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Figure 6.7 shows the fitting the surface kinetic model to the experimental frequency response. 

The proposed model shows excellent agreement with the experimental data for both adsorption 

and hydrolysis with varying cellulase concentrations. The estimated model parameters are 

summarized in Table 6.1. The total initial substrate concentration was found to be 2.81 and the 

values of α0 varied between 0.33 and 0.39 which indicate the initial accessible surface site 

concentration.  Variation in the value of α0 reflects random variation in initial accessibility of 

cellulose in different coatings. The hydrolysis rate constant (k2) was determined to be 0.219 ± 

0.001 min-1. Luterbacher et al. [257] developed a kinetic model based on the fluorescence 

intensity signal to model the depolymerization of bacterial microcrystalline cellulose immobilized 

on a glass surface using the β-glucosidase supplemented cellulase cocktail from T. reesei.  Three 

models based on irreversible, reversible and instantaneous binding gave hydrolysis rate constant 

of k2 = 0.068 ± 0.019 min-1.  Maurer et al. [248] developed a modified Langmuir-Michaelis-

Menten model based on a pseudo steady state approximation for cellulose hydrolysis and found 

the hydrolysis rate coefficient to be 0.57 ± 0.08 s-1. Comparing the results of the rate parameters 

obtained in this work to those in literature is difficult since cellulose enzyme behavior is expected 

to be specific to the type of substrate, cellulose preparation or pretreatment, and modeling 

approach used. However, the proposed model gives reasonable agreement in order of magnitude 

with prior kinetic studies and provides insights into the nature of enzyme substrate interactions 

and substrate changes occurring during the hydrolysis reaction. Earlier kinetic models in 

literature reported capture the progression of enzymatic hydrolysis of cellulose in the 

initial stages of hydrolysis, but fail to model later stages of the hydrolysis process. The 

modeling approach presented in this work extended the hydrolysis model to capture the 

kinetics to a near completion state and account for substrate morphology 

heterogeneity.Figure 6.8 shows the change in concentrations of ES, Si and ST determined from 

the rate equations with respect to time predicted with the optimal coefficients in Table 6.1.  The 
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ES complex concentration initially increased due to binding of cellulase enzymes onto the 

cellulose surface and then decreased continuously as substrate availability decreased due to 

hydrolysis.  It can also be seen that the magnitude of the concentration of ES complex formed 

increased with increase in cellulase concentration. The frequency profiles show a slow-down in 

the hydrolysis rates. The decline in hydrolysis rate has been observed in bulk studies and has been 

attributed to loss of enzyme activity due to inactivation or due to inhibition by hydrolysis 

products (cellobiose/glucose) [237, 244]. In the current model neither inactivation nor inhibition 

is modeled, but the model fits the experimentally measured frequency profile. Thus, the slow-

down in hydrolysis may be expected as a result of factors such as declining in substrate reactivity 

caused by substrate heterogeneity or a decline in the surface area available for hydrolysis.  

To explain the changes occurring in substrate concentrations, conversion defined 

based on the substrate depletion (equation 6.12) was plotted as a function of time in 

Figure 6.9 for the cellulase concentrations studied. The conversion of cellulose was found 

to increase with cellulase concentration but decreasing benefits from increasing the 

cellulase concentration were found, suggesting an optimum exists  (17 µM) for making 

effective use of added cellulase. The conversion rate was initially fast and showed a slow 

down at longer duration due to substrate depletion. It was also observed that initially the 

conversion of substrate starts off at the same rate for all cellulase concentrations and as 

hydrolysis proceeds the conversion rate increased for high cellulase concentration before 

slowing down due to substrate depletion was seen. However, the level of details needed 

to explain such trends in conversion are not clear from the data but based on the mode of 

action of cellulase enzymes on cellulose surface it can be speculated that the slower 

conversion at low cellulase concentration might be limited by substrate availability to the 

enzymes.  
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The proposed model is considered not fully comprehensive in respect to lacking 

consideration of the synergistic actions of single enzyme components.  Attempting to 

develop such a model was not justified by the level of information available with QCM-D 

data using a cellulase cocktail, although the cocktail is highly relevant to the practice of 

enzymatic hydrolysis and typical of what has been used for bulk experiments. Capturing 

this synergy with a more elaborate kinetic model would require a large set of kinetic 

experiments with purified cellulase enzymes and mixtures of cellulase enzymes.  

