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ABSTRACT OF DISSERTATION 

BIOACTIVE POLY(β-AMINO ESTER) BIOMATERIALS FOR TREATMENT OF 
INFECTION AND OXIDATIVE STRESS 

Polymers have deep roots as drug delivery tools, and are widely used in clinical to 
private settings. Currently, however, numerous traditional therapies exist which may be 
improved through use of polymeric biomaterials. Through our work with infectious and 
oxidative stress disease prevention and treatment, we aimed to develop application driven, 
enhanced therapies utilizing new classes of polymers synthesized in-house. Applying 
biodegradable poly(β-amino ester) (PBAE) polymers, covalent-addition of bioactive 
substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug 
delivery systems. Further, through variation of polymer ingredients and conditions, we 
were able to tune degradation rates, release profiles, cellular toxicity, and material 
morphology. 

Using these fundamentals of covalent drug-addition into biodegradable polymers, 
we addressed two problems that exist with the treatment of patients with high-risk wound-
sites, namely non-biodegradability that require second-surgeries, and free-loaded antibiotic 
systems where partially degraded materials fall below the minimum inhibitory 
concentration, allowing biofilm proliferation. Our in situ polymerizable, covalently-bound 
vancomycin hydrogel provided active antibiotic degradation products and drug release 
which closely followed the degradation rate over tunable periods. 

With applications of antioxidant delivery, we continued with this concept of 
covalent drug addition and modified a PBAE, utilizing a disulfide moiety to mimic redox 
processes which glutathione/glutathione disulfide performs. This material was found to not 
only be hydrolytically biodegradable, but tunable in reducibility through cleavage of the 
disulfide crosslinker, forming antioxidant groups of bound-thiols, similar to drugs currently 
used in radioprotective therapies. The differential cellular viability of degradation products 
containing disulfide or antioxidant thiol forms was profound, and the antioxidant form 
significantly aided cellular resistance to a superoxide attack, similar to that of a radiation 
injury. 

Pathophysiological oxidation in the form of radiation injury or oxidative stress 
based diseases are often region specific to the body and thus require specific targeting, and 
nanomaterials are widely researched to perform this. Utilizing a tertiary-amine base-
catalyst, we were able to synthesize a high drug content (20-26 wt%) version of the 
disulfide PBAE previously unattainable. The reduced version of this material created a 



linear-chain polymer capable of single-emulsion nanoparticle formulation for use with 
intravenous antioxidant delivery applications instead of local.  
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Chapter 1. Introduction and Research Goals 

1.1 Introduction 

Poly(β-amino esters) (PBAE) are a class of biodegradable and biocompatible materials 

which are polymerized via the reaction of acrylates with amines, i.e. aza-Michael addition, 

into biofunctional materials. Originally, PBAE polymers found research interest as non-

viral gene vectors due to their cationic charge from sterically hindered tertiary amines, 

which allows for both DNA complexation while possessing a cytotoxicity profile that is 

significantly lower than that of cationic polymers like polyethylenimine or poly-lysine [1]. 

Since then, PBAEs have proven to be a highly customizable platform, such as formation 

into soft/hard tissue-like structures [2, 3], or utilized for a variety of applications in drug 

delivery [4-6].  

To introduce versatile functionality, bioactive molecules may be covalently bonded into 

PBAE network backbones. If an appropriate group on a molecule of interest is available 

for reaction (e.g., α,β-unsaturated carbonyls, or primary/secondary amines), a PBAE may 

be formed without needing to use complex conjugates/leaving groups. For example, our 

group has previously formulated poly-drug systems through the synthesis of polyphenolic 

antioxidants, curcumin and quercetin, into acrylated forms through conversion of OH 

groups [7, 8]. Michael addition of acrylated antioxidants with amines proved advantageous 

as a pro-drug antioxidant delivery method, whereupon ester degradation, active antioxidant 

was released. Expanding upon this work, we have developed two different PBAEs utilizing 

covalent drug addition using primary amine sites already present upon the molecules of 

interest. By using vancomycin and cystamine to form bioactive and functionalized 
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biomaterials, we demonstrate the versatility of the PBAE platform for the treatment of 

infection and oxidative stress.  

In the clinical treatment of infection, antibiotic resistance emergence has become a 

significant concern throughout the world [9]. Stemming from the brisk pace of bacterial 

evolution by natural selection, bacteria can develop coping mechanisms to overcome 

antibiotic pressures. Particularly, it has been shown that suboptimal antibiotic treatment at 

concentrations below the minimum inhibitory concentration (MIC) aids bacterial selection 

through a differential growth rate of more resistant bacteria [10, 11]. Further, bacterial 

biofilm formation allows for bacteria to remain in a dense packing, where antibiotic 

perfusion may be limited, thus protecting inner bacteria from the full concentration of 

antibiotic. Staphylococcus aureus, in particular, is part of the bacterial skin flora and is 

notorious for prevalence in hospital and community acquired disease [12]. With S. aureus, 

the combination of treatment with sub-optimal antibiotic concentration along with the 

mutagenic effects of the bacteria’s endogenously produced hydrogen peroxide signaling—

used as a bacterial quorum sensing molecule—allows for rapid genetic mutation and 

survival of the fittest against the antibiotic selective pressure [10, 11]. In an attempt to 

suppress hydrogen peroxide signaling and thus the increased mutagenesis, it is 

hypothesized that delivering catalase to S. aureus would inhibit hydrogen peroxide 

mediated genetic diversification [13]. Chapter 4 presents a method for the tandem delivery 

of an antibiotic, vancomycin, alongside the antioxidant, catalase, from a PBAE hydrogel 

designed for local antibiotic delivery. In situ polymerization, a favorable method widely 

used in tissue adhesives and injectable hydrogels [14-16], was produced through a two-

step hydrogel synthesis. First, an acrylate end-capped linear chain macromer was formed, 
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of which the acrylates were then free radical polymerized to synthesize the hydrogel. We 

found that tandem delivery was achieved, and that both drugs remained active after free-

radical polymerization process. With the release of catalase over an extended period of 19 

days, this system could further be studied in reducing the chance of antibiotic resistance 

emergence. 

In local drug delivery, traditional biopolymer implants like polymethylmethacrylate 

(PMMA) could become colonized if not removed before the drug content is diminished, 

and thus complication-prone second surgeries are a necessity [17-22]. Alternatively, 

biodegradable implants are favorable in that they resorb into tissue. Even so, there is risk 

of bacterial biofilm formation in biodegradable materials for the period after drug release 

falls below the MIC, but before complete degradation occurs [23-25]. This diffusive burst-

release phenomenon was found to be present in our prior hydrogel study found in Chapter 

4, and thus Chapter 5 presents a method to overcome the inherent burst release. We 

synthesized a similarly in situ polymerizable PBAE hydrogel, yet covalently incorporated 

vancomycin into the polymeric backbone in an attempt to slow burst release, and equalize 

the drug release and material degradation rates. Vancomycin conjugation was performed 

through the available primary amines, allowing for Michael addition incorporation into 

PBAE oligomers, which could further be polymerized via free radical polymerization into 

hydrogels. It was found that the drug release vs degradation rate allowed for vancomycin 

release up to the completion of degradation, albeit at the cost of increasing the bacterial 

minimum inhibitory concentration of conjugate vancomycin released. 

Pathophysiological oxidative stress related diseases, such as ischemia in diabetes, 

reperfusion injury in myocardial infarction, certain neurodegenerative diseases like 
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Alzheimer’s, autoimmune disorders like rheumatoid arthritis, pulmonary pneumonitis from 

radiotherapy, cancer etc. are directly or indirectly caused by increased levels of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) [26-30]. Oxidative damage to 

DNA, lipids, or proteins may cause cellular dysfunction, apoptosis, necrosis, and promote 

an immune cascade of inflammation, further increasing the generation of ROS/RNS. While 

cells maintain redox homeostasis during minor events of oxidative burden via a complex 

system of antioxidant molecules like glutathione, catalase, and superoxide dismutase 

(SOD), too great an oxidative insult can saturate the cellular defenses and lead to injury.  

In Chapter 6, using our experience in covalent addition, we synthesized a PBAE hydrogel 

for the treatment of oxidative stress via addition of cystamine. Cystamine contains a redox 

sensitive disulfide bond and may be reduced into thiols to carry out antioxidant scavenging, 

similar to cellular-based cysteine and glutathione. In hydrogel form, adding a reducing 

agent converted disulfide bonds into thiols, and decreased the level of hydrogel 

crosslinking depending upon the cystamine content. Interestingly, the material degradation 

products showed a significant differential of toxicity towards a human-derived endothelial 

cell line depending on if in the disulfide or thiol state, as well as concentration of thiol in 

the starting material. These results support the hypothesis that antioxidant delivery 

alleviates oxidative injury [31, 32]. 

With a large body of research on polymeric nanoparticles in the literature, they are a 

promising technology for drug delivery, whether it be for extended release with long 

circulating particles or region/cell specific targeting as with antibody or ligand targeted 

systems [33-36]. Chapter 3 discusses polymeric nanoparticle background and utility in 

depth. With intent to formulate a polymeric nanoparticle system using our cystamine-
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PBAE material for nanoscale antioxidant delivery in such aforementioned applications, we 

developed a hydrogel with cystamine composed of 100% of the amines, containing 

between 20-26 wt% cystamine depending on the diacrylate monomer used. This high 

loading had previously been unattainable due to low solubility and low extent of reaction, 

but with the addition of a non-nucleophilic base catalyst, it was achievable. This hydrogel 

could be solubilized upon reduction into thiolated oligomers for single emulsion into 

thiolated nanoparticles. Chapter 7 covers the PBAE nanoparticle formation where we 

characterize the material properties and kinetics of the thiolated nanoparticle system. The 

nanoparticles were found to have a high thiol content over a period of 7 days. This allowed 

for an extended period of high antioxidant capacity, potentially useful for antioxidant 

delivery applications, or for applications where high concentrations of thiol moieties would 

be useful in adding further functional thiol-reactive conjugates such as maleimide, thiol-

ene, iodoacetamides, or gold reactions.  
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1.2 Research Goals 

The overall objective of this work was to utilize PBAEs as a biocompatible and 

biodegradable platform to formulate bioactive biomaterials for the treatment of infection 

and oxidative stress disease. Four specific aims of this research were investigated: 

Chapter 4. Formulate tunable PBAE hydrogels for the tandem release of 

vancomycin and catalase with application of infection treatment 

a. Synthesize PBAE hydrogels with a method for in situ polymerization

containing vancomycin and catalase

b. Modify degradation and drug release profiles via variation of co-monomer

and co-macromer ratios

c. Provide extended antibiotic activity against S. aureus

d. Conserve catalase activity after the oxidative free radical polymerization

Outcome and Significance: 

Tunable release and degradation rates resulted through variation of the 

hydrophilic and hydrophobic co-macromers and co-monomer macromers made 

from poly(ethylene glycol), diethylene glycol, and isobutylamine. Both small 

(vancomycin, 1.5 kDa) and large (catalase, 232 kDa) molecules were released 

for an extended period while retaining activity of drugs. Where vancomycin 

release was slowed from 2 days to 7 days comparing a co-macromer hydrogel 

(H6:A6 as defined in chapter 4) to a co-monomer macromer system (AH6 as 

defined in chapter 4) respectively, catalase showed a slower release profile up 

to when the hydrogels began to fragment 19 days. At catalase drug release 60% 
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or less, vancomycin release was complete, yet catalase was retained within the 

mesh, likely due to its large size. The release of two vastly different sized 

molecules from a single, in situ polymerizable biodegradable material is an 

important delivery method for combinatorial drug treatments in local infections 

as it 1) reduces the total number of materials required, 2) doesn’t required 

second surgeries for non-degradable material removal, and 3) forms to the 

surrounding tissue to reduce patient discomfort. Further, the method of co-

delivery of an antibiotic with catalase may provide protection against antibiotic 

resistance emergence through suppression of hydrogen peroxide signaling. 

Chapter 5. Achieve equivalent vancomycin release and degradation periods 

through covalent addition of vancomycin to a PBAE hydrogel as a method to avoid 

the non-therapeutic period of biodegradable antibiotic implants after drug release 

is complete yet degradation is not 

a. Partially replace isobutylamine with vancomycin during Michael addition 

in PBAE oligomer formation for covalent addition via vancomycin’s 

reactive primary amine site 

b. Formulate for equivalent drug release and degradation periods upon 

variation of co-monomer ratios to show degradative drug release 

c. Maintain antibiotic activity against S. aureus after covalent addition 

Outcome and Significance: 

Covalent incorporation of vancomycin was determined via increased mass of 

hydrogel degradation products via mass spectroscopy of high performance 

liquid chromatography peaks that showed antibiotic activity against S. aureus 
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(LC-MS). Further, the drug release and degradation rates were coordinated so 

as to achieve complete drug release upon completion of degradation as 

additional evidence of covalent addition. While vancomycin activity was 

reduced, it was still shown to remain active as a hydrogel degradation product 

on S. aureus at a reduced MIC of 155 µg/mL, from 2 µg/mL un-modified. The 

technique used in covalent drug addition of vancomycin to the PBAE backbone 

demonstrated the versatility of PBAE synthesis chemistry. This was used as a 

method to equalize the period of drug release and hydrogel degradation. The 

development of locally deliverable antibiotic biomaterials with the lack of a 

drug release stagnation period is important in the minimization of bacterial 

biofilm formation without the requirement of second surgeries. 

Chapter 6. Formulate a redox sensitive PBAE hydrogel for local treatment of 

oxidative stress 

a. Covalently bond cystamine into a PBAE hydrogel to add disulfide/thiol

redox functionality

b. Characterize the significance of cystamine content on variation of

biomaterial properties in degradation and drug release

c. Determine differential cytotoxicity of hydrogel degradation products in the

thiol and disulfide state on a human cell line

d. Demonstrate reduction of oxidative stress on a human cell line in-depth via

cell viability and mitochondrial respiration

Outcome and Significance: 
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Covalent addition of the disulfide cross-linker, cystamine, into the backbone of 

a PBAE hydrogel produced bound thiols. Through variation of the cystamine 

content, under reducing conditions, hydrogels remained intact with <75 mol% 

cystamine of the amines, and become soluble at ≥75 mol% cystamine of the 

amines due to increase in reducible disulfide crosslinking. Via degradative drug 

release, bound thiols were found to be highly biocompatible compared to the 

disulfide (i.e. oxidized) degradation products for both cell viability and 

mitochondrial function (IC50 (the half maximal inhibitory concentration) = 8.5 

mg/mL thiol compared to 0.32 mg/mL disulfide). Cellular fortification of the 

glutathione/cysteine (i.e. thiol) antioxidant cellular capacity is a potential 

method of both treatment of oxidative stress in disease, as well as the basis of 

prophylaxis for such applications as radioprotection of healthy tissues in cancer 

therapies. This material is promising for antioxidant delivery in that it produced 

cytocompatible material at a high concentration, allowing for high thiol content 

as well (IC50 8.7 (mM thiol)) (both numbers for 50 mol% cystamine of the total 

amines formulation).   

 

Chapter 7. Synthesize thiolated nanoparticles for antioxidant delivery utilizing 

cystamine-PBAE hydrogel starting material 

a. Increase cystamine PBAE hydrogels to use 100% of the amine for increased 

drug content via use of a Michael addition catalyst 

b. Create thiolated linear chain polymers upon hydrogel reduction 
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c. Synthesize a nanoparticle formulation via single-emulsion of reduced

hydrogel material

d. Determine nanoparticle stability and degradation in solution

e. Determine activity of reduced nanoparticle thiols over time

Outcome and Significance: 

The use of a non-nucleophilic base catalyst allowed for formation of a purely 

cystamine and diacrylate hydrogel, previously not achievable without catalysis. 

Two diacrylates were tested, 1,6-hexanediol ethoxylate diacrylate (HEDA) and 

diethylene glycol diacrylate (DEGDA), where only DEGDA/CA hydrogels and 

nanoparticles showed material degradation, hypothesized due to an increased 

number of aliphatic hydrocarbons in HEDA compared to DEGDA. It was found 

that these hydrogels when reduced formed thiolated oligomers, which when 

subjected to single emulsion, turned into controllable sized thiolated 

nanoparticles (150-400 nm) with activity up to 1 week. These hydrogels were 

converted into thiolated nanoparticles (up to 3.5 mmol thiol/mg particles), 

which could be used for not only applications of oxidative stress treatment, but 

as a cost effective means towards particle functionalization with the thiol 

moiety without the requirement of expensive conjugates. 

Copyright © Andrew L. Lakes 2016 
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Chapter 2: Hydrogels and Polymeric Nanoparticles in Drug Delivery 

Based partially upon the book chapter: 

Andrew L. Vasilakes, Thomas D. Dziubla, Paritosh P. Wattamwar. Polymeric 
Nanoparticles, In Rebecca A. Bader, Engineering Polymer Systems for Improved 
Drug Delivery. Hoboken, NJ: Wiley & Sons, Inc. 2014 

2.1 Introduction 

Medical devices, whether it be from one of the original ocular prosthetic in-socket implants 

made from glass as early as 2900 BCE [37], or wooden feet as early as 484 BCE [38], have 

helped improve quality of life throughout history. While wood and glass were merely 

mechanical replacements in a loosely anatomical form, they were designed with little intent 

of biocompatibility, integration or tissue regeneration. Over time, these medical materials 

and devices have advanced immensely through application-driven interaction of materials 

with specific biological systems to produce “biomaterials” which elicit favorable tissue 

response [39-41]. Glass eyes have developed from uncoated spheres which caused 

inflammation and implant migration, to adding acrylate coatings for sclera adherence, to 

formation of porous, integrated implants from materials such as hydroxyapatite or 

polyethylene for muscle and vascular attachment to aid in motility in the late 1980s [42]. 

As Richard Feynman alluded to in his There’s Plenty of Room at the Bottom talk in 1959, 

advances in engineering and biology have followed Feynman’s prediction with the 

nanotechnology revolution spurred on by Norio Tanaguchi, K. Eric Drexler, and President 

Clinton in 1979, 1986, and 2000 respectively [43]. The field of drug delivery has been 

opened wide with nanoparticle research, which has been able to create enhanced drug 

delivery methods, which were previously not possible. For instance, the diffusional barrier 

of ophthalmic drug entrapped within nano-scale micelles in soft hydrogel contact lenses 
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has been shown to enable release for up to 30 days, whereas traditional free drug loaded 

systems show quicker release over only 3 days [44]. Likewise, systemic drug delivery has 

shown great achievements through nanoparticles and synthetic polymer chemistries. 

Where traditional cancer chemotherapeutics rely on continual small molecule transfusions, 

invoking significant side effects, much research has been focused on the area of 

nanoformulations to increase tumor specific uptake compared to vital organs [45]. With 

the vast customizability of synthetic polymers, hydrogels and nanoparticles have benefitted 

greatly. 

2.2 Hydrogels 

Hydrogels are three-dimensional crosslinked networks of polymer which were originally 

termed due to their hydrophilic nature, allowing for swelling in water, such as is the case 

with polyethylene glycol (PEG) based hydrogels [46]. The high water-content from 

swelling and cross-linked structures are useful properties of biomaterials as they mimic the 

properties of soft tissue [47]. These swelling properties also allow for drug delivery 

applications such as the physical capture of molecules, and chemical modification for a 

variety of applications, and have been highly researched [48]. Conventional, naturally-

derived biomedical hydrogels have been used for many years. For instance, collagen 

sponges have been popular since the 1980s for use in local antibiotic delivery due to being 

swellable and thus drug loadable, biocompatible, and biodegradable if pre-digested [49]. 

While hydrogels may also be formed from crosslinking other natural polymers like 

chitosan, fibrin, or alginate, synthetic polymer hydrogels show the benefits of bottom-up 

designed, highly controlled chemistry with wide customizability. One important attribute 

in which synthetic hydrogels excel at, and conventional collagen sponges lack, is the ability 
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for in situ polymerization. In situ polymerization allows for liquid monomer solutions to 

rapidly polymerize into the surrounding tissue geometry upon injection. The result of this 

tissue conformation is higher surface area contact and less material mobility, reducing 

levels of inflammation and implant rejection [50]. Nonetheless, in situ polymerization 

conditions must be stringent so as not to incur additional inflammation and toxicity [51]. 

Although collagen sponge applications are still widespread on the market compared to 

hydrogels, FDA-approved, in situ-formable PEG-based hydrogel alternatives are becoming 

increasingly available as research advances.  

2.2.1 Polymer Selection 

Natural polymers such as collagen or hyaluronate, primary components of animal 

extracellular matrices, have been used extensively for biomedical applications [39, 52] 

such as collagen wound sponges for tissue regeneration, often after crosslinking with an 

agent such as glutaraldehyde to form a collagen hydrogel [53]. While many natural 

polymers, such as collagen, are biocompatible, biodegradable, allow neutrophil infiltration, 

and are chemically modifiable such as with collagen with fibronectin or antibiotic loading 

[52], natural polymers often require animal sources and lack the control of chemical 

reproducibility in which synthetic polymers excel at [39]. Depending on the animal source 

of the collagen, the region of the animal it was taken from (e.g. type I, III, IV collagen), or 

if post-crosslinking has been performed all affect drug release and degradation properties. 

Other natural polymers used in hydrogels include agarose, fibrin, the naturally 

biodegradable chitosan, or gelatin (hydrolyzed collagen) sponges and fibrin for use as 

hemostatic dressings [54]. 
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Synthetic polymers have been utilized for biomedical purposes for much of the 20th 

century, from the non-degradable polymethylmethacrylate (PMMA) used in dentistry 

applications in the 1930s to polyesters like polyurethane used in catheters, stents, or breast 

implants later on [55]. One of the first biomedical applications of a biodegradable synthetic 

polymer was that of sutures using poly(lactic acid) and poly(glycolic acid) copolymers [56, 

57]. Since then, polyesters have been researched heavily for a wide variety of applications. 

However, inflammatory response (described in further detail in Chapter 3) upon 

implantation of polyesters could lead to implant failure due to reactive oxygen species 

(ROS) mediated biodegradation. This ROS buildup posed a problem for some applications, 

such as pacemaker lead insulators, leading to corrosion, but also to the addition of 

embedded antioxidants such as the polyphenol Santowhite®. Implanted polyester ROS 

generation was classically utilized in other applications as a beneficial side effect, such as 

a prophylaxis against capsular contracture of breast implants via the inflammatory response 

induced fibrous capsule [39, 56, 58]. Beyond polyesters, many other polymers have 

become popular, such as those depicted in Table 2.2 of Section 2.3.1.1. 

2.2.1.1 Poly(β-amino esters) 

With intent to deliver DNA or siRNA for gene therapy applications, poly-cationic polymers 

at physiological pH were sought out due to complexation with the negative charge found 

on phosphate backbones. While transfection efficiency from highly positively charged 

polymers, such as hydrogels made from polyethylenimine (PEI) or poly-lysine, were found 

to be high, the positive charge also showed significant toxicity due to destabilization of 

cellular membranes [1]. With those materials, there was a tradeoff in effectiveness for 

toxicity, and thus groups started looking at developing less toxic poly-cationic polymers. 
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This reduction of toxicity was hypothesized to proceed via formation of polyesters with 

cationic sidechains to a lesser extent than that of PEI, but still at a great enough 

concentration to show DNA affinity. However, many of these required expensive coupling 

reagents or required amine-site protection and post-processing [59-61]. With this in mind, 

the Langer lab [1] synthesized biodegradable polyesters with tertiary amines through aza-

Michael addition of secondary di-amines and diacrylates to form poly(β-amino esters) 

(PBAEs) without expensive reagents.  

PBAEs have been found to show excellent DNA binding and condensation properties, as 

well as show a much greater cytocompatibility of both linear polymers as well as 

degradation products, greater than 1-2 orders of magnitude in concentration compared to 

25000 Da PEI [1, 62]. While a majority of PBAE applications involve DNA delivery, 

numerous other applications are continually being produced as well due to their good 

toxicity profile (similar to PLGA [63]), biodegradability, and customizability into 

copolymers. These properties allow for formation of pH sensitive materials [64], drug 

delivery vehicles for hydrophobic [65] and hydrophilic drugs [62],  theranostics [66], tissue 

engineering [67], magnetic hyperthermia [68], and so on. PBAEs synthesized in our lab as 

hydrogels have been shown to be customizable in degradation period from hours, to weeks, 

to greater than months [62, 69, 70], show variable cytotoxicity of degradation products 

depending on co-monomers [63], and display therapeutic degradation products as well [7, 

8, 63]. 
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2.2.2 Hydrogel Controlled Release 

Contrasting to free drug administration, the drug entrapment offered by hydrogels makes 

them an advantageous method of extending drug release, minimizing the total number of 

administrations required. This extended release is highly researched for applications such 

as invasive surgeries requiring steady concentrations of antibiotic prophylaxis for a long 

period of time, or as other biodegradable injectable adhesives where multiple surgeries 

pose risk of further infection. Depending on the polymer choice, some hydrogels are non-

degradable and others may biodegrade. Additionally, drugs may be entrapped via physical, 

affinity, ionic, or covalent methods.  

For free drug entrapment via physical means, typically the simple method of imbibition, or 

drug mixed within the polymer upon polymerization is used (Figure 2.1A). These freely-

loaded systems release drug in a diffusive manner, following the concentration gradient 

surrounding the material, and typically exhibit a burst-release effect where an initially high 

level of drugs are released (Figure 2.2 A, where Mt/M∞ defines the mass at a timepoint t 

divided by the total infinite release value to infer the release rate). Typically, release near 

zero-order (i.e. n=1 in the Power Law, equation 2.31 of section 2.3.7) is more desirable, 

yet not easily achievable. One method to slow release is to match the material degradation 

rate with the drug release rate (Figure 2.1B) through utilizing non-interfering drug moieties 

for conjugation to or crosslinking of the polymer backbone. Non-interfering moieties, for 

example, being those which are not bioactive and would not negate drug action if modified. 

Or, the drug molecule could be designed to biodegrade back into the original structure form 

a method such as drug acrylation to allow ester cleavage back to the original [7]. With 

covalent addition of this method (Figure 2.2 B, C), therapeutic polymer or drug is released 
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as degradation products, and will follow the total material degradation rate closely [62, 63]. 

If the conjugate or crosslinker is a small mass fraction, differences in bond lability, or 

hydrophilic/hydrophobic effects may incur drug release that doesn’t exactly follow the total 

material degradation pattern (Figure 2.2 B), but with large mass fractions (Figure 2.2 C), 

the crosslinker has greater effect on the bulk material, and follows the degradation profile 

closely [63]. For large molecules, like proteins (Figure 2.2 D), degradative release may be 

produced through simple physical entrapment due to hindrance of diffusion by the network. 
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Figure 2.1. Example of degradable hydrogels with A) free or B) covalent drug loading. 
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Figure 2.2. Schematic of example drug release profiles from our different PBAE 

biodegradable hydrogels. A) Freely loaded small molecule showing a diffusive release 

pattern (1449 Da at 1.5 wt% loading). B) Covalently loaded small molecule showing a 

release profile near the degradation rate, but with the same total period of release as 

degradation (1449 Da at 1.5 wt% loading). C) Covalently loaded small molecule showing 

release very close to equaling the degradation rate (152 Da at 12.5 wt% loading). D) Freely 

loaded protein showing slightly less than degradative release due to size restriction (230 

kDa at 0.5 wt% loading). Data for A and B from [62], C from [63], and D calculated from 

[70]. 
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2.2.3 Hydrogel Synthesis 

Synthetic polymer hydrogels are typically formulated through the crosslinking of 

monomers into their respective three-dimensional product via covalent, affinity, or ionic 

methods. Common chemical crosslinking methods include click-chemistry reactions, such 

as acrylate-amine, thiol-ene/yne, azide-alkyne, and epoxide-amine/thiol, which do not 

necessarily require the addition of a catalyst for reaction to occur if near stoichiometric 

conditions [7, 63]. However, catalysts may be beneficial if reaction does not readily occur, 

such as with excess solvent or reactants which are not particularly reactive [69].  

Chemically crosslinked hydrogel reactions are useful for one-pot synthesis of materials, 

such as ex vivo preparation, as they may require addition of heat to occur (e.g. acrylate-

amine Michael addition), or utilize cytotoxic monomers/catalysts which would require 

washing before implantation of the material (e.g. metal catalyst). Other chemical 

crosslinking methods may be more suitable for in situ synthesis, such as free-radical 

polymerization or the use of photo-initiators [71]. Our group has used free radical 

polymerization of acrylate-acrylate bonds using ammonium persulfate (APS) with 

tetramethylethylenediamine (TMED), in which body temperature exposure aids reaction 

kinetics [62, 70, 72]. There are also affinity formed hydrogels, such as those utilizing 

biotin-avidin [73], or ionic crosslinked hydrogels utilizing pH sensitive ions for reversible 

binding [74]. 

While off-the-shelf monomers may be used directly, a benefit of synthetic polymer 

chemistry is the ability to tailor polymers for particular uses. And thus, often times custom 

monomers are formed prior to hydrogelation. For instance, while a monomer of PEG-

diacrylate would participate in hydrogel formation with a corresponding crosslinker (e.g. 
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primary amine, secondary di-amine etc.), formation of a co-polymer macromer/oligomer 

may be performed for added effect, whether it be simply increasing the polymer mesh size 

for increased diffusion, or adding functionality such as a drug [8, 62, 75].  

Polymer initiation may be started through high chemical potential found in highly reactive 

substances which produce spontaneous exergonic reactions, such as azide-alkyne Huisgen 

cycloaddition, or require the initiation of electron movement through chemical redox 

initiators such as when photo-initiators decompose under electromagnetic radiation to 

produce free radicals. Once initiated, these reactions propagate until termination may occur 

for a variety of reasons, such as reaction with a non-propagating species (e.g. oxygen free 

radical formation interference), or having a lack of substrate concentration to proceed with 

the reaction.  

2.2.3.1 Extent of Reaction 

Extent of reaction may be determined by calculation of the degree of polymerization, which 

is described as equation 2.1 for homopolymers, where DP is the degree of polymerization, 

M0 is the monomer molecular weight, and MN is the number average molecular weight. For 

homopolymers with equal molar quantity of reactants, Carother’s equation 2.2 is used to 

find the number-average degree of polymerization, 𝑋𝑋�𝑛𝑛, in equation 2.3, where p is the 

conversion factor, N0 is the number of monomer molecules initially, and N is the number 

of final molecules [76].   

𝑫𝑫𝑫𝑫 = 𝑴𝑴𝑵𝑵
𝑴𝑴𝟎𝟎

        (2.1) 

𝑿𝑿�𝒏𝒏 = 𝟏𝟏
𝟏𝟏−𝒑𝒑

         (2.2) 



22 

𝒑𝒑 = 𝑵𝑵𝟎𝟎−𝑵𝑵
𝑵𝑵𝟎𝟎

        (2.3) 

It can be seen that if a degree of polymerization was 90% (p=0.9), then the number average 

degree of polymerization for a homopolymer would be 10. When having one monomer is 

in excess, equation 2.4 is used, where r is the stoichiometric ratio of reactants. For instance, 

if the stoichiometric ratio is 1, equation 2.2 is re-formed. If a copolymer system is formed, 

however, equation 2.5 is used, where fi is the individual functionality per monomer used, 

and fave is the average functionality from equation 2.6. 

𝑿𝑿�𝒏𝒏 = 𝟏𝟏+𝒓𝒓
𝟏𝟏+𝒓𝒓−𝟐𝟐𝒓𝒓𝒑𝒑

        (2.4) 

𝑿𝑿�𝒏𝒏 = 𝟐𝟐
𝟐𝟐−𝒑𝒑𝒇𝒇𝒂𝒂𝒂𝒂𝒂𝒂

        (2.5) 

𝒇𝒇𝒂𝒂𝒂𝒂𝒂𝒂 = ∑𝑵𝑵𝒊𝒊 ∙ 𝒇𝒇𝒊𝒊
∑𝑵𝑵𝒊𝒊

        (2.6) 

2.2.4 Hydrogel Characteristic Modeling 

Determination and prediction of hydrogel characteristics allows for deeper understanding 

of material properties. Certain properties are useful to know about synthesized materials, 

particularly if there is interest in using it as a drug delivery vehicle or biomaterial. Mesh 

size calculation gives a sense of molecular diffusion, as does the extent of reaction of 

monomer chains to form oligomers/macromers, relating to the crosslinking chain length, 

and to identify polymer-solvent interactions which relate to swelling characteristics, 

important in knowing the amount of imbibed liquid. In 1953, Flory and Huggins developed 

an equation (known as Flory-Huggins theory) to show crosslinked polymer swelling in 

water, dependent upon the changes in chemical potential (solved for in equation 2.20 
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below) [77]. Swelling forces of networks are constrained based upon the elastic properties 

of the polymer chains, as well as solvent compatibility [46, 78].  

2.2.4.1 Change in Chemical Potential Upon Swelling 

To produce equation 2.20, which describes the change in chemical potential upon swelling 

forces, we take example of an isotropic crosslinked hydrogel, and first look at the free 

energy of the system, ∆G, due to addition of the mixing energy, ∆Gmix and elastic energy, 

∆Gelastic. After differentiation of equation 2.7 with respect to the number of water 

molecules, N1, via equation 2.8, the change in chemical potential may be found (equation 

2.9), where the pure water chemical potential, Δµ°, the water within the gel chemical 

potential, Δµgel, and chemical potential due to elastic effects, Δµelastic the chemical potential 

of a hydrogel in solution mixture, Δµmix.  

∆𝑮𝑮 = ∆𝑮𝑮𝒎𝒎𝒊𝒊𝒎𝒎 + ∆𝑮𝑮𝒂𝒂𝒆𝒆𝒂𝒂𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆      (2.7) 

𝝁𝝁𝒊𝒊 = � 𝝏𝝏𝑮𝑮
𝝏𝝏𝑵𝑵𝒊𝒊
�
𝑻𝑻,𝑫𝑫,𝑵𝑵𝒋𝒋≠𝒊𝒊

       (2.8) 

∆𝝁𝝁 = 𝝁𝝁𝒈𝒈𝒂𝒂𝒆𝒆 − 𝝁𝝁° = ∆𝝁𝝁𝒎𝒎𝒊𝒊𝒎𝒎 + ∆𝝁𝝁𝒂𝒂𝒆𝒆𝒂𝒂𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆    (2.9) 

To determine the effect of chemical potential on mixing, the effects of enthalpy upon 

mixing in equation 2.10 is based upon the lattice model due to equal polymer chain lengths, 

and simplifies to equation 2.11 as is described in [78]. χ is the Flory-Huggins polymer-

solvent interaction parameter (0.426 for PEG-water [79], and decreases with increasing 

miscibility), and N1 and v2 are the number of water molecules and volume fraction of the 

hydrogel respectively. An example of swelling ratio and χ calculation may be found in 

Chapter 6 using Hildebrand solubility parameters. Entropy of mixing is found in equation 
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2.12, ∆Smix, where R is the universal gas constant, N1 and N2 are number of molecules of 

water and polymer respectively, and ν1 and ν2 are the volume fractions of water and 

polymer respectively, calculated by the equilibrium-state swollen gel.  

