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ABSTRACT OF DISSERTATION

INVESTIGATION OF THE CRITICAL ROLE OF POLYMERIC BINDERS FOR
SILICON NEGATIVE ELECTRODES IN LITHIUM-ION BATTERIES

Silicon is capable of delivering a high theoretical specific capacity of 3579 mAh
g−1, which is about 10 times higher than that of the state-of-the-art graphite-based
negative electrodes for lithium-ion batteries (LIBs). However, the poor cycle life
of silicon electrodes, caused by the large volumetric strain during cycling, limits
the commercialization of silicon electrodes. As one of the essential components, the
polymeric binder is critical to the performance and durability of lithium-ion batteries
as it keeps the integrity of electrodes, maintains conductive path and must be stable
in the electrolyte. The guideline for binder selection of silicon electrodes is still not
available as the electrochemical performance of silicon is very challenging and lots of
research are still being carried out.

This dissertation is focused on unveiling the critical role of polymeric binders in
silicon negative electrodes. As a first step, silicon electrodes mixed with commercially
available Nafion and ion-exchanged Nafion were demonstrated to maintain a high
specific capacity over 2000 mAh g−1 cycled between 1.0 V and 0.01 V, compared
with the traditional binder polyvinylidene fluoride (PVDF). Stable cycling at 1C rate
for more than 500 cycles was achieved by limiting the lithiation capacity to 1200 mAh
g−1.

Secondly, a comprehensive study of the binding mechanisms of these binders in
silicon/LiNi1/3Mn1/3Co1/3O2 full cells was carried out by using techniques such as
X-ray photoelectron spectroscopy (XPS) and instrumented nanoindentation. Par-
tial charge/discharge testing with controlled silicon lithiation capacity showed that
the ion-exchanged Nafion and sodium alginate were both effective binders to main-
tain 1200 mAh g−1 for a long period of cycling without capacity decrease. Full
charge/discharge testing showed that the ion-exchanged Nafion and sodium alginate
binders exhibited the highest capacity retention when the volume change of silicon
nanoparticles was about 300%.The superior performance of ion-exchanged Nafion was
due to its capability to conduct Li+ to isolated silicon nanoparticles. Binders would
not affect the composition of solid electrolyte interphase (SEI). Therefore, coupled
chemical degradation (SEI growth, lithium consumption) and mechanical degradation
(cracking, particles isolation) are the cause of the failure of the full cells.
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Chapter 1 Introduction

Fossil fuels are not inexhaustible and pollutants released by burning fossil fuels are

damaging the environment nowadays. Therefore, renewable energy sources, such as

hydro, wind, solar and nuclear energy, are important for sustainable development.

Energy can be stored and used afterwards in many ways, for example, hydroelectric

energy can be treated as mechanical energy storage because the potential energy of

water is stored before electricity can be generated. Similarly, electrochemical energy

storage refers to systems that can convert chemical energy stored in chemical species

to electrical energy through electrochemical reactions. These systems are generally

called batteries.

There are many types of batteries, including nonrechargeable and rechargeable

batteries, among which we can see alkaline, lead-acid, nickel-metal hydride (Ni-MH)

and lithium-ion batteries (LIBs) quite often in our everyday life. Batteries usually

consist of one or more cells, and each cell is mainly composed of the negative electrode,

the positive electrode and the electrolyte.

Since LIBs were commercialized in 1991, they were widely used in small, portable

electronic devices due to high energy density, high power discharge capability, high

voltage, low self-discharge rate and long cycle life. Currently, graphite and lithium

metal oxides are used as the negative electrode and positive electrode for commercial

mass production of LIBs. Additionally, pure electric vehicles powered by LIBs have

been successfully commercialized by various automobile companies including Tesla

and Nissan in the past few years. However, there are incentives to development new

electrode materials to further lower the cost of batteries. For example, there are many

choices for the negative electrode as many metallic elements can store more lithium

than the carbonaceous negative electrode. But the poor cycling ability is a common

1



problem of those high capacity electrodes.

Silicon is able to deliver a theoretical capacity of 3579 mAh g−1 based on the alloy

Li15Si4 formed at room temperature, which is about ten times of that of the graphite

electrode. So far, substantial research and development investment had been made

to the advancement of the commercialization of silicon-based negative electrodes.

This dissertation is focused on study of the critical role of polymeric binders to

better understand the failure mechanism of nanoparticle silicon electrodes and to

provide insights to overcome the poor cycling performance of silicon electrodes. As

the first chapter, to lay a solid foundation for my work, a comprehensive summary of

those important aspects of advancing LIBs is presented below:

1.1 Fundamentals of Lithium-Ion Batteries

The working mechanism of LIBs is lithium inserts into and moves out of either the

negative electrode or positive electrode reversibly. In general, a single Li-ion cell

can generate a voltage more than 3.5 V. As shown in Figure 1.1, a typical Li-ion

cell is composed of the negative electrode, positive electrode, separator, and organic

electrolyte. The well-known graphite has a layered structure, which allows lithium

to stay between carbon layers. While for the positive electrodes, LiCoO2, LiMn2O4,

and LiFePO4 have the layered, spinel, and olivine structure respectively. The deriva-

tives of these oxides generally share the similar crystalline structures. The separator

(porous membrane, e.g., polypropylene) is used to prevent the direct contact between

two electrodes. The electrolyte contains lithium salts dissolved in organic solvents

and it is playing the roles of electronic insulator and ionic conductor. Although the

electrolyte can be liquid, solid, or polymer gel, nonaqueous electrolyte typically refers

to lithium salts (e.g., LiPF6) dissolved in a mixture of organic solvents (e.g., ethylene

carbonate and diethyl carbonate) and other additives.
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Figure 1.1: Structure of a Li-ion cell during charging.∗

In Figure 1.2, a half cell consists of the working electrode (research object) and

counter/reference electrode (lithium metal). A full cell consists of the negative elec-

trode and positive electrode, which are both research objects. In this dissertation, dis-

charge means the cell is connected to a load and lithium leaves the counter/reference

electrode or negative electrode (i.e. oxidation) to react with the working electrode

or positive electrode (i.e. reduction). This process is also commonly called lithia-

tion/intercalation in the half cells. Charge means the cell is connected to an external

power source and the reverse process will happen. Charge process is also called

delithiation in the half cells.

For a spontaneous chemical reaction, the standard reaction Gibbs free energy

should be less than zero. Similarly, in an electrochemical cell, the driving force of

an overall electrode reaction is the decrease of the Gibbs free energy of the system.

Assume the negative electrode is graphite and positive electrode is LiMO2 (M can be

∗All the schematics in this dissertation are drawn in PowerPoint 2013. In Figure 1.1, structures
of the electrodes and electrolyte components are obtained from the free versions of Diamond 4.0 and
ChemSketch 12.0 respectively.
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Electrolyte
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Figure 1.2: Terminology related to Li-ion cells. The schematic shows the discharge
process. Gray dash lines connected with chargers indicate the charge process.

Co, Ni, Mn, etc.), electrode reactions are [1]

Negative electrode: C + xLi+ + xe− ←→ LixC (1.1)

Positive electrode: LiMO2 ←→ Li1−xMO2 + xLi+ + xe− (1.2)

Overall: C + LiMO2 ←→ Li1−xMO2 + LixC (1.3)

And the theoretical standard open circuit potential E (in volt) is determined by [2]

∆G = −nFE (1.4)

Where n is the number of electrons involved in the electrode reaction, G is the

standard free energy (driving force) in J mol−1, F is the Faraday’s constant (96485

C mol−1, or 26801.5 mAh mol−1).

Based on the experimental results, for graphite and silicon, the midpoint voltages

4



versus lithium are round 0.1 V, while for the lithium metal oxides, the midpoint

voltages versus lithium are generally more than 3.4 V [1]. Therefore, the high voltage

of LIBs indeed comes from the positive electrode.

The specific capacity of either the negative electrode or positive electrode can be

calculated as the total charge per unit mass of electrode materials based on the cor-

responding electrode reaction when the most saturated phase is formed with lithium.

The formula for calculating the specific capacity (in mAh g−1) of a single active

material is

Specific capacity =
nF

M
(1.5)

Where n is the number of electrons involved in a single electrode reaction, F is the

Faraday’s constant, M is the molar mass of active material in g mol−1.

It is not difficult to calculate the theoretical capacities for some common electrode

materials based on above equation, for example, 372 mAh g−1 for LiC6, 3579 mAh

g−1 for Li15Si4, 278 mAh g−1 for LiNi1/3Mn1/3Co1/3O2 (NMC). The specific capacities

and volumetric capacities (mAh L−1) for some elements are calculated in Table 1.1.

So we can learn that silicon has the highest specific capacity and volumetric capacity.

Other important ratings of LIBs, such as the specific energy (Wh kg−1) and energy

density (Wh L−1), can be obtained in a similar way when voltages are specified. In

fact, for real batteries, the weight and volume of other components of batteries are

also taken into the calculations of various ratings.

Table 1.1: Specific capacities and volumetric capacities for some elements.

Material Phase
Specific capacity Volumetric capacity Density Molar mass
mAh g−1 mAh mL−1 g cm−3 [3] g mol−1 [3]

C LiC6 372 781 2.27 12.01
Zn LiZn [4] 410 2927 7.14 65.39
Ga Li2Ga 769 4545 5.91 69.72
Sn Li22Sn5 [4] 993 7249 7.30 (white) 118.71
Al LiAl [5] 993 2681 2.70 26.98
Si Li15Si4 3579 8339 2.33 28.08
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The specific capacity of pure lithium can be obtained as 3862 mAh g−1 when

n = 1 and the molar mass M = 6.94 g mol−1. Even though the lithium has a very

high capacity, however, it has never been used as the negative electrode commercially

due to the safety concern, which is the lithium dendrites formed during operation

may short-circuit the cell.

1.2 Development of Negative Electrode Materials

1.2.1 Carbonaceous Negative Electrode

Carbonaceous materials, such as graphite and petroleum coke (one type of soft car-

bons), were used in batteries long time ago [6]. Specially, graphite has a layered

structure held together by van der Waals forces and lithium will stay between carbon

layers upon charge/discharge. Maximum concentration of lithium in graphite is one

lithium per six carbon atoms (LiC6), and the theoretical capacity is 372 mAh g−1 as

mentioned earlier. The volume change when lithium inserts into graphite is less than

10% [7][8], which makes graphite successfully used for commercial batteries requiring

stable operation and long cycle life. Furthermore, lithiation capacity, mechanism and

electrochemical performance are strongly dependent on the structure and composi-

tion of carbonaceous materials [7]. The capacity as high as 437 mAh g−1 of the doped

carbon film electrode was obtained by substituting the carbon with boron [9].

Another type of soft carbon named mesocarbon microbeads (MCMB) was shown

promising electrochemical behavior as well [10][11]. MCMB are of spherical shape and

have low specific surface area, which could reduce the amount of side reactions during

cycling. As an allotrope of carbon, single-walled carbon nanotubes have been proved

to increase the initial capacity up to 1000 mAh g−1 [12]. Carbon nanotubes can

offer higher conductivity and higher tensile strength compared with graphite. They

can also be used as the support matrix to form composites with other high capacity

materials, which can reduce cracking of active materials as carbon nanotubes are
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playing the roles of gluing other coated particles together and transporting electrons

[13]. The practical performance of carbon nanotubes varies with their structures,

defects and electronic properties. The relatively large irreversible capacity loss after

the 1st cycle and lack of voltage plateau during discharge are believed to limit the

real applications of carbon nanotubes.

1.2.2 Alloy Negative Electrode

Besides Li-C system, there are many other metallic lithium alloys with higher spe-

cific capacities studied for the alternative negative electrode materials, such as, Li-Sn

[4][5][14][15], Li-Ge [16][17], and Li-Ga [18]-[21]. As shown in Table 1.1, LiAl and

Li22Sn5 have the same specific capacity of 993 mAh g−1. But they have very different

volumetric capacities. Different from graphitic materials, lithium is not stored be-

tween carbon layers anymore, but forms alloys with metallic elements. Intermetallics

were also used as the negative electrode materials due to their relatively high capac-

ities, such as Sn/SnSb [15][22]. As each metal atom can alloy with more than one

lithium atom, metallic electrodes have higher capacities. However, significant vol-

umetric expansion occurs during cycling, which leads to the pulverization of active

material particles, electric contact loss and permanent capacity loss upon cycling.

Another reason of capacity decay of the intermetallic electrodes is that the solid elec-

trolyte interphase (SEI) layer formed at the electrode-electrolyte interface will also

experience large mechanical strain and continued growth of this SEI layer would con-

tribute to the irreversible capacity loss as well [22]. Beaulieu et al. observed the huge

volume changes of amorphous alloy electrodes, and concluded that the intermetallic

electrodes had no potential application in batteries due to the poor capacity reten-

tion caused by cracking [23]. Other than pure metallic elements and alloys, metal

oxides, such as Li4Ti5O12 with a spinel structure, can also react with lithium to be

used as the negative electrode, which prevents lithium dendrites formation as well
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as maintains very good cycle life [24]-[28]. The disadvantage of Li4Ti5O12 is its high

voltage of about 1.5 V versus lithium, which can lower the energy density compared

with graphite.

1.2.3 Silicon Negative Electrode

Compared with other elements, silicon is the most promising candidate for negative

electrode material to satisfy future needs, as it has the highest theoretical capacity,

4200 mAh g−1 (based on the most saturated phase Li22Si5) [5][29][30], which is more

than ten times of that of graphite. Based on Li15Si4, the capacity is 3579 mAh g−1.

