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Abstract of Dissertation 

IMPACT OF CONFORMATIONAL CHANGE, SOLVATION ENVIRONMENT, AND 

POST-TRANSLATIONAL MODIFICATION ON DESULFURIZATION ENZYME 2'-

HYDROXYBIPHENYL-2-SULFINATE DESULFINASE (DSZB) STABILITY AND 

ACTIVITY 

Naturally occurring enzymatic pathways enable highly specific, rapid thiophenic 

sulfur cleavage occurring at ambient temperature and pressure, which may be harnessed 

for the desulfurization of petroleum-based fuel. One pathway found in bacteria is a four-

step catabolic pathway (the 4S pathway) converting dibenzothiophene (DBT), a common 

crude oil contaminant, into 2-hydroxybiphenyl (HBP) without disrupting the carbon-

carbon bonds. 2’-Hydroxybiphenyl-2-sulfinate desulfinase (DszB), the rate-limiting 

enzyme in the enzyme cascade, is capable of selectively cleaving carbon-sulfur bonds. 

Accordingly, understanding the molecular mechanisms of DszB activity may enable 

development of the cascade as industrial biotechnology. Based on crystallographic 

evidence, we hypothesized that DszB undergoes an active site conformational change 

associated with the catalytic mechanism. Moreover, we anticipated this conformational 

change is responsible, in part, for enhancing product inhibition. Rhodococcus erythropolis 

IGTS8 DszB was recombinantly produced in Escherichia coli BL21 and purified to test 

these hypotheses. Activity and the resulting conformational change of DszB in the presence 

of HBP were evaluated. The activity of recombinant DszB was comparable to the natively 

expressed enzyme and was competitively inhibited by the product, HBP. Using circular 

dichroism, global changes in DszB conformation were monitored in response to HBP 

concentration, which indicated that both product and substrate produced similar structural 

changes. Molecular dynamics (MD) simulations and free energy perturbation with 

Hamiltonian replica exchange molecular dynamics (FEP/λ-REMD) calculations were used 



 
 

to investigate the molecular-level phenomena underlying the connection between 

conformation change and kinetic inhibition. In addition to the HBP, MD simulations of 

DszB bound to common, yet structurally diverse, crude oil contaminates 2’2-biphenol 

(BIPH), 1,8-naphthosultam (NTAM), 2-biphenyl carboxylic acid (BCA), and 1,8-

naphthosultone (NAPO) were performed. Analysis of the simulation trajectories, including 

root mean square fluctuation (RMSF), center of mass (COM) distances, and strength of 

nonbonded interactions, when compared with FEP/λ-REMD calculations of ligand binding 

free energy, showed excellent agreement with experimentally determined inhibition 

constants. Together, the results show that a combination of a molecule’s hydrophobicity 

and nonspecific interactions with nearby functional groups contribute to a competitively 

inhibitive mechanism that locks DszB in a closed conformation and precludes substrate 

access to the active site. 

Limitations in DszB’s potential applications in industrial sulfur fixation are not limited 

to turnover rate. To better characterize DszB stability and to gain insight into ways by 

which to extend lifetime, as well as to pave the way for future studies in inhibition 

regulation, we evaluated the basic thermal and kinetic stability of DszB in a variety of 

solvation environments. Thermal stability of DszB was measured in a wide range of 

different commercially available buffer additives using differential scanning fluorimetry 

(DSF) to quickly identify favorable changes in protein melting point. Additionally, a 

fluorescent kinetic assay was employed to investigate DszB reaction rate over a 48 hr time 

period in a more focused group of buffer to link thermal stability to DszB life-time. Results 

indicate a concerningly poor short-term stability of DszB, with an extreme preference for 

select osmolyte buffer additives that only moderately curbed this effect. This necessitates 



 
 

a means of stability improvement beyond alteration of solvation environment. To this end, 

a more general investigation of glycosylation and its impact on protein stability was 

performed. 

Post-translational modification of proteins occurs in organisms from all kingdoms life, 

with glycosylation being among the most prevalent of amendments. The types of glycans 

attached differ greatly by organism but can be generally described as protein-attached 

carbohydrate chains of variable lengths and degrees of branching. With great diversity in 

structure, glycosylation serves numerous biological functions, including signaling, 

recognition, folding, and stability. While it is understood that glycans fulfill a variety of 

important roles, structural and biochemical characterization of even common motifs and 

preferred rotamers is incomplete. To better understand glycan structure, particularly their 

relevance to protein stability, we modeled and computed the solvation free energy of 13 

common N- and O-linked glycans in a variety of conformations using thermodynamic 

integration. N-linked glycans were modeled in the β-1,4-linked conformation, attached to 

an asparagine analog, while O-linked glycans were each modeled in both the α-1,4 and β-

1,4-linked conformations attached to both serine and threonine analogs. Results indicate a 

strong preference for the β conformation and show a synergistic effect of branching on 

glycan solubility. Our results serve as a library of solvation free energies for fundamental 

glycan building blocks to enhance understanding of more complex protein-carbohydrate 

structures moving forward. 

KEYWORDS: Biodesulfurization, DszB, molecular dynamics, protein engineering 

     Landon Mills      . 

     July 10, 2019      . 
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Chapter 1 – Introduction to Biodesulfurization 

1.1. Sulfur in Liquid Transportation Fuels 

Comprising the majority of energy utilized by the transportation sector in the United 

States, liquid petroleum-based fuels play a critical role in the mobility of people and 

products alike.1 While many environmental concerns center around the use of crude oil-

based liquid transportation fuels, their association with sulfur emissions ranks among the 

most significant.2 Refinement of crude petroleum leads to the transfer of a variety of 

naturally present sulfur-containing molecules to the resulting fuel, where, upon use, 

combustion forms gaseous sulfur oxides (SOx). SOx compounds represent a significant 

threat to environment, as they are capable of forming sulfuric acid with atmospheric 

moisture, resulting in acid deposition (acid rain). Additionally, SOx poses a risk to human 

health, causing respiratory irritation and being classified as acutely toxic according to the 

United Nations Globally Harmonized System of Classification and Labelling of Chemicals 

(GHS).3 Recent studies even imply a link between SOx exposure during pregnancy and 

low infant birth rate as well as preterm birth.4      

The current industrial means of sulfur removal from refined fuel products, 

hydrodesulfurization, utilizes a sulfur-linked metal catalyst (usually molybdenum) to 

capture simple sulfurs (linear hydrocarbon bound sulfur as well as thiophene and its single 

ring derivatives) on its surface via the presence of anion vacancy.5-6 Catalyst-bound sulfur-

containing molecules are cleaved via hydrogenolysis leaving the sulfur atom bound in the 

previous anion vacancy for later release as hydrogen sulfide (H2S) during catalysis 

regeneration (Figure 1.1). 
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Figure 1.1. Hydrodesulfurization catalysis regeneration mechanism 

Complex cyclic sulfur-containing molecules such as thiophene can be targeted, albeit non-

specifically, as part of the hydrodesulfurization process, rendering the vast majority of the 

original sulfur contained in pre-processed crude oil catalyst-bound.  Limitations with this 

process arise in the face of more complex aromatic sulfur molecules, primarily 

dibenzothiophene (DBT) and its derivatives (structure depicted in Figure 1.2). 7-8 While 

these DBTs account for only a small population of the total sulfur contained in crude oil, 

their impact on refinement is significant.  

 

Figure 1.2. Common cyclic crude oil contaminants in liquid transportation fuels  

DBT-bound sulfur is highly resistant to hydrodesulfurization and passes through 

industrial desulfurization processes virtually unimpeded, passing directly into product 

fuels; 60% of the total sulfur emissions from liquid transportation fuel combustion is 

attributed to DBT and its derivatives.9-14 While the remaining cyclic sulfur in petroleum-

based fuels represents only a small portion of the original total sulfur content, what remains 

is still quite detrimental when combusted, thus demonstrating a need for further more 

complete sulfur removal.  
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1.2. Biodesulfurization Research Motivation 

Biodesulfurization, the enzymatic cleavage of sulfur atoms from larger host molecules, 

can be achieved through a variety of methods but principally occurs through the 

introduction of microorganisms into sulfur-rich environments or through the combination 

of isolated biocatalysts with a sulfur containing solution. In either case, this enzyme-driven 

process enables rapid, highly specific, and complete cleavage of otherwise difficult-to-

access sulfur bonds.5-6, 15-16  

Biodesulfurization reactions occur at near ambient temperatures and pressures, and the 

specificity for select substrates makes them ideal additive processes to complement current 

gaps in existing industrial systems. A variety of microorganisms share a similar catabolic 

pathway, aptly named the “4S pathway,” for sulfur fixation (in sulfur-limited conditions) 

consisting of four steps and acting on DBT and DBT derivates to selectively cleave the 

central ring carbon-sulfur bonds.17-19 

Considering the pathway specificity for what are currently the most prevalent liquid 

transportation fuel contaminants, in addition to the mild operating conditions associated 

with biological reactions, biodesulfurization via the 4S pathway presents an ideal solution 

to mitigate sulfur emissions.15, 20 However, significant technological barriers exist which 

preclude direct industrial application of the 4S pathway as found in nature. The final and 

rate-limiting step of the pathway catalyzed by 2’-hydroxybiphenyl-2-sulfinate (HBPS) 

desulfinase (DszB) has a relatively low turnover number, experiences significant product 

inhibition, and poor stability (unfolding shortly after purification).21-25 Most investigations 

into DszB seek to improve enzyme performance by directed evolution, increased enzyme 

expression, and/or alternative strain selection; however, characterization with the intent of 
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rational design remains largely uninvestigated, and the precise mechanism governing 

DszB’s performance limitations remain largely unknown.26-28 Accordingly, fundamental 

understanding of the molecular mechanisms of DszB inhibition and stability must be 

developed. 

Improvement of the catalytic efficiency of DszB as well as reducing the effects of 

product inhibition are mandatory before the 4S pathway can be implemented in industrial 

biodesulfurization processes. By investigating conformational changes during catalysis 

and in response to the product, as well as how those changes relate to kinetic parameters, 

we develop a more complete understanding of the molecular mechanisms of DszB. 

Additionally, by observing changes in thermal stability and kinetic activity of DszB over 

time, we generate a more complete understanding of the catalytic lifetime of DszB and the 

means by which we may extend it.  

1.3. Background 

1.3.1. 4S Pathway  

The mechanisms by which microorganisms consume and utilize sulfur vary 

considerably, but the fundamental ability to consume sulfur is shared by most all of the 

Bacteria kingdom.29 Regardless of subtle differences between sulfur fixation approaches 

such as substrate preferences, reaction conditions, and metabolic phase, mechanistic 

approaches to cyclic sulfur removal principally occurs via one of two mechanisms: 

accessing the ring-bound sulfur by either disassembly of a the molecule in a “ring 

destruction” approach or in a minimal bond breaking, sulfur-specific “ring opening” 

approach.30-32 In the case of the former ring destruction mechanism, access to sulfur is 
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obtained by disruption of multiple bonds within in the ring to create a new geometry with 

a more accessible or exposed sulfur atom. As the name implies, this ring structure is 

destroyed the process. Given that much of a fuel’s heating value is derived from carbon-

carbon bounds, the most ideal mechanistic approaches in the context of fuel treatment fall 

under the latter category. With sulfur-specific ring opening mechanisms, only bonds with 

the target sulfur atom are disrupted, leaving the ring largely intact, as depicted in the 4S 

pathway shown in Figure 1.3.17  
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Figure 1.3. R. erythropolis 4S pathway desulfurization of DBT  

Acting on DBT and DBT derivatives, the 4S pathway succeeds at removing the ring 

bound sulfur as sulfite, breaking only C-S bonds and leaving the heating value of the 

remainder of the molecule relatively undisturbed in the form of the pathway product 2-

hydroxybiphenyl (HBP).17-18 Many microorganisms utilize some form of the 4S pathway 

as a means of sulfur fixation in sulfur-limiting conditions, 33 but most research regarding 

the pathway is performed with the organism in which it was first isolated, Rhodococcus 

erythropolis, strain IGTS8.34 In the case of non-native host production of 4S pathway 

proteins, the sequences from the IGTS8 are most commonly used. This focus on the 
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original strain’s enzymes can be attributed to more than a seminal standard metric. In most 

organisms in which the 4S pathway is expressed, diffusion of extracellular substrate 

through the cell membrane limits reaction rate far more than any individual pathway step.1, 

35-37 This limitation is not present in R. erythropolis, providing both a better starting point 

from the more popular research in directed evolution as well as a less complex means of 

directly assessing pathway performance.1, 26, 38    

Four enzymes work in concert to achieve desulfurization in the 4S pathway. The 

monooxygenase, DszC, begins catalysis with oxidation of the still ring-bound sulfur of 

DBT. The subsequent step is a repetition of the first where, again, DszC catalyzes 

additional oxidation of the same sulfur atom. In the third step, a second monooxygenase, 

DszA, catalyzes the oxidative cleavage of the first carbon-sulfur bond, opening the DBT 

ring. While not depicted in Figure 1.3, the oxidoreductase, DszD, aided by flavin 

mononucleotide (FMN) and nicotinamide adenine dinucleotide (NAD) cofactors, provides 

the corresponding reduction to balance the three oxidation steps that begin the 4S pathway. 

The final and rate-limiting step catalyzed by desulfinase DszB results in the hydrolytic 

cleavage of the second carbon-sulfur bond, liberating the sulfur in the form of water soluble 

sulfite.17, 39 

1.3.2. Product Inhibition 

The impact of product, HBP, on the 4S pathway is well known, with recent studies 

reporting its inhibiting effect on each enzyme in the pathway to at least some degree; 40 25, 

35 however, the general mechanisms by which this inhibition is achieved and the 

corresponding relevance to the regulation of and/or evolutionary significance to the 4S 

pathway has yet to be conducted.24, 40-42 The lack of significant characterization of isolated 
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proteins within the 4S pathway limit initial understanding of HBP’s inhibitive potential, as 

evaluations of this phenomenon in vivo are obscured by periplasmic and/or membrane 

retention of HBP (as well as DBT) due to its hydrophobic nature.1 

Solvent environment also plays a crucial role in observed inhibition, as the presence 

of an oil-water interface affects clearance/availability of HBP. Biphasic system studies 

performed on whole cell 4S pathway systems reveal that for organisms such as the IGTS8 

strain, i.e., capable of acting at the oil-water interface to remove hydrophobic molecules 

from the oil phase, product inhibition was stifled by the presence of an oil phase for 

concentrations up to 140 µM.1 Outside of these biphasic studies, attempts to reduce the 

effects of product inhibition of DszB are sparsely documented in literature, with no 

attempts to execute site directed mutagenesis. 

1.3.3. Crystallographic Study of DszB 

Solved by x-ray crystallography with resolutions ranging from 1.6 Å to 1.8 Å, three 

structures of DszB have been deposited into the Protein Data Base (PDB) and are shown in 

Figure 1.4.43 The first of these structures depict an unbound wild-type DszB from the 

IGTS8 strain. The remaining two were obtained from a catalytically-inactive mutants 

bound to two different substrates, HBPS and 2-biphenyl sulfinic acid (BPS). The structure 

of primary interest shows HBPS-bound DszB (2DE3), though a near identical structure 

(2DE4) illustrates DszB bound to an alternate substrate, 2-biphenyl sulfinic acid. 2-

biphenyl sulfinic acid has been confirmed to also elicit DszB activity/HBP formation in 

kinetic studies.44  
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Cys27 was confirmed as the catalytic amino acid, and C27S mutations were used to 

create the catalytically-inactive mutants used to obtain substrate bound structures. Of 

additional note, mutations to the His60 residue produced a   ~17-fold reduction in DszB 

turn-over number.43 Further investigation of the critical His60 residue’s position in the 

crystal structure provides rationale for its importance in the activity of DszB. While 

unbound, His60 is contained in an unstructured loop on the surface of DszB; however, 

when bound to substrate, the loop folds into a structured α-helix with His60 buried in the 

active site, where it coordinates the substrate along with Ser27 (what would be Cys27 in 

the wild type form). The mobile His60 is displayed in stick form in all three structures 

presented in Figure 1.4. Collectively, crystallographic data implies that a large 

conformation occurs in this loop and is involved in the catalytic activity of DszB.43, 45 
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Figure 1.4. Crystal Structures of DszB 

PDB Entry 2DE2: Unbound DszB [green], PDB Entry 2DE3: C27S mutated substrate 

(HBPS) bound DszB [pink], PDB Entry 2DE4: C27S mutated alternate substrate (2-

biphenyl sulfinic acid) bound DszB [blue], Overlay of 2DE2 and 2DE3 shown enlarged 

 

1.3.4. Desulfurization Mechanism 

Two prominent DszB desulfurization mechanisms have been proposed, including 

nucleophilic addition and electrophilic aromatic substitution.43, 46 HBPS positioned in the 

active site relative to local residues of interest as determined by x-ray crystallography is 

displayed in Figure 1.5 for reference.   
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Figure 1.5. Crystallographicly determined HBPS bind position in DszB active site  

In the nucleophilic addition mechanism proposed by Lee et al., after having moved into 

the active site, His60 coordinates the substrate such that the sulfate group from HBPS is in 

proximity to Cys27. This causes deprotonation of sulfur from Cys27 to form a nucleophile 

through a substrate-assisted catalysis. Simultaneously, the sulfur nucleophile attacks the 

HBPS sulfur to form a disulfide bond. The resulting charged state is stabilized by both the 

guanidinium from Arg70, and the backbone amine from Gly73. The resulting sulfinate 

formed after cleavage of the carbon sulfur bond is then released as sulfite with a water 

molecule, completing the reaction.43 
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Figure 1.6. Putative neucleophilic addition mechanism 

Mechanism proposed based on first crystallographic evidence, adapted from  Geronimo et 

al. 46   

 Recent density functional theory studies of the DszB mechanism, however, reassert 

the more probable desulfurization mechanism occurs via electrophilic aromatic 

substitution, originally proposed by Gray et al. (shown in Figure 1.7).39, 46 In this 

mechanism, Cys27 serves as a proton donor rather than a nucleophile behaving similarly 

to tyrosine phenol-lyase, 47 hydrolytically cleaving sulfur in the form of SO2 where 

subsequent reaction with water from the surrounding aqueous environment forms HSO3
-.   

 

Figure 1.7. Alternate electrophilic aromatic substitution DszB reaction mechanism. 

Mechanism originally proposed by Gray et al, adapted from Geronimo et al. 46  
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Recent molecular dynamics (MD) simulations further support the proposed electrophilic 

aromatic substitution mechanism, confirming the significance of His60 in stabilizing the 

transition state through hydrogen bonding and charge interactions with both substrate 

sulfur and Cys27.46 Simulations went on to emphasize the importance of other active site 

residues in the creation of a unique microenvironment, indicating that the charge state of 

R70 was critical to reducing activation energy required to perform catalysis. This is 

consistent with inactive mutations observed in mutations to the highly conserved H60 and 

R70 residues and further supports the proposed electrophilic aromatic substitution 

mechanism.46  

1.4. DszB Characterization Outline 

The theme of this dissertation, as it pertains to biodesulfurization, is to deepen 

understanding of the natural limitations of the rate-limiting enzyme of the 4S pathway in 

that hope that future research in industrial desulfurization may benefit from a more 

complete characterization of the DszB enzyme. 25, 48-49    To this end, we focus our 

investigation on three distinct objectives, discussed in greater detail in each of the 

corresponding chapters: 

1.4.1. Evaluate the general mechanisms of DszB product inhibition (Chapter 4) 

The 4S pathway product HBP is known to have an inhibitory effect on DszB, but the 

exact mechanism by which it deactivates the enzyme requires clarification.50 Chapter 4 

experimentally demonstrates the kinetic profile of DszB in response to HBP, elucidating 

the class of inhibition. Computational studies then expand determination of inhibitor 

affinity for DszB to include a larger array of common crude oil contaminants.   
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1.4.2. Determine the effects of HBP on DszB conformation change (Chapter 4) 

Linking kinetic properties to structural changes in DszB generates a more complete 

understanding of how specific residue groups influence enzyme activity. Chapter 4 

experimentally investigates the conformational response of DszB to HBP and extends this 

research focus to encompass a larger computational investigation into DszB structural 

changes in the presence of multiple known inhibitors.  

1.4.3. Assess the kinetic stability of DszB in various environments (Chapter 5) 

Understanding the lifetime of DszB activity and how solvation environment influences 

prolonged activity is imperative to developing robust biodesulfurization technology. 

Chapter 5 characterizes the kinetic stability of DszB and investigates the impact of a wide 

variety of solvation environments on its catalytic lifetime.  
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Chapter 2 – Introduction to Glycosylation 

2.1. Glycosylation as a Post-translational Modification 

Proteins across then kingdoms of life rely on post-translational modifications to 

achieve further diversity of function in order to fulfill their biological roles. Post-

translational modifications  are linked covalently and  a fulfill a variety of purposes with 

an assortment of attachments, ranging from the common addition of phosphate groups to 

regulate enzyme activity all the way to lipid attachments to adhere proteins to a membrane. 

