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ABSTRACT OF DISSERTATION 
 

 
APPLICATION OF PROCESS SYSTEMS ENGINEERING TOOLS AND METHODS 

TO FERMENTATION-BASED BIOREFINERIES 
 

Biofuels produced from lignocellulosic biomass via the fermentation platform are 
sustainable energy alternatives to fossil fuels. Process Systems Engineering (PSE) uses 
computer-based tools and methods to design, simulate and optimize processes. Application 
of PSE tools to the design of economic biorefinery processes requires the development of 
simulation approaches that can be integrated with existing, mature PSE tools used to 
optimize traditional refineries, such as Aspen Plus. Current unit operation models lack the 
ability to describe unsteady state fermentation processes, link unsteady state fermentation 
with in situ separations, and optimize these processes for competing factors (e.g., yield and 
productivity). This work applies a novel architecture of commercial PSE tools, Aspen Plus 
and MATLAB, to develop techniques to simulate time-dependent fermentation without 
and with in situ separations for process design, analyses and optimization of the operating 
conditions. 

Traditional batch fermentation simulations with in situ separations decouple these 
interdependent steps in a separate “steady state” reactor followed by an equilibrium 
separation of the final fermentation broth. A typical mechanistic system of ordinary 
differential equations (ODEs) describing a batch fermentation does not fit the standard 
built-in power law reaction kinetics model in Aspen Plus. To circumvent this challenge, a 
novel platform that links the batch reactor to a FORTRAN user kinetics subroutine 
(incorporates the ODEs) combined with component substitution (to simulate non-databank 
components) is utilized to simulate an unsteady state batch and in situ gas stripping process. 
The resulting model system predicts the product profile to be sensitive to the gas flow rate 
unlike previous “steady state” simulations. This demonstrates the importance of linking a 
time-dependent fermentation model to the fermentation environment for the design and 
analyses of fermentation processes. 

A novel platform linking the genetic algorithm multi-objective and single-objective 
optimizations in MATLAB to the unsteady state batch fermentation simulation in Aspen 



 
 

Plus through a component object module communication platform is utilized to optimize 
the operating conditions of a typical batch fermentation process. Two major contributions 
are: prior concentration of sugars from a typical lignocellulosic hydrolysate may be needed 
and with a higher initial sugar concentration, the fermentation process must be integrated 
with an in situ separation process to optimize the performance of fermentation processes. 
With this framework, fermentation experimentalists can use the full suite of PSE tools and 
methods to integrate biorefineries and refineries and as a decision-support tool to guide the 
design, analyses and optimization of fermentation-based biorefineries. 

 

 

KEYWORDS: Lignocellulosic biomass, Aspen Plus unsteady state simulation, 
FORTRAN user kinetics subroutine, multi-objective optimization, sugar platform 
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Chapter 1 

Introduction 

1.1 Introduction 

Biofuels, such as bioethanol and biobutanol, produced from lignocellulosic 

biomass via fermentation are sustainable energy alternatives to fossil fuels.1 

Microorganisms are used to convert substrates (sugars) into bioproducts by fermentation.2 

The batch ethanolic and acetone-butanol-ethanol (ABE) fermentations are common 

fermentation processes used to produce bioethanol, and bioethanol and biobutanol, 

respectively. Microorganisms commonly used for the batch ethanolic fermentation on the 

sugar platform include Saccharomyces cerevisiae (yeast), Zymomonas mobilis, 

Escherichia coli, Clostridium thermocellum as well as filamentous fungi such as 

Aspergillus sp. etc.3 For the ABE fermentation, solventogenic Clostridia species (such as 

C. acetobutylicum, C. beijerinckii, C. saccharobutylicum and saccharoperbutylacetonicum 
4-5) are used in fermentation. Microorganisms used in fermentation are susceptible to both 

(high) substrate and product inhibitions. For example, greater than 5% ethanol 

concentrations inhibits yeast in ethanol fermentation from glucose6-7 with complete 

microbial growth inhibition above 40% (w/v) glucose.8 Further, greater than 86 g/L and 

127 g/L of ethanol completely ceased cell growth and ethanol production in Z. mobilis 

ZM4, respectively.9 For the batch ABE fermentation, more than 100 g/L glucose inhibited 

ABE production by C. beijerinckii in a batch fermentation.10  

As result of substrate and product inhibitions, dilute aqueous fermentation broths 

with low titers, yields, productivity, and total solvents are produced in batch fermentations. 

For instance, low final ABE concentrations (< 20 g/L ABE), low reactor productivities (< 

0.3 g/L/h) and low ABE yield (0.28 – 0.33 g/g) are obtained in ABE fermentations.11 

Furthermore, about 4% wt. ethanol is produced from lignocellulosic biomass in 

fermentations versus about 17% wt. for first generation biomass-based ethanolic 

fermentaitons.12 The energy required to concentrate and purify the resulting dilute aqueous 

fermentation broth is significantly higher at alcohol concentrations less than 4% wt.7 To 

reduce the consequential downstream separation cost, the fermentation titers, yields and 

productivities can be improved. Various fermentation schemes such batch, fed-batch and 

continuous fermentation are integrated with in situ product recovery techniques such as gas 
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stripping, pervaporation, adsorption, etc. to alleviate substrate and product inhibitions as 

discussed in Chapter 2. 

The challenges in fermentation-based biorefineries include - the requirement of 

microorganisms that can selectively and simultaneously utilize, at least, the major sugars 

from the mixture of sugars produced in the lignocellulose hydrolysate (hexose: glucose, 

mannose, galactose, fructose; pentose: xylose, arabinose; others: lactose, sucrose).13-14 It 

was shown that if both glucose and xylose can be used in ethanolic fermentations, the 

production cost can be reduced from $1.65 to $1.23.15 Second, the typical concentrations 

of sugars from lignocellulosic hydrolysate may not be optimum for the production of 

optimum product concentrations to minimize the downstream separation cost. For 

example, 1 – 23 g/L glucose was produced from  2 – 6% (w/v) sulfuric acid pretreated 

sugar cane bagasse16, 1 – 20 g/L glucose from ionic liquid pretreated cellulose17-18) and  

about 20 g/L xylose and 58 g/L glucose produced from hydrogen peroxide-acetic acid 

pretreated Jerusalem artichoke hydrolyzed with enzymes (RUT-C30, pectinase and 

xylanase).19 Additionally, the fermentation environment (substrate limitation and 

inhibition, product inhibition and potential recycle streams) affect the performance of the 

microorganisms. Lastly, the processing time raises questions as to the ideal length of time 

to run the batch fermentation process or when in situ product recovery, used to alleviate 

product inhibition, should be started. These are challenges that can potentially be addressed 

by Process Systems Engineering (PSE), the use of model-based methods and tools for the 

design, analysis, optimization, operation and control of complex chemical, biological or 

physical processes.20-21 

A biorefinery uses biomass to produce fuels, power and chemicals in a facility that 

combines biomass conversion technologies and equipment.22-26 Unlike the traditional 

petrochemical, refinery and chemical industries, PSE tools and methods are not readily 

applicable to fermentation-based biorefineries for process design, analyses and 

optimization. The inherent unsteady state nature of fermentation processes, the difficulty 

in coupling the kinetics of raw material conversion (unsteady state pretreatments and 

hydrolysis of lignocellulosic biomass and fermentation) into bioproducts with the 

autocatalytic microbial growth and death are critical challenges hindering the application 

of PSE tools and methods for fermentation-based biorefineries. In contrast, refinery and 
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chemical processes are routinely modeled and simulated in traditional process simulators 

for analysis and optimization. 

An optimization process uses computer-based algorithms to find the optimal 

decision variables that maximizes, minimizes or find a target value of one or more 

objectives. For the optimization of fermentation-based biorefineries, the large number of 

process variables and conditions involved makes the process complex. Additionally, many 

of the desired performance criteria are inherently partially or fully competing in nature and 

would require simultaneous optimization of multiple objectives, subject to constraints. 

Examples of competing pairs of performance criteria include product quality and recovery 

cost, product selectivity and conversion, etc. Multi-objective optimization (MOO), the 

simultaneous optimization of multiple objectives, is an alternative to approach to the 

traditional single-objective optimization (SOO, weighted sum of multiple objectives into a 

single objective or using one objective as the main objective of a multiple objective system 

and transforming other objectives into additional constraints). MOO gives a global 

perspective of an optimization process, where multiple equally optimal solutions are 

obtained (local and global). In contrast to SOO that finds one solution, MOO allows the 

trade-off in the, often, competing objectives to be observed to support the understanding 

of process data and serve as a decision-support tool and guide.27-28 

For the optimization of fermentation processes to be realistic, time-dependent 

models and rigorous thermodynamic models are required to evaluate the objectives and 

(sometimes) constraints. Most commercial PSE tools lack in-built unit operation models 

with features that can readily simulate fermentation processes (e.g. the simulation of batch 

fermentation as unsteady state), typical process inputs to fermentation processes, such as 

cells, in the databank and roust optimization solvers that can solve the MOO objective 

problem usually encountered in fermentation-based biorefineries, and the ability to 

simulate integrated fermentation with in situ product recovery processes, such as 

adsorption and pervaporation. As a result, previous simulation efforts of integrated batch 

fermentations and in situ separations decoupled these interdependent steps with a steady 

state fermentation broth representing the final fermentation broth and a steady state 

separation of the resulting final stream. Due to the inherently non-linear nature, complexity 

and large number of variables involved in optimization of fermentation-based 
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biorefineries, the available optimization tools are inadequate. For example, Aspen Plus V9 

(Aspen Technology; Cambridge, Massachusetts),29-31 can only handle SOO whereas 

SuperPro Designer® (Intellingen; Scott’s Plain, NJ)30, 32 has no optimization solver. 

1.2 Research objectives 

PSE played a critical role in the success of the refinery and chemical industries and 

has the potential to play a similar role in developing and expanding fermentation-based 

biorefineries to be economically viable. In this work, commercial PSE tools, Aspen Plus 

and MATLAB, are integrated on a novel platform to develop techniques and procedures to 

simulate time-dependent fermentation processes without and with in situ separations for 

the design, analyses, and optimization of fermentation-based biorefineries. 

The batch fermentation process is simulated as an unsteady state process using the 

steady state process simulation platform of Aspen Plus using traditional fermentation 

models employing autocatalytic cell growth, and cell-dependent substrate utilization and 

product synthesis.   The unsteady state batch fermentation is integrated with in situ product 

recovery alleviate the effect of product inhibition on the yield and productivity of the batch 

fermentation. The batch fermentation and integrated unsteady state batch fermentation and 

in situ separations in Aspen Plus are then linked to the robust optimization in MATLAB to 

optimize the operating conditions of fermentation processes. This platform of virtual 

experimentation through in silico analyses provides insights that can guide the choice of 

decision variables and conditions for optimum performance and as a decision-support tool 

for fermentation-based biorefineries. 

In Chapter 2, a review of the process of converting lignocellulosic biomass to 

produce alternative sustainable bioproducts to fossil-based products is presented. 

Biorefineries are defined and classified, and the similarities and differences between a 

biorefinery and refinery in terms of feedstock, processing and products are elucidated. 

Further, the different classes of feedstock used in biorefineries are discussed together with 

the major advantages and disadvantages of each class of feedstock. Following the feedstock 

classification, the process of converting lignocellulosic biomass into biofuels via 

fermentation (pretreatment, hydrolysis, and fermentation) are briefly discussed. Finally, 

the different fermentation schemes that are used together with in situ product recovery to 

alleviate substrate and product inhibitions to microorganisms are described with examples. 



5 
 

In Chapter 3, the challenges that hinder the readily application of PSE tools and 

methods to fermentation-based biorefineries are discussed. PSE is defined and the role that 

PSE can play in the design, analyses and optimization of fermentation-based biorefineries 

are presented. Previous simulation and optimization efforts are discussed with illustrative 

examples to shed light on the difficulty and what is missing in using traditional process 

simulators for fermentation-based biorefineries. Mathematical models are central to 

understanding fermentation processes.33-35 The accuracy of the results of a simulation 

depends in part on the quality of the mathematical model used taking into account process 

inputs and conditions.36  Thus, the classification of different mathematical models based 

on cell population are presented with emphasizes on the commonly used models. The gap 

between developments in biology through genetic engineering, advanced measurement, 

monitoring and control tools for bioprocesses and the translation of these improvements to 

develop realistic mathematical models that are computationally tractable are then 

elucidated.  

To address some of the challenges in using commercial PSE tools for fermentation-

based biorefineries, a general framework that links a robust non-linear optimization solver 

to a traditional process simulator that has been customized to simulate unsteady state 

fermentation processes through a two-way communication platform is proposed. Finally, 

the prospects for improving the current state of bioprocess simulations and modeling are 

discussed. This discussion emphasizes what is required in terms of the development of 

mathematical models, reconciliation of in silico analyses results with experimentation, the 

adaptation that traditional process simulators need in order to expand the capabilities of 

unit operation models to readily simulate fermentation processes and integrated 

fermentation and in situ separations. 

Chapter 4 describes the development of techniques to simulate batch fermentation 

processes as unsteady state using the ABE fermentation as a model system. Time-

dependent fermentation models describing the batch fermentation are incorporated in a 

FORTRAN user kinetics subroutine and linked to the batch reactor in Aspen Plus to 

simulate unsteady state batch processes. This simulation approach allows the unsteady state 

batch fermentation to be integrated with an in situ product recovery via gas stripping to 

provide time-dependent information and separations based on thermodynamic models and 
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phase equilibria equations. The techniques and procedures developed for the unsteady state 

batch fermentation simulation are foundational to the developments in Chapters 5 and 6. 

The simulation results of the traditional steady state approach is compared with that of the 

unsteady state approach developed without and with in situ product recovery to emphasize 

the importance of incorporating autocatalytic cell growth, substrate and product 

inhibitions, and time-dependent concentration of species on the performance of the 

fermentation process. 

In Chapter 5, a case study that demonstrates how the novel framework proposed in 

Chapter 3 is used to optimize the operating conditions (gas flow rate relative to the 

fermentation volume and gas stripping initiation times) to maximize the total ABE 

produced, ABE selectivity and the concentration of ABE in the stripped stream of an 

integrated batch and in situ gas stripping process is presented. The genetic algorithm multi-

objective and single-objective optimization in MATLAB is linked to the batch reactor in 

Aspen Plus through a Microsoft® Component Object Model (COM) interface. The batch 

reactor in Aspen Plus is coupled with a Fortran user kinetics subroutine (developed in 

Chapter 4) to evaluate the data needed to determine the objective function values in the 

optimization process in MATLAB. The cell growth model in the mathematical model 

describing the batch fermentation process is modified to use Monod kinetics to describe 

cell growth based on substrate utilization and incorporate product (butanol) inhibition. The 

new parameter introduced is evaluated by minimizing the sum of the square of the errors 

between four sets of experimental data and model predictions from the solution of the 

ordinary differential equations (ODEs) in MATLAB. The MOO and SOO optimization 

results are compared to reveal the trade-off and interaction that the MOO approach presents 

to support the understanding of fermentation processes and offer insights that may not be 

gained through laboratory experiments alone.  

The batch fermentation is susceptible to both substrate and product inhibitions. 

Unlike ethanolic batch fermentation from first generations biomass, such as starch and 

corn, lignocellulosic hydrolysate contains a relatively lower concentration of sugars. To 

demonstrate the crippling effect that product inhibition has on microbial growth kinetics 

and the performance of the batch fermentation and offer insights about the important role 

the choice of design parameters and process variables play in fermentation processes, the 
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novel platform linking the robust genetic algorithm in MATLAB to an unsteady state batch 

fermentation in Aspen Plus through a COM interface is presented in Chapter 6. This work 

builds on the foundational techniques developed in Chapters 3, 4 and 5. A time-dependent 

batch ethanolic model based on the utilization of both glucose and xylose with autocatalytic 

cell growth, substrate limitation, and substrate and product inhibitions is used. The MOO 

and SOO results are compared for a batch ethanolic process maximizing the total ethanol 

produced, ethanol productivity, ethanol yield, and the fraction of sugars converted by 

manipulating the initial concentration of sugars and the batch fermentation time. The ability 

of the unsteady state fermentation simulation in Aspen Plus to provide time-dependent 

information is utilized to shed light on the fermentation dynamics for cells, substrates and 

solvents and reveal the crippling effects of product inhibition on the performance of the 

batch process. Further, the enhancement in the performance of batch fermentation when it 

is integrated with an in situ product recovery is demonstrated by using an integrated batch 

and in situ gas stripping process in the MOO and SOO using techniques developed in 

Chapters 3, 4 and 5. 

Chapter 7 summarizes the major conclusions from Chapters 3 – 6 and highlights 

the novelty and contributions of this work, as well as a discussion on the future directions 

for this work. 
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Chapter 2 

Background 

2.1 Bio-based products as sustainable alternatives to fossil-based products 

The production of liquid biofuels, such as bioethanol and biobutanol, using 

lignocellulosic biomass serves as a sustainable alternative energy source to the depleting 

fossil fuels1 (four barrels of oil are consumed for every barrel of oil discovered37), helps 

reduce environmental pollution and is not subject to the effects of instable political 

situations in some oil producing countries.38-39 The United States has the capacity to 

produce 1.6 billion dry tons of biomass annually to produce bioenergy and bioproducts in 

a sustainable way while still meeting food, feed and fiber demand. Additionally,  the U.S. 

potentially could produce 85 billion gallons of biofuels every year to replace about 30% of 

the nation’s current fossil fuels39 by 2030.40 Biobutanol and bioethanol have properties that 

make them excellent biomass-derived liquid transportation fuels. For instance, the net heat 

of combustion of butanol and ethanol are 83% and 65%, respectively, of that of gasoline 

(32.5 MJ/L).  

The solubility of butanol in water is 7.7 g/100 mL (at 20oC) which make butanol 

very hydrophobic whereas ethanol is miscible in water. Butanol has a lower vapor pressure 

and volatility, higher boiling point (117.7oC) and flash point (29oC); butanol is relatively 

safer to handle than other alcohols.37-38 The Reid’s value, a measure of the tendency for a 

fluid to evaporate, for butanol, gasoline and ethanol are 0.33, 4.5 and 2.0 psi, respectively. 

Butanol can replace and/or be blended with gasoline for use in existing car engines; 85% 

butanol/gasoline blend can be used in existing engines.37 Butanol and its gasoline blend at 

any concentration can therefore be stored and transported in existing storage and 

distributing facilities.4, 38, 41 The United States Environmental Protection Agency (EPA) 

approved the use of 15% ethanol/ gasoline blend for all vehicles made from the year 2001 

onward.39 The solvents produced from lignocellulosic processing are used rubber 

monomers, butadiene and dimethyl butadiene production.42 Consequently, a lot of research 

interest and efforts are invested in developing new processes and improving existing 

processes to convert biomass into sustainable biofuels.43 
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2.2 Biorefinery 

Global politics, environmental concerns, and geographical drivers are constantly 

driving the development of bioproducts from biorefineries. Concerns over the use of food 

and feed as feedstock in biorefineries are increasingly rising, driving lignocellulosic 

biomass as the expected most important source of biomass in the future. Transportation 

fuels are the immediate focus of biorefineries, where these biofuels are blended with their 

fossil fuel based counterparts, such as gasoline, diesel, and natural gas. Similar efforts 

(many decades) invested in the research, design and optimization of refineries are expected 

to be applied to expand and sustain the biorefinery industry, drawing on the expertise from 

chemistry, catalysis and the engineering community. It is expected that biorefineries are 

integrated with existing refinery processes and infrastructure to be economically viable. 

For example, the existing refinery infrastructure in the transportation industry could be 

used for the transportation fuel from biorefineries.44 

2.2.1 Biorefinery definition 

Several definitions of a biorefinery are used depending on the context and 

application. One definition of a biorefinery is “a facility that integrates conversion 

processes and equipment to produce fuels, power and chemicals from biomass.”45 A 

biorefinery is also defined as “the sustainable processing of biomass into a spectrum of 

marketable products and energy.”44 By the latter definition, a biorefinery could be a 

facility, process, plant or collection of facilities. The marketable products include food, 

feed, materials and chemicals whereas fuels, power, and heat constitute the energy 

products.44  

2.2.2 Biorefinery classification 

A biorefinery can be classified based on the maturity of the processing technology, 

type of feedstock used, conversion process, and the intermediate products as shown in 

Figure 2.1, which complements Figure 3.1 in Chapter 3. 

2.2.3 Similarities and differences between a biorefinery and refinery 

The concept of a biorefinery is similar to that of a refinery in that they both use 

processing technologies and equipment to produce fuels, energy and chemicals as 

illustrated in Figure 2.2. A biorefinery is often compared to a refinery in terms of the 

feedstock, building block platforms, processing, and the chemical intermediated that are at 



10 
 

the commercial scale to show the similarities and differences between a refinery and 

biorefinery as shown in Table 2.1 

 
Figure 2.1 Flowchart showing the classification of biorefineries based on the maturity of 
the technology process, conversion process, type of intermediate product, and type of feed 
stock used.44 
 

 

 

 

 

 

Figure 2.2 The similarities between the concept of refineries and biorefineries.45   
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Table 2.1 Comparison of refineries and biorefineries based on the feedstock, building 
block chemical composition, processing and building block intermediates produced on the 
commercial scale.44 
 Refinery Biorefinery 
Feedstock Relatively homogeneous Heterogeneous e.g. 

carbohydrates, lignin, proteins, 
oils, ash 
Polymeric feedstock e.g. 
cellulose, starch, proteins. 
 

Low oxygen content. 
E.g. Crude oil: C, H, O 
has composition of 85 – 
90, 10 – 14, and 0 – 1.5 
%, respectively. 
 

High oxygen content. E.g. 
Wood: C, H, O has composition 
of 50, 6, and 43 %, 
respectively. 
 

Weight of product 
(mole/mole) increases 
with processing 

Weight of product (mole/mole) 
decreases with processing 
 

Significant sulfur content 
(very high sometimes) 

Low sulfur content with high 
inorganic content. E.g. silica 
 

Building blocks Ethylene, propylene, 
methane, benzene, 
toluene, xylene isomers 
 

Glucose, xylose, fatty acids 
(e.g. oleic, stearic, sebacic). 

(Bio)chemical Essentially a chemical 
process 

Chemical, biotechnology, and 
biochemical 
 

 Heteroatoms 
introduction E.g. O, N 

Removal of oxygen 
 
 

 Relative homogeneous 
process to form building 
blocks. E.g. steam 
cracking, catalytic 
reforming 
 

Relative heterogeneous process 
to form building blocks 

 Multiple conversion 
chemistries used 

Narrow range of conversion  
chemistries such as 
dehydration, fermentation, 
hydrogenation 
 

Intermediate products  
at the commercial scale 

Several Relatively fewer compared to 
refineries. E.g. ethanol, 
biodiesel, furfural, etc. 
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2.3 Classification of the feed stock for biorefineries 

2.3.1 First generation biomass 

First generation biomass consists of edible food crops such as corn, sugarcane, 

whey, barley, potatoes, sugarcane beets, etc.46-47  The use of edible biomass as feedstock 

in most commercial biorefineries have been met with a lot of resistance and concerns as 

these are used as food and feed.  

2.3.2 Second generation biomass 

Lignocellulosic biomass as a second generation biomass uses low cost, abundant 

and non-edible feedstock and reduces the feud between fuel and food competition 

associated with first generation biomass that are edible feedstock. 37 Lignocellulosic 

biomass comprises of non-edible residues from food crop production (corn stover, wheat  

and rice straw41), forest residues and energy crops (switchgrass, miscanthus)39, 41 as well as 

waste such as municipal solid waste, etc. The major challenges in using lignocellulosic 

biomass in a traditional biorefinery to produce biofuels are the seasonal, annual variability 

in biomass supply39 and the need to harvest, transport and store voluminous quantities of 

biomass feedstock to produce a continuous supply of fuel. 

2.3.3 Third generation biomass 

Algae (microalgae and macroalgae, Figure 2.1) constitute the feedstock of third 

generation biomass. The disadvantage of third generation biomass relate to the high amount 

of water required in the processing and the high water content of lipids extracted from 

algae, requiring dewatering.46, 48 

2.3.4 Fourth generation biomass  

Fourth generation biomass uses metabolic engineering to produce engineered algae 

with superior characteristics for biofuel production. Biofuel production form fourth 

generation biomass may be economically viable in the long-term compared to third 

generation biomass. The development of cost effective photo reactors and efficient 

separation technologies would decrease the capital cost significantly.48 

2.4 The process of converting lignocellulosic biomass into bioproducts via 

fermentation  

Lignocellulose biomass is made up of cellulose microfibrils (35 - 50% of the total 

dry mass)49-51, lignin (15 - 25%), and hemicellulose (23 - 32%).51 The biochemical 
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conversion process of lignocellulosic biomass into bioproducts involves pretreatment, 

hydrolysis, fermentation, product concentration and recovery39, 52 as shown in Figure 2.3 

2.4.1 Pretreatment 

The goal of pretreatment is to overcome the recalcitrance of lignocellulosic biomass 

and make the polymeric carbohydrates (cellulose polymers) more accessible to enzymes 

or chemicals used in the hydrolysis process to release fermentable sugars for fermentation53 

as shown in Figure 2.3. Pretreatment methods include: physical (milling and grinding), 

physicochemical (steam pretreatment/autohydrolysis, hydrothermolysis, and wet 

oxidation), chemical (alkali, dilute acid, oxidizing agents, and organic solvents), biological 

(fungal), electrical, or a combination of these.53 

2.4.2 Hydrolysis 

Following pretreatment, the polymeric carbohydrates (cellulose and hemicellulose 

polymers) are broken down (hydrolyzed) into fermentable sugar monomers (such as 

glucose and xylose) using biological or chemical hydrolysis.54 The microorganisms 

(bacteria and fungi) used in biological hydrolysis are able to produce enzymes for cellulose 

hydrolysis. Examples of enzymes for hydrolysis include cellulases and hemicellulases.55 

Complexed cellulases are often produced by anaerobic bacteria such as Clostridium 

thermocellum.56 C. thermocellum is a thermophilic anaerobic bacterium that catabolizes 

cellulose and other carbohydrates by producing cellulosomes (extracellular multi-

enzymes).57 The cellulosomes may be attached to the cell (cell-associated) or free forms. 

Chemical hydrolysis process include acid, alkaline and oxidative delignification. 

Concentrated acid (sulfuric and hydrochloric acids) hydrolysis are very effective but 

concentrated acids are toxic, hazardous and corrosive. Dilute acids of sulfuric and 

hydrochloric acids hydrolysis are often used at moderate and high temperature. Alkaline 

hydrolysis frequently uses dilute ammonia whereas oxidative delignification uses 

hydrogen peroxide.58 
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Figure 2.3 Schematic of the pretreatment and hydrolysis of lignocellulosic biomass to 
produce fermentable sugars.53 

2.4.3 Fermentation 

“Fermentation is a biological process where a substrate is converted into a valuable 

product by a microbial organism.”2 Hydrolysis produces both hexoses (glucose, galactose, 

and mannose) and pentoses (xylose and arabinose). One of the challenges in fermentation 

is the ability of microorganisms to, at least, use the major sugars (glucose and xylose) from 

lignocellulosic biomass. Various microorganisms have been modified through genetic 
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engineering to utilize both hexoses and pentoses. Examples include yeast (e.g., 

Saccharomyces cerevisiae, Scheffersomyces (Pichia) stipites, Kluyveromyces marxianus) 

and bacteria (e.g., Zymomonas mobilis, Escherichia coli, Klebsiella oxytoca). The 

challenge still remains in developing these engineered strains further to overcome the 

incomplete utilization of pentose sugars, low productivities, yields and titers, and inhibition 

to products generated in the processing (e.g. acetic acid and furfural).59 

The Acetone-butanol-ethanol fermentation. The biochemical fermentation process that 

produces biobutanol using microorganisms is known as acetone-butanol-ethanol (ABE) 

fermentation because a mixture of acetone, butanol and ethanol are produced. A product 

mix of 6:3:1 of butanol, acetone, and ethanol, respectively is typical produced.38 The most 

common microorganisms used for ABE fermentation, anaerobic bacteria such as 

solventogenic  Clostridia, 38are a heterogeneous collection of gram-positive, non-sulfate-

reducing, spore-forming, rod-shaped bacteria.60 Examples of solventogenic Clostridia are: 

Clostridium acetobutylicum, C. beijerinckii, C. saccharobutylicum. 

Saccharoperbutylacetonicum.  

ABE producing Clostridia produces acetone-butanol-ethanol (ABE) during the 

conventional batch fermentation using a carbon source through two separate growth 

phases: the exponential acidogenic phase (butyric acid, acetic acid, carbon dioxide and 

hydrogen are produced) and late exponential and stationary solventogenic phase4, 38 (the 

excreted acids are taken up and converted to acetone and butanol in a typical ratio of 2:1)4 

as shown in Figure 2.4. The switch from the acidogenic to the solventogenic phase is to 

avoid death because of the lowering of the pH of the fermentation broth by the acids 

produced.  

2.5 Fermentation design strategies 

Different fermentation schemes are used to circumvent product and substrate 

inhibitions. These include batch, fed-batch, continuous and process integration as a 

combination of batch, fed-batch or continuous fermentation and product recovery 

techniques.1. In a batch fermentation, the substrate,  nutrients and microorganisms are 

charged to a bioreactor for fermentation42 as shown in Figure 2.5A. To reduce substrate 

inhibition, fed-batch fermentation is used; a bioreactor is charged with a relatively low 

concentration of substrate and as the substrate is used up, fresh substrate is supplied at a 
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rate that keeps the substrate concentration in the reactor below the inhibitory levels to the 

microorganisms,10 Figure 2.5B. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic of the metabolism of biomass by solventogenic Clostridia.5, 61 

To circumvent product inhibition, the batch and fed-batch fermentations are 

integrated with in situ product recovery techniques such as gas stripping, adsorption, 

pervaporation, etc. as shown in Figure 2.5C. The accumulation of toxic products have 

adverse effect on microorganisms in fermentation. For example, Ezeji, et al.1 showed that 

fermentation in a combined fed-batch and in situ gas stripping  process ceased after 201 h 

due to the accumulation of salts, dead cells and unknown bioproducts.1 The ideal process 

design configuration is an integrated continuous production process combining continuous 

fermentation, product recovery and “bleeding” (taking out portions of the fermentation 

broth intermittently  to eliminate the accumulation of toxic products1 as shown in Figure 

2.5D.  
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Figure 2.5 Schematic of different fermentation schemes  
A) batch B) fed-batch C) integrated fermentation with in situ product recovery D) 
integrated fermentation and in situ product recovery with bleeding.  

2.5.1 Gas stripping 

Gas stripping selectively removes volatile solvents from the aqueous fermentation 

broth by continuously feeding a stream of gas. Gas stripping is more economical because 

it has the option to use fermentation product gases (hydrogen and carbon dioxide)10 or an 

inert gas as the stripping gas, the existing fermentation set-up is used with minimal 

modifications and no additional chemicals are used.38 The existing gases from the 

fermentation broth contain solvents (e.g. acetone, butanol, and ethanol) at their equilibrium 

partial pressures and are typically partially condensed in a condenser to recover the solvents 

in the gas stream. The stripped gas is then recycled continuously through the fermentation 

broth.38  
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2.5.2 Adsorption 

Adsorption selectively adsorbs butanol or ABE products onto an adsorbent and then 

temperature change38 (thermal-swing-adsorption 62) or a displacer is used to desorb the 

products. This process establishes a dynamic equilibrium for the distribution of the solute, 

species being adsorbed (butanol, ABE), between the fluid and the adsorbent surface.62 The 

equilibrium relation is usually expressed as a function of the concentration of the adsorbed 

solute (adsorbate)  in the liquid mixture and the amount of solute adsorbed on the solid 

material (adsorbent), expressed as the mass, moles, or volume of the adsorbent  per unit 

mass or surface area of  the adsorbent. A plot of the solute loading on the adsorbent versus 

the equilibrium concentration of the solute in a fluid is called an adsorption isotherm. This 

equilibrium isotherm governs the extent to which a solute can be adsorbed from a given 

liquid mixture on an adsorbent for a given set of conditions. The maximum capacity of an 

adsorbent can thus be estimated, for example from a Langmuir isotherm model, for a given 

adsorbent for the adsorption of a solute from a liquid mixture.62 The selection of the 

effective adsorbent is based on the nature of the adsorption isotherm. Isotherms with a 

downward curvature are called favorable isotherms. A highly favorable adsorbent is 

effective in separating dilute solutions but will be strongly unfavorable in the desorption 

of the components adsorbed.63 

The type of adsorbent used depends of the adsorption rate, adsorption capacity, 

desorption rate, affinity for the product of interest and the cost of the adsorbent. Adsorbents 

with high adsorption rate give fast kinetics that allow for high circulation flow rate. A larger 

quantity of adsorbent is required when an adsorbent with slow adsorption rate is selected. 

A good adsorbent should be effective in selectively adsorbing the desired product and 

regenerated for reuse a large number of times.38 The most common adsorbents used for 

alcohol separation are activated carbons (ACs), polymeric resins, polyvinyl pyridine (PVP) 

and zeolites.38 Generally, adsorbents are highly porous with surface areas typically of 

several hundred square meters per gram.63 ACs are used to adsorb nonpolar molecules62-63 

and weakly polar molecules, especially hydrocarbons,  because ACs have nonpolar 

surfaces, and a high specific surface area and are hydrophobic.62 Zeolites have crystalline 

aluminosilicates with specific pore sizes located within small crystals and are thus able to 

separate by molecular shape, size and polarity.64 
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2.5.3 Pervaporation 

Pervaporation as a membrane separation technique involving the partial 

vaporization of a liquid mixture through a membrane that is selective to one or more of the 

components of the mixture. Pervaporation uses vacuum or a sweep gas at the permeate side 

to recover the permeate from a liquid feed mixture that is in contact with the other side of 

the membrane. A cold trap is used to recover the permeate vapor. Pervaporation has the 

advantages of having a low energy requirement, prevents the loss of nutrients and substrate 

and potentially has no effect on the microorganisms used in fermentation. However, 

pervaporation suffers from low permeation flux, fouling and usually requires large 

membrane surface area for effective separation.38 

2.6 Application of Process Systems Engineering to fermentation-based biorefineries 

Process Systems Engineering uses computer-based tools and methods to design, 

analyze, optimize, and control complex processes that may involve a physical, chemical 

and/or biological change. PSE can be described as a virtual laboratory where “experiments” 

are conducted in silico. Through such a virtual platform, a large number of process 

variables, such as process inputs and conditions, and an overall process-wide view can be 

simulated to give a global perspective of the process at hand. A real process is translated 

from a laboratory experiment to the virtual realm through PSE as illustrated with a 

fermentation process in Figure 2.6. For a fermentation process, the basic engineering 

principles and the “theory”, such as Monod kinetics to describe cell growth, are formulated 

and used to translate the fermentation process into a mathematical model (equations). In 

the formulation of the mathematical model, mathematical equations, for example, ODEs, 

are used to describe the rate of substrate utilization, autocatalytic cell growth and product 

formation. Typically, the model parameters are fitted by statistical methods. For example, 

an optimization process can be used to fit the model parameters, where the sum of the 

squared differences between the model predictions and experimental data is minimized.  

Using the mathematical model developed, the simulation predictions of the process 

from a process simulator can be compared to the experimental data. Depending on the 

range of applicability of the conditions and inputs used to formulate the model, the model 

predictions can be used for interpolation and/or extrapolation to gain more insight about 

the process at hand. In this way, the use of PSE tools and methods help to reduce 
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unnecessary experimentation, cut down cost and save resources and time to know the most 

informative experiments for process design, control and optimization. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 The process of translating a real process into a mathematical model using 
Process Systems Engineering tools and methods. 

Unlike the traditional chemical and refinery processes, PSE tools and methods are 

not routinely applied for the design, analysis and optimization of fermentation-based 

biorefineries. When a refinery and a biorefinery are compared based on the nature of the 

processes, components involved and the mode of operation, the reasons why it has been 

difficult to apply traditional PSE tools and methods to biorefineries relative to a refinery 

can be summarized in Figure 2.7.  A refinery process mostly involve a physical and/or 

chemical process and is relatively easier to be described with mathematical models 

compared to a biorefinery process, which is a biological process. Fermentation-based 

biorefineries are particularly challenging to model with traditional PSE tools when 

fermentation is integrated with in situ product recovery and separation techniques such as 

adsorption and membrane separation.  

As shown in Figure 2.7, a refinery typically involves hydrocarbon components 

(hydrocarbons are easier to characterize with the corresponding physical property data 

readily available in commercial process simulators) and these components are usually 

found in the database of commercial process simulators. On the contrary, a fermentation 

process involve components such as microorganisms (e.g. yeast), molasses and bagasse. 

These components are either hard to characterize or have no defined composition, resulting 
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in these components not found in the databank of process simulators because of missing 

and/or incomplete physical property data. Apart from the start-up and shutdown processing 

steps, refinery processes are mostly operated as steady state whereas fermentation-based 

biorefineries are frequently operated as batch and semi-batch processes. Additionally, 

fermentation processes are often described and modeled with batch data even when 

fermentation processes are operated as continuous processes. Batch and semi-batch 

processes are inherently unsteady state; the properties of the system, such as composition 

and concentration, change with time. This time-dependent nature of fermentation processes 

render traditional steady state process simulators inadequate to describe and simulate the 

inherently unsteady state fermentation process. 

 

 

 

 

 

 

 

 

 

Figure 2.7 Comparison of a refinery with a biorefinery to highlight the challenges for 
applying commercial process simulators to biorefinery processes. 

