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ABSTRACT OF THESIS 

 

THE EFFECT OF PORE DENSITY AND DISTRIBUTION ON FATIGUE 

WEAK LINKS IN AN A713 CAST ALUMINUM ALLOY 

 
The effects of pore density and distribution were investigated on the fatigue crack initiation 

behavior in an A713 sand cast aluminum alloy plate of 12 mm thickness. The applied 

stress- the number of cycles to failure (S-N) curves of the samples taken from 2 mm and 5 

mm from the free surface were obtained using four-point bend fatigue testing at room 

temperature, frequency of 20 Hz, stress ratio of 0.1, sinusoidal waveform, and in ambient 

air. The fatigue strengths of both, the 2 mm and 5 mm samples were 60% of the yield 

strength (σy=171.9 MPa) of the alloy. Optical microscopy, SEM, and EDS mapping were 

used to characterize pores and particles in 2 mm and 5 mm samples. The average pore sizes 

of the 2 mm and 5 mm samples were measured to be 10 to 14 μm, and 14 to 32 μm, 

respectively. The pore number densities in 5 mm and 2 mm samples were comparable, but 

higher number densities of non-clustered coarse pores (gas pores) were observed in 5 mm 

samples. The crack population found after fatigue testing showed a Weibull function of 

stress level. The peaks of strength distributions of fatigue weak link density of 5 mm and 

2 mm samples were measured to be 0.017 mm-2 at 67.6 % σy, and 0.01027 mm-2 at 69.5% 



 

 

σy. Crack populations, when normalized by number densities of gas pores (non-clustered) 

and number densities of shrinkage pores (clustered), giving crack nucleation rate 

(crack/pore, mm-2), showed a good fit with the Weibull function in 2 mm and 5 mm 

samples. Shrinkage and gas pores could both become the main crack initiation sites (i.e. 

fatigue weak links) in this alloy. Higher nucleation rates of gas pores and shrinkage pores 

were observed in 5 mm samples compared to those rates in 2 mm samples. At high applied 

stresses, the 2 mm samples showed better fatigue lives than those of 5 mm samples. 

Fractured surfaces were analyzed using SEM and found that the main crack initiation were 

predominately from pores. The pores on the fractured surfaces were counted and their 

depth and width were measured. It was found that the cracks may not necessarily initiate 

from coarse pores, but sometimes from shrinkage pores (i.e. group of pores). The depth 

from the free surface, the width, the size, and the orientation of pores are key factors in 

increasing the driving force for crack initiation and subsequently those pores turn into long 

cracks. Moreover, the aspect ratios of pores on the main cracks were measured and found 

that in 5 mm samples, some pores have an aspect ratios of less than 0.7, which means that 

these pores are elongated in depth and have a narrow width which increase the stress 

concentration on the surface, thus, increasing the driving force for crack nucleation.     

KEYWORDS: A713 Cast Al alloy, four-point bend fatigue test, gas pores (non-

clustered), shrinkage pores (clustered), fatigue weak links (FWL).  
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Chapter 1 Introduction 

Fatigue of materials and fatigue failures are significant issues in engineering applications 

[1]. The word fatigue is used to express human physical status. However, In engineering 

and in scientific societies, fatigue is a terminology extensively used to describe failures of 

structures and components that are subjected to cyclic loading [2]. Mechanical fatigue of 

engineering alloys is a result of externally applied cyclic stresses or strains.  Moreover, 

fatigue failures can lead to a catastrophic tragedy and loss of life [3]. It estimated that the 

cost correlated directly to fatigue of materials and fracture is significantly high. Several 

studies in the 1980s indicate that the cost related to fatigue failures and fracture is around 

$120 billion in the Unites States, which represents approximately 4% of the gross domestic 

product of the United States [4, 5]. This number may have been increased in the last decade, 

due to the expansion of production and usage of engineering materials. As a consequence 

of these numerous effects, attention has been given to fatigue and fracture of materials in 

the scientific community. 

 

1.1 Historical Overview on Fatigue of Materials Research  

The research on fatigue of engineering materials has started in the early 19th century, which 

emphasises on how and why components fail from fatigue loading [2]. Numerous scientists 

have studied fatigue failures of engineering alloys. Wöhler, who has conducted analytical 

and systematic fatigue tests on railroad axles [6]. His tests and studies have characterized 

fatigue failures in terms of stress-life cycles (S-N) diagrams and introduced the new 

terminology “endurance limit” or referred as the fatigue limit. 
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 At the time were microscopy was invented, research on fatigue of metals has grown and 

one of the early studies on fatigue of metals on a microscopic level was done by Ewing et 

al. [7]. The significant findings of Ewing et al. were that the cyclic slip bands on a polished 

sample were visible under optical microscopy. Moreover, these slip bands were continuing 

to grow upon cyclic loading, leading to nucleation of fatigue cracks. Empirical equations 

to quantify S-N curves of metals was introduced by Basquin [8]. Basquen showed in his 

study that the applied stress versus number of cycles to failure has a linear relationship. 

 

The field of fracture mechanics and its theories in fatigue research were extensively studied 

at the period post World War II era [9, 10]. Pioneering research was conducted by Paris et 

al. [10], who were the first to relate da/dN (fatigue crack growth/stress cycle) to a range of 

stress intensity factor, ΔK. The effects of microstructural and environmental factors on 

fatigue behavior including crack initiation and crack growth of engineering materials were 

given considerable efforts back in the 1950s. 

 

 The research on fatigue behavior has progressed significantly because of electron 

microscopy and its advantages [11]. Among those who have contributed to research on 

fatigue of materials, were Zappfe et al. [12]. They reported the markings on fatigued 

samples, which are named and known as fatigue striations. Several studies on fatigue 

striations and the spacing between contingent striations can be found elsewhere [13]. 

Extrusions and slip roughening are terms observed first by Forsyth [14, 15]. He 

documented these phenomena in a solution treated Al-Cu alloy and in silver chloride 

polycrystals.  
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The presence of microstructural defects in engineering alloys such as inclusions and 

porosities decrease the fatigue strength and the fatigue life. These defects are considered 

as preferred crack initiation sites, which depend on several mechanical, environmental and 

microstructural factors. For example, slip systems of the alloy, the strength of the alloy and 

the defect, and the interface between the defect and the matrix of the alloy [16]. The 

microstructural effects on fatigue properties of engineering alloys were documented 

several decades ago. However, quantitative understanding of microstructural effects on 

fatigue behavior remains challenging. Thus, further investigations need to be conducted to 

fully understand fatigue mechanisms. 

 

1.2 Fatigue Behavior of materials      

As mentioned in the previous section, studies on fatigue of materials have expanded in the 

20th century. These studies reported that the fatigue cracks nucleate at a scale of atomic 

level and start to grow to the macroscopic level of the material ending in final failure. 

Figure 1.1, shows two periods exhibited in fatigue life and relevant components that 

monitor fatigue behavior of materials [1]. It can be seen from Figure 1.1 that fatigue life 

consists of fatigue crack initiation stage and the fatigue crack growth stage. Fatigue crack 

initiation period consumes most of the fatigue life of a material. It begins on the free surface 

of the material along the slip lines leading to fatigue crack nucleation. Typically, crack 

initiation period is characterized by three main phases, namely, cyclic slip, crack 

nucleation, and microcrack growth. Long crack growth is mainly under crack growth 

period.   

