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ABSTRACT OF DISSERTAION 

FORMULATION AND CHARACTERIZATION OF POLY(β-AMINO ESTER) 
NETWORKS FOR CONTROLLED DELIVERY OF ANTIOXIDANTS IN 

PHARMACEUTICAL APPLICATIONS 

Oxidative stress, which reflects an imbalance between oxidants and endogenous 
antioxidants, is known to be a cause as well as an effect of health conditions such as cancer, 
diabetes, Alzheimer’s disease, Parkinson’s disease and ischemia-reperfusion injury. 
Antioxidants have shown promising results in vitro in controlling oxidative stress. 
However, years of in vitro studies have failed to translate into effective clinical 
interventions for controlling oxidative stress in the disease conditions. This has been due 
to low bioavailability and lower stability of antioxidants. Poly(antioxidant β-amino esters) 
(PABAE) are a recently-developed class of biodegradable polymeric hydrogels that have 
shown promise in their ability to control cellular response and reduce oxidative stress while 
simultaneously enhancing material biocompatibility. In this dissertation, poly(curcumin β-
amino ester) (PCBAE) hydrogels were synthesized and tuned using process parameters for 
the controlled release of curcumin, an antioxidant. 

 Curcumin was functionalized with acrylate groups to form curcumin multiacrylate 
(CMA) so that it could be covalently incorporated into a polymer network. Liquid 
chromatography-mass spectrometry (LCMS) and nuclear magnetic resonance (NMR) were 
used to identify individual acrylate species present in the resulting multiacrylate mixture. 
A series of hydrogel networks were formed by polymerization of a commercial diacrylate, 
polyethylene glycol diacrylate (PEG400DA), and a primary diamine, 4,7,10-trioxa-1,13-
tridecanediamine (TTD), in combination with CMA. Aqueous degradation and curcumin 
release were evaluated, along with the thermomechanical properties of the networks using 
dynamic mechanical analysis and broadband dielectric spectroscopy. The network 
properties and curcumin release characteristics were tuned through systematic variations 
in curcumin composition, amine crosslinker, PEG diacrylate, and ratio of total acrylate to 
amine. The degradation and resulting antioxidant properties of these biomaterials are 
closely related to the composition and architecture of the networks established during 
polymerization. The PCBAEs developed in this study had degradation times ranging from 
5 hours to up to 58 hours. Based on these results, one PCBAE variant was selected for the 
development of tablet formulations for colon specific delivery, and these tablets exhibited 
a sustained release for 20 hours. Overall, the PCBAE series shows a wide range of 



degradation and thermomechanical characteristics with potential use in drug delivery, 
tissue engineering and biomedical applications.  

KEYWORDS: Oxidative stress, antioxidants, crosslinked networks, controlled release, 
curcumin 
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Chapter 1: Introduction and background 

1.0 Introduction 

Oxidative stress (OS), which is characterized by an imbalance between reactive 

oxygen species and antioxidant defenses, occurs in a wide variety of cardiovascular, 

neurological and inflammatory diseases. As such, controlling OS through addition of 

antioxidants should be able to control these diseases. A range of antioxidant enzymes 

(AOEs) and small molecule antioxidants have been explored to achieve this goal. Each 

system has its benefits and limitations, with AOEs being able to scavenge millions of 

copies of a specific oxidant, while small molecule antioxidants are capable of scavenging 

a wide variety of oxidants, although limited to stoichiometric proportions. While these 

antioxidants have been able to control OS in vitro, years of studies have failed in 

demonstrating benefit in controlling OS in clinical trials for the treatment of disease 

conditions mentioned above. This has been due to lower bioavailability and rapid excretion 

of antioxidants from the body and also their lower stability rendering them inactive before 

reaching the OS site. In this work, we propose to overcome these challenges through 

development of polymeric prodrug of polyphenolic antioxidant i.e., poly(antioxidant β-

amino esters) (PABAE). PABAE can provide antioxidant release over a wide range of time, 

while improving the bioavailability and stability of an antioxidant. An additional advantage 

with PABAE is it opens up new possibilities of controlling biomaterial biocompatibility, 

which is also OS dependent. One of the way to achieve this is through casting a PABAE 

layer on the bioimplants, which can reduce the OS caused by bioimplant and thereby 

improve the biocompatibility. 
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 Among small molecule antioxidants, polyphenols have been studied extensively 

due to their promising antioxidant activities. Curcumin is a poly-phenol which has high 

antioxidant activity as well as anti-inflammatory and anti-angiogenic properties, and has 

received a GRAS (Generally Recognized As Safe) status from the United States Food and 

Drug Administration. However, curcumin has limited aqueous solubility and undergoes 

degradation when exposed to UV light. Approaches used for curcumin delivery have 

focused on developing a dispersion of polyphenols in aqueous phase through entrapment 

of curcumin in polymer nanoparticles, polymeric micelles, liposomes or molecules such as 

cyclodextrin. Unfortunately, these approaches accommodate only low levels of drug 

loading and don’t actively improve the solubility of curcumin when released in the body.  

In this work, we have developed a polymeric pro-drug containing curcumin, i.e., 

poly(curcumin β-amino ester) (PCBAE) for drug-delivery and biomedical applications. 

The PCBAE undergoes hydrolytic degradation to release the original form of curcumin. 

PCBAE hydrogels were synthesized through a Michael-addition type reaction, which 

allows the synthesis of PCBAE without the use of free radical polymerization. Being a pro-

drug system, it protects the labile groups on the curcumin molecule. The solubility of 

curcumin is improved due to the amorphous nature of PCBAE, and the release of 

degradation products that help to solubilize the curcumin.  

Curcumin was functionalized with acrylate groups as a monomeric precursor to 

PCBAE. Curcumin multiacrylate (CMA) was characterized using nuclear magnetic 

resonance (NMR) and liquid chromatography mass spectrometry (LCMS) to identify 

different acrylate species in CMA and to determine the extent of acrylation. Following this 

work, a systematic study of the effect of independent parameters such as ratio of total 
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acrylate to amine (RTAA), amine crosslinker, diacrylate monomer and CMA composition 

on the mechanical and functional properties of PCBAE is required. The rubbery modulus, 

glass transition temperature and degradation kinetics of the PCBAEs networks were 

investigated to guide the strategic design of these polymers for drug delivery and 

biomedical applications. 

A background for developing controlled release formulations for curcumin is 

presented in this chapter. This includes discussion on oxidative stress generation pathways 

along with its role in pathology and biomaterial compatibility. Strategies to counter 

oxidative stress are presented with a focus on delivery of exogenous antioxidants. With 

this approach in mind, literature on different polymers (degradable as well as non-

degradable) used for drug delivery and biomedical applications is presented followed by 

an emphasis on the antioxidant polymers, which have been explored to improve 

bioavailability of antioxidants. 

1.1 Background 

1.1.1 Oxidative stress 

Cardiovascular diseases, cancer, chronic lower respiratory disease, 

neurodegenerative diseases and diabetes are among the leading causes of death in United 

States [1, 2]. In 2013 and 2014, about 1 in 4 deaths was caused by heart diseases, which 

include conditions such as atherosclerosis, heart attack, and rheumatic heart disease [1]. 

Cancer has a similar death rate (i.e., 1 in 4 deaths). One of the key pathophysiological 

features that is common among all of these conditions, as a cause or an effect, is oxidative 

stress (OS) [3-5]. OS is defined as the condition when reactive oxygen species are produced 

in excess compared to the antioxidant defense system in the body. As with most processes 
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in the body, an equilibrium is present between the generation of reactive oxygen species 

and consumption (e.g., through antioxidants) in healthy cells. A low concentration of 

oxygen species such as superoxide radical anion (O2˙–), hydrogen peroxide (H2O2), and 

hydroxyl radical (OH˙) is in fact needed for various biological processes in the body. 

However, when this equilibrium is disturbed due to endogenous or exogenous factors, 

causing an increase in reactive oxygen species, it leads to an oxidative stress state.  

1.1.1.1 ROS/RNS generation pathways 

Classically, the oxidizing compounds produced in the living systems are classified 

either as reactive oxygen species (ROS) or reactive nitrogen species (RNS). ROS include 

radicals such as superoxide radical anion (O2˙–), hydroxyl radical (OH˙), hydroperoxyl 

radical (HO2˙), in addition to non-radical species such as hypochlorous acid (HOCl), 

hydrogen peroxide (H2O2) and singlet oxygen; while RNS include nitrogen containing 

species such as nitric oxide (NO˙), and peroxynitrite (ONOO–). A low concentration of 

ROS/RNS is required for cell signaling, controlling cell proliferation and apoptosis, and 

activation of transcription factors such as necrosis factor κB (NF-κB) [6-8]. Table 1.1 

shows the endogenous sources of ROS/RNS. A major endogenous source of superoxide 

anion are mitochondria [9, 10]. Although the superoxide anion is not a strong oxidant by 

itself, it leads to the formation of strong oxidant species, which can cause oxidative 

damage, through a series of reactions which is presented in Figure 1.1 [9]. 

External environmental factors such as atmospheric pollution, tobacco smoke, as 

well as ionizing radiation including ultraviolet (UV) radiation, X-ray radiation and gamma 

ray radiation can also induce the generation of excess ROS/RNS [11-13]. ROS/RNS are 

generated as a response to pollutants such as polychlorinated biphenyls, automotive 
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exhaust, and airborne particulates including metal nanoparticles (e.g., silver, ferric oxide 

or copper oxide nanoparticles) [14-17]. Metal oxide nanoparticles are used as catalysts in 

many industries, which leads to an increase in their concentration in the ambient air and 

has been shown to be correlated with the occurrence of pulmonary diseases [14, 18, 19].  

Oxidative species are also generated when the body recognizes a bioimplant as a 

foreign entity, which leads to an immune system response directing macrophages to the 

bioimplant site; these macrophages generate oxidative species to neutralize the foreign 

entity [15]. This mechanism is also present in the response of infectious agents through 

phagocytosis [20]. Additionally, cyclic stretching of cells has been shown to cause the 

generation of superoxide anion and nitric oxide in mechanical ventilator induced lung 

injury [21-23]. 

1.1.2 Role of OS in pathology 

OS plays a vital role in the pathology of various diseases as it can cause 

indiscriminate  damage to cellular components including lipids, proteins and DNA, 

ultimately leading to cellular apoptosis and tissue damage [20]. OS also leads to neuronal 

cell death, an important step in neurodegenerative diseases such as Parkinson’s disease, 

Alzheimer’s disease, and also in traumatic brain injury [24]. Changes in the cell signaling 

caused by OS is seen in many cancer cells [11]. OS caused by cigarette smoking has been 

implicated in the pathogenesis of chronic obstructive pulmonary disease [12]. OS is also a 

result of conditions such as ischemia-reperfusion injury, where reperfusion of oxygen in 

the oxygen deprived tissues leads to OS [25, 26]. The role of OS in ulcerative colitis (UC) 

has been shown, where increased levels of lipid peroxidation, SOD, catalase and decreased 

levels of glutathione were observed for patients with UC [27]. 
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1.1.2.1 Lipid peroxidation 

Lipid peroxidation occurs as a result of oxidative stress damage. Peroxidation of 

lipids such as polyunsaturated fats (PUFAs) involves attack of ROS on carbon-carbon 

double bond leading to the formation of lipid peroxides [28, 29]. The lipid peroxidation 

usually proceeds through three steps seen with a typical radical mediated reaction: 

initiation, propagation and termination [28]. The reaction steps are shown in Figure 1.2 

[29]. ROS attack on lipid leads to the formation of lipid radical (L·), which can react with 

oxygen to form lipid peroxide radical. Lipid peroxide radical can react with another lipid 

to form lipid radical and propagate the reaction. The termination reaction involves 

quenching of radicals through antioxidants to form non radical products [28]. Lipid 

peroxidation leads to the formation of products such as malonaldehyde (MDA), 4-

hydroxynonenal (HNE), alkanes, isoprostanes, and cholesteroloxides [30]. Formation of 

MDA follows a multiple step mechanism starting with the peroxidation of poly(unsaturated 

fatty acids) (PUFAs) as shown in Figure 1.3 [28, 31].  MDA and HNE are known to be 

toxic, while MDA is also known to be carcinogenic in rats [11, 32]. MDA is mainly formed 

through oxidative degradation of poly(unsaturated fatty acids) (PUFAs) such as 

arachidonic acid and docosahexaenoic acid [31]. MDA and HNE can also form adducts 

with DNA and proteins, which can affect their activity and lead to more systemic damage 

[30]. Isoprostanes are stable compounds which make them good markers of oxidative stress 

[33]. The brain has a high concentration of fatty acids making it more susceptible to lipid 

peroxidation, which plays role in neurodegenerative diseases [20, 34, 35]. 
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1.1.2.2 Protein oxidation 

Protein oxidation leads to the formation of functional groups such as hydroxyls and 

carbonyls on the proteins [30]. Bityrosine, L-DOPA, and ortho-tyrosine are other products 

that are formed as a result of protein oxidation, and are used commonly, along with protein 

carbonyls, as biomarkers for the protein damage due to oxidative stress [30]. Protein 

carbonyls have been found to be present at much higher levels in various neurodegenerative 

and cardiovascular diseases as well as during aging and in premature aging diseases such 

as Werner’s syndrome [36-39]. Proteins with oxidative damage become functionally 

inactive and are degraded to a greater extent compared to non-oxidized proteins [39, 40]. 

The oxidized proteins, at low concentrations, can be generally eliminated from the cell 

environment through a proteolytic process. However, excess production of oxidized 

proteins can eventually lead to accumulation of oxidized proteins in the cell [40]. Since 

most of the enzymes are proteins, protein oxidative damage has a much higher impact than 

stoichiometric proportion on the health of a cell [36, 39]. The oxidized proteins play a vital 

role in aging and pathologies such as diabetes, atherosclerosis and neurological disorders 

[40]. 

1.1.2.3 Oxidative DNA damage 

The attack of ROS on DNA can cause pyrimidine and purine base changes or single 

or double strand breaks [30, 41]; both nuclear and mitochondrial DNA are damaged by 

ROS. Mitochondrial DNA can suffer higher oxidative damage than nuclear DNA as it does 

not contain the histones needed for DNA repair [9, 42]. This lower ability of mitochondrial 

DNA to self-repair following an oxidative attack has been linked to the aging [9]. In 

addition to this, accumulation of oxidized DNA, proteins, and lipids is known to be 



8 

correlated to the aging [43]. Hydroxyl radicals can react with DNA to form DNA adducts 

such as 8-hydroxygaunine (8-OH-G) also known as 8-oxogaunine. 8-OH-G is a commonly 

used biomarker for DNA oxidation measurement [41]. DNA damage is a major factor in 

carcinogenesis as well as neurodegenerative disorders such as Parkinson’s disease and 

Alzheimer’s disease [44-46]. Oxidative stress also plays a role in causing and proliferating 

cancer as tumorous cells favor ROS reach regions [11, 47]. Additionally, 8-OH-G produced 

as a result of DNA damage has been shown to correlate directly to the size of tumors [48]. 

An increase in damaged DNA has been observed in the brain for neurological diseases 

[41], DNA damage is also encountered in diabetic conditions. Exposure of high glucose 

levels (i.e. hyperglycemia) to microvascular endothelial cells (MVEC) and human 

umbilical vein endothelial cells (HUVEC) has been reported to lead to an increase in 8-

oxogaunine levels caused by increased ROS [41, 49]. 

1.1.3 Role of OS in biomaterial compatibility 

Apart from OS damage, another application where role of OS is key is biomaterial 

compatibility. The utility of biomaterials has grown extensively over time to include 

classical orthopedic implants as well as ventilators, biosensors, drug delivery implants, and 

cosmetic implants [50-52]. Apart from the functionality of the biomaterial to perform its 

intended purpose, another factor that is equally important is the body’s response to the 

biomaterial i.e., biomaterial compatibility. Biomaterial compatibility is affected by 

inflammation caused by the immune system response to the biomaterial [53]. When the 

body recognizes a biomaterial as a foreign object, the biomaterial can experience a chronic 

phagocytic attack from the immune system leading to macrophages releasing ROS/RNS 

with the intended goal of eliminating the biomaterial from the body [54, 55]. This OS 
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signaling can lead to a chronic inflammatory state at the biomaterial site. As such, OS and 

the inflammatory response to the biomaterial are intricately related [53].  

Inflammation is also orchestrated as a part of the body’s healing response to an 

injury caused by a bioimplant [56, 57]. The role of inflammation in the healing response to 

injury is to remove the germs from the affected site to prevent further damage [58]. 

However, the surgical wounds, which occur in a sterile environment, differ from traumatic 

injury, consequently the reduction of the inflammation stage through the control of OS can 

expedite the wound healing response to bioimplants [59]. Additionally, the functioning of 

bioimplants such as drug depot can be severely affected due to inflammatory response 

related fibrous formation around the implant [56, 60]. The fibrous formation can reduce 

the drug release, and create an additional physical barrier for drug delivery that in the worst 

case renders the device completely ineffective.  

Not surprisingly, biomaterial compatibility is also vital for the success of 

orthopedic implants. For instance, titanium alloys, which are widely used in orthopedic 

implants, can fail due to corrosion processes [61]. Metal ions produced during corrosion or 

through any other process have been known to affect the redox status of cells [32, 62]. In 

a study on titanium alloy (Ti6Al4V), a simulated corrosive environment showed reduction 

in the glutathione levels and produced an OS state leading to a chronic inflammation [61, 

63]. ROS generation has also been shown to occur in alveolar cells due to mechanical 

stretch and ventilation, leading to an increase in epithelial permeability, which is one of the 

characteristics of ventilator-induced lung injury [21]. In another study on bioimplants, 

Sanchez et al. studied the role of soft-tissue dermal fillers such as calcium hydroxylapatite, 

acrylamindes and silicone present in dermal bioimplants in orchestrating OS, where they 
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found evidence of oxidative damage and an increase in myeloperoxidase concentration 

[15].  

Biomaterials in the form of nanoparticles have been widely researched for drug 

delivery and tissue culture applications due their ability to cross physiological barriers such 

as blood-brain barriers or intestinal epithelium, and for their tendency to be internalized to 

a greater extent by cells [64]. However, there have also been studies showing that 

nanoparticles can induce OS through an immune response [65]. Apart from the chemical 

properties of the biomaterial, surface characteristics such as surface charge, surface 

morphology, and hydrophobicity can also induce an immune response [66-68]. For 

instance, a study on gold nanoparticles demonstrated an increase cytokine gene expression 

with an increase in hydrophobicity of nanoparticles [66]. 

1.1.4 Strategies to counter OS 

Oxidative stress can be relieved by reducing the concentration of oxidants, which 

can be achieved through decrease in the exposure to environmental factors or reduction in 

the in vivo ROS production [6]. ROS can be actively intercepted from damaging the 

biomolecules in the body through targeted delivery of antioxidants. Environmental factors 

can be eliminated by avoiding exposure to UV light, tobacco smoke and ambient pollution. 

To decrease the excess ROS/RNS generated due to disease state or from the immune 

response to a biomaterial, targeted delivery of antioxidants at the desired site is required. 

Two types of antioxidants are present in the body, viz., small molecule antioxidants and 

large molecule enzyme antioxidants. Small molecule antioxidants include compounds such 

as curcumin, quercetin, trolox, glutathione (GSH), thioredoxin, lipoic acid, N-acetyl 

cysteine, ascorbic acid (vitamin C), alpha-tocopherol (vitamin E) gallic acid, and apigenin, 



11 

while antioxidant enzymes include catalase, superoxide dismutase (SOD), glutathione 

peroxidase, glutathione reductase and peroxiredoxins [6, 64, 69]. Each of these have a 

specific advantage in radical scavenging. Small molecule antioxidants can alleviate the 

oxidative stress through ROS scavenging as well as by chelation with ROS forming 

transition metals [32]. Small molecule antioxidants can scavenge various types of oxidative 

species, but they are consumed in the process, which necessitates a drug delivery system 

that provides a sustained release of antioxidants. Alternatively, antioxidant enzymes can 

scavenge millions of copies of radicals before becoming deactivated. However, they are 

very specific, which means that each enzyme can scavenge only a certain type of radical. 

In addition, antioxidant enzymes face stability challenges, which require additional storage 

and handling considerations, and which preclude oral administration 

1.1.5 Measurement of antioxidant activity 

The antioxidant activity is usually measured for: 1) the selection of antioxidant to 

be used in the treatment of oxidative stress, and 2) to monitor the endogenous antioxidant 

levels. Antioxidant activity assays are classified as hydrogen atom transfer (HAT) assays 

and electron transfer assays [70]. HAT assays include assays such as oxygen radical 

absorbance capacity (ORAC) and total radical-trapping potential (TRAP). Electron transfer 

assays include assays such as cupric ion reducing antioxidant assay (CUPRAC), ferric 

reducing/antioxidant power (FRAP), and trolox equivalent antioxidant capacity (TEAC). 

ORAC and TRAP can be used for hydrophilic as well as lipophilic antioxidants [71]. 

ORAC and TRAP involve use of a substrate, which brings a variable factor (i.e. the 

substrate’s reactivity with peroxyl radicals) into the picture [70].  
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Electron transfer assays are colorimetric assays, which correlate change in 

absorbance with antioxidant activity. The advantages with these assays over HAT assays 

is that they don’t use any competing substrates. For instance, the CUPRAC assay involves 

reduction of Cu(II) to Cu(I) in the presence of an antioxidant; (re: Figure 1.4). 