Optimization of refinery processes typically involve linear mathematical models 

for which shortcut/single optimization approaches available in most commercial process 

simulators are adequate. In contrast, fermentation-based biorefineries involve the complex 

interaction of microorganisms and unsteady state fermentation environment, resulting in 

non-linear mathematical models.  Fermentation processes, therefore, require rigorous 

optimization approaches, such as multi-objective optimization, which are often not 

available in commercial process simulators.  
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In Table 2.2, the traditional steady state process simulator, Aspen Plus, is used as a 

model process simulator to further elucidate the challenges hindering the readily 

application of commercial PSE tools to fermentation-based biorefineries. In Aspen Plus 

V9, typical fermentation components such as biomass and microorganisms are non-

databank components. In addition, the typical ODEs describing fermentation processes do 

not conform to the form of the in-built power law rate-based kinetic model in Aspen Plus 

V9.  Aspen Plus V9, for example, can only handle single-objective optimization and not 

the typical multi-objective optimization problem that a fermentation-based biorefinery 

presents.  

Table 2.2 Using Aspen Plus as a model process simulator to highlight the challenges for 
applying commercial process simulators to fermentation processes. 

Process 
simulator 

Fermentation 
components in 

database 

Built-in rate based kinetics Optimization 
tools 

available 
Aspen Plus 
V9 
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where r is rate of reaction, k is pre-exponential factor, T is temperature, n is temperature 
exponent, E is activation energy, R is universal gas law constant, ϑ is concentration 
exponent, i, is component index, π is the product operator, C is component concentration, 
BA is butyric acid, S is glucose, X is cells, B is butanol, k5, KI and KBA are parameters. 

To circumvent these challenges, a commercial process simulator must be linked 

with an external robust optimization platform to facilitate the exchange of data between the 

external optimization software and the process simulator as shown in Figure 2.8. 

Furthermore, nondatabank components in the commercial process simulator may be 

incorporated as user-defined components. The non-standard ODEs describing the 

fermentation process can be incorporated by linking the process simulator to either an 

external program that can solve ODEs or user subroutine to simulate the fermentation 

process as an unsteady state process. Many of the optimization problems in fermentation-
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based biorefineries result in a multiple objective system in which some or all of the 

objectives are competing. As shown in Figure 2.9 for a multiple objective optimization 

problem, the traditional single-objective optimization (SOO) approach either designates 

one objective as the main objective function while other objective functions are 

transformed into additional constraints or a relative average sum of all the objective 

functions into one objective using relative weights. The SOO finds one optimal decision 

variable with one set of the corresponding objective function values. On the contrary, a 

multi-objective optimization simultaneously optimize multiple objectives to find a set of 

equally optimal decision variables and their corresponding sets of objective function 

values, collectively called Pareto optimal solutions. The Pareto optimal solutions are 

typically scored and ranked using the preferences and inputs of the decision maker based 

on algorithms such as the Net Flow Method and Rough Set Method.  

 
 
 
 
 
 
 
 
  
 

 

 

 
Figure 2.8 General framework for optimization of fermentation process based on unsteady 
state simulations in commercial process simulators coupled with rigorous optimization. 
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Figure 2.9 Single-objective versus multi-objective optimization approaches. 
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Chapter 3 

A Perspective on Challenges and Prospects for Applying Process Systems 

Engineering Tools to Fermentation-Based Biorefineries 

3.1 Summary 

Unlike traditional chemical and petrochemical processes, Process Systems 

Engineering (PSE) tools and methods have not been routinely applied for the design, 

analysis, and optimization of fermentation-based biorefineries. This has greatly limited the 

ability to analyze these biomass-based processes, thus also limiting the potential 

profitability of biorefinery processes. This Perspective elucidates the challenges currently 

hindering the application of traditional PSE tools and methods to fermentation-based 

biorefineries. The current state of process simulators and mathematical models, the 

backbone of PSE, as applied to fermentation-based processes are addressed. Further, this 

contribution includes a proposed framework that can be applied to fermentation-based 

processes using existing process simulators with an illustrative case study to highlight how 

imperative PSE tools and methods are to the advancement of biorefineries. Finally, the 

future needs and prospects for using traditional PSE tools and methods for the design, 

analysis, and optimization of fermentation-based biorefineries to provide sustainable 

alternatives to existing processes and fossil-based products are discussed. 

3.2 Introduction 

Unlike traditional petrochemical products and processes, fuels and chemicals 

produced via fermentation have not yet benefited from decades of refinement and 

optimization using the available Process Systems Engineering (PSE) tools. As a result, the 

economic viability of these processes is often understated. Further, when relying on 

laboratory experimentation and pilot studies alone, finding optimal process configurations 

can be prohibitively time consuming and expensive. That said, biomass – particularly waste 

biomass from crop residues – presents a potentially sustainable source of fuels and 

chemicals.  According to the 2017 BP Statistical Review of World Energy, production of 

biofuels grew at an average rate of 15.2% per annum in the United States and 14.1% per 

annum globally.65 This growth rate is significant and highlights the importance of applying 

the tools and methods of PSE to optimize the production of biofuels. Unfortunately, 

creating process simulations of fermentation-based products is especially challenging 
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because the fermentation process involves microorganisms that are difficult to characterize 

and model mathematically.35 On the other hand, traditional PSE tools partially or fully lack 

features needed to simulate fermentation processes. Without robust computer models, 

optimization is difficult if not impossible. 

In an era of increasing concern regarding the effects of petroleum-based products 

on the global climate, fuels and chemicals produced from nonfood, lignocellulosic biomass 

sources may provide a sustainable alternative. These so-called second generation biofuels 

have the potential to reduce greenhouse gas emissions. When paired with governmental 

incentive programs, the production of biomass-based products globally has increased 

dramatically.65 However, there are numerous technical challenges that must still be 

addressed before processes based on lignocellulosic biomass are economically viable.  

These include supply chain constraints, overcoming the recalcitrance of lignocellulosic 

biomass to produce fermentable sugars, the effects of sugar composition and 

concentrations on microorganisms, and the fermentation process; as well as substrate and 

product inhibitions. Additionally, second generation biofuels are subject to additional 

uncertainties due to the upstream costs of agricultural production.66 The experimental 

burdens to address these challenges are high. Therefore, if robust mathematical models can 

be developed, the tools and methods of PSE can be brought to bear to provide direction for 

experimental work. Mathematical models allow researchers to quickly assess a proposed 

fermentation-based biorefinery in terms of sustainability metrics (potential profitability 

and environmental and societal impacts).67-68  

PSE relies heavily on computer tools and methods to analyze groups of individual 

unit operations as a process. Taking this broader view allows design engineers to achieve 

insight into the behavior of the process that is not possible when taking a unit by unit view.  

However, taking this approach requires the development of sophisticated mathematical 

models for each part of the system. This is particularly difficult for fermentation-based 

processes.  Not only are most fermentation processes unsteady state, but the kinetics of 

converting raw materials, such as biomass into fuel and chemical products, must be coupled 

with the lag, autocatalytic growth, and death stages of the microorganism being used to 

carry out the chemical conversion. Currently, there is a lack of existing unit operation 

models in commercially available simulation packages for fermentation processes that 
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fully include both reaction kinetics and microorganism life cycle considerations. This is in 

sharp contrast to petrochemical processes, which can easily be described mathematically 

with physical and thermodynamic models. 

To this end, this work aims to provide analysis of some of the key issues hindering 

the use of PSE tools and methods through commercial process simulators for fermentation-

based biorefineries. The challenges in applying traditional PSE tools are addressed based 

on mathematical models, process simulation and optimization with illustrative examples 

of the current state-of-the-art simulation and optimization approaches. A proposed 

framework that utilizes traditional process simulators is used in a case study (presented 

separately in Chapter 5) to highlight the important role that PSE tools play in guiding and 

supporting the understanding of experimental work to provide process insights that will be 

too difficult, expensive, or impossible through experiments alone. The prospects for 

application of PSE tools to fermentation-based biorefineries are also addressed, including 

improvements and developments in mathematical models, process simulation, and 

optimization needs. 

3.3 Background 

3.3.1 Biorefining 

A biorefinery uses biomass to produce fuels, power, and chemicals in a facility that 

combines biomass conversion technologies and equipment.22-26 A biorefinery can be 

broadly classified mainly into biochemical and thermochemical conversion platforms.37, 39, 

52, 69 The thermochemical conversion process uses heat and catalysts (using gasification or 

pyrolysis).39  As shown in Figure 3.1, the biochemical platform, also known as the sugar 

platform, depending on the biocatalysts (microorganisms and enzymes)52 used in 

fermentation, can convert biomass into biofuels (e.g., bioethanol and biobutanol) and 

chemicals (e.g., lactic and succinic acids). “Fermentation is a biological process where a 

substrate is converted into a valuable product by a microbial organism.”2 Biomass is 

converted to biofuels in the sugar platform in four steps: pretreatment, hydrolysis of 

pretreated material to monosugars (fermentable sugars),39 fermentation of monosugars and 

purification.70-71   
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Figure 3.1 Flowchart showing the diversity of feedstock and the potential components 
involved in biorefineries based on the sugar or fermentation platform.13-14 
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submerged cultivation (SmC). Alternatively solid substrate cultivation (SSC) is used, the 

growth of microorganisms on solid material in the absence of a free water process.72 These 

fermentation processes could be batch, fed-batch, continuous or a combination of these 

fermentation schemes with integrated product recovery techniques such as gas stripping, 

pervaporation, extraction, adsorption, and pervaporation. Product concentration and 

purification uses the conventional distillation, adsorption, gas stripping, extraction, 

perstraction, reverse osmosis (RO) and pervaporation.38, 64  

3.3.2 Process Systems Engineering 

Process Systems Engineering is broadly defined as “analysis, design, optimization, 

operation, and control of complex process systems as well as the development of model-

based methods and tools that allow systematic development of processes and products 

across a wide range of systems involving physical and chemical change”20 and/or 

biological processing operation.21 PSE encompasses both an academic and technological 

field that develop methodologies that are used as a decision-support for chemical 

engineering problems, spanning the supply chain creation and operation from the 

discovery, design, manufacture, and distribution processes.73  The development of 

methodologies is responsible for planning, designing, operating, and controlling different 

unit operations, a chemical or production process, and an entire industry at large from a 

backbone of mathematical models and systems engineering tools.73 This allows deeper 

understanding based on the development of systematic processes for small systems to 

large-scale batch and continuous industrial processes.74 PSE offers tremendous avenues for 

evaluating process options, process integration, performance of building blocks and 

chemicals, biorefinery, and biocatalyst design.75 To reap the full benefits of PSE tools and 

methods applied to fermentation-based processes as the chemical and refinery processes 

have enjoyed, the application of PSE tools fermentation-based biorefineries should move 

from unit-based to a holistic approach of the entire system with sustainability as the 

bedrock.20 

3.4 The role and challenges of PSE in process design, simulation, and optimization 

One of the principle benefits of using in silico platforms is the ability to consider 

large numbers of variables (process inputs and conditions) in optimization processes. If 

one thinks of a process simulation as a virtual laboratory to be used for experimentation, it 
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becomes clear that considering large numbers of process options is much more feasible. 

Additionally, simulation allows the design engineer to add other downstream unit 

operations – operations that would not normally be included in traditional laboratory 

settings. This allows global optimization studies to be conducted where potential 

profitability is the objective. Insights as to how recycle options, upstream pretreatment and 

downstream separation and purification processes influence profitability can easily be 

gained. Apply PSE tools such as Monte Carlo simulation, Pareto Optimization, and Multi-

Objective Optimization can only be practical in silico. Further, effective life cycle 

assessments and environmental impact assessments can only be conducted when a 

complete process model is in place. This underscores the importance of robust 

mathematical models. In short, having robust mathematical models is critical for 

developing an understanding of the process as a whole and what process variables have the 

greatest influence on profitability and environmental performance. 

3.4.1 Challenges in using commercial and mature PSE tools for fermentation-based 

simulations 

PSE tools are central to understanding and solving the sheer volume of decisions in 

fermentation-based processes arising from numerous process variables that must be 

optimized. Mature and commercial process simulators include the Aspen Engineering 

SuiteTM: e.g. Aspen Plus and Aspen HYSYS (Aspen Technology; Cambridge, 

Massachusetts),29-31 gPROMS (Process Systems Enterprise; London, UK),29-30 PRO/II 

(Schneider Electric Software, CA, USA),29 UniSim® Design Suite (Honeywell 

International, Inc.; Morris Plains, NJ), Extend (Image That, San Jose, CA), and SuperPro 

Designer® (Intellingen; Scott’s Plain, NJ).30, 32 Most process simulators were traditionally 

designed for the petrochemical and refinery industries which are continuous processes, 

often operated in steady state mode apart from the transient processes (start-ups  and 

shutdowns).32 PSE tools and methods played a critical role in expanding the manufacturing 

capacity and developing economical viable processes in the chemical and refinery 

industries.35  

 However, PSE tools have not been readily applied to fermentation-based 

biorefineries because of lack of unit operation models with complete features that support 

the simulation of complex fermentation processes, (i.e. simulation of a fermentor as 
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unsteady state batch process) and key process components, such as cells, in the databank.2, 

33 PSE tools such as SuperPro Designer® and Aspen Batch Process Developer (Aspen 

Technology; Cambridge, Massachusetts) dedicated to the simulation of batch 

bioprocesses32 also lack some fermentation-based components in the database and the 

built-in rate-based kinetics generally cannot be used for mechanistic models (ordinary 

differential equations, ODEs) describing batch fermentations. Most fermentation processes 

are integrated with in situ product recovery processes to alleviate product toxicity to 

microorganisms. Traditional PSE tools such as Aspen Plus do not have in-built models that 

can readily simulate integrated fermentation and in situ product recovery processes. 

3.4.1.1 Databases and physical property methods for bio-based components in 

traditional PSE tools 

As shown in Figure 3.1, the diversity of the potential feedstock, variable 

composition of each feedstock (30 – 50% and 10 – 25% of dry weight for glucose and 

xylose contents in various feedstock, respectively) and sheer volume of components 

present a challenge in incorporating all these components in the databank of process 

simulators, providing the physical property data required and using PSE tools in the 

fermentation platform in a biorefinery. Although some efforts have been made to include 

typical components involved in fermentation processes in the databank of traditional 

process simulators, enzymes, yeast, and other microorganisms are still nondatabank 

components or missing physical property data when they exist in databanks in process 

simulators. This is because underdefined components, such as enzymes and cells, are 

biological species and usually have unknown structures, and are difficult to characterize. 

These result in missing physical property data in the databank of process simulators.76 The 

successful simulation of fermentation-based biorefineries require the physical properties 

of components involved in the fermentation in the databank of process simulators for all 

component compositions, temperature, and pressure ranges.  The validity and precision of 

process simulations depend on accurate physical property and thermodynamic models 

employed. Sometimes, estimation/prediction of many pure components and mixture 

properties are required because these properties cannot be measured or are difficult to 

measure experimentally,77 requiring user-supplied data in process simulators.78  
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Eric C. Carlson79 suggested a five-step process to describe the physical properties 

of components in a simulation: selecting the appropriate physical property method, 

validating the physical properties predicted by the selected method, simulating 

nondatabank components, obtaining, and using physical property data. Physical property 

estimation methods utilize property models that predict molecular properties from 

structural descriptors. Physical property models can be grouped into empirical, 

semiempirical and mechanical models, which together predict pure components, mixtures 

and polymer physical properties. Examples of physical property models include group 

contributions (“the properties of a molecule are determined by adding the occurrence 

frequency times the contribution of each molecular group in a molecule”)80  and topological 

indices (“the molecular descriptors are calculated using the interaction among different 

atoms/molecules groups, correlating the chemical structure to physical properties of a 

molecule”).80 Because of the advances in thermodynamics, an extensive collection of 

thermodynamic models (including equation-of-state, activity coefficient, predictive, and 

electrolyte based)81 are available in PSE tools. The nature of the components, type of 

mixture, and range of conditions dictate the choice of thermodynamic models.81 

 3.4.2 Challenges in applying traditional PSE process simulators for optimization of 

fermentation-based biorefineries. 

An optimization process finds the decision variables that represent and predict the 

optimum (maximum, minimum or target) of one or more objectives. Process optimizations 

are applied in many industries including chemical, oil and gas, refinery, pharmaceutical, 

and bioenergy, among other industries, to improve the process performance (generally 

increase profits and reduce costs), and minimize environmental and societal impacts of 

processes. Optimization of fermentation-based biorefineries, biochemical processes, uses 

mathematical models that represent and predict the forecast of the process given initial 

conditions and process inputs. This proposition is a familiar area that PSE plays a leading 

role. The desired performance of the process in the form of multiple objective functions 

are often inherently partially or fully competing27-28 and require simultaneous objectives 

optimization subject to limited resources and process inputs (constraints – decision 

variables). Competing means as one parameter is enhanced (optimized), one or more 

parameters are simultaneously made worse or compromised. Examples of such competing 
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pairs of objectives include product selectivity and conversion, product quality and recovery 

cost, profit and safety cost,27-28 etc. 

The traditional optimization approach has been the optimization of a single 

objective function, single objective optimization (SOO). In the case of a multiple objective 

system, SOO translates a multiple objective system into a single objective by either using 

relative weights to combine different objective functions or choosing one objective 

function as the main objective function while transforming other objectives into additional 

constraints. SOO finds a single unique solution unless multiple solutions exist where, local 

and global optima may be found by repeatedly solving the SOO problem with different 

initial guesses.27-28 On the other hand, multiobjective optimization (MOO) finds a set of 

decision variables (Pareto domain) and their corresponding alternative sets of equally 

optimal solution(s) (Pareto-optimal solutions) by simultaneous optimization of (often 

competing) multiple objectives. Similar to SOO, MOO finds only one unique solution if 

the objectives are not competing. MOO often utilizes methods such as the Net Flow 

Method (NFM) and Rough Set Method (RSM) to analyze the Pareto-domain based on the 

interest of the decision-maker. Unlike the SOO that could hide the trade-offs that exist 

among competing objectives (process performance parameters), MOO provides insightful 

information about the trade-offs. Furthermore, MOO gives alternative solutions that can 

give guidance and insight about the performance of a process to aid in process design and 

control, and present what-if scenarios to mirror different process performances when 

process inputs and initial conditions change.28 

Linearized and simplified or shortcut models are adequate for steady state and 

continuous chemical and refinery processes. Consequently, most traditional process 

simulators can only handle SOO (e.g. Aspen Plus) or have no built-in optimization tools 

(e.g. SuperPro Designer) as illustrated in Table 3.1 with two commercial process 

simulators. As shown in Table 3.1, Aspen Plus V9 can only handle SOO, using solvers 

such as the sequential quadratic programming (SQP) and complex method. To optimize 

fermentation processes linked to in situ product recovery techniques such as gas stripping, 

the formulation of the optimization problem requires process simulations based on time-

dependent hydrolysis and fermentation (describing the inherent unsteady state process) 

models linked in situ to a separation process. MOO methods are required for fermentation-
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based processes because integrated fermentation and in situ separation processes often 

involve competing pairs of objectives such as selectivity and conversion, product quality 

and recovery cost, etc. MOO in traditional simulators will require linking the process 

simulator to an external software that can handle non-linear and MOO problems, such as 

MATLAB. 

Table 3.1 Assessment of the databank and nondatabank components, and built-in rate 
based reaction kinetics and optimization tools available in Aspen Plus V9 and SuperPro 
Designer® v9.0. 

Process 
simulator 

Fermentation 
components in 

database 

Built-in rate-based kinetics Optimization 
tools available 

Aspen 
Plus V9 

Databank: glucose, 
xylose, sucrose, 
arabinose, galactose, 
mannose. 
Nondatabank: 
biomass, yeast, 
microorganisms. 

Power Law Model:  
𝑟𝑟 = 𝑘𝑘𝑇𝑇𝑛𝑛 exp(−𝐸𝐸 𝑅𝑅𝑇𝑇⁄ )∏(𝐶𝐶𝑖𝑖)𝜗𝜗𝑖𝑖  
 
Langmuir-Hinshelwood Hougen-
Watson (LHHW): 
𝑟𝑟 = (𝑘𝑘𝑖𝑖𝑛𝑛𝑒𝑒𝑡𝑡𝑖𝑖𝑡𝑡 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓)(𝑑𝑑𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒)

𝑓𝑓𝑑𝑑𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 𝑒𝑒𝑒𝑒𝑎𝑎𝑓𝑓𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑓𝑓𝑛𝑛
  

kinetic factor = 𝑘𝑘𝑇𝑇𝑛𝑛 exp(−𝐸𝐸 𝑅𝑅𝑇𝑇⁄ ) 
𝑑𝑑𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂𝐶𝐶𝑂𝑂 𝑓𝑓𝐶𝐶𝑟𝑟𝑂𝑂𝑒𝑒 =  𝐾𝐾1 �∏𝐶𝐶𝑗𝑗

𝜗𝜗𝑗𝑗� −

𝐾𝐾2 �∏𝐶𝐶𝑗𝑗
𝜗𝜗𝑗𝑗�  

𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝑟𝑟𝑝𝑝𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑝𝑝𝑟𝑟𝑒𝑒𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝐶𝐶 =
 �∑𝐾𝐾𝑖𝑖 �∏𝐶𝐶𝑗𝑗

𝜗𝜗𝑗𝑗��
𝑚𝑚

  
 

Type of 
optimization: 
Only single 
objective 
 
Solvers: 
Sequential 
Quadratic 
Programming 
(SQP), Complex 

SuperPro 
Designer® 
v9.0 

Databank: glucose, 
xylose, sucrose, 
arabinose, galactose, 
mannose, biomassa 
and proteinsa 
(CH1.8O0.5N0.2) 
Corn steep liquora 
(CHO) 
Molassesb and yeastb 
(C6H12O6) 
 

General rate expression (based on a 
reference component): 
𝑟𝑟𝑗𝑗 = [𝛼𝛼𝜇𝜇𝑚𝑚𝑓𝑓𝑒𝑒𝑇𝑇𝑒𝑒𝑟𝑟𝑇𝑇1𝑇𝑇𝑒𝑒𝑟𝑟𝑇𝑇2𝑇𝑇𝑒𝑒𝑟𝑟𝑇𝑇3 +
𝛽𝛽](𝑇𝑇𝑒𝑒𝑟𝑟𝑇𝑇4)  

 

 

No optimization 
tool is available. 

a some physical property data are shared between biomass and protein components 
b uses the physical property data of glucose 
For Aspen Plus reaction kinetics:  r is rate of reaction, k is pre-exponential factor, T is 
temperature, n is temperature exponent, E is activation energy, R is universal gas law 
constant, ϑ is concentration exponent, i, j are component index, π is the product operator, 
∑ is the summation operator, C is component concentration, m is adsorption expression 
exponent, K1, K2, Ki are equilibrium constants. 
SuperPro Designer® reaction kinetics: α and β are constants and μmax is the maximum 
specific biomass growth rate. Term1, Term2 and Term3 (can be used for inhibitor 
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component) are kinetic expressions of three different components (e.g., substrates or 
reaction products). Monod, Haldane (with product inhibition), Inhibition, first order, and 
none are the options available that can be selected to represent Term1, Term2 and Term3. 
Term4 kinetic expression of the biomass component.  

3.4.2.1 Examples of using traditional process simulators for optimization of 

fermentation-based biorefineries. 

Due to the inherently nonlinear nature and complexity of optimization problems in 

fermentation-based processes, the available optimization tools in traditional process 

simulators are often inadequate. To put this in perspective, the classes of optimization 

problems encountered in biorefineries could be linear programming, quadratic 

programming, nonlinear programming, combinational optimization, dynamic 

optimization, mixed integer linear and non-linear programming, optimization under 

uncertainty, bilevel optimization, global optimization, and multiobjective optimization.27 

The determination of most objective function values and sometimes constraints require 

rigorous thermodynamic models in order for the optimization schemes to be realistic and 

practical. The following examples (not exhaustive) show how traditional process 

simulators have been linked with various external programs that have rigorous optimization 

tools for the optimization of fermentation-based biorefineries.  

Gudena et al.27 transformed a MOO problem using the ε–constraint method, where 

one objective from a multiple objective system was chosen as the main objective function 

while the other objectives were transformed into additional constraints for a hybrid steam 

stripper-membrane process for continuous bioethanol purification. The resulting SOO 

problem was solved repeatedly in Aspen Plus using several small changes in a chosen “ε” 

to obtain a set of optimal solutions. You et al.82 linked Aspen Plus (determines data required 

to evaluate objective function values) to a multiobjective mixed integer linear 

programming in GAMS and used the ε-constraint method to find Pareto-optimal curves 

that showed the trade-off between economic, environmental, and social factors of a 

cellulosic ethanol (biofuel) supply chain. 

 Vázquez-Ojeda et al.83 used a stochastic global optimization algorithm (differential 

evolution) implemented in MATLAB and coupled to rigorous process simulations in 

Aspen Plus for SOO of the purification of ethanol in a liquid–liquid extraction process 

(investigated extraction using conventional ethylene glycol versus octanoic acid, octanol 
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and iso-octanol (ethylhexanol) as extractive distillation agents). The communication 

between MATLAB and Aspen Plus was via Microsoft Excel®. In another example, a 

multiobjective optimization of three integrated continuous ABE fermentation and in situ 

product recovery processes (gas stripping, pervaporation, and vacuum separation methods) 

was carried out using a Dual Population Evolutionary Algorithm (DPEA) to determine 

Pareto-optimal solutions and ranked using NFM to determine the best operating conditions 

of each separation technology. The Visual Basic Applications (VBA) program that solves 

the set of fermentation ODEs by the finite differences method was used as the simulation 

platform linked to Honeywell UniSim® software for the thermodynamic information.84-85 

Other interesting examples are found in the work of Geraili et al.52, 69 who used an Aspen 

Plus process simulation (incorporate experimentally derived kinetics of complex biological 

reactions) linked to a hybrid strategic and operational level optimization framework in 

MATLAB through Aspen Plus ActiveX Automation technology to evaluate alternative 

technology options to select the optimal configuration from process yields and economic 

profit criteria.  

3.4.3 Incorporation of rate kinetics in fermentation simulations using traditional 

process simulators. 

Fermentations in biorefineries are frequently operated as batch or semibatch 

processes, in which the properties (concentrations, pH, temperature, etc.) change with time. 

As discussed previously, the form of kinetic models describing fermentation processes 

typically does not conform to the built-in reaction kinetic models even in dedicated batch 

process simulators, like SuperPro Designer®, as illustrated with two mature and 

commercial process simulators in Table 3.1. For example in Aspen Plus V9, only two built-

in rate based kinetics exist: power law and Langmuir-Hinshelwood-Hougen-Watson. 

SuperPro Designer v9 on the other hand has one general rate-based kinetics that gives a 

user the options to select a Monod, Haldane, substrate inhibition, first order-based 

dependency on microorganism and none. The use of different enzymes and 

microorganisms, that typically have different metabolic pathways and mechanisms of 

substrate utilization, product formation, substrate and product inhibitions, makes it 

infeasible to have built-in kinetic models in process simulators that can handle every form 

of rate kinetics. 
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3.4.4 Traditional simulation approaches for fermentation process in biorefineries 

Batch fermentations have been simulated using stoichiometric reactors in which 

product distribution is relative to a key component such as glucose or xylose with fixed 

product yields.5, 86-89 The autocatalytic production of cells and maintenance are either 

ignored or also represented with stoichiometric equations at fixed yields relative to the 

formation of other products. This simulation approach decouples the interdependency of 

substrates and products on microorganism concentrations and production and does not 

incorporate time-dependent cell growth with product and substrate inhibitions. For 

integrated batch and in situ product recovery techniques used to alleviate product 

inhibition, the traditional simulation approach decouple the interdependent batch 

fermentation from the in situ product recovery. For example, the integrated batch Acetone-

Butanol-Ethanol (ABE) and in situ gas stripping process is traditionally simulated with a 

stoichiometric reactor (based on stoichiometric equations and coefficients eqs 3.1 – 3.7) to 

represent the final batch fermentation broth and a flash unit to simulate the final broth 

composition, from the stoichiometric reactor, as the gas stripping process.5, 86-87 

C6H12O6 → C4H10O (butanol) + 2CO2 + H2O (3.1) 

C6H12O6 + H2O → C3H6O (acetone) + 3CO2 + 4H2 (3.2) 

C6H12O6 → 2C2H5O (ethanol) + 2CO2 + H2 (3.3) 

C6H12O6 → C4H8O2 (butyric acid) + 2CO2 + 2H2 (3.4) 

C6H12O6 → 3C2H4O2 (acetic acid) (3.5) 

C6H12O6 + 6O2 → 6H2O + 6CO2 (cell maintenance) (3.6) 

C6H12O6 +1.1429NH3 → 5.7143ZYMO (Cell biomass) + 0.2857CO2 + 2.5714H2O (Cell 

growth) (3.7) 

Approaches to incorporate time-dependent fermentation models into traditional 

process simulators include linking the process simulator to an external program that can 

integrate the typical form (e.g., ODEs) of rate-kinetics such as MATLAB, Excel, or a user-

defined kinetic subroutine. Geraili et al.52, 69 used a dynamic link and data exchange 

between Aspen Plus ActiveX Automation technology and MATLAB to incorporate kinetic 

models (ODEs) that describe enzymatic hydrolysis, and a Monod-type of cell growth to 

simulate batch fermentation for the production of ethanol and succinic acid. Similarly, 

Quintero and Cardona90 simulated a batch fermentation for the production of ethanol from 
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rice hulls in Aspen Plus considering the pretreatment, hydrolysis, detoxification and 

fermentation steps using a recombinant bacteria Zymomonas mobilis. The dilute acid and 

liquid hot water pretreatments, hemicellulose and cellulose hydrolysis were simulated with 

batch reactors with first order rate-based kinetics. The kinetic models describing the 

detoxification and batch fermentation were simulated using a user subroutine written in an 

Excel-MATLAB interface linked to Aspen Plus because these kinetic models did not 

conform to the built-in kinetic models in Aspen Plus. In another example, Dias et al.91 

simulated a batch production of bioethanol from sugarcane by fermentation using SuperPro 

Designer® linked to an Excel spreadsheet. The nondatabank components (sugar cane 

bagasse and sugar cane impurities) were simulated as user-defined components in SuperPro 

Designer.  

3.4.5 Current state of PSE for fermentation process modeling 

Mathematical models play a crucial role in understating and optimizing cellular 

kinetics and for that matter, bioprocesses.33-35 The accuracy of the prediction of a 

simulation depends, in part, on the quality of the mathematical model employed, given 

process inputs and conditions.36 Generally, mathematical models can be classified as 

stoichiometric, kinetic, or a hybrid of stoichiometric and kinetic models, and these models 

are used to describe cell and fermentation processes.92 Two classes of models are generally 

used in simulations. First, empirical – representation of a system with an input-output 

relationship, in which details of the underlying phenomena and mechanism are not 

incorporated. The predictions of empirical models are often only accurate within the range 

of conditions and data used to formulate the model (interpolative). Second, mechanistic 

models represent a system by incorporating the constituent parts and underlying 

mechanism to formulate mathematically the internal operations of a system. In this way, 

the forecast (extrapolation)2 of a system can be predicted from a given set of initial 

conditions and process inputs (deterministic principles that are based on the knowledge of 

the process) with a better accuracy.93 The typical constituents of a fermentation system 

include substrates, cell biomass concentrations, working volume, etc. whereas the 

underlying mechanism includes microbial growth kinetics, mixing, heat and mass balances 

and transfer processes and thermodynamic phenomena.33, 93  
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When ideal mixing can be assumed in fermentations, mechanistic models can be 

classified into four categories based on microbial cell populations as shown in Figure 3.2. 

Structured models represent cellular behavior by viewing a cell as made up of various 

chemical components, whereas unstructured models consider a cell as a single chemical 

component. On the other hand, segregated models consider the individual cells that make 

up a population of cells to be different with diverse characteristics whereas unsegregated 

models represent a population of cells with an average cellular behavior, where for example 

all cells are deemed to have the same characteristics. For bioproce,sses, the traditional 

models have generally used empirical models using the well-known Monod expressions 

for microbial growth kinetics93 and metabolites rates with mechanistic models for the 

physical process (mixing, heat transfer in the fermentation environment, etc).2, 93 

 

Figure 3.2 Mechanistic models classification based on cell population.93 

Because of the complexity of bioprocesses, some of the underlying cellular 

mechanisms, such as regulatory mechanisms and stress responses, are not well understood 

to be described mathematically with mechanistic models, in which case the norm has been 

to use empirical models.2 This challenge is exacerbated by the fact that the nonlinear 

behavior (time-dependency) of microorganisms determine the dynamics of bioprocesses, 
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limiting detailed mathematical modeling because of partial microbial and fermentation 

kinetics knowledge.35, 94 

3.4.5.1 The gap between developments in biology and mathematical models.  

The advances in genome sequencing,95-97 annotation tools and techniques,97 

multiomics data from experiments based on metabolites-protein interactions,95, 98-99 DNA 

technology,100 microchemical methods,100  rational and evolutionary engineering strategies 

to improve the tolerance of microorganisms to fermentation, metabolic intermediates and 

end-product inhibitions101 have been well documented and researched on an ongoing basis. 

Furthermore, advances and developments in process monitoring and control for 

bioprocesses have been impressive: real-time/near real-time measurements using infrared 

spectroscopy, Raman spectroscopy, capacitance sensors and mass spectroscopy for online 

real-time measurements of components concentrations (e.g., glucose, fructose, etc.), 

measurement of concentrations (e.g., glucose, acetate, formate, etc.), cell biomass (change 

of microbial morphology and viability) and real-time measurements of gases (CO2 and O2), 

respectively.34 Nevertheless, mathematical model development and the use of 

computational tools have failed to keep up with these advances and developments in 

biology to further advance the knowledge in bioprocess understanding of fundamental 

biological concepts; most developed models rely on mathematical concepts and equations 

developed over a century ago (using Monod and Michaelis-Menten expressions).35, 100 

In the case of fermentation-based processes, the biorefinery industry has been slow 

in translating and implementing the efforts of biochemical engineers (advances in 

metabolic and genetic engineering) into mathematical models.35, 100 For example, 

Saccharomyces cerevisiae consume low concentrations of glucose and mainly respire to 

produce cell biomass and CO2 whereas at glucose concentrations greater than 5 g/L, the 

microorganism undergoes an aerobic fermentation to produce cell biomass, ethanol and 

relatively higher CO2 per glucose consumed.100 Another example is the ABE producing 

Clostridia that produces ABE during the conventional batch fermentation using a carbon 

source through two separate growth phases: exponential acidogenic phase (butyric acid, 

acetic acid, carbon dioxide and hydrogen are produced) and late exponential and stationary 

solventogenic phase4, 38 (excreted acids are taken up and converted to acetone and butanol 

in a typical ratio of 2:1).4 
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 It must be mentioned that various researchers have investigated the switch from 

acidogenesis to solventogenesis in the ABE fermentation to understand the underlying 

mechanism using a systems biology approach.102-104 There are also a hybrid of mechanistic 

models (for substrate uptake and utilization, formation of intermediate metabolites and 

solvent and cell biomass production) and mainly empirical models (describing regulatory 

mechanisms: on-off switch mechanism to cease metabolic reactions in the absence of 

substrate105, pH-induced switch from acidogenesis to solventogenesis106-108, dissociated 

and undissociated acid utilization106-107, 109 and other regulatory mechanisms105-109). These 

two examples above illustrate how difficult it is to incorporate and translate the 

understanding of fermentation processes from experiments into mathematical models using 

understanding of the cellular machinery, regulatory, and stress response mechanisms to 

capture such trends.  

3.5 A proposed integrated platform of PSE tools for time-dependent fermentation 

processes  

As previously stated, commercial PSE tools, such as Aspen Plus, have been 

routinely and extensively applied to the design, analyses, and optimization of petroleum 

refinery processes.73 However, these PSE tools lack unit operation models with complete 

features that support the simulation of fermentation processes, (i.e., reactors that can 

simulate unsteady state batch process), key process components, such as cells, in the 

databank76 and robust optimization solvers that can solve the inherently nonlinear and 

multiple objective problem a biorefinery presents. Consequently, commercial PSE tools 

have found limited application to fermentation-based biorefineries. Process inputs in 

industrial batch fermentation processes are rarely constant (not steady state), and feedstock 

variability and various potential recycle streams from pretreatment, hydrolysis, 

fermentation, and purification steps70 continuously alter process parameters in the 

fermentation process. Therefore, steady state simulations with fixed process yields are 

inadequate representations of the inherently unsteady state batch fermentation especially 

when batch fermentations are coupled with in situ product recovery techniques, such as gas 

stripping. Consequently, steady state simulations of integrated batch fermentation and in 

situ product recovery cannot be used for process optimization if the goal is to optimize the 

operating conditions. 
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Three major requirements needed to utilize existing PSE tools for the design, 

analyses, and optimization of fermentation process are the simulation of nondatabank 

components, simulation of batch fermentations based on time-dependent fermentation 

models, and linking traditional PSE simulators to robust and nonlinear optimization 

solvers. A general proposed framework that links a robust non-linear optimization solver 

to a traditional process simulator that has the ability to simulate an unsteady state batch 

fermentation process is shown in Figure 3.3. A communication platform that links the 

process simulator to the optimization solver is required, allowing a two-way 

communication between the process simulator and the optimization software. In this way, 

data can be written and read between the two platforms. Based on the decision variables 

and constraints (indicating the range of each decision variable), different combinations of 

the process inputs and operating conditions can be communicated from optimization solver 

to process simulator and the corresponding data required to evaluate objective function 

values communicated from process simulator to optimization solvers through the 

communication platform. This establishes a circle of communication from the optimization 

software to the process simulator through the communication platform.  