Fatigue crack initiation usually starts on free surfaces or sub-surfaces of the engineering 

material. The presence of impurities, inclusions, slags, and precipitates in the material give 
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rise to fatigue damage. As mentioned earlier, crack initiation period control the fatigue life 

of a material under high cycle fatigue. Some micro cracks are initiated from the persistence 

slip bands (PSBs) due to the slip generated from cylic loading, producing extrusions and 

intrusions which are dipicted in Figure 1.1 [15]. Observations of crack initiation along 

PSBs have been accredited to Katagiri et al. [18]. By using transmission electron 

microscopy (TEM) to observe dislocations in fatigued polycrystalline Cu, Katagiri et al. 

found that crack initiation and early growth nucleate in the PSBs. These valleys and troughs 

serve as notches producing stress concentration that can promote more slip and thus, 

fatigue crack initiation along PSBs.  Removing these intrusions and extrusions from the 

sample surface by means of electropolishing can increase the fatigue life [18].  

Two approaches are commonly employed to study the fatigue behavior of engineering 

materials. The first approach is to characterize fatigue failure by total-life using stress 

versus cycles to failure curve which is known as S-N curve [6]. Sufficient laboratory 

samples needed to fully construct the S-N curve. These samples are tested over a range of 

cyclic stresses under plane bending, rotating bending, tension-tension, or compression-

tension. Procedures of these tests can be found in details in ASTM standards [17]. The 

fatigue limit can be derived from S-N by observing samples that do not fail for an infinite 

number of cycles under specified stress amplitude. Some engineering alloys such as high 

strength aluminum alloys and steels, does not show a threshold or a fatigue limit. Thus, the 

stress amplitude continues to decrease with increasing number of cycles to failure. For this 

reason, the endurance limit or the fatigue limit is derived from stress amplitude for samples 

that can withstand for at least 107 cycles [2]. 
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The other approach is to characterize fatigue failure based on the resistance to fatigue crack 

growth which is commonly known as fracture mechanics approach [2]. The primary 

assumption in this method is that all engineering materials are flawed. Using Paris law, 

Equation 1.1 [10], one can derive fatigue crack growth rate by plotting da/dN versus ΔK. 

Both approaches are widely accepted in scientific research.  

 𝑑𝑎/𝑑𝑁 = 𝑓(ΔK) (1.1) 

 

 

After introducing general overview on fatigue behavior of materials, the primary focus on 

the following sections will be directed to the fatigue properties of aluminum alloys, and 

more extensively on fatigue properties of cast aluminum alloys.  

 

1.3  Fatigue Properties of Aluminum Alloys 

Due to their strength, corrosion properties, and formability, aluminum alloys primarily 

have been used in aerospace and automotive applications. Due to the expansion of the 

applications of aluminum alloys, which operate on services that are under cyclic loading, 

susceptibility to fatigue failures, are significantly high. Thus, numerous studies were 

carried out to characterize fatigue strength of wrought and cast aluminum alloys [19-21]. 

The main focus in the past few decades was to identify and to understand variables that 

cause fatigue failures in aluminum alloys.  

 

Fatigue failures generally occur under high-cycle fatigue loading at stress levels below the 

yield strength of an engineering alloy. A number of variables that causes crack initiation 

and fatigue failure in aluminum alloys are including, but not limited to, microstructural and 

environmental effect; loading condition; and processing history. Microstructural effects 
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include grain diameter, porosity, second phase particles, and texture. Environmental effects 

such as humidity level, temperature, and corrosive environments emerge out as factors that 

can affect the fatigue properties. Loading condition plays a significant role in affecting 

fatigue strength e.g. stress ratio, applied stress level, stress range, and the waveform of 

applied stress. The surface condition, roughness, and manufacturing history in an 

engineering alloy are examples of processing history that may impair the fatigue properties 

[22, 23]. 

 

Constituent particles are the most detrimental crack initiation sites in wrought aluminum 

alloys.[24-27]. Simply because these constituent particles are pre-fractured during 

manufacturing processing (i.e. rolling and extrusion) and the particle-matrix interface is 

considered weak. Furthermore, particle thickness, aspect ratio, and density were found to 

be the essential factors affecting fatigue crack initiation and fatigue crack growth [27]. The 

following sections introduce a literature review on fatigue properties of cast aluminum 

alloys and the factors that affect the fatigue strength. 

 

1.4 Literature survey on Fatigue Properties of Cast Aluminum Alloys 

Cast aluminum alloys have been used in industry for decades, thanks to their superior 

properties and to their ability to obtain net-shape geometries with dimensional accuracy 

[28]. The yield strength of cast aluminum alloys ranges from 20 MPa up to 450 MPa [29]. 

Other properties including weight, elongation percentage, and hardness are reported in the 

literature. Although cast aluminum alloys are reliable in industrial applications, their 

fatigue strength and, namely, their fatigue limit, are well below the yield strength. It is 

believed that the fatigue limit of cast aluminum alloys is one or two order magnitudes lower 



7 

 

than the yield strength [30]. This is mainly attributed to casting defects exhibited in cast 

aluminum alloys and several other factors that may degrade fatigue properties such as 

dendrite arm spacing (DAS) and eutectic phase. Size, shape, and distribution of 

intermetallic particles influence the fatigue properties of cast aluminum alloys [31]. One 

of the major defects in aluminum casting products is the presence of microscale defects 

called microporosity.  The presence of microporosity in the cast play a role in impairing 

the fatigue lives of cast aluminum alloys [30, 32-34]. The following subsections will 

introduce the effect of microporosity on fatigue behavior of cast aluminum alloys.  

 

1.4.1 The effect of porosity on fatigue properties of cast Al alloys  

One of the major problems in aluminum casting products is the presence of microporosity, 

which is associated with two primary factors during the casting process. One of them is 

shrinkage, which is caused by the lack of adequate feeding process during solidification of 

the molten metal [35]. Commercial cast aluminum alloys exhibit volumetric shrinkage in 

the range of 5% to 6% during solidification. As the liquid metal casting freezes, the 

capability to feed the molten metal becomes hard to achieve [34]. Due to the decreasing 

size of the channels inside the melt, formation of shrinkage porosity (shrinkage pores) 

becomes easy. Shrinkage pores generally have an irregular, complex morphology, and a 

crack like features, see Figure 1.3 [36]. The other factor is the presence of gas in the melt, 

which mainly resulted from the difference in the solubility of hydrogen in the liquid/solid 

interface, leading to the formation of gas pores [37]. These types of casting defects, affect 

the mechanical properties and fatigue crack initiation behavior of cast aluminum alloys 

during service as previously studied in literature [38-40]. 
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Several studies suggest that fatigue cracks are initiated from those pores located at/or near 

the surfaces of fatigued samples [41, 42]. Lados et al., found in their study that the fatigue 

life decreases as the fatigue crack initiation pore sizes increases [41]. Factors affecting 

fatigue properties in sand cast Al-Si-Cu alloy were studied by Kwai et al., [21]. It was 

deduced from this study that there are three factors controlling fatigue life of B319 Al alloy, 

namely, crack initiation at shrinkage pore with sharp radii, debonding at the particle-matrix 

interface, and crack growth along interdendritic grain boundaries. One of the studies 

concludes that the primary parameter for fatigue crack initiation is due to decohesion of Si 

particles located at/or near pores that are at/or below the surface of AS7G03 cast aluminum 

alloy [43]. A finite element model was used by Fan et al, to study the effect of 

particles/pores sizes and morphologies on fatigue crack incubation life using Coffin-

Manson criteria [44]. In their study, they concluded that large pores exhibit high plastic 

strain, which leads to a lower fatigue crack incubation life.  

