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ABSTRACT FOR DISSERTATION 

 

SYNTHESIS AND CHARACTERIZATION OF ANTIOXIDANT CONJUGATED 
POLY(ΒETA-AMINO ESTER) MICRO/NANOGELS FOR THE SUPPRESSION OF 

OXIDATIVE STRESS 
 

Oxidative stress is a pathophysiological condition defined by an increased production of 
reactive oxygen species (ROS), which can result in the growth arrest of cells followed by 
cell disintegration or necrosis. A number of small molecule antioxidants (e.g. curcumin, 
quercetin and resveratrol) are capable of directly scavenging ROS, thereby short-circuiting 
the self-propagating oxidative stress state. However, poor solubility and rapid 1st pass 
metabolism results in overall low bioavailability and acts as a barrier for its use as a drug 
to suppress oxidative stress efficiently.  
To overcome this limitation, these small molecule antioxidants were covalently conjugated 
into poly(β-amino ester) (PβAE) cross-linked networks to formulate prodrug gel 
microparticles and nanoparticles (nanogels). Being hydrolytically degradable in nature, 
these PβAE crosslinked systems released antioxidants in their original structural form in a 
sustained controlled fashion.  
Both quercetin and curcumin-PβAE nanogels showed prolonged suppression of cellular 
oxidative stress induced by H2O2. Curcumin PβAE nanogels also demonstrated protection 
against mitochondrial oxidative stress induced by H2O2 and polychlorinated biphenyls. 
Curcumin-PβAE gel microparticles were also developed as a platform to treat oral 
mucositis through a local antioxidant delivery route. The same synthesis chemistry was 
transferred to formulate resveratrol PβAE gel microparticles for topical applications, to 
treat UV radiation induced oxidative stress. Both formulations showed suppression of 
induced oxidative stress. An in vivo trial with curcumin-PβAE microparticles further 
showed relatively reduced the severity of induced oral mucositis (OM) in hamster check 
pouch as compared to placebo.   
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1. INTRODUCTION 

Oxidative stress (OS) is a pathophysiological state, which is defined by the imbalance 

of oxidants and antioxidants present in the body. This imbalance can be initiated by 

increasing reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

production in a variety of scenarios, including exposure to environmental toxicants such 

as polychlorinated biphenyls (PCBs), intake of cancer treatment drugs like doxorubicin 

for chemotherapy, and radiation therapies.  The lack of antioxidant capacity to balance 

out this preliminary excess ROS production leads to the cascading ROS production 

cycle involving processes such as ischemia reperfusion and lipid peroxidation. This 

excess production, in turn, leads to the oxidation of cell components, such as cell 

membranes, DNA, lipids etc., ultimately resulting in cell death. Common examples of 

ROS include singlet oxygen (1O2), transition metal ions, superoxide radicals (O2
.-), 

hydrogen peroxide, hydroxyl radicals and peroxynitrite (ONOO-).  Mitochondrial 

oxidative stress has been shown to play a vital role in development of several 

neurodegenerative diseases like Alzheimer’s and Parkinson’s disease [1].  

Administration of antioxidants as therapeutics is a potential solution to alleviate the 

steady-state oxidative stress and help metabolism cope beyond its natural antioxidant 

capacity against oxidants/ROS/RNS. Plants and fruit derived dietary small molecule 

antioxidant scavengers, such as curcumin, quercetin, and vitamin E, have gained critical 

interest in the area concerning mitigation of OS. In spite of their excellent self-

sacrificial property to neutralize free radicals, these bioactive compounds have failed 

to substantiate themselves as potential drugs for suppression of OS. Some of the key 

underlying explanations behind this poor performance is due to their limited aqueous 

solubility, structural instability in the physiological environment and hence overall low 
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bioavailability [2]. Taken together, these properties greatly limit bioavailability, 

preventing systemic drug concentrations from reaching the therapeutic window. While, 

these are some interpretations derived from several in vivo and clinical trials, in vitro 

studies shows evidence of suppressing oxidative stress [3]. The extent of this protection 

is again limited due to their very low viable concentrations at the cellular level or 

demonstration of pro-oxidant effects at high administered doses [4]. Thus, high levels 

of antioxidants could be seen as a solution to inhibit cancerous cell growth but not a fix 

for OS in healthy cells. 

As a result, though highly potent, maintaining an effective drug concentration without 

being toxic is a challenge with antioxidants. Further, preserving them in their active 

form after administration is another barrier to effective drug delivery. An antioxidant 

prodrug system with controlled drug release could be a possible solution to this 

challenge and direct polymerization of antioxidants into a poly(β amino ester) (PβAE) 

style polymer could be a possible way to achieve this approach. Synthesized via 

Michael addition reaction of an acrylate with a primary or secondary amine, PβAEs are 

hydrolytically biodegradable systems through their ester linkages. They can be 

formulated into crosslinked networks via reaction of a multiacrylate compound with a 

multifunctional amine [5]. Further utilizing the synthesis chemistry covalently 

conjugating antioxidants into the crosslinked networks would protect the bioactive 

functional groups from getting deactivated until released [6]. Upon hydrolytic 

degradation, these PβAE crosslinked networks would release conjugated antioxidants 

in their original structural form in a controlled manner.  

Owing to these benefits of the synthesis chemistry, formulating the antioxidant PβAE 

systems into microgels or nanogel networks would open up the options to various 
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delivery routes including local, intravenous, inhalation and other injectable approaches. 

Control over drug release kinetics and particle size would further make the system more 

adaptable in drug delivery systems. 

Therefore, development of robust and functionally active antioxidant-PβAE particles 

in the nano to micro size range was pursued for local and systemic therapy applications.  

A single step synthesis chemistry to conjugate polyphenolic antioxidant into PβAE 

crosslinked systems, previously designed in the Dziubla lab, was adopted involving the 

reaction of acrylate functionalized antioxidants with multifunctional amines [6]. While 

the PβAE synthesis processes were modified according to the type of particle system 

desired, different anti-inflammatory polyphenolic antioxidant drug molecules 

(quercetin, curcumin and resveratrol) were also explored to analyze the pliability of the 

formulation processes. Figure 1.1 summarizes the overall idea of the research goals and 

is also discussed below. 

Quercetin-PβAE nanogels (CHAPTER 4) were synthesized using a novel single step 

reaction-precipitation method utilizing the Michael addition chemistry. Allowing 

control over the nanogel diameter as a function of monomer concentration, the synthesis 

process was also amenable to the formulation of curcumin-PβAE nanogels (CHAPTER 

5 and 6). Curcumin-PβAE crosslinked systems were further explored to synthesize 

antioxidant-PβAE gel microparticles systems (10-20 µm) via gel cryomilling method 

(CHAPTER 7). The gel microparticle synthesis process was also successfully 

employed in the formulation of resveratrol-PβAE gel microparticles (CHAPTER 8). 

Being able to synthesize these prodrug systems in different particle sizes and with 

different compounds demonstrated the flexible nature of the synthesis processes in drug 

delivery applications. 

3 
 



  

The hydrolytic degradation rate of these crosslinked systems was studied to analyze the 

antioxidant release rates. Both nano and microsystems showed a uniform and extended 

release of the structurally active antioxidants with no burst release effects, which is a 

critical requirement in most drug delivery applications. Further, tunable antioxidant 

release properties of curcumin and resveratrol microparticle systems were observed due 

to the incorporation of poly(ethylene glycol)diacrylate (PEGDA) as a co-monomer 

during PβAE gel synthesis.  

With control over the above mentioned physicochemical properties of these antioxidant 

conjugated PβAEs, in vitro response of endothelial and dermal fibroblasts showed 

prolonged protection against H2O2 induced cellular oxidative stress. The uniform 

release profile of curcumin-PβAE nanogels with no burst release, in fact, resulted in a 

reduced cytotoxicity of curcumin at higher concentrations, thereby increasing the safety 

limit of the antioxidant. This characteristic allowed the antioxidant to be administered 

at therapeutic levels and work against mitochondrial and cellular OS in endothelial 

cells. The protective effect of these nanogels was also seen at mitochondrial levels with 

cells exposed to PCBs, which are considered environmentally persistent toxicants and 

are known to induce cellular disorders via OS route (CHAPTER 6). 

While nanocarriers are the desired choices for systemic applications through various 

injectable or inhalation routes, use of larger particles i.e. microparticle drug carrier 

systems is not often favored for local drug delivery. Therefore, extending the 

application of antioxidant-PβAE systems, curcumin-PβAE microparticles were 

analyzed as a treatment therapy for oral mucositis through local delivery. Hence, a 

preliminary in vivo study employing the hamster pouch model under induced oral 

mucositis conditions was carried out. Locally delivering suspended curcumin-PβAE 
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microparticles during the developmental stage of oral mucositis showed decreased 

levels of oxidative stress markers and a reduced intensity in epithelial layer damage as 

compared to the placebo. Similarly, resveratrol-PβAE microparticles were also tested 

for their protective application towards UV radiation-induced OS. Although this project 

is currently at a partially completed stage, the system has shown promising results 

towards cellular OS suppression but needs optimization in synthesis processes and 

cleaner demonstration of the intended application. 

Apart from the direct antioxidant conjugation method, another novel route through 

transesterification was identified to chemically conjugate –OH group containing drug 

molecules (detailed discussion in the Appendix). With the concept that an alcohol can 

be substituted into an ester bond to form a new ester, different alcohols were substituted 

into the already existing crosslinked PβAE gel matrix synthesized using PEGDA and 

4, 7, 10-trioxatridecane-1, 13-diamine (TTD). Transesterification rate varied depending 

upon various ambient parameters and showed faster degradation with increasing 

polarity of gel matrix due to amine catalyzing effect. The effect was further enhanced 

by using alcohols of different chemical nature. This approach was applied towards 

conjugation of riboflavin into PEGDA-TTD gels and the rate of conjugation depended 

upon the polar nature of the synthesized gels. 
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Figure 1.1 Figure 1.1 PβAE crosslinked prodrug network systems 
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2 BACKGROUND: A FREE RADICAL PRIMER 

 

Based on the book chapter to be published: 

Prachi Gupta, Andrew Lakes, Thomas Dziubla, Free Radical Chemistry Primer; 

To appear in ‘Oxidative Stress and Biomaterials: The Science, Challenges and 

Opportunities’ (Elsevier)  

2.1 Free radical biology – importance  

Free radicals, represented with a superscript ‘dot’ (A), are defined as any atom or 

molecule containing an unpaired electron which has a strong tendency to gain another 

electron to achieve a non-radical state [7].  These molecules are considered to be highly 

reactive, are capable of reacting with a non-radical molecule in their quest for self-

stabilization. Radical species can be found through a variety of mechanisms, one of 

which is an abstraction of an electron from an atom or a molecule. Radicals can also be 

generated by the splitting of a molecule at a very high-energy state. A classic example 

would be radiation induced homolysis of a water molecule into a hydroxyl radical and 

a hydrogen atom [8](eq 1) 

 𝑯𝑯𝟐𝟐𝑶𝑶 + 𝒆𝒆𝒆𝒆 → 𝑯𝑯+ + 𝑶𝑶𝑯𝑯− (1) 

As these radical ions exist in a high and unstable potential energy state, they can react 

in a variety of ways. For example, two radica species can react with each other to form 

a non-radical molecule or one radical can donate an electron to another yielding two 

stable compounds [9].  
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As oxygen serves as the primary player in most biological free radical reactions, free 

radicals are also commonly known as reactive oxygen species (ROS). In a similar way, 

nitrogen base free radicals are called reactive nitrogen species (RNS). Table 2.1 lists 

some of the most common free radicals/oxidants/ROS important in biology. Most of 

the essential cellular matrix components (protein, cellular membrane, DNA, lipids, 

polyunsaturated fatty acids etc.) in physiological systems are stable non-radical entities 

and perform their regular function of energy production in the form of ATP and 

maintain the cellular redox balance. But, the presence of more than the basal level of 

free radical molecules/ROS can lead to reactions of ROS with alternative cellular 

components in a quest to stabilizing themselves, damaging the chemical integrity of 

cellular biomolecules [10, 11]. One well-known example is lipid membrane damage via 

lipid peroxidation, where highly reactive hydroxyl radical react with polyunsaturated 

fatty acids (PUFAs) of the cellular membrane by extracting an electron yielding a lipid 

free radical. If this reaction phenomenon is not controlled in a timely manner, it can 

initiate a chain reaction of free radical molecules with intact lipids resulting in overall 

cellular membrane damage [12].  

 

 

Figure 2.1 Lipid peroxidation cycle in presence of hydroxyl radical (OH●) 
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Although most of the research concerning the role of ROS/RNS has been done towards 

the potential cellular damage and subsequent pathological events, they do serve as a 

beneficiary to the body under certain conditions. When present in optimum 

concentrations, they help maintain the redox homeostasis in the cellular environment. 

This helps in regulation of cell functioning, cell signaling and appropriate response to 

endogenous and exogenous stimuli [13]. Under normal physiological conditions, a 

balance between generation and elimination of ROS/RNS via endogenous antioxidant 

enzymes/molecules helps the redox-sensitive signaling proteins to function properly 

[14]. Endogenous ROS enzymes like myeloperoxidase, and NADPH oxidase (NOX), 

also known as phagocyte oxidase, actually help the neutrophils perform their 

phagocytic function against microbial intrusion in an event known as respiratory burst. 

To briefly explain, NADPH oxidase catalyzed superoxide production forms hydrogen 

peroxide with the help of superoxide dismutase (SOD), which in turn converts to 

hypochlorous acid (HOCl) having bactericidal properties (eq 2) [15, 16]. 

Reaction:  

 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑯𝑯 + 𝑶𝑶𝟐𝟐
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑯𝑯 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒆𝒆
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  𝑶𝑶𝟐𝟐

−● 𝑺𝑺𝑶𝑶𝑵𝑵
�⎯� 𝑯𝑯𝟐𝟐 𝑶𝑶𝟐𝟐  

𝑴𝑴𝑴𝑴𝑴𝑴𝒐𝒐𝑴𝑴𝒆𝒆𝑴𝑴𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒆𝒆
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�   𝑯𝑯𝑶𝑶𝑯𝑯𝑴𝑴 (2) 

Table 2.1 Potential free radical species  

ROS/RNS Symbol ROS/RNS Symbol 

Superoxide O2
-
 Hydroxyl OH● 

Hydroperoxyl HOO● Peroxyl ROO● 

Nitric oxide NO● Nitrogen oxide NO2
● 

Peroxynitrite ONOO- Singlet oxygen 1O2 

Hypochlorous acid HOCl   
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2.2 RED/Ox Chemistry  

2.2.1 Oxidation/reduction reactions and voltage potentials 

Originally, the term ‘oxidation’ was described as a process of any element, primarily 

metals, to combine with oxygen to form metal oxides and ‘reduction’ was defined as a 

process that will convert the metal oxide back to pure metal again. For example, 

conversion of magnesium (Mg) to magnesium oxide is oxidation and back to 

magnesium at high temperature in the presence of carbon is a reduction. Later, the 

discovery of electrons changed the definition of oxidation-reduction to a phenomenon 

of encountering any transfer of electrons from one species to another. As per the law of 

conservation of mass applied to electrons, oxidation and reduction are always linked to 

one another. Meaning, if one species is oxidized, the counter reactant species will be 

reduced [17, 18].  

 

 

(3) 

 

 

 

(4) 

By definition, oxidation of any given element or molecule will involve a loss of an 

electron and the element/molecule will be known as a reducing agent while the 

reduction of any molecule will be a gain of electron and that molecule will be known 

as an oxidizing agent [19]. In reference to free radicals or ROS as such, they are 

commonly known to be strong oxidizing agents or have a tendency to get reduced [20, 
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21]. This is because most radicals have one unpaired electron, and the addition of 

another electron (or getting reduced) with opposite electron spin would help in 

stabilizing the electron pair taking them to a more inert state. However, this is not 

always true. The oxidizing tendency of any free radical will depend on its affinity to 

gain an electron or its own reduction potential against the affinity or potential of the co-

reactant. It is possible that free radical ‘A’ gets reduced in presence of ‘B’ but might 

get oxidized itself by losing another electron in presence of ‘C’ because the reduction 

potential or electron gaining affinity of ‘C’ is greater than ‘A’.  

2.1.1.1 Types of redox reactions 
 

Corrosion and rusting: 

Iron has served as a common example of corrosion, which is the electrochemical 

oxidation of metals in the presence of oxygen to form respective oxides. In reference to 

iron, it is specifically termed as the formation of ‘rust’ (eq 5) [22].  

 4𝐹𝐹𝐹𝐹 + 3𝑂𝑂2  → 2𝐹𝐹𝐹𝐹2𝑂𝑂3  ………………..Oxidation of Fe to Fe+3 (5) 

 

In presence of an acid, iron (II) is oxidized to iron (III) by reaction with hydrogen 

peroxide, which acts as an oxidizing agent [23], although iron (III) can be reduced back 

to iron (II) in presence of stronger reducing agents or free radicals such as superoxide 

anion [24]. This oxidation-reduction chemistry of iron, popularly known in terms of the 

Fenton or Haber-Weiss reaction mechanism, is very critical in maintaining the redox 

state of the cell. 
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 2𝐹𝐹𝐹𝐹+2 + 𝐻𝐻2𝑂𝑂2 + 2𝐻𝐻+  → 2𝐹𝐹𝐹𝐹+3 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜) +

2𝐻𝐻2𝑂𝑂(𝑟𝑟𝐹𝐹𝑜𝑜𝑟𝑟𝑟𝑟𝐹𝐹𝑜𝑜) ………………….Oxidation of Fe+2 to Fe+3 (6) 

Nitrification and Denitrification:  

Nitrification often occurs naturally and is a biologically oxidative process where 

ammonia is oxidized to nitrite followed by formation of nitrate by nitrifying bacteria. 

On the other hand, reduction of nitrate to nitrogen in the presence of an acid is termed 

as denitrification and is often used as water purification process [25]. These nitrates 

have the ability to diffuse through the cellular membrane and play a significant role in 

the production of RNS in a cellular environment. 

Nitrification: 

 

 

𝑁𝑁𝐻𝐻3 + 𝑂𝑂2 → 𝑁𝑁𝑂𝑂2−(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜) + 3𝐻𝐻+ + 2𝐹𝐹− (Ammonia 

to nitrite) 
(6) 

 𝑁𝑁𝑂𝑂2− + 𝐻𝐻2𝑂𝑂 → 𝑁𝑁𝑂𝑂3−(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜) + 2𝐻𝐻+ + 2𝐹𝐹− (Nitrite to 

nitrate) 
(7) 

 

Denitrification: 2𝑁𝑁𝑂𝑂3− + 10𝐹𝐹− + 12H+ → N2 (reduced) + 6H2O (Oxidized) (8) 

Dismutation reaction: 

Dismutation or disproportionation is a specific kind of redox reaction where both 

oxidized and reduced forms of a chemical species are produced. For example, 

superoxide free radicals produced in mitochondria dismutate to hydrogen peroxide and 

oxygen (equation 9) [26] or ascorbyl radical to ascorbate (vitamin C) and 
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dehydroascorbate (DHA) (eq 10) in order to maintain intracellular nutrient 

requirements for the cells [27, 28]. 

 2𝑂𝑂2− + 2𝐻𝐻+  → 𝐻𝐻2𝑂𝑂2(𝑟𝑟𝐹𝐹𝑜𝑜𝑟𝑟𝑟𝑟𝐹𝐹𝑜𝑜) + 𝑂𝑂 2(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜) (9) 

 2𝑎𝑎𝑎𝑎𝑟𝑟𝑜𝑜𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎● + 𝐻𝐻+  → 𝑎𝑎𝑎𝑎𝑟𝑟𝑜𝑜𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜) + 𝐷𝐷𝐻𝐻𝐷𝐷 (𝑟𝑟𝐹𝐹𝑜𝑜𝑟𝑟𝑟𝑟𝐹𝐹𝑜𝑜) (10) 

Cellular respiration: 

Oxidation of glucose to carbon dioxide with simultaneous reduction of oxygen to water 

is another kind of natural oxidation-reduction reaction required for energy production 

in living organisms. [29]. 

 𝐶𝐶6𝐻𝐻12𝑂𝑂6 + 6𝑂𝑂2  → 6𝐶𝐶𝑂𝑂2 + 6𝐻𝐻2𝑂𝑂 (11) 

All the reactions (equation 5-11) showed their tendency to either undergo oxidation or 

reductions is controlled by their reduction potential. Reduction potential (Eo) is defined 

as a tendency of a chemical species to be reduced by gaining an electron and is defined 

with electrochemical reference of hydrogen, which is globally given the reduction 

potential of zero [30]. As this is an electric potential, it is measured in volts and each 

chemical species has its own intrinsic reduction potential. Numerically, the more 

positive the potential, the stronger is the affinity of the species to acquire an electron 

and get reduced. 

2.1.1.2 Redox potential: 
 
A normal redox reaction example could be as given below (eq 12): 

 𝐹𝐹𝐹𝐹+3 + 𝐶𝐶𝑟𝑟+  → 𝐹𝐹𝐹𝐹+2 + 𝐶𝐶𝑟𝑟+2 (12) 
 

And this can be broken down into two parts: 
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 𝐹𝐹𝐹𝐹+3 + 𝐹𝐹− → 𝐹𝐹𝐹𝐹+2 …………reduction (13) 

 𝐶𝐶𝑟𝑟+ → 𝐶𝐶𝑟𝑟+2 + 𝐹𝐹−……………oxidation (14) 

For a combined redox reaction, the overall redox potential is estimated by: 

 ∆𝐸𝐸 = 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐸𝐸𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎  (15) 

The electrochemical potential or reduction potential stated above is directly related to 

the Gibbs free energy (∆𝐺𝐺) of the reaction: 

 (∆𝐺𝐺) = −𝑛𝑛𝐹𝐹∆𝐸𝐸 (16) 

where 

n: number of electrons associated with the reaction 

F: Faraday’s constant 

For a reaction to proceed total Gibb’s free energy (∆𝐺𝐺) must be negative or ∆𝐸𝐸 should 

be positive. In equation 14, Cu is the electron donor with redox potential of Cu+2 to Cu+ 

is +0.16 V and that of Fe+3 to Fe+2 is 0.77 V. Therefore overall redox potential becomes 

+0.61 V. 

To state this simply, for a system to undergo a redox reaction, the redox potential of a 

species to be reduced should be higher than the species to be oxidized. Table 2 lists 

some of the common redox potentials of certain half-cell redox couples and of some 

biomolecules important to physiological redox environment. 
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Table 2.2. Half-cell reduction potentials of biologically significant molecules 

Redox couple Eo (v) 

𝑂𝑂2 + 4𝐻𝐻+ + 4𝐹𝐹−  → 2𝐻𝐻2𝑂𝑂 +0.816 

𝑁𝑁𝑂𝑂2 + 𝐹𝐹−  → 𝑁𝑁𝑂𝑂2− + 1.04 

𝑁𝑁𝑂𝑂3− + 4𝐻𝐻+ + 3𝐹𝐹− → 𝑁𝑁𝑂𝑂 + 𝐻𝐻2𝑂𝑂 + 0.96 

𝐻𝐻2𝑂𝑂2 + 2𝐻𝐻+ + 2𝐹𝐹− → 2𝐻𝐻2𝑂𝑂 + 0.82 

𝐹𝐹𝐹𝐹+3 + 𝐹𝐹−  → 𝐹𝐹𝐹𝐹+2 + 0.77 

𝑂𝑂2 +  2𝐻𝐻+ + 2𝐹𝐹−  → 𝐻𝐻2𝑂𝑂2 + 0.68 

2𝐼𝐼2 + 2𝐹𝐹−  → 2𝐼𝐼− + 0.54 

2𝐻𝐻2𝑂𝑂 + 𝑂𝑂2 + 4𝐹𝐹−  → 4𝑂𝑂𝐻𝐻− + 0.40 

2𝐶𝐶𝑟𝑟+2 + 2𝐹𝐹−  → 𝐶𝐶𝑟𝑟 + 0.34 

2𝐶𝐶𝑎𝑎𝑎𝑎𝑜𝑜𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑜𝑜𝐹𝐹 𝑟𝑟+3 + 2𝐹𝐹−  → 2 𝑟𝑟𝑎𝑎𝑎𝑎𝑜𝑜𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑜𝑜𝐹𝐹 𝑟𝑟+2 +0.254 

2𝐶𝐶𝑎𝑎𝑎𝑎𝑜𝑜𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑜𝑜𝐹𝐹 𝑎𝑎+3 + 2𝐹𝐹−  → 2 𝑟𝑟𝑎𝑎𝑎𝑎𝑜𝑜𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑜𝑜𝐹𝐹 𝑎𝑎+2 +0.070 

𝐹𝐹𝑟𝑟𝑜𝑜𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝐹𝐹 + 2𝐻𝐻+ + 2𝐹𝐹−  → 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝐹𝐹 +0.031 

2𝐻𝐻+ + 2𝐹𝐹−  → 𝐻𝐻2 0.00 

𝐹𝐹𝐷𝐷𝐷𝐷+ + 2𝐻𝐻+ + 2𝐹𝐹−  → 𝐹𝐹𝐷𝐷𝐷𝐷𝐻𝐻2 (free coenzyme) -0.22 

𝑂𝑂𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑟𝑟𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 + 2𝐻𝐻+ + 2𝐹𝐹−  → 𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 -0.166 

𝑃𝑃𝑎𝑎𝑟𝑟𝑟𝑟𝑃𝑃𝑎𝑎𝑎𝑎𝐹𝐹 + 2𝐻𝐻+ + 2𝐹𝐹−  → 𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 -0.185 

𝑁𝑁𝐷𝐷𝐷𝐷+ + 2𝐻𝐻+ + 2𝐹𝐹−  → 𝑁𝑁𝐷𝐷𝐷𝐷𝐻𝐻 + 𝐻𝐻+ -0.320 

𝑁𝑁𝐷𝐷𝐷𝐷𝑃𝑃+ + 2𝐻𝐻+ + 2𝐹𝐹−  → 𝑁𝑁𝐷𝐷𝐷𝐷𝑃𝑃𝐻𝐻+ + 𝐻𝐻+ -0.324 

𝑂𝑂2 + 𝐹𝐹−  → 𝑂𝑂2− -0.33 

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎𝐹𝐹 + 𝐶𝐶𝑂𝑂2 + 2𝐻𝐻+ + 2𝐹𝐹−  

→ 𝛼𝛼 − 𝑘𝑘𝐹𝐹𝑎𝑎𝑜𝑜𝑘𝑘𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝐹𝐹 + 𝐻𝐻2𝑂𝑂 
-0.324 

𝑁𝑁𝑎𝑎+ + 𝐹𝐹−  → 𝑁𝑁𝑎𝑎 -2.71 

 

2.2.2 Thermodynamic treatment (Ellingham diagram) 

A voltage potential is not the only way to determine the direction of the reaction. As 

stated earlier, for a reaction to proceed, ∆𝐺𝐺 should be negative which requires ∆𝐸𝐸 to be 

positive, but ∆𝐺𝐺 is also a function of temperature (Equation 17). An alternative to 
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determine the direction of a reaction can be obtained by a thermodynamic analysis of 

the reaction equilibrium. 

 ∆𝐺𝐺 =  ∆𝐻𝐻 − 𝑇𝑇∆𝑆𝑆 (17) 

Where 

T: reaction temperature 

ΔS: Entropy change 

ΔH: Enthalpy change 

The temperature dependence of a reaction using equation (17) above is also utilized in 

redox chemistry to drive the direction of reactions of metal oxides and sulfides to pure 

metal. This phenomenon is usually illustrated in the form of an Ellingham’s diagram, 

which represents the stability of a metal oxide as a function of temperature in reference 

to ΔG (Figure 2.2). Each line for a particular metal shows the free energy values for its 

metal oxide formation where slope depicts the ΔS values while the y-intercept gives 

ΔH. The position of the line of a metal with reference to another helps in depicting the 

metal oxide reduction ability in presence of another metal. To illustrate, the lower the 

position of metal (𝑀𝑀𝑘𝑘 + 𝑂𝑂 → 𝑀𝑀𝑘𝑘𝑂𝑂) is on Elligham’s diagram, the more stable its oxide 

is at a particular temperature than the one that lies above it (4
3
𝐷𝐷𝑎𝑎 + 𝑂𝑂2 →

2
3
𝐷𝐷𝑎𝑎2𝑂𝑂3).  

Therefore, magnesium can reduce aluminum oxide to metallic aluminum. Looking at 

the diagram, all the metal oxide formations have a positive slope while carbon oxidation 

to carbon monoxide has a negative slope and it cuts across many of the metals at 

particular temperatures. Therefore, carbon becomes very useful as a reducing agent for 

metal oxides at higher temperature. For example, carbon can reduce manganese oxide 
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(MnO) to its metallic form Mn once the reaction temperature goes above 1400oC while 

it will be able to reduce TiO2 to Ti above 1600oC [31-33].  

Therefore, with an analogous theory, the way reduction potential of two reacting 

molecules decide their possibility to get reduced or oxidized, in a similar way, ΔG of 

metal oxides of two interacting metal decides the fate of one getting reduced in presence 

of another. 

 

         Figure 2.2 Ellingham’s diagram [34] 
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2.2.3 Combustion sequences and/or metal oxides 

Combustion is a classic example of free radical reactions and generation. It is a high 

temperature exothermic process involving multiple redox reactions of a fuel 

(hydrocarbons) with an oxidant, mostly oxygen, resulting in oxidized products 

primarily carbon dioxide and water, to generate heat and light. The overall combustion 

process of oils is described by the reaction below: 

 
𝐶𝐶𝑑𝑑𝐻𝐻2(𝑑𝑑+1) + (4𝑛𝑛 +

𝑛𝑛 + 1
2

)𝑂𝑂2 → 𝑛𝑛𝐶𝐶𝑂𝑂2 + (𝑛𝑛 + 1)𝐻𝐻2𝑂𝑂 (18) 

While this equation is simple and describes the process in a general fashion, the exact 

chemistry of combustion is highly complex, multifaceted and not easy to describe. 

As such molecular oxygen in its ground state is a very stable molecule and unreactive 

to hydrocarbons until a catalyst is introduced but at elevated temperature as high as 

2200oC, oxygen converts into highly reactive singlet oxygen (O2
1) [35] and is known 

to have high oxidizing power. Singlet oxygen can react with and break carbon-carbon 

or carbon-hydrogen bonds of large hydrocarbons into smaller molecules and, 

subsequently, hydrogen and water. In the process, it is also capable of initiating 

numerous radical chain reactions via reaction with molecular hydrogen (H2) resulting 

in the hydroxyl radical (OH●) and a proton (H+). The combination of many such 

reactions results in the generation and simultaneous consumption of hydroperoxyl 

(HCOO●), formyl (HCO●) radicals, carbon monoxide [36, 37]. As for hydrocarbon 

pyrolysis, the process involves generation of various aliphatic and aromatic radicals.  

Below are some of the common series of radical reactions that can occur during 

combustion process: 

18 
 



  

 𝑂𝑂2 + 𝐻𝐻+ → 𝑂𝑂.− + 𝑂𝑂𝐻𝐻● (19) 

 𝑂𝑂21 + 𝐻𝐻2 → 𝐻𝐻+ + 𝑂𝑂𝐻𝐻● (20) 

 𝐶𝐶3𝐻𝐻8 + 𝑀𝑀 → 𝐶𝐶2𝐻𝐻5● + 𝐶𝐶𝐻𝐻3● + 𝑀𝑀 (21) 

 𝐶𝐶2𝐻𝐻5● + 𝑀𝑀 → 𝐶𝐶2𝐻𝐻4 + 𝐻𝐻+ + 𝑀𝑀 (22) 

 𝐶𝐶3𝐻𝐻8 + 𝑂𝑂𝐻𝐻● → 𝐶𝐶3𝐻𝐻7● + 𝐻𝐻2𝑂𝑂 (23) 

 𝐶𝐶3𝐻𝐻8 + 𝐻𝐻+ → 𝐶𝐶3𝐻𝐻7● + 𝐻𝐻2 (24) 

 𝐶𝐶3𝐻𝐻8 + 𝑂𝑂●− → 𝐶𝐶3𝐻𝐻7● + 𝑂𝑂𝐻𝐻● (25) 

 𝐶𝐶3𝐻𝐻7● → 𝐶𝐶3𝐻𝐻6 + 𝐻𝐻+ 
Decay to unsaturated hydrocarbons 

(26) 

These radical react with oxygen radical to produce formyl radical and formaldehyde 

and CH3
●, CH2, H2CO finally oxidize to CO2 and H2O. 

 𝐶𝐶3𝐻𝐻6 + 𝑂𝑂●− → 𝐶𝐶2𝐻𝐻5 + 𝐻𝐻𝐶𝐶𝑂𝑂 (27) 

 𝐶𝐶2𝐻𝐻4 + 𝑂𝑂2 → 2𝐶𝐶𝑂𝑂 + 𝐻𝐻2 (28) 

 𝐶𝐶𝑂𝑂 + 1/2𝑂𝑂2 → 𝐶𝐶𝑂𝑂2 (29) 

Production of oxygen radicals also result in nitrogen oxide species production via 

reaction with atmospheric nitrogen as shown below: 

 𝑂𝑂●− + 𝑁𝑁2 → 𝑁𝑁𝑂𝑂 + 𝑁𝑁 (30) 

 𝑁𝑁 + 𝑂𝑂2 → 𝑁𝑁𝑂𝑂 + 𝑂𝑂 (31) 

 𝑁𝑁 + 𝑂𝑂𝐻𝐻● → 𝑁𝑁𝑂𝑂 + 𝐻𝐻+ (32) 

19 
 



  

Therefore, looking at all the reactions above that are involved in the process of 

producing heat energy via oxidation of long/short chain hydrocarbon fuels it is clear, a 

milieu of free radicals are generated. Analogously, a host of free radicals are produced 

in the process of carbohydrate, glucose, or fructose metabolism to generate cellular 

energy in the form ATP. These free radicals play a critical part in maintaining cell 

function depending on their local and overall concentrations. 

To explain this combustion further, a spatial relationship can also be generated 

described by the ‘zone theory’. This concept divides the combustion process into four 

distinct zones: zone 1-free flame zone (fuel zone), zone 2-high temperature flame zone 

(>1200o C), zone 3-post flame thermal zone (600-1200o C) and zone 4-gas quench cool 

and surface catalysis zone (<600o C) [38]. Usually radical formation and consumption 

takes place during zone 3 and zone 4 combustion. As the process reaches the lower 

temperature in the cool down zone (150 to 400o C), free radicals, mostly phenoxyl and 

semiquinone exists. These aromatic compounds have resonating electrons and hence 

tend to stabilize via surface-mediated reactions with any surrounding transition metal 

ions. They tend to form a metal oxide complex and are known as persistent free radicals. 

These radicals are sometimes very stable in ambient conditions and can become 

environmentally persistent free radicals (EPFRs) [39]. These aromatic compounds 

generated during combustion also known as organic aerosols, mostly come from 

biomass ignition processes. The fact that EPFRs are stabilized due to interaction with 

metal oxides, their half-lives consistently depend upon the kind of metal oxide they 

interact with. As per the studies, EPFRs associated with zinc oxide (ZnO) were found 

to have the longest half-lives ranging from 3 to 73 days depending on the adsorbate 

[39].  
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The combination of radicals/oxidants generated during cellular metabolism and 

subsequent reaction combinations with transition metal ions also plays a similar role in 

accelerating the production of more radicals just like EPFRs. Figure 2.3 illustrates an 

analog of combustion zone theory with cellular respiration/metabolism at various 

stages, where oxidative phosphorylation process can be compared with the flame zone 

as the energy production step, heat energy for combustion and ATP for cellular 

respiration. Following that, just like the post flame zone defines incomplete combustion 

and initial production of radicals, partial oxygen reduction or proton leak during 

phosphorylation processes results in superoxide generation, which subsequently lead to 

H2O2 formation. In both cases, the role of radicals produced at this stage are boosted by 

the presence of a transition metal ion. With combustion, transition metal ion 

combination with radicals makes more environmentally stable EPFRs and are reactive 

to other biological species. During cellular metabolism, transition metal ions act as a 

catalyst towards production of more reactive and damaging oxidants namely hydroxyl 

radical (OH●). 