Of the many types of such modifications, glycosylation ranks among the most prevalent 

and diverse, appearing in each kingdom of life to at least some degree with seemingly 

countless variations.51  Typically beginning in the endoplasmic reticulum (ER), or simply 

intercellularly in the case of prokaryotic organisms, glycosylation is achieved by covalently 

attaching a monomeric sugar or polysaccharide chain, referred to as a “glycan,”  to a 

residue on the resulting glycoprotein complex (Figure 2.1) via either an O-linkage to serine 

or threonine or an N-linkage to asparagine.51-53 In higher order organisms, glycosylation 

may occur at multiple sites on the same glycoprotein, and, often, initially monomeric 

glycans attachments are continuously glycosylated to build longer, more complex 

polymeric chains. 
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Figure 2.1. Crystal structure of an example glycoprotein complex, human interferon-β 54 

Due to their extremely diverse structure, glycans are able to serve a variety of functions 

in nature, including signaling, recognition, folding, and stability. In some cases, the effects 

they are capable of imparting on the final glycoprotein complex can be quite profound. In 

the case of human interferon-β (depicted in Figure 2.1), a therapeutic glycoprotein used in 

the treatment of multiple sclerosis, changes in the sequence of the relatively small glycan 

attached have profound effects on protein activity and stability.55-58 Studies relating the 

impact of glycoform on physicochemical and biological properties of human interferon-β 

reveal much performance variability can be attributed to the degree of sialylation via glycan 

building block N-acetylneuraminic acid (Neu5Ac). 58 While many of human interferon-β 

glycoforms begin with a standard N-glycan N-acetyl-glucosamine initiating complex  

subsequent branching and sialylation vary. Disialylated glycoforms showed greater 

thermal stability with melt temperatures 1-2 ⁰C higher than Tri and Mono sialylated counter 

parts. Glycoforms also demonstrated significant differences in binding multiple different 

receptors. 
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While human interferon-β may fall nearer to the extreme end of the spectrum regarding 

a glycan’s capacity to impact protein performance, it is by no means the only such protein 

to rely heavily on specific glycoforms to function.51 

 

2.2. Glycan Research Motivation 

Proteins are considered an extremely diverse and dynamic biomolecule, performing 

an array of critical functions within living organisms; however, their respective base 

structural variability pales in comparison to that of carbohydrates. In the case of proteins, 

macromolecules are assembled from a relatively small pool of amino acid building blocks 

linked linearly in a chain through consecutive and fairly rigid peptide bonds. When 

considering glycans, many more arrangements arise. Assembled from a collection of 

molecules potentially including any bioavailable monomeric sugar, even relatively short 

glycans already carry the potential of permutations far exceeding peptides of equivalent 

length. Additional diversity arises from the manner in which each monomeric addition to 

a glycan chain can be linked. Glycosidic bonds connecting each new sugar can occur in an 

α or β conformation, altering the shape and stability of the resulting glycan, and can be 

linked in one of several positions along to the existing glycan chain, typically to the 2nd, 

3rd, 4th, or 6th carbon in a given sugar.59 Figure 2.2 demonstrates the versatility in 

connections present in glycans and shows several common linkages.  
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Figure 2.2. Structual examples of glycosidic linkages 

Apart from individual linkages, glycans commonly adopt a branched structure in 

which multiple monomeric sugars are added to the same glycan terminal, providing the 

single molecule with multiple strands to elongate and build upon.51 With all this in 

consideration, the “primary structure” equivalent quickly exceeds the variety observed in 

proteins even for relatively small molecules. Still further structural variability can be found 

when considering the glycosidic linkages connecting each glycan are far more dynamic 

than a peptide bond, allowing for more rotation, producing a unfathomable number of 

unique rotamers among a single primary sequence. 51 With so many possibilities in both 

the chemical properties of the various functionalized sugars that comprise them, as well as 

the size and structure glycans adapt, glycoproteins are particularly challenging to study.  

Given the many possible forms glycans can take and the variability between otherwise 

identical proteins, an understanding of how specific glycans alter host protein properties is 

critical.60-61 While many separate studies into independent glycans or glycoproteins have 
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been performed, more general data regarding how particular glycan building blocks or 

recurring motifs influence their complexed protein is more limited. While glycoproteins’ 

capacity to affect signaling pathways, enzyme activity, molecule recognition may be too 

situationally specific to discussion in universal terms, their impact on protein stability,  an 

issue of particular interest in the commercial production of enzymes (particularly as 

pharmaceuticals), can be measured and expressed in more globally applicable terms not 

limited by specific glycan to protein interactions.62-63  

2.3. Background 

2.3.1. Glycosidic Linkage Conformation in Oligosaccharides 

When considering the general nature of oligosaccharides, glycosidic linkages in the  

conformation form more energetically favorable complexes due their more linear form 

limiting the potential for steric clashes between accompanying functional groups along 

each pyranose ring as well as better positioning neighboring hydroxyl groups from both of 

the monomeric sugars for more optimal hydrogen bonding to other cellulose polymers. 

This phenomenon is observed in nature to extreme effect in the plant cell wall component 

cellulose, which combines the stabilizing benefit of consecutive  linkages between 

glucose molecules at opposing ends of each sugar through 1,4 linkages (shown in Figure 

2.3). 
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Figure 2.3. Chemical structures of cellulose and starch 

The end result is an oligosaccharide assembly so stable it is indigestible by many organisms 

do to its incredibly long form optimally aligned for hydrogen bonding and linear structure 

build to avoid folding in on itself and generating steric clash. In contrast, starch (Figure 

2.3), another oligosaccharide formed from glucose bound, instead, by α-1,4 linkages is 

considerably more vulnerable to enzymatic attack and is almost universally digestible 

among the animal kingdom. The bend introduced in its structure from glycosidic α bonds 

reduces hydrogen bonding, increases steric hindrance, and leaves linkages more exposed 

for enzymatic attack. These structural principles observed in simple oligosaccharides can 

be easily extrapolated to describe the significance of glycosidic linkage conformation in 

glycans in general.   

2.3.2. Common O-Glycosylation in Nature 

While protein linked glycans (especially O-linked) exhibit considerably less diversity 

than glycans as a whole, such post translational modifications still employ a wide range of 

bioavailable sugar monomers. Many naturally occurring glycoproteins employ only short 

on monomeric sugar additions, though lengthy chains with branching and variable linkage 

conformations are still observed, especially in higher order organisms.  
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Prokaryotes 

Glycosylation in prokaryotic organisms occurs within the cytosol via both sequential 

and simultaneous pathways, meaning that glycans may be build either monomerically 

piecewise by repetitive attachments to the glycoprotein, or constructed independently from 

the protein and attached upon completion. 51 A broad range of monosaccharide donors exist 

throughout prokaryotic kingdoms and vary from organism to organism void of any 

recurring motifs or globally utilized molecules. Among the more commonly utilized 

glycans, glucose, galactose, and N-acetyl-galactosamine are commonly bonded to serine 

and threonine residues via simultaneous addition. 64 

Plantae 

Possessing unique O-glycosylation mechanisms, no evolutionary trends are observed 

in ER-produced glycoproteins. A common fundamental pattern among plant glycosylation 

shows a preference for targeting the less common hydroxyproline residues and 

occasionally neighboring serine for glycosylation.65  Cytosolic glycosylation is common, 

utilizing N-acetyl-glucosamine and fucose O-linked to the more common serine and 

threonine residues.51  

Fungi 

 Fungi, especially yeast, show almost no diversity in O-glycosylation, utilizing 

mannose almost exclusively.51 While galactose and xylose may be employed in some 

organisms, heavy glycosylation with mannose remains a prevalent theme. Glycans can be 

comprised of both linear mannose chains and branched structures.65-67 

Animalia 

Highly diverse and increasingly more complex among the higher-order organisms 

within the kingdom, many O-glycosylation motifs are conserved in animals. Predominantly 
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initiated in the ER, with some organisms initiating select glycosylation in the Golgi 

apparatus, animals utilize mannose, glucose, galactose, N-acetyl-glucosamine, N-acetyl-

galactosamine, xylose, and fucose commonly, with chain elongation being extremely 

prevalent. Fucose, glucose, and N-acetyl-glucosamine are employed in epidermal growth 

factor (EGF)-like protein domains as a stabilizing force that is critical for function but not 

well understood.51, 68 Galactose glycosylation is used in extra cellular matrix proteins such 

as collagen, and xylose is applied heavily to proteoglycans as an initial monomer for further 

and diverse chain elongation. 17      

2.3.3. Natural N-Glycosylation Motif 

Organisms across the kingdoms of life utilize a common initiating N-glycan motif 

which is often further modified for specific function thereafter. 69 Attached at an asparagine 

residue, this base glycan is assembled separately from the protein and applied afterward en 

bloc. The motif, depicted in standard block glycan notation below consists of two β-1,4 

linked N-acetyl-glucosamines attached to a mannose that is then further elongated and 

branched by a second and third mannose linked through an α-1,3 and α-1,6 bond, 

respectively. 62, 69-72   
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Figure 2.4. Symbolic representation of fundumental N-glycan motif 

Symbol nomenclature based on scheme developed in “Essentials of Glycobiology. 2nd 

edition:” 51 N-acetyl-glucosamines (blue square); Mannose (green circle);  and  

linkage conformations are as noted. 

Following construction and attachment in the ER, the resulting glycoprotein is moved to 

the Golgi apparatus for additional functionalization of the base motif. The most common 

additions include: (1) a continual addition of mannose with introduction of new branching 

points, (2) unique and diverse glycan chains usually beginning with the addition of an N-

acetyl-glucosamines to each of the two terminal mannose, and (3) a blending of the first 

two options in which one of the branched mannose is elongated further with more mannose, 

and the other is bound with N-acetyl-glucosamine and primed for a unique glycan chain.62, 

69-72  

2.4. Glycan Characterization Outline 

The theme of this dissertation, as it applies to glycosylation, is to better characterize 

their impact on protein stability. We examined the role of several common O- and N-linked 

glycan motifs in stabilizing protein structures, focusing on simple and single glycoforms 

to build fundamental understanding that may be extrapolated to more complex glycans. To 
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this end, we focused our investigation on two distinct objectives, discussed in greater detail 

in each of the corresponding chapters: 

2.4.1. Evaluate the impact of monomer diversity and protein-glycan bond conformation on 

stability of resulting glycoprotein complex (Chapter 6) 

Glycans are composed of a variety of monomeric building blocks and linked to various 

residues in one of two conformations. Chapter 6 investigates, computationally, how these 

factors impacts the aqueous stability of the glycoprotein complex and references naturally 

occurring glycans to form hypotheses as to why each may be employed. 

2.4.2. Assess the effects of glycan chain elongation and branching present in most naturally 

occurring N-glycans on glycoprotein stability (Chapter 6) 

Many N-glycan motifs are generated from a common base structure and elongated to 

form more elaborate glycans. Chapter 6 elucidates the effect of chain elongation and 

branching on glycoprotein stability with molecular dynamics simulations.  
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Chapter 3 – Methods 

3.1. Materials 

Electrophoresis gels and reagents as well as immobilized metal affinity column 

(IMAC) packing were purchased from Millipore Sigma’s TruPAGE™ line. Plasmid 

preparation enzymes and reagents were purchased from IBI Scientific and NEB as 

specified throughout this chapter. Select reagents and standards were purchased through 

ThermoFisher Scientific and Hampton Research. All other chemicals and materials without 

specifically stated origins were purchased from VWR. 

3.2. Protein Expression and Purification 

The contents of this section describe the preparation of the DszB plasmid and 

subsequent expression and purification of DszB from an Escherichia coli host. The 

schematic below shown in Figure 3.1 briefly outlines the process, with greater detail 

provided in subsequent subsections.  
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Figure 3.1. Expression and IMAC purifcation of MAT-Tag DszB 

3.2.1. Preparation of DszB Plasmid 

Genomic DNA from bacterial strain Rhodococcus erythropolis IGTS8 (ATCC 53968) 

was extracted using a gBAC Mini DNA Bacteria Kit (IBI Scientific). The dszB gene from 

the genomic DNA was amplified by Polymerase Chain Reaction (PCR), using primers 

dszB-forward-HindIII and dszB-reverse-SphI. dszB DNA fragments were purified with 

DNA Fragments Extraction Kit (IBI Scientific) and digested with restriction enzymes 

HindIII and SphI simultaneously. Digestion product was isolated via agarose gel 

electrophoresis and purified via DNA Fragments Extraction Kit (IBI Scientific). A 

MilliporeSigma pTAC-MAT-2 plasmid was prepared for recombination in a similar 

fashion, simultaneously digested with restriction enzymes HindIII and SphI. Digested 

plasmid was also isolated via agarose gel electrophoresis and purified via DNA Fragments 

Extraction Kit (IBI Scientific). Ligation between purified digestion products occurred at a 

3:1 insert to vector ratio using T4 DNA Ligase (NEB) to form working plasmid depicted 

in Figure 3.2. Sequence conformation was performed by a third party via Eurofins 

Genomics overnight sequencing. 
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Figure 3.2. Sigma pTAC-MAT plasmid vector with DszB insert 

3.2.2. E. coli Transformation 

Ligation product was transformed into electrocompetent E. coli (NEB5-alpha) via 

electroporation using a Gene Pulser Xcell (Bio-Rad). Resulting bacteria was then plated 

on lysogeny broth (LB) (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) agar containing 

100 g/mL ampicillin and allowed to grow. Individual plate colonies were then selected to 

seed 10 ml LB media (w/ 100 μg/ml ampicillin) cultures for plasmid production. The DszB 

production plasmid (pTAC-MAT-Native-IGTS8-DszB) was then harvested using High-

speed Plasmid Mini Kit (ISI Scientific). The above process was then repeated using 

groES/groEL-producing plasmid pG-KJE8 in place of ligation product and 50 μg/ml 
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chloramphenicol in place of 100 μg/ml ampicillin, producing pG-KJE8 and pTAC-MAT-

Native-IGTS8-DszB concentrate. 

Electrocompetent E. coli (BL21) was then transformed again via electroporation using 

a Gene Pulser Xcell (Bio-Rad) with plasmid pG-KJE8 and cultured in LB agar containing 

50 μg/ml chloramphenicol. Single colonies were selected and cultured in 10 ml of LB 

media (w/ 50 μg/ml chloramphenicol). The product culture was then made 

electrocompetent for secondary transformation. Electrocompetency was restored by 

chilling the culture to 4 °C and pelleting its cells for media exchange via centrifugation at 

1000 x g for 20 min. The resulting supernatant was decanted and cells were resuspended 

in ice cold sterile 10% glycerol in deionized water. Media exchange with glycerol was 

repeated 3 times to insure complete removal of LB media components. The final cell pellet 

was resuspended in 10% glycerol.  

Electrocompetent E. coli (BL21) with pG-KJE8 plasmid was then transformed a 

second time with pTAC-MAT-Native-IGTS8-DszB. Again, resulting cells were plated on 

LB agar, now containing both 50 μg/ml chloramphenicol and ampicillin 100 μg/ml. 

Resulting colonies were used as inoculant for DszB production in section 3.2.3. 

3.2.3. Cell Culture and Protein Expression 

10 ml of (LB) media (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) loaded with 

50 μg/ml chloramphenicol and ampicillin 100 μg/ml antibiotics was inoculated with a 

single colony of BL21 E. coli as prepared in section 3.2.2. The inoculum was incubated at 

37 °C overnight on a New Brunswick Incubator Shaker under agitation at 175 rpm in an 

Erlenmeyer flask. The resulting culture was then combined with an additional 2 L of LB 
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media with equivalent antibiotic levels (50 μg/ml chloramphenicol and ampicillin 100 

μg/ml] and allowed to grow under identical incubation conditions until its optical density 

at 600nm (OD600) exceeded 0.8. Afterward, expression of the groES/groEL molecular 

chaperons was induced by adding arabinose, and co-expression of DszB was induced by 

adding 2 ml of 1 M Isopropyl β-D-1-thiogalactopyranoside (IPTG). Culture temperature 

was reduced to room temperature and allowed to express overnight. 

3.2.4. Cell Lysis 

2 L of mature E. coli culture were collected after expression, as described in section 

3.2.3, and centrifuged at 5,000 x g for 30 min. The cell pellet was resuspended in 40 ml of 

equilibration buffer (0.3 M NaCl, 50 mM Na2HPO4, 10 mM imidazole) and chilled on ice 

for 10 min. Cell lysis was performed on the concentrated cell pellet via sonication at 50% 

amplitude in ice over 10 cycles of 10 sec sonication bursts followed by 30 sec cool times. 

Insoluble cell pellet remnants were removed via centrifugation for 30 min at 32,000 x g 

chilled to 4 ⁰C. The resulting lysate supernatant was then collected for IMAC purification.  

3.2.5. IMAC 

DszB was purified from lysate as generated in section 3.2.4 via IMAC. Approximately 

20 ml of a Millipore Sigma Ni IMAC- select affinity gel for purifying MAT-Tag proteins 

was poured into a glass gravity fed drip column. Storage medium was washed from the 

column packing with five column volumes of ultra-pure deionized water. The column was 

then equilibrated by a wash with five column volumes of equilibration buffer (0.3 M NaCl, 

50 mM Na2HPO4, 10mM imidazole). Centrifuged lysate from section 3.2.4 was then 

loaded into the column and allowed to flow through completely allowing protein column 
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binding. The column was washed with an additional five column volumes of equilibration 

buffer to remove residual non-tagged proteins. Finally, purified DszB was eluted from the 

column with 50 ml of elution buffer (0.3 M NaCl, 50 mM Na2HPO4, 200 mM imidazole). 

elute was collected in 5 ml fractions to ensure optimal purity. 

3.2.6. Bradford Assay 

Protein concentration was assessed by Bradford Assay. A calibration curve to 

determine the relationship between protein concentration and absorbance was generated 

from standards of bovine serum albumin (BSA) suspended in column elution buffer (0.3 

M NaCl, 50 mM Na2HPO4, 200 mM imidazole). BSA stock solutions were created with 

concentrations of 5, 1, 0.5, and 0.1 mg/ml. 100 μl of each solution along with a blank 

containing only elution buffer was loaded in triplicate into a black, clear-bottom, 96-well 

tray for analysis. Additionally, 100 μl of each protein sample subject to concentration 

testing was also loaded in triplicate. 100 μl of Coomassie Bradford assay reagent was then 

added to each well, and the plate was loaded into a BioTek Synergy plate reader set to 

shake internally for 2 min. The absorbance of each well was measured at 595 nm 

wavelength. The absorbance of BSA standards was fitted to a linear calibration curve, 

which was subsequently used to determine protein concentration in samples tested.  

3.2.7. SDS-PAGE 

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

assess protein purity. Protein samples were gathered during execution of methods outlined 

in section 3.2.5 and include resuspended cell pellet post lysis, 1:10 dilute lysate, column 

wash flow through, and elution fractions of IMAC purified DszB. SDS samples were 

prepared by mixing protein sample with TruPAGE™ 4x sample buffer in a 3:1 ratio to a 
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final volume of 10 μL per sample. 1 μL of β-mercaptoethanol was added to each sample to 

reduce any remaining disulfide bonds, and samples were heated for 10 min in a 70 °C water 

bath to completely denature. A 12-well, 12% TEA-Tricine TruPAGE™ gel was loaded 

into a Bio-Rad gel electrophoreses cell. The inner and out chambers of the electrophoreses 

cell were filled with 1x TruPAGE™ running buffer. SDS samples were then loaded into 

each well. A Fisher EZ-Run protein ladder was added to its own well to serve as a standard.  

The electrophoresis cell was then connected to power supply and run at constant 

voltage (180 V) until the dye band reached the bottom of the gel (approximately 45 min). 

Upon completion, the loaded gel was removed from the electrophoresis cell and freed from 

its storage cassette. The gel was then submerged in ultrapure deionized water and subjected 

to 75 rpm on a New Brunswick incubator shaker for 30 min to wash away residual SDS. 

Wash water wash changed every 10 min. Freshly washed gel was then submerged in Fisher 

PAGE-Blue gel stain for 1 hr again under gentle agitation on a New Brunswick incubator 

shaker to stain migrated proteins. Gel stain was drained with residual stain being rinsed 

away with ultrapure deionized water to clearly resolve protein bands. 40 kDa bands 

observed in elution fraction samples were assumed to be DszB. Conversion of HBPS to 

HBP observed in activity studies outlined in Section 3.4 was taken as additional 

conformation of DszB presence. 

3.2.8. Protein Dialysis 

Dialysis was used to perform buffer exchanges on IMAC-purified protein for 

experimentation in which imidazole concentration or ionic strength of column elution 

buffer was insufficient. Thermo Fisher Scientific Snakeskin 16 mm dialysis tubing with 10 

kDa cut off was used for dialysis. Dialysis tubing was presoaked in dialysis buffer (10 mM 
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Na2HPO4) for 10 min prior to use. 10 ml of IMAC-purified DszB produced as described in 

section 3.2.5 was loaded into dialysis tubing and submerged in 2 L of dialysis buffer. 

Dialysis was performed over 6 hrs refrigerated at 4 °C and under constant agitation via 

magnetic stir plate. Dialysis buffer was exchanged at the 2 and 4 hr time marks.   