Nonetheless, the model developed in this work has been used successfully to fit the 

kinetics of cellulose degradation by considering the gradual generation of enzyme-

accessible cellulose by cellulase action on a cylindrical particle comprised of cellulose 

chains.  The model predicts that hydrolysis kinetics is strongly dependent on the initial 

substrate accessibility. This demonstrates that kinetic models constructed on the basis of 

QCM-D measurements can be useful in guiding the development of cellulase cocktails by 

improving our understanding of the key mechanisms and rate limiting steps that occur 

during cellulose degradation. An improved understanding of the cellulose degradation 

process can be achieved by incorporating solution kinetics, product inhibition and 

cooperative enzyme hydrolysis.  

6.6 Conclusions 

Model cellulose films were produced by spin coating using NMMO as solvent, 

and consistent with prior studies were found to partially cover gold QCM sensor surfaces 

with agglomerates of cellulose particles [168]. These films appeared to be composed of 

cellulose fibrils and were used to investigate the adsorption of cellulases and enzymatic 
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degradation of cellulose. The binding of cellobiose-inactivated cellulases on cellulose 

followed Hill’s adsorption isotherm. Negative cooperativity (n = 0.49) on cellulase 

binding was determined suggesting steric hindrance effects among the cellulases on 

cellulose surface. The hydrolysis rate measured from the slope of the experimental QCM-

D frequency curves showed strong dependence on the enzyme concentration with 

hydrolysis rate reaching a maximum at higher enzyme concentrations. Fitting a simple 

Langmuir-Michaelis-Menten kinetic model based on the assumption that all the substrate 

was accessible and that the enzyme was released after product formation was not 

successful due to both poor fitting and large uncertainties in the model parameters.  

Therefore, a surface based kinetic model for hydrolysis of cellulose was developed 

describing the adsorption, desorption and processive action of cellulases. When the 

generation of new interfacial enzyme-accessible cellulose surface sites from bulk sites 

during hydrolysis was considered and represented by a rate of exposure term in the 

kinetic model, the model achieved good agreement with the experimental data for all 

cellulase concentrations. Using the surface kinetic model, the dynamic behavior of 

enzyme-substrate complexes and the change in cellulose concentration during hydrolysis 

was captured using a first-order hydrolysis rate constant of k2 = 0.219 ± 0.001 min-1.  The 

order of magnitude of this coefficient agrees with prior bulk and QCM-D studies, but this 

kinetic model shows the importance of capturing the exposure of new accessible cellulose 

due to hydrolysis activity over the course of a saccharification experiment.  The 

conversion of cellulose at a given time after enzyme introduction was found to increase 

with cellulase concentration but the increase in conversion was not proportional to the 

cellulase concentration suggesting an optimum exists for most effective utilization of 
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cellulase (17 µM) in this study. The current model provides a framework for further 

developments to investigate and elucidate the details of cellulase-cellulose interactions 

including synergistic action of single enzymes, product inhibition and structural 

heterogeneities within the substrate that play a significant role on the hydrolysis rate. 
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6.7 Figures and Tables 
 

 

Figure 6.1 Tapping mode atomic force microscopy topography image of a representative 
cellulose film on the gold surface of a QCM sensor 

 

 

Figure 6.2 Representative QCM-D frequency profile during cellulose hydrolysis with a 
1.7 µM cellulase solution at pH 5 and 30 °C. The dashes line illustrates the determination 
of initial hydrolysis rate as the maximum in the frequency change after the minimum in 

frequency is observed. 
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Figure 6.3 (a) Frequency profiles and (b) dissipation profiles during the binding of 
inactivated cellulase onto cellulose films at 25 °C measured by QCM-D.  Hydrolysis 
activity was completely inhibited in all solutions by addition of 5 g/L of cellobiose. 
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Figure 6.4 Adsorption isotherm of inactivated T. reesei cellulases on model cellulose 
surfaces at 25 °C. along with fitting of Hill’s adsorption model (dashed curve) to the 

experimental data (♦). 

