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ABSTRACT OF DISSERTATION 

PORE-CONFINED CARRIERS AND BIOMOLECULES IN MESOPOROUS SILICA 

FOR BIOMIMETIC SEPARATION AND TARGETING 

Selectively permeable biological membranes composed of lipophilic barriers inspire 

the design of biomimetic carrier-mediated membranes for aqueous solute separation. This 

work imparts selective permeability to lipid-filled pores of silica thin film composite 

membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids 

confined inside the pores of silica are proven to be a more effective barrier than bilayers 

formed on the porous surface through vesicle fusion, which is critical for quantifying the 

function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid 

bilayer to reversibly bind the target solute and transport it through the membrane is 

demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic 

catalysis and biomimetic separations can be combined on this nanostructured composite 

platform. The successful development of biomimetic nanocomposite membrane can 

provide for efficient dilute aqueous solute upgrading or separations using engineered 

carrier/catalyst/support systems.   

While the carrier-mediated biomimetic membranes hold great potential, fully 

understanding of the transport processes in composite synthetic membranes is essential for 

improve the membrane performance. Electrochemical impedance spectroscopy (EIS) 

technique is demonstrated to be a useful tool for characterizing the thin film pore 

accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin 

film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid 

bilayer with high electrically insulation is essential for detecting activity of proteins or 

biomimetic carriers in the bilayer. This study provides insights for making better barriers 

on mesoporous support for carrier-mediated membrane separation process. 

Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule 

loading are potential for encapsulating dsRNA within the pores to achieve effective 

delivery of dsRNA to insects for RNA interference (RNAi). The mobility of dsRNA in the 

nanopores of the pSNPs is expected to have a functional effect on delivery of dsRNA to 

insects. The importance of pores to a mobile dsRNA network is demonstrated by the lack 

of measurable mobility for both lengths of RNA on nonporous materials.  In addition, when 

the dsRNA could not penetrate the pores, dsRNA mobility is also not measurable at the 



surface of the particle. Thus, the pores seem to serve as a “sink” in providing a mobile 

network of dsRNA on the surface of the particle. This work successfully demonstrates the 

loading of RNA on functionalized pSNPs and identified factors that affects RNA loading 

and releasing, which provides basis for the delivery of RNA-loaded silica particles in vivo.  

KEYWORDS: Biomimetic membrane, mesoporous silica, carrier-mediated, pore-confined 

lipid, RNA delivery 
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Chapter 1: Introduction 

The recovery of dilute aqueous solutes from biological processing such as organic 

solvents, amino acid, proteins from fermentation processes is critical to the development 

of biotechnology applications.  In the case of relative low value added products, the limited 

options for product recovery and upgrading may act as bottlenecks for commercialization. 

Dilute aqueous separation processes are usually costly and energy-intensive due to the low 

concentration feeds.[1-3] For example, improved separation of carbohydrates from 

biomass hydrolysate mixtures resulting from the enzymatic deconstruction of 

lignocellulose would address significant challenges to the biochemical and catalytic 

production of biofuels and chemicals. Sugars with six or five carbon can be directly 

converted into biofuel through bacterial fermentation,[4] which typically has an optimal 

sugar concentration of at least 100 g/L. [5, 6] But the sugar concentration produced from 

enzymatic hydrolysis (1~20 g/L) [7, 8] results inefficient  fermentation. Alternatively, 

sugars can  be catalytically dehydrated into platform chemicals for  further processing into 

a  variety of value-added chemicals.[9] In industry, chromatography is the most used 

method for sugar separation and concentration, which is an expensive process and has low 

production efficiency.[3, 10] 

In order to address the low efficiency of dilute aqueous solute separation, a robust lipid 

pore-filled silica thin film membrane combined with a specific binding carrier is proposed 

to achieve low energy usage, high permeability and high selectivity separation. Chapter 2 

summarizes the design and configuration of a biomimetic carrier-mediated separation 

membrane. The synthesis mechanism of orthogonally oriented ordered mesoporous thin 

film membrane with 2-D hexagonal close packed (HCP) structure, which acts separation 
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platform for the proposed biomimetic membrane, is discussed. The preparation of different 

types of synthetic lipid membrane (black lipid bilayer, polymer cushioned lipid bilayer, 

tethered bilayer lipid membrane and pore-confined lipid membrane) to mimic the structure 

of biological membrane is also compared. Finally, the principle and application of the 

surface analysis techniques (electrochemical impedance spectroscopy (EIS), grazing 

incidence small angle X-ray scattering (GISAXS), confocal laser scanning microscopy 

(CLSM) and a diffusion cell for characterizing the biomimetic membrane is presented. 

In Chapter 3, solute rejection of lipid assemblies (1, 2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC)) confined in mesopores silica thin film is demonstrated and 

compared to lipid bilayers suspended over pores. Sugar separation though the biomimetic 

membrane using a lipophilic boronic acid (4-(N-Boc-aminometyl) phenylboronic acid) as 

carbohydrate transporter is examined for proof of concept and also provides insights for 

sugar purification from processed biomass mixture. In addition, the glucose permeability 

through this biomimetic boronic carrier-mediated membrane is investigated under 

environmental factors of pH gradient (related to carrier-solute association) and temperature 

(related to the lipid bilayer diffusivity) to optimize the performance of the separation 

membrane. The membrane selectivity for three major sugars (glucose, xylose, and 

cellobiose) is also compared. 

An understanding of transport process through pore-confined lipid is essential for 

optimizing the proposed biomimetic membrane separation. Thus, Chapter 4 examines ion 

transport through the lipid filled mesoporous silica thin films using electrochemical 

impedance spectroscopy (EIS). The capability of EIS to quantify mass transport and 

accessibility of mesoporous silica thin film is compared for different mesoporous thin films 



3 
 

with known structure. The EIS is then extended to quantify the ion transport through 

supported lipid bilayers using different preparation methods (in the form of lipid filling and 

lipid enveloping).  The hydrophilic redox probe and hydrophobic redox probe are used to 

quantify the lipid bilayer resistance to hydrophilic molecules or ion and diffusion of 

hydrophobic carriers in the lipid membrane respectively.  This study is expect to quantify 

the configuration and ion transport through the mesoporous silica thin film supported lipid 

membrane, which provide insights for making better barriers on mesoporous support as 

carrier-mediated membrane separation platform for biomimetic membrane. Besides, the 

silica thin film supports provide various covalent coupling strategies for immobilizing the 

biocatalyst to integrate the reaction and separation in one single membrane process. 

Chapter 5 then focuses on the feasibility of combining an enzymatic membrane reactor 

with integrated biomimetic separation for one-step upgrading and separation of dilute 

aqueous solutes using mesoporous silica thin film. The model system is the enzymatic 

catalysis of glucose to fructose using glucose isomerase, which is covalently bound to 

epoxy group modified thin film silica. The upgrading and separation efficiency of the 

enzyme immobilized selective separation membrane is then quantified using a static 

diffusion cell. The chemical reaction and selective mass transfer through the composite 

membrane is further described by a mathematical model for identifying the dominant 

factors in membrane performance.  

In Chapter 6, the concept of pore confinement of biomolecules in mesoporous silica 

materials is furthered extended to encapsulate the double-stranded (ds) RNA in porous 

silica nanoparticles for dsRNA delivery to cells to achieve RNA interference. This chapter 

examines the mobility of pore-confined dsRNA as function of pore size, length of dsRNA 
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and loading concentration ratio of dsRNA to the silica particles measured by FRAP 

(fluorescence recovery after photobleaching) using confocal laser scanning microscopy 

(CLSM). These factors affect the loading capacity of dsRNA into particles and release of 

dsRNA to act on the targeted sites after the delivery by the nanoparticle, which determines 

the effectiveness of RNA interference. 
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Chapter 2: Background 

2.1 Ordered mesoporous silica materials 

Ordered mesoporous silica with tunable pore size, which offers a great potential for 

controlling the material structure and texture, has been studied widely due to its mechanical 

strength and stability at severe conditions such as high temperature, acid environment. [11, 

12] Also its high specific surface area and the ability to functionalize the internal pore 

surface and external surface with other organic group (amines, aldehydes, hydrophilic, 

hydrophobic etc.) [13]  make it a promising platform for catalysis, biomolecule carrier, 

drug delivery vehicle, and a selective absorbent.[14, 15] Mesoporous silica materials can 

also be synthesized in the form of particles or films. Since the discovery of template 

synthesis, ordered mesoporous silica thin films have found applications as separation 

membranes, optical sensors, semiconductors, nanostructure (wire, rod etc.) templates and 

photonic devices. [16, 17] 

2.1.1 Surfactant templating for synthesis of ordered mesoporous silica materials 

Mesoporous (2 - 50 nm) silica materials are typically synthesized by a sol-gel process, 

which is low cost and easy to operate. This process involves the hydrolysis and 

polycondensation of alkoxide precursors under acidic or basic condition (Figure 2.1).[18] 

As the silica precursor, such as tetraethoxysilane (TEOS), is mixed with water (sol), the 

alkoxide group is hydrolyzed to yield ≡ 𝑆𝑖 − 𝑂𝐻, which then condenses to form 𝑛 ≡ 𝑆𝑖 −

𝑂 − 𝑆𝑖 ≡.  As the condensation reaction proceeds and ≡ 𝑆𝑖 − 𝑂 − 𝑆𝑖 ≡ bonds form, a 

three-dimensional 𝑆𝑖𝑂2  network (gel) develops. The H2O and alcohol formed during 

hydrolysis and condensation remain in the network and are removed by drying, which 
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results in pore structure in the materials. The material can be prepared as monoliths, films 

or particles through the sol-gel process and the pore structures are disordered.  The 

discovery of  surfactant templating in 1992 [19, 20] revolutionized  sol-gel synthesis.  

During the surfactant templating synthesis, the precursors of final materials condense 

around surfactant micelles, which is called a templating or structure directing agent 

(SDA).[21] As the stable structure is formed after hydrothermal treatment, the surfactant 

template is then removed by calcination, solvent extraction or light irradiation. [22-24]  The 

pore structure is then formed, which has the same shape and size as the assembly of 

surfactant templates (Figure 2.1). Thus, various pore morphologies (pore size and pore 

structure) can be obtained using different surfactant mesophases by varying the volume 

ratio between the surfactant and inorganic precursor solutions. For example, different 

arrangements of cylindrically shaped micelles can result in cubic bicontinuous and two-

dimensional hexagonally close packed (2-D HCP) pore structures. [25, 26] Cubic 

discontinuous and 3-dimensional hexagonal structure are formed as spherical micelles are 

arranged in lattices at corresponding patterns.[27]  
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Figure 2.1 Chemistry of Sol-gel process and template synthesis procedure. 

2.1.2 Synthesis of silica thin films with orthogonally oriented 2-D hexagonally close 

packed (HCP) pore structure on porous support 

The application of mesoporous silica materials is matched to its structure. Cubic 

bicontinuous structures, while offers easy accessibility, limits diffusion as the 

interconnected pathways increase tortuosity, which makes it more appropriate as 

absorbents or for molecule storage.[28] For membrane applications, orthogonally oriented 

2-D HCP pore array in thin film templated by cylindrical micelles is desirable due to its 

continuous channels which do not offer alternate pathway for the diffusion.[16] However, 

cylindrical surfactant micelles naturally tend to align with the substrate.[29] The parallel 

orientation makes the pores inaccessible, which against the requirement of separation and 

catalysis application.[30] There are some successful strategies to achieve orthogonally 

oriented HCP pore array on a substrate. Electro-assisted self-assembly (EASA), which 

utilizes the electric field to control the orientation of the cationic surfactant template, is 

reported to be capable of preparing silica thin films with vertical oriented pores around 3 
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nm in diameter and a uniform film thickness around 50-200 nm.[11, 31] However, this 

method can only applied to conductive supports (carbon, platinum, gold, indium-tin oxide). 

Also, further characterization revealed that only thin films were well-structured and 

oriented.[11] 

In our group, we reported a simple and versatile method to synthesize silica or titania 

thin films with ordered 2-D HCP structure orthogonal on supports, which is applicable to 

various substrates (porous, nonporous, conductive or insulated etc.).[16] By creating a 

chemically neutral (equally attractive to the head and tail of the surfactant template) 

supporting surface, which removes the affinity of the micelles to surface, parallel 

orientation of  the micelles (and the resulting pores) is reduced.[32] In this approach, silica 

precursor (TEOS) and poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) 

(PEO-PPO-PEO) triblock surfactant (P123) is dip-coated on a glass glide which is 

modified by cross linking P123 or other random copolymer (PEO-PPO-R) to make the 

vertical pore structure, as evident by XRD. To synthesize thin films greater than 100 nm, 

sandwiching the silica thin films between  similarly modified glass slides is demonstrated 

to arrange pores vertical to the support.[32]  The preparation of this vertically oriented 

mesoporous silica thin films is successfully extended to a macroporous support (anodic 

aluminum oxide, AAO), in which the composite silica thin film has an accessible pore 

structure.[33]  In this case, the copolymer layer coated on AAO surface not only serves as 

a chemically neutral surface but also helps to prevent the penetration of the silica into the 

pores of AAO support  during the dip coating process (Figure 2.2 ).  This high surface area 

thin film silica membrane with accessible pores is proved be a potential platform for 

nanofiltration and separation applications. 
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Figure 2.2 Schematic of dip coating process shown from the cross sectional view of the 

(a) AAO membrane; (b) AAO membrane modified with cross-linked polymer acting as a 

neutral surface; (c) silica thin film cast on neutral surface to achieve vertical pore 

alignment; (d) silica thin film membrane following calcination to achieve accessible pores. 

Adapted from Wooten et al.[33] 

2.2 Biomimetic carrier-mediated membrane for dilute aqueous solute separation  

2.2.1 Structure of biological membrane  

The semi-permeable biological cell membrane, which separates the external 

environment and components in the cells, selectively controls the transport of molecules 

and ions into and out of the cell, and the exchange of information between the environment 

and the cell, which is important for maintaining the life of living organisms.[34]  The main 

component of biological membranes is lipid molecules, containing two hydrocarbon tails 

which link to a hydrophilic head group, which tend to form bilayer structure (Figure 2.3). 

Based on head group components, biological membrane lipids mainly can be divided into 

(a) (b) 

(c) (d) 
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three classification: phospholipids, glycolipids and sterols.[35] The lipid bilayer membrane 

is the key structure for maintaining the selective permeability of biological membrane. Its 

hydrophobic region prevents the direct passage of hydrophilic molecules and ions across 

the membrane. Meanwhile, the channel proteins or carrier proteins specific for given 

molecules are embedded in the cell membrane and facilitate the diffusion of desired 

molecules (carbohydrates, nucleotide, catecholamine and amino acid) and ions (Cl-, K+, 

Na+) across the membrane.[36]  

 

Figure 2.3 Structure of biological membrane. Adapted from Freeman et al.[34] 

2.2.2 Biomimetic carrier-mediated membranes 

Thus, the biological membrane is a natural model of carrier mediated separation 

membrane, which can overcome the tradeoff between the high permeability and selectivity 

as the carrier/transporter only specifically interact with the target molecules.[36, 37] Based 

the configuration of biological membrane, biomimetic carrier-mediated membranes that 

allow for continuous, low-energy, high selectivity and high efficiency separation for dilute 

aqueous solutes can be designed. Firstly, a defect-free barrier is required to exclude the 

aqueous solutes to ensure selectivity. Synthetic lipid membranes, which mimic the 

structure of biological membranes, are promising to act as effective barriers and be 

compatible with carrier proteins or other hydrophobic transporters. Secondly, a carrier that 
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can reversibly and specifically react with the targeted molecules is required to mimic the 

function of embedded proteins. The native proteins or peptides in biological membrane can 

be ideal carriers. These include, for example, water-selective aquaporin protein,[38] amino 

acid-selective chloroplastic outer envelope protein,[39] monovalent cation-selective 

gramicidin peptide,[40] and K+ ions-selective valinomycin.[41] 

Specifically, for proof of concept, a biomimetic carrier-mediated membrane for 

carbohydrate separation is investigated in Chapter 3 using boronic acid, which is 

commercially available and easier to obtain relative to proteins. The affinity of saccharides 

for boronic acids have been largely applied in detection and separation of sugar.[42, 43] 

The boronate ligands can reversibly interact with the 1, 2-diols or 1, 3-diols of saccharides 

to form cyclic esters with five or six member rings (Figure 2.4).[42, 43] The kinetics and 

thermodynamics of formation and dissociation of boronic acid-sugar complexes involve 

proton – hydroxide ion equilibria.[44] Because the boronic acid needs to be transformed to 

a tetrahedral anionic form before it can bind to diol, the pH becomes an important factor 

affecting the formation and dissociation of sugar-boronic acid complex .[43] The pH effect 

on the separation efficiency of biomimetic membrane using boronic acid as sugar carrier 

will also be examined in Chapter 3. 

 

Figure 2.4 Reversible interaction between boronic acid and diols. Adapted from Cheema 

et al. [45] 
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2.3 Supported lipid bilayers 

To construct biomimetic membranes, lipid bilayers are usually assembled onto solid 

supports to mimic biological membranes (supported lipid bilayers, SLBs), which increases 

the bilayer stability. [46] On a solid support, the fluidity of lipids is preserved because the 

bilayers and solid supports are separated by a thin water layer (1-2 nm), which allows 

mobility of the lipids. [47] Confining the lipid bilayers to a flat surface allows the use of 

surface characterization techniques (electrochemical impedance spectroscopy, secondary 

ion mass spectrometry, fluorescence microcopy, atomic force microscopy, etc.) to study 

the property of lipid membranes, which is much more difficult to achieve with free-floating 

lipid vesicles. [47, 48] Due to its stability and mechanical robustness, SLBs are often used 

to investigate the function of transmembrane proteins or smaller lipophilic biomolecules.  

2.3.1 Types of supported lipid bilayers 

Generally, lipid layers are assembled onto supports using Langmuir-Blodgett (LB) 

deposition or vesicle fusion.[49] In the LB method, a single layer of lipids is formed by 

pulling the solid support out of a Langmuir trough which has a lipid monolayer spread at 

the air-water interface. The lipid monolayer interacts with the solid support through the 

polar head group and exposes the hydrophobic tails to the environment. A lipid bilayer is 

finally formed by immersing the support in the lipid monolayer interface again (Figure 

2.5a). Compared to the LB technique, vesicle fusion is more popular and simpler. [50] To 

prepare SLBs, a suspension of small unilamellar vesicles (SUV, 50-200nm) is obtained 

from multilamellar vesicles (MLV, 0.1-10µm) by sonication or extrusion and added to the 

hydrophilic support. Then the vesicles adsorb to the surface, followed by deformation, 

flattening and rupture. Edges of lipid bilayer patches formed by individual vesicles fuse 



13 
 

through hydrophobic interactions and gives rise to a continuous lipid bilayer (Figure 2.5b). 

[35, 47, 48]. The surface chemistry, surface structure, temperature, vesicle size, and ion 

strength in solution have been shown to affect the vesicle fusion on surface. [51-53] 

 

Figure 2.5 Preparation of supported lipid bilayers: (a) Langmuir-Blodgett (LB) deposition; 

(b) Vesicle fusion. Adapted from Mingeot-Leclercq.[48] 

However, solid supports for SLBs usually have direct contact with the incorporated 

proteins whose hydrophilic domains are protruding outside the bilayer, thus affecting their 

functionality and even causing denaturation.[54] Many effort have been taken to make 

defect-free supported lipid membranes with high stability while maintaining the activity of 

the incorporated proteins. Black lipid membrane (BLM, Figure 2.6 a) is a well-established 

model system, where the lipid is spanning the micrometer-sized apertures of Teflon film 

or polymer cup.[55] The configuration creates free spaces on both sides of the BLMs to 

accommodate the hydrophilic domains of the proteins.[56] However, the BLMs usually 

have short life time, which limit their application. To create aqueous environment under 

the SLBs while maintaining long term stability, polymer cushioned lipid bilayer (Figure 

2.6b) has been utilized to avoid the protein-substrate interaction by raising bilayers above 
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the substrate using hydrophilic polymer spacers [57] However, the strong affinity between 

polymer cushion and lipid bilayer need to be careful maintained, which usually minimizes 

the lateral diffusivity of the lipid membrane.[58] Alternatively, tethered bilayer lipid 

membrane (tBLM, Figure 2.6c) is more extensively used to provide long-term stability 

and high electrical resistance to investigate ion transport through the ion channel or 

peptides.[59] tBLMs are chemically anchored to substrate using an anchoring group which 

has a hydrophilic spacer attached to the substrate and a lipid-like part, which mixes with 

the lower leaflet of the lipid bilayer. [60] One of the shortcoming of tBLMs is that its 

mobility is much smaller than the free standing SLBs, as the lower leaflet of the tBLMs is 

constrained by the immobile anchoring spacer, which limits the full function of the 

incorporated proteins.[61] 

 

Figure 2.6 Types of model lipid bilayers: (a) Black lipid membrane; (b) polymer cushioned 

lipid bilayer; (c) tethered bilayer lipid membrane. Adapted from Koper. [62] 

2.3.2 Pore-confined lipids 

Our group identified a model lipid system, pore-confined lipid assemblies supported 

by mesoporous silica, which is promising to offer long-term stability and high insulating 

resistance for functional incorporation of carriers for separation application. Unlike most 

model lipid membranes, which contains a single lipid bilayer, the amount of lipid confined 

in the pores is dependent on the dimension of the support. The confinement of the lipid 
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inside the pores is achieved using evaporation deposition (Figure 2.7a). [63] By dissolving 

lipid molecules in organic solvent to avoid the formation of vesicles, which are far larger 

than available pore size, the lipid molecules can be infiltrated into the pores. After 

removing organic solvent and rehydration, lipid assemblies are then formed inside the 

pores.  

Schlipf et al.[64] characterized the location and mobility of pore-confined DPPC lipid 

in mesoporous silica particles using CLSM. It was found that pore size of mesoporous 

support affect the pore confinement of lipid. For pore diameter of 3.0 nm, the lipid bilayer 

only forms on the surface of silica particles (Figure 2.7b), while the lipid can be confined 

into the pores of 5.4 nm and 9.1 nm. This is greater than the dimension of DPPC bilayer, 

which has a thickness around 4 nm. Furthermore, the lipid diffusivity inside the silica 

particles is also pore size dependent (Figure 2.7b). The diffusivity of lipid at the core and 

middle core were found to be consistent with the surface suspending lipids, indicating the 

pore-confinement doesn’t alter the lipid mobility, which is a big advantage compared to 

other supported lipid bilayers. Furthermore, the ease of surface functionalization of silica 

enables the tethered of  lipids into the pores which is also demonstrated by Schlipf et al.[64] 

The mobile network of pore confined lipid has great potential for carrier immobilization to 

achieve separation. The extension of this pore-confined lipid in mesoporous silica to silica 

thin films to construct carrier-mediated biomimetic membrane will be described in 

Chapter 3. 
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Figure 2.7 (a) Preparation of pore-confined lipid; (b) Diffusivity of pore-confined lipid in 

mesoporous silica particles as a function of pore size and positon. Diffusivity data Adapted 

from Schlipf et al.[64] 

2.4 Techniques for characterizing membrane properties 

2.4.1 Electrochemical impedance spectroscopy  

Electrochemical impedance spectroscopy (EIS) is used to characterize the transport 

processes in composite synthetic lipid membranes in Chapter 4. EIS measures the systems 

impedance change when excited by a small alternating current (AC) potential along with a 

direct current (DC) potential, which reflects the multiple processes happening on the 

electrode surface. [65] The ability of EIS to distinguish electron transfer, chemical reaction 

and mass transport processes finds applications in studying transport through multilayer 

composite membranes with different structure,[66] including biomimetic membranes in 

this work. Wei and Hillhouse [67] first applied EIS to examine the mass transport in 

ordered  mesoporous silica thin films with various pore structure and orientation, surfactant 
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template and order of the film, and the thin film stability as a function of pH. They provide 

a method for quantifying the species diffusivity in the porous thin films, which is critical 

for screening and optimizing silica thin films for separation application. In addition, EIS 

has been widely used to investigate the structure of synthetic lipid membrane, which 

provides the basis for identifying superior lipid barriers with high stability and electrical 

insulation for examining the functionality of incorporated transmembrane proteins and 

small lipophilic carriers.[41, 59, 68-70] These works suggest the potential application of 

EIS to characterize ion transport through the proposed biomimetic membrane, which is 

demonstrated in Chapter 4. 