Nowadays, research about silicon negative electrodes towards better performance is

one of those hottest topics in the field of energy storage and getting more atten-

tion even if the insertion behavior of Li-Si alloy has been studied in the last century

[31]. Similar to many other single elemental or alloy electrodes mentioned before,

during lithiation, silicon electrodes also have bad performance due to the large vol-

ume change (as high as 310%) [32]. Large volume expansion and associated stress

lead to pulverization of electrodes and capacity loss. There are many approaches to

overcome the large volume change and to obtain better capacity retention and they

can be summarized as: nano-sized silicon powers; silicon dispersed in inactive/active

matrix; silicon electrode with different binders; silicon thin films [30][33]. In general,

the specific capacity of silicon thin film electrode is limited as the thickness is within

several hundred nanometers range. Studies of silicon thin film [34][35] and nanos-

tructured silicon [36]-[38] have shown improvements of the cycle life. For instance,

double-walled silicon nanotube has very stable cyclic behavior, good rate capabil-

ity and very higher capacity (more than 600 mAh g−1) than those of carbon-based

negative electrodes by controlling the SEI layer formation at the silicon-electrolyte in-

terface [39]. The mechanical layer coated around silicon nanotube was made of SiOx

and it could prevent the nanotube from expanding during lithiation and therefore
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guaranteed the stability of the SEI layer.

1.2.4 Composite Negative Electrode

By utilizing the features of individual components, composite electrodes are intro-

duced as the promising negative electrodes in LIBs. Graphite has very good cycling

stability and tin has high capacity. High energy ball-milled graphite-tin composite

electrode was reported to deliver capacity around 800-1250 mAh g−1 at the first cycle

with large amount of capacity decay afterwards [40]. Another mechanical ball-milled

composite composed of silicon (21.6 wt%), graphite (64.8 wt%), and polyacrylonitrile-

based disordered carbon (13.6 wt%) was shown to exhibit a capacity of about 660

mAh g−1 and good capacity retention for more than 30 cycles [41]. High reversible

capacity (∼ 1000 mAh g−1) and long cycle life were achieved by using nano-sized

silicon (pyrolysis process of monosilane)/graphite composite electrode [42]. Addi-

tionally, when carbon nanofibers were coated with amorphous silicon by the chemical

vapor deposition method, the carbon core provides electron pathways and mechanical

support while having limited volume expansion. This kind of core shell structure can

deliver capacity up to 2000 mAh g−1 [43].

1.3 Development of Positive Electrode Materials

For LIBs, positive electrode materials are typically lithiated metal oxides. They are

required to have high free energy when reacting with lithium, to maintain crystal

structures after lithiation/delithiation and to be compatible with other components

in the cell [1]. Overall, factors like specific capacity, rate capability, high tempera-

ture behavior, safety, cost and processing determine the real application of positive

electrodes.

Positive electrodes in the market have three basic structures: layered structure

(e.g., LiCoO2), spinel structure (e.g., LiMn2O4) and olivine structure (e.g., LiFePO4).
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LiCoO2 is the most commonly used positive electrode material in small-scale con-

sumer electronics because of its high operating voltage (∼ 4 V), easy processing and

good cycle life [44]. Theoretical capacity of LiCoO2 is 274 mAh g−1, while the practi-

cal capacity is only about 140 mAh g−1 due to the structural and chemical instability

(Co dissolved in electrolyte) at deep discharge when x > 0.5 (Li1−xCoO2) [45][46].

Since Co is toxic and less abundant than other metals (such as Mn and Fe), LiMn2O4

and LiFePO4 were developed to enhance the safety and reduce the cost. Solid solu-

tions LiNixMnyCozO2 were also extensively studied for their high capacity, good rate

capability and high voltages [47]-[51]. Based on previous basic structures, doping

elements (e.g., Al, Ni, Ti, Mg, Zr) were commonly introduced to the mentioned pos-

itive electrode materials to either reduce capacity loss or improve capacity retention

[52]. Overall, performances of positive electrode materials are related to electrode

microstructure, particle size or shape and surface modification. More characteristics

and research progress of various positive electrode materials can be found in references

[1][44][52]-[54].

So far, as we know, practical specific capacity of the positive electrode is much

lower than that of the negative electrode. The overall capacity of a cell is in fact lim-

ited by the positive electrode. Therefore, we are still facing challenges of lowering the

cost and increasing the energy and power densities, especially, for positive electrode

materials.

1.4 Development of Polymeric Binders

Current commercial LIBs electrodes are composed of graphite/LiCoO2, binder (polyv-

inylidene fluoride, PVDF) and conductive carbon. In fact, polymers (e.g., poly(ethyle-

ne oxide), PEO) were widely studied in lithium polymer batteries long time ago

[55]-[57]. For LIBs, the importance of binder began to show up as people were study-

ing novel alloy and silicon electrodes. Chen et al. reported crosslinked elastomeric
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polymer could be used to maintain good capacity retention for amorphous Si-Sn elec-

trodes in spite of the 125% volume change [58]. Sodium carboxymethyl cellulose

and lithium ion exchanged Nafion were reported to have improved performance for

crystalline silicon powders (size, 44 µm) [59][60]. Conductive binder without adding

conductive carbon black in the electrode was proved to accommodate silicon volume

change, and high capacity and long term cycling were also achieved [61]. We are

aware of the basic role of binder is to hold electrode particles together and adhere

the whole electrode well to the current collector, because once electrode particles are

not involved in electron transfers, the capacity decay will start. There may be inter-

actions among binder, electrolyte, carbon black and active materials. The ability of

electrolyte uptake and uniform distribution of carbon black could contribute to the

performance of batteries. For electrodes experiencing large volume changes, an ideal

binder is supposed to tolerate the volume change, maintain good ionic conductivity

and be chemically stable in the operating voltage window [62].

1.5 Failure Mechanisms of Electrodes

Understanding the mechanism of aging of LIBs is extremely important, as it has

strong relations with the manufacturing of batteries, development of new compo-

nents (negative electrode, positive electrode, electrolyte, etc.) of batteries, storage

of batteries, environmental control of battery operations and final applications. We

know LIBs have been widely used in portable devices. These devices have relatively

short life and aging of batteries after certain period of usage doesn’t show too much

importance. However, for future market of electric vehicles applications, 10-15 years

lifetime and up to 1000 cycle life with at least 80% capacity retention are required

[63].

Even if the research about developing new electrodes are going around worldwide,

carbon based graphite is still the best candidate for the negative electrode so far.
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Generally, the aging effects of carbon based negative electrodes can be summarized

as: SEI layer formation at the beginning of cycling and continued growth of the

SEI layer during storage and cycling [64]. For positive electrodes made of lithium

metal oxides, aging of active materials themselves, oxidation of electrolyte compo-

nents, interactions with negative electrodes and structural changes during cycling

were believed to affect the lifetime and capacity [64]. Since battery systems are very

complex to understand, the aging mechanism usually depends on the specific system.

For example, the fading mechanisms of positive electrodes made of LiMn2O4 (spinel

structure) include structural change due to Jahn-Teller distortion of Mn3+ [65][66]

and dissolution of Mn2+ in the electrolyte at low state of charge and electrolyte oxi-

dation and instability of delithiated lithium manganese spinel at high state of charge

[64].

To predict the cycle life and study the capacity fading mechanism quantitatively

over a long period, numeric modeling and experiments were investigated by many

groups [67]-[70]. Generally, chemical degradation was defined as the side reactions

and formation of the SEI due to the decomposition of electrolyte on electrode surfaces.

This is the main cause of lithium loss. Most cycle life models consider chemical degra-

dation as the major capacity fading mechanism [71][72]. On the other hand, mechan-

ical degradation driven by stress and strain fields during lithiation and delithiation

also contributes to the capacity fading. At the same time, cracking of active material

particles resulted from the large stress will facilitate the side reactions. There are

many efforts in literatures to predict the stress generation upon cycling in a single

electrode particle by assuming simple geometries [73]-[79]. Real time stress measure-

ment was carried out on the graphite electrode bonded with silicon wafer substrate

by monitoring the curvature change of wafer during electrochemical cycling [80].
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1.6 Design of Real Batteries

Half cells are commonly used in laboratories, in which either the negative electrode

or positive electrode is assembled against pure lithium reference electrode. Practical

batteries (full cells) are consisted of negative electrode and positive electrode though.

Unlike infinite supply of lithium atoms in half cells, lithium is stored in positive

electrode only in full cells. One of the advantages of using half cells is we can study

the electrochemical behaviors of either the negative electrode or positive electrode

separately.

There are many parameters could affect the performance of real batteries, such as

the electrode thickness, electrode porosity/density, inactive additives [81]-[86]. Ap-

propriate electrode thickness is critical to the electrochemical performance and cy-

cleability. There is a gap between the theoretical capacity and practical capacity of

electrodes in LIBs system due to the limited electronic and ionic conductivities of ac-

tive materials [87]. Although this gap could be narrowed by adding other conductive

additives, these additives may affect specific properties by occupying mass and space

inside electrodes and impair the liquid transport speed and high rate performance.

Study of the cooperation between the positive electrode LiN0.8Co0.15Al0.05O2, PVDF

and conductive acetylene black (AB) shows an optimal ratio of PVDF to AB (5:3, by

weight) can be obtained considering the ion blocking effect of PVDF and electronic

conducting effect of AB [88]. And also, if the amount of PVDF and AB is too small,

long cycle tests show the mechanical integrity of electrode may become a problem.

On the other hand, the ratio of PVDF to AB plays an important role of optimizing

the interfacial resistance and higher PVDF content is believed to reduce the charge

transfer resistance by improving the local electronic conductivity [89].

Another important factor for full cells is the capacity balancing of electrodes.

Reports mentioned electrodes balancing or the negative electrode/positive electrode

mass ratio have come out shortly after LIBs were commercialized [90]-[92]. Over-
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charge of the graphite would happen if the negative electrode capacity is less than

that of the positive electrode capacity, which causes lithium deposition (dendrite)

on the negative electrode surface [93][94]. Excess negative electrode materials will

increase materials cost and cause low capacity and Coulombic efficiency due to the

side reactions such as the formation of SEI layer. In general, to reach maximum ca-

pacity and avoid lithium deposition, the negative electrode should have a little more

capacity to match the positive electrode after subtracting the capacity loss due to

the SEI formation [86].

Copyright c© Jiagang Xu, 2016.
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Chapter 2 Experimental Methods

Battery research in laboratories using two electrodes can be conducted in commercial

coin cells, pouch cells, cylindrical cells, Swagelok-type cells and many other cus-

tomized systems. Commercial coin cells are chosen in my work because of the high

reproducibility and relatively low cost. A schematic plot of the structure of a CR2025

coin cell with a diameter of 20 mm and a thickness of 2.5 mm is shown in Figure

2.1. The plastic gasket is used to separate the cap and case. The porous separator

made of polymers immersed in the electrolyte is used to conduct ions and to prevent

short circuit. The spring made of stainless steel is necessary to secure the compo-

nents inside when the cell is sealed. The spacer made of stainless steel is essential for

protecting the electrode against the spring.

Cap

Gasket

Spring

Spacer

Separator

Positive Electrode

Case

Negative Electrode

CR2025

Coin Cell Structure

mm 02

mm 5.2t

Figure 2.1: CR2025 coin cell structure.

As mentioned in Section 1.1, using either half cell or full cell is dependent on

the research objectives. In a half cell, the working electrode is placed on the case
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and a piece of lithium foil disk is placed above the separator. In a full cell, the

positive electrode is placed on the case and the negative electrode is placed above the

separator as shown in Figure 2.1. The diameter of the negative electrode or lithium

disk is usually a bit larger than that of the positive electrode or working electrode to

ensure a good alignment.

Typical porous LIB electrodes are made from powders of the electroactive mate-

rials, polymer binders and conductive additives. Powders are blended in a container

using the solvents of binders to control the viscosity. Finally, the slurry is coated on

a piece of thin current collector, such as copper or aluminum foil. After drying, the

electrode may need to go through a rolling press to control the density and porosity.

In some cases, electrodes are coated on both sides of the current collector to increase

the energy density. Figure 2.2 shows a schematic plot of fabricating electrodes in the

lab.

Slurry
Current collector

Electrode

Raw powders

Calendering

Figure 2.2: LIB electrodes fabrication procedure.

Some common parameters for the electrodes are discussed here: the loading of

the electrode is expressed as the mass of active material per unit disk area in g cm−2

or the capacity per unit disk area in mAh cm−2. High loading generally means high
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energy density. The electrode density is defined as the ratio of the mass to the actual

volume (product of the thickness and the area) of the electrode. When the density

of each powder and mass of each electrode are known, the theoretical volume of the

electrode can be obtained. Thus the porosity of the electrode φ can be calculated

from this equation:

φ =
Vactual − Vtheoretical

Vactual
(2.1)

The reliability of electrochemical measurement result is highly dependent on the

quality of electrodes. High quality electrodes require delicate work at every step. For

instance, electrodes must be dried thoroughly to remove moisture and the glove box

for coin cell assembly must be kept in good condition all the time. Before test, the

uniformity of a piece of electrode laminate can be assessed from the thickness and

mass distribution of electrode disks.

