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ABSTRACT OF DISSERTATION 
 

THE PHYSICAL BEHAVIOR AND CHARACTERIZATION OF NANOPOROUS 
SILICON AND DISPENSER CATHODE SURFACES 

 

Nanostructured materials have received a surge of interest in recent years since it 
has become apparent that reducing the size of a material often leads to heightened 
mechanical behavior. From a fundamental standpoint, this stems from the confinement of 
dislocations. Applications in microelectromechanical devices, lithium ion batteries, gas 
sensing and catalysis are realized by combining the improvements in mechanical behavior 
from material size reduction with the heightened chemical activity offered by materials 
with a high surface-area-to-volume ratio. In this study, films of nanoporous Si-Mg were 
produced through magnetron sputtering, followed by dealloying using an environmentally 
benign process with distilled water. The film composition and structure was characterized 
both at the surface and throughout the film thickness, while the mechanical behavior was 
explored with nanoindentation.  

Dispenser cathodes operate via thermionic emission and are an important area of 
interest in vacuum electron devices. While scientists have known for many years what 
elemental constituents are used to manufacture dispenser cathodes of excellent emission 
behavior, a fundamental understanding has yet to be realized. In this study, components of 
a scandate cathode that exhibited excellent emission behavior were characterized and used 
to inform the study of model thin films. Isolating relevant components of the scandate 
cathode for careful study could help inform future breakthroughs in understanding the 
working mechanism(s) of the scandate cathode. The structure, composition and electronic 
behavior of model W-Al alloy films were characterized experimentally and compared to 
computation. Moreover, a unique vacuum chamber was designed to activate modern 
thermionic dispenser cathodes, observe residual gas species present, and measure the work 
function through various state-of-the-art techniques.    
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1 Introduction 

Two different thin film binary alloy systems are the subject of this dissertation; 

namely silicon-magnesium (Si-Mg) and tungsten-aluminum (W-Al). The overarching 

contribution from this work is an improved understanding of how to fabricate each material 

system using a non-equilibrium physical vapor deposition process, characterize the film 

structure and chemical composition, examine the mechanical behavior insofar as the film 

dimensions allow, study the surface chemical state and interpret these results in the 

parlance of energy storage/conversion or thermionic dispenser cathode operating 

mechanisms. During this process, I also designed and constructed a unique vacuum 

chamber – with the help of a team – that can be used to study specific material parameters 

and indirectly inform the working mechanism(s) of thermionic dispenser cathodes.  

The thin films manufactured throughout this dissertation were created through a 

physical vapor deposition process known as magnetron sputtering, which is an attractive 

technique to create thin films in a reproducible manner due to the wide variety of control 

mechanisms one has in the deposition process. Sputtering is a non-equilibrium process that 

lends itself well to the study of binary systems where there are stringent stoichiometry 

requirements. In many instances, the non-equilibrium nature is beneficial because it allows 

one to study interesting phases at room temperature that the equilibrium phase diagram for 

binary alloy systems would otherwise preclude. Moreover, the fabrication of thin films is 

one method that can be used to increase the surface area-to-volume ratio.  

The attractiveness in increasing the effective surface area per unit volume of a given 

material stems from the new properties that emerge that leads to a wide variety of 
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applications that benefit from doing so. The most intuitive method to increase the surface 

area and decrease the volume of a material is to simply reduce the dimensions, giving way 

to the enthusiasm for research on nanowires, nanoparticles and thin films, for example. 

Another approach to increase the effective surface area is to introduce pores into a given 

material. There are several techniques that can be used to create porous materials, but the 

method used in this dissertation is known as dealloying and was only used on the Si-Mg 

binary alloy system.  

A large portion of this dissertation is dedicated to the fabrication and 

characterization of nanoporous silicon and subsequent mechanical testing. The motivation 

for using silicon stems from its application in energy storage devices like lithium-ion 

battery research. Silicon has the ability to absorb large quantities of lithium, having a 

theoretical capacity of 4200 mAh g-1. This stands in stark contrast to the commonly used 

carbon-based anode with a relatively low theoretical capacity of 372 mAh g-1. For 

perspective, this means each silicon atom can accommodate 4.4 lithium atoms, which 

naturally leads to a large volume expansion. Silicon is a brittle material and cannot absorb 

lithium without pulverizing. However, it has been observed that by making silicon 

nanosized, it can exhibit ductility without failing. In single crystalline nanopillars, for 

example, pillars with and average diameter below 310 nm exhibit ductility due to 

dislocation confinement [1]. Additionally, nanostructured silicon reduces the diffusion 

distance of lithium and helps promote chemical activity while relieving absolute volume 

expansion that results from lithiation. The nanoporous silicon created in this study exhibits 

a heterogeneous structure/chemical composition throughout the film thickness. The 

resulting characteristics of this film appear to be desirable when analyzed in the light of 
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nanostructured silicon anodes that display long cycle life and good rate capabilities. 

Beyond the apparently desirable structure/chemical composition, the process that was used 

to fabricate these nanoporous thin films of silicon is environmentally benign. The process 

of dealloying involves only distilled water to remove the sacrificial magnesium and is a 

free corrosion process that does not require a potentiostat. The novelty of the technique 

alone is remarkable, but the true test of this material application will come when it has 

undergone rigorous testing as an anode in a lithium-ion battery. The work of Feng et al. 

gives an excellent overview of the recent advances in nanostructured silicon as a lithium-

ion battery, complete with battery performance and current issues [2].  

The field of study that is thermionic dispenser cathode research is largely 

undeveloped in terms of understanding the fundamental working mechanism(s) that lead 

to excellent emission behavior for cathodes that contain complex chemistries. Porous 

tungsten pellets that are impregnated with BaO, CaO, and Al2O3 are termed the B-type 

cathodes. Recently, there has been increased interest in understanding scandate cathodes, 

which are just B-type cathodes that also have Sc2O3 in the mix. The reason for the interest 

in scandate cathodes stems from their ability to operate at lower temperatures than other 

dispenser cathodes and still emit well, thereby increasing the longevity of the scandate 

cathode [3]. As one might imagine, attempting to understand the scandate cathode that has 

a more complex chemical make-up than the B-type cathode – which is already not well 

understood – makes for a challenging task. The approach that was taken in this dissertation 

- to add to the literature already available on cathode research - was to study a scandate 

cathode that exhibited excellent emission behavior and attempt to isolate components that 

appear to be of interest and study those isolated components in what could be described as 
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a model system. We observed small concentrations of what appears to be aluminum 

embedded in tungsten grains of a cathode of excellent emission behavior. We then created 

a model system with thin films to study the effect alloying aluminum with tungsten has on 

the electron work function. We also observed binding energy shifts in the tungsten core 

levels with XPS in a scandate cathode of excellent emission behavior and also in the 

aluminum alloyed tungsten films. It is clear that this effect leads to a lower overall work 

function at room temperature, but it is not clear if aluminum alloyed into the tungsten 

matrix is a critical feature of scandate cathodes of excellent emission behavior.  

The unique vacuum system that was designed for cathode characterization has the 

ability to study the electron work function under vacuum conditions at temperatures 

ranging from room temperature up to approximately 1200°C. The system is also capable 

of analyzing residual gases in the vacuum chamber that have a mass range from 1 – 300 

AMU to help inform the working mechanism(s) of thermionic dispenser cathodes that 

allow excellent emission behavior at high temperatures. The system is also equipped with 

two photoemission systems that allow the probing of material work functions that lie within 

1.24 – 7.0 eV. There are other vacuum systems that are equipped with these 

characterization techniques, but none to our knowledge that is equipped with these 

characterization techniques and can function in conjunction with a heater whose capability 

maxes out at sample temperatures around 1200°C. In summary, a novel dealloying 

technique was developed to produce nanoporous silicon with retained magnesium films on 

the order of 1μm in thickness using an environmentally benign method. The ligament size, 

crystal structure, and chemical composition appear to be desirable characteristics in 

applications involving lithium-ion batteries and the simple, non-hazardous method makes 
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this attractive as well. The mechanical behavior of the as-dealloyed and annealed 

nanoporous silicon films were subsequently tested with nanoindentation in both the time 

and frequency domains. Both the as-dealloyed and annealed films exhibit time-

dependence, but this seems to stem largely from plasticity. The reduced modulus and 

hardness of the films were reported as well. A fundamental study on the way that aluminum 

alloys with tungsten was performed due to the discovery of small amounts of aluminum 

alloyed in tungsten grains in a scandate cathode of excellent emission behavior. It was 

discovered that alloying aluminum with tungsten does indeed decrease the electron work 

function at room temperature and could therefore help promote the emission of electrons 

at high temperatures. It is unclear, however, if this is a critical aspect of scandate cathodes 

that leads to excellent emission behavior at lower operating temperatures than in B-type 

cathodes, for example.  
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2 Background 

2.1 Dealloying 

Dealloying is a corrosion process where one constituent of a multi-constituent solid 

solution is preferentially removed leaving a skeleton of the other constituents [4]. The 

sponge-like geometry of the resulting structure is a three-dimensional, bi-continuous open 

porous structure. This technique has existed for many years dating back to Incan 

civilizations where copper was removed from a homogeneous alloy of Au-Cu in a process 

called depletion guilding [5]. This resulted in a lustrous gold surface that imitated pure gold 

and was often used for decoration. In 1979, A.J. Forty was at the forefront of the 

investigation of the dealloying mechanisms studying Ag-Au alloys dealloying in nitric acid 

[6]. This resulted in the well-known and easily produced nanoporous gold that has become 

the standard against which all other dealloying systems are compared. It was not until 2001 

when Erlebacher propsed a detailed description of the atomistic evolution of nanopores 

that a much more sophisticated approach was established for the methodical selection of 

dealloying materials/parameters [7].  

2.1.1 Guidelines for Dealloying 

Based on a large number of experiments with several different alloy systems, a 

standard set of characteristics have been developed to better understand what is required 

for dealloying to take place, such that a controlled nanoporous structure results [8]:  

Galvanic Series Separation: The difference in corrosion potential (Δφ) of the 

elements in the precursor must be separated by a few hundred millivolts. In other words, 

there needs to be a significant difference between the metals in terms of the galvanic series. 
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In most cases, the difference between metals in the galvanic series is not large enough to 

be dealloyed via free corrosion. As a result, a potential is applied to force the dissolution 

of the less noble element.  

Parting Limit: It has been observed that the less noble (LN) element composes the 

larger atomic fraction of the precursor alloy, i.e. before dealloying occurs. From 

experiment (and my own personal experience) this is one of the major deciding factors to 

determine whether or not selective dissolution will occur. Typically, there is a range over 

which dealloying will occur and this range is known as the parting limit. If the amount of 

more noble (MN) atoms is too rich, dealloying will not take place because of surface 

passivation. Conversely, if the amount of MN atoms is too low, there will not be a 

“backbone” to which other MN atoms can move by surface diffusion.  

Solid Solution Homogeneous Alloy: The precursor must be a homogeneous solid 

solution with no phase separation prior to dissolution. One of the reasons the Au-Ag system 

is a great candidate is because it is completely miscible across the composition range and 

no phase separation occurs [9]. It should be clear that there is no hidden skeleton that is 

being excavated, but rather created as the dynamic dissolution/surface diffusion process 

occurs monolayer by monolayer.  

Rate of Surface Diffusion vs. Dissolution: It has been observed that the surface 

diffusion of MN atoms must be sufficiently fast. There is a competing effect between 

surface diffusion of MN atoms and dissolution of LN atoms, such that dealloying can 

continue unimpeded.  
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2.1.2 Critical Potential 

The critical potential (the lower bound is sometimes referred to as overpotential) 

has been observed to be an important parameter when discussing dealloying. Critical 

potential is perhaps a bit of a misnomer because it does not signify a single value for which 

dealloying occurs, but rather a range of values. Illustrated in Figure 2.1 is a polarization 

curve of a single-phase alloy undergoing selective dissolution. Below the critical potential, 

dissolution does not occur and a passive-like layer is formed [10]. Conversely, above the 

critical potential dissolution of one or more of the LN elements takes place and results in a 

sponge-like structure consisting of the MN elements [10]. However, if the potential is 

continuously raised, the leaching process will occur too fast and result in a structure that is 

cracked and not nanoporous. In other words, the critical potential is the specific range 

where leaching of the LN element occurs, but not too fast.  
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Figure 2.1 Schematic depiction of current/potential behavior of a single-phase 
alloy undergoing selective dissolution. The area between the two dotted lines represents 
the region where one might observe the critical potential. The lower potential represents 
the potential where the leaching of the LN element is initiated and the upper potential 
represents the limit on how quickly the LN element is leached (Reproduced from [10] with 
permission from The Electrochemical Society, Inc.). 

One should take careful note of the gradual current density rise as potential 

increases because this is the region indicative of the critical potential for a given alloy. The 

physical explanation for why there is some ambiguity in defining a certain value is the 

result of competitive kinetic interactions occurring at the nanoscale [10]. For example, the 

relative rate of LN element dissolution to MN element surface diffusion. A detailed 

description of kinetic interactions and pore formation are given below.  

2.1.3 Spinodal Decomposition  

Understanding the physical reasons for the agglomeration of MN atoms that surface 

diffuse (adatoms) is key to understanding porosity formation. The first step in this solution 
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involves treating the MN adatoms (silicon in this case) to be confined to the monolayer 

sitting on top of undealloyed material. The free energy density (f) of a regular solution at 

the interface is given by Equation 2.1 and is a necessary step in determining the solubility 

of MN adatoms at the interface [7]. 

𝑓𝑓(𝑐𝑐,𝑇𝑇) = 𝛼𝛼𝑐𝑐(1 − 𝑐𝑐) + 𝑘𝑘𝐵𝐵𝑇𝑇[𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐) + (1 − 𝑐𝑐) ln(1 − 𝑐𝑐)] 

Equation 2.1 Free energy density of a regular solution at the interface during 
dealloying.  

Where c is the mole fraction of silicon, α is a function of interaction energies 

between silicon and electrolyte, kB is Boltzmann’s constant, and T is absolute temperature. 

The solubility of MN adatoms can be considered as the equilibrium concentration of MN 

adatoms [7]. As the LN element is dissolved into solution, this represents a non-equilibrium 

condition where the driving force that allows the MN adatoms to agglomerate into clusters 

is the result of local site MN adatoms having an occupancy fraction much greater than the 

equilibrated concentration given by Equation 2.1. The agglomeration of MN adatoms onto 

nearby clusters would be considered uphill diffusion and is the result of composition 

fluctuation that ultimately leads to a lower free energy state [7]. However, the system 

becomes unstable at long length scales such that the characteristic length, λ, previously 

mentioned is very close to the final ligament spacing observed once dealloying is complete. 

This is formally known as spinodal decomposition [11].  
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Figure 2.2 Schematic illustration of pore formation during dealloying. a) Stripping 
of LN species and agglomeration of MN species. b) Formation and coarsening of MN-rich 
mounds. c) Second layer dissolution of LN atoms and surface diffusion. D) Reduced 
accumulation of MN atoms at the base e) Undercutting of the hills and f) formation of new 
mounds (Reproduced from [8] with permission from The Electrochemical Society, Inc.).  

2.1.4 Rate Laws for Diffusion and Dissolution  

A bond-breaking model was used to describe diffusion such that atoms could 

translate into adjacent sites by surmounting an activation barrier. The height of the barrier 

is given by the sum of the surrounding bonding energies of all adjacent atoms. The rate at 

which an atom will translate into an adjacent site is given in Equation 2.2, where Eb is the 

bond energy, kB is Boltzmann’s constant, T is absolute temperature, νD is the attempt 

frequency, and n is the number of adjacent atoms [8].  

𝑘𝑘𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜈𝜈𝐷𝐷 exp �−

𝑐𝑐𝐸𝐸𝑏𝑏
𝑘𝑘𝐵𝐵𝑇𝑇

� 

Equation 2.2 Adatom diffusion rate during dealloying.  
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The model used to describe the dissolution of the LN atoms is given in Equation 

2.3, where kn
diss is the dissolution rate, νE is the product of the attempt frequency and a term 

that depends on the activation entropy for dissolution, φ is the applied potential, and the 

other terms are defined above. There is a simple interpretation to the rate law equations 

that govern dealloying; an atom must overcome an activation barrier of height nEb during 

both diffusion and dissolution, but this height can be lowered during dissolution by an 

amount equal to the applied potential (φ) [8].  

𝑘𝑘𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜈𝜈𝐸𝐸 exp�−
(𝑐𝑐𝐸𝐸𝑏𝑏 − 𝜑𝜑)

𝑘𝑘𝐵𝐵𝑇𝑇
� 

Equation 2.3 Kinetic rate equation for dissolution of less noble elements [8].   

2.2 Porous Silicon 

Porous silicon (PS) was first reported by Uhlir in the 1950’s through experiments 

on the electrolytic shaping of germanium and silicon [12]. Uhlir noticed that the surface 

was not polished as he had hoped and the experiment was deemed a failure. Afterwards, 

Turner began performing electropolishing experiments on silicon at Bell Laboratories and 

explored this area further [13]. Porous silicon remained virtually unexplored until the 

1990’s when Canham et al. began to investigate the optical properties of PS [14], at which 

point interest in the scientific community began to grow. 

There are two main techniques used to create PS: stain etching and anodic etching. 

Stain etching is a simple and scalable procedure, but does not allow the user to have 

optimum control over parameters as compared to anodic etching. For this reason, stain 

etching is not as widely utilized within the scientific community and will only be briefly 

discussed.  
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Stain etching of silicon is a method based on the use of hydrofluoric acid (HF) and 

intense oxidizing agents (hydrogen peroxide) such that a porous structure forms, without 

the use of a power supply to drive the process [15]. The etching occurs as the oxidizing 

agent reacts with the surface of silicon and is subsequently dissolved by the HF. The 

reaction is considered to be a closed circuit electrochemical reaction because the anodic 

and cathodic reactions occur on the surface of the silicon.  

There have been other methods used to create PS structures that are either a top-

down or bottom-up variety. Metal assisted chemical etching (MACE, another example of 

stain etching) is one of the more notable techniques that have been developed in recent 

years [16]. The etching is done by the catalysis of a metal coating on the silicon. Since the 

etching is more vigorous at the metal-silicon interface it causes the metal to sink into the 

silicon. One can pattern the metal and overlay it on the silicon to create nanostructures in 

a process called template based MACE [16].  

2.2.1 Anodic Etching 

The most common method to produce PS utilizes the anodic etching technique, 

sometimes referred to as simply anodization [17]. Here a silicon wafer is typically etched 

by submerging it in a biased etching cell containing ethanol and HF. There are three 

common geometries that the etching cell can have: the single tank cell, the lateral 

anodization cell, and the double tank cell. Each of these geometries are shown in Figure 

2.3. A common material used for the cathode is Pt because it is conductive and resistant to 

HF attack. As a potential bias is applied to the electrode in any of the tank cells, current 

will flow and etching results [18]. 
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Figure 2.3 Schematic showing the different geometries of silicon etching cells. A) 
Single tank cell, B) is a lateral anodization cell, and C) is a double tank cell [18].  

Typically, the silicon wafer is polished before inserted into the etching cell such 

that the surface is hydrophobic [19]. The ethanol in solution serves two purposes: 1) It is 

used to increase the wettability of the silicon surface such that the electrolyte can penetrate 

deeper into the pores and 2) it helps whisk the H2 bubbles that form during anodization 

away from the surface [19]. In this way, there is a homogeneous current density that can 

be maintained that results in the formation of porous silicon. The typical controllable 

parameters during etching are: the applied anodic current density, etching time and 

concentration of solution. These can be used to control the resulting microstructure of the 

silicon. 

2.2.2 Doping Considerations 

One of the major factors that affects pore growth is how the sample is doped. In p-

type silicon there are an excess of holes whereas in n-type silicon there are an excess of 

electrons. Due to the dissolution chemistry it has been commonly agreed upon by scientists 

that a hole supply from the bulk silicon is a necessary condition to create porous silicon 

[20]. Therefore, hole supply can be regarded as the limiting reagent in the dissolution 

reaction and an understanding of hole generation in both n and p type silicon is essential.  
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Since holes are the majority carriers in p-type silicon, anodization causes the silicon 

substrate to become forward biased [17]. That is to say that the p-type silicon is connected 

to the positive terminal of the electromotive force (emf). This results in a forward bias in 

the substrate and causes current to flow as a large supply of holes accumulate in the p-type 

silicon [17].  

Electrons are the majority carriers in n-type silicon. When the n-type silicon 

substrate is anodized it will put it into reverse bias [17]. That is to say that the substrate 

will be connected to the negative terminal on the emf. This is similar to the reverse bias of 

a p-n junction diode. At low applied potential there will be a very low current flow and 

holes are not abundant [17]. Under these conditions, etching is severely limited and photons 

are utilized to stimulate hole supply. See Figure 2.4 for current-voltage curves.  

 

Figure 2.4 These current-voltage curves illustrate typical curves that would be seen 
for the anodic etching of n and p type silicon substrates (Reproduced from [21] with 
permission from Elsevier). 

2.2.3 Morphology 

There are a wide array of geometries that can be formed through the dissolution of 

silicon. The classification of pore sizes are summarized in Table 2.1. A complete study is 
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beyond the scope of this dissertation. As a result, an overview of some of the more common 

geometries are summarized along with controlling parameters in Table 2.2. 

Table 2.1 Pore size as defined by IUPAC (Reproduced from [19] with permission 
from Elsevier). 

Pore width Pore type 

< 2 nm Micro porous porous 

2 – 50 nm Meso porous 

> 50 nm Macro porous 

 

Table 2.2 Controllable parameters that affect the resulting pore size and 
morphology of the silicon wafer (Reproduced from [19] with permission from Elsevier). 