Bathocuprione, a chromogenic agent, forms a chelating complex with Cu(II). The 

absorbance of the solution containing this complex increases when Cu(II) is reduced to 

Cu(I) by an antioxidant [70, 72]. The FRAP assay involves a similar response where 

reduction of Fe(III) to Fe(II) takes place in the presence of antioxidant. FRAP uses ferric 

salt, Fe(III)(2,4,6-tripyridyl-s-triazine)2Cl3 as an electron donating species [70]. FRAP has 

a limitation in that it cannot be used for antioxidants such as glutathione and ascorbic acid 

[73]. Another electron transfer assay which is based on colorimetric response is the TEAC 

assay. It uses 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to create a cation 

radical solution, which is prepared by reacting ABTS and potassium persulfate. TEAC 

assay is used for measuring the antioxidant capacity of water soluble systems. It is a simple 

colorimetric assay, which is widely used due to its robustness, operational simplicity and 

linear response to antioxidant concentration [70].  

1.1.6 Polymers for drug delivery 

Polymers have been used as excipients in pharmaceutical formulations for many 

years. Furthermore, their application as drug delivery vehicles has also gained importance 

over last several decades and as such they play a vital role in the development of novel 

drug delivery systems. Polymers are used for controlled release, sometimes called modified 

release, as well as for targeted delivery of drugs. For instance, enteric coating polymers 

such as Eudragit® (a poly(methacrylate) based polymer) are used in tablet formulations 
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for protecting drugs which display loss of activity under the low pH environment of the 

stomach or for delivery of drugs to the lower gastrointestinal tract (GI). Additionally, 

crosslinked polymer hydrogel networks, as well as linear polymers, have been widely used 

for developing novel drug delivery systems to overcome the challenges associated with 

bioavailability and drug distribution in the body.  

Apart from drug delivery in humans, controlled release also has applications in 

veterinary drug delivery, in agriculture for the controlled release of fertilizers and 

pesticides, and in the packaging industry. For instance, controlled antioxidant release 

packaging films have been prepared with low density polyethylene (LDPE), polypropylene 

and poly(vinyl alcohol) (PVA) for lipid oxidation inhibition [74].  

The selection of polymer for the development of drug delivery vehicles is 

dependent on the specific requirements of the drug delivery approach to be used. Apart 

from functional properties, one factor that is vital in pharmaceutical and biomedical 

applications is that the polymer and its degradation products should be non-toxic, non-

carcinogenic and non-thrombogenic. Hydrophilicity of the drug is another factor that 

dictates specific polymers to be used for drug-delivery. Controlled release of drugs is 

necessary for both hydrophilic and hydrophobic drugs. For instance, a controlled release is 

required for hydrophilic drugs to avoid rapid dissolution and excretion from the body. Also, 

a high level of drug can move the drug concentration out of therapeutic window and into 

the toxic range, which can have an adverse effect on the subject. For a hydrophobic drug, 

a controlled release is desired to slow introduction of the drug, thereby avoiding potential 

precipitation due to low solubility, followed by rapid excretion of the drug. A targeted 

delivery ensures that the desired site receives a therapeutic quantity of drug, while avoiding 
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systemic side effects on other regions. A targeted delivery is also desired for lowering the 

overall dose administered to patients [64].  

Polymers used for drug delivery can be generally classified as non-degradable and 

degradable polymers. Even though degradable polymers are typically preferred due to its 

inherent advantages, non-degradable polymers have also been used in numerous 

applications. These are discussed in the following sections. Polymers can undergo 

degradation through hydrolysis, oxidation or through exposure to radiation. The 

classification of polymers as non-degradable sometimes depends on the timescale of 

degradation as compared to the time the polymer is used in the application [75].  

1.1.6.1 Non-degradable polymers 

Non-degrading polymers have been used as orthopedic implants or implant 

supports, and also as drug delivery vehicles. These polymers when used as drug delivery 

vehicles usually follow a diffusion-based drug release mechanism. Once drug release is 

complete, the drug delivery vehicle can be excreted (e.g. drug delivery particles) or 

removed via surgery (i.e. implants) [76]. A schematic for drug release from non-degrading 

polymer is shown in Figure 1.5, where drug diffuses out of the polymer matrix as the 

matrix undergoes swelling. Apart from this, non-degradable polymers are also important 

as catheters, syringes, dialysis tubing or vascular grafts in the field of medicine [77].  

The degradation characteristics of polymers are dependent on the nature of the 

chemical bonds present in the polymer chain. Non-degrading polymers usually undergo 

minimal or no degradation. In general, polymers can offer a high mechanical strength, as 

well as an ease of processing, without an increase in weight that is typically associated with 

the use of metal implants. A good overview of non-degrading polymers in medicine is 
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presented by Shastri, who highlights numerous non-degradable polymers based 

technologies that have been commercialized [77]. These applications incorporate synthetic 

polymers such as high density poly(ethylene) (HDPE), poly(propylene) (PP), poly(tetra 

fluoroethylene) (PTFE or Teflon), poly(ethylene terephthalate) (PET), poly(methyl 

methacrylate) (PMMA), poly(dimethyl siloxane) (PDMS), poly(ethylene vinyl acetate 

(PEVA), and poly(ethylene glycol) (PEG) [77]. HDPE exhibits excellent mechanical and 

structural properties, due to which it has been used for hip and knee replacement [77, 78]. 

PP, owing to its fiber forming properties, has been used to make meshes for prosthetics as 

well as for periodontal drug delivery systems [79, 80]. The extruded form of PTFE (e-

PTFE) has good oxygen permeability to oxygen due to the pores developed in the extrusion 

process [77]. In addition to its good permeability, its inert character is advantageous for 

making meshes used as surgical barriers and for vascular grafts [77, 81, 82]. Similarly, 

PET has also been used to make vascular grafts [83]. PMMA is used as bone cement in 

surgeries involving artificial joints, and also as a bone substitute in cranioplasty [77, 84-

86]. PDMS and PEVA have been used for drug delivery [77, 87, 88] and PDMS in the 

form of silicone gels is also widely used in plastic surgeries. PEG coatings have been used 

to improve the circulation of drug delivery vehicles. PEG based hydrogels have been 

explored for contact lenses, drug delivery and tissue engineering scaffolds. This material 

platform will be discussed in detail in the section on hydrogels. 

1.1.6.2 Degradable polymers 

All polymers undergo thermal degradation when exposed to high temperatures. 

However, when polymers are specifically classified as degradable polymers, the 

classification is based on degradation through biological means or through exposure to 



16 

light. Polymers degrading in a biological setting are classified as biodegradable polymers 

and polymers degrading through light exposure are classified as photodegradable 

polymers. These polymers have been used in applications such as drug delivery vehicles 

or depots, wound dressings, surgical sutures and surgical implants [76]. Apart from this, 

biodegradable polymers are very important in packaging applications to mitigate the 

environmental impact of the non-degradable polymers used in packaging.  

Biodegradable polymers are especially advantageous for drug delivery and 

biomedical applications as no removal surgery is required. A strictly diffusion based 

release obtained with non-degradable polymers is not viable for large molecules such as 

proteins and polypeptides that exhibit inherently low diffusion rates and thus necessitate 

the use of degradable polymers [76, 89]. Biodegradable polymers usually contain labile 

groups such as esters, or anhydrides that can undergo hydrolysis [90]. Biodegradable 

polymers can be broadly classified based on the mode of degradation as either 

enzymatically degradable or hydrolytically degradable polymers. Enzymatically 

degradable polymers include poly(amino acids), fibrin, and polysaccharides [91]. 

Hyaluronic acid is one such polysaccharide which has been gaining significant interest for 

drug delivery and tissue culture applications [92]. Hydrolytically degradable polymers that 

have been used for drug delivery include polyesters, polyanhydrides, poly(orthoesters), 

poly(phosphoesters), poly(ester amides) and poly(phosphazenes) [91, 93, 94]. Natural 

degradable polymers such as polysaccharides have been explored as an enteric coating for 

oral formulations [95]. Polyesters such as poly(glycolic acid) (PGA), poly(lactic acid) 

(PLA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) have been 
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widely investigated for biomedical applications such as sutures, clips, bone pins and plates 

[76, 91, 96, 97].  

The terms erosion and degradation are sometimes used interchangeably in the 

literature when discussing degradable polymers. For the current work, the term erosion will 

be used to describe the physical loss of material from the polymer, while the term 

degradation will be used for chemical degradation of the polymer through chemical 

cleavage of bonds. Polymers can undergo either surface erosion or bulk erosion. These two 

modes are discussed in detail in the following sections. 

1.6.1.2.1 Surface eroding polymers 

Surface eroding polymers involve erosion of material from the surface of the 

polymer either through a dissolution of polymer or through removal of degradation 

products formed from the chemical degradation of a polymer. The rate of water intake for 

these polymers is much slower than the rate of degradation of the polymer leading to a 

higher degradation at the surface [98]. These polymers typically maintain their geometric 

shape while the overall size decreases as the polymer degrades [75]. For drug delivery 

applications, the drug molecule is physically entrapped or encapsulated in the polymer 

matrix and is released as the polymer erodes. The advantage with these polymers is that 

zero order release can be obtained since the release is proportional to the rate of polymer 

erosion [75]. Poly(anhydrides) and poly(ortho esters) are widely studied degradable 

polymers that undergo surface erosion [99]. Poly(sebacic acid) (PSA), poly(1,3-bis(p-

carboxyphenoxy) propane-co-isophthalic acid) (PCPP-IPA), and poly(1,3-bis(p-

carboxyphenoxy) propane-co-sebacic acid (PCPP-SA) are few examples of 

polyanhydrides used for drug delivery [100]. Other surface eroding polymer systems such 
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as cellulose acetate phthalate complexed with pluronic F-127, have been used for 

sequential release of multiple drugs [101, 102]. 

1.6.1.2.2 Bulk eroding polymers 

Bulk eroding polymers undergo weight loss homogenously throughout the polymer 

sample instead of just on the surface. The rate of water intake for these polymers is much 

higher than the rate of degradation of polymer leading to hydrolysis or degradation 

throughout the polymer matrix [98]. As the polymer matrix breaks down, the diffusivity of 

the drug changes with both position and time, requiring complex mathematical models to 

predict the drug release [99, 103]. The bulk degradation of polymers follows four 

overlapping steps shown in Figure 1.6 [103]. Polyesters such as PLA, PGA, PLGA, and 

poly(β-amino esters) (PBAE), which have been widely used in the pharmaceutical and 

biomedical fields are known to undergo bulk degradation [99].  

1.1.7 Hydrogels 

Hydrogels are crosslinked polymer networks which have been widely explored as 

drug delivery vehicles and as a scaffold for tissue engineering applications.  The popularity 

of hydrogels has been partly due to their ability to have a high water intake uptake 

properties that enhance their compatibility in the body. In addition to this, hydrogels can 

be tuned across a wide range of functional characteristics such as degradation/drug release 

time, mechanical properties, thermal properties, and surface properties. Furthermore, 

hydrogels can be tuned to be pH responsive, thermoresponsive as well as responsive to 

various biomarkers in the body. The literature on the synthesis and application of novel 

hydrogels has been growing continuously over the years. Numerous excellent review 
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articles highlight their use in bionanotechnology, biomedical applications, diagnostic 

devices, regenerative medicine, and drug delivery [104-107].  

Hydrogels can be synthesized in various sizes and shapes from the bulk scale to the 

nanoscale. Bulk gels or films are used in wound healing or biomedical applications, while 

microscale or nanoscale hydrogels are commonly used in pharmaceutical formulations. 

Nanoparticles have garnered a lot of interest in drug delivery applications due to their 

ability to cross intestinal epithelium and the blood-brain barrier, in addition to being 

internalized by cells much more easily as compared to microparticles [64]. Apart from 

conventional spherical shape, hydrogels can be synthesized in different geometries such as 

circular or elliptical discs, rods, conical shape, toroidal shape, plug shape as well as vase 

shape [96, 108-113]. The particle shape has been known to affect the phagocytosis, which 

is undesirable in the context of  drug delivery [109]. Particle shape has also been shown to 

affect degradation properties and transport of particles in the body and across organs such 

as the spleen [96, 114].  

Hydrogels can be formed through physical as well as chemical crosslinks. Physical 

crosslinks can be formed through ionic bonding, hydrogen bonding and even through 

molecular entanglements [106, 115-117].  For instance, hydrogels based on affinity of 

avidin and streptavidin with biotin polymers were developed for controlled release of 

curcumin [118]. Hydrogels based on chemical crosslinks have been synthesized through a 

multitude of reaction mechanisms. Free radical polymerization of monomers containing 

groups such as acrylate functional groups is one of the most commonly used methods for 

making chemically-crosslinked hydrogels that are non-degradable [119]. Free radical 

polymerization can be carried out through exposure of a radical generator (i.e. initiator) 
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and monomer solution to radiation. Free radical generating solutions such as mixtures of 

ammonium persulfate and tetramethylethylenediamine (TEMED) are used for hydrogel 

synthesis when radiation cannot be used.  

Reaction methods which do not involve free radicals have also been developed for 

in-situ crosslinking at milder reaction conditions [107]. These involve reaction between 

monomers such as aldehyde and amine, aldehyde and hydrazine, acrylate and amine, and 

acrylate and thiols [107, 120]. Reaction between acrylate and amine, and acrylate and thiol 

follows Michael addition mechanism. The reaction between acrylate and amine leads to 

the formation of PBAE hydrogels. PBAE are a class of hydrogels which are efficient drug 

delivery vehicles and can be synthesized with relative ease [121, 122]. These are 

hydrolytically degradable polymers that can be tuned to achieve a wide range of 

degradation times. 

Hydrogels based on PEG and PVA have been studied extensively for drug delivery 

and tissue engineering applications due to the low protein adsorption tendency of PEG and 

PVA which aides in the biocompatibility of these systems. Hydrogels used for controlled 

release of drugs can be degradable or non-degradable depending on the nature of the 

crosslinks present in the matrix. The drug release mechanism for non-degradable hydrogels 

is the same as shown in Figure 3. Bulk degrading hydrogels follow the steps shown in 

Figure 4, along with the release of entrapped drug molecules. In addition to the physical 

drug encapsulation, binding of the drug molecules to chains in the network is a technique 

which has been explored to provide a better control of the drug release [123]. Prodrug 

approaches, where the drug is a part of the hydrogel network and is released as the network 

undergoes degradation, have also been investigated [124].  
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1.1.8 Polymers for antioxidant delivery 

Antioxidant delivery is one of the approaches used for reducing oxidative stress. 

For the efficient introduction of antioxidants, controlled and targeted delivery is vital. 

Controlled release of antioxidants is important since antioxidants can also act as pro-

oxidants depending on the dose [125]. Another key consideration in antioxidant therapy is 

stability, as antioxidants can easily react with oxygen and lose their activity. To overcome 

this challenge, different techniques have been developed which include entrapment or 

encapsulation of antioxidant in a polymer, encapsulation in another molecule such as 

cyclodextrin, and prodrug polymers containing antioxidant as a part of polymer matrix that 

release antioxidants upon degradation [69, 126]. These approaches are discussed in the 

sub-sections that follow. 

1.1.8.1 Antioxidant loaded polymer systems 

Antioxidant delivery via physical loading in a polymer matrix (i.e. encapsulation 

approach) has been explored for antioxidant enzymes (AOEs) as well as small molecule 

antioxidants to improve the targeting and stability of the antioxidants. The encapsulation 

approach is helpful for protection of AOEs during delivery, as AOEs can be inactivated 

through proteolytic processes [127]. For instance, encapsulation of catalase was 

demonstrated through the use of filamentous PEG-b-PLA diblock copolymers [128]. 

Biodegradable microspheres of PLGA and PLA were used for encapsulation of SOD and 

catalase, and controlled release of these AOEs was obtained [129]. PLGA based 

encapsulation has been used for small molecule antioxidants such as curcumin, quercetin 

and catechin [130, 131]. Hydrogels formed by self-assembling peptides were also used for 

the encapsulation and controlled release of curcumin [132]. Encapsulation of drugs in 



hydrogels synthesized through free radical polymerization is widely explored, however this 

approach is not feasible for antioxidants due to the inherent radical scavenging property of 

antioxidants. Polymer syntheses based on the Michael addition reaction which can form 

polymers such as PBAE under mild conditions have been explored for antioxidant delivery 

[69, 133]. 

1.1.8.2 Antioxidant embedded in the polymer chain 

The prodrug approach, in which antioxidants are covalently embedded directly in 

the polymer backbone, has been explored for small molecule antioxidants. Small molecule 

antioxidants which require large overall doses that can lead to an increase in local toxicity 

as well as lower bioavailability in the absence of a controlled release system. Controlled 

antioxidant release is desired for hydrophilic antioxidants such as vitamin C, trolox as well 

as for hydrophobic antioxidants such as curcumin, quercetin as each type can have low 

bioavailability due to rapid excretion and poor dissolution, respectively. Additionally, the 

prodrug approach can enhance drug loading and improve the stability of small molecule 

antioxidants through protection of labile groups. Hydrolytically degradable prodrug 

antioxidant systems have been studied for trolox, apigenin, curcumin and quercetin, and 

show a reduction in OS generated by copper oxide nanoparticles and iron oxide 

nanoparticles [124, 133, 134]. Polymeric prodrugs of vanillin and glutathione have also 

been studied for the controlled release and reduction of oxidative stress [135, 136].  

22 
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Table 1.1: Endogenous sources of ROS/RNS. 

Source ROS/RNS References 

Mitochondrial respiration Superoxide anion [9, 10] 

Nicotinamide Adenine Dinucleotide 

Phosphate oxidase (NADPH-oxidase), 

xanthine oxidase, cytochrome P450 

metabolism 

Superoxide anion [6, 11, 137] 

Neutrophils and macrophages during 

inflammation 

Superoxide anion [138] 

Reaction of superoxide anion with 

superoxidase dismutase (Ref. Figure 1.1) 

H2O2 [11] 

Reaction of H2O2 with transition metals (Ref. 

Figure 1.1) 

Hydroxyl radical [138] 

Reaction of superoxide anion with nitric oxide 

(Ref. Figure 1.1) 

Peroxynitrite [125] 
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Figure 1.1: Formation of strong ROS/RNS from superoxide anion 
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L + ROS               L· Initiation 

L· + O2 LOO· 

LOO· + L              LOOH  + L·

LOO· + A              LOOH + A· 

L· + A L + A·       

LOO· + LOO·                LOOOOL      

L· + A· LA 

Figure 1.2: Mechanism of lipid peroxidation. L – lipid, A – antioxidant. 

Propagation 

Termination 
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PUFAs PUFA-radical· 

PUFA-radical· + O2 PUFA-peroxide-radical· 

PUFA-peroxide-radical·+ H+ Lipid hydroperoxide  

Lipid hydroperoxide Bicyclo endoperoxide 

Bicyclo endoperoxide                              MDA 

Figure 1.3: Mechanism for the formation of malonaldehyde (MDA), where PUFA is 

poly(unsaturated fatty acid). 

   Thermally or 
 acid catalyzed 

Radical        H+ 



27 

Cu(II)           Cu(I)

Fe(III)        Fe(II)

Figure 1.4: Reaction scheme in CUPRAC and FRAP assays. 

Antioxidant 

Oxidant 

Antioxidant 

Oxidant 
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Figure 1.5: Schematic for drug release from a polymer matrix due to swelling response 

caused by stimuli such as temperature, or pH in aqueous media. 

- Drug molecule  

Drug entrapped in a polymer matrix                          Diffusion based drug release 

Stimuli 
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Figure 1.6: Steps involved in the bulk degradation of polymers. 
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Chapter 2: Research goals 

In this work, poly(curcumin β-amino esters) (PCBAEs), which are crosslinked 

amorphous polymer networks, have been developed for drug-delivery and biomedical 

applications. As a model antioxidant compound, this work focuses on curcumin, a natural 

polyphenol found in the Indian spice, turmeric, which has been shown to possess 

antioxidant and anti-inflammatory properties. However, due to its low aqueous solubility 

and biological instability, curcumin possesses poor pharmaceutical properties that have 

greatly limited its clinical use. It is theorized that a sustained delivery of solubilized, intact 

curcumin can achieve therapeutic concentrations of curcumin, and thereby reduce 

oxidative stress. Here, PCBAEs were synthesized and characterized for their ability to 

achieve this sustained release and improved stability. The overall goal of this work was to 

explore the role of various synthesis parameters in tuning the degradation and 

thermomechanical properties of the PCBAE networks, which could enable the 

development of novel pharmaceutical and biomedical applications. The PCBAE networks 

were characterized through swelling response, curcumin release profiles, and antioxidant 

activity measurements. In addition, the molecular relaxation properties of PCBAE were 

characterized using broadband dielectric spectroscopy, and thermomechanical properties 

were characterized using dynamic mechanical analysis. Finally, a PCBAE based tablet 

formulation was developed for colon specific drug delivery, as a proof of principle case 

demonstrating the potential application of PCBAE in pharmaceutical settings. The overall 

goal has been split into four specific aims, which are explained below. 
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2.1 Specific aim 1: Synthesize and characterize curcumin multiacrylate (CMA) 

monomers for use in PCBAE synthesis 

Synthesize different grades of CMA through variation of curcumin to acryloyl 

chloride ratio and identify the curcumin acrylate products present in the curcumin acrylate.  

2.1.1 Hypothesis # 1 

The extent of curcumin acrylation can be tuned in a reproducible fashion by 

controlling reaction stoichiometry. 

2.1.2 Significance and outcome 

This hypothesis was tested using the experiments presented in Chapter 3. Different 

grades of CMA were prepared through variation of curcumin to acryloyl chloride ratios. 

Different curcumin acrylates (mono, di and tri) present in CMA was characterized through 

liquid chromatography mass spectrometry (LCMS) and nuclear magnetic resonance 

(NMR). The thermal properties of different grades of CMA were characterized through 

thermogravimetric analysis (TGA). Through this detailed analysis of the acrylation 

products, it was confirmed that curcumin multiacrylate systems of known extents of 

acrylation can be synthesized in a batch to batch reproducible fashion. 