Several essential characterization techniques used in my work are discussed briefly

in the following sections, including my data only:

2.1 Structural Determination and Surface Morphology

For battery studies, X-ray diffraction (XRD) technique is commonly used to identify

the crystalline structures of the synthesized negative and positives electrodes. Addi-

tionally, X-ray in situ experiments could give information of what crystalline phases

are formed during cycling test [19]. Scanning electron microscope (SEM) is a pow-

erful tool to study the microstructures. The surface morphology and changes after

electrochemical evaluation are very useful for understanding the failure mechanisms

of electrodes. With the help of energy dispersive X-ray (EDS) equipment attached to

a SEM, it’s also convenient to get the chemical compositions of synthesized materials

or new materials formed on electrodes after electrochemical reactions.
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2.2 Electrochemical Measurement

2.2.1 Constant Current Cycling and Constant Voltage Charge/Discharge

Galvanostatic cycling with potential limitation (GCPL), or simply called cycling, is

widely used to obtain capacities, power characteristics and cycle life of batteries quan-

titatively by running a series of charge and discharge sequences under constant cur-

rents between potential limits. It is expected to see batteries can maintain their prop-

erties (e.g. 80% capacity retention) after a long period of usage. By varying the input

currents, we can obtain the capacity data under the slow or fast charge/discharge

rates (i.e. C-rates). C-rate is a constant current require to charge/discharge a cell

in a specified period of time. For example, C/10 means the current under which

charge/discharge takes 10 hours to complete. This is also named the rate performance

of a battery. From voltage versus capacity (or time) curves, named voltage profiles

as illustrated in Figure 2.3, lithiation/delithiation reactions happening on electrodes

can be understood with the resources of phase diagrams and thermodynamics theo-

ries [95]. The voltage window for the practical usage of LIBs is also determined by

the GCPL technique. Moreover, real batteries are pre-cycled to stabilize the capacity

and Coulombic efficiency after assembling.

Figure 2.3(a) shows eight charge (2.0→4.2 V) and discharge (4.2→2.0 V) cycles

of the LiNi1/3Mn1/3Co1/3O2 (NMC111) electrode after a half cell was assembled. It is

apparent that the feasible voltage is more than 3.5 V. Figure 2.3(b) shows a complete

discharge (1.0→0.005 V) and charge (0.005→1.0 V) cycle for the graphite electrode in

a half cell. The three plateaus around 0.2 V, 0.11 V and 0.07 V are the feature of the

graphite electrode, corresponding to the two-phase regions LiC72+LiC36, LiC36+LiC18

plus LiC18+LiC12, and LiC12+LiC6 respectively [6]. If there is a graphite/NMC111

full cell with balanced capacities, the voltage profile will be the combination of two

curves shown in Figure 2.3, as the overall voltage is equal to the voltage difference
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Figure 2.3: Constant current cycling of the NMC111 (a) and graphite (b) electrodes
in lithium-ion half cells.

of the two electrodes. If necessary, the addition of the 3rd electrode (also named

reference electrode) will help discriminate the electrode reactions.

Constant voltage charge/discharge technique is generally used to maximize the

electrode reactions during which the voltage is keeping constant and the current is

decreasing. In Figure 2.3(b), the voltage was holding at 0.005 V for several hours to

complete the lithiation process. This is why the charge of a lithium-ion cell comes

to stop when the voltage reaches the threshold (e.g. around 4.2 V) and the current

drops to a certain level during the constant voltage holding.

Supplementary to the information learned from voltage profiles, differential volt-
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age or differential capacity curves can provide direct evidence of the phase trans-

formations in the electrodes. Therefore, these differential curves are very useful for

identifying the failure mechanisms of electrodes. For example, the voltage profiles

of two graphite/NMC111 full cells with different capacity ratios after eight cycles

(the formation period) at a rate of C/10 are plotted in Figure 2.4(a). Capacity ratio

R is defined as the ratio of graphite capacity to NMC111 capacity. These full cells

with different capacity ratios mean one type of full cell (R=4.54) has a much higher

graphite loading. Nevertheless, it is impossible to learn the states of charge of the

graphite just by looking at the voltage profiles after 8 cycles. In Figure 2.4(b), we

observe that for the full cell with R=1.18 there are three distinct peaks corresponding

to various lithium-carbon phases with the maximum capacity of 260 mAh g−1, while

for the cell with a higher graphite loading there is only one peak showing the capacity

is only 55 mAh g−1 [96]. Therefore, it is clear that from dV/dQ vs. Q curves the

graphite particles in the full cell with R=4.54 experience less lithiation/delithiation,

that is, less mechanical fatigue.
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Figure 2.4: Voltage profiles (a) and the differential voltage curves (b) of two graphite-
NMC111 full cells with different capacity ratios [96].

Another important approach to investigate the failure of batteries is to observe
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the slippage of the charge/discharge capacity endpoints. For example, slippage of

the charge/discharge capacity endpoints in a graphite/NMC111 full cell is shown in

Figure 2.5. It is known that the parasitic reactions are the main cause of the failure

of batteries. In general, these side reactions include lithium loss due to the SEI

growth at the negative electrode, electrolyte oxidation at the positive electrode and

lithium trap in the positive electrode [97]. As learned from ref [97], the displacement

of charge and discharge capacity endpoints for any two cycles are denoted as ∆C and

∆D respectively. The mathematic relations are expressed as

∆C = qox − 2qp (2.2)

∆D = 2qLi − qox (2.3)

where qLi is the lithium loss capacity due to the SEI formation, qox is the electrolyte

oxidation capacity, and qp is the lithium trap capacity at the positive electrode.

The Coulombic efficiency (CE) is defined as the ratio of discharge capacity to

charge capacity. It can be expressed as

CE = 1− ∆D

QC

(2.4)

where QC is the charge capacity of the cell in a cycle. Therefore the CE is only

related with the slippage of the discharge capacity endpoints. CE is not 100% due to

the side reactions. Furthermore, the capacity fade per cycle is determined by

Capacity fade per cycle = ∆D −∆C (2.5)

As long as the slippage rates of charge capacity endpoints and discharge capacity

endpoints are different, there is a capacity drop at every cycle.

The charge/discharge capacity endpoints vs. time curves of two graphite/NMC111

full cells with different capacity ratios (different graphite loadings, but similar NMC111
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Figure 2.5: Slippage of the charge/discharge capacity endpoints in a graphite-
NMC111 full cell [96].

loadings) as discussed earlier in Figure 2.4 are shown in Figure 2.6. The amount of the

electrolyte oxidation reactions should only depend on the surface area or loading of

the NMC111 electrode. Applying above equations to the curves in Figure 2.6, for the

slippage of charge capacity endpoints, we obtain that the cell with a higher graphite

loading (R=4.54) has a higher slippage rate of 0.4008 mA g−1 than the 0.0932 mA

g−1 when R=1.18. The result suggests there is cross-talk between side reactions on

the negative electrode and positive electrode [96][98].

For the slippage of discharge capacity endpoints, the cell with R=4.54 has a

higher slippage rate of 0.4308 mA g−1 than the 0.1489 mA g−1 when R=1.18. This

result can be understood as more graphite area is involved in the side reactions

when R=4.54. The smaller difference between slippage rates of charge and discharge
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capacity endpoints for the cell with R=4.54 indicates the slower capacity fading rate.

2.2.2 Cyclic Voltammetry (CV)

CV is a widely used electroanalytical technique for rapidly acquiring qualitative in-

formation of the redox reactions, stability of reaction products, electrochemical ir-

reversibility, heterogeneous electron transfer reactions and adsorption processes over

a wide potential range. CV is consisted of linear scanning potential of the working

electrode with a triangular waveform between initial and final potential limits. Cyclic

voltammogram displayed as current (vertical axis) vs. potential (horizontal axis) is

the current responses of the working electrode resulting from electrochemical reac-

tions as a function of the applied potentials [99]. One advantage of CV is that data

23



processing is not necessary compared with plotting the differential capacity/voltage

curves though these two approaches may give similar information.

At the interface between the electrode and liquid electrolyte, CV generally in-

volves electrode reactions under kinetic control before reaching peak currents and

under diffusion control after reaching peak currents. For highly reversible electrode

reactions, the separation between peaks voltages and peak currents can be calculated

from the mathematic equations [99]. For most electrochemical reactions, the electron

transfer steps are often coupled with chemical reactions. CV can therefore be used

to get qualitative information of reaction products and the reversibility of reactions

by looking at the peaks voltages, peak currents and symmetry.
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Figure 2.7: Cyclic voltammogram of the Ga thin film electrode with a voltage scan
rate of 0.1 mV s−1 between 0.005-1.5 V .

For example, the cyclic voltammogram of the Ga thin film electrode is shown in
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Figure 2.7. In the 1st cycle, during lithiation (1.5→0.005 V) as lithium inserts into

Ga, several Li-Ga phases start to form at the voltages around 0.8 V, 0.6 V and 0.1

V. These data are consistent with the results concluded from the voltage profiles [21].

After 10 cycles, we notice that the lithiation peak voltages are shifting to the left and

peak currents are decreasing at low voltages. This observation clearly indicates the

failure mechanisms of the Ga electrode, that is, the incomplete lithiation and lithium

trap in Ga.

2.3 X-ray Photoelectron Spectroscopy (XPS)

XPS is heavily used to identify the elemental composition (except H and He) and

corresponding chemical states on the shallow surface (10 nm) of solid materials [100].

The spectra are obtained after measuring the kinetic energy and number of the elec-

trons escaped from the sample surface irradiated by focused beam of X-rays. The

sample preparation is also very easy for XPS analysis.

In LIBs, XPS is widely used to study the composition of SEI layer, which is a very

complicated mixture composed of both organic and inorganic species. It is confirmed

that these inorganics species include LiF and Li2CO3. Since XPS can only detect the

surfaces, depending on specific systems, argon ion etch may be beneficial for getting

additional knowledge below the surfaces.

Copyright c© Jiagang Xu, 2016.
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Chapter 3 Application of Nafion Binders in Silicon Negative Electrodes

Most of the content of this chapter is reproduced from the paper published as ref [135],

that is, “J. Xu, Q. Zhang, Y.T. Cheng, High Capacity Silicon Electrodes with Nafion

as Binders for Lithium-Ion Batteries, J Electrochem Soc, 163 (2016) A401-A405.”

3.1 Introduction

There is an intense effort worldwide to develop new electrode materials for LIBs in

order to satisfy future high power and energy density applications. Silicon can provide

a theoretical capacity up to 3579 mAh g−1 (based on Li15Si4), which is about ten times

higher than that of graphite electrode [101]. Resulting from large volume changes as

lithium goes into and out of silicon, cracking and pulverization of silicon electrodes

can cause the loss of electrical contact and new SEI formation on exposed surface,

leading to rapid capacity fade. Novel binders and nanostructured silicon are two

general approaches to improve the durability and performance of silicon electrodes.

For commercial LIBs, electrodes are composed of three essential components,

which are active material, conductive additive and binder. The fundamental role

of binder is to keep the electrode mechanically intact and adhered well to the current

collector. Other ideal characteristics of binders include electrochemical stability over

wide potential range, high melting point, low swelling rate in nonaqueous electrolyte,

high lithium ionic conductivity, high electrical conductivity, capability to sustain vol-

ume change of active material particles, and good manufacturability [53][62][102].

Today, polyvinylidene fluoride (PVDF, monomer -CH2-CF2-) and styrene butadi-

ene rubber (SBR) are commonly used as binders for graphite negative electrodes,

and PVDF and polytetrafluoroethylene (PTFE, monomer -CF2-CF2-) can be used as

binders for positive electrodes [53].
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PVDF is known to perform poorly for high energy density electrode materials,

such as silicon, because it fails to accommodate the large volume change during

lithiation and delithiation [103][104]. Presently, there is much interest in developing

effective binders for silicon-based electrodes. Crosslinked elastomeric polymer (PVDF

+ tetra-fluoroethylene + propylene) was shown to maintain good capacity retention

for amorphous Si-Sn electrodes in spite of 125% volume change [58]. Carboxymethyl

cellulose (CMC) and SBR were widely studied to improve the cycle life of silicon-based

electrodes [59][105]-[109]. Polyfluorene based conductive polymer without adding

conductive carbon black was shown to accommodate the volume change of silicon, and

high capacity and long term cycling were achieved simultaneously [61]. Magasinski

and coworkers first reported the use of polyacrylic acid (PAA) as a binder, which

shows low swellability in carbonate electrolyte and high elastic modulus. The high

concentration of carboxylic groups in PAA was attributed to the good electrochemical

performance [104]. Similar to CMC and PAA, some polysaccharides extracted from

natural products were demonstrated as binders for silicon nanoparticles with stable

cycling behavior [110][111].

Lithium ion-exchanged Nafion (designated as Li-Nafion) has been reported as a

binder to improve the cycling performance of micro-sized crystalline silicon powders

(particle size, 44 µm) [60]. Sulfur-carbon electrode coated with Nafion was also

demonstrated to improve the performance of lithium sulfur batteries [112]. Moreover,

Nafion has been used in large scale applications as membranes in fuel cells because

of its high protonic conductivity due to the sulfonic acid group (-SO3H
+). After ion

exchange in LiOH solution, Nafion becomes Li+ conductive, which therefore has been

considered as a candidate material for separator or electrolyte in lithium batteries

[102][113]-[115].

Inspired by previous findings, we, in this chapter, investigated the electrochemical

performance of silicon nanoparticles mixed with either Nafion or PVDF as a binder.
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Ion-exchanged Nafion was also studied as a binder to compare with pure Nafion binder

by replacing protons with Li+. Unlike the rapid capacity fade of silicon electrodes with

PVDF as a binder, we found that Nafion and ion-exchanged Nafion were both able to

deliver specific capacity of silicon electrode more than 2000 mAh g−1 after 100 cycles

with a high Coulombic efficiency. The specific capacity of silicon nanoparticles secured

by Nation binders is comparable to that of nanostructured silicon electrodes, e.g.,

nanowires [62][110][116]. In addition, both rate capability test and long term cycling

test show ion-exchanged Nafion can yield better performance of silicon electrode

compared with Nafion.

3.2 Experimental

3.2.1 Electrode Preparation

Electrodes are composed of 50 wt% silicon powder (size 30-50 nm, Nanostructured &

Amorphous Materials), 25 wt% conductive carbon black (Super P C65, TIMCAL) and

25 wt% binder. Binders used in our work include PVDF (Alfa Aesar), Nafion solution

(D-520, Alfa Aesar) and ion-exchanged Nafion. The ion-exchanged Nafion solution

was prepared in a customized titration set-up operated at room temperature. A 0.01

M LiOH (Sigma-Aldrich) aqueous solution was used as the titrant. The density of the

Nafion solution is 0.93 g mL−1, and the ion exchange capacity is typically 1.03 to 1.12

meq g−1. For 1 mL of Nafion solution, it takes about 5 mL of LiOH aqueous solution

to complete the ion exchange process. The N-methyl-2-pyrrolidone (NMP, 99.5%,

Alfa Aesar) solvent was used to dissolve PVDF. Uniform slurries were obtained by

mixing powders in a small sample vial immersed in an ultrasonic bath for 30 minutes.