2.4.1.1 Principle of EIS 

Impedance (Z) defines the ability of a circuit element to resist the flow of electrical 

current.[71] The application of AC potential 𝐸 = 𝐸𝑜sin (ωt) , which has a amplitude of 

𝐸𝑜  and radial frequency of ω = 2πf  , to the system results in an AC current I =

𝐼𝑜sin (ωt + φ) with an amplitude of 𝐼𝑜 and phase shift of φ at the same frequency (f ). 

[72] The impedance of the system is then calculated using Ohm’s law (Eq. 2.1). Thus, the 

impedance is a vector defined by the length of |𝑍| = √(𝑍′)2 + (𝑍′′)2 and phase angle of 

φ at different frequency as shown in the impedance spectrum (Figure 2.8). 

𝑍(ω) =
𝐸

𝐼
=

𝐸𝑜sin (ωt)

𝐼𝑜sin (ωt+φ)
= |𝑍|(𝑐𝑜𝑠φ + jsinφ) = Z′ + j Z′′                                   (2.1) 

The impedance spectrum is further analyzed by equivalent circuit models, which are 

built based on the physical configuration of the membrane, to quantify the transport 

processes occurring near the electrode surface.[73] Figure 2.9 illustrates a general 

electrode surface during EIS measurement and its corresponding circuit model. When the 
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electrode is electrified by the DC potential applied, an electrical double layer formed on 

the electrode surface, which is considered a capacitor Cd. [65] When the AC potential is 

applied, the reduction or oxidation of the redox probes is induced. The electron transfer 

between the electrode and the redox species associated with the electrochemical reaction 

needs to overcome the activation barrier,[74] which is defined as charge transfer resistance 

Rct.  This resistance in considered to occur in parallel with the double layer capacitor in the 

circuit model. The diffusion rate of redox species from the bulk solution to the electrode 

surface also affects the electron interface rate, and the process is quantified by a mass 

transfer impedance (W) in series with the charge transfer resistance. The capacitor, charger 

transfer resistance and mass transfer resistance then completes a (RCW) element. The 

solution resistance Rs, accounting for the potential drop in the solution, is also included in 

series with the (RCW) element. [73, 74] For complex systems, multiple elements may need 

to include to fully describe the process. 

 

Figure 2.8 Impedance spectrum (Nyquist plot) in the complex plane (each point on the 

spectrum represents the impedance vector at one frequency). 
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Figure 2.9 Interface of electrode with redox probes and corresponding circuit model. 

Adapted from Park and Park. [65]  

2.4.2 Grazing-incidence small angle X-ray scattering  

The pore orientation of the mesoporous silica thin films is further characterized by 

grazing-incidence small angle X-ray scattering (GISAXS) to support the EIS results in 

Chapter 4. In GISAXS, the X-ray incident to the sample at an angle smaller than critical 

angle for total external reflection of substrate. [75] In this case, the X-ray only penetrates 

a depth of a few nanometer from the top surface without penetrating into the substrate 

supporting the thin film, which eliminates noise and increases the surface sensitivity.[76] 

The total external reflection also ensures highly intense scattering signal. Furthermore, the 

use of an area detector allows the capture of the 2-D scattering in all directions,  which 
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reflects the geometry of the film.[77] Thus, the GISAXS have been widely applied to 

characterize the nanoporous structure and orientation of block copolymers,[76] and metal 

oxides (silica and titania) nanoscale thin films.[75, 78, 79]  Smarsly et al.[78] used 

GISASX to confirm the orthogonal orientation of mesoporous thin film with 2D HCP 

structure template using Brij surfactant and the lattice parameter obtained was found to be 

consistent with TEM measurements. Furthermore, in-situ GISASX can be used to 

investigate the formation of nanostructure in real time and identify the factors that affect 

the morphology and orientation of the mesoporous thin film. Nagpure et al.[80] applied 

GISAXS to monitor the growth of mesostructure of titania thin films during aging and 

found aging temperature, relative humidity and substrate chemistry has significant effect 

on the final orientation of  pore, which guides the successful preparation of ordered titania 

thin film with orthogonally oriented 2D HCP using chemical neutral surface. Thus, the 

GISAXS is applied in Chapter 4 to characterize the structure of different mesoporous 

silica, which provides supporting information for the EIS measurement. 

2.4.3 Confocal laser scanning microscopy 

In order to visualize the incorporation of boronic carriers into the synthetic lipid 

membranes, confocal laser scanning microscopy (CLSM) is utilized in Chapter 3. CLSM 

is powerful tool for optical sectioning to examine thick sample structures at different depths 

with high resolution.[63] Unlike fluorescence microcopy, which captures the fluorescence 

emission from the whole fluorescent sample, CLSM uses point laser illumination to excite 

only one sample point at a time while the out of focus emission from rest of the sample is 

filtered by a pinhole placed at the focal plane before it gets to the detector.[81] This ensures 

high resolution as only the fluorescence emission from the targeted point is detected. The 
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laser point is then scanning across the whole sample surface at the depth of interest and the 

point-by-point light signals collected are integrated by computer to reconstruct the 2-D 

image. The depth of targeting surface can be controlled by moving the sample up and down. 

Thus, the 3-D reconstructions of the sample then can be achieved based on depth 

profile.[82] The high resolution depth profiling of CLSM enables us to examine the 

molecules distribution inside the sample. Most important of all, biomolecules diffusivity 

at different positions inside the sample can be characterized using fluorescence recovery 

after photobleaching (FRAP) in CLSM. 

FRAP is a common technique for measuring the lateral mobility of fluorescently 

tagged molecules.[83] In CLMS, high intensity excitation light is illuminated on a small 

area of a surface containing a fluorescent probe, inducing photochemical destruction of the 

fluorescent molecules, which result in permanent loss of fluorescence.[84] The 

photobleached area is then monitored for fluorescence intensity recovery over a period of 

time as the unbleached fluorescent molecules transport laterally from the surrounding 

region and replace the bleached molecules. [83] For further analysis, fluorescence recovery 

kinetics which describe the lateral diffusion can be fit to give the diffusivity of the 

biomolecules. The mobility of dsRNA in the mesoporous silica cargos measured by FRAP, 

which is important for effective dsRNA delivery for RNA interference, is extensive 

discussed in Chapter 6. 

The diffusion model was adapted from Kangs and A. Kenworth [85] with the 

assumptions of full fluorescence recovery to pre-bleach values and known half time 

fluorescence recovery: [63]  
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F(t) − Fo

Finf −  Fo
= exp (−

2τD

t
) [𝐈o (

2τD

t
) + 𝐈1 (

2τD

t
)] (2.2) 

where F(t) is the measured fluorescence intensity as a function of time (t) , Fo  is 

fluorescence intensity before bleaching (t = 0), Finf  is the fully recovered fluorescence 

intensity ( t = ∞) , and I0 and I1 are modified Bessel functions, and τD is the characteristic 

diffusion time, which is correlated to the diffusivity, D,  as described by Eq. 2.3, where r 

is the bleach spot radius. 

D =  
r2

4 ∗  τD
         (2.3) 

The diffusivity, D, and the fully recovered fluorescence intensity (Finf) were 

determined by fitting model to the time-dependent fluorescence recovery curve by 

nonlinear regression using the lsqcurvefit function in MATLAB. 

2.4.4 Transport in a diffusion cell 

In Chapter 3 and 5, in order to examine the solute transport through the silica 

membrane in the presence of boronic acid immobilized lipid bilayer, a horizontal static 

diffusion cell is employed (Figure 2.10).  This diffusion cell has two separate chambers, 

and the composite membrane is placed in between the chambers. The testing solution is 

placed on the donor chamber. Under constant stirring, the solute is then transported across 

the membrane and to the receptor chamber, which is initially loaded with blank solution. 

The solute concentration on either side of the membrane is tested as a function time to 

quantify the solute flux across the membrane Furthermore, permeability (P) of the 

membrane to the solute then can be defined from the concentrate profile of the solute in 

the two chambers.[28] 
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One-dimensional steady state diffusion is assumed across the membrane in the 

continous stiring static diffusion cell, which has constant flux (J) across the membrane and 

can be expressed as (Eq. 2.4), [86] where L is the thickness of the membrane, 𝐶𝐷 , 𝐶𝑅 are 

solute concentration on the donor and receptor side at sampling time (t) and De is the solute 

diffusion coefficient. 

𝐽 = −𝐷𝑒
𝑑𝐶

𝑑𝑥
=

𝐷𝑒

𝐿
(𝐶𝐷 − 𝐶𝑅) = 𝑃 ∗ (𝐶𝐷 − 𝐶𝑅)                                                                      (2.4) 

Based on mass balance, where the solute mass reduction rate in donor side is equals to 

the mass tranfer rate across the membrane : 

𝑉𝐷 ∗
𝑑𝐶𝐷

𝑑𝑡
= −𝐴 ∗ 𝐽 = −𝐴 ∗ 𝑃 ∗ (𝐶𝐷 − 𝐶𝑅)                                                                           (2.5) 

𝑉𝑅 ∗
𝑑𝐶𝑅

𝑑𝑡
= 𝐴 ∗ 𝐽 = 𝐴 ∗ 𝑃 ∗ (𝐶𝐷 − 𝐶𝑅)                                                                                    (2.6) 

The above equations can be transformed as  

𝑑(𝐶𝐷−𝐶𝑅)

𝑑𝑡
= −𝐴 ∗ 𝑃 ∗ (𝐶𝐷 − 𝐶𝑅)[

1

𝑉𝐷
+

1

𝑉𝑅
 ]                                                                                (2.7) 

After the integration, the following equation can be yield for calculating the solute 

permeabiity (P) as function of time: 

ln (
𝐶𝐷0−𝐶𝑅0

𝐶𝐷−𝐶𝑅
) = 𝑃 ∗ 𝑡 ∗ 𝐴 ∗ [

1

𝑉𝐷
+

1

𝑉𝑅
 ]                                                                                          (2.8) 

where 𝐶𝐷0 , 𝐶𝑅0 are solute concentration on the donor and receptor side at t=0; A is the 

membrane area exposed to the solution; 𝑉𝐷 , 𝑉𝑅  are the volume of donor and receptor 

chamber.  
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Figure 2.10 Diffusion cell for characterizing membrane transport properties. Adapted 

from Wooten.[28]  
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Chapter 3: Lipid Pore-Filled Silica Thin Film Membranes for Biomimetic Recovery 

of Dilute Carbohydrates 

3.1 Abstract  

Selectively permeable biological membranes comprising lipophilic barriers inspire the 

design of biomimetic carrier-mediated membranes for aqueous solute separation. The 

recovery of glucose, which can reversibly bound by boronic acid carriers, is examined in 

lipid pore-filled silica thin film composite membranes with accessible mesopores. The 

successfully incorporation of lipids (1, 2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC)) and boronic acid carriers in the pores of a mesoporous silica thin (~200 nm film 

thickness, 10 nm pores) through evaporation deposition is verified by confocal microscopy 

and differential scanning calorimetry (DSC). In the absence of the boronic acid carrier, 

lipids confined inside the pores of silica provide a factor of 14 increase in transport 

resistance to glucose relative to traditional supported lipid bilayers formed by vesicle 

fusion on the porous surface. The addition of a lipid-immobilized boronic acid carrier (4-

(N-Boc-aminometyl) phenylboronic acid (BA), 59 mol% in DPPC/BA mixture) facilitates 

the transport of glucose through the membrane (glucose flux increases from 45 x 10-

8mol/m2/s to 225 x 10-8mol/m2/s in the presence of boronic acid). Furthermore, the 

transportation can be improved by environment factors like pH gradient (related to binding 

of glucose) and temperature (related to the lipid bilayer diffusivity). The successful 

development of biomimetic nanocomposite membranes can provide for the efficient dilute 

aqueous solute upgrading or separations, such as the processing of carbohydrates from 

hydrolase mixtures of lignocellulose, using engineered carrier/catalyst/support systems.   



26 
 

3.2 Introduction 

The recovery of aqueous sugars is a model separation that highlights the need for the 

development of alternative affinity-based separations. The chemical affinity of sugars to 

some compounds such as zinc porphyrins, resorcinarenes, alkaline earth metals and boronic 

acid derivatives is  attractive for selective separation of different sugars.[87] Among these 

sugar receptors, the boronic acid derivatives are of particular interest as the boronate ligand 

can reversibly interact with the 1, 2-diols or 1, 3-diols of saccharides to form cyclic esters 

with five or six member rings.[42, 43, 45] Furthermore, the association strength is largely 

depends on the type of sugars (catechol> fructose> glucose),[88] which makes this 

reversible reaction with specific complexation very attractive for sugar sensing[89] and 

selective separation. Consequently, boronic acids have been used to functionalize 

nanoparticles for sugar recovery.[42, 43] Besides adsorption, boronic acids are commonly 

used as carbohydrate carriers in ion exchange membranes[90] and liquid membranes[10, 

91] to facilitate the separation of sugars. The selective transport of sugar through liposomes 

by boronic acid has also been demonstrated. [92] 

The ability of biological membranes to facilitate the selective transport of ions or 

hydrophilic molecules using carriers inspired the design of carrier-mediated biomimetic 

membrane for highly separations in dilute aqueous solute systems in this work. High 

surface area mesoporous silica thin films with tunable pore structure are promising 

separation platforms for the construction of an artificial membrane supports. Composite 

silica thin films with ordered perpendicularly oriented hexagonally close packed (HCP) 

pore structure on a macroporous support have recently been synthesized by our laboratory 

and demonstrated as size-exclusion membranes.[33]  The composite thin film membranes 
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are mechanically robust and the hydrophilic surface of the silica allows easy surface 

functionalization and formation of lipid bilayers. The perpendicular orientation of the 10 

nm pores, formed by surfactant templating on a neutral surface, provides for efficient 

transport. Thus, incorporating the carrier immobilized lipid bilayers with the silica thin film 

brings opportunities for designing composite membrane for highly selective separation of 

molecules. Specifically, the recovery of aqueous glucose, which is transported through the 

lipid bilayer by complexing with boronic acid carriers on the donor side of the membrane 

and released on the receiving phase, has been chosen as model separation, representing the 

recovery of dilute carbohydrates from the depolymerization of biomass (Figure 3.1).  The 

incorporation of carrier in the membrane allows for high permeability and high selectivity 

that can’t be achieved simultaneously in conventional membrane process.[37, 87]  

 

Figure 3.1 Glucose transport through lipid pore-filled silica thin film supported by 

macroporous support (anodic aluminum oxide) using boronic acid carrier. 

 

Preparing a defect-free membrane to provide high background transport resistance is 

important for effective carrier-mediated transport.[62] Generally, supported lipid layers 

(SLBs) can be prepared using Langmuir-Blodgett (LB) deposition or vesicle fusion.[49] In 
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the LB method, a single layer of lipids is formed by pulling the solid support through a 

Langmuir trough which has a lipid monolayer spread at the air-water interface. The LB 

technique is unable to embedded carrier into the bilayer.[93] Vesicle fusion, where pre-

formed small unilamellar vesicles (SUVs,  20 -100 nm) lipid vesicles spread on the 

hydrophilic support through electrostatic interaction, is a simpler method to prepare 

supported lipid bilayers (SLBs).[50] For mesoporous surfaces, vesicle fusion produce lipid 

bilayers that span pore sizes up to 20 nm, [64, 94, 95]  as the SUVs are too large to rupture 

in the pores. [94] However, completely defect-free bilayers are difficult to achieve through 

vesicle fusion.  The existence of hole defects can be revealed by AFM.[96] Aspects like 

composition and concentration of lipid, preparation method of liposomes, temperature, 

solution conditions (pH, presence of divalent cations) and physicochemical properties of 

the support strongly affect the interaction between lipid vesicles and the surface, and final 

quality of lipid bilayers.[96, 97]  

Here we propose a robust lipid pore-filled system as barrier for biomimetic separation 

(Figure 3.1). By dissolving lipid molecules in organic solvent to avoid the formation of 

vesicle, which are far larger than available pore size, lipid assemblies can be infiltrated into 

the pores.[64] After removing the organic solvent and rehydration, lipid bilayers is then 

formed inside the pores through rehydration.  Schlipf et al.[64] have successfully 

demonstrated the confinement of lipid assemblies (1, 2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC)) into pores of mesoporous silica particles (5.4 nm and 9.1 pores).  

Furthermore, it is found that the lipid mobility at different locations of lipid filled particles 

(at the core, mid core or surface of the particle) is similar, suggesting lipid self-assemblies 

are continuous through the pores, which is necessary for the incorporation and proper 
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function of small lipophilic carriers and membrane proteins. This suggests the potential 

application of lipid pore-confinement on a membrane support to mimic the biological 

membrane for separation and biosensing applications. 

In this work, the ability of the lipid assemblies (1, 2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC)) confined in mesopores of a membrane platform to provide robust 

barriers to transport is examined and compared to traditional lipid coated mesoporous thin 

films. The enhanced transport in carrier-mediated biomimetic membranes was confirmed 

by measuring the permeability of glucose through the composite membrane before and 

after the immobilization of boronic acid (4-(N-Boc-aminometyl) phenylboronic acid) into 

lipid bilayers. The environmental factors like pH gradient (related to carrier-solute 

association) and temperature (related to the lipid bilayer diffusivity) were explored to 

improve the glucose permeability. This work presents a versatile method for carbohydrates 

recovery. In addition to the boronic acid carrier for sugar separation, the combination of 

high surface area silica materials and selectively permeable lipid bilayers suggests potential 

applications for efficient, selective dilute aqueous solute separations if a specific carrier for 

the solute is incorporated. 

3.3 Experimental sections  

3.3.1 Material 

Anodic aluminum oxide (AAO) membranes (Whatman, 25 mm in diameter) with 

pores of approximately 200 nm in diameter, a porosity of 0.25-0.5, and a nominal thickness 

of 60 µm was purchased from Fisher Scientific and served as the macroporous support for 

the silica thin film. Tetraethyl orthosilicate (TEOS, 98%), polyethylene oxide (PEO)-

polypropylene oxide (PPO)-PEO triblock copolymer (P123, average Mn ~5,800), 
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cetyltrimethylammonium bromide (CTAB, ≥99%)  glycerol (≥99%), potassium phosphate 

buffer tablets, chloroform (≥99%), 1, 6-Diisocyanatohexane (DH, 98%), sodium hydroxide 

(NaOH, ≥98%) and glucose (≥99.5%) were supplied by Sigma Aldrich.  Ethanol 

(anhydrous) was purchased from DLI and hydrogen chloride (HCl, 6N), acetone (≥99.5%), 

and potassium chloride (KCl, ≥99.0%) were purchased from Fisher Scientific. Vybrant® 

DiO cell-labeling solution was purchased from Thermo Fisher scientific. Alizarin red S 

(ARS, certifiable grade) was supplied by Amresco. 4-(N-Boc-aminometyl) phenylboronic 

acid (BA, 97%) was purchased from Frontier scientific.1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC, >99%) was purchased from Avanti lipid. 

3.3.2 Synthesis of thin film silica supported by anodic aluminum oxide (AAO) 

membrane  

Thin film silica membranes with perpendicularly oriented pore array were synthesized 

on macroporous AAO supports using a neutral chemical surface method as previously 

reported by Wooten et al [33] and Koganti et al.[98] To block the pores of AAO support 

for silica thin film deposition, cross-linked P123 was used a temporary pore blocking film. 

A 0.696 mmol/L P123 in acetone was under continuous stirring while an equimolar amount 

of 1, 6-diisocyanatohexane was added in a nitrogen bag. Three drop of glycerol was then 

added and constant stirred for 10 minutes. The solution was used to dip coat the AAO 

support and to modify the glass slides to create chemically neutral surface for sandwiching 

the membranes. The dip coated supports were aged at 100°C for 24 hours.  

The mesoporous silica coating solution was prepared by addition of a solution of P123 

to a prehydrolyzed silica sol following the procedure of Brinker et al.[99] TEOS, anhydrous 

ethanol, deionized ultra-filtered water and HCl were added together in a mole ratio of 1: 
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3.8: 1: 5 x 10-5. This solution was refluxed at a temperature of 70°C for 90 minutes. A final 

amount of HCl and water were added yielding a concentration of 7.34 mM HCl. The 

mixture was stirred at room temperature for 15 minutes.  The mixture was then aged at 

50°C for 15 minutes. A solution of P123 and ethanol in a mole ratio of 0.01: 18.7 was then 

added to the TEOS mixture and stirred for 10 minutes. The final mole ratio was 1 TEOS: 

22 C2H5OH: 5 H2O: 0.004 HCl: 0.01 P123. The copolymer modified AAO supports were 

dip coated in the final solution at a speed of 7.6 cm/min. The silica thin films coated AAO 

support were then sandwiched between two chemically neutral surfaces. The thin films of 

silica on AAO supports were aged and dried at 50°C for 24 hours and then 100°C for 24 

hours. The films were then calcined 500°C for 4 hrs with temperature ramping from room 

temperature at 1°C/min to remove the pore template and crosslinked pore blocking 

polymer. 

3.3.3 Membrane characterization 

FIB/SEM instrument (FEI Helios Nanolab 660) was used to characterize the 

membrane surface morphology. The samples (bare AAO support and thin film silica 

membrane) were prepared by attaching them to double sided carbon tape on 15 mm 

aluminum mounts. Transmission electron microscopy (JEOL 2010F TEM) was used to 

characterize the pore structure of the silica thin film. To prepare a TEM sample, the 

composite membrane was placed in a 5 M HCl solution under constant stirring for 24 hours 

to dissolve the AAO support membrane. The resulting material was deposited onto a lacy 

carbon grid after being dispersed in ethanol. 

The pore accessibility of the thin film silica membrane was demonstrated by pressure 

driven ethanol flux through the membrane. The membrane was placed on a vacuum 
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filtration holder (Cole Parmer) and secured to an Erlenmeyer flask. A chemical duty 

vacuum/pressure pump (Millipore) was used to control the vacuum pressure. The volume 

of ethanol through the membrane under pressure drop of 16, 26, 34 and 40 kPa in 5 minutes 

was recorded. The ethanol flux through the bare AAO support was also measured to 

compare with the thin film silica membrane. Each measurement were conducted in 

triplicates. 