 

Figure 2.3 Analogous comparison of various stages of combustion zone theory with 
cellular respiration during energy production along with free radical generation [3] 
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2.2.4 Fenton/Haber-Weiss chemistry  

Both the Fenton and Haber-Weiss reactions are associated with iron and the production 

of hydroxyl radicals. The Fenton reaction describes the formation of  hydroxide (OH-) 

and hydroxyl (OH●) radical by reaction between of Iron (II) (Fe+2) with hydrogen 

peroxide (H2O2) [40], Haber-Weiss reaction is where hydroxyl and hydroxide ions are 

generated from the reaction of H2O2 and superoxide ion (O2
●-) catalyzed by iron [41]. 

 𝐹𝐹𝐹𝐹+2 + 𝐻𝐻2𝑂𝑂2  → 𝐹𝐹𝐹𝐹+3 + 𝑂𝑂𝐻𝐻− + 𝑂𝑂𝐻𝐻●………………….Fenton 

reaction 
(33) 

 𝑂𝑂2●− + 𝐻𝐻2𝑂𝑂2 → 𝑂𝑂𝐻𝐻− + 𝑂𝑂𝐻𝐻● + 𝑂𝑂2………………………..Haber-

Weiss reaction 
(34) 

The Haber-Weiss cycle is actually a two-step reaction, where the ferric ion reduces to 

ferrous ion via reaction with superoxide, which, in turn, reacts with H2O2 to form OH- 

and OH● ions, converting ferrous back to ferric ion.  

 𝑂𝑂2●− + 𝐹𝐹𝐹𝐹+3 → 𝐹𝐹𝐹𝐹+2 + 𝑂𝑂2   (35) 

  𝐹𝐹𝐹𝐹+2 + 𝐻𝐻2𝑂𝑂2  → 𝐹𝐹𝐹𝐹+3 + 𝑂𝑂𝐻𝐻− + 𝑂𝑂𝐻𝐻● (36) 

Though these reactions are named after these three scientists, there is a lot of history 

associated with the naming, discovery, and progression of this concept of iron redox 

reaction involvement in radical production. Henry J. H. Fenton reported for the 1st time 

the oxidation power of H2O2 and Fe+2 towards tartaric acid in 1876 but never mentioned 

the existence of the hydroxyl radical intermediate in the oxidation process although the 

reaction was named after him [42]. The existence of OH● was 1st proposed by two 

German chemists, Fritz Haber and Joseph Joshua Weiss in 1934 via reaction of 
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hydrogen peroxide and superoxide in presence of iron as a catalyst [43]. Formation of 

this hydroxyl radical via transition metal catalyzed reaction has gained plenty of 

attention over the years and is considered to be one of the key processes for the 

production of the highly reactive OH● in the cellular redox chemistry. 

Not only hydroxyl radicals, but Fenton/Haber-Weiss chemistry involving redox 

coupling between iron and hydrogen peroxide gives rise to several other oxidizing 

intermediates including hydro peroxides (HOO●), superoxide (O2
-) etc during various 

chain initiation and propagation reactions shown in equations 38-46. OH● act as the 

chain carrier with the ability to react with Fe+2, H2O2 or any other organic species to 

propagate the reaction. But in some instances chain termination also comes into effect 

via combination of two radicals (OH●/OH● or OOH●/OH●) producing just hydrogen 

peroxide, water and oxygen as shown in equation 45 and 46 [44]. The existence and 

propagation of any of these reactions highly depends on the density of iron in its 

required oxidation state as well as the rate constant. An important condition for iron 

induced reduction of hydrogen peroxide is the low pH requirement between 3 and 6.  

 𝐹𝐹𝐹𝐹+2 + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹+3 + 𝑂𝑂𝐻𝐻− + 𝑂𝑂𝐻𝐻● K=5.7x102 M-1s-1 (37) 

 𝐹𝐹𝐹𝐹+3 + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹+2 + 𝐻𝐻+ + 𝑂𝑂𝑂𝑂𝐻𝐻●/𝑂𝑂2− K=2.6x10-3 M-1s-1 (38) 

 𝑂𝑂𝐻𝐻● + 𝐻𝐻2𝑂𝑂2 → 𝑂𝑂𝑂𝑂𝐻𝐻●/𝑂𝑂2− + 𝐻𝐻2𝑂𝑂 K=3.3x107 M-1s-1 (39) 

 𝐹𝐹𝐹𝐹+3 + 𝑂𝑂𝑂𝑂𝐻𝐻●/𝑂𝑂2− → 𝐹𝐹𝐹𝐹+2 + 𝑂𝑂2 + 𝐻𝐻+ K=3.1x105 M-1s-1 (40) 

 𝐹𝐹𝐹𝐹+2 + 𝑂𝑂𝐻𝐻● → 𝐹𝐹𝐹𝐹+3 + 𝑂𝑂𝐻𝐻− K=3.2x108 M-1s-1 (41) 

 𝐹𝐹𝐹𝐹+2 + 𝑂𝑂𝑂𝑂𝐻𝐻●/𝑂𝑂2− → 𝐹𝐹𝐹𝐹+3 + 𝐻𝐻2𝑂𝑂2 K=6.6x106 M-1s-1 (42) 
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 𝑂𝑂𝑂𝑂𝐻𝐻●/𝑂𝑂2− + 𝑂𝑂𝑂𝑂𝐻𝐻●/𝑂𝑂2− → 𝐻𝐻2𝑂𝑂2 K=2.3x106 M-1s-1 (43) 

 𝑂𝑂𝑂𝑂𝐻𝐻●/𝑂𝑂2− + 𝑂𝑂𝐻𝐻● → 𝐻𝐻2𝑂𝑂 + 𝑂𝑂2 K=8.9x109 M-1s-1 (44) 

 𝑂𝑂𝐻𝐻● + 𝑂𝑂𝐻𝐻● → 𝐻𝐻2𝑂𝑂2 K=5.2x109 M-1s-1 (45) 

Chain propagation and termination reactions associated with iron and hydrogen 

peroxide with rate constant measured at pH=5 [45-47]. 

Fenton chemistry is utilized commercially to treat water pollution, contaminated soils, 

sludge etc by oxidizing the pollutants like benzene, formaldehyde, rubber chemicals, 

pesticides etc. The rate constant for the initial reaction between Fe+2 and H2O2 is 

generally observed to be around 102 M-1s-1 but in biological systems, this rate of 

reaction with free Fe+2 is not enough for the oxidation to occur. However, when bound 

to ADP, ATP or citrate as a backbone, the oxidation rate goes up by at least two orders 

of magnitude giving a significant rate of reaction for the iron-catalyzed redox process 

to occur [48]. 

2.2.5 Thiol Chemistry (-SH -SS-) 

Thiol-disulfide reactions are one of the most important redox reactions. In biology, 

oxidation/reductions govern the metabolic redox state of a cell. Thiol-disulfide 

interchange/exchange reaction is significant in itself where a thiol (RSH) reacts with  a 

disulfide molecule (R’SSR’’) to give a new oxidized disulfide (R’SSR) and the 

corresponding reduced thiol (R’’SH) [49]. The reaction is base catalyzed and is proposed 

to proceed through SN2, 2 step reactions as follows [50, 51]: 

 𝑅𝑅𝑆𝑆𝐻𝐻 ⇄ 𝑅𝑅𝑆𝑆− + 𝐻𝐻+ (46) 
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 𝑅𝑅𝑆𝑆− + 𝑅𝑅′𝑆𝑆𝑆𝑆𝑅𝑅′′ ⇄ 𝑅𝑅′𝑆𝑆𝑆𝑆𝑅𝑅 + 𝑅𝑅′′𝑆𝑆− (47) 

 𝐻𝐻+ + 𝑅𝑅′′𝑆𝑆− ⇄ 𝑅𝑅′′𝑆𝑆𝐻𝐻 (48) 

 𝑜𝑜[𝑅𝑅′′𝑆𝑆−]
𝑜𝑜𝑎𝑎

= 𝑘𝑘𝑅𝑅𝑅𝑅−[𝑅𝑅𝑆𝑆−][𝑅𝑅′𝑆𝑆𝑆𝑆𝑅𝑅′′] (49) 

 𝑜𝑜[𝑅𝑅′′𝑆𝑆−]
𝑜𝑜𝑎𝑎

= 𝑘𝑘𝑎𝑎𝑜𝑜𝑜𝑜[𝑅𝑅𝑆𝑆𝐻𝐻]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡[𝑅𝑅′𝑆𝑆𝑆𝑆𝑅𝑅′] (50) 

 𝑘𝑘𝑅𝑅𝑅𝑅− = 𝑘𝑘𝑎𝑎𝑜𝑜𝑜𝑜(1 + 10𝑎𝑎𝑝𝑝𝑎𝑎−𝑎𝑎𝑝𝑝) (51) 

R: Attacking group, R’: central group, R’’: leaving group 

𝑘𝑘𝑅𝑅𝑅𝑅− : calculated rate constant dependent on thiolate concentration but independent of 

pH 

kobs: : observed rate constant dependent on total thiol concentration and pH 

In the reaction mechanism, thiolate anion (RS-) acts as the active nucleophile or reactive 

species to propagate the reaction. Concerning the cellular environment, glutathione 

plays a key role in the thiol redox chemistry as it is the most abundant small molecule 

cellular antioxidant (see section 2.3.2 for an in-depth discussion on glutathione redox 

reactions). One of the important factors that contribute towards the occurrence of this 

thiol exchange reaction is the pKa of the corresponding thiol and the pH of the reaction 

environment [52]. For example, a thiol with pKa value of 10, 0.1% of the total thiol 

will form thiolate at pH 7 while at pH 8, 10 times higher thiolate ions would be present 

in comparison [50]. In other words, we can say that thiol-disulfide interchange is most 

favorable at pHs near to the pKa values of the thiol.  For example, oxidation of 

glutathione (GSH) (pKa=9.33) to its oxidized form (GSSG) is faster at a higher pH of 

9.43 with a rate constant k=45 L/mol.s as compared to at pH of 8.46 with k=9.1 L/mol.s 
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[53]. As pKa is a function of the structure of the thiol molecule, chemical properties of 

thiol molecules involved in the reaction will dictate the extent of reaction and their 

existence in reduced or oxidized form.  For instance, reaction of 2-mercaptoethanol 

(pKa=10.14) with Ellman’s disulfide (5-(3-Carboxy-4-nitrophenyl)disulfanyl-2-

nitrobenzoic acid) (pKa=4.5) is faster than mercaptoethanol with oxidized glutathione 

(GSSG) (pKa=9.33) by the order of 104 in water [54, 55]. Also, the exchange reaction 

is faster when the pKa of a nucleophilic thiol (RSH) is as high as possible and that of 

the corresponding disulfide molecule ((R’SH/R’’SH) is as low as possible.  Stearic 

interference is another factor that would affect the rate constants of the thiol-disulfide 

exchange reactions. It is most pronounced when there is any carbon substitution at the 

α-position to sulfur. For instance, reaction of bis (t-butyl) disulfide with 1-butylthiolate 

(k=0.26 M-1s-1) is 106 times faster than that with t-butyl thiolate (k=10-7 M-1s-1). 

Similarly, charge on the thiolate anion also affects the rate constants [56]. The effect is 

higher when the charged entity is near to the sulfur group [57].  

The rate of reaction is often correlated with the Bronsted plot, which display the 

relationship between pKa of the reacting thiols/disulfide and the rate constant. The 

slope of the plot is defined by the bronsted coefficient (β), which normally lies between 

0.4-0.5 for different thiol-disulfide exchange reaction. Equation 53 is generally 

recommended for calculating kRS- values for the thiolate content [58] and figure 2.4 

shows the graphical association between pKa of thiol v/s log (kRS-) at pH 7 for a thiol-

disulfide exchange reaction. Figure 2.4 also shows the degree of dissociation (θ) of the 

thiol and observed rate constant for the thiol/disulfide exchange reaction be predicted 

by equation 54. Therefore, the highest observed rate constant for exchange reaction is 

observed at pKaRSH equivalent to pH of the solution, pH=7 in the figure. 
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 log(𝑘𝑘𝑅𝑅𝑅𝑅−) = 6.3 + 0.59𝑝𝑝𝑝𝑝𝑎𝑎𝑅𝑅𝑅𝑅𝑝𝑝 − 0.40𝑝𝑝𝑝𝑝𝑎𝑎𝑅𝑅′𝑅𝑅𝑝𝑝 − 0.59𝑝𝑝𝑝𝑝𝑎𝑎𝑅𝑅′′𝑅𝑅𝑝𝑝 (52) 

 𝑘𝑘𝑎𝑎𝑜𝑜𝑜𝑜 = 𝜃𝜃𝑘𝑘𝑅𝑅𝑅𝑅− (53) 

 

Figure 2.4 Correlation between pKa of reacting thiol and rate constant (kRS-+)/degree 
of dissociation (θ) where kRS- was calculated using the equation (53), considering 
pKa of R’SH and R’’SH group as 8.5 [50] 

2.3 Biological oxidation events 

2.3.1 Oxygen and nitrogen currency 

Oxygen and nitrogen are the most abundant diatomic gaseous molecules in the 

atmosphere and play a significant role in regulating both, human and plant metabolism. 

Nitrogen is known to be highly inert and even oxygen (O2) in its ground state is a stable 

molecule. But O2 at a higher energy state form, such as singlet oxygen (O2
1) [59] or in 

the reduced form of superoxide (O2
●−), it can become an active source of free radical 

generation leading to disruption of the cellular redox state [60], while oxide forms of 

nitrogen (NO, NO2) generally produced during combustion process can diffuse and lead 
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to the formation of intracellular free radicals or RNS. The age old Superoxide Theory 

of Oxygen Toxicity stated that the partially reduced form of oxygen i.e. superoxide via 

enzyme, auto-oxidation, mitochondrial electron transport chain, heme proteins etc is a 

primary cause of cellular toxicity [61].  Oxygen upon its one electron reduction to 

superoxide can further yield hydrogen peroxide via the dismutation process [62]. 

Hydrogen peroxide can reduce to the hydroxyl radical in the presence of transition 

metal ions like Fe+2/ Cu+2, a highly reactive radical in cellular biology capable of 

reacting with DNA, lipid membranes, proteins etc.[7]. Reactivity and reduction 

potential at various stages of oxygen radical production chains are different is shown in 

figure 2.5 and these reactions are often enzyme catalyzed. For example, dismutation of 

superoxide to hydrogen peroxide mainly occurs via superoxide dismutase (SOD) 

catalyzed reaction [63, 64], but a part of hydrogen peroxide production also takes place 

via a 2-step route of oxygen conversion to peroxyl radical followed by further reduction 

to H2O2. In an oxygen derived free radical production chain, H2O2 is although not a 

very reactive molecule species but serves as an intermediate to the production of 

hydroxyl radical (OH●) [65] via the Fenton reaction, which is highly reactive towards 

all cellular components and can lead to complete cell damage. Similarly, superoxide 

ion by itself is not very reactive towards non radical species but it can react very quickly 

with NO● or phenoxyl radicals [66]. This radical has a unique selectivity towards its 

oxidizing properties. For example, it is not very reactive towards oxidation of NADH/ 

NAD+ but can readily oxidize enzyme-bound (lactate degydrogenase) NADH to NAD+ 

[67]. Apart from being an oxidizing agent (oxidation of ascorbate to ascorbyl radical), 

superoxide can also act as a reducing agent where it can reduce cytochrome c or Fe+3 

to Fe+2 which is one of the steps in cellular redox cycling discussed later in section 2.3.3 

[68, 69]. 
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In reference to biological free radical production, oxygen nucleated free radicals are 

produced from all the oxygen that is inhaled or consumed by organisms and 

mitochondrion is considered to be the main source of superoxide radical production due 

to oxygen leakage in electron transport chain during ATP production and is reported to 

be produced by complex I and III [70-72]. Reported in vitro studies show that about 4% 

of the oxygen consumed gets converted into superoxide, though in vivo analysis have 

reported about 10-fold lower production i.e. about 0.4% of the total consumed which is 

still a significant amount of production leading to about 10 µM of intracellular 

concentration [73]. This charged radical readily diffuses through the mitochondrial 

membrane to react with other biological entities like proteins, PUFAs or produce other 

reactive species (H2O2, OH●). 

 

Figure 2.5 Free radical production/reactive oxygen species with oxygen as a 
precursor [7] 

Although nitrogen is a stable and inert molecule by itself but its oxide form such as 

nitric oxide (NO), act as precursor to a variety of free radicals collectively known as 

reactive nitrogen species (RNS), which are equally capable of carrying out cell damage 

if produced in excess. Nitric oxide (NO●), due to its lipophilic property readily diffuses 

through cell membranes from the atmosphere where it is a byproduct of various 

combustion processes [74] (figure 2.6). In cellular metabolism, it is also a product of 
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the reaction of L-arginine and oxygen with NADPH in the presence of nitric oxide 

synthase (NOS) to give nitric oxide, L-citrulline and NADP+ [75]. Nitric oxide by itself, 

is not very reactive towards non-radical species similar to superoxide anion, but can 

generate highly reactive free radicals such as, nitrogen dioxide (NO2
●) via slow reaction 

with oxygen (O2) [76]. NO2
●  with the Eo value of 1.04 V is a potent oxidant in metabolic 

redox system and in RNS chains, it further reacts with NO● leading to the production 

of N2O3, which eventually decomposes to give another reactive nitrite (NO2
-) free 

radical [77]. In the presence of superoxide, NO● reacts to form peroxynitrite (ONOO-), 

which in itself is also a powerful oxidizing molecule [78, 79]. It is present in the form 

of acidified peroxynitrous acid (ONOOH) or its activated form (●NO2…OH●), both 

forms are capable of oxidizing most biological molecules such as DNA, proteins and 

lipids. NO● also takes part in the modification of some biological molecules with thiols 

or amine groups during the process called nitrosation via direct reaction with thiols or 

via  metal bound NO● reaction with thiols/amines resulting in formation of nitrosothiols 

(RSNO) or nitrosamine (RN2O) which are also regarded as non-radical RNS [80, 81]. 
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Figure 2.6 Reactive nitrogen species production  

2.3.2 Cellular redox chemistry 

Within the cellular environment, there exists an equilibrium between oxidants and 

antioxidants. Major players of these processes are defined in Figure 2.7. Of particular 

note is the small molecule antioxidant, glutathione (GSH), which contains an 

antioxidant thiol group and is the most abundant small molecule in eukaryotic cells, 

roughly found intracellularly from 1-10 mM and about 1-10 µM extracellular. [82-85] 

Synthesized within the cell from the three amino acids, glutamate, glycine, and 

cysteine, GSH production is rate limited by cysteine content, a semi-essential amino 

acid in biology. Cysteine is transported from extracellular space in the disulfide form, 

cystine. [86] Reaction of cysteine with glutamic acid in the presence of glutamate-

cysteine-ligase (GCL) followed by reaction with glycine via glutathione synthetase 

(GSS) results in GSH production. [86] GSH may act in several mechanisms as an 

antioxidant, whether directly through electron donation to reactive oxygen or nitrogen 
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species in the intracellular or extracellular space, or via enzymatic routes such as with 

glutathione S-transferase (GST) to irreversibly reduce toxic species like lipid peroxides 

and protein carbonyls. [87] In addition to direct chemical reaction with oxidative 

species, GSH participates in several mechanisms to regenerate other important 

antioxidant enzymes such as glutathione peroxidase (GPx), glutaredoxin (GRX), and 

peroxiredoxins non-specifically. Oxidized glutathione (GSSG) may be reduced back to 

GSH via glutathione reductase (GR), which is driven by NADPH and the glucose-6-

phosphate dehydrogenase (G6PD) cycle via oxidation of NADPH to NADP+. There are 

also other thiol-based oxidoreductases such as thioredoxin, which utilizes cysteine 

thiol-disulfide exchange (instead of GSH), and is regenerated with thioredoxin 

reductase, similarly utilizing NADPH for regeneration akin to GSSG with GR. 

Depending on the cellular compartment, redox equilibrium may vary. For instance, the 

cytosol (GSH:GSSG 100:1) and nucleus (GSH:GSSG >100:1) maintain a reducing 

environment [83, 88], whereas there are high concentrations of oxidants in the 

endoplasmic reticulum (GSH:GSSG of 1-3:1 [89], where disulfide bonds fortify the 

protein structures), mitochondria (GSH: GSSG of 20-40:1 [88]), secretory pathways, 

and extracellular space (GSH:GSSG 20:1 [85]). It is important to note that 

extracellularly while the GSH:GSSG ratio is around 10-20:1, cysteine and cystine are 

in greater concentration by about an order of magnitude, and maintain the oxidative 

environment around cysteine:cystine of 0.2:1 [85].  In a similar manner, NADPH is a 

reducing coenzyme involved in processes like fatty acid synthesis and is required to 

drive various redox reactions in the metabolic pathway. Therefore, NADPH:NADP+ 

(200:1) ratios are found to be in same order of magnitude as for GSH/GSSG redox 

equilibrium to drive the reaction forward. On the other hand, another coenzyme NADH 

plays an essential part in both reduction and oxidation in general, hence a significant 
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concentration of both oxidized and reduced form is maintained in the cell with NAD+ 

at higher concentrations. Cytoplasmic NADH which is produced by oxidation of 

cytoplasmic NAD+ acts as an electron donor and is transported to the mitochondrion to 

reduce mitochondrial NAD+ to NADH, which in turn is oxidized again during oxidative 

phosphorylation processes to generate ATP.  It is postulated via several experimental 

studies that the NAD+/NADH ratio in the cytoplasm is around 700:1 though the overall 

cellular ratio varies between 0.5:1 to 4:1. This ratio is involved in regulation of several 

metabolic enzymes such as glyceraldehyde 3-phosphate dehydrogenase, and pyruvate 

dehydrogenase used in the conversion of pyruvate to acetyl-CoA. 

 

Figure 2.7 Significant cellular redox molecule interactions. Green: glutathione 
processes. Red: oxidant species reduced by glutathione processes. 

2.3.3 Radical generation in metabolism and role of enzymes in redox cycle 

ROS/RNS production takes place in a cellular environment via multiple metabolic 

pathways with the aid of specific enzymes at various sites in a cellular matrix and its 

organelles. In that, mitochondria are one of the most important cellular components 
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with the highest potential to produce free radicals ranging from hydroxyl to 

peroxynitrite to hypochlorite radicals. Figure 2.8 depicts the role of mitochondrion in 

the redox of cycle of a cell. Mitochondria are known to be the energy producer or ATP 

production center of the cell which takes place via tetravalent reduction of oxygen (O2) 

in the presence of mitochondrial cytochrome c oxidase (COX) also called complex IV 

[90]. About 2-4% of this oxygen taken by mitochondria undergoes univalent reduction 

to superoxide ion (O2
.-) via the complex I enzyme (NADH-ubiquinone oxidoreductase) 

to a concentration of about 10 µM [73, 91].  Oxidation of NADPH to NADP+ by O2 in 

the presence NADPH oxidase is another source of O2
●−which occurs as an important 

inflammatory response in phagocytes against bacterial infection and this process is 

often termed as oxidative burst [92-94]. NADPH oxidase also facilitates O2
●− 

production in non-phagocytic systems like fibroblasts, endothelial cells, smooth muscle 

cells, although the rate of O2
●− production here is 1/3rd than that in neutrophils [13, 95, 

96]. This superoxide anion is further converted to hydrogen peroxide by mitochondrial 

manganese superoxide dismutase (MnSOD) [97, 98]. Apart from controlling the O2
●− 

concentrations inside the mitochondrion, cytosolic CuZn-SOD also catalyzes the 

superoxide dismutation to H2O2, 104 times faster than an uncatalyzed reaction (k=2x109 

M-1s-1) [99]. Hydrogen peroxide is also known to be formed by two electron reduction 

of O2 by cytochrome P-450 or acetyl coenzyme A oxidase [100-102].  

Hydrogen peroxide is relatively stable and a membrane permeable non radical ROS, 

which either decomposes to water and oxygen with the help of catalase, glutathione 

peroxidase (GPx) etc [103, 104] or can further reduce to a highly reactive hydroxyl 

radical under transition metal ion catalytic conditions (oxidation of Fe+2 or Cu+2 to Fe+2 

or Cu+3) (Figure 2.9) [105]. In this pathway, oxidized iron or copper (Fe/Cu+3) is 

reduced back to ferrous or cuprous ions (Fe+2/Cu+2) by superoxide ions present in the 
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vicinity, which in turn produce more hydroxyl radicals. The concentrations of 

superoxide anion, and transition metal ions significantly define the free radical 

production rates [106, 107]. Other active route of OH● production is through 

disproportionation of peroxynitrous acid intermediate (HO…NO2) to hydroxyl and 

nitrous oxide (NO2) radicals [108]. Due to the extremely high reactivity of the hydroxyl 

radical, it is very difficult to monitor its real-time concentration in vivo.  

Peroxynitrite is a product of reaction of superoxide with endogenously generated nitric 

oxide (NO●) radical [109],[110]. NO is also generated in the cellular matrix via 

reduction of L-arginine in presence of nitric oxide synthase (NOS). As such NOS has 

three isoforms namely: (i) NOS1 (NOS I) found in neural tissues, (ii) NOS II or iNOS, 

inducible NOS, which is found in various cell types stimulated upon inflammatory 

response and (iii) eNOS found in endothelium [111]. Mitochondrial NOS (mtNOS) is 

another isoform, which facilitates the formation of NO● inside the mitochondria. This 

NO formation plays an important role in regulating mitochondrial respiration and has 

the potential to reversibly inhibit cytochrome oxidase activity, which is responsible for 

superoxide production [112]. Reaction of superoxide with nitric oxide under 

physiological conditions to produce peroxynitrite is found to be 3 times faster than 

hydrogen peroxide production and again is also a highly reactive RNS [113].  Hydrogen 

peroxide also contributes to the production of hypochlorite radical upon reaction with 

chloride ion (Cl-) in activated leukocytes by the action of myeloperoxidase (neutrophils 

and monocytes) and eosinophil peroxidase (eosinophils) [114, 115]. Their ideal 

function is to act as antimicrobial agents, but excess or unregulated production can 

result in fragmentation and aggregation of proteins [115, 116]. As for the production of 

singlet oxygen, it is known to be generated at the catalytic sites of multiple enzymes in 

the cellular matrix or via dismutation of unstable oxidation products like superoxide 
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both spontaneous and enzyme catalyzed. It is also known to be produced as a byproduct 

of peroxyl radical reaction between hydrogen peroxide and hypochlorite via the Russell 

Mechanism, found to occur in stimulated neutrophils mostly during the respiratory 

burst phenomena (anti-microbial cell lyses process) [117, 118].  
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Table 2.3 Role of enzymes in carrying out various redox reaction and maintaining 
cell homeostasis 
 

Enzyme Function Ref 

SOD (CuZn-SOD, Mn-

SOD, Fe-SOD) 

Catalyzes dismutation of superoxide to 

hydrogen peroxide 

[119, 

120] 

NOS (eNOS, iNOS, 

NOSI) 

Oxidation of L-arginine with production 

of nitric oxide (NO) 

[75, 

121] 

NADPH oxidase 
Superoxide production from dioxygen 

molecule 

[75, 

122] 

GPx 

Reduction of GSH to GSSG with 

simultaneous conversion of hydrogen 

peroxide to water 

[123, 

124] 

Myeloperoxidase 

(abundant in neutrophils) 

Produces HOCl from H2O2 and Cl- ion, 

oxidation of tyrosine to tyrosyl radical 

in presence of H2O2 

[125] 

Catalase (in peroxisomes) 
Decomposition of hydrogen peroxide to 

water and oxygen 

[126, 

127] 

5-lipoxygenase 
Inducible source of ROS production in 

lymphocytes 

[128, 

129] 

Cyclooxygenease 
ROS generation in TNF-α stimulated 

cells 

[130, 

131] 

Xanthine oxidase 

Source of ROS in diabetes mellitus, 

catalyzes oxidation of hypoxanthine to 

xanthine with simultaneous production 

of  H2O2, xanthine further catalyzes to 

uric acid and H2O2, sometimes can also 

produce superoxide radical 

[33] 

monoamine oxidase 

(outer mitochondrial 

membrane) 

Catalyzes oxidative deamination of 

biogenic amines, large source of H2O2 

and OH● radical as well. 

[132] 
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Figure 2.8 Examples of various routes of metabolic free radical production and 
detoxification pathways [113, 133] 

 

 

Figure 2.9 Concept of redox cycle in maintaining the healthy redox state of a cell. 

2.4 Known targets and elements of concern 

Proteins, polyunsaturated fatty acids (PUFAs) and carbohydrates are very common 

targets to ROS. These molecules constitute very important cell organelles including 

lipid membranes, mitochondria, DNA and other nucleic acids. Reaction with these 

biological components starts with the excess production of ROS and insufficient 

endogenous antioxidants available to stabilize them, resulting in disruption of the 

cellular redox balance. Extent or affinity of ROS/RNS to react with the cellular 

components varies with the type of ROS depending on its reduction potential. For 

instance, hydroxyl and peroxynitrite radicals discussed in section 2.3.1 have relatively 
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higher reduction potential amongst other oxidants (Table 2.2) and are considered to be 

the most reactive towards lipids, DNA etc. It is difficult to detect or measure their 

quantity in vivo as their rate constants are in the range of 107 to 1010 M-1s-1,  which 

almost matches their diffusion rates [133, 134]. In theory, oxidation of proteins, 

peptides, and amino acids by these free radicals can take place via several routes 

including hydrogen abstraction (favorable with aliphatic amino acids), electron 

transfer, dimerization, disproportionation, rearrangement and many more [135, 136]. 

Protein and amino acids have multiple sites of attack on their backbone and their 

reactivity depends on the stability of the resulting radical and degree of carbon 

hydrogenation  [37].  Aromatic amino acids have a tendency to undergo an addition 

reaction with free radicals rather than hydrogen abstraction due to their stabilizing 

resonance property forming hydroxylated/ quinone molecules after reaction with 

hydroxyl radical [137, 138].   

One of the most prone target sites to free radicals are mitochondria and their DNA 

components (mtDNA) [139, 140]. This is because, mitochondrion is the key production 

site of ROS/RNS where superoxide anion concentration is found to be 5-10 times higher 

than in the cytosol, with mtDNA to the closest proximity in comparison to nuclear DNA 

to the cytosolic ROS [141, 142]. There are numerous studies demonstrating that 

mitochondrial dysfunction due to excess ROS/RNS production is a kick-off event 

towards the final stage of cell apoptosis or necrosis [133]. The mitochondrial 

dysfunction is thought to start via mtDNA damage and protein deactivation. This leads 

to the incapability of the mitochondrion to maintain its membrane potential, resulting 

in the net loss of ATP production, de-structuring of the mito-membrane (inner and outer 

both), resulting in release of excess calcium ion (Ca+2), cytochrome c and lysosomes. 
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These apoptogenic proteins/enzymes finally activate the apoptotic pathway leading to 

cell death [143]. 

 Another potential target of ROS like singlet oxygen, peroxynitrite or hydroxyl radical 

is the cellular lipid membrane, which is made of unsaturated fatty acids. It is thought 

that the central carbon of the unsaturated fatty acids (L) is attacked by ROS/RNS to 

produce lipid free radical (L●), which oxidizes further to its alkoxyl (LO●) and peroxyl 

(LOO●) radical form  [144]. These radicals, considered to be important intermediates 

in the lipid oxidation process, again reacts with another fatty acid chain (L) to produce 

more L● radical and the chain reaction continues. In this propagation event, radicals 

like NO● can act as an antioxidant towards termination of the chain by forming stable 

alkyl nitrites (LONO2) or as pro-oxidant to form more LO● and NO2 through the 

peroxynitrite pathway (eq 54, 55 and 56) [145].  Due to this process, lipid fatty acid 

chains are often considered as secondary free radicals as they form reactive 

intermediates that propagate the lipid peroxidation chain reaction resulting in 

membrane degeneration and membrane protein dysfunction [113]. This degeneration 

leads to loss of membrane integrity making membrane bound protein even more 

susceptible to free radical attack. Alkyl peroxyl radicals (another form of secondary 

radicals) generated by decomposition of alkyl hydroperoxide in the presence of 

transition metal ion also contributes in the propagation of lipid peroxidation [146-149].  

 𝐿𝐿𝑂𝑂𝑂𝑂● + 𝑁𝑁𝑂𝑂● → 𝐿𝐿𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂 (54) 

 𝐿𝐿𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂 → 𝐿𝐿𝑂𝑂● + 𝑁𝑁𝑂𝑂2….. Chain propagation (14%) (55) 

 Or  𝐿𝐿𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂 → 𝐿𝐿𝑂𝑂𝑁𝑁𝑂𝑂2…...chain termination (86%) (56) 
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3 RESEARCH OUTLINE 

3.1 Overall hypothesis: 

Antioxidant conjugated PβAE crosslinked micro/nanoparticles can be synthesized 

using the Michael addition chemistry of acrylates with amines, which exhibit tunable 

degradation properties, capable of releasing active polyphenolic antioxidants as well as 

increase the apparent solubility of these antioxidants. With controlled drug release 

through these systems, the apparent safe concentrations of the antioxidants can be 

increased, thereby opening the routes for prolonged suppression of cellular oxidative 

stress (OS) at therapeutic levels.  

3.1 Specific aim 1. Synthesis and characterization of quercetin conjugated 

PβAE nanogels (Chapter 4) 

a. Formulate quercetin-PβAE nanogels via single step reaction-precipitation 

Michael addition under dilute conditions.  

b. Evaluate the impact of synthesis parameters (e.g. feed reactant concentrations, 

acrylate to amine ratio) on nanogel diameter and effect of PEG conjugation as 

a second step towards their aqueous stability and protein binding properties.  

c. Study quercetin release profile during hydrolytic degradation of nanogels and 

the antioxidant activity of the degradation products. 

d. Evaluate dose dependent cytotoxicity of nanogels and their ability to suppress 

externally induced OS. 

Hypothesis:  

a. The hydrodynamic diameter of Quercetin-PβAE nanogels increases with 

increasing feed reactant concentration and PEG conjugation helps in the 
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aqueous stabilization of these hydrophobic systems as well as decreases 

opsonization effects.  

b. Hydrolytic degradation of quercetin-PβAE nanogels at the ester linkage 

releases active quercetin in a steady state manner with bulk erosion kinetics.  

Extended release kinetics allows the system to suppress induced cellular OS for 

a prolonged period of time.  

3.2 Specific aim 2. Synthesis and characterization of curcumin conjugated 

PβAE nanogels (Chapter 5) 

a. Formulate curcumin-PβAE nanogels using a reaction-precipitation method 

under dilute conditions and study the curcumin release kinetics via hydrolytic 

degradation. 

b. Evaluate dose dependent cytotoxicity of curcumin-PβAE nanogels and compare 

them with free curcumin at similar equivalent concentrations with endothelial 

cells. 

c. Evaluate their ability to prevent cellular oxidative stress and protection against 

mitochondrial OS using a H2O2 injury model by monitoring real-time 

mitochondrial bioenergetics. 

Hypothesis:  

a. Uniform and steady release kinetics of curcumin with no burst release effect 

increases the in vitro viable concentration and hence widens the safety window 

of  curcumin towards endothelial cells  

b.  Non-toxic nature at higher concentrations via administration of curcumin via 

curcumin-PβAE nanogels allows the OS injury to be treated at therapeutic 

levels and suppresses the mitochondrial oxidative damage for at least 24 hours. 
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3.3 Specific aim 3. Curcumin PβAE nanogels for the protection against 

polychlorinated biphenyls (PCBs) induced toxicity (Chapter 6) 

a. Study the dose dependent effect post PCB 126 and 153 treatment on overall cell 

toxicity and mitochondrial bioenergetics. 

b. Analyze the protection against PCB-induced mitochondrial OS with the help of 

curcumin-PβAE nanogels by analyzing both overall cell viability and mitochondrial 

bioenergetics at variable nanogels pretreatment conditions. 