Finally, the slurry was cast onto a battery grade Cu foil (thickness, 12 µm) with a

127 µm doctor blade.
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3.2.2 Electrochemical Measurement

Electrodes with diameter of 10 mm were punched from dried uniform laminates, and

then were further dried at 130 ◦C for 12 hours in a vacuum oven. The silicon and

lithium (0.38 mm thick, Sigma-Aldrich) disks were assembled as the positive and

negative electrodes in CR2025 type coin cells in an argon-filled glove box (< 0.1 ppm

of both oxygen and moisture, MBRAUN). One piece of microporous polypropylene

film, Celgard 3501, was used as the separator in each cell. The electrolyte is 1M

LiPF6 salt in a mixture of ethylene carbonate and diethyl carbonate (EC:DEC=1:1

vol%, BASF). For comparison, the same electrolyte is prepared with an additive

of 10 wt% fluoroethylene carbonate (FEC, BASF). Unless otherwise mentioned in

this chapter, testing was carried out in coin cells without the FEC additive in the

electrolyte. Cycling tests (discharge/charge curves, C-rate is expressed as C/R, for

example, C/10 means 10 hours are required to completely discharge/charge) and

rate capability tests were conducted under galvanostatic mode using two Bio-Logic

potentiostats (MPG-2 and VMP-3) at room temperature. The theoretical capacity

of 3600 mAh g−1 for silicon was used to calculate discharge/charge currents. CV was

taken using Bio-Logic potentiostats (MPG-2 and VMP-3) between 1.0 V and 0.01 V

with a potential scanning rate of 0.1 mV s−1.

3.2.3 XPS and SEM Measurement

XPS (K-Alpha system, Thermo Scientific) was used to determine the chemical com-

position of pristine electrode and SEI layer on electrode surface after 10 cycles at the

C/10 rate. For XPS measurements, post-cycling electrodes were obtained by disas-

sembling the coin cells inside an argon-filled glove box and then washed thoroughly

with the dimethyl carbonate (DMC, BASF) solvent and dried inside the argon-filled

glove box. They were then transferred to the XPS analysis chamber without exposing

to air using a Vacuum Transfer Module (Thermo Scientific).
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Most SEM images were collected from a Hitachi S-4300 microscope (cold-cathode

field emission), while others were collected from a FEI Quanta 250 microscope. Sam-

ple electrodes were obtained by disassembling the coin cells inside an argon-filled

glove box and then washed thoroughly with the DMC solvent and dried.

3.3 Results and Discussion
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Figure 3.1: SEM image (a) and XRD pattern (b) of silicon nanoparticles.

The silicon nanoparticles used in my work are of spherical shape with an average

diameter between 30 and 50 nm, as shown in Figure 3.1(a). The advantages of silicon
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nanoparticles are the higher packing density compared with nanotubes or nanowires

and the stable cycling behavior compared with micro-sized silicon. Large surface

area of nano-sized silicon will enhance the rate performance as well as increase the

amount of the side reactions. XRD (Siemens D5000, Cu Kα radiation, λ= 0.154 nm,

40 kV, 30 mA, 0.01 ◦/step) pattern in Figure 3.1(b) confirms the pristine silicon is

crystalline, though it will become amorphous during alloying with lithium.

3.3.1 CV and Cycling Performance

The electrochemical characteristics of silicon electrodes with different binders were

first examined by cyclic voltammetry between 1.0 V and 0.01 V at a relatively slow

potential scanning rate of 0.1 mV s−1. The cyclic voltammograms for the first two

cycles are shown in Figure 3.2. In the 1st cycle, no obvious peaks were present

during lithiation as the crystalline silicon was transformed to an amorphous Li-Si

alloy. Because the potential reached 10 mV, the high lithium concentration Li15Si4

phase with a theoretical capacity of 3579 mAh g−1 was formed [101][117]. The cross

over between lithiation and delithiation curve in the 1st cycle around 0.1 V could be

attributed to continuous SEI formation [118].

During delithiation, two types of amorphous silicon phases (a-LixSi) formed as

indicated by the respective peaks around 0.3 V and 0.5 V, though the detailed mech-

anism of forming these two amorphous phases was unknown [35][110][117][118]. In

the 2nd cycle, the peaks around 0.2 V and 0.01 V were attributed to lithium alloying

with amorphous silicon, and the delithiation peaks were around 0.3 V and 0.5 V.

For all the electrodes, delithiation peaks shifted to the right as the electrodes were

cycled. This increase in the overpotential was due to continuous SEI formation on

the electrode surface, causing increasing impedance.

In order to know more about the electrochemical performance of silicon electrode

mixed with different binders, these electrodes were cycled between 1.0 V and 0.01 V
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Figure 3.2: Cyclic voltammograms of silicon electrodes with various binders. The
voltage limits are 1.0 V and 0.01 V, and the potential scanning rate is 0.1 mV s−1.

under constant current at room temperature. The amount of silicon was about 0.4

mg cm−2 for all sample electrodes. The initial discharge/charge voltage vs. capacity

curve is shown in Figure 3.3(a). For crystalline silicon electrodes, amorphization

always happens during the first cycle as indicated by the plateau in the discharge

curve as seen in Figure 3.3(a). These voltage profiles are very similar to those reported

in the literature [62][104][110].

The specific capacity and Coulombic efficiency vs. cycle number curves for elec-

trodes with different binders and electrolytes are shown in Figure 3.3(b). The capacity

of silicon electrode with PVDF binder degraded drastically after the 1st cycle. In con-

trast, the capacity retention of silicon electrodes using pure or ion-exchanged Nafion

as binders is much improved. In the absence of FEC in the electrolyte, the initial

capacity based on pure silicon mass was 3466, 3956 and 4342 mAh g−1, for electrodes

containing PVDF, Nafion and ion-exchanged Nafion, respectively. Since the specific
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capacity was calculated using the measured silicon mass in each electrode, the value

of specific capacity may have error depending on the accuracy of silicon mass mea-

surement. This may explain why the specific capacity of 4342 mAh g−1 is larger than

the theoretical capacity of 4200 mAh g−1 for the most saturated phase Li22Si5.
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Figure 3.3: Electrochemical characteristics of silicon electrodes containing different
binders, and the testing potential window was from 0.01 V to 1.0 V vs. Li/Li+, (a)
Initial discharge/charge voltage profile cycled at C/10. (b) Discharge capacity and
Coulombic efficiency vs. cycle number tested at C/10, curves with filled markers and
solid lines are for electrodes with FEC in the electrolyte and curves with empty mark-
ers and dotted lines are for electrodes without FEC in the electrolyte. (c) Discharge
capacity and lithiation cut-off potential vs. cycle number for electrodes with Nafion
as binders in the presence of FEC in the electrolyte tested at 1C with a capacity
limit of 1200 mAh g−1. (d) Normalized discharge/charge capacity retention at dif-
ferent current densities, 1C = 3600 mA g−1, filled marker indicates discharge process
and empty marker indicates charge process.

The Coulombic efficiency is an important indicator for the cycling stability of
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electrodes. From Figure 3.3(b), the Coulombic efficiency in the 1st cycle was 72%,

75% and 77% for silicon electrodes with PVDF, Nafion and ion-exchanged Nafion as

binders, respectively. The initial low Coulombic efficiency was due to the irreversible

Li loss caused by the formation of SEI. An increase in the Coulombic efficiency after

the 1st cycle suggests that most SEI formed during the first discharge process. As a

result of large volume changes upon cycling, the loss of active silicon particles and a

continuous growth of SEI on freshly exposed silicon surface were believed to be the

cause of low Coulombic efficiency and irreversible capacity loss.

FEC was reported to yield stable cycling of silicon electrodes by forming stable and

unique SEI film protecting silicon against oxidation and electrolyte from decomposi-

tion [119][120]. In Figure 3.3(b), higher capacity retention (with filled markers) and

higher Coulombic efficiency (in solid lines) of silicon electrodes with Nafion binders

were obtained using the electrolyte with the FEC additive. Moreover, Figure 3.3(c)

shows the stable cycling of silicon nanoparticles mixed with Nafion binders for 500

cycles at a rate of 1C with a lithiation capacity limit of 1200 mAh g−1. The morphol-

ogy and continuous formation of SEI during long term cycling for silicon electrode

mixed with Nafion and ion-exchanged Nafion could be different and this would lead

to the difference of both impedance rise of the cell and state of charge of active

silicon nanoparticles. Indeed, lithiation cut-off potential vs. cycle number curve in

Figure 3.3(c) indicates that silicon/ion-exchanged Nafion cell behaves better due to

the higher cut-off potentials, suggesting the lower impedance and longer cycle life of

the cell. The cyclic test results based on Nafion and ion-exchanged Nafion binders

are quite comparable with that of sodium alginate and are better than that of CMC,

which are widely studied binders in recent years [110].

Figure 3.3(d) compares the discharge/charge capacity retention at different cur-

rent densities for silicon electrodes mixed with different binders at room temperature

normalized based on the data from the 2nd cycle. The theoretical capacity 3600 mAh
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g−1 for silicon was used to calculate discharge/charge currents, thus current density

for 1C was 3600 mA g−1 for all the electrodes. Since the performance of Si/PVDF

was very poor at C/10, its capacity retention was, unsurprisingly, close to zero at

1C, 2C and 5C. We suggest that PVDF around silicon particles cannot effectively

guarantee fast lithium ion transport and thus lithiation and delithiation were incom-

plete at high current densities. On the other hand, silicon electrodes with Nafion and

ion-exchanged Nafion as binders were still cycleable at 1C, 2C, and 5C. Furthermore,

the ion-exchanged Nafion yielded even better rate performance compared with pure

Nafion as seen in Figure 3.3(d) which is likely due to its superior capability to provide

lithium transport paths to silicon nanoparticles.
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Figure 3.4: Long term cycling performance of the Si/Nafion and Si/Li-Nafion elec-
trodes. Electrodes were cycled at C/10 between 0.01-1.0 V.

Figure 3.4 shows the long term cycling performance of the Si/Nafion and Si/Li-

Nafion electrodes after 700 and 1000 cycles respectively. Electrodes were cycled at

C/10 between 0.01-1.0 V and FEC was present in the electrolyte. The Si/Li-Nafion

electrode in Figures 3.3 and 3.4 are the same, while the Si/Nafion electrodes are from
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the same batch of electrode laminate. Similar to the degradation trend in Figure 3.3,

there is no sudden capacity drop as expected due to the continuous loss of lithium

and active silicon. After 400 cycles, the Si/Nafion system became unstable as the

capacity was fluctuating. The reason for this phenomenon was unclear.

3.3.2 Electrode Surface Morphology

Pristine electrodes Post-cycling electrodes

Si+PVDF

Si+Nafion

Si+Li-Nafion

Figure 3.5: SEM images of pristine electrodes and post-cycling electrodes (without
FEC) containing three different binders, (a,b) PVDF, (c,d) Nafion, and (e,f) Li-
Nafion. Electrodes were cycled at C/10 for 10 cycles between 0.01-1.0 V.

Corresponding to the electrochemical performance in Figure 3.3, the FEC-free
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electrodes tested for 10 cycles at C/10 between 0.01-1.0 V were opened to examine the

surfaces. A comparison between the pristine electrodes and post-cycling electrodes

is shown in Figure 3.5. Large and small cracks are visible in all three types of

electrodes due to the expansion and contraction of silicon particles. It seems the

Si/PVDF electrode has less cracks, which suggests the good binding capability of

PVDF. Nevertheless, we believe the Nafion binders can be beneficial for the capacity

retention by providing lithium transport to isolated silicon nanoparticles.

Si+Nafion Si+Li-Nafion

Figure 3.6: SEM images (taken from a FEI Quanta 250 microscope) of silicon and
lithium from Si/Nafion (a,b) and Si/Li-Nafion (c,d) electrodes after long term cycling.
Electrodes were cycled at C/10 between 0.01-1.0 V.

37



Corresponding to the electrochemical performance in Figure 3.4, Figure 3.6 shows

the SEM images of silicon and lithium from Si/Nafion and Si/Li-Nafion electrodes

tested with FEC in the electrolyte for more than 700 cycles at C/10 between 0.01-1.0

V. The silicon surfaces are overall smooth, however, the disintegration of electrodes is

apparent below the surface as learned from Figure 3.6(a). This observation indicates

isolated silicon nanoparticles most probably cannot participant in electrochemical

reactions anymore, resulting in permanent capacity loss. On the other hand, from

Figure 3.6(b,d), on the lithium foil surfaces, there are a lot of needle-like dendrites

formed on some locations. Based on our observation, the formation and growth of

lithium dendrite are not predictable. The dendrite may penetrate the separator to

short-circuit the cell. Herein, currently pure lithium has not been used as the negative

electrode in LIBs.