Increasing the values of Porosity Etching rate 

HF concentration Decreases Decreases 

Current Density Increases Increases 

Anodization time Slightly increases Slightly decreases 

Wafer doping (p-type) Decreases Increases 

Wafer doping (n-type) Increases Increases 

  

A natural starting point for describing a porous material would be its porosity (P) 

and thickness (t). These are given by the following relations [19]:  

𝑃𝑃 =
𝑚𝑚1 −𝑚𝑚2

𝑚𝑚1 −𝑚𝑚3
  

Equation 2.4 Calculation of film porosity [19].  
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𝑡𝑡 =
𝑚𝑚1 −𝑚𝑚3

𝜌𝜌𝐴𝐴
 

Equation 2.5 Calculation of film thickness [19]. 

Where m1 is the mass of the sample before dissolution, m2 is the mass of the sample 

after dissolution and m3 is the mass of the sample after removal of the porous layer. While 

doping level and doping type play a key role in the resulting pore size and microstructure, 

there are other parameters that also affect dissolution such as electrolyte composition, 

current density, and dissolution time[19]. Some general pore morphologies are given in 

Figure 2.5.  

 

Figure 2.5 An overview of the different types of pore morphologies that have been 
observed by etching silicon (Reproduced from [22] with permission from The 
Electrochemical Society, Inc.). 
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2.2.4 Hierarchal Structure and Nanoporous Silicon 

The most ubiquitous binary system for dealloying is that of Au-Ag, which is a well-

behaved system that has been the subject of intense research [7, 8]. Upon dealloying, this 

system produces ligaments that are of uniform dimensions that create the bi-continuous 

structure. More recently, nanoporous materials that exhibit a hierarchal (multimodal) 

structure have been developed and studied [23-25]. Systems that have such structural 

characteristics are defined by having different classes of ligaments. This can be beneficial 

in engineering applications where mass transport and chemical activity are desired [26, 

27]. There have been several studies on systems containing silicon that take advantage of 

this structural hierarchy for applications in lithium-ion batteries [28-30]. The study by Hao 

et al. incorporated a ternary alloy of Si-Ag-Al that was subsequently dealloyed in a solution 

of  HCl [28]. The ternary alloy was fabricated through the use of an induction melter in an 

inert atmosphere of argon. The bimodal structure that resulted is shown in Figure 2.6.  
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Figure 2.6 SEM images of the dealloyed Si-Ag-Al ternary alloy in 0.1 M HCl 
solution for a) 2, b) 5, c) 10 and 4) 24 hours (Reproduced from [28] with permission from 
The Royal Society of Chemistry). 

Using electrochemistry to create nanoporous materials is not the only technique 

that can be to create nanoporous materials. Liquid metal dealloying (LMD) is a recent 

technique that was first published in 1959 by Harrison and Wagner, but studied further by 

Kato et al. [27, 29-32]. LMD is different from electrochemical dealloying in that it does 

not rely on a corrosion reaction in an aqueous solution, but on a metallurgical reaction 

between an alloy precursor and a metallic melt [29]. It is an attractive technique because 

electrochemical dealloying tends to require precious metals for the process. Of particular 

interest to the topic of this dissertation was the method used by Kato et al. to produce np 

Si [29, 30]. In that study, np Si was produced through LMD a Si-Mg alloy in a metallic 

melt of Bi. Subsequently, the Bi was corroded away with 1 M nitric acid, leaving the np Si 

intact. The resulting nanoporous structure is displayed in Figure 2.7.  
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Figure 2.7 SEM images (a)-(d) corresponding to the structure obtained after 
annealing the np Si at temperatures from 773 to 1073 K (Reproduced from [30] with 
permission from Elsevier). 

The motivation, in part, for pursuing the work on nanoporous silicon and using the 

Si-Mg system has foundations here at the University of Kentucky and was discovered 

serendipitously by Lei Wang [33]. Wang had made several attempts to make nanoporous 

iridium through dealloying of several binary alloy systems, but found that Ir-Mg was able 

to dealloy in the presence of benign substances like ethanol and water through free 

corrosion [33]. This was then extrapolated to other binary metal systems and shown to 

produce nanoporous structures with relative ease [33]. Jiang took the method developed by 

Wang et al. and applied it to thin films of Si-Mg [34]. Jiang et al. was able to create 

nanoporous Si thin films by using magnetron sputtering and dealloying in distilled water 

at 50°C. A gradient sample shown in Figure 2.8 was used to determine the parting limit for 

the Si-Mg system, which was 57 at.% Si [34]. Then homogeneous film compositions were 

sputtered and dealloyed using the parting limit range discovered on the gradient films. The 

homogeneous films produced a well-defined bi-continuous structure characteristic of 

nanoporous metals, as observed in Figure 2.9. Jiang et al. successfully created nanoporous 
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silicon films with thickness up to 200 nm, but had difficulties creating thicker films (600 

nm >) due to delamination and excessive corrosion, as depicted in Figure 2.10. Jiang et al. 

needed to create thicker films to accurately extract film mechanical behavior.    

 

Figure 2.8 Gradient samples of Si-Mg with varying precursor compositions after 
dealloying. One can observe that in images (a) and (b) dealloying is incomplete and there 
is not a bi-continuous structure, this is more characteristic of passivation. In contrast, 
images (d) and (e) show large cracks in the film and islands of stand-alone material. The 
film pictured in (c) displayed the best microstructure and had a parting limit of 57 at. % Si 
[34]. 
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Figure 2.9 A 200 nm thick nanoporous Si film after dealloying. (a) represents the 
as-dealloyed structure, while (b) shows the ligaments have coarsened after vacuum 
annealing at 400°C [34].  

 

Figure 2.10 (a) cross-section of a 600 nm precursor film and (b) after dealloying 
[34].  

2.3 Nanoindentation and Non-ideal Materials 

The mechanical behavior of materials is of paramount interest for engineering 

applications. Nanoindentation is an attractive technique for determining the mechanical 

behavior because of its experimental simplicity and ability to probe small volumes of 

material on the order of 1 μm or less [35-37]. Additionally, there are a wide variety of 

indenter tips, shown in Figure 2.11, each having specific geometries that can be tailored to 
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the information required from the sample of interest [38]. The indenter tip used to 

characterize the materials in this dissertation was the Berkovich because it is better suited 

for studies that probe small-scale materials [38].  

 The seminal work by Oliver and Pharr introduced in 1992 had great implications 

because it meant that researchers no longer had to image indents after performing 

nanoindentation testing because the tip area function could be modeled with a high degree 

of accuracy [39]. The tip area function could be modeled according to the polynomial in 

Equation 2.6.  

𝐴𝐴 =  �𝐶𝐶𝑛𝑛(ℎ𝑐𝑐)2−𝑛𝑛 
8

𝑛𝑛=0

 

Equation 2.6 Tip area function model developed by Oliver and Pharr [39]. 

Where A is the contact area and C0…C8 are constants determined by curve fitting 

procedures [37]. Additionally, they introduced the continuous stiffness measurement 

(CSM) technique that would allow scientists to accurately obtain mechanical information 

as the indenter is pressed into the sample by oscillating the tip [39]. In this way, data could 

be obtained as a function of depth. 
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Figure 2.11 Schematic showing several different indenter tip geometries: (a) 
spherical, (b) conical, (c) Vickers, and (d) Berkovich. The cube corner and flat punch (not 
pictured) are also useful geometries (Reproduced from [38] with permission from Springer 
Nature).  

Prior to the advent of the CSM technique, nanoindentation tests were relatively 

rudimentary and did not require expensive electronics. Nevertheless, the important 

quantities that were obtained from a typical load-displacement curve were the maximum 

load, Pmax, the maximum displacement, hmax, and the elastic unloading stiffness, S = dP/dh.  

These quantities are shown in Figure 2.12. The residual indent in the sample material would 

be imaged such that the contact area, A, of the impression could be obtained. Material 

parameters like the elastic modulus and hardness could then be obtained by experimentally 

determining these values, as shown in Equation 2.7 - Equation 2.9. 
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Figure 2.12 Schematic of a typical load-displacement curve obtained with a 
Berkovich tipped indenter showing important parameters obtained from experiment 
(Reproduced from [37] with permission from The Cambridge University Press). 

𝐻𝐻 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴

 

Equation 2.7 Indentation hardness [37]. 

𝑆𝑆 = 𝛽𝛽
2
√𝜋𝜋

𝐸𝐸𝑒𝑒𝑑𝑑𝑑𝑑√𝐴𝐴 

Equation 2.8 Indentation stiffness [37]. 

1
𝐸𝐸𝑒𝑒𝑑𝑑𝑑𝑑

=
1 − 𝜈𝜈2

𝐸𝐸
+

1 − 𝜈𝜈𝑑𝑑2

𝐸𝐸𝑑𝑑
 

Equation 2.9 Indentation elastic modulus [37]. 
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Where H is the hardness, β is a geometric factor near unity, Eeff is the effective elastic 

modulus, E and ν are the elastic modulus and Poisson’s ratio of the specimen, and Ei and 

νi are the elastic modulus and Poisson’s ratio of the indenter tip.   

A considerable amount of research has been devoted to the study of homogenous 

bulk materials that exhibit insignificant time-dependence since the appearance of the first 

commercial indentation apparatus. Advancements in system electronics and algorithms 

have led to the ability to study thin films, porous materials, time-dependence and much 

more. Naturally, these advancements are relatively new and therefore the least developed 

as opposed to those procedures developed for bulk homogeneous elastic-plastic material 

deformation. A brief overview of the current state of the field on pertinent topics for the 

materials tested in this study are reviewed below.  

2.3.1 Porous Materials 

The elastic response from porous materials are different from their bulk 

counterparts and follow a relation proposed by Gibson and Ashby [40]. The relation was 

first postulated to apply to nanoporous metals, but has since been extended to other 

nanoporous systems as well [41-44]. The relation is given in Equation 2.10.  

𝐸𝐸∗

𝐸𝐸𝑆𝑆
= 𝐶𝐶1 �

𝜌𝜌∗

𝜌𝜌𝑆𝑆
�
2

 

Equation 2.10 The Gibson and Ashby relation [45].  

Where E* is the Young’s modulus of the porous material, Es is the Young’s modulus of the 

dense material, ρ* is the volume represented by the solid material (not counting voids), ρs 

is the volume of the total cell (solid and voids) and C1 is a constant of proportionality. 
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Experimental data found in the literature for porous materials find the value of C1 to be 

close to unity. As a result, it is often assumed to be 1.  

 There are difficulties that can complicate obtaining the true modulus and hardness 

of nanoporous films - like pile-up around the indenter tip, for example - but those are 

generally documented [46, 47]. It is well-known that densification directly below the 

indenter tip occurs and that this can influence the measured elastic response of the 

nanoindenter [46, 48]. The work by Vlassak et al. have shown, however, that the effect on 

the measured elastic modulus is small provided there is not a distinct difference in the 

mechanical behavior of the nanoporous material and the dense counterpart [46]. More 

specifically, when the modulus of the dense material (ED) is greater than 3 times that of the 

porous material (EP), as shown in Figure 2.13. The reason that densification plays a small 

role, given the conditions, are that it is limited to a relatively small region beneath the 

indenter tip and the region that deforms elastically is much larger than that. This is 

supported by the work of Briot et al. where nanoporous gold was indented and a FIB lift-

out was done, shown in Figure 2.14. The nanoporous gold was indented at a maximum 

indentation depth of 2.5 μm and the densification field propagated to about 5 μm into the 

sample, or about twice the maximum indentation depth. The effect of densification in 

porous materials is something that leads to an overestimate of both the modulus and 

hardness and there is no current consensus on how to remove this effect.    
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Figure 2.13 Finite element modeling results that show densification has a relatively 
small effect on elastic response, given some very general conditions are satisfied 
(Reproduced from [46] with permission from The Cambridge University Press). 

 

Figure 2.14 A cross-section SEM image at the center of an indent performed on 
nanoporous Au. The final depth after indentation was approximately 1.5 μm and the depth 
of the densification zone directly below the tip was about 3.3 times the final indentation 
depth (Reproduced from [48] with permission from The Cambridge University Press). 
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2.3.2 Thin Films 

Nanoindentation is an attractive technique for probing small volumes of material 

because of its ability to accurately determine bulk mechanical behavior in confined spaces. 

The study of the mechanical behavior of films is a natural implementation because of its 

dimensions and wide variety of applications. There is an often quoted rule that the 

measurement of the film behavior must be performed at 10% of the film thickness of less 

[49]. Whether or not this generalization holds depends upon the relative mechanical 

behavior of the film-substrate system, the mechanical behavior of interest, as well as the 

geometry of the indenter used [36, 49-52].  

The work by Hay et al. showed that the contact radius of the indenter, not the depth, 

was the most significant parameter for determining whether there was substrate influence. 

For Vickers and other self-similar geometries, the 10% rule applies but typically only for 

the elastic modulus and not the hardness [50, 52]. This is because the elastic field that 

propagates ahead of the indenter tip is much larger than the plastic field, under the same 

conditions [46]. Of course, this depends on the relative mechanical behavior of the film-

substrate system. For example, indentation of a porous film on a silicon wafer (soft film on 

a hard substrate) can yield accurate results of hardness up to 50% of the film thickness [50]. 

This is portrayed in Figure 2.15.  
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Figure 2.15 Exploring the substrate effects on different film-substrate systems 
through plots of the normalized film hardness (H/Hb) against the normalized indentation 
depth (δ/h) with relative constraints of Ef /Es and σf /σs. (a) and (b) soft film-hard substrate, 
(c) hard film-soft substrate and (d) very hard film on soft substrate (Reproduced from [50] 
with permission from The Cambridge University Press).  

2.3.3 Time-Dependent Materials 

When a material is indented with a sharp tip, it is subject to elastic (reversible), 

plastic (instantaneously irreversible) and viscous (time-dependent irreversible) 

deformation [53]. Researchers have made great strides in understanding the complex 

relationships between structure/defects and mechanical behavior of materials that exhibit 

an elastic-plastic response similar to that observed in Figure 2.12. Advancements in system 

electronics and algorithms have helped in the testing of time-dependent materials, but the 
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field is still in its infancy. An outline of state-of-the-art procedures to study time-

dependence is given below. 

The quantification of the viscous component of deformation can be performed in 

either the time or the frequency domain. One domain is not inherently better than the other, 

but each has their own advantages and disadvantages.  

Time Domain: There are three basic stages to experiments carried out in the time 

domain: a loading segment, a hold segment and an unloading segment [54]. The load, time 

and displacement data gathered from these basic stages can be used to determine the creep 

compliance, D(t), or the stress relaxation modulus, E(t) [54]. The creep compliance and the 

stress relaxation modulus are highly dependent on the indenter geometry. Simple solutions 

exist for the flat punch, and more complex solutions for spherical and pyramidal geometries 

[55, 56]. These techniques are also subject to thermal drift and transient effects that could 

significantly influence the gathered data, but do not require a known contact area.   

Frequency Domain: Experiments performed in the frequency domain typically 

utilize a phase-lock amplifier (PLA) that measures the material response to a harmonic 

oscillation of the indenter tip at a fixed frequency. The ultimate goal is to determine the in-

phase and out-of-phase components that correspond to the elastic and damping behavior of 

the material, respectively. In this way, a key metric used to characterize the amount of 

energy a material can dissipate – the loss factor (tan δ) – can be quantified. The limits of 

the loss factor are between 0° ≤ δ ≤ 90°, which represent purely elastic and viscous 

deformation, respectively [57].  Operating in the frequency domain requires expensive 

electronics and a well-behaved system. However, the stiffness and damping measurements 

are not subject to thermal drift and there is no need to assume any parametric model. 
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Ultimately, the time-dependent materials of interest were characterized in the frequency 

domain because it best made use of the state-of-the-art nanoindenter and required the 

fewest assumptions about the material.   

Experiments in the frequency domain are typically performed using one of two 

load-time histories [54]: In the first, the dynamic response is measured as the indenter is 

continuously loaded to a prescribed load/depth. In the second, the material’s dynamic 

response is measured while the load or displacement is held at a constant, predetermined 

value. The second load-time history is preferred because it is better suited for achieving 

steady-state harmonic motion and has undergone rigorous experimental verification [55, 

58].   

As previously mentioned, the accurate characterization of the loss factor requires a 

well-behaved or well-characterized system. This means that spurious data may be caused 

by two issues: (i) an additional phase shift from the system electronics or physical damping 

in the load frame and (ii) not being able to achieve steady-state harmonic motion over the 

time scale in which the phase angle measurement was performed [57]. While the 

instrument’s contribution to the loss factor is always present, it can effectively dominate 

the measured response under some very general guidelines outlined in Equation 2.11 and 

Equation 2.12 [57].  

𝑓𝑓0
ℎ0
�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑

≫
𝑓𝑓0
ℎ0
�
𝑑𝑑𝑓𝑓𝑒𝑒𝑒𝑒 𝑑𝑑𝑐𝑐𝑚𝑚𝑐𝑐𝑒𝑒

 

Equation 2.11 Inequality showing when the specimen dominates the measured 
phase angle response, not the actuator [57]. 
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𝐾𝐾𝑐𝑐𝑑𝑑 ≫ 𝐾𝐾𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 

Equation 2.12 Inequality showing when the damping of the load frame is 
insignificant compared to that of the specimen [57].  

where f0/h0|coupled is the apparent power of the actuator and specimen, f0/h0|free space is the 

apparent power of the actuator hanging in free space, Klf is the stiffness of the load frame, 

and Kcontact is the stiffness of the contact. It is not possible to define absolute values that 

those equations must exceed because they depend on numerous complex factors. In 

general, the magnitude of these inequalities must increase with the resolution of phase 

angle and/or the phase angle of the specimen approaches zero [57]. Relative magnitudes 

for these inequalities are provided in Table 2.3 for common linear elastic and viscoelastic 

materials. Given the magnitude of the inequalities, it can be concluded that the specimen 

and not the test system dominate the measured response. By using Equation 2.13 - Equation 

2.15, one can correct for any additional phase shift caused by the system electronics [57, 

58].  

Table 2.3 Relative magnitudes to the inequalities in Equation 2.11 and Equation 
2.12 for common materials obtained at an operating frequency of 48 Hz [57].  

 Fused Silica PC PMMA 

𝑓𝑓0
ℎ0
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𝛿𝛿𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑 = tan−1 �
𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝜔𝜔

𝐾𝐾𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 − 𝑚𝑚𝜔𝜔2� 

Equation 2.13 The corrected phase angle the subtracts the contributions from the 
instrument’s actuator and physical damping from the load frame [57]. 

𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝜔𝜔 =
𝑓𝑓0
ℎ0
𝑠𝑠𝑠𝑠𝑐𝑐𝛿𝛿�
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𝑓𝑓0
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𝑑𝑑𝑓𝑓𝑒𝑒𝑒𝑒 𝑑𝑑𝑐𝑐𝑚𝑚𝑐𝑐𝑒𝑒 
 

Equation 2.14 The out-of-phase component of the imposed harmonic oscillation 
[57]. 

𝐾𝐾𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 − 𝑚𝑚𝜔𝜔2 =
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Equation 2.15 The in-phase component of the imposed harmonic oscillation [57]. 

where δcorrected is the phase angle of the specimen, Kcontact – mω2 is the in-phase (elastic) 

component and Ccontactω is the out-of-phase (damping) component of the imposed 

harmonic oscillation. This summarizes the corrections and conditions required to mitigate 

issues outlined in (i).  

 There are also two methods that can be used to ensure the coupled system-specimen 

have reached steady-state harmonic motion to mitigate issues outlined in (ii). The first 

method is to wait for the time-dependent mechanisms of the specimen to exhaust 

themselves and the second is to operate the PLA at high frequencies such that the change 

in contact area is insignificant over the time scale in which the phase angle is measured 

[57]. The best metric to ensure that the specimen-system have reached steady-state is its 

stability over time [57].   
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 Pile-up: The Oliver-Pharr method for nanoindentation relies on accurate 

measurement of the contact area, as summarized in Equation 2.7 and Equation 2.8. The 

trouble with determining the mechanical response of materials that exhibit time-

dependence is that they tend to pile-up around the indenter tip, as shown in Figure 2.16 

[50]. This leads to an underestimation of the contact area, consequently overestimating 

both the hardness and modulus. While there have been studies that attempt to deal with 

pile-up, the amount of pile-up differs for different material systems and can depend on the 

amount of work-hardening [37, 59-61]. There does exist a simple, experimental parameter 

that can be useful in determining if the amount of pile-up during indentation was significant 

[59]. This parameter is the ratio of the final indentation depth to the maximum indentation 

depth, hf /hmax. Of course, this parameter relies on the indenter geometry being self-similar 

such that it is not dependent on depth. The limits of this parameter are between 0 and 1, 

where the lower limit represents fully elastic deformation and the upper fully plastic 

deformation. If the hf /hmax ratio is less than 0.7, then pile-up around the indenter can safely 

be ignored. However, if the ratio is larger than 0.7, pile-up will depend on the work-

hardening behavior of the material.   

  

Figure 2.16 Schematic representing the difference between significant pile-up (left) 
and insignificant pile-up (right) around the indenter tip (Reproduced from [50] with 
permission from The Cambridge University Press). 
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2.4  Thermionic Dispenser Cathodes 

Thermionic dispenser cathodes are a specific example of an application of porous 

materials that are used in vacuum electron devices (VEDs) as electron emitters for use in a 

variety of applications including cathode ray tubes, travelling wave tubes, and klystrons. 

Modern dispenser cathodes are composed of a porous metallic refractory metal – typically 

tungsten - that has been impregnated with barium oxide, calcium oxide and aluminate [62]. 

This is known as the “B” type cathode and is shown schematically in Figure 2.17.  

 

Figure 2.17 A schematic showing the components of a B-type cathode [63]. 