3.3.4 Synthesis of spherical mesoporous silica particles 

Spherical mesoporous silica particles SBAS (Santa Barbara Amorphous Batch) 

materials were prepared using the procedure of Schlipf et al. [100] Initially, 0.465 g of 

CTAB dissolved in 20 mL of deionized water was added to 3.10 g P123. This solution was 

placed in a water bath at 30°C and stirred vigorously while 7.8 mL of 200 proof ethanol 

and 45.9 mL of 1.5 M HCl were added. After the P123 completely dissolved, 10 mL of 

TEOS was slowly added drop wise. This solution was mixed for 2 h. At the end of 2 h, the 

solution was poured into a Parr 4748 Teflon lined bomb, which had been acclimated to the 

hydrothermal aging temperature, between 60°C and 120°C, prior to use. The sample was 

kept at the desired hydrothermal aging temperature in an oven for 3 days. At the end of the 

3 day period, the sample was removed from the bomb and mixed in a high speed mixer to 

homogenize the solution. After homogenization, the sample was filtered and rinsed with 

deionized water. After filtration, the sample was placed into a single walled Whatmann 

cellulose extraction thimble, and the surfactants were removed using Soxhlet extraction 

with 200 mL of 200 proof ethanol over 24 h. The pore dimension (5 – 12 nm) increases as 

the hydrothermal aging temperature (60 -120°C) increase as measured by nitrogen 

adsorption.  
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3.3.5 Boronic acid (BA) immobilized lipid filled silica membrane/particle 

preparation through evaporation deposition 

To make a mixture of DPPC/BA in a molar ratio of 6.9: 10, 5 mg of DPPC and 2.5 mg 

4-(N-Boc-aminometyl) phenylboronic acid (BA) were dissolved with 1 mL CHCl3 and 

sonicated for 5 minutes. A silica membrane or 10 mg silica particles was then immersed in 

the DPPC solution and sonicated for 25 minutes in a shell vial (25mm x 95mm). The above 

mixture was then blow-dried with nitrogen and was further dried under high vacuum for at 

least 2 hrs. To form bilayers, the dried lipid inside the silica membrane was rehydrated in 

1 mL PBS solution and sonicated at 47°C for 1 hr. The sample was sonicated for another 

15 minutes while cooling to 30°C. The excess lipid was removed by washing the membrane 

with PBS three times. 

3.3.6 Boronic acid immobilized lipid enveloped silica membrane/particle 

preparation through vesicle fusion 

To make a mixture of DPPC/BA in a molar ratio of 6.9: 10, 5 mg of DPPC and 2.5 mg 

BA was dissolved in 1 mL CHCl3, then the lipid was blow-dried with air for 1 hr and was 

further dried under high vacuum for at least 2 hrs. Then the dried lipid was rehydrated in 1 

mL PBS solution to form multilamellar vesicles. The resulting mixture was then extruded 

at 45 °C through a polycarbonate filter with 200 nm diameter pores 21 times, which 

produces small unilamellar vesicles with a mean diameter of 200 nm. The lipid solution 

was then mixed a silica membrane or 10 mg silica particles for 1 hr to facilitate vesicle 

fusion. The excess lipid was removed by washing the membrane with PBS three times. 
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3.3.7 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) 

To confirm the existence of lipid assemblies in the pores of lipid filled membranes 

(silica and AAO) were characterized using a ThermoNicolet Nexus 470 spectrometer 

equipped with a narrowband liquid nitrogen cooled mercury cadmium telluride (MCT) 

detector  and ATR with single-reflection 45° ZnSe crystal (VeeMAX III, PIKE Inc., 

Madison, WI). Each spectrum was collected at a resolution of 4 cm-1 and 250 scans with 

IR beam incident at 45°. 

3.3.8 Confocal laser scanning microscopy 

To label the lipid and boronic acid, 1mL of lipid bilayer coated particles were mixed 

with 10uL of 1 mM fluorescent dye DiO and 1mL of boronic acid immobilized lipid bilayer 

coated particles were mixed with 1mL of 1 mM Alizarin red S (ARS) on a shaker for 30 

min. The samples were then washed with PBS there times and imaged within 2 hours of 

preparation using a Leica TSP SP5 confocal microscope.  Experiments were performed at 

28°C using a 63x/1.4 oil immersion objective. DiO was excited at 488 nm with an argon 

laser at 6% laser power for imaging and emission was collected between 490 nm and 510 

nm. ARS-BA complex was excited at 514 nm for imaging and emission was collected 

between 580 nm and 620 nm.  

3.3.9 Differential Scanning Calorimetry 

DSC was used to confirm the formation of lipid bilayers on silica particles by 

measuring the gel to fluid phase transition temperature of supported DPPC bilayers. 

Following the preparation of supported lipid bilayers on particles, particle suspensions 

were centrifuged at 1,000 x g to form a soft pellet. After formation of a soft pellet, 10 uL 
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of the pellet was hermetically sealed in a DSC sample pan. Thermograms were run on a 

TA Instruments Q600 DSC between 20ºC and 70ºC at a ramp rate of 10ºC/min and returned 

to 20ºC at a cooling rate of 10ºC/min. 

3.3.10 Glucose affinity to boronic acid at different pH 

To measure the relative glucose affinity to boronic acid at different pH, 1mL of 

5mg/mL BA immobilized liposome solution was mixed with 1mL of 1 mM ARS to yield 

fluorescent ARS-BA complex. The fluorescent emission at 600 nm of ARS-BA 

immobilized liposome solution before and after addition of 92.8 mM glucose at various pH 

were measured using plate reader (Synergy Mx, BioTek, Winooski, VT) as excited at 490 

nm. The fluorescent intensity reduction of the solution after addition of glucose was 

reported with normalization to the original intensity at experimental pH. Each 

measurement were conducted in triplicate. 

3.3.11 Glucose diffusion through membranes as a function of temperature and pH 

Glucose diffusion through the silica thin film membranes was measured in a side by 

side diffusion cell (PermeGear, Hellertown, PA). The membrane was held into place 

between the chambers, which each side holding 7 mL, being secured tightly together by a 

clamp allowing a 2 cm2 cross sectional area of the membrane to be exposed. The donor 

side of the cell was loaded with 7 mL of 5.6 mM glucose solution in PBS buffer (0.9 M, 

pH 7.4 or adjusted to 10 by NaOH). The receptor side was initially loaded with 7 mL of 

PBS buffer (pH 7.4 or adjusted to 5 by HCl) with no solute. The diffusion cell was then 

placed on a heater plate with temperature controlled at 23ºC or 45ºC. The concentration of 

solute in the receptor side and donor sides were both sampled as a function of time. At 

sampling time, 200 uL sample from each side was taken and the concentration was test 
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using high performance liquid chromatography with a Bio‐Rad Aminex HPX‐87H and a 

Shodex R01 refractive index detector. The mobile phase was degassed 5 mM H2SO4 fed 

at a rate of 0.4 mL/min, and the temperature of the column was at 50ºC. 

3.4 Results and discussion 

3.4.1 Synthesis of mesoporous silica thin film on porous support as separation 

platform  

Silica thin films with accessible 2-D hexagonally close packed (HCP) pore structure 

on porous support were utilized as separation platform and a support for lipid assemblies. 

The HCP pore structure formed from cylindrical micelles by surfactant templating is 

considered to be superior for membrane applications due to their continuous channels, 

which do not offer alternate pathway for the diffusion, compared to interconnected cubic 

structure.[16] However, HCP pores naturally tend to align with the substrate during 

surfactant templating.[29] This parallel orientation make the pores inaccessible, and not 

suitable for membrane applications.[30] Recently, we have successfully demonstrated the 

synthesis of silica thin film with perpendicularly oriented HCP pore on a porous support 

and its ability to act as nanofiltration membrane.[33] The same technique was employed 

here to prepare the composite membrane as lipid bilayer support. 

Porous anodic aluminum oxide (AAO) substrate was used as support for the silica thin 

film. To provide a neutral surface for perpendicular pore alignment and simultaneously 

prevent the penetration of silica into the pore of the support, the AAO was dip coated with 

cross-linked copolymer to block the pores prior to the subsequent silica thin film 

deposition. The copolymer layer also served as  a chemically neutral layer to align the pore 

perpendicularly.[32] After a stable pore structure was obtain through aging, calcination 
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was performed to remove the pore template and the blocking copolymer layer. To confirm 

that pore-accessible silica thin film was successfully deposited on the porous support, the 

SEM images of bare AAO support and silica thin film coated AAO support after 

calcination were compared. As shown on Figure 3.2b, a continuous silica thin film with 

opening pores is formed on the top of porous support, which results in greater electron 

scattering and decrease in contrast comparing to the bare AAO support (Figure 3.2a). 

Characterization of the silica thin film by TEM (Figure A.1) shows that the pores of the 

silica thin film are highly ordered HCP structure with pore dimension of approximate 10 

nm. Therefore, porous substrate supported silica thin films with accessible continuous 

cylindrical channels is successfully synthesized. However, it is hard to determine whether 

the deposited silica thin film is defect free or not by SEM imaging since the electron beam 

can destroy the thin film and cause defects. Additional ethanol flux measurement through 

the composite membrane at given pressure drop (Figure A.2), shows measurable flux 

which is proportional to the pressure drop, suggesting uniform coating of defect free silica 

thin film with accessible pores on the support.  
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Figure 3.2 Plane-view SEM images of (a) AAO support and (b) silica thin film coated 

AAO. 

3.4.2 Lipid Pore-Filled Silica Thin Film Membranes as a Transport Barrier 

In order to examine the location of DPPC lipid assemblies on porous supports, 

spherical mesoporous silica particles with pore size of 11.8 nm, which is close to that of 

the silica thin film was chosen as a model platform to allow direct visualization of lipid 

300nm 

(b) 

500nm 

(a) 



39 
 

bilayer location on porous support using confocal scanning laser microscopy.[64] As 

shown, the lipid enveloped particles prepared by vesicle fusion have a continuous, single 

layer of lipid bilayer (tagged with green fluorescent dye DiO) surrounding the spherical 

particle surface (Figure 3.3a). Alternatively, the confocal images of the lipid pore-filled 

particles (Figure 3.3b) suggest that the lipid bilayers are confined inside the pores through 

evaporation deposition. Typically, the lipid bilayer of DPPC has a thickness of 3-5 

nm.[101] Limited by the thickness of lipid bilayers, this evaporation deposition method for 

packing the lipid inside the pores can only apply for particles with pores larger than lipid 

bilayer thickness. If the pore size is too small, lipid bilayers can only form on the particles 

surface, which results in a lipid enveloped particles.[64]  
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Figure 3.3 Confocal microscopy image of (a) lipid enveloped silica particle; (b) lipid filled 

silica particles; (c) lipid-BA enveloped silica particle; (d) lipid-BA filled silica particles; 

(e) scheme of competitive complexion between Alizarin Red S (ARS) and glucose to 

boronic acid. Lipid is tagged with green fluorescent DiO and boronic acid (BA) is 

complexed with ARS to give red fluorescence. All confocal images showed the cross-

section of the core of the particle (pore diameter: 11.8 nm).  

 

The ability of supported lipid bilayers to effectively prevent the nonselective transport 

of sugar in the absence of carrier is critical for providing subsequent selective membrane 

transport using the lipid-embedded boronic acid carrier. To quantify the effect of lipid 
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location (lipid filled pores versus traditional lipid enveloped-pores) on membrane 

performance, glucose flux through the two types of supported lipid bilayers was measured 

and compared with the bare support (silica thin film membrane). As shown in Figure 3.4, 

the glucose flux of lipid enveloped membrane prepared by vesicle fusion is the similar to 

that of the silica membrane and AAO support, which indicates that it is not an effect barrier 

for glucose transport.  Meanwhile, lipid filled membrane, where lipid are confined inside 

the membrane pores show a 14-fold decrease in glucose flux , suggesting that lipid filling 

is a more efficient barrier than lipid enveloping. Therefore, defects common to lipid 

bilayers prepared from vesicle fusion reported in literatures,[96]  is not negligible in the 

preparation of thin film supported membranes. The high flux of glucose may be due to 

defects in the supported lipid bilayer defect, which can be reduced through the the 

optimization of the surface chemistry of the support, lipid composition and deposition 

methods to make better solute rejecting bilayer on silica thin film surface. For example, the 

hydraulic permeability of commercial nanofiltration membrane NTR-7450 (sulfonated 

polyethersulfone) with sulfonic surface charge was significantly reduced (by about 12-

fold) after vesicle fusion of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), while 

the deposition of DMPC vesicles on NF-270 membrane (polyamide) with carboxylic 

surface charge didn’t alter the membrane permeability significantly.[102] Changing the 

DMPC to DMPC/DMTAP (1, 2-Dimyristoyl-3-trimethylammonium propane) lipid 

mixture for vesicle fusion on NTR-7450 further reduced the hydraulic permeability by 2-

fold.  Alternatively, the transport of glucose, which is more permeable in lipid bilayers, 

may present a more stringent test of the integrity of the supported lipid bilayer than the 

transport of ions; the permeability coefficient of ions (K+, Na+, Cl-) through the liposome 
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is around the scale of 10-10 - 10-12  cm/s , while that of glucose is about 10-7 cm/s.[34] The 

lipid enveloped silica thin film membrane may be better suited to applications involving 

biomimetic ion transport rather than uncharged hydrophilic molecules, for which it does 

not have significant barrier properties.  

 

Figure 3.4 Glucose flux through different membrane (5.6 mM initial glucose solutions in 

donor side of diffusion cell).  The error bars are based on the sampling times at 1 h, 1.5 h, 

3 h of diffusion). 

 

In the case of the lipid-filled pores, the thickness of a lipid bilayer is about 4 nm, and 

pore dimension of silica thin film is about 10 nm, allowing for the inclusion of lipid self-

assemblies. This is consistent with the observation of Schlipf et al.,[64] where the 

evaporation deposition methods was used to prepare DPPC lipid filled mesoporous silica 

particles with different pore sizes (3.0 nm, 5.4 nm and 9.1 nm). They found that lipid only 
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exists on the surface of particle with 3.0 nm pores, while it assembled in the pores of 5.4 

nm and 9.1 nm particles. The observation that lipid can’t exist in pores smaller than its 

bilayer dimension (about 4 nm) indicates that the lipid may form a variety of assemblies 

like bilayer or micelle inside the nanopores of silica. They also reported that the lipid 

diffusivity remind consistent regardless of lipid location (at the core, mid core or surface 

of the particle), suggesting uniform distribution of lipid assemblies inside the pores. 

Similarly, dissipative particle dynamics simulations of DMPC confined in hydrophilic 

pores revealed that the morphology of pore confined lipids were dependent on the pore 

radius (R) relative to the lipid length (L) and lipid concentration in the pores.[103] When 

the lipid concentration gradually increased, the lipid first formed micelles of distinct 

morphologies, then nucleation and growth into cylindrical bilayers. [103, 104] The larger 

the ratio of pore radius to lipid length, the lower the concentration at which the cylindrical 

bilayer formed. [103]  The effect of pore size and nonionic concentration has also been 

studied for nonionic surfactant bilayers in confined pores.   Cylindrical bilayers of n-

dodecyl-penta (ethylene glycol) (C12E5, 4.2 nm thick bilayer on flat surface) were formed 

in 8 nm cylindrical nanopores of silica particles when the bulk concentration was above 

the CMC, as characterized by grazing incidence small-angle neutron scattering (GISANS). 

Considering the pore size of silica thin film membrane (~10 nm), and the lipid 

concentration (6.9 nM,  CMC= 0.46 nM), the lipid most likely forms two layers of 

cylindrical bilayer that line the inner pore surface of the silica membrane to act as barrier 

to aqueous solute.  

ATR-FITR was also performed to characterize the location of lipid assemblies in the 

composite membranes (consist of silica thin film and AAO support). ATR-FITR (Figure 
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3.5) shows the existence of C-H stretch (2915, 2846 cm-1), PO2
- stretch (1222, 1087 cm-1) 

and C-O-C stretch (1052 cm-1) for DPPC on AAO and silica membrane after lipid filling, 

which indicates that the lipid not only exists inside the silica layer but also inside the AAO 

support. However, Karp et al. [105] reported that the DMPC or DPPC bilayers formed on 

the inner pore of AAO (200 nm) were normal to the magnetic field, which is parallel to the 

long axis of AAO pore as characterized by solid state NMR, suggesting that lipid exist as 

multiple cylindrical bilayers in the pores of an AAO support.[106] Comparing to the 200 

nm pore of AAO, the multilayer of lipid bilayers are not sufficient to block the pores, 

therefore the barrier behavior of this composite membrane is primarily result from the lipid 

pore-filled silica thin film. 

 

Figure 3.5 ATR-FTIR spectra of bare AAO, silica, lipid filled AAO and lipid filled silica 

membrane. 
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3.4.3 Incorporation of boronic acid carrier into lipid bilayers 

The lipophilicity of the boronic acid is an important factor for immobilizing the carrier 

into the lipid bilayer to ensure sugar transport efficiency. Westmark et al.[92] encapsulated 

different types of boronic acids and glucose into liposome and found that the glucose efflux 

from the liposome, as facilitated by boronic acid, was largely dependent on the lipophilicity 

of the carrier. Thus a lipophilic boronic acid, 4-(N-Boc-aminometyl) phenylboronic acid 

(partition coefficient, P=2.53), is chosen for its ability to reside be the lipid bilayer. A 

mixture of DPPC/BA in a molar ratio of 6.9:10 (59 mol% BA) was dissolved in chloroform 

prior to lipid rehydration to incorporate boronic acid into lipid assemblies. To further 

confirm that boronic acid is successfully immobilized into lipid bilayers, the dye Alizarin 

red S (ARS), which is not fluorescent itself but becomes fluorescent once complexed with 

boronic acid, was utilized (Figure 3.2e). ARS was added to the boronic acid immobilized 

lipid system and indicates that boronic acid presents on silica particles surface in lipid 

enveloping system (Figure 3.3c), while boronic acid is distributed inside the particles in 

lipid pore-filling system (Figure 3.3d). The location of boronic acid and lipid bilayers in 

particles (either at the surface of lipid-enveloped particles or throughout lipid pore-filled 

particles) are identical, which confirms that boronic acid is confined in the lipid bilayers. 

In order to test if the addition of boronic acid alters the structure of lipid bilayers, the 

gel to fluid phase transition temperature of the lipid bilayers, before and after the 

immobilization of boronic acid was compared. This gel to fluid phase transition 

temperature of the bilayer represents is  associated with disorder of the acyl chains of lipid 

molecules as the bilayer becomes more fluid with increasing temperature,.[35] . As 

measured by differential scanning calorimetry (DSC) , in the absence of boronic acid, the  
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lipid in the lipid filled particles have the same phase transition of  41.3oC ( Figure 3.6) as  

DPPC liposomes.[107] For boronic acid immobilized lipid filled particles, the transitions 

temperature decreases to 39.3oC, with a corresponding decrease in the enthalpy of the gel 

to fluid phase transition. This is consistent with the incorporation of boronic acid in the 

DPPC bilayer, increasing the membrane fluidity.  The phase transition temperature and 

enthalpy change of the phase transition gradually decrease as the additive concentration 

increases in the bilayer, potentially disordering the bilayer structure so this transition 

becomes negligible at a critical concentration which depends on the type of additives and 

lipid.[108-110]  In DPPC, 50 mol% cholesterol was reported to completely eliminate the 

phase transition.[111, 112] Because the bilayer structure could affect the transport 

properties in the biomimetic membrane, knowledge of the effect of boronic acid on the gel 

to fluid phase transition is important in interpreting the effect of carrier type and 

concentration on membrane performance.    
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Figure 3.6 Gel to fluid phase behavior of lipid filled silica particle (dash line) and boronic 

acid immobilized lipid filled silica particle (solid line) as measured by DSC (59 mol% 

boronic acid, pore diameter: 11.8 nm).  

 

3.4.4 Glucose transport through supported lipid bilayers with boronic acid carrier  

Transport of glucose through the lipid-filled composite silica thin film membrane was 

compared with and without boronic acid carrier in the lipid phase using a static diffusion 

cell.  Glucose transport with boronic acid was only measured in the lipid-filled pores 

because lipid enveloping did not provide sufficient barrier to transport. As shown in Figure 

3.7, glucose flux is enhanced by a factor of four after the immobilization of boronic acid at 

room temperature (RT), which suggests that boronic acid is carrying glucose through the 

membrane. The transport mechanism of glucose through the lipid filled silica membrane 

utilized is hypothesized as described in Figure 3.1.On the glucose concentrated side, 

glucose combines with boronic acid which is immobilized in lipid bilayers then transported 

through the lipid bilayers.  Due to the low glucose concentration on the receiving side, the 

glucose-boronic acid complex dissociates and releases glucose and boronic acid. The free 
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boronic acid then can go back to facilitate transport of another glucose molecule. Its 

combination of passive transport and facilitated transport in a single membrane overcomes 

the trade-off between high permeability and high selectivity that can’t be achieved 

simultaneously in conventional membrane processes. Meanwhile, the incorporation of 

carrier into membrane allows the reuse of the carrier which largely reduces the cost of 

transport catalyst and eliminates the recovery step of carrier from the product or the 

aqueous solution. 

Opportunities to control the glucose flux in the boronic acid carrier system include a) 

tuning the glucose-boronic acid interaction via choice of boronic acid or environmental 

conditions; b) altering the transport properties in the lipid assemblies; and c) adjusting the 

relative concentrations of the glucose and the boronic acid carrier.  For a 5.6 mM (dilute) 

glucose solution, 13 mol%, 59 mol% and 74% boronic acid in the lipid solution deposited 

by evaporation deposition resulted in glucose flux of 142, 412 and 294 x 10-8mol/m2/s at 

45oC (neutral pH), respectively. At 74 mol% BA, boronic acid precipitation was apparent 

in lipid mixture, thus the carrier was not effective. Increasing the glucose concentration in 

the donor phase to 28 mM resulted in a flux of 1700 x 10-8mol/m2/s. These glucose 

concentrations were chosen to represent dilute sugar concentrations consistent with 

biomass hydrolysates (1~20 g/L) [7, 8].  However, the concept of boronic acid carriers in 

liquid membranes has been examined in liquid membranes at sugar concentrations of 100, 

300, 500 mM,[10] which suggests that the range of operation with respect to glucose 

operation concentration can be extended.     

The ability to operate above and below the gel-fluid transition of  lipid bilayers 

suggests a potential temperature dependence of  the flux based on differences in mobility 
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of the carrier due to changes in membrane structure. After incorporating about 59 mol% 

boronic acid, the lipid bilayers still retains a gel-fluid phase transition at approximately 

39oC. Glucose diffusion studies conducted above the transition temperature (at 45 oC) after 

carrier immobilization show an increase in glucose flux by a factor of two from 225 x 10-

8mol/m2/s to 412 x 10-8mol/m2/s (Figure 3.7). While the glucose flux in the absence of 

boronic acid also increases with increasing operation to 45oC (a factor of 1.4), the effect is 

more significant for the boronic acid immobilized lipid assemblies (Figure 3.7). This 

dramatic temperature effect on solute flux is attributed to changes in the fluidity of the lipid 

bilayers. Below the transition temperature, the lipid bilayers is in a “solid” gel phase, where 

the lateral diffusion is very slow so the lipid bilayers is more rigid and less permeable, 

which limited the mobility of immobilized boronic acid. Above the transition temperature, 

the bilayers are in a “fluid” liquid phase.[35] In this state, the lipid bilayers shows rapid 

lateral diffusion and more favorable for compound exchange with the environment,[113] 

which allows the carrier to move fast and improve transport efficiency.  

In order to test membrane stability when switching below and above the phase 

transition temperature, multiple temperature-switch cycles were performed. Figure 3.8 

shows that the glucose flux reduced by 35% (cycle 3) and 15% (cycle 4) after two cycles 

between room temperature and 45oC. However, no boronic acid carrier leakage into the 

aqueous phase was detected as determined by fluorescence spectroscopy during the cycles. 

The reduction of glucose flux may have been caused by the annealing above the phase 

transition temperature, which melt the lipid bilayers to reconstruct a better barrier,[114] 

and reduces the background flux. In addition to temperature, lipid composition and support 

surface chemistry are well documented factors that will affect lipid bilayer fluidity.[115, 
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116] Thus, factors that affect lipid bilayer fluidity its permeability need to be carefully 

examined to improving the transport efficiency and selectivity of the solute.  