 

 

Figure 6.5 QCM-D frequency profile during cellulose film hydrolysis at indicated 
cellulase concentrations from 0.34 µM to 34 µM. The results for the third overtone are 

shown for experiments performed at pH 5 and 30 °C. 
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Figure 6.6 Initial hydrolysis rate of cellulose thin film determined directly from the 
experimental QCM-D frequency profiles in Figure 6.5 at different cellulase 

concentrations. 

 

 

 

Figure 6.7 Fitting of the modified Michaelis-Menten kinetic model with accessible sites 
generated by hydrolysis (dotted curves) to experimental frequency response QCM-D data 
(solid curves). The results for the third overtone are shown for experiments performed at 

pH 5 and 30 °C. 
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Figure 6.8 Predicted concentration profiles of intermediate enzyme substrate complex 
(ES), total interfacial sites (Si), and total cellulose (ST). 

 

Figure 6.9 Cellulose conversion vs. time as a function of cellulase concentration 
calculated using the modified Michaelis-Menten model with parameters in Table 6.1. 
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Table 6.1 Parameter values obtained by fitting the experimental data to model (The error 
value is the uncertainty of that parameter determined using a 95% confidence interval). 

Parameter Value 
k1 (mM-n min-1) 2.88 ± 0.03 
k 1 (min-1) 0.88 ± 0.01 
k2 (min-1) 0.219 ± 0.001 
ST0 (SU) 2.81 ±   0.021 
A (Hz SU-1) 64.5 
B (Hz SU-1) 66.4 ± 1.86 
α1,0 (0.34 µM) 0.362 ± 0.003 
α2,0 (1.7 µM) 0.335 ± 0.004 
α3,0 (3.4 µM) 0.351 ± 0.003 
α4,0 (17 µM) 0.385 ± 0.002 
α5,0 (34 µM) 0.392 ± 0.002 
n 0.22 

SU - Substrate units 
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CHAPTER 7 

CONCLUSIONS 

Understanding and overcoming the barriers to efficient enzymatic hydrolysis of 

lignocellulosic biomass is essential for the development of economically competitive 

processes. The effects of process parameters including pretreatment, source of 

lignocellulose and exposure to additives are not fully understood and so developing a 

universal strategy for saccharification remains a goal in this field. The current work 

investigated several aspects associated with the conversion of cellulose, including 

binding and activity of cellulases, effect of nonionic surfactants and the development of a 

kinetic model for the hydrolysis of cellulose.  Substrate properties have been speculated 

to be the limiting factor in hydrolysis of cellulose, model cellulose films (deposited using 

NMMO, LiCl and from a dispersion of cellulose nanocrystals, CNC) with different 

morphology and crystallinity were used to investigate the enzymatic hydrolysis cellulose 

substrates using QCM-D. In addition to the experimental studies, the hydrolysis was also 

approached from the modeling point of view.  A mechanistic model coupling enzyme 

binding and hydrolysis with exposure of bulk sites from embedded cellulose was 

developed to study the effect of cellulose structure on hydrolysis rate. The experimental 

results showed that the hydrolysis rate of CNC films was much slower despite a 

hypothesized high level of accessible surface area for enzyme binding compared with 

NMMO and LiCl films. The hydrolysis rate constant obtained from modeling for 

amorphous LiCl-derived films was larger than for type II crystalline NMMO-derived 

films, and much larger than for CNC films. The study of the effect enzyme concentration 
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on adsorption and enzymatic degradation of cellulose on type II crystalline NMMO 

cellulose films showed a strong dependence on the adsorbed enzyme concentration, with 

hydrolysis rates increasing as the cellulase concentration increased at low to intermediate 

concentrations, but displayed a tendency to level off at higher cellulase concentrations. 