3.3. Substrate Synthesis 

Pure biphenosultine, a precursor of HBPS was obtained as a gift from the Texas A&M 

University National Products LINCHPIN Laboratory. Biphenosultine to a concentration of 

20 mM was combined with 44 mM NaOH at room temperature as outlined in L. T. Harper73 

and left to react overnight on a Fisher Scientific Reliable Tube Rotator in order to 

synthesize the DszB substrate, HBPS.73 The pH was adjusted post-reaction to 8.5, and the 

resulting 20 mM stock solution of HBPS was stored as 2 ml aliquots in a standard -20 °C 

freezer for later use.  

3.4. Fluorometric Assays 

3.4.1. HBP Calibration Curve 

A link between the concentration of HBP of fluorescence was determined by 

fluorescent spectroscopy. Six HBP stock solutions in column elution buffer (0.3 M NaCl, 

50 mM Na2HPO4, 200 mM imidazole) were created at concentrations of 20, 10, 5, 2.5, 1.25, 

and 0.63 μM. 200 μL of each solution was loaded in triplicate into a black, clear-bottom, 

96-well tray for analysis. HBP fluorescence was measured at 414 nm wavelength using a 

BioTek Synergy plate reader with an excitation wavelength of 288 nm. The resulting 

calibration curve is displayed in Figure 0.1 and was used to evaluate reaction progress in 

DszB kinetic studies. 
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3.4.2. Kinetic Activity 

Kinetic activity of DszB was determined using fluorescent spectroscopy. HBPS 

solutions were created in imidazole-free column elution buffer (0.3 M NaCl, 50 mM 

Na2HPO4) from frozen stocks as discussed in section 3.3 at concentrations of 25, 12.5, 6.25, 

3.13, 1.56, and 0.78 μM. 200 μL of each solution along with a blank containing only 

column elution buffer was added in triplicate to a black, clear-bottom, 96-well tray. 50 µL 

of IMAC purified DszB, as discussed in section 3.2, suspended in column elution buffer at 

a concentration of 0.2 mg/ml was added to each well using a multichannel pipette for near 

simultaneous addition. The plate was immediately loaded in a BioTek Synergy plate reader, 

and the initial fluorescence response was measured at 414 nm wavelength with an 

excitation wavelength of 288 nm. Fluorescence of each well was scanned every 45 sec (the 

highest sampling rate allowed) for 6 min.   

Using the HBP calibration curve discussed in section 3.4.1, fluorescent measurements 

for each well at each time point were converted to corresponding concentrations of HBP. 

The initial reaction velocity (d[P]/dt) for each well was calculated by linear regression of 

changes in HBP concentration vs. time for the first 6 min of the reaction. Average initial 

reaction velocities were determined for each corresponding substrate concentration, and 

error in reaction rate was determined by the standard deviation of this average across each 

of the three wells tested. 

Michaelis–Menten curves were generated by plotting reaction velocity vs. initial 

substrate concentration. Michaelis–Menten parameters, maximum rate of reaction (Vmax) 

and Michaelis constant (Km), were determined by curve fitting reaction data to the 

Michaelis–Menten equation (Equation 3.1) via non-linear regression, minimizing the sum 
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of squared errors with the Generalized Reduced Gradient (GRG) algorithm. For 

applications requiring DszB turn-over number, kcat was calculated by dividing Vmax by 

reaction well protein concentration (1μM).  

𝑑[𝑃]

𝑑𝑡
=

𝑉𝑚𝑎𝑥[𝑆]

[𝑆] + 𝐾𝑚
 

Equation 3.1. Michaelis–Menten equation 

[P] = product concentration (μM), t = time (sec), [S] = substrate concentration (μM), Vmax 

= Maximum theoretical rate of substrate saturation (μM per sec), Km = Michaelis–Menten 

constant (μM) 

3.4.3. Product Inhibition 

The effect of HBP inhibition on DszB activity was assessed using fluorescent 

spectroscopy. The kinetic assay described in section 3.4.2 was used to establish a baseline, 

uninhibited activity for DszB. The assay was then repeated an additional five times, with 

HBPS substrate solutions being spiked with a different initial amount of HBP in each 

repetition. The full assay was repeated with working reaction well concentrations of HBP 

at 0.63, 1.25, 2.5, 5, and 10 µM. 

The apparent Michaelis–Menten parameters for each different concentration of HBP 

were determined according to the method outlined in section 3.4.2. The effect of HBP 

concentration on each parameter was then compared to assess which model best described 

inhibition (Equation 3.2). 

𝑑[𝑃]

𝑑𝑡
=

𝑉𝑚𝑎𝑥[𝑆]

[𝑆] + 𝐾𝑚(1 +
[𝐼]
𝐾𝐼

)
 

Equation 3.2. Modified Michaelis–Menten equation for competetive inhibition 

[P] = product concentration (μM), t = time (sec), [S] = substrate concentration (μM), 

𝑉𝑚𝑎𝑥= Maximum theoretical rate a substrate saturation (μM per sec), 𝐾𝑚= Michaelis–



35 
 

Menten constant (μM), [I] = inhibitor concentration (μM), 𝐾𝐼 = inhibition dissociation 

constant (μM). 

 

3.4.4. Catalytic Stability 

Catalytic stability of DszB was measured using fluorescent spectroscopy. The kinetic 

assay described in section 3.4.2 was used immediately following IMAC purification to 

establish a baseline DszB activity. The stability assay was then performed again on the 

same batch of DszB at 2, 6, 12, 24, and 48 hrs. While not in use, DszB batch solution was 

stored at 4 °C.  

When investigating the impact of buffer additives on kinetic stability, DszB was still 

eluted from the column in the standard column elution buffer. Buffer modifications were 

made to the whole stock and occurred immediately after column elution prior to initial 

kinetic assay. To account for any immediate effect additives may have on activity, either 

by simple dilution or minor molecular interactions, kinetic stability was evaluated based 

on turn-over ratios. The turn-over number for each solution at time “t” was calculated (kcat,t) 

and compared to its corresponding initial turn-over number observed immediately after 

purification (kcat,0). The ratio between kcat,t and kcat,0 was used as a measure of activity 

decline. 

3.5. Differential Scanning Fluorimetry 

Differential Scanning Fluorimetry (DSF) was used to evaluate the thermal stability of 

DszB. In this analytical technique, extrinsically fluorescent dye dependent on hydrophobic 

interactions to magnify emissions is combined with protein in an aqueous environment. 

Fluorescent response is monitored over an increase in temperature, with the protein melting 
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point being revealed by a spike in fluorescence as the denatured protein’s hydrophobic core 

becomes more dye accessible. Figure 3.3 provides a general example of DSF used as a 

protein stability measurement.  

 

Figure 3.3. Differential Scanning Fluorimetry Example 

Green triangles represent extrinsically fluorescent dye, full orange circle represents native 

protein, and the partial orange circle indicated denatured protein. Theoretical melting 

point (Tm) is indicated by the red dashed line. 

IMAC-purified DszB from section 3.2 was combined with 5,000 x SYPRO™ Orange 

dye and diluted with phosphate buffer (0.3 M NaCl, 50 mM Na2HPO4) for a final 

concentration of approximately 0.15 mg/ml DszB, and 5 x SYPRO™ Orange dye. 10 μL 

of the DszB-Dye solution was added to each well in a 96-well optical-reading-compatible 

qPCR microplate and combined with 10 μL of desired buffer additives. The microplate 

was sealed and subject to a qPCR Thermofluor method monitoring fluorescent emission at 

600 nm over a temperature range 20 °C to 90 °C. Temperature was changed in 1 °C 

increments with a 1 min equilibration time following each temperature change. Protein 

melting point was determined by locating inflection points between temperature and 

fluorescence. Inflection points were identified by locating relative extrema in the second 

derivative.  
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3.6. Molecular Dynamic Simulations 

Molecular Dynamics (MD) simulations are a computational tool used to predict the 

physical motion of atoms over short time window. When applied to biological systems 

such as proteins and polysaccharides, MD simulations provide a powerful, complementary 

analysis tool for answering research questions regarding molecular-level phenomena. 

Beginning with initial atomic coordinates, often either provided by a crystal structure or 

constructed by homology and docking calculations, MD simulations follow a basic 

algorithm by dividing a desired simulation time window into small, iterated steps (usually 

1-2 femtoseconds in length). In each time step, forces acting on atoms are predicted via 

Newtonian physics and, then, moved accordingly within in the limitations of boundary 

conditions set for the simulation. Metrics of interest are then calculated for the individual 

time step and the simulation progress to integrate the same process for the next time 

window.  

3.6.1. Newtonian physics 

Atom trajectory is determined by Newton’s second law of motion, written in terms of 

the potential energy function in Equation 3.3. For a given atom “I,” the force exerted on it 

is a function of its mass [m], and its acceleration (second derivative of position [r] with 

respects to time [t]), which in turn is a function of potential [U]. 

𝑓𝑖(𝑟𝑖) = 𝑚𝑖

𝜕2𝑟𝑖

𝜕𝑡2
= −𝛻𝑟𝑖

𝑈(𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁) 

Equation 3.3. Newton’s Second Law of Motion  

Framed in this context, the trajectory of each atom in the system is a function of the position 

of every other atom in the system, requiring simultaneous solution of a large system of 
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complex differential equations to calculate. The intricacy of this system far exceeds the 

possibility of analytical solution, requiring the use of computational integration methods 

to estimate trajectories. Within MD simulations in this dissertation the velocity Verlet 

algorithm was implemented in NAMD to integrate molecular systems over time. 74-75  

3.6.2. Potential Energy 

The potential energy of the system is given by the summed total its bonded and 

non-bonded contributions. Equation 3.4 describes the former.  

𝑈𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒

+ ∑ 𝑘𝜑(1 + 𝑐𝑜𝑠(𝑛𝜑 − 𝛿))2

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

+ ∑ 𝑘𝜔(𝜔 − 𝜔0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟

+ ∑ 𝑘𝑈𝐵(𝑆 − 𝑆0)2 + 𝑈𝑐𝑚𝑎𝑝(𝜑, 𝜔)

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

 

Equation 3.4. Bonded potential energy contributions 

In each of the elements of bonded potential energy, “𝑘” represents the force constant for 

the corresponding component. All subscripted “0” terms indicated equilibrium values for 

their corresponding variables (i.e. 𝑏 = bond length, 𝑏0= equilibrium bond length). The 

bonding contribution is calculated from bond stretching via bond length [ 𝑏 ]. Angle 

contributions are determined by bending in bond angles [𝜃]. The dihedral element is 

calculated based on bond angle rotation [𝜑], period [𝑛], and phase shift [𝛿]. Improper 

contributions come from improper angle bending [𝜔]. Finally, the Urey-Bradley element 

captures contributions from vibration [𝑆] and backbone torsion [𝑈𝑐𝑚𝑎𝑝]. 

Nonbonded interactions are described by the summed total of van der Waals and 

electrostatic contributions as shown in Equation 3.5.  
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𝑈𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 𝜀𝑖𝑗
𝑚𝑖𝑛 [(

𝑅𝑖𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑖𝑗

𝑚𝑖𝑛

𝑟𝑖𝑗
)

6

]

𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠

+ ∑ 𝑘𝑐

𝑞𝑖𝑞𝑗

𝜀𝑟𝑖𝑗
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

 

Equation 3.5. Non-bonded potential energy contributions 

Van der Waals interactions are modeled according to a 12-6 potential describing a potential 

well of depth [εij
min ], reaching a minimum value at distance [Rij

min ]. The interatomic 

distance between atoms “i” and “j” is given by [rij]. Electrostatic interactions are modeled 

according to Coulomb’s law via Coulomb’s constant [kc], the dielectric constant [ε], the 

charges of atoms “i” and “j” [q], and, again, the interatomic distance [rij]. 

3.6.3. Free energy summary 

After solving potential energy equations, free energy calculations can be performed 

based on specific system designations. While a system is constrained to maintain a constant 

total number of atoms (via periodic boundary conditions), Helmholtz free energy can be 

calculated in a pressure-regulated isochoric and isothermal system, an ensemble referred 

to as the NVT or the Canonical ensemble. Alternatively, in an NPT ensemble, isobarically 

and isothermally-constrained, Gibb’s free energy can be calculated.   

3.6.4. Simulation specificity 

Molecular dynamic simulations were executed using CHARMM76 and NAMD.77 

Visualization of MD simulation data was performed using Visual Molecular Dynamics 

(VMD) 78 and PyMOL software. Details regarding specific molecules simulated and the 

relevant parameters of such simulations conducted can be found in subsequent chapter-

specific methods sections.    
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Chapter 4 – Inhibition mechanisms of Rhodococcus erythropolis 2'-

hydroxybiphenyl-2-sulfinate desulfinase (DszB) 

This chapter has been adapted from a publication currently in review by the Journal of 

Physical Chemistry B. All experimental work in this chapter was performed by the author 

of this dissertation. All MD simulations were performed by Dr. Yue Yu, co-first author. 

The author of this dissertation authored the discussion and conclusions of both the 

publication and this chapter.  

4.1. Introduction 

Liquid petroleum products, derived from sulfur-containing crude oil, comprise a 

majority of the fuel consumed in the transportation sector.2, 11 Sulfur compounds naturally 

present in crude feedstocks pass through hydrodesulfurization processes to the refined fuel 

due to insufficient conversion of refractory thiophenic molecules. Upon combustion, the 

sulfur compounds form sulfur oxides (SOx). SOx compounds are classified as acutely toxic 

under the United Nations Globally Harmonized System of Classification and Labelling of 

Chemicals (GHS) and pose a variety of concerns relating both to the environment and 

human health, including respiratory irritation and acid deposition (acid rain).3 Accordingly, 

government standards regulate the amount of sulfur allowed in finished fuels, and the 

standards are expected to become increasingly stringent. 

Biodesulfurization via enzyme catalysis offers potential as a deep desulfurization 

process, where highly specific thiophenic desulfurization occurs at ambient temperature 

and pressure.18,79 Sulfur fixation is both a common and essential ability shared by most 

bacteria, though the mechanism by which this occurs can vary significantly.34 The 

mechanism by which microbial organisms access sulfur bonds in aromatic molecules 
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appears to fall into one of two categories: ring-destructive or sulfur-specific.9, 30, 80 In the 

former, enzymes catabolize the sulfur compounds in such a way that the aromatic ring is 

destroyed, easing access to the sulfur. In the latter, enzymes open the sulfur-containing 

rings breaking only bonds shared with the target sulfur atom.39 As the “ring-destructive” 

approach cleaves the carbon-carbon bonds from which most of a fuel’s heating value is 

derived, industrial biodesulfurization processes have the most to gain from employing ring-

opening enzymatic mechanisms that break as few carbon-carbon bonds as possible to 

achieve sulfur removal. Mild operating conditions, coupled with the ability to leave the 

fuel heating value virtually undisturbed, makes biodesulfurization an advantageous 

additive process, post hydrodesulfurization, from both an initial capital and operational 

cost standpoint.20 

The 4S pathway, named for its 4-step sulfur removal mechanism, is shared by a variety 

of microorganisms and is capable of fixing sulfur from dibenzothiophene (DBT) and DBT 

derivatives via the “sulfur-specific” method.18 DBTs account for 60% of sulfur emissions 

from liquid transportation fuels, making the 4S pathway an ideal biodesulfurization 

process.18, 80-81 The 4S pathway employs four distinct enzymes to break DBT down to 

sulfite and 2-hydroxybiphenyl (HBP), beginning with oxidation of the ring-bound sulfur 

by the monooxygenase, DszC (this step requires indirect use of NADH cofactor). The 

second step involves further oxidation of the sulfur, again by enzyme DszC. Oxygen for 

both steps is supplied by free water molecules. Oxidation is followed by a ring-opening 

step catalyzed by a second monooxygenase, DszA, and two NADH cofactors, in which the 

first carbon-sulfur bond is broken. Both a hydroxyl group and sulfate group are left on 

opposite rings of phenylbenzene, forming 2’-hydroxybiphenyl-2-sulfinate (HBPS). Each 
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of these first three steps are aided by an oxidoreductase, DszD. In the final step, catalyzed 

by desulfinase DszB, the sulfate group is cleaved from HBPS to form the pathway product, 

HBP.17,39  

The 4S pathway is currently limited in its industrial utility given its relatively slow 

turnover rates. DszB is the rate-limiting enzyme in the biocatalytic process, as it exhibits 

both a low turnover and experiences product inhibition. 1, 35 In fact, the inhibitory effect of 

the presence of the HBP product on the activity of the 4S pathway as a whole has been 

documented. 36, 39 Recent studies report HBP inhibition of each of the pathway enzymes to 

varying degrees, but the type of inhibition and accompanying mechanistic relevance to the 

regulation of the 4S pathway remains largely unexplored, particularly with respect to the 

crucial rate-limiting step catalyzed by DszB.40 Kinetic studies performed on purified DszB 

in solution indicate the possibility of a competitive form of product inhibition, with several 

HBP analogs of varying functional group attachments (Figure 4.1) also inhibiting DszB 

activity over a wide range of inhibition constants (KI).
24 Molecules examined include HBP, 

2’2-biphenol (BIPH), 1,8-naphthosultam (NTAM), 2-biphenyl carboxylic acid (BCA), and 

1,8-naphthosultone (NAPO), all of which are found in crude oil.82 Within the two-

functional-group class, the most inhibitory of the tested analogs was BIPH. In the planar 

naphthenic class, the most strongly inhibiting compound was NTAM. While BCA and 

NAPO were non-inhibitory, they were also not reactive.50  
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Figure 4.1. Aromatic HBPS analogs with varying inhibitory effects on DszB.  

HBP is the reaction product and has a KI of 0.5 μM under various experimental conditions; 

BCA and NAPO are non-inhibitory, yet not productive; and BIPH and NTAM inhibit DszB 

with KI values of 17 μM and 1.8 μM, respectively.50 

Thus far, structural characterization of isolated DszB beyond basic crystallographic 

studies is sparse, with little investigation into DszB structural changes upon binding to 

molecules other than its substrate, HBPS. 43 The two existing crystallographic studies from 

Lee et al. demonstrate a large-scale, substrate binding-induced conformational change, 

burying the otherwise surface-exposed H60 deep in the active site to participate in catalysis. 

Differences in the respective conformations of (1) the unbound DszB structure (PDB 

2DE2), (2) the C27S catalytically inactive variant bound structure (DszB-HBPS, PDB 

2DE3), (3) a C27S mutant structure bound to a known alternative substrate, 2-biphenyl 

sulfinic acid, (PDB 2DE4) and (4) an overlay of bound and unbound structures for 

conformation change comparison are shown in Figure 4.2.43, 45 Notably, the 2DE3 and 

2DE4 protein backbones adopt virtually identical conformations despite binding different 

substrates, suggesting the conformational change is not necessarily substrate-specific and 
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may even apply to a wider group of ligands. Between the bound and unbound 

conformations (2DE2 and 2DE3), three distinct residue loops exhibit significant 

differences (Figure 2, loops shown in turquoise). Loop 1 (residues 50-60) changes from an 

extended structure to an α-helix upon substrate binding, introducing H60 to the active site. 

Loop 2 (residues 135-150) maintains helical structure but moves upward, and loop 3 

(residues 180-200), similar to loop 1, changes from an extended structure to an α-helix. 

While one might expect comparable conformational responses to structurally similar 

inhibitors, structural data in support of this hypothesis does not yet exist. Molecular-level 

analysis of DszB inhibitor binding is, to the best of our knowledge, also unavailable, 

although the need for such characterization of inhibition mechanisms is essential to 

developing a complete understanding of enzyme function. 
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Figure 4.2. Binding-induced conformational changes in DszB. 

PDB Entry 2DE2: Unbound DszB [green cartoon]; PDB Entry 2DE3: C27S DszB variant 

bound to substrate (HBPS) [pink cartoon]; PDB Entry 2DE4: C27S DszB variant bound 

to an alternate substrate (2-biphenyl sulfinic acid) [blue cartoon]. High mobility loop 

regions 1, 2, and 3 are shown in the top two panels in turquoise to illustrate regions of 

extreme conformation change. An overlay of unbound and bound structures at bottom left, 

with H60 shown in stick representation, further illustrates the conformational change upon 

substrate binding. In panels 2DE3 and 2DE4, the ligands are shown in stick 

representation. 

To pave the way for future improvements to DszB function via structure-guided design, 

we seek to deepen molecular-level understanding of DszB inhibition mechanisms. Toward 

this goal, we examined the global changes in DszB conformation in response to a collection 

of substrate analogs and potential inhibitors (Figure 4.1). Using circular dichroism (CD) 

spectra and kinetic assays, we examined structural response and inhibition of DszB in the 

presence of HBP. We then developed a detailed molecular-level analysis of DszB small 

molecule binding using computational approaches. Using free energy perturbation with 
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Hamiltonian replica exchange molecular dynamics (FEP/λ-REMD), we compared binding 

free energy values of HBPS analogs with experimentally reported inhibition constants. 

Such comparison provided information as to how the thermodynamic signatures relate to 

enzyme function. Molecular dynamics (MD) simulations of DszB bound with the substrate 

and inhibitors provided insights into how the various functional groups of the selected 

ligands contribute to binding.  