The optimization process requires the determination of objective function values 

subject to constraints (CN). The objective function values must be determined for each set 

of decision variables. The decision variables are passed from the optimization platform to 

the process simulator through the communication platform. In the process simulation 

platform, the fermentation process is simulated as unsteady state process using a time-

dependent fermentation model, where the thermodynamic models in the process simulator 

offer opportunities to integrate fermentations with in situ separations. The data required to 

evaluate the objective function values in the optimization platform are read from the 

process simulator through the communication platform. Depending on the optimization 

algorithm used, an improved set of decision variables may be generated for further 

iterations until the stopping criteria is met. 

The built-in generalized reaction kinetics in commercial simulators cannot be used 

for the ODEs describing batch fermentation processes because the ODEs do not conform 

to the built-in generalized kinetics as illustrated in Table 3.1. To incorporate ODEs into the 

kinetics of batch unit operations, the batch unit has to be customized, where the process 
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simulator is linked to a user defined subroutine or an external program that solves ODEs, 

such as MATLAB or Aspen Custom Modeler. To simulate non-databank components such 

as cells, component substitution can be used. Component substitution is the use of the 

known physical property data for the unknown properties of a nondatabank components. 

Microorganisms (e.g. cells) can be simulated as solids with the physical property of another 

component. As solids, the microorganisms will not participate in the vapor-liquid 

equilibrium and interfere with the thermodynamic calculations.110 

 

Figure 3.3 General framework for process simulation and optimization of fermentation 
processes based on a time-dependent (kinetic) model.  
The notation is decision variables (DV), objective functions (OF), constraints (CN), and 
stopping criteria (SC). 

This framework can be applied to any fermentation-based problem when the 

following requirements are met: (1) A traditional process simulator has been customized 

to simulate fermentation as an unsteady state process (for example, using a user defined 

subroutine or an external program that can solve ODEs). (2) Non-databank components are 

simulated. (3) A communication platform is identified (e.g., Visual Basic for Applications 
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(VBA) in Microsoft® Excel or component object model (COM) interface in MATLAB) to 

link the traditional process simulator to a rigorous optimization platform. 

3.6 Conclusions and future directions 

The current state-of-the-art PSE tools in bioprocess simulation and modeling still 

have room for improvement and innovation. In order to improve titers, yields, and 

productivities in fermentation-based processes, the cellular machinery (based on gene 

functions and enzyme kinetics, regulatory network, signal network and stress response 

mechanisms of cellular kinetics,92, 111 and development of advanced genome editing 

tools111) and the extracellular fermentation environment (containing nutrients, substrates 

and other components necessary for metabolism) must be optimized. In-depth 

understanding of microbial kinetics and bioreactor dynamics is imperative to the 

optimization of bioprocesses. A combined model framework of cellular kinetics and 

bioreactor dynamics (interdependent factors) can be used in the design and optimization of 

fermentation processes.34, 92 In the interim, an integration of stoichiometric with dynamic 

models, regulatory, and signaling mechanism models taking into account uncertainty13 

could guide cell engineering and bioprocesses based on lignocellulosic biomass.92   

Cellular kinetics require time-dependent models (can be used to improve substrate 

utilization, product titers, and yields) and cellular engineering (used to improve the 

bioprocess performance based on metabolic engineering, genetic engineering, and 

understanding of cellular regulation mechanism and the resulting improved process design 

from mathematical models) to overcome theoretical performance limitations of in using 

microorganisms.34 Mathematical models should move away from steady state and 

stoichiometry to mechanistic (kinetic) models that describe cellular metabolism and 

regulation mechanisms, driven by extracellular changes/perturbations and genetic 

modifications.34 These models must be tailored to lignocellulosic biomass-based systems.13 

Although unsegregated unstructured models (top left corner, Figure 3.2) are the commonly 

used for bioprocesses (for the overall microbial and fermentation kinetics),92-93 these 

models should be replaced with segregated structured models (bottom right corner, Figure 

3.2) that are able to describe the underlying cellular mechanisms (intracellular, 

intercellular, and extracellular, considering variables such as nicotinamide adenine 

dinucleotide (NADH), adenosine triphosphate (ATP), intermediate metabolites and cell 
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biomass), metabolic flux analysis (MFA), flux balance analysis (FBA), and genome-scale 

models.2, 13, 35, 93 It is important to incorporate the kinetics of inhibitors (substrate, products, 

inhibitory compounds produced from the pretreatment and hydrolysis steps) in the cell 

growth kinetic models.92  

The pretreatment, chemical and enzymatic hydrolysis processes should also be 

based on a combined model-based approach and experiments.92 Because of the sheer 

number of microorganisms and enzymes used in fermentation processes, mathematical 

models developed for one system will generally lack applicability to other processes 

without a complete reestimation and evaluation of the model parameters.35 An adaptive 

parameter system that accounts for the observed variations in parameters used in 

mechanistic models should replace the use of constant model parameters for the yields and 

process rates (usually change over time). In this case, advanced monitoring and control 

systems can be used in bioprocesses to offer insights and trends in these parameters, 

reporting the sensitivity analyses of parameters and confidence intervals with models 

developed.2, 95 A holistic framework that integrates model-based methods and tools with 

experiments on a multidisciplinary platform is needed to utilize the expertise from 

biochemical engineering, bioengineering, molecular science (innovation and 

understanding the cellular mechanisms), and process system engineering (exploratory 

research guidance)35, 112  to explore the operational space using process simulations.2 It 

must be noted that significant investments in terms of resources, time, and in-depth process 

insight are required to develop mechanistic models.2 The challenge here is developing 

models that are complex (incorporate time-dependency) and robust to predict bioprocess 

dynamics while remaining computationally tractable.35, 93, 113 The ultimate goal in 

developing these dynamic segregated structured models should be to translate the process 

understanding and findings to simplified models that can readily be used in industrial 

fermentations.93 Comprehensive reviews on mathematical model developments can be 

found in the work of Koutinas et al.35 and Motta and Pappalardo.114 

Process simulators need adaptation in order to be readily applicable to 

fermentation-based biorefineries. Because of the inherent nonlinear nature of microbial and 

fermentation kinetics, existing process simulators need to add unit operation models or 

modify existing unit operation models, such as batch reactors, to be able to handle time-
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dependency and offer unsteady state batch simulations. In the interim, developers of 

traditional process simulators should explore avenues to expand the capabilities of existing 

simulators and offer tutorials and examples on how to link these simulators to other PSE 

tools that have functionalities and features needed to simulate fermentation processes. 

Without robust simulation models that reflect the intricacies of fermentation processes, it 

is not possible to employ other tools such as SOO or MOO to refine the process design and 

operating parameters. Furthermore, there is a need for the development of analytical tools 

that can characterize substrate (lignocellulosic biomass) structural properties, correlated 

with pretreatment and hydrolysis, and microorganism physical properties.13 In this way, 

the databanks in a traditional process simulator can be updated to include the typical 

lignocellulosic-to-bioproducts components with the required physical property data.  

Fermentation processes often utilize in situ product separation to remove products, 

as it is produced, to prevent the build-up of products to inhibitory levels. In traditional 

process simulators, mature separation processes such as distillation and extraction can be 

readily simulated. However, commercial and mature process simulators such as Aspen Plus 

generally lack the capability to simulate in situ product recovery techniques13 such as gas 

stripping, membrane separation, pervaporation, and adsorption that have been 

experimentally applied to alleviate product inhibition to microorganism in fermentations. 

There is an urgent need to expand the capabilities of unit operation models in traditional 

process simulators to accommodate these separation processes. The virtual experiments 

and process analysis using process simulators saves time and resources by indicating the 

most impactful experiments to conduct for process design, continuous improvements, and 

optimization,32, 36 providing sustainable processes and products. When these tools become 

commercially available, biomass processes may at last prove to be economically viable and 

true sustainable alternatives to traditional, petrochemical products. 
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Chapter 4 

Unsteady State Process Simulation of Integrated Batch Acetone-Butanol-Ethanol 

(ABE) Fermentation and in situ Gas Stripping 

4.1 Summary 

Process simulations of batch fermentations with in situ separation traditionally 

decouple these interdependent steps by simulating a “steady state” fermentation broth 

representative of the final batch fermentation broth composition and uses this stream as an 

input to a steady state separation unit.  In the case of integrated batch fermentation and in 

situ gas stripping, this approach may be inadequate for the systematic analyses of the 

process because the fermentation kinetics are directly linked to the gas stripping process. 

In this study, batch acetone-butanol-ethanol (ABE) fermentation is used as a model system 

to translate time-dependent fermentation models to Aspen Plus using a FORTRAN user 

kinetics subroutine linked to the batch reactor, an approach validated using 

MATLAB.  Consistent with literature experimental results, batch fermentation and in situ 

gas stripping simulations predict an improvement of the total ABE produced, yield and 

productivity compared with the batch process, demonstrating the ability of the 

thermodynamic models to predict phase concentrations/compositions in fermentation and 

in situ separations process simulations.  The ABE product profile is sensitive to the gas 

flow rate, unlike previous separate steady state fermentation and equilibrium-based gas 

stripping simulations, demonstrating the importance of a linked fermentation and 

separation simulation approach for the systematic analyses of the process.  A batch 

fermentor simulated using a time-dependent fermentation model linked directly to 

separations unit operations can provide strategies that can serve as a decision-support tool 

to the fermentation experimentalist and bioprocess design engineer. 

4.2 Introduction 

The production of biofuels and chemicals from lignocellulosic biomass via 

fermentation platform is considered a sustainable energy alternative to fossil fuels.1 The 

alcohol products of the acetone-butanol-ethanol (ABE) fermentation process, butanol and 

ethanol, have properties that make them excellent liquid transportation fuels.37-38 

Additionally, ABE products are used as solvents and for the production of other 

chemicals.43  The ABE fermentation is characterized by low final ABE concentrations (1 
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– 2 wt. % butanol38 or  less than 20 g/L ABE11), low ABE yield (0.28 – 0.33g/g) and low 

reactor productivities (less than 0.3 g/L/h) as a result of butanol toxicity to the 

microorganisms.11 Approaches to reduce product toxicity and enhance the productivity and 

yield of the ABE fermentation process include integrated batch fermentation and in situ 

product recovery techniques, such as gas stripping, adsorption, pervaporation, liquid-liquid 

extraction, perstraction, and reverse osmosis.1, 38, 42 Gas stripping as a chemical separation 

method allows for the selective removal of the volatile components (ABE) from the 

aqueous fermentation broth by continuously bubbling a gas through the fermentation broth, 

preventing the buildup of butanol to inhibitory concentrations.38, 42, 115 Gas stripping is 

relatively simple, has the option of using the fermentation product gases (carbon dioxide 

and hydrogen) or another inert gas as the stripping gas and can be operated at the 

fermentation temperature.7 

Process Systems Engineering (PSE), which employs a sophisticated toolset to 

simulate a mathematical representation of a process, played a critical role in understanding 

and expanding the production capacity of the chemical and refinery industries.35 Examples 

of PSE commercial process simulators include Aspen Engineering SuiteTM (Aspen 

Technology; Cambridge, Massachusetts) and gPROMS (PSE; London, UK), UniSim® 

Design Suite (Honeywell International, Inc.; Morris Plains, NJ), Extend (Image That, San 

Jose, CA), and SuperPro Designer® (Intellingen; Scott’s Plain, NJ).  Aspen Plus, the most 

commonly used product in Aspen Engineering SuiteTM (AES), is a universally accepted 

commercial steady state process simulator.116 Simulations can use shortcut 

(linear/stoichiometric equations), rigorous (relying on time-dependent/kinetic or detailed 

mechanistic models), and a hybrid of shortcut and rigorous methods. Generally, rigorous 

method-based simulations have greater predictive capabilities compared with shortcut-

based simulations.117 

In a fermentation process, microorganisms extract nutrients and convert them into 

more cells, energy and metabolic products within a controlled environment (autocatalytic 

production of cells; Substrate(s) + Cells → Extracellular Products + More Cells).6 In an 

integrated fermentation and in situ product recovery system, the fermentation kinetics and 

separations are coupled on a time-dependent basis. Steady state simulations, which 

decouple the time-dependence of the fermentation and separation unit operations, have 
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traditionally been used to simulate the batch ABE fermentation and in situ product recovery 

by gas stripping.5, 86-87 (Figure 4.1A). In the steady state simulation, the ABE fermentation 

is described using a steady-state reactor that uses stoichiometric equations with fixed 

product yields and distributions relative to a key feed component (e.g. glucose or xylose).5, 

86-87 The autocatalytic production of cells in previous simulations were either ignored87, 118-

119 or represented with stoichiometric equations in which cell maintenance or growth was 

at a fixed yield relative to the formation of other products,5 thus removing the time-

dependent cell growth, substrate consumption, and product inhibition.   

 

 

 

 

 

 

 

 

 

 

                                                                                                

 

 

Figure 4.1 Simulation of integrated batch ABE fermentation and in situ gas stripping  
A) as separate steady state fermentation and equilibrium-based gas stripping unit 
operations in Aspen Plus; B) as unsteady state batch fermentation coupled with in situ gas 
stripping using a time-dependent fermentation model to link the fermentation kinetics with 
gas stripping (separations) in Aspen Plus  

In traditional steady state analysis, the final fermentation broth from the 

stoichiometric reactor is then simulated with a flash unit (an equilibrium-based separator) 

to represent the gas stripping process. This simulation approach results in steady state 

simulations that decouple the ABE fermentation kinetics from the fermentation 

environment (which is a function of the gas stripping process). Batch and semi-batch 

fermentation kinetics change with time in response to the fermentation environment 
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because of variable substrate availability, time-dependent concentration of cell biomass, 

and products. Thus, the separate steady state fermentation and gas stripping simulations 

may not be representative of the integrated batch ABE fermentation and in situ gas 

stripping.  In addition, simulations based on steady state, stoichiometric, reactors may be 

inadequate for the systematic analyses of time-dependent processes of batch fermentations 

directly coupled to other unit operations, such as separation processes.    

As an alternative to traditional steady state simulations, this work demonstrates an 

approach for the unsteady state simulation of the batch ABE fermentation and in situ gas 

stripping, allowing the operating conditions of the fermentation process, such as the gas 

flow rate, to be directly linked to the fermentation kinetics (Figure 4.1B). A cell-based 

kinetics mathematical model, a system of ordinary differential equations (ODEs) 

describing the ABE fermentation developed by Votruba et al.,120 is used as a model system 

to develop techniques in Aspen Plus to simulate an unsteady state batch fermentation. The 

batch reactor in Aspen Plus, RBatch block, is linked to a FORTRAN user kinetics 

subroutine (calculating the rates of generation or consumption of each component) with a 

gas continuously fed to the reactor to simulate the unsteady state batch fermentation and in 

situ gas stripping process. The results of the integration of the system of ODEs describing 

the ABE fermentation process in MATLAB are compared with the batch simulation results 

in Aspen Plus (in the absence of gas stripping) to verify the accuracy of the developed 

procedure in Aspen Plus. The simulation results are compared to experimental trends 

observed in the available literature for ABE batch fermentation and in situ gas stripping as 

a function of gas flow rates. Furthermore, integrated batch fermentation and in situ gas 

stripping simulations are compared with traditional equilibrium-based steady state 

simulations of a steady-state fermentor with gas stripping of the final fermentation broth.  

4.3 Methods 

4.3.1 Prerequisites for batch fermentation simulation in Aspen Plus 

4.3.1.1 Fermentation model used in the simulation   

The efficient design, scale-up and optimization of cellular-based processes, such as 

the ABE fermentation, rely on mathematical model-based simulations, which offer insight 

at both the micro- and macro-scale of the process. A comprehensive review by Mayank et 

al.121 compiled the mathematical models of the ABE fermentation process, which range 
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from simple stoichiometric fermentation equations to more complex metabolic pathway-

based kinetic models incorporating the autocatalytic production of cells, the dynamic 

changes in metabolites concentrations, and substrate and product inhibitions. The kinetic 

mathematical model developed by Votruba et al.,120 which is based on the metabolic 

pathway for a batch culture of Clostridium acetobutylicum, was selected to simulate the 

ABE fermentation process using typical fermentation initial conditions of 50 g/L glucose 

and  0.03 g/L cell biomass. The model is based upon formulated mass balances from 

experimental data and trends in the form of rate equations for substrate consumption, the 

production of measurable extracellular products (acetone, butanol, ethanol, acetic acid, 

butyric acid, carbon dioxide, and hydrogen), the autocatalytic production of cell biomass, 

and product and substrate inhibition of cell growth. The mathematical representation of the 

fermentation kinetics and parameters of the model are presented in Appendix A and B, 

respectively. 

 4.3.1.2 Non-databank components in the simulation 

Cells and some fermentation intermediate products are not found in the databank 

of Aspen Plus because of unknown physical properties or structures of these components. 

Component substitution, in which all the known physical properties of another component 

are used for all the unknown physical parameters of the non-databank component, is a 

simple and powerful technique to simulate non-databank components. The non-databank 

components in the fermentation kinetics model, cell biomass (CX in eq A.2) and the 

physiological marker (PM in eq A.1) in Appendix A, were simulated as user-defined solid 

components with all the known physical properties of water from Aspen Plus databank. 

Component substitution is applicable to these non-databank components because they are 

not major components in the fermentation mixture.  Furthermore, the non-databank 

components are non-volatile, non-polar, and do not participate in the vapor-liquid 

equilibrium (VLE) calculations as solids.79 

4.3.1.3 Thermodynamic models in the simulation 

The ABE fermentation mixture was modeled as a mixed aqueous and organic 

stream, with solid (due to the non-databank components), liquid and vapor phases. The 

nonrandom two-liquid – Hayden O’Connell (NRTL-HOC) property model was selected as 

the thermodynamic model for the simulation.115 The NRTL activity coefficient model was 
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selected to account for the nonideality of the liquid mixture as a function of temperature 

and composition.79, 81 The fermentation system contains carboxylic acids, butyric and 

acetic acids, which form a strong association in the vapor phase. The HOC equation of 

state calculates the thermodynamic properties of these acids in the vapor phase by 

incorporating the chemical theory of dimerization. The fermentation mixture also contains 

the light gases, carbon dioxide (CO2) and hydrogen (H2), and nitrogen gas (N2) used in gas 

stripping at concentrations less than 5 %, at a temperature above the critical temperatures 

of the pure components (CO2, H2, and N2) and in subcritical solvents.79 These components 

were therefore declared as Henry’s components in Aspen Plus to account for dissolved 

product gas components in liquid fermentation mixture.115 

4.3.2 Simulation procedure for batch fermentation using Aspen Plus 

Aspen Plus is a steady state process simulator; the concentration, composition and 

other properties of a simulated process do not change with time. In contrast, the batch 

fermentation is an unsteady state process and the concentration of components and other 

properties changes with time. The simulation of an integrated batch and in situ gas stripping 

process requires a time-dependent fermentation model to be coupled with a stream of gas 

continuously bubbled through the fermentation broth to remove the volatile components 

(ABE) selectively as they are produced from the fermentation broth, preventing the buildup 

of ABE products to inhibitory levels. To simulate the batch fermentation as an unsteady 

state process in Aspen Plus, a time-dependent or kinetic model can be built in either Aspen 

Custom Modeler (ACM) or Aspen Plus Dynamics (APD) and exported to Aspen Plus. 

Non-standard kinetic models exported from ACM or APD to Aspen Plus do not have the 

option to accept additional feed/input streams, such as a continuous feed of a gas, to 

simulate gas stripping. The batch reactor, RBatch unit operation, in Aspen Plus is able to 

simulate unsteady state batch and semi-batch processes rigorously.  The RBatch uses 

holding tanks to interface the steady state flowsheet environment in Aspen Plus and the 

unsteady state batch operation. The RBatch block allows for a dynamic continuous feed, 

which is a steady state flowsheet stream fed continuously during the batch operation. These 

two features of the RBatch block present a unique opportunity for the unsteady state 

simulation of the batch fermentation alone or with in situ product recovery techniques, such 

as gas stripping. The unsteady state simulation of a batch fermentation process in Aspen 
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Plus requires the conversion of the batch charge (50 g/L glucose and 0.03 g/L cell biomass) 

to steady state flow rates (and vice versa) and linking the batch reactor to a FORTRAN 

user kinetics subroutine that calculates the rates of consumption/production of each 

component in the reactor through the ODEs describing the fermentation process as 

summarized in Figure 4.2.  

4.3.2.1 Interfacing the continuous steady state flowsheet environment in Aspen Plus 

with the unsteady state batch reactor 

 To interface the steady state process simulation in Aspen Plus and the inherently 

unsteady state batch reactor, the RBatch block uses holding tanks to accumulate material 

from a feed, vent and product streams as shown in Figure 4.3. The accumulated material 

in the holding tanks can then be used to convert material streams from the steady state 

environment in Aspen Plus  to a time-dependent system in the inherently unsteady state 

batch reactor as time-averaged streams and vice versa. A specified reactor cycle time or 

batch feed time can be used to convert data between the continuous steady state and time-

varying batch operation. The total cycle time is specified for the batch reactor, ensuring 

that the mass balance between the RBatch reactor input and output streams is achieved. 

The initial batch charge of 50 g/L glucose, 0.03 g/L cell biomass in a 1 L aqueous solution 

were converted into steady state feed flow rates using a total cycle time of 1 minute. The 

resulting feed to the RBatch block was specified on a total volumetric flow basis of 1 L/min 

with a mass concentration of: glucose (50 g/L), cell biomass (0.03 g/L), the physiological 

marker, PM, (1 g/L) and water specified as the solvent to form an aqueous mixture with 

the specified concentrations of 50 g/L glucose and 0.03 g/L cell biomass at time 0 h in a 1 

L batch reactor. The RBatch was specified as a reactive system with corresponding reaction 

(the FORTRAN user kinetics subroutine name specified under Reactions in Aspen Plus) 

selected. The batch reactor was run at a constant temperature of 39 oC and 1 atm pressure, 

ending at a total fermentation time (reaction time) of 32 h. The initial step size and 

maximum step size of the integration variable were both set to 0.01 h from their default 

values of 0.1 h in the RBatch block.   In this way, the amount of material transferred to the 

reactor at the beginning of fermentation from the feed holding tank, the batch charge 

(calculated as the product of the feed flow rates and the cycle time) corresponds to the 

initial batch charge of 50 g/L glucose and 0.03 g/L cell biomass.   



 

 
 

54 

 
Figure 4.2 Flow chart showing the interface between the Aspen Plus steady state environment and interaction between the unsteady 
state batch reactor linked to Fortran user subroutine 
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The notation is: components (i), temperature (T), pressure (P), �̇�𝑉𝑇𝑇 (total volumetric flow 

rate of feed stream, L/time),  m (mass concentration, g/L), Pvent (pressure at which venting 

begins), CT (total cycle time), FT (total fermentation time), ∆𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 (initial time step size), 

∆𝑑𝑑𝑚𝑚𝑓𝑓𝑒𝑒 (maximum time step size), n (moles), VL (liquid volume in reactor, L), C (molar 

concentration, mol/L), E (activation energy), R (universal gas constant), α (order of 

reaction), β (temperature exponent), M (molar mass, g/mol), ∆�̇�𝐶 (change in the molar rate, 

mol/time),  k, ki, k2, k3, k4, k7, KS (kinetic parameters), S, X, B, BA (glucose, cells, butanol, 

butyric acid), Z (physiological marker), t (current time), ∆𝑑𝑑 (variable time step), F (molar 

flow rate, mol/time). 

 

Figure 4.3 The configuration of the RBatch block in Aspen Plus. Adapted and modified 
from Aspen Plus V8.8 Help.122 

4.3.2.2 Incorporating biological ODEs into the kinetics of the batch reactor in Aspen 

Plus 

The RBatch unit operation in Aspen Plus can only handle rate-based reactions. For 

rate-based reaction kinetics, the reaction rate can be calculated using the built-in power law 

model (eq 4.1) which is an algebraic expression that relates the reaction rate to the reaction 

rate constants and a product of the concentration of components. The system of ODEs 

describing the ABE batch fermentation expresses the reaction rates in terms of constant 

reaction rate parameters and a complex dependence on concentration of components, (for 

example, eq 4.2 describing glucose consumption rate) and does not conform to the standard 
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built-in power law model. Therefore, a user kinetics subroutine written in FORTRAN 

(calculating the rates of production/consumption of each component), was dynamically 

linked to the batch reactor (RBatch) in Aspen Plus to simulate the unsteady state batch 

ABE fermentation process.  The FORTRAN user kinetics subroutine was written based on 

the ODEs of the selected fermentation model (described in section 4.3.1.1), compiled into 

a written subroutine (creating a readable Aspen Plus file from the written subroutine) and 

supplied as a compiled readable file to Aspen Plus to run the simulation dynamically 

(Appendix C and D). 

Power Law Model: 𝑟𝑟 = 𝑘𝑘𝑇𝑇𝑛𝑛exp (−𝐸𝐸 𝑅𝑅𝑇𝑇⁄ )∏(𝐶𝐶𝑖𝑖)𝛼𝛼𝑖𝑖                                                                   (4.1) 

ODE describing the consumption of glucose:  𝑑𝑑𝐶𝐶𝑆𝑆
𝑑𝑑𝑡𝑡

= −𝑘𝑘3𝐶𝐶𝑆𝑆𝐶𝐶𝑋𝑋 − 𝑘𝑘4
𝐶𝐶𝑆𝑆

𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆
𝐶𝐶𝑋𝑋             (4.2) 

where r, k, T, n, E, R, α, i, ∏, C, Cs, CX, and (k3, k4, KS) are rate of reaction, pre-exponential 

factor, temperature, temperature exponent, activation energy, universal gas law constant, 

concentration exponent, component index, product operator, component concentration, 

substrate concentration, cell biomass concentration and kinetic parameters, respectively. 

4.3.2.3 Communication between the batch reactor and user kinetics subroutine and 

running the RBatch in Aspen Plus  

The rates of production/consumption of each component in the batch reactor are 

calculated in a user kinetic subroutine written in FORTRAN linked to the RBatch. In order 

to calculate the rates at the current fermentation time (t), the ODEs require the rate kinetic 

parameters and the concentration of each component.  The moles of each component in the 

fermentation mixture and volume of liquid components in the reactor are passed from the 

RBatch to the subroutine at each time-step. In the subroutine, the concentration of each 

component in g/L (calculated from the moles of each component and the liquid volume) is 

substituted into the ODEs describing the ABE fermentation to calculate the rate of 

consumption/production of each component (g/L.h). The reaction rates are reconverted to 

a form that can be passed to the RBatch reactor (from g/L.h to kmol/s). RBatch then uses 

the variable-step-size Gear algorithm as the integration method to solve for the new 

concentrations of components at the current fermentation time (t). The phase composition,  

concentrations of each component in the reactor (vapor, liquid, solid) and the stripped 

stream (vapor), and other estimated properties including the volume of the liquid, solid and 
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vapor components are evaluated using the thermodynamic model (section 4.3.1.3) to 

satisfy material and energy balances.  

If the current integration time is less than the total fermentation time specified for 

the batch reactor, the new calculated values (moles of each component and the liquid 

volume) are passed from the RBatch to the subroutine for the next step calculation until 

the end of the total fermentation time specified. The RBatch unit operation is able to 

generate time-dependent data for a batch fermentation process in Aspen Plus because of 

the integration process. The total accumulated material in the reactor and the vent 

accumulator at the end of fermentation are converted into steady state flow rates, calculated 

as the ratio of the total accumulated mass in the vent accumulator or the reactor at the end 

of fermentation to the total cycle time. The vent product stream is the contents of the vent 

accumulator at the end fermentation. The contents of the vent accumulator is a continous 

time-varying vapor that leaves the reator.122 

4.3.2.4 MATLAB simulations to verify unsteady state Aspen Plus ABE batch 

fermentation results 

To verify the Aspen Plus procedure developed, the simulation results of the ABE 

fermentation process using the RBatch block in Aspen Plus (time-dependent 

concentrations of the substrate, intermediates and products) were compared to integration 

results obtained from MATLAB.  The batch reactor (RBatch block) in Aspen Plus solves 

the mass, energy and composition equations for each fermentation time step using the 

variable-step-size Gear algorithm as the integration method.122 Ode15s in MATLAB is a 

variable-step and variable-order solver that can be set to use the backward differentiation 

formulas (BDF), also known as the Gear’s method. MATLAB ode15s  was, therefore, set 

to use the BDF (Gear’s method) with the corresponding integration parameters used in the 

RBatch block so that the same integration method was used in both MATLAB and Aspen 

Plus.  The liquid phase fermentation broth in the Aspen Plus batch reactor (in the absence 

of a gas stripping process) is minimally affected by thermodynamic contributions, such 

that the MATLAB results can be used to verify the procedure developed for  RBatch in 

Aspen Plus without gas stripping. 
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4.3.3 Unsteady state fermentation and in situ gas stripping simulations 

To link the unsteady state batch ABE fermentation and in situ gas stripping process 

in Aspen Plus, a feed of nitrogen gas (0.8, 1.6, 3, 5, 6.4 L/min per L of fermentation broth) 

was fed continuously to the reactor (conditions specified in Section 4.3.2.1 at specified 

start times (relative to the beginning of the batch fermentation at t = 0 h) with a vent. For 

the RBatch with a vent, a reactor volume of 1.009 L (allowing for a headspace requirement 

for vapors) was specified. A vent opening pressure of 1 atm was specified, allowing the 

RBatch block to calculate the reactor pressure. Similar to integrated batch ABE 

fermentation and in situ gas stripping laboratory experiments, where gas stripping is 

initiated after a specified batch fermentation time (e.g., 20 h1) or product concentration in 

the fermentor (e.g., 3 – 4 g/L of ABE42), gas stripping was started after 15 h of fermentation 

when the ABE concentration was about 5.7 g/L. For simplicity, it was assumed that there 

was a complete recovery of the stripped liquid components (acetone, butanol, ethanol, 

acetic acid, butyric acid, and water in the condensate) in the simulation of the unsteady 

state batch fermentation and in situ gas stripping.  

4.3.4 Simulation of separate steady state fermentation and gas stripping processes  

The state-of-the art simulation of the batch fermentation and in situ gas stripping in 

Aspen Plus is currently the separate steady state batch fermentation and gas stripping, in 

which the batch fermentation is simulated with a stoichiometric reactor and the final 

fermentation broth from the stoichiometric reactor is fed to a flash unit to simulate the gas 

stripping process.  A steady state batch Aspen Plus ABE fermentation with initial 

conditions of 50 g/L glucose and 0.03 g/L cell biomass was simulated using a steady state 

stoichiometric reactor (RStoic block).  Appendix E presents the stoichiometric equations 

used in the steady state simulation. The stoichiometric parameters for the simulation were 

obtained using the final product yields from the RBatch block linked with the FORTRAN 

user kinetics subroutine (0.319, 0.495, 0.080, 0.120, 0 (mole of product/mole of glucose 

fed) for acetone, butanol, ethanol, acetic and butyric acids, respectively). The resulting 

liquid fermentation broth calculated using the steady state RStoic block was fed to an 

isothermal flash unit (39 oC) with different N2 gas flow rates (L/min per L of broth) to 

simulate the gas stripping process. The trends in the results of the steady state separate 

fermentation and gas stripping simulations were compared with unsteady state ABE batch 



 

59 
 

fermentation and in situ gas stripping simulated with the RBatch block linked with the 

Fortran user kinetics subroutine with initial concentrations of 50 g/L glucose and 0.03 g/L 

cell biomass with gas stripping (N2 flow rates of 0.8, 1.6, 3, 5, 6.4 L/min per L of broth) 

started after 15 h of batch fermentation.  

4.3.5 Calculation of ABE fermentation performance parameters 

The productivity, yield, percent mass recovery, and selectivity are used to describe 

the performance and operation of the batch ABE fermentation and the integrated batch 

ABE fermentation and in situ product recovery by gas stripping. The following parameters 

were calculated, applied to ABE as mixture or individual components: 

𝑃𝑃𝑟𝑟𝐶𝐶𝑑𝑑𝑃𝑃𝑂𝑂𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑𝑃𝑃 (𝑂𝑂 𝐿𝐿⁄ /ℎ) = 𝑀𝑀𝐶𝐶𝑀𝑀+𝑀𝑀𝐶𝐶𝑀𝑀
𝑀𝑀𝑉𝑉𝐼𝐼𝑉𝑉𝑆𝑆∗𝑡𝑡

                                                                                                                 (4.3) 

𝑌𝑌𝑂𝑂𝑒𝑒𝑂𝑂𝑑𝑑 (𝑂𝑂/𝑂𝑂) = 𝑀𝑀𝐶𝐶𝑀𝑀+𝑀𝑀𝐶𝐶𝑀𝑀
𝐺𝐺𝑆𝑆

                                                                                                                               (4.4) 

𝑃𝑃𝑒𝑒𝑟𝑟𝑂𝑂𝑒𝑒𝐶𝐶𝑑𝑑 𝑟𝑟𝑒𝑒𝑂𝑂𝐶𝐶𝑂𝑂𝑒𝑒𝑟𝑟𝑃𝑃 (%) = 𝑀𝑀𝐶𝐶𝑀𝑀
𝑀𝑀𝐶𝐶𝑀𝑀+𝑀𝑀𝐶𝐶𝑀𝑀

∗ 100                                                                                   (4.5) 

𝑆𝑆𝑒𝑒𝑂𝑂𝑒𝑒𝑂𝑂𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑𝑃𝑃 = 𝑦𝑦(1−𝑒𝑒)
𝑒𝑒(1−𝑦𝑦)

                                                                                                                                (4.6) 

where MCR is the accumulated mass in the reactor (grams), MCV is the accumulated mass 

in the stripped stream in grams (vent accumulator, condensate), VLIQS is the total volume 

(L) of the liquid and solids contents in the reactor, t is the fermentation time (h). GS is the 

total grams of sugar utilized (calculated as the difference between the initial mass of 

glucose and the mass of glucose at the end of fermentation), y and x are the mass fractions 

in the stripped vapor stream (assuming complete recovery of acetone, butanol, ethanol, 

water, butyric and acetic acids and neglecting CO2, H2 or N2) and the accumulated mass 

fraction in the reactor (acetone, butanol, ethanol, water, butyric and acetic acids) at the 

same time, respectively. 

4.4 Results and discussion 

4.4.1 Validation of the Aspen Plus unsteady state batch fermentation with MATLAB 

simulation results 

Figure 4.4 illustrates a comparison of the simulation results of the batch ABE 

fermentation using a FORTRAN user kinetic subroutine linked to the RBatch block in 

Aspen Plus and the integration of the system of ODEs describing the batch ABE 

fermentation in MATLAB.  The results for all components are provided in Appendix 

Figure F1.  MATLAB and Aspen Plus simulation of batch fermentation in the absence of 
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gas stripping are indistinguishable, with the exception of acetone production.  Figure 4.4A 

depicts a typical Monod-type microbial cell growth kinetics with exponential growth and 

a stationary phase followed by a death phase, with corresponding consumption of the 

substrate (Figure 4.4B). Consistent with the metabolic pathway of C. acetobutylicum, the 

concentration profiles for acetic acid (Appendix F, Figure F1F) and butyric acid (Appendix 

F, Figure F1G) depict a trend of acid production (from 0 to 13 h) followed by consumption 

and reutilization (13 to 32 h) of these acids to produce solvents. Solvent production 

(acetone, butanol and ethanol) was therefore not significant until after about 13 h, in 

support of starting gas stripping after 15 h of batch fermentation. In MATLAB, negative 

concentrations were predicted for acetone between 0 and 13 h, which are physically 

unrealistic but present in the ODEs of the fermentation model (Figure 4.4C).  

                

                 

Figure 4.4 Comparison of batch fermentation simulation results in Aspen Plus (RBatch) 
with the integration of the ordinary differential equations describing the batch fermentation 
process in MATLAB for cells (A), glucose (B), acetone (C) and butanol (D) 

In Aspen Plus, the RBatch block solves the mass and energy component equations 

to satisfy the material and energy balances, and negative concentrations are avoided. 

Comparison of the MATLAB and Aspen Plus results validates the direct use of the ODEs 

incorporating the autocatalytic production of cells, substrate consumption and production 
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and inhibition of fermentation products in Aspen Plus to provide time-dependent 

simulations of batch fermentors. 

4.4.2 Effect of gas flow rate on the fermentor and condensate ABE concentrations, 

total ABE produced, productivity and yield 

Figure 4.5 shows the concentrations of acetone, butanol and ethanol in the 

fermentor and condensate (stripped stream) in the batch ABE fermentation with gas flow 

rates of 1 and 5 L/min per L of broth for the simulation of batch fermentation with in situ 

gas stripping.  The gas-liquid partitioning behavior of the acetone/ethanol/butanol/water 

mixture is complex.7 In the simulated process, an increase in gas flow rate from 1 to 5 

L/min per L of fermentation broth resulted in a decrease in fermentor concentrations of 

ABE compared with the respective fermentor concentrations without gas stripping, 

indicating the successful removal of the volatile ABE fermentation products. However, 

stripping of water, the most abundant volatile component in the fermentation broth, 

contributes to the decrease in the ABE concentration in the condensate with increasing gas 

flow rates. Thus, there exists a tradeoff between product recovery from the fermentation 

broth and ABE concentration in the corresponding condensate when selecting a gas flow 

rate. The concentrations of acetone, butanol and ethanol in the fermentor are lower in the 

integrated batch fermentation and in situ gas stripping compared to the batch fermentation 

simulation alone (Appendix F, Figure F1).   