It is widely accepted that barium plays a key role in the lowering of the surface 

work function such that electrons can escape more easily from the cathode [64, 65]. The 

incorporation of calcium is thought to reduce the rate at which barium sublimates from the 

surface, which enhances the emission properties [66]. The predecessors to this cathode 

include the oxide cathode, the “L” cathode and the pressed/sintered cathode [62]. 



37 
 

Following the development of the “B” type cathode, came the “M” type cathode and the 

scandate cathode [62]. The “M” type cathode was an interesting development because it 

consisted of the “B” type cathode coated with a material of high work function, including 

osmium, iridium, and ruthenium. It is completely counter-intuitive that the high work 

function coating acts to lower the overall work function of the material surface, but 

nevertheless it does. The most recent development is the scandate cathode, which has been 

shown to achieve higher current densities at lower temperatures than previous generations 

of cathodes [67-72]. This is desirable due to the high current density demands driven by 

applications and the lower temperature improves cathode longevity. While the traits of this 

cathode system are desirable, there are still issues associated with their development 

including uneven emission, low reproducibility, and unknown emission mechanisms.  

2.4.1 Thermionic Emission 

The concept of thermionic emission is relatively simple: heat up something 

(typically a metal) until there is a flow of charge (typically electrons) from the heated object 

to the vacuum level. Generally, the electrons must overcome a surface potential energy 

barrier that is best described as the work function. In the absence of heating there are no 

electrons in the Fermi distribution tail above the Fermi level. However, as the temperature 

increases, this causes electrons to fill in the Fermi distribution tail, which is depicted as the 

blue solid area in Figure 2.18. The British physicist Owen Richardson developed a 

mathematical formulation (shown in Equation 2.16) that described thermionic emission 

from hot bodies for which he was awarded the Nobel Prize in Physics in 1928.  
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𝐽𝐽 = 𝐴𝐴𝑇𝑇2 exp �
−𝛷𝛷
𝑘𝑘𝐵𝐵𝑇𝑇

� 

Equation 2.16 The Richardson-Dushman equation [73-75]. 

Where J is the current density, A is a constant known as the “Richardson constant”, T is 

temperature, Φ is the electron work function and kB is the Boltzmann constant.  

 

Figure 2.18 a) The area enclosed in the dotted lines represents the Fermi 
distribution of electrons with heating and b) shows the electron distribution (in blue) above 
the Fermi level while heating, where Φ is the distance between the Fermi level and the 
vacuum level – also referred to as the work function [76].  

2.4.2 The Schottky Effect 

Typically electron emission is enhanced by the application of an electric field 

between the hot body and an anode some distance away. This enhancement is used in 

electron guns to help lower the surface energy barrier impeding electron escape. Figure 

2.19 shows how the Schottky effect can influence the effective work function of a material 

when heating. A mathematical formulation of how the Schottky effect can influence the 

work function is shown in Equation 2.17.  

 



39 
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Equation 2.17 The Schottky effect.  

Where e is the charge of an electron, E is the electric field, zm is the distance between the 

anode and cathode, and ε0 is the permittivity of free space.  

 

Figure 2.19 Diagram A shows how the work function is affected in a) the absence 
of an electric field, b) in the presence of an electric field and c) is the effective work function 
when an electric field is applied. Diagram B shows the electron distribution in blue in the 
presence of an electric field [76]. 
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3 Experimental Methods 

This section is devoted to the experimental methods and machines used throughout 

this dissertation and gives a brief overview of the various techniques. It is beyond the scope 

of this dissertation to provide a comprehensive detail on the methods used to characterize 

or fabricate the materials of interest and suggested reading is provided in the text.  

3.1 Physical Vapor Deposition and Film Growth 

Magnetron sputtering is a type of physical vapor deposition whereby atoms of a 

target material are ejected through bombardment of argon atoms [77]. A simplified 

schematic of this process is shown in Figure 3.1 [78]. The system consists of an anode 

(substrate) and cathode (target) opposite one another. The magnet array behind the target 

material allow for a higher plasma density to be created near the cathode, such that 

deposition is more rapid once a backing potential is applied (DC or RF). Typically, the 

deposition occurs under vacuum to increase the mean-free path of ejected target material, 

but with a significant partial pressure of argon, which acts to eject target material through 

bombardment. By changing the partial pressure of argon, substrate biasing, substrate 

temperature, deposition rate and other deposition conditions, one can change the film 

properties like structure, density, residual stress and others [79].   
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Figure 3.1 A schematic showing the mechanism of magnetron sputtering [78]. 

 Throughout this dissertation magnetron sputtering was used to deposit films of Si-

Mg, W and W-Al alloy films. Of course, the deposition conditions for each study varied 

slightly but the general outline of deposition parameters used is given below. Deposition 

was carried out inside an ATC ORION system (AJA International, Inc.) using either DC 

or RF power supplies. Typically, an RF supply was used for silicon due to its 

semiconducting nature, while a DC supply was used for metals. The base pressure of the 

system prior to sample loading was below 10-6 torr. Single crystal (001) substrates of 

silicon were used for deposition because of their low surface roughness. Immediately 

before deposition, the substrate was cleaned via substrate biasing to remove any 

contaminants and promote film adhesion. Interlayers of material were used to promote film 

adhesion. More details about the parameters used will be given in the subsequent chapters 
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for the film of interest. Additional reading on the technique of magnetron sputtering and 

the factors that influence film structure can be found elsewhere [80-83]. 

3.2 Dealloying 

Free corrosion dealloying was used to create all the nanoporous silicon shown in 

this dissertation. A variety of etchants were used to etch magnesium from the silicon-

magnesium precursor films and those included: distilled water, deionized water, ethanol, 

methanol, and isopropanol. Sometimes a final rinse in dilute acetic acid (commercial 

vinegar) allowed the surface oxide layer to lift off revealing an interesting structure 

beneath. Free corrosion dealloying using the above etchants was attempted at a variety of 

temperatures as well, but typically between room temperature and the freezing point of 

water. Preliminary experiments were performed in an ice bath, which showed promising 

results. However, due to the unreliable nature of the temperature stability, a water chiller 

was used to ensure temperature uniformity over the duration of the experiment(s). 

Typically, dealloying was carried out by filling glass vials with a volume of 30 mL and 

placing the capped vials inside the water chiller chamber for the free corrosion dealloying 

to take place. Since the optimum dealloying composition had to be investigated alongside 

the best dealloying solution, gradient samples were typically dealloyed to find the best 

etchant-parting limit. Typically, the parting limit hovered around 54 at.% silicon.  

3.3 Characterization 

Central to the ideal of understanding why any given material behaves as it does 

under user-defined conditions is characterization. It allows the user to observe or quantify 

certain qualities of a material that could be paramount to understanding intrinsic material 
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properties. This section describes the techniques used during the completion of this 

dissertation.  

3.3.1 Electron Microscopy 

Scanning Electron Microscopy: This is a particular type of microscopy that is 

virtually ubiquitous in research. A scanning electron microscope (SEM) is used in place of 

optical microscopy because it allows the user to detect features on the nanometer scale - 

depending on the type of microscope being used – and has a relatively low associated cost. 

Additionally, the depth of field is quite large and can give images a 3D appearance (tens 

of μm at 1,000x magnification or μm at 10,000x magnification) [84].  

The basic principle of an SEM is reasonably simple – extract electrons from an 

electron gun, focus them onto the sample surface and collect secondary electrons. To 

reiterate, the most important attributes of an SEM are resolution and depth of field, given 

in Equation 3.1 and Equation 3.2.  

𝑑𝑑𝑐𝑐 = �
4𝑠𝑠𝑐𝑐

𝛽𝛽𝜋𝜋2𝛼𝛼𝑑𝑑2
�

1
2
 

Equation 3.1 Probe diameter for an SEM [84]. 

𝐷𝐷𝑑𝑑 =
2𝑅𝑅

tan𝛼𝛼
 

Equation 3.2 Depth of field for an SEM [84]. 

Where dp is the probe diameter, ip is the probe current, β is the beam brightness, αf is the 

convergence angle of the probe, R is resolution and α is the convergence angle of the 

objective aperture. In order to maximize resolution, the user wants to minimize the probe 

diameter, but there is a trade-off between depth of field and resolution.  
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 When the electron beam strikes the surface of the sample, there is an interaction 

volume below the sample surface where different types of electrons are generated, shown 

in Figure 3.2 [84]. The Monte Carlo simulation in Figure 3.2 a) shows the electron 

trajectory after impacting the sample and in Figure 3.2 b) there are characteristic electrons 

that escape from different zones of the volume. The characteristic electrons are collected 

to obtain information unique to the volume from which they were ejected. An SEM 

typically collects secondary electrons, which emit from the top 5-50 nm of the sample 

surface. Generally, the more energetic electrons escape from deeper in the sample. This 

interaction volume will be revisited shortly in the following sections.   
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Figure 3.2 a) Monte Carlo simulation of and electron beam-sample interaction 
(acceleration potential = 20keV) and b) a schematic depicting depths at which 
characteristic electrons are generated within the interaction volume (Reproduced from 
[84] with permission from Wiley Books). 

There were five SEMs used throughout this work: a FEI Helios Nanolab, FEI 

Quanta 250, Hitachi S-4300, Zeiss EVO MA10, and a Hitachi S-900.  

Transmission Electron Microscopy: In many ways, the transmission electron 

microscope (TEM) is similar to the SEM in that they both have: an electron source, 

electromagnetic lenses for focusing, a sample stage and detectors for collecting signal. The 

TEM, however, typically uses a much higher accelerating voltage for the electron beam for 

two reasons: the associated wavelength of individual electrons is much smaller and it 
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allows them to pass through the sample [85]. A typical accelerating voltage for the TEM 

is 200 kV and allows the user to achieve higher resolution in accordance with Equation 

3.3. 

𝑅𝑅 =
0.61𝜆𝜆
𝜇𝜇 sin𝛼𝛼

 

Equation 3.3 Resolution equation [86]. 

Where λ is the wavelength, μ is the refractive index of the medium between the sample and 

objective lens, and α is the half-angle of the cone entering the objective lens [86]. 

 Besides imaging, the user can also get crystal structure information about the 

sample through electron diffraction. In the same way that x-rays are diffracted by crystal 

planes in XRD, electrons can be diffracted and Bragg’s Law still applies. The diffraction 

angle in TEM is small (≤ 1°) and the diffracted beam from a crystal plane (hkl) appears as 

a bright spot on the back focal plane of the objective lens [85]. If the beam is parallel to a 

crystallographic axis, the beam will diffract and form a pattern in reciprocal space that can 

be indexed and interpreted [85]. Further reading on obtaining diffraction patterns in the 

TEM can be obtained elsewhere [85, 87].    

 In order for the sample to be electron transparent, the thickness must be less than 

100 nm and is often times thinner for material with a high atomic number [85]. This is 

typically the most difficult step in TEM examination. The specimens in this dissertation 

that were examined via TEM were extracted using a focused-ion beam (FIB) lift-out 

process that is shown schematically in Figure 3.3. First, a protective pad of Pt is deposited 

on the sample surface to protect the sample from FIB damage, then two trenches are milled, 

as shown in Figure 3.3 a). Then a J-cut is performed to free most of the TEM sample from 
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the specimen, shown by the yellow rectangles in Figure 3.3 a) that resemble the letter J. 

Then a manipulation rod (tungsten in this case) is welded to the sample surface/Pt 

protective layer, as shown in Figure 3.3 b). Then the rest of the TEM sample is cut free 

from the specimen, as shown in Figure 3.3 c) by the orange rectangle. The free specimen 

shown in Figure 3.3 d) can then be thinned via FIB milling and attached to a TEM grid of 

your choice for further investigation. An in-depth review of this process is given elsewhere 

[88, 89]. This expedites the process of thinning and is more precise than previous methods 

that involved a combination of mechanical and electrolytic means [85]. 

 

Figure 3.3 An illustration of the FIB lift-out process for a sample that will be 
observed in TEM. In a) a protective Pt pad is deposited to protect the sample from FIB 
damage, trenches are milled out in front of and behind the sample, and a J-cut is 
performed. In b) the manipulation rod is attached to the sample. In c) the sample is milled 
free from the larger specimen and d) shows the free sample ready for thinning.  



48 
 

3.3.2 Elemental Analysis 

As a consequence of bombarding a sample surface with electrons for imaging 

purposes in a SEM, there are also characteristic x-rays that are emitted from the sample. 

After striking an atom with the electron beam of sufficient energy, a core-shell electron is 

liberated. This puts the atoms in a metastable state, which is quickly filled by an outer shell 

electron. Since energy must be conserved during this process, a characteristic X-ray is 

produced that is equal to the difference between the shell migration. A schematic of this 

process is shown in Figure 3.4. The characteristic X-ray that is emitted can be collected 

with a Si(Li) detector that generates electron-hole pairs to determine the energy of the 

incident x-ray [90]. This is known as energy dispersive spectroscopy (EDS) and was the 

method largely used throughout this dissertation to study sample composition. There is, 

however, another method that can be used to obtain sample composition that uses a single 

crystal to diffract and separate characteristic x-rays based on wavelength. This is known as 

wavelength dispersive spectroscopy (WDS), but was not used to study sample composition 

in this dissertation. The element from which the characteristic x-ray was emitted can be 

determined using Moseley’s Law, shown in Equation 3.4 [90].  
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Figure 3.4 Schematic of the characteristic X-ray generation process after electron 
bombardment of an atom (Reproduced from [90] with permission from Wiley Books).  

 

𝜆𝜆 =
𝐵𝐵

(𝑍𝑍 − 𝜎𝜎)2 

Equation 3.4 Moseley’s Law [90]. 

Where λ is the wavelength of the characteristic X-ray, B and σ are constants that depend 

on specific shells and Z is elemental atomic number [90]. In this work, a Bruker XFlash 

5010 EDS detector attached to a Zeiss EVO MA10 SEM,  

3.3.3 X-Ray Diffraction  

X-ray diffraction (XRD) is a technique that is largely used to study the crystal 

structure of a given material. It is a relatively cheap and efficient method to identify the 

way in which atoms are arranged in thin films, bulk sample or even powders. It was 
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discovered in 1912 and has become an indispensable tool that virtually all laboratories 

utilize [91].  

Naturally, XRD utilizes x-rays that are generated when high-speed electrons collide 

with a metallic target. Typically the metal target is made of copper. The wavelength of the 

x-ray generated in this manner can be calculated using Equation 3.5, where λ is the 

wavelength, V is the accelerating voltage of the electrons being collided, h is Planck’s 

constant and e is the charge of an electron. Often times the radiation used for diffraction 

will be refered to as Cu Kα. The Kα wavelength is used because it has the highest intensity 

for the appropriate range of wavelength and the rest is filtered out.  

𝜆𝜆 =
ℎ
𝑒𝑒𝑒𝑒

 

Equation 3.5 The wavelength of radiation produced when electrons collide with a 
metal target [91]. 

The fundamental relation that governs the way in which x-rays diffract from crystal 

planes is given in Equation 3.6, where λ is the wavelength of the incident x-ray, d is the 

lattice spacing between parallel planes, and θ is the angle of incidence. The idea described 

by Equation 3.6 is the notion of constructive interference between incident x-rays. When 

there is not constructive interference, there is destructive interference and diffraction does 

not occur.  

𝑐𝑐𝜆𝜆 = 2𝑑𝑑𝑠𝑠𝑠𝑠𝑐𝑐𝜃𝜃 

Equation 3.6 Bragg’s Law of diffraction [91].  
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3.3.4 Nanoindentation 

A more comprehensive review of the nanoindentation techniques employed are 

given in section 2.3 in the background. This was done because the understanding of thin 

film mechanical behavior comprises a large portion of this dissertation. Here, a description 

of the nanoindenter used to study the mechanical behavior is given along with some 

specimen preparation techniques.  

The nanoindenter used to characterize the mechanical behavior of the thin films in 

this study was equipped with an iMicro load frame and an iNano actuator 

(Nanomechanics). The large stiffness associated with the iMicro load frame in combination 

with the high sensitivity of the iNano actuator offers better sensitivity at small contact 

areas. The indenter sits atop a table that is isolated from vibration, which further increases 

accuracy at small depths.  

The samples of interest are typically mounted atop the aluminum pucks via 

crystalbond, shown in Figure 3.5, which requires heat. A low temperature crystalbond was 

used that melts at approximately 50°C to ensure the samples are not oxidized during the 

mounting process. It is advised to not use superglue on nanoporous samples because they 

tend to absorb the glue before it sets and contaminate the mechanical response of the 

material of interest. I learned that the hard way. Once the aluminum pucks have cooled to 

room temperature after mounting, you may then insert the aluminum pucks into the sample 

tray, shown in Figure 3.6 a). The aluminum/sample cannot be placed in the sample tray 

willy-nilly. A procedure must be used such that the surface of the sample is approximately 

in the plane of indentation, as shown in.Figure 3.6 b). I find it easy to use a simple optical 

alignment, where you ensure the height of your sample(s) are at the same height as the 
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posts around the perimeter of the sample tray. Once this is accomplished, you may insert 

the sample tray into the nanoindenter and proceed to setup your mechanical test.   

 

Figure 3.5 The method of mounting samples to the aluminum puck for 
nanoindentation. 
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Figure 3.6 a) is the sample tray and labeled components and b) is an example of 
the optical method of alignment such that the surface of the sample(s) are approximately 
in the plane of indentation.  
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3.3.5 Electron Spectroscopy for Surface Analysis 

This technique uses characteristic electrons emitted after liberation via the 

photoelectric effect for surface analysis. There are two types of electron spectroscopy: 

auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS).  A 

Thermo Scientific K-alpha XPS, shown in Figure 3.7, was used throughout this dissertation 

to study material surfaces. It is equipped with an Al Kα source for x-ray generation, ion 

gun for milling, and an electron flood gun for charge compensation.  

 

Figure 3.7 The XPS system used to study sample surfaces and an insert showing 
the various components of the spectrometer.  

XPS uses low energy photons to liberate electron from the near-surface of the 

sample (10 nm or less), shown in Figure 3.8 [92]. When an incident photon has sufficient 

energy (hν) to liberate an inner shell electron, it is ejected with a kinetic energy, EK. By 

knowing the kinetic energy of the liberated electron, one can calculate the binding energy 

of the photoelectron, EB, through Equation 3.7 [92].  
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𝐸𝐸𝐵𝐵 = ℎ𝜈𝜈 − 𝐸𝐸𝐾𝐾 − 𝜙𝜙 

Equation 3.7 XPS binding energy equation [92]. 

Where φ is the work function, h is Planck’s constant and ν is the frequency. The binding 

energies of elements have characteristic values, but have the added advantage that shifts in 

binding energy can relay information about the chemical state of the element of interest. In 

general, a withdrawal of valence electron charge will increase the binding energy and 

addition of valence electron charge will decrease the binding energy [92].  

 

Figure 3.8 The emission of a 1s photoelectron using XPS (Reproduced from [92] 
with permission from Wiley Books).  

3.4 The Cathode Characterization Chamber 

The cathode characterization chamber, affectionately referred to as C3, is a unique 

system that was designed as a group effort and that I assembled. An image of the entire 

system is shown in Figure 3.9. A schematic of the main vacuum chamber can be found in 

Appendix B. C3 is equipped with a Kelvin probe, a residual gas analyzer, two 

photoemission systems and a heating stage. The main chamber is pumped with an ion 
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pump, but a turbo pump backed by a rotary vane pump pumps the load lock for sample 

transfer. The heating stage is affixed to an xyz manual manipulation stage for optimum 

sample positioning. A schematic of the system is shown in Figure 3.10.  

 

Figure 3.9 The cathode characterization chamber and associated electronics.  
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Figure 3.10 A schematic of the cathode characterization chamber and capabilities.  

3.4.1 Heating Capabilities 

The first iteration of a heating stage (button heater) was actually a placeholder for 

a heating stage that was to be delivered from Thermic Edge because they had major 

setbacks in the design of the original heating stage functionality. The button heater is shown 

in Figure 3.11 a) heating a cathode pellet. A carrier made of stainless steel was fashioned 

to hold the cathode pellet during heating with the button heater. The final design of the 

heating stage was done in collaboration with 3M Ceradyne, Inc., shown in Figure 3.11 b). 

The heating stage sled was designed to accommodate 6 cylindrical samples with a diameter 

of ~3 mm and a height ≥ 2 mm. The heating is performed by running a high current through 
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a tungsten-rhenium wire that has been surrounded by alumina potting inside the heater 

body. The high current is supplied to the heater through a UHV electrical feedthrough 

flange such that the current is isolated from the vacuum chamber – a necessary condition 

for taking contact potential difference measurements while heating. The samples, however, 

are in electrical contact with the vacuum chamber, and this is connected to ground via the 

Kelvin probe DCU.  

 

Figure 3.11 a) A button heater was the first iteration of a cathode heating stage, 
but was temperature limited and b) is a heater sled that was designed and developed by 
3M Ceradyne, Inc., which is the final version of a cathode heating stage.  

Care must be taken such that the maximum filament temperature of the heater sled 

is not exceeded. The maximum filament temperature of the tungsten-rhenium wire used in 

the heater sled cannot exceed 1720 °C. This can be determined through the relation in 

Equation 3.8. A table of experimental values are given in Table 3.1 for the heater sled 

obtained by 3M Ceradyne, Inc. in approaching the maximum filament temperature.  
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∗ 298.15 − 273.15 

Equation 3.8 Filament temperature equation [93].  

Where Tfil is the filament temperature, Vfil is the voltage measured across the filament, Ifil 

is the current traveling through the filament, α is a material specific parameter (α = 1/0.94 

for tungsten-rhenium), and RC is the cold resistance of the filament at room temperature. 

This is a calibration curve of sorts to determine what voltage and current can be applied to 

the filament to obtain a given cavity temperature, where the filament temperature in Table 

3.1 is modeled by Equation 3.8. The cavity temperature was measured via disappearing 

filament optical pyrometry.    
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Table 3.1 Experimental data provided by 3M Ceradyne, Inc. in approaching the 
maximum filament temperature.  