4.2. Experimental Methods 

4.2.1. Materials 

A HIS-Select® High Flow Nickel Affinity Gel (Sigma-Aldrich H0537) immobilized 

metal affinity chromatography (IMAC) column was used for protein purification. 

Polyacrylamide gel electrophoresis (PAGE) gels were purchased, precast, along with 

accompanying running buffer and loading dye from Sigma Aldrich. EZ-Run™ Protein 

Ladder (Fisher BP3602500) was used as a standard. HBPS was synthesized from 

biphenosultine as previously described;83 the biphenosultine was a gift from the Texas 

A&M University National Products LINCHPIN Laboratory. All other chemicals were 

purchased from VWR (Radnor, PA). 

4.2.2. Cell Culture and Protein Expression 

Genomic DNA for DszB from Rhodococcus erythropolis IGTS8 was used as a 

template for restriction cloning and inserted into plasmid pTAC-MAT-Tag-2 (Sigma 

E5405, C-terminus MAT Tag). Escherichia coli BL21 was then transformed to include the 

resulting plasmid, in addition to the chaperone vector pG-KJE8 (Takara 3340), for 

expression of molecular chaperones dnaK-dnaJ-grpE and groES-groEL, as needed. 



47 
 

Transformed E. coli was cultured in Lysogeny Broth (LB) at 37 °C with ampicillin and 

chloramphenicol concentrations of 50 mg/ml each for strain selection. When cultures 

reached an optical density (OD600) of 0.8, they were chilled to ambient temperature, and 

protein expression was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) at a 

concentration of 1 mM. L-Arabinose was added at a concentration of 2 mg/ml for co-

expression of groEs-groEL chaperone proteins. 

4.2.3. DszB Purification 

All purification procedures where performed at 4 °C. Cell lysis was achieved by 

suspending approximately 6 g of frozen cell pellet in 50 ml of chilled equilibration buffer 

and pulse sonicating on ice with a sonic dismembrator (Fisher Scientific Model 505).  The 

resulting lysate was centrifuged at 64,000 x g for 30 min, after which the supernatant was 

filtered with a 0.22 µm syringe filter for removal of cell debris. The filtrate was 

immediately gravity fed through an IMAC column previously equilibrated with 5 column 

volumes of equilibrium buffer (50 mM sodium phosphate, 0.3 M sodium chloride, and 10 

mM imidazole). The IMAC column was then washed with an additional 5 column volumes 

of equilibration buffer. Purified DszB was eluted from the IMAC column with imidazole 

containing elution buffer (equilibrium buffer with 100 mM imidazole) at a concentration 

of 0.2 mg/ml. Purity was assessed using sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) (Figure 0.2). 

4.2.4. Circular Dichroism 

IMAC-purified DszB was dialyzed against a low salt-content, phosphate-buffered 

saline solution to remove remaining residual imidazole and salts. Serial dilutions of HBP 

were prepared in five-fold steps using waste dialysate with the addition of 1 % ethanol for 
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solvation of the hydrophobic molecule, spanning a final concentration range of 125 nM to 

80 µM HBP. HBP solutions were then combined with the dialyzed DszB solution in equal 

volumes for circular dichroism (CD) analysis. An HBP-free DszB control sample was 

prepared by mixing 1 % ethanol-containing dialysate with dialyzed DszB solution to ensure 

the solvation environment of all CD samples were identical. Samples were then analyzed 

using a Jasco J-810 CD spectrophotometer at 25 °C over wavelengths spanning 200 nm to 

250 nm. 84,85  

4.2.5. Fluorescent Kinetic Assay  

IMAC-purified DszB was added to well plates containing 2-fold serial dilution of 

HBPS in 50 mM sodium phosphate buffer (with 0.3 M sodium chloride) spanning a 

concentration range of 625 nM to 20 μM HBPS. DszB was also added to wells containing 

only buffer to serve as controls. Samples were incubated at 20 °C and monitored for 

fluorescence emission at a 414 nm wavelength using a BioTek Synergy plate reader with 

an excitation wavelength of 288 nm. 25 Using a calibration curve generated from the linear 

relationship between HBP concentration and fluorescence intensity, initial reaction 

velocities were calculated to generate a Michaelis-Menten saturation curve. Apparent 

Michaelis-Menten parameters were determined numerically using the Generalized 

Reduced Gradient (GRG) algorithm. This process was then repeated with varying initial 

concentrations of HBP, spanning a concentration range of 625 nM to 10 μM HBP; further 

increases in HBP concentration generated too high a background to observe initial reaction 

rates. 
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4.2.6. Molecular Dynamic Simulations 

MD simulations were used to examine the dynamic behavior of the set of aromatic 

inhibitors and substrates (Figure 4.1) bound in the active site of DszB. The DszB-HBPS 

complex model was constructed based on crystallographic data from Protein Data Bank 

(PDB) structure 2DE3; the C27S mutant was reversed to the wild-type cysteine.86 For the 

DszB-HBP complex, construction started from the 2DE3 structure (reverted to wild-type); 

the sulfinate group was deleted from the HBPS substrate, resulting in the HBP product. For 

the remaining molecules, the bound HBPS substrate was manually removed from the 

structure, and the aromatic analogs, BIPH, BCA, NAPO, and NTAM, were placed at the 

initial HBPS position as initial coordinates for docking.  

Ligand docking calculations were performed using standard affinity-based methods in 

AutoDock (version 4.2) to compute and cluster the grid-based free energies of protein-

ligand complexes.87 Initial conformations of BIPH, BCA, NAPO, and NTAM were 

obtained from quantum mechanical geometry optimizations, as reported in our previous 

study on force field parameterization of HBPS analogs.83 Ligand conformations were 

allowed to be flexible, including torsion angles, during docking calculations to obtain the 

optimum binding position inside the DszB binding pocket.  Autogrid4 was used for setting 

up grid maps centered on selected ligands, with grid dimensions of 66 Å × 66 Å × 66 Å for 

all molecules and a grid spacing parameter of 0.375 Å. The Genetic Algorithm (GA) was 

applied to search for docking positions of each molecule with a ranked cluster analysis on 

50 independent GA runs. Parameters for the calculations were a rate of gene mutation of 

0.02, a rate of crossover 0.8, a population size 150, and the maximum number of 

evaluations capped at 25 M.  
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The DszB bound systems were solvated in a 90 Å × 90 Å × 90 Å pre-equilibrated cubic 

box filled with TIP3P water molecules. 88-89 Prior to solvation, the systems were minimized 

in vacuum for 500 steps using the steepest descent (SD) method followed by 1000 steps 

using the adopted basis Newton-Raphson (ABNR) method. The CHARMM36 force field 

with CMAP correction was applied to model the protein.90-92 Optimized CHARMM 

general force field (CGenFF)-based parameters were used to model the HBPS analogs.93,94 

Protonation states of all the titratable residues were calculated using the H++ web server at 

the optimal pH of 7.4.95, 50 Additionally, 0.3 M NaCl and 50 mM HPO4
2- were included in 

the solvent to mimic experimental media, and extra Na+ ions were added to neutralize the 

system charge (DszB is 17e-, and HBPS is 1e-). Periodic boundary conditions were applied, 

and Lennard-Jones interactions were truncated at 12 Å. Electrostatic interactions were 

calculated using the particle mesh Ewald method (PME)96 with 1 Å grid spacing and 6th 

order spline. Hydrogen-heavy atom bond lengths were constrained by SHAKE.97 The 

solvated systems were minimized and equilibrated prior to production MD simulations (i.e., 

data collection). Each system was minimized in CHARMM with 2000 steps of the SD 

algorithm holding the protein and ligand fixed via harmonic restraints. The restraint on the 

ligand was then removed, and 2000 additional SD steps were taken. A final 5000 ABNR 

minimization steps were taken following the removal of all restraints. The minimized 

systems were equilibrated by slowly heating the system from 90 K to 300 K in 50 K 

increments over 100 ps in the canonical ensemble. This was followed by isothermal-

isobaric (NPT) simulation using the Nosé-Hoover thermostat and barostat in CHARMM 

for 200 ps at 1 atm to equilibrate system densities.98-100 The density-equilibrated systems 

were simulated in NAMD for 200 ns.77 MD production simulations were conducted in the 
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NVT ensemble using a 2-fs time step at 300 K. Temperature was controlled using the 

Langevin thermostat in NAMD. 

4.2.7. Free Energy Calculations 

For quantitative examination of the thermodynamic factors contributing to ligand 

binding in DszB, we performed absolute binding free energy calculations using free energy 

perturbation with Hamiltonian replica-exchange molecular dynamics (FEP/ λ-REMD), an 

enhanced sampling free energy calculation method.101,102  The aromatic analog absolute 

binding free energies were calculated for direct comparison with experimental inhibition 

constants, KI.  

Ligand insertion into the binding pocket was split into two thermodynamic paths 

(Figure 4.3). The two paths were: (1) decoupling the bound ligand from DszB from solvated 

conditions into a vacuum, G1; and (2) decoupling the solvated ligand from solution into 

a vacuum, G2. The difference between the two changes in free energy, Gb
, is the 

absolute ligand binding free energy of enzyme-ligand complex. For each free energy 

calculation, the potential energy, U, can be expressed in terms of four different 

thermodynamic coupling parameters, λrepu, λdisp, and λelec to control the nonbonded 

repulsive, dispersive, and electrostatic interactions, respectively, of molecule with the 

surrounding environment (Equation 4.1). An additional parameter, λrstr, was used to control 

the translational and orientational restraints.  

𝑈(𝜆𝑟𝑒𝑝𝑢, 𝜆𝑑𝑖𝑠𝑝, 𝜆𝑒𝑙𝑒𝑐 , 𝜆𝑟𝑠𝑡𝑟) = 𝑈0 + 𝑈𝑟𝑒𝑝𝑢𝜆𝑟𝑒𝑝𝑢 + 𝑈𝑑𝑖𝑠𝑝𝜆𝑑𝑖𝑠𝑝 + 𝑈𝑒𝑙𝑒𝑐𝜆𝑒𝑙𝑒𝑐 + 𝑈𝑟𝑠𝑡𝑟𝜆𝑟𝑠𝑡𝑟 

Equation 4.1. Potential energy equation governing free energy calculations  
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U0 is the potential energy of the system with a non-interactive ligand; Urepu and Udisp 

are the shifted Weeks-Chandler Anderson repulsive and dispersive components of the 

Lennard-Jones potential; Uelec is the electrostatic contribution; and Urstr is the additional 

restraining potential energy. Orientational and translational restrains were not used in the 

determination of the ligand solvation free energy.  

 

Figure 4.3. Thermodynamic cycle to determine the free energy of binding small molecules 

to DszB using FEP/ λ-REMD. 

“Ligand” represents the bound small molecule in a given set of simulations. The subscript 

“Solv” represents solvated condition, and “Vac” refers to vacuum conditions. 

Free energy calculations were performed for the neutral analogs only (HBP, BIPH, 

NTAM, and NAPO), starting from the final timestep of the 200-ns MD simulations. The 

negatively charged HBPS was not considered in the free energy calculations due to finite-

size effects, which gives the most significant discrepancy when protein and ligand are both 

charged.103-107, 51 The free energy of binding BCA was also not determined, as the ligand 

did not remain bound in the active site over the course of MD simulations. The free energies 

were determined from 3-ns simulations conducted using 30 consecutive, 0.1-ns windows 

for both thermodynamic paths. The simulations employed a set of 128 replicas (72 

repulsive, 24 dispersive, and 32 electrostatic) with an exchange frequency of every 0.1 ps. 

In determining the first thermodynamic step, G1, a positional restraint on the distance 

between the center of mass of the ligand and the protein was applied to aid in convergence; 

the bias imposed as a result of this restraint was determined numerically and accounted for 

in calculation of Gb°.102 Calculation of G1 for BIPH and NAPO required application of 
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a second harmonic rotational restraint given the observed flexibility in the binding pocket. 

This additional restraint was applied to the root mean square deviation (RMSD) values of 

the aromatic carbons for each molecule to improve convergence of the calculations. Again, 

the bias of the additional restraint was determined by performing  5-ns umbrella sampling 

MD simulations, then, slowly removing the harmonic restraint on the RMSD of the 

aromatic carbons, and using the Multistate Bennett Acceptance Ratio (MBAR) method to 

determine the contributed potential.108  

Individual repulsive, dispersive, and electrostatic energy contributions and statistical 

uncertainties were determined based on the output energies from the last 1 ns (the 

converged region)  of the replica exchange simulations using MBAR for both 

thermodynamic paths.108 The energies were summed for each path, including the additional 

restraint potentials, to obtain the total free energy change of each path. Convergence was 

determined by monitoring the free energy calculations of the two thermodynamic paths 

over time (Figure 0.3). Experimental KI values were converted to ∆Gb° based on Equation 

4.2 where Gb° is the binding free energy, R is the ideal gas constant, Kd is the dissociation 

constant (equivalent to KI), and c is the standard reference with unit M. 

𝛥𝐺𝑏
° = 𝑅𝑇𝑙𝑛 (

𝐾𝑑

𝑐
) 

Equation 4.2 Relationship between binding free energy and dissociation constnat 
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4.3. Results 

4.3.1. HBP-Induced Conformation Change 

The mean residue ellipticity of DszB in response to the presence of HBP was measured 

for concentrations ranging from 64 nM to 40 μM (Figure 0.4), revealing an increase in 

signal intensity with increasing ligand concentration. While any change in the mean residue 

ellipticity would indicate a shift in protein conformation, the preservation of the spectra’s 

overall shape with an increase in signal intensity over the 200-250 nm wavenumber is 

characteristic of a protein adopting a more α-helical secondary structure. Mean residue 

ellipticity over wavenumber for each concentration of HBP was numerically integrated 

(Figure 4.4), taking the increase in signal intensity to be directly proportional to an increase 

in helical content. The resulting “binding curve” indicates increasing amounts of HBP 

elicited increased conformation change up to approximately 2 M, where -helicity of 

DszB saturated, and the conformation change became static. 

 

Figure 4.4. Percent -helical content of DszB as a function of HBP concentration. 

Helical content increased with increasing concentration of HBP, as determined from 

comparison of integrated CD spectra (individual CD spectra available in supplemental 

material, Figure 0.4). Error bars depict standard error with N=3. 
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4.3.2. Product Inhibition 

The effects of conformation change on DszB activity were evaluated by measuring 

impact on initial velocity, revealing the product, HBP, competitively inhibited DszB. 

Michaelis-Menten saturation curves for purified DszB and DszB with varied HBP 

concentrations were obtained from fluorescent kinetic assays (Figure 4.5). The reaction 

rate of DszB was significantly reduced by the presence of HBP at substrate concentrations 

below 8 μM. At high substrate concentrations, DszB reaction rates were relatively 

unaffected by HBP. Apparent Michaelis-Menten parameters for each concentration of HBP 

were determined numerically using a Generalized Reduced Gradient (GRG) algorithm. 

Each parameter was then considered as a function of HBP concentration. The theoretical 

maximum rate of reaction (Vmax) appeared to be independent of HBP concentration, while 

the Michaelis constant (Km) increased with increasing concentrations of HBP (Figure 0.5). 

This is consistent with a classic competitive inhibition model. 
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Figure 4.5. Michaelis-Menten saturation curves for purified DszB (w/o HBP) and DszB 

with varied concentrations of HBP (w/ 1.25, 2.5, 5, 10, and 625 µM). 

Dashed lines indicate curve fitting results to the standard Michaelis-Menten equation. 

Error bars denote standard error with N=3. 

4.3.3. Aromatic Molecule Binding Poses 

DszB is thought to implement an electrophilic aromatic substitution mechanism to 

cleave the carbon-sulfur bond of the HBPS substrate, involving several active site residues 

in the process.10  Specifically, the sulfinate group of HBPS is directly substituted by the 

C27 proton without formation of an arenium ion (𝜎-complex); H60, R70, and G73 in the 

active site of DszB play important roles in stabilizing transition states.39, 46 As a 
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consequence, these catalytic residues were in close proximity to HBPS in the 2DE3 

structure (Figure 4.6A). The C27 sulfur (denoted at C27-S) is 2.8 Å away from the HBPS 

aromatic carbon directly participating in the electrophilic aromatic substitution to cleave 

the sulfinate group. The protonated N atom of the H60 imidazole ring (H60-𝑁𝜏) measures 

3.0 Å from the sulfinate O; 𝑁𝜂1 of R70 is 2.7 and 3.5 Å away from the O atoms of the 

HBPS sulfinate group; and the main chain N atom of G73 (denoted as G73-N) is 3.5 Å 

from the sulfinate O (Figure 4.6A). The HBP binding position was adopted from the HBPS 

position (without docking calculations) by manually cleaving the sulfinate group (Figure 

4.6B).  

AutoDock was used to model the binding positions of the remaining aromatic analogs 

for which there were no crystallographic structures to guide model construction, including 

BIPH, BCA, NTAM, and NAPO. The AutoDock calculations considered only binding 

within the substrate-binding pocket of DszB (i.e., no secondary binding sites), as 

determined from the HBPS-bound structure PDB 2DE3.43 The ranked clustering analysis 

from AutoDock revealed preferred binding positions (Figure 4.6C-F). As expected, all 

binding poses for the aromatic analogs resembled the HBPS binding pose captured in PDB 

2DE3.  

Docking calculations placed the aromatic analogs, BIPH, BCA, NTAM, and NAPO, 

in similar proximity to C27, H60, R70, and G73 as the HBPS substrate (Figure 4.6C-F). In 

the case of NTAM, the most energetically favorable binding position put the C27-S 3.4 Å 

away from the N of the sultam; H60-𝑁𝜏 and R70-𝑁𝜂1 were 3.1 and 2.6 Å away from the O 

atom of the sulfone, respectively (Figure 4.6C). BIPH is a comparatively less inhibitory 

molecule than NTAM; however, the calculated binding position of BIPH reflected a similar 
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proximity to C27 and H60, with distances between C27-S and H60-𝑁𝜏 and the hydroxyl O 

atom of BIPH equal to 3.0 and 2.9 Å, respectively (Figure 4.6D). NAPO is a non-inhibitory 

molecule, and docking calculations suggested a preferred binding position somewhat 

farther from catalytic residues. C27-S was 3.6 Å from N of the sultone, and H60-𝑁𝜏 and 

R70-𝑁𝜂1 were 3.5 and 3.0 Å away from the O atoms of the NAPO sulfone, respectively 

(Figure 4.6E). BCA is another non-inhibitory molecule, and similar to NAPO, it 

preferentially bound near catalytic residues, although farther than the HBPS substrate. In 

the case of BCA, C27-S and H60-𝑁𝜏 were 3.5 and 2.8 Å away from the hydroxyl O atom 

of the BCA carboxyl, respectively; R70-𝑁𝜂1 was close to both the hydroxyl and carbonyl 

O atoms, with distances equal to 3.2 and 3.9 Å, respectively (Figure 4.6F). 
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Figure 4.6. Binding poses of aromatic analogs inside the DszB binding pocket. 

(A) Substrate, HBPS, bound to DszB (PDB code: 2DE3); (B) HBP binding position inside 

DszB, generated by manually removing the HBPS sulfinate group, as would occur in 

catalysis; (C-F) NTAM, BIPH, BCA, and NAPO binding positions, respectively, as 

predicted from docking calculations. Catalytic residues, C27, H60, R70, and G73, and 

bound ligands are illustrated in ball-sticks representation. All C atoms are colored in gray; 

O atoms in red; N atoms in blue; and S atoms in yellow. Protein structures are shown in 

the cartoon representation in gray. Distances between ligands and catalytic residues that 

were below 4 Å are labeled as dashed lines. The figure was generated using PyMOL.109 

4.3.4. Molecular-level Binding Interactions 

Molecular dynamics simulations of each DszB-ligand complex were performed, 

snapshots from which are shown in Figure 4.7. Structure coloration in Figure 4.7, from 

blue to red, represents the MD snapshot from initial to final position. The substrate, HBPS, 

remained stable within the binding site over the entire 200-ns simulation. The inhibitory 

product, HBP, on the other hand, moved away from the substrate binding site starting at 

40 ns toward the region that undergoes a distinct conformational change upon substrate 

A B C

D E F
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binding (superimposition of apo 2DE2 and holo 2DE3, Figure 4.2). This “gap region” is 

defined by three loops: loop 1 (residues 50-60), loop 2 (residues 135- 150), and loop 3 

(residues 180-200). The other inhibitory molecules, NTAM and BIPH, remained in the 

binding site but re-positioned to interact more closely with the catalytic residues C27, H60, 

R70, and G73. Non-inhibitory NAPO was highly mobile in the interior of the binding 

pocket, and BCA completely exited the binding pocket, migrating out through the path 

labeled by the arrow in Figure 4.7. The exit path of BCA traversed through the three loops 

forming the gap region. 