Hypothesis: 

a. Mitochondrial bioenergetics are more sensitive towards PCB exposure 

compared to overall cell viability and immediate toxic effects can be better 

analyzed at mitochondrial level than overall cellular response.  

b. Curcumin-PβAE nanogel pre-treatment helps prevent mitochondrial 

dysfunction of PCB-exposed endothelial cells. Longer the nanogel 

pretreatment, better the suppression of OS during PCB exposure. 

3.4 Specific aim 4. Synthesis and characterization of curcumin-PβAE gel 

microparticles to treat oral mucositis (Chapter 7) 

a. Formulate curcumin-PβAE gel microparticles of different compositions using 

PEGDA as co-monomer to formulate tunable degradation systems. 

b. Study the degradation kinetics of the curcumin-PβAE microparticles as a 

function of co-monomer compositions and antioxidant activity of the 

degradation products containing released curcumin. 
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c. Evaluate dose dependent cytotoxicity of the released products in vitro and the 

extent of protection against induced oxidative stress using Normal Human 

Dermal Fibroblasts as the model cell line. 

d. Test the treatment/protection efficacy of microparticles in vivo on hamsters with 

induced oral mucositis injury using 5FU/scratch experimental model. 

Hypothesis:  

a. Increasing the content of PEGDA in curcumin-PβAE gel microparticles 

accelerates the degradation rate due to increased hydrophilic content in the 

gels.  

b. Released products are active as free radical scavengers and microparticles with 

similar curcumin loading show relatively less cellular toxicity when compared 

with free curcumin. 

c. Microparticles with high yet safe curcumin loading shows prolonged protection 

against induced OS in vitro and reduces the extent of oral mucositis injury in 

vivo with lesser dosage frequency. 

3.5 Specific aim 5. Synthesis and characterization of resveratrol conjugated 

PβAE gel microparticles (Chapter 8) 

a. Synthesize resveratrol conjugated PβAE gel films with PEGDA as a co-

monomer (R-PβAE microparticles) and optimize antioxidant release kinetics 

based on polymer composition. 

b. Analyze dose dependent toxicity of the microparticles and anti-inflammatory 

capacity to suppress H2O2 induced oxidative stress with normal human dermal 

fibroblasts. 

Hypothesis: 
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a. Increasing resveratrol content intensifies the hydrophobic nature of the 

crosslinked system leading to slower degradation kinetic and hence slow 

resveratrol release. 
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4 SYNTHESIS AND CHARACTERIZATION OF QUERCETIN 

CONJUGATED POLY (β-AMINO ESTERS) NANOGELS 

Based on the research articles published in: 

Prachi Gupta, J. Zach Hilt, Thomas D. Dziubla, ‘Quercetin conjugated Poly (β-

Amino Esters) Nanogels for the Treatment of Cellular Oxidative Stress’, (Acta 

Biomaterialia), 2015, 27, 194-204  

Abstract 

PβAE polymers have emerged as highly promising candidates for biomedical and 

drug delivery applications owing to their tunable, degradable and pH sensitive 

properties. These polymeric systems can serve as prodrug carriers for the delivery 

of bioactive compounds, which suffer from poor aqueous solubility, low 

bioavailability and are biologically unstable, such as the antioxidant, quercetin. 

Using acrylate functionalized quercetin, it is possible to incorporate the 

polyphenol into the backbone of the polymer matrix, permitting slow release of 

the intact molecule which is perfectly timed with the polymer degradation. While 

formulating the quercetin conjugated PβAE matrix into nanocarriers would allow 

for multiple delivery routes (oral, intravenous, inhalation etc.), well- known oil-

water nano-emulsion formulation methods are not amenable to crosslinked 

hydrolytically sensitive nanoparticles/nanogels. In this work, a single-phase 

reaction–precipitation method was developed to formulate quercetin conjugated 

PβAE nanogels (QNG) via reaction of acrylated quercetin (4–5 acrylate groups) 

with a secondary diamine under dilute conditions using acetonitrile as the reaction 

medium, resulting in a self-stabilized suspension. The proposed approach permits 

the post synthesis modification of the spherical nanogels with a PEGylated 
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coating, enhancing their aqueous stability and stealth characteristics. Nanogel 

size was controlled by varying feed reactant concentrations, achieving drug 

loadings of 25–38 wt%. Uniform release of quercetin over 45–48 hours was 

observed upon PβAE ester hydrolysis under physiological conditions with its 

retained antioxidant activity over the extended times. 

4.1 Introduction 

Oxidative stress is a pathophysiological condition when endogenous antioxidants are 

unable to counteract the production of oxidants, leading to cellular dysfunction. The 

origins for this overproduction of the reactive oxygen and nitrogen species (ROS/RNS) 

(e.g., hydroxyl radicals, singlet oxygen, hydrogen peroxide, peroxyl radicals) can be 

caused by both endogenous sources and exogenous sources. Examples of endogenous 

routes include ROS-generating enzymes such as nitric oxide synthase, xanthine 

oxidase, amplified mitochondrial metabolism especially in aging cells resulting in 

mitochondrial dysfunction, damaged membrane and hence leakage of ROS into the 

intracellular environment [150-153]. Some of the exogenous sources include exposure 

to ozone, UV, ϒ-irradiation, air pollutants penetrating through the skin or via 

inhalation, intake of various drugs, xenobiotic and many more [153-158]. At a systemic 

level, oxidative stress has been shown to play a role in the development and acceleration 

of many diseases, including diabetes, cardiovascular diseases, Alzheimer’s and 

Parkinson’s disease, acute renal failure, acute lung injury, radiation injury, etc. [159, 

160].  

Rationally, one would expect that the supplementation of dietary antioxidants would be 

sufficient to reduce the excess ROS into non-reactive stable molecules, resolving the 

oxidative stress and thereby mitigating many diseases. In fact, this beneficial property 

of antioxidants, including polyphenol flavonoids, has been successfully demonstrated 
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in vitro several times using different assays [161, 162]. But despite these in vitro 

demonstrations, nearly all clinical trials with antioxidants have failed to demonstrate 

substantial benefit [3, 163].  As a result of these outcomes, it was inferred that the major 

limitation of dietary antioxidants was their inability to impact the oxidative stress levels 

in the patients.  Given the highly unstable nature of these antioxidants, their typically 

poor aqueous solubility and lack of natural accumulation in tissues of interest, it is 

unsurprising that these molecules were unable to perform their intended function. For 

instance, quercetin has been shown in multiple in vitro and in vivo studies to possess 

anti-inflammatory [34], anti-hypertensive [164], anti-allergic [165] properties and an 

ability to control metabolic syndrome [166]. Yet, it has not been used therapeutically 

for pharmaceutical applications due to its low bioavailability, which is likely due to its 

poor aqueous solubility, structural instability and extensive first pass metabolism [167, 

168]. It has been reported that the oral bioavailability of quercetin is 17% in rats and 

merely 1% in humans [168, 169]. Moreover, upon intravenous injection, a 100 mg of 

dose resulted in 12 µM plasma concentration after 5 minutes and 1 µM after 3 hours, 

demonstrating the relatively short half-life of the compound [170]. 

In order to overcome this difficulty of low systemic bioavailability, one potential 

solution is to deliver quercetin through encapsulation into nanoparticles, which can be 

administered via a number of routes (e.g., intravenous, subcutaneous, inhalation, etc.) 

with an objective of extended drug release and control the rate of first-pass metabolism 

[171]. Several studies have demonstrated the ability to encapsulate quercetin into 

nanoparticles composed of poly (lactic acid) (PLA), poly (lactic-co-glycolic acid) 

PLGA, solid lipid nanoparticles (SLN). However, these approaches, while potentially 

useful, possessed significant burst drug release and low overall drug loading, ranging 

from only 0.05 to 2 wt% of the total particle weight [172, 173]. Incorporating 
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antioxidants into the backbone of a polymer system could be an alternative towards the 

effective antioxidant delivery as demonstrated by Wattamwar et. al. in his work on 

enzymatically biodegradable poly(trolox) nanoparticle system to deliver trolox, a water 

soluble analog of vitamin E [174].  

Building upon this prior work, it may be possible to overcome drug stability, solubility 

and drug release limitations by conjugating the drug into the backbone of a 

hydrolytically biodegradable polymer, such as poly(β-amino esters) (PβAEs), to form 

prodrug nanoparticles/nanogels [175, 176]. Our lab has shown previously that 

antioxidants like curcumin and quercetin can be loaded into crosslinked PβAEs and 

subsequently released into their original structural form upon hydrolysis [177].  But due 

to the fast reaction kinetics and hydrolyzing property of PβAE, the bulk crosslinking 

approach is not amendable towards typical nanoparticles synthesis approaches (e.g., 

o/w emulsion polymerization). To overcome this problem, we have synthesized 

quercetin conjugated PβAE gel nanoparticles/nanogels using a novel approach of single 

phase reaction-precipitation method in an organic solvent under dilute conditions 

giving a stable suspension of uniformly sized particles. Covalently reacting terminal 

amine groups with poly (ethylene glycol) monomethacrylate resulted in a coating that 

minimizes post purification instability, is expected to reduce the rate of first-pass 

metabolism and serves as an alternative to conventional surfactant based stabilization 

of nanoparticles. Uniform degradation of these nanogels over 48 hours successfully 

demonstrated release of active quercetin with negligible burst release. Particle sizes 

were easy to control with resulting quercetin loading capacities of 25-38 wt%, which 

possessed biocompatibility equivalent to pure quercetin and were able to suppress 

cellular oxidative stress over 48 hours. 
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4.2 Materials and methods 

4.2.1 Reagents  

Quercetin was purchased from Cayman Chemicals, Michigan, USA. Acryloyl chloride, 

potassium carbonate, N, N’-dimethyl 1-3-propanediamine, polyethylene glycol methyl 

ether methacrylate (Mn=4000) (PEGMEMA4000), potassium persulfate, 2, 2’-azo-bis 

(3-ethylbenzothiazoline-6-sulphonic acid), and hydrogen peroxide were purchased 

from Sigma-Aldrich. IgG antibody was purchased from Jackson Immuno Research 

Laboratory Inc. For cell culture studies, EBM basal medium (phenol red free), EGM-2 

growth factors, and Human Umbilical Vein Endothelial Cells were purchased from 

Lonza. Calcein-AM red-orange and 2', 7 dichlorodihydrofluorescein diacetate 

(H2DCFDA) were purchased from Life Technologies. Iodogen® iodination reagent (1, 

3, 4, 6-tetrachloro-3α-6α-diphenylglycouril) was bought from Thermo Scientific, 

Rockford, IL. 

4.2.2 Quercetin functionalization to quercetin multiacrylate monomer 

Quercetin multiacrylate (4-5 acrylate groups per molecule) (QMA) was prepared in 

accordance with the protocol described by Wattamwar et. al. [178] with a slight change 

of using potassium carbonates as the acid capturing agent instead of triethylamine. 

Briefly, the reaction between quercetin (20 gms in 200 ml of Tetrahydrofuran (THF)) 

and acryloyl chloride was carried out in anhydrous THF. Potassium carbonate was 

added to the reaction system to capture the hydrogen chloride forming its salt as the 

reaction byproduct. The system was purged with nitrogen for 30 minutes initially and 

then was further allowed to react overnight at room temperature to functionalize 

quercetin phenolic groups into acrylate. Acryloyl chloride and potassium carbonate, 

were added in the molar ratio of 1:1.2 with respect to the phenolic groups present in 

quercetin. Quercetin has four phenolic groups, which can be actively functionalized. 
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Therefore, for every mole of quercetin, five moles of acryloyl chloride and potassium 

carbonate were added to the reaction medium. Acrylated quercetin solubilizes in THF 

as the reaction proceeds. After the reaction, solubilized product was separated from the 

precipitated salts via filtration. Subsequently, filtrated was vacuum dried to remove all 

the THF and was re-dissolved in dichloromethane (DCM) in order to carry out an 

aqueous-organic solvent extraction process to remove any unreacted acryloyl 

chloride/acrylic acid and quercetin. A basic solution of 0.1 M potassium carbonate in 

DI water was used as the extraction medium for acrylic acid and quercetin both. After 

extraction, magnesium sulfate was added to the product solubilized in DCM to remove 

any remains of water. Finally, the pure QMA was obtained as a dry product after 

evaporation of DCM overnight. Characterization of the functionalized quercetin was 

completed using 1H-NMR and mass spectroscopy to identify the number of acrylate 

groups per molecule of quercetin. 

4.2.3 Quercetin PβAE nanogel (QNG) synthesis 

Quercetin PβAE nanogels were prepared using a single-pot dilute synthesis approach. 

QMA was dissolved in anhydrous acetonitrile to specified concentrations of 0.75, 1.25, 

2.5, 5 and 10 mg/ml. A stock solution of N, N’dimethyl-1-3 propane diamine (NNDA, 

a secondary diamine) (100 mg/ml) was prepared in acetonitrile. Calculated volume of 

NNDA stock: 3.67, 6.12, 12.25, 24.5, and 49 µl was added to the reaction solutions 

with QMA concentrations: 0.75, 1.25, 2.5, 5 and 10 mg/ml respectively to achieve the 

required reaction concentration, maintaining a stoichiometric ratio of acrylate to 

reactive amine at 1:1.1. QMA-NNDA reaction in these diluted conditions resulted in 

precipitation into nanogel form. These quercetin-PβAE nanogels will be further 

referred as QNG (0.75), QNG (1.25), QNG (2.5), QNG (5), and QNG (10) for different 

systems with feed QMA concentrations of 0.75, 1.25, 2.5, 5 and 10 mg/ml respectively. 
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The reaction time of the nanogel synthesis was determined by analyzing the reaction 

supernatant at different time point to observe the decrease in QMA absorbance peak. 

After about 45 minutes of reaction, peak intensity does not change. Therefore with a 

buffer of 15 minutes, the reaction was carried out for one hour, resulting in precipitated 

nanogels. The hydrodynamic radius of the synthesized nanogels in acetonitrile was 

determined using dynamic light scattering (DLS) (Malvern Zetasizer (ZS 90)). 

Appropriate dilution using fresh acetonitrile were used in order to get the count rate 

between 200 to 300 cps. Hydrodynamic diameter was reported as z-average. All the 

parameters were set for acetonitrile medium at 25o C.  

After completion of the reaction, 63 µl (32 mg) of a concentrated solution (500 mg/ml) 

of polyethylene glycol methyl ether methacrylate 4000 (PEGMEMA4000) in 

acetonitrile was added to 1 ml of the nanogel suspension along with gentle mixing for 

few seconds to get 3% wt/vol PEGMEMA4000 in suspension. This system was allowed 

to react for one hour, followed by centrifugation at 6700 rpm for 10 minutes (Figure 

4.1). The pellets were re-suspended in fresh acetonitrile by sonication for 3-5 minutes. 

Particles were then centrifuged and nanogels pellets were freeze-dried and stored at -

80o C for further analysis. 

Nanogels were also synthesized at variable acrylate to reactive amine hydrogen 

stoichiometric ratios ranging from 0 to 10, in order to study the effect of reactant molar 

ratio. For this system, QMA feed concentration was kept constant at 2.5mg/ml and 

amine content was varied. Nanogel suspension obtained from each ratio was diluted 

with DMSO, in order to dissolve any precipitated quercetin due to the excess amine. 

The size of the nanogels in suspension was measured using DLS after adjusting the 

instrument parameters according to the suspension medium. 
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Figure 4.1 Schematic of Q-PΒAE nanogel synthesis 

4.2.4 Size and yield of nanogel synthesis reaction 

In order to determine reaction yield, concentration of unreacted QMA in the supernatant 

obtained after first centrifugation was measured, via UV-VIS spectroscopy. The sample 

was prepared by diluting 100 µl of supernatant with 1 ml of acetonitrile. The absorbance 

of the diluted solution was measured at 350 nm using UV-VIS spectrophotometer 

(Varian Cary 50 Bio UV-Vis spectrophotometer). The amount of unreacted QMA was 

calculated using standard calibration curve of pure QMA dissolved in acetonitrile and 

percent QMA reacted or yield was back calculated subsequently. The size of the 

nanogels was measured using DLS at different stages of synthesis. 

4.2.5 SEM imaging 

In order to determine particle morphology, scanning electron microscopy was 

performed on the synthesized nanogels. 50 μL of PEG coated nanogel suspension in 
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acetonitrile (synthesized using 2.5 mg/ml feed QMA concentration) was diluted to 1 ml 

with acetonitrile and probe sonicated 8-10 times at 2-6 watts. A drop of the solution 

was dried on gold plated surface overnight in the bio-hood and covered with Kim wipes 

as an added precaution to prevent dust settling. Next day the dried sample on a gold 

surface was sputter coated with gold-palladium alloy and images were taken at various 

magnifications using S-4300 Hitachi Scanning Electron Microscope. 

4.2.6 Analysis of enhanced stability of nanogels after the reaction with 

PEGMEMA4000 

To determine the impact of PEGMEMA4000 treatment on nanogel stability, particle 

size was analyzed at two stages, first before the PEGMEMA4000 reaction and second 

after the PEGMEMA4000 reaction. To prepare the samples, 50 μL of nanogel 

suspension was added to 1 ml of PBS (pH=7.4) to form a suspension. Size measurement 

of the suspended nanogels in PBS was carried out using DLS without any further 

agitation at an interval of 10 minutes for a total time of 50 minutes and recorded to 

analyze the effect of PEGylation. The size measurement was done for nanogels 

obtained at both the stages described above. Nanogels were also treated with only 

polyethylene glycol methyl ether Mn=5000 (PEGME5000) for 1 hour and analyzed for 

the size afterwards in order to determine the kind of linkage of PEG to nanogel surface. 

4.2.7 PEG content analysis after nanogel formulation 

Analysis of PEG content in nanogels was performed using the barium-iodide assay 

[179]. To carry out the assay, two solutions were prepared. A) 60 mg/ml barium 

chloride in 1.2 N HCl (HCl stock diluted in DI water), B) potassium iodide and iodine 

in DI water with a final concentration of 20 and 12.5 mg/ml respectively. Separately, 1 

mg of nanogels was rapidly hydrolyzed in 500 µL of 5 N NaOH for 4 hours at 80o C. 

Hydrolyzed nanogels were neutralized by addition of 500 µL of 5 N HCL. 
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PEGMEMA4000 dissolved in DI water was used for standard calibration within the 

range of 0-10 µg per well in a 96 well plate. 20 µL of the hydrolyzed nanogel solution 

was added to the wells. Sample and the calibration volumes were diluted to 170 µL 

with DI water. 40 µL of solution A was then added to each well followed by mixing. 

40 µL of solution B after doing 1/5th dilution was added subsequently to all the wells 

and mixed. The reaction was allowed to develop for 10 minutes after which absorbance 

was recorded at 550 nm using Varian Cary 50 Bio UV-Vis spectrophotometer. 

Calibration curve of pure PEG was used to calculate the PEG content in the nanogels. 

4.2.8 Antibody Binding studies of Q-PΒAE nanogels using IgG using 

radiolabeling 

125I-IgG stock preparation: IgG was radiolabeled with 125I to serve as a tracer to protein 

bound to the nanogels. Briefly, 200 µL of 2 mg/ml Iodogen® iodination reagent (1, 3, 

4, 6-tetrachloro-3α-6α-diphenylglycouril) in chloroform was dried in a glass tube using 

dry nitrogen gas to form a thin layer on the glass wall. 100 µL of 1 mg/ml Mouse IgG 

was added to iodogen coated tube and radioactive iodine (Na125I) was added and 

incubated for 5 minutes. Free iodide was removed from the protein using a Thermo 

Scientific protein desalting spin column according to manufacturing instructions. Any 

free iodine remaining in the spun down solution was determined using trichloroacetic 

acid (TCA) precipitation. Gamma counts of both the precipitate and supernatant were 

analyzed using a Perkin Elmer 2470 automatic gamma counter. The amount of free 

iodine in hot IgG was found to be 5.6%.  

IgG binding to quercetin nanogels: Three different formulations of QNG were used: 

QNG (0.75), QNG (1.25), and QNG (2.5). IgG having 2 wt% 125I-IgG was added to the 

nanogels (with and without PEG coating) suspended in PBS. Final concentrations of 

IgG and nanogels in the buffer were maintained at 1.17 and 0.4 mg/ml respectively. 
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After 3 hours of incubation, the suspension was then centrifuged at 6700 g for 20 

minutes to collect the pellet at the bottom and supernatant from the top. Both pellet and 

the supernatants of all the nanogel formulation were analyzed for the total gamma 

counts using gamma counter.  

4.2.9 Quercetin release profile of Q-PΒAE nanogels in PBS 

QNGs were suspended in PBS buffer (pH=7.4) using probe sonication to a 

concentration of 1 mg/ml. As quercetin has very limited aqueous solubility, degradation 

buffer was prepared using 2 vol% DMSO in order to solubilize any released quercetin 

during hydrolytic degradation. This suspension was incubated at 37º C in a shaker bath 

at 70 RPM. Every 2 hours, nanogel suspensions were centrifuged at 6700 RCF for 10 

minutes and the supernatant was collected and stored at -20º C for further analysis. The 

centrifuged pellet was re-suspended in the fresh buffer to continue degradation. 

Absorbance of the supernatant was measured at 370 nm using Varian Cary 50 Bio UV-

Vis spectrophotometer to determine the amount of quercetin released. Degradation was 

carried out for 50 hours and quercetin concentration in supernatants were analyzed after 

each collection.  

4.2.10 In vitro antioxidant activity capacity of the degradation products of 

nanogels 

Antioxidant activity of released quercetin and degradation products was evaluated 

using the Trolox Equivalent Antioxidant Capacity (TEAC) assay, which is based on 

scavenging of 2, 2’-azinobis-(3- ethylbenzothiazoline-6-sulfonate) radical anions 

(ABTS.-). Briefly, 7 mM ABTS radical cation stock solution was prepared by mixing 

1 ml of 8 mg/ml of ABTS solution with 1 ml of 1.32 mg/ml of potassium persulfate 

solution, both prepared in DI water. This solution was allowed to react overnight to 

form ABTS radical cation stock solution. After 24 hours, ABTS radical cation working 
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solution was prepared by diluting the stock solution in PBS to an absorbance of 0.4 at 

734 nm. For calibration purposes, a standard solution of trolox of known concentrations 

(0 to 0.27 mM) in PBS were prepared and used for the assay. To carry out the TEAC 

assay, 10 μL of the test sample (degradation supernatants/trolox standards) was added 

in a 96-well plate. Subsequently, 200 μL of the ABTS radical cation working solution 

was added to all the wells. After 5 minutes absorbance of all the samples was measured 

at 734 nm. Trolox standard curve with respect to the obtained absorbance was prepared 

and equivalent trolox concentration in the samples was calculated using the trolox 

calibration curve. The equivalent quercetin concentrations were calculated by obtaining 

the TEAC value of pure quercetin using the same assay. 

4.2.11 Cell toxicity study of QNGs on Human Umbilical Vein Endothelial Cells 

(HUVECs) 

HUVECs were cultured in EBM basal medium (phenol red free) with EBM-2 growth 

factors to an 80% confluence in a 48-well plate overnight. A range of concentrations 

(from 1 to 70 µg/ml of equivalent quercetin content) of nanogels in media were 

prepared and added to the well plate (n=4). After 24 hours, treated and non-treated 

control cells were washed with fresh media followed by incubation in 1 mM Calcein 

AM red-orange live cell tracer. After 1 hour, cells were washed again with fresh media 

once, followed by addition of fresh media. Fluorescence was recorded at 

excitation/emission of 540/590 nm using BioTek Synergy Mx, Gen5 2.0, Winooski, 

VT to analyze the cell viability. 

4.2.12 Cellular oxidative stress suppression 

HUVECs were cultured in 48 well plate in EBM basal medium with EBM-2 growth 

factors. In order to determine the ability of Q-PΒAE nanogels to block oxidative stress 

injury, HUVECs exposed to hydrogen peroxide (0.5 mM) were treated with free 
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quercetin and nanogels (QNG (1.25)) with equivalent quercetin concentrations of 5 and 

10 µg/ml. DCF-DA to a final concentration of 10 µM was added at the time of treatment 

and DCF fluorescence was used as a measure of oxidative stress levels in the cells. 

Three similar 48 well plates were prepared. DCF fluorescence at 490/525 nm and cell 

viability was measured at 24 and 48 hours using BioTek Synergy Mx, Gen5 2.0, 

Winooski, VT. 

4.3 Results 

4.3.1 Hydrodynamic radius and yield of reaction of Q-PΒAE nanogels 

The hydrodynamic diameter of the nanogels was determined using DLS before and 

after PEGylation. The extent of reaction was evaluated by UV-Vis spectrophotometer. 

As the concentration of reactants increased, nanogels size increased from 273 ± 6 to 

642 ±21 nm, and reaction yields increased from 81.4 ± 2.6 % to 97.8 ± 0.54 % (Figure 

4.2). A slight increase in nanogel diameter (approximately 50 nm), for smaller diameter 

particles was observed after the reaction with 3 wt/vol% of PEGMEMA4000 (Figure 

4.3). This increase can be likely be attributed to the attachment of PEG chains at the 

surface of nanogels as shown in figure 4.1.  
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Figure 4.2 Percent reaction yields and size variation of QNGs with respect to variable 
reactant QMA concentration. All samples were analyzed with n=3. 

 

Figure 4.3 QNGs size variation before and after PEGylatio with PEGMEMA4000.  
Black circles:  Nanogel diameter before reaction with PEGMEMA4000. Grey squares: 
Nanogel diameter after reaction with PEGMEMA4000 followed by centrifugation and 
re-suspension in fresh acetonitrile. N=3, error bars: std. dev. 
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4.3.2 Analysis of shape and size of nanogels 

Nanogels prepared using 2.5 mg/ml feed QMA concentration were imaged in SEM to 

examine shape and size. Nanogels with diameter ranging from 100-250 nm with an 

average of 197 ± 57 nm as analyzed using Image J software were observed (Figure 4.4 

a, b). The nanogels’ spherical morphology was confirmed by imaging at an angled view 

at 38o (Figure 4.4, c and d). There was an observed phenomenon of fusion at nanogel 

surface as they are soft polymeric particles, which might be undergoing interfacial 

attraction forces during solvent evaporation on the gold substrate.  

 
 

 

Figure 4.4 Scanning electron microscopy of the QNGs synthesized with reactant 
QMA concentration of 2.5 mg/ml. a, b: plain view (Top view); c, d: angled view, 
38o. 
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4.3.3 Effect of the acrylate to amine ratio on nanogel size (stoichiometric feed 

ratio) 

Different acrylate to amine ratios during the synthesis were investigated to study the 

effect of stoichiometric ratios on nanogel diameter and reaction yield. Because of the 

possibility that a higher amount of amine can result in hydrolysis of QMA and 

precipitation of quercetin, 200 μL of DMSO was added to each 1 ml suspension of 

nanogels to dissolve any precipitated quercetin but not crosslinked nanogels. The 

dissolution of precipitated quercetin was verified by conducting a control experiment. 

In the control experiment, highest possible amount of quercetin that could get 

precipitated for the QNG (2.5) was suspended in acetonitrile, followed by addition of 

200 μL of DMSO resulting in dissolution of suspended quercetin. It was observed (as 

shown in figure 4.5), the highest hydrodynamic diameter (311 nm) was obtained with 

an acrylate to reactive amine hydrogen ratio of 1:1.1 while higher or lower ratio resulted 

in smaller sizes with either incomplete reaction of QMA or precipitation of nascent 

quercetin. This ratio also gave highest yield of the reaction (89%) not shown in the 

figure. For all further studies, QNGs were synthesized with feed ratio of 1:1.1, which 

results in slightly excess of amine, which permits conjugation of the PEGMEMA4000 

system  
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Figure 4.5 Effect of total acrylate to total reactive amine hydrogen on QNGs size. 
Variable acrylate to amine ratio ranging from 0.1 to 10 was taken and size was 
measured after 1 hour of reaction with 2.5 mg/ml of reactant QMA concentration 
constant for all formulation changing the amount of amine added. (n=3). Nanogel 
diameter at acrylate to amine ratio of 1.1 was found to be the highest with respect to 
other stoichiometric ratios mostly due to the maximum extent of reaction. Hence, this 
ratio was used for all the formulations with variable feed reactant concentrations. N=3, 
error bars: std. dev. 
 
4.3.4 Analysis of enhanced stability of nanogels after the reaction with 

PEGMEMA4000 

PEGylation of nanogels with PEGMEMA4000 resulted in the physical stability of 

nanogel suspension in aqueous media (PBS. pH=7.4). As shown in figure 4.6, 

PEGMEMA4000 treated retained their size from 373 ± 5.8 at t=0 to 364 ± 68 after 50 

minutes of suspension. This could be due to the stearic hindrance of the PEG groups 

that leads to the formation of stable suspensions in contrast to non-PEGylated nanogels 

that aggregated with time in PBS giving the size of over 1 micron within 20 minutes. 

Incubation of nanogels with PEGME5000 did not result in their stability in PBS either 

but in aggregation of nanogels over time with an observed diameter of 2.5 µM within 

50 minutes of suspension, confirming that the stability of nanogels after PEGylation is 

due to the covalent bonding of PEG to its surface due to the reaction of mono acrylate 
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from PEG with unreacted terminal amine hydrogen of the nanogels. The size of the 

nanogels treated with PEGMEMA4000 after 30, 40 and 50 minutes of suspension was 

significantly lower than the other two groups with p< 0.005, while did not show any 

significant increase in size when compared at different time points of suspension. 

 

Figure 4.6 Stability analysis of QNGs before and after reaction with 
PEGMEMA4000 and PEGME5000 in PBS.  
Size measurements were taken at various time intervals after suspension of nanogels in 
PBS. Nanogels after PEGMEMA4000 coating were more stable than non-coated 
nanogels. Nanogels were prepared with 2.5 mg/ml reactant QMA concentration and 
reacted with 3 wt/vol% PEGMEMA4000. N=3, error bars: std. dev. Nanogel 
PEGylation and protein binding 
 
4.3.5 PEG content analysis after nanogel formulation 

PEG content in the nanogels has been represented as PEG weight percent in the total 

nanogel mass shown in figure 4.7. It was observed that nanogels synthesized from lower 

QMA feed concentrations of 0.75 and 1.25 mg/ml had 40.7 and 30.4 wt% PEG 

respectively, while the higher concentration systems, 2.5, 5, and 10 mg/ml, had lower 
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PEG content at 7.6, 1.23 and 3.1 wt% respectively. The influence of this variable PEG 

content was seen in the IgG binding capacity as discussed below. 

 

Figure 4.7 PEG weight percent in QNGs after reaction with 3 wt/vol %. 
Barium Iodide assay for PEG content determination was used with n=3 for each 
formulation. 
 
4.3.6 Decrease in QNG-antibody binding by using radiolabeled IgG 

Nanogels without PEG coated system showed high IgG binding, 59.8 ± 1.6, 73.84 ± 

2.1 and 71.25 ± 1.2 % surface coverage for QNG (0.75), QNG (1.25) and QNG (2.5), 

respectively. PEG coated nanogels with the same formulations showed a substantial 

decrease in IgG binding, 18.4 ± 4.8, 37.3 ± 7.4 and 50.6 ± 5.4 % surface coverage for 

QNG (0.75), QNG (1.25) and QNG (2.5), respectively (Figure 4.8, bar chart). 

Additionally, as the PEG weight percent decreased, the percent IgG bound increased, 

indicating the presence of a PEG coating of the nanogels (Figure 4.8, line graph).  
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Figure 4.8 Extent of IgG binding to non-PEG coated and PEG coated QNGs 
compared in three different nanogel systems having different PEG wt% in them. 

4.3.7 Quercetin release profile and antioxidant activity 

Figure 4.9 a,b shows the released products and degradation profile of the nanogels in 

PBS at 37° C. Supernatants containing the degradation products were analyzed using 

UV-Vis spectroscopy. Quercetin release was linear for the first 36 hours, followed by 

a plateauing profile, with approximately 95% total release in 35-40 hours. These 

nanogels had initial burst release of 11.93 ± 1.5, 4.43 ± 0.4, 6.8 ± 0.27, 9.3 ± 1.6, 9.9 ± 

0.97 % for QNG (10), QNG (5), QNG (2.5), QNG (1.25) and QNG (0.75), respectively. 

This low level is likely due to unconjugated quercetin in the gel matrix. Taking into 

account the first 60% of the total release, profiles were fit to the Korsmeyer-Peppas 

model (Mt/Minf = Ktn) for the in vitro release model fit [180, 181]. To identify between 

the diffusion, anomalous and erosion controlled release regimes, exponent ‘n’ values 

were identified. For a spherical system, n=0.43 implies pure diffusion, n=0.85 suggests 

erosion and 0.43<n<0.85 implies anomalous transport or a combination of diffusion 

and erosion. The ‘n’ values of 0.55, 0.85, 0.69, 0.58 and 0.58 for QNG (10), QNG (5), 
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QNG (2.5), QNG (1.25) and QNG (0.75) respectively, indicate the anomalous diffusion 

release mechanism of nanogel degradation according to the model definition. R2-values 

were within the range of 0.97-0.99. Since similar release profiles were seen for all 

formulations irrespective of the different nanogels formulations, which gave varied 

nanogel diameter and given the swellable nature of PβAE polymer, bulk erosion 

phenomenon is likely to happen via hydrolysis instead of surface erosion for these 

systems. This study was conducted in three different batches and was found to be 

reproducible, although figure 4.9 shows data from only one batch. Figure 4.9 

(a) represents the HPLC chromatograms of quercetin, quercetin multiacrylate and 

degradation products of Q-PβAE bulk gel system and nanogel systems. HPLC Analysis 

of degradation products of Q-PβAE bulk gels (#3) in the Figure 4.9 (a) identified release 

of both quercetin and the monoacrylate form. However, degradation products of the 

synthesized Q-PβAE nanogels (#4)) resulted in the release of pure quercetin, with no 

detectable trace of mono or higher acrylate products, confirming the retrieval of the 

original drug. Meanwhile, TEAC studies of the degraded product indicated that the 

released compounds possessed antioxidant activity against free radicals for 36-40 hours 

(Figure 4.9 (c)) and possessed a similar release profile as obtained from degradation 

product UV-Vis analysis. Equivalent active quercetin was also calculated for each time 

point taking 4.2 as the TEAC value of quercetin. It was observed that equivalent active 

quercetin either complied with the released quercetin or was higher than that implying 

no loss of quercetin activity during degradation and release. Higher values of equivalent 

active quercetin is likely from oligomers released during hydrolysis and degradation 

products of quercetin, which also have some inherent antioxidant activity. Taken 

together, quercetin was successfully kept intact within the polymer matrix for an 

extended period of time without loss of activity. This result is in contrast to the usual 
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behavior of quercetin, where structural stability and antioxidant activity is lost within 2 

hours of incubation in aqueous media. 

 

Figure 4.9 Degradation of QNGs at physiological conditions and subsequent 
analysis.  
(a) HPLC analysis of QNG degradation products to confirm the recovery of pure 
quercetin and not any other mono or higher quercetin acrylates. This was confirmed 
by comparing the nanogel degradation products with quercetin, QMA (monomer) and 
degradation products of bulk Q-PΒAE gels, which results in quercetin and quercetin 
monoacrylate release, (b) Degradation/quercetin release profile from QNGs in PBS 
(pH 7.4 with 2vol% DMSO).  90% of the quercetin was released within 35 hours of 
incubation. N=3 and the profile fits Korsmeyer-Peppas release kinetic model Mt/Minf 
= Ktn with n values within 0.45-0.85 showing anomalous release. R-square ranged from 
0.9737 to 0.9923, (c) Antioxidant activity profile of the degraded products of QNGs. 
The study was done using the trolox equivalent antioxidant capacity assay (TEAC), and 
the activity is expressed in terms of equivalent amount of trolox. n=3, (d) Instantaneous 
active quercetin values calculated from TEAC values compared with instantaneous 
quercetin released values obtained after each degradation time interval. 
 