            

Figure 4.5 Comparison of the concentrations of acetone (A), butanol (B) and ethanol (E) 
in the fermentor (J) and condensate (K) using different gas flow rates  
The reactor volume was 1 L and gas stripping started after 15 h. The notation is 1L 
(corresponding to 1L/min N2 per L of broth) and 5L (corresponding to 5L/min N2 per L of 
broth). 
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A similar trend was observed by Ezeji et al 42 using an initial glucose concentration 

of 60 g/L with a gas recycle rate of 3 L/min per L of fermentation broth (started after 15 h 

of fermentation). In their batch fermentation study, the acetone, butanol and ethanol 

concentrations in the fermentor decreased from 5, 12, 1 g/L without gas stripping to 4, 6 

and 0.1 g/L with gas stripping, respectively.  Similarly,  Xue et al.123 observed an increase 

in the concentrations of acetone, butanol and ethanol in the stripped stream compared with  

their respective concentrations in the fermentor using an initial glucose concentration of 80 

g/L and a gas flow rate of 1.5 L/min per L of the fermentation broth. 

The in situ ABE recovery by gas stripping coupled with the batch fermentation has 

been shown to reduce butanol toxicity, and improve the performance of the ABE 

fermentation process.42 The total ABE produced (total concentration), productivity and 

yield for an integrated ABE batch fermentation and in situ gas stripping with 0 (no gas 

stripping), 0.8, 1.6, 3, 5 and 6.4 L/min N2 per L of fermentation broth were simulated using 

the Fortran user kinetics subroutine linked with the RBatch block in Aspen Plus (Figure 

4.6). Compared with the simulated results of the batch ABE fermentation without gas 

stripping, the total concentration of the ABE produced, productivity and yield were 

improved up to 105, 110, 119, 130 and 150% for the integrated batch process employing 

0.8, 1.6, 3, 5 and 6.4 L/min N2 per L of broth, respectively. The improvement in the total 

ABE produced and productivity in this study are comparable to the 133 and 210% 

enhancements in the total ABE produced and productivity, respectively, reported by Ezeji 

et al.42 in their laboratory integrated batch ABE fermentation and in situ gas stripping with 

an initial glucose concentration of 60 g/L and a gas flow rate of 3 L/min per L of broth 

started after 15 h. A total ABE concentration  of  17.7 g/L and 23.6 were reported by Ezeji 

et al.42 in their laboratory batch ABE fermentation and without and with in situ gas 

stripping, respectively. Similarly, the simulation of an integrated ABE batch fermentation 

and in situ gas stripping with 0 (no gas stripping), 0.8, 1.6, 3, 5  and 6.4 L/min N2 per L of 

fermentation broth predicts a total ABE produced of 16.5, 17.3, 18.1, 19.6, 21.4 and 24.6 

g/L, respectively.  
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Figure 4.6 Total ABE produced (total concentration), productivity and yield from the 
simulated batch ABE fermentation and in situ gas stripping with different gas flow rates. 

4.4.3 Comparison of performance of batch ABE fermentation and in situ gas stripping 

simulations to available literature. 

A broad range of gas flow rates relative to fermentation broth volume, stripping or 

operating temperatures, and initiation times of gas stripping have been investigated 

experimentally for the gas stripping of ABE fermentation.38  The models used to describe 

solventogenic Clostridia species (for example, C. acetobutylicum, C. beijerinckii, C. 

saccharobutylicum and saccharoperbutylacetonicum4-5) generally lack applicability to 

other microorganisms, making direct comparisons of in silico analyses and available 

laboratory ABE fermentation experimental data difficult. To systematically analyze the 

effect of the broad range of gas flow rates employed in the ABE batch fermentation and in 

situ gas stripping, the trends in the simulation results were therefore compared with the 

observed trends in literature.  The batch ABE fermentation is characterized by low product 

concentration (< 20 g/L ABE), low reactor productivities (< 0.3 g/L/h) and low ABE yield 

(0.28 – 0.33 g/g) as a  result of product toxicity (especially due to butanol concentrations 

> 13 g/L) to the microorganisms used in fermentation.11 Figure 4.7 shows the ABE 

productivity, yield, total ABE produced, selectivity versus the gas flow rate per L of broth 

from available literature data and data predicted from the Aspen Plus RBatch unsteady 
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state simulation for batch fermentation and in situ gas stripping (gas flow rates of 0.8, 1.6, 

3, 5, 6.4 L/min per L of broth).  

                  

                

Figure 4.7 ABE yield (A), ABE productivity (B), total ABE produced (C) and ABE 
Selectivity (D) versus normalized gas flow rates (L/min per L of fermentation broth) from 
batch fermentation and in situ gas stripping literature data from refs b,124 c,125 d,123 e,126 
a,42 f,127 g,128 h,129 i,130Aspen Plus unsteady state batch fermentation and in situ gas 
stripping simulation (TS) and performance benchmark (- - - - - -) for a typical batch 
fermentation of  0.35 g/g ABE yield, 0.30 g/L/h ABE productivity and 20 g/L total ABE 
produced (chosen based on data from Qureshi and Blaschek)11 

Generally, about 3 L/min per L of fermentation broth is the gas flow rate used most 

in batch fermentation and in situ gas stripping experiments while the lowest and highest 

gas recycle rates used are 0.25 and 4.8 L/min per L of broth. At low gas flow rates, the 

ABE yield (Figure 4.7A), ABE productivity (Figure 4.7B), total ABE produced (Figure 

4.7C) and ABE selectivity (Figure 4.7D) for the literature data increases (significantly 

above their respective limits in batch fermentations) with gas flow rate up to about 3L/min 

per L of broth when these parameters are observed to have optimum values (a range of 

values observed at 3 L/min per L of broth). At higher gas flow rates, the ABE performance 

decreases with increasing gas flow rate. The performance of the integrated ABE 

fermentation and in situ gas stripping is consistent with literature data up to about 3 L/min 
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per L of broth. Above 3L/min per L of broth, the ABE productivity, ABE yield, total ABE 

produced predicted from the Aspen Plus simulation is significantly higher than the batch 

ABE fermentation benchmark productivity of 0.30 g/L/h, above 0.35 g/g ABE yield and 

approximately equal to 20 g/L total ABE produced, respectively.  

4.4.4 Comparison of traditional Aspen Plus batch separate steady state fermentation 

and gas stripping with unsteady state batch fermentation and in situ gas stripping 

simulations. 

Previous Aspen Plus simulations of the batch ABE fermentation and in situ gas 

stripping have been decoupled and described using steady state equilibrium-based gas 

stripping of ABE fermentation broths representing the final fermentation concentrations. 

To compare this approach with our unsteady state ABE fermentations with in situ gas 

stripping, we simulated a steady state ABE fermentation using a stoichiometric reactor with 

stoichiometric coefficients of 0.319, 0.495, 0.080, 0.120, 0 (mole of product/mole of 

glucose fed) for acetone, butanol, ethanol, acetic and butyric acids, respectively, calculated 

from the model  of  Votruba et al.120 Steady state gas stripping of the fermentation broth, 

which had a final composition of 5.1, 10.2, 1.0, 2.0, 0 and 0 g/L for acetone, butanol, 

ethanol, acetic acid, butyric acid and glucose, respectively, was simulated with an 

isothermal flash unit at 39 oC using different flow rates of N2 (0.8, 1.6, 3, 5, 6.4 L/min per 

L of broth).  The stoichiometric equations used are presented in Appendix E. The trends 

from the steady state simulation are compared with the integrated batch ABE fermentation 

and in situ gas stripping for initial concentrations of 50 g/L glucose and 0.03 g/L cell 

biomass at 39 oC with gas stripping started after 15 h of fermentation (Figure 4.8).  

In the steady state simulation, the selectivities (Figure 4.8M) and condensate 

concentrations (Figure 4.8O) of acetone, butanol, ethanol and ABE in the condensate are 

not a strong function of gas flow rate.  Condensate refers to the contents of the stripped 

stream (accumulated in the vent accumulator). The steady state selectivities, percent 

recovery and condensate concentration of acetone decrease slightly with increasing gas 

flow rate whereas the selectivities and condensate concentrations of butanol and ethanol 

increase slightly with increasing gas flow rate (Appendix G, Table G.1). In contrast, the 

simulation linking batch fermentation with in situ gas stripping (unsteady state) predicts 

that selectivities (Figure 4.8N) and  recoveries of acetone, butanol, ethanol and ABE 
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(Appendix G, Table G.2) increase significantly with increasing gas flow rate per L of the 

fermentation broth whereas the respective condensate concentrations (Figure 4.8P) 

decrease with increasing gas flow rate.  

                

                 

Figure 4.8 Selectivities and condensate concentrations at the end of 32-h batch 
fermentation and in situ gas stripping of acetone (A), butanol (B) and ethanol (E) using 
traditional steady state (stoichiometric reactor and flash unit) and unsteady state (RBatch) 
in Aspen Plus with different gas flow rates.   
The notations are: selectivity from the steady state simulation (M), selectivity from the 
unsteady state simulation (N), concentration of the condensate from the steady state 
simulation (O) and concentration of the products from the unsteady state simulation (P) 

The unsteady state selectivity of butanol, ethanol, and the ABE mixture overall 

increase significantly with increasing gas flow rate whereas the steady state selectivities 

decrease slightly (with the exception of butanol), but are largely insensitive to gas flowrate.  

Acetone, which was almost exhausted in the fermentor at high gas flow rates, had 

significantly higher selectivities (results not shown).  In general, high selectivities can be 

observed at conditions of low product concentration in the fermentor, thus selectivity is 

sensitive to both the start time of the gas stripping (controlling the initial accumulation of 

the product) and the gas flow rate in the integrated batch fermentation and in situ gas 

stripping. Correspondingly, the condensate concentrations of butanol, ethanol, acetone, and 
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the ABE mixture decrease significantly in the unsteady state simulation relative to the 

steady state concentrations, which are relatively insensitive to gas flow rate.  Again, this 

observation can be attributed to the time-dependent decrease in concentration of the ABE 

fermentation products in the fermentor over the course of gas stripping.  In the unsteady 

state simulation, the product in the condensate is diluted by the significant amount of water 

that is also volatilized in the gas stripping process, which increases with gas flowrate.    

The results of batch fermentation coupled with in situ gas stripping simulations 

show that the gas stripping gas flow rate has a significant effect on the performance of the 

batch fermentation and in situ gas stripping process whereas such trends are not evident in 

the absence of a time-dependent fermentation model linked directly to the gas stripping 

process. Simulations and representations of the fermentation coupled with the gas stripping 

process based on unsteady state models, such as the cell-based dynamic mathematical 

models, offer opportunities to further investigate and understand the interaction and 

relationship among the typical parameters (e.g. selectivities, recoveries and condensate 

concentrations, total ABE produced, productivity and yield) that describe integrated 

fermentation and in situ gas stripping process. 

4.5 Conclusion 

This study has focused on simulation of batch fermentation as an unsteady state 

process by incorporating autocatalytic production of cells, time-dependent concentrations 

of the fermentation components, and substrate and product inhibitions in the framework of 

Aspen Plus, a universally accepted traditional process simulator of choice for refinery and 

chemical processes. This simulation approach allowed the batch fermentation process 

(described using a time-dependent fermentation model) to be coupled with in situ product 

recovery by gas stripping for the first time.  In this way, the time-dependent phase 

composition and concentrations of components in a fermentor (solid, liquid, and vapor) 

and stripped stream (vapor) were predicted by the thermodynamic models in Aspen Plus 

to provide realistic simulations of integrated batch fermentation and in situ gas stripping 

experiments under different operating conditions. The performance of the integrated batch 

and in situ gas stripping is shown to be dependent on the gas flow rate employed, an artifact 

that is absent without a time-dependent fermentation model linked in situ to the gas 

stripping process. While the traditional steady state separate fermentation and gas stripping 
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are useful in studies involving the overall bioprocess, they may be inadequate for 

systematic analyses of bioprocesses, especially if fermentations are linked with in situ 

separations. Additionally, our simulation approach predicts trends that are consistent with 

available literature data and offer insight into the performance of the ABE batch 

fermentation and in situ gas stripping at high gas recycle flow rates outside the range 

investigated in available literature. The simulation approach in this research will allow the 

full suite of PSE tools to be applied to the ABE production process, providing a decision-

support tool to aid the fermentation experimentalist. This research also provides a general 

platform to integrate biorefinery processes (fermentations) and chemical and refinery 

processes in the process simulation packages.  
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Chapter 5 

Case study: Application of PSE Tools to the Design of a Fermentation Reactor with 

in situ Gas Stripping 

5.1 Introduction 

Biofuels, bioethanol, and biobutanol, produced from lignocellulosic biomass as 

sustainable energy alternatives to fossil fuels1 have properties that make them excellent 

liquid transportation fuels.37-38 Bioethanol and biobutanol can be produced via the ABE 

fermentation process using microorganisms such as Clostridium acetobutylicum, C. 

beijerinckii, C. saccharobutylicum, C. Saccharoperbutylacetonicum.4-5 The batch ABE 

fermentation produces low final ABE titers, yields and productivity38, 131-133 because of 

product (mainly butanol) and substrate inhibitions. In situ product recovery techniques 

such as gas stripping, adsorption, etc. are used to alleviate product inhibition.38, 42 Gas 

stripping employs an inert gas, such as nitrogen, to remove the ABE solvents selectively 

as they are produced, preventing the buildup of products to inhibitory levels.10 

Optimization of integrated batch fermentation and in situ gas stripping involves the 

complex interaction of different process variables. The resultant nonlinear model often 

involve competing variables. To observe the interaction and trade-off that exist among such 

competing variables, multiobjective optimization is used.84 To this end, this case study 

demonstrates how the novel framework proposed in Chapter 3 is used to optimize the 

operating conditions (gas flow rate relative to the fermentation volume; and gas stripping 

initiation times) to maximize the total ABE produced, ABE selectivity and concentration 

of ABE in the stripped stream (condensate) of an integrated batch and in situ gas stripping 

process. Aspen Plus and MATLAB are used as a model process simulator and rigorous 

optimization platform, respectively. The multiobjective genetic algorithm in MATLAB is 

linked through a Microsoft® Component Object Model (COM) interface with the batch 

reactor in Aspen Plus that has been coupled with a FORTRAN user kinetics subroutine 

(calculate data required to evaluate the objective function values). The results of the MOO 

are compared to SOO (weighted average of the objective function values). Figure 5.1 

summarizes how the proposed framework is used to link the genetic algorithm optimization 

toolbox in MATLAB to Aspen Plus.  
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Figure 5.1 Application of the proposed framework to process simulation and optimization 
of an integrated batch and in situ gas stripping 
The notations are: decision variables (DV), number of decision variables (NV), lower 
bounds of decision variables (Lb), upper bounds of decision variables (Ub), population size 
(PS), stopping criteria (SC), objective functions (O), component object module (COM), 
objective function values (Z), relative weight of each objective function (w), number of 
non-dominated solutions (j) and population (P). 

5.2 Process optimization 

The genetic algorithm (ga) optimization in MATLAB minimizes an objective 

(using ga solver) or sets of objective functions (using gamultiobj solver) subject to a set of 

constraints (decision variables). For the integrated batch and in situ gas stripping process 
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in this case study, the objective was to maximize the ABE concentration in the stripped 

stream, ABE selectivity and total ABE produced subject to the gas stripping initiation times 

after batch fermentation started and the gas flow rate employed per liter of the fermentation 

broth. To initiate the algorithm, the decision variables (gas flow rate and gas stripping start 

times), number of decision variables (2), lower (0.1 L/min per L broth and 15 h) and upper 

(5 L/min per L broth and 25 h) bounds of decision variables, population size (500), stopping 

criteria (change in the spread of the Pareto front less than the typical uncertainty in the 

measurement of the ABE parameters in the laboratory experiments)1 and the objective 

functions expressions are specified.  

MATLAB supports the creation of a Microsoft® Component Object Model (COM) 

automation server for a “controller” external program through the actxserver.134 An 

external program such as Aspen Plus can be controlled (opened, data written to and read, 

saved and closed) through the COM interface created. Through the MATLAB COM 

interface, each element in the population is passed from MATLAB to Aspen Plus (run the 

batch reactor in Aspen Plus) for data to be used to evaluate the objective function values 

corresponding to each set of decision variables in the population. The objective function 

values (solution space) are then scored and ranked in the in the genetic algorithm. Based 

on the scores and rank, the decision variables in the current population with the best scores 

are selected to be parents of the next generations. The remaining individuals required to 

form the total number of population (based on the population size) are randomly generated. 

The new population (new generation) generated is passed to Aspen Plus to determine 

objective function values of the current population. Optimization is terminated when the 

stopping criteria is met. 

For the multi-objective optimization (eq J.1 in Appendix J), a set of equally optimal 

non-dominated solutions (set of decision variables, 𝐷𝐷𝑉𝑉𝑗𝑗, and their corresponding objective 

function values, 𝑍𝑍𝑗𝑗 , where 𝑂𝑂 is the number of non-dominated solutions) are generated. A 

non-dominated solution is one in which at least one of the objective function values is 

better when compared to another solution.  There are several methods such as the NFM 

and RSM to score and rank the solution of equally optimal solutions to find the best point. 

The NFM, used in this case study, incorporates the expertise of the decision maker in terms 

of relative weights of each objective function, indifference, preference and veto thresholds.  
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The details of the NFM are presented in Appendix K. Equal weights were set for all 

objective functions and 5 %, 10 % and 30 % of the range of the optimal solutions for each 

objective function used for the indifference, preference and veto thresholds, respectively. 

For a single-objective optimization approach (eq J.2 in Appendix J), one unique optimal 

solution (a decision variable, 𝐷𝐷𝑉𝑉 and the corresponding objective function values, Z) is 

obtained. The relative weights (equal weights for all objective functions) used to aggregate 

the objective functions into a single objective function in the SOO were the same used to 

relative ranking the Pareto equally optimal solutions from the MOO using the NFM. The 

general optimization procedure developed was used to optimize the gas flow rate (0.1 – 5 

L/min per L of broth, selected based on the normal range of gas flow rates studied in 

integrated batch ABE fermentation and in situ gas stripping)38 and  gas stripping initiation 

times of 15 to 25 h after, the start of the batch fermentation.1 See MOO and SOO MATLAB 

codes in Appendix O. 

5.2.1 Fermentation model used in the simulation 

The mechanistic model developed by Votruba et al.,120 a system ODEs describing 

the batch ABE fermentation based on C. acetobutylicum, was used in the simulation. The 

cell growth model was modified to directly use a Monod-type of substrate dependency and 

butanol inhibition to realistically utilize substrates and incorporate butanol inhibition (eq 

5.1). The only new parameter (NPAM in eq 5.1, reevaluated as 0.4892) was determined by 

minimizing the sum of the squared error between four sets of data for a batch culture of C. 

actetobutylicums135 and the model predictions from the solution of the ODEs in MATLAB 

using ode15s. The equation describing the physiological marker in the original model 

became redundant and not used. All other equations and kinetic parameters in Votruba et 

al.120 for glucose, butyric acid, acetic acid, acetone, butanol, ethanol, carbon dioxide and 

hydrogen were used as presented by the authors. 

𝑑𝑑𝐶𝐶𝐵𝐵𝐼𝐼𝐵𝐵 𝑑𝑑𝑑𝑑⁄ = (𝑁𝑁𝑃𝑃𝑁𝑁𝑁𝑁𝐶𝐶𝑆𝑆 (𝐾𝐾𝑆𝑆 + 𝐶𝐶𝑆𝑆)⁄ ) (𝐾𝐾𝐼𝐼 𝐶𝐶𝐵𝐵𝐼𝐼𝐵𝐵 (𝐾𝐾𝐼𝐼 + 𝐶𝐶𝐵𝐵)⁄ ) − 𝑘𝑘2𝐶𝐶𝐵𝐵𝐶𝐶𝐵𝐵𝐼𝐼𝐵𝐵                              (5.1) 

Notation is: concentration in g/L (C), glucose (S), cell biomass (BIO), butanol (B), KS, KI, 

k2 are all kinetic parameters defined in Votruba et al.120 and NPAM = 0.4892 h-1. 

5.2.2 Batch fermentation simulation in Aspen Plus 

The ODEs describing the batch ABE fermentation does not fit the standard power 

law kinetics traditionally built-in in Aspen Plus. Cells are not found in the databank of 
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Aspen Plus. To circumvent these challenges, a Fortran user kinetics subroutine (use ODEs 

to calculate the rates of consumption/generation of each component) linked to the batch 

reactor and component substitution (simulate cells) were used. Cells were simulated as 

solids with the physical properties of water from the database of Aspen Plus. The 

thermodynamic model selected for the simulation is nonrandom two-liquid – Hayden 

O’Connell (NRTL-HOC) property model with CO2, H2 and N2 declared as Henry 

components. A typical initial batch charge of 50 g/L glucose and 0.03 g/L cells were used 

with a fermentation time of 32 h. N2 gas was fed continuously starting at designated times 

to simulate gas stripping (remove the volatile ABE components). The ODEs were coded 

in a Fortran subroutine in Microsoft® Visual Studio 2013, compiled with the Intel® Fortran 

Parallel Studio XE 2015 Composer Edition for Windows and saved in the same file as the 

Aspen Plus files using Aspen Plus V9 (Aspen Technology, Inc., MA, USA). The laptop 

used was a Dell Precision M4800 with a 64-bit operating system, 16.0 GB RAM, Intel® 

core™ i7-4910MQ CPU @ 2.90 GHz and Windows 7 Professional.  

5.3 Results and discussion 

Figure 5.2 shows the final Pareto optimal solutions (scored and ranked using the 

NFM) from the MOO of the gas flow rate (0.1 to 5 L/min per L of fermentation broth) and 

gas stripping initiation times (15 to 25 h after the start of fermentation) of an integrated 

ABE batch fermentation and in situ gas stripping process to maximize the total ABE 

produced, ABE selectivity and the concentration of ABE in the stripped stream 

(condensate). Figure 5.2A shows the final population, which almost covers the entire 

decision space. From the final population, non-dominated solutions (Pareto optimal points) 

were chosen as the decision variables. Each of the elements in the decision variable space 

(Figure 5.2B) can be mapped to a unique element in the objective function value plots in 

Figures 5.2C, 5.2D and 5.2E. The total ABE produced, ABE selectivity and the 

concentration of ABE in the condensate were given equal importance (weights) in ranking 

the Pareto optimal points using the NFM.  

The NFM method was able to find a compromised best optimal decision variable 

of a gas flow rate of 2.9 L/min per L of fermentation broth and gas stripping initiation time 

of about 20.5 h, corresponding to a total ABE produced, ABE selectivity and ABE 

concentration in the condensate of 18.4 g/L, 24.8, 103.3 g/L, respectively.  
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Figure 5.2 Plot of the MOO results for the integrated batch and in situ gas stripping process 
A) Final population B) Decision variables C) ABE selectivity versus ABE concentration 
in the condensate D) Total ABE produced versus ABE concentration in the condensate E) 
Total ABE produced versus ABE selectivity. The red circle, black diamonds, grey squares 
and green asterisk represents the best (top ranked), first 5 %, next 45 % and the last 50 %, 
respectively, ranked using the NFM method. 

The best optimal gas flow rate of 2.9 L/min per L of broth and gas stripping 

initiation time of  20.5 h agree with the gas flow rate used most in batch fermentation and 

in situ gas stripping experiments of 3 L/min per L of broth (Figure 5.3A versus Figure 5.3 

C) and gas stripping initiation times in literature (e.g., 20 h 1), respectively. In contrast, the 

SOO approach predicted an extreme very low optimal gas flow rate of 0.3 L/min per L of 

broth and a higher gas stripping start time of 24 h, resulting in a total ABE produced, ABE 
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selectivity and ABE concentration in the condensate of 16.4 g/L, 19.2 and 208.4 g/L , 

respectively. 

                          

                        

Figure 5.3 Comparison of literature data taken refs  a,42 b,124 c,125 d,123 e,126  f,127 g,128 h,129 
i.130 with the MOO results from the case study for a batch fermentation and in situ gas 
stripping process.  

In general, there is a trade-off when the plot of the total ABE produced versus ABE 

concentration in the condensate (Figure 5.2D) is compared with the plot of total ABE 

produced versus ABE selectivity (Figure 5.2E); an increase in total ABE produced leads 

to a decrease in ABE concentration in the condensate and an increase in the ABE selectivity 

and vice versa. If the ABE selectivity is improved, the condensate concentration decreases 

at a lower gas flow rate and late gas stripping initiation times (trade-off). At a higher gas 

flow rate and early gas stripping initiation time, improving the ABE concentration in the 

condensate does not have any significant effect on the ABE produced and ABE selectivity. 

The plots of ABE selectivity versus ABE produced and total ABE produced versus ABE 

concentration in the condensate are not a competing pair when compared, as an 

improvement in both ABE selectivity and total ABE produced leads to an improvement in 

the ABE concentration in the condensate and vice versa. 

Literature data reported on ABE selectivity for a batch fermentation and in situ gas 

stripping are limited as seen in Figure 5.3B. The results of this study can therefore shed 
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more light on the effect that gas flow rate and gas stripping initiation times have on the 

ABE selectivity and the interaction and trade-off that exist among the ABE selectivity and 

other performance parameters, such as the total ABE produced. With a SOO approach, it 

would be impossible to observe the interaction and trade-off among the competing 

parameters and understand how the operating conditions of the process affects ABE 

performance parameters, especially parameters with very limited reporting such the ABE 

selectivity. 

5.4 Conclusion 

In this case study, the commercial PSE tools, Aspen Plus and MATLAB, were 

integrated using a proposed framework and applied to the simulation of a batch 

fermentation process to illustrate how the operating conditions of an integrated batch and 

in situ product recovery can be optimized to maximize the performance of the process. 

These PSE tools allowed the interaction and trade-off that exist among different 

performance variables (some competing) to be observed. The MOO approach presents 

many equally optimal options that can be used to understand how deviations in process 

inputs affect the performance of a process and support the understanding of literature data. 

With the framework proposed in Chapter 3 and demonstrated herein, the fermentation 

experimentalist can know the most important experimenter to conduct and save time and 

resources. 
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Chapter 6 

Multi-objective versus Single-objective Optimization of the Batch Bioethanol 

Production Based on a Time-dependent Fermentation Model 

6.1 Summary  

Fermentation microorganisms are susceptible to both substrate and product 

inhibitions, resulting in dilute aqueous fermentation broths with consequential significant 

downstream separation costs. This work uses a novel integrated platform of the robust 

genetic algorithm optimization in MATLAB linked with an Aspen Plus unsteady state 

batch fermentation simulation to optimize the batch ethanolic fermentation process with 

respect to initial substrate concentration, fermentation time and in situ product removal. A 

time-dependent fermentation model that utilizes both glucose and xylose, the major sugars 

present in lignocellulosic hydrolysate, with Monod-type of cell growth, substrate and 

product inhibitions, is used as a model system. The optimized design variable (initial 

substrate concentration) from a multi-objective optimization (MOO) and single-objective 

optimization (SOO) suggests the typical concentrations of sugars from lignocellulosic 

hydrolysate must be concentrated to optimize the performance of the batch fermentation 

process. Furthermore, integrating the batch fermentation with an in situ product recovery 

allowed higher initial sugars concentrations to be used in the fermentation process (about 

55%, for the best optimal solution in the MOO). This resulted in 16% ethanol productivity 

(total ethanol produced per batch fermentation time), 143% total ethanol produced and 

62% fraction of sugar converted improvements relative to the batch ethanolic fermentation 

without product recovery. Unlike the single optimal solution obtained in the SOO, MOO 

presents many equally optimal solutions that can be used to reveal the trade-off and 

interactions among competing process objectives and as a decision-support tool to guide 

the choice of design variables and conditions for optimum process performance. 

6.2 Introduction 

Sustainable resources, such as lignocellulosic biomass, are researched continually 

for the production of biofuels (biobutanol and bioethanol) as alternatives to fossil fuels.1, 

37-39 The biochemical or sugar platform is a bioprocess in which microorganisms are used 

to convert a substrate into products2 by fermentation. Microorganisms used in fermentation 

on the sugar platform include Saccharomyces cerevisiae (yeast, the most commonly used 
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microorganism in batch ethanolic fermentations), Zymomonas mobilis, Escherichia coli, 

Clostridium thermocellum as well as filamentous fungi such as Aspergillus sp. etc.3 These 

microorganisms are usually susceptible to both (high) substrate concentrations and product 

inhibition. For example, glucose concentrations greater than 150 g/L inhibited ethanol 

production by Saccharomyces cerevisiae.8 This supports previous reports that substrate 

inhibition of yeast occurred in the range of 15 – 25% (w/v) sugars concentration, with 

complete microbial growth inhibition above 40% (w/v) glucose.8 Also, greater than 5% 

ethanol concentrations inhibits yeast in ethanol fermentation from glucose.6  For Z. mobilis 

ZM4, greater than 22 g/L ethanol inhibited cell growth and greater than 86 g/L of ethanol 

completely ceased cell growth. Similarly, the threshold ethanol concentration above which 

ethanol inhibition started and the maximum ethanol concentration above which ethanol 

production ceased were reported as 55 g/L and 127 g/L, respectively for the Z. mobilis 

ZM4.9 Among the microorganisms for bioethanol production, Z. mobilis shows superior 

properties: it can tolerate ethanol concentrations up to 120 g/L, produce 5 – 10% more 

ethanol per glucose fermented3 and has 3 – 5 fold times higher ethanol productivity136 

relative to yeast. Through genetic modifications, Z. mobilis is able to utilize glucose and 

xylose, the two principal sugars in lignocellulosic biomass hydrolysate. Z. mobilis uses 

xylose at a slower rate compared to glucose.137 

The energy requirements for concentrating and purifying aqueous fermentation 

broths become significantly higher at alcohol concentrations less than 4% wt.7 The 

fermentation step, then, is a crucial step, where fermentation titers, yields and 

productivities can be improved to reduce the downstream separation cost. The specific 

challenges in the fermentation process include but not limited to: first – the mixture of 

sugars produced in the lignocellulose hydrolysate (hexose: glucose, mannose, galactose, 

fructose; pentose: xylose, arabinose; others: lactose, sucrose)13-14 require microorganisms 

that can selectively and simultaneously utilize at least the major sugars in the hydrolysate 

to produce the product of interest. Second, the typical concentrations of sugars produced 

in the hydrolysate may not be the optimum concentration to produce optimum product 

concentrations to minimize the downstream separation cost. For example, 1 – 23 g/L 

glucose was produced from  2 – 6% (w/v) sulfuric acid pretreated sugar cane bagasse16, 1 

– 20 g/L glucose from ionic liquid pretreated cellulose17-18) and  about 20 g/L xylose and 
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58 g/L glucose produced from hydrogen peroxide-acetic acid pretreated Jerusalem 

artichoke hydrolyzed with enzymes (RUT-C30, pectinase and xylanase).19 Additionally, 

the fermentation environment (substrate limitation and inhibition, product inhibition and 

potential recycle streams) affect the performance of the microorganisms. Lastly, the 

processing time raises questions as to the ideal length of time to run a batch fermentation 

process or when in situ product recovery, used to alleviate product inhibition, should be 

started. These challenges can potentially be addressed by Process Systems Engineering 

(PSE), the use of model-based methods and tools for the design, analysis, optimization, 

operation and control of complex chemical, biological or physical processes.20-21 

Many of the performance metrics of fermentation processes that have to be 

simultaneously optimized in the face of limited resources (constraints) and process inputs 

(decision variables) are such that efforts to optimize one metric results in compromising or 

making one or more performance metric(s) simultaneously worse. This behavior is 

described as competing objectives. In the case of fermentation processes, the pairs of 

product selectivity and conversion, product quality and recovery cost, and profits and 

safety cost are often competing objectives in an optimization process. Single-objective 

optimization (SOO), the traditional optimization approach, either utilizes a weighted 

average sum of multiple objectives or designate one objective as the main objective 

function while treating other objectives as constraints. Conversely, a multi-objective 

optimization (MOO) approach simultaneously optimizes multiple objectives, even when 

they are competing. A SOO approach finds one unique optimal solution. If multiple optimal 

solutions exist (e.g. in the case of competing objectives), then different optimal solutions 

can be found by repeatedly solving the SOO problem with different initial guesses. MOO 

on the other hand is able to find Pareto-optimal solutions (a set of equally optimal solutions) 

and Pareto domain (a set of equally optimal decision variables), revealing the trade-offs 

that exist among, the often competing, objectives 27-28. 

This work, therefore, uses a novel framework developed in our previous work in 

Chapters 3, 4 and 5 linking the optimization toolbox in MATLAB to the batch reactor in 

Aspen Plus coupled with a FORTRAN user kinetics subroutine. The data required to 

evaluate the objective function values are determined from Aspen Plus. The objective is to 

simultaneously maximize the ethanol yield, total ethanol produced, ethanol productivity 
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(the total ethanol produced per batch fermentation time), and fraction of sugars converted 

(glucose and xylose) by optimizing the operating conditions (initial substrates 

concentrations and batch fermentation time) of a batch ethanolic process. A time-

dependent fermentation mathematical model, developed by Leksawasdi et al.137 based on 

recombinant Z. mobilis strain ZM4 (pZB5) that utilizes a mixture of glucose and xylose 

simultaneously, is used as a model system to simulate the batch fermentation because 

ethanolic fermentation is susceptible to both substrate and product inhibitions. The results 

of the MOO approach using the genetic algorithm multi-objective optimization 

(gamultiobj) are compared to the traditional SOO approach using the genetic algorithm as 

a single-objective optimization (ga) in MATLAB. Additionally, the effect of product 

inhibition on the performance of the batch fermentation process is demonstrated by using 

an integrated batch and in situ product recovery process in the MOO and SOO.  

6.3 Methods 

6.3.1 Integrated MATLAB-Aspen Plus platform for optimization of batch ethanolic 

process based on time-dependent fermentation model 

The batch reactor in the commercial process simulator, Aspen Plus, lacks the ability 

to incorporate the form of ordinary differential equations (ODEs) describing the batch 

ethanolic fermentation. In fact, the batch reactor in Aspen Plus can only incorporate power 

law reaction kinetics (an algebraic expression that relates the reaction rate to the reaction 

rate constants and a product of the concentration of components). The batch ethanolic 

fermentation model used as model system in this work uses ODEs that describe the reaction 

rates of each species in terms of constant reaction rate parameters and a complex 

dependence on concentration of components (using typical Monod-type of cell growth 

kinetics), and does not conform to the standard built-in power law model. Further, because 

Aspen Plus was traditionally designed for steady state refinery and chemical processes for 

which linear and shortcut optimization approaches are adequate, Aspen Plus can only 

handle SOO. Aspen Plus cannot solve the MOO problem that the batch ethanolic 

fermentation presents. To circumvent these challenges, a general framework developed in 

in Chapters 3, 4 and 5 that links a robust non-linear optimization solver in MATLAB 

(gamultiobj and ga) to the batch reactor in Aspen Plus coupled with a user FORTRAN 

kinetics subroutine (incorporates the non-standard batch ethanolic ODEs) through a 
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component object module (COM) interface is used as shown in Figure 6.1. The COM 

interface establishes a two-way communication between MATLAB and Aspen Plus, 

allowing a circle of communication until the optimization is terminated when the stopping 

criteria is met. Details of the procedure to simulate the batch reactor as unsteady state 

process in Aspen Plus by linking the batch reactor to a FORTRAN user defined kinetics 

subroutine can be found in Chapter 4. 

6.3.2 Prerequisites for process optimization of the batch ethanolic fermentation 

6.3.2.1 Fermentation model used to simulate batch ethanolic fermentation 

To simulate realistically the batch ethanolic fermentation, the following 

characteristics must be included in the fermentation model used: autocatalytic cell growth, 

microbial growth rate must be dependent on substrate concentration, cell growth 

mechanism must incorporate high substrate and product (ethanol) inhibitions and the rate 

of substrate utilization and product formation must be dependent on cell concentration.  An 

unstructured kinetic model developed by Leksawasdi et al.137 that simultaneously utilizes 

glucose and xylose based on a batch culture of the recombinant Z. mobilis ZM4 (pZB5) was 

used to simulate the batch ethanolic fermentation process. The microbial kinetics were 

developed separately for glucose and xylose (eq L.1 and L.2 in Appendix L, respectively) 

and combined to describe the total microbial growth based on the two sugars using a 

relative weighing factor of glucose to xylose (sum equal to 1). Similar modeling equations 

were used for glucose and xylose utilization as well as ethanol production based on both 

glucose and xylose. The model incorporates kinetics for substrate limitation, substrate 

inhibition and product inhibition (ethanol threshold beyond which product inhibition is 

effective and maximum ethanol inhibition concentrations). The relative preferences of 

glucose to xylose uptake and utilization for autocatalytic cell production and ethanol 

production were taken as 65% of the maximum rate of glucose uptake and 35% of the 

maximum rate of xylose uptake, respectively for glucose and xylose initially present at a 

1:1 mass ratio. The initial concentration of cells was assumed to be 0.003 g/L in all cases 

with no ethanol initially present.  
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Figure 6.1 Framework of integrated MATLAB-Aspen Plus platform for optimization of 
batch ethanolic process based on time-dependent fermentation model 
The notations are decision variables (DV), number of decision variables (NV), lower 
bounds of decision variables (Lb), upper bounds of decision variables (Ub), population size 
(PS), stopping criteria (SC), objective functions (O), component object module (COM), 
objective function values (Z), relative weight of each objective function (w), number of 
non-dominated solutions (j), population (P), m (mass concentration, g/L), FT (total 
fermentation time, h), GFR (gas flow rate, L/min per L of broth), GST (time that gas 
stripping is initiated after batch fermentation, h), n (moles), VL (liquid volume in reactor, 
L), M (molar mass, g/mol), Q, G, H, ET (cells, glucose, xylose, ethanol, respectively), TIQ 
(threshold inhibitory ethanol concentration in cell growth, g/L), MQ (maximum inhibitory 
ethanol concentration in cell growth, g/L), 𝜼𝜼 (weighing factor for glucose utilization), 
∆�̇�𝒏 (change in the molar rate, mol/time), KSQ, KIQ, (kinetic parameters), C (molar 
concentration, mol/L), t (current time), ∆𝒕𝒕 (variable time step), told (previous time) 

The details of the mathematical model and parameters are found eqs L.1 – L.8 in 

Appendix L. The ODEs were coded in a FORTRAN subroutine in Microsoft® Visual 

Studio 2013, compiled with Intel® FORTRAN Parallel Studio XE 2015 Composer 

Edition for Windows and saved in the same file as the Aspen Plus files, using Aspen Plus 

V9 (Aspen Technology, Inc., MA, USA). The laptop used was a Dell Precision M4800 

with a 64-bit operating system, 16.0 GB RAM, Intel® core™ i7-4910MQ CPU @ 2.90 

GHz and Windows 7 Professional.   