 

Figure 4.7. Snapshots from the MD simulations of DszB  

DszB bound with (A) HBPS, (B) HBP, (C) NTAM, (D) BIPH, (E) NAPO, and (F) BCA 

along the course of the 200-ns simulations. The color transition from blue to red represents 

MD simulations from start to finish. The panel order, exclusive of HBPS, from top to 

bottom and left to right, corresponds to experimentally determined inhibitory effect on 

DszB, from most inhibitory to least inhibitory. In other words, HBP > NTAM > BIPH > 

NAPO > BCA in terms of inhibitory effects, with HBP as the most inhibitory and BCA as 

A B

D

C

E F
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non-inhibitory. BCA exited the binding pocket by the end of the MD simulation, with the 

exit path labeled in dashed line.  

From the simulation trajectories, we obtained information about the dynamic behavior 

of DszB in response to ligand binding. We examined four quantitative measures of dynamic 

behavior: (1) the distance between the center of mass (COM) of the protein from the COM 

of the bound ligand; (2) the root mean square fluctuation of the protein backbones in each 

simulation; (3) hydrogen bonding propensity; and (4) nonbonded interaction energies 

between the protein and ligands.  

The distance between the COM of the protein and ligands was calculated for each time 

frame of the simulation and binned into histograms to illustrate relative mobility in the 

binding site (Figure 4.8). Non-inhibitory molecules appeared to have greater mobility 

inside the binding pocket than inhibitory molecules aside from the product HBP. Inhibitory 

molecules other than HBP remained closely engaged with catalytic residues C27, H60, R70, 

and G73. NTAM and BIPH, as shown in the snapshot above, were relatively stable in the 

binding pocket with COM distance distributions centered around 7.6 and 6.7 Å, 

respectively (Figure 4.8, top panel). HBP exhibited high initial stability in the binding 

pocket, with a COM distance of 6.6 Å; however, after 40 ns, HBP migrated from the 

interior of the protein to the gap region, as illustrated by the increase in COM distance to 

~10.4 Å. NAPO exhibited low overall stability in the DszB binding pocket. BCA exited the 

binding pocket after 180 ns through the gap region formed between loops 1, 2, and 3 

(Figure 4.8 inset). After BCA left the hydrophobic core of the protein, it migrated to surface 

of protein and stayed outside of loop 2, where it remained for the final 5 ns of the simulation.  
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Figure 4.8.  Center of mass (COM) distance analysis. 

Top panel: Distance distributions between the protein and ligand COM, including 

substrate HBPS (red) and inhibitory molecules HBP (magenta), NTAM (blue), and BIPH 

(green). Bottom panel: COM distances distribution between protein and ligand COM of 

non-inhibitory molecules, including NAPO (purple) and BCA (orange). The inset plot in 

the bottom panel shows the time series distance between the BCA and protein COM. 

The root mean square fluctuation (RMSF), expressed in distance, represents average 

movement in the protein backbone at each residue position over the duration of the 

simulation, with higher intensity reading corresponding to more motion in the protein 

which generally indicates instability in the current fold. RMSF of the protein backbones 

over the course of the simulations reveals that the gap region (especially loops 1 and 3) 

fluctuates the most, regardless of the bound ligand (Figure 4.9). RMSF on a per-residue 

basis is an illustration of how the backbone deviates/fluctuates about the average 

simulation structure. In general, the larger RMSF of the loop 1 and loop 3 corresponds to 

greater fluctuations, reaching RMSF values over 2 Å in all cases. Even in the apo DszB 

scenario, the loop regions exhibited high fluctuations compared to other regions of protein, 

supporting a potential role in active site ligand ingress/egress.  
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Figure 4.9. Root mean square fluctuation (RMSF) of DszB protein backbones over MD 

simulations. 

The apo RMSF is shown as black dashed line for comparison. The bottom panels are 

enlargements of the loop 1 and 3 regions.  

Hydrogen-bond analysis reveals that the substrate, HBPS, which is a negatively 

charged molecule, formed twice as many hydrogen bonds with DszB than any of the other 

molecules remaining in the binding site. For the sake of this analysis, we defined a 

hydrogen bond as having a donor-acceptor distance of less than 3.0 Å and a donor-

hydrogen-acceptor angle of less than 20°. The primary hydrogen bonds formed between 

HBPS and the protein were between R70-𝑁𝜂1 and main chain G73-N with a sulfinate O 

from HBPS with 77.3% and 49.1% occupancy, respectively (Table 0.1). Note, hydrogen 

bond occupancy refers to the percent of the simulation in which the hydrogen bond was 

formed. Inhibitory molecules NTAM and BIPH intermittently formed hydrogen bonds 

with binding site residue G73, having 7.7% and 5.5% occupancies, respectively. HBP 

moved toward loops 1 and 2 after 40 ns, increasing the number of hydrogen bonds formed 

outside the binding site. HBP hydrogen bonded mainly with H60-𝑁𝜏 (belongs to loop 1) 

with 2.5% occupancy. BCA exhibited a somewhat higher number of hydrogen bonds 

formed within loop 1 with H60 with 5.5% occupancy. After BCA exited the binding pocket, 
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it hydrogen bonded with loop 2 through E189. NAPO did not appear to form any long-

lived hydrogen bonds with DszB. 

Nonbonded interactions played an important role in maintaining the stability of 

NTAM in the binding site. Average nonbonded interaction energies between the protein 

and ligands were determined from the MD simulations on a per-residue basis (Figure 

4.10A). HBP did not form strong nonbonded interactions within the binding site. NTAM, 

on the other hand, formed strong electrostatic interactions with catalytic residue R70 and 

strong van der Waals (VDW) interactions with aromatic residues W155 and W255. The 

aromatic stacking with W155 and W255 appears to facilitate NTAM stability inside the 

binding site (Figure 4.10B). BIPH, in general, showed weaker nonbonded interactions 

compared to NTAM, but the VDW interactions between BIPH and catalytic residues C27 

and G73 kept BIPH stable in the binding site. 

 

Figure 4.10. Nonbonded interactions between ligands and DszB from MD simulations. 

A) Average nonbonded interactions (sum of electrostatic and van der Waals components) 

between aromatic analogs and DszB on a per-residue basis. Insets (a,b,c) represent the 

enlarged region where selected molecules have the most significant nonbonded interaction 

with DszB. B) Active site residue positions with bound NTAM (the initial configuration 

before MD production run); residues R70 and G73 are catalytic residues, and W155 and 
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W225 are neighboring aromatic residues that were observed as having strong VDW 

interactions with NTAM; color representations for the atoms are carbon in gray, nitrogen 

in blue, sulfur in yellow, and oxygen in red.  

Calculated binding free energies aligned with experimentally-determined inhibitory 

effects amongst the selected molecules (Table 4.1). The calculated binding free energies 

for HBP, NTAM, BIPH, and NAPO were -9.4 ± 0.7, -6.9 ± 0.5, -5.8 ± 0.8, and -4.4 ± 0.4 

kcal/mol, respectively. Experimental binding free energies, estimated from KI values 

according to Equation 2, were -8.6, -7.9, -6.5, and N/D (not inhibitory), respectively.50 

Computationally-determined values were within ~1 kcal/mol of available experimental 

values and reflected the inhibitory trend of the selected molecules. The binding free energy 

of BCA is not reported, as it exited the binding pocket during the MD simulation. Although 

these values trend with experimental results, their respective inhibition potential initially 

appears to be independent of any shared physical properties such as hydrophobicity, 

indicating the chemical structure of each molecule plays at least a partial role in its 

effectiveness. HBP, with its high affinity for the gap region, exhibited large dispersive 

interactions (-6.4 kcal/mol), with weaker, favorable repulsive and electrostatic energies (-

2.1 and -0.7 kcal/mol, respectively). NTAM affinity to DszB was dominated by favorable 

dispersion and electrostatic interactions (-10.3 and -2.5 kcal/mol, respectively), but binding 

affinity was weakened by unfavorable repulsive interactions (5.7 kcal/mol). For non-

inhibitory molecule NAPO, the binding affinity was weakened primarily by unfavorable 

electrostatics (4.7 kcal/mol). The binding free energy as a function of time is provided in 

Figure 0.3 and illustrates convergence.  

Table 4.1. Free energies of binding HBP, NTAM, BIPH, and NAPO to DszB. 

Binding free energies calculated using FEP/λ-REMD (∆𝐺𝑏
∘) at 300 K are compared with 

experimental values (∆𝐺𝑏
𝑒𝑥𝑝

), obtained from converting KI values from Watkins et. al.50 
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Errors associated with each calculated free energy components represent one standard 

deviation over the last 1 ns of collected data. Error was propagated by taking the square 

root of the sum of the squared standard deviations of the free energy needed to decouple 

ligand from the enzyme (∆𝐺1) and ligand solvation free energy (∆𝐺2). All values are in 

kcal/mol. 

 

4.4. Discussion 

4.4.1. HBP-Induced Conformation Change 

Fluorescent kinetic assays demonstrated the subtle inhibitive effect of HBP on DszB 

activity. Moreover, inhibition studies performed over a range of HBP concentrations 

indicate the inhibition to be competitive in nature. This agrees with previous experimental 

observations and strongly supports HBP’s presence in the binding pocket of DszB as part 

of the inhibition mechanism.24, 40  

The inhibitory effect of HBP also appears to be linked, in part, to a structural response 

by DszB to the molecule. CD studies revealed increased concentrations of HBP elicited an 

increase in -helical content. The structuring of the protein upon small molecule binding 

is consistent with a prior crystallographic study depicting a conformation change in loop 1 

upon HBPS substrate binding.43, 45  Notably, loop 1 contains residue H60, which is known 

to play an essential role in catalysis and resides at the protein surface in the unbound DszB 

conformation (2DE2).43, 45 Hydrophobic molecule binding in DszB appears to elicit a 

conformational change that may be part of the catalytic mechanism, as formation of -

helical content in loop 1 repositions H60 into the active site. The relative flexibility of loop 

 ∆𝐺𝑏
° ∗

 ∆𝐺𝑏
𝑒𝑥𝑝 ∗

 ∆𝐺1 ∆𝐺2 ∆𝐺𝑟𝑒𝑝𝑢  ∆𝐺𝑑𝑖𝑠𝑝  ∆𝐺𝑒𝑙𝑒𝑐  ∆𝐺𝑟𝑠𝑡𝑟  

DszB-HBP −9.4 ± 0.7 −8.6 −16.0 ± 0.6 - 20.5 ± 0.5 −27.7 ± 0.2 −8.6 ± 0.2 −0.2 

HBP - - - −6.6 ± 0.2 22.6 ± 0.2 −21.3 ± 0.04 −7.9 ± 0.1 - 

DszB-NTAM −6.9 ± 0.5 −7.9 −23.2 ± 0.4 - 27.5 ± 0.3 −34.8 ± 0.2 −16.1 ± 0.2 0.2 

NTAM - - - −16.3 ± 0.1 21.8 ± 0.1 −24.5 ± 0.04 −13.6 ± 0.04 - 

DszB-BIPH −5.8 ± 0.8 −6.5 −11.3 ± 0.5 - 20.7 ± 0.4 −27.9 ± 0.09 −6.7 ± 0.2 2.6 

BIPH - - - −5.5 ± 0.1 23.3 ± 0.1 −22.2 ± 0.04 −6.6 ± 0.1 - 

DszB-NAPO −4.4 ± 0.4 aN/D −18.5 ± 0.5 - 19.8 ± 0.4 −32.4 ± 0.2 −7.2 ± 0.2 1.3 

NAPO - - - −14.1 ± 0.1 21.5 ± 0.1 −23.7 ± 0.04 −11.9 ± 0.03 - 
a experimentally determined to be non-inhibitory 

 



67 
 

1 was reflected in the MD simulation RMSF analysis, along with similarly high mobility 

in loops 2 and 3, which collectively form a gap region. The movement of the gap region 

loops toward the closed conformation provide weak but plentiful opportunities for 

hydrophobic interactions with potential hydrophobic inhibitors, in addition to positioning 

key catalytic residues for substrate conversion. Accordingly, we suggest that HBP, along 

with structurally similar inhibitors, may reduce DszB activity via a mechanism that traps 

the protein in a closed, inactive conformation similar to its substrate-bound form until the 

inhibitor can be displaced.  

4.4.2. Active Site Interactions  

The inhibitory compounds NTAM and BIPH remained highly stable inside the 

substrate binding site compared to HBP, as illustrated by the COM distance analysis. 

NTAM slightly re-oriented over the course of the MD simulation so as to more effectively 

interact with binding site residues R70 and G73 but remained firmly within the binding site 

(Figure 4.7C). NTAM stability can be attributed to hydrogen bonding with the G73-N as 

well as general nonbonded interactions, particularly the aromatic stacking with W155 and 

W225 in the protein core. BIPH stability in the binding site was facilitated primarily 

through VDW interactions with G73 an catalytic residue C27 in the protein core, in 

addition to some hydrogen bonding with G73-N. We suggest BIPH and NTAM may bind 

with DszB from solution and compete with HBPS for the binding site via a traditional 

competitive binding mechanism, where both can occupy the primary binding site (Figure 

4.11).  
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Figure 4.11. Superimposition of inhibitory molecules NTAM and BIPH with HBPS 

substrate. 

Catalytic residues C27, H60, R70, and G73 are shown in ball and sticks representations 

with C atoms in gray, N atoms in blue, the S atom in yellow, and O atoms in red. HBPS, 

NTAM, and BIPH are shown in magenta, marine, and green, respectively.  

HBP exhibited flexibility at the binding position relative to HBPS (i.e., post-catalytic 

cleavage position).  HBP subsequently dislodged from the active site and favorably 

interacted with the loop 1 and 3 regions. As mentioned above, we expect the inhibitory 

nature of HBP may be facilitated by hydrophobic interactions upon migrating towards loop 

1 and 3 region (Figure 4.7B).  The high affinity of HBP for the gap region (-9.4 ± 0.7 

kcal/mol) would clearly impede egress from the hydrophobic core through the ‘gate’ of 

loops 1, 2, and 3.  

The non-inhibitory molecules, NAPO and BCA,50 displayed high flexibility within the 

binding site, with BCA actually exiting the binding pocket after 180 ns. For BCA, a 

hydrogen bond with R70 existed in the first 20 ns (1.5% occupancy), and the molecule 

exhibited strong nonbonded interactions with R70 within the same time range shown 

(Figure 0.6). The interactions ceased after 20 ns when BCA migrated to the loop 1 region 

and formed a new hydrogen bond with H60 with a higher occupancy of 5.5%. After 170 

ns, the interaction between BCA and H60 ceased, and the ligand exited the binding pocket 

HBPS

BIPH

NTAM

C27

H60

R70

G73
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due to its hydrophilic preference for the solvent. After BCA exited, loop 2 hydrophilic 

residue E189 formed a hydrogen bond with BCA trapping the molecule near the protein 

surface outside the loop 2 region.  

There were no long-lived hydrogen bonds formed between NAPO and residues of 

DszB. Compared with NTAM, the two molecules have very similar structures (C-SO2-O-

C) to (C-SO2-NH-C). By substituting NH to O, the O atoms surrounded by high 

electronegative environment (SO2) in NAPO exhibited less electronegativity compare to 

the N attached to a more electropositive H in NTAM (the magnitude of the oxygen charge 

decreased by 0.1 e compared to N from NTAM). NAPO, therefore, formed fewer hydrogen 

bonds and weaker electrostatic interactions than NTAM, corresponding with the observed 

high flexibility of NAPO inside the DszB binding site. These observations are consistent 

with the non-inhibitory behavior of NAPO.50  

4.4.3. Relating Binding Free Energies to Inhibition Mechanisms 

The calculated binding free energies were in excellent agreement with reported values 

of the inhibition constants. Watkins et. al. determined inhibition constants for HBP, NTAM, 

and BIPH of 0.5 M, 1.8 M, and 17 M, respectively. NAPO and BCA were reported as 

non-inhibitory at the examined concentrations (1 mM). From these values, binding free 

energies were calculated through Equation 2, ∆Gb
exp

, for comparison to calculated binding 

free energy, Gb° (Table 4.1). The calculated binding free energies matched experimental 

values well, within ~1 kcal/mol, and predicted the correct inhibitory order among the 

examined molecules. We expect calculations can be further extended to investigation of 

the many additional putative DszB inhibitors present in crude oil-derived feedstocks.    
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FEP calculations, when compared with the non-bonded interaction analysis, indicate 

molecule hydrophobicity significantly impacts the effectiveness of each inhibitor. All 

inhibitors studied here exhibited a similar trend in the individual elements of binding free 

energy, with the dispersive component dominating the favorable contribution and the 

electrostatic and repulsion components accounting for weaker or even unfavorable binding 

elements. Despite NTAM’s greater stability within the DszB active site, as evidenced from 

the COM distance analysis and nonbonded interactions, HBP’s high affinity for the gap 

region, along with its aversion to hydrophilic solutions, proves a significant enough barrier 

to account for the weaker active site interactions it displays. While the efficacy of each 

inhibitor does not trend with hydrophobicity, much of their binding affinity is likely 

derived from the entropic effects of burying these hydrophobic molecules within protein 

core away from the exterior aqueous environment. Individual differences in the structure 

of these inhibitors plays a role in their total binding affinity. In the case of NTAM, these 

interactions are significant enough to produce more favorable binding than the more 

hydrophobic BIPH but still fail to overcome the considerably more hydrophobic HBP.  

4.5. Conclusions 

Experimental studies of crystal structures and product inhibition motivated a desire to 

understand the underlying molecular-level mechanisms. Florescent kinetic assays of DszB-

catalyzed conversion of HBPS confirmed the resulting product’s effectiveness as a 

competitive inhibitor, showing an affinity for the active site comparable to that of HBPS. 

Basic structural characterization of DszB’s response to HBP via circular dichroism then 

indicated a shift in protein helical content indicative of a conformation change, which was 

consistent with observed substrate-induced binding from Lee et al. Based on this, we 
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hypothesized that HBP and structurally similar competitive inhibitors may elicit a similar, 

if not identical, conformation change to that of HBPS.  

All inhibitors studied here, but especially HBP, share enough structural similarity with 

substrate HBPS to occupy the active site; however, once bound, their inhibitive nature is 

derived less from the expected specific interactions with key catalytic residues and more 

from a collection of small but numerous hydrophobic interactions. Docking calculations 

and subsequent COM distance analysis indicated all of the inhibitors favored a binding 

position. NTAM and BIPH active site binding would compete directly with HBPS, whereas 

HBP favored a binding position slightly away from active site, nearer to all three loops of 

the gate region. Analysis of nonbonded interactions from MD simulations confirmed that 

the inhibitors exhibit varying degrees of nonspecific interactions with the hydrophobic 

residues either in the active site or around the proposed loop regions. Finally, FEP/λ-

REMD calculations defined the binding free energies of the inhibitors and indicated the 

effectiveness of each was derived from a balance between the more dominant dispersive 

elements of free energy contrasted with more subtle shifts in the repulsive and electrostatic 

components. Collectively, this demonstrated each of the inhibitors studied were 

entropically driven to remain in the active site by their hydrophobic nature and that their 

structural differences play a smaller role in their efficacy. 

Overall, decreasing experimentally observed binding affinity of ligands (HBP> 

NTAM > BIPH > NAPO > BCA), from inhibition constants, corresponded with less 

favorable calculated binding free energies. Accordingly, we have accurately simulated 

inhibition effects (on a macroscopic scale) and used the molecular-level information to 

provide insights into the mechanisms by which these inhibitors deactivate DszB. Product 
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inhibition of DszB by HBP remains one of the greatest barriers not only to DszB 

functionality, but to the industrial effectiveness of the 4S pathway as a whole. Given the 

unavoidable presence of HBP as the primary product of the 4S pathway, future research in 

the field will need to focus on methods to alleviate product and pathway inhibition. The 

unique mechanism of HBP inhibition, which we propose results from ligand entanglement 

at the gap region, serves as a starting point for future rational engineering approaches. 

Future DszB improvements via site-directed mutagenesis should consider all residues in 

the gap regions as potential targets for mutation to generate a desulfinase less impeded by 

product concentration. While not an exhaustive list, HBP stability around loop 1 (residues 

50-60) should be considered high priorities for substitution. While this study does not 

consider the impact such mutations may have on stability, substitutions to residues within 

the loop 1 that reduce the size of attached functional groups may serve to widen the gap 

region, thereby reducing the number of interactions HBP may engage in while exiting the 

active site and, in turn, its effectiveness as an inhibitor. Alternatively, exploring changes in 

solvation environment for DszB, attempting to introduce hydrophobic or surfactant 

molecules into its reaction buffer, may help to decrease inhibitor aversion toward free 

solution.   
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Chapter 5 – The Impact of Solvation Environment on the Stability of 

Desulfurization Enzyme 2'-hydroxybiphenyl-2-sulfinate desulfinase (DszB) 

This chapter has been adapted from a publication currently in draft. All work in this 

chapter was performed by the author of this dissertation. 