 

Figure 3.7 Glucose flux through lipid filled membrane with or without boronic acid 

carriers as a function of temperature (room temperature versus 45oC) and pH (pH 7.4 versus 

a pH 10 (donor)/pH 5 (receptor) gradient), (5.6 mM initial glucose solutions, 59 mol% BA 

and error based the sampling at 2 h, 3 h, 4 h of diffusion ). 
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Figure 3.8 Relative glucose flux through boronic acid immobilized lipid filled membrane 

during multiple temperature-switch cycles (At each cycle, the same membrane started with 

5.6 mM initial glucose solutions and sampling at 2 h of diffusion. Flux reported was 

normalized to flux measured on cycle 2). 

 

An alternative approach to changing the glucose flux through the membrane is to 

change the interactions of the solute-carrier system. The formation and dissociation of 

glucose-boronic acid complex is pH dependent.[117] The competitive binding between the 

dye Alizarin red S (ARS) and glucose to 4-(N-Boc-aminometyl) phenylboronic acid was 

used to quantify the interaction of the glucose-boronic acid as a function of pH. As the 

ARS-boronic acid complex is fluorescent, the addition of glucose results in the dissociation 

of this complex and decrease in fluorescent intensity (Figure 3.3e). The relative reduced 

fluorescent intensity of the ARS-BA complex as a function of pH at constant glucose 

concentration is shown in Figure 3.9. Glucose binds to boronic acid strongly at basic 

conditions and minimally at acidic conditions. 
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Based on this observation, glucose flux was measured across the lipid-filled silica thin 

film membranes while maintaining the donor side of the diffusion cell at pH 10 (to enhance 

glucose and boronic acid association), and the receptor side at pH 5 (promoting dissociation 

of the glucose-boronic acid complex). The lipid-filled silica thin film membrane acts as an 

ion barrier, allowing this pH gradient to be maintained across the membrane. Applying the 

pH gradient on donor and receptor phases improves glucose diffusion from 225 x 10-

8mol/m2/s to 287 x 10-8mol/m2/s relative to neutral pH experiments when facilitated by 

boronic acid (Figure 3.7). No significant change in glucose diffusion is observed relative 

to the neutral pH in the absence of boronic acid. This observation further supports the 

mechanism of boronic acid-mediated transport of glucose in the lipid-filled pored.  Most 

importantly, it demonstrates that tuning the strength of the saccharide-boronic acid 

interaction can be used to alter transport through the lipid-filled pores.  This tuning can be 

achieved through operating conditions (as in the case of pH), or the choice of boronic acid.  
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Figure 3.9 Relative reduced fluorescent intensity after adding glucose to ARS-BA 

complex (fluorescent) to competitively form ARS-glucose (no fluorescent) as a function 

of pH. (Fluorescence intensity change was normalized to the original intensity at 

experimental pH.  Error based on three replicates). 

 

Boronic acid as carbohydrate carrier has previously been incorporated into liquid 

membranes consisting of 2-nitrophenyl octyl ester supported by flat sheet of porous 

polypropylene for sugar separation. Duggan, Houston [91] reported a glucose flux of 0.54 

x 10 -8 mol/m2/s using 50 mM 2-(aminomethyl)-phenylboronic acid through supported 

liquid membrane at neutral pH, when the feed concentration of glucose was 300mM. 

Glucose flux increased more than ten-fold when pH gradient was applied (pH of 11.3 on 

donor side and pH of 6.0 on receptor side), which is consistent with the pH effect seen in 

this work. Compared to the supported liquid membrane, the boronic acid immobilized in 

lipid filled silica membrane present a glucose flux of 225 x 10 -8 mol/m2/s at normal 

condition (neutral pH and room temperature), which is almost 400 times greater than that 
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of liquid membrane. In addition to the significant glucose flux difference, the liquid 

membrane has stability problems as the organic phase is hold in the support pores by 

capillary force.[87] Besides, Luccioa, Smithb [10] reported that glucose flux reduced about 

half times after 48 hours of transport due to the hydrophobicity difference between organic 

solvent and carrier, causing carrier to leach out the membrane during the transport.[10] As 

a result, quaternary ammonium salt is often added to improve the boronic acid solubility in 

the liquid membrane. It was found that the addition of Aliquat 336 

(trioctylmethylammonium chloride) to the liquid membrane increased the glucose flux by 

two to ten-folds  depending on the pH of solution, which was attributed to the better sugar-

boronic acid complex solubility in the liquid membrane due to its stronger association with 

the Aliquat.[118] Meanwhile, the DSC result already showed that the boronic acid used is 

compatible with the lipid bilayers without introducing other additives to the sugar solution.  

To demonstrate potential of the boronic acid immobilized lipid filled silica membrane 

to selectively separate carbohydrates representative of biomass hydrolysates, the flux of 

three carbohydrate is compared: glucose (six-carbon sugar), xylose (five-carbon sugars) 

and cellobiose (disaccharide of glucose) were measured (Figure 3.10). The effect of 

temperature (room temperature and 45oC) and pH gradient (pH 7.4 and a pH 10 (donor)/pH 

5 (receptor) gradient) on the flux were also evaluated. As shown, xylose has the highest 

flux through the membrane while the flux of cellobiose is the lowest. The observation is 

consistent with the reported relative carbohydrate association constant (Keq) to the 

phenylboronic acid at neutral pH, which favors the complexation with xylose: xylose > 

glucose > cellobiose. [117] As expected, the flux of three sugars significantly increase as 

the temperature increases above phase transition temperature, while the permeability of 
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xylose and glucose over cellobiose are reduced slightly. The temperature change increases 

the overall fluidity of the lipid bilayers, which enhances the solute permeability regardless 

of their association constant difference and results in lower selectivity. In contrast, applying 

pH gradient results in the improvement of solute permeability and selectivity at the same 

time. Because the pH gradient directly changes the association constant which is specific 

to different type of carbohydrates, both the permeability and selectivity increases. The 

results demonstrate that the proposed boronic acid-mediated biomimetic membrane has 

potential for selective recovery of monosaccharides from the biomass hydrolysate. 

 

Figure 3.10 Selective separation of carbohydrate mixture (5.6mM glucose, 5.6mM xylose, 

5.6mM  cellobiose) through boronic acid immobilized lipid filled membrane at as a 

function of temperature (room temperature versus 45oC) and pH (pH 7.4 versus a pH 10 

(donor)/pH 5 (receptor) gradient. (Sampling time: 2 h, S=Selectivity).  
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3.5 Conclusion 

Lipid pore-filled silica thin film membrane with a lipid-immobilized carrier is 

successfully demonstrated to facilitate the transport of hydrophilic molecules. These robust 

lipid-filled mesoporous membranes act as barriers to ions and small hydrophilic solutes 

that can be matched with biomimetic carriers to provide selective transport as a separation 

and sensing platform. Relative to traditional supported lipid bilayers that reside on the 

external surface of the porous film, the lipid pore-filled membrane provides a better barrier 

which is critical for the carrier function in the membrane. A unique aspect of lipid-filled 

pore membranes is the temperature dependence of flux due to the gel to fluid lipid bilayer 

phase transition, which can be used as a temperature switch to increase or decrease mobility 

through the membrane. Opportunities to tune transport through the solute-carrier 

interactions can be used to manipulate the flux and achieve selective separations.  In the 

case of carbohydrate-boronic acid mediated transport, the affinity-dependent transport 

suggests potential for separating sugars from dilute aqueous mixtures of processed biomass 

for the improvement of lignocellulose conversion to chemicals. More broadly, the 

biomimetic membrane which combines high surface area silica thin film membrane with 

selective permeable lipid bilayers has potential as an efficient aqueous-based separation 

technology through the selection of lipid-based carrier molecules. 
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Chapter 4: Impedance Analysis of Ion Transport through Supported Lipid Bilayers 

on Accessible Mesoporous Silica Thin Films 

4.1 Abstract  

Ion transport through supported lipid bilayers and lipid-confined pores on silica thin 

films is examined using Electrochemical Impedance Spectroscopy (EIS). The ability to 

quantify the accessibility of the pore structure of the mesoporous silica thin films, which is 

essential for the incorporation of proteins and small hydrophilic carriers for separation 

application and the transport of solute through a silica thin film membrane, is demonstrated. 

While EIS has previously been used to investigate the transport of ions through supported 

lipid bilayers on nonporous and microporous supports, limited investigations quantify ion 

transport through supported lipid bilayers that span mesoporous thin films and no previous 

investigations examine ion transport through lipid-filled mesoporous thin films. The choice 

of redox probe molecule is demonstrated to be critical to extending EIS ion transport 

through lipid enveloped and lipid filled mesoporous silica thin film with accessible, 

orthogonally oriented cylindrical pores, where pore structure was confirmed by grazing-

incidence small-angle scattering (GISAXS). The system with pores filled lipid (1,2-

dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) is showed to be a superior barrier (18-

fold higher resistance) compared to one with a bilayer deposited at the pore openings by 

vesicle fusion.  The latter may have defects in the pore spanning bilayer as indicated by the 

EIS measurement using a neutral hydrophilic redox probe (1, 1’-ferrocenedimethanol, 

FDM), which is prevent by the lipid membrane. Meanwhile, the pore-confined lipid is 

found to provide a pathway for the diffusion of a hydrophobic redox probe (1, 1′-
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dioctadecyl-4, 4′-bipyridinium dibromide, DBD) across the membrane, which provides a 

basis for study of the function of incorporated lipophilic carriers. The EIS is demonstrated 

to be a powerful technique for characterizing the configuration and ion transport through 

mesoporous silica thin film-supported lipid membranes, which provide insights for making 

better barriers on mesoporous supports for carrier-mediated membrane separation 

processes. 

4.2 Introduction 

As the barriers between cells and their external environment, biological membranes 

exhibit highly selective permeability that is maintained by its main component, 

amphipathic lipid molecules.[119] Because they have a cylindrical shape, lipid molecules 

tend to assemble into bilayers where the hydrophilic head is exposed to water and 

hydrophobic tail resides in a hydrophobic layer.  The lipid bilayer allows hydrophobic 

molecules to pass through but is relatively impermeable to hydrophilic molecules (ions, 

charged macromolecules, carbohydrates, etc.).[120] Small and uncharged molecules 

(water, glycerol, urea etc.), although they are hydrophilic, can pass through fairly 

quickly.[34] Due to their selective permeability, artificial lipid bilayers that mimic 

biological membranes have great potential for applications in biosensing and selective 

separations.  

In this context, porous supports which can provide reservoirs under the lipid bilayer to 

limit interactions between proteins and solid substrates become attractive.[56] Porous 

materials including alumina (55-280 nm pores), [69, 121, 122] silicon nitride (200-700 

nm), [55] Teflon filters (5 μm), [123] silicon (0.2-2 μm), [121] and mesoporous silica (3-
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12 nm)[56, 64] have been reported as lipid bilayer supports.[124] Among these, 

mesoporous silica thin films are highly biocompatible, and thus provide advantageous 

platforms to explore the functionality of protein or smaller lipophilic biomolecules 

incorporated in supported lipid bilayers for selective separations or biosensing. The 

surfactant templating technique provides the opportunity for synthesis of highly ordered 

mesoporous thin films with tunable nanopores, [11, 12] which can match the size of lipid 

bilayers[64] or transmembrane proteins.[56] In our previous work (Chapter 3), we 

successfully demonstrated the feasibility of lipid pore-confinement in silica thin film 

membranes with orthogonally oriented cylindrical pores (~10 nm) on a macroporous 

support to act as highly selective barrier. Furthermore, the functionality of a small model 

lipophilic carrier (boronic acid) incorporated in the pore-confined lipid barrier was 

confirmed.  Isaksson et al.[56] also reported the successful deposition of a transmembrane 

protein (human aquaporin 4) supported in lipid bilayers deposited onto the surface of 

mesoporous silica thin film with cylindrical 6 nm diameter pores.  This pore size 

accommodates the hydrophilic domain of the protein within the pores of the solid substrate.  

While mesoporous silica thin films are a promising biomimetic platform for studying 

the function of proteins or small lipophilic carriers confined in lipid bilayers, systematic 

characterization of transport processes in this composite synthetic biomimetic membrane 

system is rarely reported. Electrochemical impedance spectroscopy (EIS) is a non-invasive 

and label-free technique permitting such an investigation of ion transport through 

membranes.[125]  EIS is measured by applying an AC potential to the system of interest, 

where the resulting current perturbation reflects a series of transport processes happening 

between the aqueous phase and the electrode surface such as electron transfer, mass 
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transport and chemical reaction.[65, 73, 120] EIS has been widely applied in assessing the 

porous structure and ion diffusion within the pores of filtration membranes [66, 126]  and 

ordered nanoporous thin films.[67]  Also and perhaps more importantly, EIS has been used 

extensively to study the structure, stability, electrical insulating properties of lipid bilayers 

with or without incorporated ion channels on bare or surface modified gold electrodes [41, 

59, 68] and porous materials.[69, 121, 122] 

Here, silica thin films with orthogonally aligned hexagonal pore arrays, which offer 

continuous channels for molecule transport, were prepared on electrically conductive 

fluorine doped tin oxide (FTO) glass slides as lipid bilayer supports. The thin film pore 

accessibility, which is critical for transport applications, was characterized by 

electrochemical impedance spectroscopy (EIS). Furthermore, the effect of lipid bilayer 

preparation methods on the mass transport through lipid coated silica thin film (in the form 

of a bilayer deposited at the pore openings, which we refer to as “pore enveloping”, or pore 

filling) was explored, as a highly insulating lipid bilayer is essential for detecting activity 

of proteins or biomimetic carriers in the bilayer. To further examine the diffusion of 

charged carriers in the lipid membrane, the transport of hydrophobic probes through the 

two different types of supported lipid assemblies were compared. This study provides 

insights for the design of a robust biomimetic membrane platform for investigating the 

function of membrane proteins or peptides and small lipophilic carriers for biosensing and 

selective separation applications. 
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4.3 Experimental sections  

4.3.1 Material 

Tetraethyl orthosilicate (TEOS, 98%), fluorine doped tin oxide (FTO) coated glass, 

polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO triblock copolymer (P123, 

average Mn ~5,800), glycerol (≥99%), 1,1’-ferrocenedimethanol (FDM, 97%), 1,1′-

dioctadecyl-4,4′-bipyridinium dibromide (DBD,97%), potassium phosphate buffer (PBS) 

tablets, chloroform (≥99%), and 1,6-diisocyanatohexane (DH, 98%) were supplied by 

Sigma Aldrich.  Ethanol (anhydrous) was purchased from DLI and hydrogen chloride 

(HCl, 6N), acetone (≥99.5%), and potassium chloride (KCl, ≥99.0%) were purchased from 

Fisher Scientific. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, >99%) was 

purchased from Avanti Polar Lipids. Nochromix powder was purchased from Godax 

Laboratories, Inc. 

4.3.2 Synthesis of mesoporous silica thin film supported by fluorine doped tin oxide 

(FTO) coated glass 

For electrochemical measurements, mesoporous silica thin films were prepared on 

electrically conductive FTO coated glass slides. Prior to deposition of silica thin films, FTO 

slides were cleaned with DIUF water, acetone, and isopropanol followed by UV-ozone 

treatment for 20 min to remove any organic contaminants. Thin film silica membranes with 

orthogonally oriented pore array were synthesized using a neutral chemical surface method 

as previously reported by Wooten et al. [33] and Koganti et al.[98] To make a neutral 

chemical surface, a solution was prepared using 0.696 mmol/L P123 in acetone, to which 

an equimolar amount of 1, 6-diisocyanatohexane was added with continuous stirring in a 

nitrogen bag. Three drops of glycerol were then added and stirred for 10 minutes. The 



62 
 

resulting solution was used to dip coat clean FTO slides or borosilicate glass slides (cleaned 

with Nochromix solution) to create chemically neutral surfaces for sandwiching the 

membranes. The dip coated supports were aged at 100°C for 24 hours to cure the modifying 

layers. 

The mesoporous silica coating solution was prepared by addition of a solution of P123 

to a prehydrolyzed silica sol following the procedure of Brinker et al.[99] TEOS, anhydrous 

ethanol, deionized ultra-filtered water and HCl were added together in a mole ratio of 1: 

3.8: 1: 5 x 10-5. This solution was refluxed at a temperature of 70°C for 90 minutes. A final 

amount of HCl and water were added yielding a concentration of 7.34 mM HCl. The 

mixture was stirred at room temperature for 15 minutes.  The mixture was then aged at 

50°C for 15 minutes. A solution of P123 and ethanol in a mole ratio of 0.01: 18.7 was then 

added to the TEOS mixture and stirred for 10 minutes. The final mole ratio was 1 TEOS: 

22 C2H5OH: 5 H2O: 0.004 HCl: 0.01 P123. The copolymer modified FTO slides were dip 

coated using the final solution at a speed of 7.6 cm/min. To prepare orthogonally oriented 

pores, the silica thin film-coated modified FTO slides were then sandwiched between two 

chemically modified glass surfaces. The thin films of silica on FTO slides were aged and 

dried at 50°C for 24 hours and then 100°C for 24 hours. The films were then calcined 

500°C for 4 hrs with temperature ramping from room temperature at 1°C/min to remove 

the pore template and crosslinked pore blocking polymer. Thin film silica membranes with 

parallel oriented pore were also prepared by dip coating the sol-gel solution on FTO slides 

that were not modified with the copolymer/DH film. Nonporous silica thin films were 

prepared by dip coating the sol-gel solution without surfactant P123 onto unmodified FTO 

slides. 
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4.3.3 Silica thin film characterization 

Grazing-incidence small-angle scattering (GISAXS) was used to characterize the pore 

orientation of the silica thin film after calcination. GISAXS experiments were done at the 

Advanced Photon Source (APS) at Argonne National Laboratory on beamline 8-ID-E using 

a X-ray beam size of 100 µm x 50 µm (H x V) with wavelength of 1.687 Å and a sample-

detector distance of 1474 mm. The GISAXS pattern was collected at room temperature 

with a Pilatus 1M pixel array detector using a 6 s exposure time at an incidence angle of 

0.17o. The corrected data were analyzed using the GIXSGUI package for MATLAB. 

4.3.4 Lipid filled silica thin film preparation through evaporation deposition 

First, 10 mg of DPPC were dissolved in 7 mL CHCl3. A silica thin film-coated FTO 

slide was then immersed in the DPPC solution and sonicated for 25 minutes in a cylindrical 

vial (25 mm × 95 mm). The above mixture was then blow-dried with flowing nitrogen and 

was further dried under high vacuum at room temperature for at least 2 hrs. To form 

bilayers, the dried lipid inside the silica membrane was rehydrated in 7 mL PBS solution 

and sonicated at 47 °C for 1 hr. The sample was sonicated for another 15 minutes while 

cooling to 30 °C. The excess lipid was removed by washing the membrane with PBS three 

times. 

4.3.5 Lipid enveloped silica thin film preparation through vesicle fusion 

10 mg of DPPC was dissolved in 1 mL CHCl3, placed in a glass vial, and the solvent 

was removed under flowing air for 1 hr. The deposited DPPC was further dried under high 

vacuum at room temperature for at least 2 hrs. Then the dried lipid was rehydrated in 1 mL 

PBS solution to form multilamellar vesicles. The resulting mixture was extruded at 45 °C 
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through a polycarbonate filter with 200 nm diameter pores 21 times, which produces small 

unilamellar vesicles with a mean diameter of 200 nm. The lipid solution was diluted to 7 

mL, and then mixed with a silica thin film-coated FTO slide for 30 mins to facilitate vesicle 

fusion. The excess lipid was removed by washing the membrane with PBS three times. 

4.3.6 Electrochemical measurement 

The silica thin film pore accessibility and ion transport through lipid coated silica thin 

film were characterized by electrochemical impedance spectroscopy (EIS), according to 

the procedure of Wei and Hillhouse.[67] The measurements were conducted in an 

electrochemical cell (Figure 4.1a) with three electrodes, which were connected to a 

potentiostat (CHI 660D, CH Instruments, Inc.). Bare or lipid-coated silica thin films on 

FTO slides were used as working electrodes, while a platinum wire and an Ag/AgCl 

electrode were used as counter and reference electrodes, respectively. Ion transport of a 

hydrophilic probe 0.01 mM 1,1’-ferrocenedimethanol (FDM) or a hydrophobic probe 1,1′-

dioctadecyl-4, 4′-bipyridinium dibromide (DBD) was measured in 0.5 M KCl in PBS 

buffer (pH 7.4) as the electrolyte.  The area of the silica thin film exposed to the electrolyte 

solution was 4 cm2. The formal reduction potential of FDM+/FDM redox couple for EIS 

measurement was determined to be 0.21 V by cyclic voltammetry applying a potential 

between -0.1 and 0.6 V at a scan rate of 50 mV/s to the sample. The EIS was measured 

over a frequency range of 0.1 Hz to 100 kHz with a dc potential of 0.21 V and an ac 

perturbation signal of 10 mV at room temperature. The data obtained were fitted to an 

equivalent circuit model (Figure 4.1b) using software Z-view.  
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Figure 4.1 (a) Electrochemical cell setup for EIS measurement; (b) Impedance spectrum 

and corresponding equivalent circuit model for silica thin film. 

4.4 Results and discussion 

4.4.1 Electrochemical analysis of the mesoporous silica thin film structure  

Before evaluating pore accessibility of silica thin films by electrochemical impedance 

spectroscopy (EIS), the pore morphology of the films was first characterized by grazing-

incidence small-angle scattering (GISAXS). Figure 4.2 shows representative 2D GISAXS 

patterns of silica thin films with parallel oriented (p-HCP) and orthogonally oriented (o-

HCP) hexagonal close packed pores after calcination to remove the surfactant template. 

For the silica thin film prepared on an unmodified surface, two out-of-plane diffraction 

spots of low intensity are observed on both sides of the beam stop, which are indexed to 

the (1̅1) and (11) reflections of a distorted 2D hexagonal mesostructured with c2mm space 

group oriented parallel to the glass slide.[78]  The intense spot right above the beamstop 

(qz ~ 0.2 Å-1) corresponds to the (02) reflection. On the other hand, two intense in-plane 

rods parallel to the x-ray beam and no out-of-plane diffraction spots are seen for the silica 

thin film prepared on a chemically neutral surface, which is consistent with an orthogonal 

pore orientation.[80, 127] From the GISAXS patterns, the diffraction spots for parallel 

(a) (b) 
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oriented and orthogonally oriented silica thin film are observed at qy of 0.13 Å-1 and 0.063 

Å-1, respectively, which corresponds to d-spacing of 4.82 nm and 9.95 nm. [128] 

 

 

 

 

 

 

Figure 4.2 2D GISAXS patterns of (a) parallel oriented; (d) orthogonal oriented 

mesoporous silica thin film after calcination. 