4.3.8 Effect of QNGs on human umbilical vein endothelial cells  

4.2.1.1 Dose dependent cell toxicity 
 
Cytotoxicity of quercetin-based nanogels in the biological environment was analyzed 

by exposing HUVEC monolayers to quercetin nanogels. The cells were exposed to 
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equivalent quercetin concentrations ranging from 1 to 70 µg/ml of nanogels for 24 

hours followed by treatment with Calcein AM red-orange (fluorescent cell tracer), as a 

measure of cell viability. Calcein AM red-orange was used as it does not interfere with 

the fluorescence of quercetin itself, being in the different fluorescence wavelength 

region. As shown in figure 4.10, cell viability starts to decrease to about 50% at 70 

µg/ml of equivalent quercetin concentrations. All nanogel formulations showed similar 

viability trends when compared within themselves as well as when compared with pure 

quercetin for both 24-hour exposure time. This was confirmed after conducting two-

way ANOVA test considering nanogel composition and treatment concentrations as 

two groups. The two-factor analysis of variance showed no significant effect of 

composition towards cell viability but dose dependent cytotoxic effect was statistically 

different after 24-hour treatment. This demonstrates that presence of PβAE nanogels or 

its degradation products apart from quercetin did not contribute to cell cytotoxicity. 

 

Figure 4.10 Dose dependent toxicity of QNGs on HUVECS  
(a) Cell viability after exposure of HUVECs with QNGs and pure quercetin for 24 
hours. Calcein AM red-orange was used as a live cell tracer. (n=4), (b) Specific 
viability of QNGs with respect to quercetin. A two-way ANOVA test was conducted 
taking nanogel compositions and treatment concentrations as two variables. No 
significant difference in viability was observed due to different compositions and pure 
quercetin while treatment concentrations showed statistically significant difference in 
cell viability. 
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4.2.1.1 Effect of nanogels on H2O2 treated HUVECs for 24 hours 
 
HUVECs at 80% confluence were treated with two different concentrations of QNG-

1.25 (5 and 10 µg/ml equivalent quercetin concentration) and 0.5 mM H2O2 as an 

inducer of cellular injury and oxidative stress. 10 µM DCFDA was added to each well. 

Cell viability and DCF fluorescence were measured at 24 and 48 hours and compared 

with the no particle treatment and no H2O2 controls. Cell viability was maintained on a 

concentration basis for only quercetin/QNG treatment after 48 hours. A slight increase 

in viability was seen after 48 hours with the antioxidant treatments (Figure 4.11 (a) and 

4.11 (b)). When looking at DCF fluorescence for the same treatment system, 

antioxidant treatment suppressed the background oxidative stress to a significant level 

at both 24 and 48 hours when compared with no treatment controls (Figure 4.12 (a)). 

External oxidative stress induced using H2O2, as shown in figure 4.12(b), resulted in 

cell viability dropping down to 10% after 24-hour exposure and 20% after 48-hour 

exposure. H2O2 exposed groups treated with free quercetin or QNG showed different 

responses after 24 and 48-hour exposure. For 24 -hour, all the treatments with either 

free quercetin or QNGs, showed same protection from H2O2 with cell a viability of 

approximately 50%. With 48-hour exposure study, though we saw equivalent 

protection from both free quercetin and QNG with 5 µg/ml, QNGs at 10 µg/ml showed 

improved performance than just quercetin despite having same inherent toxicity at that 

concentration. Suppression of DCF fluorescence at both 24 and 48 hours for 10 μg/ml 

QNG system was superior to pure quercetin. 
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Figure 4.11 Cell viability of HUVECs treated with two different concentrations of 
QNG (1.25): 5 and 10 µg/ml and/or 0.5mM H2O2.  
Cell death analyzed after 24 and 48 hours of treatment. (a) Treatment with only 
QNG/quercetin. (b) Treatment with QNG/quercetin and H2O2. * p<0.05 
 
 
 

 

Figure 4.12 Oxidative stress suppression analysis using 10 µM DCF-DA as an 
oxidative stress marker. 
Two different of QNG/quercetin, 5 and 10 µg/ml were used. Fluorescence was 
measured after 24 and 48 hours of treatment. (a) Treatment with QNG/quercetin. (b) 
Treatment with QNG/quercetin and 0.5 mM H2O2. * p<0.05 
 
4.4 Discussion 

Numerous trials have been conducted over the years evaluating the continuous 

administration of antioxidants and their effect on chronic diseases like atherosclerosis 

or diabetes. Yet, results have been inconclusive and debatable towards their beneficial 

effects [182].  However, as the use of antioxidants in sub-acute inflammatory diseases 

(e.g., N-acetyl cysteine in acetaminophen toxicity) have shown clinical acceptance, 
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there must be something more to this observed discrepancy [183]. One explanation for 

the better in vivo performance of N-acetyl cysteine in this setting is the improved 

natural accumulation in the intended site of action (e.g., the liver) and more favorable 

circulation times over that of other antioxidants, which has a half-life of 6 hours 

compared to minutes for many polyphenolic antioxidants [184, 185].  However the use 

of N-acetyl cysteine is also complicated with side effects common of sulfur containing 

compounds, including nausea, vomiting and risk factors of asthma, drug allergy etc. 

[186]. As such, it may be possible to rescue small antioxidant therapy for short-term 

oxidative stress disorders through changing their inherent pharmacokinetics.   

The objective of this work was to design a biocompatible polymeric nanocarrier capable 

of systemically delivering highly active though labile antioxidant, quercetin, over an 

extended period of time to fight acute oxidative stress conditions. We have incorporated 

PβAE gel synthesis chemistry in making quercetin conjugated PβAEs nanogels. Our 

lab group and other researchers have previously reported successful synthesis of PβAE 

bulk hydrogels using different co-monomers including polyphenolic antioxidants along 

with PEGDA and DEGDA [178, 187, 188]. By taking advantage of its polyphenolic 

structure, quercetin can be acrylated, which when reacted with an amine can form a 

crosslinked gel via a Michael addition mechanism. However, due to rapid kinetics and 

multifunctional nature of the monomer, translation from bulk gel to nanogel is a 

technically challenging hurdle. Owing to the hydrolytically degradable property of 

PβAEs, standard two-phase (oil-water or oil-oil) emulsion techniques are not feasible. 

However, formulating quercetin-PβAE nanogels (QNG) via a single-phase reaction-

precipitation method in acetonitrile under dilute conditions resulted in a nanogel 

suspension as the reaction proceeded to completion, the spherical nature of which was 

confirmed by SEM imaging (Figure 4.4). The presence of excess available terminal 
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amines permitted the covalent linkage of PEG monoacrylate grafts to the nanogel 

resulting in a stable coating. As PEG grafts are able to stearically stabilize 

nanoparticles, PEGylation of the nanogels enhanced their post-purification stability and 

improved their stealth characteristics. The single-phase reaction systems/ one-pot 

synthesis simplified the synthesis process, eliminating the requirement of any stabilizer 

and removal of the excess stabilizer added during purification. A very simple 

purification step of centrifugation was used, after which nanogels restored their original 

size without any aggregation (figure 4.1 and 4.3). PEGylation improved the stability in 

organic-aqueous solutions. This is in contrast to QNGs incubated with PEGME5000 

(MW in the range similar to PEGMEMA4000).  The lack of the acrylate group 

prevented covalent addition to the particles and was, therefore, unable to prevent 

particle aggregation (Figure 4.6). This confirms the presence of covalent linkage 

between PEG acrylate group and NNDA unreacted terminal hydrogen amines, which 

eventually results in QNG physical stability. 

Precise control of nanogel size was made possible by varying the feed reactant 

concentration while keeping the stoichiometric ratio constant, with increasing 

concentration increasing particle size (Figure 4.3). Interestingly, as the ratio of acrylate 

to amine decreased, the excess amine catalyzes the hydrolysis of the acrylate groups.  

To minimize the occurrence, the stoichiometric ratio of acrylate to reactive hydrogen 

amine was limited to 1:1.1 which still offered maximum reaction yield, diameter and 

provides the opportunity to covalently bind PEGMEMA4000 to terminal amines 

(Figure 4.4). It was observed that after using the same concentration of 

PEGMEMA4000 for all formulations, the smaller nanogels had a higher amount of 

PEG attached (30-40% wt/wt) while the larger diameter nanogels had PEGylation of 

only 3-5 wt% (Figure 4.7). This could be due to the presence of more amine reactive 
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sites on smaller particles due to the overall higher surface area for the same quantity. 

The PEG presence was further substantiated by performing a radiolabeled-IgG binding 

studies where reduced amount of IgG binding was observed for PEGylated nanogels as 

opposed to non-PEGylated nanogels (Figure 4.8). Also, as wt% of PEG decreased with 

different nanogel formulations, percent IgG bound increased clearly implying that 

presence of PEG was altering the antibody binding effect in a positive fashion.  

These hydrophobic polymeric quercetin-PΒAE systems are hypothesized to degrade in 

PBS via hydrolysis of ester bond to release quercetin. This was confirmed by injecting 

degradation products through HPLC where we saw the most significant elution peak 

coinciding with pure quercetin peak with no oligomer or other forms of quercetin 

acrylate present (Figure 4.9 (a)) confirming the presence of original quercetin molecule 

in the degradation product. Nanogels showed uniform degradation over 48 hours with 

about 5-10% of the total quercetin released in first 30 minutes as analyzed by UV-Vis 

(Figure 4.9 (b)). While the Korsmeyer-Peppas (K-P) release profile model for spherical 

systems with 0.43<n<0.85 suggests the contribution of diffusion, as well as erosion 

based degradation, similar release profile of all the formulations (QNG (0.75)-QNG 

(10)) with variable diameter, confirms the bulk erosion instead of surface erosion 

degradation mechanism, (Figure 4.9 (b)). An important fact to notice in the release 

profile is that the value of ‘n’ obtained using the K-P model closely correlates with the 

percent burst release considering it to occur at 1st sampling time point of 30 minutes. 

The system with highest burst release of 11.93% (QNG (10)) fits with the ‘n’ value of 

0.55 (near diffusion boundary) while QNG (5) with lowest burst release of 4.43% 

amongst all the systems gives the ‘n’ value of 0.85 (pure erosion mechanism). This 

trend of higher burst release with lower ‘n’ value clearly implies that the diffusion 

contribution in the release model is largely coming due to the unconjugated quercetin 
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being diffused through the spherical gel matrix at early time points while the quercetin 

released due to the ester hydrolysis is derived by erosion based mechanism. Analyzing 

the antioxidant activity of the released products using TEAC assay confirmed that the 

products released at 24 hours or 48 hours still possess antioxidant activity and quercetin 

conjugated to PΒAE backbone was structurally intact even after being incubated in 

aqueous media for several hours (Figure 4.9 (c)). Comparing the equivalent quercetin 

amount obtained from TEAC assay and actual quercetin release in figure 4.9 (c), it is 

clear that the nanogel degradation products are showing higher activity than would be 

estimated through pure quercetin release (Figure 4.9 (d)). One possible explanation for 

the persistent excess activity throughout the degradation process could be due to the 

auto-oxidation or molecular degradation of the released quercetin in the aqueous 

environment resulting in metabolized fragments such as phloroglucinol, protocatechuic 

acid etc [189]. These small fragmented molecules though not quantifiable at the same 

wavelength as quercetin have some potential towards free radical scavenging which 

could be contributing towards ABTS radical consumption in the TEAC assay [190]. 

Hence, even the fragmented degradation products contributed to the total antioxidant 

potential of the system over time. 

As a pharmaceutically active compound, quercetin like any other therapeutic compound 

has a window of safety with TC50 value of 0.23 mM or ~ 70 μg/ml (Fig 4.10 (a)). When 

loaded into a drug carrier system, it is important to investigate the potential toxicity of 

the carrier system along with the loaded drug. As literature for PβAE systems indicates 

low relative toxicity in vitro and in vivo, it is expected that quercetin PβAE nanogels 

would have a similar safety window as for pure quercetin with no added effect due to 

the polymer backbone. This was confirmed with the dose dependent cytotoxicity study 

of all the QNG systems and when compared with quercetin, QNGs toxicity patterns the 
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cytotoxic profile of quercetin directly confirming once again the viable nature of PβAE 

nanogel by itself (Figure 4.10 (a) and (b)). These nanogels were further evaluated for 

their ability to suppress oxidative stress due to external injury induced using 0.5 mM 

H2O2 exposure. They not only showed ROS scavenging capacity against H2O2 induced 

injury as good as pure quercetin at equivalent quercetin loading of 5 µg/ml, but the 

treatments done with QNGs having 10 µg/ml of equivalent quercetin loading showed 

enhanced protection against oxidative stress as compared to nascent quercetin after 48 

hours probably due to prolonged supply of active quercetin during nanogel degradation. 

This was verified by both viability and DCF fluorescence studies showing superior 

properties of QNGs than pure quercetin even though present in same quantities (Figure 

4.11 and 4.12). Therefore, with the ability to suppress oxidative stress in vitro, slow 

uniform release, and longer circulation efficacy; these nanogels can serve as an 

effective delivery system a therapeutically potential yet fragile antioxidant, quercetin, 

which shows very low bioavailability in vivo otherwise.  

4.5 Conclusions 

Nanogels were synthesized using a novel but simple single-phase reaction-precipitation 

system with control over the size through varying feed reactant concentrations. These 

nanogels were able to be PEGylated post-synthesis through a secondary Michael 

addition reaction with available amines on the nanogel surface, resulting in decreased 

opsonization. The PΒAE chemistry to chemically conjugate quercetin protects 

quercetin from losing antioxidant activity until the polymer degrades and releases the 

quercetin.  To the best of our knowledge, these nanogel systems when compared with 

other nanocarriers have the highest reported quercetin drug loading. The uniform, 

prolonged release of quercetin from QNGs due to hydrolytic cleavage showing 
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equivalent antioxidant activity as pure quercetin potentially shows protection against 

induced oxidative stress for as long as 48 hours.   
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5 CURCUMIN CONJUGATED POLY (Β- AMINO ESTERS) 

NANOGELS AND SUSTAINED SUPPRESSION OF 

MITOCHONDRIAL OXIDATIVE STRESS 

Based on the research to be published in: 

 Prachi Gupta, Mihail Mitov, J. Zach Hilt, Thomas D. Dziubla. Sustained 

Suppression of Mitochondrial Oxidative Stress using Curcumin conjugated Poly (β- 

Amino Esters) Nanogels (submitted) 

Abstract 

Mitochondria are considered to be the “power plant” of the cell, but can also initiate 

and execute cell death, stimulated by oxidative stress (OS). OS induced mitochondrial 

dysfunction is characterized by a loss in oxygen consumption and reduced ATP 

production. Curcumin, with potential therapeutics and interventions, has been explored 

as a potential candidate for mitochondrial OS suppression, but rapid metabolism and 

aqueous insolubility prevent it from being an effective therapeutic. Further, effective 

delivery of curcumin via incorporation into nanocarrier formulation has again been 

limited due to low drug loading capacities and/or significant burst release effects 

resulting in cytotoxicity. Hence, to increase therapeutic opportunities and ease toxic 

effects of curcumin, self-precipitated curcumin conjugated poly(β-amino ester) 

nanogels (CNGs) were synthesized using the Michael addition chemistry. With easy 

control over the nanogel size, CNGs showed a uniform release of active curcumin over 

48 hours with no burst release. This uniformly releasing system significantly increased 

the safety limit for curcumin as a treatment drug (10xfree curcumin). Further, real-time 

mitochondrial response analysis with Seahorse XF96 showed effective and prolonged 

suppression of H2O2 induced mitochondrial oxidative stress upon pre-treating 
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endothelial cells with CNGs and this potential of nanogels was studied at different pre-

treatment times prior to H2O2 exposure. 

5.1 Introduction 

Given its ubiquity in a number of disease states, oxidative stress (OS) and its consequent 

effects are extensively researched topics in biological and pharmaceutical disciplines. 

Its cascading effects are seen in diabetes, cancers, neurological disorders, cardiac 

disorders and many more [191-193]. OS occurs when the natural balance of oxidants 

and antioxidants is disturbed, leading to excess production of free radicals such as 

reactive oxygen species (ROS) and reactive nitrogen species (RNS). Higher levels of 

ROS and RNS lead to cellular damage by lipid peroxidation, protein carbonylation, 

DNA damage, etc. [194, 195]. Mitochondrion, the central system for energy production 

pathways and metabolism in most cells, is also a key organelle for ROS generation 

[196, 197]. Interestingly, mitochondria are not just a key generating source of free 

radicals but also a sensitive target to ROS and RNS damage [198]. Mitochondrion is 

believed to be specifically affected by lipid peroxidation, leading to the generation of 

hydrogen peroxide and superoxide radicals and hence resulting in additional ROS 

production [199]. This cycle cascades in a feed forward fashion leading to cell necrosis 

and apoptosis [199, 200]. Therefore, it is believed that when a cell is exposed to any 

free radical or ROS, the mitochondria are the first one of the cellular organelles to be 

targeted by ROS. This leads to mitochondrial dysfunction, disturbing the normal 

respiration mechanism and loss in ATP production before finally losing a major energy 

pathway of the cells. Mitochondrial protein, lipids and DNA (mtDNA) are considered 

the primary target of ROS. As a result, mitochondrial oxidative stress (Mito OS) 

becomes the indirect cause of many diseases, primarily neurogenerative disorders such 

as Alzheimer’s and Parkinson’s disease, numerous metabolic disturbances, 
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cardiomyopathies and metabolic complexities in patients suffering from diabetes 

mellitus [1, 201-205]. 

Because mitochondrion becomes the generation source of more ROS, it is 

important to control the damage to mitochondrial structure and function when the cells 

encounter increased ROS/RNS. One potential solution to prevent mito OS is to reduce 

excess ROS production in mitochondria by effectively supplementing with 

antioxidants. Most attempts to accomplish this have failed in vivo due to the non-

specific delivery of antioxidants to mitochondria below therapeutic limits as well as in 

vivo molecular instability issues with most of the antioxidants. Among the 

molecules/compounds studied, curcumin has shown protective effects, including a 

cytoprotective effect against aluminum induced neurogenerative disorders [206], 

maleate induced oxidative stress [207], and preventing mitochondrial OS in high fat 

diet induced obese mice [208]. Despite these promising findings in animal models, most 

clinical studies performed with high and frequent oral doses up to 4 g/day for 48 weeks, 

specifically for Alzheimer’s, have failed to show clinically significant improvement in 

reducing symptoms for the disease [209]. Among limitations for curcumin, poor 

aqueous solubility, and extremely low bioavailability are most significant because pure 

curcumin has shown to be below detectable serum concentrations within a few minutes 

of administration [210]. Attempts have been made to incorporate curcumin into any 

viable polymeric or similar nanocarriers with the aim for higher curcumin loading, 

sustained release characteristics and ability to perform its antioxidant function with no 

cytotoxic effect. Unfortunately, curcumin drug loading capacities of most nanocarriers 

have not exceeded more than 4 wt%, resulting in the higher amount of carrier material 

but minimal doses of the functional drug [211]. Furthermore, little work has been 

pursued using curcumin as a treatment targeted towards stressed endothelial cells for 
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cancer and tumor treatment. In our approach to fight OS (specifically mito OS) with C- 

PβAE nanogels, curcumin is chemically conjugated to the polymer backbone, which 

upon hydrolytic degradation of the ester bonds releases pure curcumin. Theoretically, 

chemical conjugation into the PβAE matrix gives curcumin a structural stability and 

prevents deactivation prior to hydrolysis. Uniform drug release over 36-40 hours 

resulted in protected functionality of curcumin for a longer period. A higher IC50 value 

of more than 100 µg/ml of loaded curcumin in contrast to free curcumin (IC50=5.3 

µg/ml) increased the safety window of this potential drug. An increased safety window 

gives higher flexibility to work in therapeutic dosage amounts and reach adequate 

curcumin levels to treat and or prevent OS. In contrast, free curcumin administered at 

therapeutic levels will kill endothelial cells. A mitochondrial stress assay using 

Seahorse XF96 analyzer with the ability to monitor real-time mitochondrial 

bioenergetics was employed to analyze mitochondrial bioenergetics post induced 

oxidative stress and protective effect of C- PβAE nanogels (CNGs) versus free 

curcumin. CNGs with higher, yet viable, treatment concentrations (5 µg/ml) were able 

to shield against dropping ATP production or basal respiration rates due to hydrogen 

peroxide induced mito OS. On the other hand, free curcumin proved to be fatal at these 

high treatment concentrations and showed no protection at safe concentrations of 1 

µg/ml against mito OS. 

5.2 Methods and materials 

5.2.1 Reagents 

Curcumin was purchased from Chem-impex Int’l ‘Inc, (Wood Dale, IL). 4,7,10 

Trioxatridecane-1,13-diamine (TTD), acryloyl chloride, 2,2′-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS), triethylamine (TEA) and potassium 

carbonate were bought from Sigma-Aldrich (St. Louis, MO). Sodium chloride, 
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potassium phosphate, sodium phosphate and sodium dodecyl sulfate (SDS) were 

purchased from Fisher Scientific (Fair Lawn, NJ). Human Umbilical Vein Endothelial 

Cell line (HUVECs), EBM-2 basal medium and its growth factors were purchased from 

Lonza, (Walkersville, MD). All solvents were purchased from Pharmco-aaper 

(Shelbyville, KY). All media kit and cell culture plates for XF96 Seahorse experiments 

were purchased from Seahorse Bioscience (Massachusetts, USA). Calcein AM red-

orange tracer was bought from Invitrogen (Grand Island, NY). 

5.2.2 Curcumin acrylate (CA) synthesis 

Acrylation of the curcumin phenolic group was carried out via reaction of curcumin 

with acryloyl chloride in the molar ratio of 1:3 with anhydrous THF as the reaction 

medium. Triethylamine (TEA) was added in the same molar ratio as acryloyl chloride 

to capture byproduct hydrogen chloride by forming a chloride salt with the progression 

of the reaction. The reaction was carried out for 15 hours at room temperature in dark 

(aluminum foiled). The acrylated product was filtered from the salts formed during the 

reaction. The product was further purified via a solvent extraction process to remove 

any unreacted monomers then vacuum dried to obtain dry curcumin acrylate product. 

Obtained curcumin acrylate was analyzed using HPLC to verify product quality. 

5.2.3 Synthesis of curcumin PβAE nanogels (CNGs) 

CA solubilized in acetonitrile at known concentrations was reacted with TTD keeping 

acrylate to reactive hydrogen amine ratio of 1:1. Curcumin has two phenolic groups 

and upon acrylate functionalization should react to form curcumin diacrylate. TTD has 

four reactive hydrogen amines. Therefore, for each mole of TTD (molecular weight 

220.31 g/mol), two moles of CA (molecular weight~ 476 g/mol) are reacted to get the 

required acrylate to reactive hydrogen amine ratio of 1:1. To formulate 1 ml of 

curcumin conjugated PβAE nanogels with the starting CA feed concentration of 10 
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mg/ml, 2.3 mg of TTD was added and allowed to react for 24 hours. Feed reaction 

concentrations of CA were varied from 0.75 to 10 mg/ml, hence the amount of TTD 

added to the reaction system was changed accordingly to keep the stoichiometric ratio 

constant. After 24 hours and self-precipitation of CA and TTD into C- PβAE nanogels 

(CNGs), the suspension was diluted in anhydrous THF with BHT as inhibitor, in a 1:4 

ratio v/v (1 ml CNG suspension with 4 ml THF) as a purification step. An hour later, 

the system was centrifuged at 6.7 RCF for 20 minutes. The supernatant was removed 

and another wash with THF was given to remove any remaining unreacted monomers. 

After the second purification step, the centrifuged pellet was re-suspended in 1 ml 

acetonitrile via sonication and then freeze-dried overnight to get dry C- PβAE nanogels 

(CNGs).  

5.2.4 Yield of reaction, nanogel size and morphology characterization 

Yield: Yield of the C-PβAE nanoparticle reaction synthesis was determined by 

calculating the unreacted CA concentration in the supernatant after nanoparticle 

centrifugation. The unreacted CA concentration was determined by analyzing the 

degradation supernatants using a Varian Cary 50 UV-Vis spectrophotometer and 

quantifying the absorbance at the curcumin characteristic wavelength of 420 nm. The 

yield was determined by subtracting the amount of unreacted CA from the starting 

amount added. An assumption that CA and TTD reacted in the same ratio was taken 

into account while calculating the yield.  

Size and morphology: Hydrodynamic radii of the different CNGs formulations were 

measured using dynamic light scattering (DLS) after suspending dried nanoparticles in 

acetonitrile and setting the measurement parameters according to the solvent used. 

CNGs were scanned with electron microscopy to determine their shape and 

morphology. To prepare the samples, synthesized nanoparticles were first suspended in 
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acetonitrile at a concentration of 100 µg/ml using probe sonication. A drop of 10 µl of 

this suspension was put on ODT treated gold substrate and allowed to dry for 2 hours. 

The sample was then sputter coated using gold-palladium alloy and images were taken 

at various magnifications using S-4300 Hitachi Scanning Electron Microscope. 

 

5.2.5 Hydrolytic degradation of C-PβAE nanogels and the subsequent 

curcumin release profile 

In order to test the degradation of these nanogels with subsequent release of pure 

curcumin upon ester hydrolysis, nanoparticles synthesized with 5 mg/ml as the CA feed 

concentration were suspended in PBS buffer containing 0.1% SDS wt/vol (pH 7.4).  

SDS was added to the buffer to enhance the solubility of released curcumin or its 

oligomeric products for further quantification. The nanogels were suspended in the 

buffer at a concentration of 100 µg/ml. At time points 0, 2, 4, 6, 8, 12, 24, 30, 36, 52 

and 71 hours, the suspension was centrifuged at 6.7 RCF for 20 minutes and the 

supernatant was collected and stored at -20o C for further analysis. The centrifuged 

pellet was re-suspended in fresh buffer maintaining appropriate sink condition. A 

degradation study was carried out over 72 hours under sink conditions at 37°C. To 

determine the release rate of curcumin during hydrolytic degradation of CNGs, UV-Vis 

spectrophotometry was used to analyze the curcumin concentration in the collected 

supernatants. The absorbance of the supernatants was measured at 420 nm using Varian 

Cary 50 Bio UV-Vis spectrophotometer followed by quantification of the amount of 

curcumin released using a standard calibration curve. 

5.2.6 Antioxidant activity of released curcumin  

It was important to assess that the released curcumin from CNGs was still active with 

its antioxidant potential intact as its phenolic groups were chemically altered during the 
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nanoparticle synthesis. Therefore, a trolox equivalent antioxidant capacity (TEAC) 

assay was performed in order to verify the antioxidant potential or radical scavenging 

property of released degradation products. TEAC is a colorimetric assay based on 

scavenging of 2, 2’-azinobis-(3- ethylbenzothiazoline-6-sulfonate) radical anions 

(ABTS.-) in the presence of an antioxidant. Briefly, 7 mM ABTS radical cation stock 

solution was prepared by mixing 1 ml of 8 mg/ml of ABTS solution with 1 ml of 1.32 

mg/ml of potassium persulfate solution in DI water overnight. This concentrated ABTS 

radical stock solution was diluted in PBS to an absorbance of 0.4 AU at 734 nm to 

prepare a working solution after baseline correction. Trolox, with known concentrations 

ranging from 0 to 0.27 mM, was used for calibration. The assay was carried out in a 96-

well plate and 10 µl of the sample was added to each well, followed by 200 µl of ABTS 

radical working solution. Five minutes later, absorbance was read at 734 nm using a 

Varian Cary 50 Bio UV-Vis spectrophotometer. A trolox calibration curve was used to 

determine equivalent trolox concentrations in the supernatant degradation products. 

5.2.7 Dose dependent cytotoxicity of C-PβAE nanogels (CNGs) towards 

HUVECs 

HUVECs were cultured in EBM basal medium (phenol red free) with EBM-2 growth 

factors to an 80% confluence in a 96-well plate overnight. Curcumin and CNGs (CA 

feed concentration = 5 mg/ml) suspension in media with equivalent curcumin 

concentrations ranging from 0 to 70 µg/ml were prepared. Wells containing HUVECs 

received and were treated with antioxidant/CNG solution for 24 hours (n=5). After 24 

hours, media with antioxidant was removed from the wells, then incubated in 1 mM 

calcein AM red-orange live cell tracer. After 1 hour, cells were washed and fresh media 

was added to each well. The well-plate was subjected to fluorescence measurement 

with 540/590 nm as excitation and emission wavelength, respectively, using BioTek 
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Synergy Mx, Gen5 2.0, Winooski, VT to measure dose dependent toxicity of C-PBAE 

nanoparticles. 

5.2.8 Effect of CNGs exposure on H2O2 induced cellular OS: cell viability 

analysis 

HUVECs cultured in EBM-2 basal medium were seeded in a 96-well plate and 

incubated overnight to achieve 80% confluency with respect to well area. CNGs (CA 

feed concentration = 5 mg/ml) at a concentration of 7.5 μg/ml (5 μg/ml equivalent 

curcumin loading) were suspended uniformly in EBM-2 basal medium with the aid of 

bath sonication. The media from the cells was removed and 200 μl of the CNG 

suspension was added to the well of interest. 10 μl of 10 mM H2O2 stock solution 

prepared in EBM media was added simultaneously to the CNGs containing to get final 

exposure concentration of 0.5mM. A control group of only CNGs and only H2O2 

exposed cells was also prepared. To all the wells, 10 μl of DCF-DA prepared in EBM-

2 media was added to get a final cell exposure concentration of 10 μM.  24 hours later, 

DCF fluorescence was read at 490/525 nm as excitation/emission wavelength using 

BioTek Synergy Mx, Gen5 2.0, Winooski, VT spectrophotometer. Post fluorescence 

measurement, CNGs ± H2O2 solutions were removed and wells were washed with fresh 

media, followed by addition of 1 mM Calcein AM red-orange live cell tracer. Cell 

viability was measured by following the similar protocol as given in section 2.7 

 

5.2.9 Measurement of mitochondrial OS changes after treatment with C-PβAE 

nanogels (CNGs) using XF-96 extracellular flux analyzer. 

A Seahorse XF-96 Flux Analyzer (Seahorse Bioscience, North Billerica, MA) was used 

to analyze the effect of CNGs on cellular bioenergetics. HUVECs were seeded in a 

Seahorse 96-well tissue culture plate at a seeding density of approximately 35,000 
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cells/well. Cells were then allowed to adhere and grow for 24 hours. Prior to assay, the 

cell growth media was replaced with 175 µL of FX media (FX Assay Modified DMEM 

from Seahorse Bioscience with 5.5 mM glucose, 1 mM pyruvate, and 2 mM glutamix). 

Wells and cells were washed once, media exchange was completed and then cells were 

equilibrated for 60 minutes at 37° C in a non-CO2 incubator. The 96-well plate was then 

subjected to Mitochondrial stress assay to analyze mitochondrial energetics and cellular 

metabolic profile. The mitochondrial stress assay consisted of subsequent injections of 

three mitochondrial inhibitor drugs: oligomycin A (1 µM), which act as ATP synthase 

inhibitor; FCCP (1 µM), an uncoupling agent; and a mixture of 1 µM rotenone and 1 

µM antimycin A, each used as inhibitors for mitochondrial respiratory chain complex I 

and III to shut down the mitochondrial oxygen consumption. Oxygen consumption rates 

(OCR) and extracellular acidification rates (ECAR) were measured using measurement 

periods of 3 minutes minimum and 3 minutes maximum with drug injection series. 

Once OCR/ECAR measurements were completed, the FX media was carefully 

removed from all individual wells and replaced with 25uL of cell lysis buffer containing 

0.32 mM Sucrose, 2 mM EDTA, 2 mM EGTA, 20 mM HEPES, pH 7.4, containing 

protease inhibitors 4 μg/mL leupeptin, 4 μg/mL pepstatin, 5 μg/mL aprotinin, and 0.2 

mM PMSF. The plates then put in -20° C freezer overnight to disrupt cells membranes. 

The next day, plates were taken out to room temperature and put on an orbital shaker 

for an hour. Unknown protein levels (samples) of the wells were measured using the 

modified BCA protein assay (Thermo Scientific, Rockford IL). Known amounts of 

protein standards (2.5 μg, 5.0 μg, 10 μg etc.) were added in the background wells of the 

plate to construct an optical density standard curve. Protein levels were determined after 

the optical densities were measured on iMark plate reader (Bio-Rad, Hercules, CA). 

86 
 



  

The OCR pmol/min were normalized to protein levels of pmol/min/μg or calculated as 

percent change (%OCR) from the third basal  measurement for each group.  

To analyze the mitochondrial response towards free curcumin and CNGs, a 96-well 

plate seeded with 35,000 cells/well was treated with curcumin/CNG (synthesized with 

5 mg/ml as feed reactant concentration) at equivalent curcumin concentrations of 1 and 

5 µg/ml. After 24 hours of treatment, media was replaced with XF media for 1 hour at 

37° C. The plate was then subjected to the mitochondrial stress assay to analyze 

mitochondrial energetics and metabolic profile. Metabolic respiration rates were 

measured and quantified as OCR (pmol/min) at this step. After analyzing different 

concentrations of curcumin and CNGs having the same equivalent curcumin 

concentrations for mitochondrial respiration rates, viable concentrations of curcumin (1 

µg/ml) and CNGs (5 µg/ml) were used for further analysis of protective effect against 

OS. HUVECs in 96-well plates were first pre-treated with curcumin/CNGs at specified 

concentrations (1 and 5 µg/ml) for 0, 12 and 24 hours, then followed by the introduction 

of 0.25 mM H2O2 for 2 hours. Next, cells were washed and replaced with un-buffered 

DMEM media and kept at 37° C for 1 hour, followed by mitochondrial stress assay.  

5.2.10 Statistical Analysis 

Data for figures 5.1 (A), (B), 6.2 (A) and (C) is presented as mean ± St. Dev., while for 

figures 5.3 (A), (C), 6.4 (A), (B), (C) and 6.5 (A), (B) and (C) is presented as mean ± 

SEM. The statistically significant differences between the mean values were calculated 

using one-way ANOVA test followed by Bon-ferroni post hoc test with the help of 

SigmaPlot software. A p value of <0.050 was considered to be representative of the 

significant difference between the means under comparison. 
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5.3  Results 

5.3.1 Curcumin nanogel size, yield and morphology 

CA with 2 to 3 acrylate groups was set to react with TTD in acetonitrile under dilute 

conditions. Varying the feed concentration of CA and maintaining the total acrylate to 

total reactive hydrogen amine ratio resulted in self-precipitated nanogels with variable 

hydrodynamic diameter. Upon UV-Vis analysis of the supernatants obtained after 

centrifugation, reaction yield was calculated to be 62.7%. Increasing the reactant 

concentration resulted in an increase in diameter. As shown in figure 5.1 A, 

hydrodynamic diameters of 64 ± 8, 87 ± 3, 131 ± 5, 221 ± 4, 416 ± 31 nm were obtained 

for CA feed reactant concentrations of 0.75, 1.25, 2.5, 5, 10 mg/ml respectively. These 

will be abbreviated as CNG (0.75), CNG (1.25), CNG (2.5), CNG (5) and CNG (10) 

throughout this text.  