6.3.3 Linking MATLAB and Aspen Plus for a two-way communication 

MATLAB uses actxserver to create a Microsoft® Component Object Model (COM) 

automation server that can controls Aspen Plus. Through the COM interface, Aspen Plus 

can be opened, data written to and read, saved and closed (see details in Appendix M). 

6.3.4 Batch ethanolic fermentation process optimization 

After the initiation of the batch fermentation in Aspen Plus using the procedure 

outlined in our previous work in Chapter 4, the optimization process is carried out as shown 

in Figure 6.1. The genetic algorithm in MATLAB is linked with the batch reactor in Aspen 

Plus through the COM interface. Through the COM interface, the decision variables 

generated in the population (i.e. initial concentration of sugars and batch fermentation time) 

are written from MATLAB to the batch reactor in Aspen Plus. After running the batch 

reactor in Aspen Plus (for the fermentation time and substrates concentrations), the 

concentrations of glucose, xylose, ethanol and volume of the liquid contents in the 

fermentor are read from the batch reactor through the COM interface to MATLAB, to 



 

84 
 

evaluate the objective function values. The batch reactor is coupled with a FORTRAN user 

kinetics subroutine to simulate the batch fermentation as an unsteady state process in Aspen 

Plus.  

The genetic algorithm toolbox in MATLAB minimizes a single objective using the 

ga solver or multiple objective functions simultaneously using the gamultiobj solver. 

The objectives of the MOO was to simultaneously maximize the ethanol yield (mass of 

ethanol produced per mass of sugars utilized, eq 6.1), total ethanol produced (eq 6.2), 

ethanol productivity (total ethanol produced per batch fermentation time, (eq 6.3)) and total 

fraction of sugars converted (ratio of the total mass of sugars utilized to the total mass of 

sugars initially present, (eq 6.4)) subject to the constraints: the initial concentration of 

substrates (eq 6.5) and batch fermentation time (eq 6.6).  

MOO problem formulation 

Maximize: 

Ethanol yield, g-ethanol/g-sugars utilized = [𝑇𝑇𝐸𝐸𝑇𝑇,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖]/[�𝑇𝑇𝐺𝐺,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 −

𝑇𝑇𝐺𝐺,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖� + 𝑇𝑇𝐻𝐻,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 − 𝑇𝑇𝐻𝐻,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖)]                                                       (6.1)                         

Ethanol produced, g/L = 𝑇𝑇𝐸𝐸𝑇𝑇,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖                                                                                               (6.2) 

Ethanol productivity, g/L.h  = 𝑇𝑇𝐸𝐸𝑇𝑇,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖/𝐹𝐹𝑇𝑇                                                                                (6.3) 

Fraction of sugars converted = �(𝑇𝑇𝐺𝐺,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 − 𝑇𝑇𝐺𝐺,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖) +

(𝑇𝑇𝐻𝐻,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 −  𝑇𝑇𝐻𝐻,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖)�/(𝑇𝑇𝐺𝐺,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 + 𝑇𝑇𝐻𝐻,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖)     (6.4) 

Subject to the constraints: 

Initial substrates concentration (ISC): 10 ≤ 𝐼𝐼𝑆𝑆𝐶𝐶 ≤ 300 𝑂𝑂/𝐿𝐿                                          (6.5) 

Batch fermentation time (𝐹𝐹𝑇𝑇): 5 ≤ 𝐹𝐹𝑇𝑇 ≤ 100 ℎ                                                                           (6.6) 

where mG, mET, mH, VL, and FT are mass concentrations (g/L) of glucose, ethanol, and 

xylose, liquid volume of the contents in reactor, respectively. “initial” and “final” are used 

to denote parameters at the beginning of fermentation and at the end of fermentation, 

respectively. 

The objective of the SOO (eq 6.7) was to maximize the weighted sum of the 

objectives in eqs 6.1 – 6.4 subject to the same constraints as the MOO in eqs 5 and 6. Equal 

relative weights were used for each objective. 
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SOO problem formulation 

 Maximize: ∑ 𝑍𝑍𝑖𝑖𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1                                                                                                                      (6.7) 

where  N, Z, w are number of objectives, objective function values (ethanol yield, total 

ethanol produced, ethanol productivity and fraction of sugars converted) and relative 

weights (0.25) of each objective function value, respectively.  

6.3.4.1 Initialization of optimization and generation of initial population (Pk) 

Both the MOO and SOO use the same decision variables, number of variables, 

upper and lower bounds, population size and stopping criteria but are run separately. The 

difference between the MOO and SOO optimization process is in the formulation of the 

objective functions as shown in section 6.3.4. The MOO and SOO uses the gamultiobj and 

ga solvers, respectively, with the default parameter settings in MATLAB unless otherwise 

stated. The optimization process is initialized by specifying : the decision variables (DV = 

ISC, FT), the number of decision variables (NV = 2), lower (Lb = 10 g/L & 5 h) and upper 

(Ub = 300 g/L & 100 h) bounds, population size (PS = 1000), stopping criteria (SC = 0.01, 

function tolerance, representing the smallest uncertainty in the measurement of a typical 

ethanolic batch fermentation parameters1) and the objective function expressions (O). A 

set of pairs (ISC and FT) of random points are generated as the initial population (Pk) with 

size equal to PS between the range of decision variables specified through Lb and Ub. 

6.3.4.2 Determination of objective function values 

For the elements in the population generated (in this case 1000 sets), the objective 

function values must be determined for each set. The objective function values are then 

used to test if the stopping criteria is met. In order to determine the objective function 

values for each pair of initial sugars concentration and batch fermentation time, the initial 

sugars concentration and fermentation time are first written to Aspen Plus. For example, 

initial sugars of concentration of 100 g/L and fermentation time of 50 h are written to Aspen 

Plus by opening the batch reactor file initially created through the COM interface. The 

initial concentration of glucose/xylose are both changed to 100 g/L and the fermentation 

time for the batch reactor is changed to 50 h in Aspen Plus. The batch reactor is then 

reinitialized, run and saved.   

To run the batch reactor as shown in Figure 6.1, the molar amount of each 

component (ni, where i = glucose, xylose, cells, ethanol and water) and the liquid volume 



 

86 
 

of the contents in the reactor are accessed in the FORTRAN user kinetics subroutine to 

evaluate the mass concentration of each component (mi). The calculated concentrations are 

then used in the biological ODEs describing the batch ethanolic fermentation to determine 

the rates of consumption or generation of each component in the batch process. The change 

in the molar rate of each component (∆�̇�𝐶 ) for the current integration time are passed from 

the subroutine to the batch reactor in Aspen Plus. In the batch reactor, new species 

concentrations are calculated by integration (using the default variable-step-size Gear’s 

algorithm). The new state of the batch reactor is evaluated using material and energy 

balances as well as phase equilibria equations and thermodynamic models. If the current 

integration time (t) is less than the specified fermentation time (FT), the new state (ni and 

VL) are passed to the subroutine for further integration until the stopping criteria is met 

(batch fermentation time). The simulation is then saved, the data required to evaluate the 

objective function values (mass concentrations of components, liquid volume) for the pair 

of initial sugars concentration and batch fermentation time are passed from Aspen Plus to 

MATLAB through the COM interface. All the elements in the population (in this case 

1000) are passed from MATLAB to the batch reactor through the COM interface and the 

data required to evaluate the objective function values are read from the batch reactor to 

MATLAB until the complete set of objective function values is obtained. 

6.3.4.3 Optimization in MATLAB 

With the set of objective function values equal to the population size (in this case 

1000 sets), the genetic algorithm determines if the stopping criteria (the change is the 

spread of the Pareto front over successive generations is less than the function tolerance 

specified, 0.01) is met. For a pair of objective function values, if at least one objective 

function value of solution 1 is better than solution 2, then solution 1 is described as non-

dominated with respect to solution 2.138 For each generation (the set of 1000 objective 

function values in this case) a set of non-dominated solutions are selected from the total 

population and the set of non-dominated solutions are updated after every generation. A 

new set of 1000 “improved” population, representing the next generation, are generated 

and passed to Aspen Plus through the COM interface to determine the corresponding 

objective function values. In generating the “improved” population, some of the individuals 

in the current generation with the best scores (the objective function values converted into 
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scores) are selected as the elite to be part of the population in the next generation. The 

remaining number of individuals needed to form the total population, 1000 in this case, are 

generated using parents selected from the current generation to produce children for the 

next generation. Children are produced from selected parents through crossover – combing 

the elements from different parents and mutation – making random changes to the elements 

of a single parent.139  Through successive generations, the stopping criteria is met and 

optimization is terminated. 

6.3.4.4 Analyses of optimization results: MOO versus SOO 

At the end MOO process, a set of decision variables (DVj) and the corresponding 

objective function values (Zj), where j is the number of non-dominated solutions, are 

selected from the final population. The number of non-dominated solutions (Pareto 

domain) obtained in the MOO  can be ranked using ranking procedures such as the Net 

Flow Method (NFM) and Rough Set Method.138 The NFM uses four sets of ranking 

parameters to score and rank the non-dominated solutions; indifference, preference and 

veto thresholds, and relative weight of each objective function. The indifference threshold 

represents a value below which if the difference between two objective function values 

falls, the two objective function values cannot be distinguished. This means, one objective 

function value cannot be chosen over another if the difference between the objective 

function values is below the indifference threshold. If the difference between a pair of 

objective function values is greater than the preference threshold, the better solution is 

chosen. For example, for a maximization problem, the preferred value will be the objective 

function with the larger value and vice versa. When the difference between two objective 

function values is greater than the veto threshold, one solution is banned against the other 

solution. The indifference, preference and veto thresholds are established such that 0 ≤ 

indifference threshold ≤ preference threshold ≤ veto threshold. The details of the NFM 

method from the work of Jules Thibault138 are presented in Appendix K.  In this work, 

equal relative weights were set for the objective function and the indifference, preference 

and veto thresholds set at 5%, 10% and 30% of the range of each objective function values 

in the Pareto domain, respectively. These thresholds were chosen using the thresholds in 

the work of Aida et al. 84 as a guide. At the end of the SOO, one optimal solution, a decision 

variable (DV) and the corresponding weighted sum of objective function value (Z), is 
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obtained. The decision variable obtained in the SOO can then be used to evaluate the 

objective function values. 

6.3.5 Optimization of integrated batch ethanolic fermentation and in situ product 

recovery 

To demonstrate how the performance of a batch fermentation is enhanced when in 

situ product recovery is integrated with the batch fermentation, the integrated batch 

ethanolic fermentation and in situ gas stripping process is used in the optimization process. 

The details of how an integrated batch fermentation (based on time-dependent model) with 

in situ gas stripping can be simulated is found in our previous work in Chapter 4. In 

summary, the batch fermentation is simulated as unsteady state process by linking the batch 

reactor in Aspen Plus to a FORTRAN user kinetics subroutine (evaluate the rates of 

consumption or generation of each component). A gas stream (nitrogen) is fed continuously 

to the unsteady state batch reactor to simulate an integrated batch fermentation with in situ 

product recovery by gas stripping. The optimization procedure for the integrated batch 

ethanolic fermentation and in situ gas stripping is the same as described in sections 6.3.4.1, 

6.3.4.2, 6.3.4.3 and 6.3.4.4. 

The objectives of the MOO was to simultaneously maximize the ethanol yield (eq 

6.8), total ethanol produced (eq 6.9), ethanol productivity (eq 6.10) and total fraction of 

sugars converted (eq 6.11) subject to the constraints: the initial concentration of substrates 

(eq 6.12), batch fermentation time (eq 6.13), the gas flow rate of N2 used in gas stripping 

(eq 6.14) and the gas stripping initiation times (eq 6.15). In addition, the gas stripping 

initiation times should always be less than or equal to the batch fermentation time (equation 

16). The concentrations of ethanol in the reactor and the stripped stream are both accounted 

for when determining the total ethanol produced. 

MOO problem formulation 

Maximize: 

Ethanol yield, g-ethanol/g-sugars utilized = [𝑇𝑇𝐸𝐸𝑇𝑇,𝑓𝑓𝑒𝑒𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑒𝑒𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖 +

𝑇𝑇𝐸𝐸𝑇𝑇,𝑎𝑎𝑡𝑡𝑓𝑓𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑 𝑎𝑎𝑡𝑡𝑓𝑓𝑒𝑒𝑓𝑓𝑚𝑚,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑎𝑎𝑡𝑡𝑓𝑓𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑 𝑎𝑎𝑡𝑡𝑓𝑓𝑒𝑒𝑓𝑓𝑚𝑚,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖]/[�𝑇𝑇𝐺𝐺,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 −

𝑇𝑇𝐺𝐺,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖� + 𝑇𝑇𝐻𝐻,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 − 𝑇𝑇𝐻𝐻,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖)]                                         (6.8)                                                                                    

Ethanol produced = [𝑇𝑇𝐸𝐸𝑇𝑇,𝑓𝑓𝑒𝑒𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖 + 𝑇𝑇𝐸𝐸𝑇𝑇,𝑎𝑎𝑡𝑡𝑓𝑓𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑 𝑎𝑎𝑡𝑡𝑓𝑓𝑒𝑒𝑓𝑓𝑚𝑚,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖]𝐹𝐹𝑇𝑇                          (6.9)                                                                          
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Ethanol productivity  = [𝑇𝑇𝐸𝐸𝑇𝑇,𝑓𝑓𝑒𝑒𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖 + 𝑇𝑇𝐸𝐸𝑇𝑇,𝑎𝑎𝑡𝑡𝑓𝑓𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑 𝑎𝑎𝑡𝑡𝑓𝑓𝑒𝑒𝑓𝑓𝑚𝑚,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖]𝐹𝐹𝑇𝑇                  (6.10)                                                                        

Fraction of sugars converted = (𝑇𝑇𝐺𝐺,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 − 𝑇𝑇𝐺𝐺,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖) +

(𝑇𝑇𝐻𝐻,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 −  𝑇𝑇𝐻𝐻,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑖𝑖)]/(𝑇𝑇𝐺𝐺,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖 + 𝑇𝑇𝐻𝐻,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑉𝑉𝑉𝑉,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖)   (6.11) 

MOO subject to the following constraints: 

Initial substrates concentration (ISC): 10 ≤ 𝐼𝐼𝑆𝑆𝐶𝐶 ≤ 300 𝑂𝑂/𝐿𝐿                                     (6.12) 

Batch fermentation time (𝐹𝐹𝑇𝑇): 5 ≤ 𝐹𝐹𝑇𝑇 ≤ 100 ℎ                                                          (6.13) 

Gas stripping start time (GST): 5 ≤ 𝐺𝐺𝑆𝑆𝑇𝑇 ≤ 100 ℎ                                                      (6.14) 

Gas flow rate (GFR): 0.1 ≤ 𝐺𝐺𝐹𝐹𝑅𝑅 ≤ 3 L/min per L of broth                                       (6.15) 

Gas stripping start time is less or equal to the batch fermentation time: 𝐺𝐺𝑆𝑆𝑇𝑇 ≤  𝐹𝐹𝑇𝑇   (6.16) 

where mG, mET, mH, VL, and FT, “initial” and “final” have the same meanings as defined in 

eqs 6.1 – 6.6 in section 6.3.4. 

The objective of the SOO presented in equation 6.17 was to maximize the weighted sum 

of the objectives in eqs 6.8 – 6.11 (using equal weights for each objective) subject to the 

same constraints as the MOO (eqs 6.12 – 6.16). 

SOO problem formulation 

Maximize ∑ 𝑍𝑍𝑖𝑖𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1                                                                                                           (6.17) 

where N, Z, w have the same meanings as defined in equation 7 in section 2.2. 

See sample MOO and SOO MATLAB codes in Appendix P. 

6.4 Results and Discussion 

6.4.1 Optimization of batch ethanolic fermentation using MOO and SOO 

Figure 6.2 shows the Pareto domain of the MOO maximizing the ethanol yield, 

ethanol productivity, total ethanol produced, and fraction of sugars converted 

(glucose/xylose) simultaneously by manipulating the batch fermentation time (5 – 100 h) 

and initial substrates concentration (10 – 300 g/L). Equal relative weights were used for 

each objective to score and rank the Pareto-optimal solutions using the Net Flow Method 

(NFM).  The decision variables (initial concentration of sugars and the batch fermentation 

time) and the corresponding objective function values with the highest score from the NFM 

is selected as the best optimal point among the sets of equally optimal solutions.  
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Figure 6.2 Plot of the MOO results for batch ethanolic fermentation  
The notations are: a) final population b) decision variables c) ethanol productivity versus 
ethanol yield d) total ethanol produced versus ethanol yield e) fraction of sugars converted 
versus ethanol yield f) total ethanol produced versus ethanol productivity g) fraction of 
sugars converted versus ethanol productivity h) fraction of sugars converted versus total 
ethanol produced. The red circle, black diamonds, grey squares and green asterisk 
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represents the best, first 5 %, next 45 % and the last 50 %, respectively, ranked using the 
NFM method 

The ranked solutions are grouped into zones representing the best (red circle), first 

5% (black diamonds), next 45% (gray squares) and last 50% (green asterisks). Figure 6.2a 

showing the final population represents a large area of the decision space, where “weaker” 

performing points have been eliminated in successive generations in the genetic algorithm 

process. 350 non-dominated points were chosen from the final population of 1000 points 

as the decision variables as shown in Figure 6.2b. The NFM found a compromised best 

decision variable of 122.4 g/L initial concentration of sugars and fermentation time of 37 

h. This pair of decision variables corresponds to 0.489 g/g-sugars, 1.97 g/L.h, 72.7 g/L and 

0.62 ethanol yield, ethanol productivity, total ethanol produced and fraction of sugars 

converted, respectively. The trade-off between the competing pair of objectives, ethanol 

yield versus fraction of sugars converted (Figure 6.2e) and ethanol productivity versus 

ethanol yield (Figure 6.2c) can clearly been seen.  For example, lower ethanol yield resulted 

in a higher ethanol productivity and vice versa. 

Majority of the optimal solutions predicted for the total ethanol produced lies 

between 60 and 79 g/L, which is in the neighborhood of the maximum ethanol 

concentration beyond which ethanol production ceases of about 75.4 g/L and 81.2 g/L for 

glucose and xylose fermentation, respectively for Z. mobilis137 (Figure 6.2d, Figure 6.2f, 

and Figure 6.2h). The theoretical maximum yield for ethanol production is 0.511 g 

ethanol/g sugars based on hexoses and pentoses.140  The range of ethanol yield is from 0.48 

to 0.54 as shown in Figures 6.2c, 6.2d, and 6.2e, indicting some of the optimal solutions in 

the MOO are greater than the theoretical maximum yield of 0.511. The optimal solutions 

with ethanol yield greater than 0.511 generally corresponds to very low sugars utilization 

(fraction of sugars converted is less than 0.3). These solutions, therefore, may be practically 

infeasible.  

When the best optimal and first 5% ranked solutions are considered together, the 

MOO process predicted two regions, (63 – 75 g/L initial concentration of sugars and 37 – 

44 h fermentation time) and (122 – 126 g/L initial concentration of sugars and 34 – 37 h 

fermentation time), as the decision variables. These two regions of decision variables may 

offer flexibility to the fermentation design engineer in designing batch fermentation 



 

92 
 

processes. The zone represented by the first 5% optimal points in the MOO could represent 

situations where perturbations or deviations in process inputs and conditions affect the 

performance of the batch ethanol process.  

On the other hand, the SOO (using equations 6.5 – 6.7) predicted an initial 

concentration of sugars of 84.5 g/L and a batch fermentation time of 99. 6 h, resulting in 

an ethanol yield of 0.482 g/g-sugars, 79.4 g/L total ethanol produced, 0.797 g/L.h ethanol 

productivity and 0.98 fraction of sugars converted. The SOO approach offers only one 

optimal solution without alternative design variables. The typical concentrations of sugars 

obtained after pretreatment and hydrolysis of lignocellulosic biomass is low (e.g., 1 – 23 

g/L glucose16). Both the MOO and SOO predict an optimal initial concentration of sugars 

of 122.4 g/L and 84.5 g/L, respectively, which are relatively higher compared to the typical 

concentration of sugars in lignocellulosic hydrolysate. This suggests the typical 

concentration of sugars obtained in lignocellulosic hydrolysis may have to be concentrated 

prior to fermentation for optimal performance of the batch fermentation process. 

The time-dependent concentrations (for cells, glucose, xylose and ethanol in the 

fermentor) plotted from the best optimal point of 122.4 g/L (initial concentrations of 

glucose and xylose) and 37 h of fermentation, identified from the MOO of a batch 

fermentation without in situ separation (blue line) is shown in Figure 6.3.   The cell growth 

kinetics (Figure 6.3a) shows cell death occurring after about 30 h of batch fermentation, 

corresponding to an ethanol concentration of 65.9 g/L (Figure 6.3d). 65.9 g/L of ethanol is 

greater than the maximum inhibitory ethanol concentrations for cell growth based on 

glucose and xylose of 57.2 g/L and 56.3 g/L, respectively for Z. mobilis.137 The residual 

sugars are relatively high (for xylose), 1.2 g/L glucose and 84.1 g/L xylose, resulting in 

0.62 fraction of sugars converted at the end of the 37 h of batch fermentation. This 

observation emphasizes the crippling effect that product (ethanol) inhibition has on 

microbial cell growth and consequently the performance (yields, titers, productivities, 

conversion) of the batch ethanolic fermentation. 
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Figure 6.3 Concentration profile of the contents of the fermentor for the best optimal 
solution in the MOO (ranked with NFM) of the batch ethanolic fermentation (blue line, ▬) 
and integrated batch ethanolic fermentation with in situ separations (red filled circle, ●) 
The notation is a) cells concentration b) glucose concentration c) xylose concentration d) 
ethanol concentration  

6.4.2 Optimization of integrated batch ethanolic fermentation with in situ separation 

using MOO and SOO 

To demonstrate how the performance of the batch ethanolic fermentation is 

improved when the batch process is integrated with an in situ product recovery, an 

integrated batch and in situ gas stripping process was used in both the MOO and SOO. The 

objective was to maximize the ethanol yield, ethanol productivity, total ethanol produced 

and the fraction of sugars converted by manipulating the initial substrates concentration, 

batch fermentation time, gas stripping initiation times and the gas flow rate employed 

(equations 6.8 – 6.17). Figure 6.4 shows the decision variables in the MOO and the 

resulting objective function values for the MOO ranked with the NFM for the integrated 

batch and in situ gas stripping process.  
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Figure 6.4 Plot of the decision variables (ranked with NFM) in the MOO results for 
integrated batch ethanolic fermentation and in situ separation  
The notation is a) batch fermentation time versus initial substrates concentration b) gas 
stripping initiation time versus initial substrates concentration c) gas flow rate versus initial 
substrates concentration d) batch fermentation time versus gas stripping initiation time e) 
batch fermentation time versus gas flow rate f) gas stripping initiation time versus gas flow 
rate. The red circle, black diamonds, grey squares and green asterisk represents the best 
(top ranked), first 5 %, next 45 % and the last 50 %, respectively, ranked using the NFM 
method 

When product inhibition is alleviated by removing ethanol as it is produced via gas 

stripping, an optimal best initial concentration of sugars of 190.1 g/L, 77 h fermentation 

time, 28.1 gas stripping initiation times and 2.2 L/min per L of broth gas flow rate is 

predicted for the MOO.  These MOO decision variables resulted in an ethanol yield of 
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0.478 g/g-sugars, ethanol productivity of 2.29 g/L.h, total ethanol produced of 176.5 g/L 

and fraction of sugars converted of 1.0. The SOO predicted initial sugars concentration of 

254.6 g/L, a batch fermentation time of 84.9 h, gas stripping initiation time of 15.3 h and 

gas flow rate 0f 2.3 L/min per L of broth for the decision variables in the integrated batch 

fermentation and in situ product recovery process. These SOO decision variables represent 

an ethanol yield of 0.450, ethanol productivity of 2.50 g/L.h, total ethanol produced of 

210.2 g/L and fraction of sugars converted of 0.98. The SOO optimization predicted higher 

initial concentrations of sugars (254.6 versus 190.1 g/L), total ethanol produced (210.2 

versus 176.5 g/L) and ethanol productivity (2.50 versus 2.29 g/L.h) compared to the MOO, 

respectively, for the best optimal solution. However, the predicted ethanol yield in the SOO 

approach was less than that of the MOO (0.450 versus 0.478, respectively). 

As shown in Figure 6.3d (filled red circle), when ethanol is removed in situ after 

28 h of batch fermentation, the concentration of ethanol in the fermentor is always below 

59 g/L (maximum ethanol concentration reached in the reactor). 59 g/L is slightly higher 

than the maximum ethanol concentration beyond which cells growth ceases for the model 

system used (57.2 g/L and 56.3 g/L for cell growth based on glucose and xylose,  

respectively137) but lower than the maximum ethanol concentration above which glucose 

and xylose uptake for ethanol production is inhibited (75.4 and 81.2 g/L, respectively137). 

As a result, the cells are able to utilize the remaining sugars (mostly xylose – about 168 

g/L left at 28 h of fermentation) to produce more ethanol. There is a significant change in 

the cell growth kinetics (Figure 6.3a), where in the batch ethanolic fermentation alone, cell 

death occurs as a result of ethanol inhibition (~65.9 g/L of ethanol after 30 h of batch 

fermentation). In the case of the integrated batch and in situ separations, the cells are able 

to resuscitate after a brief period of constant growth between 38 – 46 h (cells concentration 

remains approximately 3 g/L) until the ethanol concentration falls below the maximum 

ethanol inhibitory concentrations of 57.2 and 56.2 g/L, for glucose and xylose respectively, 

for cell growth.  

As previously discussed, MOO of the integrated batch ethanolic fermentation and 

in situ product separation predicted an optimal best initial sugars concentration of 190.1 

g/L, 77 h fermentation time, 28.1 gas stripping initiation times and 2.2 L/min per L of broth 

gas flow rate. As shown in Table 1, these decision variables resulted in an ethanol yield of 
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0.478 g/g-sugars, ethanol productivity of 2.29 g/L.h, total ethanol produced of 176.5 g/L 

and fraction of sugars converted of 1.0. The initial sugars concentration predicted is 

increased by 55% in the integrated batch and in situ product recovery relative to the batch 

fermentation process alone for the best optimal solution in the MOO. However, the ethanol 

yield reduced by 2.3% with a 16% enhancement in the ethanol productivity, 143% increase 

in the total ethanol produced and an improvement in the fraction of sugars converted of 

62% when the integrated batch with in situ separations is compared with the batch 

fermentation process.  

Table 6.1 Comparison of the predicted decision variables and corresponding objective 
function values of the best optimal solution (ranked with NFM) in the MOO for the batch 
ethanolic fermentation without and with in situ separations 
 

Parameter Batch 
fermentation 

without 
separations 

Integrated 
batch with in 

situ separations 

Enhancement, 
% 

 Decision variables 
Initial substrate concentration, 
g/L 

122.4 190.1 +55 

Fermentation time, h 37 77 +108 
Gas stripping initiation time, h – 28.1  
Gas flow rate, L/min per L – 2.2 

 
 

 Objective function values 
Ethanol yield, g/g 0.489 0.478 -2.3 
Ethanol productivity, g/L.h 1.97 2.29 +16 
Total ethanol produced, g/L 72.7 176.5 +143 
Fraction of sugars converted 0.62 1.0 +62 

It can be inferred in general that a more realistic range of ethanol yields is obtained 

in the integrated batch and in situ separations process (Figure 6.5g, Figure 6.5h and Figure 

6.5i), where most of the ethanol yield values are below the theoretical maximum ethanol 

yield of about 0.511 g/g-sugars.140 Two distinct regions of non-dominated optimal 

solutions are generated for the plot of ethanol produced versus ethanol yield (Figure 6.5h), 

ethanol produced versus ethanol productivity (Figure 6.5j), fraction of sugars converted 

versus ethanol productivity (Figure 6.5k), and fraction of sugars converted versus ethanol 

productivity (Figure 6.5l).  
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Figure 6.5 Plot of the decision variables (ranked with NFM) in the MOO results for 
integrated batch ethanolic fermentation and in situ separation.  
The notation is g) ethanol productivity versus ethanol yield h) total ethanol produced versus 
ethanol yield i) fraction of sugars converted versus ethanol yield j) total ethanol produced 
versus ethanol productivity k) fraction of sugars converted versus ethanol productivity l) 
fraction of sugars converted versus total ethanol produced. The red circle, black diamonds, 
grey squares and green asterisk represents the best (top ranked), first 5 %, next 45 % and 
the last 50 %, respectively 

For example, two distinct regions in the ranges of 0.13 – 0.69 and 0.95 to 1.0 

(fraction of sugars converted), 0.43 – 0.478 and 0.478 – 0.521 g/g (ethanol yield), 32.9 – 

74.5 and 107.5 – 178.6 g/L (total ethanol produced).  This observation may suggest that 

there exist multiple optimal regions (local and global solutions) that MOO helps to reveal. 
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For example, the range of 32.9 to 74.5 g/L ethanol produced and 0.478 – 0.521 ethanol 

yield correspond to the MOO results for the batch ethanolic fermentation alone.  

6.5 Conclusion 

In this work, the traditional and commercial Process Systems Engineering tools 

(Aspen Plus and MATLAB) and methods were integrated on a novel framework. An 

unsteady state batch fermentation in Aspen Plus was linked to the robust optimization in 

MATLAB through a COM interface to maximize the process inputs and operating 

conditions of a batch ethanolic fermentation process.   Both MOO and SOO approaches 

demonstrated the typical sugars concentration obtained in lignocellulosic hydrolysate may 

have to be concentrated (by an order of magnitude higher) to optimize sugars utilization 

and ethanol production in the batch fermentation process. By integrating the batch 

fermentation with an in situ product recovery, the improvement in the performance of the 

fermentation process was significant; for example, the best optimal solution obtained in the 

MOO was shown to use 55% more concentrated initial sugars to improve the ethanol 

productivity, total ethanol produced and fraction of sugars converted by 16, 143, and 62 

%, respectively, relative to the batch fermentation without in situ product recovery. The 

MOO revealed the trade-offs and interactions that may exist among fermentation process 

parameters. Additionally, the MOO approach presented many equally optimal alternative 

solutions that can be used to support the understanding of batch fermentation dynamics and 

what-if-analysis scenarios to mirror how deviations in process inputs and conditions may 

affect the performance of the batch process. This work demonstrates how process insights 

can be gained using virtual experimentation through in silico analyses for processes where 

laboratory experiments alone may be inadequate, time consuming or too costly. Through 

such a platform, the fermentation experimentalist has a decision-support tool to guide the 

choice of design variables and conditions for optimum process performance. 
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Chapter 7 

Conclusion and Future Directions 

7.1 Conclusion  

 Chapters 3 – 6 discussed the challenges, proposed and applied a framework to solve 

some of the challenges, and prospects for applying Process Systems Engineering tools and 

Methods to fermentation-based biorefineries.  Because traditional process simulators were 

principally developed for the chemical and refinery industries, these PSE tools partially or 

fully lack built-in unit models with features that can readily simulate fermentation 

processes and optimization solvers that can handle the inherently non-linear MOO problem 

that are often encountered in fermentation-based biorefineries. In Chapter 3, the absence 

of typical key fermentation components, such as cells, in the database, the ability to 

simulate the inherently unsteady state fermentation processes and the absence of robust 

optimization tools in traditional PSE process simulators were identified as some of the 

major challenges hindering the application of PSE tools to fermentation-based 

biorefineries. A simple but effective technique, component substitution – the use of all the 

known physical properties of a databank component for the unknown physical properties 

of a non-databank component, was shown to be effective in representing non-databank 

components.  

A novel integrated platform that links a traditional process simulator with an 

external robust optimization solver through a communication platform that allows data 

exchange between the process simulator and optimization solver was proposed in Chapter 

3. To develop the proposed framework, an unsteady batch fermentation without and with 

in situ product recovery  was developed in Chapter 4 using the commercial steady state 

process simulator, Aspen Plus. The time-dependent fermentation model describing the 

fermentation process in the form of ODEs were incorporated in a FORTRAN user kinetics 

subroutine because the form the ODEs does not conform to the built-in power law reaction 

kinetics in Aspen Plus. The unsteady state batch fermentation was validated when the 

simulation results match the integration of the ODEs in MATLAB quantitatively. Further, 

the trends in the results of the unsteady state batch fermentation are shown to be consistent 

with experimental trends in literature. This is an important validation where simulation 

results are reconciled with literature results to test the robustness of the developed 
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procedure and the ability of the thermodynamic models to give accurate predictions that 

match experimental trends.  

Unlike previous separate  steady state fermentation and steady state separations 

(gas stripping), the product profile is demonstrated to be sensitive to the gas flow rate 

employed, demonstrating the importance of linking a time-dependent  fermentation model 

with in situ separations for the systematic analyses of fermentation processes. The 

competing nature of the ABE selectivity and the concentration of ABE in the stripped 

stream is clearly observed, where a lower gas flow rate results in a lower selectivity of 

ABE and a high concentration of ABE in the condensate and vice versa. The techniques 

developed in Chapter 3 and the results are powerful and important developments that set 

the ground work for extension of unsteady state batch fermentation simulations to other 

fermentation schemes such as fed-batch and continuous fermentation without and with in 

situ product recovery to help guide the fermentation experimentalist. 

The utility of the proposed framework in Chapter 3 was demonstrated in Chapter 5 

where an existing commercial process simulator, Aspen Plus, was linked to the genetic 

algorithm multi-objective and single-objection optimizations in MATLAB through a COM 

interface, providing a two-way communication for data exchange. The MOO approach is 

demonstrated to be a global optimization approach in which the decision variables span the 

entire design space (search region). The best optimal solution selected from the equally 

optimal solutions in MOO scored and ranked with the NFM was shown to be consistent 

the operating conditions frequently used in laboratory experiments. The ability of the MOO 

approach to shed light on the effect of process conditions and inputs on the performance of 

the integrated fermentation and in situ separation process to support missing existing 

literature data was presented. For instance, there is very limited reporting on the effect of 

different gas flow rates on the selectivity of ABE in literature. Thus, the insights that virtual 

experimentation brings to the table when laboratory data is inadequate is brought to bear. 

The sheer volume of variables, complexity and interaction of different decision 

variables that are faced in fermentation-based biorefineries require the use of PSE tools 

through in silico analyses to help choose optimum decision variables for process design 

and optimization for optimum process performance. In Chapter 6, the novel platform 

proposed in Chapter 3 was applied to optimize the operating conditions of a batch ethanolic 
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fermentation (batch fermentation time and initial concentration of sugars) to maximize the 

total ethanol produced, ethanol productivity, ethanol yield and the fraction of sugars 

converted. A time-dependent fermentation model system based on the consumption of 

glucose and xylose was used in an unsteady state batch fermentation in Aspen Plus (using 

techniques developed in Chapter 4) linked to the robust optimization in MATLAB through 

a COM interface. The major contributions of this work are that prior concentration of the 

sugars obtained in lignocellulosic hydrolysate (at least by an order of magnitude) are 

required  to optimize substrate utilization  and alcohol production in batch fermentations 

as demonstrated by the MOO and SOO approaches. Further, with a higher initial substrate 

concentration utilized in the batch fermentation process, it is imperative to integrate the 

batch fermentation with in situ process recovery to alleviate product inhibition, improving 

the performance of the fermentation process significantly. It is demonstrated that the best 

optimal solution obtained from scoring and ranking the equally optimal solutions from the 

MOO uses 55% more concentrated initial substrate and enhanced the productivity of 

ethanol, total ethanol produced an fraction of sugars converted by 16, 143, and 62%, 

respectively when the integrated batch with in situ product recovery was compared to the 

batch process alone. Thus, this work demonstrated process insights that are ordinarily 

hidden or too difficult to investigate through laboratory experiments. Additionally, as a 

decision-support tool, the platform developed can be used to guide the choice of process 

and design variables for optimum process performance. 