 

The effect of mesoporous structure on mass transport through the silica thin film was 

investigated with EIS. Due to the negative charge of the silica surface, the transport of 

anionic redox species in mesoporous silica thin films is restricted by electrostatic repulsion 

in the addition to the influence from the film structure itself.[129] To eliminate the 

electrostatic repulsion, the positively charged/neutral redox species FDM+/FDM was 

chosen as the probe molecule while controlling the system pH at 7.4.[67] After applying a 

small amplitude ac potential to the system, the complex impedance (Z (ω) =Z’+ j Z’’) can 

be extracted from the resulting ac current and presented in the complex plane (giving a 

Nyquist plot or impedance spectrum, Figure 4.1b). The impedance spectrum can be 

analyzed using the simple equivalent circuit model R(RCW), which contains four 

elements: an electrolyte solution resistance (Rs), which is ideally given by the intercept of 

the small leftmost semicircle with the x-axis; charge transfer resistance (Rct) representing 

(a) (b) 
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the electron transfer rate between the redox species and the electrode at the interface, which 

can be estimated from the diameter of the larger semicircle; mass transfer impedance (W) 

representing the 1D semi-infinite diffusion of electrolyte in the bulk phase, which appears 

as a straight line following the semicircle ; and  electrical double layer capacitance (Cd) at 

the electrolyte-sample interface.[73, 74] 

Figure 4.3 presents the Nyquist plots of the bare FTO electrode, o-HCP silica, p-HCP 

silica and nonporous silica thin film on FTO. The corresponding parameters obtained by 

fitting the spectra to the equivalent circuit model using Z-view software are shown in Table 

4.1. All samples present a typical spectrum profile, with the straight line following the 

semicircle gradually becomes shorter as the electrode accessibility is reduced, due to the 

limited range of frequencies probed. The solution resistance Rs, which represents resistance 

associated with ion migration in the solution, is similar for different substrates measured 

in the same electrolyte solution. The charge transfer resistance Rct is directly related to the 

electrode area accessible to the electrolyte.[130] As shown, Rct is the lowest for the bare 

FTO electrode, which is consistent with the full accessibility to the electrolyte. At the 

opposite extreme, Rct is highest for the nonporous silica membrane because the electrode 

is completely covered by the silica, thus preventing electron exchange between the redox 

probe and electrode. The charge transfer resistance for mesoporous silica with orthogonal 

or parallel orientation is significantly reduced compared to nonporous silica, indicating the 

existence of accessible pores. The o-HCP silica film shows much smaller Rct than the p-

HCP film, which is consistent with the orthogonally oriented cylindrical pore offering a 

direct pathway to transport redox probes to the electrode surface. Although, the pores of p-

HCP silica are buried under silica membrane surface, the existence of micropores in the 
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silica walls and defects in the mesopore structure most likely permit some charge carrier 

transport, giving Rct between that of o-HCP silica and nonporous silica.  Thus, EIS provides 

results consistent with the morphology of the mesoporous silica thin films inferred from 

GISAXS. 

   

Figure 4.3 Nyquist plots of silica thin films with different pore structures and lipid 

enveloped o-HCP silica on FTO electrodes measured using the hydrophilic redox probe 

(FDM).  The insert presents the Nyquist plots for the nonporous silica and lipid filled o-

HCP silica on FTO. 
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Table 4.1 Resistance and active electrode areas of silica thin films with varying structures 

and lipid supported by o-HCP silica estimated by an equivalent circuit model R (RCW) for 

EIS measurements with hydrophilic probe FDM. (Error based on three samples). 

Substrate 
Bare 

FTO 
o-HCP p-HCP Nonporous 

Lipid 

enveloped 

Lipid 

filled 

Rs(Ω*cm2) 144 ± 3 152 ± 1 140 ± 10 130 ± 30 125 ± 2 140 ± 20 

Cd(µF/cm2) 12 ± 3.2 9.6 ± 0.1 9.0 ± 0.0 8.0 ± 2.7 8.9 ± 0.2 8.2 ± 1.3 

Rct (Ω*cm2) 
2500 ± 

960 

7200 ± 

1100 

23000 ± 

1900 

681000 ± 

120000 

20700 ± 

2600 

137000 ±  

25000 

Active 

electrode 

area (1-θ) 

1 
0.36 ± 

0.06 

0.11 ± 

0.01 

0.004 ± 

0.007 

 

--- 

 

--- 

 

According to Wei and Hillhouse, [67] the effective unblocked electrode area of 

mesoporous silica thin film coated FTO electrode is inversely proportional to Rct for a  

given electrolyte concentration and sample area. Thus, the active electrode coverage can 

be estimated by dividing the bare electrode resistance by the resistance of a silica thin film 

when measured under identical conditions. The active electrode coverage (1-θ) of p-HCP 

silica and nonporous silica thin film coated FTO were calculated to be 0.11 and 0.004, 

respectively (Table 4.1), values which are close to those reported for parallel oriented silica 

templated by P123 and dense silica.[67] For o-HCP silica, which hasn’t been examined in 

existing literatures using EIS, the active electrode coverage is about 0.36, falling between 

that of a body centered cubic (BCC) silica film (0.55) and double–gyroid silica film (0.33).  

However, the large pore accessibility doesn’t necessary result in faster diffusion. It 

was found that the double-gyroid structure had a diffusion coefficient one order of 

magnitude higher than the BCC structure, which has a more torturous structure that 

impedes diffusion.[67] Thus, the active electrode coverage needs to be considered in 
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combination with the actual structure of the silica thin film to gain a full understanding of 

the silica thin film. The o-HCP silica with orthogonal oriented channels is expected to 

provide a continuous pathway for probe molecules to easily transport to the electrode 

surface, while providing significant pore accessibility. Shunsuke et al.[130] also found the 

charge transfer resistance decreased with increasing degree of order and length of the 

hexagonally ordered mesoporous carbon channels as assessed by EIS. Therefore, the mass 

transport through the mesoporous thin film are dependent on pore size, length and 

tortuosity, which can be reflected in the EIS measurement. 

4.4.2 Electrochemical analysis of lipid supported by mesoporous silica thin film  

To examine the effect of lipid bilayer preparation methods (in the form of pore 

enveloping, or pore filling) on mass transport through biomimetic membranes with 

accessible pores, impedance spectra were compared for bare, lipid enveloped, and lipid 

filled o-HCP silica using the hydrophilic redox probe (FDM) (Figure 4.3). For direct 

comparison, the same equivalent circuit model was also used to analyze EIS spectra both 

bare and lipid-coated silica thin films. The resulting resistances reflect the effects of lipid 

bilayer in relation to the accessible pores of the bare silica thin film (Table 4.1). As 

expected, both lipid enveloped and lipid filled silica have a greater charge transfer 

resistance, Rct, compared to the bare o-HCP silica (2-fold and 18-fold higher, respectively), 

indicating the successful formation of a lipid assembly that shields accessible pores from 

the redox groups. Furthermore, the resistance of lipid filled silica is six-fold higher than 

that of lipid enveloped silica, and falls between that of p-HCP and nonporous silica.  

In addition, the phase angle profile (Figure 4.4) shows a dramatic increase in the phase 

angle at low frequencies (0.1-10 Hz) after lipid deposition onto the silica support (lipid 



71 
 

filled>lipid enveloped). This increase corresponds to a decrease of the membrane 

capacitance and better electrically insulating behavior due to addition of lipids.[55, 70] 

These observations suggest that confining the lipid inside the pores could have resulted in 

a more cohesive, defect free lipid structure than an “enveloped” lipid bilayer suspended on 

the pore surface via vesicle fusion.  Although the resistance of lipid enveloped silica was 

not as great as lipid filled silica, its resistance is still comparable to that of p-HCP silica, 

suggesting the lipid bilayers suspending on the pore are able to block most of the pores. 

However, there may be defects on the bilayer, which makes the electrode partially 

accessible to the redox probes. 

 

Figure 4.4 Phase angle (black) and absolute impedance (Z, red) profile with experimental 

frequency for bare, lipid enveloped, lipid filled o-HCP silica on FTO electrode. The probe 

for this measurement was FDM. 

 

In a previous study,[131] the capacitance from EIS of a lipid bilayer supported on gold 

electrode was reported to be about 0.5 µ𝐹/𝑐𝑚2. The bilayer structure was then confirmed 

by modeling the bilayer as a plate condenser and calculating the corresponding thickness 
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(δ) with Eq. 4.1 to be 3.62 nm (where the vacuum permittivity ε0=8.85×10−14 𝐹/𝑐𝑚 and 

the dielectric constant was assumed to be ε =2.05).[132] This thickness is consistent with 

the bilayer thickness measured by AFM.[133] However, the capacitance estimated here for 

the lipid bilayer suspended on the mesoporous silica surface (about 50 µ𝐹/𝑐𝑚2) is much 

higher than the theoretical value. This can be attributed to the small pore size of the support. 

Pantoja et al.[134] found that the capacitance of lipid bilayers suspended on microporous 

silicon wafers increased from 0.4  µ𝐹/𝑐𝑚2  to 1 µ𝐹/𝑐𝑚2 when the pore size decreased 

from 200 µm to 50 µm. The increase of capacitance was attributed to the increase of bilayer 

area for small pores.[134]  Zhu et al.[55] also reported an average capacitance of 5.9 

µ𝐹/𝑐𝑚2 for lipid bilayers suspended on silicon nitride with pore sizes of 200 nm, 400 nm 

and 700 nm. Thus, the silica thin film with pores an order of magnitude smaller (~10 nm) 

could have result 10-fold higher capacitance.  

𝐶𝑚 =
ε∗ε0

δ
                                                                                                                           (4.1) 

The high capacitance could also result from the incomplete fusion of ruptured bilayer 

patches, leading to the defects in the bilayer.[122] The existence of pinhole defects in 

supported lipid bilayers have been revealed by AFM.[96]  These defects increases the water 

occupancy in the bilayer, which has a much higher dielectric constant than lipid and results 

in higher capacitance.[57]  In fact, the surface coverage of the lipid bilayer may be 

estimated from the overall capacitance (𝐶𝑚) of lipid bilayer with defect, assuming the 

bilayer capacitor and the defect (water) capacitor act in parallel.[122] Similarly, the 

incorporation of proteins in bilayers, which also have a higher dielectric constant than 

lipids, also was reported to give higher capacitance by Giess et al.[135]  And the 

approximate concentration of incorporated proteins can be estimated based on the 
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measured capacitance. Despite the structure defects, pore-suspending lipid bilayer 

supported by mesoporous silica thin film is still promising for providing a reservoir for 

examining the function of transmembrane protein. Strategies to eliminate defects include 

surface modification and using charged lipids, changing the lipid composite, or changing 

the deposition method.[96, 97]  

Tantawi et al.[121, 136] reported that the resistance of 3 µm thick porous silicon 

membranes with mean pore diameters of 0.50-2 µm increased from 40 kΩ cm2 to 250 kΩ 

cm2 after Langmuir-Blodgett deposition of lipid bilayers consisting of 1,2-diphytanoyl-sn-

glycero-3-phosphoserine (DPPS) and 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine 

(DPPE).  The composite system proved to be insulating enough to detect the function of 

epithelial sodium channel (ENaC) proteins.[124] In addition to porous supports, tethered 

bilayer lipid membrane (tBLM) prepared on metal electrode surfaces are commonly used 

as model systems to provide good barrier properties for examining the functional 

incorporation of proteins.[62] tBLMs are reported have resistances ranging from 0.5~10 

MΩ cm2 with varying lipid composition, while the resistance of a tethered monolayer 

spacer is about 1 MΩ cm2.[59, 62, 137] Although many tBLMs are superior barriers 

compared to porous substrate-supported bilayers, the tethering significantly reduces the 

lateral mobility of the lipid membrane and incorporated proteins.[58]  Meanwhile, the lipid 

confined in nanopores of silica was found to have same mobility as the lipid at the external 

surface of a support.[64] Thus, the confinement of lipid in the pores of the mesoporous 

silica thin film appears to be a robust method to make defect-free lipid structure, while 

maintaining sufficient mobility for studying the function of incorporated proteins or small 

lipophilic carriers for separation application. 
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The movement of small-molecule hydrophobic carriers after complexing with targeted 

solutes in the lipid bilayer is a dominating factor to separation efficiency, which is affected 

by the lipid configuration on the support. Thus, to further examine the diffusion of the 

hydrophobic carrier in the lipid membrane (lipid enveloping and lipid filling), the electron 

transfer between a redox-active lipophilic molecule (1,1′-Dioctadecyl-4, 4′-bipyridinium 

dibromide, DBD) used by previous study[138] and the lipid coated o-HCP silica thin film 

supported by FTO electrodes was measured. Figure 4.5 illustrates the impedance spectra 

of bare FTO, o-HCP, lipid enveloped o-HCP and lipid filled o-HCP silica films. In contrast 

to the hydrophilic redox probes FDM+/FDM, which are kept from away from the electrode 

surface after the formation of lipid bilayer resulting in increasing resistance increase 

(Figure 4.3), the lipophilic redox groups can partition into the lipid bilayer from the 

aqueous solution and favor electron transfer on the electrode surface. For the lipid filled o-

HCP, the porous pathway are filled with lipid, which is more favorable for the transport of 

DBD across the composite membrane to reach the electrode surface than the water. Thus, 

a 3-fold reduction in resistance is seen for the lipid filled o-HCP comparing the bare o-

HCP. Meanwhile, its resistance is still 2-fold higher than that of bare electrode surface, 

which is attributed to a thin water layer between the lipid and the electrode surface and to 

partial coverage of the surface by the o-HCP silica films. However, for the lipid enveloped 

o-HCP, no significant resistance reduction is seen compared to the bare o-HCP, which is 

consistent with the existence of a thin lipid bilayer suspending on the mesoporous silica 

thin film filled with water.  
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Figure 4.5 Impedance spectra of FTO electrode, bare, lipid enveloped and lipid filled o-

HCP silica using hydrophobic redox probes (DBD). 

 

Prior studies of lipid-based biomimetic synthetic membranes focused primarily on 

lipid bilayers on a solid supports, black lipid membranes, tBLMs or polymer cushioned 

bilayers.[60, 62] Relative to the single lipid bilayer common to these studies, the pore 

confinement of lipid in the mesoporous thin film is demonstrated here to be an effective 

barrier.  Significantly, lipid assemblies in pores provide a larger hydrophobic reservoir for 

the incorporation of small lipophilic carriers. In addition, the distribution of lipid 

throughout the mesoporous support creates a hydrophobic pathway for the fast transport of 

hydrophobic carrier-target complexes rather than an aqueous environment.  This non-

tortuous pathway for hydrophobic complexes is expected to be critical for many types of 

biomimetic separation. Furthermore, Schlipf et al.[64] found that the diffusivity of lipid 

confined in the pores of mesoporous silica particles at different locations (on the surface, 
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core, middle core of the particles) were identical. This suggest that the lipids are mobile 

throughout pores, which is important for the movement and reusability of carriers inside 

the lipid membrane.  

4.5 Conclusion  

Electrochemical impedance spectroscopy (EIS), a non-invasive and label-free 

technique, was successfully applied to examine the ion transport through mesoporous silica 

thin films and lipid assemblies supported on those films. Mass transport through 

mesoporous silica thin films with different pore morphologies could be readily 

distinguished by EIS, which is critical for screening separation platforms for constructing 

biomimetic membranes. The lipid deposition method (in the form of lipid enveloping or 

lipid filling), which results in different lipid membrane configurations, was found to have 

significant effects on the mass transport across the lipid membrane, as probed using EIS. 

Most significantly the lipid filled system, which is a new type of supported lipid 

architecture, is demonstrated to be a superior barrier while providing effective mobility for 

functioning small lipophilic carriers. The application of EIS to mesoporous silica thin film-

supported lipid membranes enables the study of the fundamental properties of biomimetic 

membranes, which sets the stage for exploring the application of these confined lipid 

assemblies in biosensing, selective separations and drug delivery.  
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Chapter 5: Enzyme Immobilization on Synthetic Biomimetic Membranes for Dilute 

Aqueous Solute Upgrading and Recovery 

5.1 Abstract  

Biomimetic inspired synthetic membranes have been developed which employ carriers 

in lipid bilayers to control the permeability of hydrophilic solutes through nanoporous 

supports. To further enhance the selectivity of these composite membranes and add 

catalytic functionality, this work explores covalent bonding of enzymes onto orthogonally 

oriented hexagonally close packed (HCP) silica films on macroporous membrane supports. 

Transport of the product through the silica thin film membrane is then facilitated by the 

carrier immobilized in the lipid bilayer, with a goal of achieving upgrading and recovery 

of aqueous solutes in a one-step process. In this study, the conversion of glucose to fructose 

using glucose isomerase (GI) was used as a model system. FTIR analysis confirmed the 

immobilization of the enzyme on the epoxy group modified silica membranes, which 

demonstrated higher stability compared to physical enzyme adsorption. The integration of 

immobilized enzyme with the biomimetic separation membrane effectively enhanced the 

initial reaction rate of enzyme from 0.06 mM/h to 0.16 mM/h, comparing to enzyme 

immobilized on bare silica membrane. Fructose, a desirable starting point for the catalytic 

upgrading of biomass hydrolysate solutions, was transported through the membrane by the 

boronic acid carrier.  However, product with high purity cannot be achieved in the lab scale 

static diffusion study. To evaluate the ability of enzyme immobilized synthetic biomimetic 

membranes to achieve high selectivity and productivity through  further optimization of 

the performance parameters, a general mathematical model was developed to  the describe 
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the reaction and mass transfer through the biocatalyst and carrier-mediated separation 

integrated membrane. The model was parameterized using Thiele modulus which decries 

the reaction and diffusion process in the enzyme layer and relative permeability between 

the product and substrate in the selectivity separation membrane.  The model is proven to 

give a precious prediction of the reaction and separation process and factoring dominating 

the process can be identify and manipulated to achieve better performance. 

5.2 Introduction 

In pharmaceutical and food industries, biocatalytic processing is used to achieve 

efficient production using low value added or dilute products as a starting point.  These 

feed streams are particularly challenging for commercialization. A promising technology 

for low cost and high yield and purity product yield is to combine the reaction and selective 

separation in a single membrane operation.[139] Integrated reaction-separation membranes 

are easy to scale up, are low energy consumption and are cost effective due to the 

continuous process and reusability of immobilized enzyme, which reduces capital 

investment, maintenance and operation. In addition, the combination of biocatalysis with 

selective separation membranes (i.e., enzymatic membrane reactors) allows selective 

removal of products in real time, resulting in low product concentration at the reaction 

site.[140-142]  This low product concentration drives equilibrium-based reactions forward 

and reduces inhibition of the biocatalyst due to product formation, thus achieving higher 

reaction efficiency.[143] Furthermore, immobilization of enzyme onto the membrane 

support enhances the operational stability and reusability of enzyme, with potentially 
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improved activity, temperature and pH tolerance, and recovery efficiency , compared to 

the free enzyme.[144]  

In this work, we are proposing continuous recovery and upgrading of dilute aqueous 

solutes utilizing a biocatalyst integrated biomimetic separation membrane, which is critical 

to the development of biotechnology applications. The biomimetic separation membrane 

is detailed described in Chapter 3, which utilized the pore confined lipid assemblies as 

barrier to exclude the solution and embedded carriers with specific binding to selectively 

separate the targeted solute. To integrate the biocatalyst and selective separation process, 

high surface area mesoporous silica thin films with ordered perpendicularly oriented 

hexagonally close packed (HCP) pore structure on a macroporous support is identified as 

potential upgrading and separation platform. The composite thin film membranes are 

chemically and mechanically robust, thermally stable, and the easy surface 

functionalization of silica surface provides various covalent coupling strategies for 

immobilizing the biocatalyst. Meanwhile, the hydrophilic surface of silica and large pore 

dimensions (~10 nm) allows the assembly of the lipid barrier inside the pores without 

interfering with immobilized enzyme on the surface.[64] Specifically, the upgrading and 

recovery of carbohydrates has been chosen to prove the concept of proposed biocatalyst-

selective separation integrated membrane (Figure 5.1). Isomerization of glucose, which is 

the main hydrolysis product of cellulose, to fructose is important for producing value added 

chemicals. The HMF (5-hydroxymethyl-furfural) is a potential dehydration product of 

carbohydrates using a metal oxide catalyst, and its production is mainly limited by the 

fructose yield converting from glucose [145]. The isomerization of glucose to fructose, 

which is catalyzed by glucose isomerase enzyme, a reversible reaction commonly 
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employed to produce high fructose syrup in food industry. [146] The buildup of product 

will slow down the reaction rate and limit the glucose conversion.[147]  In the case of 

dilute aqueous systems, immobilization of the glucose isomerase to the selective separation 

membrane allows the continuous removal the fructose from enzyme immobilized layer of 

the membrane by the boronic acid carrier, which has a higher affinity for fructose than 

glucose, thus improving the glucose conversion. The one-step production of fructose is a 

novel method to make use of membrane technologies to upgrade dilute aqueous solutions, 

applied specifically to improve biofuel production efficiency. 

 

Figure 5.1 Scheme for recovery and upgrading of the fructose from glucose using an 

enzyme-immobilized biomimetic integrated membrane. 
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Due to the high complexity of the reaction-separation integrated process, parameters 

involved in the either the reaction or transport steps through the membrane will impact the 

other process. For example, Xu et al.[148] found that the initial hydrolysis activity of 

immobilized lipase on CA (cellulose acetate)/PTFE (polytetrafluoroethylene membrane) 

first increased then decreased with the increasing of enzyme loading. This was attributed 

to the blocking of membrane pores by the high enzyme loading, which limited the diffusion 

of the product through membrane. Concurrently, the slow diffusion increased the enzyme 

inhibition due to increased product concentration in the immobilized enzyme layer. In 

addition, although high reaction temperature is favorable for diffusion, the thermal 

denaturation of immobilized enzyme may need to be considered in this context. Thus, the 

factors like membrane structure, membrane pores relative to the enzyme size, enzyme 

immobilization method and loading concentration, and operation conditions (initial 

substrate concentration, pH, temperature, and flow rate) must be optimized to adjust the 

relationship between the enzyme activity and the product transport through the separation 

membrane to ensure the productivity of the composite membrane.[140]  

In this work, the effectiveness of an enzymatic membrane reactor with integrated 

biomimetic separation for one-step upgrading and separation of dilute aqueous solutes is 

demonstrated. Glucose isomerase is covalent bound to the thin film silica through the 

epoxy group grafted silica surface. The stability of the covalently immobilized enzyme is 

compared to physical adsorption is characterized by FTIR. The glucose conversion and 

transport through the enzyme immobilized selective separation membrane (boronic acid 

immobilized lipid filled membrane) is quantified using a static diffusion cell. Additionally, 

a mathematical model is proposed to describe the chemical reaction and selective mass 
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transfer through the composite membrane for evaluating the effect of particular parameters 

on the two processes and identifying the dominant factors in membrane performance. The 

model will serve as a useful tool for predicting the purity and yield of the desired product 

and optimizing operation conditions between the reaction and selectivity of the carrier-

mediated separation membrane. The model, parameterized using Thiele modulus which 

describes the reaction and diffusion process in the enzyme layer and the relative 

permeability between the product and substrate in the selectivity separation membrane, is 

not limited to this model enzyme/biomimetic carrier system, and is broadly applicable to 

the design of reactive membranes.  

5.3 Experimental methods 

5.3.1 Material 

 Anodic aluminum oxide (AAO) membranes (Whatman, 25 mm in diameter) with 

pores of approximately 200 nm in diameter, a porosity of 0.25-0.5, and a nominal thickness 

of 60 µm was purchased from Fisher Scientific and served as the macroporous support for 

the silica thin film. Tetraethyl orthosilicate (TEOS, 98%), polyethylene oxide (PEO)-

polypropylene oxide (PPO)-PEO triblock copolymer (P123, average Mn ~5,800), glycerol 

(≥99%), potassium phosphate buffer (PBS) tablets, chloroform (≥99%), 1, 6-

Diisocyanatohexane (DH, 98%), and glucose (≥99.5%) were purchased from Sigma 

Aldrich.  Ethanol (anhydrous) was purchased from DLI and acetone (≥99.5%) was 

purchased from Fisher Scientific. 4-(N-Boc-aminometyl) phenylboronic acid (BA, 97%) 

was purchased from Frontier Scientific. 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC, >99%) was purchased from Avanti Lipid. The epoxy silane 3- glycidoxypropyl)-

trimethoxysilae was purchased from Gelest, Inc. 
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5.3.2 Epoxy silane modification of mesoporous silica thin film 

The silica membrane was first lightly functionalized with 3- glycidoxypropyl)-

trimethoxysilae (GPTS) to help with the grafting of GI without blocking the pore. The thin 

film silica supported by anodic aluminum oxide (AAO) membrane for enzyme 

immobilization was prepared as described in Chapter 3. In a nitrogen purged bag, 10.8 µL 

of GPTS was added to 6 mL of chloroform to produce a 0.0018 v/v % solution then 

sonicated for 10 minutes.  A solution containing 10 µL of the GPTS mixture, 4 mL 

chloroform and a silica membrane were added to a cylindrical via ((25mm x 95mm), then 

sonicated for 30 minutes while GPTS reacted with the silica surface. After the reaction, the 

excess chloroform/silane solution was poured off while in the nitrogen purged bag. The 

excess GPTS was removed from the functionalized silica membrane by sonicating the 

membrane in ethanol for 10 mins three times. After washing, the membrane was dried in 

the oven overnight at 80oC. The surface functionalization of silica membrane with epoxy 

silane GPTS was confirmed using Fourier transform infrared (FTIR) spectroscopy. Each 

spectrum was collected at a resolution of 4 cm-1 and 250 scans using a ThermoNicolet 

Nexus 470 spectrometer equipped with a (deuterated triglycine sulphate) DTGS detector.  