 

One of the commercial aluminum cast alloys that exhibit casting defects is A713 sand cast 

aluminum alloy, which is used in engineering applications such as automotive and 

machinery parts. Previous studies show that the size distribution of pores within the alloy, 

play a major role in decreasing fatigue lives of cast aluminum alloys. Also, number of crack 

initiation sites (i.e. fatigue weak links), show a significant degradation in fatigue properties 

[38]. Zhai [45] has established a method to characterize the strength distribution and 

population of fatigue weak links, and regarded them as fatigue properties in an AA8090 

commercial Al alloy. Yuanbin Zhang et.al, [38] have found that the number of fatigue 

cracks observed on the surface of A713 sand cast aluminum alloy show a Weibull 
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distribution function with a fatigue limit of 94.5 MPa and the average diameter of pores 

was 20.13 μm.  

Different distributions exhibit in cast aluminum alloys in either random or clustered 

distribution or combination of random and clustered distribution. Spatial arrangements of 

microporosity exhibit a significant effect on the mechanical properties of casting alloys as 

well as pore size and number density that eventually lead to scattering in the S-N curve. It 

is necessary to quantify the nearest neighbor distances between pores, pore number density, 

and pore size, to estimate the effect of pores distribution in the alloy. A number of 

techniques have been developed to measure the average nearest neighbor distances 

between pores in cast aluminum alloys [36, 46]. The basic techniques used in these studies 

were to create a montage of large number of contiguous micrographs (field of views of, 

e.g. 50 micrographs) by using digital image analyzer. It can be recognized that if one can 

take adjacent micrographs manually, then a problem will arise, namely, edge matching for 

each next micrograph. Creating a montage gives approximately precise measurements of 

nearest neighbor distances. To the best of our knowledge, there have been no systematic 

studies obtained to correlate pores density and distribution of shrinkage and gas pores to 

crack nucleation rate. Further analysis should be carried out to fully understand the main 

role of pores in crack initiation and early crack growth.   

  

1.5 Pore Formation Mechanism   

The presence of pores in casting alloys has been well studied as a high concentration of 

microporosity can result in degradation of mechanical properties and specifically, of 

fatigue properties. Two types of porosity exhibit in cast alloys as mentioned earlier, gas 

and shrinkage pores. While there are studies explain the formation of microporosity. Still 
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the physics associated with microporosity formation are complex.  It is believed that the 

main source of microporosity formation (gas pores) in aluminum alloys is the presence of 

hydrogen in the melt [47]. Moreover, some studies postulate that the principal mechanism 

of pore formation is due to the reduction in hydrogen solubility during solidification which 

leads to the formation of gas bubbles, namely, gas pores [36]. On the other hand, as 

mentioned earlier, shrinkage pores are formed due to lack of interdendritic feeding during 

the solidification of the mushy zone in an alloy [48].  

 

There are four types of feeding mechanisms as proposed by Campbell which is shown in 

details in Figure 1.4 [49].  At early stage of solidification, liquid feeding occurs first. The 

second is mass feeding which may or may not occur, and it is not fully understood. The 

third is interdendritic feeding, which occurs at the final stages of solidification of the melt 

and may have central effects that lead to porosity formation. The last feeding is solid 

feeding, which occurs at the final stage of solidification. Microporosity forms due to the 

limitation of these feeding mechanisms.  

  

If there is no evidence of gas contamination in the melt and if the feeding is properly carried 

out, then there will be no porosity found in the cast alloy. However, in engineering 

practices, castings are complex and those porosities may exhibit in regions that are not well 

fed. [50-52]. The exact mechanism of pore nucleation during solidification is still not well 

understood. Nevertheless, some studies explain the formation of pores in aluminum and its 

alloys based on classical theories of nucleation and growth [35, 53]. The liquid that is 

flowing towards the root of the dendrites to reduce the volumetric shrinkage exhibits a 

pressure drop between the mushy zone and the liquid metal [54]. The large difference in 



11 

 

solubility of hydrogen in the interdendritic liquid metal leads to the formation of gas pores. 

When the molten metal solidifies, hydrogen is rejected from the solid-liquid interface into 

the liquid phase that becomes enriched in hydrogen concentration. This hydrogen enriched 

region exhibit a gas pressure that is given by Sievert’s law (Equation 1.2) [53]: 

 
PH2

=Pext+Pst+Pexp+
2γ

r
 (1.2) 

Where Pext  is the external pressure (i.e. atmospheric pressure), Pst  is the metallostatic 

pressure, Pexp is the expansion pressure due to the phase transformation exhibited in during 

solidification, γ is the interfacial energy at liquid/gas interface (i.e. surface tension), and r 

is the radius of the pore. This approach explains the homogenous nucleation of pore during 

solidification which is unlikely to occur because the amount of pressure needed for 

nucleation is high [53].  

  

The other explanation of pore formation is based on the heterogeneous nucleation of gas 

pores on oxide films, inclusions, and grain boundaries. This is why filtering molten 

aluminum alloys decreases the amount of porosity in the casting.  Anyalebechi [55], carried 

out experiments on Al-Cu-Mg cast aluminum alloys and found that initial hydrogen melt 

and the solidification rate play significant roles in pore formation including size, shape, 

and morphology. As the solidification rate increases, the number density of pores formed 

during solidification is decreased. This is mainly attributed to: (a) the distance that 

hydrogen can flow during pore nucleation and growth, (b) time required for pore formation 

and growth, and (c) hydrogen concentration in the melt for pore growth [56]. It is also 

concluded from these studies that solidification rate effect on porosity formation is higher 

at low hydrogen levels. In addition, the size and shape of gas pores depend on the capability 
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of growing pores to resist the pressure exerted by the solid phase. Several studies suggest 

that adding a grain refiner have a major influence in decreasing pore size and number 

densities [57, 58].  This is attributed to the increase in the number of nucleated grains in 

the solid regions during solidification.  

 

      

1.6 Motivation  

There were studies conducted to characterize pore distribution which give a quantitative 

discrimination between gas and shrinkage pores in AM series of cast magnesium alloys 

and A356 cast aluminum alloy [36, 46]. Correlation between fatigue behavior and pore 

density and distribution are rarely seen in literature. Xu et al., [59], have found that the 

pore position from the free surface of a sample significantly affects the stress concentration 

which reaches its peak value when the pore intercepts the free surface. Furthermore, their 

finite element modeling shows that the distance between pores could also increases 

stress/strain concentration when the spacing decreases. Although the model predicted the 

stress field around pores, the model only considers two spherical pores within one μm 

distance apart in a direction perpendicular to the applied stress.  