7.2 Future work and directions 

Commercial PSE tools and methods that helped to develop and optimize the 

refinery and chemical industries were explored to simulate, analyze and optimize 

fermentation-based biorefineries. A novel framework of a robust optimization was linked 

to an unsteady state batch fermentation in Aspen Plus through a COM interface. While this 

general framework demonstrated its ability to serve as decision support-tool to choose, 

support the understanding, and offer design alternatives, there is still more room for 

improvement and innovation. The robustness and speed of the optimization process can be 

improved. For example, the design variables (elements in the population of the genetic 

algorithm) were passed one set at a time between MATLAB and Aspen Plus. This approach 

may be inefficient. Future work will focus on vectorizing the decision variables and their 
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corresponding objective function values. In this way, the genetic algorithm will call the 

function computing the objective function values once to evaluate all the objectives of the 

individuals in the current population. This should be done in concert with the modification 

of the Aspen Plus file to be able to evaluate multiple decision variables at once, for example 

through the sensitivity analysis module. 

In Chapter 4, a foundational procedure to simulate an unsteady state batch 

fermentation without and with in situ product recovery by gas stripping was developed and 

demonstrated to predict trends that are significantly different from the traditional separate 

steady state batch fermentation and product recovery. Future work will extend this 

simulation procedure to other fermentation schemes such as fed-batch (used to alleviate 

substrate inhibition) and continuous fermentation (alleviates substrate and product 

inhibitions). To this end, preliminary results of a fed-batch ABE fermentation and in situ 

product recovery via gas stripping, simulated with unsteady state batch reactors in series 

to add fresh substrate for fed-batch and add a continuous feed of gas to simulate in situ gas 

stripping are presented in Figure N.1 in Appendix N. Herein, the unsteady state fed-batch 

simulations using the batch ODEs alone in Aspen Plus match quantitatively with the results 

of the ODEs that have been explicitly modified to account for volume change due to fresh 

substrate addition and product separation (Figure N.2, Appendix N). This validates the 

procedure developed and how powerful the thermodynamic models are in traditional 

process simulators to predict fermentation process dynamics in terms of volume and 

species concentrations. The trends in the unsteady state fed-batch simulation matches the 

trends in fed-batch laboratory results in literature (Figure N.3, Appendix N). The fed-batch 

unsteady state simulation results show that the when the typical concentrations of sugars 

from lignocellulosic hydrolysate are used as the fed-batch stream, unrealistically large 

fermentor volumes will be required relative to using concentrated sugars (Figure N.4, 

Appendix N). Additionally, the sampling times in laboratory may be important and affect 

results (Figure N.5, Appendix N). These are important design revelations obtained using 

PSE tools and methods through in silico analyses for the development of fermentation-

based biorefineries. 

The backbone of PSE is mathematical models, which have become central to 

understanding cellular kinetics and mechanisms and for that matter fermentation-based 
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biorefineries. The development of computationally tractable mathematical models should 

move away from steady state and stoichiometric models to mechanistic models that 

incorporate cellular metabolism and regulation mechanism based on extracellular changes 

and genetic modifications.34 These mechanistic or kinetic models should be tailored to 

accommodate the typical components in using lignocellulosic biomass for biofuel 

productions as discussed in Chapter 3. Further, mathematical models developed for one 

microorganism generally lack transferability to other processes that use a different 

microorganism without model modification and reevaluation of the model parameters.35  

Model parameters usually change (over time), rendering the use of constant parameters in 

mechanistic models inadequate. An adaptive model parameter system accounting for 

variations in parameters based on advanced monitoring and control system can be used. It 

is imperative that sensitivity analyses and confidence intervals be reported with models 

developed.2, 95 

In Chapter 3, the challenges for applying traditional PSE tools and methods to 

fermentation-based biorefineries were discussed. Through the challenges identified, 

traditional process simulators need to modify existing unit operations and add models that 

can readily simulate fermentation processes as unsteady state.  This can be done by 

exploring avenues to extend the capabilities of unit operation models in traditional process 

simulators. Analytical tools that can characterize and analyze typical lignocellulosic 

biomass components and determine the properties of microorganisms need to be 

developed. In this way, the databases of commercial process simulators can be updated 

with typical lignocellulosic-based fermentation components. One major improvement that 

is urgently needed is the ability of unit operation models in these PSE tools to simulate 

integrated fermentation and in situ product recovery processes, such as adsorption, 

pervaporation, membrane separation, etc. which are currently either non-existent or not 

readily available. 

Finally, the major obstacle to developing sustainable biofuels is the sheer volume 

of complex decisions that have to be made with respect to the use of different processing 

technologies, optimal resource allocation and the choice of optimal operating conditions 

and process inputs. The effect of uncertainty in process parameters and competing goals 

are exacerbated over time. For example, constant relative weights were employed in the 
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optimization process in this work. Future work will focus on using different weights to 

ascertain the effect of uncertainty on the process performance. Sustainability is defined as 

“development that meets the need of the present without compromising the ability of future 

generations to meet their own needs.”67 The three pillars of sustainability – economic, 

environment, and social factors must be incorporated in simultaneously making decisions 

about fermentation-based biorefineries. Examples of economic sustainability factors 

include– quality, responsiveness, and efficiency (productivity, cost reduction, service 

level); environment sustainability factors include – emissions, natural resource utilization, 

waste, and recycling; social sustainability factors include – health and safety, noise and 

employee well-being. As an example, the economic, environment and social factors in the 

form of operating cost, emissions and employee injuries were simultaneously minimized 

in a multi-objective optimization.67 The challenge is circumventing the uncertainty in 

achieving economic viability while simultaneously meeting societal and environmental 

targets. The National Research Council said “Solutions to sustainability challenges 

typically involve finding near-optimal trade-offs among competing goals, typically under 

high degrees of uncertainty in both systems and the goal” and concluded that PSE tools 

and methods will be the gateway in addressing these challenges.40 It is in this context that 

the optimization techniques developed in this study are important contributions to the 

development of fermentation-based biorefineries. 

The use of PSE tools and methods through virtual experimentation and process 

analyses saves time and resources by indicating the most impactful experiments to conduct 

for process design, continuous improvement, and optimization.  By incorporating 

economic, social and environment factors of sustainability in the design, analysis and 

optimization of fermentation-based biorefineries through commercial PSE tools and 

methods, the production of biofuels from lignocellulosic biomass may at last prove to be 

economically viable and true sustainable alternatives to fossil-based products. 
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Appendices 

Appendix A: Ordinary differential equations representation of the fermentation 

kinetics of a batch culture of Clostridium acetobutylicum.120 
𝑑𝑑𝑃𝑃𝑀𝑀
𝑑𝑑𝑡𝑡

= 𝑘𝑘1𝐶𝐶𝑆𝑆
𝐾𝐾𝐼𝐼

𝐾𝐾𝐼𝐼+𝐶𝐶𝐵𝐵
𝑃𝑃𝑁𝑁 − 0.56(𝑃𝑃𝑁𝑁 − 1)𝑃𝑃𝑁𝑁                                                                 (A.1) 

𝑑𝑑𝐶𝐶𝑋𝑋
𝑑𝑑𝑡𝑡

= 0.56(𝑃𝑃𝑁𝑁 − 1)𝐶𝐶𝑋𝑋 − 𝑘𝑘2𝐶𝐶𝐵𝐵𝐶𝐶𝑋𝑋                                                                               (A.2) 

𝑑𝑑𝐶𝐶𝑆𝑆
𝑑𝑑𝑡𝑡

= −𝑘𝑘3𝐶𝐶𝑆𝑆𝐶𝐶𝑋𝑋 − 𝑘𝑘4
𝐶𝐶𝑆𝑆

𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆
𝐶𝐶𝑋𝑋                                                                                      (A.3) 

𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵
𝑑𝑑𝑡𝑡

= 𝑘𝑘5𝐶𝐶𝑆𝑆
𝐾𝐾𝐼𝐼

𝐾𝐾𝐼𝐼+𝐶𝐶𝐵𝐵
𝐶𝐶𝑋𝑋 − 𝑘𝑘6

𝐶𝐶𝐵𝐵𝐵𝐵
𝐾𝐾𝐵𝐵𝐵𝐵+𝐶𝐶𝐵𝐵𝐵𝐵

𝐶𝐶𝑋𝑋                                                                         (A.4) 

𝑑𝑑𝐶𝐶𝐵𝐵
𝑑𝑑𝑡𝑡

= 𝑘𝑘7𝐶𝐶𝑆𝑆𝐶𝐶𝑋𝑋 − 0.841 𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵
𝑑𝑑𝑡𝑡

                                                                                          (A.5) 

𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵
𝑑𝑑𝑡𝑡

= 𝑘𝑘8
𝐶𝐶𝑆𝑆

𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆

𝐾𝐾𝐼𝐼
𝐾𝐾𝐼𝐼+𝐶𝐶𝐵𝐵

𝐶𝐶𝑋𝑋 − 𝑘𝑘9
𝐶𝐶𝐵𝐵𝐵𝐵

𝐾𝐾𝐵𝐵𝐵𝐵+𝐶𝐶𝐵𝐵𝐵𝐵

𝐶𝐶𝑆𝑆
𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆

𝐶𝐶𝑋𝑋                                                          (A.6) 

𝑑𝑑𝐶𝐶𝐵𝐵
𝑑𝑑𝑡𝑡

= 𝑘𝑘10
𝐶𝐶𝑆𝑆

𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆
𝐶𝐶𝑋𝑋 − 0.484 𝑑𝑑𝐶𝐶𝐵𝐵𝐵𝐵

𝑑𝑑𝑡𝑡
                                                                                  (A.7) 

𝑑𝑑𝐶𝐶𝐸𝐸
𝑑𝑑𝑡𝑡

= 𝑘𝑘11
𝐶𝐶𝑆𝑆

𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆
𝐶𝐶𝑋𝑋                                                                                                        (A.8) 

𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2
𝑑𝑑𝑡𝑡

= 𝑘𝑘12
𝐶𝐶𝑆𝑆

𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆
𝐶𝐶𝑋𝑋                                                                                                     (A.9) 

𝑑𝑑𝐶𝐶𝐻𝐻2
𝑑𝑑𝑡𝑡

= 𝑘𝑘13
𝐶𝐶𝑆𝑆

𝐾𝐾𝑆𝑆+𝐶𝐶𝑆𝑆
𝐶𝐶𝑋𝑋 + 𝑘𝑘14𝐶𝐶𝑆𝑆𝐶𝐶𝑋𝑋                                                                                  (A.10) 
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Appendix B: Parameter definition for the kinetic model and their respective 

values.120 

k1 kinetic constant in Eq. A.1, = 0.009 L/g-substrate/h 

k2 kinetic constant in Eq. A.2, = 0.0008 L/g-butanol/h 

k3 kinetic constant in Eq. A.3, = 0.0255 L/g-biomass/h 

k4 kinetic constant in Eq. A.3, = 0.6764 g-substrate/g-biomass/h 

k5 kinetic constant in Eq. A.4, = 0.0136 g-butyric acid·L/g-substrate/g-biomass/h 

k6 kinetic constant in Eq. A.4, = 0.1170 g-butyric acid/g-biomass/h 

k7 kinetic constant in Eq. A.5, = 0.0113 g-butanol·L/g-substrate/g-biomass/h 

k8 kinetic constant in Eq. A.6, = 0.7150 g-acetic acid/g-biomass/h 

k9 kinetic constant in Eq. A.6, = 0.1350 g-acetic acid/g-biomass/h 

k10 kinetic constant in Eq. A.7, = 0.1558 g-acetone/g-biomass/h 

k11 kinetic constant in Eq. A.8, = 0.0258 g-ethanol/g-biomass/h 

k12 kinetic constant in Eq. A.9, = 0.6139 g-carbon dioxide/g-biomass/h 

k13 kinetic constant in Eq. A.10, = 0.0185 g-hydrogen/g-biomass/h 

k14 kinetic constant in Eq. A.10, = 0.00013 g-hydrogen·L /g-substrate/g-biomass/h 

KI inhibition constant, = 0.833 g-butanol/L 

KS Monod constant, = 2.0 g-substrate/L 

KBA saturation constant, = 0.5 g-butyric acid/L 

KAA saturation constant, = 0.5 L/g-acetic acid/L 

CA acetone concentration, g/L 

CB butanol concentration, g/L 

CE ethanol concentration, g/L 

CBA butyric acid concentration, g/L 

CAA acetic acid concentration, g/L 

CS glucose concentration, g/L 

CX cell biomass concentration, g/L 

CCO2 carbon dioxide concentration, g/L 

CH2 hydrogen concentration, g/L 

PM marker of the physiological state culture, dimensionless 
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Appendix C: Description of the FORTRAN user kinetic subroutine and running the 

Aspen Plus RBatch block and FOTRAN code 

C.1 Description of the FORTRAN user kinetic subroutine and running the Aspen 

Plus RBatch block 

When Aspen Plus RBatch block is run, the user defined subroutine is loaded and 

executed dynamically. This procedure requires writing the Fortran user kinetic subroutine, 

compiling the written subroutine using the “aspcomp” procedure in the Aspen Plus module 

and supplying the object file created to the Aspen Plus system. The example, Example of 

a User kinetic subroutine for RBatch, in the Aspen Plus V8.8 Support Center.122 was used 

as the template to write the external Fortran user kinetic subroutine.  The salient parts of 

the template are the supplied argument list, declaration of the variables used in 

dimensioning the variables in the argument list, dimensioning of the variables in the 

argument list, accessing general labelled commons to provide physical stream property 

data (for further calculation in the subroutine), declaration of local variables used within 

the subroutine, the calculation of the reactions rates and supplying the calculated reaction 

rates to the argument list.  

The argument list interfaces the written subroutine with the RBatch block in Aspen 

Plus. The variables in the argument list and variables used in dimensioning of the variables 

in the argument list were used as supplied in the template without any modification, as 

these are fait accompli. Stream data from the RBatch block (flow rates, parameters, and 

other thermodynamic properties) are accessed through general labelled commons as 

standard Fortran statements in the subroutine to calculate the reaction rates for each 

component. The reaction rates are calculated from the ordinary differential equations 

written in the subroutine using the stream data. The calculated reaction rates are passed 

through the argument list to the RBatch block to conduct a material balance to determine 

the condition of the fermentation broth after integration. In a cyclic communication 

between the RBatch and the subroutine, the time-dependent properties of the batch process 

are determined. The ‘Customize Aspen Plus V8.8’ as a module in the Aspen Plus was used 

to compile the written Fortran user kinetic subroutine into an object file that Aspen Plus 

can read using the “aspcomp” procedure.122 Details of the FORTRAN code are in 

Appendix C.2. 
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C.2: FOTRAN code incorporating user kinetics subroutine 
SUBROUTINE SOURCE (SOUT,   NSUBS,  IDXSUB,   ITYPE,  NINT, 

     2                 INT,    NREAL,  REAL,     IDS,    NPO, 

     3                 NBOPST, NIWORK, IWORK,    NWORK,  WORK, 

     4                 NC,     NR,     STOIC,    RATES,  FLUXM, 

     5                 FLUXS,  XCURR,  NTCAT,    RATCAT, NTSSAT, 
     6                 RATSSA, KCALL,  KFAIL,    KFLASH, NCOMP, 
     7                 IDX,    Y,      X,        X1,     X2, 
     8                 NRALL,  RATALL, NUSERV,   USERV,  NINTR, 
     9                 INTR,   NREALR, REALR,    NIWR,   IWR, 
     *                NWR,    WR) 
!------------------------------------------------------------------------------- 
      IMPLICIT NONE 
 
!     DECLARE VARIABLES USED IN DIMENSIONING 
      INTEGER NSUBS, NINT,  NPO,   NIWORK,NWORK, 
     +        NC,    NR,    NTCAT, NTSSAT,NCOMP, 
     +        NRALL, NUSERV,NINTR, NREALR,NIWR, 
     +        NWR 
 
!- Arrays in Argument List. The stream vector's dimension will 
!be determined by Aspen Plus at run-time. 
!------------------------------------------------------------------------ 
!- Labeled commons are provided to pass data for specific reactor types. 
 
!- RBATCH 
#include "rbtc_rbati.cmn" 
#include "rbtc_rbatr.cmn" 
 
!- Pressure Relief 
#include "rbtc_presrr.cmn" 
 
!- for console 
#include "dms_maxwrt.cmn" 
 
!- for components 
#include "dms_ncomp.cmn" 
 
! Retrieving phase properties 
#include "flsh_prplus.cmn" 
 
      EQUIVALENCE (AMWL, PRPLUS_AMWL) 
!------------------------------------------------------------------------ 
!- Two general labeled commons are provided for physical property data. 
#include "rxn_rprops.cmn" 
      EQUIVALENCE (TEMP, RPROPS_UTEMP)    !TEMP = Reactor temperature,  
      EQUIVALENCE (PRES, RPROPS_UPRES)    !PRES = Reactor Pressure 
      EQUIVALENCE (VFRAC, RPROPS_UVFRAC)  !VFRAC = Reactor Molar vapor fraction 
      EQUIVALENCE (BETA, RPROPS_UBETA)    !BETA = Reactor total liquid molar ratio 
      EQUIVALENCE (VVAP, RPROPS_UVVAP)    !VVAP = Reactor vapor phase volume(m3) 
      EQUIVALENCE (VLIQ, RPROPS_UVLIQ)    !VLIQ =Reactor liquid phase volume(m3) 
      EQUIVALENCE (VLIQS, RPROPS_UVLIQS)  !VLIQS = volume occupied by the liquid 
and solid phases in the reactor(m3) 
      EQUIVALENCE (VOLRB, RBATR_VOLRB)    !VOLRB=Reactor liquid phase volume(m3) 
#include "pputl_ppglob.cmn" 
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!------------------------------------------------------------------------ 
!- A general user common is provided for all user-specified routines. 
! RMISS = Real missing value, IMISS = integer missing value 
#include "ppexec_user.cmn" 
      EQUIVALENCE (RMISS, USER_RUMISS) 
      EQUIVALENCE (IMISS, USER_IUMISS) 
!------------------------------------------------------------------------ 
!- Commons and Declarations for the Aspen Plus Error Reporting Facility. 
#include "dms_plex.cmn" 
      REAL*8 B(1) 
      EQUIVALENCE (B,IB) 
#include "dms_errout.cmn" 
      EQUIVALENCE (IERROUT, ERROUT_IEROUT) 
 
!     DECLARE ARGUMENTS 
      INTEGER IDXSUB(NSUBS),ITYPE(NSUBS), INT(NINT), 
     +        IDS(2),NBOPST(6,NPO),IWORK(NIWORK), 
     +        IDX(NCOMP),   INTR(NINTR),  IWR(NIWR), 
     +        NREAL, KCALL, KFAIL, KFLASH, I, LMW, 
     +        IBIO, IS, IBA, IBU, IA, IAA, IETOH, IH2O, IPBIO  
      INTEGER IPS, IPBA, IPB, IPA, IPAA, IPETOH, IPH2O, KV, KDIAG, 
     +        KER, IPYM, IPCO2, IPH2, IYM, ICO2, IH2, IN2,IPN2 
      REAL*8 SOUT(1),      WORK(NWORK), 
     +       STOIC(NC,NSUBS,NR),  RATES(NC), 
     +       FLUXM(1),     FLUXS(1),     RATCAT(NTCAT), 
     +       RATSSA(NTSSAT),      Y(NCOMP), 
     +       X(NCOMP),     X1(NCOMP),    X2(NCOMP) 
      REAL*8 RATALL(NRALL),USERV(NUSERV), 
     +       REALR(NREALR),WR(NWR), XCURR, TEMP, AMWL, AMW, 
     +       PRES,  VMXL,  DVMX,  TK , CQ (NCOMP),  MWAL 
 
!     DECLARE LOCAL VARIABLES 
      INTEGER IPROG(2),IMISS, DMS_KFORMC,DMS_IRRCHK, DMS_IFCMNC 
      REAL*8 REAL(NREAL),   VFRAC, BETA, VOLRB, 
     + VVAP,  VLIQ,  VLIQS, RMISS, CBIO, CS, CBA, CB, CX, A, 
     +    CA, CAA, CETOH, CH2O,  RRATE1, RRATE2, RRATE3, RRATE4,RRATE5, 
     +    RRATE6, RRATE7, RRATE8, RRATE9, RRATE10, CYM, CCO2, CH2,CN2, 
     +    CXO,YM,DY, CCYM,CCH2,CCCO2, CCS,CCB, CCBA, CCA, CCAA,CCETOH, 
     +    CSMW, CBAMW, CBMW,CAMW,CAAMW,CETOHMW, XTIME,CBIOMW,CH2OMW, 
     +    CCH2O, CCBIO, CYMMW, CH2MW,CCO2MW,U, LIQDEN, SUM,CN2MW, CCN2 
    
      CHARACTER*80 IERROUT(10), IERW1(10), IERW2(9), IERW3(8) 
     +             , IERW4(7), IERW5(6), IERW6(5), IERW7(4), IERW8(3) 
     +             , IERW9(2), IERW10 
 
      EQUIVALENCE (IERROUT(1), IERW1), (IERROUT(2), IERW2), 
     +            (IERROUT(3), IERW3), (IERROUT(4), IERW4), 
     +            (IERROUT(5), IERW5), (IERROUT(6), IERW6), 
     +            (IERROUT(7), IERW7), (IERROUT(8), IERW8), 
     +            (IERROUT(9), IERW9), (IERROUT(10), IERW10) 
 
 
!- Declaration for Aspen Plus diagnositic reporting routine. 
!     DATA STATEMENTS 
      INTEGER MODELS(5) 
      DATA MODELS /4HRBAT,4HRCST,4HRPLU,4HPRES,4HRADF/ 
      DATA IPROG /4HUSRK, 4HIN  / 
!=============================================================================== 
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!- Initialize rates vector. 
      DO I = 1, 2*NC 
        RATES(I) = 0. 
      END DO       
!=============================================================================== 
! Locate component indices used in this routine based on formula name. 
!    It enables the user routine to automatically use the correct indices 
!    if the component order is changed, or if components are inserted or 
!    deleted from the components paragraph. 
!=============================================================================== 
      IBIO =DMS_KFORMC ('CHX') 
      IS =DMS_KFORMC ('C6H12O6') 
      IBA  =DMS_KFORMC ('C4H8O2-1') 
      IBU   =DMS_KFORMC ('C4H10O-1') 
      IA =DMS_KFORMC ('C3H6O-1') 
      IAA =DMS_KFORMC ('C2H4O2-1') 
      IETOH  =DMS_KFORMC ('C2H6O-2') 
      IH2O   =DMS_KFORMC ('H2O') 
      IYM   =DMS_KFORMC ('MAKER') 
      IH2   =DMS_KFORMC ('H2') 
      ICO2   =DMS_KFORMC ('CO2') 
      IN2 = DMS_KFORMC ('N2') 
!=============================================================================== 
! Locate the packed component indices. 
!=============================================================================== 
       DO I=1, NCOMP 
           IF (IDX(I).EQ.IBIO) THEN                
                IPBIO=I 
           ELSE IF (IDX(I).EQ.IS) THEN 
                IPS=I 
           ELSE IF (IDX(I).EQ.IBA) THEN 
                IPBA=I 
           ELSE IF (IDX(I).EQ.IBU) THEN 
                IPB=I 
           ELSE IF (IDX(I).EQ.IA) THEN 
                IPA=I 
           ELSE IF (IDX(I).EQ.IAA) THEN 
                IPAA=I 
           ELSE IF (IDX(I).EQ.IETOH) THEN 
                IPETOH=I 
           ELSE IF (IDX(I).EQ.IH2O) THEN 
                IPH2O=I 
          ELSE IF (IDX(I).EQ.IYM) THEN 
                IPYM=I 
           ELSE IF (IDX(I).EQ.IH2) THEN 
                IPH2=I 
           ELSE IF (IDX(I).EQ.ICO2) THEN 
                IPCO2=I 
           ELSE IF (IDX(I).EQ.IN2) THEN 
                IPN2=I 
           END IF 
       END DO 
!=============================================================================== 
 
! Calculate the concentration of each component. 
!=============================================================================== 
  KV=1 
       !Mixture molar volume (Liquid) 
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       CALL PPMON_VOLL ( TEMP  , PRES , X , NCOMP , IDX, NBOPST, 
     +       KDIAG, KV, VMXL, DVMX, KER ) 
      
      !kgmol /m3.h   
      CCBIO = SOUT(IBIO)/VLIQS! Units of VLIQS= m3 
      CCS = SOUT(IS)/VLIQS 
      CCBA = SOUT(IBA)/VLIQS 
      CCB = SOUT(IBU)/VLIQS 
      CCA = SOUT(IA)/VLIQS 
      CCAA = SOUT(IAA)/VLIQS 
      CCETOH = SOUT(IETOH)/VLIQS 
      CCH2O = SOUT(IH2O)/VLIQS 
      CCYM = SOUT(IYM)/VLIQS 
      CCH2 = SOUT(IH2)/VLIQS 
      CCCO2 = SOUT(ICO2)/VLIQS 
      CCN2 = SOUT(IN2)/VLIQS 
       
      U = SOUT(NCOMP_NCC+8) ! MASS DENSITY OF THE OUTLET STREAM IN KG/M3 
!=============================================================================== 
!     Convert concentration to g/s.L 
!     Get Molecular weights of components 
 LMW = DMS_IFCMNC('MW') 
 CBIOMW  = B(LMW + IBIO); 
 CSMW = B(LMW + IS); 
 CBAMW = B (LMW + IBA); 
 CBMW  = B(LMW + IBU); 
 CAMW  = B(LMW + IA); 
 CAAMW = B(LMW + IAA); 
 CETOHMW = B (LMW + IETOH); 
 CH2OMW  = B(LMW + IH2O); 
 CYMMW = B(LMW + IYM); 
 CH2MW = B (LMW + IH2); 
 CCO2MW  = B(LMW + ICO2); 
      CN2MW = B(LMW + IN2); 
       
      !(CONCENTRATION)*(METER T0 L CONVERSION)* (MW)* (g to kg conversion) 
      ! g/L.h = (kg-mol/h/M3)*(1M3/1000L)*(kg/kg-MOLE)* (1000g/kg) 
      CS = CCS*CSMW  
      CBA = CCBA*CBAMW 
      CA = CCA*CAMW 
      CAA = CCAA*CAAMW 
      CB = CCB*CBMW 
      CETOH = CCETOH*CETOHMW 
      CH2O = CCH2O*CH2OMW 
      CBIO = CCBIO*CBIOMW 
      CYM = CCYM*CYMMW 
      CH2 = CCH2*CH2MW 
      CCO2 = CCCO2*CCO2MW 
      CN2=CCN2*CN2MW 
  
      !Convert time to hours 
      XTIME = XCURR/3600 
       
      ! Model equations from (J. VOTRUBA, B. VOLESKY AND L. YERUSHALMI, 
MATHEMATICAL MODEL  
      !OF A batch acetone-butanol fermentation. Biotechnology AND BIOENGINEERING, 
1986. 23(9): p. 247-255.)        
      ! Calculate Rates in g/L.h 
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      ! Here, REALR(i) present the kinetic parameters in the ODEs, values were 
entered in Aspen Plus and called here. 
      RRATE1 = (REALR(1)*CS*REALR(15)*CYM/(REALR(15)+CB)) 
     +        -(0.56*CYM*(CYM-1))                              ! PHYSIOLOGICAL 
MAKER 
      RRATE2 = (0.56*CBIO*(CYM-1))-(REALR(2)*CB*CBIO)          ! CELL BIOMASS 
      RRATE3 = (-REALR(3)*CS*CBIO)-(REALR(4)*CBIO*CS/ 
     +         ((CS+REALR(16))))                               ! GLUCOSE 
      RRATE4 = (REALR(5)*CS*CBIO*REALR(15)/(REALR(15)+CB))- 
     +         (REALR(6)*CBIO*CBA/((CBA+REALR(17))))           !BUTYRIC ACID 
      RRATE6 = ((REALR(8)*CS*REALR(15)*CBIO)/((CS+REALR(16)) 
     +        *(CB+REALR(15))))-((REALR(9)*CAA*CS*CBIO)/((CAA+REALR(18)) 
     +         *(CS+REALR(16))))                                          !ACETIC 
ACID 
       
      RRATE5 = (REALR(7)*CS*CBIO)-(0.841*RRATE4)                          !BUTANOL 
      RRATE7 = (REALR(10)*CS*CBIO/(REALR(16)+CS))-(0.484*RRATE6)          !ACETONE 
      RRATE8 = (REALR(11)*CS*CBIO/(REALR(16)+CS)) 
      RRATE9 = (REALR(12)*CS*CBIO/(REALR(16)+CS))                         !CARBON 
DIOXIDE 
      RRATE10 = (REALR(13)*CS*CBIO/(REALR(16)+CS))+(REALR(14)*CS*CBIO)    
!HYDROGEN 
      
!=============================================================================== 
 ! Recovert rates from g/(L.h) to kmol/s : (g/L/h)*/(kg/kmol)*(1kg/1000g)*(1000 
L/m3)*(1h/3600sec) 
      RATES(IYM) = RRATE1*VLIQS/(CYMMW*3600) 
      RATES(IBIO) = RRATE2*VLIQS/(CBIOMW*3600) 
      RATES(IS) = RRATE3*VLIQS/(CSMW*3600) 
      RATES(IBA) = RRATE4*VLIQS/(CBAMW*3600) 
      RATES(IBU) = RRATE5*VLIQS/(CBMW*3600) 
      RATES(IAA) = RRATE6*VLIQS/(CAAMW*3600) 
      RATES(IETOH) = RRATE8*VLIQS/(CETOHMW*3600) 
      RATES(IA) = RRATE7*VLIQS/(CAMW*3600) 
      RATES(ICO2) = RRATE9*VLIQS/(CCO2MW*3600) 
      RATES(IH2) = RRATE10*VLIQS/(CH2MW*3600) 
!============================================================================== 
    ! Printing to the user variables table 
      USERV(1) = U   ! MIXTURE DENSITY, KG/M3 
      USERV(2) = VOLRB*1000 !TOTAL REACTOR VOLUME, LITERS 
      USERV(3) =VLIQ*1000  !LIQUID PHASE VOLUME, LITERS 
      USERV(4) = VLIQS*1000 !LIQUID AND SOLID PHASE, LITERS 
      USERV(5) = VVAP*1000 !VAPOR PHASE VOLUME, LITERS 
      USERV(6) = LIQDEN  !DENSITY OF THE LIQUID, g/L or kg/m3 
      USERV(7) = PRES/101325 !PRESSURE IN atm 
      USERV(8) =X(IPBIO)  !LIQUID MOLE FRACTION OF CELL BIOMASS 
      RETURN 
      END 
!=============================================================================== 
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Appendix D: Procedure for the compilation of the Fortran user kinetic subroutine 

code to a readable Aspen Plus format 

Aspen Plus cannot read raw Fortran codes; the code must be transformed to a 

format (.object file) that Aspen Plus can relate and run. Aspen Plus ‘Customize Aspen Plus 

V8.8’ as module in the Aspen package was used to compile the Fortan code into an object 

file that Aspen plus can read. The Fortran code and aspen (.apw or .bkp) file must be located 

in the same folder. For example, the commands to compile the Fortran subroutine for a 

folder located on a desktop using ‘Customize Aspen Plus V8.8’ window is: 

cd c://users/username/desktop/ Folder name (hit enter) 

If the folder location appears in the next line, Aspen Plus was able to locate the folder with 

the next line as: c://users/username/desktop/Folder name 

The command ‘aspcomp Filename’ was typed as: c://users/username/desktop/Folder name/ 

aspcomp FORTRAN FILE NAME (hit enter). 

If there is no error in the file, the file will be compiled and .object file will appear in the 

same folder. 
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Appendix E: Stoichiometric equations and coefficients used in simulating a steady 

state batch fermentation in Aspen Plus, using a stoichiometric reactor 

Stoichiometric equations (equations E.1 – E.5) used together with stoichiometric 

coefficients relative to glucose.5, 87, 118-119 The stoichiometric coefficients used in the 

stoichiometric reactor were 0.319, 0.495, 0.080, 0.120, 0 (mole of product/mole of glucose 

fed) for acetone, butanol, ethanol, acetic and butyric acids, respectively, calculated from 

the model  of  Votruba et al.120 

C6H12O6 → C4H10O (butanol) + 2CO2 + H2O                                                               (E.1) 

C6H12O6 + H2O → C3H6O (acetone) + 3CO2 + 4H2                                                      (E.2) 

C6H12O6 → 2C2H5O (ethanol) + 2CO2 + H2                                                                  (E.3) 

C6H12O6 → C4H8O2 (butyric acid) + 2CO2 + 2H2                                                         (E.4) 

C6H12O6 → 3C2H4O2 (acetic acid)                                                                                 (E.5) 
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Appendix F: Graphs comparing simulation trends in Aspen Plus RBatch with the 

integration of ODEs describing the batch fermentation process in MATLAB. 
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Figure F.1 Comparison of the simulation results of the RBatch block in Aspen Plus with 
the integration of ODEs describing the batch fermentation process in MATLAB 
Cells (A), Glucose (B), Acetone(C), Butanol (D), Ethanol (E), Acetic Acid (F), Butyric 
Acid (G), Carbon Dioxide (H) and Hydrogen (I) 
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Appendix G: Comparison of simulation trends using the traditional Aspen Plus steady state approach that simulate the 

fermentation process entirely separate from the gas stripping process with the integrated batch ABE and in situ gas stripping 

simulated with the RBatch block linked to the Fortran user kinetic subroutine. 

The batch fermentation was simulated with a stoichiometric reactor, RStoic, using product yields (mole of product/mole of glucose 

fed) of 0.319, 0.495, 0.080, 0.120, 0 for acetone, butanol, ethanol, acetic and butyric acids, respectively. The final composition from 

the RStoic model was fed to a flash unit using different gas flow rates (0.8, 1.6, 3, 5, 6.4 L/min per L of broth). 

Table G.1 Selectivity, percent recovery and condensate concentration of the separate steady state fermentation and gas stripping. 
Gas flow ate Selectivity Recovery,% Condensate concentration, g/L 

L/min per L broth Acetone Butanol Ethanol ABE Acetone Butanol Ethanol ABE Acetone Butanol Ethanol ABE 
0.8 44.4 4.4 10.0 19.1 6.2 0.7 1.5 2.6 193.8 41.3 18.6 253.7 
1.6 44.3 4.4 10.0 19.1 6.4 0.7 1.6 2.7 193.5 41.4 18.6 253.4 
3.0 44.1 4.5 9.9 19.0 6.8 0.7 1.6 2.9 193.0 41.4 18.6 253.0 

5.0 43.9 4.5 9.9 19.0 7.3 0.8 1.8 3.1 192.3 41.4 18.6 252.3 
6.4 43.8 4.6 9.9 18.9 7.6 0.8 1.9 3.2 191.8 41.5 18.6 251.9 

Table G.2 Selectivity, percent recovery and condensate concentration of the integrated batch ABE and in situ gas stripping simulated 
with the RBatch block linked to the Fortran user kinetic subroutine (one RBatch block for 32 h fermentation time) using different 
gas flow rates (0.8, 1.6, 3, 5, 6.4 L/min per L of broth). Initial reactor conditions: 50 g/L glucose and 0.03 g/L cell biomass. 

Gas flow rate Selectivity Recovery, % Condensate concentration, g/L 
L/min per L broth Acetone Butanol Ethanol ABE Acetone Butanol Ethanol ABE Acetone Butanol Ethanol ABE 

0.8 77.4 8.1 9.8 18.0 79.9 30.1 35.4 46.4 79.1 57.2 6.8 143.0 
1.6 218.9 10.1 13.0 19.7 96.1 53.0 60.1 67.3 50.2 52.8 6.0 109.1 
3 1855.1 14.8 20.9 25.2 99.8 78.1 83.9 85.4 28.9 44.0 4.8 77.6 
5 76570.4 28.3 48.2 44.5 100.0 93.6 96.3 95.7 17.5 33.4 3.5 54.4 

6.4 1783313.0 49.4 99.2 76.0 100.0 94.2 97.0 96.1 13.6 27.9 2.8 44.3 
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Appendix H: Comparison of the selectivity and percent recovery of acetone, butanol, ethanol, acetic acid, butyric acid and 

water at different gas flow rates per L of the fermentation broth for a batch fermentation and in situ gas stripping process. 

Table H.1 Selectivity and percent recovery of the Aspen Plus RBatch ABE fermentation and in situ gas stripping simulation with 4 
RBatch blocks connected in series. Gas flow rates used: 1, 3, 5 L/min per L of fermentation broth and gas was fed at 15, 20, 25 h. 