5.3.3 Glucose isomerase (GI) immobilization on the synthetic biomimetic membrane 

(boronic acid immobilized lipid filled silica membrane) 

 To add the immobilized enzyme and lipid carrier functionality to the composite 

membrane, the epoxy modified silica membrane was incubated in a solution of 10 mg of 

DPPC and 5 mg 4-(N-Boc-aminometyl) phenylboronic acid (BA) which were dissolved in 

CHCl3, and sonicated for 25 minutes in a cylindrical vial (25mm x 95mm). The above 

mixture was then blow-dried with nitrogen and was further dried under high vacuum for at 
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least 2 hrs. 2 mL of GI enzyme and 2 mL of PBS were then added to each membrane and 

sonicated at 47 °C for 1 hour to allow for the rehydration of lipid and immobilization of 

the GI. The sample was sonicated for another 15 minutes while cooling to 25°C. The excess 

lipid and GI were removed by washing the membrane with PBS three times. The 

morphology of the silica membrane before and after the immobilization of GI were 

characterized using FIB/SEM instrument (FEI Helios Nanolab 660). The samples were 

prepared by attaching them to double sided carbon tape on 15 mm aluminum mounts. The 

GI was also physically attached to the silica membrane by sonicating the unmodified silica 

membrane with 2 mL of GI enzyme and 2 mL of PBS for 1 hour. 

5.3.4 Glucose upgrading through composite membranes 

The conversion of glucose to fructose by immobilized GI through the silica thin film 

membranes was measured in a side by side diffusion cell (PermeGear, Hellertown, PA). 

The membrane was held into place by the chambers, which each hold 7 mL, being secured 

tightly together by a clamp allowing a 2 cm2 cross sectional area of the membrane to be 

exposed. The donor side of the cell was loaded with 7 mL of 2 g/L glucose solution in PBS 

buffer (0.9 M, pH 7.4). The receptor side was initially loaded with 7 mL of PBS buffer 

with no solute. The diffusion cell was then placed on a heater plate with temperature 

controlled at 50ºC. The concentration of glucose and fructose in the receptor side and donor 

sides were both sampled as a function of time. At sampling time, 200 uL sample from each 

side was taken and the concentration was test using high performance liquid 

chromatography (HPLC) with a Bio‐Rad Aminex HPX‐87H and a Shodex R01 refractive 

index detector. The mobile phase was degassed 5 mM H2SO4 fed at a rate of 0.4 mL/min, 

and the temperature of the column was at 50ºC. 
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5.4 Result and discussion  

5.4.1 Characterization of glucose isomerase immobilized thin film silica membrane 

Silica thin films with accessible 2-D hexagonally close packed (HCP) pore structure 

on porous support (AAO), which allows fast diffusion through the cylindrical pores,[33] 

were utilized as separation platform and glucose isomerase (GI) immobilization support. 

To graft GI on to the silica surface, silica membrane was modified with 3-

glycidoxypropyl)-trimethoxysilae (GPTS) to produce a terminal epoxy group, which can 

covalent bind with the amine group of enzymes (Figure 5.1). Figure 5.2 presents the 

membrane morphology before and after the immobilization of GI. As shown, the bare AAO 

support (Figure 5.2a) has a pore size of around 200 nm, which is an ideal support for silica 

thin film as it contributes minimal resistance to diffusion. A continuous silica thin film with 

10 nm pores was then formed on the surface of porous support (Figure 5.2b), which 

resulted in greater electron scattering in the SEM image and decrease in contrast. As 

reported in Chapter 3, porous substrate supported silica thin films with accessible 

continuous cylindrical channels were successfully synthesized. While the bare silica 

membrane showed a uniform clear surface, epoxy modified silica membrane with bound 

enzyme had many globular structures (Figure 5.2c), which confirmed the successful 

immobilization of GI to the silica surface. 
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Figure 5.2 SEM images of (a) AAO support; (b) silica thin film coated AAO; (c) glucose 

isomerase immobilized membrane. 

 

The grafting of functional groups to the thin film silica membrane was verified by 

Fourier transform infrared (FTIR) spectroscopy. Figure 5.3 shows the FITR spectra of bare 

silica, epoxy modified silica, covalently-bound GI silica and GI adsorbed silica (in the 

absence of epoxy modification for covalent binding of GI). As expected, for bare silica, a 

broad signal between 3000 cm-1 and 3600 cm-1 appeared due to existent of O-H vibration 

on silica surface, comprising Si-OH. After the epoxy functionalization, two bands at 2858 

cm-1 and 2930 cm-1 are due to the alkyl C-H stretching of propyl chain from GPTS.[149] 

The C-H bending also caused the signal at 1477 cm-1 and 1538 cm-1.  Furthermore, the O-

H signal between 3000 cm-1 and 3600 cm-1 increased after epoxy modification, since the 

hydrolyzed epoxy also contributed to the O-H stretching in addition to Si-OH. After 

covalent binding of GI to the epoxy modified silica membrane, a band at 1640 cm-1 

appeared, which was attributed to the C=O stretching in amide group.[150] An additional 

band at 3317 cm-1, representing the N-H vibration of amine appeared and overlapped with 

O-H stretching. This observations indicates that GI is immobilized to the silica membrane. 

For comparison, GI was also physical adsorbed to silica membrane, which resulted in the 

appearance of the band of C-H stretch on 2858 cm-1 and 2930 cm-1. However, after 

incubating the silica membrane with adsorbed GI in the water bath of 50oC (optimum 
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reaction temperature for GI is 60-70 oC) for 6 h, the C-H stretch disappeared, which 

suggested desorption of GI from the composite membrane (data not shown). Meanwhile, 

the characteristic peaks for GI were still presented for covalent bound GI silica membrane 

after the same water bath treatment (data not shown).  Thus, physical adsorption is too 

weak to retain the enzyme during desired operation conditions, while covalent binding 

stabilizes the immobilized enzyme and increases the reusability.[149] In order to quantify 

the enzyme amount immobilized on to silica membrane, the enzyme concentration change 

before and after the reaction with the membrane was measurement using protein assay. 

However, nearly no concentration change was seen, suggesting the immobilized enzyme 

amount is very small to detect. Effective method for quantifying small enzyme 

concentration is still under examination and it is necessary for comparing the activity of 

immobilized enzyme to the free enzyme.  

 

Figure 5.3 FTIR spectra of silica, epoxy modified silica, GI immobilized silica through 

covalent coupling with epoxy or physical adsorption. 
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To examine the effect of epoxy modification and GI immobilization on the transport 

property of the separation membrane, fructose permeability through the unmodified and 

modified membranes were measured. As shown in Figure 5.4, the epoxy modified and GI 

bound silica membrane presented similar fructose permeability compared to the bare silica 

thin film membrane. This observation suggests that the pore of silica membrane is not 

blocked by the epoxy group or the bound GI, which ensures the fast diffusion through the 

composite membrane. 

 

 

Figure 5.4 Fructose permeability through the bare, epoxy modified, and GI epoxy-

modified silica membrane at 50oC. 

5.4.2 Glucose conversion through glucose isomerase immobilized silica composite 

membranes 

The effect of immobilized GI on fructose yield and sugar transport was evaluated by 

analyzing the glucose and fructose concentration in the donor phase and receptor phase of 

the static diffusion cell for an initial solution concentration of 2 g/L glucose solution in the 

donor phase at 50oC.   The glucose and fructose concentrations were measured as a function 

of time for GI immobilized membranes for the silica composite membrane, the lipid-filled 
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silica composite membranes, and the lipid-filled silica composite membrane with 

immobilized boronic acid as a sugar carrier. Figure 5.5 illustrates the total fructose yield 

(sum of fructose on donor and receptor phase) as a function of time when glucose reacted 

with three different types of glucose isomerase immobilized membranes. The fructose 

production over time showed a linear relationship, which indicates that the reversible 

reaction can be neglected in a short reaction period due to the low product concentration 

.[148, 151] Thus, the immobilized enzyme activity was determined by linear regression of 

the product concentration profile. For lipid-BA filled silica, lipid filled silica and bare 

silica, the initial reaction rate of the immobilized GI were calculated to be 0.16, 0.13, 0.06 

mM/h respectively, for the first order reaction. This observation indicates that the glucose 

isomerase immobilized membrane showed significant activity and the combination of 

biocatalyst with separation membrane further improved the enzyme activity.  
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Figure 5.5 Fructose concentration in the static diffusion cell as a function of time through 

the GI immobilized membranes for the silica composite membrane (GI-silica), the lipid-

filled silica composite membrane, (lipid-GI-silica) and the lipid-filled silica composite 

membrane with immobilized boronic acid as a sugar carrier (Lipid-BA-GI-silica). The 

initial glucose concentration was on the donor side is 2g/L or 11.1mM. 

 

Glucose and fructose concentrations on the donor phase and receptor phase at 6 hour 

of reaction and diffusion are presented on Table 5.1.  For the bare silica membrane without 

lipid barrier, less glucose conversion was seen due to the more rapid transport of sugar 

between the donor and receptor phase, which results in a significant reduction of glucose 

concentration that can react with the enzyme on the donor phase. Meanwhile, the addition 

of lipid barrier significantly deceased the diffusion of glucose to the receptor phase, thus 

the fructose yield is enhanced by about two times. However, the fructose production 

reduced slightly due to the addition of boronic acid carrier, which facilitate the transport of 

both glucose and fructose.  Therefore more glucose is transported through the membrane 

by boronic acid than the new produced fructose due to the low isomerization rate which 
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result in much higher amount of glucose than fructose on the donor phase Thus, a tradeoff 

between the enzyme activity and the transport rate of the separation membrane need to find 

to improve the selectivity and product yield of the biocatalyst-separation integrated 

membrane.  

Table 5.1 Glucose and fructose concentrations in the donor and receptor sides of the static 

diffusion cell separated by the GI immobilized separation membrane at 6 hrs. (The initial 

glucose concentration was on the donor side is 2g/L or 11.1mM.) 

  Lipid-BA-GI-silica Lipid-GI-silica GI-silica 

Donor side 

(mg/L) 

Glucose 1643 1811 1026 

Fructose 130 165 31 

  

Receptor side 

(mg/L) 

Glucose 218 106 953 

Fructose 7 11 30 

Total Fructose 

yield 
 137 176 61 

 

5.4.3 Transport model development for biocatalyst and carrier-mediated separation 

integrated membrane at continuous flowing system 

The static diffusion cell results demonstrate the successful synthesis of the enzymatic 

membrane reactors with biomimetic separation, using the isomerization of glucose as a 

model system.   However, to optimize the performance of the enzymatic membrane reactor, 

the relationship between the enzyme activity and the product transport through the 

separation membrane on product yield and selectivity needs to be described. A 

mathematical model is developed to predict the purity and yield of the desired product 

under various conditions using a biocatalyst and carrier-mediated separation integrated 
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membrane.  This model can be used to focus further research efforts by identifying the 

most relevant transport and kinetic variables to achieve a high performance enzymatic 

membrane reactor using data acquired from static diffusion cell experiments and estimated 

from a model membrane reactor operating under continuous flowing system.  Thus, the 

effect of the rate of reaction (dictated by enzyme kinetics, extent of functionalization, 

immobilization method, etc)) and the effect of the relative permeability and overall flux 

through the membrane can be analyzed.   

The model presents a general case where two aqueous phases are separated by 

selective membrane with an immobilized enzyme layer on the membrane surface (Figure 

5.6). The substrate flows continuously through a well-stirred donor phase of the reactor. 

During the flowing, the reaction of the substrate is catalyzed by the enzyme that are located 

at the interface of the composite membrane. Thus the transport process can be divided into 

a reaction zone and a diffusion zone. In the reaction zone, the substrate is catalyzed by the 

immobilized enzyme while diffusing through the enzyme layer toward the membrane. 

After it reaches the interface between enzyme layer and separation membrane, the substrate 

and product diffuse into receiving phase. A continuous feed stream is also feed to the well-

stirred receiving phase to continuously remove the product. Thus the concentration of 

substrate (A) and product (P) in the reactor is the same as that of the outlet steam. 
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Figure 5.6 Concentration profile through the reaction-diffusion membrane (v: flow rate; 

C: concentration; N: species flux; A: substrate; B: product; d: donor phase; r: receiving 

phase; i: interface between enzyme layer and the membrane). 

 

In the bio-catalysis layer, the substrate is catalyzed by the immobilized enzyme while 

diffusing. Based on the mass balance in a differential element (Δ𝑉) (Eq.5.1), where N =

−𝐷𝐴 ∗
𝑑𝐶𝐴

𝑑𝑧
 is the substrate flux across the enzyme layer at position Z, A is the membrane 

area and 𝑟𝐴 = 𝒌𝟏𝐶𝐴 − 𝒌−𝟏𝐶𝐵 is the reaction rate. The reaction-diffusion equation (Eq.5.2 

and Eq.5.3) for the enzyme layer can be drived for the substrate (A) and product (B) : 

(𝑁 ∗ 𝐴)𝑧 − (𝑁 ∗ 𝐴)𝑧+Δz − 𝑟𝐴 ∗ Δ𝑉 = 0                                                                                        (5.1) 

𝐷𝐴 ∗
𝑑2(𝐶𝐴)

𝑑𝑧2 − 𝒌𝟏𝐶𝐴 + 𝒌−𝟏𝐶𝐵 = 0                                                                                                    (5.2)         

 𝐷𝐵 ∗
𝑑2(𝐶𝐵)

𝑑𝑧2 + 𝒌𝟏𝐶𝐴 − 𝒌−𝟏𝐶𝐵 = 0                                                                                               (5.3) 

where 𝐷𝐴, 𝐷𝐵 is the diffusion coefficient of the substrate and product in the enzyme layer, 

k1 and k-1 is the forward and reverse reaction rate constant. 
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At the interface between the donor phase and enzyme layer (Z=0), the partion 

coefficient between the acquous phase and enyzme layer is assumbe to be 1, thus following 

boundary conditions can be obtained, and the 𝐶𝐴,𝑑 and 𝐶𝐵,𝑑 are the substrate and product 

concentration on the donor phase. 

 𝐶𝐴(0) = 𝐶𝐴,𝑑; 𝐶𝐵(0) = 𝐶𝐵,𝑑                                                                                                         (5.4) 

At the interface between the enzyme layer and the separation membrane (Z=d), the 

mass flux leaves the enzyme layer shoule be the same as the mass flux enter the separtion 

membrane, which is assumed as a one-domensional steady state diffusion with constant 

flux across the separation membrane.Thus the boundary condaitons at Z=d can be 

expressed as: 

𝐷𝐴 ∗ (
d𝐶𝐴

𝑑𝑧
)𝒛=𝒅 = −𝑃𝐴 ∗ (𝐶𝐴(𝑑) − 𝐶𝐴𝑟);   𝐷𝐵 ∗ (

d𝐶𝐵

𝑑𝑧
)𝒛=𝒅 =  𝑃𝐵 ∗ (𝐶𝐵(𝑑) − 𝐶𝐵𝑟)          (5.5) 

where 𝑃𝐴 and 𝑃𝐵 are the mass transfer coefficient in the separtion membrane, 𝐶𝐴𝑟 , 𝐶𝐵𝑟 are 

the substrate and product concentation at the receptor phase. 

Besides, the whole system need to satifie the following mass balance for the donor 

phase (Eq.5.6 and Eq.5.7) and recaptor phase (Eq.5.8 and Eq.5.9) : 

𝑣1 ∗ 𝐶𝐴,0 − 𝑣1 ∗ 𝐶𝐴,𝑑 − 𝑁𝐴,𝑑 ∗ 𝐴 = 𝑣1 ∗ 𝐶𝐴,0 − 𝑣1 ∗ 𝐶𝐴,𝑑 + 𝐷𝐴 ∗ (
d𝐶𝐴

𝑑𝑧
)

𝒛=𝟎
∗ 𝐴 = 0        (5.6)               

0 − 𝑣1 ∗ 𝐶𝐵,𝑑 − 𝑁𝐵𝑑 ∗ 𝐴 = −𝑣1 ∗ 𝐶𝐵,𝑑 + 𝐷𝐵 ∗ (
d𝐶𝐵

𝑑𝑧
)

𝒛=𝟎
∗ 𝐴 = 0                                   (5.7) 

0 − 𝑣2 ∗ 𝐶𝐴,𝑟 + 𝑁𝐴,𝑟 ∗ 𝐴 = 0 − 𝑣2 ∗ 𝐶𝐴,𝑟 + 𝑃𝐴 ∗ (𝐶𝐴(𝑑) − 𝐶𝐴𝑟) ∗ 𝐴 = 0                          (5.8) 

0 − 𝑣2 ∗ 𝐶𝐵,𝑟 + 𝑁𝐵,𝑟 ∗ 𝐴 = 0 − 𝑣2 ∗ 𝐶𝐵,𝑟 + 𝑃𝐵 ∗ (𝐶𝐵(𝑑) − 𝐶𝐵𝑟) ∗ 𝐴 = 0                      (5.9)                 

Above mass balance are utilized to solve for the unknown parameters in the boundary 

conditions. Eq.5.6 – 5.9 can be transformed to Eq.5.10 – 5.13 correspondingly: 
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𝐶𝐴,𝑑 = (𝑣1 ∗ 𝐶𝐴,0 + 𝐷𝐴 ∗ (
d𝐶𝐴

𝑑𝑧
)

𝒛=𝟎
∗ 𝐴)/𝑣1                                                                      (5.10)                 

𝐶𝐵,𝑑 = 𝐷𝐵 ∗ (
d𝐶𝐵

𝑑𝑧
)

𝒛=𝟎
∗ 𝐴/𝑣1                                                                                               (5.11)                 

𝐶𝐴,𝑟 =
𝑃𝐴∗𝐴

𝑣2+𝑃𝐴∗𝐴
∗ 𝐶𝐴(𝑑)                                                                                                      (5.12)                 

𝐶𝐵,𝑟 =
𝑃𝐵∗𝐴

𝑣2+𝑃𝐵∗𝐴
∗ 𝐶𝐵(𝑑)                                                                                                        (5.13)                 

Substitutes Eq.5.10 – 5.11 to Eq.5.4 and Eq.5.5 correspondingly, the boundary 

conditions as a function of dependent variables can be derived: 

𝐶𝐴(0) = (𝑣1 ∗ 𝐶𝐴,0 + 𝐷𝐴 ∗ (
d𝐶𝐴

𝑑𝑧
)

𝒛=𝟎
∗ 𝐴)/𝑣1                                                                        (5.14) 

𝐶𝐵(0) = 𝐷𝐵 ∗ (
d𝐶𝐵

𝑑𝑧
)

𝒛=𝟎
∗ 𝐴/𝑣1                                                                                               (5.15)                 

𝐷𝐴 ∗ (
d𝐶𝐴

𝑑𝑧
)

𝒛=𝒅
= −𝑃𝐴 ∗

𝑣2

𝑣2+𝑃𝐴∗𝐴
∗ 𝐶𝐴(𝑑)                                                                              (5.16)  

𝐷𝐵 ∗ (
d𝐶𝐵

𝑑𝑧
)

𝒛=𝒅
= 𝑃𝐵 ∗

𝑣2

𝑣2+𝑃𝐵∗𝐴
∗ 𝐶𝐵(𝑑)                                                                            (5.17)  

Finally, Eq. 5.2, 5.3 and Eq.5.14 – 5.17 were utilized to solve for the profiles of 

substrate (𝐶𝐴) and product (𝐶𝐵) concentration, and the derivative of substrate (
d𝐶𝐴

𝑑𝑧
) and 

product (
d𝐶𝐵

𝑑𝑧
) across the membrane using MATLAB solver (bvp4c) for the one-

dimensional boundary value problems of ordinary differential equation (ODE). Then the 

substrate and product concentration on the donor and receptor side can be calculated using 

Eq.5.10 – 5.13 to evaluate the membrane performance The MATLAB coding is included 

in Appendix B. 
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In the model discussed above, parameters 𝑘1, 𝑘−1, 𝐷𝐴, 𝐷𝐵 , 𝑑, 𝑃𝐴, 𝑃𝐵, 𝐶𝐴,0, 𝑣1, 𝑣2, 𝐴 is 

involved. Among them 𝐶𝐴,0, 𝑣1, 𝑣2, 𝐴 are the operating parameters of the system, which can 

be manipulated independently as needed. And the rest is related to the properties of 

composite membrane, which depends on who the membrane is prepared. First of all, the 

mass transfer coefficient (𝑃𝐴, 𝑃𝐵) across the selective speration membrane (boronic acid 

immobolized lipid filled membrane ) for the substrate (A, glucose ) and product (B, 

fructose) is obtained by measuring their diffusion through the separation membrane 

without enzym layer in the a static diffusion cell which is discussed in Chapter 3, and 

values are calculated to be 0.21 µm/s for both glucose and fructose. The enzyme layer  

thickness (reaction-diffusion zone), d, can be estimated by assuming the immobolized 

enyzme (glucose isomerase )molecules are sphere shape, which has a moleuclar weight of 

120,000 g/mol and diamter of 5.1 nm.[152] The layers or thickness of enzyme immoblized 

then can be calcualated from the enzyme loading amount on the membrnae (𝐶𝐸), assuming 

a pororisty of 0.5 fo the enzyme layer.[153, 154]. The the enzyme layer thickness is 

estimated to be 200 nm, based on the average value reported in literature, [153, 154] in the 

absence of experimental data for this system.  The species diffusion coefficient (𝐷𝐴, 𝐷𝐵) in 

the enzyme layer is assume to be the same as in the water, because the gluocse isomerase 

is water soluble and the pores of the enzyme should be filled with water. So the diffusion 

coefficient of frucose and glucose are 6.7 x 10-6 cm2/s. The reaction rate (𝑘1, 𝑘−1) of 

enzyme immobolized membmrane is quantified by the measuring fructose prodcution as a 

function of time by incubating the membrane in a glucose solution , and 𝑘1, 𝑘−1 are both 

calculated to be 0.0 15 h-1 for the first order reversible reaction. 
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First of all, the proposed model is verified by predicting the glucose and fructose 

profile on the donor and receptor side for a static diffusion cell and is compared to 

experimental data discussed previously in this chapter. Figure 5.7 shows the model 

prediction of glucose and fructose concentration profile on the donor side and receptor in 

a static diffusion cell through the lipid-filled silica composite membrane with immobilized 

boronic acid as a sugar carrier (Lipid-BA-GI-silica) is consistent with experimental 

measurement. Thus, the model proposed and the assumption made are reasonable and can 

be further applied to a continuous flowing system and examine the effect of membrane 

properties (enzyme layer and membrane permeability) on the separation efficiency of the 

membrane.  