∆𝑮𝑮𝒎𝒎𝒊𝒊𝒎𝒎 = ∆𝑯𝑯𝒎𝒎𝒊𝒊𝒎𝒎 − 𝑻𝑻∆𝑺𝑺𝒎𝒎𝒊𝒊𝒎𝒎      (2.10) 

∆𝑯𝑯𝒎𝒎𝒊𝒊𝒎𝒎 = 𝒌𝒌𝑻𝑻𝝌𝝌𝑵𝑵𝟏𝟏𝒂𝒂𝟐𝟐       (2.11) 

∆𝑺𝑺𝒎𝒎𝒊𝒊𝒎𝒎 = −𝒌𝒌(𝑵𝑵𝟏𝟏 𝐥𝐥𝐥𝐥𝒂𝒂𝟏𝟏 +𝑵𝑵𝟐𝟐 𝐥𝐥𝐥𝐥𝒂𝒂𝟐𝟐)     (2.12) 

Adding equations 2.11 and 2.12 into equation 2.10 results in equation 2.13. Since hydrogels 

are single large molecules the term N2 disappears, and differentiation of equation 2.13 with 

respect to the number of water molecules, equation 2.16 is formed, where the volume 

fraction of water is replaced by equation 2.14 and the universal gas constant, R, with 

equation 2.15. 

∆𝑮𝑮𝒎𝒎𝒊𝒊𝒎𝒎 = 𝒌𝒌𝑻𝑻𝝌𝝌𝑵𝑵𝟏𝟏𝒂𝒂𝟐𝟐 − 𝒌𝒌𝑻𝑻(𝑵𝑵𝟏𝟏 𝐥𝐥𝐥𝐥𝒂𝒂𝟏𝟏 +𝑵𝑵𝟐𝟐 𝐥𝐥𝐥𝐥𝒂𝒂𝟐𝟐)   (2.13) 

 𝝂𝝂𝟏𝟏 = 𝟏𝟏 − 𝝂𝝂𝟐𝟐        (2.14) 

𝑹𝑹 = 𝒌𝒌𝑵𝑵𝑨𝑨        (2.15) 

𝝏𝝏∆𝑮𝑮𝒎𝒎𝒊𝒊𝒎𝒎
𝝏𝝏𝑵𝑵𝟏𝟏

= 𝑹𝑹𝑻𝑻(𝐥𝐥𝐥𝐥(𝟏𝟏 − 𝝂𝝂𝟐𝟐) + 𝝂𝝂𝟐𝟐 + 𝝌𝝌𝝂𝝂𝟐𝟐𝟐𝟐) = ∆𝝁𝝁𝒎𝒎𝒊𝒊𝒎𝒎    (2.16) 

Elastic effects from retraction of swelling-expansion are found through using the elastic 

theory found in Flory [77, 78]. Effects of enthalpy may be ignored due to hydrogels 

behaving as ideal elastomers where bonds are not stretched. Assuming for isotropic 

expansion, equation 2.17 is formed using Boltzmann’s equation for change in entropy, after 

differentiation with respect to the number of water molecules, where ρcross is the 
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crosslinking density, and V1 is the molar volume of water in the hydrogel (18 mL/mol). 

The crosslinking density is defined as equation 2.18, where MC is the number average 

molecular weight of crosslinks and �̅�𝑣2 is the specific volume of the swollen amorphous 

hydrogel (1/ρs).  

𝝏𝝏∆𝑮𝑮𝒂𝒂𝒆𝒆𝒂𝒂𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆
𝝏𝝏𝑵𝑵𝟏𝟏

= 𝝆𝝆𝒆𝒆𝒓𝒓𝒄𝒄𝒆𝒆𝒆𝒆𝑽𝑽𝟏𝟏𝑹𝑹𝑻𝑻�𝒂𝒂𝟐𝟐
𝟏𝟏
𝟑𝟑� − 𝒂𝒂𝟐𝟐

𝟐𝟐
�     (2.17) 

𝝆𝝆𝒆𝒆𝒓𝒓𝒄𝒄𝒆𝒆𝒆𝒆 = 𝟏𝟏
𝒂𝒂�𝟐𝟐𝑴𝑴𝑪𝑪

        (2.18) 

Using approximations for chain imperfections and entanglements, equation 2.17 is 

corrected into equation 2.19 with the addition of a central term, �1− 2𝑀𝑀𝐶𝐶
𝑀𝑀𝑁𝑁

�, where MN is 

the number average molecular weight of the polymer utilized for hydrogel formation [78, 

80]. 

𝝏𝝏∆𝑮𝑮𝒂𝒂𝒆𝒆𝒂𝒂𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆
𝝏𝝏𝑵𝑵𝟏𝟏

= 𝑹𝑹𝑻𝑻 � 𝑽𝑽𝟏𝟏
𝒂𝒂�𝟐𝟐𝑴𝑴𝑪𝑪

� �𝟏𝟏 − 𝟐𝟐𝑴𝑴𝑪𝑪
𝑴𝑴𝑵𝑵

� �𝒂𝒂𝟐𝟐
𝟏𝟏
𝟑𝟑� − 𝒂𝒂𝟐𝟐

𝟐𝟐
� = ∆𝝁𝝁𝒂𝒂𝒆𝒆𝒂𝒂𝒆𝒆𝒆𝒆𝒊𝒊𝒆𝒆   (2.19) 

Plugging equations 2.16 and 2.19 into equation 2.9 yields equation 2.20: 

∆𝝁𝝁 = 𝑹𝑹𝑻𝑻 �(𝐥𝐥𝐥𝐥(𝟏𝟏 − 𝝂𝝂𝟐𝟐) + 𝝂𝝂𝟐𝟐 + 𝝌𝝌𝝂𝝂𝟐𝟐𝟐𝟐) + � 𝑽𝑽𝟏𝟏
𝒂𝒂�𝟐𝟐𝑴𝑴𝑪𝑪

� �𝟏𝟏 − 𝟐𝟐𝑴𝑴𝑪𝑪
𝑴𝑴𝑵𝑵

� �𝒂𝒂𝟐𝟐
𝟏𝟏
𝟑𝟑� − 𝒂𝒂𝟐𝟐

𝟐𝟐
�� (2.20) 

2.2.4.2 Crosslinking Molecular Weight and Mesh Size 

These methods are also used to predict the crosslinking molecular weight of a hydrogel in 

water at equilibrium swelling, where ∆𝜇𝜇 = 0, and thus following Flory-Rehner theory, 

equation 2.20 can be rearranged to produce equation 2.21 [81-83].  

𝟏𝟏
𝑴𝑴𝑪𝑪

= 𝟐𝟐
𝑴𝑴𝑵𝑵

− 𝒂𝒂�𝟐𝟐
𝑽𝑽𝟏𝟏

�𝐥𝐥𝐥𝐥(𝟏𝟏−𝝂𝝂𝟐𝟐) + 𝝂𝝂𝟐𝟐 + 𝝌𝝌𝝂𝝂𝟐𝟐𝟐𝟐�

𝒂𝒂𝟐𝟐
𝟏𝟏
𝟑𝟑�  − 𝒂𝒂𝟐𝟐𝟐𝟐

     (2.21) 
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Similarly, the mesh size of hydrogels may be calculated with equation 2.25 for isotropic 

swelling, stemming from equation 2.22, where ξ is the distance between two stretched 

crosslinks, ��̅�𝑟𝑜𝑜2�
1
2�  is the root mean square distance between two crosslinks, Mr is the 

molecular weight of the repeating unit,  l is the repeat polymer bond length, and Cn is Flory 

characteristic ratio (4.0 for PEG [84, 85]) defined as equation 2.23, where n is the number 

of links per chain from equation 2.24 [81, 86]. 

𝝃𝝃 = 𝒂𝒂𝟐𝟐−
𝟏𝟏
𝟑𝟑� �𝒓𝒓�𝒄𝒄𝟐𝟐�

𝟏𝟏
𝟐𝟐�        (2.22) 

𝑪𝑪𝒏𝒏 = 𝒓𝒓�𝒄𝒄𝟐𝟐

𝒏𝒏𝒆𝒆𝟐𝟐
        (2.23) 

𝒏𝒏 = 𝟐𝟐𝑴𝑴𝑪𝑪
𝑴𝑴𝒓𝒓

        (2.24) 

𝝃𝝃 = 𝒆𝒆𝒂𝒂𝟐𝟐−
𝟏𝟏
𝟑𝟑� �𝟐𝟐𝑪𝑪𝒏𝒏𝑴𝑴𝑪𝑪

𝑴𝑴𝒓𝒓
�
𝟏𝟏
𝟐𝟐�       (2.25) 

2.2.5 Example Hydrogels in Practice 

The original hydrogel application came from Wichterle and Lim [87] who made poly(2-

hydroxyethyl methacrylate) (PHEMA) for use as soft contact lenses in the 1950s. Pure 

PHEMA lenses, however, showed little oxygen diffusion, and thus copolymerization with 

other hydrophilic acrylates, such as PHEMA-co-methacrylic acid (PHEMA-MAA) or 

PHEMA-co-tetraethylene glycol dimethacrylate (PHEMA-TEGDMA) has been utilized as 

spacers to increase the mesh size and allow permeability of oxygen for extended use, as 

well as modify wettability [88-90]. Hydrogels have since become increasingly popular in 

application, from wound-healing to organ reconstruction, and have been FDA approved 

for numerous applications.  
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For instance, medical adhesives are in use and development to replace sutures due to the 

lower risk of infection and blood-borne disease from needle use, and the enhanced 

convenience [16]. Further, chemical hemostatic agents have been shown to be more 

effective in trauma scenarios where rapid blood loss must be stopped quickly, such as the 

use of fibrin glue, where thrombin and fibrinogen crosslink into an adhesive network  [91]. 

Popular bioadhesives include those based on cyanoacrylates (e.g. Superglue). These 

oxidize rapidly from chain nucleophilic addition, such as hydroxyl radical contact air 

humidity, but are linear chain polymers and are not hydrogels. There are several PEG-

based systems, however, such as Coseal®, which is based on formation of branched thio-

ester bonds upon reaction of four-armed PEG-glutaryl-succinimidyl ester with four-armed 

PEG-thiol [91]. Another PEG-based system using PEG-ester and trilysine amine, 

Duraseal®, is indicated for use to prevent cerebrospinal fluid leakage for dural closure. 

However, due to the hydrophilicity of PEG-based hydrogels, they exhibit a high swelling 

ratio, and so care must be used so as not to damage sensitive regions if used [91]. Another, 

more recent hydrogel application that was FDA approved in 2015 is that of the PEG-based 

injectable radiospacer, SpaceOAR®, to create a buffer region between the prostate and 

rectum for prostate cancer radiotherapy with a 3-6 month biodegradation period [15]. 

2.3 Polymeric Nanoparticles 

The central goal of drug delivery is the optimization of the pharmacokinetics/ 

pharmacodynamics (PK/PD) for a specific medicinal application. To this end, 

nanoparticles have become a promising drug delivery technology as they are capable of 

greatly altering the PK/PD of a drug, potentially giving new life to active agents once 

thought to be unusable. As the PK/PD is determined by the nanoparticle, it is of utmost 
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importance to define what these properties are, requiring highly specific tuning of the 

carrier system. One of the classes of nanoparticles which provides the greatest flexibility 

in tuning, and hence the largest class of nanoparticle studied, is polymeric nanoparticles 

(PNPs) [92-96]. 

Importantly, when considering PNPs, it is important to understand what one means as a 

nanoparticle. According to the National Institute of Health National Cancer Institute 

National Nanotech Initiative (NIH-NCI NNI), a nanoparticle is any carrier structure who 

has an aspect ratio less than 100 nm, but greater than 1 nm. This narrow definition has 

turned out to be quite important for the field of tumor targeting and therapy, however is 

somewhat limiting considering the range of diseases that must be addressed. For this 

reason, many researchers have adopted a nanoparticle as being a system whose length scale 

is less than 1 micron, but most commonly will include particles in the range of 100-400 nm 

in size due to ease of centrifugation washing and handling, as well as size dependent 

cellular uptake. 

Polymeric nanoparticles can come in various shapes, compositions, and conformations 

which can be used for a variety of approaches including solubility enhancement, 

immunogenic masking, controlled release and retention time [96]. Furthermore, PNPs may 

exhibit unique properties which can allow the particles to flow through vasculature while 

protecting the active drug until reaching the specific target [97], which can reduce the 

amount of systemic release and increase local release, allowing the total amount of PNPs 

and drug administered to be smaller [98, 99]. 

These advantageous properties can allow simple drug carriers to provide an enhanced 

delivery effect in comparison to just administration of free-drug. Assuming no change in 
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bioavailability, but a simple decrease in drug release rate, the advantage of drug delivery 

via nanoparticles is depicted below in Figure 2.3A as a comparison between a hypothetical 

situation involving intravenous (IV) injection of free drug vs. drug in a slow releasing PNP 

carrier. 
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Figure 2.3. Comparison of pharmacokinetics. A.) Schematic of serum drug concentration 

after IV administration of either free drug or drug encapsulated in PNPs. B.) Schematic 

representing the effect of PEGylation on particle circulation. 

  

A B 
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Using IV injection of free drug, total plasma exposure of drug for a given dose is limited 

because of elimination of the drug. This area under the curve can be maximized by 

encapsulating the drug in a stealth (longer-circulating) nanoparticle that allows for 

controlled release. For applications requiring repeated IV injection, utilizing nanoparticles 

can greatly reduce both the number and frequency of injections necessary to maintain a 

therapeutic level of drug in the serum. These generalized results are typical in encapsulated 

drug delivery and give a sampling of the great potential PNPs provide. 

2.3.1 PNP Design 

In order to understand the advantages offered by polymer-based nanoparticles, it is 

necessary to understand various design criteria that determine the success of any 

nanoparticle-based therapy. Some of the important design features of nanoparticles are 

size, surface functionalization, mechanical properties, loading efficiency, encapsulated 

drug:carrier ratio, degradation mechanism and biocompatibility of polymer. While the 

exact structure-function relationships are still being identified, Table 2.1 summarizes the 

design features that are known to have an impact upon drug delivery parameters. 
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Table 2.1. PNP properties that affect pharmacological outcomes. 

  Pharmacological outcomes 
  Localization Duration 

of 
Therapy 

Total 
Delivered 
Amount Design features Circulation 

Tissue/ 
Cellular 

Sub-
Cellular 

Surface Chemistry X X X - - 
Responsiveness X X X X X 
Size X X X - X 
Shape X X X X X 
Mechanical Properties X - X - - 
Loading Capacity - - - X X 
Degradation X X X X X 
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2.3.1.1 PNP Material Selection (Biocompatibility and Biodegradability) 

PNPs can be formed from a vast array of polymers with a variety of properties including 

biodegradability, pH sensitivity, temperature responsiveness, reactivity, etc., and choosing 

the correct polymer and configuration for the PNP application desired may be a challenge. 

Table 2.2 provides a summary of commonly used polymers in PNP design. Note that this 

table only summarizes homopolymers and common random copolymers. Any of these 

polymers can be combined into block co-polymers for PNPs with properties not possible 

with the homopolymer. 
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Table 2.2. Classic polymers used in PNP synthesis. Glass transition temperatures (Tg) vary depending on molecular weight. Note that 

FDA approved indicates whether the polymer has been approved for any biomedical application, not just nanomedicine.  

 References 

[100, 101] 

[102-104] 

[105, 106] 

[107-111] 

[112-117] 

[118, 119] 

[120, 121] 

Particle 
Examples 

Nanosphere, 
Nanogel 

Nanosphere 

Nanosphere 

Nanosphere 

Dendrimer 

Nanosphere 

Nanosphere 

FDA Approved 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Tg 

135 ºC 

95 ºC 

100 ºC 

195 ºC 

-10 ºC to 25 ºC 

180 ºC 

- 

Responsiveness 

Thermal Swelling 

Organic Swelling 

Hydrolytic 
Swelling 

Hydrolysis Ion 
Pairing 

pH 
Conformational 
Change 

- 

Hydrolysis 
(Surface Erosion) 

Biodegradation 
Time 

N/A 

N/A 

N/A 

Hours to Months 

N/A 

N/A 

Hours to Weeks 

Material Class 

Polyacrylamide 

Polyacrylate 

Polyacrylate 

Polyacrylate 

Polyamide 

Polyamide 

Polyanhydride 

Common PNP Polymers 

Poly(N-isopropylacrylamide) 
(PNIPAAM) 

Polymethylmethacrylate 
(PMMA) 

Poly(2-hydroxyethyl 
methacrylate) (pHEMA) 

Polyalkylcyanoacrylate (PACA) 

Polyamidoamine (PAMAM) 

Polyvinylpyrrolidone (PVP) 

Poly(sebacic acid) (PSA), 
poly(carboxyphenoxypropane) 
(PCP), etc. 
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Table 2.2. Continued 

[7, 122-125] 

[126-131] 

[132-136] 

[129, 137, 138] 

[139-142] 

[143, 144] 

[145, 146] 

Nanosphere, 
Micelle, Nanogel 

Nanosphere 

Nanosphere, 
Micelle, 
Polymersome, 
Nanocapsule 

Nanosphere 

- 

Nanosphere, 
Nanogel 

Nanosphere 

No 

Yes 

Yes 

Yes 

Yes 

  

Yes 

- 

40 ºC to 60 ºC 

40 ºC to 50 ºC 

-60 ºC 

-70 ºC (400 Da) 

-25 ºC 

105 ºC 

Hydrolysis, pH 
Swelling 

Hydrolysis 

Hydrolysis 

Hydrolysis 

- 

- 

- 

Hours to Years 

Months to Years 

Weeks to Months 

Months to Years 

N/A 

N/A 

N/A 

Poly(β-amino 
ester) 

Polyester 

Polyester 

Polyester 

Polyether 

Polyethylenimine 

Polystyrene 

Block copolymers 

Polylactic acid (PLA) 

Poly(lactic-co-
glycolic acid) (PLGA) 

Polycaprolactone 
(PCL) 

Polyethyleneglycol 
(PEG) 

Polyethylenimine 
(PEI),      PEG-PEI, 
PLGA-PEI 

Polystyrene (PS) 
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Owning to their size, nanoparticles are under intense scrutiny regarding their ability to be 

eliminated from the body. While recent studies have suggested that inert nanoparticles 

(e.g., gold) are able to be eliminated through the biliary excretion mechanism, it isn’t 

certain how ubiquitous this effect is. As such, biodegradability of PNPs, which circumvents 

the bioaccumulation concerns, is one of the important properties that sets them apart from 

other systems. Typically, biodegradable polymers will degrade via either hydrolysis or 

enzymatic degradation. For instance, PLGA degrades into both lactic and glycolic acids 

[147], mainly via hydrolysis of ester bonds [147], and chitosan particles degrade in 

biological systems predominantly through presence of lysozyme and bacterial enzymes in 

the colon [148] into amino sugars [149].  Given the simple degradation products of PLGA, 

it is a popular component polymer for a variety of nanospheres, micelles, polymersomes, 

and nanocapsules systems [133-137] and has already been approved for human use [150, 

151].  

As overviewed in Chapter 3, poly(β-amino esters) (PBAE) are a new and exciting class of 

biodegradable polymer. Based upon the Michael addition reaction of amines and acrylates, 

a wide variety of available monomers exist [47] which can be applied to form polymers in 

this class, such as to form antioxidant nanogels [8]. The resulting polyester has a pH 

sensitive hydrolysis [122, 124, 125], allowing for a variety of particle delivery systems, 

including gene delivery [5]. The flexibility and versatility of PBAEs are very promising, 

yet given their more recent development, no current PBAE formulations have received 

FDA approval. 

Besides degradation, mechanical properties of certain polymers provide unique advantages 

over other systems. For instance, the FDA-approved biodegradable polyester, 
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polycapralactone (PCL), is interesting due to its relatively low glass transition temperature, 

-60ºC, giving PCL high molecular deformity at body temperature; ease of synthesis; and 

extended degradation times due to its hydrophobicity [129, 137, 138]. Other groups of 

polymers used in PNPs can allow interesting effects, such as the thermally induced 

swelling and shrinking of non-biodegradable poly(N-isopropylacrylamide) (PNIPAAM) 

[100, 101, 152]. 

While choice of polymer provides control over degradation rate and biocompatibility, 

polymers do not necessarily contain therapeutic value. Carrier polymers are typically 

desired to be inert, but recent data suggests that degradation products of biodegradable 

polymers can induce immunogenic response from host cells/tissue, raising questions about 

their biocompatibility [153-155]. One of the approaches to improve biocompatibility of 

polymers is to conjugate anti-inflammatory drugs (e.g. aspirin, small molecule 

antioxidants) to the polymer or incorporate these drugs into the polymer backbone [8].  

2.3.1.2 PNP Surface Chemistry – “Stealth” Considerations 

PNPs, as any nanoparticle system, show biological interaction due to the physiochemical 

effects at their surface. In order to design particles with unique functional surfaces (e.g., 

active targeting), it is first important to understand what the natural response to the “basic” 

particle configurations is. In general, nanoparticles administered into blood are rapidly 

cleared by the mononuclear phagocyte system (MPS). This response is a result of both size 

effects, (e.g., filtration, impaction, occlusion) and surface recognition, which is 

characterized by the accumulation of serum proteins and factors onto the particle surface 

(i.e. opsonization). The amount and type of proteins adsorbed depend on hydrophobicity 

and surface charge of particles, with charged nanoparticles being cleared much more 
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rapidly as compared to their neutral counterparts [156]. In fact, by developing surfaces that 

resist protein adsorption and other factor accumulation, it is possible to have a nanoparticle 

that is no longer readily recognized by the MPS and thereby possesses extended circulation 

times [157, 158]. This “stealth” property is classically seen in hydrophilic, or neutral 

polymers that do not possess hydrogen bonding donors. PEG is the most common polymer 

used to achieve this stealth capacity, an effect utilized for over 40 years [159]. PEGylation 

forms a hydrophilic layer around PNPs, which allows them to resist recognition by 

opsonins, thereby circumventing immune response from macrophages (Figure 2.3B) [160].  

PEG brush density also has an effect upon circulation time; typically, with greater density 

comes greater circulation time [161], unless the greater density causes other adverse effects 

such as increased instability [160]. Recently, there have been other PNP polymer coatings 

using polysaccharides that have no natural receptors [162]. 

Importantly, there are limitations to the use of PEG, which has increased the demand for 

alternative stealth polymers. For instance, as PEG is a non-biodegradable polymer, there 

are restrictions as to the maximum molecular weight that can be used. Currently, one of 

the largest in market PEG molecule being used is in PEGASYS®, which is a PEGylated 

interferon with a PEG chain weight of 40 kDa to increase retention in blood circulation 

[34]. The molecular weight restriction is due to the kidney’s maximum size restriction in 

clearing molecules in the blood stream of around 60 kDa, which avoids the concern of 

bioaccumulation [159]. Further, as PEG is limited in the number of conjugation sites and 

mechanical properties, these additional polymer systems increase the flexibility of PNP 

design available to the formulator without having to sacrifice circulation potential. 
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2.3.1.3 Size, Shape and Mechanical Properties  

Circulation of nanoparticles also depends on their size and shape (Table 2.3). Depending 

on stealth properties of particles, spherical nanoparticles with sizes less than ~8 nm results 

in rapid urinary excretion, whereas spherical particles with sizes in excess of 1 µm result 

in rapid clearance due to filtration effects in the microvasculature. While there exists some 

degree of controversy in the literature regarding the exact size cut offs, a more inclusive 

statement is that PEGylated particles with sizes between 20 nm and 1 µm possess 

prolonged circulation times [163]. The exact extent differences are very system dependent 

and are still being elucidated. Particle shape also has a profound effect on circulation life, 

cell attachment and cellular uptake [164]. An example of this is given by PEG-containing 

diblock copolymer filomicelles, which have shown a circulation half-life approaching ~ 1 

week [165]. Filomicelles, which are flexible polymeric micelles with a large aspect ratio, 

align with blood flow to avoid vascular collisions, extravasation and phagocytosis. Geng 

et. al. showed that under flow conditions, spherical and short filomicelles were readily 

phagocytosed as compared to longer filomicelles [165]. Rigidity of particle also affects 

their phagocytosis. Rigid particles are readily phagocytosed as compared to soft particles 

[166]. Filomicelles have also been used outside of systemic circulation applications for the 

mimicking of oral mucin networks via a layer-by-layer deposition approach [167]. 

As polymers can be composed from a wide variety of chemistries and can be processed 

into a variety of shapes and forms, each of the above mentioned design criteria can be tuned 

for specific application. Flexibility in polymer synthesis and nanoparticle formulation 

methods have made PNPs one of most widely studied drug delivery methods.  
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 Table 2.3. Examples of PNP configurations in vivo. 

References 

[168, 169] 

[170] 

[171, 172] 

[173] 

[174, 175] 

[176] 

[176] 

[177, 178] 

[179, 180] 

[181] 

Formulation 

Ring-opening 
polymerization 

Nano-precipitation 

Ring-opening 
polymerization 

Film-rehydration 

Emulsion, spray drying 

Double emulsion 

Double Emulsion 

Nano-
precipitation/Michael-
addition 
Divergent 
polymerization 

PRINT 

Drug 

Paclitaxel 

Paclitaxel 

Doxorubicin 

- 

Tacrolimus 

- 

- 

- 

Doxorubicin 

- 

Drug t1/2 

12 h (human) 

9 h (mouse) 

73 h (human), 98 hr 
(mouse) 

- 

9 h (rat) 

- 

- 

- 

- 

- 

Carrier t1/2 

<1 h (human) 

2 h (mouse) 

- 

28 h (mouse) 

- 

63 h (mouse) 

1 h (mouse) 

18 h ( mouse) 

72 min (mouse) 

3.3 h (mouse) 

Size Range 

30-60 nm 

80 nm 

40 nm 

100 nm 

350 nm - 10 µm  

150 nm 

130 nm 

145 nm 

22,550 Da 

200 nm 

Material 

mPEG-PLA 

PBLA-Polyester-PEG 

PEG–poly(aspartic 
acid)-DOX 

PEG-Polybutadiene 

PMMA in HPMC 

PEG-Chitosan 

PEG-PVA 

Polysaccharide–PEG 

PEG-polyester-DOX 

PEG 

Particle Type 

Micelle 

Micelle 

Micelle 

Polymersome 

Nanocapsule 

Nanosphere 

Nanosphere 

Nanogel 

Dendrimer 

PrintTM 
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2.3.1.4 Particle Type 

Given the extensive array of chemistries and mechanical properties available in polymers, 

there is conceptually no limit to the forms and designs of PNPs that can be made. While 

the particle types of micelles and dendrimers have many uses, of particular interest to our 

research in linear chain and crosslinked polymers were nanospheres, polymersomes, and 

nanogels.   

2.3.1.4.1 Polymeric Nanospheres and Nanocapsules/Polymersomes 

Polymeric nanospheres, nanocapsules, and polymersomes are composed of polymers 

which can collapse on themselves or assemble in solution, and have unique geometry 

described in Figure. 2.4. The categories of nanocapsules/polymersomes and nanospheres 

differ in that nanospheres are generally solid to the core, where 

nanocapsules/polymersomes will usually have either a crosslinked surface with a vacant 

interior that is formed by polymerization in solution, or bilayer through amphiphilic self-

assembly [182, 183]. This means that nanospheres can have drug loaded throughout the 

particle matrix, where nanocapsules/polymersomes generally encapsulate the drug within 

the interior vacancy, or within the polymer shell [184]. Many of these nanospheres and 

nanocapsules/polymersomes are formed using amphiphilic di-block copolymers, which 

allows loading of hydrophobic drugs into the core for increased bioavailability.   

Pulmonary drug and gene delivery is an application in which PNPs are promising, as it 

avoids certain pitfalls of inhalables. Some difficulties in inhalable pulmonary drug delivery 

are the natural mucin clearance mechanisms, phagocytosis by deep lung macrophages, 

variable thickness of the mucin layer, and scar tissue from smokers. Interestingly, as inert 
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PEGylated PNP surfaces are known to enhance vascular circulation times, PEGylation of 

PNPs also enhance their mucopenetrative properties [185].  

Composition, size, and surface charge are important in efficacy of drug deposition and 

cytotoxicity [186]. PLGA chains covalently modified onto PVA backbones can produce 

polymeric nanospheres which have tunable properties, such as a fast or slow degradation 

rate to deliver drugs appropriately depending on the pathophysiology. 

Nanocapsules/polymersomes (or polymer vesicles), synthetic polymer-based analogs of 

phospholipid liposomes are composed of self-assembled di/tri-block copolymers [e.g. 

PEG-PLA, PEG-PBD(poly butadiene), PEG-poly(propylene-sulfide)-PEG] [187, 188] (for 

detailed review, refer to [189]). Like liposomes, nanocapsules/polymersomes have a large 

internal aqueous domain that can be used for loading hydrophilic drugs. The thicker 

membrane of nanocapsules/polymersomes ( ~9-22 nm as compared to ~3-4 nm for 

liposomes) makes them a more robust carrier that can resist membrane deformation forces 

which commonly disrupt liposomes [187]. Also, owing to the higher PEGylation density 

of the nanocapsule/polymersome surface, nanocapsules/polymersomes have a two-fold 

higher circulation life (20-30 hours in rats) as compared to liposomes [173]. 

Nanocapsules/polymersomes have been used to load significant amounts of hydrophilic 

and hydrophobic anticancer drugs into aqueous core and membrane respectively [142, 190, 

191]. Nanocapsules/polymersomes can also be used for simultaneous loading of both 

water-soluble and water-insoluble small molecule drugs [192].  
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Figure 2.4. Cross-section structural examples of a drug containing A) nanosphere B) 

nanocapsule or polymersome C) nanosphere with active targeting. 
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2.3.1.4.2 Nanogels 

Aspects of both hydrogels [193] and nanoparticles make polymeric nanogels a very 

exciting and promising drug delivery system. Through variation of the crosslinked 

structure, size, and material selection, a multitude of options and effects are possible [177, 

194-198]. The biggest difference between nanogels and other polymeric nanoparticles is 

that their structure is crosslinked either physically or chemically and will hydrolytically 

swell, and, depending on the polymers and crosslinking chemistry used, degradation can 

be pH responsive which has been extensively utilized as a passive targeting technique [197, 

199]. This swelling force when in an aqueous environment can be produced through 

protonation/deprotonation, which will increase mesh size until equilibrium is met with the 

crosslinks’ tension force. There are also nanogels which are temperature sensitive, such as 

those formed from poly(N-vinylcaprolactam) (VCL) [200], poly(N-isopropylacrylamide) 

(PNIPAAm) [152], or poly(oligo(ethylene glycol methacrylate)) (pOEGMA) [201].  

Figure 2.5 shows the structure of a surface modified spherical nanogel. 
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Figure 2.5. Structure of a nanogel with zoomed in section showing crosslinking. 
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2.3.2 PNP Formulation Methods and Targeting 

2.3.2.1 Nano-Precipitation 

There are several different routes of synthesis to prepare nanospheres and nanocapsules as 

well as different methods and results of drug loading and targeting. The simplest approach 

for nanoparticle formulation is that of nano-precipitation [202]. Generally, the polymer and 

drug are dissolved in an organic solvent, then added to an aqueous solution being stirred 

vigorously in which the organic solvent is either quickly evaporated or is diffused into the 

aqueous phase, which acts as an anti-solvent for the polymer and drug. The polymer then 

precipitates rapidly, creating nanoparticles [127, 136]. To remain stable, these particulates 

are then either stabilized by surfactants in the solution or through charge repulsion on the 

nanoparticle surface. As particles are formed directly by the rate of solvent diffusion and 

polymer aggregation, initial polymer solution viscosity, polymer MW, and concentration 

greatly impact the final size of the precipitated particles [69]. 

As an organic system is often used, it is important to ensure that adequate removal of the 

toxic solvent phase is achieved. Solvent extraction may be performed through evaporation 

if it has a high vapor pressure, through complete lyophilization of the solution, centrifugal 

washing steps, or tangential flow filtration. 

2.3.2.2 Nanogel Synthesis 

Synthesis of nanogels typically includes crosslinking polymer chains in an already formed 

PNP [195] through a technique such as emulsion polymerization [197]. For physically 

crosslinked nanogels, one can perform nano-precipitation [196], which physically binds 

polymer strands together. Physical crosslinking can be fairly simple, as Nagahama [196] 
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showed. Briefly, they formed a macromer in DMSO of PLA and dextran and then, 

dropwise, added water with dissolved protein to this solution under fast mixing to 

precipitate the polymer into a physically crosslinked nanogel. Physical crosslinking is 

dependent upon material selection; some diblock polymers will form micelles, others will 

form nanogels. Nowak [203] used polypeptides to form nanogels and showed that chain 

conformations (α-helix, β-sheet, or random) of the hydrophobic portion of the amphiphilic 

block copolymer, as well as the use of a diblock or random block copolymer, make a 

difference as to whether a micelle or nanogel is formed through physical interactions. Drug 

loading can be performed through a few different methods. A simple technique is to imbibe 

the formed nanogels in a drug dissolved solution which will cause the nanogels to swell 

and increase their mesh size. Drying will effectively collapse the nanogels and encapsulate 

the drug. Another method is that of direct addition of the drug in solution before the 

nanogels polymerize. For the technique previously described in Shidhaye [197], one can 

add drug to the aqueous phase with the polymers before initiating polymerization. Our 

group has successfully synthesized covalently-bound antioxidant nanogels consisting of 

quercetin [7, 8] into PBAE nanogels through a single-phase reaction precipitation method 

with a secondary amine under dilute conditions in acetonitrile. To increase aqueous 

stability, the polymer was PEGylated as well. These covalently-bound antioxidant 

nanogels have the benefit of only showing activity upon release of degradation products 

through ester hydrolysis, allowing for cellular uptake of highly hydrophobic drugs that 

otherwise would show low bioavailability. 
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2.3.3 Nanoparticle Targeting 

For enhanced selectivity and function in nanoparticle drug delivery, surface modification 

with specific targeting molecules is popular [204-206] and provides a means to further 

decrease the amount of drug administered and reduce toxic side effects of the drug that 

does not reach the intended target. The two main categories of targeting PNPs to a specific 

location for drug delivery are passive and active targeting. Passive targeting is the use of 

natural shape/size to determine the localization of PNPs. Active targeting involves the use 

of an affinity based recognition sequence (e.g. ligand/receptor, antigen/antibody) to 

determine the distribution of PNPs.  