The model developed predicted the complete hydrolysis kinetics at initial and later stage 

of hydrolysis over wide range of cellulase concentrations.  

This approach of coupling experimental methods with mechanistic modeling not 

only provide insights on enzyme activity, understanding of the underlying mechanism 

and the nature of enzyme-substrate interaction but is also more likely to be capable of 

moving backwards from understanding binding to understanding how to best pretreat 

biomass for effective hydrolysis.  The current study results demonstrated that while 

accessibility to cellulase is certainly important, the crystallinity of the films plays a 

greater role in determining enzyme hydrolysis rate suggesting effective pretreatment 

strategies would be expected to be those able both to increase accessibility and reduce 

crystallinity of cellulose. In addition, the modeling approach presented in this work opens 

up new perspectives to explore many hypothesized causes of kinetic slowdown in the 

cellulosic hydrolysis process such as product inhibition and enzyme inactivation which 

are commonly experienced in industrial applications. 

 

This dissertation work also investigated experimental methods to directly 

determine how cellulase enzymes interact with biomass components in presence of non-

ionic surfactants. The results showed that cellulase binding decreased in the presence of 
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non-ionic surfactant Tween-80 on both NMMO and LiCl cellulose films. However, the 

hydrolysis rate was observed to decrease for NMMO cellulose films due to Twen-80 

addition while no significant effect was observed on the hydrolysis of LiCl/DMAc 

cellulose films.  

The studies on cellulase enzyme-lignin interactions in the presence of non-ionic 

surfactant Tween-80 showed that adsorption of cellulase on lignin was strong and 

irreversible, while Tween-80 adsorption was partially reversible. Coadsorption of 

cellulase and Tween-80 reduced the material adsorbed upon adsorption. Tween-80 also 

reduced bound cellulase by both displacement from lignin and pre-adsorption.  The 

results also suggested that introducing enough Tween-80 to give monolayer coverage is 

adequate to reduce cellulase binding to displace cellulase from the lignin surface. The 

results obtained from this work showed definitively using direct in situ kinetic 

measurements that control of nonproductive binding of enzymes will contribute to reduce 

required cellulase dosage.  This approach also acts as a tool to move backwards from 

understanding binding to understanding how to best pretreat biomass to favor the 

appropriate surface for controlled binding. Based on these findings it can be suggested 

that additives such as Tween-80 do not directly enhance hydrolysis, but may be beneficial 

under real hydrolysis conditions (where a limited concentration of enzyme is present to 

partition between the solution and cellulose surface) by helping to desorb and redistribute 

cellulases which in turn maximize hydrolysis activity. 

 The studies on effects of surfactant-cellulose/lignin interactions suggested that 

the positive effect of Tween-80 is most likely due to the binding of surfactants to the 
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lignin surface of lignocellulose and hence reduction in the inhibitory effects of lignin. 

Although QCM-D measurements suggested that Tween-80 can not only reduce cellulase 

binding but can also displace bound cellulases on lignin, quantifying the amount of 

cellulase displaced was indirect with QCM-D as it measures the net change in frequency 

due to mass adsorbed and desorbed on the sensor. In the future, further experiments with 

quantification of the cellulase adsorbed on the lignin surface would be beneficial to 

confirm the ability of surfactants to prevent binding of and displace cellulases.  For this, 

X-ray photoelectron spectroscopy (XPS) can be used as an analytical technique. XPS has 

been used to analyze and quantify the surface chemical composition of thin films. From 

the binding energy and intensity of a photoelectron peak, the elemental identity, chemical 

state, and quantity of an element are determined. Lignin and non-ionic surfactant Tween-