Vfil Ifil Tcavity Tfil 

4.0 4.440 897 1010 

4.5 4.723 959 1090 

5.0 4.991 1017 1160 

5.5 5.261 1065 1228 

6.0 5.524 1113 1292 

6.5 5.576 1154 1351 

7.0 6.019 1199 1407 

7.5 6.257 1236 1464 

8.0 6.487 1269 1516 

8.5 6.697 1299 1572 

9.0 6.913 1335 1622 

9.5 7.121 1366 1671 

 

3.4.2 Kelvin Probe, Work Function and Photoemission  

There are several methods to obtain the work function of a material and they 

generally fall into two categories: indirect and direct. The use of a Kelvin probe (indirect) 

and photoemission (direct) are the two methods used in this dissertation to obtain work 

function information.  

The working principle of the Kelvin probe is simple: form a parallel plate capacitor 

with two conductors, provide an electronic path in an external circuit between the two 
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conductors, and use a backing potential to note where the electric field between the two 

conductors vanishes [94]. A schematic of this process is depicted in Figure 3.12. If two 

dissimilar metals form a parallel plate capacitor and are not electrically isolated, their Fermi 

levels will align resulting in a flow of electrons from the material with a smaller work 

function to the material with a higher work function. A potential gradient (VCPD) is setup 

resulting in an electric field between the two plates, shown in Figure 3.12 b).  A “backing” 

potential (Vb) can be used to determine the point where the electric field vanishes. At this 

unique point, the difference in work function between the two plates (ΔΦAB) is equal, and 

opposite, to the backing potential. In other words, VCPD = -ΔΦAB [94]. By knowing the 

work function of one of the conductors in the capacitor (the Kelvin probe tip, ΦA) and the 

backing potential needed to cancel out the electric field, it becomes a simple algebraic 

problem to determine the work function of the material in question (ΦB), shown in Equation 

3.9.  

 

Figure 3.12 Schematic of the Kelvin method. In a) two dissimilar materials form a 
parallel plate capacitor. In b) the materials form an external circuit via electrical contact 
and in c) a backing potential eliminates the electric field between the two plates 
(Reproduced from  [94] with permission from the American Institute of Physics).  
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Φ𝐴𝐴 = Φ𝐵𝐵 + 𝑒𝑒𝐶𝐶𝐶𝐶𝐷𝐷 

Equation 3.9 Sample work function determination via the Kelvin method [94]. 

The disadvantages of using the Kelvin probe is that it relies on assumptions made 

for the work function of the reference tip, and its stability under the experimental 

conditions. These assumptions can be mitigated by using the photoelectric effect [95]. The 

system we have for measuring absolute work function still utilizes the Kelvin probe tip in 

conjunction with a light source (quartz Tungsten-Halogen or deuterium). In this 

arrangement, the Kelvin probe tip acts as a current collector for liberated electrons. Two 

light sources are necessary because they each have different photon wavelengths, and 

therefore energies. The quartz Tungsten-Halogen lamp and associated spectrometer can 

output variable wavelengths between 400 and 1000 nm (Ephoton: 3.1-1.24 eV) [95]. The 

deuterium source (DUV) emits ultraviolet radiation with photon energies between 3.0-7.0 

eV [95]. The combination of these two sources allow us to access the appropriate range for 

both an unactivated and activated cathode for absolute work function characterization. The 

photoelectron emission and collection is a 4-step process outlined in Figure 3.13 and 

described below [95]: 

1)   Incident photons are absorbed and an electron is emitted, provided the energy 

of the photon is greater than or equal to the work function of the material. After 

the electron is ejected from the surface, there is an image force (IF) between the 

emitted electron and the positively charged surface that extends to 

approximately 30 nm. At this point, the electron is subject to external electric 

fields and atmospheric conditions.  
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2) An electron cloud can be formed under ambient pressure conditions through the 

collision of the electron and large molecules like N2, O2, and H2O. While kinetic 

information is lost, charge is conserved. This is not a condition of concern when 

experiments are carried out in vacuum.  

3)  The electron/ion is accelerated toward the positively biased Kelvin probe tip. 

The field gradient is typically on the order of 10 V/mm.  

4) The electron/ion current is recorded as a function of photon energy and 

expected to increase according to the Fowler relation, (Ephoton – ΦM)1/2 [96].  

 

Figure 3.13 An illustration of the photoemission and collection process 
(Reproduced from [95] with permission from Elsevier).  
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4 The Fabrication and Characterization of Bimodal Nanoporous 

Si-Mg 

4.1 Introduction 

The first experiments to produce porous silicon used hydrofluoric acid (HF) and 

were discovered by accident when attempts to electropolish had failed [12]. Decades of 

development lead to engineering applications in waveguides, sensing and biosensing 

technology, drug delivery, and energy storage systems due to the inherent physical and 

chemical properties of the material [19, 97-102]. There are several techniques to produce 

porous silicon, but the most established technique utilizes HF and alcohol (ethanol or 

methanol) to etch a silicon wafer [102-104]. There are a wide range or pore sizes/shapes 

that can be obtained by tuning etching parameters [105, 106]. A significant disadvantage 

to using this technique stems from the highly toxic and corrosive nature of the etchant – 

HF – that requires special care for transportation and disposal.  

Silicon is an attractive material in energy storage devices because of its ability to 

absorb large amounts of lithium, for use in lithium-ion batteries [107]. The drawback in 

the storing of the lithium, however, is that the silicon must expand by up to 300% in order 

to accommodate the lithium. This tends to result in catastrophic failure, as silicon is a 

known brittle material, when thin films of silicon are subjected to battery cycling [108]. As 

a result, methods to circumvent the catastrophic failure have been the subject of intense 

study. The pioneering work by Ostlund et al. showed that by creating nano-structured 

silicon, one can mitigate brittle failure through the confinement of dislocations [1, 109]. 

This has lead to an increase in the study to create novel techniques for the production of 
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nano-structured silicon [28, 29, 110, 111]. Nanoporous materials are attractive because of 

their small ligament sizes and high surface-area-to-volume ratio.  

Dealloying is a common technique to produce nanoporous materials with ligaments 

tens of nm in size [7, 8, 10, 112, 113]. Chemical dealloying is among the earliest techniques 

to produce nanoporous materials dating back to ancient times, and still used today. This 

method is often used to create nanoporous structures of noble metals, but the pioneering 

work by Wang et al. showed that the use of binary alloys containing Mg can be dealloyed 

to create nanoporous structures not limited to noble metals [33, 114]. The results from 

Wang were the motivation for the current chemical dealloying procedure.  

A more recent discovery is the creation of dealloyed materials that exhibit a 

hierarchal (multimodal) structure [23-25]. Materials fabricated in this way offer unique 

advantages for engineering applications that stem from the different ligament classes and 

chemical activity of the system. For example, the larger ligament class can promote mass 

transport, while the smaller ligament class can increase chemical activity [26, 27]. These 

attributes have already shown great promise in lithium-ion battery applications in the 

creation of bimodal nanoporous silicon and micro-nano porous Si-Ag [28-30].  

It has been observed that introducing electrically conducting materials into the 

matrix of porous silicon can be an effective method to help improve electrochemical 

performance [28]. Strategically modifying the crystal structure of the matrix has also been 

shown to improve cycling behavior, specifically in making amorphous thin films or 

nanowires [115-118]. The focus of this study is the facile manufacture of bimodal 

nanoporous silicon with retained magnesium through distilled water dealloying of sputter-

deposited thin films that have a final thickness of at least 1μm, where the by-products are 
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environmentally benign. Fundamentally, this is an interesting material system whose 

structure and chemical composition hold great promise for future applications in lithium-

ion batteries.  

4.2 Experimental 

4.2.1 Materials 

The targets of silicon (99.999% purity), magnesium (99.95% purity), and Cr 

(99.95% purity) were purchased from AJA International, Inc. Silicon wafers were 

purchased from Virginia Semiconductor and were (001)-oriented phosphorus doped with 

a thickness of 368 μm. Ethanol (95%) was purchased from Fisher Scientific. Distilled and 

deionized water were used in the majority of the dealloying experiments. A water chiller 

from was used in the majority of dealloying experiments, but preliminary experiments were 

conducted in an ice bath kept in a walk-in refrigerator kept at 40°F.  

4.2.2 Film Deposition Parameters 

Alloy films of Si-Mg were deposited in a magnetron chamber (ORION system, 

AJA International, Inc.) from silicon and magnesium targets onto a single crystal silicon 

wafer and copper foils. Interlayers of Cr or Si were used to promote adhesion. The working 

pressure for deposition was 2.5 mtorr in an atmosphere of argon. The base pressure before 

deposition was less than 5 x 10-7 torr. Prior to deposition, a corona discharge was used to 

clean the substrates in an atmosphere of argon at a pressure of 25 mtorr. This was done by 

applying a substrate bias of 35 watts RF for 1.5 minutes. Afterwards, a 10 nm interlayer of 

either Si or Cr was used to promote adhesion between the substrate and film. Finally, the 

Si-Mg film was deposited using one of two deposition techniques: gradient or uniform 

composition.  
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4.2.3 Composition Gradient 

A common technique for determining the parting limit for a binary alloy system is 

to create a composition gradient such that the ratio of the two elements have small, but 

recognizable changes from one sample to the next [119, 120]. The substrate carrier in the 

sputtering machine has a diameter of about 3 inches that can used to create the composition 

gradient by co-sputtering from diametrically opposed targets. Substrates of silicon and 

copper were broken and aligned linearly across the substrate carrier, along the axis that 

bisects the silicon and magnesium targets. In this way, the precursor composition can be 

associated with a given microstructure after dealloying. The composition gradient that can 

be achieved across a diameter of 3 inches depends on a number of deposition parameters, 

the most important of which is the relative deposition rates between the two targets. The 

substrate dimensions of each sample that comprised the gradient had sufficiently small 

dimensions to ensure that the as-deposited composition remained relatively constant across 

each piece.  

4.2.4 Uniform Composition 

Once the parting limit has been obtained through the gradient composition 

experiments, films of uniform composition can be deposited. This is achieved by sputtering 

from targets that are not necessarily diametrically opposed onto a rotating substrate. The 

rotation compensates for any discrepancies in target placement such that a uniform film is 

grown. It is desirable to create films of uniform composition because they tend to dealloy 

more uniformly without cracking [119, 120].  
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4.2.5 Optimization 

Several attempts were made to reduce the dealloying rate and involved the use of a 

variety of solvents including: isopropyl alcohol, methanol, ethanol, distilled and deionized 

water. There was not a significant difference in microstructure between the distilled and 

deionized water, but the use of those solvents at reduced temperatures yielded the best bi-

continuous microstructures. However, sample yield was always quite low even though the 

experimental variables were kept constant from one experiment to the next. In order to 

increase sample yield, other attempts were made that involved purging the water with 

nitrogen, agitation of the dealloying solution, and changing the deposition parameters, but 

none of those techniques helped increase sample yield. 

4.2.6 Vacuum Annealing  

All vacuum annealing experiments were carried out in the sputtering chamber at 

base pressures below 5 x 10-7 torr. The samples were loaded on the backside of the substrate 

carrier, facing the quartz lamps the sit about 1 cm from the substrate carrier. Annealing was 

carried out at a temperature of 500°C for 2 hours and allowed to cool overnight. The heating 

rate was 10°C min-1.  

4.2.7 Free Corrosion Dealloying 

The preliminary attempts were guided by scientific principles and hypotheses for 

processing steps that would make the dealloyed films more reproducible, more uniform, 

and/or less oxidized. All samples in this study were dealloyed through free corrosion, 

without the use of a potentiostat. All samples were dealloyed in vials that could hold 

volumes up to 30 mL. The best method to produce nanoporous films with the characteristic 

bi-continuous structure was through a two-step process where the films were inserted into 
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vials that had been pre-heated to 50°C, leaving them there for about 30 minutes and then 

transferring the vials to the water chiller (Thermo Electron Corporation, Neslab RTE 7), 

kept at 0.5°C for the remainder of the dealloying time. Skipping the first step, would also 

yield nanoporous films with a bi-continuous structure, but seemed to have a lower sample 

yield. Our hypothesis is that putting the films in the 50°C water first allowed the samples 

to begin dealloying and once that process had started, it needed to be slowed down to 

prevent cracking and delamination. Typically, the total time for dealloying was between 

48 and 72 hours, which ensured that the film had been dealloyed throughout the thickness. 

Once dealloyed, the films appeared light yellow, black or dark gray to the naked eye.  

4.2.8 Characterization 

EDS measurements of as-deposited films were performed indide a Zeiss EVO MA 

10 equipped with a Bruker EDS, while EDS mapping was performed inside a FEI Quanta 

250 FEG equipped with an Oxford EDS system. Chemical mapping through the film 

thickness (using a liftout lamella) was acquired over a period of 2 hours, with drift 

correction settings applied such that counts were maximixed from the EDS detector for the 

thin sample. Scanning electron microscope (SEM) images were taken with a Hitachi S-

4300 cold-cathode field emission microscope and a FEI Helios Nanolab 660 field emission 

microscope. Sample preparation for transmission electron microscopy (TEM) was 

performed inside a focused ion beam-scanning electron microscope (FIB-SEM, FEI Helios 

Nanolab 660) using a Ga+ ion source for milling. Information about the crystal structure 

was obtained through the use of a JEOL 2010F TEM. Surface analysis was carried out 

inside a Thermo Scientific K-Alpha x-ray photoelectron spectrometer (XPS), which 

utilized a monochromatic Al-Kα x-ray source with a spot size of 400 μm. In addition to 
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using an electron flood gun during XPS analysis to prevent charging, all spectra were 

calibrated to the known value of 285 eV for adventitious carbon. All XPS spectra were fit 

with mixed Gaussian-Lorentzian curve fitting software. X-ray diffraction (XRD) 

experiments were performed with a Siemens D500 Krystalloflex Diffractometer. Samples 

were scanned from 20° to 80° (2θ) in 0.01° steps at 0.5° min-1. 

4.3 Results and Discussion  

4.3.1 Preliminary Attempts to Create Nanoporous Silicon  

As mentioned previously, it is desirable to fabricate nanoporous silicon nominally 

1 μm to understand the mechanical behavior via nanoindentation to avoid the substrate 

effect. Attempts at dealloying Si-Mg precursor material approximately 500 nm thick, under 

the same conditions that yielded nanoporous silicon for films that were less than 200 nm 

thick, failed. The thicker films appeared to suffer from severe cracking and delamination, 

which is characteristic of an etching process that occurs too rapidly [121].  A simple method 

to slow down the rate at which the reaction takes place is to lower the temperature, as the 

dissolution rate given in Equation 2.3 depends on temperature. The first attempts to slow 

down dealloying were performed in an ice bath. Gradient samples after dealloying that 

were 500 nm thick are shown in Figure 4.1. Table 4.1 shows that the parting limit range 

for this system is between 46 and 61 at. % Si, which differs slightly from the observations 

by Jiang et al [34]. Nevertheless, using water near its freezing point seems to work very 

well at producing nanoporosity without cracking and delamination. This is presumably 

because the dissolution of the magnesium was occurring too fast at temperatures of 50°C 

and reducing the temperature is a simple method to slow down the reaction. These results 

appear promising for scaling up to 1 μm thick films.  
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Figure 4.1 As-dealloyed 500nm gradient samples of nanoporous Si dealloyed using 
an ice bath. a) is sample 2, b) is sample 3 and c) is sample 4.   

Table 4.1 The chemical composition of the 500 nm Si-Mg film before and after 
dealloying, obtained with EDS on the Zeiss.  

 As-deposited As-dealloyed 

Si (at. %) Mg (at. %) Si (at. %) Mg (at. %) 

Sample 2 61 49 84 16 

Sample 3 48 52 93 7 

Sample 4 46 54 98 2 

 

 A gradient of one micron thickness was sputtered in a similar manner as the 500 

nm thick gradient, except the deposition time was increased. The films were then dealloyed 

in an ice bath and the resulting microstructures are displayed in Figure 4.2. The precursor 

compositions for the one micron gradient films are displayed in Table 4.2. It was interesting 

that the films deposited on the copper foils did not dealloy, like the films that were only 

500 nm thick. This made it difficult to obtain as-dealloyed compositions. This is because 
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the nanoporous silicon films were supported by silicon substrates and EDS cannot 

distinguish between a silicon film and a silicon substrate. It appears that the film with the 

best bi-continuous structure was sample 5, which had a parting limit of approximately 54 

at.% silicon.   
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Figure 4.2 As-dealloyed gradient planar-view images of the 1 μm thick films. a) is 
sample 5, b) is sample 6, c) is sample 7 and d) is sample 8 for composition reference in 
Table 4.2. It would appear the sample 5 exhibits the best bi-continuous structure of all the 
films.  
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Table 4.2 The chemical composition of the 1 μm thick precursor films. The optimum 
parting limit for the Si-Mg system appear to be 54 at.% silicon, corresponding to sample 
5. 

 As-deposited 

Si (at.%) Mg (at.%) 

Sample 5 54 46 

Sample 6 52 48 

Sample 7 50 50 

Sample 8 46 54 

 

The results obtained by simply cooling the water were promising, and exhibited a 

desirable microstructure. The next logical step in this process would have been to begin 

making uniform composition films of Si-Mg, based on the parting limit studies performed 

on the gradient films, and dealloying them. Since reasonably good results were obtained 

quickly by simply decreasing the temperature of the dealloying water, it was decided to 

explore other avenues for dealloying the Si-Mg system to see what structures could be 

obtained. The other avenues for dealloying included dealloying in methanol, isopropanol, 

and ethanol in various concentrations. The logic in choosing these solvents stemmed 

partially from their previous use to create porous silicon through HF etching [19]. In that 

process, the alcohol was used as a wetting agent to promote pore infiltration of HF etchant. 

Beyond that, the freezing point of those alcohols are less than that of water, which could 

be used to lower the freezing point of a water-alcohol solution such that the dealloying 

process could take place at temperatures lower than 0°C. The most remarkable results from 
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this study are outlined in Figure 4.3, with an outline of the dealloying conditions in Table 

4.3.  

A natural starting point for dealloying in alcohol, was to use similar dealloying 

conditions discovered to work well when dealloying in water. Tests 1-4 in Table 4.3 were 

performed in accordance with the procedure developed for dealloying in water, but did not 

yield a color change in the sample surface – a common indicator to determine if dealloying 

had taken place. Tests 5 and 6 exhibited some color change on the samples with low 

precursor compositions of Si. The films in tests 7-9 exhibited slight color changes. Upon 

further inspection, it appeared that there was a needle-like surface layer that lifted off after 

a quick rinse in vinegar. The films appeared totally black afterwards. We presume the 

surface layer was Mg(OH)2, but cannot be sure. Further analysis with XPS would be 

required. The structures shown in Figure 4.3 are those that were underneath the surface 

layer. Regardless of the type of alcohol, all structures resembled plates, rather than the bi-

continuous structure produced from dealloying in water. The plate-like structures were 

very good visible light absorbers. It was surprising how black the films were after the 

vinegar rinse. This may be a good indicator of the applications of these films in solar cell 

technology where silicon is typically used in the conversion of photon energy to electrical 

energy. It should be noted that all the films in the alcohol dealloying study were gradient 

films, and that the films that produced the best results in tests 7-9 were from the same 

deposition.  
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Table 4.3 A summary of alcohol dealloying conditions. 

Test Identifier 

(#) 

Gradient 

Composition 

(at. % Si) 

Dealloying 

Solution 

(vol.%) 

Dealloying 

Time (hrs) 

Dealloying 

Temperature 

(°C) 

1 51-60 Ethanol (100) 48 50 for 30 min, 

then 0.5. 

2 51-60 Isopropanol 

(100) 

48 50 for 30 min, 

then 0.5. 

3 51-60 Isopropanol 

(50) 

48 0.5 

4 42-61 Ethanol (50) 48 0.5 

5 42-61 Isopropanol 

(50) 

24 23 

6 42-61 Ethanol (50) 24 23 

7 36 Isopropanol 

(50) 

24 23 

8 36 Ethanol (50) 24 23 

9 36 Methanol (50) 24 23 
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Figure 4.3 A representation of the best structures obtained in the alcohol dealloying 
study. All the films have a similar plate-like structure. a) and b) correspond to test 7, c) 
and d) to test 8, and e) and f) to test 9 in Table 4.3. 

4.3.2 Preliminary Attempts to Create Nanoporous Silicon Micro-Pillars 

The testing of small volumes of materials is desirable in instances where bulk 

testing is not possible because of processing limitations or because of material 

inhomogeneity that exists on a very small scale. Probing such small volumes to obtain 

mechanical information can be a challenging endeavor. Nanoindentation is a technique that 
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has been developed and improved immensely in recent years such that it can achieve sub-

nanometer displacement resolution and nano-Newton force resolution [122].  Micro-pillar 

compression testing is another form of mechanical testing that can be used to investigate 

the mechanical behavior of small volumes of materials that are difficult to manufacture on 

a bulk scale, with the added advantage that one can observe deformation mechanisms with 

in-situ electron microscopy [123]. The fabrication of micro-pillars can be challenging and 

there are many geometrical aspects that must be taken into account in the creation of micro-

pillars including: fillet radius and aspect ratio that can significantly influence the results 

[124].  