3.3.3 XPS Spectra Analysis

XPS measurements were carried out to study the chemical composition of the surface

of the electrodes before and after electrochemical cycling tests. Figure 3.7 shows C

1s, F 1s and Si 2p spectra for the fresh electrodes containing different binders, which

were always stored inside an argon-filled glove box after fabrication. In Figure 3.7(a),

the first C 1s peak at 284.5 eV is attributed to carbon black and C-C bonds in PVDF

and Nafion binders. The second peak around 286 eV and the third peak at 290.4

eV are identified as C-H2 bonds and C-F2 bonds in PVDF, respectively. The last

peak around 291.8 eV corresponds to CF2/CF groups in Nafion and ion-exchanged

Nafion [121]. From Figure 3.7(b), the first F 1s peak at 687.4 eV is assigned to

CF groups in PVDF and the second peak at 688.8 eV is assigned to CF groups in

Nafion and ion-exchanged Nafion [121]. In Figure 3.7(c), the first broad peak around

100 eV indicates the existence of silicon, and the second broad peak around 103.5 eV

indicates the existence of silicon oxides on silicon surface [118]. We noticed that there
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are more than one type of silicon oxides in the electrodes containing Nafion as shown

in Figure 3.7(c) which may be due to the influence of the deionized water introduced

during electrode fabrication.

Journal of The Electrochemical Society, 163 (3) A401-A405 (2016) A403

lithiation as the crystalline silicon was transformed to an amorphous
Li-Si alloy. Because the potential reached 10 mV, the high lithium
concentration Li15Si4 phase with a theoretical capacity of 3579 mAh
g−1 was formed.1,23 The cross over between lithiation and delithiation
curve in the 1st cycle around 0.1 V could be attributed to continuous
SEI formation.24 During delithiation, two types of amorphous silicon
phases (a-LixSi) formed as indicated by the respective peaks around
0.3 V and 0.5 V, though the detailed mechanism of forming these two
amorphous phases was unknown.15,23–25 In the 2nd cycle, the peaks
around 0.2 V and 0.01 V were attributed to lithium alloying with
amorphous silicon, and the delithiation peaks were around 0.3 V and
0.5 V. For all the electrodes, delithiation peaks shifted to the right
as the electrodes were cycled. This increase in the overpotential was
due to continuous SEI formation on the electrode surface, causing
impedance rise.

In order to know more about the electrochemical performance
of silicon electrode mixed with different binders, these electrodes
were cycled between 1.0 V and 0.01 V under constant current at
room temperature. The amount of silicon was about 0.4 mg cm−2

for all sample electrodes. The initial discharge/charge voltage vs.
capacity curve is shown in Fig. 2a. For crystalline silicon electrodes,
amorphization always happens during the first cycle as indicated by
the plateau in the discharge curve as seen in Fig. 2a. These voltage
profiles are very similar to those reported in the literature.3,6,15

The specific capacity and Coulombic efficiency vs. cycle number
curves for electrodes with different binders and electrolytes are shown
in Fig. 2b. The capacity of silicon electrode with PVDF binder de-
graded drastically after the 1st cycle. In contrast, the capacity retention
of silicon electrodes using pure or ion-exchanged Nafion as binders
is much improved. In the absence of FEC in the electrolyte, the ini-
tial capacity based on pure silicon mass was 3466, 3956 and 4342
mAh g−1, for electrodes containing PVDF, Nafion and ion-exchanged
Nafion, respectively. Since the specific capacity was calculated using
the measured silicon mass in each electrode, the value of specific
capacity may have error depending on the accuracy of silicon mass
measurement. This may explain why the specific capacity of 4342
mAh g−1 is larger than the theoretical capacity of 4200 mAh g−1 for
the most lithium saturated phase Li22Si5.

The Coulombic efficiency is an important indicator for the cy-
cling stability of electrodes. From Fig. 2b, the Coulombic efficiency
in the 1st cycle was 72%, 75% and 77% for silicon electrodes with
PVDF, Nafion and ion-exchanged Nafion as binders, respectively.
The initial low Coulombic efficiency was due to the irreversible Li
loss caused by the formation of SEI. An increase in the Coulombic
efficiency after the 1st cycle suggests that most SEI formed dur-
ing the first discharge process. As a result of large volume changes
upon cycling, the loss of active silicon particles and a continuous
growth of SEI on freshly exposed silicon surface were believed to

Figure 3. XPS spectra of pristine electrodes containing different binders, (a) C 1s peaks. (b) F 1s peaks. (c) Si 2p peaks.

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.163.7.131Downloaded on 2015-12-13 to IP Figure 3.7: XPS spectra of pristine electrodes containing different binders, (a) C 1s
peaks, (b) F 1s peaks and (c) Si 2p peaks.

XPS spectra (C 1s, O 1s, F 1s and Si 2p) for electrodes containing different binders

after 10 discharge/charge cycles between 1.0 V and 0.01 V at C/10 are presented in

Figure 3.8. No FEC was added when testing these electrodes. By the end of the
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10th charging process, all the electrodes were held at 1.0 V for 2 hours in order to

complete delithiation. In Figure 3.8(a), the C-C peak, which is usually associated

with carbon black and alkane species or surface hydrocarbon contamination, is absent

for Nafion and ion-exchanged Nafion and it is also invisible for PVDF. Kovalenko and

coworkers reported a similar result but this phenomenon is still very different from

other reports [110][118][122]. The peak around 286.8 eV can be attributed to C-O

bonds in carbonaceous solvent reduction products (for example, ethers ROLi, esters

RCOOLi and alkyl carbonate solutions ROCO2Li) and the peak at 288.5 eV can be

attributed to O-C=O bond in alkyl carbonate solutions [122][123]. Moreover, the

peak at 290 eV for Li2CO3 formation is not seen in the cases of these three binders.

This is possibly due to the amount of formed Li2CO3 after 10 cycles is insufficient for

XPS detection or Li2CO3 is very close to the silicon particle surface and is covered

by other organic SEI components.

A single broad O 1s peak centered at around 533 eV is observed in Figure 3.8(b),

which is likely caused by species containing C=O bonds at around 531.5 eV and C-O

bonds at 533-534 eV and O-C=O bonds at around 534 eV [118]. In Figure 3.8(c),

a dominant peak at around 687 eV indicates the formation of LiF and the peak at

around 689 eV indicates the presence of LiPF6 residue and its decomposed products

LixPFyOz. Additionally, based on Figure 3.8(c), it seems that PVDF is favorable

for formation of inorganic LixPFyOz and unfavorable for LiF formation. Unlike fresh

electrodes, no useful information can be extracted from the Si 2p spectra shown in

Figure 3.8(d) because silicon particles are completely covered by SEI. The LiF has

been widely accepted as a beneficial SEI component for improved cycling behavior,

especially when FEC is used as the electrolyte additive [124][125]. By comparing with

our FEC free case, we suggest that both Nafion and ion-exchanged Nafion have the

capability of transporting lithium ions to silicon nanoparticles and thus maintaining

relatively stable cycling performance as seen in Figure 3.3(b).
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be the cause of low Coulombic efficiency and irreversible capacity
loss.

FEC was reported to yield stable cycling of silicon electrodes by
forming stable and unique SEI film protecting silicon against oxidation
and electrolyte from decomposition.26,27 In Fig. 2b, higher capacity
retention (with filled markers) and higher Coulombic efficiency (in
solid lines) of silicon electrodes with Nafion binders were obtained
using the electrolyte with the FEC additive. Moreover, Fig. 2c shows
stable cycling of silicon nanoparticles mixed with Nafion binders
for 500 cycles at a rate of 1C with a lithiation capacity limit of
1200 mAh g−1. The morphology and continuous formation of SEI
during long term cycling for silicon electrode mixed with Nafion and
ion-exchanged Nafion could be different and this would lead to the
difference of both impedance rise of the cell and state of charge of
active silicon nanoparticles. Indeed, lithiation cutoff potential vs. cycle
number curve in Fig. 2c indicates that silicon/ion-exchanged Nafion
cell behaves better due to the higher cutoff potentials, suggesting the
lower impedance and longer cycle life of the cell. The cyclic test
results based on Nafion and ion-exchanged Nafion binders are quite
comparable with that of sodium alginate and are better than that of
CMC, which are widely studied binders in recent years.15

Fig. 2d compares the discharge/charge capacity retention at dif-
ferent current densities for silicon electrodes mixed with different
binders at room temperature normalized based on the data from the
2nd cycle. The theoretical capacity 3600 mAh g−1 for silicon was

used to calculate discharge/charge currents, thus current density for
1C was 3600 mA g−1 for all the electrodes. Since the performance
of Si/PVDF was very poor at C/10, its capacity retention was, un-
surprisingly, close to zero at 1C, 2C and 5C. We suggest that PVDF
around silicon particles cannot effectively guarantee fast lithium ion
transport and thus lithiation and delithiation were incomplete at high
current densities. On the other hand, silicon electrodes with Nafion
and ion-exchanged Nafion as binders were still cycleable at 1C, 2C,
and 5C. Furthermore, the ion-exchanged Nafion yielded better rate
performance compared with pure Nafion as seen in Fig. 2d which is
likely due to its superior capability to provide lithium transport paths
to silicon nanoparticles.

XPS measurements were carried out to study the chemical compo-
sition of the surface of the electrodes before and after electrochemical
cycling tests. Fig. 3 shows C 1s, F 1s and Si 2p spectra for the fresh
electrodes containing different binders, which were always stored in-
side an argon-filled glove box after fabrication. In Fig. 3a, the first
C 1s peak at 284.5 eV is attributed to carbon black and C-C bonds in
PVDF and Nafion binders. The second peak around 286 eV and the
third peak at 290.4 eV are identified as C-H2 bonds and C-F2 bonds
in PVDF, respectively. The last peak around 291.8 eV corresponds to
CF2/CF groups in Nafion and ion-exchanged Nafion.28 From Fig. 3b,
the first F 1s peak at 687.4 eV is assigned to CF groups in PVDF
and the second peak at 688.8 eV is assigned to CF groups in Nafion
and ion-exchanged Nafion.28 In Fig. 3c, the first broad peak around

Figure 4. XPS spectra of electrodes containing different binders after 10 discharge/charge cycles at the C/10 rate, electrodes were holding at 1.0 V for 2 hours
after 10th charge, (a) C 1s peaks. (b) O 1s peaks. (c) F 1s peaks. (d) Si 2p peaks.

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.163.7.131Downloaded on 2015-12-13 to IP 
Figure 3.8: XPS spectra of electrodes containing different binders after 10 discharge
and charge cycles at the C/10 rate, electrodes were holding at 1.0 V for 2 hours after
10th charge, (a) C 1s peaks, (b) O 1s peaks, (c) F 1s peaks and (d) Si 2p peaks.

Corresponding to the electrochemical performance in Figure 3.4 and SEM obser-

vation in Figure 3.6, only the XPS Si 2p spectra of the Si/Nafion and Si/Li-Nafion

electrodes tested with FEC in the electrolyte for more than 700 cycles are plotted in

Figure 3.9 because the spectra for other elements are very similar to those illustrated

in Figure 3.8(a,b,c). The Si-O peak around 103 eV suggests the existence of silicon
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oxides possibly coming from the original oxides on silicon particle or the reactions

between silicon and electrolyte. The amount of reaction product LixSiOy between sil-

icon and electrolyte may become significant only after a long period of cycling [126].

Binding energy, eV

96 98 100 102 104 106 108

Nafion
Li-Nafion

Si 2p

Si-O

Figure 3.9: XPS Si 2p spectra of electrodes containing Nafion and Li-Nafion after
long term cycling at C/10 between 0.01-1.0 V.

3.4 Summary

Ionic conducting polymers Nafion and ion-exchanged Nafion were shown to be promis-

ing binders for silicon electrodes in LIBs. For comparison, PVDF was shown to

be unsuited for silicon electrodes because of the poor cycling behavior. For silicon

nanoparticles, Nafion with or without ion exchange resulted in long cycling durability

with a high capacity of more than 2000 mAh g−1 for 100 cycles at the C/10 current

rate. It is also further confirmed that the better performance of silicon electrodes was

achieved by adding a small amount of FEC to the electrolyte. Nafion binders were

believed to be capable of transporting lithium ions and forming ionic conductive films
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between the liquid electrolyte and silicon particles. This work not only demonstrates

Nafion as promising binders for silicon electrodes but also inspires more efforts to

better understand binding mechanisms.

Copyright c© Jiagang Xu, 2016.
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Chapter 4 A Comparative Study of Polymeric Binders for Silicon

Electrodes in Lithium-Ion Full Cells

4.1 Introduction

Research and development of LIBs to satisfy future high power and high energy

applications, for example, hybrid electric and pure electric vehicles, is attracting a

worldwide effort. Silicon is considered one of the most promising negative electrode

materials as it is capable of delivering a very high theoretical specific capacity of

3579 mAh g−1 (based on Li15Si4), comparing to 372 mAh g−1 of the state-of-the-art

graphite based negative electrodes [101]. However, the major obstacle to commercial-

ize silicon electrode is its poor cycling behavior resulted from the large volume changes

associated with Li-Si reactions. Specifically, both chemical degradation, caused by

the unstable SEI formation and growth, and mechanical degradation, caused by the

cracking of electrode and SEI, contribute to the rapid failure of silicon electrodes

[96][127].

Many approaches have been taken to address the problem of large volume changes

and to improve the performance of silicon electrodes, for example, different forms of

nanostructured silicon [39][128], Si/C composite [108][129][130], and electrolyte addi-

tives [119][120][131]. Alternatively, polymeric binders, an essential component of the

silicon electrode, have been widely studied, including green and natural binders and

conductive binders, such as carboxymethyl cellulose (CMC), polyacrylic acid (PAA),

and alginate [60][104],[109]-[111],[132]-[134]. In general, several key characteristics of

binders for silicon are believed desirable: (1) electrochemical stability, (2) binding ca-

pability, and (3) ability to accommodate the volume changes during charge/discharge

[62][103][134].

Lithium-ion half cell using silicon as the working electrode and pure lithium as the
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counter/reference electrode is the most common configuration of studies in published

reports. Although promising performance of silicon electrodes has been achieved

in Si vs. Li half cells, these cells are not practical systems. Moreover, the failure

mechanism of the silicon electrode in full cells may be different from that in half cells,

because of the limited lithium supply by the positive electrode and parasitic reactions

happening on both negative and positive electrodes. Recently, we demonstrated

that Nafion and Li-Nafion were promising binders for nanoparticle silicon electrodes

[135]. Here, we report the full cell studies of the electrochemical behavior of silicon

nanoparticles mixed with Nafion in Si/LiNi1/3Mn1/3Co1/3O2 (NMC) coin cells. The

results will be compared with that using either sodium alginate or PVDF as binders.