80 do not contain nitrogen, whereas nitrogen is intrinsic in the amino acids of proteins 

such as cellulase enzymes. The nitrogen in the enzymes structure enables the study of the 

adsorption of cellulase by XPS. High resolution scans of the N(1s) region (BE ∼400 eV) 

can be used to determine the nitrogen content and used as a means of characterizing the 

relative amount of cellulase on lignin as a function of Tween-80 concentration. From the 

XPS data, the reduction in adsorption of cellulase to lignin in the presence of Tween-80 

and the ability of Tween-80 to displace adsorbed cellulase can be quantified to confirm 

the conclusions of the QCM-D measurements. 
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APPENDIX I 
 

Cellulose fibril based enzyme hydrolysis kinetic model - derivation of rate of exposure 

Let R be the radius of the cellulose microfibril, Ro be the radius of interfacial cellulose 
layer, L be length of the cylinder and ρ be the density of cellulose. Then  
Total volume of cellulose ST= πρR2L 

Volume of interfacial layer Si = 2πL∫ RdR =R
R−Ro

2πL �R
2

2
�
R−Ro

R
 

= 2πL �
R2 − (R − Ro)2

2 � 

Mass of interfacial layer Si  =  πρL[R2 − (R − Ro)2] =  πρL�2RRo − Ro
2� 

As the hydrolysis progress, the change in interfacial mass is due to the rate of exposure of 
new surface sites and change in total cellulose mass [92]. 

d[Si]
dt

=
d[ST]

dt
+ rate of  exposure 

ST =  πρR2L                                            
d[ST]

dt
=  2πρLR

dR
dt

 

Si  =  πρL�2RRo − Ro
2�                         

d[Si]
dt

=  2πρLRo
dR
dt

 

2πρRoL
dR
dt

= 2πρRL
dR
dt

+ rate of  exposure 

rate of  exposure = 2πρL(Ro − R)
dR
dt

 

  
d[ST]

dt
=  2πρLR

dR
dt

 

rate of  exposure = (
Ro − R

R
) ∗

d[ST]
dt

 

rate of  exposure = (
Ro

R
− 1) ∗

d[ST]
dt

 

rate of  exposure = −(1 −
Ro

R
) ∗

d[ST]
dt

 

ST =  πρR2L 
Si  =  πρL�2RRo − Ro

2� 
Si
ST

 =  
πρL[R2 − (R − Ro)2]

πρR2L
 

Si
ST

= 1 − �1 −
Ro

R �
2
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�1 −
Ro

R � =  �1 −
Si
ST
�
1/2

 

 
Rate of change of cellulose mass due to hydrolysis 

d[ST]
dt

= −k2ES 

rate of  exposure = k2 ∗ �1 −
Si
ST
�
1
2�

∗ ES 
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APPENDIX II 
 

Cellulose nanocrystal network hydrolysis model – derivation of rate of exposure 

Cellulose film is considered to be made of porous network of cellulose nanocrystals with 
pores of radius ‘r’, length ‘l’ and number of particles per unit volume of film (n/m3) be Np 

Surface area of particles per volume of film (m2/m3) 𝐴𝐴𝑟𝑟𝑒𝑒𝑟𝑟 =   𝑁𝑁𝑝𝑝2𝜋𝜋𝑟𝑟𝜋𝜋 

Surface density of cellulose, (g of cellobiose units/ m2) 𝜌𝜌𝑐𝑐𝑏𝑏𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑒𝑒 

Surface site concentration of cellulose Si (g/ m3) 𝐸𝐸𝑖𝑖 =   𝜌𝜌𝑐𝑐𝑏𝑏𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑒𝑒 ∗ 𝑁𝑁𝑝𝑝2𝜋𝜋𝑟𝑟𝜋𝜋 