After the washing and purification step in anhydrous THF, CNG (5) was again analyzed 

on DLS giving the hydrodynamic diameter of 210 ± 20, similar to the pre-wash 

diameter of the nanogels (Figure 5.1 B). This suggests little to no aggregation and no 

morphological change of nanogels post purification steps. The spherical morphology 

of the nanogel system was further confirmed after electron microscopy imaging (Figure 

5.1 A inset) and an average diameter of 176 ± 26 nm was calculated using Image-J 

software.  
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Figure 5.1 Hydrodynamic diameter and SEM of precipitated CNGs after 24-hour 
reaction of CDA with TTD in acetonitrile 
(A) Different CDA feed reactant concentrations. Acrylate to reactive hydrogen amine 
ratio was kept constant at 1:1 for all the formulations Inset: SEM image of nanogels 
corresponding to 5 mg/ml feed concentration. (B) Hydrodynamic diameter of nanogels 
(5 mg/ml feed concentration) pre- and post-wash with THF as a purification step 
showing no significant difference at both the stages. N=3, error bars: std. dev. 
 
5.3.2 Degradation, curcumin release and its anti-oxidant activity 

Curcumin nanogels (CNG (5)) were suspended in 0.1% SDS-PBS buffer at a 

concentration of 100 µg/ml. To dissolve released curcumin, 0.1% SDS wt/vol was 

added. Released curcumin in the supernatant was quantified using a UV-Vis analytical 

method by recording the absorbance at 420 nm to determine sample concentration and 

cumulatively adding the obtained concentrations of each sample with increasing 

degradation time to obtain the degradation profile of CNGs. As shown in figure 5.2 A, 

90% of the total curcumin release was uniformly distributed over 36 hours, and the 

remaining 10% release was spread throughout the next 30 hours. Meanwhile, taking 

into account 62.7% wt/wt as the theoretical loading of curcumin to nanogels, 55.58±3% 

of the total curcumin loaded was recovered during degradation. This lag in recovered 

curcumin could be due to release of oligomeric/monoacrylated products and may be 

underestimated in quantification during UV-Vis analysis. HPLC analysis of the 

degradation products at characteristic wavelength of 420 nm showed elution of pure 

curcumin (peak at 7.9 minutes) as the major product, but also constituted a minute 

amount of other products (peaks at 2.9 and 11 minutes) also absorbing at 420 nm 
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(Figure 5.2 B). These small peaks could count towards added value to curcumin 

estimation but are not fully accurate due to peak shift artifacts commonly observed in 

UV-Vis. Carrying out  the TEAC assay on the released products supernatants gave an 

estimate of releasing curcumin’s antioxidant capacity over 70 hours. All the 

instantaneously collected samples were assayed for antioxidant activity and quantified 

as mM of equivalent trolox because known concentrations of trolox were used as the 

standards. Finally, equivalent trolox amount were cumulatively added with respect to 

the degradation time to obtain a uniform increase in the antioxidant activity profile with 

time from 0.031 mM at t = 0 to 0.502 mM trolox after 70 hours of incubation. This 

implies that at each time point of hydrolytic ester cleavage, released curcumin was 

active to scavenge free radicals. 
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Figure 5.2 Degradation of CNGs in PBS buffer with 0.1% SDS (pH=7.4) at 37°C in 
a shaker bath. 
(A) Curcumin release profile during hydrolytic degradation (B) HPLC chromatogram 
of nanogel released products recorded at 420 nm showing elution of pure curcumin 
with minor amount of monoacrylate.  (C) Equivalent trolox amount of the released 
products representing the antioxidant activity analyzed using TEAC assay. N=3, error 
bars: std. dev. 
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5.3.3 Dose dependent toxicity of CNGs on HUVECs and protection from 

oxidative stress 

HUVECs were treated with variable concentrations of CNG (5) with equivalent 

curcumin concentrations ranging from 0.5 to 70 µg/ml. HUVECs were simultaneously, 

yet separately, treated with pure curcumin as a control. After 24 hours treatment, pure 

curcumin started showing toxicity towards HUVECs at 5 µg/ml (IC50 = 5.3 µg/ml) 

while CNGs were non-toxic up to 20 µg/ml of equivalent curcumin and cells were still 

60% viable at a concentration of 70 µg/ml (Figure 5.3 A).  

 

Figure 5.3 Dose dependent cytotoxicity of CNGs towards HUVECs after 24 hours of 
treatment and comparison with free curcumin.  
(A) Cell viability calculated after carrying out the Calcein AM red-orange live cell 
tracer assay (B) Mitochondrial oxygen consumption rate profile of a typical 
mitochondrial stress assay conducted using the Seahorse XF96 instrument. (C) Basal 
respiration rates of curcumin and CNG (5) represented at pmol/min after the 
calculations as depicted in figure 5.3 B. (D) OCR (profile) of the controls and 
curcumin/CNG at different curcumin concentrations in response to mitochondrial 
stress assay reagents added in a series at selected time points. N=5, error bars: std. 
err. 
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5.3.4 Protection from cellular oxidative stress 

Cell viability for each treatment group was measured keeping non-treated control group 

as reference of 100% viability.  Only H2O2 treated groups after 24-hour exposure 

resulted in 53 ± 3 % viability, while only CNG treated groups showed no significant 

change with respect to the control with percent viability of 108 ± 4 (Figure 5.4). With 

simultaneous treatment of CNGs with 0.5 mM H2O2 exposure for 24 hours, 71 ± 4 % 

viability which is significantly higher than only H2O2 treated groups. In order to get an 

estimate of oxidative stress, amount of free radical generation was measured with DCF 

fluorescence. Only H2O2 treated groups gave a measured DCF fluorescence of 12250 

± 1220, which is significantly higher than non-treated control group with fluorescence 

measurement of 8620 ± 1198.  Only CNGs treated group did not result in major 

difference w.r.t controls with DCF fluorescence of 7913 ± 980. Fluorescence 

measurement of CNGs+H2O2 group demonstrated suppression in oxidative stress due 

to H2O2 with lower values of DCF values of 8358 ± 1350 as compared to only H2O2 

group. 
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Figure 5.4 HUVECs cell viability and suppression in DCF fluorescence due to CNGs 
(5 mg/ml feed concentration system) with simultaneous treatment of 0.5 mM H2O2.  
DCF fluorescence and viability both were measures after 24 hours treatment with CNGs 
and H2O2. CNGs with equivalent concentration of 5 µg/ml of loaded curcumin were 
administered to the cells. ‘*’ significantly different from rest of the groups, p<0.05. 
 

5.3.5 Protection from mitochondrial oxidative stress 

To assess the potential of CNGs toward mitochondrial OS protection and its 

comparison with pure curcumin, HUVECs were incubated with both CNGs and 

curcumin at two different concentrations for 24 hours. This incubation was followed by 

basal respiration rate measurements and a mitochondrial stress test. Basal respiration 

rates, ATP-linked respiration, proton leak, maximum respiration and spare respiratory 

capacity were calculated from the mitochondrial stress test drug-response OCR values 

according to the calculation scheme shown in figure 5.3 B. The curcumin treatment at 

1 µg/ml showed nominal OCR of 15.29 ± 0.73 pmol/min which is comparable to the 

non-treated controls: 13.7 ± 0.9 but at 5 µg/ml of curcumin exposure, OCR values 

dropped down drastically to 2.68 ± 0.35 (Figure 5.3 C). This clearly implies the 

mitochondrial dysfunction at curcumin concentrations of 5 µg/ml.  
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On the other hand, HUVECs treatment with CNG at 7.97 µg/ml having 

equivalent curcumin concentration of 5 µg/ml retained its OCR at 16.6 ± 1.0 pmol/min 

and showed no signs of mitochondrial dysfunction or damage to the cells. The overall 

response of the curcumin/CNG treated cells in the mitochondrial stress assay can be 

seen in figure 5.3 D, where a healthy response similar to non-treated controls was seen 

for 1 µg/ml curcumin and CNG (5µg/ml equivalent curcumin loading). Curcumin with 

5 µg/ml possessed no positive response towards the mitochondrial stress assay due to 

mitochondrial damage at that concentration.  

Therefore, all additional studies of mitochondrial oxidative stress protection, 

viable concentration i.e.  1 µg/ml for free curcumin and 5 µg/ml of equivalent curcumin 

for CNGs were used. To assess and test the prolonged protection of CNGs against 

mitochondrial oxidative stress, two standards were set for the design of the experiment: 

1) antioxidant treatment concentrations as stated above; and 2) concentration and 

exposure time to cells of oxidative stress inducer, H2O2 which is 0.25mM and 2 hours. 

This parameter was set so only mitochondrial bioenergetics were disturbed due to 

exposure but not the onset of cell necrosis/apoptosis which could result in added 

artifacts during OCR recordings. Mitochondrial respiration rate was measured as OCR 

(pmol/min) and the bioenergetics parameters are represented as basic OCR (pmol/min) 

as well as % OCR (after baseline normalization) to eliminate the effect of any variation 

in starting cell density as shown in figures 5.5 and 5.6.  Two hours H2O2 exposure by 

itself led to a drop in basal respiration, ATP-linked and maximal respiration 

respectively to 34.5 ± 3.0%, 21.6 ± 3.6% and 34.8 ± 11.3% OCR from 76.1 ± 6.0%, 

60.7 ± 5.7% and 149.6 ± 20.0% of the non-treated controls as shown in Figure 5.6 A, 

B and C. Curcumin treatments at 0, 12 and 24 hours prior to H2O2 addition did not aid 

in recovery of the OCR, basal respiration or maximal respiration, which were observed 
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to be 19.8 ± 10.2%, 25.0 ± 5.7% and 37.0 ± 26.7% respectively. In other words, viable 

concentrations of curcumin did not show any effective protection against mitochondrial 

OS. On the other hand, CNG (5) showed an enhanced OCR post H2O2 treatment at all 

exposure times giving basal OCR: 47.17 ± 3.93, 60.0 ± 2.0, 94.3 ± 10.0 as %OCR, 

ATP-linked OCR: 31.2 ± 7.5, 40.0 ± 14, 52.8 ± 5.2 and maximum respiration rates of 

336.5 ± 12.5, 198.6 ± 37.3 and 161.7 ± 11.7 respectively for 0, 12 and 24 hours of prior 

nanogel treatment.  
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Figure 5.5 Mitochondrial function parameters after pre-treatment of curcumin/CNG 
for 0, 12 and 24 hours followed by 2-hour exposure of 0.25 mM H2O2. 
Cells were subjected to mito stress assay with real-time OCR measurements using 
Seahorse XF96 instrument. (A) Basal respiration. (B) ATP-linked to mitochondria. (C) 
Maximum respiration. All OCR values are displayed as pmol/min. N=5, error bars: 
std. err. 
 
5.3 Discussion 

Significant efforts have been made to improve the delivery of mitochondria OS 

targeting drugs (e.g., MitoQ) with the help of nanocarriers, for the purpose of 

suppressing mitochondrial OS and reducing mitochondrial dysfunction [212, 213]. 

MitoQ is an ubiquinol moiety linked to a lipophilic triphhenylphosphonium (TPP) by a 

ten-carbon alkyl chain. A part of the TPP chain helps in the rapid cellular uptake of the 

drug loaded carrier across the cell membrane and further accumulation in mitochondria 

[214]. In vivo, MitoQ and its analogs (MitoVitE, MitoPBN) have shown positive results 

against Mito OS by inhibiting lipid peroxidation, ROS/RNS generation etc. [215]. TPP 
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based targeted antioxidant delivery approaches are most effective in rapid accumulation 

of antioxidants within the mitochondria, where the toxicity of the hydrophobic moiety 

(TPP) can result in nonspecific mitochondrial dysfunction, resulting in disruption of 

membrane integrity, respiration, and ATP production rate. This nonspecificity further 

depends on the amount of compound internalized. Therefore, the constraint is the 

amount of drug that can be delivered with TTP based nanocarrier so as to reach 

therapeutic levels before reaching disruptive concentrations [202, 216, 217]. Also, the 

ubiquinol based approaches may increase protection against peroxynitrite and 

superoxide radicals, but their efficacy has been reported to be small to negligible for 

one of the most significant oxidants (hydrogen peroxide H2O2) in cellular physiology 

[218].   

As an alternative, a number of studies have demonstrated the protective effect 

of curcumin towards mitochondrial dysfunction and mitochondrial OS [219, 220]. Most 

research has concentrated on neurodegenerative diseases and finding new therapeutics 

for Alzheimer’s [221, 222]. Curcumin has been shown to inhibit the depolarization of 

mitochondrial membrane potential as well as decreasing the levels of the pathological 

marker for the Alzheimer’s disease amyloid-β [223, 224]. Similar results were observed 

in aluminum induced mitochondrial dysfunction studies, malate induced OS commonly 

known as nephropathy etc. [206] [225]. These positive results and outcomes from such 

approaches are reported only from in vitro models, but there is very little evidence of 

positive results in vivo. Faster in vivo metabolism and the inability of curcumin to reach 

therapeutic concentration in the targeted micro-locations may be the cause of success 

in vivo rather than in vitro.  
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Figure 5.6 Mitochondrial function parameters presented as % OCR post total protein 
content normalization. 
 Pre-treatment of curcumin/CNG (5) for 0, 12 and 24 hours followed by 2-hour 
exposure of 0.25mM H2O2, subsequently subjected to mitochondrial stress assay with 
real-time OCR measurements using Seahorse CF96 instrument. (A) Basal respiration. 
(B) ATP-linked to mitochondria. (C) Maximum respiration. All OCR values are 
calculated as pmol/min. N=5, error bar: std. err. 
 

Using synthesized PβAE conjugated curcumin nanogels, our aim was to improve the 

delivery of curcumin in its active and stable form at therapeutic, yet non-toxic 

concentration, with enough time to treat the site of action before being metabolized. 

With a mere change in monomer concentrations keeping the molar ratio constant, the 

nanogel diameter could be varied from 50 to 250 nm, and the spherical nature was 

confirmed by scanning electron microscopy (Figure 5.1 A). As no other competing 

monomer in front of curcumin acrylate was present to react with the tetra-functional 

amine (TTD), we expect the theoretical starting monomer composition of nanogel 
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reaction to be the final composition of synthesized nanogel, which when calculated 

gives 62.8% curcumin loading by mass. To our knowledge, this was the highest 

curcumin loading ever reported in nanocarriers.  

These nanogels were synthesized by functionalizing the alcoholic group of 

curcumin into an acrylate conjugated into cross-linked PβAEs. At this point, hydrolysis 

released curcumin in its original structural form (Figure 5.2 B). This functionalization 

and conjugation step permits the structural stability of curcumin and prevents it from 

metabolized until released, potentially solving one of the in vivo limitations. Adding to 

the stability advantage, slow and uniform degradation of CNGs avoids the occurrence 

of any burst release, even at initial time points as shown in Figure 5.2 A (15% of the 

total released in first 10 hours or 28% release in first 20 hours). This is an important 

point to consider because burst release from drug carriers or high bolus doses of free 

curcumin start a pro-oxidant effect and, rather than act as a treatment drug, can be toxic 

in vitro to healthy tissues/endothelial cells. The uniform release profile of curcumin 

during degradation also helped increase the safety limit for curcumin treatment, giving 

IC50 values of more than 100 µg/ml as compared to free curcumin with IC50 values of 

5.3 µg/ml, observed after 24 hours of treatment with HUVECs (Figure 5.3 A). This 

would provide an option to treat an injury at higher and more effective dosage levels. 

Antioxidant potential of these nanogels with respect to time during degradation 

was initially analyzed by carrying out the TEAC antioxidant activity assay on all 

degradation samples. The cumulative increase in equivalent trolox content over time 

confirmed the protection of curcumin from losing its antioxidant activity in aqueous 

media until hydrolyzed from the polymer matrix (Figure 5.2 C). In other words, the 

functionality of the drug was kept intact until released. 
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Mitochondrial functional levels confirmed lower dose dependent cytotoxicity 

compared to free curcumin and prolonged active antioxidant release of CNGs. Seahorse 

XF96 analyzer recorded real time mitochondrial OCR in response to the treatments 

and/or mitochondrial stress assays specifically developed to determine basal respiration 

rates, ATP production, spare respiratory capacity, and maximal respiration. The dose 

dependent response post 24-hour treatment with 1 and 5 µg/ml of equivalent curcumin 

in CNGs showed no negative impact on OCR levels at either concentration. However, 

mitochondrial function/OCR was completely shut down with free curcumin at 5 µg/ml 

while 1 µg/ml was observed to be a safe concentration for mitochondria (Figure 5.3 C 

and Figure 5.3 D). These results comply with the cell viability assay (50% cell death at 

5 µg/ml) but show a more acute response, thus providing an opportunity to analyze our 

material at more sensitive levels. With this understanding, non-fatal curcumin and 

curcumin nanogel concentrations, 1 and 5 µg/ml respectively (Figure 5.3 C and 5.4 D), 

were used to specifically observe any change in mitochondrial function upon induced 

OS injury without causing cell death. 

We used H2O2 for mitochondrial OS insult because H2O2 is believed to induce 

mitochondrial dysfunction via sudden increase of ROS inside the mitochondria. This 

activity results in OS initiating cell necrosis and apoptotic processes. For the Seahorse 

XF96 studies, concentration and exposure time of H2O2 were selected to affect 

mitochondrial function without reaching the cells’ necrotic or apoptotic state. This 

allowed mitochondrial respiration and energy production potential to be monitored with 

no cell death effects. H2O2 concentration of 0.25 mM with 2-hour exposure was enough 

to show a decrease in ATP production (% OCR) from 60.8 ± 5.7 to 21.6 ± 3.6, drop 

down of mitochondrial respiration from 76.0 ± 6.0 to 34.5 ± 3.0 (Figure 5.6 A and B). 

Oligomycin, FCCP and antimycinA/rotenone were used as the titrant substrates 
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(mitochondrial stress test assay) to analyze the functional state of the mitochondria post 

H2O2 ± CNG/curcumin treatment. Interestingly, upon pre-treating the cells with CNGs 

(5 µg/ml) or curcumin (1 µg/ml) for 0, 12, 24 hours before the 2-hour exposure to 0.25 

mM H2O2, curcumin nanogels were able to retain and maintain the basal respiration 

rates, leveling to non-treated controls. Also, ATP-linked and maximum respiration 

analyzed after running stress assays for all treatment time scales was also higher than 

the H2O2 injury control group. In contrast, groups with 0, 12 and 24 hours of curcumin 

pre-treatment did not help the mitochondrion maintain basal respiration, ATP-linked 

production rates or maximum respiration rates, but were similarly low compared to 

H2O2 treated groups at those treatment times. As seen in Figures 5.4 and 5.5 A, B and 

C, mitochondrial bioenergetics worsened in curcumin groups simultaneously treated 

with H2O2 (t = 0), relapsing to H2O2 levels pretreatment time increased. A synergistic 

effect of curcumin and H2O2, where the pro-oxidant effect might have increased in the 

presence of another oxidant, may explain this. At t=0, when curcumin is at 20% 

concentration of its IC50 concentration i.e., 1 µg/ml along with H2O2 starts showing the 

pro-oxidant effect which decreases as curcumin active content starts reducing down 

with time due to curcumin molecular degradation and by 24 hour, cells would encounter 

the instant effect of H2O2 only. All this suggests that CNGs are benign to both the 

mitochondrion as a PβAE polymer matrix by itself and at a higher equivalent curcumin 

loading. This is due to the slow, steady curcumin release property of CNGs. Prolonged 

protection from Mito OS for at least 24 hours confirms the release of active curcumin 

when compared to no therapeutic effects shown by free curcumin. Therefore, a 

continuous supply of active antioxidant at therapeutically effective yet non-fatal 

concentrations would be capable of scavenging excess free radicals and suppressing 

mitochondrial oxidative stress and cell apoptosis. 
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5.4  Conclusion 

Curcumin conjugated PβAE nanogels (CNGs) were synthesized, resulting in a slow and 

steady release of active curcumin molecule and an increased limit for the safe 

concentration of the drug. This work demonstrates the importance of delivery and 

controlled release upon the functional impact of biologically unstable compounds such 

as polyphenolic antioxidants. These spherical nanogels effectively suppressed 

mitochondrial OS over a 24 hour period, which was confirmed by real-time 

mitochondrial respiration state using Seahorse XF96 analyzer.   
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6 PROTECTION FROM COPLANAR AND NON-PLANAR PCBS INDUCED 

TOXICITY USING CURCUMIN CONJUGATED PβAE NANOGELS 

Abstract 

Curcumin-PβAE nanogels (CNGs) were analyzed for their therapeutic potential against 

PCB induced toxicity/oxidative stress. Extensive studies conducted by the 

Environmental Protection Agency (EPA) with these chlorinated aromatic compounds 

have shown clear evidence of their carcinogenic and toxic effects on the immune 

system, reproductive and also nervous system to count a few. As such PCBs falls into 

two categories, coplanar and non-coplanar congeners and induce immunotoxicity 

through activation of different cellular receptors. The protective effect of slow 

curcumin releasing CNGs was analyzed against both coplanar (PCB 126) and non-

coplanar PCBs (PCB 153). Since, mitochondria are a more sensitive marker to such 

environmental toxicant exposure, real time mitochondrial bioenergetics were analyzed 

in response to PCB ± CNGs exposure. A dose dependent effect of both PCB 126 and 

153 was observed after 24-hour exposure with compromised mitochondrial function as 

well as overall cellular toxicity in endothelial cells. It was also observed that PCB 153 

induced higher toxicity to endothelial cells than PCB 126. As a potential treatment 

strategy, prior treatment with curcumin-PβAE nanogels before PCB exposure resulted 

in the restoration of mitochondrial bioenergetics and cell viability. This protective 

response with curcumin-PβAE nanogels was seen with both PCB 126 and PCB153. 

These results indicate that in spite of having different mechanisms for inducing toxicity, 

oxidative stress plays an important role in both manifestations and progression of the 

adverse effects. The fact that slow curcumin releasing CNGs protected cellular and 

mitochondrial function from PCB induced oxidative stress makes them a more versatile 

approach for PCB remediation. 
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6.1 Introduction 

Concern about environmentally persistent polychlorinated biphenyls (PCBs) mediated 

chronic health effects is continuously increasing over the years [226]. A number of case 

studies have shown that prolonged exposure to these chlorinated aromatic compounds 

can result in the development of symptoms related to cancer and neurotoxicity [227-

229]. Owing to these discoveries, PCB usage in industries was banned since 1976. But 

significant quantities of these compounds persist in soil, water, sea animals and in the 

human population as well [230, 231]. One of the underlying mechanisms for the PCB 

induced metabolic toxicity is thought to be oxidative stress, which is increased 

production of reactive oxygen species (ROS) than required for normal metabolic 

activity [232]. The continuous increased production of ROS can lead to cellular and 

mitochondrial membrane dysfunction, DNA damage, and disruption of membrane 

potentials leading to uncontrolled transfer of cytosolic nutrients and other components, 

resulting in total cell disruption, apoptosis and unwanted mutations [233]. Coplanar 

PCBs such as PCB 126 are thought to exert cellular toxicity via activation of aryl 

hydrocarbon receptor (AhR) followed by uncoupling of cytochrome P450 1A1 

(CYP1A1), a potential reason for increased ROS production [234, 235]. On the other 

hand, exposure to non-coplanar PCBs activates the nuclear receptor proteins: PXR and 

CAR. Continuous activation of these proteins can lead to cellular toxicity and other 

adverse effects leading to unwanted mutations [236]. Studies have also shown evidence 

of increase in mitochondrial superoxide (O2
.−) in MCF-10A and RWPE-1 epithelial cells 

post PCB 153 exposure. This again proves the increased ROS production and also 

mitochondrial dysfunction during the exposure time [237]. PCB 77, 126 and even 153 

post 6-hour exposure also induced oxidative stress in endothelial cells specifically, 

human umbilical vein endothelial cells (HUVECs). Because of the oxidative stress 
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involvement with PCB induced toxicity, antioxidants like resveratrol, quercetin, N-

acetyl cysteine, catalase, and epigallocatechin-3-gallate (EGCG) have shown potential 

to suppress oxidative stress and hence PCB induced inflammation when cells were pre-

exposed to these antioxidants before PCB administration [238-240]. An in vivo study 

performed with continuous supplements of green tea extract to mice during PCB 126 

exposure showed a significant decrease in oxidative stress markers after 12 weeks of 

exposure as compared to non-green tea extract control [241]. These findings suggest 

that metabolic PCB toxicity includes the incidence of oxidative stress significantly 

where increased mitochondrial ROS or mitochondrial oxidative stress (mito OS) plays 

an important part and that antioxidant supplementation can serve as a remedy treatment 

to the exposed subjects by suppressing oxidative stress. To further explore this PCB 

response in HUVECs, we studied the effect of coplanar PCB 126 and non-coplanar 153 

on overall cellular viability post 24-hour exposure to both kinds of PCBs and more 

importantly real time mitochondrial bioenergetics such as ATP production, maximal 

respiration rate. Response of human umbilical vein endothelial cells (HUVECs) was 

analyzed. Both of these studies showed a dose dependent decrease in viability and 

mitochondrial bioenergetics upon PCB administration. Also, pre-exposure of slow 

curcumin releasing curcumin-PβAE nanogels  (CNGs) showed significant recovery in 

cell viability as well as mitochondrial respiration upon 12 and 24-hour prior treatment, 

demonstrating the anti-inflammatory properties against PCBs (both coplanar and non-

coplanar) for a long period of time.  

6.2 Materials and methods 

6.2.1 Reagents  

 Curcumin was purchased from Chem-impex Int’l ‘Inc, (Wood Dale, IL). 4, 7, 10-

Trioxatridecane-1, 13-diamine (TTD), acryloyl chloride, triethylamine (TEA) and 
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potassium carbonate were bought from Sigma-Aldrich (St. Louis, MO). Sodium 

chloride, potassium phosphate, sodium phosphate and sodium dodecyl sulfate (SDS) 

were purchased from Fisher Scientific (Fair Lawn, NJ). Human Umbilical Vein 

Endothelial Cell line (HUVECs), EBM-2 basal medium and its growth factors were 

purchased from Lona, (Walkersville, MD). All solvents were purchased from Pharmco-

aaper (Shelbyville, KY) and were used as received unless specified. All media kit and 

cell culture plates for XF96 Seahorse experiments were purchased from Seahorse 

Bioscience (Massachusetts, USA). Calcein AM red-orange tracer was bought from 

Invitrogen (Grand Island, NY). PCB 126 and PCB 153 were bought from Accustandard. 

6.2.2 CA monomer and curcumin PβAE nanogels synthesis 

Curcumin acrylate monomer was synthesized by reaction of curcumin with acryloyl 

chloride at room temperature for 15 hours in the dark. The protocol for the reaction and 

purification was adopted as described in section 5.2.2  To synthesize curcumin PβAE 

nanogels, dried monomer product (CA) was dissolved in anhydrous acetonitrile at a 

concentration of 5 mg/ml.  A stock solution of TTD in acetonitrile at a concentration of 

1 g/ml was prepared and 11.5 µl (11.5 µg TTD), was added to 10 ml of CA solution. 

The system was allowed to react and precipitate into self-stabilized nanogels for 15-16 

hours in the dark. The nanogel suspension in acetonitrile was purified by diluting the 

suspension in anhydrous THF in the ratio of 1:4. After 2 washes, nanogels were 

suspended again in acetonitrile, centrifuged and the pellet was freeze-dried overnight 

to obtain dried nanogels. 

6.2.3 In vitro PCB toxicity 

In vitro cytotoxicity of PCB 126 and 153 on HUVECs was analyzed at three different 

concentrations after 24-hour exposure. HUVECs were seeded in a 96-well plate to 

about 80% confluency before the PCB administration. A 10 mM stock solution of both 
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the congeners (PCB 126 and PCB 153) was prepared in DMSO followed by dilution in 

EBM-2 media to a concentration of 15, 30 and 50 µM. Cells in each defined group were 

treated with 200 µl of PCB 126 and 153 solutions at the given concentration for 24 

hours.  After the treatment, incubation media was removed and all the wells were 

washed with fresh media followed by addition of 200 µl of 1 µM Calcein AM red-

orange live cell tracer. After 1 hour of incubation with live cell tracer, media was 

removed from each well and fresh media was added. Fluorescence for the plate was 

read with excitation/emission wavelengths of 540/590 nm using BioTek Synergy Mx, 

Gen5 2.0, Winooski, VT fluorescence spectrophotometer to determine the viability of 

the cells post PCB exposure.  

6.2.4 Effect of CNG treatment on PCB induced toxicity 

Protection from PCB induced toxicity or cell death with the help of CNG was also 

analyzed after different antioxidant pre-exposure times. HUVECs were pre-treated with 

10 µg/ml of CNGs for 0, 12 and 24 hour followed by 24-hour exposure to 50 µM PCB 

126 or 153. Cells were subjected to Calcein AM red-orange fluorescence assay post 

exposure to analyze the cell death due to PCB ± CNG after different pre-treatment 

times. 

6.2.5 Measurement of real-time mitochondrial bioenergetics due to PCB 

exposure, with and without CNG  

Seahorse XF-96 Flux Analyzer (Seahorse Bioscience, North Billerica, MA) was used 

to monitor real-time respiration rates of mitochondrion after PCB 126 and 153 exposure 

for 24 hours and also any protective effect due to CNG treatment. By measuring oxygen 

consumption rates (OCR) and extracellular acidification rates (ECAR) with time, 

various mitochondrion respiratory parameters of treated cells were analyzed including 
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basal respiration, ATP production rate, maximum respiration rates and spare respiratory 

capacity using mitochondrial stress assay.  

To carry out the experiment, HUVECs were 1st seeded in a Seahorse 96-well tissue 

culture plate at a seeding density of 35000 cells/well. Cells were allowed to adhere 

overnight, after which different combinations of PCB ± CNGs treatment were given.  

6.2.5.1 Effect of PCB exposure on HUVECs 

As a first step, HUVECs were treated with 15, 30 and 50 μM of PCB 126 or 153 for 24 

hours, after which cells were subjected to the mitochondrial stress assay. Prior to the 

assay, cells were washed and the medium was replaced with 175 μL of FX media (FX 

Assay Modified DMEM from Seahorse Bioscience with 5.5 mM Glucose, 1 mM 

Pyruvate, and 2 mM Glutamix). Cells were incubated at 37° C in CO2 free incubator 

after which the cells were subjected to the stress assay. The mitochondrial stress assay 

consists of series of injections of inhibitor drugs: (A) Oligomycin A (1 µM), which act 

as ATP synthase inhibitor; (B) FCCP (1 µM), an uncoupling agent; and (C) a mixture 

of 1 µM Rotenone and 1 µM Antimycin A, each used as inhibitors for mitochondrial 

respiratory chain complex I and III to shut down the mitochondrial oxygen 

consumption. OCR and ECAR were measured for 3 minutes with 3 minutes interval 

cycles. The inhibitor drugs were injected in series of A, B and C after the 3rd cycle of 

the previous one. 

After the measurement was completed, the protein content in each sample was 

determined using BCA assay (Thermo Scientific, Rockford IL). Therefore, post stress 

assay, media was removed from all the wells and replaced with 25 µL of cell lysis buffer 

containing 0.32 mM Sucrose, 2 mM EDTA, 2 mM EGTA, 20 mM HEPES, pH 7.4, 

containing protease inhibitors 4 μg/mL leupeptin, 4 μg/mL pepstatin, 5 μg/mL 
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aprotinin, and 0.2 mM PMSF and plates were stored in -20o C overnight to lyse the cell 

membrane. 

Plates were taken out the next day and thawed to room temperature and put on an orbital 

shaker for an hour. Known amounts of protein standards (2.5 μg, 5.0 μg, 10 μg etc.) 

were added in the background wells of the plate to construct an optical density standard 

curve. Unknown protein levels of the samples were determined by measuring optical 

density using an iMark plate reader (Bio-Rad, Hercules, CA). Finally, the obtained 

OCR values as pmol/min were normalized to protein levels as pmol/min/μg and finally 

calculated as percent change (%OCR) from the third basal measurement for each group.  

6.2.5.2 Analysis of protective effect of CNGs against PCB induced mitochondrial 

toxicity 

To analyze the protective effect of CNGs against PCB-induced cytotoxicity or cellular 

oxidative stress, HUVECs seeded at a density of 35000 cells/well were first pre-

incubated with 5 μg/ml of CNGs suspended in EBM-2 media for 12 and 24 hours. 

Media from the well plates was removed and a solution of PCB 126 or PCB 153 

prepared in EBM-2 media at a concentration of 30 μM was added to the pre-treated 

cells for 24 hours. Cells were then subjected to the mitochondrial stress assay. The same 

protocol for mito stress assay was followed as discussed in section 6.3.4.1 for just PCB 

exposure. Basal respiration, ATP production, maximum respiration and spare 

respiratory capacity for each treatment groups were again calculated in terms of percent 

OCR after protein normalization. 5 μg/ml concentration of CNG was used after 

verifying it to be a viable concentration for mitochondrial bioenergetics, while 30 μM 

of PCBs was used in order to disturb the mitochondrial bioenergetics but not shut down  

down the cellular metabolism completely. 
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6.3 Results 

6.3.1 Measurement of cell toxicity after 24 hour PCB 126 and 153 exposure 

6.3.1.1 Cell viability 

After 24-hour exposure of PCB 126 or 153 to HUVECs, dose dependent toxicity was 

observed for both PCB congeners. Cell viability of PCB 126 exposure at 15, 30 and 50 

μM was calculated to be 93 ± 4.7, 89 ± 2.5 and 79.8 ± 5 % of non-treated controls 

respectively (Figure 6.1). On the other hand, PCB 153 was found to show higher 

toxicity than PCB 126 at the same concentrations and cell viability post exposure was 

found to be 97.9 ± 2.5, 74.4 ± 0.6 and 45.6 ± 4.5 % of non-treated controls for 15, 30 

and 50 μM respectively (Figure 6.1).  

 

Figure 6.1 HUVECs viability after 24-hour PCB 126 and 153 exposures. 
Cell Viability was determined using Calcein AM red-orange live cell tracer. Dose 
dependent exposure showed a decrease in viability with an increase in PCB 
concentrations. N=5, error bars: std. dev. 
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6.3.1.2 Mitochondrial bioenergetics 

A more acute response on mitochondrial bioenergetics was observed at 30 and 50 μM 

after 24-hour exposure with basal respiration, ATP production rates, maximum 

respiration and spare respiratory capacity as well, when compared with cell viability at 

similar exposure concentrations. Here also, PCB 153 showed more acute response than 

PCB 126 at same concentrations (Figure 6.3). While basal respiration rates for PCB 

126 as percent OCR were 76 ± 5, 53 ± 6 and 60 ± 5 after 24-hour exposure of 15, 30 

and 50 μM respectively, PCB 153 exposure under similar conditions resulted in an 

intense response of 74 ± 3, 49 ± 7 and 0 % OCR at given increasing concentrations 

(Figure 6.3). These OCR values for 30 and 50 μM were found to be significantly lower 

than the non-treatment control with basal respiration of 78 ± 5. In the case of ATP-

linked with mitochondrial respiration, % OCR of 47 ± 7, 40 ± 3 and 28 ± 3 for PCB 

126; for PCB 153, 59 ± 4, 15 ± 12 and 0 was calculated after 15, 30 and 50 μM exposure 

respectively (Figure 6.3). Calculating maximum respiration gave the value of 183 ± 6, 

145 ± 6 and 161 ± 3 for PCB 126; 179 ± 10, 82 ± 38 and 0 for PCB 153 with increasing 

concentrations mentioned above (Figure 6.3). Spare respiratory capacity was also 

calculated as % OCR 116 ± 10, 77 ± 12 and 78 ± 6 for PCB126; 104 ± 10, 53 ± 21 and 

0 for PCB153 at increasing concentrations of 15, 30 and 50 μM respectively (Figure 

6.3).  
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Figure 6.2 Mitochondrial oxygen consumption rate profile observed during 
mitochondrial stress assay.  
All the bioenergetics shown in figure 6.3 and 6.5 were calculated according to the 
schematic shown in this figure.  
 