2.3.3.1 Passive Targeting 

Currently, passive targeting has been the only FDA approved approach to nanoparticle 

drug delivery. Most commonly, passive targeting involves utilizing the effects of passive 

transport principles to reach the desired location. The best example of this is the enhanced 

permeation and retention (EPR) effect. In areas of highly vascular permeability (e.g., sites 

of inflammation or some cancerous tumors), nanoparticles that are long circulating can 

slowly accumulate in the interstitial space. Ideally, extravasated particles can be taken up 

by the local cells and deliver active drug. Size is an important factor in EPR passive 

targeting of PNPs administered via systemic drug delivery as it impacts the effective 

biodistribution throughout the body. If nanoparticles are being used for the treatment of 

solid tumors, then the size range for the nanoparticles used should be around 10-500 nm 

[207], where the most effective average size is between 50-200 nm [207]. Tight junctions 

between healthy endothelial cells will not allow nanoparticles around 10 nm and up to pass 
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through, but in tumor tissues, nanoparticles can typically fenestrate between the loose 

junctions up to around 500 nm. In general, though, sizes of 5-250 nm have potential for 

most drug delivery applications [33] [208]. 

Another example of passive targeting mechanism is that of pH responsiveness in anti-

cancer treatment and other pH sensitive applications where the polymer carrier releases 

drug at a higher rate either through degradation or via cationic repulsion effects. For 

instance, in the treatment of colitis, PLGA/methacrylate copolymer nanospheres were 

loaded with budesonide, a corticosteroid, and delivered to a murine model. In comparison 

to conventional enteric-coated microparticles, the nanospheres released drug with a strong 

pH-dependence in the colon and showed superior colon targeting with greater 

concentration in both non-inflamed and inflamed tissue [209]. 

Micelles sensitive to pH are particularly popular for anti-cancer drug delivery in which the 

lowered pH of tumors is utilized with passive targeting and the EPR effect [99, 210, 211].  

An example of a method that involves passive targeting via pH sensitivity through polymer 

design is the use of an amphiphilic diblock copolymer with a hydrophobic poly(β-amino 

ester) [212] or another acid-sensitive group [98, 99, 210, 213] as the micelle core in 

combination with a hydrophilic head group. Another example of pH sensitive targeting is 

by harnessing increased hydrogen bonding at lower pH to extend molecules via repulsion 

in the corona which may help release the carried drug more readily [210].   

2.3.3.2 Active Targeting 

Active targeting presents an opportunity to further deliver drug to the desired target tissue. 

Contrary to passive targeting mechanisms, these coatings can prevent the drug carriers 

from being swept away from the active site by simple passive transport. This is due to site 
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specific interactions of the targeting molecule, which can promote endocytosis of the 

nanoparticles and allow cytoplasmic drug delivery. The production cost of peptides and 

antibodies, however, increases the cost of the engineered drug delivery system. As with 

passive targeting, active targeting can occur either with a single level of targeting or 

multiple levels of targeting. At additional cost, advantages to multi-level active targeting 

are that you can target more surface area by attacking multiple levels at once, and you have 

the option of having one drug delivery vehicle being able to treat multiple diseases either 

separately or together. The addition of targeting groups for both tumor cells and vessels 

with a tumor-penetrating peptide allows for much greater tumor area covered in 

comparison to passively targeted nanoparticles.  

2.3.3.3 Antibodies 

Based upon their method of production, antibodies are available in two main types: 

monoclonal or polyclonal. Monoclonal antibodies target only one specific epitope on the 

surface of an antigen. They are molecularly homologous with only one variable region. 

Polyclonal antibodies represent a heterogeneous population of antibodies that, while 

targeting the same antigen, can recognize a variety of epitope domains on an antigen. 

Further, polyclonal antibodies can contain different clones that recognize the same epitope, 

but with vastly different affinities. For this reason, monoclonal antibodies are the preferred 

choice for PNP targeting, as they express a much more consistent targeting potential, 

greatly reducing batch to batch variability. Monoclonal antibodies also may be more easily 

tailor-made by being produced from gene-modified hybridomas in large supply in the lab. 

If recombinant polyclonal antibodies can be produced through the use of gene libraries for 

optimization, they may also be useful to target disease-specific antigens [214]. One concern 
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with monoclonal antibodies, compared to other targeting, is possible immune activation 

from nonspecific RES uptake. In addition, their large size inhibits movement through 

vasculature and passive transport across endothelium [95, 215]. A potentially more useful 

method was shown in the literature where a mimetic-antibody peptide was used in lieu of 

the real antibody. The results showed that there was reduced affinity of the mimetic 

antibody towards the tumor, but the mimetic antibody showed greater tumor inhibition 

[215]. 

Example antigens for angiogenic tissue are NG2 (a proteoglycan surface indicator of 

pericytes) and ED-B (a form of fibronectin). These are all selectively produced in tumor 

vessels, and antibodies have been developed to target these sites to use in delivering toxins 

[216]. However, a significant pitfall to the active targeting coatings which target 

angiogenesis, is that angiogenesis also occurs in tissue with wound repair occurring. The 

occurrence of cancer treatment coinciding with inflammation or an injury could cause 

serious malfunction with the normal wound repair processes and pose risk to the patient, 

thus patients would have to be carefully selected for this option. 

An anti-ovarian cancer targeting molecule is folate (vitamin B9). This vitamin is important 

in rapidly dividing cells, as in the case of cancerous tissue. By surface modifying 

nanoparticles to include a folate receptor binding molecule, these nanoparticles can go 

through endocytosis to enter into the cytoplasm for drug delivery [204, 217]. Folate 

receptor binding molecules include folic acid and a monoclonal antibody which binds to 

the folate receptor [218]. 

While systemic targeting is predominantly used in PNP cancer therapy applications, 

antibody targeted PNPs are also used in gene therapy. Cationic PNPs form electrostatically-
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stable complexes with DNA and are a widely-used alternative to viral gene delivery vectors 

[219]. An advantage of using antibody targeted nanoparticles in gene therapy is that a 70 

nm nanoparticle can hold around 2,000 small interfering RNA (siRNA) segments, while 

keeping the contents safe from external exposure, compared to conjugated antibodies 

without a nanoparticle carrier, which can only hold less than 10 unprotected siRNA strands 

[205]. Microparticles and other carriers can have a payload of molecules the same as, if not 

greater than, that of nanoparticles. However, nanoparticles excel in navigating tumor 

fenestrations and then delivering drug to the cytoplasm [204], helping bypass multidrug 

resistance through entering the cell via receptor-mediated endocytosis [220].   

2.3.3.4 Target Epitope Selection 

Importantly, if active targeting is to be used, selection of the target epitope must be 

carefully considered. For instance, for cellular targeting, the target should be present on the 

luminal surface of exposed cell types to be detected during circulation. In particular, this 

often means the vascular endothelium. Further, the epitope should be spatially and 

temporally available, i.e. not be down regulated or hidden under times of pathology. For 

example, adhesion of activated blood cells and accelerated shedding inhibit targeting to 

some constitutive endothelial determinants [221]. On the other hand, determinants exposed 

on the endothelial cells under pathological conditions (e.g. selectins) have a distinct 

transient surface expression profile, which may permit selective drug delivery to 

pathologically altered endothelium, but require exact timing of administration to match 

duration of target availability. Ideally, the target should not be present in cells other than 

the intended target. Targeting should not cause harmful side effects in the vasculature. 

Binding of targeted drugs may cause shedding, internalization, or inhibition of endothelial 
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determinants, which may be detrimental. For example, thrombomodulin, a surface protein 

responsible for thrombosis containment, is abundantly expressed in the pulmonary 

vasculature, providing high pulmonary targeting specificity [222]. Yet, its inhibition by 

antibodies may provoke incidences of thrombosis that prevents clinical potential for drug 

delivery. Ideally, engaging of the target should provide therapeutic benefits, such as 

inhibition of pro-inflammatory molecules.   

2.3.4 Particle Characterization 

Ultimately, the success of PNPs is not guaranteed if they are not effectively characterized. 

Surprisingly, most failures of particles during development have been, in part, due to 

ineffective characterization of the particles. PNP shape, surface properties and morphology 

can be determined through imaging, such as scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) or atomic force microscopy (AFM). Size 

distribution of PNPs can be checked via nanoscale imaging such as SEM or TEM, or can 

be analyzed by using dynamic light scattering (DLS). Determining zeta-potential of PNPs 

is useful to determine both charge properties of a surface coating and to see if the charge 

is appropriate for biological use systemically. Surface charge of PNPs is important in 

determining their stability in suspension, their propensity to aggregate in blood flow, their 

cellular uptake characteristics and their likelihood to adhere with oppositely charged 

particles or cellular membranes [96]. Zeta potential of nanoparticles in dispersion can be 

measured using laser Doppler electrophoresis (LDE). Characterization techniques like 

Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), or x-

ray diffraction (XRD) can be used to determine chemical groups on the PNP surface.  
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The stability of PNP’s, an important characteristic to determine, can easily be checked 

through looking for degradation products over time in stabilizing media or by checking 

polydispersity over time. Nanoparticles which aggregate once delivered intravenously can 

be fatal, thus surface modification to reduce that chance is often necessary [223].   

Checking the loading characteristics of PNPs can be as straight forward as simply 

dissolving/swelling PNP in organic solvent to extract the encapsulated drug or degrading 

the PNP via a method which does not inhibit or destroy the active drug. For instance, if the 

drug does not degrade in the presence of acid, lowering the pH to dissolve acid hydrolyzed 

PNPs is a quick method of degradation, and the concentration of drug released in the 

supernatant can be determined through an analysis technique such as HPLC, UV-Visible 

spectroscopy, fluorometry or mass spectroscopy. Encapsulation efficiency (EE) is a very 

commonly used definition to describe the amount of drug actually loaded into the 

nanoparticles versus the total amount of drug which was added to the solution of PNP 

synthesis, as described in equation 2.26: 

Mass drug loaded into PNP
Mass drug added to synthesis solution

= EE    (2.26) 

An easy way to determine EE is to keep track of the mass of drug added to the synthesis 

solution, form the PNPs, and then centrifuge them into a pellet or perform gel permeation 

chromatography. Supernatant can then be used to back calculate the encapsulated drug, or 

a release study can be done with the PNPs to determine drug released. 

2.3.5 Biodistribution  

Biodistribution can be determined by both invasive and non-invasive methods.  Typically, 

invasive methods involve histology of targeted organs and tissues after set time periods to 
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detect a marker. For instance, if radiolabeled nanoparticles are used, the tissues can be 

placed in a gamma counter for comparison over time to find the concentration dynamics. 

Non-invasive methods are promising in that histology is not required. For instance, if 

targeted radiopaque PNPs are administered in vivo, the subject can be x-ray imaged over a 

period of time to establish biodistribution [224]. Radio-opaque polymers can be formed 

through adding salts containing heavy metals, or materials such as iodine which absorb x-

rays. Molecular imaging utilizes distinct biomarkers in biological systems to perform 

characterization at the molecular and cellular level. By delivering a signal-providing, or 

signal-dampening, probe to a targeted area, 2D and 3D imaging can be produced of that 

area [225]. A similar branch of molecular imaging, radiogenomics, can detect gene 

expression radiometrically without performing histology [226]. Different signals can be 

added to PNPs, such as radioisotopes, which produce either positrons or photons for use in 

PET (positron emission tomography) or SPECT (single-photon emission computed 

tomography), respectively, or contrast agents for use in MRI (nuclear magnetic resonance 

imaging) or optical imaging, etc.  Each imaging technique has benefits and caveats due to 

different sensitivities and approaches. There are many good articles discussing this topic 

[225, 227-229].  

Biodistribution of nanoparticles is often reported with both the total percent of the injected 

dose (%ID) as well as organ-normalized through the percent injected dose per gram of 

organ tissue (%ID/g). Through collection of blood samples at the time of tissue harvesting 

or euthanasia, a localization ratio (LR) may be determined, to analyze differences in 

nanoparticle localization compared to systemic background, by dividing the organ %ID/g 

by the blood sample %ID/g. Similarly, if an active targeting agent is used, it may be 
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compared to a non-targeted control via the immunospecificity index (IS), found by diving 

the targeted organ LR by the non-targeted organ LR. 

2.3.6 Biocompatibility and Cytotoxicity of PNPs 

All systemically injected materials must pass basic safety criteria in order to be approved 

for use. Owing to the burgeoning area of nanoparticle therapy and the complexity involved, 

this characterization can be quite extensive and challenging.  However, the principles of 

determining safety are relatively simple to understand and provide a guiding-light to 

consider as one develops new PNP strategies. At the simplest level, the PNP should be 

nontoxic, non-immunogenic, non-inflammatory, non-teratogenic, non-thrombogenic, non-

bioaccumulating and be stable in blood [230]. As toxicity is easily evaluated in in vitro 

studies and provides a useful indicator of biological toxicity, PNPs should be first evaluated 

by determining the effect of particles and their degradation products on cellular viability. 

Cell type selection can be made based upon the application of interest. Similar to the 

cellular uptake of PNPs, the cytotoxicity of PNPs can be size, shape, zeta potential, and 

surface chemistry dependent. Kim et. al. [231] demonstrated size-dependent cytotoxicity 

of polypyrrole nanoparticles (PPy NPs). Human lung fibroblasts and mouse alveolar 

macrophages were treated with monodispersed PPy NPs of different sizes (20, 40, 60, 80 

and 100 nm). PPy NP cytotoxicity correlated to their size and was in the following order: 

60 nm > 20 nm > 40 nm > 80 nm > 100 nm.  

Cytotoxicity may be determined by measuring cell viabilities after treating them with 

different concentrations of PNPs. Before choosing an appropriate cell viability assay, it is 

necessary to understand what each assay is measuring as an endpoint and how that 

correlates with cell viability. Assays are available to measure endpoints like cell 
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proliferation, number of live cells, number of dead cells, and mechanism of cell death. 

MTT (3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyl tetrazolium) is a colorimetric assay to 

measure cell proliferation where the active reductase enzymes in viable cells reduce MTT 

to a purple-colored formazan product. As a result, formazan formation is directly 

proportional to the number of viable cells in a culture. However, MTT can also directly 

react with reducing agents (e.g. polyphenolic antioxidants) to produce formazan crystals. 

In cases where such reducing agents are involved, MTT or other assays that rely on 

reductase activity may overestimate cell proliferation [232]. The luminescence-based ATP 

assay, where luminescence originates from conversion of luciferin to oxyluciferin by a 

luciferase in presence of ATP, measures luminescence intensity to determine ATP 

concentration in cells which is an indicator of cell viability [231]. Live/Dead® assay is a 

fluorescence based assay to differentiate live cells from dead cells by simultaneously 

staining with green fluorescent Calcein-AM to indicate intracellular esterase activity 

(marker of live cells) and red-fluorescent ethidium homodimer-1 to indicate loss of plasma 

membrane integrity (marker of dead cells). Methods of detection for Live/Dead® assay 

include fluorescent spectroscopy, fluorescent imaging or flow-cytometry, and it can be 

used to determine total number of live and dead cells in a culture. To determine the 

mechanism of cell death, apoptotic and necrotic cells can be differentiated by detecting 

phosphatidylserine with FITC bound annexin V and propidium iodide [233]. Furthermore, 

mitochondrial membrane potential can be measured with flow-cytometry to determine if a 

loss of membrane potential has occurred, a sign of apoptosis in some systems. This can be 

performed by adding fluorochromes which reflect the membrane potential via 

fluorescence. In case of slow degrading biodegradable PNPs, measuring cytotoxicity of 
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PNPs after short term exposure (24 – 72 hrs) may not be enough and it is equally important 

to separately determine cytotoxicity of water-soluble and insoluble degradation products 

of PNPs.  

While cell viability assays are a good indicator of overall cellular response to a toxin, they 

do not reveal much about the mechanism of toxicity. Recently, a lot of attention is also 

being given to biomaterial-induced inflammatory response which is inextricably linked to 

cellular oxidative stress, where cellular antioxidant defense mechanisms are overwhelmed 

by excessive generation of reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) [7]. 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) is commonly used as a 

marker of oxidative stress in cells [234]. DCFH-DA, a non-fluorescent form of the dye, is 

taken up cells and cleaved to a non-fluorescent DCFH (2’,7’-dichlorodihydrofluorescein) 

by active esterases in the cell. DCFH can the then react with a variety of ROS and RNS 

(hydrogen peroxide, peroxynitrite, hydroxyl radical, lipid peroxides, thiol radicals, etc.) to 

form fluorescent DCF (2’,7’-dichlorofluorescein). Oxidative stress in the cells can be 

quantified by measuring DCF fluorescence. Since DCF reacts with variety of ROS and 

RNS, it does not provide information about specific oxidative species involved or about 

sub-cellular compartments (e.g. cytoplasm, plasma membrane) that are at risk of damage 

by ROS/RNS. Cellular proteins can be measured for their 3-nitrotyrosine (3NT) and 

protein-bound 4-hydroxy-2-trans-nonenal (HNE) content, which are specific markers for 

protein damage by RNS and lipid peroxidation, respectively

A typical and problematic contaminant in nanoparticle formulations is that of the endotoxin 

lipopolysaccharide (LPS). LPS, originating from gram negative bacteria, is pyrogenic and 

a major hurdle of nanoparticle formulations in pre-clinical studies due to cytotoxicity [235]. 
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Endotoxin levels can be determined via a simple assay, such as the lumilus amebocyte 

lysate (LAL) assay, which may give a positive result through clot formation, turbidity, or 

chromogenicity depending on the test used. The other common method of evaluation for 

pyrogenic contamination is an in vivo rabbit test where qualitative results are measured 

after injection. Removal of LPS from nanoparticles is very troublesome due to the high 

surface area to volume ratio of nanoparticles [235], resistance to heat, pH, and inability of 

removal via sterile filtration, so sterile design and practices may be the most effective 

method of non-contamination compared to post-processing removal. 

2.3.7 PNP Drug Release and Pharmacokinetic Modeling 

Modeling release characteristics of drugs from PNPs not only gives insight about the 

release/degradation mechanism in a new PNP formulation, but also helps in choosing PNP 

design to obtain desired release profiles. Fick’s second law of diffusion in spherical 

coordinates, equation 2.27, is a common starting point for modeling drug release from 

PNPs, and it describes the change in concentration, 𝐶𝐶, of drug in a sphere of radius 𝑟𝑟 over 

time 𝑡𝑡. 𝐷𝐷 is the diffusivity and 𝑎𝑎 is the constant radius of the sphere. Since Fick’s second 

law only describes diffusion, it is not an end-point equation for PNPs which are degradable 

or exhibit relaxation effects. 

𝝏𝝏𝑪𝑪
𝝏𝝏𝒆𝒆

= 𝑫𝑫 �𝝏𝝏
𝟐𝟐𝑪𝑪
𝝏𝝏𝒓𝒓𝟐𝟐

+ 𝟐𝟐
𝒓𝒓
𝝏𝝏𝑪𝑪
𝝏𝝏𝒓𝒓
�     (2.27) 

For 1-dimensional diffusion in the radial axis and sink conditions, initial and boundary 

conditions can be stated as: 

𝒆𝒆 = 𝟎𝟎              𝟎𝟎 < 𝒓𝒓 < 𝒂𝒂        𝑪𝑪 = 𝑪𝑪𝟏𝟏      
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𝒆𝒆 = 𝟎𝟎               𝒓𝒓 = 𝟎𝟎              𝝏𝝏𝑪𝑪
𝝏𝝏𝒆𝒆

= 𝟎𝟎      

𝒆𝒆 > 𝟎𝟎               𝒓𝒓 = 𝒂𝒂               𝑪𝑪 = 𝑪𝑪𝟎𝟎      

where a is the PNP radius, C1 is the initial concentration in the PNP and C0 is the 

concentration in the surrounding bulk fluid.  The series solution to equation 2.27 is given 

by Crank et. al. as equation 2.28: 

𝑴𝑴𝒆𝒆
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= 𝟏𝟏 − 𝟔𝟔
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𝒏𝒏𝟐𝟐
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𝟐𝟐𝝅𝝅𝟐𝟐𝒆𝒆
𝒂𝒂𝟐𝟐

�   (2.28) 

For short times, equation 2.28 can be simplified to equation 2.29: 

𝑴𝑴𝒆𝒆

𝑴𝑴∞
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𝝅𝝅𝒂𝒂𝟐𝟐
�
𝟏𝟏/𝟐𝟐
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       (2.29) 

Modeling using non-sink conditions can also be very useful. If the drug delivery is to be in 

an area where drug may accumulate, such as PNPs meant to be delivered to a tumor site, 

Fick’s second law can be used to derive numerous variations by simply changing the 

boundary conditions. Historically, the Higuchi equation, originally derived for a slab 

geometry and simplified in equation 2.30, has been the modeling workhorse of diffusive 

drug delivery [236], showing diffusion following Fick’s second law for the first 60% of 

release. 𝑀𝑀𝑡𝑡
𝑀𝑀∞

 is the mass fraction of drug released at time 𝑡𝑡 from the total amount contained 

at 𝑡𝑡 = 0, and 𝐾𝐾 is a constant which depends on each system. Over the years, this equation 

has been the basis for many other equations which take into account other geometries and 

has been derived from a simple pseudo-steady state diffusion model. Equation 2.31, 

typically called the power law, further expands the Higuchi equation into describing the 

mechanism of drug release by combining diffusive effects with 𝑡𝑡1/2 and relaxation with 
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𝑡𝑡1, as seen in equation 2.32. This equation superimposes both relaxation/swelling based 

transport and pure Fickian diffusion by allowing alteration of the power 𝑛𝑛, and again can 

be used to describe the first 60% of release.  

𝑴𝑴𝒆𝒆

𝑴𝑴∞
= 𝑲𝑲𝒆𝒆𝟏𝟏/𝟐𝟐       (2.30) 

𝑴𝑴𝒆𝒆

𝑴𝑴∞
= 𝑲𝑲𝒆𝒆𝒏𝒏        (2.31) 

𝑴𝑴𝒆𝒆

𝑴𝑴∞
= 𝑲𝑲𝟏𝟏𝒆𝒆𝟏𝟏/𝟐𝟐 + 𝑲𝑲𝟐𝟐𝒆𝒆      (2.32) 

However, the power values of 0.5 and 1 are useful only for slab geometry, and power values 

have been derived for systems with other geometries [237]. Concerning spherical 

geometry, when the exponent 𝑛𝑛 is equal to 0.43, the release mechanism is that of Fickian 

diffusion. An exponent between 0.43 to 0.85 is described as transport utilizing both Fickian 

and case-II swelling, and an exponent of 0.85 is defined as purely case-II relaxation 

transport. Trivially, a power value of 0 would give no release and 1 would give zero-order 

release, independent of time.  

While the power law is useful in quick characterization, there are some draw backs in the 

assumptions made: the particle size distribution must be narrow, sink conditions must 

always be attained, diffusion must only occur in one direction, edge effects must not exist, 

the diffusivity of drug must remain constant, the polymer carrier must not dissolve, and the 

drug must be suspended such that it is much smaller than the thickness of the system [236]. 

Considering drug delivery applications, sink conditions occur when drug is released into 

an area where the limiting condition is the rate of diffusion of drug from the PNPs, and 

diffusion of the drug into the surroundings is fast. If the drug is released into an area where 
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local concentration buildup occurs, this model will not fit. If the particle size distribution 

is tight, setting up an easy experiment with sink conditions is very simple. An example 

experiment would be to put the PNPs into a dialysis bag, and that bag into a large volume 

of drug release medium. Then, by calculating the drug release from the particles, the initial 

and final mass of drug release is known, and parameters 𝐾𝐾 and 𝑛𝑛 can be obtained by fitting 

the data to a plot. 

Nanoparticles may release drugs following several different mechanisms. Possible 

mechanisms of release include diffusion and degradation of the polymer chains. Diffusion 

of the drug can occur from the surface, through an expanded polymer matrix, through the 

wall of a nanocapsule, or through a combination of these processes. Degradation can occur 

due to hydrolysis of bonds which may increase the mesh size in nanogels or lead to the 

dissolution of nanospheres, nanocapsules, dendrimers, or micelles. 

A common equation used in modeling of drug release from nanoparticles is equation 2.33.  

 𝐂𝐂𝒅𝒅𝒓𝒓𝒅𝒅𝒈𝒈(𝐭𝐭) = 𝐀𝐀𝐞𝐞−∝𝐭𝐭 + 𝐁𝐁𝐞𝐞−𝛃𝛃𝐭𝐭      (2.33) 

This equation is a bi-exponential function which describes at time t the concentration of 

drug in a nanoparticle. A is a diffusion constant, B is a degradation constant, and α and β 

are rate constants. When it comes to more rigorous modeling, there are variety of different 

methods to simulate PNPs, and these methods can be categorized by their end goal. If one 

is interested in interaction at the molecular level, a macroscale approach will not be as 

useful as molecular dynamics or Monte Carlo simulations. Molecular dynamics and Monte 

Carlo simulations rely on molecular interactions, thermodynamics, and kinetics to carry 

out the simulation. Microscale methods can include Brownian dynamics modeling or 

dissipative particle dynamics [238]. While molecular dynamics simulations can be more 
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intricate in the modeling of PNPs, there is a large downside in that it usually requires 

intensive and extensive computation.  

2.3.8 Compartmental Modeling 

Related to drug release, pharmacokinetics can be described through the use of 

compartmental modeling. Briefly, each compartment describes a biological transport 

barrier or container, such as the circulatory system, different organs, RES, or cellular 

barriers. The end-goal is to be able to determine concentration at any time in any 

compartment. The simplest compartmental model is a single compartment model that 

describes first-order elimination of a drug following a single bolus injection (equation 

2.34). For instance, if drug loaded PNPs are injected intravenously and have a single, 

constant clearance mechanism without any other interaction with any parts of the body, 

this can be modeled as a single compartment. Solving equation 2.34 for the initial condition 

yields equation 2.35. The constants can be determined through physiologically relevant 

studies.  

𝒅𝒅𝑪𝑪
𝒅𝒅𝒆𝒆

= −𝒌𝒌𝒄𝒄𝒅𝒅𝒆𝒆 ∗ 𝑪𝑪(𝒆𝒆)        𝑪𝑪(𝟎𝟎) = 𝑪𝑪𝟎𝟎     (2.34) 

𝑪𝑪(𝒆𝒆) = 𝑪𝑪𝟎𝟎𝒂𝒂−𝒌𝒌𝒄𝒄𝒅𝒅𝒆𝒆𝒆𝒆       (2.35) 

Each compartment, in addition to the first, can be organized in the fashion necessary to 

describe the prescribed conditions. Where a single compartment may only utilize simple 

input and output, a two compartment model can show equilibrium effects where drug may 

be transiently contained. For instance, Figure 2.6 describes this concept as a block diagram. 

Utilizing a form of the base equation 2.34, the necessary equations can be derived from a 

mass balance of inputs and outputs.  



64 

𝑽𝑽𝟏𝟏
𝝏𝝏𝑪𝑪𝟏𝟏
𝝏𝝏𝒆𝒆

= 𝑸𝑸𝒊𝒊𝒏𝒏𝑪𝑪𝟎𝟎 + 𝒌𝒌𝟐𝟐𝟏𝟏𝑪𝑪𝟐𝟐𝑽𝑽𝟐𝟐 − 𝒌𝒌𝟏𝟏𝟐𝟐𝑪𝑪𝟏𝟏𝑽𝑽𝟏𝟏 − 𝑸𝑸𝒄𝒄𝒅𝒅𝒆𝒆𝑪𝑪𝟏𝟏   (2.36) 

𝑽𝑽𝟐𝟐
𝝏𝝏𝑪𝑪𝟐𝟐
𝝏𝝏𝒆𝒆

= 𝒌𝒌𝟏𝟏𝟐𝟐𝑪𝑪𝟏𝟏𝑽𝑽𝟏𝟏 − 𝒌𝒌𝟐𝟐𝟏𝟏𝑪𝑪𝟐𝟐𝑽𝑽𝟐𝟐      (2.37) 
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Figure 2.6. 2-compartment model showing equilibrium with a second compartment 

corresponding to equations 2.36 and 2.37. 
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A simple example of Figure 2.6 is when compartment #1 is the blood space and 

compartment #2 is tissue space of a particular organ. Blood flows through the organ, and 

there is local buildup in the tissue space of the organ. This is a simple model, but 

compartments to represent additional organs or drug depots can be added to increase model 

accuracy; however, determining appropriate parameters for more complicated models can 

be challenging.   

2.3.9 Example PNPs in Practice 

While there are numerous PNP products in development [33], and several currently in the 

clinical trial phase [33, 168], there are currently no FDA approved synthetic polymeric 

nanoformulations. However, nanoformulations made from organic polymers (e.g. proteins) 

and liposomes do exist, such as the popular albumin-based Abraxane® for paclitaxel 

delivery approved in 2005 [34, 239]. Interestingly, the story of Abraxane® provides an 

excellent illustration of the importance in delivery vehicle choices. Paclitaxel is a highly 

hydrophobic anticancer agent that is difficult to deliver in therapeutically relevant doses 

without some mechanism to increase solubility. Prior to Abraxane®, the most common 

formulation to achieve this was based upon a non-ionic surfactant, Cremophore EL®, and 

ethanol mix (Marketed as Taxol®). This mixture is considered to be a predecessor to PNP 

as, upon injection, Cremophore EL® forms a micelle which aides in dispersing and 

solubilizing paclitaxel [168]. Unfortunately, Cremophore EL® has significant side effects, 

including neuropathy and hyper sensitivity. Furthermore, the Cremophore EL® micelle has 

rapid clearance rate compared to free paclitaxel, which requires more drug to be injected 

to be effective [168, 240]. In 2005, Abraxis Bioscience (acquired by Celgene in 2010) 

received FDA approval to market Abraxane®. Abraxane® is a 130 nm nanoparticle 
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composed of Albumin-bound paclitaxel. Albumin is a long circulating serum protein that 

is a natural carrier of vitamins and many other different hydrophobic molecules. As such, 

it was hypothesized that particles composed of albumin would both enhance paclitaxel 

solubilization and provide improved circulation times. However, it was also found that 

albumin aides in the transcytosis of the substance it is carrying into endothelial cells by 

forming caveolae [241]. This effect, in addition to the improved pharmacokinetics with 

reduced side effects, is a classic example of just how PNP can be designed to improve drug 

therapy. 

Conceptually, a more straight forward approach is to create a micelle system that is less 

toxic, more stable and has a longer circulation half-life than Cremophore EL®. Currently 

in a phase IV clinical trial in the USA, is Genexol-PM®, which has been approved for 

paclitaxel delivery in South Korea since 2007. Genexol-PM® uses a diblock copolymer of 

poly(ethylene glycol)-co-poly(lactic acid) (PEG-PLA), which fulfills many of these 

requirements, and is indicated for breast cancer treatment (Figure 2.7). 
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Figure 2.7.  Schematic description of paclitaxel loaded Genexol-PM®. Polyethylene 

glycol, a hydrophilic non-ionic polymer, has excellent anti-adhesive properties, which 

permits evasion of the mononuclear phagocytic system (MPS), the cell system responsible 

for the clearance of large particles from circulation. Poly(D,L-lactic acid) is a 

biodegradable hydrophobic polymer. The diblock copolymer of these polymers results in 

a micelle system that is more stable, and contains a hydrophilic shell that imparts a longer 

circulation half-life compared to other nanoparticle systems. This prolonger circulation 

time resulted in an increase in tumor accumulation due to the enhanced permeation and 

retention effect (EPR) [168].   
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2.4 Conclusions 

Advances in biomaterials have bridged the historic gap between material science and tissue 

response for the betterment of patients in a wide variety of applications. Research into 

synthetic hydrogels has opened the field of local drug delivery for enhanced therapeutic 

delivery and tissue-like properties. Similarly, nanoparticle properties allow for (but are not 

limited to) enhanced systemic delivery systems which may evade immune response, or 

utilize antigens for fast cellular uptake, a property which traditional small molecule drugs 

lack. As is discussed in Chapter 3, through the understanding of biocompatibility, immune 

response, and inflammation, biomaterials may be designed to effect a response in complex 

redox systems for the inhibition of infection and oxidative stress diseases. 

Copyright © Andrew L. Lakes 2016 
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Chapter 3. Mechanisms of Infectious and Oxidative Stress Disease 

Thiol redox metabolism text partially taken from the book chapter: 

Prachi T. Gupta, Andrew L. Lakes, Thomas D. Dziubla. A Free Radical Primer, In 
Dziubla: Oxidative Stress and Biomaterials: the Science, Challenges and 
Opportunity. (In Prep.) 

3.1 Introduction 

Across the world in 2012, all diseases accounted for 49.2% of all deaths, with the remainder 

from accidental death or “other” causes [242]. Of those disease-related deaths, ischemic 

heart disease accounted for the leading cause in high income countries (158 deaths out of 

100,000 population), and in low income countries lower respiratory infections were the 

leading cause (91 deaths out of 100,000 population) [242]. In general, many disease-related 

deaths were implicated with either infection or oxidative stress, such as lower respiratory 

tract infections or diarrheal diseases, and ischemic/hypertensive heart disease, stroke, 

chronic obstructive pulmonary disease, cancer, and neurodegenerative disease. While great 

medical progress has been made in disease treatment, there still remain large numbers of 

deaths of preventable disease. It is apparent that the shift in cause of deaths away from 

infectious disease in first world countries is through thorough antibiotic access, advanced 

medical technologies, and national healthcare systems. Nonetheless, first world countries 

are afflicted by not only the aforementioned oxidative stress diseases, but also must act 

swiftly against the increasing rates of antibiotic resistance emergence that is raging across 

the third world [243, 244]. Through the engineering of new smart materials to enhance 

delivery of drugs to counteract DNA, protein and lipid damage via oxidative stress 

mechanisms, as well as those to reduce the propensity for antibacterial resistance 

emergence are of high importance throughout the world. In this chapter, oxidative stress 
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disease and bacterial infection mechanisms are discussed in the context of drug delivery 

methods and devices.  