Rate of change of surface sites,   𝑎𝑎𝑆𝑆𝑑𝑑
𝑎𝑎𝑎𝑎

=   𝜌𝜌𝑐𝑐𝑏𝑏𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑒𝑒 ∗ 𝑁𝑁𝑝𝑝2𝜋𝜋𝜋𝜋 𝑎𝑎𝑟𝑟
𝑎𝑎𝑎𝑎

 

Bulk density of cellulose film, (g/ m3) 𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒 

Total site concentration ST (g/ m3)  𝐸𝐸𝑇𝑇 =   𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒�𝑁𝑁𝑝𝑝𝜋𝜋𝑟𝑟2𝜋𝜋� 

Rate of change of total concentration,   𝑎𝑎𝑆𝑆𝑇𝑇
𝑎𝑎𝑎𝑎

=   𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒 ∗ 𝑁𝑁𝑝𝑝2𝜋𝜋𝑟𝑟𝜋𝜋 𝑎𝑎𝑟𝑟
𝑎𝑎𝑎𝑎

 

As the hydrolysis progress, the change in interfacial mass is due to the rate of exposure of 
new surface sites and change in total cellulose mass. 

𝑑𝑑[𝐸𝐸𝑖𝑖]
𝑑𝑑𝑟𝑟

=
𝑑𝑑[𝐸𝐸𝑇𝑇]
𝑑𝑑𝑟𝑟

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒 

𝜌𝜌𝑐𝑐𝑏𝑏𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑒𝑒 ∗ 𝑁𝑁𝑝𝑝2𝜋𝜋𝜋𝜋 
𝑑𝑑𝑟𝑟
𝑑𝑑𝑟𝑟

= 𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒 ∗ 𝑁𝑁𝑝𝑝2𝜋𝜋𝑟𝑟𝜋𝜋 
𝑑𝑑𝑟𝑟
𝑑𝑑𝑟𝑟

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓 𝑔𝑔𝑒𝑒𝑛𝑛𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝑛𝑛𝑒𝑒𝑛𝑛 𝑒𝑒𝑖𝑖𝑟𝑟𝑒𝑒𝑒𝑒 

𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒 = 𝑁𝑁𝑝𝑝2𝜋𝜋𝜋𝜋(𝜌𝜌𝑐𝑐𝑏𝑏𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑒𝑒 − 𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟)
𝑑𝑑𝑟𝑟
𝑑𝑑𝑟𝑟

 

Rate of hydrolysis,   𝑎𝑎𝑆𝑆𝑇𝑇
𝑎𝑎𝑎𝑎

=  −𝑘𝑘2𝐸𝐸𝐸𝐸 = 𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒 ∗ 𝑁𝑁𝑝𝑝2𝜋𝜋𝑟𝑟𝜋𝜋 𝑎𝑎𝑟𝑟
𝑎𝑎𝑎𝑎

 

 
𝑑𝑑𝑟𝑟
𝑑𝑑𝑟𝑟

=
−𝑘𝑘2𝐸𝐸𝐸𝐸

𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒 ∗ 𝑁𝑁𝑝𝑝2𝜋𝜋𝑟𝑟𝜋𝜋
  

𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒 𝑜𝑜𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒 = 𝑘𝑘2𝐸𝐸𝐸𝐸 �1 −
𝜌𝜌𝑐𝑐𝑏𝑏𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑒𝑒
𝜌𝜌𝑐𝑐𝑒𝑒𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟

�  
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APPENDIX III 
Supporting information for chapter 3 

 

 

Figure S3.1 Cellulose nanocrystal network model - Model concentration profile of ES 
complex (dashed line), interfacial substrate concentration Si (dotted line) and total 

substrate concentration ST (solid line) for CNC film hydrolysis by cellulase (0.5 %v/v). 

 

Calculation of surface density (ρsurface) 

The 110 lattice plane for monoclinic cellulose dimensions of 0.78 nm and 0.795 nm were 
used for calculation of planar density of cellulose[258] assuming the lattice structure was 
made of cellobiose units. 