The quantitative effects of pore density and distribution on the fatigue crack initiation 

behavior in an A713 sand cast aluminum alloy still need to be clarified. In this study, a 

commercial A713 cast aluminum alloy was taken as an example to study the fatigue 

properties. Although, it is crucial that the processing parameters that affect pore 

morphology (i.e. solidification rate and hydrogen content) of the ingot are known to predict 

pore distribution and size, in this work, the processing parameter are unknown, thus, pore 
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density and distribution measurements were taken from different location to observe the 

differences between these two locations in terms of pore size, density, and distribution.    
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Figure 1.1 Stages of fatigue failure in engineering materials, after ref. [1]. 

 

 

 

 

 

 

Figure 1.2 The geometry of slip at the material surface; extrusion and intrusion, after ref 

[15]. 
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Figure 1.3 Schematic drawing of a shrinkage pore and the resulting two-dimensional 

image when a sample is sectioned, after ref. [36].  

 

 

Figure 1.4 Schematic representation of feeding mechanisms in castings, after ref [49].  
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Figure 1.5 Types of pores in an A713 cast aluminum alloy (a) shrinkage pores; (b) gas 

pores. 
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Chapter 2 Experimental Material and Methods 

2.1 Introduction  

In order to quantify the effect of pore density and distribution on fatigue behavior in a 

cast aluminum alloy, A713 sand cast aluminum alloy was selected in this work. 

 

2.2 Material 

The materials were taken from commercial A713 sand cast aluminum alloy that were used 

to manufacture fan hubs. The nominal chemical composition of the alloy is listed in Table 

2.1. The material has yield strength of 171.9 MPa. In this work, samples were cut from the 

cast blades to the dimensions of 36.5 x 10 x 4.8 mm3 from two different locations, namely, 

2 mm and 5 mm from the surface as schematically shown in Figure 2.1, and Figure 2.2. 

Samples surfaces were prepared using standard metallographic procedures, in which they 

were mechanically ground using SiC abrasive papers from grits of 240 to 1200, followed 

by mechanical polishing using alumina powders (Al2O3) as a polishing agent with sizes of 

1 μm, 0.3 μm and 0.05 μm and a silica colloidal suspension as the final polishing liquid. 

Soon after the polishing, the samples were cleaned in alcohol using ultrasonic cleaner to 

remove any residual contamination from sample preparation. Great care was taken in 

handling the samples preparation to avoid any damage throughout the work.  
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2.3 Optical micrographs 

Optical microscopy (OM) was employed to study pore sizes and distribution before and 

after fatigue tests. In each sample, twenty contingent micrographs were taken at 50X 

magnification before fatigue to in an area of (approximately 60 mm2) on the surface of the 

samples to measure nearest neighbor distances and to map all shrinkage and gas pores using 

digital image analyzer. Micrographs at 50X magnification were taken under optical 

microscopy to cover the area of 60 mm2 for simplicity. If the magnification is increased to 

100X, 60 micrographs are supposed to be taken from each sample, which is cumbersome 

work to accomplish. Figure 2.3, shows schematically the location of the micrographs that 

are located in the area of the sample that is subjected to cyclic stresses.  

 

After that, the twenty micrographs were merged using image software to create a global 

montage of micrographs for each sample. Particles were removed from the analysis and 

each pore counted in the segmented global micrograph was numbered for subsequent study 

after fatigue testing. It is estimated that the error of taking these contingent micrographs in 

this study is between 2% to 5%. This method assures that edge effect errors of counting 

pores and measuring nearest distances between pores are minimized. Pore size, number 

densities, and nearest neighbor distances between pores were counted and measured from 

each sample and statistically plotted in histograms for comparison. After fatigue tests, 

fatigued surfaces were examined under optical microscopy at magnifications of 50X, and 

at 100X and number of cracks (i.e. fatigue-weak links) were counted from each fatigued 

sample for subsequent analysis.   
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2.4 Four-point bend fatigue test  

Fatigue tests on A713 cast aluminum alloys were conducted in a four-point bend on MTS 

810 servohydraulic material testing system, see Figure 2.4. The self-aligning four-point 

bend fatigue testing geometry and sample dimension are shown previously in Figure 2.2 

and in Figure 2.5. [60]. The optimum testing dimensions of the support span/ load span 

(i.e. L/t), and load span/sample thickness (i.e. t/h) have been reported to be 4 to 5, and 1.2 

to 1.5, respectively [60]. This assures a uniform tensile stress on the sample surface for 

consistent results. The nominal maximum stress on the sample surface is calculated using 

beam theory:  

 

 
 𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 =

3𝐹(𝐿 − 𝑡)

𝑤ℎ2
 (2.1) 

 

Where F is the applied load, t and L are the support span and load span as mentioned earlier, 

w and h are the width and the thickness respectively. In this study, samples geometry were 

L×w×h, which equal to 36.5×10×5 mm3. This advantageous technique is useful in studying 

fatigue damage (i.e. fatigue weak-links) by means of optical microscopy and scanning 

electron microscopy. The fatigue tests were carried out on the studied samples at a stress 

ratio of (R = σmin/σmax=0.1), a frequency of 20 HZ, at room temperature in ambient air, and 

in a sinusoidal waveform. The fatigue tests were set to run out at 5,500,000 cycles in the 

stress-cycles measurements. 11 Samples from each batch were tested at different maximum 

cyclic stresses ranging from 60% to 110% of the yield strength of A713 cast Al alloy (σy 

=171.9 MPa).  To study the fatigue crack initiation for these samples, the fatigue tests were 

terminated when the sample deflection exceeded 10% of the maximum cyclic stress. This 
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method ensures and minimizes long crack growth in the samples as much as possible. After 

the fatigue test, the sample surface remains relatively flat in order to examine the fatigue 

crack initiation sites under optical microscopy.  

 

2.5 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy is one of the microscopic techniques that generates high-

resolution images and identify the chemical composition of a sample using energy-

dispersive spectroscopy (EDS) with high energy electron beam ranging from 0.5 to 30 

keV.[61]. The electron source leveraged in the SEM can be a tungsten filament, LaB6, or 

Schottky emitter [62]. Furthermore, SEM can provide several information about a sample 

when bombarded by electrons, which generate signals such as secondary electrons (SE), 

backscattered electrons (BSE), x-rays, and Auger electrons. Figure 2.6 shows the generated 

signals when an incident beam bombards a sample.  

 

The most frequently used signal is the secondary electrons, which are defined as energies 

less than 50 eV. These electrons are sensitive to sample surface topography, i.e., 

observation of texture and surface roughness within a nanometer scale and they are 

detected by scintillator-photomultiplier and the produced signals are transformed into an 

intensity distribution which can generate digital images [62]. 