3.2 Cellular Respiration 

With primary function of the production of the nucleotide adenosine triphosphate (ATP) 

in animals, mitochondrial function is very important for cellular energy regulation, and 

dysfunction can lead to apoptosis and disease [245, 246]. Electron transport of protons 

across mitochondrial membranes in aerobic respiration, used in the Kreb’s cycle or the 

citric acid cycle (TCA), produces oxidant byproducts of superoxide and hydrogen peroxide 

due to oxidative phosphorylation of adenosine diphosphate (ADP) to ATP.  

In discovering the mechanism of apoptosis, i.e. programmed cell death, there was 

observation of mitochondrial dysfunction showing loss in cytochrome c into the cytosol, 

and early autolytic morphologies in damaged mitochondria exhibiting swelling, and a small 

ATP production loss, which was compensated for by increased glycolysis, yet increased 

reactive oxygen species (ROS) as well [247-249]. Later, it was found that the complex 

apoptotic process involves pro-apoptotic factors changing mitochondrial permeability to 

release both second mitochondria-derived activator of caspases (SMACs), which activate 

cytotoxic caspases, and cytochrome c, which is necessary for the formation of the 

apoptosome, a protein complex holding contents which would otherwise damage nearby 

cells, allowing phagosomes to eliminate its contents safely, similar to the utility of 

peroxisomes to harbor hydrogen peroxide for use as an oxidizing agent such as lipid 

metabolism [250].  
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3.2.1 Cellular Redox State 

Within the eukaryotic cellular environment, there exists an equilibrium between oxidants 

and antioxidants [251]. The cellular redox state is based upon the concentration of these 

oxidizing and reducing agents present in various cellular regions, as well as extracellular 

state. Many oxidants and antioxidants exist and play important roles in cellular function 

and health. Different cellular compartments, meant for different processes, require different 

reduction potentials, or the likelihood of electron transfer between species, to function 

properly. Reduction potentials are typically calculated via the Nernst equation. At 

homeostasis, cytoplasm typically holds a reduction potential between -260 to -200 mV, 

allowing the high reducing environment to act as a buffer against oxidative injury. Due to 

respiration processes, mitochondria are protected to an even greater extent with a reducing 

potential around -280 mV, with -330 mV in liver mitochondria due to increased glutathione 

(GSH) transport for toxin removal as well [250]. The endoplasmic reticulum (ER), 

however, holds a reducing potential around -189 mV due to the oxidative processes the ER 

carries out, with most glutathione species entrapped as mixed protein disulfides, which can 

be converted to GSH to aid in protein folding procedures [250]. 

3.2.1.1 Thiol Redox System  

Paramount to achieving a functional cellular environment is the complex network of 

oxidizing and reducing molecules and proteins, required to maintain correct reaction 

conditions for the cellular machinery to carry out. Major players of redox processes are 

defined in Figure 3.1. Of particular interest to our antioxidant polymer work is that of the 

thiol redox system, involving the small molecule antioxidant, glutathione (GSH), which 
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contains an antioxidant thiol group and is the most abundant small molecule in eukaryotic 

cells. Synthesized within the cell from the three amino acids, glutamate, glycine, and 

cysteine, GSH production is rate limited by cysteine content, a semi-essential amino acid 

in biology. Cysteine transported from extracellular space is in the disulfide form, termed 

cystine [252]. Reaction of cysteine with glutamic acid in presence of glutamate-cysteine-

ligase (GCL) followed by reaction with glycine via glutathione synthetase (GSS) results in 

GSH production [252]. GSH may act in several mechanisms as an antioxidant, whether 

directly through electron donation to reactive oxygen or nitrogen species in the intracellular 

or extracellular space, or via enzymatic routes such as with glutathione S-transferase (GST) 

to irreversibly reduce toxic species like lipid peroxides and protein carbonyls [253]. In 

addition to direct chemical reaction with oxidative species, GSH participates in several 

mechanisms to regenerate other important antioxidant enzymes such as glutathione 

peroxidase (GPx), glutaredoxin (GRX), and peroxiredoxins (Prxs) non-specifically. 

Oxidized glutathione (GSSG) may be reduced back to GSH via glutathione reductase (GR), 

which is driven by NADPH and the glucose-6-phosphate dehydrogenase (G6PD) cycle via 

oxidation of NADPH to NADP+. There are also other thiol-based oxidoreductases such as 

thioredoxin, which utilizes cysteine thiol-disulfide exchange (instead of GSH), and is 

regenerated with thioredoxin reductase, similarly utilizing NADPH for regeneration akin 

to GSSG with GR. 

Depending on the compartment of the cell, redox equilibrium may vary. For instance, the 

cytosol (GSH:GSSG 100:1) and nucleus (GSH:GSSG >100:1) maintain a reducing 

environment [254, 255], whereas the endoplasmic reticulum (GSH:GSSG of 1-3:1 [256], 

where disulfide bonds fortify the protein structures), mitochondria (GSH: GSSG of 20-
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40:1 [255]), secretory pathways, and extracellular space (GSH:GSSG 20:1 [257]) have a 

high concentration of oxidants comparatively. It is important to note that extracellularly, 

while the GSH:GSSG ratio is around 10-20:1, cysteine and cystine are in greater 

concentration by about an order of magnitude, and maintain the oxidative environment 

around cysteine:cystine of 0.2:1 [257].  In a similar manner, NADPH is a reducing 

coenzyme involved in processes like fatty acid synthesis, and is required to drive various 

redox reactions in the metabolic pathway. Therefore, NADPH:NADP+ (200:1) ratios are 

found to be in same order of magnitude as for GSH/GSSG redox equilibrium. On the other 

hand, another coenzyme NADH plays an essential part in both reduction and oxidation in 

general, hence a significant concentration of both oxidized and reduced form is maintained 

in the cell with NAD+ at greater concentration. Cytoplasmic NADH which is produced by 

oxidation of cytoplasmic NAD+ acts as an electron donor and is transported to the 

mitochondrion to reduce mitochondrial NAD+ to NADH, which in turn is oxidized again 

during oxidative phosphorylation to generate ATP. It is postulated via several experimental 

studies that NAD+/NADH ratio in cytoplasm is around 700:1, though the overall cellular 

ratio varies between 0.5:1 to 4:1. This ratio is involved in regulation of several metabolic 

enzymes such as glyceraldehyde 3-phosphate dehydrogenase, and pyruvate dehydrogenase 

used in conversion of pyruvate to acetyl-CoA.  
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Figure 3.1. Significant cellular redox molecule interactions. Green: glutathione processes. 

Red: oxidant species reduced by glutathione processes. 
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3.3 Immune Response  

Infection and inflammation are closely tied and yet may occur independently, for 

inflammation may occur without infection (e.g. mild cellular damage or disease), or 

pathogenic infection may occur with a species which evades a host’s immune response 

(e.g. HIV/AIDS). Bacteria and microorganisms display key surface markers, which 

animals have evolved an innate immune response to in an effort to ward off pathogenic 

colonization. This response may vary from minor acute inflammation upon injuring a toe 

from lysed cells releasing inflammatory cytokines, to disabling autoimmune disorders like 

rheumatoid arthritis where chronic inflammation is intensely damaging to joints in the 

extremities. This damage is due to continuous production of reactive radical species, 

creating an imbalance of oxidants to antioxidants, termed oxidative stress. Sepsis, a state 

of systemic inflammation, occurs due to an out of control immune response to initial 

infection. With a death rate of roughly 25-80% of patients for uncomplicated to 

complicated disease, sepsis is a serious disease affecting about 18 million people per year 

[258]. For each of these diseases, research involving controlling antioxidant delivery is 

ongoing, involving mitochondrial function protection [258-260]. Another link between 

infection and oxidative stress-induced disease exists in one of the causes of gastric cancer. 

Helicobacter pylori infection plays a role in that increased gastric immune response creates 

an oxidative burden upon the stomach lining, causing mutagenic effects over time [261].  

To combat these problems, the immune system, consisting of the innate and adaptive 

immune systems, is charged with removal of foreign bodies to prevent infection, and with 

the signaling of cellular dysfunction from disease or tissue damage. Cells of the innate 

immune system contains pattern recognition receptors (that co-evolved with pathogens) 
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which contain conserved pathogen associated molecular patterns used in detection. There 

are also damage-associated molecular patterns which are chemosensed by a variety of cell-

signaling molecules released from cellular dysfunction, apoptosis, or necrosis [262]. The 

adaptive immune system is driven by detection of unique antigens via dendritic cells, which 

initiate and modulate immune response. Upon stimulation of dendritic cells from detection 

of an antigen in the tissue involved, these dendritic cells present antigens to B and T 

lymphocytes for antibody production and antigen removal via differentiation into 

additional B cells, macrophages, and killer T cells [263]. This release of cytokines during 

the process of antigen detection is paramount towards the end goal of receiving aid in the 

area of concern via local and circulating immune cells. The duration of immune response, 

whether it be innate or adaptive response, may be defined as either acute or chronic.  

3.3.1 Acute Inflammation 

As a means to mobilize appropriate cells to the area of the immune event, acute 

inflammatory response is initiated by release of event-related signaling molecules. In the 

case of infection, cytokines are released from immune cells, such as the interleukin family 

and eicosinoids, a complex, unsaturated fat-derived family involved in leukocyte attraction 

(e.g. leukotrienes), vasodialation, and thrombosis (e.g. prostaglandins). 

Lipopolysaccharide (LPS) (the outer membrane layer on gram-negative bacteria) is a well-

known prostaglandin inducer (cyclooxygenase 2 synthase in particular) [264]. Bacterial 

infections are primarily destroyed through neutrophil and monocyte phagocytosis via 

oxidative bursts of superoxide which are membrane and wall destructive. Further, this 

superoxide may convert to hydrogen peroxide, and combine with chloride ions to produce 

hypochlorous acid when protonated via reaction with myeloperoxidase, causing the 
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characteristically green color found in neutrophil containing mucus, such as a runny nose 

during sickness.  

Similarly with the wound-healing process, after platelet-derived triggering of immune 

response from collagen contact (if there is hemorrhage), or parenchymal cellular 

damage/activation (if no hemorrhage), the acute inflammatory phase is primarily 

neutrophils phagocytosing cellular debris via oxidative burst destruction, later arriving 

monocytes which also phagocytose debris, and digestion of proteins through secreted 

proteases [265, 266]. For leukocyte extravasation to occur into an infected or damaged 

region (Figure 3.2 A), signaling molecules are released from macrophages such as the 

inflammatory cytokine tumor necrosis factor alpha (TNF-α), and others like interleukins-1 

and 6, causing upregulation of G protein coupled receptors on endothelial cell surfaces 

(Figure 3.2 B) [265]. Circulating leukocytes chemosense cytokines (Figure 3.2 C) and after 

expressing L-selectin initially adhere to endothelial cells via cluster of differentiation 34 

(CD34). Upon attachment (Figure 3.2 D), L-selectin is shed due to CD34 attraction, and 

leukocytes roll towards endothelial junction, mediated by P-selectin and E-selectin, where 

leukocytes are triggered via platelet endothelial cell adhesion molecule 1 (PECAM-1) to 

produce further integrins, and tight adhesion occurs via inflammatory cell adhesion 

molecule 1 (ICAM-1) and vascular cellular adhesion molecule 1 (VCAM-1). Then, 

PECAM-1, ICAM-1, and VCAM-1 modulate leukocyte transmigration through the 

endothelial junction (Figure 3.2 E) [267]. Once complete with the task of initial cellular 

debris cleanup or infection control (Figure 3.2 F), these leukocytes apoptose for clearance 

via macrophages (Figure 3.2 G), and the rest of the wound-healing process proceeds with 

angiogenesis and collagen deposition [268, 269]  
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Figure 3.2. Example leukocyte recruitment and extravasation scheme. Red burst indicates 

cellular damage. Yellow lightning indicates cytokines. MP = macrophage, L = leukocyte, 

M = monocyte, N = neutrophil. 
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3.3.2 Chronic Inflammation and Oxidative Stress 

Where the acute immune response is vital for disease control and damaged tissue treatment, 

chronic inflammation may occur when this response becomes dysregulated. This can occur 

from oxidative stress tissue damage through continuous leukocyte extravasation, due to 

autoimmune disease, such as type-1 diabetes towards β cells, ischemia/reperfusion injury, 

or radiation injury for example, causing significant cell death. Typical of a chronic wound, 

leukocyte extravasation may occur beyond the typical wound healing period (Figure 3.3A). 

Continuing digestion of cells and surrounding tissue without reduction of leukocyte influx 

(Figure 3.3B) can cause complications such as infection, or even cancer due to the increase 

in the cell repair cycle (Figure 3.3C). Mitochondrial damage from excess ROS leads to 

increased mitochondrial permeability, and the release of ROS into the cytoplasm (Figure 

3.3D). This release turns into a chain reaction of mitochondrial dysfunction, termed ROS-

induced ROS-release [270].  

A main proponent in the function of wound healing is the transcription factor, nuclear 

factor kappa B (NF-κB). Activated by cell signaling from distress or infection, NF-κB 

upregulates a series of inflammatory cytokines such as IL-1 and TNF-α [271]. In serious 

wounds, or wounds complicated by diseases like diabetes where there is limited blood 

perfusion to tissues, a positive feedback loop may occur where continuing NF-κB 

expression signals for more TNF-α, thus more leukocyte recruitment and more cellular 

destruction. NF-κB dysregulation is also implicated in cancer development and drug 

resistance due to NF-κB being an apoptosis inhibitor, thereby increasing cellular 

proliferation [271].  
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Figure 3.3. Example chronic leukocyte recruitment and extravasation scheme. Red burst 

indicates cellular damage. Yellow lightning indicates cytokines. MP = macrophage, L = 

leukocyte, M = monocyte, N = neutrophil.  
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3.3.3 Biomaterial Biocompatibility 

When foreign objects are implanted within the body, immune response follows the acute 

inflammatory pathway, namely, an influx of white blood cells to the region. If the immune 

system finds digestion of the material is not possible, the next best option is to contain the 

foreign body. This occurs through the deposition of opsonins, a complex of proteins such 

as fibrinogen, IgG, and others on the biomaterial surface (i.e. fibrous capsule formation) 

[272]. If a continuous oxidative environment is interred upon a biomaterial, it may cause 

implant failure, such as the case with corrosion of metallic and polyurethane leads in 

pacemakers [273]. However, depending on the mechanical properties of the implant, 

surface coatings, and drugs eluted, the inflammatory response can be minimized, allowing 

the biomaterial to exist in harmony with the immune system [274]. Of high importance is 

the relationship of the material to the surrounding tissue. That is, if a material is deposited 

into soft tissue, a soft biomaterial should be used, such as a hydrogel so as to reduce 

excessive tissue friction and motion. Likewise, rigid implant materials such as PMMA 

polymers or stainless steels are a better option for bone remodeling. While some surface 

roughness is desirable to reduce implant motion, excess surface roughness may induce 

implant erosion, leading to small particle debris further increasing immune response, 

fibrous capsule thickness, and therefore the chances of implant failure [275, 276]. For 

biodegradable materials, implant erosion is desirable, but the composition of degradation 

products must be chosen wisely so as to be non-cytotoxic. Popular examples of these 

cytocompatible biodegradable materials in clinical use are poly(lactic acid), poly(glycolic 

acid), and their co-polymers of poly(lactic-co-glycolic acid). Nonetheless, even these 
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cytocompatible materials produce degradation products that induce an oxidative stress 

response [153]. 

Systemically delivered nanomaterials may also be opsonized through white blood cell 

attack in circulation. This often occurs within seconds in circulation [277]. To avoid 

unwanted immune system interaction and increase circulation periods (if desired), 

nanoparticles have often been coated with molecules, such as the polymer polyethylene 

glycol (PEG). This effect is hypothesized to occur through inhibition of protein adherence 

via compression of hydrophilic PEG chains upon van der Waals attraction of proteins, 

whereby the new high energy state creates a repulsive force great enough to block adhesion 

[278]. However, a certain PEG density must be attained for PEG chains to stand on end in 

the “brush” configuration (which decreases surface area for opsonin adherence), and with 

at least a molecular chain weight of 2000 or greater for adequate blocking effects due to 

elasticity [161]. 

Since mitochondrial damage can cause oxidative stress feedback loops, mitochondrial 

health is an important factor in determining cytotoxicity of biomaterial degradation 

products. Seahorse Bioscience has produced an assay, Seahorse XF, which measures 

oxygen consumption rates [279]. Through subsequent additions of specific materials, 

respiratory measurements such as the maximum respiratory capacity, spare respiratory 

capacity, ATP production, proton-leak, and non-mitochondrial respiration all may be 

measured. Our group has utilized this method to compare cytotoxicity of materials, for 

instance finding that thiol-containing degradation products provided higher mitochondrial 

protection against oxidative stress than the same material oxidized to contain disulfide 

bonds [63]. 
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3.4 Treatment of Inflammation and Oxidative Stress 

There are many causes of acute inflammation for non-disease, injury-related conditions 

(e.g. tendinitis, back pain, contusions) in which common treatment practices involve 

administration of analgesics and/or anti-inflammatories to the patient. Most commonly, 

these are in the form of non-steroidal anti-inflammatory drugs (NSAIDs), such as the non-

prescription drugs, ibufropen, acetylsalicylic acid, and naproxen. NSAIDs are popular for 

mild treatment due to being non-steroidal (non-habit forming) and non-narcotic (non-

opioid). These function through cyclooxygenase (COX) inhibition of COX-1 and COX-2 

and prostaglandin-endoperoxide synthases 1 and 2, which are used in prostaglandin and 

thromboxane synthesis (prostanoids) [264, 280]. Superficially, COX-1 generates 

prostanoids in system-wide tissues, while COX-2 produces prostanoids at the tissue site of 

inflammation [281]. While many NSAIDs are non-specific in COX inhibition, other 

common over-the-counter pain-relievers, such as acetaminophen, are only central nervous 

system COX-2 inhibitors, thus reducing pain, but not inflammation at the tissue site [282]. 

However, NSAIDs which inhibit both COX-1 and COX-2 show a greater extent of gastric 

complications compared to COX-2 selective inhibitors [281]. COX-2 also is implicated in 

cancer development due to on-site inflammatory response. While NSAIDs show a cancer 

preventative effect on colorectal cancers, due to COX-2 inhibition, their chemopreventive 

effects are not well established for other cancer types [283, 284].  

A variety of diseases exist in which chronic inflammation is implicated, and reduction of 

oxidative stress is key to treatment. Treatment may vary from short to long-term NSAID 

or acetaminophen prescription for mild joint pain with osteoarthritis. Or for cases of 

extreme impairment, such as with rheumatoid arthritis, additional prescription of anti-
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rheumatic drugs, such as methotrexate, the first line drug which shows multiple 

mechanisms of immune suppression [285]. These systems, however, are administered as 

non-targeted, systemic delivery systems. Drug delivery could be improved through 

delivering higher doses over an extended period to the tissue of relevance, without inducing 

unintended toxicity to other organs [286, 287]. Due to the minimization of cellular 

oxidation via glutathione intracellularly, thiol-based antioxidant delivery systems have 

been studied for the effect of increasing glutathione cellular concentrations. Unfortunately, 

glutathione is not readily taken up by cells, and remains in the bloodstream to be oxidized, 

excreted, or degraded into cysteine [288]. Cysteine, one of three amino acid building blocks 

for glutathione, may be delivered, but it is also rapidly oxidized as well and shows organ 

toxicity [289], but is useful in applications such as acetaminophen overdose in the form of 

N-acetyl-cysteine [290]. Our group has created disulfide based biomaterials which may be 

reduced to produce bound-thiols [63, 69]. When bound, or upon biodegradation of the 

material, these thiol groups show antioxidant effects, and have shown cytoprotection under 

oxidative stress conditions [63]. 

Another application using an antioxidant thiol-based treatment is the disease of radiation 

pneumonitis (RP). RP is a chronic inflammatory disease complication of the lungs due to 

scar tissue buildup after lung cancer radiation therapy. With roughly 10%-20% incidence, 

RP is a common side effect [291, 292]. As cells contain a very high water content, the 

effect of high energy radiation is ionization with formation of free radicals and ROS. While 

these are the driving force for the use of radiation therapy for the destruction of cancer 

tumors, they may cause undesirable side effects with healthy tissue contact. Of particular 

interest for the inhibition of RP onset, is the health of endothelial cells in lung capillaries. 
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Inflammatory response stems from endothelial cell signaling, and resulting damage from 

radiation therapy will trigger a cascade of events. Due to the acute inflammatory response, 

cell adhesion molecules and other inflammatory cytokines are upregulated on and around 

the cellular surface to recruit white blood cells and platelets, and the tight junctions between 

endothelial cells become more relaxed to allow extravasation [293, 294]. These neutrophils 

give off oxidative bursts, furthering the oxidative stress in the area. It has been observed 

that activated macrophages can be found within one hour of lung irradiation [295]. While 

the effect of this leukocyte transmigration may be beneficial for injury scenarios to reduce 

chance of infections, the inflammatory response of the lung has been shown to be 

widespread, and even in cases may occur also in the opposite lung of which was targeted. 

This describes the extent of non-beneficial oxidative stress, and the purpose for which 

radioprotectant drug delivery may be used in these situations. By quenching ROS in these 

extraneous areas through delivery of a radioprotectant, oxidative damage could be 

minimized, and lung function would be improved. 

Perhaps the greatest challenge of all radioprotection is to not protect the tumor, utilizing a 

mechanism of differential treatment. This is why the controversial amifostine is the only 

FDA approved radioprotectant, for with its sulfur-protecting phosphate head group, it has 

been shown to readily cleave (leaving a free thiol head group) in the presence of alkaline 

phosphatase (AP) [296-298]. Further, it is claimed that there are reduced AP levels 

expressed only in cancerous tissues, whereas all normal tissues contain baseline levels. 

With this, if amifostine is near a tumor, it will not become free radical scavenger, whereas 

any other tissue, it will become a radioprotectant. While this drug may sound useful, it is 

used under the discretion of the oncologist, and is often not used [291, 292, 296, 297, 299-
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304]. Amifostine causes undesirable side effects, such as hypotension and vomiting, which 

are often detrimental towards the treatment. Another confounding factor, however, which 

may elucidate the meager results of using amifostine is that AP is also present in the blood 

serum. Since amifostine is delivered as a free drug intravenously (IV), amifostine (WR-

2721) is likely to turn into its free thiol form in the blood stream (WR-1065), perhaps 

describing both the high dose required, and side effects. Further, it has been shown that 

predominant uptake of this molecule is via the disulfide configuration (WR-33278), 

requiring oxidation, where it is then uptaken via a polyamine transporter, as the disulfide 

version is similar to spermidine, and further reduction within the cell to become active. 

Thus, there still remains a gap in lung cancer radiotherapy, where an endothelial cell-

targeted drug delivery system could aid the patient’s recovery in reduction of RP onset 

through radioprotection. 

While inflammatory diseases and ageing incur oxidative stress on the cellular environment, 

systemic antioxidant delivery has been shown to be a double edged sword. Reviews of diet 

supplementation with antioxidants have shown no effect at low levels, and an increasing 

rate of mortality at higher doses [305]. One mechanism for this is that even though the 

antioxidant, vitamin E, can sequester free radicals, it also suppresses the tumor suppressor 

protein p53 [306, 307]. p53 is involved in tumor suppression through initiating apoptosis 

from faulty DNA repair, and thus the systemically lowered p53 levels may allow for 

increased cellular proliferation of tumors which would otherwise be apoptosed, posing a 

hazard for at-risk populations (e.g. smokers) [308]. Targeted antioxidant delivery methods 

are a promising field to control oxidative stress in specific tissues, while avoiding 

unintended systemic toxicities.  
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Due to the importance of NF-κB in the wound healing process and in cancer progression, 

molecules which suppress NF-κB expression have been studied for anti-inflammatory and 

anti-cancer treatment. One class of antioxidant molecules, which suppresses NF-κB 

expression and thus are also anti-inflammatory, are those of flavonoids, with examples 

such as curcumin, apigenin, quercetin, and resveratrol [309-311]. Similarily, targeted 

delivery methods may be required for successful treatments as NF-κB inhibition not only 

lowers inflammatory response, but also increases rates of leukocyte apoptosis, potentially 

harming normal tissues immune response [271].  

 

3.5 Bacteria in Infectious Disease 

Bacteria have persisted for over 3.7 billion years [312], evolving into a vast array of an 

estimated 107 to 109 species [313], with some living from the depths of the earth to the void 

of space. Bacteria have been co-evolving with the rise of eukaryotic species since their 

onset 1.8 billion years ago, as well as with Homo genus 2.8 million years ago, resulting in 

37% of current Homo sapiens sapiens genes containing bacterial/archaeal homologs [314]. 

From 600-800 species of bacteria compose the oral cavity flora [315], with approximately 

1000 more species composing the gut flora [316]. Although many of these bacterial species 

are beneficial and aid to crowd out pathogens, opportunistic infections are still a common 

occurrence. Across the world in 2012, these infections or diseases caused death from 

diarrhea (1.5 million deaths) to lower respiratory infections (3.1 million deaths) [242].  

With the advent of the antibiotic era, prophylaxis against bacterial infection has progressed 

greatly from Ignaz Semmelweis’s hand washing [317] to local and/or systemic 
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administration of antibiotics for routine injuries from a laceration to complex surgical 

procedures. For deep infection, wound treatment through IV and oral antibiotics requires 

from weeks to months of delivery to ward off infection in patients, if at all [318]. 

Sometimes severe wound infections can emerge in sites with limited blood perfusion, 

forming hard-to-eliminate biofilm infections. These biofilms often require antibiotic 

concentrations much higher than the minimum inhibitory concentration (MIC) of 

planktonic bacteria (Figure 3.4), thus requiring toxic concentrations [319]. To avoid this 

systemic toxicity while still treating the wound, it is common to follow systemic antibiotic 

delivery with local antibiotic delivery if the wound is serious, or chronic infection occurs 

[320, 321]. Additionally, in local antibiotic delivery, it is important to maintain an 

antibiotic concentration greater than the MIC of the targeted bacteria. Staphylococcus 

aureus has the ability to induce biofilm formation due to the presence of sub-MIC 

antibiotics, further establishing bacterial presence in the afflicted area. In the case of 

vancomycin and S. aureus, it has been shown that biofilm formation is up to four times 

greater with sub-lethal antibiotic delivery [322]. While local antibiotic delivery improves 

antibiotic access to the infection, it is at the cost of invasive surgery required for 

implantation into deep sites. Research into biomaterials for these purposes of efficient local 

antibiotic delivery is extensive, and biomaterials for these purposes have been used in 

practice for many years [323]. 

3.5.1 Antibiotics 

Found as part of the natural bacterial skin flora on humans, S. aureus, has particular 

virulence in infection and is common in infection of open wounds, or causing such diseases 

as osteomyelitis, endocarditis, or sepsis before or due to surgery [324-326]. Treatment of 
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these infections is routine via antibiotics. Major antibiotic classes include those found in 

Table 3.4. Antibiotics may work through a variety of mechanisms of action to inhibit or 

kill bacteria (bacteriostatic or bactericidal respectively). For instance, the class of beta-

lactam antibiotics mimic D-alanyl-D-alanine, the terminal amino acid residue on N-

acetylmuramic acids and N-acetylglucosamines used in peptidoglycan synthesis. D-alanyl-

D-alanine normally binds with DD-transpetidases (i.e. penicillin binding proteins) to 

complete cell wall synthesis. However, beta-lactams are competitive binders and inhibit 

the process. Other antibiotics such as vancomycin, a type of glycopeptide, work similarly 

through inhibiting cell wall growth. Conversely, glycopeptides competitively bind to D-

alanyl-D-alanine to disrupt cell wall synthesis, opposite to the affinity of beta-lactams. 

Additionally, antibiotics typically work for gram-positive, gram-negative, or are broad-

spectrum and inhibit both types of bacteria. Gram-positive bacteria contain a thick outer 

cell wall, whereas gram-negative bacteria contain a thin cell wall, surrounded by an outer 

membrane. Via a Gram stain test, bacteria which collect large amounts of crystal violet dye 

within the peptidoglycan layer are considered gram-positive. Beyond this, bacteria may 

also be classified as obligate aerobic, anaerobic, facultative anaerobes, aerotolerant, or 

microaerophiles which determines their preferred environment. 
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Table 3.1. Overview of common antibiotics via class and mechanism. 

Class of Action Mechanism of 
Action Antibiotic Class Examples Activity* 

Protein 
Synthesis 
Inhibiton 

30S Inhibition 
Aminoglycosides 

Streptomycin 
G- 

Gentamicin 

Tetracyclines Tetracycline 

B 
Doxycycline 

Cell Wall 
Inhibition 

Binds to 
Penicillin 

Binding Protein 
Beta-lactams 

Penicillins 

Cephalosporins 

Binds to D-
alanyl- D-alanine Glycopeptides Vancomycin G+ 

Teicoplanin 
Bactoprenol 
Inhibition 

Polypeptides 

Bacitracin B 

Increased 
Permeability via 
LPS Surfactant 

Polymyxin B G- 

Nucleic Acid 
Inhibiton 

  

Topoisomerase 
Inhibitors Quinolones 

Ciprofloxacin 
B Levofloxacin 

Antifolates Sulfonamides 
Mafenide 

B 
Sulfamethizole 

RNA Synthesis Rifamycins Rifampicin M 

DNA Inhibiton 
Nitrofurans Nitrofurantoin 

B 
Nitro-imidazoles Metronidazole 

* G+ gram-positive. G- gram-negative. B broad-spectrum. M antimycotic.  
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Figure 3.4. Log scale of the number of viable bacteria versus time. Bacterial binary fission 

typically occurs in four stages: 1) “lag phase” where growth is initially slow due to 

metabolic adaptation of the surrounding conditions, 2) “log phase” where growth follows 

an exponential increase in cell numbers due to uninhibited growth conditions, 3) 

“stationary phase” where bacterial numbers have reached a critical maximum 

concentration, usually due to nutrient limitation or depletion, and duplication equals cell 

death, and, if conditions are no longer cell supporting, whether it be severe lack of nutrients, 

acid build up, or environmental effects 4) “decline phase” where bacterial death is 

dependent upon the particular conditions. In this instance, the decline phase is induced by 

the presence of an antibiotic at the minimum inhibitory concentration (MIC) for the 

particular bacteria, and thus planktonic bacteria, with less resistance to antibiotic 

concentrations, declines in numbers whereas the biofilm remains viable. 
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3.5.2 Antibiotic Resistance Emergence 

Where antibiotics provide essential treatment for many types of injuries as prevention or 

treatment from bacterial infection, non-discretionary or overuse may cause unintended 

ramifications, such as antibiotic resistance. For example, due to poor prison conditions, 

overcrowding, and low treatment compliance, Tomsk, Russia in the late 1990s had an 

outbreak of tuberculosis among inmates [327]. Between 1998 and 2002, the World Health 

Organization (WHO) implemented the directly observed treatment, short-course (DOTS) 

program to reduce rates of infection by ensuring antimycotic administration compliance. 

However, during that period rates of multi-drug resistant tuberculosis doubled for both the 

number of new cases, as well as previously treated cases. This was in part due to the lack 

of patient screening for antibiotic susceptibility before treatment, and treatment of patients 

already resistant to the first line drugs of rifampin and isoniazid. To address this, the WHO 

in combination with other institutions such as Partners in Health (PIH) ran drug 

susceptibility testing for each patient and administered personalized regiments of first 

and/or second line treatments with multiple antibiotics in parallel, dropping rates 

dramatically [327].  

Increased rates of antibiotic resistance put the method of parallel drug treatment at risk, 

however. With slow progress at the pharmaceutical level due to the immense cost of drug 

development, the number of novel antibiotics with unique mechanisms of action created 

through the industry pipeline is not competing with the emergence of resistant bacteria to 

these antibiotics [9]. While traditionally combinatorial drug delivery of synergistic 

antibiotics has shown beneficial effects towards inhibiting bacterial resistance, with the 

advent of multi-drug resistance bacteria, these approaches are becoming less effective over 



94 

time [328, 329]. While technically any bacterial strain may become resistant to antibiotics, 

even without contact, several different bacterial species are at high risk due to their 

pathogenicity. The WHO has determined seven strains of importance: Staphylococcus 

aureus, Escherichia coli, Klebsiella pneumonia due to their propensity for hospital and 

community-acquired disease, and Streptococcus pneumoniae, Nontyphoidal Salmonella, 

Shigella species, and Neisseria gonorrhea for their community-acquired disease. While 

other bacteria may propose a higher health risk factor if infected, like multi-drug resistant 

tuberculosis, they are less widespread throughout the world and affect fewer patients [330]. 

One mode of resistance to antibiotics may occur when substrate specificity changes with 

mutation. For example, a common mode of resistance to vancomycin in gram-positive 

bacteria is where the bacterial synthesis of D-alanyl-D-alanine is replaced with D-alanyl-D-

lactate, and thus there is no longer competitive binding and peptidoglycan synthesis is not 

inhibited. Other mechanisms may occur, such as diffusional barriers via increased 

crosslinking density of the cell wall, reducing the penetration of vancomycin—a large 

molecule of 1449 Da—at the site of cell wall growth in the inner peptidoglycan layer. This 

diffusional barrier to vancomycin is intrinsic in gram-negative bacteria due to the 

lipopolysaccharide (LPS) cell membrane layer, whereas the gram-positive bacterial 

exterior is made from low-density lipoteichoic acids upon the peptideglycan layer, and is 

permeable. 

3.6 Biofilms, Oxidative Stress, and Antibiotic Resistance Emergence Treatment 

Biofilms are naturally occurring bacterial structures that help protect colonies from 

unfavorable environmental conditions, such as presence of antibiotics, and help the colony 

proliferate. These biofilms can protect S. aureus from vancomycin with an increased MIC 
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from ten to thousands fold higher [331-333], dangerously reducing the ability for systemic 

antibiotics to work effectively. To form a biofilm, cells will attach to a surface and 

accumulate into an agglomeration through cell-cell adhesion, increasing the biofilm colony 

in size through division. Within these biofilms, quorum sensing may occur, which is the 

ability of many cells in a region to detect each other’s presence and react as a group based 

on the concentration of auto-inducing molecules. This intercellular signaling turns on or 

off genes and allows biofilms to react as a community to changing conditions or population. 