 

Figure 6.3 Mitochondrial bioenergetics parameters of HUVECs after 24-hour 
exposure to variable concentrations of PCB 126 or PCB 153.  
The cells were subjected to the mito stress assay measuring real-time OCR values using 
Seahorse XF96 instrument. All the parameters after the assay were calculated in 
accordance with figure 6.2. N=5, error bars: std. err. 
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6.3.2 Protection from PCB 126 and 153 induced toxicity using CNG 

6.3.2.2 Cell viability  

A higher concentration of PCBs (i.e. 50 μM) was used in an in vitro cell viability assay 

in order to get a significant difference in response with respect to non-treated controls. 

As seen in figure 6.4, PCB 126 after 24-hour exposure resulted in 50% cell death while 

PCB 153 showed 98% cell death. Increasing cellular viability was observed with 

increase in CNG pre-exposure time and with 24-hour pre-exposure, cell viability was 

increased to 83 ± 6% for PCB 126 exposed cells and 11 ± 2 for PCB 153 exposed cells.  

 

Figure 6.4 HUVECs viability analyzed after 0, 12 and 24-hour exposure to CNGs 
followed by 24-hour exposure to 50 μM PCB 126 or PCB 153.  
Viability was determined using Calcein AM red-orange live cell tracer. 24-hour CNGs 
pre-exposure significantly increased % live cells post PCB 126 or 153 exposures 
showing effective protection against PCB induced toxicity. N = 5, error bars: std. dev. 
 
6.3.2.3 Mitochondrial bioenergetics 

To analyze the protective effect of CNG on mitochondrial function due to PCB 126 and 

153 exposures, HUVECs were exposed to 5 μM  (equivalent curcumin loading) CNGs 

for 12 and 24 hours, post which cells were washed and incubated with 30 μM of PCB 

for another 24-hour (Figure 6.5). CNGs after both 12 and 24-hour pre-exposure showed 

partial restoration of healthy mitochondrial functions for all its bioenergetics properties. 

Table 6.1shows the % OCR values for basal respiration, ATP-linked to the 
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mitochondrion, maximum respiration rates and spare respiratory capacity for the treated 

samples.  

 

Figure 6.5 Mitochondrial bioenergetics of HUVECs after 12 and 24-hour exposure 
of CNGs followed by 24-hour exposure to 30 μM PCB 126 or 153.  
CNG were washed off the wells prior to PCB incubation. The cells were subjected to 
mito stress assay measuring real-time OCR values using Seahorse XF96 instrument. 
All the parameters after the assay were calculated in accordance with figure 7.2. N = 
5, error bars: std. err. 
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Table 6.1 Mitochondrial bioenergetics after PCB ± CNGs exposure to HUVECs as 
% OCR after protein normalization.  
CNGs pre-exposure for 12 and 24 hours resulted in partial restoration of healthy 
mitochondrion function showing the protective effect of CNGs on PCB induced toxicity. 
N = 5, error bars: std. err. 
 

  - CNGs + CNGs 
  CNG pre-exposure 

time   12 h 24 h 

Basal 
respiration 

Control 71 ± 5 -  80 ± 10 
PCB 126 54 ± 5 65 ± 6 62 ± 2 
PCB 153 47 ± 4 60 ± 12 65 ± 4 

  

ATP linked 
Control 49 ± 3  - 54 ± 7 

PCB 126 37 ± 6 52 ± 5 43 ± 3 
PCB 153 28 ± 8 44 ± 7 47 ± 11 

  
Maximum 
respiration 

Control 194 ± 4  - 207 ± 23 
PCB 126 134 ± 10 180 ± 13 188 ± 11 
PCB 153 126 ± 21 174 ± 12 218 ± 26 

  
Spare 

respiratory 
capacity 

Control 122 ± 2  - 166 ± 34 
PCB 126 80 ± 6 113 ± 7 118 ± 6 
PCB 153 58 ± 24 114 ± 13 116 ± 12 
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Figure 6.6 Mechanism of free radical production due to intracellular PCB 
metabolism for coplanar PCBs resulting in mitochondrial oxidative stress and finally 
cell death. 

6.4 Discussion 

PCB induced toxicity is not an immediate or acute effect but a long term event of slow 

cellular dysfunction that aggravates over time and leads to major metabolic disorder 

eventually. This is because it is found at very low concentrations in soil, water, air and 

sea animals. The underlying cause for this chronic response is due to development of 
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an oxidative stress (OS) condition via different activation pathways. OS is an 

imbalanced metabolic redox state in the body with increased oxidants or free radical 

species/reactive oxygen species (ROS) concentrations. A simple mechanism is depicted 

in figure 6.6, where superoxide anion produced due to enzymatic action 1st results in 

mitochondrion OS (most prone sight for increased free radical production), dysfunction 

of which ultimately leads to cell death. 

To analyze the oxidative damage due to PCB exposure, HUVECs were subjected to 

PCB 126 and 153 exposure for 24-hour at variable concentrations, which resulted in 

increased toxicity with increasing concentrations (Figure 6.1). A more acute response 

was observed at a mitochondrial level as compared to overall cellular function (Figure 

6.3). This is because, oxidative stressed induced mitochondrial dysfunction occurs prior 

to overall cellular toxicity. Therefore, monitoring mitochondrial bioenergetics served 

as a sensitive marker to study the acute response due to these chemical pollutants. Use 

of Seahorse Bioscience XF96 further aided the analysis because of its ability to monitor 

mitochondrial respiration in real time, a novel and non-invasive strategy for the in vitro 

systems.  

Further, the loss in mitochondrial function was more severe with PCB 153 (non-

coplanar) as compared to PCB 126 (coplanar), where at 50 μM, cells completely lost 

its mitochondrion function shutting down the metabolic activities. This is opposite to 

few studies in the literature showing more acute toxic effects due to coplanar PCBs 

(PCB 77, 126 etc) than non-coplanar ones.  A possible explanation to these observations 

could be because most studies concentrated on analyzing the response by quantification 

of AhR activation, which is well known and induction path for coplanar PCBs but not 

for non-coplanar [242] [243]. But there have been other evidence showing toxic nature 
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of PCB 153 via nuclear receptor proteins, chronic activation of which can result in 

various disease syndrome and has been associated with breast cancer etc [227, 244].  

As both the toxicity induction routes involve excess production of ROS, administration 

of curcumin through conjugated prodrug PβAE nanogels (CNGs) system served as a 

potential solution to prevent oxidative damage. These nanogel formulations are 

hydrolytically degradation systems with steady and prolonged drug release kinetics. 

Therefore, treating HUVECs with CNGs prior to PCB exposure showed reduced 

toxicity as compared to only PCB treated controls (Figure 6.4). The effect was more 

pronounced at the mitochondrial level, where partial to full recovery of mitochondrial 

bioenergetics (basal respiration, ATP-linked, maximum respiration, spare respiratory 

capacity) was seen with CNGs pre-treated groups (Figure 6.5). Also the fact that CNG 

administration was able to inhibit mitochondrial as well as cellular toxicity due to both 

coplanar and non-coplanar PCBs indicates the presence of oxidative stress in the injury 

path, irrespective of the different receptors being activated. Hence, administration of 

curcumin via CNGs becomes an adaptable approach to remediate cellular toxicity due 

to all kinds of PCBs.  

Another possible pathway behind inhibition of PCB induced toxicity would be direct 

capturing of PCBs by polyphenolic curcumin via pi-pi bond interactions. This will 

inhibit the interaction of chlorinated compounds with cellular components, thereby 

reducing the possibility of fatal metabolic response.    

6.5 Conclusion 

PCB 126 and PCB 153 both showed toxic effects towards HUVECs, compromising 

mitochondrial function after 24-hour exposure at variable concentrations. PCB 153 

showed more acute response than PCB 126 which complies with a few studies in the 
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literature while opposes most of the other studies with toxicity comparisons of coplanar 

and non-coplanar. Irrespective of this difference, curcumin conjugated PβAE nanogels 

(CNGs) with the slow and steady curcumin release property were able to suppress both 

mitochondrial as well as overall cell toxicity. This response is thought to be through 

either or a combination of two mechanisms, which includes suppression of oxidative 

stress due to antioxidants and capturing of PCBs by curcumin through physical pi-pi 

interactions. 
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7 SYNTHESIS AND CHARACTERIZATION OF CURCUMIN PβAE GEL 

MICROPARTICLES TO TREAT ORAL MUCOSITIS 

Based on the research article to be submitted: 

 Prachi Gupta, Sandeep Ramineni, J. Zach Hilt, Thomas Dziubla, Joseph Wyse, 

Nihar Shah, Curcumin conjugated Poly (β-Amino Esters) gel microparticles to treat 

oral mucositis (Biomaterials) (to be submitted) 

Note: The information in this chapter is the intellectual property of Bluegrass Advanced 

Materials LLC., not be disclosed in public. 

Abstract 

Oral mucositis (OM) is a very common and serious side effect of anti-cancer radiation 

and chemotherapies that manifests as deep and painful mouth ulcers. Oxidative stress 

(OS) is one of the key underlying mechanism in the development of OM. Therefore, 

curcumin (an antioxidant) has been extensively studied as an antioxidant and anti-

inflammatory agent towards OS treatment. In the case of OM, it has shown positive 

signs towards delaying the onset and also reducing the severity of OM. However, it 

requires about 4-5 rinses per day, a total dosage ranging from 1-3 g per day, to stay in 

the therapeutic window for treatment. This is because of a combination of fast 

metabolism, rapid degradation and poor aqueous solubility of the hydrophobic 

antioxidant. In order to improve the bioavailability of this drug in buccal tissues and 

improve patient compliance, curcumin was converted into biodegradable curcumin-

poly(beta-amino ester) (PβAE) polymer (poly(curcumin)) microparticles. These 

poly(curcumin) microparticles provide slow sustained release of the original active 

curcumin.  Synthesized via Michael addition, acrylate functionalized curcumin 

(curcumin acrylate (CA)), PEGDA (co-monomer), and TTD (primary diamine 
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crosslinker) were reacted together into a PβAE polymer film and cryogenically milled 

into microparticles in the range of 20-25 μm. Poly(curcumin) formulations were 

prepared with different co-monomer molar ratios (CA v/s PEGDA) showed variable 

release profiles of active curcumin. Poly(curcumin) microparticles with a molar ratio 

of 70:30 CA:PEGDA and RTAAP of 1.0 showed the best combination of drug release 

profile and adhesion to buccal tissues. This selected formulation further showed 

prolonged protection against H2O2 induced oxidative stress in vitro with normal human 

dermal fibroblasts. A preliminary in vivo study in Syrian hamsters induced with OM in 

their cheek pouches showed that treatment with poly(curcumin) microparticles reduced 

the severity of induced OM, protein carbonyl content, and epithelial layer damage. 

7.3 Introduction 

Oral mucositis is a pathological condition in patients undergoing cancer treatments 

resulting in inflammation of oral mucosa, which manifests as oral ulceration, erythema, 

and severe pain. The discomfortness is a long-term and persistent response to patients 

undergoing chemo- and/or radiation therapies as anti-cancer treatments [245]. This 

response usually occurs after 7-10 days of undergoing anti-cancer treatment, peaks at 

about 7-9 weeks after beginning of the therapy and persists for up to 2-10 weeks after 

the end of the treatment depending on the patient’s physical conditions and type of 

therapy [245, 246]. Though a side effect, this oral pain impacts the food intake of the 

patient, leads to oral infections, dehydration, weight loss, sometimes requiring extended 

hospitalization and even forcibly stalling the cancer treatment in between. On an 

average about 5-15% of the patients undergoing any kind of anti-cancer therapy suffer 

from OM. More acutely, 40% of the subjects getting treated with 5-fluorouracil and 

about 50% with radiotherapy tend to get OM [247]. The severity increases with patients 

suffering from head and neck cancer where 100% of the patients receiving cancer 
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treatment suffer from this condition of OM [248]. Therefore, there has been a 

continuous need for treatment and prevention of OM. Though the standard care 

procedures include the use of palliatives including intravenous narcotic analgesics, 

lubrication and analgesic mouth rinses (lidocaine), these have shown poor efficacy and 

low patient compliance [249-251]. Palifermin has been the only drug approved by FDA 

to be administered to the patients undergoing anti-cancer therapy [252]. Palifermin, 

which is keratinocyte growth factor-1 (KGF-1), is thought to inhibit epithelial cell 

damage, down-regulating pro-inflammatory cytokines as well as enhancing the growth 

rate of epithelial cells during the infectious state [253, 254]. Besides being selectively 

effective in patients suffering from hematological malignancies, Palifermin is an 

expensive drug with an average cost of about 8000 euros per treatment for a 70 kg 

patient over 6 days [255]. Other palliative treatments are also provided to patients, like 

Mugard and NeutraSal in the form of oral rinse or gels.  These can temporarily soothe 

the oral discomfort conditions and provide primarily pain management solutions but 

not treatment or curing solutions [256-258]. Practically no single preventive or curative 

measure without side effects or limitations yet effective for the diverse population has 

been found and approved towards oral mucositis while research still continues to find 

the basic cause and solution to the problem. 

Studies have shown that the long duration curve of this disease shows some lasting 

effects or morphological changes in the tissues apart from the acute toxicity resulting 

in instant cell death.   The longer effect of OM is thought to be arising via a complex 

trajectory of biomolecular, cellular changes leading to epithelial layer damage and sub-

epithelial cells damage associated with upregulation of nuclear factor kappa beta 

(NFkB) and interleuken-1 [259, 260]. These phenomena can be considered as a sensor 

to oxidative stress (OS) where the physiological environment or the cellular matrix 
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encounters an increased production of free radicals or ROS. The increased ROS 

production is a cyclic cascading event resulting in an imbalanced redox state of the cell. 

This leads to DNA, cellular membrane damage and finally cell apoptosis and necrosis, 

inhibiting epithelial layer proliferation ultimately resulting in ulceration [261]. Hence, 

OS is one of the base causes of the initiation and propagation of the OM until the body 

comes into its state of fighting OS naturally or by providing enough antioxidants to 

restore the redox balance [262]. 

A few studies have shown that certain drugs/molecules with antioxidant properties like 

hyaluronic acid (HA), vitamin E, curcumin and green tea extracts like epicatechin can 

control the symptoms of OM. For example, a human trial with Gelclair (0.2% HA 

containing gel) showed occurrence of fewer ulcers after day 5 of treatment as compared 

to placebo. The underlying mechanism for this response is thought be due to the anti-

inflammatory nature of HA which upon rinsing coats the oral mucosa, enhances tissue 

hydration and helps in decreasing inflammation [263]. Similarly, curcumin, extracted 

from the spice turmeric has also been investigated for its antioxidant effect towards 

treatment and prevention of OM. In a recent pre-clinical trial with beta-radiated rats, 

administration of curcumin via oral gavage showed reduced incidence and severity of 

OM due to inhibition of the activation of NF-kB factor [264, 265]. Similarly a recent 

human clinical trial with subjects given turmeric mouth rinses showed delayed as well 

as reduced intensity of radiation-induced OM at all times during the treatments as 

compared to the placebo controls due to the presence of curcuminoid elements in 

turmeric. But this treatment required multiple dosage regimes of oral rinsed  4 times a 

day every 4 hours to see the effective treatment against OM [266-268]. Curcumin as a 

polyphenolic molecule undergoes rapid metabolization and shows low bioavailability 

once administered into the physiological environment [269-272]. This quick loss of 
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drug upon administration force the patient to go for multiple dosing frequency in order 

to stay in the therapeutic window. This becomes a cumbersome treatment process for 

patients already undergoing cancer therapy and can sometimes become a barrier during 

chemo or radiation treatments. Therefore, as a proposed solution, in this work we have 

aimed at formulating a mucoadhesive system with hydrolytically biodegradable PβAE 

poly (curcumin) gel microparticles,  These polymer microparticles are tuned to release 

curcumin uniformly over 12-16 hours in order to fight and protect against oxidative 

stress  induced OM during cancer therapies. The prolonged delivery would increase the 

efficacy in treating OM and improve the patient compliance in the long run, decreasing 

the dosage frequency to as low as once a day. To formulate the curcumin conjugated 

PβAE microparticles, phenolic groups of curcumin were 1st functionalized into 

acrylates forming curcumin acrylate (CA). CA was then covalently conjugated with 

TTD and its co-monomer PEGDA into PβAE gel films via Michael addition reaction. 

The advantage of using PΒAE chemistry lies behind (i) its property of getting 

hydrolyzed in an aqueous environment (ii) ability to tune polymer degradation based 

on the hydrophilic/hydrophobic nature of the monomers and (iii) protection of the 

active alcoholic groups of curcumin until released due to ester hydrolysis. Further 

synthesized gel films were cryo-ground into microparticles and suspended in a 

mucoadhesive solution, which served as a mouth rinse carrier to deliver the 

poly(curcumin) microparticles. These micron-sized particles showed tunable 

degradation properties by varying the molar ratios between curcumin acrylate and 

PEGDA. A continuous and steady release of active curcumin ranging from 12-24 hours 

was observed for different PΒAE gel microparticle formulations. The poly(curcumin) 

microparticles were observed to be relatively less toxic than free curcumin towards 

normal human dermal fibroblasts (NHDF). Also, they did not show any negative or side 
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effect when administered to healthy hamsters for 10 days, implying a viable nature of 

the system in vivo. Adding to this, these microparticles showed protection against 

induced oxidative stress, in vitro for over 36 hours. Suspending the microparticles in a 

pre-formulated mucoadhesive solution allowed ease for local delivery of curcumin to 

buccal tissues of hamsters. Giving a daily rinse of this suspension over 10 days showed 

reduced severity of OM in chemotherapy-induced OM hamsters. 

7.4 Materials 

All the solvents received were ACS/HPLC grade and were used as received. Other 

chemicals were also used as received without any further purification. Curcumin was 

purchased from Chem-Impex International, Inc, Wood Dale, IL. 4,7,10-

Trioxatridecane-1,13-diamine (TTD) (97% purity), poly(ethylene glycol) diacrylate 

(PEGDA, average molecular weight 575), acryloyl chloride (≥97%, ~400 ppm 

phenothiazine stabilizer), anhydrous potassium carbonate, magnesium stearate, 2,2′-

azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Trolox, 2,7-

dihydrodichlorofluorescein (H2DCFDA), 2,4-dinitrophenylhydrazine (DNPH), 

trichloroacetic acid (TCA), guanidine hydrochloride, and bovine serum albumin (BSA) 

were bought from Sigma-Aldrich, St. Louis, MO. Sodium chloride, potassium 

phosphate, sodium dodecyl sulfate (SDS) and potassium thiocyanate was purchased 

from Fisher Scientific. Sodium hydroxide was purchased from EMD Millipore, 

Billerica, MA. Potassium chloride, potassium phosphate monobasic, sodium phosphate 

dibasic heptahydrate, calcium chloride dihydrate, and citric acid were purchased from 

Amresco, Solon, OH. Sodium phosphate dibasic dodecahydrate and triethylamine 

(TEA) (99%) was purchased from Acros Organics, NJ. Ham’s F-12 media with L-

glutamine and without phenol red was purchased from Caisson Laboratories Inc., 

Smithfield, UT. Pen/strep/fungizone as a media supplement was purchased from Lonza, 
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Walkersville, MD. Calcein AM red-orange was purchased from Life Technologies, 

Carlsbad, CA, All solvents were purchased from Pharmco-Aaper, Shelbyville, KY and 

were used in anhydrous form by drying over 4Å molecular sieves. Noveon AA-1 and 

Carbomer 971P NF were generously gifted by Lubrizol Corporation, Cleveland, OH. 

Eudragrit L100 was gifted by Evonik Industries, Tippecanoe, IN.  Porcine buccal 

tissues were obtained from Animal Technologies Inc., Tyler, TX. 

7.5 Methods 

7.5.1 Synthesis of curcumin acrylate 

Functionalization of hydroxyl (-OH) groups of curcumin into acrylate esters was done 

by reacting curcumin with acryloyl chloride as described in Wattamwar et al [178] with 

few process variations. Briefly, acryloyl chloride (19.8 ml, 0.2442 moles) was added 

dropwise to a solution of curcumin (30 g, 0.0814 moles) and trimethylamine (TEA, 

34.1 ml, 0.2442 moles) in anhydrous tetrahydrofuran (THF), stirring continuously at 

300 rpm. The reaction vessel was kept in an ice bath during the addition of acryloyl 

chloride in order to dissipate heat generated from the exothermic reaction of acryloyl 

chloride with curcumin. After purging the reaction vessel with ultrahigh purity nitrogen, 

the reaction was allowed to proceed for about 16-18 hours in dark at room temperature. 

The resultant product was vacuum filtered to remove the TEA-Hydrogen chloride salt. 

The THF was evaporated under vacuum to obtain a semi-dry orange to a light brown 

impure product. The product was re-dissolved in dichloromethane (DCM) and washed 

with 3x volume excess of hydrochloric acid (0.1 M in DI water) followed by potassium 

carbonate (0.1 M in DI water) to remove excess TEA and acryloyl chloride respectively. 

Residual water was removed by adding anhydrous magnesium sulfate to the DCM 

solution, which was removed by vacuum filtration at the end. The DCM was evaporated 

using vacuum for 16-18 hours to obtain dry, crystalline, orange colored microparticles 

129 
 



  

of curcumin acrylate (CA). The CA product was stored desiccated at -20°C until further 

use. The CA was characterized using reverse-phase HPLC (Shimadzu Prominence) 

with a Phenomenex Luna C18 column (4.6 x 250 mm, 5 µm particles) with 0.1% w/w 

phosphoric acid in DI water and acetonitrile as the mobile phase. The products (residual 

free curcumin, monoacrylate, diacrylate and triacrylate) were detected at 420 nm using 

a UV-Vis detector (SPD-20A) attached to the HPLC. 

7.5.2 Synthesis of poly(curcumin) film 

Crosslinked poly(curcumin) PβAE films were synthesized via a single-step Michael 

addition reaction between curcumin acrylate and the primary diamine crosslinker, 4, 7, 

10-Trioxatridecane-1, 13-diamine (TTD). PEGDA was added as a diacrylate co-

monomer to control the hydrophilicity and hence the degradation characteristics of the 

resulting films. Poly(curcumin) films with four different ratios of CA: PEGDA with 

respect to number of acrylate groups, 60:40, 70:30, 90:10 and 100:0, were synthesized. 

For example, in the 60:40 film, 60% of the acrylate groups were contributed by CA 

versus 40% by PEGDA. These films and subsequently their microparticles will be 

abbreviated as C60, C70, C90 and C100 respectively. The molecular weight of CA was 

taken as 476.47 g/mole which is the molecular weight of its diacrylate form. Finally, 

the amount of TTD required to synthesize the films was calculated based on three 

different ratios of total acrylate groups to amine protons (RTAAP) of 0.8, 1.0 and 1.2. 

As an example, a C60 poly(curcumin) film with RTAAP of 1.0 and target mass of 2 g 

was synthesized by dissolving 0.913 g of CA in 1.5 ml of anhydrous methyl ethyl 

ketone (MEK). PEGDA (0.735 g) and TTD (0.352 g) were reacted together for 5 

minutes in 1.5 ml of MEK separately. After 5 minutes, the CA solution was quickly 

added to the reacting PEGDA-TTD solution while gently vortexing the PEGDA-TTD 

solution at low rpm. This reacting solution was quickly poured into an aluminum dish, 
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covered with foil and allowed to react for 1 hour at room temperature. After 1 hour, the 

aluminum dish was incubated at 50° C for another 23 hours, after which the crosslinked 

poly(curcumin) film was peeled off from the dish for further processing. A similar 

procedure was followed to synthesize C70, C90 and C100 PΒAE films with three 

different RTAAP values (0.8, 1.0 and 1.2). 

7.5.3  Washing and cryogenic milling of poly(curcumin) Films 

7.5.3.2 Extraction of leachables 

All freshly synthesized poly(curcumin) films were washed in anhydrous acetone to 

leach out any unreacted monomers and un-crosslinked components. Each film was 

placed in a 50 ml centrifuge tube, filled with 20 ml of acetone and covered with foil. 

The sealed tube was rotated at 25 rpm for 4 hours with the acetone replaced every hour. 

Every hour, an aliquot of the acetone containing the leachable from each tube was 

stored at -20° C for quantification of the lost curcumin using UV-Vis 

spectrophotometry. After washing, the films were lyophilized to remove residual 

solvent. 

7.5.3.3 Cryogenic milling 

The washed and lyophilized poly(curcumin) films were milled into microparticles 

under cryogenic conditions using a SPEX SamplePrep 6770 Freezer/Mill. Briefly, a 

film was cut into smaller pieces and loaded into the grinding vial assembly along with 

1% w/w magnesium stearate (as a glidant). The loaded sample was pre-cooled under 

liquid nitrogen for 2 minutes followed by milling for 10 minutes with the stainless steel 

impactor moving at a speed of 15 cycles per second. After the milling cycle was 

complete, the vial assembly containing the poly(curcumin) microparticles was wrapped 

in paper towels and allowed to equilibrate to room temperature for about 1 hour. The 
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microparticle sample was then retrieved and the mass noted. The microparticle samples 

were stored desiccated at -20° C until further use. 

7.5.4  Particle size characterization 

The particle size distribution of the poly(curcumin) microparticle formulations was 

analyzed using a Shimadzu SALD-7101 UV particle size analyzer operated using 

WingSALD software (ver. 1.02, Shimadzu). The refractive index was set to 1.4. The 

quartz cuvette was filled with DI water and used to blank calibrate the instrument. Next, 

about 2-3 mg of microparticle sample was added to the cuvette, mixed with the provided 

L-shaped stirrer and then sonicated for 2 minutes. The sample was measured in the 

instrument under stirring. The instrument software automatically provided the mean 

particle size and the size distribution for each sample. Each sample was measured in 

triplicate. 

7.5.5 Poly(curcumin) microparticle degradation and curcumin release 

Five milligrams of the poly(curcumin) microparticle sample were suspended in 10 ml 

of phosphate buffered saline (PBS, pH 7.4) by bath sonication for 2 minutes. Since 

curcumin has poor solubility in water, 0.1% w/w sodium dodecyl sulfate (SDS) was 

added to the PBS to ensure complete solubility of the released curcumin. The sample 

suspension was incubated at 37° C in a water bath with shaking at 70 rpm. Every 2 

hours, the suspension was centrifuged at 5000 rpm for 5 minutes and the supernatant 

was withdrawn and stored at -20° C for further analysis. The microparticle pellet was 

re-suspended in the same volume of fresh buffer. This step was repeated until 24 hours 

or until the poly(curcumin) sample had completely degraded. The collected 

supernatants were analyzed using a Varian Cary 50 Bio UV-Vis spectrophotometer 

with the absorbance measured at 420 nm (peak absorbance wavelength of curcumin). 

A few of the supernatant samples were also analyzed using HPLC to verify the release 
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of the original curcumin molecule by comparison with the chromatogram of curcumin 

standards. 

7.5.6  Antioxidant activity of released curcumin 

We utilized the trolox equivalent antioxidant capacity (TEAC) assay to quantify the 

antioxidant activity of the curcumin released after degradation of the poly(curcumin) 

microparticle formulations [273]. The TEAC assay is a colorimetric assay used to 

determine the antioxidant capacity of samples based on the suppression of the 

absorbance of 2, 2’-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS●+) radical 

cations by antioxidants. Briefly, a 7 mM ABTS●+ radical solution was prepared by 

reacting equal volumes of solutions of ABTS (8 mg/ml) and potassium persulfate (1.32 

mg/ml) in DI water for 16-20 hours. The ABTS●+ radical solution was diluted in PBS 

to obtain an absorbance not exceeding 0.4 at 734 nm for a 200 µl sample in a 96-well 

plate. This diluted solution was used as the working solution for the assay. For the 

assay, 10 µl of trolox standard solutions (concentrations ranging from 0-0.225 mM) 

prepared in PBS and the degradation samples were added to individual wells of a 96-

well plate. To these wells, 200 µl of the ABTS●+ working solution was added and 

allowed to sit for 5 minutes in dark. After 5 minutes, absorbance was measured at 734 

nm. The absorbance of the trolox standards was used to generate a standard calibration 

curve, which was used to calculate the equivalent trolox concentration for the 

poly(curcumin) degradation samples. 

7.5.7 In vitro cytotoxicity assay 

Primary normal adult human dermal fibroblasts (NHDF) bought from PromoCell 

GmbH, Heidelberg, Germany were cultured in Ham’s F-12 medium supplemented with 

10% v/v fetal bovine serum (FBS) and 1% v/v Pen/Strep/Fungizone at 37° C in a 5% 
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CO2 incubator. NHDF that were purchased at passage 1 (P1) were grown until P4 and 

then used for experiments between P5 and P8. 

Cells were seeded at 8000 cells/well in a 96-well plate and incubated overnight. 

Poly(curcumin) microparticles with equivalent curcumin concentrations ranging from 

0 to 500 µg/ml were suspended in cell culture medium. Solutions of free curcumin at 

equivalent concentrations were also prepared in cell culture medium. 200 µl of test 

suspensions and solutions were pipetted onto the cells in the 96-well plates (n=5 per 

treatment group). After incubation for 24 hours at 37° C in a 5% CO2 atmosphere, the 

cells were washed with fresh medium, followed by addition of 200 µl calcein AM red-

orange cell viability dye (1 µM in Ham’s F-12 medium) as a live cell tracer. Calcein 

AM red-orange is a mildly fluorescent molecule which upon internalization by cells is 

converted into the highly fluorescent calcein by cleavage of the acetoxymethyl ester 

group by intracellular esterases typically found only in live cells. Measurement of the 

fluorescence intensity can be used to quantify and compare the viability of the cells 

exposed to various treatments. After incubation for 1 hour, the cells were washed once 

more with fresh medium followed by addition of 200 µl of fresh medium for 

fluorescence measurements at 540/590 nm excitation/emission wavelengths using a 

plate reader(BioTek Synergy Mx, Gen5 2.0, Winooski, VT). 

7.5.8 In vitro oxidative injury assay 

Cells were seeded in a 96-well plate at a cell density of 8000 cells/well. Hydrogen 

peroxide (H2O2) was used as a model reagent to induce oxidative stress in NHDF.  

Poly(curcumin) microparticles and free curcumin suspensions in Ham’s F-12 media 

were prepared at two concentrations: 1 and 5 µg/ml of equivalent curcumin loading. 

0.5 mM of H2O2 was used as injury concentration. 10 mM of stock H2O2 was prepared 
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in media, 10 µL of which was added to the wells of interest to get a final concentration 

of 0.5 mM.  

The protection offered by the antioxidant potential of the poly(curcumin) microparticles 

against H2O2 injury was assessed with three different treatment regimens: (i) 

Poly(curcumin) microparticles and H2O2 added simultaneously at t=0 and kept for 24 

hours, (ii) Poly(curcumin) added at t=0 followed by H2O2 at t=12 hours, both kept until 

t=24 hours, (iii) Poly(curcumin) added at t=0 followed by H2O2 at t=12 hours, both kept 

until t=36 hours. At the end time points of each treatment regimen, cells were washed 

with fresh media and then incubated in 200 µl of 1 µM Calcein AM red-orange for 1 

hour. Cells were washed again and incubated in fresh media for fluorescence 

measurement as described in section 7.3.7 to determine the cell viability and indirectly 

the protection potential of the poly(curcumin) microparticles. The cell viabilities for 

each time regimen (24 and 36 hours) were calculated with their respect no treatment 

control groups. 

7.5.9 Pre-clinical study in a Hamster model of OM 

7.5.9.1 Study protocol and sampling 

All animal studies were conducted at the University of Kentucky in accordance with a 

protocol approved by the Institutional Animal Care and Use Committee. A total of 32 

male golden Syrian hamsters (Harlan Laboratories, Indianapolis, Indiana) weighing 90 

to 115 g were randomly divided into 4 groups as shown in table 7.1. Animals in the 

control groups (1 and 2) remained disease free. Oral mucositis was induced in animals 

in the OM groups (3 and 4) by administration of 5-flurouracil (5-FU, 60 mg/kg) 

intraperitoneally on day 0 and 2, followed by abrasion of the left cheek pouch. 

Treatments were administered into the left cheek pouches using needle-less syringes 

once daily from day 0 until euthanasia, under mild isoflurane anesthesia. The control 
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groups (1 and 3) received 200 μl of PBS while the treatment groups received 200 μl of 

10% w/w suspension of poly(curcumin) microparticles (C70 PβAE formulation) in the 

mucoadhesive vehicle. C70-PβAE microparticle formulation was selected because this 

formulation scored highest in mucoadhesive amongst the three formulations analyzed 

for curcumin release, where C70 gave a uniform 12-15 hour curcumin release profile. 

On day 3, under ketamine (100 mg/kg) and xylazine (10 mg/kg) anesthesia, the left 

cheek pouches of the animals in the OM groups (3 and 4) were everted and mild 

erythema was created via dragging an 18 gauge needle in two 3 cm long parallel lines 

on the tissue surface. Once daily, all animals were weighed, their left cheek pouches 

were digitally photographed, and also visually scored for OM severity according to 

table 7.2 [274]. Animals were given 0.1-0.2 mg/kg buprenorphine once or twice daily 

as needed. Animals with excessive inflammation of the cheek pouches or those under 

significant distress (indicated by drastically reduced food intake and activity) were 

euthanized before the end of the study. At the end of the study on day 11, all remaining 

animals were euthanized by CO2 asphyxiation. The treated (left) and control (right) 

cheek pouches were then excised. Half of the total number of cheek pouches were flash 

frozen in liquid nitrogen and immediately stored at -80°C for the tissue biomarker 

assays (TEAC and protein carbonyl, discussed later). The other half of the cheek 

pouches were processed for histological examination as described below. 

 

 

 

 

136 
 



  

Table 7.1 Pre-clinical study design and treatment plan 

No. Group No. of 
Animals 

Injury 
Day 

5-FU 
Injection 

Days 
Treatment (200 μl), Daily 

1 
No OM, 
Control 
(NOC) 

5 None None PBS 

2 
No OM, 

Treatment 
(NOT) 

5 None None 10% w/w poly(curcumin) 
suspension 

3 
OM, 

Control 
(OMC) 

11 3 0 & 2 PBS 

4 
OM, 

Treatment 
(OMT) 

11 3 0 & 2 10% w/w poly(curcumin) 
suspension 

 

Table 7.2 Scoring guidelines for visual observation of mucositis assessment of 
hamster pouch 

Score Observation 

0 No erosion or vasodilation 

1 Erythema but no evidence of mucosal erosion 

2 Severe erythema, vasodilation and superficial erosion 

3 Formation of ulcers in one or more places, not covering more 
than 25% of the surface area 

4 Cumulative ulcer formation, about 50% of pouch surface area 

5 Complete ulceration of pouch mucosa. Loss of pliability 
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7.5.9.2 Protein carbonyl content of cheek tissues 

Oxidative stress in tissues can damage proteins by oxidation resulting in the formation 

of carbonyl groups in the protein chemical structure. The protein carbonyl content of 

the cheek tissues was quantified using the 2, 4-dinitrophenylhydrazine (DNPH) assay 

according to the manufacturer protocol (Cayman Chemicals). DNPH on reaction with 

carbonyls forms the corresponding hydrazone, which can be detected 

spectrophotometrically. Briefly, 200-500 mg of each tissue sample was homogenized 

in PBS (200 mg tissue per ml) followed by centrifugation at 3000 rpm for 10 min. 200 

µl of the supernatant was mixed with 800 µl DNPH and incubated for 1 hour in dark at 

room temperature. An equal volume of supernatant was mixed with 800 µl of 2.5 M 

HCl instead of DNPH as the control group. After 1 hour, the protein was precipitated 

by adding 20% trichloroacetic acid (TCA) solution while incubating the samples in an 

ice bath. After 5 minutes, the samples were centrifuged and the supernatant discarded 

to remove excess DNPH. This precipitation step was repeated once more after which 

the protein pellets were re-suspended in 1:1 ethanol/ethyl acetate mixture. The samples 

were again centrifuged and the supernatant discarded. The protein pellets were re-

suspended in guanidine hydrochloride and centrifuged once more. The supernatants 

were transferred into a 96-well plate (220 μl per sample per well) and absorbance was 

measured at 360 nm using a Varian Cary 50 Bio UV-Vis spectrophotometer. The 

protein carbonyl concentration (in nmol/ml) was calculated as follows: 

 𝑃𝑃𝑟𝑟𝑜𝑜𝑎𝑎𝐹𝐹𝑜𝑜𝑛𝑛 𝐶𝐶𝑎𝑎𝑟𝑟𝑎𝑎𝑜𝑜𝑛𝑛𝑎𝑎𝑎𝑎 �𝑑𝑑𝑛𝑛𝑎𝑎𝑡𝑡
𝑛𝑛𝑡𝑡

� = � 𝐴𝐴
0.011

� ∗ 2.5  

Where ‘A’ is the absorbance of the samples. 