Sodium alginate is chosen because it represents a family of binders with rich carboxylic

acid groups (CMC, PAA) and its good cycling behavior in half cells was reported

recently [110]. This work shows that silicon electrodes using either Li-Nafion or

sodium alginate as binders can be cycled in full cells for more than 100 cycles at

C/1 and 1200 mAh g−1 capacity. Deep charge/discharge testing shows that higher

capacity retention rates are achieved in the Si/Li-Nafion and Si/sodium alginate

systems. Failure analysis of these full cells is conducted using various material and

electrochemical characterization techniques.

4.2 Experimental

4.2.1 Electrode Preparation

Negative electrodes were made of 50 wt% silicon powder (particle diameter 30-50 nm,

Nanostructured & Amorphous Materials), 25 wt% conductive carbon black (Super P

C65, TIMCAL), and 25 wt% binder, including PVDF (Alfa Aesar), sodium alginate

(Sigma-Aldrich), Nafion solution (D-520, Alfa Aesar) and ion-exchanged Nafion. The

ion-exchanged Nafion solution was prepared at room temperature using 0.01 M LiOH

(Sigma-Aldrich) aqueous solution as the titrant. The N-methyl-2-pyrrolidone (NMP,
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99.5%, Alfa Aesar) and deionized water were used as solvents to dissolve PVDF and

sodium alginate, respectively. Uniform slurries were obtained after sonication for 30

minutes. Finally, the slurry was casted onto a 12 µm thick battery grade copper

foil with a 127 µm doctor blade (Hohsen, Japan). The final thickness of the silicon

electrode is about 20 µm, excluding copper foil and the mass loading of silicon is

about 0.4 mg cm−2.

Positive electrodes were made of 92 wt% NMC (Umicore), 4 wt% conductive

carbon black (Super P C65, TIMCAL), and 4 wt% PVDF (No.1100, Kureha, Japan).

Firstly, carbon black and PVDF solution in NMP were well mixed in a planetary

mixer/deaerator (Kurabo Mazerustar KK-250S, Japan). Secondly, NMC was added

to the slurry, and a homogeneous slurry was obtained after mixing for 1 hour using a

homogenizer (Polytron PT10-35) at 4000 rpm. Finally, the slurry was spread onto a

15 µm thick aluminum foil using an automatic coater (MTI Corp.) with a blade gap

of 200 µm. After drying at ambient temperature, the NMC laminate was calendered

to about 32% porosity using a rolling press (MTI Corp.). The thickness of the NMC

electrode excluding aluminum foil is about 66 µm and the mass loading of NMC is

about 14 mg cm−2.

Silicon electrodes with diameter of 14 mm and NMC electrodes with diameter of

12 mm were punched from dried uniform laminates, followed by drying at 110 ◦C

overnight in a vacuum oven. The electrodes then were transferred into an argon-

filled glove box for coin cell fabrication. The Si:NMC capacity (in mAh) ratio in full

cells is close to 0.8:1. The excess capacity of NMC electrode is necessary considering

significant SEI formation on the Si electrode during the first few cycles.

4.2.2 Coin Cell Assembly and Electrochemical Measurement

The NMC and silicon disks were assembled as the positive and negative electrodes in

CR2025 type coin cells in an argon-filled glove box (< 0.1 ppm of both oxygen and
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moisture, MBRAUN), using one piece of microporous polypropylene film (Celgard

2400) as the separator and 55 µL electrolyte in each cell. The electrolyte is 1M

LiPF6 salt in a mixture of ethylene carbonate and diethyl carbonate (EC:DEC=1:1

vol%, BASF) with an additive of 10 wt% fluoroethylene carbonate (FEC, BASF).

Coin cells were sealed by an automatic crimper (Hohsen, Japan).

Cycling tests were conducted under galvanostatic mode using two Bio-Logic poten-

tiostats (MPG-2 and VMP-3) and a cycler (BCS-805) at ambient temperature. The

theoretical capacity of 3600 mAh g−1 for silicon was used to calculate charge/discharge

currents. In this chapter, charge means lithium atoms leaving the NMC electrode to

react with silicon, and discharge is the reverse process. The Coulombic efficiency is

defined as the ratio of discharge capacity to charge capacity.

4.2.3 Silicon Surface Characterization

After cycling tests, coin cells were held at 2.8 V for 2 hours and then opened by a

manual disassembler (Hohsen, Japan) inside the glove box. Silicon electrodes were

washed thoroughly with dimethyl carbonate (DMC, BASF) solvent and dried. SEM

images were collected from a Hitachi S-4300 microscope (cold-cathode field emission).

XPS was used to determine the chemical composition of SEI layer on electrode surface

after 100 cycles at the C/1 rate. Depth profiles of electrodes were obtained by XPS

measurements after a short period of ion gun etching (the ion gun energy is 2 keV

and each etch step lasts for 4 s). To avoid air exposure, a Vacuum Transfer Module

(Thermo Scientific) was used to transfer electrodes from the glove box to the XPS

analysis chamber.

4.2.4 Nanoindentation Measurement

For nanoindentation measurements, sodium alginate and PVDF films were prepared

by drop coating, while Nafion membrane is commercially available (NR-212, Ion
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Powder Inc.). Nanoindentation test was conducted on a G200 nanoindenter (Agilent

Tech.) with a Berkovich tip using the continuous stiffness measurement mode.

4.3 Cycling Performance for the Partial Charge/Discharge Test

Silicon/NMC full cells were cycled at C/10 (corresponds to 360 mA g−1) for the first 2

cycles to stabilize the system and cycled at C/1 with a specific charge capacity of 1200

mAh g−1 (based on silicon mass) for 100 cycles in a voltage range of 4.2-2.8 V. This is

called partial charge/discharge cycling in this chapter and its behavior is presented in

Figure 4.1. Constant charge capacity 1200 mAh g−1 is chosen for two reasons: (1) to

study the roles of binders when the volume change of silicon particles is significantly

reduced to about 100% compared with about 300% volume change associated with

formation of the fully lithiated phase Li15Si4 [136]; (2) the demonstration of a high

performance and durable 1200 mAh g−1 negative electrode would further stimulate

research on high voltage and high capacity positive electrodes since increasing the

capacity of the negative electrode alone has a negligible effect on the total capacity of

18650 Li-ion cells if the positive electrode capacity remains the same [30]. In the 1st

charge process, the crystalline silicon (XRD pattern is shown in Figure 3.1(b)) was

transformed to an amorphous Li-Si alloy represented by the long plateau around 0.1

V [135].

Large amounts of SEI formation in this period resulted in relatively low 1st cycle

Coulombic efficiencies, which were 74%, 77%, 65% and 76% for PVDF, sodium algi-

nate, Nafion and Li-Nafion containing electrodes, respectively. The charge capacities

of all silicon electrodes, calculated based on silicon mass, became stable at 1200 mAh

g−1 for more than 75 cycles. Then the charge capacity of the Si/PVDF system started

to decrease which was followed by the Si/Nafion system. Surprisingly, the behavior

of the Si/Nafion electrode in the full cell was different from the result in our previous

report using half cells, in which both Nafion and Li-Nafion exhibited similar cycling
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behavior [135]. The stable cycling behavior shown in Figure 4.1(a) is partially due to

the relative small volumetric strain of silicon particles as they are partially lithiated

when the charge capacity is limited to 1200 mAh g−1. Figure 4.1(a) also demon-

strates a significant improvement of the cycling performance of silicon electrodes in

full cells by using Li-Nafion or sodium alginate binders compared with those using

other binders, such as CMC [126][137].
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Figure 4.1: Electrochemical characteristics of silicon nanoparticles mixed with various
binders under partial charge/discharge with a specific capacity limit of 1200 mAh g−1

in a voltage range from 4.2 V to 2.8 V: (a) Charge capacity and Coulombic efficiency
(denoted by filled markers) vs. cycle number curves. For the 1st, 2nd, 53rd and 104th

cycles, the C-rate was C/10, and there were no capacity limits; for all the other cycles,
the C-rate was C/1. (b) Charge cut-off voltage vs. cycle number curves, for C/1 only.

Figure 4.1(b) shows the charge cut-off voltage evolution curves upon cycling at

C/1. During cycling, the degradation of silicon electrodes can happen even though

the capacity is limited to 1200 mAh g−1. Because some silicon particles are isolated

upon cycling, the remaining particles would take on more lithium and experience

49



greater volume expansion. The change of Li to Si ratio would cause the charge cut-

off voltage to increase until the upper limit of 4.2 V is reached when the cell capacity

starts to drop below 1200 mAh g−1. Systems containing PVDF and Nafion reached

the cut-off voltage of 4.2 V (the upper limit) when their charge capacities started to

drop, while the ending voltages for systems containing sodium alginate and Li-Nafion

were both around 3.9 V. Additionally, the slope of curves of the Si/sodium alginate

and Si/Li-Nafion electrodes were very close to each other and were smaller than that

for the Si/PVDF or Si/Nafion electrodes. This suggests longer cycle life would be

achieved when sodium alginate or Li-Nafion are used.

After every 50 cycles, the coin cells were cycled at C/10 for 1 cycle without the

capacity limitation. From Figure 4.1(a), after 50 cycles, the charge capacities were

2974 mAh g−1, 2758 mAh g−1, 1808 mAh g−1, and 2105 mAh g−1 for electrodes

containing sodium alginate, Li-Nafion, Nafion and PVDF, respectively. Furthermore,

after 100 cycles, silicon mixed with sodium alginate or Li-Nafion electrodes could still

maintain capacities more than 2100 mAh g−1. In Figure 4.1(b), there is an apparent

increase of the slope in the Si/PVDF electrode after 50 cycles which indicates the

adverse influence of C/10 cycling associated with large volume changes.

4.4 Cycling Performance for the Full Charge/Discharge Test

To further explore the role of binders when silicon is suffering from more severe vol-

ume changes, new batches of electrodes were cycled at C/3 for 50 cycles preceded by

two stabilization cycles at C/10 in a voltage window between 4.2 V and 2.8 V. This

is called full charge/discharge cycling in this chapter. Discharge capacity curves and

Coulombic efficiency curves are illustrated in Figure 4.2. Overall, all four types of

electrodes experienced fast capacity fading in the initial 15 cycles with Coulombic ef-

ficiencies below 98% followed by slower capacity degradation. The capacity retention

percentages after 50 cycles were 36%, 49%, 51% and 53% for electrodes containing
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Figure 4.2: Electrochemical characteristics of silicon nanoparticles mixed with four
different binders under full charge/discharge, the C-rate was C/3 and the voltage
window was 4.2-2.8 V: (a) Discharge capacity vs. cycle number curves. (b) Coulombic
efficiency vs. cycle number curves.

PVDF, Nafion, sodium alginate and Li-Nafion, respectively. In half cells with unlim-

ited supply of lithium, silicon mixed with Nafion and sodium alginate binders were

reported with high capacities and stable cycling for up to 100 cycles [110][135]. The

failure mechanism of nano-sized silicon is generally summarized as the thickening of

SEI layer on silicon particle surface or inside pores between particles [127][138]. Since

we observed quite different behavior between our half cells and full cells, the failure

mechanisms are not the same.

To better understand the behavior of full cells, voltages profiles during full charge

or discharge cycling for the 1st, 25th, and 50th cycles are plotted in Figure 4.3. For

full cells, slippages of the charge and discharge capacity endpoints to the right upon

cycling are attributed to parasitic reactions happening at both the positive electrode
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Figure 4.3: Voltage profiles of silicon electrodes mixed with different binders under
full charge/discharge, the C-rate was C/3 and the voltage window was 4.2-2.8 V,
including (a) PVDF, (b) Sodium alginate, (c) Nafion, and (d) Li-Nafion.

and negative electrode [97][98]. An explanation of the slippage mechanism has been

discussed in Section 2.2. From Figure 4.3, slippages of the charge and discharge ca-

pacity endpoints for silicon mixed with Li-Nafion and sodium alginate are apparently

much faster than that for silicon mixed with PVDF and Nafion. Indicated by the

slopes calculated from the data after the initial 20 cycles, the net capacity or cumu-

lative capacity (in mAh g−1) curve shown in Figure 4.4 confirmed this observation.

Although the fast slippage of the charge and discharge capacity endpoints suggests

more liquid electrolyte side reactions occurring at both the Si and NMC electrodes,

it is unclear what reactions are happening. Nevertheless, these reactions do not seem
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Figure 4.4: Net capacities of silicon electrodes mixed with different binders under full
charge/discharge, the C-rate was C/3 and the voltage window was 4.2-2.8 V. Slopes
of curves are calculated for the last 30 cycles only.

to facilitate capacity fading. As the Coulombic efficiency decreases with increasing

rate of slippage of the discharge capacity endpoints [97], we observe that there is a

good agreement between Figure 4.2(b) and 4.4.

In addition, the capacity fade rate is determined mathematically by the difference

between slippage rates of the charge and discharge capacity endpoints [97]. Based on

this knowledge, after the initial 20 cycles, the capacity fade rates for Si/Li-Nafion,

Si/sodium alginate and Si/PVDF electrodes are around 14 mAh g−1 per cycle. While

for the Si/Nafion electrode, the capacity fade rate is 11 mAh g−1 per cycle. On

the other hand, from Figures 4.2(a) and 4.4, the capacity fade rates are apparently

different in the initial 20 cycles. These results suggest that the role of binders in

the early stage of cycling is decisive for the overall electrochemical performance of

electrodes during full charge/discharge cycling.