5.1. Introduction 

Liquid transportation fuels derived from petroleum provide the majority of energy 

used in the transportation sector. 11, 14 Current processes for refining crude oils into these 

petroleum products allows some sulfur-containing molecules to pass through from oil to 

fuel, where, upon combustion, the sulfur compounds oxidize to sulfur oxides (SOx). 82 

Acutely toxic under both the United Nations Globally Harmonized System of 

Classification and Labelling of Chemicals (GHS), SOx represents both an environmental 

threat, encouraging acid deposition (acid rain), and a human health concern, causing 

respiratory irritation. 110  

Hydrodesulfurization, the current industry standard for sulfur removal in crude oil 

refining, utilizes molybdenum or other expensive metal catalysts in a sulfur-linked network 

at high temperatures and pressures to bind organic sulfurs and cleave them from oil 

molecules. 5, 10, 12 The sulfur is then released from the metal catalyst with hydrogen gas to 

form hydrogen sulfide. While hydrodesulfurization effectively removes simple sulfur 

compounds, including thiophene, more complex thiophenic molecules like 

dibenzothiophene (DBT) and its derivatives remain intact; these DBT derivatives now 

account for 60% of sulfur emissions from liquid transportation fuels. 10, 42  

Biodesulfurization (enzymatic sulfur removal) offers highly specific, rapid thiophenic 

desulfurization at ambient temperature and pressure, exceeding traditional catalyst 



74 
 

performance in nearly every metric. 6, 18, 111 For most microorganisms, sulfur fixation 

pathways exist as a necessary mechanism for survival, although the mechanism by which 

it is achieved can differ greatly. 6, 112-113 When considering aromatic sulfur-containing 

molecules such as DBT, these mechanistic approaches can be broken down into two 

categories: ring destruction and sulfur specific. 9, 17, 30 In “ring destruction” approaches, the 

sulfur containing ring is, as implied, first destroyed (via one if not multiple bond 

disruptions) to access the sulfur more directly. In sulfur-specific mechanisms, the ring is 

opened by breaking only bonds shared with the sulfur targeted for fixation. 39 Given that 

the “ring destruction” approach disturbs carbon-carbon bonds essential to a fuel’s heating 

value, biodesulfurization mechanisms of industrial interest are limited to the ring opening 

approaches that break a minimum number of bonds to release the target sulfur. 20 

One such naturally occurring mechanism, shared by numerous organisms in sulfur 

limiting conditions, is a 4-step catabolic pathway (the 4S pathway) that converts DBT and 

many of its derivatives into 2-hydroxybiphenyl (2-HBP) without disruption of the carbon-

carbon bonds. 17-18, 37 While present in many bacteria, this pathway is most studied in the 

soil bacteria Rhodococcus erythropolis, strain IGTS8, in which the pathway was first 

isolated. The focus on R. erythropolis can be attributed to fact that, in most other organisms, 

diffusion of substrate into the cell is rate limiting, a complication not shared by R. 

erythropolis. 1, 26, 38  

With the aid of oxidoreductase, DszD, and several NADH cofactors in its first 3 steps, 

the 4S pathway begins with catalytic oxidation of the ring-bound sulfur via the 

monooxygenase, DszC. The second step again utilizes DszC to further oxidize the sulfur. 

In both cases, free water molecules supply oxygen. Following oxidation, the sulfur-
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containing ring is opened via disruption of one of the C-S bonds via a second 

monooxygenase, DszA, leaving both a hydroxyl group and sulfinate group on opposite 

rings of phenylbenzene, forming 2’-hydroxybiphenyl-2-sulfinate (HBPS). Desulfurization 

occurs in the final step of the pathway catalyzed by the desulfinase DszB, which cleaves 

the sulfate group from HBPS to form the product, 2-hydroxybiphenyl (HBP). 17, 25, 32, 39   

One major limitation of the 4S pathway is 2’-hydroxybiphenyl-2-sulfinate desulfinase 

(DszB), the rate-limiting enzyme in this biocatalytic process, as it exhibits both a low 

turnover and experiences product inhibition. 41-42 Investigations have been performed 

evaluating the activity of DszB many even probing the concerns with inhibition. 24, 35, 40 

Recent studies in product inhibition indicate the hydrophobicity of the HBP product and 

several other inhibitory molecules, play a role in their effectiveness as inhibitors, with their 

aversion to aqueous environments driving them to remain buried in the protein active site. 

This particular barrier in DszB functionality suggests changes in DszB’s solvation 

environment may facilitate egress of the hydrophobic product from the protein core, 

reducing product inhibition effects.   

The bulk of available studies related to DszB, however, focus on directed evolution of 

the entire 4S pathway and host organism rather than characterizing an isolated protein. 

Thus, the possibility of free enzyme cocktails as a means of desulfurization is overlooked, 

and research fails to prioritize one of the most essential features required in an industrial 

catalyst, stability. To better characterize DszB stability and gain insights into ways by 

which its life time may be extended we seek to evaluate the basic thermal and kinetic 

stability of DszB in a variety of solvation environments. 114 Such research also serves a 

secondary purpose, paving the way for future investigations in inhibition regulation, as 
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recent studies emphasis the importance of reaction medium on basic activity. In this study 

we examined thermal stability of DszB in a wide range of different commercially available 

buffer additives using differential scanning fluorimetry (DSF) as a means to quickly 

identify favorable changes in protein melting point. 115 Additionally, using a fluorescent 

kinetic assay we investigated DszB reaction rate over a 48hr time scale in a more focused 

group of buffer environments to assess the life time of enzyme activity. 

Buffer additives tested were chosen from a Hampton solution and solubility screen 

and include components that are amino acid derivatives, chaotropes, chelators, 

cyclodextrins, ionic liquids, linkers, metals, non-detergents, sulfobetaines, organic acids, 

osmolytes, peptides, polyamines, polymers, polyols, and salts. Solution additives share a 

collective non-specific affinity for proteins in general that work to stabilize or better 

solubilize. The precise mechanisms by which each category achieves such effects can vary 

greatly, but, generally speaking, each works to either shift equilibrium in favor a particular 

protein fold, or to modify properties of the bulk solution (such as ionic strength) to increase 

solubility.116 

5.2. Methods 

5.2.1. Materials 

All chemicals and materials without specifically stated origins were purchased through 

VWR (Radnor, PA). Protein purification supplies including immobilized metal affinity 

chromatography (IMAC) column (HIS-Select® HF Nickel Affinity Gel), Polyacrylamide 

Gel Electrophoresis (PAGE) gels, and associated Sodium Dodecyl sulfate running buffer 

and loading dye were purchased from Millipore Sigma. An EZ-Run™ Protein Ladder 
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standard was purchased from  ThermoFisher. Substrate HBPS was synthesized from 

biphenosultine according to the methods discussed in Yue et. al.;  Texas A&M University 

National Products LINCHPIN Laboratory provided biphenosultine as gift.94 

5.2.2. Cell culture 

All protein was produced via transformed Escherichia coli BL21 containing pTAC-

MAT-Tag-2 (Sigma E5405, C-terminus MAT Tag) plasmid vector with the DszB gene 

derived from Rhodococcus erythropolis IGTS8 inserted, as well as molecular chaperone 

producing vector pG-KJE8 (Takara 3340).  All E. Coli cultures were prepared in Lysogeny 

Broth (LB) containing 100 mg/ml ampicillin and 50 mg/ml chloramphenicol for pTAC-

MAT-Tag-2 and pG-KJE8 selection, respectively. All cultures were maintained under 

constant agitation and temperature control via an orbital shaker table. A 10 ml seed culture 

was grown in LB at 37 °C overnight. The seed culture was then transferred to a large culture 

flask containing 2 L of LB and left to grow to OD600 of 0.8, at which point culture 

temperature reduced to 25 °C for protein expression. DszB expression was induced with 

isopropyl β-D-1-thiogalactopyranoside (IPTG) at a concentration of 1 mM, while 

molecular chaperones GroEL–GroES were co-expressed for increased folding and stability 

via L-arabinose at a concentration of 2 mg/ml. Cultures were pelleted via centrifugation at 

5,000 x g for further use.  

5.2.3. Protein Purification 

Cell pellets from cell culture were suspended in 50 ml of chilled (4 °C) equilibration 

buffer (50 mM sodium phosphate, 0.3 M sodium chloride, and 10 mM imidazole) and lysed 

via pulse sonicating on ice with a sonic dismembrator (Fisher Scientific model 505). Liquid 

cell lysate was isolated from insoluble cell debris via centrifugation (64,000 xg for 30 min 
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at 4 °C). Supernatant was then filtered with a 0.22 µm syringe filter for removal of small 

residual cell debris. Protein purification was achieved via IMAC using a chilled HIS-

Select® HF Nickel Affinity Gel pre-equilibrated with 5 column volumes of equilibrium 

buffer. 117 Filtered cell lysate was gravity fed into the IMAC and then flushed out with an 

additional 5 column volumes of equilibration buffer. Protein was eluted from the IMAC 

column using column elution buffer (50 mM sodium phosphate, 0.3 M sodium chloride, 

and 100 mM imidazole). Purity was evaluated via sodium dodecyl sulfate–polyacrylamide 

gel electrophoresis (SDS PAGE) on a 12% polyacrylamide gel (Supplemental 1). Bands 

for molecular chaperones GroEL and GroES were observed on the SDS PAGE in purified 

product. 23  

5.2.4. Differential Scanning Fluorimetry (DSF) 

DszB stock solution, freshly purified from IMAC, and suspended in elution buffer at 

a concentration of approximately 0.15 mg/ml was used to dilute Sypro Orange dye 

concentrate 1:1000 to form a DszB-Sypro solution. In a 96-well clear, non-skirted, low 

profile microplate, 10 μl from each solution in the “Hampton Solubility and Stability 

Screen”(HR2-072) collection was transferred to an equivalent well position. 114-115  10 μl 

of DszB-Sypro solution was then added to each well, and the plate was sealed and 

centrifuged for 1 min at 500 x g to settle each solution. A real time quantitative PCR 

instrument (Bio-Rad CFX96 Touch) (qPCR) was then employed, starting all samples at 

20 °C and raising the temperature in 1 °C increments every 1 min up to a final temperature 

of 90 °C. Emission around 600 nm from  were monitored at each temperature increment. 

Inflection points observed in florescent intensity over the rise in temperature of each 

sample were quantified by identifying the corresponding temperatures to peaks in the 
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second derivative and recorded as DszB’s melting point. The top 4 buffers yielding the 

most positive impact on thermal stability were selected for further testing.  

5.2.5. Fluorescent spectroscopy   

IMAC-purified DszB suspended in buffers of interest (as determined by DSF) at a 

concentration of 0.2 mg/ml was added to well plates containing 2-fold serial dilution of 

HBPS in imidazole-free elution buffer spanning a concentration range of 1.25 μM to 40 

μM HBPS. DszB solution was also added to wells containing only buffer to serve a control. 

Samples were incubated at 20 °C and monitored for fluorescence emission at a 414 nm 

wavelength using a BioTek Synergy plate reader with an excitation wavelength of 288 nm. 

Using a calibration curve generated from the linear relationship between HBP 

concentration and fluorescence intensity, initial reaction velocities were calculated to 

generate a Michaelis-Menten saturation curve. 24-25 Apparent Michaelis-Menten 

parameters were determined numerically using a Generalized Reduced Gradient (GRG) 

algorithm.  

For initial time lapse kinetics, the DszB solution buffer of interest was column elution 

buffer. The above process was executed for DszB immediately after purification and again 

at 2, 6, 12, 24, and 48 hrs, with the DszB solution stored at 4 °C while not in use. For 

expanded kinetic stability trials, this method was repeated for several different DszB 

solutions, again in column elution buffer, but with the 4 additives from the Hampton 

solubility and stability screen collection that yielded the most positive impact on thermal 

stability as determined by DSF. Additionally, to evaluate the impact of potential anti-

inhibitor surfactants, a 1 % TWEEN20 elution buffer was also tested. The turn-over 

number (kcat,t) for each solution and time point was determined and compared to its 
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corresponding initial turn-over number observed immediately after purification (kcat,0). The 

ratio between kcat,t and kcat,0 was used as a measure of activity decline.  

5.3. Results 

5.3.1. Initial Time Lapse Kinetics 

The catalytic stability of DszB was evaluated by measuring the impact of time on initial 

reaction velocity in a standard column elution buffer, revealing an extremely low enzyme 

lifetime. Michaelis–Menten saturation curves were generated for DszB catalyzed 

conversion of HBPS in elution buffer immediately after purification (0 hrs) and at 2, 6, 12, 

24, and 48 hrs thereafter, with aliquots remaining in 4 °C cold storage while not in use 

(Figure 5.1). Data indicates an extremely rapid decrease in DszB activity observably even 

in the first 2 hrs post purification.  At the 12 hrs, DszB-catalyzed reaction rates approach 

the limit of detection. Such a short enzyme lifetime marks DszB as a very unstable protein.   

 

Figure 5.1. Time lapse of Michaelis–Menten kinetic plots 

Michaelis–Menten kinetic plots for DszB stored at 4 °C in column elution buffer. 

Time zero indicates activity measurement taken immediately following IMAC purification. 

Error bars represent standard deviation with n=3.  
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5.3.2. Thermal Stability Screening 

The thermal stability of DszB was assessed by measuring protein melting point via 

DSF, indicating that few general classes of stability buffers have a consistently positive 

effect on DszB stability. Samples from freshly purified DszB in elution buffer combined in 

equal volumes with the 96 solutions from the Hampton Solubility and Stability Screen 

(HR2-072) were subjected to DSF. The melting points of each solution additive with 

resolvable spectra that did not precipitate or otherwise immediately denature were 

determined (Table 0.2) and compared to the water control. The average difference between 

each group of solution additives from the water control are shown in Figure 5.2. Average 

DszB protein melting point temperature differentials (°C); a positive difference indicates 

the elution buffer plus additive group’s melting point was higher than that of elution buffer 

plus water (melting at 45 °C) and, thus, had a positive impact on thermal stability.  

 

 

Figure 5.2. Average DszB protein melting point temperature differentials (°C) 

Melting point for various buffer additives categories. Melting points differentials are 

expressed the as the difference between buffer + additive from buffer + water control. 

Concentrations and specific additives used reflect what is available via Hampton Solubility 

and Stability Screen. Error bars indicate the half degree temperature span sampled in DSF 

measurement.  
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Solutions from the Hampton screen in the peptide, reducing agent, chelator, metal, and 

ionic liquid groups universally caused either precipitation or yielded spectra too unstable 

to obtain a melting point from and, thus, are not displayed. Results indicate osmolytes, non 

detergents, and cyclodextrins were effective at improving DszB stability. Other additives 

showed, on average, deleterious effects on protein melting point. The four best preforming 

additives (additives who yielded the highest positive shift in DszB melting temperature) 

were selected for further investigation: (1) 50 mM methyl-β-cyclodextrin (MBCD) a 

cyclodextrin at 55 °C, (2) 2 M xylitol an osmolyte at 52 °C, (3) 2 M sucrose an additional 

osmolyte also at 52 °C, and (4) sulfobetaine 201 (SB201) a non-detergent at 51 °C 

(temperatures indicate melting point of DszB with buffer containing additive). These high 

performing additives were from a variety of groups rather than from a single superior 

category; some categories that were, on average, deleterious still contained individual 

additives that were moderately favorable or at least neutral. DszB stability appeared to be 

independent of any predefined grouping in the solution screen, apart from osmolytes 

proving universally beneficial to stability.  

5.3.3. Catalytic Activity Response to Solvation Environment 

 The influence of buffer additives on the catalytic stability of DszB was determined 

using a comparative ratio between the initial and time-resolved turnover numbers, 

revealing a significant positive impact resulting from several of the buffer additives. 

Michaelis-Menten parameters were calculated from initial reaction velocities for several of 

the higher performing buffer additives identified in the thermal stability screen (MBCD, 

xylitol, sucrose, and SB201). We also examined the effect of adding TWEEN20, a 

surfactant, to the buffer on DszB kinetics; the Hampton stability screen did not include a 
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surfactant grouping, and the nature of such molecules is of interest for future investigations 

into product inhibition. A ratio between the observed turnover (kcat,t) at a given time point 

and the initial turnover number (kcat,0) at the time of purification was determined for time 

points 0, 2, 6, 12, 24, and 48 hrs along (Figure 5.1).  

 

Figure 5.3. Change in turnover number over time for stability-enhancing buffer additives. 

The y-axis is a ratio between the apparent turnover number observed after time stored at 

4 °C and the turnover number determined at time zero (kcat,t/kcat,0). Error bars standard 

error. 

TWEEN20 and non-detergent SB201 showed no initial activity, indicating either the 

molecules served as strong inhibitors themselves or, more likely, denatured DszB entirely. 

MBCD, xylitol, and sucrose all had a positive impact on protein stability, although xylitol 

maintained stability consistently over the entire time course. Unfortunately, most 

improvement is isolated to the first 24 hrs, with DszB activity significantly declining by 

the 48 hr mark, even in xylitol, the best preforming additive tested, activity falls below 

80%. While this xylitol performance increase stands considerably above the rest and offers 

a solvation environment better suited for extended bench top experimentation, ultimately 

it is still provides only a short term increase in DszB stability.  
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5.4. Discussion 

Initial time-lapse studies of DszB activity showed that, even stored at refrigerated 

temperatures (4 °C), enzyme lifetime rapidly deteriorated in less than a day. The swift loss 

of activity is a clear indication of poor protein stability. The buffering capacity of a standard 

phosphate-based column elution buffer proves sufficient for regulating the pH of our 

protein sample but does little else to stabilize DszB’s fold. From a practical standpoint our 

interests are focused on the kinetic stability of DszB, prolonging the among of time DszB 

remains active. However, stability when viewed in thermal context through the shift in 

melting point of DszB can prove predictive of the impact a change may have on the kinetic 

stability of DszB.  Thermal shift allows evaluating a much larger pool potential solvation 

environments with much smaller sample sizes and any solution thermally stabilizing DszB 

likely also prolongs its activity.  

While 94 additives were initially investigated in the thermal stability screen, only a 

fraction of those tested had clear enough spectra to resolve a melting point. While a large 

amount of this interference can be attributed to expected phenomenon, including protein 

precipitation in response to destabilizing solutions or such unfavorable solvation 

environments so as to immediately denature DszB, it is likely some spectra noise was 

derived from the presence of molecular chaperones lingering from purification. DszB has 

been shown to retain some affinity for chaperones groES and groEL and folds poorly when 

expressed without their aid. Trace amounts of such folding proteins can be seen in our own 

samples (Figure 0.2), and their response to DSF dye across the temperature gradient likely 

provides some interference that, in select cases, elevates the background fluorescence to 

obscure melting point detection. 34 Thus, some solution groups such as peptide, reducing 
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agent, chelator, metal, and ionic liquid groups were unable to be measured. Of the 

remaining groups, few showed any real trend among their effectiveness or lack thereof at 

stabilizing DszB.  

While the cyclodextrin MBCD provided DszB with enhanced thermal stability, and 

even extended catalytic stability considerably in the short term, it was the only solution of 

its group to resolve, preventing us from drawing more general conclusions about 

cyclodextrins. MBCD did not significantly enhance long-term stability of DszB. Similarly, 

SB201 was the only “non-detergent” in the screen providing any measure of thermal 

stability, although SB201 also completely deactivated DszB. DszB is known to bind 

alternate substrates beyond HBPS, including a range of inhibitors. Most binding events 

stabilize a protein and can be observed via a shift in thermal stability. 43-44 It is possible that 

the increase in DszB thermal stability resulted from binding the sulfur-containing SB201 

in an inhibitory manor. Yet another, and perhaps more likely possibility given the general 

sulfobetaine focus on solubility rather than fold stability, is that SB201 denatures a 

particular domain of DszB, and the DSF data reflects a separate DszB domain or one of the 

trace molecular chaperones melting at a higher temperature. 118   

Osmolytes were the one molecule class that showed a wholly positive impact on 

thermal stability, with all multiple solutions having resolvable melting points and two 

(xylitol and sucrose) ranking among the best performing. Osmolytes stabilize proteins by 

competing for solvation water. Since the unfolded state of a protein generally exposes it to 

more solvent interactions the presence of a competitor such as an osmolyte bias equilibrium 

toward a folded protein requiring less solvent interactions.119 Thus, osmolytes drive the 

equilibrium between folded and unfolded protein toward the folded state by more heavily 
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destabilizing the non-native conformation than the native one. 120 This results in a 

comparative shift in equilibrium toward the protein’s native state. DszB relies on a 

relatively large-scale conformation change to achieve catalysis, however, and may find an 

osmolyte-based solvation environment biasing the more closed of the two conformations, 

potentially interfering with activity. 43, 45 Notably, initial DszB activity in the presence of 

xylitol and sucrose was similar to the unmodified elution buffer standard. Accordingly, 

osmolyte effects dampening DszB conformational change appear to be minimal.  