  

 On the other hand, backscattered electrons are defined as those electrons that undergone 

several scattering events with an energy higher than 50 eV [63]. Atoms with higher atomic 

numbers (Z number) have more positive charges on their nucleus, and consequently, more 

electrons produce elastic collisions, which generate backscattered signals. Characteristic 
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x-ray signals are also emitted from sample surface when bombarded by an incident electron 

beam that can provide valuable qualitative and quantitative information such as chemical 

composition and elemental mapping.       

In this study, secondary electron (SE), energy dispersive spectroscopy (EDS), and 

elemental mapping were used for pore and particles imaging, chemical composition 

analysis, and fracture surfaces on FEI Quanta 250 SEM, and Zeiss EVO MA 10.  
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Table 2.1 Chemical composition of A713 sand cast aluminum alloy (in wt. pct.). 

Material Fe Cu Mg Zn Aluminum 

A713 cast 

Al alloy 
1.1  0.1-1.0 0.2-0.5 7.0-8.0 Balance 

 

 

 

 

 

Figure 2.1 Schematic drawing for samples location. 
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Figure 2.2 Geometry and dimensions of a four-point bend fatigue sample. 

 

 

 

 

 

 

Figure 2.3 Schematic representation showing optical micrographs locations; the surface 

of the sample that is subjected to fatigue loading. 
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Figure 2.4 MTS 810 servohydraulic material testing system, the square shows the four-

point bend fatigue testing rig. 

 

 

Figure 2.5 Testing geometry of the four-point bend rig test. 
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Figure 2.6 Generated signals produced when incident beam bombards a sample. 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Backscattered 

Electrons 
Incident Beam 

Secondary 

electrons 

X-Ray (EDS) 

 



26 

 

Chapter 3 Results and Discussions  

This chapter represents the primary results and discussions of the effect of shrinkage and 

gas pores on fatigue behavior in A713 cast aluminum alloy. The previous study was 

conducted on the same alloy, but still, the effects were not fully understood. Detailed 

optical micrographs, S-N curve, pore size distribution, pore number density, average 

nearest neighbor distances between pores, SEM images, and fractography, all included in 

this chapter. 

 

3.1 Optical micrographs 

From the two surfaces; 2 mm and 5 mm samples, optical micrographs reveal and show that 

pores have different sizes, distribution, and morphology. Figure 3.1 shows two different 

types of pores in terms of sizes and location. It can be seen that shrinkage pores (i.e. pore 

clusters) were observed on both surfaces with different sizes and densities. The grain 

structure of this alloy has been reported in the previous study, which indicates that this 

alloy has coarse grain structure [38]. Small dispersed rounded gas pores were observed on 

some of the 5 mm samples. 

    

In this study, as mentioned earlier, twenty micrographs from each sample were taken at 

50X magnification to create a montage of global images for each sample. From these global 

images, pore sizes, pore number density, and nearest neighbor distances between pores 

were counted. Magnifications of 100X, 200X, and 500X were taken for subsequent 

analysis. The following sections present the global micrographs including the statistical 

results for each sample in 2 mm and 5 mm surfaces. 
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3.1.1 Pore size, density, and distribution 

Figure 3.2 and Figure 3.3; show examples of global micrographs of 2 mm samples. Clearly, 

it can be seen from these figures that the majority of pores are shrinkage pores and tend to 

have random and clustered distribution. On the other hand, some of the 5 mm samples 

exhibit some coarse gas pores as shown in Figure 3.4 and Figure 3.5. From these figures, 

coarser pores are predominately observed in 5 mm samples. The cast blade has a significant 

segregation in terms of pore size and distribution. Figure 3.6 shows the cross sectional view 

of the cast blade; it is clear that the pores are segregated in depth and in the longitudinal 

direction. Different types of pores observed; coarse and fine pores; clustered and non-

clustered pores, within the alloy.  

 

Figure 3.7 shows the statistical analysis for pore mean diameter and number densities in 2 

mm samples. 11 samples were tested at different stress levels as mentioned earlier. Sample 

No. 2 mm-12 shows the highest pore number density and average pore diameter of 25.7 

per mm2 and 14 μm, respectively. The average pore size of the 2 mm samples was between 

10 to 14 μm; this is true for at least the areas that are under cyclic loading. Pore number 

densities were different from sample to sample, ranging from as high as 25 per mm2 to as 

low as 8 per mm2.  Figure 3.8 represents the statistical results for pore mean diameter and 

pore number densities in 5 mm samples. It is clearly shown that pores in 5 mm samples are 

coarser compared to those in 2 mm samples. Average mean pore diameter in 5 mm ranges 

from 14 μm to 32 μm. Some pores exhibit pore sizes as high as approximately 400 μm in 

diameter. Pore number density in 5 mm samples differs from sample to sample, similar to 

those observed in 2 mm samples, ranging from 7 per mm2 to 24 per mm2. The pore number 

density that is larger than 100 μm in size on 5 mm samples were around 4 to 5 per mm2 
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which were higher than those observed in 2 mm samples by a factor of 2. These coarser 

pores found in the 5 mm samples were nucleated in the middle of the blade and it can be 

attributed to the solidification time and initial hydrogen content in the melt. These gas pores 

might be trapped during solidification and, thus, there was no sufficient time for these pores 

to escape to the surface of the blade. Tables 3.1 and table 3.2 summarize the statistical 

results for 2 mm and 5 mm, which include the area fraction of pores, and nearest neighbor 

distances between pores; nearest neighbor distances will be discussed in the following 

subsection.  

 

3.1.2 Nearest neighbor distance of pores 

From the global micrographs shown earlier, first nearest neighbor distances between pores 

were counted using image software. Figure 3.9 represents the histograms of nearest 

neighbor distances between pores in 2 mm samples that were tested at high stress levels. 

Sample 2 mm-12 shows an average nearest neighbor distance of 65 μm, while sample 2 

mm-6 has an average nearest neighbor distance of 106 μm. For 5 mm samples, shown in 

Figure 3.10, the nearest neighbor distances for the largest and smallest measured to be 127 

μm and 62 μm, respectively. The higher the number density, the smallest the average 

nearest neighbor distances, which are indeed clustered but in relatively random 

distribution.  

This method does not reflect the whole image of gas pores and shrinkage pores. Since 

shrinkage pores observed as a group of pores within one entity, one should count those 

pores and regard them as one shrinkage pore (cluster). The crack nucleation rate, which 

will be discussed later, were normalized based on number of gas pores and number of 
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shrinkage pores. Shrinkage pores were counted based on the distance between pores that 

are between 10 to 50 µm, thus, a group of pores were counted as a one shrinkage pore. 

 

3.1.3 Eutectic Particles  

Eutectic phase in A713 aluminum alloy, depicted in Figure 3.11, were analyzed using EDS 

mapping. The optical micrograph in Figure 3.11(a) clearly reveals the eutectic particle, and 

they are indicated by arrows. Figure 3.11(b) shows the SEM image of the particle and the 

subsequent EDS mapping are shown below as well. From Figure 3.11 (e), it is evident that 

this phase contains traces of Fe and it can be regarded as Fe-containing particle. The 

morphology of the Fe particle is scripted-like structure, and also there were elongated Fe 

particles exhibited in this alloy. The size and morphology of these particles were not 

analyzed in this study, as it focuses only on pores and their effects on fatigue properties. 