Based on our analysis, for either half cells or full cells, both loss of active silicon

particles and lithium consumption by parasitic reactions are contributing to the ca-
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pacity fade. For full cells, more parasitic reactions consuming cycleable lithium are

likely to result in faster failure of the cells. Therefore, the cycle life of full cells is much

shorter than that of half cells. In either half cells or full cells, the cycling behavior of

silicon electrodes can be greatly improved when Li-Nafion or sodium alginate binders

are used.

4.5 Electrode Surface Morphology

Figure 4.5: SEM images of silicon electrodes mixed with (a) PVDF, (b) Sodium
alginate, (c) Nafion, and (d) Li-Nafion after 100 cycles at C/1 with a specific capacity
limit of 1200 mAh g−1 in a voltage range from 4.2 V to 2.8 V.

Coin cells after partial charge/discharge cycling were opened to examine the sur-

face morphology by SEM and the images of silicon electrodes are shown in Figure

4.5. Large and small cracks in all four types of electrodes were caused by continuous
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expansion and contraction of silicon particles upon cycling. From Figure 3.1(a), the

diameters of silicon nanoparticles we used range from 30 to 50 nm. Therefore, it

is likely that disintegration of electrode, instead of cracking of silicon nanoparticle,

is the main cause of degradation [139][140]. From Figure 4.5, we believe that the

electrically isolated silicon nanoparticles after three-dimensional structure damage of

electrodes are contributing directly to the capacity decrease and eventual failure of

cells. Since no apparent delamination of electrodes from current collector was ob-

served, we believe PVDF, sodium alginate, and Nafion binders all have sufficient

binding capability to the copper substrate. However, their adhesion to silicon par-

ticles could be different. This difference is likely a key to the understanding of the

effectiveness of binders on the performance of silicon electrodes.

Figure 4.6: SEM image of the NMC electrode in the Si/Nafion full cell after 100
cycles at C/1 with a specific capacity limit of 1200 mAh g−1 in a voltage range from
4.2 V to 2.8 V.

On the other hand, as expected, all NMC electrodes were intact after 100 cycles.

Because the NMC is a commercially mature positive electrode, we believe that the
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structural integrity of NMC in our full cells is maintained. Take the Si/Nafion full

cell as an example, the SEM image of its NMC electrode is shown in Figure 4.6.

4.6 XPS Spectra Analysis

XPS measurements were carried out to study the chemical composition of silicon

electrode surface after the partial and full charge/discharge cycling tests for 100

and 50 cycles, respectively. Since the results are very similar for both tests, only

the spectra for the partial charge/discharge testing are discussed. Normalized XPS

spectra (C 1s, F 1s and Si 2p) for silicon electrodes containing different binders

after 100 cycles between 4.2 V and 2.8 V at C/1 are presented in Figure 4.7. XPS

measurements were conducted at two different spots on each electrode, only one set

of data is presented here.

In Figure 4.7(a), the C-C peak located around 285 eV, which is usually associated

with the carbon black and alkane species or surface hydrocarbon contamination, is

invisible for all the binders. The intensity of the C-C peak could be very low and it is

overwhelmed by the broad peak ranging from 284 eV to 288 eV. This phenomenon was

once observed by another group, while it is still different from some reports in which

there are strong C-C peaks [110][118][122]. The peak around 286 eV is assigned to the

C-O bonds in carbonaceous solvent reduction products (e.g., ethers ROLi and esters

RCOOLi) and the peak at 288.5 eV can be attributed to the O-C=O bond in alkyl

carbonate solutions [122][123]. The weak peak around 291 eV in the Si/Li-Nafion

system indicates less lithium carbonates and less lithium alkyl carbonate solutions

formed on silicon surfaces.
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Figure 4.7: XPS spectra of silicon nanoparticles mixed with various binders under
partial charge/discharge after 100 cycles at C/1 with a specific capacity limit of 1200
mAh g−1 in a voltage range from 4.2 V to 2.8 V: (a) C 1s peaks. (b) F 1s peaks. (c)
Si 2p peaks.
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Figure 4.8: XPS F 1s peaks during depth profile measurements of silicon nanoparticles
mixed with various binders under partial charge/discharge after 100 cycles at C/1
with a specific capacity limit of 1200 mAh g−1 in the voltage range from 4.2 V to 2.8
V: (a) PVDF, (b) sodium alginate, (c) Nafion and (d) Li-Nafion. Ion gun energy is 2
keV, and each etch step lasts for 4 s using the medium current.
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From Figure 4.7(b), the broad peak ranging from 684 eV to 688 eV is composed

of the LiF peak around 685.5 eV and the LixPOyFz peak around 686.5 eV [118].

The peak at around 689 eV indicates the presence of another electrolyte salt product

LixPFy. As shown in Figure 4.8, the depth profiles show that the LixPFy peaks disap-

pear after the silicon surfaces were etched for 4 seconds. This indicates the electrolyte

salt is likely to decompose only to LiF, which forms one of the key inorganic compo-

nents of SEI layer. As illustrated in Figure 4.7(c), strong Si-Si peaks around 99 eV

detected in Si/PVDF, Si/sodium alginate and Si/Nafion electrodes were understood

as the exposure of silicon surfaces compared with the results after 10 cycles in half

cells [135]. While for the Si/Li-Nafion electrode, the weak Si-Si signal is possibly due

to the SEI layer covered on silicon particles, which is beneficial for the performance.

The Si-O peaks around 103 eV found in the Si/sodium alginate and Si/PVDF elec-

trodes most probably suggest the presence of SiOx and LixSiOy phases, which are

likely to form by silicon-electrolyte reactions [122][126]. Since no apparent difference

in the SEI layer composition was observed on silicon electrodes containing various

binders in our study, we believe that the failure of any full cell is mainly due to the

loss of active silicon and the thickening of the SEI layer on the silicon electrode.

In the introduction section, we mention there are several essential characteristics

of binders proposed to ensure good battery performance. One of them is the me-

chanical properties of binders. The mechanical properties of several commonly stud-

ied binders for silicon electrodes have been measured using tensile tests and atomic

force microscopy indentation tests to explain binding mechanisms [60][104][110][141].

When immersed in the organic electrolyte, it was reported that PVDF became much

softer and thus it was only suitable for electrodes that would not experience huge vol-

ume changes upon charge/discharge [104][110]. However, it is quite possible that the

mechanical properties of bulk polymer are different from that in the form of binders

in porous electrodes. For thin polymer films, using nanoindentation technique under
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Figure 4.9: Elastic modulus (a) and hardness (b) of dry polymer films measured by
nanoindentation using the continuous stiffness measurement mode.

continuous stiffness measurement mode, we are able to obtain their elastic modulus

and hardness values as shown in Figure 4.9. The results show that sodium alginate

exhibits very high elastic modulus and hardness and it is therefore a robust binder. In

contrast, the effective Nafion binder has very low elastic modulus and hardness. Since

both robust sodium alginate and soft Nafion are very good binders with drastically

different mechanical properties, we conclude that the mechanical properties of binder

materials alone are insufficient to predict their efficacies as binders in the composite

electrodes consisting silicon nanoparticles, carbon black, and binders. Furthermore,

compared with the simple molecular chain of PVDF, it is generally believed that the

hydrogen bonding between carboxylic acid groups in sodium alginate is contributing

to the good adhesion between binder and silicon particles, leading to good cycling

behavior. For Nafion binders, there are no available hydrogen bonds. Their capabili-
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ties to transport Li+ to silicon particles and effective binding capability could be used

to explain the promising cycling performance in both full cells and half cells [135].

The adhesion between PVDF and silicon particles is likely to be inferior to that be-

tween Nafion or sodium alginate and silicon particles based on the electrochemical

performance.

Overall, the failure mechanisms of silicon nanoparticles are described in a schematic

diagram in Figure 4.10. Coupled chemical degradation (SEI growth, lithium con-

sumption) and mechanical degradation (cracking, particles isolation) are the cause of

the failure of the full cells.

4.7 Summary

Si/NMC full cells were tested to better understand the role of polymeric binders, in-

cluding PVDF, sodium alginate, Nafion and Li-Nafion. From the partial charge/disch-

arge test, we learn that silicon nanoparticles mixed with Li-Nafion or sodium alginate

as binders can achieve stable capacity of 1200 mAh g−1 for more than 100 cycles. From

the full charge/discharge test involving even larger volume changes, we observe higher

capacity retention percentages for silicon nanoparticles mixed with sodium alginate

or Nafion binders compared with that using the traditional PVDF binder.

XPS measurement further indicates that binders will not change the composition

of SEI formed at the silicon electrodes. Therefore, silicon loss and SEI growth are the

main causes for the failure of the full cells. In addition, combined with elastic modulus

and hardness measurement using nanoindentation technique, we conclude that the

mechanical properties of binder alone cannot predict the effectiveness of the binders

in composite silicon electrodes that experience the large volume changes. This work

not only studies the performance of well-established binders for silicon nanoparticles

in lithium-ion full cells systematically but also inspires new directions to overcome

existing challenges of silicon electrode, for instance, developing novel electrolyte ad-
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Figure 4.10: A schematic plot of the failure mechanisms of silicon nanoparticles.

ditives to stabilize the SEI layer and polymeric coatings on silicon particles or binders

to enhance the electrode integrity.

Copyright c© Jiagang Xu, 2016.
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Chapter 5 Conclusions and Future Work

5.1 Conclusions

Through our effort of integrating various approaches, including cycleable silicon

nanoparticles, polymeric binders and electrolyte additive, several important aspects

towards advancing the silicon negative electrodes for applications in the next gener-

ation LIBs are confirmed and understood as:

(1) Effective polymeric binders. As a porous electrode is made of active silicon,

polymer binder and conductive additive, the choice of binder is critical for the perfor-

mance of silicon electrodes experiencing large volumetric strain upon cycling. Nafion,

ion-exchange Nafion and sodium alginate are demonstrated as effective binders of sil-

icon electrodes by accomplishing high capacity (> 1200 mAh g−1) and relatively long

cycle life (> 100 cycles) compared with the traditional binder PVDF in both half

cells and full cells (Si/NMC). It is further inferred that the behavior of binder in the

early stage of cycling is decisive for the overall performance of silicon electrodes.

(2) Partial charge/discharge vs. full charge/discharge. Partial charge/discharge

with controlled capacity limits the mechanical strain induced to the electrodes and

therefore prolongs the cycle life significantly, especially when ion-exchanged Nafion

and sodium alginate are used as binders. In realistic operations, partial charge or

discharge can be achieved by regulating voltages.

(3) SEI composition and side reactions. During cycling, the thin SEI layer formed

on the silicon surface is assumed to experience expansion and contraction as well.

The fracture of SEI layer will expose fresh silicon surface to the electrolyte, causing

formation of new SEI. This continuous mechanism, generally named chemical degra-

dation, is mainly responsible for the lithium loss in a cell. The side reactions are

happening on both the negative and positive electrodes in the full cells. Based on the
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experimental results, more side reactions happened in Si/Li-Nafion and Si/sodium

alginates electrodes would not facilitate the capacity fading. This phenomenon im-

plies the interactions of side reactions between the negative electrode and positive

electrode. In addition, XPS measurements show that there is no apparent difference

between SEI compositions when four types of binders are present.

(4) Interactions between binders and silicon particles. Though it is frequently

hypothesized that the interactions (e.g. bonding) between binders and silicon are

beneficial for the performance, these mechanisms in a complex battery system are

not easy to verify. In fact, binders are expected to be stable in the electrolyte. At

least, they are not supposed to participate in chemical reactions, for example, the

SEI compositions in different electrodes are similar as mentioned early. In this dis-

sertation, ion-exchanged Nafion and sodium alginate are proved to slow the capacity

fading with unclear mechanisms.

(5) Failure mechanisms. Coupled chemical degradation and mechanical degrada-

tion are contributing to the failure of the half cells and full cells. In half cells, lithium

supply from the counter/reference electrode is unlimited, therefore the mechanical

degradation is dominate over the chemical degradation to determine the capacity

fading. However, in full cells, the lithium supply from the NMC is limited, thus the

capacity fading rate is mainly determined by the consumption rate of lithium. This

is the reason for the fast capacity decay in the full cells under full charge/discharge.

(6) Role of mechanical properties of binders. Binders are generally proposed to

accommodate the large volume changes associated with Li-Si reactions. Our results

unveil that both soft Nafion and robust sodium alginate are effective binders in half

cells and full cells. Herein, we conclude that the mechanical properties of binders

alone are not sufficient to predict the performance.
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5.2 Future Work

Based on above conclusions and my understanding, several directions to further im-

prove the electrochemical behavior of silicon electrodes are summarized as:

(1) Novel electrolyte to stabilize the SEI. The electrolyte additive is believed to

decompose on the silicon surface prior to the electrolyte components themselves.

Therefore the development of novel electrolyte and additives to stabilize the SEI is

an effective way to reduce the chemical degradation and to slow the overall capacity

fading when the magnitude of mechanical stress is under control.

(2) Novel binders and polymeric coatings on silicon particles. Because the disinte-

gration of electrodes is unavoidable, if the isolated silicon particles are still connected

in a conductive network maintained by novel binders or polymeric coatings, they will

be involved in electrode reactions and the performance could be improved.

Copyright c© Jiagang Xu, 2016.
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Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing Mechanisms
in Lithium-Ion Batteries, J Power Sources, 147 (2005) 269-281.

[65] R.J. Gummow, A. Dekock, M.M. Thackeray, Improved Capacity Retention in
Rechargeable 4 V Lithium/Lithium Manganese Oxide (Spinel) Cells, Solid State
Ionics, 69 (1994) 59-67.