 

Figure S3.2 Unit cell structure of cellulose[258]. 
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Surface density = 2(cellobiose unit)/(0.78 nm)*(0.79 nm) = 3.22*1018 cellobiose units/m2 
Surface density = 3.22*1018 cellobiose units/m2* (342.29 g/mole)/6.023*1023 (cellobiose 
units/mole) =182.99*10-5 g/m2
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APPENDIX IV 
Supporting information for chapter 4 

 

Figure S4.1 Plot of frequency change (absolute) with time vs time to determine the 
maximum rate. 

-45

-5

35

75

115

0 10 20 30 40 50 60 70

Fr
eq

ue
nc

y 
ch

an
ge

, Δ
F 

(H
z)

Time (min)

Cellulase

Fmin

Hydrlysis 
rate

Fmax

0

5

10

15

20

25

7 14 21 28

Fr
eq

ue
nc

y 
ch

an
ge

 w
ith

 ti
m

e,
 

dΔ
F 

/d
t

Time (min)

Maximum 
rate

169 
 



 
Figure S4.2 Plot of extent of reaction for co-adsorption, a) NMMO cellulose films and b) 

LiCl/DMAc cellulose films with varying concentration of Tween-80 (0-8 mM). 
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Figure S4. 3 Plot of extent of reaction for sequential adsorption, a) NMMO cellulose 
films and b) LiCl/DMAc cellulose films with varying concentration of Tween-80 (0-8 

mM). 
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APPENDIX V 
Supporting information for chapter 5 

 

 

Figure S5.1. AFM topography image of model lignin thin film prepared by spin coating 
Kraft lignin dispersion onto a PEI-coated gold sensor (1µm × 1µm size with Z scale 

range). 

 

  

Figure S5.2. Stability of lignin films -Frequency change associated with transition from 
air to buffer  

In order to test the stability of the lignin films prepared the frequency change upon 
transition from air to buffer was recorded. It was found that, initially a large drop in 
frequency is observed due to change in the medium and after that no increase in 
frequency was observed, implying that films are not detached from the base substrate and 
stable under the given environment. 
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APPENDIX VI 
Supporting information for chapter 6 

 

Table S6.1. Parameter values obtained by fitting the Michaelis-Menten model  assuming 
all the substrate is fully accessible for binding and hydrolysis, and enzyme is released 

after hydrolysis to experimental data (The error value is the uncertainty of that parameter 
determined using a 95% confidence interval). 

Parameter Value 
k1 (mM min-1) 1.68  ± 5.36 
k 1 (min-1) 0.36  ±  7.3 
k2 (min-1) 2.33  ±  7.36 
A (Hz SU-1) 1805 ± 3513 
B (Hz SU-1) 52.55 ± 175.04 
S(0.34 µM) (SU) 42.62 ± 143.81 
S(01.7 µM) (SU) 15.92 ± 53.68 
S(3.4 µM) (SU) 7.17 ± 24.16 
S(17 µM) (SU) 1.3 ± 2.56 
S(34 µM) (SU) 0.77 ± 4.37 

SU - Substrate units 

 

Figure S6.1. Comparison of experimental frequency response QCM-D data and 
Michaelis-Menten model prediction  assuming all the substrate is fully accessible for 

binding and hydrolysis, and enzyme is released after hydrolysis of cellulose hydrolysis by 
cellulases. Solid line represents the experimental measured frequency; dotted line 

represents the modeled frequency. 
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Figure S6.2. Initial kinetic hydrolysis data fitting. Comparison of experimental frequency 
response data and model prediction of cellulose hydrolysis by cellulases. Solid line 
represents the experimental measured frequency; dotted line represents the modeled 

frequency. 

 

 

Figure S6.3. Adsorption of T. reesei cellulases to model cellulose surface. Comparison of 
Hills model (dashed line), Predicted adsorption from rate parameters obtained from initial 

adsorption kinetics (solid line) and experimental data are shown by symbol (♦). 
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