At the outset, we considered milling a pillar out of material that had already been 

dealloyed. The preliminary results in Figure 4.4 give an overview of how the nanoporous 

structure reacted with the Ga+ ion beam. Figure 4.4 a) shows the as-dealloyed nanoporous 

structure before ion bombardment and Figure 4.4 b) shows coarsening of the nanoporous 

ligaments with mild exposure to the ion beam. After near complete removal of the 

nanoporous material, as shown in Figure 4.4 c) and Figure 4.4 d) there is a significant 

amount of material redeposition that has occurred at the interface between the milled and 

non-milled areas. Since we were trying to fabricate micro-pillars with a diameter on the 

order of 500 nm, if there is a significant amount of material redoposition, it will influence 

the mechanical behavior in ways that are not representative of the true material behavior.  
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Figure 4.4 This image shows the effect of milling a nanoporous structure with a 
Ga+ ion beam. a) represents the as-dealloyed structure. b) shows coarsening of the 
ligaments after a brief ion etch. c) shows significant coarsening of the nanoporous 
structure and the formation of a thick recast layer after ion milling. d) is the same image 
as shown in c) except viewed at 30° from plane normal.  

Since the nanoporous silicon could not be milled without significant damage to the 

surrounding nanoporous structure, attempts were made to mill out the pillars and trenches 

apriori to avoid any redeposition that could influence the mechanical behavior. The 

trenches were made because these were intended to be compressed in-situ with a TEM to 

observe deformation mechanisms. Figure 4.5 a) shows the final dealloyed material that was 

obtained only after the milling steps. Carbon paint has apparently adhered to the lower half 

of the silicon wafer and covered some of the regions of interest after attaching the sample 

to the TEM specimen holder. The red squares in Figure 4.5 a) are representative of the 

areas depicted at higher magnifications in b), c) and d). In Figure 4.5 b), it is evident that 
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very little dealloying occurred near the regions that were ion milled. This is presumably 

the result of Ga+ implantation in the surrounding areas that has impeded the dealloying 

process. Figure 4.5 c) shows a dealloyed region away from the ion milled areas and 

corresponding to the brighter areas near the middle of the film. The darker areas are 

undealloyed. Finally, Figure 4.5 d) shows a representative undealloyed micro-pillar that 

was also affected by the Ga+ implantation. As a result, nanoporous silicon films were 

created on large planar surfaces and subsequently tested via nanoindentation.  

 

Figure 4.5 a) The as-deposited Si-Mg precursor film that was deposited on the edge 
of a silicon wafer, milled with the FIB and then dealloyed. The red squares and indicators 
show the regions where b), c) and d) were taken from the dealloyed film. b) shows that the 
film was not dealloyed near Ga+ milled regions. c) corresponds to the bright regions in a) 
that were further from the Ga+ milled regions that did dealloy. Finally, d) shows a 
representative micro-pillar that did not dealloy.  
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4.3.3 Identification of Parting Limit Range for Dealloying in Water 

The gradient used in the alcohol dealloying study (shown in Figure 4.3) was 

sputtered under the same conditions as the gradient used for dealloying in water (shown in 

Figure 4.6) for comparison. The water dealloying results pictured in Figure 4.6 were 

obtained in a more controlled manner through the use of a water chiller that kept the water 

at exactly 0.5°C. EDS was performed on the precursor samples and verified that the parting 

limit range is between 51 and 54 at% Si (see Figure 4.6 c) and Figure 4.6 d) ). Below 51 

at.% Si significant cracking and delamination occurs, as is expected when the relative rate 

of Mg dissolution to Si adatom surface diffusion is too high. Above 54 at% Si (see Figure 

4.6 a) and Figure 4.6 b) ) dealloying occurs locally at the surface, but slows to an eventual 

halt as Si adatom surface diffusion forms a passivating layer to prevent further Mg 

dissolution. This is shown in Figure 4.6 b), where the dealloyed film meets the undealloyed 

film. Figure 4.6 e) and Figure 4.6 f) shown signs of cracking and delamination of the film 

from the substrate, as is common in the preparation of gradient films [120]. The gradient 

sample that exhibited the best bi-continuous structure is pictured in Figure 4.6 d), which 

was then used as a guide to create uniform composition samples for dealloying.     
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Figure 4.6 Gradient samples of Si-Mg were dealloyed in distilled water. The SEM 
micrographs represents the dealloyed structures that correspond to precursor 
compositions spanning a range between 51-58 at.% Si, and were used as a guide to 
determine the optimum parting limit for dealloying this metal-semiconductor alloy system. 
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a) Precursor composition was 58 at.% Si and upon water immersion there was little or no 
observable corrosion. b) Precursor composition was 56 at.% Si and dealloying appeared 
to occur locally at the surface but quickly halted due to Si passivation. c) Precursor 
composition was 54 at.% Si and dealloying appears to have penetrated to the substrate, 
but still shows signs of undealloyed regions. d) Precursor composition was 51 at.% Si and 
the film is fully dealloyed, exhibiting open porosity and fully bi-continuous network of 
ligaments and pores. e) A planar-view image of the film shown in c) that displays signs of 
cracking a partial delamination. f) A magnified image of the boxed area in e) to show the 
microstructure of the underlying film as well as a barren region where the film was 
completely delaminated [125].  

4.3.4 Hierarchal Ligament Structure 

Films of uniform composition were deposited using the parting limit range obtained 

with the gradient film deposition. Planar-view and cross-section micrographs of the 

nanoporous film after dealloying are shown in Figure 4.7. It was interesting to observe that 

most of the dealloyed films had an intermittent surface layer that obscured the underlying 

nanoporous film, shown in Figure 4.7 b). The surface layer had a characteristic thickness 

less than 100 nm and appeared to be slightly porous. The nanoporous film was not 

completely obscured, as shown in the planar-view image in Figure 4.7 a). The structure 

displays large, open porosity with a hierarchal ligament structure. ImageJ software was 

used to measure the ligaments and it became apparent that there were two ligament classes 

present, with one having an average diameter of 83 ± 18 nm and the other 19 ± 5 nm. There 

were sixty ligaments measured in total with the distribution split between the two ligament 

classes.  

The cross-section image shown in Figure 4.7 c), reveals that the structure of the 

nanoporous film is inhomogeneous. There is a dense layer present at the surface that 

sharply transitions to large, open porosity with a hierarchal ligament size that extends to at 

least half the film thickness and gradually becomes denser when approaching the silicon 

substrate (shown by the inset in Figure 4.7 c). There did not appear to be a significant 
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difference in the dealloyed structure, regardless of the presence or absence or the surface 

layer. A surface layer has been observed to occur in other dealloyed systems, but could not 

be sufficiently explained [126]. In the work by Pd-Ni sytem, the surface layer was observed 

to peel off with extended dealloying.  

The authors observed the film thickness to contract by a large margin during the 

dealloying process, by comparing the precursor film thickness to the as-dealloyed film 

thickness. This phenomenon has been documented in the dealloying of other material 

systems and is quite commonplace [33, 112, 127]. The nanoporous Si-Mg film contracted 

by approximately 31%, which resulted in a final thickness of 1070 nm after dealloying. In 

other material system where the film contracted by similar margins, a large amount of 

cracking was observed [112]. The nanoporous Si-Mg films showed no signs of cracking 

after dealloying, which stands as a testament to the materials ability to withstand large 

strains without catastrophic failure. This implies that the material could be a good candidate 

in lithium-ion battery applications where resilience to large strains is paramount.   

Materials that exhibit a hierarchal structure can be created using numerous methods 

that involve dealloying [23, 27, 128]. The mechanism that creates the different classes of 

ligaments is best described as local heterogeneities that exist throughout the material that 

have different local dissolution and surface adatom diffusion kinetics [23, 27, 128]. Song 

et al. describe this process in the dealloying of a two-phase Cu-Al alloy, where the two 

phases behave differently to the chemical etchant [27]. The work by Detsi et al. use a 

complex dealloying-plating-annealing-dealloying approach to create multimodal 

nanoporous Au [23]. In both examples, the mechanism leading to the hierarchal structure 

is the result of different dealloying behavior of local heterogeneities. Here, the authors 
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present a facile method that employs magnetron sputtering-dealloying of a Si-Mg film to 

create a hierarchal structure.   

 

Figure 4.7 SEM micrographs of the uniform composition films dealloyed in distilled 
water. a) Depicts the bimodal nature of the nanoporous film underneath the b) surface 
layer that partially obscures the film. A cleaved cross-section is shown in c) of the as-
dealloyed film, showing the inhomogeneity’s that exist throughout the film thickness. The 
inset shows a higher magnification image of the structure nearer the substrate, where the 
porosity is much denser [125].   
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4.3.5 Precursor Film Structure 

It is instructive to look to the binary phase diagram of the Si-Mg system – shown 

in  Figure 4.8 - to determine the phases one might expect to be present in the film at the 

composition of interest, Mg47Si53 [129]. At that composition, one might expect to observe 

Mg2Si with the fluorite structure and diamond cubic silicon (dc-Si). However, magnetron 

sputtering is a non-equilibrium process that does not necessarily crystallize in a manner 

one might expect based on equilibrium conditions. Indeed, XRD scans of the precursor 

film do not show that either dc-Si or Mg2Si exist.  

 

Figure 4.8 The Si-Mg phase diagram (Reproduced from [129] with permission 
from Springer Nature).  

An XRD scan of the precursor film is observed in Figure 4.9. The large bump at 

approximately 23° is characteristic of an amorphous structure, which can only be explained 
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as the film structure. There do not appear to be any other remarkable features that can be 

attributed to the film. While the film appears to be largely amorphous, it is entirely possible 

– and even likely – that local heterogeneities that exist throughout the film thickness [130]. 

We are of the opinion that these are likely local concentrations of magnesium. This type of 

phase separation would provide a mechanism to explain the hierarchal structure of the films 

described previously. However, it would require a carefully prepared TEM specimen to 

observe the true nature of the as-deposited film throughout the thickness. The other peaks 

in the XRD scan at 69° and ≈ 33° are from the silicon substrate upon which the Si-Mg film 

was deposited. The small bump at 69° is commonly observed in diffraction experiments 

involving (001)-oriented Si wafers and represents diffraction from the (004) planes of the 

wafer. The broad bump at 33°, which was unexpected, can be explained by the forbidden 

reflection from the (002) planes of the Si wafer. This is a documented phenomenon that 

can sometimes occur and known as Umweganregung [131].  
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Figure 4.9 This is an XRD scan of the precursor Si-Mg film before dealloying. It 
was deposited on a (001)-oriented single crystal silicon wafer. The precursor appears to 
be amorphous (a-SiMg) [125].  

4.3.6 Surface Analysis 

XPS analysis was performed on films with and without the surface layer, to 

investigate the composition and bonding state of the elements in the near-surface region of 

the respective films; the results are summarized in Figure 4.10. The film that was topped 

by a thin surface layer appears to be composed of a sub-oxide of silicon along with 

magnesium oxide in the following stoichiometry: SiOx (x ≤ 2) and MgO, as deduced from 

the binding energy and shape of the peaks observed at 102.8 eV and 1303.7 eV, 

respectively [132-134]. In contrast, the film without the surface layer contained elemental 

silicon (labeled “Si” in Figure 4.10 d) and corresponding to the elemental Si-Si peak 

identified by the XPS software and consistent with the NIST database of XPS peak 

energies) in addition to SiOx (x ≤ 2) and MgO, as determined by the peaks at binding 

energies of 99.1 eV, 102.6 eV, and 1304.0 eV, respectively [132-134]. It is noted that the 

peak in Figure 4.3 with label “SiOx” corresponds to Si that has been oxidized, and again is 
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consistent with the NIST database of XPS peak energies for various oxides of Si. The 

relative peak areas from the XPS scans were used to determine the chemical composition 

of the films, as depicted in Table 4.4. The film with the surface layer appears to have no 

elemental Si at the surface, and it has more retained Mg in the form of MgO.  

 

Figure 4.10 A surface analysis of the as-dealloyed films using XPS. Scans 
corresponding to the binding energy of Mg 1s and Si 2p were observed. Scans a) and b) 
are from the sample with a surface layer, while scans c) and d) are of the sample without 
the surface layer. The sample with the surface layer is observed to be composed primarily 
of oxides, where the sample without a surface layer shows some amount of elemental 
silicon [125].  
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Table 4.4 Relative amounts of each phase in the surface layer of np-Si samples, as 
determined from the integrated area under each corresponding peak of the XPS scans in 
Figure 4.10 [125].  

Np-Si Film Type SiOx (at%) Si (at%) MgO (at%) 

With surface layer 59.4 0 40.6 

Without surface layer 56.9 15.6 27.5 

 

4.3.7 TEM Investigation of Film Structure and Composition 

Electron-transparent samples for TEM investigation were carefully prepared in the 

Helios FIB-SEM using focused ion beam milling. Two lamellae were prepared in this 

manner. The first was an as-dealloyed film that had no surface layer and the second was a 

vacuum annealed specimen that included the surface layer. The high-resolution TEM 

image in Figure 4.11 a) shows a ligament of silicon where Pt nanocrystals were deposited 

during the liftout process, resulting in decoration of the amorphous silicon ligament. 

Selected area electron diffraction (SAED) of the as-dealloyed sample, depicted in Figure 

4.11 b), revealed diffuse scattering indicative of an amorphous matrix along with a number 

of faint diffraction spots attributed to fcc-Pt (these diffraction spots are, therefore, artifacts 

arising from the lamella preparation process, and are not inherent to np-Si). The lattice 

fringes in Figure 4.11 a correspond to the (111) planes of fcc-Pt. ImageJ was used to 

determine the fringe spacing by using the line profile function, which plots pixel grayscale 

along the length of the ling and allows measurement of the spacing of lattice fringes. Ten 

consecutive fringes were measured and averaged for the best results, confirming the 

observation of (111) planes in fcc-Pt.  
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SAED of the annealed sample was performed in the upper film region, as well as 

near the substrate, to investigate differences manifested through the thickness of the film. 

The high-resolution TEM image in Figure 4.11 c) along with the SAED pattern in Figure 

4.11 d) was acquired near the substrate. The ligament in Figure 4.11 c) shows Si 

nanocrystals that formed during annealing, with an inset of the (111) lattice fringes for dc-

Si. These fringes were measured with ImageJ in the same manner mentioned previously. 

Figure 4.11 c) and Figure 4.11 d) reveal that annealing had partially crystalized the sample, 

forming nanocrystalline dc-Si, with no appreciable amount of Mg present near the 

substrate. The bright field image in Figure 4.11 e) shows the area near the substrate where 

the high-resolution TEM image in Figure 4.11 c) was taken. Figure 4.11 f), which does not 

have a corresponding TEM image, indicates that both crystalline Si and MgO are present 

near the mid-height of the film.  
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Figure 4.11 TEM micrographs a, c, e) and selected area electron diffraction 
patterns b, d, f) of both as-dealloyed and dealloyed/vacuum-annealed samples were 
obtained to investigate structural changes during processing. a) and b) show the 
amorphous nature of the as-dealloyed films. c-f) correspond to the vacuum annealed 
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counterpart. c-e) were obtained at a location near the substrate, while f) was recorded at 
the mid-height of the film [125].  

The EDS mapping results from Figure 4.12, which are later quantified in Figure 

4.13 corroborate this result by showing that no appreciable amount of Mg is detected within 

200 nm of the substrate. This makes sense because the smallest available TEM aperture 

corresponds to a sample region of ≈ 100 nm diameter, which is small enough to obtain a 

diffraction pattern near the substrate, from np-Si with no detectable level of Mg. The 

general area described in the current paper as the “upper film region” applies to those 

regions at least 200 nm above the substrate. The electron diffraction results in Figure 4.11 

f) (from the mid-height of the film, or upper film region) support the XPS results, which 

indicate that the surface is composed of MgO and elemental Si. The diffuse scattering 

observed in TEM diffraction mode is most likely the result of an amorphous sub-oxide of 

silicon convoluted with amorphous elemental Si and Mg. The presence of diffraction rings 

from MgO in Figure 4.11 f) corroborates the results from EDS mapping, which show that 

Mg is retained in the upper region of the film (see Figure 4.12). However, it is likely that 

some of the residual Mg acts as a dopant in the silicon matrix. Doping the silicon in this 

manner actually makes it a suitable candidate for lithium-ion battery application by 

providing an electron conducting pathway [28-30]. Moreover, the amorphous nature of the 

as-dealloyed material makes it more attractive for lithium-ion battery applications due to 

the enhanced cycling behavior reported in the literature [115-118].  
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Figure 4.12 EDS chemical maps indicating qualitative distribution of various 
elements through the film thickness. More Mg is retained in the bulk of the film and near 
the surface, but not near the substrate. Pt is also observed to penetrate into the sample, as 
a result of the liftout process used for preparation of the TEM sample (a protective pad of 
Pt was used here) [125].  
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Figure 4.13 Quantitative EDS analysis was performed at discrete intervals through 
the film thickness, corresponding to markers on the EDS map in Figure 4.12. This provides 
a quantitative measure of composition variation through the film thickness. The values 
toward the right of this plot should match the XPS compositional analysis in Table 4.4, if 
the film composition is the same from 700 nm to the surface of the film. The EDS and XPS 
values do indeed match, which would be expected since the same sample (with no surface 
layer) was analyzed using both techniques [125].  

4.3.8 Discussion of Corrosion Behavior 

The surface analysis results described above appear, initially, to be in stark contrast 

to the work done by Taheri et al., where an ingot of Mg was corroded in water through the 

use of an electrochemical cell [135]. They report the formation of a layered structure 

consisting of a thin MgO-rich inner layer topped with a Mg(OH)2-rich outer layer. 

Interestingly, the surface layer produced by the films in the present study has a thickness 

(≈ 100 nm) similar to that observed by Taheri and coworkers. Additionally, the MgO-rich 

inner layer produced in the electrochemical cell is noticeably more porous than the exterior 

Mg(OH)2, which appears to corroborate the results in the present study. It is curious, 

however, that Mg(OH)2 is not present in any appreciably amount in the present study. 

Based on the Pourbaix diagram, one would expect the overall corrosion reaction of 

magnesium with water to be [136]:  
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Equation 4.1 Magnesium-water corrosion reaction.  

𝑀𝑀𝑀𝑀 + 2𝐻𝐻2𝑂𝑂 → 𝑀𝑀𝑀𝑀(𝑂𝑂𝐻𝐻)2 + 𝐻𝐻2 

Equation 4.2 Magnesium-water partial reaction 1. 

𝑀𝑀𝑀𝑀 → 𝑀𝑀𝑀𝑀2+ + 2𝑒𝑒− 

Equation 4.3 Magnesium-water partial reaction 2. 

2𝐻𝐻2𝑂𝑂 + 2𝑒𝑒−  → 𝐻𝐻2 + 2(𝑂𝑂𝐻𝐻)− 

Equation 4.4 Magnesium-water partial reaction 3.  

𝑀𝑀𝑀𝑀2+ + 2(𝑂𝑂𝐻𝐻)−  → 𝑀𝑀𝑀𝑀(𝑂𝑂𝐻𝐻)2 

The authors are of the opinion that Mg(OH)2 never forms. In other words, the local 

pH at the solid-electrolyte interface never reaches equilibrium pH for the formation of 

Mg(OH)2 to occur, which corresponds to a local pH of approximately 11 [133, 135, 136]. 

Also, it is unlikely that Mg(OH)2 forms and then decomposes in MgO and H2O, because 

the free energy change corresponding to this decomposition is too great [136]. 

Additionally, Mg(OH)2 is generally regarded as a more passivating layer than MgO [136]. 

As a result, dealloying would be unlikely to continue in the presence of such a passivating 

layer. The structure of Mg(OH)2 tends to exhibit a platelet-like morphology, but this was 

not observed on the film surface [135]. The XPS and TEM data, along with plan-view SEM 

images, all support the claim that there is no appreciable amount of Mg(OH)2 in the 

dealloyed films.  

It is also worth noting that the structure displayed in the gradient films (Figure 4.6) 

appears to be more structurally homogeneous than is observed in the non-gradient film in 

Figure 4.7. This is interesting because non-gradient films typically retain the nanoporous 
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structure evidenced in the gradient sample, without cracking and delamination that are 

omnipresent in gradient films [120]. A possible explanation for this anomalous behavior 

could involve the existence of regions, where Mg dissolution is limited in the non-gradient 

film. The genesis of these regions in the non-gradient film likely originates from the small 

parting limit range characteristic of this semiconductor-metal alloy system, combined with 

the absence of cracks and delaminated regions. Since the parting limit range for this alloy 

system spans only a few atomic percent, it suggests that small perturbations in composition 

could affect the dealloying behavior of the film. In this case, the perturbations may result 

in cracking and partial delamination of the gradient films. Since the dealloyed non-gradient 

film does not crack or delaminate, this leads to regions of limited Mg dissolution that 

slightly alter the structure from what is observed in the as-dealloyed gradient films.  

4.4 Conclusions  

Precursor films of Si-Mg with a composition between 51 and 54 at% Si were 

dealloyed via free corrosion in distilled water to produce crack-free, bimodal np-Si films 

with retained Mg. Nominally, these films contact by 31% during dealloying, with a final 

thickness of approximately 1 μm and with a hierarchal structure of ligament sizes; the 

larger ligaments have an average width of 83 nm and the smaller ligaments have an average 

width of 19 nm. TEM of the as-dealloyed np-Si shows it to be amorphous, but the ligaments 

readily form nanocrystals of Si and MgO (embedded in an amorphous matrix) during 

vacuum annealing. EDS mapping combined with XPS surface analysis revealed three 

distinct chemical composition regions in the non-gradient film, where the Mg content 

generally increases through the film thickness (with increasing thickness from the 

substrate). XPS surface analysis combined with TEM revealed that the films with a denser 
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surface layer contained the most residual Mg in the form of MgO, with no appreciable 

amount of Mg(OH)2. The bimodal nature of these films combined with the amorphous 

structure make np-Si an attractive materials for lithium-ion battery applications. The 

different classes of ligaments can be used to promote mass-transport and heighten activity, 

while the amorpous nature and small size act to fortify the structural integrity of the 

ligaments against Li cycling. Moreover, the residual Mg concentration in the films would 

likely promote pathways for electron conduction, while the simple dealloying technique 

and non-hazardous waste make this an attractive process for scalable production.  