Selectivity  Percent Recovery 
 Time, h Acetone Butanol Ethanol Acetate Butyrate Water   Time, h Acetone Butanol Ethanol Acetate Butyrate Water 

1L/min N2 per L of broth  1L/min N2 per L of broth 
10 0.0 3.6 6.7 0.3 0.4 18.3  10 0.0 0.0 0.1 0.0 0.0 0.0 
15 16.4 4.6 6.9 0.4 0.6 0.9  15 0.6 0.2 0.3 0.0 0.0 0.0 
20 32.6 6.5 7.7 0.4 0.9 0.1  20 35.9 10.4 12.4 0.7 1.6 1.6 
25 50.7 7.8 9.4 0.3 3.0 0.1  25 47.2 12.7 15.5 0.7 5.5 1.6 
32 76.9 9.1 11.4 0.3 76.8 0.1  32 65.5 18.5 22.9 0.9 66.9 2.3 

3 L/min N2 per L of broth  3 L/min N2 per L of broth 
10 0.0 3.6 6.7 0.3 0.4 18.3  10 0.0 0.0 0.1 0.0 0.0 0.0 
15 16.4 4.6 6.9 0.4 0.6 0.9  15 0.6 0.2 0.3 0.0 0.0 0.0 
20 41.3 7.3 8.7 0.4 0.9 0.2  20 69.1 28.5 33.0 2.2 5.0 4.9 
25 90.3 9.6 11.9 0.4 4.5 0.1  25 84.7 36.9 43.0 2.3 22.3 5.5 
32 407.4a 12.4 16.9 0.4 370.3a 0.1  32 97.5 54.1 62.3 3.5 97.3 8.6 

5L/min N2 per L of broth  5 L/min N2 per L of broth 
10 0.0 3.6 6.7 0.3 0.4 18.3  10 0.0 0.0 0.1 0.0 0.0 0.0 
15 16.4 4.6 6.9 0.4 0.6 0.9  15 0.6 0.2 0.3 0.0 0.0 0.0 
20 47.6 8.0 9.6 0.4 0.9 0.2  20 80.8 41.3 46.6 3.4 7.9 7.8 
25 175.3 11.4 14.7 0.4 6.9 0.1  25 94.4 52.1 59.3 3.5 40.6 8.5 
32 4505.0a 17.2 26.3 0.4 2586.7a 0.2  32 99.9 71.9 79.9 5.4 99.7 12.9 

a Component almost exhausted in the fermenter. 
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Appendix I: Concentration of ABE, acetic and butyric acids in the condensate (stripped stream) and reactor using different 

gas flow rates per L of the fermentation broth for a batch fermentation and in situ gas stripping process. 

Similar to batch fermentation and in situ gas stripping experiments42, 4 RBatch blocks were connected in series in order to collect 
the stripped stream in 4 different sets. Gas flow rates used: 1, 3, 5 L/min per L of fermentation broth and gas was fed after 15 h. 

Table I.1 Comparison of the condensate and reactor concentrations ABE fermentation and in situ gas stripping simulation.  
Concentration, g/L 

 Time, h Acetone  Butanol  Ethanol   Acetic acid  Butyric acid 
  Reactor Stripped Reactor Stripped Reactor Stripped Reactor Stripped Reactor Stripped 

1L/min N2 per L of broth 
10 0.0 0.0 0.3 1.2 0.1 0.5 1.7 0.4 1.6 0.6 
15 1.1 17.2 4.3 19.1 0.4 2.5 3.0 1.0 2.4 1.4 
20 2.5 74.2 7.8 48.1 0.7 5.2 2.5 1.0 1.2 1.0 
25 2.2 98.7 8.1 60.0 0.8 7.3 2.1 0.7 0.1 0.3 
32 0.8 56.8 6.6 59.8 0.6 7.1 2.1 0.7 0.0 0.0 

3 L/min N2 per L of broth 
10 0.0 0.0 0.3 1.2 0.1 0.5 1.7 0.4 1.6 0.6 
15 1.1 17.2 4.3 19.1 0.4 2.5 3.0 1.0 2.4 1.4 
20 1.2 49.9 6.3 45.6 0.5 4.8 2.6 1.0 1.1 1.1 
25 0.5 43.5 5.1 51.2 0.5 5.9 2.2 0.9 0.1 0.3 
32 0.0 6.7 2.6 37.6 0.2 3.9 2.2 1.0 0.0 0.0 

5 L/min N2 per L of broth 
10 0.0 0.0 0.3 1.2 0.1 0.5 1.7 0.4 1.6 0.6 
15 1.1 17.2 4.3 19.1 0.4 2.5 3.0 1.0 2.4 1.4 
20 0.7 36.4 5.1 42.5 0.4 4.4 2.6 1.1 1.1 1.1 
25 0.1 24.1 3.1 41.1 0.3 4.6 2.4 1.1 0.0 0.3 
32 0.0 0.9 0.9 21.0 0.1 1.9 2.3 1.2 0.0 0.0 
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Appendix J: Formulation of the MOO and SOO problems used in case study in 

Chapter 5. 

𝑁𝑁𝑂𝑂𝑂𝑂:𝑁𝑁𝐶𝐶𝑒𝑒𝑂𝑂𝑇𝑇𝑂𝑂𝑀𝑀𝑒𝑒 

𝑇𝑇𝐶𝐶𝑑𝑑𝐶𝐶𝑂𝑂 𝑁𝑁𝐴𝐴𝐸𝐸 𝑝𝑝𝑟𝑟𝐶𝐶𝑑𝑑𝑃𝑃𝑂𝑂𝑒𝑒𝑑𝑑,𝑂𝑂/𝐿𝐿 = ∑ ��𝐶𝐶𝑓𝑓,𝑟𝑟𝑟𝑟𝑀𝑀𝑟𝑟𝑟𝑟+𝐶𝐶𝑓𝑓,𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠�
(𝑀𝑀𝑟𝑟𝑟𝑟+𝑀𝑀𝑠𝑠𝑠𝑠) �𝑑𝑑

𝑓𝑓=1   

𝑁𝑁𝐴𝐴𝐸𝐸 𝑂𝑂𝐶𝐶𝐶𝐶𝑂𝑂𝑒𝑒𝐶𝐶𝑑𝑑𝑟𝑟𝐶𝐶𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 𝑂𝑂𝐶𝐶 𝑂𝑂𝐶𝐶𝐶𝐶𝑑𝑑𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑒𝑒,𝑂𝑂/𝐿𝐿 = ∑ 𝐶𝐶𝑓𝑓,𝑎𝑎𝑡𝑡 
𝑑𝑑
𝑓𝑓=1   

𝑁𝑁𝐴𝐴𝐸𝐸 𝑆𝑆𝑒𝑒𝑂𝑂𝑒𝑒𝑂𝑂𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑𝑃𝑃 = 𝑃𝑃(1 − 𝑒𝑒) 𝑒𝑒(1 − 𝑃𝑃)⁄  

 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑃𝑃 = 𝐶𝐶𝑓𝑓,𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠
∑ 𝐶𝐶ℎ,𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠
𝑔𝑔
ℎ=1

 𝐶𝐶𝐶𝐶𝑑𝑑 𝑒𝑒 = 𝐶𝐶𝑓𝑓,𝑟𝑟𝑟𝑟𝑀𝑀𝑟𝑟𝑟𝑟
∑ 𝐶𝐶ℎ,𝑟𝑟𝑟𝑟𝑀𝑀𝑟𝑟𝑟𝑟
𝑔𝑔
ℎ=1

  (J.1) 

𝑆𝑆𝑃𝑃𝑂𝑂𝑂𝑂𝑒𝑒𝑂𝑂𝑑𝑑 𝑑𝑑𝐶𝐶: 

𝐺𝐺𝐶𝐶𝐶𝐶 𝑓𝑓𝑂𝑂𝐶𝐶𝑤𝑤 𝑟𝑟𝐶𝐶𝑑𝑑𝑒𝑒 (𝐹𝐹) 0.1 ≤ 𝐹𝐹 ≤ 5 𝐿𝐿min𝑝𝑝𝑒𝑒𝑟𝑟 𝐿𝐿 𝐶𝐶𝑓𝑓 𝑂𝑂𝑟𝑟𝐶𝐶𝑑𝑑ℎ 

𝐺𝐺𝐶𝐶𝐶𝐶 𝐶𝐶𝑑𝑑𝑟𝑟𝑂𝑂𝑝𝑝𝑝𝑝𝑂𝑂𝐶𝐶𝑂𝑂 𝑂𝑂𝐶𝐶𝑂𝑂𝑑𝑑𝑂𝑂𝐶𝐶𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 𝑑𝑑𝑂𝑂𝑇𝑇𝑒𝑒 (𝐹𝐹𝑇𝑇) 15 ≤ 𝐹𝐹𝑇𝑇 ≤ 25 ℎ 

𝑆𝑆𝑂𝑂𝑂𝑂:𝑁𝑁𝐶𝐶𝑒𝑒𝑂𝑂𝑇𝑇𝑂𝑂𝑀𝑀𝑒𝑒 

∑ 𝑤𝑤𝑖𝑖𝑍𝑍𝑖𝑖
𝑑𝑑
𝑖𝑖=1  (J.2) 

𝑆𝑆𝑃𝑃𝑂𝑂𝑂𝑂𝑒𝑒𝑂𝑂𝑑𝑑 𝑑𝑑𝐶𝐶:                                                                                                       

𝐺𝐺𝐶𝐶𝐶𝐶 𝑓𝑓𝑂𝑂𝐶𝐶𝑤𝑤 𝑟𝑟𝐶𝐶𝑑𝑑𝑒𝑒 (𝐹𝐹) 0.1 ≤ 𝐹𝐹 ≤ 5 𝐿𝐿min𝑝𝑝𝑒𝑒𝑟𝑟 𝐿𝐿 𝐶𝐶𝑓𝑓 𝑂𝑂𝑟𝑟𝐶𝐶𝑑𝑑ℎ 

𝐺𝐺𝐶𝐶𝐶𝐶 𝐶𝐶𝑑𝑑𝑟𝑟𝑂𝑂𝑝𝑝𝑝𝑝𝑂𝑂𝐶𝐶𝑂𝑂 𝑂𝑂𝐶𝐶𝑂𝑂𝑑𝑑𝑂𝑂𝐶𝐶𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 𝑑𝑑𝑂𝑂𝑇𝑇𝑒𝑒 (𝐹𝐹𝑇𝑇) 15 ≤ 𝐹𝐹𝑇𝑇 ≤ 25 ℎ 

where f = Acetone, butanol and ethanol, h = acetone, butanol, ethanol, acetic acid, butyric 

acid and water, l = ABE produced, ABE concentration in condensate and ABE Selectivity, 

re = reactor, st = stripped stream (condensate), g = number of components, w = relative 

weight of each objective function, C = concentration (g/L), V = volume in liters, Z = 

Objective function value. 
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Appendix K: Details of the Net Flow Method (NFM)138 and MATLAB sample code 

for scoring a set of Pareto optimal points using the NFM. 

K.1: Details of the Net Flow Method (NFM).138 

A Pareto domain is a set of alternative solutions obtained in the simultaneous 

optimization of multiple objectives. Multi-objective optimization (MOO) can optimize 

multiple and competing objectives, generates solutions that span the entire decision 

(search) space, find multiple global or local optima (global solution) and does not require 

functional derivatives. After generating a large number of non-dominated solutions in 

MOO process, the solutions in the Pareto domain are scored and ranked using preferences 

and relative weights based on the expertise of the decision-maker. For example, a genetic 

algorithm can be used to generate a large number of non-dominated solutions. The Net 

Flow Method (NFM) and Rough Set Method (RSM) are two examples used to rank and 

score the solutions in the Pareto domain.  

NFM uses the expertise of the decision maker to score and tank the solutions in the 

Pareto domain that are equally optimal.  NFM uses three thresholds and a set of relative 

weights for each objective function to score and rank the solutions in the Pareto domain. 

The indifference threshold represents a value below which if the difference between two 

objective function values falls, the two objective function values cannot be distinguished. 

This means, one objective function value cannot be chosen over another if the difference 

of the objective function values is below the indifference threshold. If the difference 

between a pair of objective function values is greater than the preference threshold, the 

better solution is chosen. For example, for a maximization problem, the preferred value 

will be the objective function with the larger value and vice versa. When the difference 

between two objective function values is greater than the veto threshold, one solution is 

banned against the other solution. The indifference, preference and veto thresholds are 

established such that 0 ≤ indifference threshold ≤ preference threshold ≤ veto threshold. 

NFM algorithm. 

1. Relative difference, [ ],k i j∆ . The relative difference between the values Fk of each 

objective function k is calculated when solution i is compared with solution j (within 

the same objective function): 
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where M is the solution in the Pareto domain. For maximization, [ ],k i j−∆ are used in 

the subsequent equations whereas [ ],k i j∆  is used for minimization. When the objective 

is to meet a target value, Fk(i) and Fk(j) correspond to the absolute difference between 

solution k and the corresponding target values, in which case [ ],k i j∆  is used.  

2. Individual concordance index, [ ],kc i j . The individual concordance indices are 

determined for all n objectives and for each pair of solution using the relative difference 

( [ ],k i j∆ ), the indifference (Qk) and preference thresholds (Pk): 
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The relationship between the individual concordance index ( [ ],kc i j ), the calculated 

relative differences ( [ ],k i j∆ ), the indifference (Qk) and preference (Pk) thresholds is 

illustrated in Figure K.A 

 

 

 

 

                      (A )                                                                             (B) 

Figure K.1 Illustration of the (A) concordance index, and (B) discordance index 
calculations used in the NFM algorithm to score and rank the solutions in the Pareto 
domain. 
3. Global concordance index, [ ],kC i j . The global concordance indices are calculated as 

the weighted sum of the individual concordance indices as follows, using the relative 

weights (Wk) of the objective function values: 
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4. Discordance index, [ ],kD i j . The discordance index is calculated for each objective 

function, k, using the relative difference ( [ ],k i j∆ ), together with the preference (Pk) and 

veto (Vk) thresholds: 
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k k
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k k
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The relationship between the individual discordance index ( [ ],kD i j ), the calculated 

relative differences ( [ ],k i j∆ ), the preference (Qk) and veto (Vk) thresholds is illustrated 

in Figure K.B. 

5. Outranking matrix, [ ],i jσ . The outranking matrix is calculated for each pair of 

solution to determine the relative performance of a pair of solutions in the Pareto 

domain using the global concordance ( [ ],kC i j ) and discordance ( [ ],kD i j ) indices:  

[ ] [ ] [ ]( ) [ ]
[ ]

3

1

1,
, , 1 ,   

1,

n

k k
k

i M
i j C i j D i j

j M
σ

=

∈     = −     ∈    
∏  

The outranking matrix measures the performance of solution i relative to solution j 

(for all n objectives) in the Pareto domain. If [ ],i jσ is close to 0, solution j outranks 

solution i whereas [ ],i jσ close to 1 indicates solution i outranks solution j. 

6. Final score, iσ . A final score for each solution in the Pareto domain is determined by 

the sum of the individual outranking matrix values, (by taking the difference in the sum 

of all the elements in the column by the sum of all elements in the respective rows). 

[ ] [ ]
1 1

, ,
M M

i
j j

i j j iσ σ σ
= =

= −∑ ∑   

The first term determines how solution i performs relative to all other solutions in the 

Pareto domain while the second term determines the performance of all other 

solutions relative to solution i.  
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7. Ranking solutions in the Pareto domain 

The calculated scores are then arranged from the highest to the lowest. The best optimal 

solution is the solution with the highest score based on the ranking criteria set by the 

decision maker (relative weights and preference thresholds). 

K.2: MATLAB sample code for scoring a set of Pareto optimal points using the NFM. 
format short 
  
% Objectives being maximized (insert objectives in this format) 
maxobj = [0.4791    1.1289  71.3975 0.6187  ; 
0.478   2.3795  107.5435    1   ; 
0.478   2.7402  217.931 1   ; 
0.4787  1.1392  74.4217 0.6259  ; 
0.478   2.0354  156.009 1   ; 
 
               ⋮ 
 
0.5227  0.3673  30.7483 0.1003  ; 
0.5264  0.2144  17.8524 0.057   ; 
0.4985  1.5452  63.9676 0.2422  ; 
0.478   2.1948  160.3775    1   ]; 
  
% Relative weights (Wk) for each objective (Relative importance of each 
% objective function or criteria, Sum(Wi) = 1) 
wk = [1/4 1/4 1/4 1/4]; 
  
% Indifference threshold, qk,(The range of variation of each criterion for which 
% it impossible for the decision maker to choose the criterion of one 
% solution over the corresponding criterion of another solution. In other 
% words the range of values over which two objectives function values are 
% indiscernable). Taken as 5% of the range of each objective function values. 
qk =[0.0027 0.1426  11.0676 0.0495]; 
  
% Preference threshold, pk, (Preference is given to the solution with a 
% better criterion if the difference between two values for a given 
% criterion exceeds the preference threshold. For maximization, the better 
% solution is the larger values and vice versa for minimization). 
%Taken as 10% of the range of each objective function values. 
pk = [0.0054    0.2853  22.1351 0.0990]; 
  
% Veto threshold, vk, (This threshold eliminates on solution relative to 
% another if the difference between the values of their respective 
% objective function is too high. The solution is eliminated if at least 
% one of the objective function values voilates the veto threshold even if 
% other objective funciton values are accepted.  
%Taken as 30% of the range of each objective function values. 
 
vk = [0.0162    0.8558  66.4054 0.2969]; 
  
% 0<= qk<=pk<=vk 
  
m = size(maxobj,1); % Number of rows 
n = length(maxobj); % Number of columns 
y = length(wk); 
% Preallocate for speed. 
deltak1=zeros(n,n); 
deltak2=zeros(n,n); 
 deltak3=zeros(n,n); 
 deltak4=zeros(n,n); 
for i = 1:n 
    for j = 1:n 
        deltak1(i,j) =  bsxfun(@minus,maxobj(j,1),maxobj(i,1)); 
        deltak2(i,j) = bsxfun(@minus,maxobj(j,2),maxobj(i,2)); 
         deltak3(i,j) =  bsxfun(@minus,maxobj(j,3),maxobj(i,3)); 
         deltak4(i,j) = bsxfun(@minus,maxobj(j,4),maxobj(i,4)); 
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    end 
    
end 
  
% For each objective function, solution i is compared to solution j and the 
% difference calculated. 
deltakij1= deltak1; 
deltakij2= deltak2; 
 deltakij3= deltak3; 
 deltakij4= deltak4; 
  
% For each objective function, the individual concordance index ck[i,j] for 
% each criterion is determined for all n objective criteria and for each 
% pair of solutions 
ck1=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij1(i,j)<= qk(1,1) 
    ck1(j,i) = 1; 
elseif deltakij1(i,j) > pk(1,1) 
    ck1(j,i) = 0; 
 else   
    ck1(j,i) = (pk(1,1)-deltakij1(i,j))./( pk(1,1)-qk(1,1)); 
end 
    end 
end 
  
ck2=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij2(i,j)<= qk(1,2) 
    ck2(j,i) = 1; 
elseif deltakij2(i,j) > pk(1,2) 
    ck2(j,i) = 0; 
 else  
    ck2(j,i) = (pk(1,2)-deltakij2(i,j))./( pk(1,2)-qk(1,2)); 
end 
    end 
end 
  
ck3=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij3(i,j)<= qk(1,3) 
    ck3(j,i) = 1; 
elseif deltakij3(i,j) > pk(1,3) 
    ck3(j,i) = 0; 
 else   
    ck3(j,i) = (pk(1,3)-deltakij3(i,j))./( pk(1,3)-qk(1,3)); 
end 
    end 
end 
  
ck4=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij4(i,j)<= qk(1,4) 
    ck4(j,i) = 1; 
elseif deltakij4(i,j) > pk(1,4) 
    ck4(j,i) = 0; 
 else  %qk(1,1) < deltakij1 <= pk(1,1) 
    ck4(j,i) = (pk(1,4)-deltakij4(i,j))./( pk(1,4)-qk(1,4)); 
end 
    end 
end 
  
% Individual concordance index 
ckij1 = ck1; 
ckij2 = ck2; 
 ckij3 = ck3; 
 ckij4 = ck4; 
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%Global concordance index (C(i,j)) calculated when comparing solution i and 
%j where the weighted sum of the inidividual concordance indices is calculated. 
C =zeros(n,n); 
for i = 1:m 
    for j = 1:m 
        C(i,j) = 
ckij1(i,j)*wk(1,1)+ckij2(i,j)*wk(1,2)+ckij3(i,j)*wk(1,3)+ckij4(i,j)*wk(1,4); 
%         
    end 
end 
cij = C; 
  
dk1=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij1(i,j)<= pk(1,1) 
    dk1(j,i) = 0; 
elseif deltakij1(i,j) > vk(1,1) 
    dk1(j,i) = 1; 
 else   
    dk1(j,i) = (deltakij1(i,j)-pk(1,1))./( vk(1,1)-pk(1,1)); 
end 
    end 
end 
  
dk2=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij2(i,j)<= pk(1,2) 
    dk2(j,i) = 0; 
elseif deltakij2(i,j) > vk(1,2) 
    dk2(j,i) = 1; 
 else   
    dk2(j,i) = (deltakij2(i,j)-pk(1,2))./( vk(1,2)-pk(1,2)); 
end 
    end 
end 
  
dk3=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij3(i,j)<= pk(1,3) 
    dk3(j,i) = 0; 
elseif deltakij3(i,j) > vk(1,3) 
    dk3(j,i) = 1; 
 else   
    dk3(j,i) = (deltakij3(i,j)-pk(1,3))./( vk(1,3)-pk(1,3)); 
end 
    end 
end 
%  
dk4=zeros(n,n); 
for i = 1:m 
    for j = 1:m 
if deltakij4(i,j)<= pk(1,4) 
    dk4(j,i) = 0; 
elseif deltakij4(i,j) > vk(1,4) 
    dk4(j,i) = 1; 
 else   
    dk4(j,i) = (deltakij4(i,j)-pk(1,4))./( vk(1,4)-pk(1,4)); 
end 
    end 
end 
  
% Individual disconcordance index, Dik 
dkij1 = dk1; 
dkij2 = dk2; 
dkij3 = dk3; 
 dkij4 = dk4; 
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% Outranking matrix S, Sigma(i, j), measures the quality of solution i 
% relative to solution j in terms of n objective functions. An element of 
% Sigma(i,j) close to ) means solution j outranks solution i. However, if 
% the value of the outranking matrix is close to 1, solution i may outrank 
% solution j or may be located in the neighborhood of solution j. 
  
% Preallocate for speed 
S =zeros(n,n); 
for i = 1:m 
    for j = 1:m 
       S(i,j) = cij(i,j).*((1-((dkij1(i,j)^3)))*(1-((dkij2(i,j)^3)))*((1-
((dkij3(i,j)^3))))*(1-((dkij4(i,j)^3)))); 
    end 
end 
sij = S; 
  
% The final ranking score (Si) for each solution in the Pareto domain, Sigma i, 
% is obtained by summing the individual outranking elements associated with 
% each domain solution. 
  
Si=zeros(length(S),1); 
z = 1:m; 
for i = 1:m 
      Si(i) = sum(sij(z,i))-sum(sij(i,z)); 
end 
 Rank = Si 
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Appendix L: ODEs representation of the batch ethanolic fermentation kinetics of a 

batch culture of Z. mobilis and parameter definition for the kinetic model and their 

respective values.137 
𝑑𝑑𝑚𝑚𝑄𝑄,𝐺𝐺

𝑑𝑑𝑡𝑡
= 𝜇𝜇𝑚𝑚𝑓𝑓𝑒𝑒,𝐺𝐺 �

𝑚𝑚𝐺𝐺
𝐾𝐾𝑆𝑆𝑄𝑄,𝐺𝐺+𝑚𝑚𝐺𝐺

� �1 − 𝑚𝑚𝐸𝐸𝐸𝐸−𝑚𝑚𝐸𝐸𝐼𝐼𝑄𝑄,𝐺𝐺

𝑚𝑚𝑀𝑀𝑄𝑄,𝐺𝐺−𝑚𝑚𝐸𝐸𝐼𝐼𝑄𝑄,𝐺𝐺
� � 𝐾𝐾𝐼𝐼𝑄𝑄,𝐺𝐺

𝐾𝐾𝐼𝐼𝑄𝑄,𝐺𝐺+𝑚𝑚𝐺𝐺
�                                         (L.1) 

𝑑𝑑𝑚𝑚𝑄𝑄,𝐻𝐻

𝑑𝑑𝑡𝑡
= 𝜇𝜇𝑚𝑚𝑓𝑓𝑒𝑒,𝐻𝐻 �

𝑚𝑚𝐻𝐻
𝐾𝐾𝑆𝑆𝑄𝑄,𝐻𝐻+𝑚𝑚𝐻𝐻

� �1 − 𝑚𝑚𝐸𝐸𝐸𝐸−𝑚𝑚𝐸𝐸𝐼𝐼𝑄𝑄,𝐻𝐻

𝑚𝑚𝑀𝑀𝑄𝑄,𝐻𝐻−𝑚𝑚𝐸𝐸𝐼𝐼𝑄𝑄,𝐻𝐻
� � 𝐾𝐾𝐼𝐼𝑄𝑄,𝐻𝐻

𝐾𝐾𝐼𝐼𝑄𝑄,𝐻𝐻+𝑚𝑚𝐻𝐻
�                                       (L.2) 

𝑑𝑑𝑚𝑚𝑄𝑄

𝑑𝑑𝑡𝑡
= �𝜂𝜂 𝑑𝑑𝑚𝑚𝑄𝑄,𝐺𝐺

𝑑𝑑𝑡𝑡
+ (1 − 𝜂𝜂) 𝑑𝑑𝑚𝑚𝑄𝑄,𝐻𝐻

𝑑𝑑𝑡𝑡
� .𝑇𝑇𝑉𝑉                                                                           (L.3) 

 
𝑑𝑑𝑚𝑚𝐺𝐺
𝑑𝑑𝑡𝑡

= −𝜂𝜂𝜑𝜑𝑆𝑆𝑚𝑚𝑓𝑓𝑒𝑒,𝐺𝐺 �
𝑚𝑚𝐺𝐺

𝐾𝐾𝑆𝑆𝑆𝑆,𝐺𝐺+𝑚𝑚𝐺𝐺
� �1 − 𝑚𝑚𝐸𝐸𝐸𝐸−𝑚𝑚𝐸𝐸𝐼𝐼𝑆𝑆,𝐺𝐺

𝑚𝑚𝑀𝑀𝑆𝑆,𝐺𝐺−𝑚𝑚𝐸𝐸𝐼𝐼𝑆𝑆,𝐺𝐺
� � 𝐾𝐾𝐼𝐼𝑆𝑆,𝐺𝐺

𝐾𝐾𝐼𝐼𝑆𝑆,𝐺𝐺+𝑚𝑚𝐺𝐺
�                                      (L.4) 

𝑑𝑑𝑚𝑚𝐻𝐻
𝑑𝑑𝑡𝑡

= −(1− 𝜂𝜂)𝜑𝜑𝑆𝑆𝑚𝑚𝑓𝑓𝑒𝑒,𝐻𝐻 �
𝑚𝑚𝐻𝐻

𝐾𝐾𝑆𝑆𝑆𝑆,𝐻𝐻+𝑚𝑚𝐻𝐻
� �1 − 𝑚𝑚𝐸𝐸𝐸𝐸−𝑚𝑚𝐸𝐸𝐼𝐼𝑆𝑆,𝐻𝐻

𝑚𝑚𝑀𝑀𝑆𝑆,𝐻𝐻−𝑚𝑚𝐸𝐸𝐼𝐼𝑆𝑆,𝐻𝐻
� � 𝐾𝐾𝐼𝐼𝑆𝑆,𝐻𝐻

𝐾𝐾𝐼𝐼𝑆𝑆,𝐻𝐻+𝑚𝑚𝐻𝐻
�                          (L.5) 

𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸,𝐺𝐺
𝑑𝑑𝑡𝑡

= 𝜑𝜑𝐸𝐸𝑇𝑇𝑚𝑚𝑓𝑓𝑒𝑒,𝐺𝐺 �
𝑚𝑚𝐺𝐺

𝐾𝐾𝑆𝑆𝐸𝐸𝐸𝐸,𝐺𝐺+𝑚𝑚𝐺𝐺
� �1 − 𝑚𝑚𝐸𝐸𝐸𝐸−𝑚𝑚𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸,𝐺𝐺

𝑚𝑚𝑀𝑀𝐸𝐸𝐸𝐸,𝐺𝐺−𝑚𝑚𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸,𝐺𝐺
� � 𝐾𝐾𝐼𝐼𝐸𝐸𝐸𝐸,𝐺𝐺

𝐾𝐾𝐼𝐼𝐸𝐸𝐸𝐸,𝐺𝐺+𝑚𝑚𝐺𝐺
�                              (L.6) 

𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸,𝐻𝐻
𝑑𝑑𝑡𝑡

= 𝜑𝜑𝐸𝐸𝑇𝑇𝑚𝑚𝑓𝑓𝑒𝑒,𝐻𝐻 �
𝑚𝑚𝐻𝐻

𝐾𝐾𝑆𝑆𝐸𝐸𝐸𝐸,𝐻𝐻+𝑚𝑚𝐻𝐻
� �1 − 𝑚𝑚𝐸𝐸𝐸𝐸−𝑚𝑚𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸,𝐻𝐻

𝑚𝑚𝑀𝑀𝐸𝐸𝐸𝐸,𝐻𝐻−𝑚𝑚𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸,𝐻𝐻
� � 𝐾𝐾𝐼𝐼𝐸𝐸𝐸𝐸,𝐻𝐻

𝐾𝐾𝐼𝐼𝐸𝐸𝐸𝐸,𝐻𝐻+𝑚𝑚𝐻𝐻
�                            (L.7) 

𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸
𝑑𝑑𝑡𝑡

= �𝜂𝜂 𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸,𝐺𝐺
𝑑𝑑𝑡𝑡

+ (1 − 𝜂𝜂) 𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸,𝐻𝐻
𝑑𝑑𝑡𝑡

� .𝑇𝑇𝑉𝑉                                                                      (L.8) 
Where: 
𝑑𝑑𝑚𝑚𝑄𝑄,𝐺𝐺

𝑑𝑑𝑡𝑡  = Cell biomass growth rate based on glucose, g/(L.h) 

𝑑𝑑𝑚𝑚𝑄𝑄,𝐻𝐻

𝑑𝑑𝑡𝑡  = Cell biomass growth rate based on xylose, g/(L.h) 

𝑑𝑑𝑚𝑚𝑄𝑄

𝑑𝑑𝑡𝑡
 = Total cell growth rate based on both glucose and xylose, g/(L.h) 

𝑑𝑑𝑚𝑚𝐺𝐺
𝑑𝑑𝑡𝑡

 = Glucose consumption rate, g/(L.h) 

𝑑𝑑𝑚𝑚𝐻𝐻
𝑑𝑑𝑡𝑡

 = Xylose consumption rare, g/(L.h) 

𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸,𝐺𝐺
𝑑𝑑𝑡𝑡

 = Ethanol production based on glucose, g/(L.h) 

𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸,𝐻𝐻
𝑑𝑑𝑡𝑡

 = Ethanol production based on xylose, g/(L.h) 

𝑑𝑑𝑚𝑚𝐸𝐸𝐸𝐸
𝑑𝑑𝑡𝑡

 = Total ethanol production rate based on both glucose and xylose, g/(L.h) 

mQ = Cell biomass concentration, g/L 

mG = Glucose concentration, g/L 

mH = Xylose concentration, g/L 

mET = Ethanol concentration, g/L 
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µmax,G = maximum specific cell growth based on glucose, 0.31 h-1 

KSQ,G = Monod saturation constant/substrate limitation constant for cell growth based on 

glucose, 1.45 g/L 

mTIQ,G = Threshold inhibitory ethanol concentration for cell growth based on glucose, 

28.9 g/L 

mMQ,G = Maximum inhibitory ethanol concentration for cell growth based on glucose, 

57.2 g/L 

KIQ,G = Substrate inhibition constant in cell growth based on glucose, 200 g/L 

µmax,H = maximum specific cell growth based on xylose, 0.1 h-1 

KSQ,H = Monod saturation constant/substrate limitation constant for cell growth based on 

xylose, 4.91  g/L 

mTIQ,H = Threshold inhibitory ethanol concentration for cell growth based on xylose, 26.6 

g/L 

mMQ,H = Maximum inhibitory ethanol concentration for cell growth based on xylose, 56.3 

g/L 

KIQ,H = Substrate inhibition constant in cell growth based on xylose, 600 g/L 

φSmax,G = Maximum specific glucose utilization, 10.9 g/(g.h) 

KSS,G = Substrate limitation constant for glucose utilization, 6.32 g/L 

mTIS,G = Threshold inhibitory ethanol concentration for glucose consumption, 42.6 g/L 

mMS,G = Maximum inhibitory ethanol concentration for glucose consumption, 75.4 g/L 

KIS,G = Substrate inhibition constant in glucose consumption, 186 g/L 

φSmax,H = Maximum specific xylose utilization, 3.27 g/(g.h) 

KSS,H = Substrate limitation constant for xylose utilization, 0.03 g/L 

mTIS,H = Threshold inhibitory ethanol concentration for xylose consumption, 53.1 g/L 

mMS,H = Maximum inhibitory ethanol concentration for xylose consumption, 81.2 g/L 

KIS,H = Substrate inhibition constant in xylose consumption, 600 g/L 

ΦETmax,G = Maximum specific ethanol production based on glucose fermentation, 5.12 

g/(g.h) 

KSET, G = Substrate limitation constant for glucose fermentation, 6.32 g/L 

mTIET, G = Threshold inhibitory ethanol concentration for glucose fermentation, 42.6 g/L 

mMET, G = Maximum inhibitory ethanol concentration for glucose fermentation, 75.4 g/L 
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KIET, G = Substrate inhibition constant in glucose fermentation, 186 g/L 

ΦETmax, H = Maximum specific ethanol production based on xylose fermentation, 1.59 

g/(g.h) 

KSET, H = Substrate limitation constant for xylose fermentation, 0.03 g/L 

mTIET, H = Threshold inhibitory ethanol concentration for xylose fermentation, 53.1 g/L 

mMET, H = Maximum inhibitory ethanol concentration for xylose fermentation, 81.2 g/L 

KIET, H = Substrate inhibition constant in xylose fermentation, 600 g/L 

η = Weighting factor for glucose consumption, 0.65 
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Appendix M: Creating a two-way communication between Aspen Plus and MATLAB 

to write and read data between the two platforms 

The example “Aspen Plus COM automation using MATLAB” with article ID 

000026382 in Aspen Plus support center was used as a guide. The syntax to create the 

COM interface, open Aspen Plus, write data from MATLAB to Aspen Plus to, read data 

from Aspen Plus to MATLAB, reinitialize, run, save and close Aspen Plus are described 

in the following sections. 

M.1 Creation of automation server with a handle to the COM interface 

Aspen = actxserver (‘apwn.document.35.0’) 

where 35.0 is the internal version number of Aspen Plus V9. 

M.2 Opening Aspen Plus 

A batch reactor linked to the Fortran user kinetics subroutine was initially created 

and saved. The path to the backup simulation file (AspenPath) is supplied to the invoking 

syntax to open the Aspen Plus simulation file every time it is needed. 

Invoke (Aspen, 'InitFromFile2', AspenPath) 

M.3. Writing and reading data between Aspen Plus and MATLAB 

The COM interface establishes a two-way communication between Aspen Plus and 

MALAB. To write data from MATLAB to Aspen Plus and read data from Aspen Plus to 

MATLAB, the path to the Node is required. To establish this path in Aspen Plus V9 for 

example, the data of interest is found through Customize/Variable Explorer/Data 

(navigating to the data of interest). 

To change the value of a variable located in the path Node “writevariablepath” to alpha, 

the following syntax is used 

Aspen.Application.Tree.FindNode (‘writevariablepath’).Value = alpha 

To read the value of a variable from Aspen Plus and assign to a variable, Beta, in 

MATLAB with a path to node “readvariablepath” 

Beta = Aspen.Application.Tree.FindNode (‘readvariablepath’).Value 

M.4 Syntaxes for Reinitializing, Running, Saving and Closing Aspen Plus 

Aspen.Reinit () 
Aspen.Run2 () 
Aspen.Save () 
Aspen.Quit ();   delete (Aspen) 
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Appendix N: Preliminary Aspen Plus results of an unsteady state fed-batch without 

and with in situ separations (gas stripping). 

  The batch reactor in Aspen Plus was linked to a FORTRAN user kinetics subroutine 

(using techniques developed in Chapter 4) to incorporate the ordinary differential equations 

representing the fermentation kinetics of a batch culture of Clostridium acetobutylicum120 

presented in Appendices A and B.  These unsteady state batch reactor representations were 

connected in series, where for example RBATCH1 in Figure N.1 represents the initial batch 

process of 50 g/L glucose and 0.03 g/L cells (run until glucose is almost used up, for about 

20 h). Similar to laboratory fed-batch experiments,10  a concentrated glucose solution of 

500 g/L was fed in a short time (about 0.001 h) to bring the concentration of glucose to 

about 50 g/L (RBATCH2 in Figure N.1). To simulate an unsteady state fed-batch and in 

situ gas stripping process, a continuous feed of N2 gas was fed to the batch reactor 

(RBATCH3) connected in series to RBATCH2. Subsequently, units of 2 unsteady state 

batch reactors (representing fresh substrate addition and integrated fed-batch and in situ 

gas stripping) were used to simulate an unsteady state fed-batch  fermentation and in situ 

gas stripping process. 

 

Figure N.1 Simulation of fed-batch and in situ gas stripping using unsteady state batch 
reactors in series with a gas continuously fed.  
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Figure N.2 Selected results showing that Aspen Plus and MATLAB fed-batch results 
match, validating the procedure using 500 g/L concentrated glucose solution as fed-batch 
stream. MATLAB ODEs were modified to account for volume change. Aspen Plus used 
batch model without explicitly accounting for volume change  

                           

                          
Figure N.3 Unsteady state fed-batch and in situ gas stripping trends match trends in 
integrated batch and in situ gas stripping results in literature (B1 and D141).  
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Figure N.4 Comparison of the changes in the liquid volume in the reactor for (A) using 
500 g/L concentrated glucose solution and (B) 50 g/L in an unsteady fed-batch simulation 
in Aspen Plus to bring the concentration of glucose to about 50 g/L. 