For example, Pseudomonas aeruginosa evade initial immune detection through slow 

propagation in low numbers, and only begin to rapidly replicate in log-phase (see Figure 

3.1) once a certain quorum sensed concentration is achieved, essentially causing a surprise 

attack to the immune system.  

Naturally, biofilms show a highly increased mutation frequency when compared to 

planktonic bacteria [13], which aids in antibiotic resistance emergence. In aerobic bacteria, 

this is largely due to the nature of respiration where ROS such as hydrogen peroxide, 

hydroxyl radicals, and superoxide are endogenously produced, which can exhibit the effect 

of hormesis in bacteria [13, 334]. Namely, while sometimes helpful, the ROS concentration 

produced is high enough to form DNA lesions and can potentially either kill the bacteria, 

or produce genetic variance from a once homogeneous culture, especially in those cells 

with a negative DNA repair mutation.  

Hydrogen peroxide has formative roots within the cell from dismutated superoxide via 

NADPH oxidases after respiration [335, 336]. Superoxide is highly reactive with iron-

sulfur proteins, has a short life within the cell due to superoxide dismutase, and is not very 

cell membrane permeable, rendering it not very useful as a ROS signaling molecule. Once 
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superoxide is in the presence of SOD, it is catalyzed into hydrogen peroxide. Hydrogen 

peroxide also reacts with iron-sulfur cluster-containing proteins to participate in the Fenton 

reaction to produce hydroxyl radicals, but otherwise it is less reactive than the other ROS 

formed and can thus play as an extracellular signaling molecule since it can be permeable 

through the cell membrane [335].  

Sub-lethal application of certain antibiotics upon planktonic cultures of S. aureus can 

induce a mutagenic affect through DNA mutation through additional ROS formation once 

the bacteria stops normal function [10, 11]. Being highly clinically relevant, this effect has 

been touched upon in research to be a factor in causing antibiotic resistance emergence in 

chronic infections where lengthy antibiotic application is utilized on the patient. This is an 

effect that may also be induced simply through addition of an oxidizing species, such as 

hydrogen peroxide, where both show attenuation through simultaneous application of an 

antioxidant [10, 11].  

While frugal antibiotic use and/or prescription may cut back on resistance emergence, 

determining methods to deliver antibiotics without the concern of resistance is an important 

field of study. Methods such as finding antibiotics which do not tend to form resistance 

(e.g. peptides like defensins which aid killing of phagocytosed bacteria via cationic 

membrane disruption) are a promising field, but due to their difficulty in drug delivery, and 

elevated importance of these in human innate immune response infection control, 

continuing research is required [337-339]. An alternate route of reducing resistance 

emergence is to change the bacterial mechanisms by inhibiting their function. Of 

importance to our studies, hydrogen peroxide disruption may affect S. aureus biofilm 
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function through inhibition of quorum sensing and mutagenic effects, although literature is 

preliminary on the effects [13, 340]. 

3.7 Conclusions 

There is an inexorable relationship between oxidative stress, immune response, infection, 

and their respective diseases. Through understanding the mechanisms of infectious and 

oxidative stress disease, scientists have been able to create boundless strategies for disease 

treatment. Although multidrug resistant bacteria are on the rise, so is research involving 

clever new small molecules and biomaterial drug delivery systems to solve this problem. 

In a similar light, oxidative stress disease treatment has been developing steadily as well. 

With high levels of primary research in controlled drug delivery to specific tissues and 

molecules involved in immune response, oxidative stress disease treatment outcomes may 

become increasingly favorable in the future. 

Copyright © Andrew L. Lakes 2016 
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Chapter 4. Antibiotic and Antioxidant Delivery for Control of Local Infection and 

Antibiotic Resistance 

4.1 Introduction 

The combined impact of infection and oxidative stress related injuries may be treated with 

local antioxidant protein therapy alongside other traditionally used small molecule 

antibiotics. Operations with open wounds or surgeries with risk of bacterial biofilm 

infection, e.g. osteomyelitis and mediastinitis, create a serious threat to patient health, and 

thus prophylactic or re-operative administration of multiple drugs systemically and locally 

are commonly used in treatment. However, management of wound site infections has 

become increasingly complicated by the emergence of antibiotic resistant bacterial strains 

[341-346]. Regardless of whether resistant infections are a result of primary infection with 

an already resistant strain or a result of de novo emergence of resistance within the patient, 

the existence of these strains is the natural result of evolutionary pressures placed upon the 

bacteria as a result of antibiotic usage. Any new antimicrobial strategy that does not employ 

mechanisms to suppress this emergence of resistance is effectively just a “stop-gap” 

measure in the battle against wound infections.  

In order to prevent adaptation within a population, evolutionary engineering principles 

developed in HIV antiviral therapy should be employed [347]. Primarily, multiple stress 

mechanisms that work in an independent (orthogonal) fashion can adjust the evolutionary 

fitness landscape to make adaptation unlikely [348-350]. Recent studies on development 

of resistance within P. aeruginosa strains demonstrated an accelerated rate of strain 

variation within the population [340, 351]. Even for populations developed from a single 

bacterium, it was found that this increase in variation was stimulated by endogenous 
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oxidative stress from the environment and was suppressed in vitro by administration of 

various antioxidants. This generation of reactive oxygen species (ROS) can be produced in 

biofilms due to a redox imbalance in biofilms [352], sub-lethal antibiotic pressures [353, 

354] which can activate the SOS response [353, 355-357], as well as deactivate several 

anti-ROS genes, such as katA which produces the antioxidant enzyme catalase [340, 358-

360]. Through poor repair of DNA and RNA lesions in an aerobic environment [361, 362], 

this lack of ROS protection can lead to genetic frame-shifts and the bacteria may become 

multi-drug resistant through radical-induced mutagenesis [10, 11, 324, 363, 364]. 

This ability to rapidly diversify during colonization and film formation combined with the 

suboptimal delivery of antibiotics to bone tissue form the ideal conditions for creating 

antibiotic resistant infections. Thus, bone infections are a situation where this reemergence 

is likely to occur. Local treatment provides a practical approach of achieving effective 

dosing while providing a means of reducing adverse systemic effects [20]. However, 

various clinical evaluations have demonstrated that due to the concentration gradients 

established and insufficient low level activity, local release can promote strain resistance 

[20, 365]. It is possible that local antibiotic delivery coupled with the ability to suppress 

bacterial diversification may overcome this drawback to localized delivery. One such 

strategy is the co-delivery of vancomycin with the antioxidant enzyme, catalase, which is 

an enzyme that can convert the pro-diversification signal, hydrogen peroxide, into oxygen 

and water. Catalase has one of the highest turnover numbers (kcat) of all of the enzymes, 

making it an ideal candidate to decrease endogenous oxidative stress within bacterial 

species. It has been used in many polymeric applications for the purpose of reducing 

oxidative stress [97, 366, 367]. However, as oxidative stress plays an important role in 
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antimicrobial actions [368], it is not clear if this co-delivery would attenuate the 

antimicrobial effects.  

Often it can be beneficial to deliver molecules in tandem from an implantable biomaterial. 

However, the delivery of a small molecule alongside a large molecule (e.g. protein) 

represents a significant drug delivery challenge. This is due to the vast size difference of 

small molecule drugs and proteins (2-3 orders of magnitude), making extended release of 

each from a single biomaterial a difficult task. In the design of a drug releasing hydrogel, 

it is the interaction between the drug being released, material composition, and structural 

arrangements which dictates the kinetics. Through variation of hydrophilic and 

hydrophobic bulk hydrogel content, and mesh size, drug diffusion rates readily change. 

Further, the rate of biodegradation can greatly influence release rates through systemic 

increase in mesh size. Therefore, we sought to create a biodegradable hydrogel readily 

tuneable in composition properties so as to facilitate release of both small and large 

molecules. 

Poly(β-amino ester) hydrogels, a class of cross-linked hydrophilic polymers that are known 

for their soft tissue-like properties [369-371] and for their applications in drug delivery 

[372, 373], can be formulated in situ, providing an ideal vehicle for drug delivery to 

especially irregular, hard to treat areas [371]. Further, PBAE hydrogels were selected as a 

test platform due to widely tuneable degradation rates [374]. Linear chain macromers were 

chosen based on their characterized degradation properties, stemming from their 

hydrophilic/hydrophobic polymer composition [374]. These vancomycin and catalase co-

loaded PBAE macromers were polymerized into hydrogels using a free radical 

polymerization method. Loaded hydrogels were characterized for their activity towards 
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H2O2 reduction and in vitro degradation and release properties. Staphylococcus aureus, a 

gram-positive bacteria common in infection and found in skin flora, was used to test the 

vancomycin activity [329, 375]. 

4.2 Materials and Methods 

4.2.1 Materials 

All reagents were used as received. O-phenylenediamine (OPD), ammonium persulfate 

(APS), trimethylethylenediamine (TEMED), and isobutylamine (IBA) were purchased 

from Sigma–Aldrich (St. Louis, MO). Bovine liver catalase (242,000 MW) and horseradish 

peroxidase (HRP) (44000 MW) were purchased from Calbiochem (EMD Biosciences, San 

Diego, CA). Poly(ethylene glycol) 400 diacrylate (PEGDA) and diethylene glycol 

diacrylate (DEGDA) were purchased from Polysciences, Inc. (Warrington, PA). All other 

reagents and solvents were purchased from Sigma–Aldrich. 

4.2.2 Macromer Synthesis 

The base polymer is formed through combination of two basic components, an acrylate 

and an amine. The acrylates used were PEGDA and DEGDA, and the amine used to 

participate in Michael addition was isobutylamine. These were previously formulated into 

the naming scheme of A = DEGDA, H = PEGDA, 6 = IBA according to [5, 372]. To form 

the AH6 poly(β-amino ester) macromer used in these experiments [376], diethylene glycol 

diacrylate and poly(ethylene glycol) 400 diacrylate were added to a flask in a 3:1 molar 

ratio and heated to 85oC, after which isobutyl amine (IBA) was added in a 1.2:1 molar ratio 

of diacrylate to amine and let to react for 24 hours under constant stirring. The H6 and A6 
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macromers were synthesized by reacting the corresponding diacrylate and amine (IBA) for 

48 and 16 hours, respectively, in a similar method as reported previously (Figure 4.1 A) 

[71, 372]. In both the cases, a 1.2:1 molar ratio of diacrylate to amine was used. All 

macromers were stored at 4˚C until further use.  
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Figure 4.1. Reaction scheme of A) macromer synthesis and B) hydrogel synthesis. 

  

A 

B 
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4.2.3 Hydrogel Synthesis 

Hydrogels were synthesized from PBAE macromers using free radical polymerization. 

Both the hydrogels utilizing varying wt% of H6 and A6 macromer and AH6 macromer 

were formed using the same polymerization procedure (Figure 4.1 B). Approximately, a 

total mass of 1 g of H6 and A6 macromers were weighed and mixed. APS was used as a 

free radical initiator, and TEMED was used as an accelerator/catalyst. About 1.5 wt% 

(based on total macromer weight) of DI water was mixed into 1.5 wt% (based on total 

macromer weight) APS. Finally, 0.5 wt% (based on total macromer weight) of TEMED 

was added to the macromer followed by addition of the APS solution. The reaction mixture 

was mixed and transferred to a closed rectangular mould, formed between two glass plates 

separated by 1.5 mm Teflon moulds, and wrapped in paraffin film. The reaction was 

continued at room temperature overnight to ensure maximum polymerization. The 

hydrogels were cut into 7 mm diameter x 1.5 mm thick discs for both the degradation and 

release studies.  

Catalase loaded PBAE hydrogels were synthesized in a similar method as explained above. 

However, 0.1 wt% of catalase (based on total macromer weight) was dissolved in 1.5 µL 

DI H2O/mg enzyme and thoroughly mixed into the macromer mixture before addition of 

APS and TEMED. Vancomycin loaded PBAE hydrogels were synthesized similarly, but 

1.5 wt% vancomycin (based on total hydrogel mass) was directly mixed in with the 

macromers. Co-loaded vancomycin plus catalase hydrogels were synthesized by 

combining the two previous techniques. 
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4.2.4 Degradation 

In order to study the degradation properties of different PBAE hydrogels, the hydrogel 

samples were incubated at 37 °C in phosphate buffer saline solution (PBS) (pH=7.4), and 

the mass loss was recorded at different time points. After recording the initial mass of the 

dry hydrogel discs, samples were placed in centrifuge tubes with PBS equilibrated at 37˚C. 

At each time point, the discs were taken out from PBS and freeze dried. The PBS of the 

remaining samples was replaced with fresh solutions to maintain sink conditions.  

4.2.5 Catalase Release 

Catalase was radiolabeled with Na125I (Perkin Elmer, Boston, MA) using the Iodogen 

(Pierce Biotech., Rockford, IL) method, and unbound iodine was removed from the protein 

using gel permeation chromatography (Bio-spin 6 Columns, Bio-Rad Labs, Hercules, CA). 

Conditions were set based upon manufacturer’s recommendations. 125I-catalase-loaded 

PBAE hydrogel discs were degraded at 37˚C in 2 mL of PBS. Loaded hydrogels were 

degraded, and at each time point, the supernatant was removed. The 125I concentration of 

the supernatants and hydrogel discs were counted using a Perkin-Elmer 2470 Wizard2 

Automatic Gamma Counter. 

4.2.6 Vancomycin Release 

Hydrogels loaded with 0.1 wt% catalase and/or 1.5 wt% vancomycin were degraded over 

a period of 7 days. At each time point, the supernatant was collected and replaced with 

fresh 10 mM PBS, pH 7.4. Vancomycin concentration was determined by reverse-phase 

high performance liquid chromatography (HPLC, Shimadzu Prominence) in 14% 
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acetonitrile/86% of 1% TFA water using a 150 X 4.6 mm Luna column (Phenomenex, 

Torrance, CA), calibrated using vancomycin standards. Vancomycin was detected using a 

Shimadzu UV-Vis detector at a wavelength of 280 nm.  

4.2.7 Catalase Activity  

Catalase activity of formed hydrogels was monitored directly by measuring hydrogen 

peroxide concentration as a function time. Briefly, 1 mg catalase-loaded hydrogel samples 

(n=3) were put in 1 mL of 10 mM H2O2 and allowed to react under constant mixing. 

Aliquots of 100 µL were collected at various time points, diluted 10x, and then three 100 

µL aliquots of this dilution were added to a 96-well plate. Both 100 μL of a 0.4 mg/mL 

OPD working solution and 20 μL of 138 µg/mL HRP were added to each well. The 

concentration of OPD product was determined by measuring absorbance at 490 nm using 

a UV-visible spectrophotometer (Varian Cary 50 MPR). The concentration was compared 

to a calibration curve prepared with different concentrations of H2O2. The slope to report 

activity was calculated by (10 mM – conc. @ 20 min) / 20 min. 

4.2.8 Antimicrobial Activity Studies 

The Kirby-Bauer (KB) disc diffusion test was used to determine the antimicrobial activity 

of vancomycin released by hydrogels [375]. Staphylococcus aureus (ATCC 25923) was 

used as the test organism in this study. For seeding blood agar plates, 80 µL of an initial 

0.5 OD600 culture was added to 5 mL of DI H2O, and a 100 µL volume of diluted culture 

was spread on each plate for an approximate total count of 105 bacteria. Hydrogels with 

1.5 mm thickness were cut to 7 mm discs, and discs were overlaid onto S. aureus seeded 
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blood agar plates. As a control, sterile Whatman #1 filter paper discs (Sigma, St. Louis, 

MO) of the same size loaded with varying amounts of vancomycin were used as a 

calibration. S. aureus was allowed to grow on blood agar plates for 24 h at 37oC in 5% 

CO2, after which zones of inhibition were measured. Disc diffusion tests were repeated 

every 24 hours using the same hydrogels as described above and zones of inhibition 

measured.  

4.3 Results  

4.3.1 Macromer and Hydrogel Synthesis 

Macromers were synthesized using a Michael addition type reaction (Figure 4.1) with the 

acrylate groups in slight excess. This retention of double bonds permitted the subsequent 

free radical polymerization reaction that was used to crosslink the macromers. Free radical 

polymerization was used so as not to disrupt the enzymatic payload via other 

polymerization methods which could quickly denature proteins [377].  

4.3.2 Hydrogel Degradation 

To assess the ability to control the degradation rates of our hydrogels, in vitro degradation 

was carried out in PBS at 37˚C. As a preliminary study for testing the tunability of the 

hydrogel systems, a degradation rate pertinent to the range of wound-healing drug delivery 

devices was targeted. Hydrogels with a 75:25 (wt:wt) ratio of H6:A6 degraded in a period 

of 7 days, and showed two degradation phases (Figure 4.2 A). The 60:40 and 50:50 H6:A6 

hydrogels degraded at a slower rate, with the 50:50 system degrading the slowest of the 

H6:A6 hydrogels. Compared to the co-macromer hydrogels (H6:A6), the monomacromer 
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hydrogels (AH6) produced a more uniform degradation profile, without the burst 

degradation found with the H6:A6 hydrogels (Figure 4.2 A). 

4.3.3 Catalase Release 

Catalase release was measured under sink conditions through 125I-catalase tracing in both 

the hydrogels and supernatant. Hydrogels formed with AH6 or 60:40 H6:A6 macromers 

were co-loaded with catalase and vancomycin. Figure 4.2 B illustrates catalase release 

obtained from the supernatant and was confirmed by the radioactive counts remaining in 

the gel. There was an increased initial rate of catalase release of slightly over 20% in the 

first day for AH6, followed by a more sustained release pattern, which may in part be due 

to unbound 125I being released from the gels (unbound 125I  content was calculated at 23%, 

as expected for catalase labeling). After 19 days, both the AH6 and H6:A6 hydrogels 

completely lost structural integrity and gained surface area for increased hydrogel 

degradation and subsequent release. 

4.3.4 Vancomycin Release 

Vancomycin release was highly dependent upon the macromer system employed. The 

60:40 H6:A6 hydrogels released vancomycin more rapidly than did the AH6 hydrogels 

over a seven day period (Figure 4.2 C). As mesh size increased due to degradation of the 

hydrogel, catalase was retained much longer than vancomycin. Catalase is a much larger 

molecule (250 kDa) and thus was more tightly bound in the hydrogel network, while 

vancomycin (1.5 kDa) can more freely diffuse. Utilizing a vancomycin calibration curve 

(Figure 4.2 C inset), it can be seen that the total amount of vancomycin released did not 
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match the total loading of vancomycin in each hydrogel (Figure 4.2 D). This is possibly 

due to the nature of the hydrogel synthesis in which some vancomycin was deactivated 

through the redox reaction. 
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Figure 4.2. Drug release kinetics. A) Mass loss degradation profile comparison of 

hydrogels (n=3, standard deviation). B) Radiolabeled 125-I catalase release profiles in a 

PBS sink of 60:40 H6:A6 and AH6 (n=3, standard deviation) hydrogels. C) Vancomycin 

release profiles in PBS Sink with 60:40 H6:A6 and AH6 hydrogels. Inset in C) vancomycin 

HPLC calibration curve using standard samples in PBS. D) Vancomycin mass drug release 

from 7 mm x 1.5 mm hydrogel discs found via HPLC. n=3, standard deviation.  

A B 

C D 
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4.3.5 Catalase Activity 

Catalase activity in hydrogels was directly measured by monitoring H2O2 degradation. 

Catalase loaded, vancomycin-loaded, catalase and vancomycin co-loaded, and control 

hydrogels were synthesized for activity studies. Enzymatic activity was determined 

assuming first order H2O2 degradation kinetics and is reported as units of catalase (1 U = 

1 µmol H2O2 consumed per minute). Catalase loaded hydrogels displayed an ability to 

degrade H2O2 (Figure 4.3 A).  

4.3.6 Vancomycin Activity 

As antioxidants may elicit undesired bacterial protective effects by countering naturally 

occurring antibiotic oxidation [368], it was not clear if loaded catalase would inhibit the 

activity of vancomycin. Kirby-Bauer assays were carried out to evaluate the effectiveness 

of the vancomycin loaded hydrogels. Loaded and unloaded hydrogels (60:40 H6:A6 and 

AH6) were exposed to S. aureus inoculum, and the bacteria were incubated for 24 hours. 

Hydrogels that were not loaded with vancomycin did not show any inhibitory effects on 

the culture, exhibiting diameters equivalent to the hydrogel disc (Figure 4.3 B). Hydrogels 

loaded with vancomycin showed a large zone of inhibition, and importantly, catalase 

displayed no inhibitory effect on vancomycin activity in either system. Since the 60:40 

H6:A6 hydrogels have a greater burst release than the AH6 hydrogels, the initial zone of 

inhibition was larger. 

4.3.7 Vancomycin Activity Time Course 

After the retention of vancomycin activity was confirmed, it was necessary to determine 
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whether the loaded hydrogels could present prolonged antimicrobial effects. Consequently, 

the zone of inhibition was measured as a function of time. Since unloaded control and 

catalase-only loaded hydrogels did not provide any antimicrobial function (Figure 4.3 B), 

evaluation was possible via the antimicrobial effect based on vancomycin activity. After 

four days and nine days of serial addition of the hydrogels to newly seeded S. aureus blood 

agar plates for the 60:40 H6:A6 and AH6 hydrogels, respectively, the zone of inhibition 

was reduced to the diameter of the disc itself (Figure 4.3 C). Both vancomycin loaded and 

vancomycin-catalase co-loaded hydrogels displayed similar vancomycin release activity. 
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Figure 4.3. Activity of drug release. A) H2O2 concentration as a function of time with 

60:40 H6:A6 hydrogels (n=4, standard deviation). B) Zone of inhibition areas at the initial 

time point. Inset of B) visual representation of Kirby-Bauer zones of inhibition on S. aureus 

agar plate. Upper left, empty; upper right, +Cat; lower left, +Vanc.; lower right, +Vanc. 

+Cat. The concentration of catalase and vancomycin used for both B) and inset of B) in 

AH6 (n=6, standard deviation) and 60:40 H6:A6 (n=3, standard deviation) hydrogels was 

0.1 wt% and 1.5 wt% respectively. C) Zone of inhibition over time using 0.1 wt% catalase 

and 1.5 wt% vancomycin in both AH6 (n=6) and 60:40 H6:A6 (n=3, standard deviation) 

hydrogels. 
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4.4 Discussion 

The macromers used in this study were selected for their tunable rate of degradation, 

allowing for a variety of degradation and release profile customizability [374]. Due to H6 

(PEGDA and IBA) being more hydrophilic than A6 (DEGDA and IBA) due to its greater 

ethylene glycol content, this explains the observed increase in the degradation rate with 

increasing H6 content [374]. Of hydrogels formed, the initial degradation phase was 

proportional to the H6 content of the hydrogel, suggesting that the initial degradation phase 

could be a result of the loss of the H6 macromer content of the hydrogel network. The more 

hydrophilic portion enhanced aqueous interaction allowing increased swelling and 

degradation of the A6 networks. The more hydrophobic properties of these systems with 

increased A6 content shields ester bonds from hydrolysis, thereby resulting in slower 

degradation, as has been previously observed [378]. 

In order to alleviate this biphasic degradation profile, a monomacromer approach (AH6) 

was used to synthesize the hydrogels. This combined macromer possessed a more uniform 

distribution of PEG chains, resulting in a more uniform degradation rate (Figure 4.2 A) due 

to reacting the PEGDA and DEGDA together into a single macromer. Similar to the 

degradation profile changes, the slowed vancomycin release with AH6 compared to the co-

macromer system is likely due to the homogeneity of the PEG chains in the AH6 system 

versus the heterogeneous H6:A6 hydrogels [376]. To this effect, vancomycin release was 

significantly extended and burst release reduced. 

Catalase release, on the other hand, was sustained for a much longer period for both 

systems (19 days), likely due to the large molecular weight protein becoming entrapped in 
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the polymer network. This is demonstrated at the 7 day point with the 60:40 H6:A6 

hydrogel degradation profile and catalase release, where degradation has produced a ~60% 

mass loss, whereas the catalase released ~40% in a similar trend as the bulk degradation 

profile. Similarly, the AH6 hydrogels produced ~50% mass loss and also showed ~40% 

catalase release over 7 days, without the initial burst in either catalase release nor hydrogel 

mass loss that the H6:A6 hydrogels produced. Interestingly, catalase-loaded gels possessed 

approximately 0.2 U/mg polymer, which is close to the same order of catalase activity 

achieved with other catalase/polymer formulations that possessed therapeutically relevant 

in vivo effects [97, 379]. While the application and form are different, this work supports 

the notion that levels of activity and loading already achieved are likely to be functionally 

significant. 

The vancomycin activity time course on S. aureus on agar plates showed extended activity 

rates compared to PBS release. This extension of release was likely due to less aqueous 

interaction on the agar plates compared to PBS sink conditions. Nonetheless, The AH6 

system showed superior release and degradation properties, allowing for a time period of 

vancomycin activity that is biologically relevant. The AH6 delivery system shows promise 

as a method of tandem delivery of both small and large molecules, and is without 

significant degradation or denaturation of the cargo tested due to any side effects of 

chemical free radical polymerization for in situ capable delivery.  

4.5 Conclusions 

Catalase and vancomycin were successfully loaded into poly(β-amino ester) hydrogels. 

These hydrogels exhibited tuneable degradation according to macromer ratio due to 
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hydrophilicity and hydrophobicity of the H6 and A6 macromers, respectively, as well as 

through macromer synthesis route. H6:A6 hydrogels degraded in two phases, with the H6 

fraction degrading in the first phase, and AH6 hydrogels degraded in a single phasic 

manner perhaps due to a single macromer being used instead of co-macromers. Catalase 

retained activity in loaded hydrogels, and the activity was not inhibited by the presence of 

vancomycin. 

Hydrogels loaded with vancomycin demonstrated the ability to inhibit S. aureus growth, 

showing viable vancomycin activity unaffected by the presence of catalase. Vancomycin 

encapsulation in poly(β-amino ester) hydrogels allowed for extended inhibition of bacteria 

due to controlled release. These results indicate that this hydrogel system may potentially 

be effective in vivo. The higher initial burst release of vancomycin in each hydrogel system 

can inhibit bacteria in a larger area initially and then locally sustain release for an extended 

period in the target region. These drug delivery systems will help to provide a means for 

tuning the co-release of large molecules with small, and potentially reduce risk of antibiotic 

resistance emergence in biomedical applications of infection and oxidative control.  

Copyright © Andrew L. Lakes 2016 
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Chapter 5. Synthesis and Characterization of an Antibacterial Hydrogel Containing 

Covalently-Bound Vancomycin 

Based on the research article: 

Andrew L. Lakes, Rebecca Peyyala, Jeffrey L. Ebersole, David. A. Puleo, J. Zach 
Hilt, Thomas D. Dziubla. Synthesis and characterization of an antibacterial 
hydrogel containing covalently bound vancomycin. Biomacromolecules, 2014. 
15(8): p. 3009-18 

5.1 Introduction 

Traditionally, suppression of infection in severe wounds (e.g., combat trauma and motor 

vehicle accidents) is obtained through a prolonged course of intravenous and oral 

antibiotics requiring from multiple weeks to months of delivery to combat infection in the 

patients [318]. Despite these efforts, severe infections can emerge as a result of limited 

blood perfusion, as is the case with osteomyelitis, thus forming hard-to-eliminate biofilm 

infections that require potentially toxic concentrations of antibiotics [319]. To avoid this 

toxicity while still treating the wound, systemic antibiotic delivery is supplemented with 

local delivery [320, 321]. While local antibiotic delivery improves antibiotic access to the 

infected tissues, it is at the patient risk for invasive surgery required for implantation. 

Additionally, if a non-biodegradable implant, such as poly(methyl methacrylate) (PMMA) 

is used (as is current medical practice [17-19]), an additional follow-up extraction surgery 

is needed to remove the implant. Furthermore, non-biodegradable implants may create a 

solid anchorage point for bacterial adherence that interferes with the host’s immune 

defenses, allowing for accretion and further distributed infection [20-22]. From these 

implants, drug release shows a large initial burst, followed by a very slow release, often 

below the minimum inhibitory concentration (MIC) for the infection agent [23-25]. As 
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such, research involving biodegradable drug delivery systems for the sustained release of 

antibiotics is increasing. In practice, however, biodegradable hydrogel and non-hydrogel 

drug delivery systems have shown little clinical success in preventing severe wound 

infections due to various issues, such as burst release of drug, host response with local 

inflammation and fibrous capsule formation, etc. [380, 381].  

Research involving the controlled antibiotic release from degradable materials, including 

the use of bone cements [382-384] or synthetic polymers such as polyesters, have shown 

some improvement for antibiotic delivery [18, 319]. Yet, despite clever and effective 

approaches at slowing drug release (e.g. drug/polymer affinity based systems [385], or 

multilayered hybrid composite materials [386, 387]), there remains a significant burst 

release that makes matching degradation and release challenging. Through more closely 

coupling these two parameters, it may be possible for the scaffold to be completely 

degraded when the drug release falls below the bacterial MIC.  

One way to couple drug release to degradation is through covalently linking an antibiotic 

into the degradable polymeric backbone. In this work, we sought to develop a drug delivery 

system in which we could engineer around those problems using poly(β-amino ester) 

(PBAE) hydrogels. These hydrogels can contain significant water content from swelling, 

and their highly cross-linked structure provides tissue-like properties, which make them 

useful for soft-tissue applications. These variable properties enable the physical capture of 

large molecules and allow for modification of hydrogels in numerous ways for application 

specific drug delivery [48]. The PBAEs used in this work hydrolyze into degradation 

products in biological systems over time, have tunable chemistry to allow modification of 

degradation rate through manipulation of hydrophobic:hydrophilic monomer and 
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macromer ratios affecting drug release rates for future potential with personalized 

medicine, and are formable in situ to treat irregular wounds. A previous publication of a 

similar PBAE hydrogel indicated cytocompatibility of small molecular weight degradation 

products [378]. With the intention of coupling the drug release rate and bulk degradation 

rate, vancomycin was covalently incorporated into the backbone hydrogel structure. This 

was performed by utilizing free primary amine sites on vancomycin in conjunction with 

PEG and DEG diacrylates. By adding vancomycin directly into the backbone of the 

macromer, the degradation rate of the ester bonds adjacent to vancomycin will be the 

limiting factor determining the release rate.  

5.2 Materials and Methods 

5.2.1 Reagents 

Poly(ethylene glycol MW=400) diacrylate (PEGDA) and diethylene glycol diacrylate 

(DEGDA) were purchased from Polysciences Inc. (Warrington, PA), where vancomycin 

hydrochloride was purchased from PhytoTechnology Laboratories (Shawnee Mission, 

KS). Sodium 125I was purchased through Perkin-Elmer (Waltham, MA). EGM-2 cell media 

and HUVEC were purchased through Lonza (Hopkinton, MA). Calcein AM was obtained 

from Life Technologies (Grand Island, NY). Ammonium persulfate (APS), 

tetramethylethylenediamine (TEMED), and isobutylamine (IBA) and other reagents were 

purchased from Sigma-Aldrich (St. St. Louis, MO). All reagents were used as received, 

unless otherwise stated. 
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5.2.2 PBAE Macromer Synthesis  

All hydrogels were formed with a two-step synthesis: first a linear chain macromer was 

formed with acrylate end caps, and then polymerized into a hydrogel via free radical 

polymerization. PBAE macromers were synthesized based upon previously published 

methods [71, 378]. Briefly, macromers were first synthesized by Michael-Addition of 

diacrylates with isobutylamine and/or vancomycin, at 75ºC for 16 to 48 hours depending 

on synthesis starting materials. A deep orange color change was noted during the reaction. 

For all macromer syntheses, the ratio of diacrylate:amine was held constant at 1.2:1 to 

allow macromer end groups to be capped with acrylates. Figure 5.1 illustrates the synthesis 

scheme for the vancomycin PBAE hydrogel.  

5.2.3 PBAE Macromer Characterization 

Gel permeation chromatography (GPC) was used to determine number average molecular 

weight (Mn) and polydispersity index (PDI). High performance liquid chromatography 

(Shimadzu Prominence) with a Waters 2410 refractive index detector was used with two 

Resipore GPC columns (Agilent Technologies, Santa Clara, CA) running 100% 

tetrahydrofuran, using Agilent EasiVial as molecular weight standards. Fourier transform 

infrared spectroscopy (FTIR) was used to quantify carbonyl (C=O) and carbon double 

bonds (C=C) within samples of either starting materials, macromers, or hydrogels. 

Conversion was calculated via the division of the C=C / C=O ratio of either macromer or 

hydrogel, by the C=C / C=O ratio of the starting materials. 

  



121 

 

Figure 5.1. Incorporation of vancomycin into PBAE networks. A) Primary, secondary 

amine, and primary amide sites on vancomycin. The double-circled primary amine 

signifies the amine thought to participate in the Michael-Addition, whereas the primary 

amide group would not be as reactive due to resonance with the carbonyl. B) Overview of 

hydrogel formation reaction. While the degradation products shown are the theoretical 

terminal products, higher order degradation products potentially exist prior to complete 

degradation. 
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5.2.4 Hydrogel Synthesis  

Hydrogels were synthesized through the free radical polymerization of PBAE macromers 

using red/ox initiators. All weight percentages (wt%) described herein are with respect to 

the total monomer added within each system. APS initiator (1.5 wt%) was dissolved in 

water (1.5 wt%) and used in conjunction with TEMED (0.5 wt% wrt total monomer), a 

reagent that catalyzes OH radical formation [388]. Hydrogels were formed over 24 hours 

at room temperature and used as is. A parallel plate mold, consisting of glass slides and 

Teflon spacers (1.5 mm thick), was used to form a slab from which 7 mm diameter discs 

are hole punched for sample analysis. 

Two types of drug loaded hydrogels were formed: freely loaded vancomycin, and 

covalently loaded vancomycin (Table 5.1). For synthesis of free vancomycin loaded 

hydrogels, vancomycin was added (1.5 wt%) into the macromer prior to addition of the 

APS and TEMED, but after the macromer formation step. In contrast, covalently loaded 

vancomycin hydrogels were synthesized by addition of vancomycin (1.5 wt%) dissolved 

in DMSO (36 wt%) into the macromer solution during macromer synthesis, and then no 

further vancomycin is added prior to APS and TEMED addition. DMSO was removed from 

hydrogels via freeze-drying. 
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Table 5.1. Hydrogel synthesis schematic. A) Stepwise overview of freely loaded and 

covalently loaded hydrogel synthesis. The freely loaded hydrogel system was not freeze 

dried due to the lack of DMSO in the formation procedure. B) Macromer molecular weights 

found with GPC. 