2.2 Specific aim 2: Synthesize biodegradable poly(antioxidant β-amino ester) 

(PABAE) networks based on incorporation of curcumin multiacrylate and 

characterize their static and dynamic properties 

Synthesize series of PCBAE hydrogels through a reaction between CMA, along 

with PEG400DA, and 4,7,10-trioxa-1,13-tridecanediamine (TTD) as a crosslinker, and 

characterize the molecular relaxation properties, thermomechanical properties and 

degradation properties of PCBAE.  
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2.2.1 Hypothesis #2 

By increasing network hydrophobicity, CMA can slow down PCBAE network 

degradation and increase thermomechanical stability.  

2.2.2 Significance and outcome 

This hypothesis was tested through the experiments presented in Chapter 4. A 

series of PCBAE hydrogels was synthesized through varying the molar ratio of CMA to 

PEG400DA. PCBAEs with high CMA content (i.e. PCBAE with 90:10 CMA:PEG400DA) 

were synthesized successfully, which allowed for high drug loading (50.94 % w/w) in the 

gels. The swelling response of the series was measured in acetonitrile to characterize 

network properties, such as relative crosslinking density. The degradation properties of 

PCBAEs were characterized through measurement of aqueous swelling response. The 

molecular relaxation properties of PCBAEs were characterized using broadband dielectric 

spectroscopy (BDS). Time-temperature plots were developed for glass to rubber and sub-

glass relaxations.  The thermomechanical properties of PCBAEs were characterized using 

dynamic mechanical analysis (DMA). An overall increase in degradation time and glass 

transition temperature was observed with an increase in CMA content. 

2.3 Specific aim 3: Determine the influence of total acrylate to amine ratio, amine 

crosslinker and diacrylate monomer on mechanical and degradation properties of 

PCBAE 

Synthesize PCBAEs with a broad range of functional properties through a 

systematic variation of independent synthesis parameters such as total acrylate to amine 

ratio, amine crosslinker and diacrylate monomer.  



33 

2.3.1 Hypothesis # 3 

A) The degradation time and crosslink density of PCBAE can be reduced by reducing the

molecular length and hydrophilicity of amine crosslinker and commercial diacrylate 

monomer. 

B) An increase in total acrylate to amine ratio can increase the degradation time and

thermomechanical stability of PCBAE networks.  

C) An increase in CMA composition can increase the degradation time of PCBAE for

PCBAEs synthesized with 2,2’(ethylenedioxy) bis ethylamine (EDBE) and hexamethylene 

diamine (HMD). 

2.3.2 Significance and outcome 

This set of hypotheses was tested through experiments presented in Chapter 5. The 

independent process parameters, such as amine crosslinker, commercial diacrylate 

monomer, and ratio of total acrylate to amine (RTAA), were used to synthesize series of 

PCBAE hydrogels with wide range of functional properties thereby enabling novel 

applications of PCBAEs. The glass to rubber transition and rubbery modulus was 

characterized using dynamic mechanical analysis, and the degradation properties were 

characterized through measurement of swelling response and drug release. Amine 

crosslinker had a significant effect on degradation characteristics, but no significant effect 

on thermomechanical characteristics. An increase in CMA composition for PCBAEs made 

with EDBE and HMD increased the degradation times. An increase in total acrylate to 

amine ratio led to an increase in thermomechanical stability.  



2.4 Specific aim 4: Develop poly(β-amino ester) (PBAE) based tablet formulation for 

improved bioavailability of a hydrophobic drug 

Develop a PBAE based oral tablet formulation for improved bioavailability of 

curcumin and study the stability of formulation under different storage conditions. 

2.4.1 Hypothesis # 4 

PBAE based tablet formulations can be developed for improving bioavailability of 

curcumin. 

2.4.2 Significance and outcome 

To test this hypothesis, oral tablet formulations based on PCBAE microparticles 

were synthesized and stability of this formulation was tested under standard and 

accelerated storage conditions. These experiments are discussed in Chapter 6. Tablet 

formulation consisted of PCBAE microparticles and microcrystalline cellulose along with 

magnesium stearate. A sustained release of curcumin was obtained for over 20 hours. 

PCBAE being hydrolytically degradable, tablet stability was found to be sensitive to 

moisture. 

34 
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Chapter 3: Curcumin acrylation for biological and environmental applications 

3.1 Introduction 

Curcumin is the main constituent of the Indian spice turmeric and has been shown 

to possess anti-oxidant, anti-inflammatory and anti-angiogenic properties [139-141]. The 

major challenge with the use of curcumin as an experimental or therapeutic agent is its 

limited aqueous solubility and photoinstability [142]. Multiple strategies have been 

proposed to overcome these limitations including conjugation, polymerization, amorphous 

dispersion and encapsulation [143-146]. Many of these approaches can be facilitated 

through the acrylation of curcumin.  Curcumin acrylation was first explored by Wattamwar 

et al. for the preparation of hydrolytically degradable poly(curcumin β amino ester) 

hydrogels for use in drug delivery applications [124]. These materials improve the stability 

of curcumin for controlled release and also increase its bioavailability through enhanced 

solubility. Curcumin acrylation has since been used to make antibacterial nanofibers, 

chemical sensing materials and as a drug carrier in the form of curcumin microspheres 

[147-149]. Curcumin has also been explored recently for its radical scavenging potential 

and its capacity to inhibit toxicity of dioxin and dioxin-like molecules such as 

polychlorinated biphenyl (PCB) and for its potential use in environmental remediation [13, 

150, 151]. The acrylation approach has similarly been used for other phenolic molecules 

such as apigenin and quercetin [152, 153]; the identification methods discussed in this work  

can be extended to these molecules and other phenols, such as myricetin and catechin [154, 

155]. 
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Curcumin contains three hydroxyl groups available for modification, and curcumin 

acrylation can lead to the formation curcumin mono-, curcumin di- and curcumin 

triacrylates. The relative proportion of these species in the resulting curcumin multiacrylate 

(CMA) mixture can influence the subsequent synthesis of curcumin-containing materials, 

with the potential for endcapping and branching in the context of polymerization reactions 

[156]. However, a full characterization and identification of the individual acrylate species 

produced by the acrylation procedure described by Wattamwar et al. has not yet been 

reported. In this chapter, we present the identification of curcumin acrylate species that 

result from the synthesis protocol of Wattamwar, and consider the influence of reaction 

stoichiometry on the relative populations of the various acrylate species and the overall 

extent of acrylation that is achieved.  

3.2 Experimental  

3.2.1 Materials 

Curcumin was purchased from Chem-Impex International, Inc. Triethyl amine 

(TEA) and acryloyl chloride were purchased from Sigma-Aldrich. All solvents 

(tetrahydrofuran (THF), dichloromethane (DCM), and acetonitrile (ACN)) were obtained 

from Pharmco-Aaper.  Molecular sieves (3Å) were added to the solvents to remove any 

moisture present and to maintain the anhydrous state of the solvents. 

3.2.2 Curcumin multiacrylate (CMA) synthesis 

Curcumin was functionalized with acrylate to form curcumin multiacrylate by 

reaction with acryloyl chloride  according to the method reported previously [69]. Briefly, 

curcumin was dissolved in THF to a final concentration of 50 mg/mL. TEA was added to 

this solution at the desired curcumin:TEA ratio as presented in Table 3.1. After the TEA 
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addition, acryloyl chloride was added drop wise to the THF solution while the mixture was 

stirred on an ice bath. The reaction mixture was allowed to react for 16 hours under dark 

conditions. The mixture was then subjected to vacuum filtration to remove the precipitated 

triethylammonium chloride salts formed by the reaction between TEA and acryloyl 

chloride, which release HCl. THF from filtrate was evaporated under vacuum using a liquid 

N2 trap. The recovered CMA mass was re-dissolved in DCM. This solution was then 

purified by multiple washes with 0.1 M K2CO3 and then 0.1 M HCl to remove unreacted 

acryloyl chloride and TEA, respectively. Magnesium sulfate was added to remove residual 

moisture from the solution; the amount of magnesium sulfate needed was usually small 

(around 1% of curcumin weight). The resulting solution was filtered to remove magnesium 

sulfate, and DCM was then evaporated under vacuum using a liquid N2 trap to obtain the 

final product in powdered form. Three different batches were synthesized by varying the 

curcumin to acryloyl chloride ratio (viz. 1:1, 1:2 and 1:3) to demonstrate control over the 

acrylation. The curcumin:TEA ratio selected was the same as the curcumin:acrylolyl 

chloride ratio (e.g., for 1:1 curcumin:acryloyl chloride, 1:1 curcumin:TEA was used). The 

molar ratios of curcumin, acryloyl chloride and TEA used for preparing these batches is 

presented in Table 3.1. Chemical structures of curcumin and the different acrylates possible 

through acrylation are presented in Figure 3.1.  

3.2.3 High performance liquid chromatography (HPLC) 

The synthesized CMA was characterized using reverse-phase HPLC (Waters 

Phenomenex C18 column, 5 µm, 250 mm (length) X 4.6 mm (I.D.) on a Shimadzu 

Prominence LC-20 AB HPLC system).  Samples were prepared with a final concentration 

of 50 µg/mL in ACN. A gradient from 50/50 ACN/water to 100/0 ACN/water over 30 
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minutes at 1 mL/min was used with the column chamber set at 40°C. The absorbance was 

measured from 220 nm to 500 nm.    

3.2.4 Liquid chromatography-mass spectrometry (LCMS) 

LCMS was performed using a Shimadzu high-performance liquid chromatograph 

(HPLC) equipped with a ZORBAX Eclipse XDB-C18 column, coupled with an ABSciex 

5600 “Triple TOF” hybrid quadruple time of flight mass spectrometer. For LCMS, the 

same elution method was used as for HPLC, but the flow rate was 0.5 mL/min and the 

column chamber temperature was 35°C. A UV-Vis detector was present before the mass 

spectrometer which measured absorbance at 420 nm. 

3.2.5 1H Nuclear magnetic resonance (1H-NMR) 

1H NMR spectroscopy was performed using a Varian UNITY INOVA 400 MHz 

instrument equipped with a 5 mm quadruple-nucleus probe. 7.5 mg of sample was 

dissolved in 750 μL of deutrated dimethyl sulfoxide (DMSO). Deutrated DMSO was used 

for analysis of all compounds. The chemical shifts are reported in ppm relative to TMS 

(trimethyl silane).  

3.2.6 Thermogravimetric analysis (TGA) 

A TA Instruments Q50 TGA instrument was used to measure the thermal stability 

of the different CMA samples. The heating rate was 10°C/min from 35°C to 550°C. Sample 

amount was approximately 3 mg.  All samples were analyzed under nitrogen purge in a 

closed aluminum pan with perforated lid. 

3.3 Results and discussion 

Curcumin is known to display keto-enol tautomerism across the central  moiety 

connecting the benzene rings [157]. In commonly used organic solvents such as DMSO, 
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acetone, chloroform, and acetonitrile, the enol is present as the majority form compared to 

the keto form [158, 159]. During the acrylation of curcumin, hydroxyl groups are 

functionalized with acrylate groups: based on the number of hydroxyl groups replaced, 

different mono-, di- and triacrylates are possible (Figure 1). To study curcumin acrylation 

in detail, different grades of curcumin multiacrylate (CMA) were prepared through a 

systematic variation of the curcumin:acryloyl chloride ratio. The synthesized grades of 

CMA were characterized with HPLC, LCMS and NMR. LCMS and NMR data was used 

to determine the extent of acrylation, and LCMS was used to identify monoacrylate, 

diacrylate and triacrylate species of curcumin.  

3.3.1 High performance liquid chromatography (HPLC) 

In Figure 3.2, the HPLC chromatograms for curcumin, CMA 1:1, CMA 1:2 and 

CMA 1:3 are presented. A group of peaks was present from 8 minutes to 9.5 minutes, 

which correspond to different forms of curcumin. The intensity of this set of peaks 

decreased as the amount of acryloyl chloride in the initial reaction mixture was increased, 

demonstrating an increase in the extent of curcumin conversion to curcumin acrylates. 

Also, additional peaks around 14 minutes and 19 minutes emerge for CMA 1:1, 1:2 and 

1:3, along with peaks at 14.8, 15.8 & 17.3 minutes for CMA 1:3, which could potentially 

be different acrylates of curcumin. Based on an increase in the inherent hydrophobicity of 

the acrylated curcumin, the peaks evident at 14 and 19 minutes in Figure 3.2 were 

anticipated to be monoacrylate and diacrylate forms of curcumin, respectively. As the 

curcumin:acryloyl chloride ratio was increased to 1:2, the relative proportion of 

monoacrylate decreased while the diacrylate proportion increased. This trend continued for 

CMA 1:3, where the proportion of monoacrylate relative to diacrylate was even lower. The 
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emergence of peaks between 14 minutes and 19 minutes (i.e. peaks at 14.8, 15.8 & 17.3 

minutes) for CMA 1:3, which could potentially be triacrylate peaks, was unexpected. Since 

the triacrylate form is presumably more hydrophobic than the diacrylate, the triacrylate 

species would be expected to elute after the diacrylate form. To explore the elution 

sequence in detail and to establish the molecular weight corresponding to each peak, LCMS 

analysis was completed for all CMA formulations as discussed below. 

The absorbance spectrum for each HPLC elution peak was recorded using a photo-

diode array (PDA) detector connected with the HPLC instrument. The absorbance 

spectrum for each peak present in the CMA 1:3 HPLC chromatogram is presented in 

Figure 3.3; the absorbance spectra for CMA 1:1 and CMA 1:2 are provided in the 

supplemental section. A blue shift in peak wavelengths is seen for the different acrylated 

forms of curcumin as compared to unmodified curcumin, which has an absorbance peak 

maximum at 420 nm. The peak wavelengths for the different curcumin acrylate species are 

listed in the Table 3.2. The UV-vis absorbance peaks shift to lower wavelengths due to 

acrylation, with the curcumin peak maximum at approximately 420 nm, monoacrylates at 

410 nm, diacrylates around 400 nm and triacrylates at 370 nm.   

3.3.2 Liquid chromatography-mass spectrometry (LCMS) 

The LCMS data for curcumin and CMA with curcumin:acryloyl chloride 

formulation ratios of 1:1 and 1:2 is presented in the  Figure 3.4 and Figure 3.5. The elution 

times for all elution peaks in LCMS are approximately 2 minutes higher than those 

obtained from HPLC; this is due to a lower column temperature (35°C) used for LCMS as 

compared to HPLC (40°C), which does not affect the nature or sequence of the elution 

peaks. The LCMS data for curcumin (Figure 3.4) identify three forms of curcumin: 
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bisdemethoxycurcumin, demethoxycurcumin and curcumin. These forms are present in the 

molar amounts 3.5%, 25.4% and 71.1%, respectively, which are similar to the proportions 

obtained from the HPLC absorbance peak areas (3.9%, 23.0% and 73.1%, respectively). 

The comparable values obtained from LCMS and HPLC absorbance show that the molar 

extinction coefficients are similar for the three forms of curcumin. 

The LCMS data for CMA 1:1 are presented in Figure 3.5. A cluster of four peaks 

around 16.5 minutes was found to be a group of monoacrylate peaks, corresponding to 

bisdemethoxycurcumin monoacrylate, demethoxycurcumin monoacrylate, curcumin 

monoacrylate, followed by an additional demethoxycurcumin monoacrylate peak. As seen 

in Figure 3.6, these monoacrylate peaks are present in CMA 1:2 as well, but in a lower 

proportion. A group of three diacrylate peaks are present at 22.5 minutes for both CMA 

1:1 and CMA 1:2, representing curcumin diacrylate, demethoxycurcumin diacrylate and 

bisdemethoxycurcumin diacrylate, respectively. For CMA 1:2, the proportion of diacrylate 

peaks is relatively higher than in CMA 1:1. The LCMS data for CMA 1:3 are shown in 

Figure 3.7. For CMA 1:3, a curcumin monoacrylate peak and a set of diacrylate peaks are 

present. Along with these peaks, three additional peaks were present at 17.8, 18.9 and 20.5 

minutes. These peaks had a molecular weight of 531, which corresponds to curcumin 

triacrylate. Based on the peak area analysis, the extent of acrylation (number of acrylate 

groups per molecule) was calculated to be 1.34, 1.84 and 2.56 for CMA 1:1, 1:2 and 1:3, 

respectively. The various elution peaks observed in the HPLC data in Figure 2 were 

identified using LCMS (re: Figure 3.5, 3.6 & 3.7). The CMA 1:1 sample had unreacted 

curcumin, along with monoacrylates and diacrylates of the three forms of curcumin. The 

CMA 1:2 sample had the same constituent species as CMA 1:1, but with a higher amount 
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of diacrylate species and a lower amount of unreacted curcumin. The monoacrylate and 

diacrylate peak elution sequence was found to be based on the hydrophobicity of the 

respective molecules. Additionally, it was observed that demethoxycurcumin 

monoacrylate had two peaks in the elution profile. This was due to two possible forms of 

monoacrylation of demethoxycurcumin, viz., acrylation on the benzene ring with R1 = 

OCH3, or acrylation on the benzene ring with R2 = H. CMA 1:3 showed complete 

conversion of curcumin, forming a mixture of curcumin triacrylate and diacrylate species 

along with a trace amount of curcumin monoacrylate species. The relative proportions of 

the various acrylates for different curcumin:acryloyl chloride ratios are shown in Table 

3.3. 

It was seen from both the HPLC and LCMS analysis of CMA 1:3 that the curcumin 

triacrylates elute before the diacrylate species. This result was not anticipated, given the 

higher hydrophobicity of curcumin triacrylate. The observed elution order most likely 

reflects additional factors that govern the elution of the triacrylates such as electrical charge 

on the molecule due to ion pairing, or molecular shape. Acrylation at the central linkage 

can potentially give the triacrylate molecule a more kinked geometry as compared to the 

overall linear character of the diacrylate molecule, and this kinked configuration can 

contribute to a lower adsorption tendency on the column leading to earlier elution of the 

triacrylates [160, 161]. 

An additional phenomenon observed with curcumin triacrylate elution is the 

appearance of three distinct elution peaks as seen from LCMS (re: Figure 3.7). This could 

reflect different conformational isomers of curcumin triacrylate, which have varying 

adsorption tendencies and hence elute at different times. To explore this further, each of 
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the triacrylate peak elutions for the CMA 1:3 sample were collected separately and 

reinjected into the HPLC. HPLC runs for isolated curcumin triacrylate (CTA) peak 1, 

isolated CTA peak 2 and isolated CTA peak 3 are reported in Figure 3.8. It can be seen 

that each of these isolated samples redistribute across the original CTA peak positions 

observed for CMA 1:3. For the peak collection from HPLC, an extended method file was 

used, which provided approximately 3 minutes of peak time separation. A sample 

collection window of 25 seconds was used to collect samples.  Based on these data, there 

is ample evidence to indicate that these species are redistributing across triacrylate peak 

positions, which would imply that they correspond to three different conformers of CTA 

formed by the rotation of acrylate groups. This is a commonly observed phenomenon in 

non-planar molecules that experience hindrance in the free rotation around the sigma bond 

due to the presence of neighboring chemical groups [162, 163]. To explore if the three 

CTA peaks represent species that are in equilibrium with each other, or if they interconvert 

over time to reach equilibrium, the influence of holding time on peak positions was studied.  

As seen from Figures 3.9 and 3.10, the peak positions and relative areas didn’t change 

even after 5 hours, suggesting that conformations are stable and don’t convert over time. 

This implies that the conformational kinetics are fast enough to obtain equilibrium within 

30 minutes. 

3.3.3 1H Nuclear magnetic resonance (1H-NMR) 

The degree of acrylation of curcumin was further characterized by NMR. The 1H-

NMR data for all samples are presented in Figure 3.11. The phenolic proton peaks (9.5 to 

10.5 ppm) decrease with increasing acryloyl chloride ratio, reflecting an increase in the 

extent of curcumin to curcumin acrylate conversion. The smaller peak at 10.1 ppm 
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corresponds to the hydroxyl proton present at the enol while the 9.7 ppm peak corresponds 

to the phenolic protons. Also, acrylate proton peaks (6 to 6.6 ppm) emerge, confirming the 

presence of acrylate groups on the curcumin molecule. Based on NMR data, the extent of 

acrylation (number of acrylate groups per molecule) was calculated to be 1.03, 1.73, and 

2.82 for 1:1, 1:2 and 1:3 CMA, respectively. A comparison of the extent of acrylation for 

the different formulation ratios using LCMS and NMR is reported in Figure 3.12. 

3.3.4 Thermogravimetric analysis (TGA) 

Thermal stability of monomers is an important parameter when developing 

polymers for different applications, where the monomer might be exposed to elevated 

temperatures during polymer synthesis or other processing steps. TGA was performed on 

curcumin and CMA to explore the thermal stability of these samples; see Figure 3.13. 

Volatiles are evaporated initially from all samples as indicated by the ~ 4% weight loss 

prior to samples reaching 250°C. The curcumin decomposition begins at the lowest 

temperature, suggesting the greatest degree of thermal instability amongst the samples. 