 

3.2 S-N curves 

As shown in Figure 3.12 the S-N curves of the 2 mm and 5 mm samples were measured by 

four-point bend fatigue testing, and their fatigue limits were determined to be σ0=102 MPa. 

The fatigue limits for both samples were the same, and that pore number density and pore 

size may not affect the fatigue life at very low stresses when the values of pore density and 

pore size are low. Also, this is may not be true if other microstructural factors are taken 

into account such grain sizes and particle structures that could change the fatigue limit of 

the alloy. These factors mentioned, also could affect fatigue crack initiation and fatigue 

crack growth.  
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At higher stress levels, the 2 mm samples show better fatigue lives compared to those in 5 

mm samples, except the 5 mm sample that was tested at 121% σy. This is largely attributed 

to the fact that pore number densities and pore size are finer in that sample compared to 

other samples in 5 mm. One can see in Figure 3.12, approximately a linear relationship 

between the maximum applied stress and logarithmic number of cycles to failure.  

 

3.3 Crack population vs. stress level 

The crack populations formed on the surfaces of 2 mm and 5 mm samples were counted. 

The crack density is increased with increasing the applied stress until it reaches saturation 

at or close to the ultimate tensile strength, in other word, the higher the applied stress, the 

higher the crack densities. Cracks were predominately nucleated at pores, as shown in 

Figure 3.15 and Figure 3.16. 

 Figure 3.15(a) shows multiple fatigue crack nucleation sites (i.e. fatigue weak links) on 5 

mm sample surface initiated from pores at a high stress level (maximum cyclic stress= 

110% σy ). On the other hand, lower fatigue crack nucleation sites were observed, shown 

in Figure 3.15(b); at a lower stress level (maximum cyclic stress= 65% σy ). This is also 

true for the 2 mm samples, which can be seen in Figure 3.16. 

 Figure 3.16(b) shows clustered pore that contains a crack, and this is crack nucleated along 

the pore network of these clusters. Gas and clustered pores were predominately the main 

crack initiator in this alloy.     
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The fatigue weak links can be measured and plotted against applied stress levels using 

Weibull distribution. A similar method was used in AA8090 Al–Li, 7075 Al, and A713 

[27, 38, 45]. The Weibull function was used to fit crack density vs. stress level: 

 

  
N = N0 (1 − exp [−k (

𝜎 − σ0

σ0
)

𝑚

]) (3.1) 

  

Where N0 is the maximum number of cracks that can be observed on the sample surface 

per mm2 at a stress level close to the ultimate tensile strength σuts; k is a constant;  and m 

is the Weibull modulus.  

Constant k and Weibull modulus m can be determined by fitting the curve of crack 

population vs stress level using Weibull function. In this work, N0 for the 2 mm and 5 mm 

samples were measured to be 31 and 42, respectively. Figure 3.13 represents the crack 

populations against the applied stress levels for the 2 mm, and 5 mm samples and plots 

were fitted using the 3-parameter Weibull function (Eq.3.1). It is evident that the crack 

densities on the 5 mm samples were higher than those counted on the 2 mm samples by 

35% at a stress close to the ultimate tensile strength. From this observation, one can deduce 

that gas pores with coarse sizes and cluster pores play a major role in crack initiation in the 

5 mm samples. Although, fatigue cracks population at an intermediate stress level were 

relatively similar on 2 mm and 5 mm samples, the main difference was the presence of 

coarse gas pores on those samples tested at high stress level in the 5 mm samples. It is 

believed that the A713 sand cast aluminum alloy shows scattering in data in crack 

population vs. stress level curve. This scattering is due to the size, density and distribution 

of pores exhibited in the A713 alloy, specifically gas and clustered pores and other 
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constituents such as eutectic particles. Other factors may contribute to the scattering in data 

such as microstructure heterogeneity and average grain diameter [38]. 

  

If the crack densities are normalized by pore density of gas pores and shrinkage pores, 

which gives crack nucleation rate (crack/pore, mm-2), the curves fit with Weibull function 

for both 5 mm samples and 2 mm samples. The crack nucleation rates in 5 mm samples 

could be fitted using Weibull function as shown in figure 3.17(a). The main crack 

nucleation sites in these samples are gas pores and shrinkage pores (clustered). Figure 

3.17(b) shows the crack nucleation rates in 2 mm for gas and shrinkage pores. The non-

clustered pores in figure 3.17 (b) shows a lower nucleation rate compared to those exhibited 

in 5 mm samples. This may be attributed to the fact that gas pores in 5 mm samples are 

coarser than those in 2 mm samples. Moreover, the crack nucleation rates of clustered pores 

in 5 mm and 2 mm samples have higher rates compared to the crack nucleation rates of gas 

pores in 5 mm and 2 mm samples 

 

3.3.1 Strength distribution of fatigue weak links 

Figure 3.14 shows the corresponding fatigue weak links density and the strength 

distribution of fatigue weak links in 5 mm and 2 mm samples. The strength distribution of 

fatigue weak links can be measured and quantified from crack population vs. stress level 

curve. By taking the derivative of Weibull function, the strength distribution of fatigue 

weak links can be estimated by the following equation [45]: 

  
n = CN0  (

km

σ0
) (

𝜎 − σ0

σ0
)

𝑚−1

exp [−k (
𝜎 − σ0

σ0
)

𝑚

] (3.2) 
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Where n is the population of fatigue weak link at a specific stress level σ, and C is a 

scaling constant. N0, can be quantified by the following:  

  
N0 = ∫ ndσ

+∞

0

 (3.3) 

 

The characteristic strength distribution of fatigue weak links (n), and fatigue weak link 

density (N0), can be regarded as a fatigue properties of a material and the same method 

was used to characterize the strength distribution in AA8090 Al–Li, 7075 Al, and A713 

[27, 38, 45]. As shown in Figure 3.14, the peak of fatigue weak link density and the strength 

distribution of fatigue weak links in 5 mm and 2 mm samples were measured to be ≈ 0.017 

mm-2 and 0.0127 mm-2; 67.6% and 69.5%, respectively. This is may be attributed that the 

5 mm samples have different types of pores and sizes. Pore number density, pore size, and 

depth in surface, together are main factors in fatigue crack initiation process. To get better 

fatigue behavior, the peak of fatigue weak link density should be narrow and low, the 

fatigue weak link density should be small, and the strength of the fatigue weak link density 

should be high [45].  