[66] M.M. Thackeray, Y. Shao-Horn, A.J. Kahaian, K.D. Kepler, J.T. Vaughey,
S.A. Hackney, Structural Fatigue in Spinel Electrodes in High Voltage (4V)
Li/LixMn2-O4 Cells, Electrochem Solid St, 1 (1998) 7-9.

70

http://www.uscar.org/guest/publications.php


[67] M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, R.J. Staniewicz,
Aging Mechanism in Li Ion Cells and Calendar Life Predictions, J Power Sources,
97-8 (2001) 13-21.

[68] P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge,
H. Tataria, J. Musser, P. Finamore, Aging Mechanisms of LiFePO4 Batteries
Deduced by Electrochemical and Structural Analyses, J Electrochem Soc, 157
(2010) A499-A507.

[69] E. Markervich, G. Salitra, M.D. Levi, D. Aurbach, Capacity Fading of Lithiated
Graphite Electrodes Studied by a Combination of Electroanalytical Methods,
Raman Spectroscopy and SEM, J Power Sources, 146 (2005) 146-150.

[70] R. Deshpande, M. Verbrugge, Y.T. Cheng, J. Wang, P. Liu, Battery Cycle
Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics, J
Electrochem Soc, 159 (2012) A1730-A1738.

[71] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev,
R.J. Staniewicz, Main Aging Mechanisms in Li Ion Batteries, J Power Sources,
146 (2005) 90-96.

[72] R. Spotnitz, Simulation of Capacity Fade in Lithium-Ion Batteries, J Power
Sources, 113 (2003) 72-80.

[73] J. Christensen, J. Newman, Stress Generation and Fracture in Lithium Insertion
Materials, J Solid State Electr, 10 (2006) 293-319.

[74] X.C. Zhang, W. Shyy, A.M. Sastry, Numerical Simulation of Intercalation-
Induced Stress in Li-Ion Battery Electrode Particles, J Electrochem Soc, 154
(2007) A910-A916.

[75] X.C. Zhang, A.M. Sastry, W. Shyy, Intercalation-Induced Stress and Heat Gen-
eration within Single Lithium-Ion Battery Cathode Particles, J Electrochem
Soc, 155 (2008) A542-A552.

[76] J. Christensen, J. Newman, A Mathematical Model of Stress Generation and
Fracture in Lithium Manganese Oxide, J Electrochem Soc, 153 (2006) A1019-
A1030.

[77] R. Deshpande, Y. Qi, Y.T. Cheng, Effects of Concentration-Dependent Elastic
Modulus on Diffusion-Induced Stresses for Battery Applications, J Electrochem
Soc, 157 (2010) A967-A971.

[78] R. Deshpande, Y.T. Cheng, M.W. Verbrugge, Modeling Diffusion-Induced Stress
in Nanowire Electrode Structures, J Power Sources, 195 (2010) 5081-5088.

[79] R. Deshpande, Y.T. Cheng, M.W. Verbrugge, A. Timmons, Diffusion Induced
Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Parti-
cle, J Electrochem Soc, 158 (2011) A718-A724.

71



[80] V.A. Sethuraman, N. Van Winkle, D.P. Abraham, A.F. Bower, P.R. Guduru,
Real-Time Stress Measurements in Lithium-Ion Battery Negative-Electrodes, J
Power Sources, 206 (2012) 334-342.

[81] W.Q. Lu, A. Jansen, D. Dees, P. Nelson, N.R. Veselka, G. Henriksen, High-
Energy Electrode Investigation for Plug-In Hybrid Electric Vehicles, J Power
Sources, 196 (2011) 1537-1540.

[82] G. Liu, H. Zheng, S. Kim, Y. Deng, A.M. Minor, X. Song, V.S. Battaglia,
Effects of Various Conductive Additive and Polymeric Binder Contents on the
Performance of a Lithium-Ion Composite Cathode, J Electrochem Soc, 155
(2008) A887-A892.

[83] P. Nelson, I. Bloom, K. Amine, G. Henriksen, Design Modeling of Lithium-Ion
Battery Performance, J Power Sources, 110 (2002) 437-444.

[84] J. Shim, K.A. Striebel, Effect of Electrode Density on Cycle Performance and
Irreversible Capacity Loss for Natural Graphite Anode in Lithium-Ion Batteries,
J Power Sources, 119 (2003) 934-937.

[85] H.H. Zheng, J. Li, X.Y. Song, G. Liu, V.S. Battaglia, A Comprehensive Under-
standing of Electrode Thickness Effects on the Electrochemical Performances
of Li-Ion Battery Cathodes, Electrochim Acta, 71 (2012) 258-265.

[86] V. Srinivasan, J. Newman, Design and Optimization of a Natural Graphite/Iron
Phosphate Lithium-Ion Cell, J Electrochem Soc, 151 (2004) A1530-A1538.

[87] Y.H. Chen, C.W. Wang, X. Zhang, A.M. Sastry, Porous Cathode Optimization
for Lithium Cells: Ionic and Electronic Conductivity, Capacity, and Selection
of Materials, J Power Sources, 195 (2010) 2851-2862.

[88] H.H. Zheng, R.Z. Yang, G. Liu, X.Y. Song, V.S. Battaglia, Cooperation between
Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium
Ion Battery Cathode, J Phys Chem C, 116 (2012) 4875-4882.

[89] G. Liu, H. Zheng, A.S. Simens, A.M. Minor, X. Song, V.S. Battaglia, Opti-
mization of Acetylene Black Conductive Additive and PVDF Composition for
High-Power Rechargeable Lithium-Ion Cells, J Electrochem Soc, 154 (2007)
A1129-A1134.

[90] J.M. Tarascon, D. Guyomard, The Li1+xMn2O4/C Rocking-Chair System - A
Review, Electrochim Acta, 38 (1993) 1221-1231.

[91] D. Guyomard, J.M. Tarascon, The Carbon/Li1+xMn2O4 System, Solid State
Ionics, 69 (1994) 222-237.

[92] R.J. Xue, H. Huang, G.B. Li, L.Q. Chen, Effect of Cathode Anode Mass-Ratio
in Lithium-Ion Secondary Cells, J Power Sources, 55 (1995) 111-114.

72



[93] P. Arora, R.E. White, M. Doyle, Capacity Fade Mechanisms and Side Reactions
in Lithium-Ion Batteries, J Electrochem Soc, 145 (1998) 3647-3667.

[94] B. Son, M.H. Ryou, J. Choi, S.H. Kim, J.M. Ko, Y.M. Lee, Effect of Cath-
ode/Anode Area Ratio on Electrochemical Performance of Lithium-Ion Batter-
ies, J Power Sources, 243 (2013) 641-647.

[95] R.A. Huggins, Advanced Batteries : Materials Science Aspects, Springer, New
York, 2008.

[96] J.G. Xu, R.D. Deshpande, J. Pan, Y.T. Cheng, V.S. Battaglia, Electrode Side
Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries,
J Electrochem Soc, 162 (2015) A2026-A2035.

[97] A.J. Smith, J.C. Burns, D. Xiong, J.R. Dahn, Interpreting High Precision
Coulometry Results on Li-ion Cells, J Electrochem Soc, 158 (2011) A1136-
A1142.

[98] R.D. Deshpande, P. Ridgway, Y.B. Fu, W. Zhang, J.S. Cai, V. Battaglia, The
Limited Effect of VC in Graphite/NMC Cells, J Electrochem Soc, 162 (2015)
A330-A338.

[99] P.T. Kissinger, W.R. Heineman, Cyclic Voltammetry, J Chem Educ, 60 (1983)
702-706.

[100] P. Van der Heide, X-ray Photoelectron Spectroscopy : An Introduction to Prin-
ciples and Practices, Wiley, Hoboken, N.J., 2012.

[101] M.N. Obrovac, L. Christensen, Structural Changes in Silicon Anodes during
Lithium Insertion/Extraction, Electrochem Solid St, 7 (2004) A93-A96.

[102] Z.J. Cai, Y.B. Liu, S.S. Liu, L. Li, Y.M. Zhang, High Performance of Lithium-
Ion Polymer Battery Based on Non-Aqueous Lithiated Perfluorinated Sulfonic
Ion-Exchange Membranes, Energ Environ Sci, 5 (2012) 5690-5693.

[103] D. Mazouzi, Z. Karkar, C.R. Hernandez, P.J. Manero, D. Guyomard, L. Roue,
B. Lestriez, Critical Roles of Binders and Formulation at Multiscales of Silicon-
Based Composite Electrodes, J Power Sources, 280 (2015) 533-549.

[104] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Hueb-
ner, T.F. Fuller, I. Luzinov, G. Yushin, Toward Efficient Binders for Li-Ion
Battery Si-Based Anodes: Polyacrylic Acid, Acs Appl Mater Inter, 2 (2010)
3004-3010.

[105] W.R. Liu, M.H. Yang, H.C. Wu, S.M. Chiao, N.L. Wu, Enhanced Cycle Life
of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder, Elec-
trochem Solid St, 8 (2005) A100-A103.

73



[106] H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, P. Novák, Study of Styrene Buta-
diene Rubber and Sodium Methyl Cellulose as Binder for Negative Electrodes
in Lithium-Ion Batteries, J Power Sources, 161 (2006) 617-622.

[107] B. Lestrie, S. Bahri, I. Sandu, L. Roue, D. Guyomard, On the Binding Mecha-
nism of CMC in Si Negative Electrodes for Li-Ion Batteries, Electrochem Com-
mun, 9 (2007) 2801-2806.

[108] N.S. Hochgatterer, M.R. Schweiger, S. Koller, P.R. Raimann, T. Wohrle, C.
Wurm, M. Winter, Silicon/Graphite Composite Electrodes for High-Capacity
Anodes: Influence of Binder Chemistry on Cycling Stability, Electrochem Solid
St, 11 (2008) A76-A80.

[109] D. Mazouzi, B. Lestriez, L. Roue, D. Guyomard, Silicon Composite Electrode
with High Capacity and Long Cycle Life, Electrochem Solid St, 12 (2009) A215-
A218.

[110] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy,
I. Luzinov, G. Yushin, A Major Constituent of Brown Algae for Use in High-
Capacity Li-Ion Batteries, Science, 334 (2011) 75-79.

[111] M. Murase, N. Yabuuchi, Z.J. Han, J.Y. Son, Y.T. Cui, H. Oji, S. Komaba,
Crop-Derived Polysaccharides as Binders for High-Capacity Silicon/Graphite-
Based Electrodes in Lithium-Ion Batteries, Chemsuschem, 5 (2012) 2307-2311.

[112] Q.W. Tang, Z.Q. Shan, L. Wang, X. Qin, K.L. Zhu, J.H. Tian, X.S. Liu, Nafion
Coated Sulfur-Carbon Electrode for High Performance Lithium-Sulfur Batter-
ies, J Power Sources, 246 (2014) 253-259.

[113] Y.B. Liu, Z.J. Cai, L. Tan, L. Li, Ion Exchange Membranes as Electrolyte for
High Performance Li-Ion Batteries, Energ Environ Sci, 5 (2012) 9007-9013.

[114] Z.Q. Jin, K. Xie, X.B. Hong, Z.Q. Hu, X. Liu, Application of Lithiated Nafion
Ionomer Film as Functional Separator for Lithium Sulfur Cells, J Power Sources,
218 (2012) 163-167.

[115] H.Y. Liang, X.P. Qiu, S.C. Zhang, W.T. Zhu, L.Q. Chen, Study of Lithiated
Nafion Ionomer for Lithium Batteries, J Appl Electrochem, 34 (2004) 1211-
1214.

[116] A.M. Chockla, T.D. Bogart, C.M. Hessel, K.C. Klavetter, C.B. Mullins, B.A.
Korgel, Influences of Gold, Binder and Electrolyte on Silicon Nanowire Perfor-
mance in Li-Ion Batteries, J Phys Chem C, 116 (2012) 18079-18086.

[117] M.N. Obrovac, L.J. Krause, Reversible Cycling of Crystalline Silicon Powder,
J Electrochem Soc, 154 (2007) A103-A108.

74



[118] K.W. Schroder, H. Celio, L.J. Webb, K.J. Stevenson, Examining Solid Elec-
trolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of
Electrochemical Preparation and Ambient Exposure Conditions, J Phys Chem
C, 116 (2012) 19737-19747.

[119] H. Nakai, T. Kubota, A. Kita, A. Kawashima, Investigation of the Solid Elec-
trolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes, J
Electrochem Soc, 158 (2011) A798-A801.

[120] N.S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, S.S. Kim, Effect of Fluo-
roethylene Carbonate Additive on Interfacial Properties of Silicon Thin-Film
Electrode, J Power Sources, 161 (2006) 1254-1259.

[121] K. Feng, B.B. Tang, P.Y. Wu, Ammonia-Assisted Dehydrofluorination between
PVDF and Nafion for Highly Selective and Low-Cost Proton Exchange Mem-
branes: A Possible Way to further Strengthen the Commercialization of Nafion,
J Mater Chem A, 3 (2015) 12609-12615.

[122] B. Philippe, R. Dedryvere, J. Allouche, F. Lindgren, M. Gorgoi, H. Rensmo, D.
Gonbeau, K. Edstrom, Nanosilicon Electrodes for Lithium-Ion Batteries: Inter-
facial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy,
Chem Mater, 24 (2012) 1107-1115.

[123] D. Aurbach, Review of Selected Electrode-Solution Interactions which Deter-
mine the Performance of Li and Li Ion Batteries, J Power Sources, 89 (2000)
206-218.

[124] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D.
Aurbach, Effect of Fluoroethylene Carbonate (FEC) on the Performance and
Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes, Langmuir, 28 (2012)
965-976.

[125] Q.L. Zhang, X.C. Xiao, W.D. Zhou, Y.T. Cheng, M.W. Verbrugge, Toward
High Cycle Efficiency of Silicon-Based Negative Electrodes by Designing the
Solid Electrolyte Interphase, Adv Energy Mater, 5 (2015).
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