Interestingly, decomposition begins around 350°C for CMA 1:2 and CMA 1:3, while for 

CMA 1:1, decomposition starts around 250°C. For CMA 1:1, the decomposition curve was 

broader as compared to CMA 1:2 and CMA 1:3. The earlier onset and broader 

decomposition was due to the higher amount of residual (i.e., unmodified) curcumin 

present in the CMA 1:1 sample. The amount of carbon residue (~ 40%) left at the end of 

TGA analysis was consistent with estimates obtained by considering the full pyrolysis of 

curcumin and CMA. 
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3.4 Conclusions 

In this work, a synthesis method for curcumin acrylation was presented and the 

resulting curcumin multiacrylate product was characterized using HPLC, LCMS and 

NMR. Control over the extent of acrylation was demonstrated, and it was confirmed that 

the degree of acrylation correlates with the curcumin:acryloyl chloride ratio in the 

formulation mixture. All acrylate species present in the CMA samples were identified using 

LCMS, and the extent of acrylation was determined using both LCMS and NMR.  The 

extent of acrylation was found to be 1.34 and 1.03 for CMA 1:1, 1.84 and 1.73 for CMA 

1:2, and 2.56 and 2.82 for CMA 1:3 using LCMS and NMR, respectively. Overall, it was 

seen that an increase in acrylation led to an increase in thermal stability of the parent 

compound. The full characterization of these multiacrylate products is essential for their 

use in the design and synthesis of future curcumin-based materials for biological and 

environmental applications.  
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Table 3.1: Composition of curcumin, acryloyl chloride and TEA in the initial reaction 

mixture. 

Curcumin 
(moles) 

Acryloyl 
chloride (moles) 

TEA 

(moles) 

CMA 1:1 1 1 1 

CMA 1:2 1 2 2 

CMA 1:3 1 3 3 
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Table 3.2: UV-Vis absorbance peaks for different forms of curcumin multiacrylate. 

Absorbance peak wavelength 

Curcumin 420 nm 

Curcumin monoacrylate 412 nm 

Curcumin diacrylate 400 nm 

Curcumin triacrylate 370 nm 

Demethoxycurcumin 420 nm 

Demethoxycurcumin monoacrylate 408 nm 

Demethoxycurcumin diacrylate 397 nm 

Demethoxycurcumin triacrylate 370 nm 

Bisdemethoxycurcumin 420 nm 

Bisdemethoxycurcumin monoacrylate 412 nm 

Bisdemethoxycurcumin diacrylate 395 nm 
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Table 3.3: Proportion of different acrylates in CMA prepared with different 

curcumin:acryloyl chloride ratios. The values are based on the peak areas from LCMS. 

CMA 1:1 CMA 1:2 CMA 1:3 

Curcumin 16.0 % 2.3 % 0 % 

Monoacrylates 38.5 % 23.3 % 1.0 % 

Diacrylates 40.6 % 62.0 % 42.4 % 

Triacrylates 4.9 % 12.4 % 56.6 % 
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Figure 3.1: Chemical structure of curcumin (A), curcumin monoacrylate (B), curcumin 

diacrylate (C), and curcumin triacrylate (D). R1 and R2 are both OCH3 for curcumin, H and 

OCH3 for demethoxycurcumin, and both H for bisdemethoxycurcumin. 
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Figure 3.2: HPLC chromatograms for curcumin and curcumin multiacrylate with different 

curcumin:acryloyl chloride ratios (viz. 1:1, 1:2 and 1:3). The curcumin peak intensity 

decreases with an increase in acryloyl chloride in the reaction mixture. 

Curcumin
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Figure 3.3: Absorbance spectra for individual peaks from HPLC analysis for CMA 1:3. 

The time noted in the legend is the peak elution time obtained from HPLC. Possible peak 

assignments for the different acrylates are indicated in the legend. CMoA – curcumin 

monoacrylate, CTA – curcumin triacrylate, CDA – curcumin diacrylate, DCDA – 

demethoxycurcumin diacrylate, BDCDA – bisdemethoxycurcumin diacrylate. 
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Figure 3.4: LCMS data for curcumin. Mass spectroscopy results are shown in the top three 

plots, while the result from the UV-vis detector connected before the mass spectrometer is 

shown in the bottom plot. 
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Figure 3.5: LCMS data for CMA synthesized using 1:1 curcumin:acryloyl chloride ratio. 

Mass spectroscopy results are shown in the top three plots, while the result from the UV-

vis detector connected before the mass spectrometer is shown in the bottom plot. 
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Figure 3.6: LCMS data for CMA synthesized using 1:2 curcumin:acryloyl chloride ratio. 

Mass spectroscopy results are shown in the top three plots, while the result from the UV-

vis detector connected before the mass spectrometer is shown in the bottom plot. 
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Figure 3.7: LCMS data for CMA synthesized using 1:3 curcumin:acryloyl chloride ratio. 

Mass spectroscopy results are shown in the top three plots, while the result from the UV-

vis detector connected before the mass spectrometer is shown in the bottom plot.  
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Figure 3.8: Curcumin triacrylate (CTA) elution collection samples rerun in HPLC using 

12 minute gradient method file from 60/40 (ACN/aqueous) to 100/0 (ACN/aqueous). Inset 

plot shows same data, but expanding triacrylate range. For curcumin triacrylate, peaks 1, 2 

and 3 correspond to the 14.8, 15.8 & 17.3 minute peaks in Figure 3.2. 
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Figure 3.9: Isolated curcumin triacrylate “peak 2” elution collection samples (0.5 and 5 

hours after collection) rerun in HPLC using 12 minute gradient method file from 60/40 

(ACN/water) to 100/0 (ACN/water). Inset plot shows same data, but expanding triacrylate 

range.  
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Figure 3.10: Isolated curcumin triacrylate “peak 3” elution collection samples (0.5 and 5 

hours after collection) rerun in HPLC using 12 minute gradient method file from 60/40 

(ACN/water) to 0/100 (ACN/water). Inset plot shows same data, but expanding triacrylate 

range. 



59 

Figure 3.11: 1H NMR (400 MHz, DMSO-d6) spectrum of curcumin and CMA prepared 

with different curcumin:acryloyl chloride ratios. Acrylation is evident from the decrease in 

hydroxyl proton peaks (9.5 to 10.5 ppm) and the emergence of acrylate proton peaks 

(between 6.1 and 6.7 ppm).  
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Figure 3.12: Comparison of extent of acrylation values obtained from LCMS and NMR 

analysis of CMA with different curcumin to acryloyl chloride ratios. All the data reported 

in the current figure is for n = 1. 



Figure 3.13: Thermogravimetric analysis (TGA) for curcumin and CMA synthesized with 

different curcumin:acryloyl chloride ratios. 
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Chapter 4: Static and dynamic properties of biodegradable poly(antioxidant β-

amino ester) networks based on incorporation of curcumin multiacrylate 

This chapter is based on the following published work: 

Patil, V.S.; Dziubla, T.D.; Kalika, D.S. “ Static and dynamic properties of biodegradable 

poly(antioxidant β-amino ester) networks based on incorporation of curcumin 

multiacrylate”, Polymer 2015, 75, 88. 

4.1 Introduction 

Biodegradable polymers have found use in a variety of biomedical applications 

including sutures, drug delivery, tissue engineering and orthopedic implants [54, 98]. As 

with all biomaterials, their use is dictated by the observed situational biocompatibility.  In 

acute settings, this is largely determined by the inflammatory response.  For instance, when 

surrounding macrophages become activated, either through bulk mechanical cues, surface 

response, or the degradation products of the implanted polymers, they will release a burst 

of superoxide anions and digestive enzymes which can lead to the loss of function of the 

biomedical device [164-166]. This results in the initiation of oxidative stress in the 

neighboring tissues, a condition where excess reactive oxygen species are produced, 

leading to the propagation of inflammation, apoptosis and cell death.  

Acute oxidative stress can be eliminated by re-establishing the balance of oxidants 

and antioxidants, which can be achieved by increasing levels of antioxidants [6]. 

Antioxidants can scavenge free radicals or oxidative species and reduce them to stable 

molecules and thus suppress oxidative stress.  Polymer conjugation of small molecule 

antioxidants has been used as a means of suppressing biomaterial induced oxidative stress 
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through long-term sustained release [167]. In this work, we have used curcumin, a potent 

naturally-derived dietary antioxidant, for the suppression of oxidative stress. Curcumin is 

a polyphenolic compound derived from the Indian spice turmeric and along with its 

antioxidant attributes, it is also known to have anti-tumor and anti-inflammatory properties 

[139, 168, 169] and has shown promising free radical scavenging capabilities [168]. 

Despite this potential, the use of curcumin is restricted by its poor solubility [126] and 

limited chemical stability: oxygen is known to cause curcumin degradation, and curcumin 

has also been shown to break down with mechanisms independent of oxygen in the 

presence of light, resulting in severe color fading of curcumin-coated tablets and solutions 

[142]. 

Recently, our laboratory has developed poly(antioxidant β-amino ester) (PAβAE) 

hydrogels that incorporate polyphenolic antioxidants (e.g., quercetin, curcumin) as a way 

to suppress biomaterial associated inflammatory response and to increase antioxidant 

bioavailability [124]. These polymers are based upon the poly(β-amino ester) (PβAE) 

synthesis approach, which relies on the Michael addition reaction of amines to acrylates.  

The benefit of this chemistry over more traditional free radical acrylate polymerization is 

that the resulting ester bonds of the PβAE polymers are sensitive to hydrolysis, allowing 

for controlled degradation and antioxidant release [170-172]. Advantages of PAβAE 

chemistry within this context are: (i) it does not involve a free radical initiator which can 

be problematic when working with antioxidants; (ii) degradation products improve the 

overall solubility of the poorly soluble antioxidant compounds; (iii) the network can 

undergo controlled, pH-dependent degradation through hydrolysis of ester bonds; and (iv) 
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antioxidant stability is increased due to its incorporation in the PAβAE three-dimensional 

network backbone structure.  

In this Chapter, we report the influence of changes in curcumin content on the 

structure and thermomechanical properties of poly(curcumin β-amino ester) hydrogel 

networks, i.e. PCβAE.  PCβAE networks of varying composition were studied with a goal 

of achieving tunable drug release properties with controlled release rates. Hydrophobic 

curcumin was covalently linked into the hydrogel networks using PAβAE chemistry:  each 

PCβAE network was synthesized by reacting poly(ethylene glycol) diacrylate (PEGDA) 

with a primary diamine, 4,7,10-trioxa-1,13-tridecanediamine (TTD), in combination with 

acrylate-functionalized curcumin.  The introduction of functionalized curcumin into the 

polymerization mixture has the potential to substantively change the intrinsic chemical 

composition of the resulting hydrogels and the topology and inherent flexibility of the 

networks, which are core material aspects that strongly influence the swelling and 

degradation response of the polymers and their bulk mechanical properties.  In an effort to 

fully elucidate the relationships between antioxidant content, mechanical response and 

tunable release, the relaxation properties of the networks were studied by dynamic 

mechanical analysis and broadband dielectric spectroscopy.  These spectroscopic 

techniques were employed to establish the glass-rubber and sub-glass relaxation 

characteristics of the gels as a function of antioxidant content, and to provide insight 

regarding the structure and overall crosslink density achieved in the networks as a function 

of reaction conditions. 
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4.2 Experimental 

4.2.1 Materials 

Curcumin used for the curcumin multiacrylate (CMA) synthesis was purchased 

from Chem-Impex International, Inc. Acryloyl chloride, 4,7,10-trioxa-1,13-

tridecanediamine (TTD) and triethyl amine were all purchased from Sigma-Aldrich. 

Poly(ethylene glycol) 400 diacrylate (PEG400DA) was purchased from Polysciences. All 

organic solvents were purchased from Pharmco-AAPER and used as received.   

4.2.2 Curcumin multiacrylate synthesis 

Curcumin was functionalized with acrylate by reaction with acryloyl chloride to 

form curcumin multiacrylate using a method similar to that reported previously [124]; see 

Figure 4.1. Curcumin was dissolved in tetrahydrofuran (THF) at a concentration of 50 

mg/mL. Triethylamine (TEA) was added at a 1:3 molar ratio of curcumin:TEA. Acryloyl 

chloride, at a 1:3 molar ratio of curcumin:acryloyl chloride, was slowly added to the 

solution using an addition funnel while the reaction mixture was stirred on an ice bath. The 

reaction was allowed to proceed for 16 hours at room temperature under dark conditions. 

The precipitated triethylammonium chloride salt was removed by vacuum filtration. THF 

from filtrate was evaporated under vacuum using a liquid N2 trap. The recovered CMA 

mass was re-dissolved in dichloromethane (DCM) and subjected to multiple 0.1 M HCl 

and 0.1 M K2CO3 washes to remove excess TEA and acryloyl chloride, respectively. The 

residual water was removed by adding magnesium sulfate salt. After filtration, DCM was 

removed by evaporation under vacuum using the liquid N2 trap and the final product was 

obtained in powdered form.  The curcumin multiacrylate synthesized via this method was 

characterized via Fourier transform infrared (FTIR) and 1H-nuclear magnetic resonance 
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(NMR) spectroscopy, with detailed spectra reported by Wattamwar et al [124]. The CMA 

was further characterized using reverse-phase high-performance liquid chromatography 

(HPLC; Waters Phenomenex C18 Column, 5 µm, 250 mm (length) x 4.6 mm (I.D.) on a 

Shimadzu Prominence LC-20 AB HPLC system). The column was maintained at 40°C. A 

gradient from 50/50 acetonitrile/water to 100/0 acetonitrile/water over 15 minutes at 1 

mL/min flow rate was used for analysis of CMA. The wavelength used for detection was 

420 nm, with all samples injected as 50 µl injection volumes.  In addition, independent 

liquid chromatography-mass spectrometry (LC/MS) studies were conducted to establish 

the molecular weight of the individual elution fractions.  The LC/MS unit was comprised 

of a Shimadzu high-performance liquid chromatograph (HPLC) equipped with a ZORBAX 

Eclipse XDB-C18 column, coupled with an ABSciex 5600 “Triple TOF” hybrid 

quadrupole time of flight mass spectrometer [173]. 

4.2.3 Synthesis of PCβAE gel films 

Crosslinked copolymer networks were synthesized via Michael addition with 

primary diamine (TTD) in anhydrous dichloromethane (DCM) as shown in Figure 4.2. 

DCM was added at a ratio of 1.5 ml of solvent per gram of total monomer weight, which 

facilitates heat dissipation when synthesizing PCβAE with higher amounts of CMA. The 

molar ratio of CMA to PEG400DA was systematically varied, as shown in Table 4.1. The 

ratio of total acrylates to total amine hydrogens (RTAA) was fixed at 1.0 for all 

formulations, based on an assumed CMA functionality of two (i.e. diacrylate).  The film 

synthesis process was as follows: half of the total solvent was mixed with CMA powder, 

while the remaining half was mixed with PEG400DA. TTD was added to the PEG400DA 

solution and the resulting mixture was kept at room temperature for 5 minutes. The CMA 
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solution was then added to the PEG400DA solution while mixing on a vortex mixer. The 

final reaction solution was poured into a casting ring assembly which was covered with a 

watch glass to control the solvent evaporation rate. The casting ring assembly was kept at 

room temperature for 1 hour and then transferred to a convection oven for 24 hours at 50°C.  

The resulting gels were washed in anhydrous acetonitrile for 5 hours with solvent change 

every hour to remove unreacted monomer and then dried under vacuum at 50°C. Films 

with thickness in the range of 100 microns to 300 microns were prepared.  

4.2.4 Swelling studies  

The swelling characteristics of the networks were measured in anhydrous 

acetonitrile. Each sample was kept in acetonitrile for 30 minutes to reach equilibrium 

swelling. Upon removal, excess solvent was removed from the surface and the sample was 

weighed immediately. The swelling ratio was calculated as the ratio of the equilibrium 

(swollen) weight, Ws, to the dry weight, Wd.   

 (1) 

Three replicates were completed for each sample and values are reported with standard 

deviation.  

4.2.5 Degradation studies 

Degradation studies were performed in phosphate buffered solution (PBS) with 

0.1% sodium dodecyl sulfate (SDS) at 37°C (7.4 pH). After each time point, supernatant 

was removed and the mass of swollen gel was measured; the gel was then transferred to a 

fresh reservoir of PBS.  During the degradation of the gels, a point is reached where the 

d

s
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sample begins to lose mechanical integrity, making further handling impractical such that 

swelling ratio could not be measured. Degradation time was defined as the point where the 

gel had completely degraded and no solid gel could be detected even after centrifuging the 

sample at 10,000 rpm for 5 minutes. Three replicates were completed for each sample and 

values are reported with standard deviation. 

4.2.6 Dynamic Mechanical Analysis 

Dynamic mechanical analysis (DMA) experiments were performed using the TA 

Instruments Q800 dynamic mechanical analyzer operating in tensile geometry. Storage 

modulus (E´) and loss tangent (tan δ) were recorded at a heating rate of 1°C/min at 1 Hz. 

The temperature range was from -100°C to 150°C. Test samples were in the form of strips 

with thickness of ~ 0.3 mm, width 3 mm and length 20 mm. Samples were dried under 

vacuum at 50°C prior to measurement. All measurements were carried out under an inert 

(N2) atmosphere. 

4.2.7 Broadband Dielectric Spectroscopy 

Broadband dielectric spectroscopy (BDS) measurements were performed using a 

Novocontrol “Concept 40” broadband dielectric spectrometer (Hundsangen, Germany). 

Each sample was placed between aluminum foils and mounted between gold platens in the 

Novocontrol Quatro Cryosystem. Dielectric constant (ε′) and dielectric loss (ε″) were 

measured across a range of frequencies at fixed temperature (isothermal measurement 

mode). The frequency range was 1 Hz to 1.3 MHz, while the temperature range was -150°C 

to 100°C (or 150°C), with a 5°C interval. For BDS analysis, samples were prepared in the 

form of films with 22 mm diameter and thickness in the range of 150 to 200 microns. The 
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thickness of each sample was measured using a micrometer gauge with precision to ±1 µm. 

Samples were dried under vacuum at 50°C prior to measurement. 

4.3 Results & discussions  

4.3.1 Synthesis and characterization of CMA 

Curcumin multiacrylate (CMA) was prepared according to the method detailed 

above and was characterized using HPLC. The HPLC plot for curcumin and the resulting 

CMA is shown in Figure 4.3. Commercially available curcumin contains two 

curcuminoids, desmethoxycurcumin and bis-desmethoxycurcumin, along with curcumin. 

This is reflected in a set of three peaks for curcumin at a retention time of 7.5 ± 0.5 minutes. 

The curcumin peak is not seen in the HPLC plot of CMA, which implies that all curcumin 

has been functionalized.  Since the acrylation of curcumin increases its hydrophobicity 

(and the HPLC column contains a hydrophobic stationary phase), it is expected that the 

curcumin acrylates will be eluted sequentially after the unmodified curcumin elution time 

point. The group of peaks located from 11 minutes to 14 minutes retention time 

corresponds to a mixture of curcumin multiacrylates, specifically curcumin monoacrylate, 

curcumin diacrylate and curcumin triacrylate.  LC/MS measurements confirmed the 

molecular weight of these individual populations, with a minimal amount of monoacrylate 

indicated (less than 1%) and diacrylate and triacrylate species present in comparable 

proportion.  This result is consistent with prior 1H-NMR studies indicating an average 

functionality of 2.66 acrylate groups per curcumin molecule for CMA synthesized under 

similar conditions [124]. Details of the full analysis are presented in reference [173]. 
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4.3.2 Swelling characteristics 

The measurement of network swelling ratio provides a convenient (indirect) 

characterization of crosslink density. Also, the mechanical strength of the crosslinked 

polymer is a sensitive function of crosslink density [174, 175]. The use of an organic 

solvent, such as acetonitrile, allows for determination of the network swelling response 

without simultaneously degrading the network, which is the case with aqueous media. 

PCβAE swelling was characterized in anhydrous acetonitrile (aACN) for hydrogels 

incorporating varying ratios of CMA to PEG400DA in the pre-polymerization reaction 

mixture. Since the solubility of curcumin in ACN is lower than that of PEG400DA, from 

a compositional standpoint the swelling ratio would be expected to decrease as we increase 

curcumin content in the network. Simultaneously, from a structural point of view, curcumin 

is shorter and stiffer than the relatively long and flexible PEGDA segment. This should 

render the network stiffer and also lead to a decrease in the average distance between 

crosslinks (i.e., an increase in crosslink density). With an increase in crosslink density, we 

also expect the swelling ratio to decrease.  However, as seen in the equilibrium swelling 

results shown in Figure 4.4, a maximum value of the equilibrium swelling ratio was 

obtained for the 30:70 gel, beyond which the swelling ratio progressively decreased with 

increasing curcumin content. The increase in swelling ratio with increasing curcumin (up 

to 30:70) suggests that a looser network is forming with the introduction of curcumin 

multiacrylate in the reaction mixture, resulting in a lower overall network crosslink density.  

This aspect of network formation was further explored via measurement of the rubbery 

modulus using dynamic mechanical analysis, as discussed below.  
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4.3.3 Aqueous degradation 

The aqueous degradation profiles for different hydrogels are shown in Figure 4.5a. 

As the CMA:PEG400DA ratio was increased, network hydrophobicity increased. The 

effect of hydrophobicity can be seen from the swelling response in the aqueous phase, with 

the initial swelling increment in PBS decreasing with increasing CMA content (see Figure 

4.5b). Inspection of Figure 4.5a shows that, in general, network degradation slows with 

increasing CMA content. The total degradation time for the hydrogel with 

CMA:PEG400DA molar ratio 0:100 was 3 hours, and increased to as much as 25 hours for 

the 90:10 gel (see inset table in Figure 4.5a).  These degradation times are consistent with 

previous studies on PAβAE networks comprised of PEG400DA and curcumin 

multiacrylates [124, 171]. For the 10:90 and 30:70 compositions, the degradation profiles 

are nearly identical, despite the nominally more hydrophobic character of the 30:70 

network.  This specific result likely reflects the somewhat looser character of the 30:70 

network, as suggested by the ACN swelling measurements. 