While the majority of the characterization in this effort was devoted to the Si-Mg 

precursor samples dealloyed in distilled water, the gradient samples dealloyed in alcohol 

solutions were equally interesting. The original motivation for using alcohol-water solvents 

was because of the wetting properties of alcohol and it’s low freezing point. The structure 

obtained with the alcohol was not the desired bi-continuous morphology, but rather plate-

like. Using concentrations of alcohol of about 50 volume percent water and dealloyed at 

room temperature, followed by a vinegar rinse appeared to yield the darkest films. This is 

a facile technique to create black silicon that could easily be scaled for mass production 

and used in the harvest of solar energy.  
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5 Investigating the Mechanical Behavior of Bimodal Nanoporous 

Si-Mg 

5.1 Introduction 

Nanoindentation is an efficient method for probing small volumes of material, with 

dimensions on the order of 1 μm, to obtain mechanical properties that can inform 

engineering applications [35-37]. Since the inception of the first commercially available 

indentation apparatus in the 1980’s, progress has been rapid and the technique has evolved 

significantly, with one of the most notable milestones being the advent of the continuous 

stiffness measurement (CSM) technique and the additional changes that stem from it [37, 

39]. The continuous improvement that has been sustained over these past few decades has 

largely been the result of experimental research on materials that are well-behaved elastic-

plastic solids, as is the case for fused silica, for example. Nevertheless, thin, porous 

materials that exhibit time-dependence are among the most challenging materials to 

characterize with nanoindentation, but strategically modifying indentation techniques and 

careful interpretation of data can be used to extract pertinent mechanical information [37, 

54, 55, 57, 58, 60, 137-139].  

The motivation for this study comes from a combination of preliminary data 

observed by Jiang et al. and from lithium-ion battery research [34, 108, 116, 140-142]. 

While silicon is an attractive anode material for lithium-ion batteries due to its high charge 

capacity, it also suffers from cracking and pulverization during cycling [108]. By 

increasing the surface-area-to-volume ratio, it is possible for silicon to undergo a brittle-

to-ductile transition [1]. Creating nanoporous silicon (np Si) is an effective method to 
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increase the surface-area-to-volume ratio and may mitigate brittle failure. Jiang et al. 

performed in situ nanoindentation of np Si films ~100 nm thickness in the transmission 

electron microscope These films were produced in a similar manner to those made by 

Maxwell et al., which are the subject of the current study [34, 119]. The results from Jiang 

et al. indicate that np-Si can recover large deformations after indentation, but that study 

was performed on films that are too thin to be accurately characterized with 

nanoindentation. As such, the thicker nanoporous silicon-magnesium (np Si-Mg) films 

produced by Maxwell et al. are better suited to nanoindentation [119]. In the current study, 

a modified CSM technique was used to investigate the damping characteristics of np Si-

Mg films in the frequency domain via phase angle measurements [54, 57]. These results 

were interpreted alongside data collected in the time domain, to facilitate modeling the 

deformation behavior of np Si-Mg films. 

5.2 Experimental  

5.2.1 Film Fabrication  

The films indented in this study were deposited with a magnetron sputtering 

deposition system (ORION system, AJA International, Inc.) from targets of silicon 

(99.999% purity) and magnesium (99.95% purity) in an argon atmosphere with a pressure 

of 2.5 mtorr. The base pressure of the system before deposition was less than 5x10-7 torr. 

Before deposition, the single crystal (001)-oriented silicon substrate (Virginia 

Semiconductor) was cleaned by applying a substrate bias (35 W) in an argon atmosphere 

with a pressure of 25 mtorr, followed by the deposition of a 10 nm thick silicon interlayer 

to promote adhesion. The interlayer was deposited in an argon atmosphere at a pressure of 

2.5 mtorr.  
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5.2.2 Free Corrosion Dealloying 

The samples indented in this study were dealloyed in 30 mL vials filled with 

distilled water that were pre-heated to 50°C. The samples were kept in the 50°C water for 

30 minutes and then transferred to a water chiller kept at 0.5°C for the remainder of the 

dealloying time. The total time required for dealloying throughout the film thickness was 

between 48 and 72 hours.  

5.2.3 Vacuum Annealing  

The heat-treated samples were vacuum annealed at 500°C for 2 hours and let cool 

overnight in the vacuum chamber. The base pressure of the system prior to annealing was 

less than 5x10-7 torr and the heating rate was 10°Cmin-1. The vacuum annealing was 

performed inside the magnetron sputtering chamber with dual quartz lamps positioned 

approximately 1 cm above the substrate carrier.  

5.2.4 Sample Preparation 

The indentation apparatus used was equipped with an iMicro load frame and an 

iNano actuator (Nanomechanics) because of the large stiffness associated with the load 

frame and sensitivity of the actuator. Standard samples of PMMA (polymethyl 

methacrylate, cut to size: 14.5 x 14.5 x 6.1 mm, McMaster Carr) and fused silica (standard 

reference block: 12.9 x 12.9 x 3.5 mm, Nanomechanics) were used to show the reference 

calibration for the phase angle was correct and that the measured dynamic response was 

dominated by the specimen. The fused silica arrived attached to an aluminum puck, but the 

PMMA and other samples were mounted with a thin layer of Crystal Bond (SPI Spullies). 

The samples were carefully pressed to ensure excess air and adhesive was removed before 

completely dry. The diamond Berkovich (Microstar Tech) tip area function was calibrated 
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on the fused silica sample [39]. Indentation experiments contained a minimum of sixteen 

indents in a 4 x 4 array where the distance between adjacent indents was at least 30 times 

the maximum indentation depth.  

5.2.5 Nanoindentation Testing 

Nanoporous samples with a thickness of 1 μm were created to safely ignore the 

substrate effect when indenting up to 10% of the film thickness (100 nm), when using the 

Berkovich tip [46, 50]. A modified CSM technique is used in this study where the indenter 

is held at a prescribed load after reaching a depth of 80 nm. A hold period of 60 seconds 

was used to allow the sample’s response to the dynamic oscillation of 2 nm to reach steady-

state. The best metric to determine the measured phase angle accuracy is it’s stability over 

time, which is why this hold period was chosen. However, only data from the last 5 seconds 

were averaged. It should be noted that the data collected in Figure 5.1 were obtained at 

indentation depths of approximately 2400 and 600 nm for PMMA and fused silica, 

respectively. The hold period occurred at such a large depth for PMMA because it is well 

known that a processing effect near the surface can give rise to an overestimated phase 

angle value at depths less than approximately 1500 nm [57]. The authors are aware that 

instrument effects are likely exacerbated at small contact areas, but the system used in this 

study utilizes state-of-the-art electronics designed to test materials at low loads/depths. 

Moreover, every effort to work within the constraints of the thin, porous, time-dependent 

materials being tested were carefully considered.  
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5.3 Results and Discussion  

5.3.1 Proof of Concept 

The modified CSM technique used here was first described by Herbert et al., and 

leverages the ability to achieve steady-state harmonic motion – a necessary condition to 

accurately determine specimen damping [57]. Additionally, the specimen must dominate 

the measured phase angle response. This condition exists when Equation 5.1 and Equation 

5.2 are satisfied. Finally, measurements to correct the reference phase angle are established 

using Equation 5.3 - Equation 5.5, to account for shifts in the displacement electronics [57, 

58]. The close agreement between measured and corrected phase angle values of well-

known materials (polymethyl methacrylate, PMMA; and fused silica) were interpreted as 

corroboration of experimental accuracy. 
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Equation 5.1 Inequality showing that the specimen dominates the measured phase 
angle response, not the actuator [57]. 

𝐾𝐾𝑐𝑐𝑑𝑑 ≫ 𝐾𝐾𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 

Equation 5.2 Inequality showing that the damping of the load frame is insignificant 
compared to that of the specimen [57].  

𝛿𝛿𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑 = tan−1 �
𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝜔𝜔

𝐾𝐾𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 − 𝑚𝑚𝜔𝜔2� 

Equation 5.3 The corrected phase angle that subtracts the contributions from the 
instrument’s actuator and physical damping from the load frame [57].  
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Equation 5.4 The out-of-phase component of the imposed harmonic oscillation 
[57].  
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Equation 5.5 The in-phase component of the imposed harmonic oscillation [57].  

Where f0/h0|coupled is the apparent power of the actuator and specimen, f0/h0|free space is the 

apparent power of the actuator hanging in free space, Klf represents the stiffness of the load 

frame (taken to be 1.59*106 N/m) [143], Kcontact is the stiffness of the contact between the 

indenter tip and sample, δcorrected represents the phase angle of the sample, Ccontactω2 

represents the lag and Kcontact – mω2 represents the in-phase components of the imposed 

oscillation required for the CSM technique. This summarizes the framework that will give 

credence to the phase angle data obtained for the nanoporous samples of interest. 

 The validation experiments, shown in Figure 5.1, were performed on fused silica 

and PMMA because both materials exhibit well-known phase angle behavior. The true 

phase angle values for fused silica and PMMA, when measured at room temperature and 

45 Hz, are quoted in the literature as 0° and 3.4°, respectively [57, 144, 145]. Each phase 

angle value falls well within the range of one standard deviation about the average 

experimental phase angle at 45 Hz. Moreover, measured and corrected values are nearly 

identical when plotted as a function of frequency, indicating the reference phase angle is 

accurate. This demonstrates that the modified CSM technique can achieve steady-state 

harmonic motion, that the measured phase angle is not influenced by shifts resulting from 
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the displacement electronics, and that the phase angle of the specimen dominates the 

response. It is also observed in Figure 5.1 that the average phase angle value for fused silica 

is closer to the true value at frequencies higher than 45 Hz. This likely results from the 

nanoindenter’s ability to better achieve steady-state harmonic motion when the change in 

contact area is insignificant over the time scale of the measurement [57]. For this reason, 

the results for np Si-Mg thin films tested in this study are reported at frequencies of 70 Hz. 

 

Figure 5.1 Proof-of-concept plot showing measured and corrected values for both 
a known linear elastic solid (fused silica) and a known linear viscoelastic solid (PMMA). 
This demonstrates that the reference phase calibration built into the software accounts for 
shifts associated with displacement electronics. 

5.3.2 Time-Dependence in the Time Domain 

Representative load-depth curves of PMMA, np Si-Mg, and silica are shown in 

Figure 5.2. The key features of these plots are circled at the summit and base of the curves. 

The plateau near the top of each load-depth curve represents material creep during a 60-

second hold period. Of course, material creep is convoluted with transient drift effects [54]. 

[54] Instrument drift was measured after nearly complete unloading, denoted by circled 

regions near the base of the curves. The extent to which the known viscoelastic solid 
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PMMA creeps during the 60-second hold period is approximately 22 nm, and a similar 22 

nm recovery is also observed at the base of the curve after unloading (Figure 5.2a). It is 

imperative to compare the values obtained on PMMA to those for the known linear elastic 

solid fused silica, to determine how much of the 22 nm displacement can be attributed to 

transient drift effects, which in this case is 3-5 nm (as indicated by the circled region near 

the base of the curve in Figure 5.2c). Similarly, np Si-Mg sample creep was ~11 nm during 

the 60-second hold period (Figure 5.2b), and transient drift was assumed to account for 3-

5 nm. These experiments were performed under identical conditions and indicate that np 

Si-Mg and PMMA exhibit some level of time-dependence, unlike fused silica. Moreover, 

PMMA appears to have a slightly greater time-dependence than np Si-Mg. It is noted that 

PMMA recovers almost the entire 22 nm displacement (from the creep period) during 

subsequent measurement of drift near the base of the curve, whereas np Si-Mg shows 

negligible recovery. Since PMMA is a known viscoelastic solid, it stands to reason that it 

would recover fully at low loads. The observation that np Si-Mg does not exhibit significant 

recovery implies that its time-dependence stems largely from plasticity. Therefore, an 

appropriate model to describe the mechanical behavior of np Si-Mg should incorporate 

both time-dependent plasticity and viscoelasticity, as in the viscous-elastic-plastic (VEP) 

model developed by Oyen [56, 146, 147]. However, further investigations would be 

required to understand the mechanism(s) of deformation.  
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Figure 5.2 Mechanical response of reference materials and np Si-Mg, measured in 
the time domain. The response of (a) PMMA is compared to that of (b) np Si-Mg and (c) 
fused silica at similar depths and under the same experimental conditions, such that 
transient effects are comparable between tests. PMMA and np Si-Mg exhibit time-
dependence, while fused silica does not. 
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5.3.3 Time-Dependence in the Frequency Domain 

There are two domains in which a nanoindentation experiment can be performed, 

namely the time domain and the frequency domain, each with inherent advantages and 

disadvantages [54]. Thermal drift is a major obstacle to testing in the time domain – as in 

the case of creep. However, a major advantage to operating in the frequency domain is that 

sample stiffness and damping are unaffected by transient effects – as in the case of the 

modified CSM technique. As such, the phase angle values reported in Table 5.1 are true 

quantitative measurements of damping capacity for the materials tested. The quantitative 

results in Table 5.1 corroborate the qualitative results in Figure 5.2, and indicate that 

PMMA exhibits more damping than np Si-Mg. 

The ratios of 𝑑𝑑0
ℎ0
�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑

 to 𝑑𝑑0
ℎ0
�
𝑑𝑑𝑓𝑓𝑒𝑒𝑒𝑒 𝑑𝑑𝑐𝑐𝑚𝑚𝑐𝑐𝑒𝑒

and 𝐾𝐾𝑐𝑐𝑑𝑑 to 𝐾𝐾𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 are shown in Table 5.1 

for the np Si-Mg tested in this study, and show that Equation 5.1 and Equation 5.2 hold 

true in each case. These conditions must be satisfied if the instrument’s contribution to the 

measured phase angle is to be neglected [57]. The percent difference between 𝛿𝛿𝑚𝑚𝑒𝑒𝑚𝑚𝑑𝑑𝑐𝑐𝑓𝑓𝑒𝑒𝑑𝑑 

and 𝛿𝛿𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑 is also shown in Table 5.1. The results for PMMA and fused silica support 

the results shown in Figure 5.1. There is a larger percentage difference between the 

measured and corrected values for the np Si-Mg samples because the depth (and 

consequently the contact area) at which the phase angle measurements were obtained are 

smaller. This underscores the importance of correcting for shifts in displacement 

electronics as the contact dimensions approach zero and Equation 5.3 - Equation 5.5 are 

used [57].  
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Table 5.1 Relevant values in the calculation of energy dissipated by the materials 
tested at a frequency of 70 Hz. The damping capacity of np Si-Mg lies between that of fused 
silica and PMMA. 

 Fused 

Silica 

PMMA As-

dealloyed 

np Si-Mg 

Dealloyed/annealed 

np Si-Mg 

𝑓𝑓0
ℎ0
�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑

𝑓𝑓0
ℎ0
�
𝑑𝑑𝑓𝑓𝑒𝑒𝑒𝑒 𝑑𝑑𝑐𝑐𝑚𝑚𝑐𝑐𝑒𝑒

 

1000 453 23.7 25.5 

𝐾𝐾𝑐𝑐𝑑𝑑
𝐾𝐾𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐

 
9.81 22.9 552 571 

𝛿𝛿 ± 𝜎𝜎 0.0 ± 0.2 3.3 ± 0.2 1.9 ± 0.5 2.6 ± 1.4 

(𝛿𝛿𝑚𝑚𝑒𝑒𝑚𝑚𝑑𝑑𝑐𝑐𝑓𝑓𝑒𝑒𝑑𝑑 − 𝛿𝛿𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑)
𝛿𝛿𝑚𝑚𝑒𝑒𝑚𝑚𝑑𝑑𝑐𝑐𝑓𝑓𝑒𝑒𝑑𝑑 − 𝛿𝛿𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑/2

 
≈ 0% 1.8% 36% 18% 

 

5.3.4 Elastic Modulus and Hardness of Nanoporous Si 

Representative load-displacement curves, reduced modulus (Er) and hardness of the 

np Si-Mg films are shown in Figure 5.3. It is well-known that modulus and hardness data 

obtained on materials that exhibit time dependence are subject to error due to pile-up 

around the indenter [37]. Conveniently, there exists an easily obtainable experimental 

parameter that can be used to estimate the extent to which pile-up affects the contact area, 

namely the ratio hf/hmax [37]. Here, hf represents the final indentation depth and hmax 

represents the depth at peak load. A material with hf/hmax ratio near unity exhibits 

completely plastic behavior, and materials near zero are fully elastic. In terms of contact 

area, however, materials with a ratio >0.7 could be subject to underestimating the contact 
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area due to pile-up. The load-displacement curves in Figure 5.3 a) indicate hf/hmax ratios of 

0.80 and 0.86 for as-dealloyed and annealed np Si-Mg, respectively. Depending on the 

amount of work-hardening, the contact area is likely underestimated slightly. This indicates 

that the modulus and hardness values reported in Figure 5.3 b) and Figure 5.3 c) could be 

somewhat overestimated. It should be noted, however, that this ratio is normally applied to 

solid materials, i.e. non-porous. The mechanism leading to an inflated ratio is typically 

explained as pile-up around the indenter tip, in the context of solid materials. For porous 

materials, however, the mechanism is more likely densification than pile-up, as this is a 

well-documented phenomenon to occur during indentation of porous materials [41, 46, 50, 

148, 149]. Nevertheless, the effect on the modulus and hardness are the same as it would 

be if the contact area were underestimated; modulus and hardness are slightly 

overestimated.  

      There is a well-defined plateau in Er values for both as-dealloyed and annealed 

np Si-Mg films, but there is greater variability in Er of the annealed sample. Average values 

for Er are 5.78 GPa and 11.87 GPa for as-dealloyed and annealed np Si-Mg, respectively. 

Typically, the modulus of the film dominates the elastic response of the film-substrate 

system at depths less than 10% of the film thickness, corresponding to ~100 nm in this 

case, after which the modulus approaches that of the substrate [46, 50]. This is confirmed 

by a gradual increase in modulus at depths larger than 100 nm, shown in Figure 5.3 b). The 

microstructure of the np Si-Mg films were described previously by Maxwell et al. and 

show that nanocrystals form after vacuum annealing [125]. This could make annealed 

samples more heterogeneous throughout the film thickness and explain the higher 

variability of Er. Moreover, localized nanocrystals act to increase the average stiffness 
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response on unloading [150]. The increased modulus of the annealed film is not the result 

of film densification upon annealing. The as-dealloyed film does contract by about 11% 

after annealing, which corresponds to an increase in relative density and influences the 

modulus per the Gibson and Ashby relation [45, 151]. This increase in modulus that results 

from the increase in relative density dwarfs in comparison to the measured increase in 

reduced modulus, indicating this is a true material property and not the result of a slight 

relative density increase. Moreover, if the film had contracted considerably, one would 

observe the onset of a substrate effect for the annealed film at much lower values than 

observed for the as-dealloyed film. The hardness values of the two samples, however, 

plateau at depths greater than 100 nm. The authors report the hardness to be 167 MPa and 

250 MPa for as-dealloyed and annealed np Si-Mg, respectively. Hardness measurements 

of soft films on hard substrates are accurate at depths up to 50% of the film thickness [46, 

148]. The hardness values here are accurate and constant up to the point of maximum 

indentation depth (300 nm), which is less than half the film thickness. 
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Figure 5.3 The load-displacement curves in a) show that both the annealed (blue) 
and as-dealloyed (red) films exhibit significant plasticity as determined by the hf/hmax ratio. 
The hardness in b) and the reduced modulus in c) were obtained using the CSM technique. 
There is a plateau in the reduced modulus at depths less than 100 nm, that reflects the 
material modulus of the np Si-Mg films. After the 100 nm mark, the reduced modulus values 
begin to inflate, indicating the presence of the silicon substrate. The hardness shows 
plateaus at depths greater than 100 nm, which is reasonable for a soft film on a hard 
substrate.   
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5.4 Conclusions  

This study has addressed the mechanical response of nanoporous Si-Mg films, 

which were fabricated using free-corrosion dealloying and which represent an intriguing 

form of silicon that may find use as an anode material in lithium-ion batteries. The porous 

thin film samples, in both the as-dealloyed and annealed states, were designed to have a 

final thickness of ~ 1 μm, such that the substrate effect could be avoided during mechanical 

characterization in both the time and frequency domains. The as-dealloyed and annealed 

samples were investigated using a modified continuous stiffness measurement technique 

that optimized the ability to achieve steady-state harmonic motion, such that accurate phase 

angle measurements were obtained; the as-dealloyed and annealed samples exhibit distinct 

phase angle measurements of 1.9° and 2.6°, respectively. Observations made in the time 

domain suggest that the time-dependence of nanoporous Si-Mg stems largely from 

plasticity. The reduced modulus values of as-dealloyed and annealed samples were 

investigated using the continuous stiffness measurement technique and had corresponding 

values of 5.78 and 11.87 GPa, respectively. Similarly, the hardness of as-dealloyed and 

annealed samples were 167 MPa and 250 MPa, respectively.  
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6 A Fundamental Study of W-Al Alloying 

6.1 Introduction 

Tungsten is a refractory metal that boasts a melting point of approximately 3400°C 

and has a wide range of industrial applications including radiation shields, filaments, 

welding, counter weights, and electrochromics [152-157]. Alloying elements with tungsten 

can be used to tailor the material for specific applications like machining or wear resistance 

[158]. As such, alloying aluminum with tungsten can improve the mechanical behavior and 

corrosion resistance or be used as a more benign alternative to beryllium-tungsten coatings 

in nuclear fusion devices [159-162]. 