 

3.4 Pores after fatigue tests 

From the results presented earlier, the fatigue cracks nucleated from pores with different 

types; shrinkage pores (clustered) and gas pores (non-clustered). As shown in Figure 3.18, 

the optical micrographs were merged to observe the main crack path and crack initiation 

before and after fatigue test. Figure 3.18(a) is the optical micrographs for one of the 2 mm 

samples that was tested at 110% σy (sample No. 2 mm-10), which exhibits clustered pores. 
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The main crack path and crack nucleation were from those pores, which can be seen in 

Figure 3.18(b). Figure 3.19 shows optical micrographs for 5 mm sample that were tested 

at 100% σy (sample No. 5 mm-6), which contains pores that are coarse or in other word 

non-clustered as mentioned previously. The crack initiated from these coarse pores as well 

as clustered pores. In Figure 3.19(b), one of the cracks is visible, and it was initiated from 

a gas pore. From Figure 3.19(b), tortured surface is observed due to high stress level applied 

to the sample and a combination of the presence of clustered and non-clustered pores.  

       

3.5 Fractography 

As discussed above, the observed crack initiations were predominately from pores. Figure 

3.18(c), shows the typical fracture surface for the 2 mm sample that was mentioned in the 

previous section. The SEM micrograph reveals one of the pores that nucleated a crack and 

the fracture steps. Generally, cracks were initiated from pores that are located on surface 

or subsurface of the fatigued sample. The crack initiation site are marked by red dashed 

line. Figure 3.19(c) shows the fracture surface of fatigued 5 mm sample. The coarse pore 

was one of the crack initiators in this sample, which has a depth more than 1000 micron. 

These elongated coarse pores act as stress concentrators, which increase the driving force 

for crack initiation. The higher the stress level, the higher the crack initiation. This is 

evident as multiple pores turn into cracks that are shown in Figure 3.20. This figure shows 

the SEM micrographs of sample 2 mm-10 at a stress level 110% σy. From this figure, one 

can see the fatigue crack initiation sites are from those pores that turned into long cracks. 

Multiple pores turned into cracks and those pores depth sizes were measured, which are 

shown in table 3.3. From table 3.3, is it clear that the depth of these pores are large ranging 
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from 500 to 1000 microns for this sample. Figure 3.21 shows the SEM micrographs for 

sample 2 mm-12, which was tested at 100% σy, multiple pores turned into cracks and this 

sample exhibits the highest number of pores observed on SEM micrographs. This is can be 

obvious since its pore number density is 25 per mm2. The depth of these crack initiators 

were from 130 to 700 microns.  

Figure 3.22 and Figure 3.23shows the SEM micrographs for samples 5 mm-13 and 5 mm-

6, which were tested at 110% and 100%, respectively. Those samples have a relatively 

large pore depth sizes compared to those in 2 mm samples. Several pores have depth size 

larger than 1000 microns, which increase the crack initiation driving force and these pores 

are shown in Figure 3.22(d) and (e) for sample 5 mm-13 (110% σy), and Figure 3.23(b) 

and (c) for sample 5 mm-6 (100% σy).  

 

3.6 Summary of results and discussion  

The results presented above illustrate the critical role of pores as a crack initiation sites. 

Pore number density, pore sizes and, distribution in depth or on the surface, are contributing 

factors, which reflect the driving forces for crack initiation and early crack growth. With 

the presence of clustered and non-clustered pores, coarser non-clustered pores might turn 

into cracks and those pores could affect the crack nucleation rate. The results show that 

pores are segregated in depth, and coarser pores might be found inside the alloy, suggesting 

that those pores were trapped during solidification of the melt. The higher the stress level, 

the higher the crack initiation tendency. 
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Crack population vs stress level showed a Weibull type function. Although, the crack 

population curve in some degree fitted with Weibull function, the normalized curve which 

gives the crack nucleation rate, shows a good fit in 5 mm samples and in 2 mm samples. 

Higher crack nucleation rates exhibited in 5 mm samples for gas and shrinkage pores 

compared to those in 2 mm samples. This observation might suggest the main difference 

between clustered and non-clustered pores in term of crack nucleation rates and those 

clustered pores were predominately the main crack initiators in 2 mm samples as well as 5 

mm samples. In addition, non-clustered pores in 5 mm samples were coarser than those in 

2 mm samples. The 3-dimentional effects of pores play major roles in fatigue crack 

initiation. Aspect ratios of pores with value less than 1 means that these pores are elongated 

in depth and have narrow width. This increases the driving force for crack nucleation 
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Figure 3.1 Optical micrographs showing pores in: (a) 2 mm surface and; (b) 5 mm 

surface, arrows indicate pores which have black contrast. Coarse pores in 5 mm surface 

are considered as non-clustered pores or regarded as gas pores. 
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   Figure 3.2 Global micrograph showing the pore distribution in one of the 2 mm 

samples, this global micrograph represents the area under the cyclic stress. 

 

 

 

 

 

 

 

 

 

400m 

 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400m 

200m 

(a) 

(b) 

Figure 3.3 Global micrograph showing pore distribution, (a) global micrograph 

of a 2mm sample; (b) pore structure at 200X magnification, eutectic phase is 

visible. 
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Figure 3.4 Global optical micrograph showing pore distribution in one of the 5 

mm samples; sample No. 5 mm-6. 
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Figure 3.5 Pore distribution on one of 5 mm samples; (a) global 

micrograph of sample No. 5 mm-10; (b) micrograph of the upper 

right region of the global micrograph. 
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Bottom Surface 

Top Surface 

Figure 3.6 SEM and optical micrographs of the cross-sectional view of the blade, clustered 

and coarse pores are visible. 

Coarse pore 

Clustered pore  
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        Figure 3.7 Mean pore diameter and number densities of 2 mm samples that were 

tested at high stress level, sample No.7 tested at 60% of yield stress, which is the 

fatigue limit. 
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Figure 3.8 Mean pore diameter and number densities of 5 mm samples that were tested at 

high stress level, sample No.11 tested at 60% of yield stress, which is the fatigue limit. 
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Figure 3.9 Histograms for the nearest nghbor distances between pores in 2mm 

samples; for samples that were tested at high stress level. 
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Figure 3.10 Histograms for the nearest nghbor distances between pores in 5 mm 

samples; for samples that were tested at high stress levels. 
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Table 3.1 Summary of statistical results of pore size and distribution in 2 mm samples. 

 

 

Table 3.2 Summary of statistical results of pore size and distribution in 5 mm samples. 
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Figure 3.11 Optical micrograph, SEM micrograph, and EDS analysis of the eutectic 

phase: (a) optical micrograph showing the Fe-particle (a) SEM micrograph of Eutectic 

particle and EDS maps of (b) aluminum; (c) magnesium; (d) iron; (e) zinc; (f) 

Manganese; and (g) silicon.   
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Figure 3.12 S-N curves of the 2mm and 5 mm samples in A713 cast Al 

alloy by four-point bend fatigue testing. 
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Figure 3.13 Plots of crack population vs. stress level in 2 mm and 5 

mm samples of A713 Al alloy. 
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Figure 3.14 Strength distribution of fatigue weak links in 5 mm and 2 mm samples of 