 

 

  

A  

B  
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5.2.5 Hydrogel Degradation 

Hydrogel discs (roughly 50 mg) were placed into 1 mL of 10 mM phosphate buffer saline 

(PBS), pH 7.4, maintained at 37 ºC in a shaker bath at 70 RPM, and release media were 

collected at specific times. At each sample point the entire releasate contents were replaced 

with fresh PBS. Aliquots of released media were stored at -80ºC prior to HPLC analysis. 

5.2.6 Determination of Vancomycin Released 

Vancomycin concentration was determined through use of a custom method reverse-phase 

high performance liquid chromatography (HPLC, Shimadzu Prominence) using a gradient 

of acetonitrile and 0.1% trifluoroacetic acid containing de-ionized-water using a 250 X 4.6 

mm Luna C-18 column (Phenomenex, Torrance, CA). Samples started with 85% 

acetonitrile and 15% water with an increasing aqueous content over time. Vancomycin was 

detected using an in-line Shimadzu UV-Vis detector at a wavelength of 280 nm. Fractions 

of samples were collected manually through determination of retention time, detection 

time, and exit time from the system. For fractionation studies, effluent from the HPLC was 

collected in four fractions. These fractions were selected to match the following domains: 

1) before the appearance of peaks, 2) containing free vancomycin and non-vancomycin 

degradation products, 3) containing covalent-vancomycin and non-vancomycin 

degradation products, and 4) containing later-stage degradation products. Initial HPLC 

fractions collected for mass spectroscopy utilized 24 hour release into PBS, whereby 20µL 

HPLC injections were used. 
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5.2.7 Mass Spectroscopy 

HPLC fractions were collected of hydrogel releasate from 1.5 wt% vancomycin 3:1 

DEGDA:PEGDA hydrogels. Mass spectroscopy (Bruker Ultraflextreme MALDI-

TOFMS) was performed on these fractions and peaks were identified for correlation of an 

increase in molecular weight of vancomycin due to the addition of propionic acids. The 

positive-ion matrix-assisted laser desorption/ionization (MALDI) method was used as it is 

a soft ionization technique to reduce chance of vancomycin fragmentation.  

5.2.8 Quantification of 125I-Vancomycin Loaded Hydrogels 

125I-radiolabeling was utilized for detection of vancomycin concentration within HPLC 

fractions collected. Briefly, the Iodogen method was used for iodine coupling, where 

excess Iodogen reagent was dissolved in chloroform at 1 mg/mL, and evaporated into a 

film with dry nitrogen on a glass tube. Vancomycin was added at 1 mg/mL and Na-125I was 

added at 150 µCi/mg vancomycin. After 5 minutes, 1000 MWCO dialysis tubing was used 

for purification. 125I was mixed with free vancomycin and dialyzed with a 500-1000 

MWCO Spectrum Laboratories Micro Float-A-Lyzer™ cassette to separate unbound 125I. 

Two macromers were then formed (2:1 DEGDA:PEGDA + 1.5 wt% covalent 

vancomycin), but with only one containing the addition of 0.03 wt% radiolabeled 

vancomycin. After formation of hydrogels containing radiolabeled vancomycin, a 

controlled mass of hydrogel sample was degraded for 24 hours in PBS at 37ºC. 

Radiotracing was performed using a Perkin Elmer 2470 auto gamma counter.  Since mass 

determination requires significantly higher sample concentration, 100 µL HPLC injections 
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were used from three days of hydrogel release compared to the initial samples run in HPLC 

for mass spectroscopy. 

5.2.9 Bacterial MIC Assay 

To compare planktonic antimicrobial activity, Staphylococcus aureus (ATCC 25923) was 

used as a target microbe. 2:1 DEGDA:PEGDA modified-vancomycin hydrogels (formed 

in tandem with the radiolabeled hydrogels) were degraded at 37ºC for 24 hours, and then 

fractions were collected as described earlier. Each fraction collected from the drug loaded 

hydrogels as well as unloaded hydrogels was serial diluted in two-fold, along with a series 

of free-vancomycin for a calibration curve. MIC90 value was determined as the highest 

concentration in which S. aureus showed 90% drop in absorbance from the positive growth 

control at OD600. A 50/50 mixture of sample/BHI media was used, and the microtiter plate 

was mixed for 24 hours at 37ºC to discourage bacterial accumulation.  

5.2.10 Modified Kirby-Bauer Assay 

7 mm x 1.5 mm hydrogel discs (blank control, 3:1 DEGDA:PEGDA + 1.5 wt% free 

vancomycin, and 5:1 DEGDA:PEGDA covalently-linked vancomycin) were placed upon 

105 CFU of S. aureus seeded agar plates and incubated overnight. After the incubation 

period, zones of inhibition were measured using image analysis software. Zone of 

inhibitions were calculated via the inhibition area minus the hydrogel disc area.  

5.2.11 Cell Viability with Hydrogel Degradation Products 

VAH6 5:1 and AH6 3:1 hydrogels were degraded to solubility in DI water. Human 

umbilical vein endothelial cells (HUVEC) of passage 5 were seeded at a density of 60,000 
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cells/cm2 and cultured 48 hours in a 96 well plate with EGM-2 cell media supplemented 

with penicillin and streptomycin. Next, media was removed from wells, and dilutions in 

¼-fold were made with the hydrogel degradation products in fresh cell media. After 24 

hours, supernatant was removed, cells washed twice with fresh media. Live (untreated) and 

dead controls (0.1 M NaOH for 20 minutes) were used as comparison groups. Calcein AM 

was used as a live stain, and was incubated for 60 minutes, followed by two wash steps 

with fresh media. Fluorescence was measured using a BioTek Synergy Mx plate reader 

(Gen5 2.0, Winooski, VT). 

5.3 Results 

Based upon the mechanism of PBAE degradation via ester hydrolysis [7, 378], the released 

vancomycin product was expected to be modified by addition of propionic acid groups 

(Figure 5.1B). It is thought that both primary and secondary amines may play part in 

Michael-Addition, but that the primary amine double-circled is more likely to react 

compared to the secondary sites as a result of steric effects [389, 390]. As the vancomycin 

release product was expected to be modified, we performed HPLC, mass spectroscopy, and 

radiolabeling to identify this defining feature, as well as characterize the system overall for 

release kinetics and activity.  

5.3.1 Characterization of PBAE Macromer 

Macromer molecular weight (Mn) remained consistent, between roughly 3000 to 4000 Da 

(Table 1), indicating polymerization of the starting materials to 10-15 mers by mass. The 

PDI increased with the addition of vancomycin, the VAH6 samples in comparison to the 

AH6. FTIR data indicated a high yield of greater than 92-98% conversion of carbon double 
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bonds in the macromers, and 97-99% final conversion in the hydrogels (Figure 5.2A). After 

reaction, 0.6 to 1.7 acrylates per chain in the macromer were found. These were calculated 

through comparison of FTIR conversion and Mn found with GPC (Figure 5.2B). 

  



129 

 

 

Figure 5.2. Macromer characteristics. A) Percent double bond conversion found after 

macromer and hydrogel polymerizations. B) Number of acrylates per polymer chain in the 

different macromers formed, based upon FTIR and GPC analysis. N=1 each. 
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5.3.2 HPLC Peak Comparison of degradation products 

After formation of three different 2:1 DEGDA:PEGDA hydrogels (covalent-vancomycin, 

free-vancomycin, and unloaded), their releasate in PBS was collected after 24 hours. From 

the HPLC chromatograms, unique peaks between 4-8 minutes were detected at 280 nm in 

the covalently-loaded vancomycin samples that are not seen in the freely-loaded and 

unloaded degradation samples (Figure 5.3 A). These peaks also showed similar 

characteristics to that of vancomycin, with a peak at 280 and trough at 260 nm. It is 

hypothesized that these peaks contain vancomycin, and due to their difference in retention 

time, slower eluting species may be higher order intermediate degradation products. 
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Figure 5.3. Analysis of covalently incorporated vancomycin hydrogel release into PBS 

over 24 hours. A) HPLC comparison of unloaded PBAE network, free vancomycin, and 

covalent vancomycin PBAE network releasate showing lack of a free vancomycin peak. 

B) MALDI mass spectroscopy comparison of free vancomycin (upper) and the releasate 

from covalently incorporated vancomycin (lower) HPLC peak fractions. 
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5.3.3 Mass Spectroscopy 

To identify the new HPLC peaks which appeared, the 4-8 minute region was fraction 

collected, and mass spectroscopy was performed. It is theorized that the resulting 

vancomycin released from the polymer will increase the molecular weight from 1486 m/z 

[vancomycin HCl] in 72 m/z increments, as a result of the added propionic acid groups. 

The resulting analysis, indeed, indicated potential dual or triple propionic acid addition of 

vancomycin, correlating to m/z values in the range of 1627 = [M+HCl+2x COOH] to 1663 

= [M+3x COOH], as possible outcomes (Figure 5.3 B).   

5.3.4 Vancomycin Radiolabeling and HPLC Fractionation  

In order to calculate mass release of the vancomycin products, 125I was used to radiolabel 

vancomycin through use of the Iodogen reagent protocol, which covalently modifies 

double bonds that are ortho to the hydroxyl group on phenyl rings. HPLC fractions were 

collected in the retention periods as shown in Figure 5.4A, using the radiolabeled 

covalently-linked vancomycin hydrogel releasate (Figure 5.4 B panel 3). A different HPLC 

protocol was used than with Figure 5.3, so as to elute the hypothetical covalently linked 

vancomycin peaks into one region, while maintaining separation from free vancomycin. 

Specifically, Figure 5.4 B displays no free vancomycin peak at a retention time of 4.6 

minutes, but does include unique peaks between 8 and 10 minutes that are not found in the 

unloaded hydrogel and free vancomycin controls. As these peaks were thought to be the 

release products of covalently modified vancomycin into the hydrogel backbone, fractions 

were collected to retain the areas of interest according to the retention times in Figure 5.4 
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A. Figure 5.4 C demonstrates successful collection of peaks via input of the collected 

fraction samples into HPLC for verification. 
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Figure 5.4. HPLC Fractionation of hydrogel degradation products. A) HPLC fraction 

collection periods of covalent vancomycin 2:1 DEGDA:PEGDA after 72 hours of release 

into PBS. Fraction numbers correlate to panel B. B) HPLC chromatogram comparison of 

full releasate samples (to be fraction collected). Vertical lines indicate fraction collection 

start and stop points. C) For verification of fractions collected, we re-analyzed samples of 

fractions collected from the covalent vancomycin hydrogel releasate shown in the third 

section of panel B.  
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Once the fractions were collected, each was run through a gamma counter. High counts per 

minute (CPM) were seen in fractions 3 and 4, but not in 1 and 2 using the same control 

volume (Figure 5.5). Using the calculated CPM/µg vancomycin from the radiolabeling 

process (7783 CPM/µg), both fraction 3 and 4 resulted in similar calculated concentrations 

of 1240 and 1214 µg/mL of vancomycin, respectively (Figure 5.5). Interestingly, fractions 

1 and 2 were found to be at background CPM levels, indicating conversion of vancomycin 

into a polymerized product. The total injected CPM was 2835, and 1704 CPM was detected 

in total after HPLC analysis for a 60% recovery. The loss of sample activity was perhaps 

due to volatilization during lyophilization of the collected samples. 
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Figure 5.5. 125I tracing of HPLC fractions of covalent vancomycin 2:1 DEGDA:PEGDA 

fractions collected via HPLC after 24 hours of release into PBS. Secondary axis indicates 

the correlating vancomycin concentration based upon CPM/µg vancomycin radiolabeled 

with respect to the total loading of vancomycin.  
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5.3.5 Hydrogel Degradation and Drug Release 

Degradation of hydrogels with covalently bound and free-loaded vancomycin is shown in 

Figure 5.6 A, which demonstrated various degradation rates depending upon the ratio of 

DEGDA and PEGDA, from 7 days for 2:1 to 22 days for 5:1. The 5:1 DEGDA:PEGDA 

covalent vancomycin hydrogel degraded at a similar rate to that of the 3:1 

DEGDA:PEGDA free-loaded vancomycin hydrogel. This demonstrates that the addition 

of vancomycin into the polymer backbone increased the degradation rate, which is another 

indication of covalent-incorporation. 

Figure 5.6 B shows the release of covalently-linked vancomycin from PBAE hydrogels of 

different DEGDA:PEGDA compositions, and a comparable hydrogel with freely loaded 

vancomycin. Mass release at time “t” divided the total mass released in the gel at 

completion is indicated as Mt/M∞. It can be seen in that even though the 3:1 

DEGDA:PEGDA free-loaded vancomycin hydrogel degraded at a similar rate to that of 

the 5:1 DEGDA:PEGDA covalently-loaded vancomycin (Figure 5.6 A), the 3:1 finished 

vancomycin release after 11 days, but the 5:1 released until the hydrogel finished degrading 

at 21 days (Figure 5.6 B). This result of a significant shift of the drug release 

rate/degradation rate plot (Figure 5.6 C) identifies the potential of a covalently-linked 

vancomycin drug delivery system. 
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Figure 5.6. Hydrogel degradation and vancomycin release. Panel A) Hydrogel 

degradation, comparing covalent vancomycin hydrogels to a free-vancomycin degradation 

profile. Panel B) Release of covalently vancomycin from hydrogels, with 1.5 wt% 

vancomycin, and freely loaded vancomycin for comparison. Measured using HPLC of 

degradation samples. Panel C) Comparison of covalent and freely-loaded vancomycin 

hydrogel drug release vs. hydrogel degradation. Arrows: A) Vancomycin’s small 

molecular size (1.5 kDa) allows diffusion from the crosslinked network at a rate faster than 

the hydrogel degrades. B) This 45º line represents drug release at the same rate as the 

hydrogel degrades.  C) Later, covalent vancomycin releases more quickly than the most 

hydrophobic regions of the covalent vancomycin hydrogels. D) Initially, covalent 

vancomycin releases more slowly than the most hydrophilic regions of the covalent 

vancomycin hydrogels. 
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5.3.6 Release Product MIC and Activity 

In order to determine which fraction of hydrogel release contains antimicrobially active 

compounds of modified vancomycin, a planktonic bacterial growth inhibition assay was 

used (Figure 5.7). Comparison of the HPLC fractions (from Figure 5.4 A) after overnight 

incubation in media showed that fraction 3 had a higher activity (8x dilution before growth) 

than the 4th fraction (2x dilution before growth) and a significantly higher activity than 

fractions 1 and 2, which produced no growth inhibition. From analysis of Figure 5.4B, the 

third fraction was expected to show the most activity as it was thought to contain the 

covalently-linked vancomycin peaks. Additionally, using the collected radiolabeled 

concentrations from Figure 5.5, we were able to calculate the resulting activity of the 

modified vancomycin on S. aureus to be 155 and 607 µg/mL for the third and fourth 

fractions, respectively, compared to 2 µg/mL for free-vancomycin (Figure 5.8). Bacterial 

zones of inhibition measured after overnight incubation demonstrated that both free and 

covalent systems produce zones of active drug, at 237 mm2 and 65 mm2 respectively. 

However, comparing effects of freely loaded vancomycin and covalently loaded 

vancomycin hydrogels, we found that the free vancomycin hydrogel produced a larger zone 

than that of the covalent vancomycin gel (Figure 5.9). 
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Figure 5.7. Growth inhibition test of overnight planktonic S. aureus using covalent 

vancomycin 2:1 DEGDA:PEGDA fractions collected via HPLC after 24 hours of release 

into PBS. Measurements taken at OD600 in a well plate. Negative control correlates to a 

fraction of 0, where positive growth (+Growth Control) is 1. * p-value < 0.01 from 

respective positive control. 
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Figure 5.8. Specific activity of each fraction collected from covalent vancomycin 2:1 

DEGDA:PEGDA fractions collected via HPLC after 24 hours of release into PBS. 

Fractions 1 and 2 did not achieve a MIC in the assay. The free vancomycin MIC is a 

literature value which has been verified in our lab using the same protocol. 
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Figure 5.9. Zone of inhibition comparison. Degradation rate-matched (~21 days) covalent 

vancomycin (1.5 wt%) and free-vancomycin (1.5 wt%) hydrogels on a 24 hour modified 

Kirby-Bauer assay via placement of 7 mm x 1.5 mm hydrogel discs on S. aureus seeded 

agar petri dishes. 
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Figure 5.10. HUVEC viability after 24 hours incubation with VAH6 5:1 and AH6 3:1 

hydrogel degradation products. 
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5.3.7 Cell Viability with Hydrogel Degradation Products 

To determine cell toxicity of these hydrogel systems, hydrogels were degraded until 

complete solubility, and ran in a dose comparison on HUVEC (Figure 5.10). After 24 hours 

incubation, it was found that the TC50 were 1.5 mg/mL for the VAH6 5:1, and 7.0 mg/mL 

for the AH6 3:1, indicating an increased toxicity for the VAH6 5:1 system. 

5.4 Discussion 

S. aureus can colonize biomaterials at concentrations of 105 lower than what is required to 

overcome the body’s immune system without the presence of a biomaterial [21, 22]. This 

large discrepancy in colonization underlines the importance of avoiding antimicrobial 

implants that release their contents prior to the complete degradation of the implant. 

Success in literature has been found concerning the covalent incorporation of drug into 

polymer design [7]. Through the use of therapeutic degradation products, drug release is 

bound to the degradation rate. This highly effective polymer design was integrated into our 

vancomycin containing hydrogels, to form a covalently linked antimicrobial biomaterial.  

Currently used PMMA beads, or modifications of such chemistries [391, 392] would 

require removal of inactive biomaterial remaining at the implant site beyond the drug 

release period, however, our hydrogel which releases covalently-bound vancomycin due 

to ester-based degradation, may avoid that problem.   This PBAE material, synthesized, 

via acrylate-amine reaction between PEG and DEG diacrylates with vancomycin, allowed 

formation of an acrylate containing macromer that was redox polymerized into an 

antibiotic backbone with tunable degradation/release. While only hypothetical, side 

reactions during polymerization could potentially include other reactive sites of 
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vancomycin, such as double bond oxidation, leading to a reduction of antimicrobial 

activity. Through comparison of GPC results, analysis showed an increase in PDI for 

vancomycin containing macromers, perhaps due to the branching effects that vancomycin 

may add to the system. The addition of longer retention time peaks in HPLC indicated 

change of the vancomycin within the system away from the free form, as vancomycin 

addition was the only variation between the unloaded and loaded systems. Mass 

spectroscopy of the covalent vancomycin releasate samples produced several higher 

molecular weight peaks that support the hypothesis of vancomycin reaction with the 

diacrylates. As two Michael-Addition sites were hypothesized due to the glycosidic 

primary amine (see Figure 5.1B), a terminal molecular weight near 1630 was predicted, 

with variation potentially owing to the different PBS salts in solution and isotopes. Further 

validation of vancomycin incorporation was provided by radiotracing. After 125I-

radiolabeling of vancomycin, we found that the unique HPLC peaks in the covalent-

vancomycin samples showed significantly higher CPM, compared to the fractions 

collected during, as well as prior to, the free vancomycin peaks which showed background 

CPM.  

Comparison of the drug release:degradation ratio over time concluded that vancomycin 

release was patterned with degradation kinetics, as opposed to free loaded vancomycin 

where diffusion dominated drug release. To accomplish drug release tuned with matrix 

degradation, via a mechanism other than covalent drug addition, may not always be 

possible, however. It is often not attained using simple diffusion based drug release, where 

biodegradation outlasts drug burst release [25, 393, 394], as the kinetics for the bulk 
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degradation rate must either equal the drug diffusion rate or drive it through quick 

degradation.  

In the case of hydrophilic drugs, like vancomycin, the high rate of drug diffusion would 

require a quickly degrading hydrogel matrix to match drug release/degradation, thereby 

denying the option of extended-release. Affinity-based drug-polymer interactions [385, 

395] could encounter similar problems as well due to dependency on drug affinity for the 

polymer over other molecules in a complex system, compared to the more direct route of 

covalent addition. In comparison to our free vancomycin loaded system, the covalently 

loaded PBAE networks allowed for an elimination of the non-drug releasing period after 

the biomaterial was not yet fully degraded. This important factor is often absent in literature 

of vancomycin drug release from hydrogels [25, 393, 396-398]. Interestingly, even through 

covalent addition of vancomycin, exact synchronization of drug release to overall polymer 

degradation rate was not possible. 

As shown in Figure 5.6 panel C, if the drug release;degradation ratio was 1 through the 

entire lifespan of the biomaterial, the data would have directly followed the 45º line. 

However, with variation of DEGDA:PEG400DA monomer ratios from 2:1 to 5:1, each 

hydrogel system degraded, swelled, and released drug differently. A potential source of 

this variation is likely heterogeneity within the network, resulting in domains with variable 

degradation rates.  In previously published work, using a co-macromer hydrogel system 

[399], hydrogel heterogeneity was apparent via biphasic degradation trends, where this 

currently used system utilizes the co-monomer, single macromer method to form a 

hydrogel with single phase degradation trends. For example, the 2:1 DEGDA:PEG400DA 

hydrogel showed initial lag of drug release:degradation of less than 1 up to a degradation 
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Mt/M∞ of just over 0.4, and then increased greater than 1 until completion. The PEG400DA 

rich regions may indeed degrade more quickly than the vancomycin regions, showing 

initial lag, whereas when DEGDA rich regions remain, the bulk degradation slows, and 

then vancomycin is released more rapidly. In contrast, the 5:1 DEGDA:PEG400DA 

hydrogel, being more hydrophobic to start with, the vancomycin ester bonds seemed to 

have degraded much faster than the much more prevalent DEGDA regions in comparison 

to the 2:1 hydrogels, showing the potential variation of kinetics possible with this system. 

Even with vancomycin only consisting of 1.5 wt% of the total hydrogel with respect to the 

polymeric monomer, the addition of vancomycin amine-acrylate esters to the backbone 

altered the total degradation period compared to the freely loaded system by 13 days for 

the 3:1 composition hydrogels, indicating a vast modification towards bulk hydrophilicity. 

A potential workaround for this stumbling block in degradation synchronization may be to 

selectively bond vancomycin to comparatively hydrophobic blocks (e.g. DEGDA), in order 

to offset the hydrophilicity of vancomycin and slow the release. However, without 

vancomycin comprising the amine content in entirety, disconnect will inevitably remain in 

release/degradation kinetics. 

The antibacterial activity of vancomycin is due to the ability of the glycopeptide to traverse 

the cell wall of gram-positive bacteria, and bind to the D-alanyl-D-alanine moiety of N-

acetylmuramic acid and N-acetylglucosamine. However, if the structure of vancomycin 

were to change, it is logical that the antimicrobial MIC may be affected as well, due to 

interference with hydrogen bonding regions within the peptide backbone to D-alanyl-D-

alanine. Further, if vancomycin was still in its oligomeric form with backbone polymer, 

the ability of vancomycin to traverse the cell wall would likely be affected as well. And 
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thus, this may be a description for the resulting S. aureus MIC found for fraction 3 being 

77.5 times greater than the MIC of neat vancomycin in Figure 5.7. Modified Kirby-Bauer 

results indicated a zone of inhibition similar to that of freely loaded vancomycin, albeit 

smaller. The resulting smaller inhibitory zone is thought to be due to a combination of the 

reduced activity of release products compared to free vancomycin, the reduced vancomycin 

release rate from degradation-based drug release found in PBS, and, hypothetically, the 

reduced diffusivity of larger oligomeric chains. In comparison to other groups utilizing 

covalent chemistries with vancomycin, one group has formed an antimicrobial surface with 

single-site vancomycin addition upon various chains, and found similar reductions in 

activity (up to a 60 fold decrease in activity) in some cases [389, 390]. Importantly, they 

reported that vancomycin still bound covalently to a modified surface film retained 

antimicrobial activity. Interestingly, this may also apply to our system as vancomycin is 

delivered from the hydrogel while remaining in oligomeric forms, and both of these 

moethods are required to exhibit properties of cell wall penetration to reach binding sites. 

In order to recover the antimicrobial activity back to the state of neat vancomycin, it is 

apparent that unmodified vancomycin may be necessary to be produced after cleavage from 

a polymer backbone. Our antimicrobial hydrogel system appears to show similar results, 

with a lowered activity in higher order degradation residues. Research looking into other 

covalent addition mechanisms may be warranted to produce this result.  

Interestingly, while the VAH6 5:1 had a lower TC50, it was comparable to other published 

work using a similar PBAE hydrogel, where they used mouse pluripotent mesenchymal 

cells and found a TC50 value of between 0.4 to 1.8 mg/mL degradation products [400].  

VAH6 products were also more toxic than vancomycin, which has been shown to become 
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toxic only above 5 mg/mL to HUVEC [401].  Yet, despite this decreased biocompatibility, 

the degradation products still possessed greater antimicrobial capacity as compared to 

mammalian cell toxicity.  Future work will focus on a detailed evaluation of the modified 

Vancomycin and methods to improve the antimicrobial and toxicity thresholds. 

5.5 Conclusions 

Successful formation of an active antimicrobial hydrogel that releases drug throughout its 

degradative lifespan is important in the capacity to apply this strategy for infection 

treatment. With the ability to release vancomycin to the full extent of degradation, the 

covalent incorporation of vancomycin into the backbone of PBAE polymers indeed showed 

improved vancomycin kinetics over the freely-loaded system, where burst-release 

diffusion extinguished drug release well before degradation was complete. The resolution 

towards reduction of burst release may reduce the potential for bacterial colonization of 

this biomaterial as antibiotic was found to be released until the hydrogel loses structural 

integrity. Via Michael-Addition of vancomycin into the polymeric backbone hydrogel 

structure, vancomycin release was found to be much more closely correlated to the total 

degradation rate of the hydrogel compared to traditional free-loading. Tuning of the 

degradation profile between 7 and 21 days was possible through a 2.5-fold variation of the 

hydrophobic:hydrophilic content of the hydrogel from 2:1 to 5:1 DEGDA:PEGDA, an 

ability useful for wound healing applications requiring different release rates. 

The specific activity on planktonic S. aureus of covalently-modified vancomycin was 

found to be reduced to that of un-modified vancomycin. This decrease in activity, however, 

is indeed an implication that vancomycin has been modified into the backbone of the 

material. This was corroborated by HPLC peak shifts and retention times of active 
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components. Since fraction 2 of Figure 5.3 is where the free-vancomycin peak would 

appear if present, it can be seen that there was high conversion of vancomycin into the 

modified form. As far as current literature is defined, this biodegradable hydrogel showing 

covalent release of vancomycin is an important step in degradative-based drug delivery for 

local antibiotic treatment. 

Copyright © Andrew L. Lakes 2016 
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Chapter 6. Reducible Disulfide Poly(beta-amino ester) Hydrogels for Antioxidant 

Delivery 

Based on the research article: 

Andrew L. Lakes, Carolyn T. Jordan, Prachi T. Gupta, David A. Puleo, J. Zach Hilt, 
Thomas D. Dziubla. Reducible Disulfide Poly(beta-amino ester) Hydrogels for 
Antioxidant Delivery. Submitted to Advanced Materials. 

6.1 Introduction 

The natural redox state of human cells is a highly regulated system, where shifts in the 

balance of pro- and antioxidant levels may induce a state of cellular stress, [402] as is the 

case with an acute oxidative burden (e.g., radiation and reperfusion injury) or oxidative 

stress-based disease (e.g., pulmonary pneumonitis, atherosclerosis, and rheumatoid 

arthritis) [26-30]. Through carefully timed delivery of antioxidants, the redox buffering 

capacity may be temporarily increased, shifting the cytosol towards the reduced state, 

alleviating transient oxidative injury [31, 32]. To minimize potential oxidative stress 

caused by biomaterial-induced inflammation or toxicity, antioxidant delivery may aide the 

foreign body response, improving implant integration. On the other hand, biomaterials 

which lower antioxidant capacity may reduce biocompatibility in times of oxidative stress. 

Using a disulfide-containing poly(β-amino ester) (PBAE) hydrogel, similar to those used 

in literature for DNA delivery [403, 404], but which can be reduced to contain bound-thiols 

within the bulk matrix for antioxidant delivery, we found that a large differential existed 

between the cytotoxicity of the degradation products containing disulfides and those 

containing thiols (reduced disulfides). Further, oxidative stress was found to be 

significantly less with the thiol containing hydrogel degradation products, which indicated 
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the importance of biomaterial redox state and the potential for high biocompatibility 

compared to other antioxidant containing biomaterials. 

Disulfide bonds are a common responsive crosslinking system used in polymeric 

biomaterials [405-408] and may be utilized as a means of biodegradation via disulfide 

cleavage for drug release to the cytosol [409, 410]. Human cells typically contain from 1 

to 10 mM glutathione (GSH) and roughly 1/100 that content of glutathione disulfide 

(GSSG) [411, 412], which is enzymatically reduced back to glutathione mainly via 

glutathione reductase/NADPH+ [31, 413, 414]. Unfortunately, cellular entry of disulfides 

may result in reduced antioxidant capacity through oxidation of glutathione in the cell via 

disulfide cleavage within the biomaterial or degradation products, and create mixed 

disulfides unable to participate in enzymatic regeneration of glutathione [415]. Delivery of 

reduced disulfide (thiol-containing) materials may be utilized to not only re-balance 

cellular response under oxidative stress conditions, but also enhance cell viability of 

biomaterials. 

6.2 Materials and Methods 

6.2.1 Materials 

All reagents were used as received without further purification steps. Cystamine 

dihydrochloride, 4,7,10-trioxa-1,13-tridecanediamine (TTD), 5,5’-dithiobis(2-

nitrobenzoic acid) (DTNB/Ellman’s Reagent), diethyleneglycol diacrylate (DEGDA), and 

2-mercaptoethanol (2-ME) was purchased from Polysciences Inc. (Warrington, PA). 

Immobilized tris(2-carboxyethyl)phosphine (TCEP) beads were purchased through 

Thermo Scientific (Waltham, MA). EGM-2 cell media and HUVEC were purchased 
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through Lonza (Hopkinton, MA). Hypoxanthine and xanthine oxidase were purchased 

through Sigma-Aldrich (St. Louis, MO). Calcein-AM was obtained from Life 

Technologies (Grand Island, NY). All solvents were purchased through either Fisher 

Scientific (Waltham, MA) or Pharmco-AAPER (Brookfield, CT). 

6.2.2 Cystamine PBAE Hydrogel Synthesis 

Throughout hydrogel synthesis, the total acrylate to total primary amine ratio was kept at 

a stoichiometric 1 to 1. First, cystamine was mixed with anhydrous dimethylsulfoxide 

(DMSO) at 133 mg/mL during sonication to aid in solubilization. Then, after mixing in 

TTD with the cystamine solution, it was added to the DEGDA. The mixture was then 

dispensed onto a casting ring upon a Teflon plate, and kept for 24 hours at 60ºC. After 

removal from the oven, thin film hydrogels were washed with DMSO to remove unreacted 

reagent, freeze dried for 48 hours, and stored with desiccant in argon at 2-5ºC. 

6.2.3 Hydrogel Swelling and Mesh Size Calculations 

Swelling studies proceeded via weighing the dry material before and after swelling in 

DMSO for at least 8 hours to achieve equilibrium. For reversible swelling steps, a new dry 

mass was calculated after freeze drying the material to account for any loss of mass washed 

away. The swelling ratios, 𝒒𝒒, were found by dividing the swollen polymer 𝑾𝑾𝒆𝒆 by the 

weight of the dry polymer 𝑾𝑾𝒅𝒅 in equation 6.1. The polymer volume fractions, 𝒂𝒂𝟐𝟐, were 

calculated by equation 6.2, where 𝝆𝝆𝒑𝒑 and 𝝆𝝆𝒆𝒆 are the densities of the dry polymer (1.3 g/cm3) 

and DMSO solvent (1.1 g/cm3) respectively [79]. 

𝒒𝒒 = 𝑾𝑾𝒆𝒆
𝑾𝑾𝒅𝒅

         (6.1) 
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𝒂𝒂𝟐𝟐 = 𝟏𝟏

𝟏𝟏+
𝝆𝝆𝒑𝒑
𝝆𝝆𝒆𝒆

(𝒒𝒒−𝟏𝟏)
        (6.2) 

Mesh size 𝝃𝝃 calculations were performed using solvent interaction calculations using 

Flory-Rehner [81-83] equation 6.3 to find the number average crosslinking molecular 

weight 𝑴𝑴𝑪𝑪 required for equation 6.4 [81, 86]. 𝑴𝑴𝑵𝑵 is number average molecular weight of 

the polymer between crosslinks (from 217-194 Da for 0-66 mol% cystamine of the amines 

in the disulfide state, and 217-169 Da in the reduced), 𝒂𝒂�𝟐𝟐 is the specific volume of the 

swollen amorphous hydrogel, 𝑽𝑽𝟏𝟏 is molar volume of DMSO in the hydrogel (71.03 

mL/mol), 𝒆𝒆 is the repeat polymer bond length (1.54 Å for C-C), 𝑪𝑪𝒏𝒏 is the Flory 

characteristic ratio (constant 4.0 used for ethylene glycol systems as an approximation [84, 

85]), and 𝑴𝑴𝒓𝒓 is the molecular weight of the repeating unit (44 Da for ethylene glycol 

assumed).  

𝟏𝟏
𝑴𝑴𝑪𝑪

= 𝟐𝟐
𝑴𝑴𝑵𝑵

− 𝒂𝒂�𝟐𝟐
𝑽𝑽𝟏𝟏

�𝐥𝐥𝐥𝐥(𝟏𝟏−𝝂𝝂𝟐𝟐) + 𝝂𝝂𝟐𝟐 + 𝝌𝝌𝝂𝝂𝟐𝟐𝟐𝟐�

𝒂𝒂𝟐𝟐
𝟏𝟏
𝟑𝟑�  − 𝒂𝒂𝟐𝟐𝟐𝟐

     (6.3) 

 𝝃𝝃 = 𝒆𝒆𝒂𝒂𝟐𝟐−
𝟏𝟏
𝟑𝟑� �𝟐𝟐𝑪𝑪𝒏𝒏𝑴𝑴𝑪𝑪

𝑴𝑴𝒓𝒓
�
𝟏𝟏
𝟐𝟐�       (6.4) 

To determine the Flory-Huggins parameter, 𝝌𝝌, equation 6.5 was used where 𝝌𝝌𝑯𝑯 is the 

enthalpic contribution and 𝝌𝝌𝑺𝑺 is the entropic contribution, typically used as 0.34 [416]. 