4.3.4 Dynamic mechanical analysis 

While PCβAE has been characterized from a functional point of view [124], little 

is known about its network properties. The network properties of hydrogels are important 

in determining potential biomedical applications, as these biomaterials need to have 

optimum mechanical characteristics for appropriate use. When used in tissue engineering 

applications, for example, it is necessary for the implant and surrounding native tissue to 

have a similar modulus while ensuring that the material has enough mechanical strength to 

survive in vivo and not deteriorate before desired function is achieved [176]. Also, 
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knowledge of the glass transition and mobility of the network is helpful in predicting the 

stability of these polymer systems at storage temperature or in application environments.  

Dynamic mechanical results for all compositions from 0:100 to 90:10 

CMA:PEG400DA are presented in Figure 4.6, with storage modulus (E′) and tan δ plotted 

vs. temperature at 1 Hz. A strong, step-wise decrease in storage modulus is seen as the 

material goes from the glassy to the rubbery state, with an accompanying peak in tan δ.  

The glass transition temperature for the networks is offset to higher temperatures with 

increasing CMA content; Tα, defined as the peak temperature in tan δ at 1 Hz, varies from 

-39°C for the 0:100 film to 67°C for the 90:10 composition. The 0:100 network film 

displays a very narrow relaxation peak in tan δ, with a progressive broadening in the glass-

rubber relaxation with increasing CMA content.  For the 90:10 composition, a low-

temperature shoulder is evident just below 40°C, suggesting the coexistence of PEGDA- 

and curcumin-rich phases within the network. 

According to rubber elasticity theory, the rubbery modulus is proportional to the 

crosslink density of the polymer network [177]. With increasing CMA content, relatively 

long and flexible PEG chains are replaced with shorter and stiffer curcumin segments, such 

that a systematic increase in both network crosslink density and rubbery modulus could be 

reasonably anticipated.  However, the storage modulus curves plotted in Figure 4.6a show 

an initial decrease in rubbery plateau modulus with CMA content, with a relative minimum 

in rubbery modulus observed for the 30:70 composition.  Only at CMA:PEG400DA ratios 

beyond 50:50 does the trend in rubbery modulus reverse, with stiffer networks obtained at 

the highest curcumin contents.  This outcome may be a reflection of steric impediments to 

network formation that are introduced by the presence of the stiffer curcumin moieties in 
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the emerging gels.  For the fixed reaction conditions, this has the potential to result in lower 

overall extents of crosslinking.  It is notable that the maximum in (ACN) swelling ratio that 

is observed for the 30:70 composition aligns directly with the measured minimum in 

rubbery modulus.       

To further compare the characteristics of the homopolymer and copolymer 

networks, time-temperature superposition (TTS) was applied to the dynamic mechanical 

results for the 0:100 and 50:50 network compositions; modulus master curves were 

obtained and are plotted as E′ vs. ωaT in Figure 4.7, where ω is the applied test frequency 

and aT is the dimensionless shift factor.  In each case, the reference temperature was 

selected based on the peak maximum in tan δ at 1 Hz. 

TTS curves for both compositions were fit using the Kohlrausch-Williams-Watts 

(KWW) “stretched exponential” relaxation time distribution function: 

                                              (2)    

where τo is the network relaxation time and βKWW is the distribution parameter [178]. βKWW 

ranges from 0 to 1, with values below unity reflecting relaxation broadening as compared 

to the single-relaxation time Debye response.  The 0:100 homopolymer network could be 

described by a single KWW fit with a value of βKWW = 0.31, which is comparable to the 

result obtained for similar PEG-based homopolymer networks [179]. Copolymerization 

with CMA results in a marked increase in glass-rubber relaxation breadth, with the 50:50 

network relaxation corresponding to a distribution parameter, βKWW = 0.12.  

])/(exp[)( KWW
ott βτφ −=
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4.3.5 Broadband dielectric spectroscopy 

Broadband dielectric spectroscopy is a powerful tool for the detection of relaxation 

mechanisms in polymers owing to its wide range of temperature and frequency combined 

with the ability to probe local dipolar motions which are not easily detected via dynamic 

mechanical analysis. In dielectric studies, the measured polarization response is comprised 

of instantaneous polarization, orientation polarization and interfacial polarization. The 

focus in this study is orientation polarization, as it is the basis for the detection of motional 

transitions. Interfacial (or electrode) polarization and conduction are generally observed at 

high temperatures and low frequencies (i.e., beyond the glass transition), with a strong 

increase in the dielectric constant and loss intensity [180]. 

Dielectric results for a representative 50:50 CMA:PEG400DA poly(curcumin β-

amino ester) sample are plotted isochronally as dielectric constant and dielectric loss vs. 

temperature in Figure 4.8.  In the dielectric constant plot, an incremental step change in ε´ 

is evident above -25°C corresponding to polarization associated with the glass-rubber 

relaxation. Similarly, in the dielectric loss plot, a loss peak is present at the glass-rubber 

relaxation. Dielectric loss peaks associated with sub-glass relaxations in the sample are 

shown in the inset plot of dielectric loss for selected lower frequencies. PCβAE hydrogels 

show three molecular relaxations with increasing temperature which have been designated 

as the β1, β2 and α relaxations. The β1 and β2 relaxation processes correspond to local sub-

glass transitions while the higher temperature α relaxation corresponds to large-scale 

dipolar reorientations associated with the glass transition [181]. Each transition shifts to 

higher temperature with increasing measurement frequency.  
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4.3.5.1 Analysis of the glass-rubber relaxation 

The glass-rubber transition involves large-scale translational motions of polymer 

segments and associated dipoles leading to a distinct, step-change increase in dielectric 

constant, Δε = εR - εU. The dielectric data for all samples were analyzed using the 

Havriliak–Negami (HN) modification of the single-relaxation time Debye expression to 

obtain the relaxation characteristics at each temperature; an expanded form of the 

Havriliak-Negami equation was used in order to remove the influence of conduction above 

the glass-rubber relaxation [182]:  

                                                                                          (3) 

where εR is the relaxed dielectric constant (i.e., dielectric constant value as  ω → 0), εU is 

the unrelaxed dielectric constant (i.e., dielectric constant value as  ω → ∞), τHN is the 

relaxation time, αHN and βHN are the broadening and skewing parameters respectively, σ is 

the conductivity and εo is vacuum permittivity. For an ideal conduction process, N assumes 

a value of 1 [182, 183]. 

The WINFIT software package provided with the Novocontrol spectrometer was 

used to obtain HN best-fits for the dielectric loss vs. frequency data at each temperature.  

Representative HN fits of dielectric loss are shown for the glass-rubber (Figure 4.9) and 

sub-glass (Figure 4.10) transitions; the relaxation times (τMAX) associated with the peak 

maxima were extracted from the HN fits and related to the position of the frequency 

maximum for each temperature, with τMAX = 1/ωMAX = (2πfMAX)-1. 
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The frequency-temperature relation for the glass-rubber relaxation is shown via an 

Arrhenius plot in Figure 4.11, where log(fMAX) is plotted vs. 1000/T (K). For the range of 

accessible test frequencies, the data could be fit using the Williams-Landel-Ferry (WLF) 

relation across the glass transition [184]. The glass transition curves shift to higher 

temperatures as the level of curcumin incorporation is increased, consistent with the trend 

observed using dynamic mechanical analysis.  PEG400DA is a relatively flexible 

component compared to CMA, and the presence of PEG imparts network flexibility. As 

the PEG400DA content is reduced, flexible PEG chains are replaced by the stiffer 

curcumin component, which leads to a reduction in network flexibility. This reduction in 

network flexibility means that higher temperatures are required for the chains to overcome 

the energy barriers inherent to long-range segmental motion, leading to an increase in the 

glass transition temperature.   

4.3.5.2 Analysis of sub-glass relaxations 

PCβAE shows two sub-glass transitions (β1 and β2) with increasing temperature. 

Isothermal dielectric data for each sub-glass transition were analyzed using the HN 

equation (Eq. 3). For the sub-glass transitions, satisfactory HN fits were obtained by setting 

the skewing parameter (βHN) equal to 1 (Figure 4.10).  In Figure 4.12, dielectric loss data 

for the sub-glass transitions are presented for PCβAE with different CMA:PEG400DA 

ratios. The data shown correspond to the mid-range of the sub-glass transition region (-

60°C) where both sub-glass transitions could be compared.  For all network compositions, 

two overlapping sub-glass transitions were evident: β1 is on the high-frequency side (lower 

temperature sub-glass transition) while β2 is on the low-frequency side (higher temperature 

sub-glass transition). It can be observed from Figure 4.10 that peak positions for the sub-
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glass transitions shift minimally relative to the 0:100 film, which contains only ethylene 

oxide units. This suggests that the sub-glass transitions originate solely due to the local 

motion of ethylene oxide moieties: as the proportion of PEG400DA in the network 

decreases, the intensities of the sub-glass transitions also decrease due to the reduced 

ethylene oxide content. The presence of curcumin does not appear to affect the position of 

the sub-glass relaxations, suggesting that the curcumin moiety is not participating in the 

measured sub-glass processes. This likely is a reflection of the relatively bulky character 

of curcumin and the substantial energy barrier associated with localized motions of the 

curcumin moiety along the chain backbone. In prior publications, both crystalline 

poly(ethylene oxide) (PEO) and UV-crosslinked PEGDA were reported to have two sub-

glass transitions which originate from similar dipolar motions [181, 185, 186]. In these 

previous studies, it was hypothesized that the β1 relaxation originates from local motions 

of the ethylene oxide moieties occurring far from the crystal surface or crosslink junctions, 

whereas the β2 process reflects more constrained motions originating in the vicinity of the 

crystals/crosslinks. 

The Arrhenius data for the sub-glass transitions are shown in Figure 9. There is 

minimal variation in the position of the sub-glass transitions with network composition, 

with each relaxation defined by a common activation energy. For β1, the activation energy 

is 40 kJ/mol and for β2, it is higher with a value of 52 kJ/mol, consistent with prior studies 

[181]. 

4.4 Conclusions 

The incorporation of curcumin in PAβAE hydrogels was achieved using a one-step 

method based on a Michael addition reaction. A series of PCβAE films was synthesized by 
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varying the relative proportion of curcumin multiacrylate in the reaction mixture using an 

improved film synthesis protocol based on ring casting with in-situ polymerization. This 

protocol allowed preparation of PCβAE hydrogels with reproducible degradation and 

thermomechanical properties. Curcumin, by its rigid character, alters the flexibility and 

architecture of the network, which then affects the degradation and release profile. Overall 

degradation times ranging from 3 hours to 25 hours were obtained by varying the CMA 

composition. An increase in curcumin content in the networks resulted in an increase in 

the glass transition temperature, as measured by dynamic mechanical analysis and 

broadband dielectric spectroscopy, owing to the replacement of long and flexible PEG 

chains with the shorter and more rigid curcumin moiety. Dielectric spectroscopy 

measurements indicated three relaxation processes in the PCβAE networks: two sub-glass 

relaxations (β1 & β2) and the glass-rubber (α) relaxation with increasing temperature. The 

sub-glass relaxations originated from the localized motion of ethylene oxide units, 

consistent with previous studies on PEG-based networks. It was demonstrated that network 

hydrophilicity, crosslink density, and overall flexibility could all be modified directly by 

variations in curcumin content as a basis by which to control the degradation properties of 

the resulting materials. 
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Table 4.1: Compositions of synthesized poly(curcumin β amino esters). 

CMA:PEG400DA 

(molar ratio) 

mole % 

CMA PEG400DA TTD 

0:100 0.00 66.67 33.33 

10:90 6.67 60.00 33.33 

30:70 20.00 46.67 33.33 

50:50 33.33 33.33 33.33 

70:30 46.67 20.00 33.33 

90:10 60.00 6.67 33.33 
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[A] 

[B] 

Figure 4.1: Chemical structure of curcumin [A] and acrylate-functionalized curcumin 

(diacrylate form) [B]. R1 and R2 can be either H or OCH3. 

HO
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O O
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Figure 4.2: Simplified schematic for synthesis of PAβAE hydrogels. 

      Δ    DCM  
CMA or PEGDA TTD 



82 

Figure 4.3: HPLC comparison plot for curcumin and curcumin multiacrylate at 420 nm. 
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Figure 4.4: Swelling ratio in ACN for CMA:PEG400DA PCβAE hydrogels. 
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Figure 4.5: PCβAE degradation in PBS at 37°C. (a) Swelling ratio vs. time for PCβAE 

degradation. Inset table shows the total degradation time for each film. (b) Initial swelling 

ratio for CMA:PEG400DA PCβAE hydrogels. 

(a) 
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Figure 4.5: PCβAE degradation in PBS at 37°C. (a) Swelling ratio vs. time for PCβAE 

degradation. Inset table shows the total degradation time for each film. (b) Initial swelling 

ratio for CMA:PEG400DA PCβAE hydrogels. 

(b) 
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Figure 4.6: Dynamic mechanical properties of PCBAE films synthesized using different 

CMA:PEG400DA molar ratios. (a) Storage modulus (Pa) vs. temperature (°C) at 1 Hz. (b) 

Tan δ vs. temperature (°C) at 1 Hz. 

(a) 
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Figure 4.6: Dynamic mechanical properties of PCBAE films synthesized using different 

CMA:PEG400DA molar ratios. (a) Storage modulus (Pa) vs. temperature (°C) at 1 Hz. (b) 

Tan δ vs. temperature (°C) at 1 Hz. 

(b) 
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Figure 4.7: Time-temperature superposition results for 0:100 and 50:50 

CMA:PEG400DA. Solid curves are KWW best-fits.  50:50 result is shifted downward by 

one decade for clarity (re: right axis). 
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Figure 4.8: Dielectric response for 50:50 CMA:PEG400DA network. (a) Dielectric 

constant (ε′) vs. temperature (°C); frequencies from 1 Hz to 1.3 MHz. (b) Dielectric loss 

(ε′′) vs. temperature (°C); frequencies from 1 Hz to 1.3 MHz. Inset plot shows sub-glass 

transitions for 1, 11, and 110 Hz. 
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Figure 4.8: Dielectric response for 50:50 CMA:PEG400DA network. (a) Dielectric 

constant (ε′) vs. temperature (°C); frequencies from 1 Hz to 1.3 MHz. (b) Dielectric loss 

(ε′′) vs. temperature (°C); frequencies from 1 Hz to 1.3 MHz. Inset plot shows sub-glass 

transitions for 1, 11, and 110 Hz. 
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Figure 4.9: Dielectric loss (ε′′') vs. frequency (Hz) in the vicinity of the glass transition for 

50:50 CMA:PEG400DA; temperatures from 15°C to 65°C at 5°C intervals. Data are 

corrected for conduction according to equation 3. Solid curves are HN fits. 
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Figure 4.10: Dielectric loss (ε′′) vs. frequency (Hz) for 50:50 CMA:PEG400DA sub-glass 

transitions; temperatures from -95°C to -45°C at 5°C intervals. Solid curves are HN fits. 



Figure 4.11: Arrhenius plot of fMAX (Hz) vs. 1000/T (K) for PCβAE hydrogels with 

different CMA:PEG400DA molar ratios. 

93 
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Figure 4.12: Dielectric loss (ε′′) vs. frequency (Hz) at -60°C for PCβAE hydrogels with 

different CMA:PEG400DA molar ratios. Solid curves are HN fits. 
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Chapter 5: Influence of ratio of total acrylate to amine (RTAA) and monomer 

selection on network and degradation properties of poly(curcumin β--amino ester) 

(PCBAE) 

5.1 Introduction 

Hydrogels have been used for drug delivery, tissue regeneration, orthopedic 

implants, contact lenses, and biosensors due to their high water intake capability, 

biocompatibility and mechanical properties that can be tuned to match those of biological 

tissue [106, 187-189]. Among biodegradable hydrogels, poly(β-amino esters) (PBAE) have 

gained interest for drug delivery and biomedical applications [121, 190-192]. PBAEs have 

been used for delivery of small molecules as well as macromolecules such as proteins and 

peptides using standard encapsulation techniques with wide drug release times ranging 

from hours to months [122, 156, 193-200]. The mechanical properties of PBAEs can also 

be adjusted to match the mechanical properties of tissue, which is crucial in tissue 

engineering applications [115, 201]. PBAE, which is subject to hydrolytic degradation, is 

advantageous when used as a bioimplant or depot for drug delivery or orthopedic 

applications, since no removal surgery is required. PBAE has been shown to be 

biocompatible, as evidenced from its low cytotoxicity, as well as the low cytotoxicity of 

its degradation products [202-204]. 

While encapsulation of drugs in PBAE networks has been widely studied, covalent 

incorporation of a drug in the PBAE network as a part of the polymer backbone has only 

recently been explored. PBAE networks containing antioxidants such as curcumin, 

quercetin and apigenin have been developed with promising results for suppressing the 
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oxidative stress caused by copper oxide and iron oxide nanoparticles, as well as for the 

protection of mitochondria against oxidative stress [124, 133, 152, 204, 205]. Incorporation 

of antioxidants in the PBAE network offers advantages towards improving stability, bio-

availability of the drugs and targeted drug delivery. In our prior work, we explored the 

tuning of network and functional properties of poly(curcumin β-amino esters) with varying 

curcumin composition [69]. Curcumin is a major component of the Indian spice turmeric, 

which has antioxidant and anti-inflammatory properties. Antioxidant delivery is one of the 

approaches used for reduction of oxidative stress, which is a cause or an effect of various 

conditions such as Parkinson’s disease, Alzheimer’s disease, ischemia reperfusion injury, 

cancer, and also cardiovascular diseases [3, 4, 45, 46]. However, low solubility and 

instability of antioxidants limit their applications. This necessitates the development of 

efficient antioxidant delivery systems to overcome the pathological conditions related to 

oxidative stress. Even though curcumin has displayed various advantageous properties, its 

application has been limited by its photo-instability and low aqueous solubility caused by 

its hydrophobic and crystalline character [206, 207]. Incorporation of curcumin into an 

amorphous PBAE polymer network improves its stability by reducing the mobility of labile 

groups and also limits the access of reactive agents to these labile groups. This approach 

has been shown to improve the dissolution of curcumin, which is believed to be a result of 

its incorporation into a fully degradable amorphous solid and by the solubility 

enhancements that result from the presence of co-degradation products. In this work, 

acrylate functionalized curcumin along with a commercial poly(ethylene glycol) diacrylate 

was reacted with a primary diamine to form poly(curcumin β-amino ester) (PCBAE) 

through a Michael-type conjugate addition reaction. The impact of independent parameters 
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such as the specific amines and diacrylates used in the reaction, curcumin composition, and 

the ratio of total acrylate to amine on the functional properties of PCBAE was investigated. 

The understanding of these process parameters is vital in being able to tune the PCBAE 

properties to a desired application. A systematic study of thermomechanical properties, 

degradation and curcumin release of PCBAE as a function of these independent parameters 

is presented. Thermomechanical properties were investigated using dynamic mechanical 

analysis, while degradation and curcumin release were measured via swelling response and 

UV-Vis spectrophotometry, respectively. 

5.2 Experimental 

5.2.1 Materials 

Curcumin was purchased from Chem-Impex and used as received. Acryloyl 

chloride, triethyl amine (TEA), poly(ethylene glycol) 576 diacrylate (PEG576DA), 

poly(ethylene glycol) 400 diacrylate (PEG400DA), diethylene glycol diacrylate 

(DEGDA), 4,7,10-trioxa-1,13-tridecanediamine (TTD), 2,2’(ethylenedioxy) bis 

ethylamine (EDBE) and hexamethylene diamine (HMD) were all purchased from Sigma-

Aldrich. Tetrahydrofuran (THF), dichloromethane (DCM) and acetonitrile (ACN) were all 

purchased from Pharmco-AAPER. Molecular sieves were added to all solvents to remove 

any trace moisture. 

5.2.2 Gel synthesis 

          The hydrogels were synthesized through a Michael-addition based step 

polymerization reaction between a primary diamine and curcumin multiacrylate (CMA) in 

combination with a commercial diacrylate in anhydrous DCM as solvent. The amount of 

DCM used was in the ratio of 1.5 mL of solvent per gram of total monomer weight. A ratio 
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of total acrylate to total amine (RTAA) was selected according to the gel to be synthesized. 

(Note: A diacrylate molecule has two total acrylates, while a primary diamine has four total 

amines, so two moles of diacrylate with one mole of primary amine would have a RTAA 

value of 1.0). CMA used for the gel synthesis had approximately 2.8 acrylate groups per 

molecule of curcumin [173]. The gel synthesis protocol involved dissolving CMA in half 

of the total solvent required and dissolving commercial diacrylate, i.e. PEG576DA, 

PEG400DA or DEGDA in the remaining half of the solvent. Amine was added to the 

commercial diacrylate solution and allowed to react for 5 minutes at room temperature. 

The CMA solution was added to this mixture while mixing on a vortex mixer. The reaction 

solution was then transferred to a casting ring kept on a glass plate covered with a teflon 

sheet. The ring was covered with a watch glass to provide controlled evaporation of the 

solvent. The reaction mixture was allowed to react at room temperature for an hour and 

then kept in a convection oven at 50°C for 24 hours. To create films with uniform thickness, 

the assembly was kept on a level platform during the entire synthesis. The resulting gels 

were washed in ACN for 5 hours by changing the solvent every hour. The gels were dried 

overnight in a vacuum oven at 50°C followed by drying at 100°C for an hour. The 

synthesized gels had an average thickness of 350 microns. Unless specified, monomers 

used for synthesis of PCBAE hydrogels were PEG400DA and TTD along with CMA at a 

RTAA value of 1.0. 

5.2.3 Dynamic mechanical analysis (DMA) 

The thermomechanical properties of the hydrogel samples were measured using a 

TA Instruments Q800 dynamic mechanical analyzer operating in tensile geometry. The 

samples were cut into a rectangular geometry and had approximate dimensions of 30 mm 
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x 3 mm x 0.35 mm (length x width x thickness). The samples were dried under vacuum at 

50°C prior to measurement. Storage modulus (E’) and loss tangent (tan δ) values were 

measured as a function of temperature at a heating rate of 1°C/min at 1 Hz under an inert 

nitrogen flow.  The temperature range was from -75°C to 140°C.  