 

 

 

 

Figure 5.7 Model prediction and experimental measurement of glucose (a) and fructose 

(b) concentration in the static diffusion cell as a function of time through the lipid-filled 

silica composite membrane with immobilized boronic acid as a sugar carrier (Lipid-BA-

GI-silica). The initial glucose concentration was on the donor side is 2000 mg/L. 

 

(a) (b) 
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To estimate investigate the role of enzyme reactivity and permeability on the 

productivity and selectivity for the membrane operated in a continuous flowing system. 

Following dimensionless numbers are defined: 

𝑇ℎ𝑖𝑒𝑙𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 =
𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 
= 𝜑2 =

𝑘1∗𝑑2

𝐷
                                                                       (5.10) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛼 =
𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
=

𝑃𝐵

𝑃𝐴
                                   (5.11) 

 

The Thiele modulus (Eq.5.10) defines the relative relation between the reaction rate and 

diffusion rate in a reaction-diffusion zone (enzyme layer), thus this parameter describes the 

whole processes happened in the enzyme layer, which important for quantifying the effect 

of properties change in the enzyme layer on the whole membrane performance. Figure 

5.8a presents the predicted selectivity (fructose over glucose) on the receptor phase as a 

function of the value of Thiele modulus. The selectivity increases as the values of Thiele 

modulus increases. Besides, the increase of selectivity is less significant, when the value 

of Thiele modulus is below 10-6, where the diffusion is dominating. Meanwhile, selectivity 

dramatically increases to about 30 when the value of Thiele modulus is increased to 

0.00025, where the reaction rate is becoming dominating. Figure 5.8b presents the fructose 

profiles in the enzyme layer when the value of Thiele modulus is 2.5 ×10-5. As shown, the 

fructose concentration first increases then decreases, suggesting the reaction and diffusion 

are competing. Thus, the model result here suggest that is important to achieve a trade-off 

between the enzyme activity and diffusion in the enzyme layer to achieve desired 

membrane performance. Factors like enzyme immobilization amount, thickness of enzyme 

layer, porosity of the enzyme layer are all related physical parameters that will affect the 

enzyme activity and diffusion, thus the membrane selectivity.  
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Figure 5.8 (a) Model prediction of selectivity (fructose over glucose) on the receptor phase 

as a function of the value of Thiele modulus. (b) Fructose profiles in the enzyme layer 

when the value of Thiele modulus is 2.5 ×10-5. 

 

The relative permeability (Eq.5.11) defines the relative diffusion rate of product (B) 

and the substrate (A), which is critical for membrane selectivity to the product over the 

substrate.  Figure 5.9 illustrates the model predication of selectivity (fructose over glucose) 

on the receptor phase as a function of relative permeability under given Thiele modulus. 

As shown, for a given Thiele modulus value (2.5 ×10-5 or 2.5 ×10-4), the selectivity 

increases as the relative permeability increases which is consistent with more fast transport 

of product than substrate and results in increasing selectivity. Furthermore, for high Thiele 

modulus value (2.5 ×10-4), the effect of the relative permeability is more significant, 

suggesting the reaction and diffusion in the enzyme is dominating the separation process. 

Although, the enzyme layer has more significant effect on the membrane performance, the 

role of the selective separation membrane cannot be neglected. Since the enzyme layer is 

dominating, it may be better to investigate the selective separation membrane separately to 

observe sensitive change for different factors specific to affect the separation membrane 

such the barrier structure, affinity to the carrier, and carrier concentration etc. 

(a) (b) 



100 
 

 

Figure 5.9 Model predication of selectivity (fructose over glucose) on the receptor phase 

as a function of relative permeability under given Thiele modulus.  

5.5 Conclusion  

In this work, biocatalyst is successfully immobilized on carrier-mediated separation 

membrane for the upgrading and recovery of dilute aqueous solute. Using glucose 

isomerase (GI) as a model enzyme and boronic acid as carrier, the conversion of glucose 

to fructose and separation was demonstrated, which indicates that it is feasible to achieve 

low cost and high purity product yield by combining the reaction and selective separation 

in one single membrane process. However, due to the high complexity of the reaction-

separation integrated process, parameters involved in two processes need analysis to 

achieve high selectivity and production. A mathematical model that describes the chemical 

reaction and selective mass transfer through the composite membrane is proposed. The 

revealed that the Thiele modulus which decries the reaction and diffusion process is a 

dominating factor for the membrane performance. Also the relative permeability between 
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the product and substrate is shown to affect the selectivity. Thus, the model is expect to an 

useful tool for predicting the purity and yield of the desired product and optimizing 

operation conditions for the biocatalyst and carrier-mediated separation integrated 

membrane. 
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Chapter 6: Size-Dependent Loading and Mobility of RNA in Porous Silica 

Nanoparticles 

6.1 Abstract  

Porous silica nanoparticles (pSNPs) are promising carriers for the delivery of  nucleic 

acids to cells due to their tunable pore morphology, high loading capacity, biocompatibility 

and ease of surface functionalization For example,  the delivery of  double-stranded 

(ds)RNA to insects to achieve effective RNA interference (RNAi) is proposed as an 

effective and highly specific pest management strategy. With the advent of nanoparticle 

synthesis techniques that provide pore sizes sufficient for the loading of RNA in the pores 

(and not simply on the external surface of the particle), knowledge of the effect of pore 

confinement on RNA loading and release is required for the design of effective delivery 

vehicles.  The loading behavior of dsRNA (84 bp and 282 bp dsRNA of Spodoptera 

frugiperda) with the pSNP of varying pore size (nonporous, 3.6 nm, 7.4 nm and 11.8 nm) 

and diffusivity (mobility) of the dsRNA in RNA-loaded pSNPs were investigated. Large 

diameter amine-functionalized silica nanoparticles (~10 µm) were used to provide directly 

visualize of fluorescently labeled dsRNA loading and exchange by confocal laser scanning 

microscopy. It was found that the 282 bp dsRNA can’t be loaded to 3.6 nm pores while 84 

bp dsRNA can, revealing that the relative dimension of dsRNA length to the pore size 

affected the dsRNA encapsulation efficiency. Fluorescence Recovery after Photobleaching 

(FRAP) indicated that the dsRNA mobility at the surface and in the core of dsRNA-loaded 

pSNPs was similar and increased from 0.0002 to 0.001 µm2/s as pore size increased from 

3.6 nm to 11.8 nm for 84 bp dsRNA. The mobility at same pore size furthered reduced for 
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282 bp dsRNA   However, the mobility of dsRNA with varying lengths on nonporous 

materials was not detectable, which suggest that it is important to have porous structure to 

serve as a “sink” in providing a mobile network of dsRNA on the surface of the particle. 

This work successfully demonstrates the loading of RNA on functionalized pSNPs and 

identified factors that affects RNA loading and releasing, which provides basis for the 

delivery of RNA-loaded silica particles to insects.  Besides, the pSNPs saturated with 

dsRNA can exchange dsRNA with the surrounding solution, suggesting, the mobility of 

dsRNA in the pores have a functional effect on delivery of dsRNA to insects. 

6.2 Introduction  

The development of gene therapy technology, which delivers foreign nucleotides 

(oligonucleotides, siRNA, and DNA) to the targeted sites in the living cells to inhibit the 

expression of gene of interest to achieve the treatment of diseases,[155]  has bring 

numerous opportunities for life science. Among them, RNA interference (RNAi) one of 

the popular branches. For example, insect pest management can be improved by delivering 

the specifically designed small interfering RNA (siRNA) to the cell to suppress the targeted 

genes which is related to the insect fitness or mortality.[156] However, the application of 

RNAi is often limited by the delivery efficiency of the nucleic acids to the targeted sites 

for therapy. Because the nucleic acid itself are easily degraded by nuclease  and cannot 

directly pass through the cell membrane, as they both have negative charge.[155] 

Therefore, identifying efficient carrier to protect and deliver the nucleotides to the targeted 

sites of insect cells has become the key challenge to achieve effective gene therapy.  

Porous silica nanoparticles (pSNPs) have been investigated as carriers of nucleic acids 

because of their tunable pore morphology, large surface area, biocompatibility and ease of 
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surface functionalization, porous silica nanoparticles.[157, 158] Surface modification is 

used enhance the nucleic acid loading into the pSNPs, cell uptake, and targeting 

efficiency.[159] Nucleic acid loading is achieved by functionalizing the silica surface with 

positive charge using aminosilanes, metal ions, cationic polymers and peptides to adsorb 

the negatively charged nucleic acid through covalent or electrostatic interactions. [155, 

160] To reduce pSNPs aggregation and toxicity to damage the cell membrane during the 

delivery, surface coating of polyethyleneimine polymers (PEIs)[161, 162] or supported 

lipid bilayers[163] on the siRNA encapsulated pSNPs to eliminate the electrostatic 

interactions. Meanwhile, targeted moieties such as ligands or peptides are incorporated to 

the surface coating to enhance the specific binding to the targeted cells.[157]  

While pSNPs have been highly investigated for protein and gene delivery, only 

recently has reliable synthesis of larger pore pSNPs allowed for direct loading of RNAs 

into the pores, providing control of loading/release characteristics as well as protection to 

the RNA.[164, 165]  As a nucleic acid delivery vehicle, the pores of pSNPs are envisioned 

to allow the loading of large amount of nucleic acids and provide protection during the 

delivery to the target cells.  Initial studies of nucleic acid delivery with pSNPs used 

nonporous particles or particles with small (2-2.5 nm) pores relative to the dimensions of 

the nucleic acids (17-21 bp and dsRNA with diameter of 3 nm).[166-168]  Recently, the 

loading of nucleic acids with different lengths (20 bp siRNA, 20 bp DNA, 60 pb DNA and 

90 DNA) into silica particles with pore size of 8 nm was throughout studied.[169] 

Steinbacher et al.[170] also reported effect of pores size (4 nm, 8 nm, and 15 nm) and extent 

of amine functionalization on the releasing and loading of siRNA (20 bp, 6nm long* 3 nm 

diameter).  The benefits of pores for loading nucleic acids and protection from nucleases 
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during delivery to the cell is unclear. It is generally accepted that the interaction of dsRNA 

loaded on mesoporous silica particles can be illustrated as in Figure 6.1 where the RNA 

appears as a string in the pores.[171]   

Despite the rapid development of delivery strategy of nucleic acid by pSNPs, 

improving the loading capacity of pSNPs and controlling release of the siRNA are of 

particularly importance. In this context, fully understanding the siRNA loading behavior, 

interaction between siRNA and functionalized pSNPs, and diffusion dynamics of siRNA 

inside particles are essential for designing efficient siRNA carriers. Considering the of 

relative dimension of siRNA to the pore of silica particles, the pore sizes and lengths siRNA 

are important factors affecting the RNA loading and mobility in pores. The goal of this 

work is to demonstrate the loading, protection and release of siRNA in porous silica 

nanoparticles. Also, dsRNA with distinct lengths difference (84 bp and 282 bp) from 

inhibitor of apoptosis (IAP) genes of Spodoptera frugiperda and silica with various pore 

sizes (3.6 nm, 7.4 nm, 11.8 nm) are used to cover most possible combination of RNA with 

RNA.  
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Figure 6.1 Scheme of dsRNA loading into amine group functionalized micron-sized 

porous silica nanoparticles (pSNPs), modified from Na et al. [172] 

Micron-sized pSNPs (SBA-15 type) with controllable pore size (2-12 nm) large 

enough (~10 µm) for confocal imaging were synthesized by hydrothermal aging with 

Pluronic surfactant P123 and cetyltrimethyl-ammonium bromide.[100] The SEM image 

(Figure 6.1) confirms their spherical shape and large diameters between 5 µm and 15 µm.  

Our previous study demonstrated that the particles has accessible ordered mesoporous 

structure and interconnected pores throughout the particles as characterized by XRD and 

FIB/SEM,[64] which allows the encapsulation of dsRNA. The template extracted silica 

particles were further functionalized with amines using (3-aminopropyl) triethoxy silane 

(APTES). Within our group, we found that the grafting location of amine group on the 

silica particles by APTES was controllable. 10 mins of reaction time was found to only 

graft the amine groups on the exterior surface of the particles, while 20 mins functionalized 

both the exterior particle surface and the surface of the pores.  Previous studies[170]  
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indicate that  low extents of amine functionalization (only the exterior particle surface or 

lightly functionalized pores) result in dsRNA adsorption only on the particle surface, which 

does not offer efficient protection of dsRNA during delivery RNases. Thus, amine 

functionalization procedure of Schlipf et al.[173] was used to achieve functionalization of 

906.0 mg APTES/g particles to providing a network of amines corresponding to greater 

than monolayer coverage.  For comparison, nonporous micron-sized silica particles that 

allow only for dsRNA on the surface were synthesized by a method adapted from 

Nakabayashi, Yamada [174] and also amine functionalized.  The loading of dsRNA with 

various lengths into silica particles as a function of pore sizes was investigate by confocal 

laser scanning microscopy. Fluorescence Recovery after Photobleaching (FRAP), was 

used the diffusion dynamics of the dsRNA at the particle surface and the core of the 

particles as a function of the pore sizes (3.6 nm, 7.4 nm, 11.8 nm), which provides evidence 

for protection and release of functional dsRNA. 

6.3 Experimental methods 

6.3.1 Materials 

Tetraethyl orthosilicate (TEOS, 98%), cetyltrimethylammonium bromide (CTAB, 

99%), polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO triblock copolymer 

(P123, average Mn ~5,800), (3-Aminopropyl)triethoxysilane (APTES, 99%) potassium 

phosphate buffer tablets, fluorescamine (98%) were supplied by Sigma Aldrich.  Ethanol 

(anhydrous) was purchased from DLI and hydrogen chloride (HCl, 6N), ammonium 

hydroxide (NH4OH 29%solution), sodium hydroxide (NaOH, 99%) were purchased from 

Fisher Scientific. The dsRNA used in this work is supplied by Dr. Bruce Webb’s lab in 

department of Entomology. 
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6.3.2 Synthesis of micron-sized porous silica nanoparticle (pSNP) 

Spherical SBAS (Santa Barbara Amorphous Batch) materials were prepared using 

Schlipf’s synthesis procedure.[63] Initially, 0.465 g of Cetyltrimethylammonium bromide 

(CTAB) dissolved in 20 mL of deionized water was added to 3.10 g poly (ethylene glycol)-

block-poly (propylene glycol)-block-poly (ethylene glycol) (P123). This solution was 

placed in a water bath at 30 °C and stirred vigorously while 7.8 mL of 200 proof ethanol 

and 45.9 mL of 1.5 M HCl were added. After the P123 completely dissolved, 10 mL of 

tetraethoxysilane (TEOS) was slowly added drop wise. This solution was mixed for 2 h. 

At the end of 2 h, the solution was poured into a Parr 4748 Teflon lined bomb, which had 

been acclimated to the hydrothermal aging temperature, between 60°C and 120°C, prior to 

use. The sample was kept at the desired hydrothermal aging temperature in an oven for 3 

days. At the end of the 3 day period, the sample was removed from the bomb and mixed in 

a high speed mixer to homogenize the solution. After homogenization, the sample was 

filtered and rinsed with deionized water. After filtration, the sample was placed into a 

single walled Whatman cellulose extraction thimble, and the surfactants were removed 

using Soxhlet extraction with 200 mL of 200 proof ethanol over 24 h. The pore dimension 

(5-12nm) increases as the hydrothermal aging (60-120°C) temperature increase.  

6.3.3 Synthesis of micron-sized nonporous particles 

Spherical up to 6 micron sized nonporous particles were synthesized using electrolyte-

added semi-batch synthesis procedure developed by Nakabayashi, Yamada [174] 150 mL 

of 0.5 M TEOS in ethanol solution (solution-I) was fed continuously using a Masterflex 

L/S PTFE-tubing pump (Barnant Co., Barrington, IL) for the semi-batch particles synthesis 

(4.7 mmol TEOS/h for 16 h) to 300 mL of ethanolic solution (solution-II) of 5 M water, 1 
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M NH3 (20.2 mL of 29% NH4OH solution) and 3 mM KCl. Temperature of the solution-

II was maintained at 35 ºC throughout the addition of solution-I and feeding tube outlet 

was cleaned every 30 min to prevent clogging. Particles were separated by centrifugation 

(5000 rpm) and washed with ethanol and water. Smaller particles (<3 micron) were 

separated out by repeated gravitational setting (1h) and decantation followed by ultra-

sonication. 

6.3.4 Nitrogen adsorption 

Average pore diameter, pore size distribution and surface area were estimated from 

nitrogen sorption conducted at 77 K using Micromeritics TriStar 300. Samples were 

degassed at 120ºC for a minimum of 4 h under flowing dry N2 gas before the nitrogen 

sorption experiment. The specific surface area was estimated using the Brunauer, Emmett 

and Teller (BET) isotherm, and average pore diameter and pore size distribution were 

estimated by the method of Barrett, Joyner and Halenda (BJH) for adsorption branch. 

6.3.5 Amine functionalization for heavily functionalized particles 

Amine functionalized particles were obtained by condensing (3-Aminopropyl) 

triethoxysilane (APTES) on particle surface using a modified version of the methods 

reported in literature. [175, 176] 200 mg of the particles (nonporous or any of the porous) 

was sonicated in 25 mL of dry ethanol for 15 min and uniformly dispersed solution 

obtained. 0.5 mL of APTES was added drop wise under constant stirring and the solution 

kept stirring overnight in closed environment at room temperature. Particles were 

centrifuged at 17,000 rpm followed by repeated washing with dry ethanol and cured at 84 

ºC overnight. After curing, particles were stirred in excess ethanol for 24 hours to remove 
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any remaining loosely bound amine groups. The functionalized particles were again 

washed 3 times with dry ethanol and dried in oven at 84 ºC. 

6.3.6 Amine quantification 

The amount of amine group on particle surface was determined by a modified version 

of the previously reported method,[177] where primary amine group in aminosilanes, 

following dissolution in alkaline solution, reacts with fluorescamine to produce fluorescent 

pyrrolinone. [178] 30 mg of functionalized particles were dissolved over an 8 hour period 

in 30 mL of 0.02 M NaOH solution at room temperature under vigorous stirring. 100 μL 

of this solution and 1.0 mL of 1.0 mM fluorescamine in acetone solution were mixed with 

2.0 mL of PBS solution at pH 7.4. Maximum fluorescent intensity of this solution was 

measured at emission wavelength of 480 nm after excitation at 366 nm using Varian Cary 

Eclipse fluorescent spectrophotometer with both excitation and emission slits held at 5 nm. 

Calibration curve was prepared using same procedure by dissolving known amounts of 

APTES and 30 mg of non-functionalized pSNPs. 

6.3.7 Reversibility of dsRNA loaded on the silica nanoparticles 

To visualize dsRNA saturated silica nanoparticles exchanging dsRNA with 

surrounding, firstly, 1 µL of unlabeled dsRNA (13 µg/µL, 84bp) was mixed with 5 µL of 

11.8 nm porous nanoparticles (10 mg/mL) and 44 µL of RNase-free water. The mixture 

was incubated on shaker table at speed 5 for 1 hour at room temperature. After 1 hour, the 

dsRNA loaded-particles was washed with RNase-free H2O three times to remove excess 

RNA. After washing, same amount of labelled RNA was added to the particles, and 

incubated in the solution for 10 mins and 40 mins before confocal imaging. 
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6.3.8 Confocal imaging and Fluorescence Recovery after Photobleaching 

1 µL of fluorescein labelled dsRNA (12.7 µg/µL) was mixed with 5 µL of porous or 

nonporous silica nanoparticles (10 mg/mL), 44 uL of RNase-free water and incubate on 

shaker table at speed 5 for 1 hour at room temperature. After 1 hour, the dsRNA loaded-

particles was washed with RNase-free H2O three times to remove excess RNA. For 

fluorescence imaging, the labelled RNA was excited at 488 nm with an argon laser at 8% 

laser power for imaging and emission was collected between 500 nm and 600 nm using 

confocal laser scanning microscopy (Leica TCS SP5). Experiments were performed at 

20°C over a x63/1.3 oil immersion objective. For FRAP experiments, one image was 

captured prior to bleaching, a 500 nm diameter disk was bleached once at 75% laser power, 

5 images were captured at the fastest capture rate (1.3 seconds), 5 images were captured at 

3 second intervals and finally 20 images were captured at 10 second intervals. 

6.4 Results and discussion 

6.4.1 Amine functionalization of silica particles for RNA loading 

The pore size and surface area of the particles before and after amine functionalization 

was characterized by nitrogen adsorption (Table 6.1).  The particle pore size and surface 

area before and after amine functionalization characterized by nitrogen adsorption. The 

introduction of amine groups caused the reduction of mean pore diameter and BET surface 

area, consistent with the incorporation of the amine groups in the pores of particles. 

Micron-sized nonporous silica particles were also amine modified. Due the small surface 

area of nonporous silica particles comparing the mesoporous silica, the amine amount used 

to functionalizing the nonporous was carefully controlled to avoid overdose. The non-



112 
 

functionalized silica particle is named as pSNP-pore size. And the amine functionalized 

silica particles is named as Amine-pSNP-pore size.    

Table 6.1 Brunauer–Emmett–Teller (BET) specific surface area, amount of amine grafted 

and % of monolayer silica surface coverage by amine group for amine functionalized 

micron-sized nonporous and porous particles. 

Particle type 

Average pore 

diameter 

(nm)a 

BET surface 

area (m2/g) 

mmol 

APTES/g 

particles 

% of 

monolayer 

coverage 

Nonporous - 0.54b - - 

Amine-Nonporous - 0.54 0.0065 364 

pSNP-3.6 
3.6 ± 1.4 551 - 

- 

Amine-pSNP-3.6 
3.0 ± 0.9 191 2.19 

233 

pSNP -7.4 
7.4 ± 1.1 668 - 

- 

Amine-pSNP -7.4 
7.2 ± 1.2 400 1.93 

170 

pSNP -11.8 
11.8 ± 2.6 367 - 

- 

Amine-pSNP -11.8 
11.3 ± 3.0 319 1.64 

212 

aThe average and range were determined from the peak and full width at half maximum (FWHM) of the 

BJH pore distribution, respectively; bSurface area determined by considering all particles as 5 µm diameter 

spheres; 

The extent of amine modification was determined from dissolution of the particle, 

followed by reaction of fluorescein to produce fluorescent pyrrolinone. [173, 178] The 

extent of amine functionalization reported on a per gram particle basis decreases with 

increasing pore size (Table 6.1) Bauer et al. reported different types of aminosilane 

grafting on silica support based on trace amount of water presents during hydrolysis 

process, where linear cross-linked oligomeric structures or monolayer type coverage form 

on a hydrophilic surface (silica), whereas neutral or hydrophobic surface induces isolated 
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tridental aminosilane grafting (less than monolayer coverage).[179] Ritter et al. [180]  

measured the amine groups accessibility of SBA-15 silica particles with 7.6 nm pores 

directly by the post-synthesis reaction of amines with fluorescein isothiocyanate (FITC), 

and found the amine on the accessible mesoporous is about 0.33 mmol FITC/g particles 

for total amine group density of 1.02 and 1.41 mmol amine/g particles. This indicates the 

mesoporous is completely and uniformly covered by the amine and   the rest of the amine 

groups were grafted in the intrawall microspores, which is inaccessible to the FITC. The 

lowest amount of amine incorporation (1.64 mmol amine/g particles for pSNP-11.8) in this 

work is higher than the total amine group density of 1.02 and 1.41 mmol amine/g particles, 

therefore the mesopores walls of silica is completely cover by amine groups and results in 

uniform functionalization on the pore surface for the particles present in the Table 6.1. 