Equation 6.6 finds the enthalpic contribution, 𝑹𝑹 is the universal gas constant, 𝑻𝑻 is the 

absolute temperature, 𝜹𝜹𝟐𝟐 and 𝜹𝜹𝟏𝟏 are the Hildebrand solubility parameters of the polymer 

(equation 6.7) and solvent (12.0 cal/cm3 [417]) respectively. 

𝝌𝝌 = 𝝌𝝌𝑯𝑯 + 𝝌𝝌𝑺𝑺         (6.5) 

𝝌𝝌𝑯𝑯 = 𝑽𝑽𝟏𝟏
𝑹𝑹𝑻𝑻

(𝜹𝜹𝟐𝟐 − 𝜹𝜹𝟏𝟏)𝟐𝟐        (6.6) 
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To calculate the Hildebrand solubility parameters, equation 6.7 was used, where 𝑬𝑬𝒆𝒆𝒄𝒄𝑬𝑬𝒊𝒊 is 

the cohesive energy of each bond type in the crosslink, and 𝑽𝑽𝒊𝒊 is the molar volume of the 

bond type in the crosslink. 

𝜹𝜹𝟐𝟐 = �∑𝑬𝑬𝒆𝒆𝒄𝒄𝑬𝑬𝒊𝒊
∑𝑽𝑽𝒊𝒊

�
𝟎𝟎.𝟓𝟓

         (6.7) 

Cohesive energies and molar volumes were used from Fedors values in Van Krevelen et 

al. [416]. The Flory-Huggins parameter for the initial oxidized state was used as an 

estimation in calculating the mesh size of the reduced, and then re-oxidized hydrogel. 

6.2.4 Fourier Transform Infrared Spectroscopy 

Using Fourier transform infrared spectroscopy (FTIR) (Varian 7000e) and a heated 

attenuated total reflectance (ATR) stage, the starting materials were added to the stage for 

real-time FTIR analysis. A spectrum was taken at each time point, and using Varian 

Resolutions Pro, peak areas were calculated for the carbonyl (C=O) and carbon double 

bonds (C=C) of acrylates. 

6.2.5 X-ray Photoelectron Spectroscopy 

A Thermo Scientific K-Alpha x-ray photoelectron spectrometer (XPS) was used with an 

EX06 ion source. Hydrogel samples were freeze dried overnight, then transferred to a high 

vacuum chamber for 24 hours. After this, the samples were scanned looking at the S2p 

binding energy range, and analyzed with Thermo Scientific Avantage Data System. 
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6.2.6 Hydrogel Degradation 

For aqueous degradation, 10 mM phosphate buffered saline (PBS) was used for sink 

conditions. Samples were stored in a shaken 37ºC water bath for the indicated time periods, 

whereupon the total liquid supernatant was collected, and fresh PBS was added. For 

degradation performed in the presence of a reducing agent, TCEP or 2-ME was used with 

anhydrous DMSO.  

6.2.7 Sample Reduction and Thiol Detection 

To create reducing conditions, either TCEP or 2-ME was used. TCEP immobilized agarose 

beads were used to reduce any solvent soluble degradation products. Samples were kept at 

maximum equal to the molar reducing content of the beads for 30 minutes, well-mixed on 

a vortexer. To detect free/bound thiol, Ellman’s reagent (DTNB) solution was first created 

at 0.0784 mg/ml using Ellman’s buffer, and was kept out of light. After dilution of 17.8 µL 

of sample into 182.2 µL of Ellman’s reagent solution, the mixture was incubated for 15 

minutes before sample analysis using a UV-vis spectrophotometer at 412 nm. Thiol content 

was calculated based upon a calibration curve of reduced cystamine with TCEP beads and 

Ellman’s assay.  

6.2.8 Degradation of Reduced Hydrogel 

A 25 mole ratio cystamine hydrogel was first reduced in 4x excess DMSO for 16 hours 

using 50 mM free TCEP. Due to the swelling ratio of the 50/50 mol% CA/TTD hydrogel 

being 4.2 wet/dry, and 11% of mass solubilized in reducing conditions, the gels were then 

washed 3 times with PBS to remove residual TCEP down to below 10 µM. Degradation 

samples were then taken at the time points compared to a control gel made of 50/50 mol% 
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CA/TTD, not exposed to reducing conditions, and a 0/100 mol% CA/TTD hydrogel 

exposed to reducing conditions to control for residual free TCEP not washed away. 

6.2.9 Cytotoxicity Assay 

Human umbilical vein endothelial cells (HUVECs) were seeded into 96 well plates 

(Costar) at 9,000 cells/well and grown to confluence. Cells were treated with neutralized 

(pH 7.4) degraded hydrogel materials in both oxidized and reduced states that were serially 

diluted in EGM-2 Endothelial Cell Growth Media (Lonza). Cells were incubated for 24 

hours at 37ºC and 5% CO2. Material was removed after 24 hours and cells were stained 

with Calcein-AM. HUVEC viability percentage was measured using a UV-vis 

spectrophotometer (Biotek SynergyMX) at excitation/emission wavelengths of 485/528 

nm. Data was normalized to live controls. 

6.2.10 Reduction of Oxidative Stress in HUVEC 

HUVECs were seeded into 96 well plates at 9,000 cells/well and grown to confluence. 

Cells were incubated in neutralized hydrogel degradation products at concentrations 

between 2.5 and 10 mg/mL in EGM-2 endothelial cell growth media. After one hour, 18.75 

mU/mL of xanthine oxidase (XO) was added followed by 200 µM hypoxanthine (HX) to 

cause injury via superoxide production. Cells were incubated with material and HX/XO 

for 24 hours at 37ºC and 5% CO2. HUVEC viability was measured by Calcein-AM 

intensity using UV-vis spectrophotometry. Data was normalized to live controls.   
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6.2.11 Mitochondrial Respiratory Response in HUVEC 

A Seahorse XF flux analyzer was used to monitor mitochondrial bioenergetics with the 

SS/SH hydrogel degradation products ± HX/XO by recording oxygen consumption rates 

(OCR) in pmol/min as well as extracellular acidification rates (ECAR) in terms of pH 

change. In this analysis, the assay parameters/treatments were set to determine changes in 

OCR to study the effect of HX/XO generated oxidative stress, and not changes in ECAR 

glycolytic flux. A 50/50 mol% CA/TTD hydrogel degradation product concentration was 

used which was below the Calcein-AM derived IC50 for both the SH and SS systems (both 

SS and SH used 0.156 mg/mL with SH at 0.363 ± 0.006 mM thiol, n=3, standard deviation). 

HX/XO (200 µM/18.75 mU/mL) was set at the same concentration as the Calcein-AM 

studies such that mitochondrial response may be deviated from non-treated controls. 

HUVECs were seeded at a density of 35000 cells/well in a 96-well tissue culture plate and 

were allowed to adhere overnight. A group of wells were media filled without cells to be 

used as a background during XF flux analysis. After overnight incubation, cells were 

treated with the hydrogel sample groups for 1 hour, whereupon HX/XO was added and 

incubated for 24 hours in total at 37ºC and 5% CO2. After 24 hours of treatment, the well 

plate was prepared for the mitochondrial stress assay using an XF flux analyzer.  

The cell growth media was then washed with FX Assay Modified DMEM media (5.5 mM 

glucose, 1 mM pyruvate, 2 mM glutamine). After washing, wells were further incubated in 

the same FX media for 1 hour at 37ºC in a non-CO2 chamber. The well plate was then 

subjected to the mitochondrial stress assay, which includes addition of electron transport 

inhibitors i.e. oligomycin (1 µM), FCCP (carbonyl cyanide p-

trifluoromethoxyphenylhydrazone) (1 µM) and a mixture of rotenone (1 µM) and 
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antimycin A (1 µM) in a serial manner to study mitochondrial bioenergetics response. Each 

inhibitor serves the function of determining at least one bioenergetics component of the 

mitochondrion. Oligomycin acts as ATP synthase inhibitor and helps in determining the 

ATP production rate linked to that mitochondrion. FCCP is an uncoupling agent which 

gives an estimate of maximum respiration and mitochondrial spare respiratory capacity. 

Rotenone/antimycin A completely shuts down the mitochondrial function by inhibiting 

complex I and II function in electron transport chain and hence gives an estimate of any 

non-mitochondrial OCR which is further utilized in calculating basal respiration, and 

maximum respirations rates of mitochondrion. OCR and ECAR were measured every 3 

minutes including addition of inhibitor drugs in series. Post XF analyzer measurement, 

cells in each well were fixed for BCA protein assay to estimate the protein content of the 

adhered cells. To proceed for the assay, FX media was removed and cells in each well were 

lysed by adding 25 µL of cell lysis buffer (0.32 mM sucrose, 2 mM EDTA, 2 mM EGTA, 

20 mM HEPES at pH 7.4, containing protease inhibitors 4 μg/mL leupeptin, 4 μg/mL 

pepstatin, 5 μg/mL aprotinin, and 0.2 mM PMSF). The plate was incubated at -20oC 

overnight. The next day, the plate with lysed cells was analyzed for protein levels using 

BCA protein assay kit (Thermo Scientific, Rockford IL). The OCR (pmol/min) values were 

then normalized using the protein content values, and data was also obtained as 

pmol/min/µg of protein or %OCR from the third basal values of measurement for each 

group. 
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6.3 Results and Discussion 

6.3.1 Hydrogel Formation 

Disulfide cystamine-containing hydrogels were formed through aza-Michael addition of 

cystamine (CA) with diethylene glycol diacrylate (DEGDA) (Figure 6.1A). The relative 

content of thiol was controlled through the addition of another di-primary amine, 4,7,10-

trioxa-1,13-tridecanediamine (TTD). To verify reaction between the acrylates and amines, 

real-time ATR-FTIR (attenuated total reflectance Fourier transform infra-red 

spectroscopy) analysis of the polymerization at 60ºC was completed, where the acrylate 

conversion was detected (Figure 6.1B). The carbon double bond of the acrylate groups 

present in DEGDA was found to decrease relative to the carbonyl group during reaction, 

indicating that Michael addition took place over the 24 hour reaction period. To verify 

cystamine incorporation into the networks, hydrogels were washed in dimethylsulfoxide 

(DMSO), which resulted in a mass loss of less than 7% (Figure 6.2A), indicating at least 

93% of reactants added were incorporated into the hydrogel. Further, only 4 wt% of the 

total added cystamine was washed out for the 50/50 mol% CA/TTD hydrogel, 

demonstrating a high reactivity of cystamine (Figure 6.2B). Detection of the surface 

chemistry using X-ray photoelectron spectroscopy (XPS) revealed consistent 

proportionality of sulfur S2p orbitals (Figure 6.1C). Although disulfides and thiols contain 

overlapping binding energies, the presence of bound sulfur is nonetheless detected, with 

163 eV hypothesized to be in disulfide configuration. Slight asymmetry may be due to 2p 

spin-orbit doublets of 1/2 and 3/2. Importantly, there are no oxidant shifts reflecting 

sulfones or sulfonates, which would appear at binding energies greater than 163 eV, around 

168 eV.   
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Figure 6.1. Disulfide PBAE and thiolated nanoparticle reaction scheme. A) PBAE 

disulfide hydrogel reaction scheme. B) Carbon double bond conversion using real-time 

FTIR polymerization on a heated ATR crystal, where the dashed abscissa line indicates the 

endpoint C=C/C=O ratio after 24 hours. C) XPS S2p spectra comparing sulfur 

(disulfide/bound thiol) binding energy at 163 eV. n=1 B,C. 
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Figure 6.2. Washing results. A) Mass of hydrogels remaining after washing with DMSO 

and freeze drying (mass after wash / mass before wash), n=3, standard deviation. B) Thiol 

content of total lost in DMSO washing, n=1. 
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With intent to form a poly(beta-amino ester) hydrogel, hydrolytically cleavable ester bonds 

existed after reaction of DEGDA’s acrylate groups to amines. The rate of degradation in 

1x phosphate buffered saline (PBS) was expected to be dependent upon the relative 

hydrophilicity of the hydrogel. As cystamine is highly hydrophilic, it should increase the 

degradation rate with increasing content. By exposing CA/TTD hydrogels to PBS, 

degradation rate accelerated with increased cystamine content; the 75/25 mol% CA/TTD 

hydrogel degraded over 24 to 48 hours, compared to 48 to 72 hours for those with the lower 

cystamine content gels (50/50 mol% CA/TTD) (Figure 6.3A). Since these hydrogels 

degrade into ester-containing fragments of their backbone, these fragments should be 

released with intact disulfide bonds. Therefore, we gathered the supernatants and 

performed Ellman’s free thiol assay to determine if the rate of disulfide release matched 

that of the degradation mass loss or if there was degradative preference to the disulfide 

regions due to their hydrophilicity. Release rates of disulfides were found over the same 

periods as the degradation products (Figure 6.4). By comparing the disulfide release rate 

to the degradation rate in Mt/M∞, it can be seen whether cystamine release was diffusion 

controlled or degradation controlled. It was apparent, due to the closeness to the y=x line 

indicating coupled release between drug and degradation products, that release was 

degradation controlled throughout the lifespan of the material (Figure 6.3B). 

6.3.2 Effect of a Reducing Environment 

As hydrogels included disulfide bonds, it could be expected that if these were incorporated 

into the hydrogel backbone, a reducing environment would cleave these disulfides. 

Depending upon the extent of cystamine incorporation, a reducing environment could 

either decrease the crosslinking density or fully degrade the gel. Using the highest 
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cystamine content gel formed, a 75/25 mol% CA/TTD cystamine hydrogel, we added 

tris(2-carboxyethyl)phosphine (TCEP) reducing agent in excess and measured the mass 

remaining of the hydrogel over time. Indeed, it only took 2 hours to completely solubilize 

this hydrogel into DMSO (Figure 6.4B). We then varied the cystamine content from 0/100, 

5/95, 25/75, 50/50, 66.6/33.3, and 75/25 mol% CA/TTD, and it was found that at 66.6/33.3 

mol% CA/TTD and lower cystamine content, the hydrogels did not degrade completely 

into soluble degradation products after 12 hours with excess 2-mercaptoethanol reducing 

agent, but at concentrations above 66.6/33.3 mol% CA/TTD cystamine (e.g. 75/25), 

complete solubilization occurred (Figure 6.3C). This result indicates the ability for delivery 

of this material in a reduced state with antioxidant thiol groups that are likely exposed.  

6.3.3 Drug Release of Pre-reduced Hydrogel 

For reduced hydrogels below the 66.6/33.3 mol% CA/TTD cystamine content threshold at 

which bulk mass remains, these should contain antioxidant moieties as endcaps where 

disulfides previously existed. Upon introduction to an aqueous environment, the ester-

cleaved fragments would thereby contain these thiol endcaps, and allow for antioxidant 

release proportional to the rate of degradation. To determine this, we first reduced a 50/50 

mol% CA/TTD hydrogel in excess TCEP, and then after washing away free reducing agent, 

the thiol content was measured in degradation supernatants as a function of incubation time 

in PBS. As anticipated, the 50/50 mol% CA/TTD hydrogel previously reduced showed 

release of free thiol groups compared to controls (Figure 6.3D). The degradation time 

decreased substantially from a previous 48-72 hours in the oxidized state to 10-24 hours in 

the reduced form. This decrease was perhaps due to a combination of larger void volume, 

allowing for greater solvent interaction, and enhanced hydrophilicity with the extra thiol 
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endcap content. Roughly 10% of mass was lost due to initial reduction, with the remainder 

perhaps due to oxidation of thiols over time (compare with Figure 6.4C).  
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Figure 6.3. Disulfide hydrogel characteristics. A) Mass remaining of 50/50 and 75/25 

mol% CA/TTD hydrogels via degradation in PBS at 37ºC in sink conditions. B) 

Comparison of disulfide release rate vs. bulk hydrogel degradation. C) Fraction of hydrogel 

mass remaining after washing with 2-mercaptoethanol in DMSO vs. cystamine molar 

content. D) Rate of thiol-containing species eluting from 50/50 mol% CA/TTD, or 0/100 

mol% CA/TTD hydrogels in PBS which had been pre-reduced with TCEP in DMSO (16 

hr) and washed, reduced post-degradation, or not reduced. n=3 each for A-D, standard 

deviation. 
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Figure 6.4. Reduced hydrogel characteristics. A) Release rate of disulfides post-reduced 

to thiols found in the soluble degradation products of Figure 6.3A hydrogels. B) Kinetics 

of reduction for a 75/25 mol% CA/TTD hydrogel in 2-mercaptoethanol and DMSO, 

detected via Ellman’s assay. C) Percent of solubilized 50/50 mol% CA/TTD hydrogel 

degradation products remaining in the thiol state over time in PBS at 37ºC. n=3 for all, 

standard deviation. 
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6.3.4 Hydrogel Swelling and Mesh Size 

Increasing the content of cystamine increased the degradation rate, which could be 

explained through swelling ratio observation. Further, if these hydrogels are exposed to 

reducing conditions, their swelling ratio should increase readily due to not only mass loss 

but from the increase in mesh size as a result of de-coupling disulfide bonds into thiol 

endcaps. We found this hypothesis to be validated after placing hydrogels of varying 

cystamine content in reducing conditions in anhydrous DMSO for 8 hours until equilibrium 

swelling occurred (Figure 6.5A). While the 75/25 mol% CA/TTD hydrogel solubilized 

completely, the lower content gels showed a dramatic spike in swelling ratio in DMSO, 

indicating backbone cleavage. To see if a margin of the crosslinking could be recovered, 

we re-oxidized these hydrogels in air after freeze drying and found that the swelling ratio 

was decreased slightly (p=0.003 for 50/50 mol% CA/TTD, p=0.13 for 66.6/33.3 mol% 

CA/TTD). Full recovery was not expected, however, as the solubilized products which 

diffused from the hydrogel into the DMSO solution were not recoverable and discarded, 

which precluded the hydrogel returning to its original state. 

Flory-Huggins parameter calculation (Figure 6.5C) showed a decrease in value with 

increasing cystamine content, similarly for both the oxidized and reduced materials, 

indicating increased miscibility with DMSO. This correlated with the observed increase in 

swelling ratio. Since 𝝌𝝌 values were greater for the reduced (SH) backbone compared to 

oxidized (SS), the increase in swelling was not due to an increased polymer-solvent 

miscibility, and is further corroborated by disulfide cleavage. The mesh size calculation 

found sizes from 8.2 ± 0.2 Å to 9.0 ± 0.6 Å for the oxidized, and 8.0 ± 0.15 Å to 18.2 ± 2.8 

Å for the reduced hydrogels, with increasing mesh size with increasing cystamine content. 
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After re-oxidation of the initially reduced hydrogel, the mesh size decreased, but was not 

significantly recovered at 16.7 ± 2.9 Å. n=3, standard deviation. 
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Figure 6.5. Equilibrium swelling of various cystamine content hydrogels in DMSO. A) 

Swelling ratio, B) calculated mesh size, and C) calculated Flory-Huggins parameter. n=3, 

standard deviation. 
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6.3.5 Cytotoxicity of Degradation Products on HUVEC 

To evaluate cellular toxicity of the cystamine hydrogels, human umbilical vein endothelial 

cells (HUVEC) were exposed to serial dilutions of hydrogel degradation products for 24 

hours, and viability was measured using Calcein-AM live stain. Degradation products were 

either reduced using TCEP beads or kept neat (disulfide state) and quantified for their thiol 

content in PBS. It was found that hydrogels containing cystamine showed large differential 

toxicity dependent upon their redox state, whereas treatment with TCEP reducing agent 

had only a small effect on cell response to the control hydrogel without cystamine (Figure 

6.6A-C). This shift in half maximal toxic conentration (TC50) on the control with reducing 

agent was perhaps due to a low level of leached reducing agent from the TCEP beads at 

less than 1 mM (data not shown). Degradation products with reduced cystamine resulted 

in a cellular toxic concentration (TC50) between 13.5 and 15.5 times higher than their 

respective disulfide containing samples. TC50 values can be found in Table 1. It was 

originally hypothesized that the presence of disulfide would increase cytotoxicity, but this 

was not observed in this assay as TC50 values of the disulfide containing hydrogels were 

similar to those for the unloaded 0/100 mol% CA/TTD result, near 0.5 mg/mL. Yet, the 

reduced samples containing cystamine show much higher cytocompatibility than the 0/100 

mol% CA/TTD control (near 7 mg/mL each), indicating antioxidant induced 

cytoprotection. Considering how there is higher thiol content at a lower bulk material 

concentration for the 75/25 mol% CA/TTD hydrogel, yet nearly equal for the 50/50 mol% 

CA/TTD, there may be a combination of effects occurring to determine cytotoxicity, with 

DEGDA and TTD being negative factors and thiol being a positive. Comparing these TC50 

values to literature of other PBAE hydrogel supernatants, the unloaded 0/100 mol% 
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CA/TTD and oxidized samples show greater cytotoxicity, which was comparable to that 

for the PEGDA with TTD crosslinked hydrogels of Wattamwar et al. [7] In contrast, the 

thiol-containing samples show lower cytotoxicity, similar to Lakes et al. [62] using 

DEGDA/PEGDA/isobutylamine and vancomycin hydrogels but greater than the poly-

antioxidant PBAE from Wattamwar et al. (1 mg/mL) [75]. It is apparent that the presence 

of thiol groups within the degradation products significantly lowered cellular viability 

compared to the hydrogel containing DEGDA and TTD only.  
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Table 6.1. Comparison of TC50 Values on HUVEC. 

 TC50 (mg/mL) TC50 (mM) 
Mol% 

CA/TTD 
-Reducing 

Agent 
+Reducing 

Agent 
-Reducing Agent 

(Disulfide) 
+Reducing 

Agent (Thiol) 
0/100 0.56 1.0 0.00 1.0* 
50/50 0.63 8.5 0.32 8.7 
75/25 
PLGA 

0.44 
16.6  

6.8 
— 

0.35 
0.00 

11 
— 

*Contains residual TCEP, no thiol 
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6.3.6 Protection from Oxidative Stress on HUVEC 

It was hypothesized that the reduced hydrogel form containing thiols would show 

protection against a reactive oxygen species insult, resulting in enhanced cellular viability 

compared to controls or the disulfide formulation. To demonstrate suppression of oxidative 

stress, HUVECs were exposed to a superoxide-producing hypoxanthine and xanthine 

oxidase (HX/XO) reaction in the presence of hydrogel degradation products in both forms. 

[418] A significant increase in cell viability was demonstrated with the reduced sample 

compared to a blank control containing only HX/XO and cells at two concentrations of 2.5 

and 5 mg/mL (Figure 6.6D). In contrast, the oxidized samples showed no viability with or 

without superoxide insult at the same concentrations tested (Figure 6.6E). This result 

exemplifies the differential toxicity between the two material types in that the reduced form 

lowers oxidative injury, yet creates injury in the oxidized form. 
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Figure 6.6. Cellular viability of degradation products. A-C) Cellular viability of hydrogel 

degradation products without (disulfide form) or with (reduced form) TCEP reducing agent 

beads with A) 0/100 mol% CA/TTD (unloaded), B) 50/50 mol% CA/TTD C) 75/25 mol% 

CA/TDD. D,E) HX/XO free radical generation assay comparing cell viability of 50/50 

mol% CA/TTD hydrogels in the reduced state and oxidized state, with and without 

oxidative injury with dose response (200 uM HX, 18.75 mU XO). n=5 A-E, standard 

deviation. *p<0.05 with Bonferroni correction to the “No Hydrogel +HX”. 
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6.3.7 Mitochondrial Response to Oxidative Stress on HUVEC 

In order to further our mechanistic understanding behind the viability differences found 

between oxidized (SS) and reduced (SH) hydrogel degradation products, we performed a 

Seahorse Bioscience XF assay to determine changes in mitochondrial oxygen consumption 

rate, as under cellular distress, mitochondrial dysfunction may ultimately cause cell death. 

Using an equal hydrogel degradation product concentration (0.156 mg/mL) which was 

below the IC50 for both the SS and SH containing 50/50 mol% CA/TTD, we subjected the 

previous Calcein-AM HX/XO injury model to a Seahorse XF assay to analyze effects of 

mitochondrial oxygen consumption rate (OCR).  

6.3.8 Total OCR Results 

Without HX/XO treatment, the disulfide-containing material (SS) showed several 

significant differences in viability in total OCR values (Figure 6.7A-D) for ATP 

production, total respiration, and max respiration compared to live controls. The decreases 

in OCR in the SS groups is similar to the viability differences found in the Calcein-AM 

based HX/XO study of Figure 6.6E. Also similar to Figure 6.6E, with HX treatment, there 

were no statistical changes comparing the live control to the SS material, indicating no 

protection. Comparing the cellular protein content of Figure 6.8, there is an average 

decrease, but non-significant difference between the control and SS groups without HX 

treatment. This small decrease may be due to mitochondrial stress due to reduced ATP 

production, as can be seen by the significant decrease in SS total OCR without HX 

treatment compared to the control without HX treatment (Figure 6.7B). 

Looking at the reduced thiol-containing material (SH) for total OCR without HX treatment, 
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results are again similar to the prior HX/XO viability assay (Figure 6.6D) in that there are 

no statistical changes in viability compared to the -HX live control for all four tests, and 

with HX treatment, SH viability remains statistically higher than the respective control for 

basal respiration and ATP production. These results indicate higher cellular viability after 

SH material addition compared to SS, and also a protective effect against HX/XO induced 

oxidative stress. Comparing the protein normalized % OCR may be more insightful to 

remove confounding protein differences that indicate cellular viability, and not necessarily 

mitochondrial function directly.  

6.3.9 % OCR Results (Protein Normalized) 

After normalizing for protein content (Figure 6.8), the statistical differences found in 

Figure 6.4A-D were not present in Figure 6.4E-H for both the SS and SH materials, with 

the only exception being for -HX SS spare respiration, and, while insignificant, lower 

averages were found for the SS material in ATP production and max respiration with HX 

treatment. Spare respiration determines how well mitochondria respond when there is 

increased cellular energy demand, defined as the difference between the basal and maximal 

OCR in the assay. The disulfide material responded poorly to spare respiration compared 

to the SH material, perhaps indicating that the SS material is causing mitochondria to shift 

ATP energy towards detoxification of the SS material, thus lowering the respiratory reserve 

energy. Total ATP production for the SH material with HX treatment remained very high, 

further identifying potential protection. The statistical power of these results could be 

improved through running multiple Seahorse XF plates to double our replication from 7 

wells in the control and 5 in the samples. Further, multiple concentrations would identify 

if we are able to replicate the dose-response found in the HX/XO viability assay (Figure 
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6.6 D,E). 
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Figure 6.7. XF Seahorse assay on HUVEC. 50/50 mol% CA/TTD degradation products, 

± HX/XO (200 µM/18.75 mU/mL). A-D) OCR result. E-H) %OCR result normalized for 

protein content. n=5 for treatments, n=7 for live control. Standard error. *p<0.05 with 

Bonferroni correction compared to respective controls. 
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Figure 6.8. XF Seahorse assay cell protein data. Correlates to Figure 6.7. n=5 for 

treatments and n=7 for live control, standard error. ± HX/XO (200 µM/18.75 mU/mL). No 

statistical differences after Bonferroni correction to respective controls. 
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Figure 6.9. Calcein-AM viability on HUVEC. Treated with glycolic acid and lactic acid 

in PBS, pH shifted to 7.4 to mimic PLGA degradation products. IC50 = 16.6mg/mL. n=5, 

standard deviation. 

  



184 

6.4 Conclusions 

Through variation of the cystamine content as a di-primary amine containing crosslinker, 

we were able to produce hydrogels that degrade in a reducing environment, as well as 

hydrolytically due to the presence of ester bonds. Interestingly, with a disulfide content 

lower than 75/25 mol% CA/TTD, hydrogels were shown to partially degrade in reducing 

conditions, leading to a thiol-containing bulk material. This thiol functionality provided 

utility to deliver these materials in either a disulfide-containing oxidized state or thiol-

containing reduced state. With alteration of the redox state, cytotoxicity of a single base 

material spanned over an order of magnitude difference, with the reduced hydrogel 

byproducts being less toxic than other antioxidant-containing PBAEs described in the 

current literature and within an order of magnitude as PLGA (Figure 6.9). The reduced 

form also showed ability to greatly enhance cellular viability upon induction of HX/XO 

oxidative stress. In a similar light, stressed mitochondrial conditions (spare respiration) 

showcased large differences between spare respiratory capacity, as under increased 

oxidative duress, the disulfide material showed statistically lower total OCR and protein 

normalized %OCR perhaps due to material detoxification, contrary to the thiol material 

which was statistically no different from the live controls, and showed oxidative stress 

protection for total OCR values. It is hypothesized that this duality between antioxidant 

and oxidant state of the material is similar to the cellular redox state of GSH/GSSG, where 

with slight offset, oxidative toxicity or antioxidant protection is manifested, requiring 

mitochondrial metabolic shifts. This gives rise to potential applications of cellular 

antioxidant fortification for the reduced state and reduced viability the oxidized state, while 

using an identical concentration of materials. 
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Chapter 7: Thiolated Antioxidant PBAE Nanoparticles for Redox Applications 

7.1 Introduction 

Cellular oxidation is a key degenerative pathway in a variety of diseases, from 

atherosclerosis to radiation injury [419, 420]. However, cellular oxidation is also an 

essential, and unavoidable byproduct of cellular respiration through, among other 

pathways, the mitochondrial electron transport chain [421]. These oxidative processes are 

normally held in check by reducing agents/antioxidants produced intracellularly by 

essential amino acid building blocks, enzymatic antioxidants, or other materials ingested 

through diet such as vitamin E tocopherols and tocotrienols. A similar paradox exists with 

cellular reduction processes. Even antioxidants, which are an oxidative defense mechanism 

to keep the immune system and oxidative processes in check, can also be detrimental at 

high levels, such as in hypervitaminosis E or excessive immune suppression in sepsis 

therapy [258, 259]. It is therefore apparent that a fine balance must exist between redox 

molecules on the cellular level, as imbalance may lead to pathogenesis or inhibition of 

normal body processes [422]. This redox balance may be supplemented through selective, 

targeted drug delivery [423]. One approach to help re-establish redox homeostasis in times 

of oxidative stress is to supplement essential molecules already present in the cellular 

reactive oxygen species (ROS) defense system, including glutathione, N-acetyl cysteine 

(NAC), vitamins A and E, catalase, superoxide dismutase etc. or plant-derived polyphenols 

like curcumin or quercetin. Delivery of these agents has been widely studied, and yet have 

had mixed results depending on their delivery method and application. For instance, 

delivery of NAC, one of three ingredients for glutathione synthesis, has clinical application 

for treatment of acetaminophen overdose [290]. This is through competitive binding of the 
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acetaminophen metabolite N-acetyl-p-benzoquinone imine, blocking glutathione 

depletion. However, NAC delivery has also been shown to interrupt p53 pathways, a 

multifaceted protein which can initiate apoptosis and a key tumor suppressor implicated in 

DNA repair, hypoxia, and oncogene activation [306, 307]. In mice which inhaled Cre 

recombinase adenovirus for an increased lung cancer propensity, it was found that those 

given NAC (or vitamin E) supplements showed increased cancer progression rates. When 

Trp53 knockout mice were used, there was no effect of antioxidant administration, 

identifying ROS-mediated p53 apoptosis inhibition as causing the increased cancer 

progression [308]. These findings implicate the risk of non-targeted antioxidant delivery 

to those already with cancer, especially to high risk individuals such as smokers, but do not 

directly identify changes in tumor initiation or prevention. 

Intracellularly, glutathione (GSH) is the most abundant small biomolecule at a 

concentration of 1-10 mM depending on conditions within the cytosol [424, 425]. The thiol 

group on GSH participates in numerous redox reactions as a reducing agent, and is largely 

oxidized into glutathione disulfide (GSSG) whereupon glutathione reductase may 

regenerate the thiol groups at the expense of NADPH oxidizing to NADP+. Under normal 

conditions, the cytosol GSH:GSSG ratio is near 100:1, establishing the cytosolic reducing 

environment [426, 427]. However, under extreme cellular oxidative stress, the ratio may 

drop to 1-10:1, allowing for the oxidation mediated damage of important biomolecules to 

occur [428]. 

It is clear that specific local delivery to regions of the body and/or certain cell types is 

necessary for positive outcomes in complex oxidative stress diseases [429]. To target 

regions otherwise not bioavailable or accessible through direct local injection, active 
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targeting strategies of systemically administered drugs/complexes have been accomplished 

in the literature through use of monoclonal antibodies, ligands, aptamers, etc. [430]. 

Polymeric nanoparticles are a promising field of study to achieve local delivery of bioactive 

molecules to the site of interest whist minimizing non-specific interactions. However, not 

all nanoparticles allow for surface functionalization. If a nanoparticle is not amphiphilic 

enough for antibody coating, or a small molecule requires a specific orientation for reaction 

to occur, physadsorption may not be advantageous or even possible. Readily 

functionalizable nanoparticles are therefore a powerful asset for covalent addition of 

biomolecules, such as is the case with thiol/disulfide interchange reactions, which also has 

been shown in literature to be useful for redox-responsive drug release [404, 431-433]. 

With the intent of mimicking the glutathione redox found in the body, our group previously 

synthesized a highly biocompatible poly(β-amino ester) (PBAE) containing a disulfide 

crosslinker with di-primary amine functionality, cystamine [434]. These polymer networks 

were doped with the non-bioactive di-primary amine 4,7,10-trioxa-1,13-tridecanediamine 

(TTD), allowing for variation of cystamine content. These networks retained their bulk 

form while containing bound thiols within the matrix network under reducing conditions, 

allowing thiolated degradation products to be released upon degradation over a period of 

2-3 days. Variation of cystamine content produced an effect of variable cellular viability 

of degradation products depending on being in the thiol (reduced) or disulfide (oxidized) 

form. Further, the thiol (reduced) degradation products were able to protect endothelial 

cells from oxidative damage. While we could form up to 75 mol% cystamine of the total 

amines (75/25 mol% cystamine/TTD), it was not possible to synthesize a hydrogel with 

cystamine accounting for 100 mol% of the amine used, due to cystamine solubility limits 
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in DMSO. In this work, we have overcome the reaction limitations of the 100 mol% 

cystamine system through using a non-nucleophilic base Michael addition catalyst, 1,8-

diazabicycloundec-7-ene (DBU). With DBU to increase cystamine reaction, two network 

systems were made with 100 mol% cystamine, either using diethylene glycol diacrylate 

(DEGDA) or 1,6-hexanediol ethoxylate diacrylate (HEDA) making up the rest of the 

hydrogel at a 1:1 total acrylate to total amine ratio (stoichiometric based on reactive sites). 