5.2.4 Degradation 

The hydrogels were cut to an appropriate size for the degradation studies. The 

degradation of hydrogels was performed in a phosphate buffered saline (PBS) solution with 

0.1% sodium dodecyl sulfate (SDS) at 37°C (7.4 pH) in a United States Pharmacopeia 

(USP) dissolution apparatus II (VanKel VK 700). The degradation of the gels was 

monitored through the swelling ratio and curcumin release profile. At each time point, gel 

was taken out of the dissolution apparatus; the excess water was removed from the gel by 

blotting with Kimwipe®, and the weight of gel was measured. The swelling ratio was 

expresses as the ratio of weight of gel at time t, Wt, and weight of gel before degradation 

i.e., dry weight, Wd.

As each gel degraded, it reached a point where it began losing mechanical integrity, 

making further handling unfeasible such that swelling ratio could not be measured. 

Degradation time was defined as the point where the gel had degraded completely and no 

solid gel could be seen even after centrifuging at 10,000 rpm for 5 min. A 1 mL supernatant 

was collected at each time point during the degradation of the curcumin containing gels, 

and stored at -20°C until further analysis. All the degradation studies were done with n=3 

and values are reported with standard deviation. All the supernatants collected during the 

degradation of hydrogel films were analyzed by UV-Visible spectrophotometry (Cary® 50 

UV spectrophotometer).  
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5.2.5 Trolox equivalent antioxidant capacity (TEAC) 

The antioxidant activity of curcumin released during the degradation was evaluated 

by running a standard colorimetric assay, viz., trolox equivalent antioxidant capacity 

(TEAC) assay. 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) cation radical 

solution was prepared by reacting ABTS and potassium persulfate overnight under dark 

conditions. The absorbance intensity of the cation radical solution was decreased to 0.4 by 

dilution with PBS. Using a 96-well microplate, 10 µL of sample to be analyzed was 

introduced to each well followed by 200 µL of cation radical solution. The absorbance was 

measured after 5 minutes at 734 nm and compared against the standard trolox curve. 

5.3 Results and discussion 

5.3.1 Amine crosslinker 

One of the main factors that can affect the properties of crosslinked polymer 

networks is the crosslinker, which in the current study is amine. Amine crosslinker 

characteristics that can change the network properties are amine chain length and its 

hydrophilicity. For instance, an amine with shorter chain length can increase the crosslink 

density and the glass transition temperature of the network, which can lead to an increase 

in its degradation time. Additionally, a decrease in hydrophilicity of the amine can render 

the network more hydrophobic, which will likely increase its degradation time. To explore 

these factors systematically, three primary amines with a decreasing degree of 

hydrophilicity and average molecular contour length were selected in this study. Primary 

amines used were 4,7,10-trioxatridecane-1,13-diamine (TTD), 2,2’(ethylenedioxy) bis 

ethylamine (EDBE), and hexamethylene diamine (HMD) (Ref: Figure 5.1). The 

hydrophilicity comparison of amines is based on the number of ethylene oxide units present 
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in the molecule: TTD has three ethylene oxide units, EDBE has two ethylene oxide units 

while HMD has none. Amine crosslinker was used to manipulate the thermomechanical 

and functional properties of 0:100 CMA:PEG400DA microfilms i.e., PCBAE microfilms 

made without curcumin before exploring PCBAE prepared with curcumin.  

5.3.1.1 Effect of amine crosslinker on mechanical properties of 0:100 

CMA:PEG400DA hydrogels  

Dynamic mechanical analysis (DMA) was performed on 0:100 CMA:PEG400DA 

films synthesized with TTD, EDBE and HMD. Storage modulus and tan δ as a function of 

temperature for these films is presented in Figure 5.2. All samples had similar rubbery 

modulus as well as glass transition temperature (Tg). Based on the chain length of amines, 

it would be expected that rubbery modulus would increase when EDBE or HMD was used 

instead of TTD. However, contrary to the expectation, it was seen that the amine structure 

did not have a significant effect on the rubbery modulus and glass transition temperature 

of the 0:100 CMA:PEG400DA films. The reason for this could be understood when the 

overall topology of the network is considered. For every molecule of amine, two molecules 

of PEG400DA are present; since PEG400DA is a relatively long and flexible component 

compared to the amines that were used, the network mechanical properties are not affected 

appreciably by the change in the amine details. 

5.3.1.2 Effect of amine crosslinker on degradation properties of 0:100 

CMA:PEG400DA hydrogels  

The degradation of hydrogels can be assessed through various methods, including 

swelling ratio, hydrogel mass loss and drug release [124, 197]. For the current study, the 

effect of amine crosslinker type on degradation was tracked by measuring the swelling 
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ratio of the hydrogels as a function of time, as presented in Figure 5.3. As seen from the 

degradation profile, the 0:100 CMA:PEG400DA-TTD hydrogel had the shortest 

degradation time, followed by the 0:100 CMA:PEG400DA-HMD and 0:100 

CMA:PEG400DA-EDBE hydrogels. Since all films display a similar rubbery modulus and 

glass transition temperature, degradation of the gels would be expected to primarily depend 

on the hydrophilicity of the network, which was true for the gels made with TTD and 

EDBE, where the 0:100 CMA:PEG400DA-EDBE hydrogels had a longer degradation time 

compared to the 0:100 CMA:PEG400DA-TTD hydrogels. However, the HMD hydrogel 

had a degradation time that was in between the gels made with TTD and EDBE. Such 

deviation from the expected trend was also seen for gels made with these amines at RTAA 

of 0.6, where gels made with HMD had the same degradation time as gels made with EDBE 

[171]. This is possibly due to the relatively slower rate of gel formation observed during 

the synthesis of the 0:100 CMA:PEG400DA-HMD gels. The slower reaction rate for HMD 

is due to the absence of ethylene oxide units in the HMD structure, and hence, the absence 

of favorable interactions present between reactants such as PEG400DA and TTD (or 

EDBE). This affects the reaction rate and potentially the network architecture, since HMD 

is not able to react with PEG400DA as efficiently as TTD or EDBE.  

5.3.2 Commercial diacrylate 

Apart from amine crosslinker, another independent parameter in terms of monomer 

selection is the commercial diacrylate used for PCBAE synthesis. Similar to the amine 

crosslinker selection, commercial diacrylate can be used to tune the network properties 

through variation in the hydrophilicity and chain length of the diacrylate. A decrease in the 

overall network hydrophilicity can increase the degradation time and a reduction in chain 
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length (and a corresponding increase in crosslink density) can potentially increase the 

degradation time as well. Three diacrylates with decreasing average molecular length and 

relative hydrophilicity (PEG576DA, PEG400DA and DEGDA) were selected to explore 

the role of commercial diacrylates on the mechanical and functional properties of PCBAE. 

5.3.2.1 Effect of diacrylate on mechanical properties of 0:100 CMA:PEGDA 

hydrogels  

The effect of diacrylate molecular weight on hydrogel mechanical properties was 

studied for the 0:100 CMA:PEGDA hydrogels by dynamic mechanical analysis; see 

Figure 5.4. An increase in rubbery modulus and glass transition temperature was observed 

with a decrease in the average length of the diacrylate monomer. DEGDA, being the 

shortest of the diacrylates, led to gels with the highest crosslink density and 

correspondingly the highest rubbery modulus and glass transition temperature in this series. 

Other than rubbery modulus and glass transition temperature, the nature of the storage 

modulus curve for the 0:100 CMA:PEG576DA hydrogel was found to be different 

compared to the PEG400DA and DEGDA hydrogels. This change in the storage modulus 

curve indicates that the PEG576DA undergoes a cold-crystallization process during the 

slow heating (1°C/min) in the DMA. During heating, as the gel transitions to the rubbery 

phase, polymer segments have enough mobility to rearrange to form the crystals, which 

undergo melting upon further heating. Such cold-crystallization has also been reported for 

UV-crosslinked PEG576DA hydrogels [179]. The cold-crystallization phenomenon was 

not seen for the 0:100 CMA:PEG400DA or 0:100 CMA:DEGDA hydrogels since the 

length of the PEG400DA and DEGDA segments does not provide enough mobility 

between crosslinks for the chains to form ordered crystals. 



104 

5.3.2.2 Effect of diacrylate on degradation properties of 0:100 CMA:PEGDA 

hydrogels  

The degradation properties for hydrogels synthesized with different diacrylates 

were studied by measuring the swelling ratios during the degradation of these gels; the 

corresponding data are presented in Figure 5.5. The three diacrylates, i.e., PEG576DA, 

PEG400DA and DEGDA, contain 13, 9 and 2 ethylene oxide units, respectively, and hence 

are listed in order of decreasing hydrophilicity. The 0:100 CMA:PEG576DA and 0:100 

CMA:PEG400DA hydrogels had similar degradation profiles even though the PEG576DA 

network had a lower overall crosslink density, as reflected in its rubbery modulus, and a 

somewhat higher overall hydrophilic character. The 0:100 CMA:DEGDA hydrogels had 

the longest degradation time in this series, which was due to their considerably higher 

crosslink density and ethylene oxide content. 

5.3.3 Influence of RTAA on functional properties of PCBAE hydrogels  

While variations in the amine crosslinker and diacrylate were found to affect the 

functional properties of the 0:100 CMA:PEGDA hydrogels differently, changes in the 

relative acrylate to amine ratios can potentially alter the properties of PCBAE without 

changing the CMA:PEGDA composition. This was studied through variations in RTAA 

(ratio of total acrylate to amine) in the current work. RTAA is a crucial process parameter 

as changes in the corresponding stoichiometric ratio can alter the reaction rate as well as 

the structure of the resulting crosslinked network. The effect of RTAA on weight loss 

during washing was explored for 50:50 CMA:PEG400DA, 70:30 CMA:PEG400DA and 

90:10 CMA:PEG400DA hydrogel films made with TTD. The mechanical characteristics 
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and degradation properties were explored for the 50:50 CMA:PEG400DA, and 90:10 

CMA:PEG400DA hydrogel films. 

5.3.3.1 Effect of RTAA on monomer extraction during washing of gels 

During the washing of gels with ACN, unreacted monomers were removed from 

the films. The weight loss was calculated by measuring the weight of the gel before 

washing, and then after washing and drying steps. The weight loss data as a function of 

RTAA for the 50:50 CMA:PEG400DA hydrogel is presented in Figure 5.6. An increase 

in weight loss was seen as RTAA was increased. At lower RTAA values, a higher 

concentration of amine crosslinker is present which tends to increase the extent of 

polymerization, and hence leads to a lower weight loss of unreacted monomers in the 

washing step. A similar effect of RTAA on the weight loss was observed for the 70:30 

CMA:PEG400DA and 90:10 CMA:PEG400DA hydrogel films (re: Figure 5.6).   

5.3.3.2 Effect of RTAA on mechanical properties of 50:50 CMA:PEG400DA 

hydrogels 

          The influence of RTAA on the mechanical properties of 50:50 CMA:PEG400DA 

hydrogels synthesized with TTD as a crosslinker was explored for films with RTAA values 

of 0.6, 0.8, 1.1, 1.2 and 1.4. The storage modulus and tan δ as a function of temperature for 

these films are presented in Figure 5.7. The rubbery modulus for the films varied from 

approximately 1 MPa to 4 MPa, and displayed an overall trend of increasing crosslink 

density (i.e., increasing rubbery modulus) with increasing acrylate to amine ratio in the 

reaction mixture. In addition, an increase in the measured glass transition temperature was 

observed with an increase in RTAA. This increase in glass transition temperature is the 

result of an overall increase in curcumin content in the network with increasing RTAA. 
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The curcumin moiety is relatively short and rigid as compared to the longer and more 

flexible PEG and TTD components. The increased presence of curcumin reduces the 

mobility of the network chains thereby requiring more energy for the chain motion, and 

thus increasing the glass transition temperature of the hydrogels. An increase in glass 

transition temperature with increasing curcumin composition was also seen with PCBAE 

networks synthesized from PEG400DA and TTD, and with a fixed RTAA of 1.0 [69]. 

5.3.3.3 Effect of RTAA on degradation properties of 50:50 CMA:PEG400DA 

hydrogels 

The impact of RTAA on the degradation properties of 50:50 CMA:PEG400DA 

hydrogels made with TTD was studied for selected RTAA values (0.6, 1.1 and 1.4). The 

swelling ratio of the hydrogels, their curcumin release profiles during degradation, and the 

antioxidant activity profiles of the release supernatants are presented in Figure 5.8. At the 

one hour time point, the 50:50 CMA:PEG400DA-0.6 hydrogel had the highest swelling 

ratio for the current series, followed by the 50:50 CMA:PEG400DA-1.1 and 50:50 

CMA:PEG400DA-1.4 hydrogels. This was consistent with the inherent hydrophilicity of 

these hydrogels, where films with lower RTAA had higher hydrophilic content due to 

lower relative incorporation of curcumin as well as higher amounts of the hydrophilic 

amine. The total degradation time for these films was measured through the curcumin 

release profile. The curcumin release profile of the hydrogels followed the swelling 

response, where the 50:50 CMA:PEG400DA-1.4 hydrogel had the slowest swelling 

response and longest total degradation time in the series. Interestingly, an increase in 

degradation time was seen with both increase and decrease in RTAA from 1.1. At higher 

RTAA (1.4), curcumin composition is increased which increases the degradation time due 
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to increased hydrophobicity of networks. At lower RTAA (0.6), two competing effects are 

present where an increase in amine composition leads to an increase in hydrophilicity of 

the network but also leads to a much tighter network. This tighter network leads to an 

increase in degradation time. The antioxidant activity of the curcumin released was 

measured using the colorimetric TEAC assay. The TEAC profiles were found to be similar 

to the curcumin release profiles for each corresponding PCBAE, thereby confirming that 

the curcumin released was in its native form. However, the proportionality was different 

for each PCBAE, which could be due to different constituent species present in the 

degradation sample for PCBAEs made with different RTAA.  

5.3.3.4 Effect of RTAA on mechanical properties of 90:10 CMA:PEG400DA 

hydrogels 

The effect of RTAA on the network and functional properties of PCBAE was 

explored for 90:10 CMA:PEG400DA hydrogels to understand how variations in RTAA 

affect the PCBAE at higher curcumin loading. The 90:10 CMA:PEG400DA network has 

a much higher hydrophobicity compared to 50:50 CMA:PEG400DA, owing to its much 

higher curcumin content. The effect of RTAA on the mechanical properties of the 90:10 

CMA:PEG400DA hydrogels made with TTD was studied for RTAA values of 0.6, 1.0 and 

1.4. The storage modulus and tan δ results for 90:10 CMA:PEG400DA films with different 

RTAA are reported in Figure 5.9. The rubbery modulus did not change appreciably with 

RTAA for this series, while the glass transition temperature increased with an increase in 

RTAA. These results are similar to the results observed for the study involving 50:50 

CMA:PEG400DA films, and suggest that the effect of RTAA on the PCBAE network 

properties is independent of the hydrophobicity of the network under study.  
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5.3.3.5 Effect of RTAA on degradation properties of 90:10 CMA:PEG400DA 

hydrogels 

The role of RTAA on the degradation properties of the 90:10 CMA:PEG400DA 

hydrogels was also studied; the 90:10 film is the most hydrophobic sample in this series. 

The swelling data and curcumin release profiles from these films is presented in Figure 

5.10. The RTAA values were selected such that a wide range of RTAA was covered. 

Swelling response for these films was different from the swelling response observed for 

the 50:50 CMA:PEG400DA films. The 90:10 CMA:PEG400DA-0.6 film had higher 

swelling than the 90:10 CMA:PEG400DA-1.0 film at the start, which was later overtaken 

by the 90:10 CMA:PEG400DA-1.0 film. The final degradation time as a function of RTAA 

for the 90:10 CMA:PEG400DA films was similar to the 50:50 CMA:PEG400DA films, 

where the 90:10 CMA:PEG400DA-1.0 film had the fastest degradation time, while the 

90:10 CMA:PEG400DA-0.6 and 90:10 CMA:PEG400DA-1.4 films had similar final 

degradation times. At RTAA=1.4, curcumin is present in higher proportion which increases 

the network hydrophobicity. In addition to this, curcumin being short and stiff reduces the 

mobility of the polymer chains as reflected in the glass transition temperature increase (re: 

Figure 5.9). This also contributes to a lower swelling response and the correspondingly 

slower degradation observed for these films. Similar to the study involving the 50:50 

CMA:PEG400DA films, at lower RTAA (0.6), an increase in degradation time was seen 

due to tighter network formation.  

5.3.4 CMA composition dependence for PCBAE-EDBE and PCBAE-HMD hydrogels  

As discussed in chapter four, a wide range of hydrogel functional properties and 

degradation characteristics could be obtained for the PCBAE-TTD networks by varying 
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the relative amount of curcumin covalently incorporated into the hydrogel network (i.e. 

variation of CMA composition in the pre-polymerization reaction mixture). To extend this 

investigation further, it is appropriate to consider the influence of other diamine 

crosslinkers (i.e. EDBE, HMD) for similar series of PCBAE networks. As is evident from 

their chemical structure (re: Figure 5.1), the EDBE and HMD crosslinkers afford additional 

tuning capability for the networks owing to their shorter length and correspondingly higher 

hydrophobicity. 

5.3.4.1 Effect of CMA composition on mechanical properties of PCBAE-EDBE 

hydrogels 

The mechanical properties of PCBAE hydrogels made with EDBE as a crosslinker 

were studied for selected CMA:PEG400DA compositions. The storage modulus and tan δ 

are presented in Figure 5.11 as a function of temperature at 1Hz. The glass-rubber 

transition for these materials shifted to higher temperatures with an increase in CMA as 

seen from the shift in the storage modulus curves and tan δ peaks. This behavior is similar 

to the composition dependence observed for the PCBAE hydrogels made with TTD. 

However, the rubbery modulus did not change with CMA content for the 

CMA:PEG400DA composition range studied here. The rate of reaction between CMA and 

EDBE is much faster than CMA and TTD due to the shorter chain length of EDBE. This 

leads to a network where the average crosslink distance doesn’t vary with composition and 

is controlled primarily by the EDBE crosslinker, leading to a similar rubbery modulus in 

each case.  
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5.3.4.2 Effect of CMA composition on degradation of PCBAE-EDBE hydrogels 

The effect of CMA composition on the degradation properties of hydrogels made 

with EDBE crosslinker was explored for 50:50 CMA:PEG400DA, 70:30 

CMA:PEG400DA and 90:10 CMA:PEG400DA gels. These CMA compositions were 

selected for hydrogel synthesis since it has been observed previously that CMA 

composition has a major impact on the degradation properties of PCBAE gels at 

CMA:PEG400DA compositions higher than 50:50 [69]. The swelling ratio, curcumin 

release and antioxidant activity profiles for these hydrogels are presented in Figure 5.12. 

50:50 CMA:PEG400DA-EDBE, 70:30 CMA:PEG400DA-EDBE and 90:10 

CMA:PEG400DA-EDBE hydrogels had total degradation times of 10 hours, 18 hours and 

23 hours, respectively. A relatively lower extent of swelling and an increase in degradation 

time was observed with increase in CMA composition compared with gels made with TTD. 

An increase in CMA composition increases the hydrophobicity and glass transition 

temperature of the network, which delays the swelling response and increases the total 

degradation time.  

5.3.4.3 Effect of CMA composition on mechanical properties of PCBAE-HMD 

hydrogels 

The mechanical properties of PCBAE hydrogels made with HMD were explored 

for selected CMA compositions. The storage modulus and tan δ results for this series are 

presented in Figure 5.13. As seen from the tan δ curves, an increase in glass transition 

temperature was again observed with an increase in CMA composition. This was similar 

to the composition dependence seen with gels made using TTD and EDBE as the 

crosslinker. Also, it is expected that the rubbery modulus wouldn’t be affected by the 



change in CMA composition, as the shorter length of the HMD spacer controls the distance 

between crosslinks. This was, in fact, observed and the rubbery modulus for the current 

series did not change appreciably with composition. One interesting point with this series 

was that the breadth of tan δ peak decreased with an increase in CMA composition. 

Contrary to this observation, for hydrogels made with TTD, an increase in the breadth of 

the tan δ peak was seen [69]. This shows that hydrogel homogeneity increased with CMA 

composition for gels made with HMD as the crosslinker. This behavior is, in part, due to 

the hydrophobicity of HMD, which allows it to blend more uniformly with hydrophobic 

CMA during the reaction step.  