There are a variety of techniques in the literature to produce W-Al alloys including: 

ball milling, physical vapor deposition, high-current pulsed electron beam irradiation and 

electrodeposition [161, 163-165]. Typically, the alloying of W-Al is carried out using non-

equilibrium processes because the two metals have dissimilar melting points, thereby 

making it difficult to create through traditional melting or arc melting. In other words, non-

equilibrium processes are advantageous because they allow researchers to study the single 

phase solid solution of W-Al alloys that the equilibrium phase diagram would otherwise 

preclude [166]. 

It is well known that predicting the lattice change of a solid solution purely from 

the linear relation - commonly known as Vegard’s law – is often found to be in error [167-

170]. In 1966, King published an article that shows Vegard’s law is only applicable for 

small concentrations of solute atoms in a metallic solid solution of binary alloys [171]. The 

findings of the report show that for metallic solid solutions, there exists a concentration 
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above which the linear trend is no longer applicable, cmax. This departure from linearity 

was postulated to be the result of significant charge transfer to/from the solute atom upon 

alloying. Vegard’s law was discovered to apply for ionic salts where the electronic 

environment remained unaltered when one atom was replaced with another of equivalent 

charge [170, 171]. In binary metallic systems, it is seldom observed that the electronic 

environment is preserved after significant alloying has occurred [171-173]. 

The publications on W-Al alloying in the literature typically investigate the 

corrosion behavior and/or the mechanical properties in alloys where aluminum is the major 

constituent [160, 161, 163-165, 174-180]. The current study focuses on the physical vapor 

deposition of W-Al at small concentrations of Al, ranging from 0 – 14.5 at.% Al. Small 

changes in lattice parameter are characterized in x-ray diffraction (XRD) as aluminum is 

added to the tungsten matrix and does not change as one might expect based on Vegard’s 

Law. This is discussed at length in the context of density functional theory (DFT) 

calculations, x-ray photoelectron spectroscopy (XPS) binding energy shifts, Bader 

analysis, and changes in electron work function (EWF). To the authors knowledge, this 

composition range of W-Al alloys has yet to be investigated. 

6.2 Experimental Details 

6.2.1 Film Deposition 

Gradient films of W-Al were co-deposited via magnetron sputtering (ORION 

system, AJA International, Inc.) onto (001)-oriented, phosphorus doped single crystal 

silicon wafers (Virginia Semiconductor). Prior to deposition of the W-Al film, a thin layer 

of tantalum was deposited to promote adhesion between the film and substrate. All 

depositions were carried out in an atmosphere of argon. The W-Al gradient film was 
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deposited at a pressure of 6.0 x 10-1 Pa (4.5 x 10-3 torr). The base pressure of the sputtering 

system before film deposition was 1.3 x 10-5 Pa (1 x 10-7 torr). A film of tungsten was also 

sputtered under the same conditions as stated above to act as a reference material. The W-

Al films were deposited on rectangular silicon stubs of approximately 1 cm x 1.5 cm. The 

stubs were aligned side-by-side across the substrate carrier for deposition. The tungsten 

and aluminum targets were diametrically opposed and the substrate carrier was not rotating, 

such that a composition gradient was achieved. Eight silicon stubs were used in total for 

the gradient. 

6.2.2 Characterization 

Energy dispersive spectroscopy (EDS) measurements of the as-deposited gradient 

films were performed in an FEI Quanta 250 FEG SEM equipped with an Oxford 

Instruments EDS system (X-MaxN 50 mm2 detector). 

XRD experiments were performed with a Bruker D8 AXS Discover equipped with 

a semi-automatic z-height stage for precision sample positioning. Samples were scanned 

from 30° to 90° (2θ) in 0.02° steps at 1°/minute. Additionally, in order to obtain smoother 

peaks for precise location of those peak positions, certain angular ranges were scanned 

more slowly: from 35° to 50° (2θ) and 70° to 90° (2θ) in 0.02° steps at 0.5°/minute. The 

positions of the diffracted peaks in the XRD scans were determined using commercial 

software (EVA) provided by Bruker. It should be noted that none of the XRD scans were 

smoothed during the data analysis process. 

 Surface analysis of the gradient samples was completed with a Thermo Scientific 

K-Alpha XPS, equipped with a monochromatic Al-Kα X-ray source with a spot size of 400 

μm. The base pressure of the XPS was 1 x 10-7 Pa (7.5 x 10-10 torr). All spectra were 
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calibrated against an energy value of 285 eV for adventitious carbon. All XPS peaks were 

fit with mixed Gaussian-Lorentzian curve fitting software with “smart” backgrounds. XPS 

energy resolution is 0.1 eV. 

The EWF of the deposited films was measured using a Kelvin probe (KP 

Technology, Ltd.) that utilizes the contact potential difference (CPD) to obtain EWF 

values. The CPD method vibrates a metallic tip of known work function value in close 

proximity to another, dissimilar material surface, and determines the relative work function 

difference between the two materials. The EWF of the unknown material surface is 

calculated according to: eVcpd = e(ΦKP – ΦM) [94]. Vcpd is the contact potential difference 

between the two materials, ΦKP is the work function of the Kelvin probe tip, ΦM is the work 

function of the unknown material, and e is the charge of an electron. The experiments were 

performed in a vacuum chamber at pressures lower than 6.7 x 10-5
 Pa (5 x 10-7 torr). At 

least 100 EWF measurements were obtained and averaged for each sample. This resulted 

in a standard deviation of ~10 meV for each measured EWF value. 

The indentation experiments were performed with an iMicro load frame in 

conjunction with an iNano actuator (Nanomechanics, Oak Ridge, TN). Calibration of the 

Berkovich tip (Microstar Tech, Huntsville, TX) area function was carried out on a 

manufacturer provided fused silica reference block. The samples of interest were mounted 

to aluminum pucks with Crystal Bond (SPI Supplies, West Chester, PA). Sixteen indents 

were performed on each sample in a 4 x 4 array where the distance between adjacent 

indents was at least 30 times the indentation depth. Since the films were all on the order of 

100 nm in thickness, a substrate deconvolution test method was used to obtain the elastic 

modulus of the W-Al films [36].  
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6.2.3 Computational Methods 

All computational results reported here were calculated based on density functional 

theory (DFT), performed using the Vienna Ab initio Simulation Package (VASP) [181]. 

The pseudo-potentials used are Perdew-Burke-Ernzerhof (PBE) formalism of the 

generalized gradient approximation (GGA) [182] with electronic configurations of W (5p6 

6s2 5d4), and Al (3s2 3p1). For structure and energy calculations, a k-point mesh of about 

30 x 30 x 30, or equivalent, for BCC W, was used for density of states (DOS) calculations. 

The plane-wave cutoff energy of 420 eV was used to achieve numerical convergence of 1 

meV/atom in energy. The valence charges of W and Al ions were calculated using the 

Bader charge analysis method [183]. The calculated diffraction pattern was obtained 

through the VESTA program [184] for structures from DFT calculations.  

6.3 Results and Discussion 

6.3.1 Preliminary Results 

The motivation for studying the W-Al system with small concentrations of 

aluminum dissolved in the tungsten matrix arose from investigations that were first 

performed on a scandate cathode of excellent emission behavior. Initially, I had performed 

XPS scans of the scandate cathode and in interpreting those scans found that the binding 

energy associated with elemental tungsten to have peak values lower than what one would 

expect. The peaks typically observed when scanning for tungsten are the 4f 7/2 and 4f 5/2 

peaks, sometimes referred to as a doublet. After charge correcting by using the value of 

285 eV for adventitious carbon, the W 4f 7/2 peak appeared at 30.78 eV and the W 4f 5/2 

peak at 32.88 eV, as shown in Figure 6.1 a). When comparing to the NIST database, which 

has an extensive list for various reports of different materials, the lowest value reported for 
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the W 4f 7/2 peak and W 4f 5/2 peak was 30.90 eV and 33.00 eV, respectively. The shift 

is not extreme, but it is enough to be significant. When performing the XPS scan on the 

scandate cathode, I also scanned for Ba, Sc, Al and O; all of which had reasonable peak 

binding energy values. It was not until later, when my colleague had performed a cross-

section on the scandate cathode with the FIB and performed an EDS line scan that we were 

able to further interpret these results.  
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Figure 6.1 These are XPS scans of a scandate cathode that exhibited excellent 
emission behavior. The scans were charge corrected for adventitious carbon to a value of 
285 eV. The blue lines represent the raw data, the red lines represent the respective peak 
fits, and the green line represents the background. a) is the scan range for W4f binding 
energy and b) is the scan range for Al2p binding energy. 

My colleague had obtained a milled cross-section of a representative tungsten grain 

from the scandate cathode, as shown in Figure 6.2. The circular region attached to the solid 

white line in Figure 6.2 a) shows where the EDS line scan began, which occurred outside 

the representative tungsten grain. The 300 nm mark and greater in Figure 6.2 c) 

corresponds to the region on the inside of the representative tungsten grain. It is easy to see 
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where the tungsten grain begins in Figure 6.2 b) because it looks very bright since this was 

a backscatter electron image. In general, elements with high atomic number will appear 

bright, so it gives a qualitative map of elemental atomic number. The important thing to 

note here is that there appears to be a significant amount of aluminum inside the tungsten 

grain. This was an unexpected result, but seems to indicate that the tungsten is actually 

alloyed with aluminum.  

 

Figure 6.2 a) and b) represent milled cross-sections of a scandate cathode of 
excellent emission behavior, while c) corresponds to the chemical composition obtained 
from the marked EDS line scan. The 0 nm starting point in c) corresponds to the circular 
region that attaches to the straight line in a). a) is a secondary electron micrograph 
whereas b) is a backscatter image.  

At first it was difficult to interpret the XPS binding energy shifting of the W 4f 7/2 

and W 4f5/2 to lower values without further characterization. After seeing the EDS line 

scan results in Figure 6.2, it implies that the tungsten could be alloyed with aluminum in 

concentrations up to 15 at.%-Al. If the tungsten and aluminum were to create a 

homogeneous solid solution, it could explain why the binding energy of tungsten appeared 

to be lower than expected. That was the motivation for studying the W-Al thin film system. 



122 
 

Moreover, the creation of W-Al thin films provides an opportunity to isolate a component 

of the scandate cathode and study it individually.  

6.3.2 Crystal Structure and Atomic Volume 

The compositions of the eight W-Al gradient films were determined using EDS, 

and ranged from 1.4 to 14.5 at.% Al. The crystal structure at each location of the gradient 

film is inferred from the XRD patterns in Figure 6.3. In Figure 6.3 a), it is observed that all 

gradient films are single phase, despite the different crystal structures of pure tungsten 

(BCC) versus pure aluminum (face-centered cubic, FCC). Based on the W-Al equilibrium 

phase diagram (shown in Figure 6.4), the single-phase BCC region should extend to only 

a few at.% Al at 300 K  [166]. However, using a non-equilibrium film deposition technique 

in the current study resulted in a single-phase BCC structure that was observed to extend 

from pure tungsten to at least 14.5 at.% Al, forming a supersaturated solid solution of Al 

in W. 

High-resolution XRD scans of the W-Al gradient films and the pure tungsten film 

are shown in Figure 6.3 b) and Figure 6.3 c). In Figure 6.3 b), diffraction from the (011) 

planes are observed to occur at approximately 40°. However, diffraction from the (112) 

and (022) planes occur at approximately 73° and 87°, respectively in Figure 6.3 c). In each 

of the subplots of Figure 6.3, the XRD scans have been arranged in ascending order 

according to the aluminum content within each film. It should be noted that the scan 

associated with the pure tungsten film only appears in Figure 6.3 b) and Figure 6.3 c).  

As seen in the high-resolution XRD scans of Figure 6.3 b) and Figure 6.3 c), the 

peak positions in the various films shift as a function of Al content. It was observed that as 

Al content increases, the diffraction peaks shift to higher values of 2θ. The shift is small 
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when comparing adjacent films in the gradient, but the overall shift across the composition 

range is significant and a clear trend is exhibited in Figure 6.5.  
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Figure 6.3 XRD scans of the gradient and pure tungsten films. a) Diffraction scans 
of the eight W-Al gradient films. All films exhibit a single-phase BCC structure. b) and c) 
are high-resolution scans of the W-Al gradient films, as well as the pure W film for 
reference, over shorter angular ranges. The large peak at approximately 69° 2θ in a) is 
from the Si wafer that serves as the film substrate. The XRD scan in b) and c) that is plotted 
in red represents the scan that corresponds to cmax, as determined in the current study and 
discussed in more detail below. 

 

Figure 6.4 The W-Al phase diagram [166]. 

The atomic volume, Ω, is defined as the mean volume per atom [171]. For a given 

alloy, this is the volume of the unit cell divided by the number of atoms per unit cell. It was 

observed by King that when plotting Ω as a function of atomic concentration of solute 

atoms, the trend varies linearly up to a limiting concentration (cmax) before departing from 

linearity, particularly for binary metallic systems. The linear portion typically corresponds 



126 
 

to Vegard’s Law. However, when the linear portion varies significantly from Vegard’s 

Law, that is taken as evidence that the electronic environment of the solute atom has not 

been preserved upon alloying [171]. Moreover, deviations from linearity are taken as 

evidence that the electronic environment of the solvent atom has been perturbed.  

In Figure 6.5, the atomic volume of each sputter-deposited film is plotted as a 

function of Al content, Ω(cAl). For comparison, the values of Ω(cAl) as calculated by DFT 

are also included. These calculated values are in good agreement with the experimentally 

determined values over the range of film compositions, with a maximum difference of 

~1.5% for the highest Al content. The atomic volume is seen to decrease as Al content 

increases. This result is counter-intuitive when considered from the perspective of 

Vegard’s Law, where the solute and solvent atoms are treated as spheres [185]. This is 

because aluminum has a larger metallic radius than tungsten, as described below. 

It is well known that the atomic radius of an atom depends on the coordination 

number. Atoms with a coordination number of 8, 6 and 4 will have an atomic radius that is 

approximately 3, 4 and 12% smaller than for atoms a coordination number of 12 [186]. For 

an appropriate comparison of the atomic radii between aluminum and tungsten, the 

coordination number should be 8 since the structure being studied is BCC. The atomic 

radius for tungsten (coordination=8) is 137 pm and the atomic radius for aluminum 

(coordination=8) is 139 pm. 

King surveyed 469 metallic solid solutions using precise lattice parameter data in 

the literature and discovered that when the solute atom was smaller than the solvent atom, 

the atomic volume change was always opposite to what one would expect based on 

Vegard’s Law. Similarly, when the solute atom was larger than the solvent atom, the sign 
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of the atomic volume change was opposite to what one would expect for about half of the 

metallic solid solutions. In the W-Al alloy system, the solute atom is larger than the solvent 

atom, and the atomic volume decreases with increasing Al content, i.e. the trend is 

inconsistent with Vegard’s Law. As discussed below, this is attributed to hybridization 

between the W-5d and Al-3p orbitals, which also results in charge transfer. 

 

Figure 6.5 Atomic volume of each W-Al alloy, plotted against film composition. 
The experimental data (obtained with XRD) and the theoretical data (from DFT 
calculation) are in good agreement. There are two remarkable features in the plot: 1) the 
rate of change in the plot is linear up to a concentration of approximately 6 at.% Al, and 2) 
the slope of each plot is negative. This implies that Vegard’s Law does not describe the 
observed changes in atomic volume. Instead, these result from complex charge transfer and 
orbital hybridization. 

6.3.3 Modifications in Electronic State with Alloying Additions of Al 

Partial density of states (pDOS) plots for the W-5d and the Al-3p orbitals are shown 

in Figure 6.6 with various concentrations of Al solute. It is instructive to use the pDOS 

plots, as well as the Bader charge analysis, to support the conclusions drawn from the 

atomic volume plot. The pDOS plots in Figure 6.6 show that there is significant overlap 

between the valence orbitals of both tungsten and aluminum across the entire composition 

range studied. A Bader charge analysis was performed to compute the energetically most 
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stable electron configuration for the resulting alloys [183, 187]. Based on the Bader charge 

analysis, shown in , it is apparent that the electronic environment of the aluminum (solute) 

atoms is not preseserved upon alloying. This is taken as direct evidence to support the 

results shown in Figure 6.5 where the atomic volume drastically differs from what is 

predicted based on Vegard’s Law. Moreover, the electronic environment of the tungsten 

(solvent) atoms is significantly altered above cmax, which corresponds to a gain in electrons 

for an average W atom of approximately 0.183. In short, electrons are transferred from Al 

atoms to W atoms across the entire alloying range of interest.  
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Figure 6.6 pDOS plots for the W 5d and Al 3p orbitals of both tungsten and 
aluminum, covering a composition range where Al content varies from 0 to 14.3 at.%. For 
all Al concentrations computed here, the W 5d and Al 3p orbitals overlap. The Fermi level 
is indicated by the dotted line at 0 eV. 
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Table 6.1 This table represents the numerical results from the Bader analysis that 
was used to show that charge is being transferred between the W-5d and Al-3p valence 
orbitals.  

Film Composition (at. 

% Al) 

W Valence Charge 

Gain (e-/atom) 

Al Valence Charge 

Loss (e-/atom) 

0 0 N/A 

1.85 -0.0489 1.67 

3.70 -0.0988 1.65 

6.25 -0.183 1.76 

11.1 -0.320 1.64 

12.5 -0.364 1.64 

14.3 -0.428 1.65 

 

It is known that BE shifts of core electrons can be related to physical differences in 

the atoms under investigation [188-191]. The physical difference most often credited with 

BE shifts of core electrons stems from charge transfer, which results in differences in 

charge density on the atoms under investigation [188-191]. The Bader analysis shows that 

charge is being transferred from the Al-3p valence orbital to the W-5d valence orbital and 

one would expect that as the charge density on an average tungsten atom gets larger with 

alloying additions of aluminum, that the core level BE of tungsten would decrease [190, 

191]. This is shown in Figure 6.7, where the W-4f core level BE decreases with increasing 

charge density in the tungsten valence. This BE shift can therefore be thought of as a result 

of charge density differences that results from charge being transferred from the aluminum 

valence to the tungsten valence upon alloying. This has foundations in simple electrostatics 
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and can be thought of as the energy required to create a core hole inside a conducting 

spherical shell [190]. In other words, it is easier to remove an electron from the inside of 

the charged spherical shell the greater the negative charge on the surface of the sphere.  

 

Figure 6.7 Results from Bader analysis are compared to XPS measurements for W 
atoms. The Bader analysis indicates a transfer of charge from the Al to the W atoms that 
results in charge accumulation on the W atoms. XPS scans revealed a shift in the BE of the 
W-4f peak (each spectrum has been charge-corrected to match 285 eV for adventitious 
carbon). The magnitude and direction of each shift observed in XPS, as a function of Al 
concentration, are in good agreement with those given by the Bader analysis. This supports 
the interpretation that charge is transferred from the Al-3p to the W-5d orbitals. 

These results still do not directly explain why the W-Al solid solution alloys exhibit 

a smaller lattice parameter as the Al solute concentration is increased Figure 6.5. A possible 

explanation is that the difference between an un-ionized Al atom and the oxidized Al atom, 

both of coordination number 8, is larger than the difference between an un-ionized W atom 

and the reduced W atom. Of course, these are competing effects, where the reduced atom 

will become larger and the oxidized atom smaller, but the net effect would be a decrease 

in lattice parameter.    
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6.3.4 Variation in Work Function 

The EWF is a fundamental electronic property that is largely considered to reflect 

the surface state of the material [192]. The EWF is defined as the minimum energy that is 

required to transport an electron from the Fermi level to a field-free region outside the solid 

when at 0 K and there is no electric field present [193, 194]. The EWF of the gradient films 

manufactured for this study are plotted in Figure 6.8 a) as a function of aluminum 

concentration and show that the EWF decreases gradually with increasing aluminum 

solute. The EWF of the pure W film differs significantly from the measured EWF of the 

gradient film with 14.5 at.% Al, exhibiting a difference of 0.36 eV. This decrease in EWF 

can be explained by considering the density of free electrons, as discussed below. 

There are several methods that have been used in the past to calculate the EWF of 

a given material that have resulted in various states of agreement depending on the material 

being studied and its surface condition [194-197]. The prevailing model for calculating the 

EWF of a metal – Developed by Brodie in 1995 [195] and later modified by Halas and 

Durakiewicz in 1998 [197] (BHD model) - has shown excellent agreement with 

experimental results and is much simpler than its predecessors. The BHD approach has 

been shown to agree well with experimental EWF values for binary alloys that form solid 

solutions [194]. In the BHD model, the EWF of a material is expressed in terms of the 

Fermi energy and the electron density parameter, as shown below [196]: 

𝛷𝛷 =
43.46𝛼𝛼
𝑟𝑟𝑑𝑑
3/2𝐸𝐸𝐹𝐹

1/2 =
𝑒𝑒3√𝑚𝑚

16√33 𝜋𝜋
5
3ћ𝜀𝜀0

3
2
∗
𝑧𝑧
1
6

√𝑎𝑎
 

Equation 6.1 The Brodie-Halas-Durakiewicz (BDH) model for calculating work 
function based on the method of image forces. 
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where rs is the electron density parameter, EF is the Fermi energy, and α is a constant for 

the left-hand side of Equation 6.1. On the right-hand side of Equation 6.1, e is the charge 

of an electron, m is the mass of an electron, ε0 is the vacuum permittivity, z is the number 

of valence electrons, and a is the lattice constant. It is noted that according to the right-

hand side of Equation 6.1, the EWF is proportional to the valence state, z1/6 and it has been 

shown that the free electron density is nominally equal to the valence state [197, 198].  

Interpreting the results shown in Figure 6.8 b) in the context of Equation 6.1 explains why 

the EWF decreases with increasing Al content. 