The hydrophobicity of 4S pathway product HBP along with other common crude oil 

contaminates, was shown in recent studies to enhance their effectiveness as inhibitors. The 

apprehension towards entering an aqueous environment drives these molecules to remain 

buried in the more hydrophobic protein. While the presence of any amphiphile would 

almost certainly destabilize DszB to a degree, ideally, in small concentrations, such a 

molecule may alleviate DszB product inhibition by encouraging the hydrophobic HBP 

product to leave the protein core. To this end TWEEN20, a common surfactant 

occasionally included in IMAC wash buffers, was evaluated alongside other solution 

additives to assess the general impact emulsifiers may have on DszB kinetic stability. While 

TWEEN20 did seem to immediately denature DszB even at a low concentration, this is by 

no means conclusive for surfactants, or even emulsifiers as a whole. Several other additives 

tested in the screen possessed amphiphilic qualities but failed to resolve or show a 

significant positive impact on DszB melting point. With the necessary hydrophobic 

elements of these molecules inherently destabilizing DszB in order to better sequester 

product HBP, its clear testing their addition in isolation from other additives as preformed 

in these studies is insufficient. A more focused study testing a broader range of such 
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additives at multiple different concentrations is required to appropriately address the 

effectiveness of amphiphiles in regulating product inhibition.       

Osmolyte sugars (sucrose and xylitol included) develop the three-dimensional 

hydrogen-bonded structure of water, which strengthens hydrophobic interactions within 

the aqueous environment. 121-122 This phenomenon is also attributed to their positive impact 

on thermal stability but has the added benefit of reducing the free energy required to 

transfer a hydrophobic molecule in an aqueous environment to a surfactant micelle’s 

interior. 121 Such an effect implies that a mixed system, containing both xylitol and 

surfactant, may provide the desired protein stabilizing effect from osmolyte, as well as 

reducing inhibition by strengthening the effectiveness of the surfactant at stabilizing 

hydrophobic product HBP unbound in solution. While this study failed to identify a 

suitable surfactant to pair with xylitol, future investigations into a more diverse set of 

emulsifiers at more variable concentrations may yield a solution to product inhibition in 

addition to prolonging DszB stability. 

5.5. Conclusion 

Initial kinetic fluorescent assays revealed an extreme lack of stability, even short-term, 

in DszB, with activity in a standard phosphate elution buffer declining to near undetectable 

levels after just 12 hours of refrigerated storage. Evaluation of a wide variety of buffer 

additives from numerous different molecular groupings revealed osmolytes to be effective 

at stabilizing DszB, and indicated several buffer components that may have a strongly 

positive effect on the lifetime of DszB activity. Investigation into the effects of the thermal 

stability-enhancing buffer systems, MBCD, xylitol, sucrose, and SB201, on activity 

revealed that while SB201 demonstrated a deleterious effect on even initial DszB reaction 
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rates, the remaining three additives had a highly positive impact on short-term protein 

stability, with 2 M xylitol performing the best. Kinetic stability investigations also 

extended to TWEEN20 due to its potential for reducing product inhibition, however much 

like SB201, TWEEN20 deactivated DszB completely.  

Of the solvation environments tested, osmolytes provided the most consistent 

improvement in DszB stability, with their competition for solvation water driving 

equilibrium away from the more solvent exposed denatured protein conformation, with the 

xylitol additive yielding the best kinetic performance from those tested. While a step 

toward increased stability, limitations of DszB exceed simple correction by solvation 

environment alone, necessitating further investigations into more direct protein alterations 

such as site directed mutagenesis or post-translation modification.  
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Chapter 6 – The hydrophobicity and conformations of common glycosylation 

motifs across the kingdoms of life 

This chapter has been adapted from a publication currently in draft. All data processing 

and analysis in this chapter was performed by the author of this dissertation. All MD 

simulations were performed Dr. Christina M. Payne, the director of this dissertation. The 

author of this dissertation authored the entirety of this chapter and corresponding 

publication. 

6.1. Introduction 

Post-translational modification of proteins is an essential phenomenon occurring in all 

living organisms. The modifications enable critical biological processes, such as but not 

limited to: physically attaching FMN to an oxidoreductase to impart catalytic function, and 

acetylating residues to introduce structural uniqueness essential in signaling pathways. 

Glycosylation is one of the more commonly employed post-translational amendments, 

occurring in every kingdom of life to some degree. Glycosylation, usually beginning in the 

endoplasmic reticulum, involves the covalent attachment of a saccharide molecule to the 

resulting glycoprotein. The glycans can be appended to proteins through O-linkages at a 

serine or threonine residue or N-linkages at an asparagine residue.51-53 Unlike proteins, 

which are formed from a pool of 20 amino acid building blocks and linked linearly through 

a consistent peptide bond, glycan structures have the potential to be considerably more 

diverse. Drawing from a much wider selection of monomeric building blocks, potentially 

including any bioavailable sugar, glycans appear in a vast assortment of lengths, ranging 

from simple monomeric attachments to chains hundreds of monomers long. Further 

diversity arises from the variety of ways in which sugars can be covalently linked, using 
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either an α or β conformation at one of several available carbons on a given saccharide 

monomer. In many cases, the linkages form complex branched structures. The resulting 

size, chemical and structural variability, and generally dynamic quality of most glycans 

makes structural studies of glycoproteins difficult. 

Glycans serve a variety of functions in nature including signaling, recognition, folding, 

and stability. While glycosylation enables these functions across all kingdoms of life, the 

types of glycans employed, in terms of preferred monomers and linkage types, vary 

considerably between organisms.60-61 For example, bacteria and archaea typically employ 

simple forms of O-glycosylation, favoring mostly single monomer glycans of common 

saccharides such as glucose (Glc), galactose (Gal), and N-acetyl-galactosamine 

(GalNAc).123-124 Some chain elongation can also occur, especially in bacteria.51 

Eukaryotic organisms generally exhibit more complex glycosylation patterns. Plantae 

typically produce N-acetyl-glucosamine (GlcNAc), GalNAc, and Fuc-based glycans, with 

chain elongation generally occurring with Gal additions; there are no conserved O-glycan 

motifs present across the entire Plantae kingdom.51 And while plants exhibit more diverse, 

organism specific glycosylation trends, this is not the case for other eukaryotes. Fungi, 

especially yeast, favor mannose (Man)-based glycans almost exclusively.65-67 Linear Man 

chains are a commonly occurring motif across fungi, with occasional further 

functionalization via the addition of alternative saccharides at branch points and end caps 

such as xylose (Xyl), Gal, and Glc. In general, Man is a very versatile glycan building 

block employed in nature, often starting a branching point in more complex motifs. Man 

is even employed in the animal kingdom in cell adhesion proteins such as cadherin and 

dystroglycan.125  
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In the Animalia kingdom, a wide variety of O-linked glycans are employed. Fuc, Glc 

and GlcNac are used in the glycosylation of epidermal growth factor (EGF)-like proteins 

to separate and stabilize two domains that would denature in the absence of glycans. 51, 68 

Xyl is employed as an initiator for the creation of proteoglycans (heavily glycosylated 

glycoproteins), where further chain elongation with Gal, GalNAc, and glucuronic acid 

additions build more complex glycans. In extracellular matrix proteins such as collagen, 

glycosylation with Gal with Glc additions are employed.17 

In the case of N-linked glycans, the fundamental initiation motif is highly conserved 

across most kingdoms, with the majority of such glycans falling into one of three primary 

categories: a branched predominantly mannose structure (Man2-6Man3(GlcNAc)2), a 

complex multi-component structure ((GlcNAc)2Man3(GlcNAc)2), and a hybrid structure 

combining elements of both mannose branching and complex glycan diversity 

(Man2GlcNAcMan3GlcNAc2). All three motifs are built upon the conserved Man3GlcNAc2 

structure as shown in Figure 6.1.62, 69-72 
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Figure 6.1. Common N-glycan motifs in nature 

With so many glycosylation motifs observed in nature and many more theoretically 

feasible, there is much to gain through systematic study of the purpose of each naturally 

occurring glycan and the extent to which it modifies the chemical properties of its host 

protein. To this end, we set about to examine the role of several common O- and N-linked 

glycan motifs in stabilizing protein structures.63 As many proteins function in primarily 

aqueous environments, the effect of glycosylation on solvation free energy provides a 

simple and effective metric for assessing the impact of a particular glycan on general 

protein stability.126-129 By extension this focus on solvation free energy as a lens for stability 

provides a more direct measure of solubility, with favorable increases in solvation free 

energy correlating to increases in aqueous protein solubility. 130-131  

Focusing on simple and single glycoforms builds fundamental understanding of each 

glycan building block, linkage type, an linkage location, which can be extended to more 

complex glycoforms. Using thermodynamic integration, we determined the solvation free 

energies of a variety of glycoforms, both monomeric and short chained and linked in 
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multiple conformations and locations, to all three common glycosylation residues serine, 

threonine, and asparagine. The chemical structure, names, and shorthand notation for the 

collection of common monosaccharides examined in this study and from which many 

naturally occurring glycans are built are given in Figure 6.2.  Our results form a library of 

fundamental glycan building blocks to enhance understanding of more complex protein-

carbohydrate structures moving forward.  

 

Figure 6.2. Short form names and line-angle formula depicting structures of 

commonly occurring glycan monomers in nature 

   

 

6.2. Methods  

To explore the role of glycosylation in protein stability, thermodynamic integration 

(TI) calculations were performed to determine the change in the free energy of solvation, 

ΔGsolvation, resulting from glycosylation of aspargine, serine, and threonine with a variety 

of glycans and glycan linkage conformations (Figure 6.2). Model compounds – acetamide, 

methanol, and ethanol – were used as side chain analogs in place of asparagine, serine, and 
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threonine, respectively, for all simulations to reduce the system to a “minimal protein 

contribution,” reducing error introduced by model proteins or uncapped amino acids. 76, 132-

133 A total of 34 glycoform models were constructed, symbolically represented in Figure 

6.3 using standard nomenclature defined in Essentials of Glycobiology (Figure 0.7).51. 

Representative of O-linked glycans, Fuc, Gal, GalNAc, Glc, GlcNAc, Man, and Xyl were 

individually appended to both methanol (Ser analog) and ethanol (Thr analog). Each O-

linked glycan was also constructed in both an α and β linkage to both serine and threonine 

analogs. N-linked GlcNAc, GlcNAc2, Man(GlcNAc)2, Man3(GlcNAc)2, Man(α-

1,3)Man(GlcNAc)2, and Man(α-1,6)Man(GlcNAc)2 were appended to acetamide (Asn 

analog). Monomeric O-glycans were selected because of the universal prevalence across 

most if not all kingdoms of life.  All O-glycan’s tested rank among the most common 

naturally occurring and are all observed in human glycoproteins to at least some capacity. 

N-glycan tested show the piecewise assembly of the Man3GlcNAc2 motif that forms the 

basic template from which most other N-glycans are build.  
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Figure 6.3. O- and N-linked glycoforms  

Glycans for which free energy of solvation was determined in this study. Symbol 

nomenclature for simulated glycans as depicted in “Essentials of Glycobiology. 2nd 

edition:” 51 NglcNAc (blue square); Man (green circle); Fuc (red triangle); Gal (yellow 

circle); GalNAc (yellow square); Glc (blue circle); and Xyl (red star).  and  linkage 

conformations for N-glycans are as noted.  

The models were built, minimized, and equilibrated in CHARMM. 76, 134 135 The water 

was minimized for 1,000 steps using the steepest descent algorithm. The entire system was 

then minimized for an additional 1,000 steps of steepest descent minimization. The systems 

were equilibrated in the NPT ensemble at 300K for 20 ps. Temperature control was 

performed using the Nosé-Hoover thermostat. 136-137 SHAKE was used to fix the distances 

to hydrogen atoms.138 Non-bonded interactions were truncated with a 13 Å cutoff, and the 

Particle Mesh Ewald method with a 6th order b-spline, a Gaussian distribution width of 

0.320 Å, and a mesh size of 24 x 24 x 24 was used to describe the electrostatics. 139 All 

equilibration simulations used a 2 fs time step. The CHARMM force field with CMAP 

correction was used to describe the protein analogs, while the glycans used the CHARMM 

carbohydrate force field. 76 Water was modeled using the TIP3P force field.140 

     

GlcNAc GlcNAc2 Man(GlcNAc)2 Man3(GlcNAc)2 Man2(GlcNAc)2 

 

       

Fuc Gal GalNAc Glc GlcNAc Man Xyl 
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Following equilibration, all systems were integrated with NAMD using identical 

parameters.141 Langevin dynamics were used to maintain the system temperature at 300 K 

with a damping constant of 5 ps-1. System pressure was maintained with a Nosè-Hoover 

barostat coupled to a Langevin piston at 1 atm with a decay of 100 fs and period of 200 

fs.137, 142-144 The glycans and the amino acid models were solvated in a 26 Å water box of 

TIP3P water.88, 140 All simulations were run for 100 ns with a 0.5 ns equilibration time.  

The dual topology approach in NAMD was used to achieve an alchemical change 

between the unmodified amino acid model compound and its corresponding glycosylated 

form. The approach entails simulation of a single “hybrid” system containing both the 

analog and the glycosylated analog. The atoms of each compound do not interact with one 

another but interact with the rest of the system via standard bonded and nonbonded 

interactions scaled by a coupling parameter, , from a reactant to product state in windows 

over . The overall alchemical pathway used calculate glycan impact on solvation free 

energy (ΔΔGsolvation) is illustrated in Figure 6.4. Each simulated solvation free energy is the 

result of two independent simulations in which: 1) the contributions of protein solvation 

energy are measured via “disappearing” the relevant analog in solution and 2) by 

“disappearing” the glycoprotein complex between analog and glycan. The resulting effect 

on glycosylation on protein solvation free energy can then be isolated by taking the 

difference between the two simulations 



97 
 

 

Figure 6.4. Thermodynamic pathway used to measure glycan impact on solvation free 

energy.  

The transition was executed piecewise over 15 discrete windows with non-uniform 

step sizes, such that incremental changes to λ were smallest near 0 and 1 to avoid “end-

point catastrophes.” Contributions to solvation free energy from coulombic and van der 

Waals forces were evaluated separately in each window (sampling at every 2 fs step). 

Histograms for each window of the N-glycan Man3(GlcNAc)2 calculation are shown in the 

Figure 0.8 to demonstrate simulation convergence and sufficient window overlap. A first 

order trapezoidal rule was sufficient to numerically integrate average dU/dλ over =0,1 for 

each 100 ns simulation window. Error estimation was performed via the methods of 

Steinbrecher’s et al.145 

6.3. Results 

6.3.1. Thermodynamic Integration 

Calculated solvation free energies for each glycan motif (Figure 6.3) indicate basic 

glycosylation motifs will affect protein solubility. As with polysaccharides in general, data 

indicates a preference for beta conformations and branching. Due to high sampling, 

solvation free energies are recorded in Table 6.1 exhibit extreme precision, with errors at 

or below 0.2 kcal/mol. Free energies listed indicated the resulting change in solvation free 

energy (ΔΔGsolvation) achieved from glycosylation with each listed glycan. 
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Table 6.1. Glycan Free energy of solvation (in kcal/mol)  

Free energy for each glycan and glycan conformation simulated. Standard error was 

estimated via the methods of Steinbrecher et al. 

 

6.3.2. O-Glycans 

O-Glycan simulations capture the impact of glycan monomer diversity and linkage 

conformation on glycoprotein complexes with beta linkages, serine linkages, and more 

functionalized glycan monomers show more favorable impacts on protein stability 

compared to their corresponding counterparts. Tabular values for serine and threonine 

linked glycans from Table 6.1 are displayed in graphical format (Figure 6.5) for ease of 

comparison. Serine linkages yielded uniformly more favorable changes in solvation free 

energy compared to threonine. For both threonine and serine linkages, the -linked 

conformation generally resulted in the more soluble system, although this phenomenon 

was largely dependent on glycan functional groups. In the case of Fuc, which exhibits less 

functionalization of the pyranose ring, differences between the  and  linkages were 

negligible, effectively identical within error. However, for glycans with multiple functional 

groups, such as GalNAc and GlcNAc, differences between the two conformations where 

 ΔΔGsolvation  Serine Threonine 

N-Glycan  (kcal/mol) O-Glycan α β α β 

GlcNAc -24.6 ± 0.1 Fuc -13.3 ± 0.1 -13.4 ± 0.1 -12.2 ± 0.1 -12.2 ± 0.1 

GlcNAc2 -37.6 ± 0.1 Gal -15.1 ± 0.1 -16.5 ± 0.1 -14.1 ± 0.1 -15.2 ± 0.1 

Man(GlcNAc)2 -48.2 ± 0.1 GalNAc -16.7 ± 0.1 -18.7 ± 0.1 -15.7 ± 0.1 -17.5 ± 0.1 

Man3(GlcNAc)2 -69.2 ± 0.2 Glc -14.4 ± 0.1 -15.0 ± 0.1 -13.4 ± 0.1 -13.7 ± 0.1 

Man2-1,3-α-(GlcNAc)2 -60.8 ± 0.2 GlcNAc -16.8 ± 0.1 -18.7 ± 0.1 -15.7 ± 0.1 -16.7 ± 0.1 

Man2-1,6-α-(GlcNAc)2 -54.6 ± 0.2 Man -14.3 ± 0.1 -15.2 ± 0.1 -13.3 ± 0.1 -14.0 ± 0.1 

  Xyl -11.1 ± 0.1 -11.7 ± 0.1 -10.0 ± 0.1 -10.5 ± 0.1 
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quite high, differing by more than 10% in favor of the -linkage, although the differences 

between the - and -linkages where typically less extreme in threonine-linked glycans 

compared to serine.  

 

Figure 6.5. Comparison of the ΔGsolvation of O-linked glycans.  

Data is grouped by glycan. Each glycan was modeled in both the - (red, blue) and -

linked (yellow, purple) conformations and linked to either serine (red, yellow) or threonine 

(blue, purple). Error bars denote standard error estimated via the method of Steinbrecher 

et al. 

6.3.3. N-Glycans 

The calculated free energy of solvation for N-linked glycans is more favorably 

impacted by 1,3 linkages compared to the 1,6, which synergistic effects upon branching 

being observed. The length of the glycoform also favorably increases solvation free energy. 

Tabular values for asparagine linked glycans from Table 6.1 are displayed in graphical 

format (Figure 6.6) for ease of comparison. Direct comparison of the N-linked monomeric 

glycan, GlcNAc, and its most stable O-linked form, -serine GlcNAc, indicate N-linkages 
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have a significantly more favorable impact on protein solubility than their O-linked 

counterparts.  

 

Figure 6.6. Comparison of the ΔGsolvation of select N-linked glycans.  

Error bars denote standard error estimated via the method of Steinbrecher et al. 

The impact of monomeric additions to the glycan polymer can be observed by 

comparison of GlcNAc with (GlcNAc)2, as well as Man(GlcNAc)2 and Man3(GlcNAc)2. 

As  chain length increases, free enegy of solvation becomes more favorable, improving 

protein solubility; however, multiple monomeric additions to the glycan appears to have a 

diminishing return on the favorability of the free energy change, with subsequent additions 

to the chain yielding less of a positive effect than the previous. The effects of linkage 

position on the hexose ring can be observed in the Man addition to (ManGlcNAc)2. The -

1,3 linkage to form Man-1,3-α-(ManGlcNAc)2 elicits a considerably more favorable 

impact on solvation free energy than its -1,6-linked counterpart. A piecewise comparison 

on the individual contributions of each N-glycan addition is illustrated in Figure 0.9.  
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6.4. Discussion 

6.4.1. Effect of Branching and Bond Location 

In general, N-Glycans demonstrated the effects of chain elongation and branching on 

solvation energy via piece wise assembly of the fundamental motif (Man3(GlcNAc)2) that 

initiates most N-glycans in nature. Increasing chain length between the first monomeric 

GlcNAc and subsequent additions of GlcNAc and Man, up to Man3(GlcNAc)2, show that, 

while addition of monosaccharides does impact solvation free energy favorably, there is a 

diminishing return. This effect is most easily observable between GlcNAc at 24.6 kcal/mol 

and the less than doubled solvation free energy of GlcNAc2 at 37.6kcal/mol.  

Branching and bond position also affects the free energy of solvation, as observed 

between the Man3(GlcNAc)2 and Man2(GlcNAc)2 forms. Between the α-1,3 and α-1,6 

linkage, the 1,3 linkage was more favorable. The α-1,3 linkage is prevalent in both 

unbranched glycans, as well as many polysaccharides used for energy storage across the 

kingdoms of life, likely due in part to this reason.51 Isolating the individual contribution of 

the 1,3- and 1,6-linked Man by deducting the solvation free energy of the Man(GlcNAc)2 

simulation yields -12.6 kcal/mol and -6.4 kcal/mol, respectively, totaling 19.0 kcal/mol. 

However, when similar rational is used to isolate the contributions of both the α-1,3 and α-

1,6 Man by subtracting the Man(GlcNAc)2 simulation from the Man3(GlcNAc)2, the 

resulting difference is a higher, 21.0 kcal/mol, implying a synergistic effect of branching 

on solvation free energy. Graphical comparisons of each isolated contribution discussed 

are illustrated in Figure 0.9. 
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6.4.2. Influence of Linkage Conformation and Residue Type   

The -1,4 linkage yielded a considerably more stable glycoprotein across all glycans 

tested. In general, -linkages are more stable in oligosaccharides due to the more linear 

geometry resulting from the -1,4 bond positioning; 51 linked molecules are situated in a 

more favorable location for hydrogen bonding and experience reduced opportunities for 

steric clashes between accompanying functional groups on the pyranose ring. When 

considering glycans specifically, the glycosidic linkage directly between the glycan and 

protein does not necessarily gain from the prospect of hydrogen bonding, depending on the 

neighboring residues from the protein side of the linkage. Thus, the 180° bond angle 

provided by the -linkage in glycans is more favorable than the α-linkage, due primarily 

to its linear conformation reducing  steric hindrance, by angling the glycan out away from 

the protein. While this phenomenon was observed for all O-glycans, it is most apparent 

when considering the diminished significance of the glycosidic linkage conformation on 

the less functionalized saccharide, Fuc.  