6.4.2 Loading of dsRNA to silica particles and its mobility   

To investigate effect of dsRNA length on loading, protection and release on pSNPs of 

various pore size using confocal laser scanning microscopy, varying lengths of dsRNA 

were templated from inhibitor of apoptosis (IAP) genes of Spodoptera frugiperda 

fragments using T7 polymerase promoter regions.  To visualize the dsRNA loading and 

uptake by cells, fluorescent nucleotides were labelled at the end of strands of the dsRNA. 

Figure 6.2 shows the confocal images through the middle cross section of the silica 

particles as a function of fragment length (84 bp and 282 bp) and pore size (nonporous, 

3.6nm, 7.4nm and 11.8nm) after incubating in the labelled dsRNA solution at a ratio of 

0.25 mg dsRNA /mg particles for 1 hours. A halo of fluorescence at the surface of the 

spherical particle indicates that the dsRNA is adsorbed to the surface but excluded from 

the pores (and also observed in the case of nonporous particles for both lengths of dsRNA).  
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Continuous fluorescence throughout the particle indicates that the dsRNA is present at both 

the surface and also in the pores. The 84 bp dsRNA was present throughout 3.6, 7.4 and to 

11.8 nm pores of the pSNPs. In contrast, the 3.6 nm pores are inaccessible to the 282 bp 

RNA, which can reside in the 7.4 and 11.8 nm pores.    

Pore size 84 bp dsRNA 282 bp dsRNA 

Nonporous 

  

3.6 nm 

  

7.4 nm 

 

   

11.8 nm 

  

Figure 6.2 Confocal images through the middle section of silica particles as a function of 

fragment length and pore size. 

 

The 84 bp and 282 bp RNA are estimated to have a diameter of about 3 nm and lengths 

of 25 nm, 85 nm respectively.[181] The fact that dsRNA can fit into the pores far smaller 

than its lengths suggests the dsRNA inserted into the pores like a hard rod (Figure 6.1). Li 
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et al. [171] measured the hydrodynamic size change of silica particle with 20 -30 nm pore 

depth and diameter of 3 nm after the interaction with 50 nm long DNA and found that the 

hydrodynamic size of particles increased from 130 nm to 220 nm. This observation was 

consistent with the insertion of DNA into the length of these short pores,  leaving  the 

remaining DNA outside of the pore and  contributing to the hydrodynamic size increase of 

the particle.[171]  The depth of the pores and their tortuous pathway may explain why the 

84 bp dsRNA fits into the 3.6 nm pores while the 282 bp dsRNA is excluded from the 

pores, although they have the same diameter. When the longer dsRNA fails to enter the 

pores, it can adsorb to the particle surface and blocks the pores. In the case of the 84 bp 

dsRNA in the 3.6 nm pores, one molecule layer can fit into pores. For larger pores, a 

geometric pore-filling model based on the dsRNA adsorption isotherms was developed to 

predict the maximum numbers of dsRNA can accommodate into the pores, [170, 182]  

which is useful for predicting particles capacities as functions of pore sizes.  

The interaction of dsRNA with the pSNP and the accessibility of the pores of the pSNP 

can be described from the diffusivity (mobility) of the dsRNA in dsRNA-loaded pSNPS.  

Using FRAP, the effect of both pore size (nonporous, 3.6 nm, 7.4, and 11.8 nm diameter) 

and length of dsRNA (84 bp and 282 bp) on the diffusivity at the surface and in the core of 

dsRNA-loaded pSNPs has been examined. For FRAP experiments, a 500 nm diameter disk 

at the surface or the core of dsRNA-loaded pSNPs was bleached by high intensity laser 

beam vertically passing through the focal plane of interest. The fluorescence recovery of 

the bleached spot was collected as a function of time and fitted to a one dimensional radial 

diffusion model previously reported to extract oligonucleotides diffusivity inside the 

porous network of silica particles. [183]  
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Figure 6.3 presents the dsRNA diffusivity as a function of fragment length (84 bp and 

282 bp), pore size (nonporous, 3.6nm, 7.4nm and 11.8nm) and dsRNA location (external 

surface (cap) and the porous core of the particle) after incubating the pSPNs in the labelled 

dsRNA solution at a ratio of 0.25 mg dsRNA /mg particles (higher than saturation 

concentration) for one hour. As shown, regardless of dsRNA length, the dsRNA diffusivity 

increased as the pore size increased, as larger pore size allows to accommodate more 

dsRNA molecules in one single pore. Overall, the mobility of 282 bp dsRNA was smaller 

than that of 84 bp dsRNA, which is consistent with the assembly of dsRNA inside the pores 

and longer dsRNA need to diffuse through longer path. In addition, when the dsRNA was 

disturbed throughout the particles (corresponding to Figure 6.2), the diffusivity measured 

at the surface and core of the particle was similar. This is consistent with a mobile network 

of dsRNA throughout the particle, and was also observed in our previous study of lipid 

diffusivity in lipid-filled pSNPs.[64]  However, when dsRNA only adsorbed to the particles 

surface (both lengths of dsRNA on nonporous particle and 282 bp dsRNA in 3.6 nm pores), 

the mobility is not measurable at the particle surface, as there is limited amount of dsRNA 

on the surface to diffuse to the photobleached spot without the dsRNA supply from the 

pores. Thus, loading sufficient dsRNA into porous particle is important for creating a 

mobile dsRNA network, which has important implications to design strategies for dsRNA 

protection and release from porous particles. 
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Figure 6.3 84 bp and 282 bp dsRNA diffusivity as a function of pore size and dsRNA 

location (cap and core) at a loading concentration of 0.25 mg dsRNA /mg particles. The 

role of RNA concentration on mobility is important designing dsRNA loading strategy.   

 

For the most mobile system (the smallest dsRNA with the largest pores), the 

fluorescence halo formed at low concentration (0.07 mg dsRNA /mg particles) and the 

dsRNA penetrated into the pores when the concentration increased to 0.13 mg/mg and 0.25 

mg/mg (Figure 6.4). Correspondingly, the mobility of dsRNA loaded in pores increased 

with dsRNA concentration while the mobility of surface adsorbed dsRNA was not 

detectable. Thus, a initial dsRNA concentration sufficient to achieve maximum loading of 

dsRNA into the porous network is required to achieve high mobility on amine 

functionalized silica with high (greater than monolayer) surface coverage.  
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Figure 6.4 Loading (confocal images) and corresponding diffusivity of 84 bp dsRNA in 

pSNPs of 11.8 nm pores with varying loading concentration.  

 

The diffusivity of 21 bp DNA oligonucleotides when adsorbed on the APTES 

functionalized glass surface was reported to be around 0.2 µm2/s,[184] which is about two 

orders magnitude higher than the values reported here. However, it is well known that 

molecular in liquid-filled pores of molecular dimensions have reduced diffusivities due to 

the steric restrictions.[185]  In fact,  these measured diffusivities of dsRNA confined in 

pores and at porous surfaces are  comparable to the diffusivity of large molecules such as 

lipid, dyes, protein inside mesoporous materials, which is on the scale of 0.001 um2/s. [64, 

186] In addition, Lu et al.[187] also reported pore-size dependent diffusivity of porcine 

pancreatic lipase (PPL) encapsulated in mesoporous silica particles, where diffusivity of 

PPL in 9.7 nm pores was 42 times higher than that of 5.6 nm pores. In contrast, the mobility 

of 84 bp dsRNA mobility in 11.8 nm pores is only 4 times higher than that of 3.6 nm pores. 

This may result from the differences in the relative dimensions of the PPL and dsRNA. 
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The dimensional sizes of PPL is 2 nm × 4.5 nm, which allows it pack closely in 9.7 nm  

pores comparing to 5.6 nm pores, meanwhile the assembly of 48 dsRNA  (3 nm × 25 nm) 

is restricted by its length.  

In order to understand if mobility contributes to a functional aspect of RNA delivery, 

such as RNA release from the particle, the reversibility of dsRNA loading on the 

mesoporous SNPs was examined. Reversibility of RNA loading was demonstrated on 11.8 

nm pore diameter particles by first saturating the particles with unlabeled dsRNA (84 bp), 

washing the particles, and then exposing the particles to labeled dsRNA. The dynamic 

exchange of dsRNA on mesoporous nanoparticles is captured in confocal images (Figure 

6.5) for particles incubated with labeled dsRNA for 10 and 40 minutes. The increase in 

fluorescence intensity represents the exchange of dsRNA in the mesoporous particles. 

Thus, the mobility of dsRNA in the nanopores of the pSNPs is expected to have a functional 

effect on delivery of dsRNA to insects.    
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Figure 6.5 Fluorescence recovery after incubating pSNPs (11.8 nm pore) saturated with 

unlabeled dsRNA (84 bp) in labelled dsRNA solution for (a) 10min; (b) 40mins. 

6.5 Conclusion  

 The siRNA loading behavior, interaction of dsRNA - amine functionalized pSNPs, 

and diffusion dynamics of siRNA inside particles were successfully examined using 

confocal imaging and FRAP. 84 bp dsRNA was found to penetrate into the pores of 3.6 

nm, 7.4 nm and 11.8 nm, while 282 bp dsRNA can’t fit into 3.6 nm pores and is able to 

load into pores of 7.4 and 11.8 nm. This suggests that the relative dimension of dsRNA 

length to pore diameter is an important factor for designing carrier that can efficiently 

encapsulate dsRNA to provide protection from RNases during delivery. For the cases of 

dsRNA distribute throughout the particles, the mobility at the core of particle can be 

measured and was similar to that on the particle surface. However, for dsRNA only 

adsorbed to the particles surface (both lengths of dsRNA on nonporous particle and 282 bp 

dsRNA in 3.6 nm pores), dsRNA mobility at the surface was not detectable, suggesting the 

importance of loading sufficient dsRNA into pores to provide a mobile network of dsRNA. 

Furthermore, the mobility of pore confined dsRNA was dependent on the dsRNA lengths, 

(a) (b) 
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pores size and dsRNA concentration. The identification of these factors is of great 

importance, which will guide to the design of to the design of dsRNA-loaded pSNPs for 

effective delivery to insects.   
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Chapter 7: Conclusion and Future Directions 

7.1 Conclusion 

Chapter 3 through Chapter 5 examined the structure and separation efficiency of the 

biomimetic carrier-mediated separation membrane, which is supported by orthogonally 

oriented ordered mesoporous thin film membrane with 2-D hexagonal close packed (HCP) 

structure. In Chapter 3, the lipid pore-filled silica thin film membrane with a lipid-

immobilized carrier is successfully demonstrated to facilitate the transport of hydrophilic 

molecules. Besides, the robust lipid-filled mesoporous membranes is proven to act as 

barriers to ions and small hydrophilic solutes that can be matched with biomimetic carriers 

to provide selective transport as a separation and sensing platform. The facilitated transport 

of glucose through the membrane with lipid-immobilized boronic acid carrier can also be 

improved by controlling environment factors like pH gradient (related to binding of 

glucose) and temperature (related to the lipid bilayer diffusivity). Opportunities to tune 

transport through the solute-carrier interactions can also be used to manipulate the flux and 

achieve selective separations.  Thus, the biomimetic membrane which combines high 

surface area silica thin film membrane with selective permeable lipid bilayers has potential 

as an efficient aqueous-based separation technology through the selection of lipid-based 

carrier molecules 

In Chapter 4, electrochemical impedance spectroscopy (EIS) is proved to be capable 

of quantifying the accessibility of the pore structure of the mesoporous silica thin films. 

The EIS then can be used to screen separation platforms for constructing biomimetic 

membrane for the incorporation of proteins and small hydrophilic carriers. The EIS is also 

demonstrated to be able to distinguish the configuration and ion transport through the 
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mesoporous silica thin film supported lipid membrane using lipid deposition method (in 

the form of lipid enveloping and lipid filling). The lipid filled system is demonstrated to be 

a superior barrier while providing effective mobility for functioning small lipophilic 

carriers. The application of EIS to mesoporous silica thin film supported lipid membrane 

enables the study of the fundamental properties of the biomimetic membrane, and provides 

insights for making better barriers on mesoporous support for carrier-mediated membrane 

separation process.  This sets the ground work for exploring the application of lipid bilayers 

in biosensing, selective separations and drug delivery.  

Chapter 5 demonstrate the successful immobilization of biocatalyst on a carrier-

mediated separation membrane, while maintaining significant enzyme activity. Thus it is 

promising to combine the reaction and selective separation in one single membrane process 

to achieve low cost, high product purity, high yield upgrading and recovery of dilute 

aqueous solute. A general mathematical model that describes the chemical reaction and 

selective mass transfer through composite is developed, and the Thiele modulus (Φ2 =  = 

k1d2/D) which defined the diffusion rate and reaction rate in the enzyme layer appears to 

be a critical factors determining the membrane performance. Thus, factors that affects the 

diffusion rate coefficient (D), enzyme layer thick (d) and enzyme reaction rate (k1) need to 

be considered in the model. The mathematical model then can serve as a screening tool for 

optimizing operation conditions to achieve high selectivity and productivity of the desired 

product using biocatalyst and carrier-mediated separation integrated membrane. 

In Chapter 6, the siRNA loading behavior, interaction of dsRNA - amine 

functionalized pSNPs, and diffusion dynamics of siRNA inside particles are successfully 

examined using confocal imaging and FRAP. Furthermore, the mobility of pore confined 
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dsRNA is dependent on the dsRNA lengths, pores size and dsRNA concentration. The 

identification of these factors is of great importance and guide the design of dsRNA-loaded 

pSNPs to efficiently encapsulate dsRNA in the pores and provide protection from RNases 

for effective delivery to insects.   

7.2 Future directions 

In this work, the application of lipid pore-filled silica thin film membranes for 

biomimetic recovery of dilute carbohydrates is demonstrated. However, this novel 

biomimetic membrane is not limited to sugar separation. The biomimetic membrane design 

uses pore confined lipid for constructing defect-free bilayer on the high surface area silica 

thin film separation platform, while the boronic acid carrier is immobilized in the lipid to 

achieve selective separation. Thus, the boronic acid carrier can be further replaced by other 

specific carriers for separating molecules of interest. Meanwhile, the stability and solute 

rejection properties of phospholipid barrier can be further improved.  

While the pore-confined DPPC lipid used in this work is proved to be an efficient 

barrier for investigating the function of boronic acid carrier, factors like types of lipid, lipid 

composition, surface chemistry and solution conditions (pH, presence of divalent cations), 

[96, 97] can be further examined to improve stability, solute rejection and selectivity of the 

biomimetic membrane. For example, lipid bilayers consisting of saturated phospholipids 

form more rigid and impermeable membranes than unsaturated phospholipids. [188] The 

addition of cholesterol, which is an important constituent in biological membrane, to the 

lipid can reduce the membrane permeability with increased stability. [111] The tethered 

lipid bilayer, with high electrical insulation, can also be confined into pores of mesoporous 
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silica.[64] The combination of tethering and pore confinement of lipid in mesoporous silica 

thin film could result better lipid membrane.  

In addition to phospholipid, amphiphilic block copolymers, which can also assemble 

as vesicle and bilayer structures, have become attractive to mimic biological membranes, 

due to their high mechanical stability and resistance to severe surrounding environments, 

which may destroy traditional phospholipid membranes.[189, 190]  Proteins have been 

successfully incorporated into planar triblock copolymer membranes and found to exhibit 

protein functionality in the membrane.[191] The electrochemical property of the 

biomimetic copolymer membrane can also examine by the EIS. 

Inspired by the membranes proteins, some effort have been taken to synthesis artificial 

channel mimicking the function of proteins.  These channels are also potential carriers that 

can be used in the biomimetic carrier mediated separation membrane.  Wu et al. synthesized 

a peptide-appended pillar[n]arene (n = 5, 6) derivatives that selectively  transported amino 

acids across liposomes.[192] Cho and  Zhao [193] reported a synthetic macrocyclic 

oligocholate that can facilitate the transport of the molecules glucose, maltoriose and 

carboxyfluorescein.[194] Artificial water channels (hydrazide-appended pillar[5]arene 

derivatives) were also reported to mimic water-selective aquaporin proteins.[195] It is also 

promising to transfer the ligands used in the affinity chromatography, where the targeted 

analytes are attached to the immobilized ligands with specific affinity to achieve 

purification. In fact, the boronic acid carriers have been used as ligands in affinity 

chromatography for the separation of carbohydrates, nucleic acid components, 

glycoproteins, and other small biomolecules.[196] Nevertheless, the discovery of new 

carriers are based on molecules recognition.  Quartz crystal microbalance (QCM), which 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjPgefAjvzUAhXMaT4KHfMaAXUQFggzMAI&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4237894%2F&usg=AFQjCNFSuq7qHJYB5QXU6Ml-04qw7oyP7Q


126 
 

allows for in real-time measurements of surface interaction under controlled solution 

conditions (temperature, pH etc.), can be a powerful techniques to screen the carriers for 

targeted molecules and examine the solutions conditions that will affect the reversibly 

reaction. 

It is also important to investigate the lipid bilayer structure deformation after the 

immobilization of carrier, which is often seen in membrane protein based biomimetic 

membranes due to the size mismatch between the transmembrane protein and hydrophobic 

region of the bilayer.[109] To extend this carrier-mediated biomimetic membrane to other 

carriers such as transmembrane proteins and ionophores, the incorporation in the lipid 

bilayer in an active configuration will be a concern. To analyze the lipophilicity of carrier, 

the interaction between the lipid molecules and carriers can be characterized using 

techniques such as DSC, Raman spectroscopy, Second-Harmonic spectroscopy and NMR 

spectroscopy.[108-110, 197, 198]  As discussed in Chapter 3, DSC is a sensitive tool to 

identify the change in the thermodynamic lipid phase transition as a function of the 

concentration of components incorporated in the lipid bilayer. As a supplemental analysis 

to the DSC results, Raman spectroscopy can be applied to determine the location of the 

additive in the lipid bilayers, whether it resides near the polar headgroup or is dispersed 

among the alkyl chains.[110] The presence of the additives at different locations would 

cause intensity and frequencies change in the spectral regions that are related to the 

functional group (headgroup or alkyl chain of phospholipids). These techniques enable the 

screening and optimization of carriers to be incorporated in the model lipid bilayers, which 

is important to improve the membrane performance. 



127 
 

As discussed in Chapter 5, the enzyme can be immobilized on the surface of the 

biomimetic membrane to achieve one step upgrading and separation of solute. One of the 

advantages of the mesoporous thin film supported by the AAO support is that two identical 

silica thin film can be formed on the two side of the AAO support, which is promising for 

making composite membrane with multiple functional layer for continuous process. Again, 

using sugar separation as an example, fructose is the desired product in the model 

enzymatic membrane reactor after the upgrading and recovery of dilute aqueous glucose.   

Fructose can be converted into HMF (5-hydroxymethyl-furfural), a potential dehydration 

product of carbohydrates that can readily be converted into valued added chemicals, [199] 

, using metal oxide catalysts.[199, 200]  Furthermore, the catalyst systems, such as 

aluminum based catalyst, can potentially be immobilized on silica thin film, which then 

combines the glucose isomerization process, separation and fructose conversation in a 

single system (Figure 7.1). The double layered silica thin film membrane with easy surface 

functionalization can find numerous potential application in continuous processing. 
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Figure 7.1 Glucose upgrading process on composite silica thin film membranes 
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Appendix A: Characterization of Orthogonally Oriented Silica Thin Film with 2-D 

HCP Structure Supported by AAO support 

 

Figure A.1 TEM image of oriented silica film after dissolving the AAO support in 5 M 

HCl.   

 

Figure A.2 Ethanol flux as a function of pressure drop. 
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Appendix B: MATLAB Code for the Model Describing the Transport Process in 

Biocatalysis and Selective Separation Integrated Membrane 

function TransportModel 
clear, clc, format long 
warning off 
global k1 k2 D Pa Pb CA0 A v1 v2 

  
%---------------------------------------------------------------- 
% Variables of interest  

  
ratioP=1;         % relative permeability  
ratioK=100000;    % relative reaction rate 
ratioD=1;         % relative diffusion coefficient 

  
%--------------------------------------------------------------- 
%Initial values for the variables  

 
Pb=0.206998596/10000*3600;      % permeability of substrate (A), unit 

conversion: um/s --->cm/h 
Pa=Pa/ratioP;                % permeability of product (B), cm/h 
k1=ratioK*0.015132952;       %forward reaction rate, h-1; 
k2=0.015132952;                 %reverse reaction rate, h-1; 
D=6.7/1000000*3600*ratioD;      % diffusion coefficient, unit 

conversion: cm^2/s---->cm^2/h 
CA0=1000;                      %initial substrate concentration, mg/L 
A=2;              % area of the membrane exposed to the solution, cm^2 
v1=0.01;                       % flow rate in donor phase, cm^3/h 
v2=0.01;                           % flow rate in receptor phase, 

cm^3/h 

  
zspan=[0:1:200];               %thickness of enzyme layer, nm 
z=zspan/10000000;                %thickness of enzyme layer, cm 
d=z(size(z,2));    

  
solinit =bvpinit (z,@guess);   % trial solution given by guess function 
sol = bvp4c (@odes, @bcs, solinit);    % bvp solved, 

  
y = deval(sol, z) ;       %species profiles as a function of distance  

  
CAd=(v1*CA0+D*y(2,1)*A)/v1;      % substrate conc. on the donor phase  
CAi=y(1,size(z,2));               % substrate conc. at the interface 

between enzyme layer and membrane   
CAr=Pa*A/(Pa*A+v2)*CAi;        % substrate conc. on the receptor phase  

  

  
CBd=D*y(4,1)*A/v1;               % product conc. on the donor phase  
 CBi=y(3,size(z,2));             % product conc. at the interface 

between enzyme layer and membrane   
 CBr=Pb*A/(Pb*A+v2)*CBi;         % product conc. on the receptor phase  
S=CBr/CAr  % selectivity of fructose over glucose on the receptor phase 
Thiele=k1*d*d/D              % Thiele modulus 
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Mass= (CAd+CBd)+(CAr+CBr)*v2/v1 % Total mass balance 

 
%--------------------------------------------------------------------- 
% plot of species profiles as a function of distance  
figure (1) 
 plot(zspan,y(1,:),'b') 
 xlabel('d/nm'); 
 ylabel('Concentration(mg/l)'); 
 title('Glucose') 

  
 figure (2) 
 plot(zspan,y(3,:),'b') 
 xlabel('d/nm'); 
 ylabel('Concentration(mg/l)'); 
 title('Fructose') 

  

  
%--------------------------------------------------------------------- 
% provides a trial solution to start off 
function yinit = guess (z) 
global k1 k2 D Pa Pb CA0 A v1 v2 
y1= exp(-sqrt(k1)*z); 
y2= 0.*y1; 
yinit = [y1 y2 y2 y2]; 

    
%--------------------------------------------------------------------- 
%ODEs 
function dydz=odes(z,y) 
global k1 k2 D Pa Pb CA0 A v1 v2 

  
dy1dz=y(2);                   % y1: substrate concentration  
dy2dz=k1*y(1)/D-k2*y(3)/D;     % y2: derivative of y1 
dy3dz=y(4);                    % y3: product concentration  
dy4dz=-k1*y(1)/D+k2*y(3)/D;    % y4: derivative of y3 
dydz=[dy1dz;dy2dz;dy3dz;dy4dz]; 

  
%--------------------------------------------------------------------- 
% provides the boundary conditions at the end points a and b 
function res = bcs ( ya,yb) 

  
global k1 k2 D Pa Pb CA0 A v1 v2 

  
res = [ ya(1)-(v1*CA0+D*ya(2)*A)/v1 
ya(3)-D*ya(4)*A/v1 
yb(2)+Pa/D*v2/(Pa*A+v2)*yb(1) 
v1*(CA0-(v1*CA0+D*ya(2)*A)/v1-D*ya(4)*A/v1)-v2*Pa*A/(Pa*A+v2)*yb(1)-

v2*Pb*A/(Pb*A+v2)*yb(3)]; 
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