A713 Al Alloy. 
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Figure 3.15 (a) multiple fatigue crack nucleation at a high stress level in 5 mm sample, 

maximum cyclic stress= 110% σy; (b) lower fatigue crack initiation sites in 5 mm at a 

maximum stress level = 65% σy., arrows indicate cracks which were nucleated at pores. 
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Figure 3.16 (a) multiple fatigue crack nucleation at a high stress level in 2 mm 

sample, maximum cyclic stress= 110% σy ; (b) clustered pore;  (c) single 

crack initiation in 2 mm at a maximum stress level = 65% σy., arrows indicate 

cracks which were nucleated at pores. 
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Figure 3.17 Crack nucleation rates of 5 mm and 2 mm samples: (a) crack nucleation rates 

normalized by pore densities of  gas pores and shrinkage pores in 5 mm samples; (b) 

crack nucleation rates normalized by pore densities of  gas pores and shrinkage pores in 2 

mm samples. 
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Figure 3.18 Optical micrographs (a) before fatigue test; (b) after 

fatigue test; and (c) fracture surface showing the main crack initiation 

site (pore), 110% σy, sample No. 2 mm-10. 
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Figure 3.19 Optical micrographs: (a) before fatigue test; (b) after 

fatigue test; and (c) fracture surface, showing a crack that 

nucleated at pore, 100% σy, sample No. 5 mm-6. 
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(b) (a) 

(c) (d) 

(e) (f) 

Figure 3.20 SEM micrographs showing: (a) low magnification of fracture surface; (b) the other 

portion of fracture surface of sample No. 2mm-10, 110% σy; (c), and (d) pores nucleated 

cracks; (e) Crack propagation zone; and (f) final failure. 
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(a) 

(c) 

(d) (e) 

(f) (g) 

(b) 

Figure 3.21 SEM micrographs showing (a) low magnification of fracture surface of 

sample No. 2mm-12, 100% σy; (b),(c),(d), and (e) pores as a crack nucleation sites; 

(f) crack propagation zone; and (g) final failure. 

Fracture steps 
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(b) (c) 
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(e) 

(f) 

(a) 

Figure 3.22 SEM micrographs showing (a) low magnification of fracture surface 

of sample No. 5 mm-13, 110% σy; (b),(c),(d), (e) and (f) pores as a crack 

nucleation sites. 
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(a) 

(b) (c) 

(d) (e) 

(f) (g) 

Figure 3.23 SEM micrographs showing (a) low magnification of fracture 

surface of sample No. 5 mm-6, 100% σy; (b),(c),(d), (e), and (f) pores as a 

crack nucleation sites; and (g) final failure. 
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Table 3.3 Pore measurements of depth, width, and aspect ratio on the main cracks of the 

fatigued samples. 

Sample 2 mm-10, 110% σy Sample 2 mm-12, 100% σy 

Pore 

No. 

Depth, 

μm 

Width 

μm 

Aspect 

ratio 

Pore 

No. 

Depth 

μm 

Width 

μm 

Aspect 

ratio 

1 586 403 0.687 1 688 319 0.463 

2 770 344 0.446 2 420 280 0.667 

3 456 290 0.636 3 676 362 0.535 

4 1012 382 0.377 4 623 411 0.659 

    5 478 291 0.608 

    6 137 178 1.299 

Sample 5 mm-13, 110% σy Sample 5 mm-6, 100% σy 

Pore 

No. 
Depth μm 

Width 

μm 

Aspect 

ratio 

Pore 

No. 

Depth, 

μm 

Width 

μm 

Aspect 

ratio 

1 586 311 0.530 1 1056 491 0.465 

2 544 422 0.775 2 1402 629 0.448 

3 681 169 0.248 3 680 198 0.291 

4 1024 348 0.334 4 410 296 0.722 

5 1110 376 0.338 5 489 271 0.554 

    6 1159 562 0.484 
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Chapter 4 Conclusion 

From the investigation into the effect of pore density and distribution on fatigue weak 

links in an A713 Al alloy, better fatigue lives can be obtained by controlling pore sizes 

and density during solidification of the melt. Moreover, based on the results presented 

earlier, the following conclusions can be drawn: 

(1) Gas pores and shrinkage pores (clustered), were characterized in an  

A713 cast aluminum alloy in 2 mm and 5 mm in depth. The mean pore diameter of 

the 2 mm samples was measured to be between 10 to 14 μm, and the measured 

mean pore diameters of 5 mm samples were measured to be 14 to 32 μm.  

(2)  Pore number densities of the 2 mm samples range from 8 to 25 mm-2, while the 

pore number densities of the 5 mm samples were between 7 to 24 mm-2. 

(3) The fatigue lives at high stress levels for the 5 mm samples were lower than those 

samples of the 2 mm surface. 

(4) Crack population vs. stress level plot (i.e. fatigue weak links), shows a Weibull 

function in an A713 cast aluminum alloy, which is consistent with the previous 

study. Crack nucleation rates when normalized by pore densities of gas pores and 

shrinkage pores, the rates show a good fit with Weibull function in the 5 mm 

samples and in the 2 mm samples as well. 

(5) Higher crack nucleation rates of gas pores and shrinkage pores observed in 5 mm 

samples compared to those in 2 mm samples.   

(6) The peak of strength distribution of fatigue weak link density of 5 mm and 2 mm 

samples were measured to be 0.017 mm-2 at 67.6 % σy, and 0.01027 mm-2 at 69.5% 

σy. 
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(7) Fractured surfaces reveal that pores are the main crack initiators and the higher the 

stress level, the greater the number of fatigue weak links. The depth of pores plays 

a significant role in increasing the stress concentration, which increases the driving 

force for cracks to nucleate. 

(8) Cracks may not necessarily start from coarse pores, but from shrinkage pores 

(clusters). 

(9) Some of the pores on the fractured surfaces in 5 mm samples have aspect ratios of 

less than 0.7, which indicate that these pores are elongated in the surface and have 

a narrow width. 

 

 

4.1 Future Work 

Fatigue properties of engineering alloys have been extensively studied.  However, cast 

aluminum alloys need more attention to include all factors that contribute to fatigue crack 

initiation and early crack growth. The following remarks are suggested for future studies 

of the fatigue properties of cast Al alloys: 

1. It will be interesting to study weather fatigue cracks nucleate at Fe-containing 

particle, or it might be pores that are buried beneath the particle, shown in figures 

4.1 and 4.2, thus, an investigation could to be carried out to find whether these 

particles significantly contribute to fatigue crack initiation in this cast alloy. 

2. It is desirable to understand the effects of 3-dimenssional geometry of shrinkage 

pores and gas pores on fatigue crack initiation thoroughly in cast Al alloys. 
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3. Fatigue crack may tend to propagate at preferred slip planes, shown in figure 4.3. 

It will be appealing to study why these fatigue cracks propagate on particular slip 

planes. 

4. Further work can be accomplished to investigate the effect of solidification time 

and hydrogen content on pore formation, and from that one can achieve the 

optimum solidification time, and thus, reduces the amount of pores for better 

fatigue performance. 

5. One can investigate the effect of pores on the surface of the cast blade rather than 

in depth to quantify pore sizes and distribution and their effect on fatigue 

properties.  
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Figure 4.1 Optical micrograph showing particles that might pre-fractured before fatigue 

testing. 

40m 



65 

 

 

Figure 4.2 Cracks that might be nucleated from Fe-containing particles. 

 

 

 

Figure 4.3 Crack propagation on a particular slip planes. 
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