The protein carbonyl content was finally reported as nmol carbonyl per mg of total 

protein. Total protein content was quantified by treating the control (HCl) samples with 
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guanidine hydrochloride solution in the ratio of 1:10 v/v, and then measuring the 

absorbance at 280 nm. Solutions of bovine serum albumin (BSA) were used as the 

standards to determine the total protein concentration. 

7.5.9.3 Histopathological analysis 

The freshly dissected cheek tissues (described above) were spread and pinned down to 

Sylgard dishes and fixed in 4% paraformaldehyde solution in PBS for 24 hours. Tissues 

were cryoprotected in 30% sucrose solution for 24 hours followed by embedding in 

Tissue-Tek O.C.T. compound. Embedded tissues were then cryosectioned at 10 μm 

thickness, mounted on slides and stained with hematoxylin and eosin (H&E). The 

sections were observed and imaged using a Nikon Ti-U inverted optical microscope 

(Melville, NY) attached to a Nikon DS-RI1 12 MP color CCD camera at a 

magnification of 400x. All the section images were closely analyzed for any visible 

injury. Following that, ImageJ software was used to measure the thickness of the 

epithelial layer (outermost tissue layer) for each tissue as any disintegration and/or 

disruption in the epithelial layer is an important marker of inflammation. About 10-12 

thickness measurements were made for each tissue and the mean thickness for each 

tissue was plotted against the respective OM score given during the study. 

7.6 Results 

7.6.1 Poly(curcumin) microparticles characterization 

The curcumin conjugated PΒAE gel synthesis process was optimized by Patil et. al. 

[275] with respect to the reaction temperature, reaction time, solvent selection and 

concentration to achieve a high cross-link density, uniform poly(curcumin) film. 

During poly(curcumin) film synthesis via reaction of CA, PEG(575)DA and TTD, the 

reaction mixture was kept for 1 hour at room temperature prior to incubation ay 50°C 
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in order to achieve an extent of reaction before the solvent evaporation process starts at 

higher temperature with simultaneous progression of the reaction. Solvent evaporation 

is an important phenomenon in this synthesis as we want to achieve a significant 

crosslink density which would be possible with gradual loss of reaction medium 

resulting in increased concentration with time giving higher probability of the 

intermolecular reaction. Washing of poly(curcumin) films was an important 

intermediate step in order to remove any unreacted monomers and other un-crosslinked 

chains that could unpredictably impact the physical and chemical properties of the 

polymers. Wash supernatants were analyzed using UV-Vis to quantify the loss of 

curcumin and/or its acrylates from the polymers. Measurement of mass loss of the 

polymer films and UV-Vis analysis of the supernatants post washing confirmed that 

CA, PEGDA and TTD were lost in almost the same ratio as the starting stoichiometry 

(data not shown). 

The cryogenic milling process to obtain poly(curcumin) microparticles was also 

optimized with respect to milling time (10 min), sample loading (2 g), milling speed 

(15 cps) and magnesium stearate content (1% w/w) to obtain consistent particle size 

distribution irrespective of the polymer formulation. Various poly(curcumin) 

microparticle formulations were suspended in DI water and analyzed for their particle 

size using a Shimadzu SALD-7101 laser diffraction particle size analyzer with a 375 

nm UV laser source. Figure 7.1 shows the particle size distribution of the C60, C70 and 

C90 poly(curcumin) microparticles measured after 2 minutes bath sonication. All three 

groups show similar particle size distributions with average particle diameters of 

20.7±4.3, 20.8±2.7 and 22.7±0.28 µm respectively. 
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Figure 7.1 Particle size analysis of the poly(curcumin) microparticles with variable 
CA to PEGDA molar ratios.  
For analysis, particles were suspended in DI water and ultrasonicated for 2 minutes. 
Variable CA to PEGDA molar ratios (60, 70 and 90%) did not affect the particle size 
with an average size in the range of 22.5 µm to 25.0 µm.  
 
7.6.2 Poly(curcumin) powder hydrolytic degradation and curcumin release 

profile 

Three poly(curcumin) microparticle formulations, C60, C70 and C90 were degraded 

under physiological condition to study the impact of the polymer composition (i.e. CA 

to PEGDA ratio) on the release profile of curcumin. The PBS was supplemented with 

0.1% SDS in order to ensure the solubility of the released hydrophobic curcumin. 

Figure 7.2 (A) shows the cumulative curcumin release profiles versus time for the three 

formulations. All the formulations analyzed for curcumin release due to PβAE ester 

hydrolysis showed steady and uniform release. It was observed that C60 

poly(curcumin) microparticles showed rapid release of curcumin within 12 hours while 

C70 took 15 hours and C90 took 24 hours to completely hydrolyze and release 

curcumin. Analysis of the degradation samples using HPLC confirmed the presence of 

pure curcumin post hydrolysis as shown in figure 7.3, where peaks eluting from the 
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microparticle degradation coincide with those of a curcumin standard at 7.3, 7.7 and 

8.1 minutes. 

7.6.3 Antioxidant activity of the poly (curcumin) powder released products 

The TEAC assay was employed to confirm and quantify the antioxidant capacity of 

released curcumin for the three aforementioned formulations at every time point. As 

can be seen in figure 7.2(B), the cumulatively trolox concentrations over time for each 

formulation follow the release profiles of curcumin discussed above. A cumulative 

equivalent trolox concentrations of 21.2, 23.3 and 14.2 µM  at 12, 15 or 24 hours for 

C60, C70 and C90 respectively was calculated showing the presence of active 

degradation products in the supernatants (Figure 7.2 (B)).   

 

Figure 7.2 Degradation profile of poly(curcumin) microparticles  
(A) Curcumin release by hydrolytic degradation of poly(curcumin) microparticles. 
Sustained release of curcumin over 10, 14, and 24 hours was observed for C60, C70 
and C90, respectively, clearly showed a direct relationship between polymer 
hydrophobicity and hydrolytic degradation. (B) Anti-oxidant activity profile of released 
curcumin using TEAC assay. Plot represents the equivalent concentration of trolox 
versus time, confirming retention of the antioxidant activity of the released curcumin. 
(N=3, error bars are ± std. dev.) 
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Figure 7.3 HPLC analysis of the products from degradation of poly(curcumin) 
microparticles collected at 26 hours. 
Peaks identical to a free curcumin standard at 7.21, 7.58 and 8.00 mins were observed 
for degradation products as well, confirming the release of pure curcumin after 
polymer degradation. 
 
7.6.4 Tissue adhesion studies with porcine buccal tissue 

Poly(curcumin) microparticle adhesion properties towards porcine buccal tissue were 

analyzed in Bluegrass Advanced Materials LLC. laboratory in order to sort out 

formulation with best adhesive nature based on the CA v/s PEG(575)DA molar ratio 

and stoichiometric ratios (RTAAP). After analyzing the pictures post tissue-drip 

experiment with the help of visual ranking obtained from random subjects, it was 

inferred that C70 microparticles with RTAAP of 1.0 were best amongst other in 

adhesive properties. The methods with detailed results and discussion is not included 

in this document.  
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7.6.5 Dose dependent NHDF cytotoxicity (In vitro) 

NHDF were treated with various concentrations of poly(curcumin) microparticles 

(C70, RTAAP 1.0) and free curcumin at equivalent curcumin concentrations for 24 

hours to compare and quantify their relative cytotoxicity. Figure 7.4 shows the 

cytotoxicity profile of poly(curcumin) microparticles and free curcumin versus the 

equivalent curcumin concentrations. A sigmoidal curve fit (using SigmaPlot version 

12.0) to the dose-dependent viability gave a TC50 value of about 12 µg/ml for curcumin 

and 99 µg/ml for poly(curcumin) microparticles.  

 

Figure 7.4 Dose dependent cytotoxicity of free curcumin and poly(curcumin) 
microparticles towards normal human dermal fibroblasts (NHDF) after 24 hours of 
exposure.  
Cell viability was determined using Calcein AM red-orange cell-permeant fluorescent 
dye with excitation/emission wavelength of 540/590 nm. Poly(curcumin) microparticles 
resulted higher viability than free curcumin at corresponding same equivalent 
curcumin concentrations, demonstrating safer nature of the drug conjugated polymer 
system than free drug. N=5, error bars are ± std. dev. 
 
7.6.6 Protection against H2O2 induced injury (In vitro) 

Based on the results of the cytotoxicity assay above, non-toxic equivalent curcumin 

concentrations of 1 and 5 µg/ml were selected to ensure that the inherent toxicity of the 
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particles and free curcumin does not interfere with the oxidative injury assay. This was 

confirmed via lack of cytotoxicity observed in the control groups treated with only 

poly(curcumin) microparticles and free curcumin for 24 and 36-hour exposure but 

without oxidative injury (Figure 7). NHDF cells, when treated simultaneously with 0.5 

mM H2O2 and poly(curcumin) microparticles at 1 and 5 µg/ml equivalent curcumin 

concentrations, showed significantly higher viability of 27.0±7.7% and 60.5±17.2% 

respectively versus only 1.7±0.3% and 21.5±5.9% for cells treated with free curcumin, 

after 24 hours of exposure (Figure 7.5). For the second regimen wherein the antioxidant 

treatment (poly(curcumin) and free curcumin) was started 12 hours prior to the H2O2 

exposure for 12 hours, cell viability increased from 57.3 ± 3.6% (unprotected control 

group) to 97.6 ± 4.8% and 112.3 ± 4.5% for poly(curcumin) microparticles at 1 and 5 

µg/ml respectively. In contrast, an insignificant increase in viability was observed with 

free curcumin of 59.9 ± 2.3% and 68 ± 4.0% at 1 and 5 µg/ml respectively. In the third 

regimen when the H2O2 exposure was extended to 24 hours post 12-hour pre-treatment 

with the antioxidants, poly(curcumin) again increased viability to 54.5 ± 9.6% and 70.6 

± 4.0% at 1 and 5 µg/ml respectively. On the other hand, curcumin at the same 

concentrations increased viability to a meager 10.2 ± 2.9% and 24.6 ± 3.1% 

respectively. 
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Figure 7.5 NHDF viability analyzed after exposure to poly(curcumin) 
microparticles/free curcumin and H2O2 to show protection against oxidative 
injury.  
The x-axis from top to bottom shows 1) the equivalent curcumin concentrations (µg/ml), 
2) the timescale of antioxidant (AO) (Poly(curcumin) microparticles or free curcumin) 
exposure, and 3) timescale of 0.5 mM H2O2 exposure. Poly(curcumin) controls at both 
the concentrations did not show any toxicity after 24 and 36-hour exposure. Similar 
observations were made with free curcumin except 24-hour of 5 µg/ml showed 25% 
cell death. 12-hour AO pre-treatment resulted in higher cell viability than AO + H2O2 
simultaneous treatment. For all the different treatment schemes, poly(curcumin) 
microparticles showed superior protection than free curcumin with H2O2 induced OS. 
N=5, error bars are ±Std. dev.; ‘*’ represents statistically significant difference 
between the treatment groups with p<0.050. 
 
7.6.7 Pre-clinical study in a Hamster model of OM 

The efficacy and safety of poly(curcumin) microparticles locally delivered to the cheek 

pouches was evaluated towards the prevention and treatment of OM in a hamster model. 

The control group without OM injury treated with DI water (NOC) or poly(curcumin) 

microparticles (NOT) did not show any sign of vasodilation or pouch erosion giving a 

score of 0 on the scale of 0-5 on day 11 (0: no injury, 5: complete ulceration of the 

pouch mucosa). The animal group with OM injury but without microparticle treatment 

(OMC) on day 11 showed erythema and swelling surrounding the scratched area giving 
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a score of 3.5 ± 1.8. On the contrary, the group with OM injury and treated with 

poly(curcumin) (OMT) scored 0.5 ± 0.5 on day 11. 

7.6.7.1 Protein carbonyl content of cheek tissue 

The ability of the poly(curcumin) microparticle treatment to inhibit protein oxidation 

in the tissues was analyzed using the DNPH based protein carbonyl assay. Protein 

oxidation or indirectly carbonyl content is considered to be a major marker of oxidative 

stress in tissues. According to the figure 7.6, tissues from the NOC and NOT groups 

showed total protein carbonyl content of 0.4 ± 0.3 and 1.0 ± 0.2 nM carbonyls/mg of 

protein. Tissues from the OMC group showed significantly higher level of protein 

carbonyl at 3.9 ± 2.8 nM carbonyl/mg of protein. Interestingly, the OMT tissues showed 

a significant decrease in the carbonyl content to 2.0 ± 0.8 nM carbonyl/mg of protein. 

Figure 7.6 Protein carbonyl content in hamster cheek tissues. 
Carbonyl content was calculated by reaction of carbonyls with DNPH followed by UV-
Vis absorption analysis of reaction products at 360 nm. Carbonyl content in OMC was 
8 times higher than non-treated controls (NOC) while with the injury group treated 
with poly(curcumin) microparticles (OMT) showed a significant decrease (half of OMC 
or 4 times that of NOC). NOT also showed some increase in carbonyl content probably 
due to metabolic signaling in tissues upon administration of a foreign substance, but 
was lower than both the injury groups. N=3, error bars are ± SEM. 
 

147 
 



  

7.6.7.2 Histopathological analysis of cheek pouch tissues and effect on epithelial 

layer thickness post OM injury 

The epithelial layer thickness of the hamster cheek pouch was analyzed after OM 

induced injury (OMC) and compared with the hamsters treated with poly(curcumin) 

post OM injury. Figure 7.7 shows the histology images of cross-sections of cheek 

tissues corresponding to NOC, NOT, OMC and OMT. For the NOC and NOT groups, 

tissue from only one animal per group was analyzed as the remaining tissues were used 

for the biomarker assays. For the OMC and OMT groups, tissues from at least 2 animals 

per group were analyzed. ImageJ analysis determined the average epithelial layer 

thickness of NOC and NOT tissues to be 35.9 ± 5.3 and 45.2 ± 3.2 µm respectively. 

Figures 7.7 and 7.8 shows the disintegration of the epithelial layer in the OMC group 

tissues, with an average thickness of 16.1 ± 10.2 µm and 30.0 ± 8.6 µm for OMC I and 

OMC II respectively. The OMT tissues gave an average epithelial layer thickness of 

35.7 ± 4.0 and 26.3 ± 6.4 µm for OMT I and OMT II respectively.  

    
NOC      NOT     
  

148 
 



  

    
OMC I      OMC II 

    
OMT I      OMT II 

Figure 7.7 Histopathological sections of hamster left cheek pouches.  
Optical microscopy images of cheek tissue sections stained with H&E taken at 200x 
magnification.  NOC: No OM controls, OMC: Oral mucositis controls, NOT: No OM 
treatment, OMT: Oral mucositis treated with C70 microparticles. Dark arrows depict 
partially damaged or thinning layer with a disintegrating corneal layer of oral mucosa. 
NOC group shows completely intact epithelium while NOT histoimage is folded and 
shows very slight corneal disintegration. OMC group images shows instances of both 
partial disintegration and completely damaged epithelium. OMT group shows either 
intact or only partially disintegrated epithelium. Scale bars: 100 µm. 
 

Intact epithelial 

Disintegrating/thinning epithelial 

Damaged epithelial 
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Figure 7.8 Epithelial layer thickness with corresponding animal scoring on day 11.  
Poly(curcumin) treated control without injury (NOT) showed an increase in thickness 
as compared to NOC indicating epithelium proliferation. OMT stained tissue showed 
an average higher thickness as compared to OMC samples indicating protection from 
inflammation or healing of the inflammation. Epithelial layer thickness also complies 
with the visual scoring for each tissue, i.e. higher the inflammation scoring, lesser the 
thickness. Epithelial thickness was measured using ImageJ software. The bars 
represent the average thickness measurements of at least 10 different locations per 
stained tissue section. (Error bars: std. dev.) 
 
7.7 Discussion 

A recent human trial showed significantly delayed the onset and reduced severity of 

OM after continuous turmeric (a source of curcumin) rinses without any added side 

effects [276]. As the development of OM has been linked to the presence of oxidative 

stress, the therapeutic significance of curcumin towards the treatment of this 

uncomfortable, painful and currently unmanageable OM condition could be clearly 

identified [277]. It was shown that slight increment of ROS production during cancer 

therapies would result in activation of NF-kB. This would lead to the release of tissue-

damaging cytokines, which in turn again increase ROS production [278]. This results 

in a cascading cell apoptosis cycle, inhibiting oral epithelial cell proliferation, 

consequently resulting in the formation of ulcers. Curcumin carrying both anti-oxidant 
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and anti-inflammatory properties inhibits NF-kB, scavenges excess free radicals and 

hence overall halts the cell apoptotic process, a possible prevention to the incidence of 

OM. But its structural properties associated with poor bioavailability, rapid 1st pass 

metabolism due to its poor aqueous solubility and structural stability would require 

higher and frequent dosage quantities for OM treatment [279].  But increased dosage 

still may not be effective due to aqueous solubility limitations. Converting the 

polyphenolic antioxidant, curcumin into a crosslinked biodegradable PβAE polymer 

matrix (poly(curcumin)) via Michael addition structurally protects the curcumin from 

premature degradation, thus preserving its activity until released [178, 280]. 

Poly(curcumin) synthesized via a single-step reaction between CA, PEGDA and TTD 

releases curcumin in its original structural form via hydrolysis of the ester bond present 

in the polymer backbone. In addition to protecting a useful drug, the polymerization 

process also enables controlled and sustained release of curcumin for extended time. 

Since these polymers undergo hydrolytic degradation, it is logical that the 

hydrophobicity of the polymer network would govern the rate of polymer degradation, 

and hence the rate of drug release [281, 282]. Our goal was to identify formulations that 

release curcumin continuously for 12 to 24 hours in a steady and uniform fashion. This 

was readily achieved by varying the ratio of CA (hydrophobic) to PEGDA (hydrophilic) 

during polymer synthesis. Films with different ratios of CA to PEGDA with respect to 

a total number of acrylate groups were synthesized. For example, formulation C70 

would have 70% of the acrylate groups contributed by CA, while the remaining 30% 

contributed by PEGDA. Cryogenic milling was chosen to micronize the 

poly(curcumin) films for two primary reasons: 1) to embrittle the polymer for effective 

micronization, and 2) to prevent heat-induced degradation of the polymer. Additionally, 

magnesium stearate, a widely used pharmaceutical excipient [283, 284], was added as 
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a dry lubricant to reduce clumping. Cryogenic milling of the C60, C70 and C90 

formulations yielded microparticles with an average diameter of about 25 ± 4, 23 ± 3 

and 22 ± 1  µm respectively, implying that the polymer composition had minimal, if 

any, effect on the milling process and particle size. Micronization of the bulk PβAE 

polymer films was an important step for the intended application. Formulating into 

microparticles followed by suspension in a mucoadhesive solution would allow ease in 

local delivery through oral mouth rinse. It would also allow higher mucosal surface 

coverage during rinses. Particulate morphology over bulk would minimize the 

incidence of diffusion based curcumin release but largely hydrolytic degradation based 

drug release.  

Degrading the poly(curcumin) microparticles under simulated physiological conditions 

showed a CA loading dependent release profile of curcumin. The polymer formulation 

synthesized with the highest CA amount, C90, degraded the slowest in 24 hours, 

presumably because of the higher hydrophobicity from the higher curcumin content. 

The formulation with lower CA amount, C60, with relatively lower curcumin content, 

completely degraded within 12 hours due to faster hydrolysis. HPLC analysis of the 

degradation products detected the original curcumin confirming that the ester bond 

hydrolysis occurring adjacent to curcumin molecule within the polymer does release 

the pure polyphenol. The ability of tunable, sustained release of curcumin from the 

poly(curcumin) microparticles enables development of clinically relevant antioxidant 

delivery formulations.  This is because longer release would reduce the dosage and 

treatment frequency thereby giving minimum possible treatment interference to the 

patients undergoing life-saving cancer treatments. Therapeutic application of curcumin 

has been limited with in vivo trials because of its rapid metabolism. It has been shown 

that increasing the amount of dosage has not improved total absorbed because of 
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solubility limitation. This restricts the percent bioavailability of curcumin irrespective 

of the dosage amounts [285]. Steady curcumin release with no major burst effect would 

alleviate the solubility limitation of the highly hydrophobic drug and minimize the 

overall systemic metabolism thereby giving an opportunity to utilize the major part of 

the release towards OS suppression.  It was important to analyze the antioxidant activity 

of the poly(curcumin degradation products as that would decide the efficacy of the 

system towards core function of serving as an antioxidant throughout the release. 

Antioxidant activity was determined by analyzing the potential of degradation products 

to scavenge the ABTS●– radical and reported as equivalent trolox concentration, a 

widely used standard for such assays [162, 286]. The continuous increase in equivalent 

trolox amount through the degradation time span confirmed the presence of active 

compounds capable of suppressing OS. This indirectly implies the release of active 

curcumin at all times and also proves the concept theory of preserving the structural 

integrity of the labile molecule in the polymer matrix and protection from premature 

deactivation prior to release.    

The C70 poly(curcumin) microparticles showed dose dependent toxicity on human 

dermal fibroblast (NHDF), with a TC50 value of 227 µg/ml of suspended microparticles 

(99 µg/ml of equivalent curcumin dose) against TC50 of only 12 µg/ml for pure 

curcumin. Two key observations can be drawn from the more than 8-fold higher TC50 

values of the poly(curcumin) microparticles compared to pure curcumin: (i) within 

appropriate dosage limits, the degradation products from the polymer backbone are 

non-toxic towards fibroblasts, and (ii) the slow release of small doses of curcumin upon 

degradation of the polymer is less cytotoxic than the traditional bolus delivery method 

of free curcumin. More importantly, sustained release of active curcumin actually 

improves protection of cells against oxidative injury. As shown in figure 7.5, in the case 
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of all three treatment regimens, cells treated with poly(curcumin) followed by H2O2 

exposure show significantly higher viability than just those treated with free curcumin. 

In particular, 12-hour pretreatment with free curcumin shows minimal to no reduction 

in cell death after H2O2 injury, while pretreatment with poly(curcumin) microparticles 

had a significantly higher number of viable cells. Delivery of curcumin from polymer 

microparticles is not only effective in suppressing oxidative stress-related injury but, in 

fact, is more efficacious and less toxic than free curcumin. As explained earlier, one of 

the key causes of the onset and incidence of the OM condition arises due to the 

development of oxidative stress conditions, which is excess production of free radicals.   

The in vitro results if translated towards OM management would imply both (i) 

prophylactic action against oxidative stress during chemo and radiation therapy as well 

as (ii) treatment of OM by suppressing OS via simultaneous treatment during the 

developmental stage of the oral injury. 

The viable or non-destructive nature of the poly(curcumin) microparticles were further 

tested in vivo with a hamster model. No increase in protein carbonyl content, intactness 

of epithelium observed with histopathological analysis for only poly(curcumin) 

microparticle treated control groups (NOT) demonstrated the safe nature of 

microparticles in vivo with no side effects or inflammation.  Adding to this, higher 

epithelium thickness of NOT groups (45.2 µm) as compared to NOC (no OM, no 

treatment) control groups (35.87 µm) demonstrates the epithelium proliferation in the 

presence of curcumin (figures 7.7 and 7.8).  Though NOT showed some increase in 

carbonyl content with reference to NOC group but this could be probably due to 

metabolic signaling in tissues upon administration of a foreign substance, but was 

significantly lower than both the injury groups. The Effect of poly(curcumin) on the 

hamster pouch with induced OM condition  though did not show full protection from 

154 
 



  

the injury but showed a significant difference against inflammation with an average 

OM score of 0.5 on day 11, lower total protein carbonyl content and more intact  

epithelium when compared with the OM injury (OMC) control group with an average 

score of 3.5 (Figures 7.6, 7.7 and 7.8). The results from the preliminary in vivo study 

are not very concrete with a clear conclusion on the efficacy of the poly(curcumin) 

microparticles towards OM prevention and treatment. The underlying cause of 

variability might be arising due to the presence of human error during needle scratching 

of hamster pouch and high death rate due to adverse systemic effects arising from the 

strong 5-FU administration. In spite of these experimental irregularities, we did see 

results indicating the protective effect of slow and steady releasing microparticles 

developed in the form of oral rinse suspension for better patient compliance.  

7.8 Conclusions 

Curcumin conjugated PβAE gel microparticles (poly(curcumin) microparticles) were 

synthesized for the application of treatment and prevention of oral mucositis. These 

microparticles obtained by cryomilling PβAE gel films showed the uniform release of 

active curcumin with no burst effect. PEGDA used as a co-monomer to CA during gel 

film synthesis helped in tuning the curcumin release timescale ranging from 12 to 24 

hours. The C70 poly(curcumin) microparticle system was selected for further in vitro 

and in vivo application after testing various formulations for best mucoadhesive 

properties. Protection against H2O2-induced oxidative stress was seen with both 

simultaneous and pre-treatment of poly(curcumin) demonstrating preventive as well as 

treating potential of the microparticle system. Both in vivo and in vitro studies 

demonstrated the safe and viable nature of the product. In vivo administration of 

poly(curcumin) through oral rinse to OM induced hamsters showed decreased protein 

carbonyl content, intact epithelium and less severity of ulcers observed visually in 
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comparison to non-treated OM controls. The microparticle containing mouth rinse 

suspension would allow local and sustained delivery of antioxidant curcumin, increase 

overall bioavailability and reduced dosage frequency thereby minimizing the 

interruptions during cancer therapies. These synthesized poly(curcumin) microparticles 

can serve as a treatment superior to just barrier rinse or free curcumin rinse towards the 

management of OM. 
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8 SYNTHESIS AND CHARACTERIZATION OF RESVERATROL 

CONJUGATED PβAE GEL MICROPARTICLES FOR PROTECTION 

FROM UV MEDIATED OXIDATIVE STRESS 

Note: The information in this chapter is the intellectual property of Bluegrass 

Advanced Materials LLC., not to be disclosed in public 

Abstract 

As induction of oxidative stress through UV radiation from sunlight is considered to be 

one of the reasons for skin disorders, including sunburn, skin cancer and premature skin 

aging, incorporation of resveratrol with its antioxidant properties could serve as a 

protective strategy in topical application products. In order to consider this as a viable 

approach for daily use, it is required for the UV-protective compound to act against 

radiation-induced injury for at least 12-14 hours. However, the instability of resveratrol 

under UV exposure results in its rapid deactivation and apparent depletion without 

performing the intended function. A proposed solution to overcome these limitations is 

to structurally protect the resveratrol via the PβAE conjugation approach and 

subsequently release the bioactive compound uniformly for a longer duration of time. 

To implement this idea, resveratrol was covalently conjugated into hydrolytically 

degradable PβAE gels via reaction of acrylate functionalized resveratrol (RTA) with a 

multifunctional amine (TTD). These gels were further cryomilled into microparticles 

for easier fusion into cosmetic or dermatological products. Incorporation of PEGDA as 

a co-monomer allowed tunable degradation of these gels (6-8 hours) and control over 

the fast reaction kinetics of RTA with TTD. These microparticles also showed 

protection against H2O2-induced oxidative stress in human dermal fibroblasts 

equivalent to free resveratrol. Therefore, these microparticle systems have the potential 
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to be considered for dermal application products but a more uniformly distributed and 

longer resveratrol release profile (10-12 hours) is desired for intended action. 

8.1 Introduction 

With the incidence of skin cancer, premature skin aging, and topical erythema the 

damaging effects of the UV part of solar radiation on skin are generally well known. 

[287-289]. UV radiation is broken into three distinct bands, UVA (315-400 nm), UVB 

(280-315 nm) and UVC (100-280 nm). While UVC is blocked by the atmospheric 

ozone layer, we get sunlight radiation composed of about 95% UVA and roughly 5% 

as UVB [290]. Both types of UV radiation serve as contributing factors to skin aging 

and development of skin cancers. UVA penetrates to the dermis, increases reactive 

oxygen species production, indirectly inducing DNA damage followed by mutagenesis 

[291]. On the other hand, UVB is known to be the cause of non-melanoma cancer, is 

absorbed at the epidermis level of the skin and results in direct DNA damage [292, 

293].  

While induction of oxidative stress is considered to be one of the reasons for skin 

damage, application of antioxidants is a well-known remedy to suppress oxidative 

stress and can be a possible solution to remediate UV exposed damage and prevent 

degenerative biochemical processes [294].  Antioxidant molecules used in cosmetic and 

dermatological formulations to protect skin from damage and premature aging include, 

but are not limited to, vitamin E, curcumin, resveratrol, quercetin, and ascorbic acid. In 

particular, resveratrol has gained a special interest in recent years as an antioxidant and 

anti-aging compound [295]. Topical application of this antibacterial compound in 

preventing UV-mediated oxidative and skin damage has been widely studied and has 

shown promising results [296]. Recent studies have also shown that it has 17 times 

greater antioxidant capacity than idebenone, an antioxidant widely used in anti-aging 
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skin products [297]. But one of the greatest technical difficulties for the use of the above 

antioxidant compounds is their instability under UV leading to molecular isomerization 

and inactivation [298]. The strong chemical activation energy derived from ultraviolet 

radiation induces hydrolytic reactions and degrades the antioxidant indiscriminately. 

This results in exponential loss of the antioxidant without performing the action it was 

intended to. This reduces the filtering and protection capacity of the cosmetic 

formulation over time. A reduction of UVB filtering capacity leads to a reduction in 

SPF of the formulation, and therefore to a higher burn risk. On the hand, the reduced 

capacity to filter UVA radiation results in a greater risk of adverse chronic effects, 

which might go unnoticed at initial stages.  

 A proposed solution to overcome these limitations is to structurally protect the 

resveratrol until it is made available to protect the skin from injury. This idea was 

implemented by converting antioxidants into biodegradable poly(beta-amino ester) 

(PβAE) polymers. Specifically, polyphenolic resveratrol with three alcoholic groups 

was first converted into its acrylate ester form (Figure 8.1). The phenol acrylate 

(resveratrol triacrylate (RTA)) was then reacted with a primary diamine crosslinker, 

like 4, 7, 10-Trioxa-1, 13-tridecanediamine (TTD), via the Michael addition to yield 

crosslinked resveratrol conjugated PβAE (R-PβAE) gels. The hydrophilicity of the 

polymer, and thus its degradation rate was controlled by including a diacrylate co-

monomer like poly(ethylene glycol) diacrylate (PEGDA, MW 575) in desired 

proportions during the reaction. The gel films were further cryomilled to obtain R-

PβAE microparticles. Hydrolytic degradation of these gel microparticles demonstrated 

resveratrol release in a sustained fashion. 
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By going through this route, (1) resveratrol was structurally protected from premature 

degradation compared to encapsulation/complexation technologies; (2) high resveratrol 

loadings, exceeding 20 wt. % of the polymer were obtained, (3) tunable sustained 

release durations ranging from 2 to 10 hours, (4) original, active resveratrol was 

released upon hydrolysis of the polymer. 

8.2 Methods  

8.2.1 Resveratrol triacrylate (RTA) synthesis (Process developed by Bluegrass 

Advanced Materials LLC.) 

Resveratrol (20 g) dissolved in 160 ml of anhydrous THF was allowed to react with 

21.36 ml of acryloyl chloride (molar ratio of 3:1 with respect to resveratrol), which was 

added to resveratrol-THF solution dropwise (exothermic reaction). Triethylamine 

(TEA) (36.64 ml) was added to the reaction mixture in the molar ratio of 3:1 w.r.t 

resveratrol in order to capture released HCl forming TEA-HCl salts. The reaction was 

allowed to proceed for 2 hours under the nitrogen purge at room temperature in the dark 

(aluminum foiled). During the reaction, acryloyl chloride reacts with alcoholic groups 

of resveratrol forming acrylate groups. Post reaction, the mixture in THF was first 

filtered out to remove TEA-HCl salts and then was subjected to vacuum evaporation to 

evaporate THF using liquid nitrogen vacuum trap. Following the complete evaporation 

of THF, the obtained product was re-dissolved in 40 ml of ethyl acetate (EA). As EA 

and water are immiscible solvents, product dissolved in EA was washed with 0.1 M 

HCl solution in DI water (1:3 v/v-EA/HCl solution) in order to remove any unreacted 

TEA in the product. After HCl wash, the product was subjected to base wash using 0.1 

M K2CO3 solution to remove excess acrylic acid with the same EA/ K2CO3 ratio as for 

EA/HCl wash. Any residual water after the washes was removed by adding magnesium 

sulfate (MgSO4) until the bubbling stops. The hydrated MgSO4 was removed via 
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filtration and the EA solution containing RTA was subjected to vacuum drying with 

liquid nitrogen trap under stirring conditions to remove EA and get a semi-viscous RTA 

product. RTA was stored at -80oC before further use. All solvents used were anhydrous. 

The final product was run through HPLC to identify the nature of the resveratrol 

acrylate obtained. 

 

 

Figure 8.1 Reaction scheme of acrylate functionalization of resveratrol to resveratrol 
triacrylate (RTA) via reaction with acryloyl chloride. 
There is a possibility of all three kinds of acrylate; mono, di and tri as shown in the 
figure. Three different forms of mono and diacrylate will exist depending upon the 
location of acrylation. 
 
8.2.2 Resveratrol-PEGDA (R- PβAE) film synthesis and microparticles 

formulation 

a. R-PβAE film synthesis (synthesized by Bluegrass Advanced Materials LLC.) 

R-PβAE films were synthesized with different molar ratios of RTA (mol. wt. 390.39) 

v/s PEGDA (mol. wt. 575) as the acrylate monomers. The amine monomer for the 

Michael addition reaction used was a tetra functional amine; 4, 7, 10-Trioxa-1, 13-

tridecanediamine (TTD) (mol. wt. 220 gm/mol). The total acrylate to total amine proton 

ratio (RTAAP) was kept at 1:1. Films with 20, 40, 60 and 80% RTA (molar ratio w.r.t. 

total RTA+PEGDA) were prepared. As a sample example, for 80% RTA film (R80- 

PβAE), 905 mg of RTA was dissolved in 1.88 ml of DCM and vortexed thoroughly.  
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To the RTA-DCM solution, 500 mg of PEGDA was added and again mixed thoroughly. 

To this mixture, 479 mg of TTD separately dissolved in 1.88 ml of DCM was added 

while vortexing and the reaction solution was quickly transferred to an aluminum dish 

and was kept in an oven for 24 hours at 50o C. After the reaction was completed, a firm 

thin crosslinked gel film was obtained, which was peeled off the aluminum dish and 

subjected to acetone wash to remove any unreacted monomers or uncross-linked 

oligomers. The washing solvent, acetone was removed and replenished every one hour 

followed by mild mixing in the rotary shaker. After the 4th wash, most of the acetone 

was removed and the film was lyophilized using freeze-dryer overnight. 

b. R-PβAE film micronization 

Dry film obtained from Bluegrass Advanced Materials LLC. was weighed out and 

was cut into small pieces of dimensions less than 0.5x0.5 inch. The pieces were 

added to the cryomilling tube with 3% wt/wt of magnesium stearate and an impactor 

was inserted in the tube and closed. The film was subjected to cryomilling with the 

milling frequency of 15 cps, 2 minutes sample precool, 10 minutes of milling and 

2 minutes of post cool setup. After milling, microparticles was allowed to warm up 

and come to room temperature after which microparticles were collected in a tube 

for freeze drying to remove any solvent or condensed water. Dried microparticles 

were stored at -20oC for further characterization (Figure 8.2). 
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Figure 8.2 Photographic schematic of R- PβAE film to microparticle formation. 