In the case of O-glycosylation, most glycans across the kingdoms of life can be 

appended to any appropriately positioned serine or threonine, yet our results indicate a clear 

advantage for appendage to serine from a solubility standpoint. 51 It is, however, important 

to note that both Xyl, the  glycan with the least favorable solvation free energy amongst 

those tested, and Glc appear appended almost exclusively to serine over threonine. 146 

While this limitation, like many concerning glycosylation, is a function of the enzymes 

used produce the initial protein-saccharide linkage, the fact that such a phenomenon exists 

for a commonly used monosaccharide points to solvation free energy as a possible 

evolutionary driving force behind the function of select glycosyltransferases. Additionally, 
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the use of Xyl as an initiating glycan in nature occurs largely in the Animalia kingdom 

proteoglycans, where they are typically attached to multiple sites on the same protein and 

then further elongated linearly with non-Xyl monomers, usually beginning with Gal.68, 147 

The use of Xyl on multiple sites, with longer chains and with the more favorable serine 

linkages, collectively suggests the naturally occurring Xly glycans serve to impart 

solubility. 

6.4.3. Impact of Monosaccharide Diversity 

Man, used in both initiation and elongation of glycans, is the sole component of nearly 

all fungal O-glycans, particularly yeast.65-67 The impact of Man on solvation free energy 

was moderate, likely due to the absence of the functional groups present in the more 

favorable GlcNAc and GalNAc; however, this lower degree of functionalization in 

conjunction with the more epimoric C2 carbon position allows for Man to serve as a 

branching point, sustaining multiple glycosidic linkages, both  and  in conformation. 

Even in N-Glycans, the branching points often  begin with Man. Among the moderately 

favorable glycans tested, Glc, Gal, and Man were  not N-acetylated, lacking any large 

functional group likely to introduce steric hinderance in an elaborately branched chain. 

From the stand point of solvation free energy, Man serves as the more versatile of the three, 

providing a more positive average impact on solvation free energy than Glc, while being 

less dependent on location and conformation than Gal. This optimization of versatility in 

conjunction with solubility may, in part, explain why it is utilized so frequently in 

branching as well as why organisms with little diversity among monosaccharide “building 

blocks,” like fungi, favor Man appendages.51 
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 Among plants, there are no conserved O-glycan motifs with different organism 

using linear, branched, and monomeric glycans.51 However, rather than the more exclusive 

Man favored by fungi, Gal is occasionally used for branching along with Fuc, GlcNAc, 

and other less common glycans.65, 148 Offering they highest solvation free energy shift of 

the unacetylated glycans Gal makes a good candidate for branch points. Commonly 

employed monomerically or in very small chains in vertebrates, often for structural 

extracellular matrix secretions like collagen. 17  

While organisms exhibit preferences for specific O-glycans, most appear in all 

kingdoms of life to at least some degree, although in simpler life forms such as prokaryotes 

and archaea, glycosylation patterns while diverse in monomeric components, remain 

simple with very little elongation or branching.51 In humans, Fuc, Gal, Glc, GlcNAc, and 

GalNAc  are among the most common monosaccharides used to form glycans, but they are 

typically built into highly complex structures.149 Glc, as previously discussed, attaches 

almost exclusively to serine and is most commonly elongated with linear Xyl additions in 

humans, where it is used to help fold epidermal growth factor (EGF)-like domains.51, 68 

From the standpoint of solubility, there are certainly more favorable combinations than 

Glc-Xyl-based glycans, but the known role in protein folding of a commonly occurring 

domain indicates its functions stretch beyond simple enhancing solubility. GlcNAc and 

Fuc, while not exclusive to serine attachment, are so able to form linkages with threonine 

residues as well serve a similar role to Glc. Both are attached to EGF-like domains; 

however, unlike Glc, both appear somewhat commonly as initial glycans in some plants.51, 

148 Common motifs initiated by both GalNAc and Fuc both are numerous and diverse and, 

thus, beyond generalizations.150-152 While GalNAc is among the most advantageous 
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additions examined, Fuc was among the least favorable. However, the calculations suggest 

the impact of Fuc on solvation free energy is relatively independent of linkage 

conformation, affording a certain degree of versatility similar to Man reduced preference 

between serine and threonine.   

GlcNAc ranked among the most advantageous of glycan additions in terms of 

solvation free energy. Much like in N-linked glycans, O-linked GlcNAc can serve as an 

initial base monomer for construction longer glycan chains.  Additionally, GlcNAc can be 

added monomerically to achieve an effect similar to phosphorylation, and at times, can 

even target phosphorylation sites on a protein.51, 68 Like phosphorylation this has the 

potential to trigger conformational changes. It is possible that, with these small chain 

additions being so much more impactful to solvation free energy than other glycan options, 

GlcNAc potentially serves the dual purpose of both initiating conformational change as 

well as stabilizing the new conformation with its increased effect on protein solubility.  

6.5. Conclusion 

Calculation of the free energy of solvation for these fundamental glycan building 

blocks provided insight into the effects of glycosylation on protein stability, not only 

elucidating aspects of naturally occurring motifs, but also introducing tools for engineering 

new glycans for applications in pharmaceuticals and other pertinent fields. Calculations 

clearly illustrate the benefits of branching and chain elongation to solubility when 

assembling glycans, as well as confirm and quantify the value of -linkages over the 

alternative  conformation. Exploration into the effect of residue on glycosidic linkages 

revealed N-glycan asparagine initiated chains to have a more favorable effect than O-

glycans, followed by serine being more impactful than threonine in every glycan tested (N-
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Asn > O-Ser > O-Thr).  When considering the effect of individual saccharides used in 

glycan construction, the most heavily functionalized, N-acetylated GalNAc and GlcNAc, 

produced the greatest effect on solvation free energy. In the case of fungi-favored O-Man 

glycans, the less functionalized pyranose ring and more optimally positioned C2 carbon 

provides more opportunities for branching without steric clashes while still providing an 

appreciable increase in solvation free energy.  

While our study provides a valuable starting point for understanding how protein 

glycosylation impact protein solubility and, likely, stability, the extreme diversity among 

glycans in terms of both monomeric composition and conformations merits further 

investigations into elongated O-glycans and further branched N-glycans in order to expand 

our understanding of naturally occurring glycan motifs. Our results provide a tool, moving 

forward, for assessing existing glycans and determining their impact on protein stability.  
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Chapter 7 – Conclusions and Future Work 

This dissertation investigated the enzyme catalyst of the rate-limiting step of the 4S 

pathway, DszB. Characterization of the inhibitive effect of pathway product HBP, along 

with several other crude oil contaminants, was performed to increase understanding of poor 

overall enzyme performance and to identify a means for structure-guided activity 

improvements. Poor kinetic stability and solvent sensitivity of DszB led to the investigation 

of optimal solvation environments, which revealed buffer additives more effective at 

stabilizing DszB, but ultimately fell short of providing an industrially viable solution. The 

fundamentals of glycosylation, a common post-translation modification, were also 

investigated as a potential alternative method for improving protein stability, and a library 

of basic glycan motifs was examined to enhance understanding of more complex and 

effective glycans in nature.   

7.1. Overview 

Inhibition studies elucidated basic mechanisms that limit DszB activity. Circular 

dichroism demonstrated a large-scale conformational response to HBP consistent with that 

observed crystallographically in response to substrate binding, implying similarities 

between the two conformational responses. Florescent kinetic assays revealed inhibition 

that follows a competitive model, further supporting the product induced conformation 

change that mirrors substrate binding. From MD simulations, center of mass analyses and 

root mean square fluctuation showed mobility in both the protein fold and HBP position, 

while nonbonded interactions demonstrated only a slight affinity for several residues buried 

in the protein core. In conjunction with free energy perturbation calculations, this revealed 

HBP’s affinity for the active site, and, thereby, its capacity to inhibit DszB was derived not 
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only from specific interactions with active site residues, but also an entropic effect driving 

the more hydrophobic HBP to remain buried in the less solvent-exposed pocket away from 

the aqueous solvation environment. 

Time-lapse activity studies demonstrated DszB’s lack of long-term stability. 

Exploration of a wide range of solvation environments was conducted via differential 

scanning fluorimetry to both improve solvation free energy as well as to measure the 

stabilizing impact of amphiphilic buffer elements that may reduce production inhibition. 

Results indicated that select buffer additives could yield a positive impact on DszB stability 

though such effects were largely limited to short-term stability on the time scale of hours. 

Long-term stability over several days still showed significant decline in activity and all 

amphiphilic detergent additives proved deleterious to DszB stability.  

In an effort to explore alternative means of enhancing protein stability, a fundamental 

investigation into the impact of glycans on the solvation free energy of glycoproteins was 

conducted. Thermodynamic integration calculations of the solvation free energies of basic 

O-glycan building blocks and common N-glycan motifs quantified glycan potential for 

enhancing the solution stability of a decorated protein. The conformation of glycosidic 

bonds formed, the individual glycan units used, and the position along the glycan ring of 

each subsequent addition made were all found to impact the degree to which protein 

solvation free energy was changed. 

7.2. Future work 

 In addition to E. coli, Chinese Hamster Ovarian (CHO) cells and yeast serve as 

popular cell lines for commercial production of proteins. 153 Yeast offers low diversity, 



109 
 

highly predictable glycosylation patterns as an expression host, while CHO cells favor 

more human-like glycosylation motifs. While expression of bacterial proteins in 

mammalian cells is a less common practice and proposed as a secondary option to the 

preferred yeast expression host, select stains of CHO cells have some glycosylation 

mapping data available allowing for strain selection based partly on a desired glycoform.51, 

153-154 Future work will focus on these organisms in their capacity as expression hosts.  

With the completion of the glycan library, the next logical steps for this research fall 

along two distinct paths: (1) further development of the glycan library and (2) application 

of the glycan library data to stabilize DszB. Expansion of the glycan library would take a 

“proof-of-concept” tool of limited use and expand it into a more comprehensive library of 

solvation free energies, potentially including additional metrics for evaluating increasingly 

complex glycans.  Glycan motifs of more immediate interest to be added to the library 

include: (1) O-linked mannose elongated chains with branching glycans like observed in 

yeast and (2) specific extensions of the common Man3(GlcNAc)2 N-linked motif observed 

in CHO cells. Glycosylation motifs of these two organisms are of particular interest given 

their commercial significance. Many therapeutic molecules and industrially produced 

enzymes are manufactured through the use of CHO and yeast strains, both of which exhibit 

different glycosylation patterns (even from strain to strain), and, thus, naturally occurring 

glycans within these two species are among the most readily applied to commercially 

produced proteins. Beyond just the addition of new glycans to a library of solvation free 

energies, deeper probes into the conformation of each glycan would further the usefulness 

of the database. While free rotation about glycosidic bonds and the potential for branched 

structures create a considerably more dynamic biomolecule relative to a classical protein, 
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producing many rotamers that a given glycan rotates through, it is most probable that some 

rotamers are considerably more stable than others. In this regard, glycans might be 

visualized more like an intrinsically disordered protein, sampling/interchanging between 

multiple different nearly equally preferred conformations.  Applying replica-exchange 

molecular dynamics (REMD) to the Man3(GlcNAc)2 and other longer chain motifs would 

allow the isolation of the more frequent rotamers each glycan favors, thus providing a 

conformational ensemble of each glycan tested. Expanding the library to include such 

structural data would allow its usefulness to extend beyond stability measurements and 

perhaps touch on the role particular glycans may play in signaling and recognition.  

Given DszB limitations regarding stability, further research is necessary in order for 

the 4S pathway to ever be considered for implementation on an industrial scale. Prior 

testing demonstrated DszB sensitivity to solvation environment regarding both prolonged 

kinetic stability and degree of product inhibition, and while further investigations into 

varied solvation environments may yield moderate gains in DszB properties, ultimately, 

direct modification of the enzyme is likely necessary to produce performance levels 

desirable for commercial use. Many of the residues responsible for complicating product 

inhibition are either buried in the active site (a notoriously difficult region to stably mutate) 

or are highly conserved and, thus, likely critical to catalysis. While these challenges do not 

preclude directed evolution as a means to garner desired effects, glycosylation offers a 

potentially more versatile solution, less likely to generate deleterious variants. Expression 

in an E. coli host prevents glycosylation given that the organism lacks relevant cellular 

machinery. Glycan simulation data of naturally occurring glycan motifs indicated O-linked 

mannose offers versatility that ultimately can lead to large increases in solvation free 
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energy due to its prevalence for branching. While alternative glycans may offer larger 

swings in stability, locating or designing an expression host to obtain such a specific pattern 

would likely prove difficult and unnecessary. Multiple strains of yeast designed for 

commercial production of protein are already employed in lab scale purification. Given 

yeast’s tendency to heavily glycosylate with mannose, yeast-produced DszB would likely 

show a high increase in aqueous stability. For alternative more diverse glycosylation 

patterns, expression of DszB in CHO cells, which also have strains available for 

commercial protein production, could be explored. Furthermore, changes in glycans 

attached to DszB could be achieved through direct surface residue mutations. Residues 

surrounding serine, threonine, and asparagine targeted for glycosylation influence the 

specific glycotransferase involved in attachment, thus altering the glycan attached and 

allowing for relatively simple, usually benign surface/solvent exposed residue mutations 

to impact glycosylation patterns.   

7.3. Summary 

In summary, the 4S pathway presents a potentially viable biodesulfuration option for 

capable of cutting current sulfur emissions in the liquid transportation sector in half given 

the prevalence of DBTs in current fuels. However, the native performance of DszB 

precludes industrial application as of now. Investigations into the inhibitive nature of 

principle pathway product, HBP, demonstrated molecule hydrophobicity in an aqueous 

solvation environment is a large factor in DszB’s relatively slow turnover. Additionally, 

further investigations into the long-term kinetic stability revealed a rapid decrease in 

enzyme activity over a relatively short time range. Alterations in the solvation environment 

of DszB can have a profound effect on enzyme stability but, ultimately, fall short of 
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developing significant long-term kinetic activity, and the introduction of amphiphilic 

elements to aqueous buffers in order to reduce product inhibition destabilized DszB 

immediately. Analysis of the basic principles of glycosylation as they pertain to protein 

stability indicate expression of DszB in an alternative glycosylation-prone host organism 

such as yeast or CHO cells may yield more stable DszB variants capable both of 

maintaining activity for longer periods and with increased tolerance of inhibition reducing 

amphiphile buffer additives. 
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Appendix 

 

Figure 0.1. HBP concentration calibtration curve 

Dotted line indicates calibration curve with resulting R2 value for linear regression 

displayed in the plot. Error bars represent standard deviation with n=3.  
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Figure 0.2. SDS PAGE for IMAC Purified DszB.  

“Cell Pellet” and “Supernatant” samples were taken after cell lysis centrifugation. The 

“Column Wash” sample was taken from the cumulative column flow through prior to 

addition of elution buffer. “DszB Elution Fractions” were taken from 1 ml fractions 

throughout the elution processes. Elution fractions contain some impurities due to a close 

association with co-expressed molecular chaperones groES and groEL. 
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Figure 0.3. Gibbs free energy over 30 consecutive 0.1-ns simulations, as determined using 

FEP/λ-REMD for selected systems.  

Blue lines represent the decoupling of the bound ligand from solvated DszB to a vacuum. 

Red lines represent ligand solvation free energy. Convergence was assessed based on time 

progression of the discrete free energy values. The last 1 ns data was used for all 

determinations of change in free energy.  
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Figure 0.4. Circular dichroism spectra for DszB interacting with HBP  

Circular dichroism spectra for DszB interacting with HBP (fuchsia) and unbound (green) 

for multiple concentrations of HBP (64 nM, 320 nM, 1.6 µM, 8 µM, and 40 µM) over a 

wavenumber range indicative of helical structure (200 to 250 nm). 
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Figure 0.5. Product Inhibition of DszB  

Demonstrated by apparent Michaelis-Menten parameters for each concentration of HBP. 

Each parameter was determined numerically using a Generalized Reduced Gradient 

(GRG) algorithm. Each parameter was then considered as a function of HBP 

concentration. The theoretical maximum rate of reaction (Vmax) (green) appeared to be 

independent of HBP concentration, while the apparent Michaelis constant (Km) (pink) 

increased with increasing concentrations of HBP. Error bars indicate standard error 

(n=3). 
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Table 0.1. Occupancy of each hydrogen bond formed between a ligand and DszB. 

Inhibitors, including HBP, NTAM, and BIPH, are highlighted in blue, and non-inhibitory 

molecules, NAPO and BCA, are highlighted in gray. Values are obtained from single 

simulation CHARM outputs. 

 HBPS HBP 

Inhibitor Donor Acceptor Occupancy 

(%) 

Donor Acceptor Occupancy 

(%) 

R70-side HBPS-O3 77.31 R70-side HBP-O 1.05 

R70-side HBPS-O2 55.31 HBP-O H60-side 2.51 

G73-main HBPS-O2 49.05 H60-side HBP 1.01 

NTAM BIPH 

Donor Acceptor Occupancy 

(%) 

Donor Acceptor Occupancy 

(%) 

G73-main NTAM-O2 7.71 G73-main BIPH-O1 4.55 

R70-side NTAM-O1 1.05 G73-main BIPH-O2 5.46 

G73-main NTAM-O1 1.01 - - - 

Non-

inhibitory 

 

NAPO BCA 

Donor Acceptor Occupancy 

(%) 

Donor Acceptor Occupancy 

(%) 

- - - R70-side BCA-O2 1.57 

- - - BCA-O1 H60-side 5.45 
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Figure 0.6. Total nonbonded interaction energy between a ligand and DszB with respect 

to time. 

The energy value was calculated as a weighted average using a grid size of 100. The x-

axis represents residue number, ranging from 20 to 363. The y-axis is the time series from 

0 to 200 ns.  
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Table 0.2. Tabular values for resolvable protein melting points measured by DSF.  

Solution additive column indicates the Hampton Solubility and Stability name and 

concentration for each additive that was combined in equal volumes with 0.2 mg/ml DszB 

in elution buffer. Group column indicates the general mechanism group the additive fall 

under. Groupings defined by Hampton’s existing buffer additive classifications. In the case 

of multiple inflection points in fluorescence intensity vs temperature data, the recorded 

melting temperature listed indicates the lowest temperature inflection point.   

Solution Additive Group Melt °C 

Water Control Water Control 45 

500 mM Glycine Amino Acid 44 

500 mM β-Alanine Amino Acid 45 

2,500 mM Betaine monohydrate Osmolyte 49 

2,000 mM Xylitol Osmolyte 52 

2,000 mM Sucrose Osmolyte 52 

500 mM Spermine tetrahydrochloride Polyamine 33 

80 mM Adipic acid Linker 32 

500 mM Ethylenediamine dihydrochloride Linker 21 

500 mM Urea Chaotrope 36 

5% w/v Benzamidine hydrochloride Inhibitor 42 

1,000 mM Non-Detergent Sulfobetaine 201 (NDSB-201) Non Detergent 51 

500 mM Acetamide Organic Acid 43 

5% v/v Tacsimate pH 7.0 Organic Acid 40 

250 mM 4-Aminobutyric acid (GABA) Salt 31 

500 mM Lithium nitrate Salt 37 

250 mM Sodium benzenesulfonate Salt 43 

50% v/v Glycerol Polyol 47 

10% v/v Ethylene glycol Polyol 41 

10% v/v Polyethylene glycol 200 Polyol 43 

5% v/v Polyethylene glycol monomethyl ether 550 Polyol 42 

10% v/v Polyethylene glycol 400 Polyol 43 

10% w/v 1,2-Propanediol Polyol 43 

3% w/v Polyethylene glycol monomethyl ether 1,900 Polymer 37 

3% w/v Polyethylene glycol 3,350 Polymer 34 

50 mM Methyl-β-cyclodextrin Cyclodextrin 55 
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Figure 0.7. Key for symbolic representation of complex glycan structures.  

Reproduce from Essentials of Glycobiology 3rd Edition. 51 
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Figure 0.8. Histogram and autocorrelation function for Man3GlcNAc2 

Left hand figures demonstrate convergence of van der Waals contributions to solvation 

free energy while right hand figures show electrostatic convergence. Bottom row figures 

depicted autocorrelation functions while top row figures depict histograms for each step 

along the alchemical path for our dual topology model. All graphs are color coded 

according to reaction coordinate.  
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Figure 0.9. N-Glycan solvation free energy break down 

Green: initiating GlcNAc unit 

Purple: GlcNAc addition 

Yellow: β-1,4 Man addition 

Red: α-1,3 Man addition 

Blue: α-1,6 Man addition 

Black: Synergistic effect of branching from concurrent 1,3 & 1,6 Man additions  
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