5.3.4.4 Effect of CMA composition on degradation of PCBAE-HMD hydrogels 

The degradation properties of PCBAE gels made with HMD were studied for 

CMA:PEG400DA compositions of 50:50, 70:30 and 90:10. The swelling ratio, curcumin 

release and antioxidant activity during the degradation of PCBAE gels made with HMD 

crosslinker are shown in Figure 5.14. The swelling response and curcumin release profiles 

were found to be dependent on the CMA composition, where slower swelling response and 

longer degradation times were seen for PCBAEs with higher CMA content. 90:10 

CMA:PEG400DA-HMD gels had the longest curcumin release time (~58 hours) yet 

reported for PCBAE hydrogels. This sample had some non-degraded residue evident at the 

end, which was thought to be the result of very hydrophobic regions created by the 

combination of CMA and HMD rendering a portion of the gel non-degradable under the 

observation time of the study. 
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5.4 Conclusions 

A systematic study of the independent process parameters involved in the synthesis 

of PCBAE was completed. These parameters included amine crosslinker, diacrylate 

monomer, and acrylate to amine ratio (RTAA). For 0:100 CMA:PEG400DA hydrogels, 

the amine crosslinkers did not have an impact on the glass transition temperature or rubbery 

modulus, as measured by dynamic mechanical analysis. However, an increase in 

degradation time was observed with reduced hydrophilicity and chain length of amine 

crosslinker. On the other hand, for 0:100 CMA:PEGDA hydrogels, the diacrylate 

molecular weight had a major impact on the rubbery modulus, glass transition temperature 

and degradation time, where values for these parameters increased with decreasing chain 

length and hydrophilicty of the diacrylate. It was found that length of the monomer (i.e. 

amine or diacrylate) is a better control parameter for tuning 0:100 CMA:PEGDA hydrogel 

properties. An overall increase in glass transition temperature and degradation time was 

observed with an increase in RTAA for the multiple CMA:PEG400DA compositions that 

were explored. Increase in CMA content for PCBAE gels with EDBE and HMD as 

crosslinkers was able to increase the glass transition temperature and degradation time to 

some extent. Additionally, caution must be exercised with hydrophobic monomers as too 

high a proportion of hydrophobic monomer can render the polymer non-degradable. With 

their wide degradation times and tunable mechanical properties, PCBAEs have great 

potential to address challenges in drug delivery, tissue engineering and orthopedic 

applications. 
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Figure 5.1: Chemical structures of (a) curcumin, (b) curcumin multiacrylate (CMA), (c)  

4,7,10-Trioxatridecane-1,13-diamine (TTD), (d) 2,2’(ethylenedioxy) bis ethylamine 

(EDBE), (e) Hexamethylene diamine (HMD), (f) Diacrylate monomer. n = 13 for 

poly(ethylene glycol)576 diacrylate (PEG576DA), n = 9 for poly(ethylene glycol) 400 

diacrylate (PEG400DA), and n = 2 for diethylene glycol diacrylate (DEGDA). R1 and R2 

can be H or –OCH3 and R3, R4 and R5 can be –OH or an acrylate group. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 5.2: Dynamic mechanical properties of PCBAE films synthesized using different 

amines for 0:100 CMA:PEG400DA gel. (a) Storage modulus vs. Temperature (°C) at 1 

Hz; (b) Tan δ vs. Temperature (°C) at 1 Hz. 

(a) 
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Figure 5.2: Dynamic mechanical properties of PCBAE films synthesized using different 

amines for 0:100 CMA:PEG400DA gel. (a) Storage modulus vs. Temperature (°C) at 1 

Hz; (b) Tan δ vs. Temperature (°C) at 1 Hz. 

(b) 
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Figure 5.3: Swelling ratio for 0:100 CMA:PEG400DA films with different amine 

crosslinkers during degradation in PBS (0.1 % SDS). 
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Figure 5.4: Dynamic mechanical properties for PCBAE films of different diacrylates for 

0:100 gel. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. Temperature 

(°C) at 1 Hz. 
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Figure 5.4: Dynamic mechanical properties for PCBAE films of different diacrylates for 

0:100 gel. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. Temperature 

(°C) at 1 Hz. 

(b) 
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Figure 5.5: Swelling ratio for 0:100 CMA:PEGDA films made with TTD using different 

commercial diacrylates during degradation in PBS (0.1 % SDS).  
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Figure 5.6: Weight loss during the washing of hydrogels as a function of RTAA for 50:50, 

70:30 and 90:10 CMA:PEG400DA films. 
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Figure 5.7: Dynamic mechanical properties for 50:50 CMA:PEG400DA films made with 

TTD for different RTAA. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. 

Temperature (°C) at 1 Hz.  

(a) 
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Figure 5.7: Dynamic mechanical properties for 50:50 CMA:PEG400DA films made with 

TTD for different RTAA. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. 

Temperature (°C) at 1 Hz.  

(b) 
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Figure 5.8: Degradation in PBS (0.1 % SDS) for 50:50 CMA:PEG400DA films made with 

TTD for different RTAA. (a) Swelling ratio as a function of degradation time; (b) 

Curcumin release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity 

of supernatants measured using TEAC in-vitro antioxidant capacity measurement assay. 

(a) 
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Figure 5.8: Degradation in PBS (0.1 % SDS) for 50:50 CMA:PEG400DA films made with 

TTD for different RTAA. (a) Swelling ratio as a function of degradation time; (b) 

Curcumin release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity 

of supernatants measured using TEAC in-vitro antioxidant capacity measurement assay. 

(b) 
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Figure 5.8: Degradation in PBS (0.1 % SDS) for 50:50 CMA:PEG400DA films made with 

TTD for different RTAA. (a) Swelling ratio as a function of degradation time; (b) 

Curcumin release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity 

of supernatants measured using TEAC in-vitro antioxidant capacity measurement assay. 

(c) 
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Figure 5.9: Dynamic mechanical properties for 90:10 CMA:PEG400DA films made with 

TTD for different RTAA. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. 

Temperature (°C) at 1 Hz. 

 

 

 

 

 

 

 

 

(a) 
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Figure 5.9: Dynamic mechanical properties for 90:10 CMA:PEG400DA films made with 

TTD for different RTAA. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. 

Temperature (°C) at 1 Hz. 

(b) 
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Figure 5.10: Degradation in PBS (0.1 % SDS) for 90:10 CMA:PEG400DA films made 

with TTD for different RTAA. (a) Swelling ratio as a function of degradation time; (b) 

Curcumin release profile measured using absorbance @ 420 nm.  

(a) 
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Figure 5.10: Degradation in PBS (0.1 % SDS) for 90:10 CMA:PEG400DA films made 

with TTD for different RTAA. (a) Swelling ratio as a function of degradation time; (b) 

Curcumin release profile measured using absorbance @ 420 nm.  

 

 

 

 

 

 

 

 

(b) 
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Figure 5.11: Dynamic mechanical properties of different CMA:PEG400DA fillms made 

with EDBE crosslinker. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. 

Temperature (°C) at 1 Hz.  

(a) 
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Figure 5.11: Dynamic mechanical properties of different CMA:PEG400DA films made 

with EDBE crosslinker. (a) Storage modulus vs. Temperature (°C) at 1 Hz; (b) Tan δ vs. 

Temperature (°C) at 1 Hz.  

(b) 
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Figure 5.12: Degradation in PBS (0.1 % SDS) for different CMA:PEG400DA films made 

with EDBE crosslinker. (a) Swelling ratio as a function of degradation time; (b) Curcumin 

release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity of 

supernatants measured using TEAC in-vitro antioxidant capacity measurement assay. 

(a) 
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Figure 5.12: Degradation in PBS (0.1 % SDS) for different CMA:PEG400DA films made 

with EDBE crosslinker. (a) Swelling ratio as a function of degradation time; (b) Curcumin 

release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity of 

supernatants measured using TEAC in-vitro antioxidant capacity measurement assay. 

 

 
 
      
 
 
 
 
 

(b) 
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Figure 5.12: Degradation in PBS (0.1 % SDS) for different CMA:PEG400DA films made 

with EDBE crosslinker. (a) Swelling ratio as a function of degradation time; (b) Curcumin 

release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity of 

supernatants measured using TEAC in-vitro antioxidant capacity measurement assay.  

(c) 
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Figure 5.13: Dynamic mechanical properties for PCBAE films of different 

CMA:PEG400DA composition made with HMD crosslinker. (a) Storage modulus vs. 

Temperature (°C) at 1 Hz; (b) Tan δ vs. Temperature (°C) at 1 Hz. 

(a) 
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Figure 5.13: Dynamic mechanical properties for PCBAE films of different 

CMA:PEG400DA composition made with HMD crosslinker. (a) Storage modulus vs. 

Temperature (°C) at 1 Hz; (b) Tan δ vs. Temperature (°C) at 1 Hz. 

(b) 



Figure 5.14: Degradation in PBS (0.1 % SDS) for different CMA:PEG400DA films made 

with HMD crosslinker. (a) Swelling ratio as a function of degradation time; (b) Curcumin 

release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity of 

supernatants measured using TEAC in-vitro antioxidant capacity measurement assay.  

(a) 
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Figure 5.14: Degradation in PBS (0.1 % SDS) for different CMA:PEG400DA films made 

with HMD crosslinker. (a) Swelling ratio as a function of degradation time; (b) Curcumin 

release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity of 

supernatants measured using TEAC in-vitro antioxidant capacity measurement assay.  

(b) 
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Figure 5.14: Degradation in PBS (0.1 % SDS) for different CMA:PEG400DA films made 

with HMD crosslinker. (a) Swelling ratio as a function of degradation time; (b) Curcumin 

release profile measured using absorbance @ 420 nm; (c) Antioxidant capacity of 

supernatants measured using TEAC in-vitro antioxidant capacity measurement assay.  

(c) 
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Chapter 6: Poly(β-amino ester) based tablet formulation for improved oral 

bioavailability of a hydrophobic drug 

6.1 Introduction 

Oral dosage of drugs remains the most commonly used form of drug delivery due 

to patient compliance and ease of administration. Oral formulations are used for treating a 

wide range of diseases localized to the gastrointestinal (GI) tract, such as gastritis, 

enterocolitis, enteritis, inflammatory bowel diseases, as well as for delivering drugs to the 

whole body for systemic disorders [208-210]. However, the efficacy of oral formulations 

is often limited by poor stability and solubility of the drug, which is usually overcome by 

the use of enteric coatings. These coatings rely on pH dependent swelling for drug release 

[211]. However, enteric coatings can be ineffective if the patient is taking proton pump 

inhibitors, which result in increased stomach pH, or when the coatings are broken. If the 

coatings are compromised, dose dumping can raise the drug concentration in the body to 

toxic levels [212]. 

Inflammatory bowel diseases such as Crohn’s disease, ulcerative colitis, infectious 

colitis, or ischemic colitis are caused by the formation and cascade of reactive oxygen 

species that lead to a chronic inflammatory response [27, 210, 213]. The resulting oxidative 

stress can be overcome by the use of antioxidants, which can scavenge the reactive oxygen 

species, reducing oxidative stress signaling and thus allowing the tissue to heal and reverse 

inflammation [133, 214, 215]. In addition, colon-specific delivery has applications in the 

treatment of colon cancer and for delivering proteins and peptides due to the close-to-

neutral pH in the colon [216]. Different approaches have been explored for colon-specific 
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delivery that include enzymatic degradation of polymers such as gaur gum, polymers with 

pH dependent solubility, timed release systems and osmotically controlled release systems 

[211, 217-219]. While all promising, each possesses limitations that hamper their 

applicability.  For instance, in the case of gaur gum based tablets, a seven-day enzyme 

induction period is needed before actually using the tablets. Also, as the pH of the 

gastrointestinal tract is known to vary under different conditions and with the use of proton 

pump inhibitors, it may be difficult to deliver drugs to the desired site based solely upon 

pH dependent solubility of the polymer excipients [220]. Similarly, due to the considerable 

variation in transit time through the GI tract, timed release systems don’t always work, and 

the manufacturing process of osmotically controlled release systems can be complex and 

expensive. A sustained delivery of antioxidants to the colon is needed for effective 

reduction of oxidative stress without systemic side effects, while also providing a better 

strategy to deliver poorly soluble drug molecules. 

One possible way to overcome these limitations is the use of a new polymeric 

prodrug hydrogel i.e. poly(β-amino ester) (PBAE). A drug molecule of interest is 

incorporated into the polymer hydrogel network through covalent bonding, which 

improves the stability of the drug by hindering motion of the labile groups on the molecule 

and also by limiting the access of degradative agents to these groups. Once inside the body, 

PBAE undergoes hydrolytic degradation to release the drug. The degradation of PBAE is 

relatively slow at lower pH, such that only minimal degradation is anticipated in the upper 

gastrointestinal tract, with more substantial degradation upon reaching higher pH 

environments. Induction treatments and enteric coatings are eliminated with the use of 

PBAEs, making the crosslinked polymer network an advantageous drug delivery system 
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that can provide the controlled release of antioxidants upon hydrolytic degradation of 

polymer which can be tailored for different release times and drug loadings. 

In this study, we have developed oral hydrogel formulations for the delivery of 

curcumin, which is a hydrophobic drug. Curcumin is a polyphenolic compound found in 

the Indian food spice turmeric, which has anti-oxidant and anti-inflammatory properties. 

Poly(curcumin β-amino ester) (PCBAE) hydrogels with release times from 5 to 25 hours 

have been developed previously by tuning the hydrophobic composition of the network 

[69], and in vitro studies have shown PCBAE to be non-toxic [124]. In this chapter, we 

have investigated an oral PCBAE tablet formulation appropriate for colon-targeted drug 

delivery. The formulation contained PCBAE (20% by weight) and microcrystalline 

cellulose (MCC; 80% by weight). The tablets were evaluated for sustained curcumin 

release as well as overall stability, which is an important commercial consideration. The 

results of detailed release studies are presented for the as-prepared hydrogel films, hydrogel 

microparticles, and the tablet formulation exposed to a range of controlled storage 

conditions.   

6.2 Experimental  

6.2.1 Materials 

Curcumin was purchased from Chem-impex International, Inc. Acryloyl chloride, 

triethyl amine, 4,7,10-trioxa-1,13-tridecanediamine (TTD) and magnesium stearate were 

all purchased from Sigma-Aldrich. Poly(ethylene glycol) 400 diacrylate (PEG400DA) was 

purchased from Polysciences. Avicel® PH-102 NF (microcrystalline cellulose) was 

obtained from FMC BioPolymer. Sodium dodecyl sulfate, sodium bromide and sodium 

chloride were all obtained from Fisher Scientific. All organic solvents were purchased from 
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Pharmco-AAPER. The molecular sieves were added to all solvents to remove any trace 

moisture present.   

6.2.2 Synthesis of poly(curcumin β amino ester) gel films 

PCBAE films were formed by reacting commercial diacrylate (PEG400DA) with a 

primary diamine (TTD) in combination with acrylate functionalized curcumin. Curcumin 

was functionalized with acrylate by reaction with acryloyl chloride to form curcumin 

multiacrylate (CMA) according to an established protocol [69]. The solvent used for 

synthesis of the films was dichloromethane (DCM) and the amount used was 1.5 mL of 

solvent per gram of total monomer weight. The CMA:PEG400DA molar ratio used for 

synthesis of the films was 90:10.  PEG400DA was mixed with half of the total solvent 

amount and CMA was dissolved in the remaining half. TTD was added to the PEG400DA 

solution and allowed to pre-polymerize for 5 minutes at room temperature. The CMA 

solution was then added under continuous mixing and the entire mixture was transferred to 

a casting ring assembly. This set up was kept at room temperature for 1 hour and 

subsequently incubated in a convection oven at 50°C for 24 hours. The resulting films were 

washed in acetonitrile for 5 hours on an orbital shaker (with solvent change every hour), 

followed by drying overnight at 50°C in a vacuum oven. The as-synthesized films had a 

thickness of approximately 350 microns. 

6.2.3 Particle size analysis 

90:10 CMA:PEG400DA PCBAE gel films were cryomilled using the 

SPEX®SamplePrep 6770 Freezer/Mill® with 1% magnesium stearate. Particle size of the 

cryomilled gel powder was analyzed using a Shimadzu SALD-7101 nano particle size 

analyzer with particles suspended in phosphate buffered solution (PBS). PBS was used as 
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a blank to cancel the background signal. The powder suspension was stirred continuously 

during the analysis.  

6.2.4 PCBAE prodrug tablet synthesis 

The blend used for tableting was made by mixing microcrystalline cellulose (80% 

by weight) and 90:10 CMA:PEG400DA PCBAE prodrug gel powder (20% by weight). 

Microcrystalline cellulose (MCC) was used as a binder as well as diluent. This blend was 

then compacted and milled using mortar and pestle. Tablets were prepared by directly 

compressing the blend in a tablet die (10 mm diameter) using a hydraulic press at 42.5 

MPa. All tablets had an approximate weight of 400 mg. 

In addition to the prodrug (i.e. PCBAE-containing) tablets, tablets based on 

free curcumin were prepared as a control.  The free curcumin tablets were formulated 

from as-received curcumin powder (10.54% by wt.), cryomilled powder of 0:100 

CMA:PEG400DA (9.46% by wt.) and MCC (80% by wt.) using same method.      

6.2.5 Tablet dissolution and curcumin release 

The dissolution studies were completed in a USP (United States Pharmacopoeia) 

apparatus II in PBS at 37°C with an impeller speed of 100 RPM. Phosphate buffered 

solution (PBS) with 0.1% (w/w) sodium dodecyl sulfate (SDS) was used as the dissolution 

media. SDS was added to PBS to improve the solubility of curcumin; this was based on 

the United States Food and Drug administration (USFDA) recommendation for dissolution 

testing of sparingly soluble drugs [221]. 1 mL aliquots were taken and the reservoir was 

replenished with 1 mL of fresh dissolution media for each sample time point. The sample 

aliquots were stored at -20°C until further analysis. All tablet and gel degradation studies 

were carried out using this method unless otherwise specified. Aliquots were analyzed by 
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UV-Visible spectrophotometry (Cary® 50 UV spectrophotometer) and reverse phase high-

performance liquid chromatography (HPLC; Waters Phenomenex C18 Column, 5 µm, 250 

mm (length) x 4.6 mm (I.D.) on a Shimadzu Prominence LC-20 AB HPLC system). The 

wavelength used for detection of curcumin in both UV-vis and HPLC was 420 nm, which 

is the peak absorbance wavelength for curcumin. The curcumin release data are presented 

as Mt/M∞, where Mt is the absorbance at 420 nm for time t and M∞ is the absorbance 

corresponding to the theoretical curcumin loading for a given sample. In the analysis of 

samples using HPLC, a gradient method file from 50/50 acetonitrile/water to 100/0 

acetonitrile/water over 13 minutes at 1 mL/min was used for all samples with an injection 

volume of 50 µL.  Curcumin elution quantities were determined from the HPLC 

chromatograms based on a corresponding calibration curve of peak area versus curcumin 

concentration.   

6.2.6 Anti-oxidant activity using TEAC assay  

Anti-oxidant activity of released curcumin was evaluated using the standard trolox 

equivalent anti-oxidant activity concentration (TEAC) assay. 2,2’-azinobis-(3-

ethylbenzothiazoline-6-sulfonate) (ABTS) cation radical solution was prepared by reacting 

ABTS and potassium persulfate overnight. The absorbance intensity of the cation radical 

solution was decreased to 0.4 by dilution with PBS. Using a 96-well microplate, 10 µL of 

sample to be analyzed was introduced to each well followed by 200 µL of cation radical 

solution. The absorbance was measured after 5 minutes at 734 nm and compared against 

the standard trolox curve. For the TEAC assay, a decrease in absorbance is seen as the 

antioxidant concentration increases. 
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6.2.7 Standard and accelerated storage stability 

The stability of the tablets was studied under standard and accelerated storage 

conditions as prescribed by USP (USP <1150>). The recommended standard conditions 

are 25°C and relative humidity (RH) of 57% and the recommended accelerated conditions 

are 40°C and 75% RH. These conditions were maintained in an air tight chamber with 

beakers containing saturated salt solutions of sodium bromide and sodium chloride, 

respectively [222]. Different sets of tablets were stored in both conditions for 1, 2, 3, and 

4 weeks. Moisture absorption was assessed and the tablet dissolution profile was measured 

for each distinct exposure history.  

6.3 Results 

6.3.1 Film degradation and tablet dissolution  

90:10 CMA:PEG400DA hydrogel film was used for making microparticles needed 

for prodrug tablet synthesis. The corresponding theoretical drug loading in the film was 

52.7% (weight of curcumin/weight of hydrogel). Particle size analysis of the cryo-milled 

90:10 CMA:PEG400DA gel powder was performed using the Shimadzu nano particle size 

analyzer by suspending the microparticles in PBS. The particle size distribution data for 

these particles is presented in Figure 6.1. Particle size was found to be below 40 microns 

for 70 % of the particles. 

In Figure 6.2, curcumin release profiles from aqueous degradation of the 90:10 

CMA:PEG400DA film along with results for the (microparticle-containing) prodrug tablet 

and free curcumin tablet are presented. For the first 12 hours of film degradation, very little 

release is observed. However, after 12 hours, the polymer starts to display significant 



147 

swelling due to hydrolysis of ester bonds [69] and this leads to curcumin release from the 

hydrogel film. A sustained curcumin release up to approximately 26 hours is observed. 

The PCBAE prodrug tablet underwent rapid disintegration (within t h e  f i r s t

3 0  minutes) thereby releasing MCC and PCBAE gel particles, followed by hydrolytic 

degradation of  the PCBAE gel particles. Since curcumin is covalently bonded in the 

polymer network and unreacted monomers were removed during the washing step, no 

initial burst release is seen during the degradation of these gels. This is one of the 

advantage of PCβAE based prodrug approach, since initial burst release is a common 

problem encountered in the traditional approach of physically entrapping drug molecules 

in a polymer network [223]. Curcumin release from the microparticles was assessed by 

measuring the absorbance at 420 nm. A sustained curcumin release is observed over 

about 16 hours. The inset plot in Figure 6.2 shows the curcumin release from as-prepared 

microparticles compared to the release measured for the prodrug tablet. It can be seen 

that the excipients used in tablet formulation do not affect the curcumin release profile 

and that the release is governed solely by microparticle (i.e. hydrogel) degradation. 