                      

 
Figure N.5 Trends in the unsteady state simulation results for a fed-batch with in situ gas 
stripping (started after 20 h of fermentation) using 3L/min per L of broth.  500 g/L 
concentrated glucose solution was used to readjust the substrate concentration when it was 
almost used up.  (A) Data simulated every 10 hrs.  (B) Data simulated every hour. 

 

 
Figure N.6 The effect of gas flow rate on the ABE productivity and yield for unsteady 
state simulation fed-batch with in situ gas stripping (started after 20 h of fermentation).  
500 g/L concentrated glucose solution was used to readjust the substrate concentration 
when it was almost used up. 
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Figure N.7 Comparison of the productivity and yield of the fed-batch without and with in 
situ gas stripping. Gas stripping started after 20 h of fermentation using 3L/min per L of 
broth.  500 g/L concentrated glucose solution was used to readjust the substrate 
concentration when it was almost used up. 
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Appendix O: MOO and SOO code for the batch ABE fermentation with in situ gas 

stripping used in the Chapter 5 for the case study 

O.1: Main MOO code 
function main 
clc;clear; close all 
set(0,'defaultAxesFontSize', 32)  
set(0,'defaultlinelinewidth',3) 
  
opts = 
optimoptions(@gamultiobj,'PlotFcn',{@gaplotpareto},'FunctionTolerance',0.01,'MaxGeneratio
ns',30,'display', 'iter',... 
    'OutputFcns', @outputfunction,'PopulationSize',500,'StallGenLimit',5) 
  
rng default % for reproducibility % Random number generator 
%rng('default') puts the settings of the random number generator used by 
    %RAND, RANDI, and RANDN to their default values so that they produce the 
    %same random numbers as if you restarted MATLAB. In this release, the 
    %default settings are the Mersenne Twister with seed 0. 
tic 
% Call the function  'Calculation' that calculates the optimal values 
[Decison_Variables,Objective_Function,eflag,outpt,population, score] = Calculation(opts) 
toc 
  
% Get a list of the final set of decision variables 
x1=Decison_Variables(:,1)./0.06583 % Gas flow rate in kg/hr converted to L/min 
x2=Decison_Variables(:,2)% Gas stripping start time, h 
  
% Get the objective values 
Objective_1 = -Objective_Function(:,1) % ABE concentration in condensate, g/L 
Objective_2 = -Objective_Function(:,2) % ABE Selectivity 
Objective_3 = -Objective_Function(:,3)  % Total ABE produced, g/L 
  
End 
 
 
% Function Calculation takes the input opts to give the decision variables 
% (x), objective function values (f) etc. 
function [x,f,eflag,outpt,pop,score] = Calculation(opts) 
  
%Fun calls the function objfun to evaluate the objective function values 
%for each pair of decision values generated within the range of the 
%decision values specified 
fun = @objfun; % the objective function, nested below 
  
%lower and upper bounds of the decsion variables 
lb = [0.006583 15]; % Gas stripping time started after 15 to 25 hrs of fermentation 
ub = [0.32915 25]; % Gas flowrate of N2 0.1 to 5 L/min per L of broth converted  
% x1 is gas flow rate and x2 is gas stripping start time 
  
% gamultiobj uses the function fun and the in-built solver to determine the 
% Pareto front and the optimal values. 
tic 
[x,f,eflag,outpt,pop,score] = gamultiobj(fun,2,[],[],[],[],lb,ub,[],opts) 
toc 
  
 function CCC =objfun(x) 
 attempt = 1;  % Preallocate the first attempt 
 trying = true; %Set while to true 
 % The try catch loop runs the code in the try block until an error 
 % occurs,in which case the code passes the excecution to the catch block. 
 % The catch block gives information on what type of error there is through 
 % ME and gives instructions on how to handle the error until it is 
 % rectified. This prevents the code from stopping and loosing data 
 while trying 
    try 
     BBB=@objfunction; % Set a handle to call the objective function to run normally  
     CCC=BBB(x); % The objective function values are evaluated at the decision values (x) 
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     trying = false; % If there is an error and trying is set to false. 
     
    catch ME   
    disp(ME) %Displays the error 
    fprintf('Failed attempt (%d). Retyring...',attempt) 
    pause(1) 
     attempt = attempt+1; % Sets attempt to 2 and objfunj to rerun the decision value 
                          % pair of points that run into error. 
    end 
     
 end 
    end 
  
  
    function AAA = objfunction(x) 
    format long 
% Print out the current pair of decision values being evaluated for the objective 
fucntion.     
input =x 
      
% Calculation of the objective functions 
  
AspenVersion = 'apwn.document.35.0'; % Programme ID (Progid) of Aspen Plus document 
class. 
% Also 'apwn.document.34' to specify V8.8 as the version to be used. 
%V9 is internal version 35, so you should use 35 instead of 34 for the document class 
  
AspenPath = 'C:\Users\kda228\Desktop\RBatchtoMATLAB\votruba.bkp'; % Replace with the 
simulation path where file  Aspen Plus file is located 
AspenVisible = 1; % 0 for not visible (Make Aspen Plus file visible when MATLAB code is 
run) 
AspenDialogs = 1; % 0 for not visible (Make Aspen Plus Diagnositic page visible when 
MATLAB code is run) 
  
% Get pointer and load Aspen Plus comserver: 
% actxserver = creates and manipulates objects from Matlab thar are exposed 
% in an application that supports automation 
Aspen = actxserver(AspenVersion); 
% Aspen = a handle to the default interface of the server (actxserver) 
  
% get = Used to Get property value from interface, or display properties 
get(Aspen) 
  
% Open the Aspen-Simulation  
invoke(Aspen,'InitFromArchive2',AspenPath);   
  
Aspen.visible = AspenVisible; % Make it visible 
Aspen.SuppressDialogs = AspenDialogs; % Make simulation run messages visible 
  
% Read the Feed temperature and pressure from Aspen Plus heater input 
% Gets the whole set of properties for the specified node including 
% (Application, Parent, Name, Dimension, ValueType, Value, Elements, UnitSting) 
  
%ReadFeedTempFromAspen=Aspen.Application.Tree.FindNode('\Data\Streams\FEED\Input\TEMP\MIX
ED').get 
    
%ReadFeedTempFromAspen2=Aspen.Application.Tree.FindNode('\Data\Streams\FEED\Input\TEMP\MI
XED').Value 
  %Aspen.Application.Tree.FindNode('\Data\Streams\FEED\Input\TEMP\MIXED').Value 
  % Note that Aspen = A handle to the default actxserver server interface 
  %Once navigation is made to the variable of interest, the path next to 
  %"call" in the Variable Explorer is added to the default interface handle 
  % Note the example, 
  % Application.Tree.FindNode("\Data\Streams\FEED\Input\TEMP\MIXED") double 
  % quotation marks "\Data\Streams\..." should be changed to single 
  % quotation marks '\Data\Streams\FEED\Input\TEMP\MIXED' in MATLAB every 
  % time the 'call path' from Aspen Plus is to be used in MATLAB 
   
   % Set new values of the decision value 
  NewGasflowmassrate= x(1); % Gas flow rate in kg/h 
  NewStartTime = (x(2));   %Gas stripping start time h 
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  % Use the new gas stripping start time to set up the times for Aspen Plus 
  Newasfeedtime1=(NewStartTime-0.001); % Substract 0.001 from the time as the first time 
slot, h (Trick used to make sure gas stripping times are right) 
  Newasfeedtime2=NewStartTime; % Actual gas stripping start time, h 
  Gasflowrate = (NewGasflowmassrate*1000/(60*1.097190232)); % Gas flow rate in L/min 
     
  % Set the gas flow rate on the continous feed at the second gas stripping 
  % start time to the new mass flow rate of the gas in kg/h 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_FLOW\GAS\#1').Value = 
NewGasflowmassrate;  
   
  % Read the old gas stripping start time from the previous run 
  oldtime1= 
Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value; 
   
  %Compare the old old stripping start time from the previous run and the 
  %new gas stripping start time to determine whether to write first to the first 
  %time or second slot. This avoid an error where Aspen Plus does not allow 
  %a smaller number to be written to the second time slot when the previous 
  %run had a value bigger than the current time being written in the first time slot. 
  if NewStartTime >oldtime1 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#1').Value = 
Newasfeedtime2; % Write 2nd time slot first 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value =  
Newasfeedtime1; %Write 1st time slot second 
  else 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value = 
Newasfeedtime1; % write 1st time slot first 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#1').Value =  
Newasfeedtime2; %Write 2nd time slot second 
  end 
   
  % Set the new gas flow rate to the gas flow rate from the current pair of 
  % point in L/min 
  
Aspen.Application.Tree.FindNode('\Data\Streams\GAS\Input\TOTFLOW\MIXED').Value=Gasflowrat
e; % New Feed mass fraction of Ethanol  
   
 %Reinit and run simulation   
 Aspen.Reinit();  % 
  
%Run the simulation case, asynchronously if the argument is True. If 
%the user interface is visible, simulations should always be run 
%asynchronously. Asynchronously allows the automation client to proceed with 
%other tasks while waiting for the simulationrun to complete.  
%Aspen Plus should always be run asynchronously if the application is visible. 
 Aspen.Run2(); 
  
% Save the results of the current run in Aspen Plus 
Aspen.Save(); 
  
% Read the new data (output) results from Aspen Plus 
  VLIQS= 
Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Output\USER\#3\32\VLIQS\LITERS').Va
lue;% Volume of the liquid in the reactor, Liters 
  
 Factor=1000/60; %Convert mass from kg/hr to g/min; 
  
AinReactor=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\MASSFLOW\MIXED\A
').Value)*Factor; % Mass of acetone in reactor,g/min 
  
BinReactor=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\MASSFLOW\MIXED\B
').Value)*Factor; % Mass of butanol in reactor,g/min 
  
EinReactor=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\MASSFLOW\MIXED\E
TOH').Value)*Factor; % Mass of ethanol in reactor,g/min 
   
  
AinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MASSFLOW\MIXED\A')
.Value)*Factor;% Mass of acetone in the vent,g/min 
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BinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MASSFLOW\MIXED\B')
.Value)*Factor;% Mass of acetone in vent,g/min 
  
EinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MASSFLOW\MIXED\ETO
H').Value)*Factor;% Mass of acetone in vent,g/min 
  VABEVent = 
Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\VOLFLMX\MIXED').Value ; 
%Volume of stripped stream, L 
  
  ABEmassproduced =(AinReactor+BinReactor+EinReactor+AinVent+BinVent+EinVent); % Total 
mass of ABE produced in g 
  ABEProduced = ABEmassproduced/(VLIQS); % ABE productivity in g/L/h 
   
  ABEmassinVent =(AinVent+BinVent+EinVent); % mass of ABE in vent, g/min 
  %Total mass of acetone,butanol, ethanol, acetic acid, butyric acid, water 
  %in the vent, g/min 
  
TotalmassallLIQcompinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\
MASSFLMX\MIXED').Value)*Factor;  
   
  ABEmassfracinVent= ABEmassinVent/TotalmassallLIQcompinVent; %mass fraction of ABE in 
the vent, g/min 
  y = ABEmassfracinVent; 
   
  %Mass of ABE in the reactor, g/min 
  ABEmassinRea = AinReactor+ BinReactor+ EinReactor; 
  %Total mass of acetone,butanol, ethanol, acetic acid, butyric acid, 
  %water, glucose in the reactor, g/min 
  
TotalmassallLIQcompinReac=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\M
ASSFLMX\MIXED').Value)*Factor; 
   
  % Mass fraction of ABE in the reactor 
  ABEmassfracinReac= ABEmassinRea/TotalmassallLIQcompinReac; 
  xx = ABEmassfracinReac; 
   
  % ABE selectivity 
  ABESelectivity = y*(1-xx)/(xx*(1-y)); 
  ABEVentgperL = ABEmassinVent/VABEVent; 
   
  % AAA is the objective function values ( the output of the objfunction) 
  % determined at the current pair of decision variables 
    AAA=-[ABEVentgperL  ABESelectivity ABEProduced] 
   
 %Release COM object 
  Aspen.Quit(); 
  delete(Aspen) % delete = Remove COM control or server 
  
      end 
  end 
 

O.2: Output function for MOO code (visualize Pareto front and population changes) 

The output function helps to visualize the Pareto front and population changes over 
successive generations. 
function [state, options,optchanged] = outputfunction(options,state,flag) 
persistent history 
%displays the function eval value at each iteration. You can change this 
disp(state.FunEval) 
disp(state.Population) 
disp(state.Rank) 
disp(state.Selection) 
figure 
plot(state.Population(:,1)./0.065832,state.Population(:,2),'ro'); 
xlabel('Gas flowrate, L/min per L of broth') 
ylabel('Gas stripping start time, h') 
Numberofgenerations=state.Generation; 
gen=sprintf('Number of generations = %d ', Numberofgenerations); 
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title(gen) 
optchanged = false; 
  
switch flag 
 case 'init' 
        disp('Starting the algorithm'); 
        history(:,:,1) = state.Population; 
        assignin('base','gapopulationhistory',history); 
    case {'iter','interrupt'} 
        disp('Iterating ...') 
        % Update the history every 1 generations. 
        if rem(state.Generation,1) == 0 
            ss = size(history,3); 
            history(:,:,ss+1) = state.Population; 
            assignin('base','gapopulationhistory',history); 
        end 
    case 'done' 
        disp('Performing final task'); 
        % Include the final population in the history. 
        ss = size(history,3); 
        history(:,:,ss+1) = state.Population; 
        assignin('base','gapopulationhistory',history); 
         
end 
 

O.3: SOO MATLAB code 
function main 
   
clc;clear; close all 
set(0,'defaultAxesFontSize', 14)  
set(0,'defaultlinelinewidth',3) 
  
opts = 
optimoptions(@ga,'PlotFcn',{@gaplotdistance,@gaplotselection,@gaplotscorediversity,@gaplo
tscores,@gaplotstopping,@gaplotbestf,@gaplotbestindiv,@gaplotexpectation,@gaplotrange},'F
unctionTolerance',0.01,'MaxGenerations',30,'display', 'iter',... 
    'PopulationSize',500,'StallGenLimit',2) 
  
rng default % for reproducibility % Random number generator 
  
tic 
% Call the function  'Calculation' that calculates the optimal values 
[Decison_Variables,Objective_Function,eflag,outpt,population, score] = Calculation(opts) 
toc 
  
% Get a list of the final set of decision variables 
x1=Decison_Variables(:,1)./0.06583 % Gas flow rate in kg/hr converted to L/min 
x2=Decison_Variables(:,2)% Gas stripping start time, h 
  
% Get the objective values 
Objective_1 = -Objective_Function % Weighted average sum of three objective functions 
  
End 
 
 
% Function Calculation takes the input opts to give the decision variables 
% (x), objective function values (f) etc. 
 
function [x,f,eflag,outpt,pop,score] = Calculation(opts) 
  
%Fun calls the function objfun to evaluate the objective function values 
%for each pair of decision values generated within the range of the 
%decision values specified 
fun = @objfun; % the objective function, nested below 
  
%lower and upper bounds of the decsion variables 
lb = [0.006583 15]; % Gas stripping time started after 15 to 25 hrs of fermentation 
ub = [0.32915 25]; % Gas flowrate of N2 0.1 to 5 L/min per L of broth converted  
% x1 is gas flow rate and x2 is gas stripping start time 
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% ga uses the function fun and the in-built solver to determine the 
% Pareto front and the optimal values. 
tic 
[x,f,eflag,outpt,pop,score] = ga(fun,2,[],[],[],[],lb,ub,[],opts) 
toc 
  
 function CCC =objfun(x) 
 attempt = 1;  % Preallocate the first attempt 
 trying = true; %Set while to true 
 % The try catch loop runs the code in the try block until an error 
 % occurs,in which case the code passes the excecution to the catch block. 
 % The catch block gives information on what type of error there is through 
 % ME and gives instructions on how to handle the error until it is 
 % rectified 
 while trying 
    try 
     BBB=@objfunction; % Set a handle to call the objective function to run normally  
     CCC=BBB(x); % The objective function values are evaluated at the decision values (x) 
     trying = false; % If there is an error and trying is set to false. 
     
    catch ME   
    disp(ME) %Displays the error 
    fprintf('Failed attempt (%d). Retyring...',attempt) 
    pause(1) 
     attempt = attempt+1; % Sets attempt to 2 and objfunj to rerun the decision value 
                          % pair of points that run into error. 
    end 
     
 end 
    end 
  
  
    function AAA = objfunction(x) 
    format long 
% Print out the current pair of decision values being evaluated for the objective 
fucntion.     
input =x 
      
% Calculation of the objective functions 
  
AspenVersion = 'apwn.document.35.0'; % Programme ID (Progid) of Aspen Plus document 
class. 
% Also 'apwn.document.34' to specify V8.8 as the version to be used. 
%V9 is internal version 35, so you should use 35 instead of 34 for the document class 
  
AspenPath = 'C:\Users\kda228\Desktop\RBatchtoMATLAB\votruba.bkp'; % Replace with the 
simulation path where file  Aspen Plus file is located 
AspenVisible = 1; % 0 for not visible (Make Aspen Plus file visible when MATLAB code is 
run) 
AspenDialogs = 1; % 0 for not visible (Make Aspen Plus Diagnositic page visible when 
MATLAB code is run) 
  
% Get pointer and load Aspen Plus comserver: 
% actxserver = creates and manipulates objects from Matlab thar are exposed 
% in an application that supports automation 
Aspen = actxserver(AspenVersion); 
% Aspen = a handle to the default interface of the server (actxserver) 
  
% get = Used to Get property value from interface, or display properties 
get(Aspen) 
  
% Open the Aspen-Simulation  
invoke(Aspen,'InitFromArchive2',AspenPath);   
  
Aspen.visible = AspenVisible; % Make it visible 
Aspen.SuppressDialogs = AspenDialogs; % Make simulation run messages visible 
   
  % Set new values of the decision value 
  NewGasflowmassrate= x(1); % Gas flow rate in kg/h 
  NewStartTime = (x(2));   %Gas stripping start time h 
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  % Use the new gas stripping start time to set up the times for Aspen Plus 
  Newasfeedtime1=(NewStartTime-0.001); % Substract 0.0001 from the time as the first time 
slot, h- Running into issues, changed to 0.001 
  Newasfeedtime2=NewStartTime; % Actual gas stripping start time, h 
  Gasflowrate = (NewGasflowmassrate*1000/(60*1.097190232)); % Gas flow rate in L/min 
     
  % Set the gas flow rate on the continous feed at the secont gas stripping 
  % start time to the new mass flow rate of the gas in kg/h 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_FLOW\GAS\#1').Value = 
NewGasflowmassrate;  
   
  % Read the old gas stripping start time from the previous run 
  oldtime1= 
Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value; 
   
  %Compare the old old stripping start time from the previous run and the 
  %new gas stripping start time to determine whether to write first to the first 
  %time or second slot. 
  if NewStartTime >oldtime1 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#1').Value = 
Newasfeedtime2; % Write 2nd time slot first 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value =  
Newasfeedtime1; %Write 1st time slot second 
  else 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value = 
Newasfeedtime1; % write 1st time slot first 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#1').Value =  
Newasfeedtime2; %Write 2nd time slot second 
  end 
   
  % Set the new gas flow rate to the gas flow rate from the current pair of 
  % point in L/min 
  
Aspen.Application.Tree.FindNode('\Data\Streams\GAS\Input\TOTFLOW\MIXED').Value=Gasflowrat
e; % New Feed mass fraction of Ethanol  
   
 %Reinit and run simulation   
 Aspen.Reinit();  % 
 %Reinitialize the simulation case. To reinitialize specific blocks or 
%streams, use the Reinit member of the IHAPEngine class. 
  
%Run the simulation case, asynchronously if the argument is True. If 
%the user interface is visible, simulations should always be run 
%asynchronously. Asynchronously allows the automation client to proceed with 
%other tasks while waiting for the simulationrun to complete.  
%Aspen Plus should always be run asynchronously if the application is visible. 
Aspen.Run2(); 
  
% Save the results of the current run in Aspen Plus 
Aspen.Save(); 
% Read the new data (output) results from Aspen Plus 
  VLIQS= 
Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Output\USER\#3\32\VLIQS\LITERS').Va
lue;% Volume of the liquids in the reactor, Liters 
   
 Factor=1000/60; %Convert mass from kg/hr to g/min; 
  
AinReactor=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\MASSFLOW\MIXED\A
').Value)*Factor; % Mass of acetone in reactor,g/min 
  
BinReactor=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\MASSFLOW\MIXED\B
').Value)*Factor; % Mass of butanol in reactor,g/min 
  
EinReactor=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\MASSFLOW\MIXED\E
TOH').Value)*Factor; % Mass of ethanol in reactor,g/min 
   
  
AinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MASSFLOW\MIXED\A')
.Value)*Factor;% Mass of acetone in the vent,g/min 
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BinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MASSFLOW\MIXED\B')
.Value)*Factor;% Mass of acetone in vent,g/min 
  
EinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MASSFLOW\MIXED\ETO
H').Value)*Factor;% Mass of acetone in vent,g/min 
  VABEVent = 
Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\VOLFLMX\MIXED').Value; 
  
  ABEmassproduced =(AinReactor+BinReactor+EinReactor+AinVent+BinVent+EinVent); % Total 
mass of ABE produced in g 
  ABEProduced = ABEmassproduced/(VLIQS); % ABE productivity in g/L/h 
   
  ABEmassinVent =(AinVent+BinVent+EinVent); % mass of ABE in vent, g/min 
  %Total mass of acetone,butanol, ethanol, acetic acid, butyric acid, water 
  %in the vent, g/min 
  
TotalmassallLIQcompinVent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\
MASSFLMX\MIXED').Value)*Factor;  
   
  ABEmassfracinVent= ABEmassinVent/TotalmassallLIQcompinVent; %mass fraction of ABE in 
the vent, g/min 
  y = ABEmassfracinVent; 
   
  %Mass of ABE in the reactor, g/min 
  ABEmassinRea = AinReactor+ BinReactor+ EinReactor; 
  %Total mass of acetone,butanol, ethanol, acetic acid, butyric acid, 
  %water, glucose in the reactor, g/min 
  
TotalmassallLIQcompinReac=(Aspen.Application.Tree.FindNode('\Data\Streams\REALIQ\Output\M
ASSFLMX\MIXED').Value)*Factor; 
   
  % Mass fraction of ABE in the reactor 
  ABEmassfracinReac= ABEmassinRea/TotalmassallLIQcompinReac; 
  xx = ABEmassfracinReac; 
   
  % ABE selectivity 
  ABESelectivity = y*(1-xx)/(xx*(1-y)); 
  ABEVentgperL = ABEmassinVent/VABEVent; 
  % AAA is the objective function values ( the output of the objfunction) 
  % determined at the current pair of decision variables 
  
 AAA=-((1/3*ABEVentgperL)+(1/3*ABESelectivity)+(1/3* ABEProduced)) % Negative for 
maximization 
  
%Release COM object 
  Aspen.Quit(); 
  delete(Aspen) % delete = Remove COM control or server 
   
  
      end 
  end 
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Appendix P: MOO for the batch ethanolic fermentation with in situ gas stripping 

used in the Chapter 6 

P.1: Main MOO code 
 
function main 
   
clc;clear; close all 
set(0,'defaultAxesFontSize', 32)  
set(0,'defaultlinelinewidth',3) 
  
opts = 
optimoptions(@gamultiobj,'PlotFcn',{@gaplotpareto},'FunctionTolerance',0.01,'MaxGeneratio
ns',30,'display', 'iter',...    'OutputFcns', 
@outputfunction,'PopulationSize',1000,'StallGenLimit',5)%,'InitialPopulation',Initpopu)%,
'UseParallel','always');%'UseVectorized',true); % default ga options settings 
  
rng default % for reproducibility % Random number generator 
  
tic 
% Call the function  'Calculation' that calculates the optimal values 
[Decison_Variables,Objective_Function,eflag,outpt,population, score] = Calculation(opts) 
toc 
  
% Get a list of the final set of decision variables 
x1=Decison_Variables(:,1) % Initial substrate concentration, g/L 
x2=Decison_Variables(:,2)% Batch fermentation time, h 
x3=Decison_Variables(:,3)% Gas stripping start time, h 
x4=Decison_Variables(:,4)./0.06583% % Gas flow rate in kg/hr converted to L/min 
  
% Get the objective values 
Objective_1 = -Objective_Function(:,1) % Ethanol Yield, g/g 
Objective_2 = -Objective_Function(:,2) %Ethanol Productivity, g/L.h 
Objective_3 = -Objective_Function(:,3) %Ethanol Produced, g/L 
Objective_4 = -Objective_Function(:,4) %Total sugars conversion fraction 
  
end 
 
% Function Calculation takes the input opts to give the decision variables 
% (x), objective function values (f) etc. 
function [x,f,eflag,outpt,pop,score] = Calculation(opts) 
  
%Fun calls the function objfun to evaluate the objective function values 
%for each pair of decision values generated within the range of the 
%decision values specified 
fun = @objfun; % the objective function, nested below 
  
%lower and upper bounds of the decsion variables 
lb = [10 5 5 0.0006583]; % Initial sugar concentration, g/L;Batch fermentation time, 
h;Gas stripping start time, h and Gas flow rate in kg/hr converted to L/min 
ub = [300 100 100 0.19749];  
  
%Inquality constraint: x3-x2<=0 
ARHS=[0 -1 1 0]; 
BLHS = 0; 
% gamultiobj uses the function fun and the in-built solver to determine the 
% Pareto front and the optimal values. 
tic 
[x,f,eflag,outpt,pop,score] = gamultiobj(fun,4,ARHS,BLHS,[],[],lb,ub,[],opts) 
toc 
  
 function CCC =objfun(x) 
 attempt = 1;  % Preallocate the first attempt 
 trying = true; %Set while to true 
 % The try catch loop runs the code in the try block until an error 
 % occurs,in which case the code passes the excecution to the catch block. 
 % The catch block gives information on what type of error there is through 
 % ME and gives instructions on how to handle the error until it is 
 % rectified 
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 while trying 
    try 
     BBB=@objfunction; % Set a handle to call the objective function to run normally  
     CCC=BBB(x); % The objective function values are evaluated at the decision values (x) 
     trying = false; % If there is an error and trying is set to false. 
     
    catch ME   
    disp(ME) %Displays the error 
    fprintf('Failed attempt (%d). Retyring...',attempt) 
    pause(1) 
     attempt = attempt+1; % Sets attempt to 2 and objfunj to rerun the decision value 
                          % pair of points that run into error. 
    end 
     
 end 
    end 
   
    function AAA = objfunction(x) 
     
% Print out the current pair of decision values being evaluated for the objective 
fucntion.     
input =x 
      
% Calculation of the objective functions 
  
AspenVersion = 'apwn.document.35.0'; % Programme ID (Progid) of Aspen Plus document 
class. 
% Also 'apwn.document.34' to specify V8.8 as the version to be used. 
%V9 is internal version 35, so you should use 35 instead of 34 for the document class 
  
AspenPath = 'C:\Users\kda228\Desktop\ETHANOL_REMOVE_ETHANOL\batch.bkp'; % Replace with 
the simulation path where file  Aspen Plus file is located 
AspenVisible = 1; % 0 for not visible (Make Aspen Plus file visible when MATLAB code is 
run) 
AspenDialogs = 1; % 0 for not visible (Make Aspen Plus Diagnositic page visible when 
MATLAB code is run) 
  
% Get pointer and load Aspen Plus comserver: 
% actxserver = creates and manipulates objects from Matlab thar are exposed 
% in an application that supports automation 
Aspen = actxserver(AspenVersion); 
% Aspen = a handle to the default interface of the server (actxserver) 
  
% get = Used to Get property value from interface, or display properties 
get(Aspen) 
  
% Open the Aspen-Simulation  
invoke(Aspen,'InitFromFile2',AspenPath);   
  
Aspen.visible = AspenVisible; % Make it visible 
Aspen.SuppressDialogs = AspenDialogs; % Make simulation run messages visible 
  
  Substrateconcentration= x(1); % Gas flow rate in kg/h 
  FermentationTime = x(2);   %Gas stripping start time h 
   
  % Set new values of the decision value 
  NewGasflowmassrate= x(4); % Gas flow rate in kg/h 
  NewStartTime = x(3);   %Gas stripping start time h 
   
  % Use the new gas stripping start time to set up the times for Aspen Plus 
  Newasfeedtime1=(NewStartTime-0.01); % Substract 0.001 from the time as the first time 
slot, h- Running into issues of Aspen Plus integration crashing, changed to 0.01 
  Newasfeedtime2=NewStartTime; % Actual gas stripping start time, h 
  Gasflowrate = (NewGasflowmassrate*1000/(60*1.097190232)); % Gas flow rate in L/min 
     
  % Set the gas flow rate on the continous feed at the secont gas stripping 
  % start time to the new mass flow rate of the gas in kg/h 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_FLOW\GAS\#1').Value = 
NewGasflowmassrate;  
   
  % Read the old gas stripping start time from the previous run 
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  oldtime1= 
Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value; 
   
  %Compare the old old stripping start time from the previous run and the 
  %new gas stripping start time to determine whether to write first to the first 
  %time or second slot. 
  if NewStartTime >oldtime1 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#1').Value = 
Newasfeedtime2; % Write 2nd time slot first 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value =  
Newasfeedtime1; %Write 1st time slot second 
  else 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#0').Value = 
Newasfeedtime1; % write 1st time slot first 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\FPROF_TIME\GAS\#1').Value =  
Newasfeedtime2; %Write 2nd time slot second 
  end 
   
  % Set the new gas flow rate to the gas flow rate from the current pair of 
  % point in L/min 
  
Aspen.Application.Tree.FindNode('\Data\Streams\GAS\Input\TOTFLOW\MIXED').Value=Gasflowrat
e; % New Feed mass fraction of Ethanol  
   
   
  % Set fermentation times 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\VALUE\1').Value = 
FermentationTime; % Stopping time,h 
   Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\MAX_TIME').Value = 
FermentationTime; % Maximum calculation time, h 
  Aspen.Application.Tree.FindNode('\Data\Blocks\RBATCH1\Input\MAX_NPOINT').Value = 
FermentationTime+2; %Maximum number of profile points 
   
  % Set glucose and xylose concentrations 
  Aspen.Application.Tree.FindNode('\Data\Streams\FEED1\Input\FLOW\MIXED\S').Value = 
Substrateconcentration;  
  Aspen.Application.Tree.FindNode('\Data\Streams\FEED1\Input\FLOW\MIXED\XYLOSE').Value = 
Substrateconcentration;  
   
  %Reinit and run simulation   
 Aspen.Reinit();  % 
 %Reinitialize the simulation case. To reinitialize specific blocks or 
  
  
Aspen.Run2(); 
%Run the simulation case, asynchronously if the argument is True. If 
%the user interface is visible, simulations should always be run 
%asynchronously. Asynchronously allows the automation client to proceed with 
%other tasks while waiting for the simulationrun to complete.  
%Aspen Plus should always be run asynchronously if the application is visible. 
  
% Save the results of the current run in Aspen Plus 
Aspen.Save(); 
  
  % Read data 
  %conversion of kg/hr to g/min (kg/h)*(1000g/1kg)*(1h/60min) 
  Factor = (1000/60); 
  InitialVolume= 
Aspen.Application.Tree.FindNode('\Data\Streams\FEED1\Output\VOLFLMX\MIXED').Value; 
%Volume of Initial mixture in reactor, L  
  FinalVolume= 
Aspen.Application.Tree.FindNode('\Data\Streams\RELIQ\Output\VOLFLMX\MIXED').Value; 
%Volume of final mixture in reactor, L  
 
VentVolume=Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\VOLFLMX\MIXED').
Value; %Volume of final mixture in stripped stream, L  
  
EthanolMassReactor=(Aspen.Application.Tree.FindNode('\Data\Streams\RELIQ\Output\MASSFLOW\
MIXED\ETOH').Value)*Factor; % g/L 
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  EthanolMassVent = 
(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MASSFLOW\MIXED\ETOH').Valu
e)*Factor; % g/L 
   
  
InitialEthanolMass=(Aspen.Application.Tree.FindNode('\Data\Streams\FEED1\Input\FLOW\MIXED
\ETOH').Value)*InitialVolume; % g/L 
  Ethanolproduced= (EthanolMassReactor+EthanolMassVent-
InitialEthanolMass)/(FinalVolume+VentVolume); %g/L 
  MassofEthanolProduced =(EthanolMassReactor+EthanolMassVent-InitialEthanolMass); 
  
  InitialMassGlucose= 
(Aspen.Application.Tree.FindNode('\Data\Streams\FEED1\Input\FLOW\MIXED\S').Value)*(Initia
lVolume); 
  FinalMassGlucose= 
(Aspen.Application.Tree.FindNode('\Data\Streams\PRODUCT1\Output\MASSFLOW\MIXED\S').Value)
*(FinalVolume)*Factor;  
  GlucoseUsed = InitialMassGlucose-FinalMassGlucose; 
   
  InitialMassXylose= 
(Aspen.Application.Tree.FindNode('\Data\Streams\FEED1\Input\FLOW\MIXED\XYLOSE').Value)*(I
nitialVolume); 
  FinalMassXylose= 
(Aspen.Application.Tree.FindNode('\Data\Streams\PRODUCT1\Output\MASSFLOW\MIXED\XYLOSE').V
alue)*(FinalVolume)*Factor; 
  XyloseUsed = InitialMassXylose-FinalMassXylose; 
   
  EthanolYield=   MassofEthanolProduced/(GlucoseUsed+XyloseUsed); 
   
  EthanolProductivity=Ethanolproduced/FermentationTime; 
  SugarConversionFraction = (GlucoseUsed+ 
XyloseUsed)/(InitialMassGlucose+InitialMassXylose); 
  
  EthanolCondensate=EthanolMassVent/VentVolume 
   
  
Ethanolmassfractionreactor=(Aspen.Application.Tree.FindNode('\Data\Streams\RELIQ\Output\M
ASSFRAC\MIXED\ETOH').Value); 
  
Ethanolmassfractionvent=(Aspen.Application.Tree.FindNode('\Data\Streams\VENTLIQ\Output\MA
SSFRAC\MIXED\ETOH').Value); 
   
  xx=Ethanolmassfractionreactor; 
  yy=Ethanolmassfractionvent; 
  EthanolSelectivity =yy*(1-xx)/(xx*(1-yy)) 
  AAA=-[EthanolYield  EthanolProductivity  Ethanolproduced SugarConversionFraction] 
   
  
%Release COM object 
  Aspen.Quit(); 
  delete(Aspen) % delete = Remove COM control or server 
   
  
      end 
  end 
 

P.2: Output function for MOO code 
function [state, options,optchanged] = outputfunction(options,state,flag) 
persistent history 
%displays the function eval value at each iteration. You can change this 
disp(state.FunEval) 
disp(state.Population) 
disp(state.Rank) 
disp(state.Selection) 
figure 
plot(state.Population(:,1),state.Population(:,2),'ro'); 
xlabel('Initial Substrate Concentration, g/L') 
ylabel('Fermentation time, h') 
Numberofgenerations=state.Generation; 
gen=sprintf('Number of generations = %d ', Numberofgenerations); 
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title(gen) 
  
figure 
plot(state.Population(:,1),state.Population(:,3),'ro'); 
xlabel('Initial Substrate Concentration, g/L') 
ylabel('Stripping time, h') 
Numberofgenerations=state.Generation; 
gen=sprintf('Number of generations = %d ', Numberofgenerations); 
title(gen) 
  
figure 
plot(state.Population(:,1),state.Population(:,4)./0.06583,'ro'); 
xlabel('Initial Substrate Concentration, g/L') 
ylabel('Gas flow rate, L/min per L') 
Numberofgenerations=state.Generation; 
gen=sprintf('Number of generations = %d ', Numberofgenerations); 
title(gen) 
  
figure 
plot(state.Population(:,2),state.Population(:,3),'ro'); 
xlabel('Fermentation time, h') 
ylabel('Stripping time, h') 
Numberofgenerations=state.Generation; 
gen=sprintf('Number of generations = %d ', Numberofgenerations); 
title(gen) 
  
figure 
plot(state.Population(:,2),state.Population(:,4)./0.06583,'ro'); 
xlabel('Fermentation time, h') 
ylabel('Gas flow rate, L/min per L') 
Numberofgenerations=state.Generation; 
gen=sprintf('Number of generations = %d ', Numberofgenerations); 
title(gen) 
  
figure 
plot(state.Population(:,3),state.Population(:,4)./0.06583,'ro'); 
xlabel('Stripping time, h') 
ylabel('Gas flow rate, L/min per L') 
Numberofgenerations=state.Generation; 
gen=sprintf('Number of generations = %d ', Numberofgenerations); 
title(gen) 
optchanged = false; 
  
switch flag 
 case 'init' 
        disp('Starting the algorithm'); 
        history(:,:,1) = state.Population; 
        assignin('base','gapopulationhistory',history); 
    case {'iter','interrupt'} 
        disp('Iterating ...') 
        % Update the history every 1 generations. 
        if rem(state.Generation,1) == 0 
            ss = size(history,3); 
            history(:,:,ss+1) = state.Population; 
            assignin('base','gapopulationhistory',history); 
        end 
    case 'done' 
        disp('Performing final task'); 
        % Include the final population in the history. 
        ss = size(history,3); 
        history(:,:,ss+1) = state.Population; 
        assignin('base','gapopulationhistory',history); 
         
end 
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