Previously we found that when these hydrogels contained greater than 66 mol% of the 

amine of cystamine crosslinker, they would solubilize completely in reducing conditions 

with organic solvent due to disulfide cleavage. It was hypothesized that upon reduction of 

these 100 mol% cystamine of amines hydrogels, these thiolated oligomers would form 

nanoparticles upon single emulsion with an aqueous anti-solvent. It is the scope of this 

chapter to show the synthesis and characterization of these hydrogels formed and their 

transformation into thiolated PBAE nanoparticles, as well as discover the material 

properties and function as a thiol delivery vehicle for potential redox applications. 

7.2 Materials and Methods 

7.2.1 Materials 

All reagents were used as received without further purification steps. Cystamine 

dihydrochloride, N-(1-pyrenyl)maleimide (NPM), 1,8-Diazabicycloundec-7-ene (DBU), 

5,5’-dithiobis(2-nitrobenzoic acid) (DTNB/Ellman’s Reagent), 1,6-hexanediol ethoxylate 

diacrylate (HEDA), and 2-mercaptoethanol (2-ME) were purchased from Sigma-Aldrich 

(St. Louis, MO). Diethylene glycol diacrylate (DEGDA) was purchased from Polysciences 

Inc. (Warrington, PA). Immobilized tris(2-carboxyethyl)phosphine (TCEP) beads were 
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purchased through Thermo Scientific (Waltham, MA). All solvents were purchased 

through either Fisher Scientific (Waltham, MA) or Pharmco-AAPER (Brookfield, CT). 

7.2.2 Cystamine Hydrogel Synthesis and Washing 

Cystamine was first dissolved at 185 mg/mL with a 25/75 vol% mixture of DBU 

catalyst/DMSO respectively during vortexing with sonication, and then added to the 

diacrylate (either HEDA or DEGDA) at a stoichiometric ratio between acrylate and amine 

reactive sites (33 mol% cystamine and 67 mol% diacrylate), and vortexed briefly. The 

mixture was then dispensed onto a casting ring upon a Teflon plate, and kept for 24 hours 

at 60ºC. Using 10x excess volume of DMSO, polymers were mixed for 3 time periods with 

the supernatant collected. The disulfide-containing supernatant was then reduced with 

immobilized TCEP beads for material loss analysis with Ellman’s thiol detection assay. 

After DMSO washing, DMSO was removed from the gels using acetone extraction (10x 

volume) three times. Since cystamine is not soluble in acetone, we did not collect the 

acetone for cystamine detection. The washed hydrogels were then let to air dry for 1 hour, 

followed by freeze drying for 24 hours whereupon a change in mass was measured for 

based on the original mass of ingredients added. Washing of these hydrogels post-synthesis 

was necessary not only for quantification of unreacted cystamine and diacrylate, but also 

to attain FT-IR spectra. This was due to strong interference of DBU’s protonated C=N form 

with the C=C peak from the diacrylate. Since DBU washed out after reaction, we were able 

to better assess the C=C conversion. 
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7.2.3 Extent of Hydrogel Conversion 

Fourier Transform Infrared Spectroscopy (FT-IR) (Varian 7000e) was used to determine 

extent of reaction by tracking carbon double bond to carbonyl ratio on the acrylates before 

and after reaction (C=C/C=O ratio). Peak areas were measured using Varian Resolutions 

Pro software. 

7.2.4 Bulk Hydrogel Degradation and Disulfide Release 

Using excess 10 mM phosphate buffered saline at pH 7.4, sectioned hydrogels were 

degraded under sink conditions with PBS supernatant saved for analysis and replaced at 

each time point at 37 ºC. For each change in mass time point, a different hydrogel was 

removed from the PBS, freeze dried 24 hours, and weighed. Disulfide containing 

degradation product release was reduced with TCEP beads and measured for thiol content 

using Ellman’s assay.  

7.2.5 Nanoparticle Synthesis 

Hydrogels were reduced with 2-ME and organic solvent (acetone or DMSO) at 20x molar 

excess and shaken vigorously under argon atmosphere to solubilize the thiolated linear 

chain PBAE oligomer. This oligomeric solution was either used as is or diluted with extra 

acetone or DMSO, and then added drop-wise to an aqueous solution under mild vortexing. 

With a final 8% organic concentration after initial single emulsion nanoparticle formation, 

nanoparticles were washed 3 times under appropriate centrifugation periods at 30000 G to 

remove organic solvent, reducing agent, and uncoupled oligomers. 
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7.2.6 Mass Spectroscopy 

Mass spectroscopy data were obtained at the University of Kentucky Mass Spectrometry 

Facility using a Bruker Ultraflextreme time-of-flight mass spectrometer equipped with a 

smartbeam-II solid state laser (Nd:YAG, 355 nm), using dihydroxybenzoic acid as the 

matrix for matrix-assisted laser desorption/ionization (MALDI) sample preparation. Two 

sample types of reduced hydrogels were analyzed, 1) hydrogels reduced with 2-ME in 

acetone, and 2) hydrogels reduced with 2-ME in acetone, formed into nanoparticle in DI 

water which were washed, and then the solution freeze dried and reduced again using 2-

ME and acetone. 

7.2.7 Microscopy 

Electron microscopy was performed at the University of Kentucky’s Electron Microscopy 

Center. Scanning electron microscopy (SEM) was first performed with a Hitachi S4300 

with a low concentration sample (0.01 mg/mL) of HEDA/CA nanoparticles formed in DI 

water which were washed, flash frozen, and freeze dried onto carbon tape. A high 

concentration nanoparticle sample (5 mg/mL) was formed with an HEDA/CA hydrogel, 

which was reduced with 2-ME and formed into DI water. This sample was then washed 

and air dried onto aluminum foil (instead of flash frozen and freeze dried). SEM and energy 

dispersive X-ray spectroscopy (EDS) were analyzed using an FEI Helios DualBeam 

FIB/SEM for imaging and elemental analysis. 

For fluorescent conjugate nanoparticle imaging, the thiol-reactive fluorescent dye, N-(1-

pyrenyl)maleimide (NPM), was reacted at 10x molar excess with HEDA/CA and 

DEGDA/CA thiolated nanoparticles for 1 hour in 50/50 vol% DMSO/DI water at room 
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temperature, and then washed out 3 times. Particle sizes were taken before and after 

conjugation. Fluorescent microspore images were taken at 1 ms for bright field and 60 s 

for UV filtered images. 

7.2.8 Nanoparticle Size vs Feed Concentration 

Using 2-ME reduced hydrogels in either acetone or DMSO at various concentrations, 

nanoparticle were added dropwise into a vortexed tube of 10 mM PBS containing 1 wt% 

of 78% hydrolyzed 6000 MW poly(vinyl alcohol) (PVA) and 1 mM EDTA. Size (z-

average diameter) and polydispersity index (PDI) were determined with a Malvern 

Zetasizer Nano. 

7.2.9 Nanoparticle Kinetic Size and Thiol Activity 

Using three feed concentrations of 25, 50, and 75 mg/mL 2-ME reduced hydrogel in either 

DMSO (for HEDA/CA) or acetone (for DEGDA/CA), nanoparticles were formed from 

dropwise addition into the PBS/PVA/EDTA solution and washed 3 times. A 4th wash was 

collected to determine the background reducing agent levels, and also to determine pellet 

mass after freeze drying for final nanoparticle concentrations formed (listed in plot legends 

of Figures 7.8 and 7.9). We chose DMSO for HEDA/CA and acetone for DEGDA/CA as 

they formed at the highest concentration of nanoparticles respectively, allowing for ease of 

pellet mass measurement. Nanoparticle-bound thiol content was measured using a 

modified version of Ellman’s assay, where after 20 minutes of incubation of nanoparticles 

with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) solution, the mixture was centrifuged for 

5 minutes at 30000 G to remove nanoparticle precipitates and the supernatant read at 

412nm at each time point. Percent intensity of initial time point measurements were made 
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with derived total count rate measurements from the DLS. Theoretical max thiol was 

calculated from knowledge of the pellet mass and hydrogel cystamine mass fraction, 

assuming an equal distribution of cystamine-containing oligomers remained in the 

nanoparticle compared to what was washed out. 

7.3 Results 

7.3.1 Cystamine Hydrogel Material Characteristics 

Through the use of the Michael addition catalyst, DBU [435], we were able to produce 100 

mol% of the amine hydrogels (Figure 7.1 A). Two types of hydrogels were formed, the 

first with HEDA and cystamine (CA), and the second with DEGDA and CA. The ratio of 

acrylate to amine was kept constant at 1:1. The cystamine was added to the reactants at 20 

wt% for HEDA and 26% for the DEGDA preparations. After polymerization, the samples 

were washed using DMSO to remove excess monomers and DBU catalyst, and analyzed 

for cystamine loss (Figure 7.2 A) and total mass loss (Figure 7.2 B). While the HEDA/CA 

hydrogel had a 1.0 ± 0.24% total mass loss with 0.2 ± 0.01% of that from the cystamine 

alone, the DEGDA/CA hydrogel saw 7.7 ± 6.7% total mass loss with 2.3 ± 0.23% loss 

being from cystamine. n=3, standard deviation. 

After washing, freeze dried hydrogels were analyzed using FT-IR to determine the extent 

of reaction by comparing the remaining diacrylate ratio of the carbon double bond to 

carbonyl ratio (C=C/C=O) (Figure 7.2 C). The HEDA/CA hydrogel showed slightly fewer 

uncreacted diacrylates (greater conversion) with 0.036 ± 0.0063 (21 ± 3.7% of the 

C=C/C=O final/initial), where the DEGDA/CA hydrogel was found to have 0.045 ± 0.011 

(28 ± 7.0% of the C=C/C=O final/initial) remaining. n=3, standard deviation. 
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These hydrogels, were theoretically predicted to show hydrolytic degradation of ester 

bonds in aqueous media. While the DEGDA/CA hydrogel degraded measurably over 7 

days to roughly 26% ± 23% mass remaining (Figure 7.2 D) with 52% ± 2% disulfide-

containing degradation products released (n=3, standard deviation) (Figure 7.2 E), the 

HEDA formulation remained within error of 100% mass remaining after 7 days, and less 

than 1% disulfide-containing degradation products released. Comparing the disulfide 

release to degradation rate (Figure 7.2 F), disulfide release appears to be degradation based 

(i.e. close to the 45º line), if not slightly slower than degradation, perhaps explained by 

over reporting of degradation by continual small undissolved hydrogel fragments being 

aspirated at later time points, and thus not detected in solution for Ellman’s detection assay. 
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Figure 7.1. Synthesis schematic. A) disulfide PBAE hydrogel and conversion into B) 

thiolated oligomers via a reducing agent (2-mercaptoethanol), and C) single-emulsion into 

thiolated nanoparticles. 
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Figure 7.2. Disulfide hydrogel characteristics. A) kinetic cystamine mass loss after 

washing B) total mass and cystamine loss of theoretical total and C) conversion with FT-

IR. D) % mass remaining during sink condition degradation at 37 ºC, E) disulfide release 

and F) comparison of disulfide release to mass loss over time. n=3, standard deviation, 

each time point other than C) “diacrylate only” where n=1. 
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7.3.2 Properties of Reduced Hydrogels 

Due to the presence of disulfide crosslinks in the network backbone, reducing conditions 

will cleave those disulfide bonds to form a thiolated linear polymer. Reduction proceeded 

for 1 hour with a vigorously mixed solution under argon until the matrix was dissolved, 

using 50/50 vol% 20x stoichiometric reducing agent (2-ME) and acetone or DMSO. 

Following reduction, hydrogels were solubilized in either DMSO or acetone, whereupon 

they were analyzed for molecular weight with mass spectroscopy (#1). A second set, 

however, was also analyzed for molecular weight after the oligomer solution was used to 

form nanoparticles which were washed, freeze dried, and re-reduced with 2-ME in acetone 

(#2). The median molecular weight found for the reduced HEDA/CA hydrogel was 2000 

m/z before nanoparticle formation (#1) and 2600 m/z after nanoparticle formation (#2) 

(Figure 7.3 A,B). Similarly for the reduced DEGDA/CA hydrogel, the molecular weight 

was 2400 m/z before (#1) and 2500 m/z after (#2) nanoparticle formation (Figure 7.3 C,D). 

More dramatic, however, was the increased higher molecular weight tail for the reduced 

materials after nanoparticle formation and washing. For a molecular weight of 2500 Da, 

approximately 10 mers are required for the thiolated oligomers formed from the reduced 

hydrogels. Due to the low ionization intensity of MALDI MS, it is typical to assume that 

z=1 for these polymers. 
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Figure 7.3. Mass spectroscopy of thiolated oligomers. A) and B) HEDA/CA reduced 

hydrogels before and after nanoparticle formation. B) and C) DEGDA/CA reduced 

hydrogels before and after nanoparticle formation. Y-axis is intensity (a.u.). 

  

HEDA/CA Hydrogel 

 

DEGDA/CA Hydrogel 

 

Washed 
Nanoparticles 

  

Unwashed 
Materials 

 

A 

B 

C 

D 



201 

7.3.3 Thiolated Nanoparticles 

Thiolated PBAE nanoparticles were formed through single emulsion of reduced oligomers 

(Figure 7.1 C). After adding hydrogels into organic solvent in the presence of a reducing 

agent, thiolated oligomers were formed (Figure 7.1 B) which were then added dropwise 

into an aqueous anti-solvent of PBS containing 1 wt% PVA for stabilization and 10 mM 

EDTA to inhibit thiol oxidation from divalent cations. Particle sizes were found to be 

dependent upon both feed concentration and organic solvent selection (DMSO or acetone). 

For both the HEDA/CA and DEGDA/CA systems, acetone resulted in larger z-average 

particle diameters, which increased with an increase in feed concentration. With the 

HEDA/CA formulation, the maximum particle feed concentration was 100 mg/mL for 

DMSO solvent, and 25 mg/mL for acetone for the particles to remain stable upon synthesis 

(Figure 7.4 A,B). For DEGDA/CA, particles were unstable at concentrations exceeding 75 

mg/mL in acetone, and 25 mg/mL for DMSO (Figure 7.4 C,D). 

For electron microscopy imaging, we used DI water instead of PBS to form HEDA/CA 

nanoparticles. Particles formed in DI water possessed a z-average diameter of 150 nm with 

a PDI of 0.150 from DLS readings (Figure 7.5 F). After washing, SEM images were 

obtained. Interestingly, we found that SEM samples prepared at a high concentration (4 

mg/mL used) facilitated film formation upon the droplet drying onto the aluminum foil 

(Figure 7.5 A-C). EDS elemental analysis showed the film to contain 2.2% sulfur and 

79.5% carbon (Figure 7.5 D). At low particle concentration (0.01 mg/mL), however, 

particles appeared to retain their solution morphology and were found to be in the correct 

size range as DLS measurements, albeit lightly agglomerated (Figure 7.5 E).  
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Figure 7.4. Comparison of feed concentration. A) and C) comparison of nanoparticle z-

average diameter and B) and D) polydispersity index of HEDA/CA and DEGDA/CA 

thiolated nanoparticles respectively, in PBS/PVA/EDTA. n=3 each point, standard 

deviation. *Maximum concentration before particles became unstable. 
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Figure 7.5. Scanning electron microscopy (SEM) of thiolated HEDA/CA nanoparticles at 

high concentration (4 mg/mL) forming a film at droplet boundary. A) Zoomed out 

micrograph, B) zoomed out micrograph overlaid with elemental analysis chromatogram – 

purple indicates sulfur from cystamine, blue indicates aluminum from the substrate. C) 

Zoomed in micrograph of film showing surface deformation upon solvent evaporation, and 

D) energy dispersive X-ray spectroscopy (EDS) spectrum of panel B. E) SEM of 

nanoparticles at low concentration (0.01 mg/mL) in DI water, and F) characteristic particle 

size in DI water of HEDA/CA nanoparticles. 
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7.3.4 Characterization of Thiol Functionality 

In order to visualize the thiolated nanoparticles, we reacted HEDA/CA and DEGDA/CA 

nanoparticles with NPM in DMSO. SEM of particle sizes were found to be 375 nm with 

50% DMSO vs 150 nm with 8% DMSO. With and without NPM addition did not affect 

particle sizes using 50% DMSO (Figure 7.5 F and Figure 7.7). Representative images of 

visible nanoparticle aggregates were taken with a fluorescent microscope using an 

ultraviolet filter or in bright field, before and after NPM addition, and with either 

HEDA/CA or DEGDA/CA nanoparticles (Figure 7.6). It was seen that both the HEDA/CA 

and DEGDA/CA nanoparticles/aggregates fluoresced with the addition of NPM, but not 

without, indicating thiol functionality. 
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Figure 7.6. Comparison of HEDA/CA and DEGDA/CA nanoparticles formed in DI water 

and added to 50 vol% DMSO ± NPM fluorescent maleimide.  
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Figure 7.7. Addition of N-(1-pyrenyl)maleimide (NPM) (ex/em 338/375 nm) to already 

made nanoparticles in DI water. 1 hr incubation at room temperature with 50% DMSO, 

washed 3x. n=1 each. 
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7.3.5 Nanoparticle Kinetics 

Activity, size, and degradation kinetics were measured with nanoparticles formed in 

PBS/PVA/EDTA, under 37ºC incubation. The HEDA/CA system formed with DMSO was 

compared with the DEGDA system formed with acetone. The HEDA/CA particles 

possessed sizes from 200–250 nm with PDI between 0.1–0.2 (Figure 7.8 A,B). Similar to 

the bulk hydrogel, there was no significant evidence of degradation occurring, as monitored 

by DLS scattering intensity over time (Figure 7.8 E).  

Ellman’s thiol assay was performed on the nanoparticle bulk solution at each time point 

without washing to include both nanoparticle bound thiols and any degradation products. 

Thiols were found to be present on the particles with Ellman’s assay up to 7 days (Figure 

7.8 C,D), with the maximum specific thiol release (mmol/g nanoparticles) at the highest 

particle concentration (4.0 mg/mL) depending on the formulation. These initial synthesis 

concentrations were taken as soon as possible after 3 wash steps were complete, which was 

after 3 hours from initial formation where 31, 47, and 59 % of the theoretical maximum 

thiols were detected (Figure 7.8 F). Comparing the DEGDA/CA nanoparticles to the 

HEDA/CA nanoparticles, the presence of thiols also lasted over 7 days, as beyond that 

minimal levels were being detected (Figure 7.9 C,D). However, the starting concentration 

was much closer to the theoretical maximum (Figure 7.9 F) at averages of 88 ± 1.5, 106 ± 

8.2, and 103 ± 10.2 % of the theoretical maximum (n=3, standard deviation). The lower 

concentration nanoparticle system showed the lowest specific thiol content (mmol/g 

nanoparticles). In contrast to the HEDA/CA system where the bulk hydrogel and 

nanoparticles showed no degradation, the DEGDA/CA nanoparticle system showed signs 

of degradation to compliment the bulk hydrogel degradation. While the z-average particle 
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sizes did not change consistently across the concentrations starting between 300–350 nm 

with a PDI of 0.075–0.20 (Figure 7.9 A,B), the % intensity of the original were statistically 

different after 7 days of degradation, decreasing by 13–30 % from the original (Figure 7.9 

E). 
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Figure 7.8. Kinetics plots of HEDA/CA nanoparticles in PBS/EDTA/EDTA. A) z-average 

diameter, B) polydispersity index (PDI), C) total thiol found, D) total thiol found per mass 

of nanoparticles, E) % intensity of dispersion over time, and F) % of the theoretical 

maximum thiol concentration found after washing.  
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Figure 7.9. Size and activity kinetics of DEGDA/CA nanoparticles in PBS/PVA/EDTA. 

n=3 each nanoparticle set, standard deviation. *Indicates p<0.05 intensity change from 

original. A) z-average diameter, B) polydispersity index, C) total thiol found, D) total thiol 

found per mass of nanoparticles, E) % intensity of dispersion over time, and F) % of the 

theoretical maximum thiol concentration found after washing. 
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7.4 Discussion 

Disulfide crosslinked hydrogels were formed with a content great enough to dissolve in the 

presence of a reducing agent in organic solvents. However, hydrogels precipitated in 

aqueous systems with the same reducing agent, leading to our formation of controlled 

nanoparticles via single emulsion. Even though it is thought that both the DEGDA/CA and 

HEDA/CA hydrogels were in PBAE configuration through Michael addition of the 

acrylates and amines to form ester linkages, only the DEGDA system showed a measurable 

degradation rate and disulfide release over 7 days (Figure 7.2 D,E). HEDA is more 

hydrophobic than DEGDA in that it contains an aliphatic 6 carbon chain compared to 

DEGDA with 2 carbons, and therefore may inhibit hydrolysis of the ester bonds. Swelling 

studies comparing the two hydrogel systems could aid in this hypothesis of decreased 

polymer-solvent interaction with HEDA/CA hydrogels. 

The washing mass loss for the DEGDA/CA hydrogels was greater than the disulfide release 

found. This is explained by three different points: 1) increased hydrogel fragmentation 

occurred with the DMSO swollen hydrogels, where aspiration of small hydrogel particles 

may have occurred during the wash steps. This effect can be seen as well on the drug release 

vs mass loss (Figure 7.2 F) where after 50% of mass loss, the amount of drug release tapers 

off. 2) HEDA is more hydrophobic than DEGDA. 3) The extent of reaction with FTIR was 

greater for the HEDA/CA compared to DEGDA/CA, so it could also be partially explained 

by increased extent of reaction. However, these conversion numbers found are also similar 

to those recorded in our previous publication with the TTD-doped DEGDA/CA hydrogels, 

at 0.04 C=C/C=O, which showed fast hydrolysis in water [434]. 
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With the HEDA/CA nanoparticles, mass spectroscopy showed that lower molecular weight 

fragments were washed out after nanoparticle formation, compared to before washing. As 

not all oligomers formed upon hydrogel reduction would be of equal chain length, it is 

unlikely that all oligomers were incorporated. After the centrifugation wash step, the 

nanoparticles could have been separated from unincorporated oligomers in solution. 

However, this result could also be explained by low molecular weight fragments diffusing 

from the nanoparticle during centrifugation, whereas large fragments would show 

diffusional limitations. Due to the stoichiometric excess of 2-mercaptoethanol used to 

reduce both the hydrogel and nanoparticles, this result cannot be explained by re-oxidation 

of oligomers. 

Nanoparticles were prepared in a two-stage synthesis approach, first forming disulfide 

hydrogels, and then reducing them for formulation into thiolated nanoparticles. With this 

technique, the bulk material of disulfide hydrogels may be stored in a non-volatile state 

prior to nanoformulation. After reduction of the hydrogels into thiolated oligomers, the 

nanoparticles remained stable for over 8 days without aggregation in solution, even upon 

complete oxidation of thiols after 7 days. This stability was likely enhanced by the 

surfactant effects using PVA, and thiol activity was extended with the presence of EDTA 

to inhibit the effects of divalent cations (which are known to increase thiol oxidation rate 

[436]). Although not tested in this work, a biologically relevant serum-containing media 

would hinder thiol activity through thiol-disulfide exchange in proteins. It is also possible 

that in an intracellular environment which has high reducing potential, bound-thiols may 

persist longer and aid in glutathione/cysteine antioxidant capacity in times of oxidative 
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stress. Future experiments using a cellular environment may increase nanoparticle 

degradation rate due to the presence of esterases to cleave the PBAE ester bonds.  

While thiolated nanoparticles did not aggregate at the solution concentrations of Figures 

7.8 A and 7.9 A, they did when dried outside of solution. This was demonstrated with 

electron microscopy where nanoparticles formed a film, perhaps due to re-oxidation of the 

high concentration of thiols present. Where typical particle aggregation may show touching 

nanoparticles under SEM, the polymers were likely above the glass transition temperature 

(Tg), if not also the melting temperature (Tm) and showed formation of a film at high 

concentration, and individual soft spheres at low concentration. It is hypothesized that from 

the combination of capillary forces and droplet air drying, the higher concentration polymer 

on the droplet edge was from re-oxidation of polymer into a concentrated film. We 

attempted to run DSC on the reduced polymer as well as the disulfide hydrogel to verify 

this, but it was difficult to adequately remove reducing agents as well as solvent to get an 

adequate reading. Facilitating film formation, compared to similar applications in 

literature, our particles were highly thiolated up to 3.7 ± 0.28, and 1.5 ± 0.01 mmol SH/g 

nanoparticles for the DEGDA/CA formulation and HEDA/CA formulation respectively 

(n=3, standard deviation) [437, 438]. This high drug loading was intrinsic to the material 

via use of the inexpensive crosslinker, cystamine, without requirement of commonly used, 

and less economical crosslinkers such as SH-PEG-SH or SPDP (succinimidyl 3-(2-

pyridyldithio)propionate)). 

The increase in nanoparticle size based upon feed concentration was likely due to an 

intrinsic viscosity increase upon increased concentration. Similarly, the size dependence 

upon solvent variation was likely due to Flory-Huggins derived solvent miscibility 
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differences [81]. While fluorescent imaging of nanoparticles with the thiol-reactive dye, 

NPM, was not expected to show individual nanoparticles due to optical limitations, we did 

find fluorescence of the visible aggregates. Since NPM is only weakly fluorescent before 

maleimide reaction, this is further implication that thiols were present on the nanoparticles 

as is seen with the direct kinetic Ellman’s assay. 

Disulfide crosslinked nanoparticles are a popular design, whether for use as reducing agent-

sensitive cross linkers that dissolve for drug release upon reduction [438-443], for extended 

circulation formulations [444], with thiol-ene type reactions as a reactive crosslinker [445, 

446], or to expose thiols for antibody conjugation [447]. For the purpose of antioxidant 

delivery, however, nanoparticles delivered in the thiol state are not as widely reported 

compared to thiol-based small molecule systems, perhaps due to rapid oxidation rates in 

aqueous solution [437]. Where other antioxidant systems may show antioxidant drug 

release through fast [8] or slow [402] degradative processes, this nanoparticle system is 

different in that maximal antioxidant capacity is available at the initial treatment. For 

applications of antioxidant delivery, organ protection prior to radiotherapy, or post 

oxidation event, such as ischemia-reperfusion injury, a short thiol half-life formulation with 

high initial activity may be desirable. 

7.5 Conclusions 

Polymeric nanoparticles are part of a widely researched field showing promising results 

towards the advent of region-specific targeting and treatment through specialized 

functionality and drug delivery. Through reduction of disulfide containing hydrogels of 

high drug content, we formulated and characterized thiol-bound nanoparticles with tunable 
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degradability, size and activity. Nanoparticles formed were shown to be thiol containing 

via Ellman’s assay, as well as reaction with NPM, demonstrating functionality of the thiol 

groups. As prior research has shown, these thiol groups are highly biologically relevant, 

and may aid in processes such as reduction of pathophysiological oxidative stress, and be 

useful as conjugate moieties found at high concentration using inexpensive starting 

materials. 

Copyright © Andrew L. Lakes 2016 
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Chapter 8. Conclusions and Future Directions 

In the modern era, treatment options have advanced rapidly to the advent of personalized 

medicine. Since individual patients have different factors influencing their health, different 

medical histories, and different genetics, plug-and-play biomaterials of the past may not 

always be the best option. Through the formation of customizable materials, patients may 

receive treatments designed for their need. In our work, we have demonstrated PBAEs to 

be a highly customizable platform for drug delivery in a variety of applications using 

straightforward synthesis procedures. Through tailoring these PBAEs to exhibit not only 

tunable biomaterial properties, but also elicit bioactive responses, we demonstrate multiple 

applications in which PBAEs could be used to enhance the impact that modern biomaterials 

have on everyday medicine.  

Initially, we formulated PBAE hydrogels with free loaded antibiotic (vancomycin) and 

antioxidant (catalase) as a potential method to improve upon local antibiotic delivery with 

reduced risk of antibiotic resistance emergence in a single delivery system. Through tuning 

of the comparatively hydrophilic and hydrophobic ethylene glycol-based monomers, these 

in situ formable, biodegradable hydrogels showed controllable degradation and drug 

release rates. While catalase release followed a degradative release profile over 19 days of 

release until hydrogels fragmented, vancomycin followed a diffusive release profile that 

was improved from 2 days up to 7 days of release, through modification of the single 

monomer, co-macromer system into a co-monomer, single macromer system. While this 

antibiotic hydrogel system is theoretically advantageous over non-degradable systems as 

second surgeries would not be required, antibiotic release concluded much earlier than the 

hydrogel degraded.  
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To overcome this mismatch of drug release and degradation periods, we utilized the free 

primary amine sites on vancomycin for covalent addition into the PBAE backbone and 

found the vancomycin drug release period matched to the degradation period at 21 days. 

However, vancomycin-containing degradation products minimum inhibitory concentration 

dropped from 2 µg/mL to 155 µg/mL against Staphylococcus aureus, likely due to remnant 

propionic acids found in mass spectroscopy after hydrogel ester hydrolysis. Nonetheless, 

covalent addition was found to be a useful method to extend vancomycin release and 

reduce chance of empty scaffold colonization through degradative drug release in local 

antibiotic therapies. These methods of covalent addition could be expanded to allow a 

library of other antibiotics to be covalently bound (see Table A.1). However, depending 

upon the bioactivity of the amine groups, different antibiotic activities may be produced. 

Due to the large numbers of oxidative stress-related diseases experienced by the world’s 

population, treatment and/or prevention of oxidative stress through sequestration of free 

radicals may be performed through delivery of antioxidant polymers. With our experience 

in synthesizing covalent-drug conjugated PBAE hydrogels, we synthesized a disulfide-

containing (cystamine) PBAE for applications of supplementing the thiol/disulfide cellular 

redox system. Depending on the cystamine content, the hydrogel could be chemically 

reduced into either a thiol-bound hydrogel, or a soluble bound-thiol system. Conditional 

on the cystamine redox state, hydrogel degradation products showed large differential 

cellular toxicity concentrations, with the thiol-containing products being less cytotoxic. 

Further, the thiol-containing degradation products protected against cellular oxidative 

stress whereas the disulfide material did not. This was in part due to mitochondrial 

protection as shown by a Seahorse XF assay. The ability to powerfully inhibit oxidative 
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stress on endothelial cells with this material’s degradation products indicates use as an 

antioxidant delivery system, perhaps useful in applications at high concentrations such as 

hydrogel radiation spacers where protection of normal tissue is paramount to delivering 

lethal doses to cancerous tissue alone. Further development of this material could include 

modification of bound thiol groups, where additional activity could be introduced as bound, 

or redox sensitive moieties. If disulfide cleavage were to dispense a greater antioxidant 

content than was required to reduce the disulfide bond, perhaps there would be a net 

antioxidant effect, something possible through using a double-disulfide linker with 

multiple covalently attached polyphenolic antioxidant in the center group, for instance, to 

increase the net equivalent antioxidant capacity. 

Nanoparticle drug delivery research is an ever growing field due to the potential benefits 

of both the nanoscale properties and cellular interactions, allowing for effects like enhanced 

permeation and retention, but also for tissue specific, antigen-based drug targeting. Due to 

the antioxidant protective effects with the cystamine hydrogels, we created a nanoparticle 

formulation for applications with antioxidant delivery. Using a non-nucleophilic base 

catalyst to increase the Michael addition reaction, we formed high drug content hydrogels 

(20-26 wt%) previously unattainable. With these hydrogels in the reduced oligomeric form, 

we created biodegradable, thiolated nanoparticles which showed high thiol activity over 7 

days while remaining stable. Similar to the bulk hydrogel version of this material, the 

nanoparticle formulation contained high antioxidant content initially on the nanoparticle-

bound thiols, and thus may be desirable with applications in which a high initial antioxidant 

effect is required to block initial onset of acute oxidative stress, such as in initial 

radioprotection. Further, due to the decreased vapor pressure of bound-thiols versus free 
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thiols in solution, it could be a less odoriferous substitute of N-acetyl cysteine treatment of 

acetaminophen overdose, or even be formulated as an inhalable for cystic fibrosis mucus 

disintegration. These nanoparticles are also potentially useful for not only antioxidant 

delivery applications, but also as an inexpensive method to create high thiol content PBAE 

nanoparticles which could be used for specific targeting of thiol-reactive species, such as 

antibodies, maleimide conjugates, or gold substrates for theranostics. Future work with 

these nanoparticles may include more accurate identification of the glass transition and 

melting temperatures, and if as predicted it is below ambient conditions, then modifying 

the backbone materials to increase these. This would allow for enhanced ease of handling, 

electron microscopic imaging, and washing/storage methods, such as freeze drying. 

Copyright © Andrew L. Lakes 2016 
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APPENDIX 

Table A.1. Primary Amine Containing Antibiotics Listed in the World Health 

Organization Essential Medicines. G+/- is Gram positive or negative activity.  

Class Type Name Mechanism Activity S. aureus P. aeruginosa
Protein 
Synthesis 
Inhibitors Aminoglycoside Streptomycin Ribosome 30S subunit G+/- No No

Aminoglycoside Neomycin Ribosome 30S subunit G+/- No No

Aminoglycoside Kanamycin Ribosome 30S subunit G+/- Yes No

Aminoglycoside Gentamicin Ribosome 30S subunit G+/- Yes Yes

Tetracycline Doxycycline Ribosome 30S subunit G+/- No No
Cell Envelope 
Inhibitors Glycopeptide Vancomycin D-alanyl-D-alanine G+ Yes No

β-lactam Amoxicillin Penicillin binding protein G+/- No No

β-lactam Ampicillin Penicillin binding protein G+/- Yes No

Cephalosporin Cefixime Penicillin binding protein G+/- No No

Cephalosporin Ceftriaxone Penicillin binding protein G+/- No Yes

Cephalosporin Ceftazidime Penicillin binding protein G+/- No Yes
Nucleic Acid 
Inhibitors Antifolate Trimethoprim Dihydrofolate reductase inhibitor G+/- Yes No

Antifolate Sulfadiazone Dihydropteroate synthase inhibitor G+/- Yes Yes

Useful Against
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