Similar to the prodrug tablet, tablets compounded with “free” curcumin powder 

disintegrated within the first 30 minutes of immersion in PBS. An almost immediate 

dumping is seen with the free curcumin tablet as compared to the controlled release of 

curcumin that is observed for the PCBAE prodrug tablet (re: Figure 6.2). The PCBAE 

prodrug tablet displayed a final Mt/M∞ value of 0.5, which is 2.5 times the value obtained 

for the free curcumin tablet (Mt/M∞ value of 0.2); a higher Mt/M∞ value is desired as it 

represents higher drug recovery as well as higher in-vitro drug solubility in PBS. The 

Mt/M∞ value for the free curcumin tablet is significantly lower than the PCBAE result due 
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to the crystalline character of hydrophobic curcumin, which limits its dissolution and 

results in the presence of solid curcumin precipitate in the PBS medium. Poor solubility is 

a concern with many hydrophobic crystalline drugs such as indomethacin, nifedipine, and 

griseofulvin, and amorphous forms of these drugs are often prepared as a way to enhance 

their dissolution [206, 224-226]. A higher value of Mt/M∞ is obtained for the prodrug tablet 

as PCBAE is an amorphous polymer network, and the released curcumin dissolves 

completely without crystal formation or precipitation.   

The release of native curcumin was confirmed by HPLC analysis of the degradation 

aliquots as shown in Figure 6.3. A continuous release of curcumin (HPLC elution time 

between 5.2 and 6 minutes) is seen with an increase in degradation time. Along with 

curcumin, curcumin monoacrylate (elution time between 7.6 and 8.5 minutes) and a small 

amount of curcumin diacrylate (elution time between 10 and 10.8 minutes) are also 

recovered from the HPLC column. The individual species of the curcumin acrylation 

mixture have been identified by Liquid chromatography−Mass spectrometry (LCMS) as 

reported in an independent study [173]. 

6.3.2 Tablet storage stability 

In order to study the stability of the tablet formulations according to USP protocol, 

tablets were held under standard and accelerated storage conditions. The effect of storage 

conditions on tablet stability was then assessed by comparing the moisture absorption and 

curcumin release profiles for tablets with varying storage exposure history.  Images of an 

as-prepared tablet and tablets after storage at standard and accelerated conditions for 1 

week are presented in Figure 6.4. Tablets stored at accelerated conditions exhibited a more 

intense orange surface coloration compared to the as-prepared tablet and tablets stored at 
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standard conditions. The weights of the tablets were measured before and after exposure at 

standard and accelerated conditions to quantify the moisture absorption of the tablets. The 

percentage weight change due to moisture absorption is shown in Figure 6.5. Tablets 

stored at the accelerated conditions had higher moisture absorption than those stored at 

standard conditions for a given exposure time. Also, overall moisture absorption increased 

with longer storage times at the standard condition, while tablets stored at the accelerated 

condition reached equilibrium weight within a week.  

Aqueous dissolution studies were performed on all tablets held at standard and 

accelerated storage conditions for different times. The curcumin release data for these 

studies are reported in Figure 6.6. The time needed for total curcumin release from prodrug 

tablets stored at standard storage conditions decreased as the prior storage time was 

increased, with tablets stored for 4 weeks showing a total release time of just 1 hour. All 

of the tablets stored at standard conditions disintegrated within the first two hours of the 

dissolution study, followed by the release of curcumin from microparticles that had 

undergone partial degradation during the storage.  

For the accelerated storage conditions, tablets held for 1 week had the fastest 

curcumin release rate.  The overall curcumin release time increased as exposure time was 

increased, with tablets stored for 4 weeks prior to testing requiring 24 hours for complete 

release.  This delay in curcumin release for tablets stored over longer times was not 

anticipated, and appears to reflect a change in the physical disintegration dynamics of these 

tablets as compared to those samples stored under standard conditions. Specifically, for 

tablets stored at accelerated conditions, the observed disintegration times in PBS were 4 

hours, 8 hours, 14 hours and 20 hours for prior storage times of 1 week, 2 weeks, 3 weeks 



150 

and 4 weeks, respectively. These results were in direct contrast to the behavior observed 

for tablets held at standard conditions, which all disintegrated within two hours regardless 

of prior storage history. The time needed for total curcumin release from tablets stored at 

accelerated conditions correlated closely with the disintegration time of each tablet, 

suggesting that the delayed physical disintegration of the tablets was the controlling 

mechanism for curcumin release for this series of tablets. However, even though the as-

prepared tablets and tablets held at standard and accelerated conditions had different 

degradation times, all of them reached the same plateau Mt/M∞ value with a final curcumin 

concentration corresponding to 21.5 μg/mL (based on UV-Vis measurement). 

HPLC elution curves for selected release time points are presented in Figure 6.3.  

Analysis of the elution curves for the final release time points was performed to determine 

the concentration of curcumin in the degradation products obtained for each tablet exposure 

history; these data are reported in Figure 6.7. The concentration of curcumin for 100% 

theoretical release would be 42.2 μg/mL, indicating only a 25% to 40% recovery of pure 

curcumin from the dissolved tablets. These lower values reflect the presence of acrylated 

curcumin and PEG-curcumin adducts in the degradation products from the PCBAE 

network.  A higher overall curcumin concentration is indicated for the tablets exposed to 

the accelerated storage conditions; for the standard conditions, a modest increase in 

curcumin concentration is observed with an increase in prior storage time. 

To further understand the delay in release seen for tablets stored at the accelerated 

conditions (40°C and RH = 75%), another set of tablets was stored at the same conditions 

and the tablets were then crushed into powder before adding to the dissolution apparatus. 

The curcumin release curves from dissolution of these two sets of tablets are shown in 
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Figure 6.8. It was observed that essentially all of the curcumin release from the crushed 

tablets occurred within the first hour, whereas at least 20 hour was required for full 

curcumin release from the uncrushed tablets. This result confirmed that the PCBAE 

microparticles present in the tablets degrade extensively to curcumin during the 4 week 

storage at accelerated conditions, and that an increase in the time needed for total curcumin 

release in the uncrushed tablets primarily reflects the difference in the physical 

disintegration characteristics of the tablets, as noted above. 

The effect of temperature on tablet stability in the absence of surrounding moisture 

was analyzed by storing tablets in a desiccant chamber (RH = 0%) for 2 weeks at 25°C and 

40°C; the corresponding curcumin release curves for these PCBAE prodrug tablets are 

presented in Figure 6.9. The release profile for tablets stored at 25°C was not significantly 

affected; however, tablets stored at 40°C showed total curcumin release within 3 hours. 

This suggests that the small amount of moisture present in the microcrystalline cellulose 

(MCC) binder could be contributing to a thermally-driven degradation of the microparticles 

at elevated temperature, even in the absence of ambient moisture. 

To further understand the influence of temperature and moisture on the storage 

stability of the tablet formulation, as-prepared gel films were stored at 40°C for 4 weeks in 

a desiccant chamber (RH = 0%). The curcumin release profile for the degradation of these 

gels is reported in Figure 6.10. For the gel films, no degradation was seen at 40°C in the 

absence of surrounding moisture, which was in contrast with the release profile for tablets 

stored at the same conditions (re: Figure 6.9). This confirms that the small amount of 

moisture present in the MCC binder in the prodrug tablet is sufficient to cause the 
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degradation of PCBAE at 40°C, with a dramatic impact on the resulting curcumin release 

properties. 

6.3.3 Antioxidant activity 

Selected degradation samples were analyzed using the TEAC assay, which 

measures the antioxidant activity of released curcumin in comparison with the trolox 

standard. The TEAC release profiles for prodrug tablets exposed to both standard and 

accelerated storage conditions are presented in Figure 6.11, and show data trends similar 

to the curcumin release profiles as reported in Figure 6.6. The TEAC results confirm that 

the curcumin released during the tablet dissolution studies maintains antioxidant activity. 

The final equivalent trolox concentration for all curves is consistent with the final curcumin 

release concentration as determined from UV spectroscopy. 

6.4 Discussion 

In this work, PCBAE based tablets were synthesized for controlled release of 

curcumin with improved bioavailability. The advantage of this formulation is that stability 

of the drug is improved through protection of labile groups via covalent conjugation of 

curcumin within the polymer network. Colon specific drug delivery was achieved from a 

hydrolytically degradable polymeric prodrug without the use of enteric coatings. It was 

determined from a previous study that PCBAE hydrogels with 90:10 CMA:PEG400DA 

composition degraded over 25 hours [69]. In addition, the 90:10 composition had the 

highest glass transition temperature (Tg = 67°C) among the samples studied, which reflects 

favorable overall stability of the network and potential long term stability for oral drug 

formulation. For these reasons, PCBAE films with the 90:10 CMA:PEG400DA 

composition were used for the tablet formulations characterized in this work.  
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A sustained curcumin release was measured from the PCBAE prodrug tablet 

formulation over approximately 16 hours, while for 90:10 CMA:PEG400DA hydrogel 

films, curcumin release was observed over 25 hours (Figure 6.2). Also, the PCBAE prodrug 

tablet had a continuous release from the start with no lag phase, while the as-prepared 

hydrogel film did not show measurable curcumin release until approximately 12 hours. 

These differences in release characteristics are primarily the result of the difference in the 

characteristic size scale of the microparticles (on the order of 40 microns) as compared to 

the hydrogel film (approx. 350 microns).   Smaller gel particle size leads to a potentially 

faster swelling due to higher surface to volume ratio. Poly(β-amino ester) hydrogels 

typically undergo bulk erosion which is not a size dependent phenomena [103, 227]. 

However, the effect of degradation products on the release and degradation of hydrogels 

has been well studied, and in the case of samples with larger dimensions, degradation 

products leach out much more slowly as compared to samples with smaller dimensions 

[103, 228]. The effect of particle size on degradation of poly(lactic-co-glycolic acid) 

(PLGA) microspheres has been studied where diffusion of degradation products from the 

particles affected the degradation [229, 230]. In our system, it is possible that the slow 

leaching of curcumin-containing degradation products from the hydrogel film leads to an 

increase in the concentration of these products in the film, slowing the film degradation, 

which leads to a lag in the curcumin release during gel film degradation.  

A much higher Mt/M∞ curcumin release value was obtained for the PCBAE prodrug 

tablet as compared to the free curcumin tablet (re: Figure 6.2). A sustained curcumin release 

is seen from the prodrug tablets, while short-time dumping was encountered with the free 

curcumin tablet. For the free curcumin tablet, ~ 80% of the curcumin precipitates as 
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crystalline solid, emphasizing its poor solubility and uptake [207]. This poor solubility 

along with rapid first pass metabolism has resulted in rather poor outcomes in clinical trials 

[231]. For instance, from a study by Sharma et. al and Garcea et. al. on the patients with 

colorectal cancer, results showed that very small concentration of curcumin was present in 

plasma and urine which led to lower efficiency of curcumin in the treatment of the 

condition under study [232-235]. Curcumin has low aqueous solubility due to its 

hydrophobic and crystalline nature. The incorporation of curcumin in PCBAE hinders the 

crystal formation and increases bioavailability of curcumin since curcumin dumping is 

avoided due to the controlled release characteristics of the hydrogel. Furthermore, the 

aqueous solubility of curcumin is increased by the PCBAE degradation products. A 

controlled release of curcumin is crucial for improving the efficacy of the drug since 

dumping of curcumin contributes to faster excretion from the body due to low solubility. 

The release of the original form of curcumin was confirmed by HPLC for 

unexposed tablets, as well as tablets stored under controlled conditions (see Figure 6.3). 

Curcumin monoacrylate and curcumin diacrylate were also detected in the HPLC eluent. 

These species were formed from the hydrolysis of partially reacted curcumin triacrylate 

and curcumin diacrylate, respectively. Curcumin released in all dissolution studies retained 

its antioxidant activity as confirmed by TEAC analysis (see Figure 6.11).  

The storage stability of the tablets was studied to understand the role of excipients 

in the long term storage behavior of the tablet formulations and also because it is an 

important consideration for the commercialization of any formulation. The stability study 

of PCBAE prodrug tablets at standard conditions indicated that after one week PCBAE 

polymer within the tablet was partially degraded as evidenced by the reduction in the final 
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release time obtained; and the extent of degradation during storage continued to increase 

with longer storage times and higher moisture absorption (see Figure 6.5 & 6.6).  For 

standard conditions, final release time (i.e. total tablet degradation time) did not coincide 

with the tablet disintegration time (2 hours), which shows that degradation followed similar 

hydrolytic degradation process as with the control prodrug tablet.  For tablets held at 

accelerated storage conditions, partial PCBAE degradation observed in one week was 

comparable to the partial PCBAE degradation observed in 3 weeks at standard condition 

(see Figure 6.6). This enhanced rate of PCBAE degradation in tablets correlated with the 

higher moisture absorption at these conditions (see Figure 6.5), which led to enhanced 

hydrolytic degradation of gel. Also, higher temperature expedited the hydrolysis process 

[236]. For the accelerated conditions, tablet disintegration times and final release times 

overlapped. Since 1 week was enough to degrade the gel present in the tablet, it suggests 

that the delay in the release for longer storage times at accelerated condition was likely due 

to a delay in the tablet disintegration.  This observed delay in tablet disintegration resulted 

in an enhanced diffusional barrier to curcumin release, meaning that the final release time 

depended on the tablet disintegration time. This mechanism was confirmed by studying the 

dissolution of curcumin from crushed tablets, which verified that all the gel particles had 

degraded after 1 week storage at accelerated condition (see Figure 6.8).  

Tablet stability was explored in detail by studying the effect of storage conditions 

and temperature on the PCβAE prodrug tablet. Tablets underwent degradation when stored 

at high temperature for 2 weeks even in the apparent absence of environmental moisture 

(see Figure 6.9). However, gel films (without tablet excipient) were stable at these same 

anhydrous conditions (see Figure 6.10). As, the only difference between gel film and 



tablets was the MCC (binder) used for making tablets, which affected the stability, it is 

believed that the MCC, which has equilibrium moisture of about 3-5% under ambient 

conditions, is the source of water inducing hydrolysis [237, 238]. It shows that small 

amount of moisture present in the MCC can cause degradation at high temperature. Based 

on this evidence, using excipients with low equilibrium moisture content would be 

recommended for the development of PCBAE based oral formulations. 

From Figure 6.9, it was observed that tablets were stable at 25°C for at least 2 weeks 

and had a release profile similar to the unexposed tablets. However, tablets exhibited 

PCBAE degradation when incubated at 40°C and had complete release within 4 hours. At 

standard conditions tablets underwent degradation in 2 weeks. This shows that higher 

moisture and high temperature both cause the degradation of tablet, though high 

temperature (40°C) affected the tablet stability to a greater extent than high moisture (RH 

= 57%).  

6.5 Conclusions 

Tablet formulations were developed for colon specific delivery using PCBAE gel 

microparticles. PCBAE provide a novel approach for colon specific drug delivery which 

is not exclusively dependent on the pH of GI tract. This formulation was able to 

achieve a sustained curcumin release of about 16 hours which was confirmed by HPLC 

analysis and activity measurements. PCBAE prodrug tablets improved the bioavailability 

of curcumin compared to curcumin dumping obtained with free curcumin tablets. 

Stability studies exhibited a step wise change in the degradation of prodrug tablet with 

increase in storage time. Stability studies demonstrated that high temperature and high 

humidity can lead to PCBAE degradation in the formulation, necessitating a low moisture 
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environment for storage. Small amount of equilibrium moisture present in the excipients 

affected the stability of PCAE prodrug tablets; the stability can be further improved by 

using excipients such as mannitol which have less equilibrium moisture content. This 

approach can also be expanded to colon specific delivery of other drugs which have 

hydroxyl groups present in their molecular structure.  
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Figure 6.1: Particle size distribution for 90:10 CMA:PEG400DA PCBAE microparticles 

analyzed using Shimadzu SALD-7101 nano particle size analyzer. 
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Figure 6.2: Curcumin release profiles for 90:10 CMA:PEG400DA PCBAE hydrogel film 

and tablets containing PCBAE microparticles (i.e. prodrug tablet) and free curcumin 

powder, respectively, in PBS (0.1 % SDS) at 37°C using USP apparatus II. Inset plot shows 

curcumin release for prodrug tablet vs 90:10 CMA:PEG400DA microparticles.  
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Figure 6.3: HPLC peak elution profile (420 nm) for supernatant samples collected during 

aqueous dissolution of the PCBAE prodrug tablet. 
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Figure 6.4: PCBAE tablets after 1week storage. (i) unexposed tablet; (ii) tablet from 

standard storage conditions i.e., 25°C and 57% RH; (iii) tablet from accelerated storage 

conditions i.e., 40°C and 75% RH.  

  (i)                (ii)            (iii) 
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Figure 6.5: Prodrug (PCBAE) tablet moisture absorption as a function of storage time for 

standard and accelerated storage conditions. 
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Figure 6.6: Curcumin release profiles from dissolution of PCBAE prodrug tablets stored 

at (a) standard conditions of 25°C & RH = 57%; (b) accelerated conditions of 40°C & RH 

= 75%. 

(a) 
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Figure 6.6: Curcumin release profiles from dissolution of PCBAE prodrug tablets stored 

at (a) standard conditions of 25°C & RH = 57%; (b) accelerated conditions of 40°C & RH 

= 75%. 

(b) 
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Figure 6.7: HPLC analysis of the final degradation supernatants collected from the 

dissolution of PCBAE prodrug tablets stored at standard and accelerated conditions. 
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Figure 6.8: Curcumin release profiles for PCBAE prodrug tablets stored at accelerated 

conditions for 4 weeks. Crushed tablet compared with non-crushed tablet. 
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Figure 6.9: Curcumin release profiles for PCBAE prodrug tablets stored at 25°C and 40°C 

for 2 weeks in the absence of surrounding moisture. 
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Figure 6.10: Curcumin release profiles in PBS for 90:10 CMA:PEG400DA PCBAE 

hydrogel films as-prepared at ambient conditions, and stored at 40°C for 2 weeks in the 

absence of moisture  (i.e. RH = 0%). 
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Figure 6.11: Antioxidant capacity of tablet dissolution supernatants measured for all 

storage times at standard conditions using TEAC in-vitro antioxidant measurement assay. 

(a) Standard conditions of 25°C & RH = 57%; (b) Accelerated conditions of 40°C & RH 

= 75%. 

(a) 



170 

Figure 6.11: Antioxidant capacity of tablet dissolution supernatants measured for all 

storage times at standard conditions using TEAC in-vitro antioxidant measurement assay. 

(a) Standard conditions of 25°C & RH = 57%; (b) Accelerated conditions of 40°C & RH 

= 75% 

(b) 
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Chapter 7: Conclusions 

In this dissertation, the development of a hydrolytically degradable crosslinked 

hydrogel network, i.e. poly(curcumin β amino ester) (PCBAE), has been investigated for 

the controlled release of curcumin. Curcumin, which has been shown to possess antioxidant 

and anti-inflammatory properties, was functionalized with acrylate groups that allowed a 

Michael-addition reaction between the curcumin and a primary diamine to form 

crosslinked PCBAE networks through a single-step polymerization method.  

In Chapter 3, the extent of curcumin acrylation was tuned through variation in the 

reaction stoichiometry, and the individual products present in the resulting curcumin 

multiacrylate (CMA) mixture were characterized. The curcumin multiacrylate was 

subsequently used for the synthesis of PCBAE networks. In Chapter 4, PCBAE networks 

based on varying CMA:PEG400DA ratios were synthesized and degradation and network 

properties were characterized. The degradation of PCBAE networks was found to slow 

with an increase in CMA content in the network. An increase in thermomechanical stability 

was seen with an increase in CMA composition. Dielectric analysis of PCBAE showed the 

presence of three molecular relaxation processes in PCBAE networks: two sub-glass 

relaxations (β1 & β2) and one glass-rubber (α) relaxation. The sub glass relaxations had 

their origin in the local motion of ethylene oxide units present in PEG, independent of 

network composition.  

In Chapter 5, the degradation and thermomechanical properties of PCBAEs were 

explored in detail through variation in reaction parameters such as amine crosslinker, 

diacrylate monomer and acrylate to amine ratio. The degradation properties were measured 
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through swelling response and curcumin release, while thermomechanical properties were 

measured using dynamic mechanical analysis. For the gels without curcumin, reduction in 

the molecular length and hydrophilicity of amine crosslinker had no effect on the 

thermomechanical properties, but did slow the degradation of the gels. In a similar study 

with diacrylate monomers, for gels without curcumin, a reduction in hydrophilicity and 

molecular length of the diacrylate monomer produced an increase in thermomechanical 

stability and slowed the degradation of the gels. For PCBAE gels made with EDBE as well 

as HMD, an increase in curcumin content was found to increase the thermomechanical 

stability and slowed the degradation due to an increase in overall curcumin composition of 

the network. An increase in the thermomechanical stability due to increase in total acrylate 

to amine ratio (RTAA) was also reported. In addition to this, degradation of PCBAEs also 

slowed down at high RTAA values. Both of these results were due to the high curcumin 

composition at high RTAA values. However, interestingly, at low RTAA values, 

degradation also slowed. This was likely due an increase in amine content creating a much 

tighter network. In general, the PCBAE networks were shown to increase the stability and 

solubility of curcumin while providing a controlled release as seen from the curcumin 

release profiles and antioxidant activity measurements. This study of various parameters 

helped establish fundamental material design rules that will allow for development of 

tailored networks for specific applications.  

To demonstrate the use of PCBAEs in the pharmaceutical field, tablet formulations 

based on PCBAE microparticles were developed for improving oral bioavailability of 

curcumin in Chapter 6 [239]. An improved curcumin solubility was obtained in 

comparison with the free curcumin tablets and a sustained curcumin release was obtained
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for 20 hours, which is suitable for the treatment of inflammatory diseases related to the 

colon.  

Due to the ease of tunability of the thermomechanical and degradation properties 

of PCBAEs through various process parameters, these hydrogel networks could potentially 

provide benefit in controlling oxidative stress present in various diseases and with efficacy 

for a range of applications such as wound healing, tissue engineering, and orthopedic 

devices. As shown in this work, the solubility and stability of curcumin was also improved 

through the PCBAE platform. The PCBAE material platform is readily adaptable for use 

with other drugs containing phenolic groups (e.g. quercetin), leading to a range of 

possibilities for controlled release systems. 
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