The spectra in Figure 6.8 b) were obtained in the low energy regime and represent 

the free electron density at the surface of the pure tungsten film and the aluminum rich 

film. The area under the respective curves in Figure 6.8 b) represent the total number of 

electron states at the surface of each material [198]. This area, multiplied by the Fermi-

Dirac distribution can be used to show the total number of electron states at temperatures 

greater than 0 K. Importantly, however, the area under the curve is proportional to the 

valence state in Equation 6.1 [198]. As a result, when the valence decreases, a decrease in 

EWF should also be observed. When comparing the results in Figure 6.8 b) with the EWF 

results in Figure 6.8 a), it is observed that the EWF does indeed decrease as the area under 

the curve diminishes.    
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Figure 6.8 a) Contact potential difference was measured in vacuum to obtain the 
EWF values plotted for films with different Al content. Low energy XPS scans are shown 
in b) for the pure W film and the Al-rich film. These scans can be interpreted to indicate 
the valence band structure of each film, as the area under the curve is proportional to the 
number of free electrons in the sample. 

The reason the BDH approach has been shown to perform so well in the prediction 

of the work function of metals and metallic binary solid solutions is largely due to the 

nature of the bonding between adjacent atoms and the effect this has on predicting the work 

done against the image forces [196]. Halas and Durakiewicz showed that the BHD model 

did not work well in predicting the EWF values for semiconductors [197]. This was 

primarily attributed to the localization of valence electrons resulting from the covalent 
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bonding between adjacent atoms. This affects the screening efficiency and results in an 

overestimated work function. The bonding between adjacent atoms in metals is 

predominantly metallic and therefore affects the screening efficiency to a much lesser 

extent. The W-Al system is no different. We have shown that the reason the W-4f BE shifts 

to lower values is because of screening effects when charge is transferred from the Al-3p 

to the W-5d orbitals. This screening effect also has an effect on the work function of the 

material because the distance at which the image force begins to act upon an ejected 

electron is larger; thereby lowering the EWF as more aluminum solute is added to the 

tungsten matrix.     

The authors are of the impression that the decrease in EWF is primarily the result 

of a change in bonding character as aluminum is alloyed into the tungsten matrix and is not 

the result of changes in phases present or changes in texturing. The XRD results in Figure 

6.3 a) show that all the sputtered films are single phase and highly (011) textured. It has 

been established that the different crystal faces of tungsten can lead to variations in EWF 

[199]. The XRD results in Figure 6.3 a) show that there are (011) and (112) diffraction, 

meaning that those planes are parallel to the surface of the film, with the (011) planes 

dominating; the (022) diffraction is just a higher order reflection of the (011) planes. This 

also makes sense when analyzing the EWF because the EWF associated with the (011) and 

(112) planes has been reported to be between 5.2 ≤  Φ011 ≤ 5.4 eV and 4.7 ≤ Φ112 ≤ 4.9 eV 

[199]. The EWF value for the (011) planes measured for the pure tungsten film is in good 

agreement with the literature value due to the high (011) texturing of the tungsten film. As 

aluminum is alloyed into the tungsten lattice, the texturing of the film is still dominated by 

the (011) texture and therefore cannot be the result of (112) texturing.  
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Table 6.2 A list of experimental values obtained for the lattice constant and the 
electron work function for the various W-Al alloyed films.  

Film Composition 

(at %) 

 Lattice Constant 

(Å) 

Electron Work 

Function (eV) 

100 3.186 5.07 

98.6 3.179 5.05 

97.4 3.177 5.09 

96.4 3.177 5.00 

96.3 3.174 5.08 

94.8 3.169 4.99 

94.1 3.167 5.02 

90.1 3.160 4.91 

85.5 3.155 4.80 

 

6.3.5 Mechanical Behavior 

It is well known that obtaining accurate values of elastic modulus using the 

traditional Oliver-Pharr method for indentation is subject to significant substrate influence 

when the indentation depth is beyond 10% of the film thickness for the Berkovich geometry 

[36, 39, 49, 200]. However, when the mechanical behavior is sought for samples that have 

a thickness on the order of 100 nm, the small contact area associated with an indentation 

depth of 10 nm makes the elastic modulus and hardness prone to significant errors. By 

using the Hay-Crawford substrate deconvolution method to differentiate the elastic 

modulus of the film (Ef) from the elastic modulus of the substrate (Es), these concerns can 

be alleviated for films that fall within the method limitations [36]. 
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The Hay-Crawford method does have its limitations. The method has been shown 

to accurately predict the composite response for systems over the domain 0.1 < Ef/Es < 10, 

and is not able to deconvolute the substrate response for hardness. The literature value for 

the elastic modulus of (001) oriented silicon is approximately 170 GPa, and this value was 

verified by the authors of this study via nanoindentation [201]. The corollary to this 

argument is the testable range for the film modulus (17 GPa < Ef < 1700 GPa). This was 

deemed a satisfactory range for performing indentation on the films in this study based on 

literature values for elastic moduli of other similar sputter-deposited W and W-Al alloy 

films [162, 202]. The indentation results obtained on the W and W-Al alloy films in this 

study are shown in Figure 6.9. In the work of Hay-Crawford, they suggested that for a stiff 

film on a compliant substrate, the film modulus values were accurate up to an indentation 

depth to thickness ratio (δ/h) of 0.2 [36]. As a result, all the film modulus values in Figure 

6.9 a) were taken at a δ/h value of 0.2. The film hardness values were taken at a δ/h value 

of approximately 0.35. 

The elastic modulus of the pure tungsten film in Figure 6.9 a) does not agree well 

with the literature values. The elastic modulus of the pure tungsten film when analyzed 

using the Hay-Crawford method gave a value of 206 ± 40 GPa when measured at the 

appropriate δ/h ratio of 0.2. The literature value of pure tungsten has been reported to be 

410 GPa and is in egregious disagreement with the value measured when using the Hay-

Crawford method [39]. While the Hay-Crawford method was stated to give accurate values 

for both thin compliant films on stiff substrates, and for thin hard films on compliant 

substrates, the results for the pure tungsten film (218 nm in thickness) on the silicon 

substrate do not support that conclusion. Since the tungsten film is estimated to have a 
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modulus about 2.5 times greater than the silicon substrate, the authors are of the impression 

that this leads to deflated values of elastic film modulus because the contact area is over-

estimated. The Hay-Crawford method was actually only shown to yield deconvoluted 

results with small associated error for the stiff films on the compliant substrates when the 

mismatch in modulus between the substrate and the film was rather mild (Ef/Es < 2). The 

pure tungsten film on the silicon substrate is beyond that threshold, which may be why 

there is such a discrepancy.  

With this in mind, it is dubious to try to extract meaningful information from the 

modulus values that are outside of this proven mismatch threshold, which would equate to 

be Ef < 240 GPa. There are two points in Figure 6.9 a) that are below that threshold and 

those are the films with the most aluminum content. Those films with approximately 10 

and 14.5 at.% Al have elastic modulus values of 212 ± 23 GPa and 185 ± 13 GPa, 

respectively. It makes sense that the elastic modulus values would tend to decrease as 

aluminum is alloyed into the tungsten matrix because the work function of the material 

decreases with increasing aluminum content. This has recently been shown to be a good 

indicator of the strength of the atomic bonds between adjacent atoms in a crystalline lattice 

and a screening parameter for mechanical properties [198, 203-205].  
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Figure 6.9 The Hay-Crawford substrate deconvolution method for thin films was 
used to obtain the values for elastic modulus shown in a) and the Oliver-Pharr technique 
was used to obtain the hardness values shown in b).  

6.3.6 Conclusions 

W-Al alloy films were deposited via magnetron sputtering to study how small 

changes in aluminum content affects the physical and electronic properties of the resulting 

films. XRD showed that the films were single phase BCC across the entire range 

investigated in this study. Furthermore, the lattice parameter was observed to decrease with 

increasing aluminum solute, which is opposite to predictions based on Vegard’s law. 

Vegard’s law was founded on models of continuum elasticity and does not consider 
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changes in the atom size when there is charge transfer/orbital hybridization. Shifts in XPS 

binding energy of tungsten core-electrons can be used to estimate the amount of charge 

being transferred between atoms due to screening effects. These shifts were corroborated 

by theoretical calculations based on Bader analysis to show that charge was being 

transferred and pDOS calculations imply that this occurred from the Al-3p to the W-5d 

orbitals. The decrease in lattice parameter with increasing aluminum solute, along with the 

charge transfer/orbital hybridization arguments, were used as evidence to support the idea 

that the rate at which the aluminum atoms get smaller upon transferring an electron is 

greater than the rate at which tungsten gets larger upon gaining an electron over the 

composition range studied. The screening effects that occur upon aluminum alloying also 

influences the EWF. As more charge is transferred to the tungsten atoms, the screening 

increases that results in a decrease in EWF.  
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7 Concluding Remarks and Future Work 

The goal of the work related to the Si-Mg system was to increase the thickness of 

the resulting nanoporous silicon films such that the mechanical behavior could be studied. 

A previous student was able to show preliminary results where she was able to create 

nanoporous silicon by using distilled water at 50°C. The nanoporous silicon films had a 

thickness on the order of 200 nm and her attempts to increase the film thickness further 

resulted in film delamination. I extended this method of dealloying using distilled water to 

thicker films that resulted in nanoporous Si-Mg films on the order of 1 μm in thickness. 

This was achieved by reducing the temperature of the dealloying to just above freezing at 

0.5°C and the entire dealloying procedure required between 48-72 hours to completely 

dealloy. The procedure was further optimized by utilizing a two-step procedure where I 

first would dealloy the films in 50°C distilled water for 30 minutes and then transfer the 

vials to the 0.5°C chiller for the remainder of the dealloying time. Gradient films of silicon 

and magnesium were sputtered to determine the parting limit range, and appeared to be 

between 51 and 54 at.% Si, with the best bicontinuous structure resulting from precursor 

films having a composition of 51 at.% Si. Also, several dealloying solutions were 

attempted, many of which used distilled water dissolved in various alcohol solutions. These 

results produced interesting microstructures in their own right, the most notable of which 

was completely black when viewed with the naked eye. The optimal dealloying solution, 

however, to create a bicontinuous structure was simply distilled water.  

The structure of the nanoporous Si-Mg was thoroughly characterized with electron 

microscopy throughout the film thickness. The as-dealloyed films exhibited a bimodal 

distribution of ligaments, where the larger ligaments had an average width of 83 nm and 
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the smaller ligaments an average width of 19 nm. Additionally, there was a porous surface 

layer on the order of 100 nm thick that was present on most as-dealloyed films. XPS 

showed this layer to be largely composed of silicon and magnesium oxides. TEM of the 

as-dealloyed film showed that the structure was amorphous, but nanocrystalline grains 

formed after vacuum annealing at 500°C. XRD showed that the precursor films were also 

amorphous before dealloying. This implies that the as-dealloyed material retains the crystal 

structure of the precursor film. EDS mapping combined with XPS revealed three distinct 

chemical composition regions throughout the film thickness, where the residual 

magnesium increases as a function of film thickness, with the highest amount of retained 

magnesium at the surface. Since the technique does retain some magnesium within the 

structure, we have chosen to refer to the resulting structure as nanoporous Si-Mg. The 

ligament size, composition, and structure, combined with the simple, non-hazardous nature 

of the dealloying technique for efficient and scalable production of lithium-ion battery 

anode material. In the future, the procedure to create nanoporous silicon could be further 

optimized. For example, there may be instances where it would be desirable to create 

nanoporous silicon that is more homogeneous in terms of structure and composition.   

Preliminary attempts to create micro-pillars of nanoporous silicon for the purpose 

of micro-pillar compression were unsuccessful. Consequently, nanoindentation was used 

to investigate the mechanical behavior of the nanoporous Si-Mg thin films. The as-

dealloyed and annealed films of nanoporous Si-Mg were fabricated with a final thickness 

on the order of 1 μm such that the mechanical behavior could be studied with 

nanoindentation without muddling the film behavior with that of the substrate. A Berkovich 

tipped nanoindenter was used to probe the material behavior because it’s self-similarity 
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allows the most accurate probing of thin films. Preliminary attempts to study the 

mechanical response of the nanoporous silicon revealed slight time-dependence. As a 

result, the nanoporous silicon thin films were characterized in both the time and frequency 

domains. The as-dealloyed and annealed samples were investigated using a modified 

continuous stiffness measurement technique that optimizes the ability to achieve steady-

state harmonic motion, such that accurate phase angle measurements could be obtained; 

the as-dealloyed and annealed samples exhibit distinct phase angles of 1.9° and 2.6°, 

respectively. Observations made in the time domain suggest that the time-dependence of 

nanoporous Si-Mg stems largely from plasticity. The reduced modulus values of as-

dealloyed and annealed samples were investigated using the continuous stiffness 

measurement technique and have corresponding values of 5.78 GPa and 11.9 GPa, 

respectively. Similarly, the hardness of as-dealloyed and annealed samples are 167 MPa 

and 250 MPa, respectively. The point of investigating the mechanical behavior is to help 

inform how this material may behave in a lithium-ion battery during cycling. The true test 

of the cycling behavior will be when it has undergone rigorous testing in a model lithium-

ion battery.  

  Preliminary XPS scans of a representative scandate cathode of excellent emission 

behavior showed that the binding energy for the W 4f peaks had shifted to lower values 

than expected. After interpreting the XPS work alongside EDS work that had been 

performed on a cross-section of a representative tungsten grain in the scandate cathode, it 

was thought that aluminum may diffuse into the matrix of tungsten grains near the surface 

and play a role in the excellent emission behavior of the scandate cathode. To further study 

this system, model films of W-Al were created in compositions that were similar to the 
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EDS results. Specifically, W1-xAlx (x = 0-0.15) thin film alloys on the order of 150 nm in 

thickness were produced via magnetron sputtering to study how small changes in film 

composition affected the physical and electronic properties of the alloy films. XRD showed 

that all the films produced were single phase BCC where the lattice parameter of the W-Al 

alloy films decreased with increasing aluminum solute. The change in lattice parameter can 

not be explained using models of continuum elasticity, but rather with charge transfer 

resulting from orbital hybridization. DFT calculations along with Bader analysis were used 

to interpret core-level binding energy shifts observed with XPS to show that charge had 

been transferred from the Al-3p to the W-5d valence orbitals. The electron work function 

of the various films was measured with a Kelvin probe operating in CPD mode and showed 

that the electron work function decreased with alloying additions of aluminum. In the 

future, these thin films of W-Al could have other elements (Ba, Sc, Ca) sputtered on them 

and heated up to observe how the work function changes before, during and after heating.   
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Appendix A 

%This gives the average and standard deviation for roughly the last 5 
%seconds of the 60s hold period. Of course, I had to rename each file 
%individually according to the convention: testn.dat, where n = 1-14. 
%It then outputs the mean and stdev into .txt files in the same folder 
%where this is run.  
  
%Some initializations  
nfiles = 14; %this is the number of separate files  
filenameprefix = 'test'; %this is the filename prefix 
filenameextension = '.dat'; %this is the filename extension 
timecolumnstart = 5400;  
timecolumnincrement = 1;  
timecolumnend = 5900;  
counter_stop = 500; %this represents 5 seconds 
phase_angle_column = 2; %this is the phase angle column 
DLDD_column = 8; %DLDD = dynamic load/dynamic displacement 
E_r_column = 9; %reduced modulus column 
  
for i = 1:nfiles 
    counter = 0; 
    for j = timecolumnstart:timecolumnincrement:timecolumnend 
        filename = [filenameprefix, int2str(i),filenameextension];  
        tmpdata = load(filename,'-ascii');  
        counter = counter +1;  
        phase(i,counter) = tmpdata(j,phase_angle_column); 
        DLDD(i,counter) = tmpdata(j,DLDD_column); 
        E_r(i,counter) = tmpdata(j,E_r_column); 
    end  
end  
  
    mean_values_phase = mean2(phase); 
    stdev_values_phase = std2(phase); 
    mean_values_DLDD = mean2(DLDD); 
    stdev_values_DLDD = std2(DLDD); 
    mean_values_E_r = mean2(E_r); 
    stdev_values_E_r = std2(E_r); 
    save('mean_valu_phase.txt','mean_values_phase','-ASCII'); 
    save('stdev_valu_phase.txt','stdev_values_phase','-ASCII'); 
    save('mean_valu_DLDD.txt','mean_values_DLDD','-ASCII'); 
    save('stdev_valu_DLDD.txt','stdev_values_DLDD','-ASCII'); 
    save('mean_valu_E_r.txt','mean_values_E_r','-ASCII'); 
    save('stdev_valu_E_r.txt','stdev_values_E_r','-ASCII'); 
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%calculate corrected phase angle and error propagation. This must be 
%done for each frequency where the phase angle is experimentally 
%determined. The equations used to correct the phase angle were 
%published by Herbert et al. in 2008.  
  
DLDD = (3.8222303e+03); %Dyn. Load/Dyn. Disp of sample (N/m) 
DLDD_err = (8.8365989e+02); %Dyn. Load/Dyn. Disp of sample error (N/m) 
DLDD_fs = 171.8897103; %Dyn. Load/Dyn. Disp in free space (N/m) 
DLDD_fs_err = (2.84217E-14) ; %Dyn. Load/Dyn. Disp in free space error 
(N/m) 
delta_coupled = 2.1968703e+00; %measured phase angle of sample 
(degrees) 
delta_coupled_err = (8.0839197e-01) ; %Error in measured phase angle 
(degrees) 
delta_fs = 2.767311612; %measured phase angle in free space (degrees) 
delta_fs_err = 0.001662726; %Error in measured phase angle in free 
space (degrees) 
K_lf = (19.35e+6); %Stiffness of load frame (N/m) 
K_lf_err = 0; %Error in the load frame stiffness (N/m) 
  
out_phase = DLDD*sin(delta_coupled*(3.14159/180))-
DLDD_fs*sin(delta_fs*(3.14159/180)); 
in_phase = (((1/(DLDD*cos(delta_coupled*(3.14159/180))-
DLDD_fs*cos(delta_fs*(3.14159/180)))-(1/K_lf))))^(-1); 
  
partial_DLDD =  
(sin(delta_coupled*(3.14159/180))*(1/(DLDD*cos(delta_coupled*(3.14159/1
80))-DLDD_fs*cos(delta_fs*(3.14159/180)))-1/K_lf)-
((cos(delta_coupled*(3.14159/180))*(DLDD*sin(delta_coupled*(3.14159/180
))-
DLDD_fs*sin(delta_fs*(3.14159/180))))/(DLDD*cos(delta_coupled*(3.14159/
180))-
DLDD_fs*cos(delta_fs*(3.14159/180)))^2))/((DLDD*sin(delta_coupled*(3.14
159/180))-
DLDD_fs*sin(delta_fs*(3.14159/180)))^2*(1/(DLDD*cos(delta_coupled*(3.14
159/180))-DLDD_fs*cos(delta_fs*(3.14159/180)))-1/K_lf)^2+1); 
partial_DLDD_fs = 
(((cos(delta_fs*(3.14159/180))*(DLDD*sin(delta_coupled*(3.14159/180))-
DLDD_fs*sin(delta_fs*(3.14159/180))))/(DLDD*cos(delta_coupled*(3.14159/
180))-DLDD_fs*cos(delta_fs*(3.14159/180)))^2)-
sin(delta_fs*(3.14159/180))*(1/(DLDD*cos(delta_coupled*(3.14159/180))-
DLDD_fs*cos(delta_fs*(3.14159/180)))-
1/K_lf))/((DLDD*sin(delta_coupled*(3.14159/180))-
DLDD_fs*sin(delta_fs*(3.14159/180)))^2*((1/(DLDD*cos(delta_coupled*(3.1
4159/180))-DLDD_fs*cos(delta_fs*(3.14159/180)))-1/K_lf))^2+1); 
partial_delta_coupled = 
(DLDD*cos(delta_coupled*(3.14159/180))*((1/(DLDD*cos(delta_coupled*(3.1
4159/180))-DLDD_fs*cos(delta_fs*(3.14159/180)))-
1/K_lf))+((DLDD*sin(delta_coupled*(3.14159/180))*(DLDD*sin(delta_couple
d*(3.14159/180))-
DLDD_fs*sin(delta_fs*(3.14159/180))))/(DLDD*cos(delta_coupled*(3.14159/
180))-
DLDD_fs*cos(delta_fs*(3.14159/180)))^2))/((DLDD*sin(delta_coupled*(3.14
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159/180))-
DLDD_fs*sin(delta_fs*(3.14159/180)))^2*((1/(DLDD*cos(delta_coupled*(3.1
4159/180))-DLDD_fs*cos(delta_fs*(3.14159/180)))-1/K_lf)^2)+1); 
partial_delta_fs = (-
DLDD_fs*sin(delta_fs*(3.14159/180))*((1/(DLDD*cos(delta_coupled*(3.1415
9/180))-DLDD_fs*cos(delta_fs*(3.14159/180)))-1/K_lf))-
((DLDD_fs*sin(delta_fs*(3.14159/180))*(DLDD*sin(delta_coupled*(3.14159/
180))-
DLDD_fs*sin(delta_fs*(3.14159/180))))/(DLDD*cos(delta_coupled*(3.14159/
180))-
DLDD_fs*cos(delta_fs*(3.14159/180)))^2))/((DLDD*sin(delta_coupled*(3.14
159/180))-
DLDD_fs*sin(delta_fs*(3.14159/180)))^2*((1/(DLDD*cos(delta_coupled*(3.1
4159/180))-DLDD_fs*cos(delta_fs*(3.14159/180))))-1/K_lf)^2+1); 
error_prop_delta = 
(partial_DLDD^2*DLDD_err^2+partial_DLDD_fs^2*DLDD_fs_err^2+partial_delt
a_coupled^2*(delta_coupled_err)^2+partial_delta_fs^2*delta_fs_err^2)^0.
5; 
  
delta_corr = atan(out_phase/in_phase); 
delta_corr = delta_corr*(180/3.14159); 
  
save('corrected_phase.txt','delta_corr','-ascii') 
save('corrected_phase_err.txt','error_prop_delta','-ascii') 
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