8.2.3 R-PβAE microparticle degradation  

Degradation was carried out in a dissolution apparatus with a speed of 100 rpm at 37°C 

in PBS buffer with 0.1% SDS. All formulations (R20, R40, R60 and R80) were 

subjected to degradation. The amount of microparticle powder required for degradation 

studies was calculated such that the final resveratrol concentration was 10 mg/L. A total 

of 1-liter suspension was prepared for each formulation and the study was carried out 

in replicates of three. Table 8.1 shows the total mass/liter required for each formulation 

to get 10 μg/ml of loaded resveratrol.  

Table 8.1 R-PβAE microparticles composition and degradation calculations 

R-PβAE formulation % Resveratrol 
loading 

Mass of R-PβAE 
microparticles/liter 

for 10 mg/L 
resveratrol (mg) 

R20 4.89 204.50 

R40 10.88 91.80 

R60 18.40 54.36 

R80 28.09 35.60 
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8.2.4 Dose dependent toxicity and protection against H2O2 induced oxidative 

stress towards normal human dermal fibroblasts (NHDF) 

Dose dependent cell toxicity due to resveratrol and R80-PβAE exposure towards 

normal human dermal fibroblasts (NHDF) was analyzed after 24-hour treatment using 

Calcein AM red-orange live cell trace assay. Briefly, NHDF were seeded in a 96-

wellplate and allowed to grow overnight. The next day, resveratrol/R80-PβAE 

microparticles were suspended in the Ham’s-12 medium at different concentrations. 

The suspensions were added to the seeded well plate and allowed to incubate for 24 

hours at 37º C, 5% CO2. 

Cells were then washed and incubated with 1 µM Calcein AM red-orange for an hour. 

All the wells were then washed, replenished with fresh medium and the fluorescence of 

all the groups was measured at 540/590 nm as excitation/emission wavelengths (BioTek 

Synergy Mx, Gen5 2.0, Winooski, VT plate reader). Fluorescence intensities were used 

to quantify percent viable cells and compared with different treatment groups. 

Inhibition of H2O2 induced toxicity was also analyzed using the same live cell tracer 

with 0 and 12-hour antioxidant pre-exposure followed by 12 or 24 hours of 0.5 mM 

H2O2 exposure. Figure 8.3 shows the treatment sequence for three different 

resveratrol//R80-PβAE microparticles + H2O2 exposure combinations. 
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Figure 8.3 Treatment sequence timeline of resveratrol/R80-PβAE microparticles + 
H2O2 exposure to NHDF. 
NHDF cells were used as the treatment substrate to analyze the protective effect against 
H2O2 induced oxidative stress. 
 
8.3 Results 

8.3.1 Analysis of RTA and R-PβAE microparticles size 

HPLC elution of the acrylated product of resveratrol i.e. resveratrol triacrylate (RTA) 

showed no peak elution coinciding with the free resveratrol residence time (Figure 8.4). 

This clearly indicated that the final product did not contain any unreacted resveratrol. 

Three distinct peaks were observed in the elution, with the major peak eluting at 37.7 

minutes corresponding to triacrylate. This peak contributed 91% of the total product 

based on area under the curve calculations. Other two peaks are assumed to be of mono 
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and diacrylate and there can be three different structural forms of mono and di acrylate 

depending upon the location of phenol conjugation. 

Cryomilling of all different compositions of RTA-PEGDA-TTD conjugated gels gave 

microparticles in the range of 6-8 µm (data not shown). The amount of magnesium 

stearate content during cryomilling did not show any effect on the particle size. 

 

 

Figure 8.4 HPLC of RTA and resveratrol  
Gradient method file of 70% aqueous mobile phase (DI water with 0.1% phosphoric 
acid) to 30% over 40 minutes against acetonitrile organic phase was used.  
 
8.3.2 Degradation of R-PβAE microparticles and antioxidant activity of the 

released products 

Hydrolytic degradation under physiological conditions (PBS, 37º C) showed a similar 

release trend with a degradation time varying from 6-8 hours for microparticles of 

different chemical compositions (Figure 8.5). Performing the TEAC assay on the 
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degradation products demonstrated sustained antioxidant potential during degradation, 

reported as equivalent trolox (mM) (Figure 8.6). 

 

Figure 8.5 Degradation of all R-PβAE microparticles  
Microparticles were suspended in PBS buffer with 0.1% SDS under physiological 
conditions: 37°C, in a dissolution apparatus. N=3, error bars: std. dev. 
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Figure 8.6 Antioxidant activity profile of R-PβAE microparticles  
Antioxidant capacity was analyzed using TEAC assay and represented as trolox 
equivalents in mM. N=3, error bars: std. err. 
 
8.3.3 Dose dependent toxicity and protection against H2O2 induced oxidative 

stress towards normal human dermal fibroblasts (NHDF) 

Normal human dermal fibroblasts were exposed to a variable concentration of R80-

PβAE microparticles and free resveratrol at similar concentrations for 24 hours. Dose 

dependent cell viability curve showed more viable nature of R80-PβAEs compared to 

free resveratrol at similar resveratrol loading (Figure 8.7). While TC50 value for free 

resveratrol exposure was calculated to be 12.3 µg/ml, R80-PβAE microparticles 

showed lower toxicity with TC50 of 52 µg/ml (resveratrol loading).  

All three different sequences of resveratrol/R80-PβAE treatment did show significant 

protection from 0.5 mM H2O2 toxicity. R80-PβAE did not show any superior properties 

than free resveratrol in the form of cell toxicity (Figure 8.8 and 8.9). 
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Figure 8.7 Dose dependent NHDF toxicity after 24-hour exposure to resveratrol or 
R80-PβAE microparticles.  
Cell viability was determined using Calcein AM red-orange live cell tracer. TC50 values 
were calculated using 4-parameter sigmoidal curve model. N=5, error bars: std. dev. 
 

 

Figure 8.8 Protection against H2O2 induced toxicity due to R-PβAE microparticles 
exposure.  
NHDF treated with 0 or 12-hour resveratrol/R80-PβAE pre-treatment were exposed to 
0.5mM H2O2 for 24 or 12 hours respectively followed by Calcein AM red-orange cell 
viability assay. N=5, error bars: std. dev. 
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Figure 8.9 Protection against H2O2 induced toxicity.  
NHDF pre-treated with resveratrol/R80- PβAE for 12 hours were exposed to 0.5mM 
H2O2 for 24 hours followed by Calcein AM red-orange cell viability assay. N=5, error 
bars: std. dev. 
 
8.4 Comments and future directions 

Utilizing the PβAE chemistry for conjugating resveratrol into the PβAE matrix, we 

were able to formulate prodrug gel microparticles in the range of 6-7 µm. These 

microparticles did show composition dependent release kinetics, where high PEG 

content (R20- PβAE) result in faster degradation within 5-6 hours. But resveratrol 

release from microparticles with the lowest PEG content i.e. R80-PβAE could only be 

extended to 8 hours. To be considered for a cosmetic application such as for sunblock 

products, a 10-12 hour release would be desired for sustained protection against UV-

induced damage. Antioxidant activity of the degradation products shows the radical 

scavenging potential for an extended period time showing the release of active 

resveratrol upon ester cleavage. Also, R80-PβAEs are more viable in nature as 

compared to free resveratrol and show protection against H2O2 induced cellular 

oxidative stress. But, these systems did not show protective nature superior to free 
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resveratrol for the different treatment experiments done. This could be because 

resveratrol itself is a relatively stable antioxidant compared to many others in 

physiological environments until attacked by free radicals. Therefore, given that total 

resveratrol administered was same via free resveratrol and through conjugated systems, 

both showed similar protection against induced cellular oxidative stress. More 

experiments with different combinations of chemical compositions and experimental 

design needs to be carried out in order to better understand the protective mechanism 

of these gel microparticles. One proposed experimental design would be to 

continuously expose the system to free radicals and then analyze the scavenging 

potential of resveratrol conjugated PβAEs and its free form. 
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9 CONCLUSIONS AND FUTURE DIRECTIONS 

In this work, PβAE chemistry was explored as a platform to develop antioxidant 

conjugated crosslinked networks for effective drug delivery. The system was developed 

for three different polyphenolic antioxidants, which are therapeutically significant but 

difficult to administer effectively due to their 1) poor aqueous solubility, 2) structurally 

fragile nature and hence 3) extremely low bioavailability. PβAEs are biodegradable 

polymer networks hydrolytically degradable through their ester linkages. This 

characteristic was utilized as a release mechanism for covalently conjugated 

antioxidants. In the current approach, direct conjugation of antioxidants into PβAE 

crosslinked networks through their –OH groups served as a method to structurally 

protect the molecule and release antioxidants in their active form upon hydrolytic 

degradation. Optimization of reaction and processing parameters allowed us to 

transform the crosslinked prodrug chemistry into micro or nanogel formulations, 

creating a more adaptable technology for drug delivery applications.  

a. PβAE reaction chemistry under dilute conditions resulted in a self-precipitated 

antioxidant nanogel suspension, which was amenable to formulate antioxidants 

quercetin as well as curcumin conjugated system. Use of such synthesis method 

eliminated the requirement of a surfactant for stabilization, which otherwise becomes a 

controlling factor towards nanoparticle toxicity. A uniform release profile of 

functionally active antioxidants, with little to no burst effects further helped in apparent 

reduction of antioxidant toxicity. These physiochemical properties led to the 

demonstration of prolonged protection against induced oxidative stress in endothelial 

cells.  
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The mechanism of protective action could be through (i) cellular internalization 

followed by degradation of nanogels or (ii) extracellular degradation followed 

by diffusion of free antioxidant. The existence of the 1st case would imply high 

cytoplasmic concentrations of the antioxidants, which would be beneficial for 

the treatment of acute damage but could also be a cause of local cellular toxicity. 

Therefore, more insight into the working mechanism is needed to understand 

drug response in a better manner. 

b. Aimed as a treatment solution to neurodegenerative disorders, curcumin-PβAE 

nanogels further demonstrated their ability to suppress mitochondrial oxidative stress 

without any mitochondrial specific targeting. Increased safety window of curcumin 

through nanogel administration was one of the critical factors towards this result, which 

allowed the administration of curcumin at therapeutic levels in a sustained fashion.  

c. The ability of curcumin-PβAE nanogels to mitigate cellular and mitochondrial 

oxidative damage was further explored with the polychlorinated biphenyls (PCBs). The 

analysis showed that pre-treatment of endothelial cells with curcumin-PβAE nanogels 

helped in reducing PCB induced excess ROS production and restoration of otherwise 

affected mitochondrial respiration. This observation was made with the exposure of 

both coplanar (PCB 126) and non-coplanar (PCB 153) PCBs.  

Although, curcumin-PβAE nanogels act against PCBs irrespective of the 

different oxidative damage through different activation paths, the mechanism of 

action needs to be analyzed in detail. Curcumin being a polyphenolic molecule 

can capture PCBs through pi-pi interaction and inhibit the damaging action or 

through scavenging of excess ROS/RNS. 

173 
 



  

Further, nanogel synthesis via the method used in this work can be further 

explored with other polyphenolic compounds with two or more –OH groups. 

This will create a universal synthesis approach for antioxidant delivery through 

nanosystems of high drug loading. 

d. Apart from nanogels, the curcumin-PβAE crosslinked system was also 

formulated into microparticles. Being able to develop the same drug conjugated 

systems in different size dimensions indicates the adaptable nature of the conjugated 

PβAE chemistry in drug delivery. Use of PEGDA as a co-monomer in the synthesis 

process added the ability to control hydrophobicity/hydrophilicity of the networks and 

hence a degradable system with a tunable release profile. These microparticles also 

successfully showed in vitro protection against induced oxidative stress, superior to free 

curcumin. In an in vivo trial, a daily rinse of the microparticle suspension over 10 days 

showed indications of reduced severity of oral mucositis (OM) in chemotherapy-

induced OM hamsters (5 FU/needle scratch injury induction).  

This injury model incorporates a high percent of human error and administration 

of 5-FU drug results in systemic side effects, which indirectly interferes with 

OM analysis. Therefore, a better design of experiment with least human error 

and relatively less lethal injury model, such as γ-radiation, would allow better 

assessment of curcumin-PβAE microparticles as a potential solution for OM 

treatment. 

e. The antioxidant conjugated PβAE gel microparticle synthesis process was 

further extended with another anti-inflammatory drug, resveratrol. Acrylate 

functionalized resveratrol was successfully conjugated into the backbone of the PβAE 

network and was further cryomilled to obtain microparticles. With the goal of 
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developing a slow and steady resveratrol releasing system to prevent topical UV-

induced oxidative damaged, different polymer compositions were tried and analyzed 

for their release profile. As such, these microparticle systems showed in vitro protection 

against H2O2 but did not show properties superior to free resveratrol. 

Although, some control over release kinetics was achieved (6-8 hours of resveratrol 

release), an optimization and modification in synthesis process is required for 

longer release profile (10-12 hours). Selection of different co-monomers or reacting 

amine could lead to improved physicochemical properties of the gel matrix and help 

attain better control over the release profile. Also, a more robust design of 

experiment to demonstrate the UV-protection potential is needed. A proposed idea 

is to continuously expose microparticle loaded systems with free radicals and study 

the scavenging potential of UV light and compare with free resveratrol. 
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APPENDIX 

Based on the research article 

Prachi Gupta, Caroline Lacerda, Vinod Patil, Dipti Biswal, Paritosh 

Wattamwar, J. Zach Hilt and Thomas D. Dziubla, ‘Degradation of 

poly(β-amino ester) hydrogels in alcohols through transesterification: A 

method to conjugate drugs to hydrogel matrices. (to be submitted) 

Abstract 

Poly(β amino ester) polymers have received growing attention in the literature, owing 

to their ease of synthesis, versatile co-monomer selection, and highly tunable 

degradation kinetics. As such, they have extensive potential in many biomedical 

applications.  In this work, it is demonstrated for the first time that PβAE polymers 

containing primary and secondary amine groups can undergo degradation by primary 

alcohols through a transesterification process. While this work demonstrates an 

important aspect of solvent compatibility limitation to these networks, it also represents 

an interesting, simple mechanism for post synthesis drug incorporation, with riboflavin 

conjugation being demonstrated as a model compound. 

Introduction 

Poly(beta-amino ester) (PβAE) hydrogels are hydrolytically degradable systems due to 

the presence of β-amino ester linkages. This is one of the central features for their 

applicability in biomedical applications such as gene and drug delivery and tissue 

engineering considering it as a biodegradable system [299, 300]. Synthesized via 

Michael addition reaction of an acrylate molecule with a primary or secondary amine, 

the degradation rate of these polymers is considered to be dependent on several 

structural and degradation medium factors. As such they have been shown to degrade 
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faster in the presence of primary and secondary amines in the hydrogel matrix because 

of the catalyzing action of amines [301, 302]. We have previously published a single-

step PβAE hydrogel synthesis reaction based upon primary diamine precursors that 

serve as crosslinkers during polymerization.  These networks were found to hydrolyze 

much more rapidly than gels prepared by a two-step crosslinking system, which is 

straight chain polymer synthesis followed by radical catalyzed cross-linking of acrylate 

end-groups [303].  It was theorized that this effect was a result of unmodified amines 

in the network backbone catalyzing the hydrolysis reaction [304, 305].   

Based upon this observation, we hypothesize that these PβAE crosslinked networks 

would also be sensitive to nucleophilic attack by primary alcohols and will highly 

depend on the nature of alcohols. Herein, we report the first demonstration of PβAE 

hydrogel degradation by alcohols through a transesterification mechanism, establishing 

the effect of acrylate to amine ratio, alcohol chain length and degree of carbon 

substitution on the degradation kinetics. This mechanism also permitted the post 

synthesis modification of the hydrogels with alcohol functionalized drug molecules, 

allowing for an easy approach to couple hydroxyl compounds into the backbone of the 

polymer.  Such modifications would allow for the gels to serve as drug release vehicles 

for molecules having the -OH group.   

Materials 

Poly (ethylene glycol) 400 diacrylate (PEG400DA) was purchased from Polysciences 

Inc., 4, 7, 10-Trioxa-1, 13-tridecane diamine (TTD) and riboflavin were obtained from 

Sigma-Aldrich (St. Lois, MO). All organic solvents were either purchased from Sigma-

Aldrich or Pharmco-aaper (Shelbyville, KY) and were used as received. All the other 

chemicals were used as received without further purification.     

Methods 
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Poly(β-amino ester) hydrogel synthesis  

A one-step Michael addition reaction between acrylates and amines was used to 

synthesize PβAE hydrogels, as previously described [6, 301].  Figure 1 (A) and 1 (B) 

depicts the reaction mechanism and the schematic of the predicted crosslinked gel 

structure. Diacrylate monomer (PEG(400)DA) and primary diamine (TTD) were 

weighed and mixed in dichloromethane (DCM) at 50% wt/wt with respect to total 

monomers. This solution was transferred to an aluminum dish and monomers were 

allowed to react for 24 hours at 50°C in an oven. PβAE hydrogels were then washed in 

acetone 4 times with a cycle of 1-hour each to remove unreacted monomers followed 

by freeze-drying to eliminate any residual solvent. The initial ratio of total acrylate to 

reactive hydrogen amine groups (RTAAP) was varied from 0.6 to 1.65 to synthesize 

different grades of PβAE hydrogels (Table 1) Note: 1 mol of diacrylate monomer 

corresponds to 2 mol of reactive acrylate groups; 1 mol of primary diamine monomer 

corresponds to total 4 mol of primary/secondary reactive amine groups.   

Table 1. Different grades of PβAE hydrogels were synthesized by varying ratio of 
total acrylate to amine protons (RTAAP) 
 

Hydrogel 
Identification 

Code 
Diacrylate Diamine RTAAP 

R- 0.6 PEG(400)DA TTD 0.6 
R-1.2 PEG(400)DA TTD 1.2 
R-1.65 PEG(400)DA TTD 1.65 
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Figure 1 Synthesis of PEGDA-TTD PβAE cross-linked gels  
A. Reaction scheme of PβAE hydrogel formation via reaction of PEG(400)DA and TTD 
in DCM solvent. B. Schematic of transesterification of PβAE hydrogels in presence of 
an alcohol. Ester bond of the PβAE matrix undergoes substitution with the reacting 
alcohol forming another ester bond. 
 
 
PβAE degradation in alcohols 

Degradation of PβAE hydrogels was carried out in various alcohols at 37° C. 1 cm disc 

were cut from the bulk hydrogel films, weighed and were then incubated in different 

alcohols of interest such that discs were completely submerged. At given time points, 
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gels were removed from the solvent and dried under vacuum to remove residual solvent. 

The fraction of mass remaining was calculated from the ratio of the recorded final dry 

mass (Wd) and initial (W0) mass values. The swelling ratio of the selected hydrogel-

alcohol incubation system was also calculated by recording the mass of alcohol swollen 

hydrogels during degradation. Swelling ratio was calculated as the ratio of swollen gel 

mass (Ws) with initial mass (W0).  

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝐅𝐅𝐨𝐨 𝐦𝐦𝐅𝐅𝐦𝐦𝐦𝐦 𝐅𝐅𝐫𝐫𝐦𝐦𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐫𝐫 =
𝐖𝐖𝐝𝐝

𝐖𝐖𝟎𝟎
 

𝐒𝐒𝐒𝐒𝐫𝐫𝐒𝐒𝐒𝐒𝐅𝐅𝐅𝐅𝐫𝐫 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 =
𝐖𝐖𝐦𝐦

𝐖𝐖𝟎𝟎
 

A separate set of RT-0.6 gels were degraded completely in ethanol as well as in water. 

Degradation products were freeze dried under vacuum and were subjected to FTIR 

analysis. 

Conjugation of PβAE hydrogels with Riboflavin 

R-0.6 and R-1.2 PβAE hydrogel discs were cut in about 1-cm discs, weighed and 

incubated in 1mg/ml riboflavin-DMSO solution at 37° C and allowed to react for various 

durations of time up to 48 hours. After 6, 12, 24 and 48 hours, hydrogels were taken 

out, washed twice in DMSO to remove unreacted riboflavin followed by a single wash 

in acetone in order to leach out any residual DMSO. The hydrogel discs were then 

freeze-dried overnight to remove any residual solvents. The next day, each hydrogel 

disc sample was placed in separate wells of a 12-well plate and read at 444 and 600 nm 

using Varian Cary 50 Bio UV-Vis spectrophotometer. Absorbance at 600 nm was 

subtracted from absorbance value at 444 nm as a baseline correction to obtain the 

absorbance only due to riboflavin conjugation and not the disc thickness/optical 

density. 
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Next, the riboflavin conjugated hydrogel discs were degraded in PBS (35 mg gel/ ml of 

PBS) for hydrogels to undergo hydrolysis and release pure riboflavin. The degradation 

products in PBS were analyzed once again under UV-Vis at 444 nm and riboflavin 

concentrations were calculated using standard calibration curve.  

Results 

PβAE hydrogel synthesis 

PβAE hydrogels synthesized with RTAAP of 0.6 (RT-0.6) and 1.2 (RT-1.2) resulted in 

uniform gels while gels synthesized with RTAAP of 1.65 (RT-1.65) resulted in partial 

conjugation and hence a semi-solid product. Since a properly conjugated hydrogel 

wasn’t obtained with RT-1.65, further analysis of transesterification was limited to RT-

0.6 and RT-1.2. Post synthesis, gels were washed in acetone to remove unreacted 

products and mass loss analysis was performed by weighing the gels before and after 

washing (freeze-dried). Average mass loss of 4.87 ± 0.3% for RT-0.6 and13.1 ± 0.4% 

for RT-1.2 was calculated.  

PβAE degradation in alcohols (Mass loss and swelling ratio) 

a. Effect of RTAAP on degradation and swelling ratio using ethanol as a 

degradation medium 

RT-0.6 degraded via transesterification in 12-hours and showed a faster swelling rate, 

when compared to RT-1.2, with  the swelling ratio of 3.5 ± 0.08 at 8 hours. After 8 

hours of incubation, the gel started to lose mechanical integrity, suggesting the final 

stage of complete degradation, as shown in figure 2 A and 2 B.  On the other hand, RT-

1.2 showed very slow kinetics of transesterification derived hydrogel degradation, with 

no effective mass loss observed in 1st 12 hours. Even after 25 days of ethanol 

incubation, fraction of mass remaining was calculated to be 0.96 ± 0.01, which is 4% 

mass loss. RT-1.2 did show a swelling ratio of 1.46 ± 0.01 after the 1st day but only 
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increased to 1.65 ± 0.02 after 25 days implying extremely slow degradation kinetics in 

ethanol. 

A similar effect of unsubstituted amines on gel degradation, with water as the 

degradation medium has been reported earlier. PEGDA-TTD gels synthesized with 

RTAAP of 0.6 degraded within 40 minutes while gels with RTAAP of 1.2 degraded 

completely in 130 minutes [5]. 

 

Figure 2 Effect of RTAAP on transesterification controlled degradation of PβAE gels 
in 200-proof ethanol at 37o C.  
A.) Mass loss analysis of PβAE hydrogels (R-0.6 and R-1.2) presented as a fraction of 
mass remaining w.r.t. time. B.) Swelling ratio of R-0.6 and R-1.2 in ethanol w.r.t. time. 
Gels synthesized with RTAAP of 0.6 showed faster degradation and swelling than gels 
with RTAAP 1.2. N=3, error bars: std. dev. 
 
b. Effect of primary alcohol with different chain lengths 

As RT-1.2 possessed very slow degradation kinetics in ethanol, RT-0.6 PβAE gels were 

used to determine the impact of primary alcohols of different chain aliphatic lengths i.e. 

ethanol, n-propanol and n-butanol. As observed in figure 3, the degradation rate in 

ethanol and n-propanol was extended over 9-12 hours. However, n-butanol mediated 

degradation of RT-0.6 was slower extending up to 28-30 hours 
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Figure 3 Degradation of PβAE hydrogels in primary alcohols of different chain 
lengths.  
R-0.6 PβAE hydrogel was incubated in ethanol, n-propanol and n-butanol at 37o C. 
N=3, error bars: std. dev. 
 
c. Effect of Alcohol Class on Degradation Kinetics 

To elucidate the mechanism of gel degradation, the impact of primary, secondary, or 

tertiary substituted alcohol was conducted in two separate studies. First, RT-0.6 

degradation was carried out with alcohols containing the same number of carbon chains 

but different degree of substitution i.e. n-propanol (primary, 3-carbon) and iso-propanol 

(secondary, 3-carbon) (figure 4 and 5). It was observed that PβAE gel incubation in 

primary alcohol (n-propanol) degraded within 12 hours, which is significantly faster 

than in secondary alcohol (iso-propanol) showing only 50% mass loss in 13 days. In 

the second study, RT-0.6 was incubated in primary, secondary and tertiary alcohol with 

different chain lengths. Ethanol (primary, 2-carbon), iso-propanol (secondary, 3-

carbon) and tert-butanol (tertiary, 4-carbon) were used for transesterification. As the 

mass loss in tert-butanol was too slow to show significant differences over the study 
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time, swelling ratio for different alcohols was analyzed instead. As shown in figure 5, 

ethanol hydrogel incubation resulted in a swelling ratio of 3.5±0.08 within 8 hours after 

which it disintegrated. Iso-propanol resulted in slower kinetics giving a swelling ratio 

of 2.45±0.16 after 4 days and 4.61±0.6 after 9 days. Tert-butanol incubation showed 

even slower kinetics with swelling ratio of 1.94±0.05 after 4 days and 2.48±0.16 after 

9 days. Therefore, PβAE degradation kinetics was faster in ethanol than in iso-propanol 

than in tert-butanol. 

 

 

Figure 4 Effect of the degree of carbon substitution on degradation kinetics of R-0.6 
PβAE hydrogels in primary and secondary alcohols.  
Data presented as mass loss analysis of PβAE hydrogels degraded in n-propanol and 
iso-propanol at 37oC. N=3, error bars: std. dev. 
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Figure 5 Swelling ratio of R-0.6 PβAE hydrogels in primary, secondary and tertiary 
alcohols i.e. ethanol, iso-propanol and tert-butanol respectively. 
 Rate of swelling and degradation decreases with increase in chain length and degree 
of carbon substitution. N=3, error bars: std. dev. 
 
In a separate study, with RT-0.6 were hydrolyzed completely in ethanol and water. 

FTIR analysis of both the systems were compared to identify the nature of degradation 

products. The degradation products obtained from water showed the presence of strong 

acid peaks at around 1584cm-1 clearly indicating the hydrolysis to the corresponding 

acids. However, the presence of a peak near 1732cm-1 in ethanol degradation products 

confirmed the formation of the corresponding ester products (Figure 6). 
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Figure 6 FTIR spectra of PβAE hydrogel RT-0.6, and the degradation products 
obtained by the hydrolysis of in water and ethanol.  

Riboflavin conjugation to PβAE via transesterification 

To study whether the transesterification mechanism can be used to link primary alcohol 

containing compounds to already formed PβAE gels, naturally found riboflavin 

(vitamin B2) with 1-primary and 3-secondary alcohol functional group was used as a 

model compound to conjugate into RT-0.6 and RT-1.2 via transesterification process 

(figure 7 D). After incubating the gels in 1 mg/ml of riboflavin dissolved in DMSO for 

6, 12, 24 and 48 hours, it was observed that RT-0.6 showed higher conjugation than 

RT-1.2 as seen in figure 7. When conjugated discs were observed under UV-Vis, 

absorbances were collected at 444 nm and 600 nm (characteristic wavelength for 

riboflavin). Absorbance value at 600 nm is the measure of optical density for each gel 

due to its thickness. Hence, to get absorbance values due to only riboflavin, absorbance 

at 600 nm was subtracted as a baseline from 444 nm and presented as Δabs.  RT-0.6 

showed Δabs of 0.22 ± 0.02, 0.28 ± 0.04, 0.5 ± 0.05 and 0.48 ± 0.06 after 6, 12, 24 and 
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48 hours of incubation respectively. RT-1.2 had lower Δabs values than RT-0.6 of 0.15 

± 0.5, 0.13 ± 0.01, 0.14 ± 0.5 and 0.23 ± 0.05 at the same time points (figure 7 A). 

The riboflavin-conjugated gels were then subjected to hydrolytic degradation in PBS to 

recover the riboflavin. Degradation products were again read at 444 nm and collected 

absorbances gave a concentration of riboflavin in the solution using standard curve 

(figure 7 B and 7 C). 0.85 ± 0.03, 1 ± 0.04, 1.3 ± 0.33 and 1.86 ± 0.06 μg/ml of riboflavin 

was retrieved with RT-0.6 gels incubated for 6, 12, 24 and 48 hours respectively 

followed by PBS degradation. For RT-1.2, a lower amount of riboflavin was recovered 

as conjugation was less, which was 0.5 ± 0.01, 0.55 ± 0.15, 0.59 ± 0.16 and 1.1 ± 0.13 

respectively under time interval degradation as for RT-0.6. 
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Figure 7 Conjugation of riboflavin into R-0.6 and R-1.2 PβAE hydrogels by 
incubation in 1 mg/ml riboflavin solution in DMSO.  
A.) Δabs of the hydrogels discs measured after different time intervals of incubation in 
riboflavin at 37o C. Δabs = abs (444nm)-abs (600nm). Baseline subtraction at 600 nm 
was done for each sample separately to void the effect of optical density due to gel 
thickness. B.) Absorbance of degradation products of riboflavin conjugated PβAE 
hydrogels in PBS after different time intervals. C.) Concentration of riboflavin in PBS 
calculated after analyzing the degradation products under UV-Vis at 444 nm. R-0.6 
gels showed the higher characteristic absorbance of riboflavin in gels discs as well as 
degradation products as compared to R-1.2 gels. This complies with transesterification 
data obtained earlier in figure 2. N=3, error bars: std. dev. 
 

Discussion 

The degradation studies of PEG(400)DA-TTD based PβAE hydrogel synthesized at 

different RTAAPs were carried out in ethanol at 37ºC. It was initially observed that 

PβAEs synthesized using single step approach were unstable in ethanol. This was 

different from previously reported data, where ethanol was used as a stable washing 

solvent [306]. Originally, it was believed that degradation was due to the water 

content in the solvent. However, degradation still proceeded even with dried solvents. 
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This observation led to the theoretical conclusion that, β-amino ester bonds in the 

PβAE hydrogels undergo transesterification with the alcohol to form a new ester.  

It was hypothesized that if transesterification was a mechanism, then the unmodified 

amines contained within the network could serve as a base to catalyze the 

transesterification process. To test this hypothesis, the levels of unmodified amine were 

varied by changing the total acrylate to total reactive hydrogen amine protons (RTAAP: 

0.6 and 1.2). Lower RTAAP (0.6 in this case)  PβAE gels with higher unreacted amine 

content, catalyzed the transesterification reaction via activation of surrounding alcohol 

into a nucleophilic entity (C2H5OH to C2H5O-) [307]. The activated form, C2H5O- 

resulted in faster disintegration of PβAE matrix via substitution at the ester linkage 

(Figure 2).  

Additionally, if the degradation of the PβAE gels is a function of transesterification, 

then it would be expected that the rate of degradation would be dependent upon the 

reactivity of the alcohol. Hence, the rate of alcohol substitution will be different for 

alcohols of different chain lengths or degree of carbon substitution. To verify this 

hypothesis, degradation properties of PβAE hydrogels were analyzed with different 

alcohols at 37°C (Figures 3, 4 and 5). It was observed that the degradation of RT-0.6 

PβAE hydrogel occurred fastest in ethanol followed by n-propanol and slowest with n-

butanol amongst the three primary alcohols. The ethanol based transesterification 

reaction is typically much faster than propanol or butanol due to the high polar and 

acidic nature or lower carbon induced inductive effect due to shorter carbon chain 

length [308].  As the length of the carbon chain increases, nucleophilicity of the 

alkoxide anion decreases leading to a decrease in the reactivity of alkoxide anion. This 

causes the slower reaction rate in the order of n-butanol, n-propanol and ethanol and 

hence the degradation kinetics (figure 3). A similar trend was seen with the PβAE 
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hydrogel degradation in primary, secondary and tertiary alcohols because of the same 

concept of higher inductive effect with secondary as compared to primary alcohols. 

Therefore, iso-propanol being less acidic than n-propanol, shows slower 

transesterification kinetics than n-propanol (figure 4).  The combined effect of chain 

length and degree of substitution was seen with degradation carried out in ethanol, iso-

propanol and tert-butanol, where with tert-butanol, slowest degradation was observed 

amongst all the alcohols used because of the presence of three alkyl groups on the 

carbon-atom with –OH group and hence least acidic nature.  

To confirm the transesterification reaction of the PβAE hydrogels, the degradation 

products of the RT-0.6 obtained from water and ethanol were freeze dried and analyzed 

with the help of an ATR-FTIR (Varian e-spectrophotometer). It has been reported 

previously that PβAE hydrogels degrade via hydrolysis of ester groups in the crosslinks 

to lower molecular weight degradation products and chains of poly(β-amino acids) and 

diols [300, 309]. The presence of a broad acid peak at 1584 cm-1 in the water 

degradation products of RT-0.6  with a subsequent decrease in intensity of the ester-

C=O peak at 1732 cm-1 clearly indicates the formation of low molecular weight acids 

(Figure 6). The transesterification reaction of PβAE with alcohols was also confirmed 

by the re-formation of new ester peaks at around 1732cm-1 from the ethanol degradation 

products of RT-0.6.  

Taking advantage of transesterification of PβAE network by alcohols, compounds of 

medicinal value containing alcohol groups (e.g. riboflavin, ascorbic acid) can be 

conjugated to the PβAE network without the use of additional linkers or reagents. 

Riboflavin is a part of the Vitamin B family (Vitamin B2), naturally found in milk, 

yeast, leafy vegetables with metabolic functional significance in activating other 
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vitamins and reaction with flavoproteins [15, 310]. It contains one primary and three 

secondary alcohol groups in the molecular structure (Figure 7 D).  

The extent of riboflavin conjugation into PβAE could be analyzed using UV-Vis 

because of its characteristic wavelength at 444 nm. As shown in Figure 7, PβAE upon 

incubation in riboflavin solution was able to conjugate the alcoholic molecule into its 

matrix and the amount of conjugation increased with time showing the progression of 

transesterification. Higher conjugation was seen with RT-0.6 than RT-1.2 because of 

the faster transesterification kinetics complying with previous studies (Figure 2). This 

was observed at both levels, riboflavin conjugated gel discs (figure 7 A) and released 

riboflavin after complete degradation of the gels (7 B). 

Conclusion  

It was found that PβAE synthesized by the single step non-free radical polymerization 

method degrades in alcohol via a transesterification mechanism. Unreacted 

primary/secondary amines in the PβAE network catalyze this transesterification 

reaction and the rate of PβAE degradation in alcohol decreases with increase in 

RTAAP. The degradation rate of PβAE in alcohol decreases with increasing chain 

length of alcohol or in order of tertiary<secondary<primary alcohols. Taking advantage 

of alcohol induced transesterification reaction in the PβAE network, molecules of 

medicinal value with alcohol groups (e.g. riboflavin) can be covalently conjugated to 

the PβAE network and the amount to be conjugated can be controlled with incubation 

time until gel disintegration while release of riboflavin via water hydrolysis can be 

controlled by selecting the PβAE gels of different RTAAPs. 
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