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ABSTRACT OF THESIS 

 

CNT MEMBRANE PLATFORMS FOR TRANSDERMAL DRUG DELIVERY AND 

APTAMER MODULATED TRANSPORT 

 

CNT membrane platforms are biomimetic polymeric membranes imbedded with 

carbon nanotubes which show fast fluid flow, electric conductivity, and the ability to be 

grafted with chemistry. A novel micro-dialysis probe nicotine concentration sampling 

technique was proposed and proved in vitro, which could greatly improve the efficiency 

and accuracy of future animal transdermal studies. To enhance the scope of transdermal 

drug delivery which was limited to passive diffusion of small, potent lipophilic drugs, a 

wire mesh lateral electroporation design was also proposed which could periodically 

disrupt the skin barrier and enhance drug flux. 

It was shown that AMP binding aptamer at the tip of carbon nanotubes may act 

as gatekeepers and regulate ionic transport through CNT membrane. Multiple cycle 

gating of ionic transport upon AMP binding/unbinding which changes the aptamer 

conformation was displayed. This CNT membrane-aptamer system closely mimics how 

protein ion channels modulate ion flow by responding to stimuli, which may have 

significant impact on active membrane transport. 



 

 

   Finally an enhanced electroosmosis concept by “ratchet” functionalization at 

both ends of carbon nanotubes in was discussed. Direct observation of water transport 

by electroosmosis was made possible through enhanced flow in vertically aligned high 

flux CNT membranes. 

 

KEYWORDS: CNT membrane, transdermal drug delivery, electroporation, aptamer, 

electroosmosis 
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Chapter 1 Introduction 

 

The world has seen remarkable advances in nanotechnology in both academia and 

industry in the last decade. Between 2001 and 2008, it is reported that the number of 

inventions, discovery, ideas, funding, and job market related to nanotechnology have 

increased by 25% annually.1 The worldwide market for products incorporating 

nanotechnology reached about $254 billion in 2009 and is expected to reach $3 trillion 

in 2020. Carbon nanotubes are amongst one of the fascinating nanotechnology 

discoveries that continues to attract interest today, being first reported in 1991 when 

Ijima discovered multi-walled carbon nanotubes by using an arc discharge method.2 

Carbon nanotubes (CNTs) are rolled-up tubes made of graphite (Figure 1.1); depending 

on which direction along the lattice vector graphite is rolled either armchair (n=m), 

zigzag (n, 0), or chiral (n, m) type carbon nanotubes are formed. They are allotropes of 

carbon with a nanostructure that can possess an aspect ratio greater than 1 million.3 

According to the number of layers of graphite, CNTs can be classified into single-walled 

(SWCNT), double-walled (DWCNT), or multiwalled carbon nanotubes (MWCNT), with 

diameters ranging from 0.8nm-30nm, and differing properties based on their structure. 

 

1.1 General properties of Carbon nanotubes 

Carbon nanotubes have been prepared using various methods including electrolysis, arc 

discharge, laser ablation, sono-chemical/hydrothermal, and chemical vapor deposition 
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(Figure 1.2). Higher temperature synthesis techniques such as arch discharge or laser 

ablation were first used to produce CNTs, but chemical vapor deposition became the 

prevalent technique since the alignment, length of nanotube, diameter, and purity of a 

nanotube can be controlled by the latter.4 CNTs exhibits fascinating electronic, thermal, 

and mechanic properties: depending on the way it is rolled up, CNT can be either 

metallic or semiconducting; they can carry current density of up to 4*109 A/cm2, which 

is more than 1000 times greater than that of metals such as copper.5 The theoretical 

thermal conductivity of a carbon nanotube can be up to 6600 W/ (m*K), which is 5 

times higher than that of diamonds. Carbon nanotubes are also the strongest materials 

to be found in terms of tensile strength and Young’s moduli, as they can go up to 63 

GPA and 1 TPA respectively,6 the strength resulting from the sp2 bonding between 

carbon atoms. The high aspect ratio (up to 1.36×108) and surface area (up to 1315m2/g) 

of a carbon nanotube provided abundant active surface area for functionalization, which 

makes it an ideal platform for catalysis and energy storage.7  

 

1.2 Functionalization of Carbon Nanotubes 

 

Carbon nanotubes are nanomaterial with fascinating properties; however pristine 

carbon nanotubes are insoluble in aqueous and organic solvents due to their easy 

aggregation into bundles under large van der Waals force, severely hindering its usage. 

Uniform and stable dispersion by functionalization is critical to CNTs’ performance in 

various applications.8 Functionalization also generate active sites on carbon nanotube 
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surface which becomes available for further grafting with desired chemical moieties , 

opening up a broad spectrum of grafting possibilities. Depending on the interaction 

mechanism with the functional group, CNT functionalization can be classified as either 

covalent (sidewall derivatization and tip openings) or non-covalent (π- π interactions). 

 

1.2.1 Covalent functionalization 

 

Covalent functionalization of carbon nanotubes mainly includes the use of oxidation, 

reduction, acid cutting, and CNT-metal complex to modify carbon nanotube sidewall and 

tip structure (Fig 1.3). A widely used approach of CNT covalent functionalization is the 

treatment by strong oxidizing agents, although it is aggressive in nature and usually 

leave defects on CNT surface.9 J. Liu and R.E. Smalley et al. used concentrated sulfuric 

and nitric acids (3:1) to treat CNTs with sonication, which produced local high 

temperature domains that attacked the surface of CNTs. 10 The prolonged sonication of 

CNTs in strong oxidative environment opens up their previously closed ends and 

introduced oxygen moieties such as carboxyl group at the ends, which could be used to 

attach further functional groups. Lieber et al. covalently linked primary amine to the 

carboxylate groups on the end of CNTs using carbodiimide chemistry, which is practical 

and popular in the linkage of two protein molecules, between a peptide and a protein, 

and between oligonucleotides and proteins.11 Furthermore, the carbodiimide chemistry 

which forms an amide bond could be carried out in aqueous solutions and room 
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temperature, which allowed the attachment of chemistry to CNTs and the attachment 

of CNTs to a substrate surface under mild conditions. The ability to functionalize CNTs 

with carboxylate groups and primary amine groups allowed its manipulation and 

processing with various biomolecules. 

 

Diazonium salt reactions could be used to introduce desired moieties onto carbon 

nanotube surface by the in situ reduction of a diazonium compound which form an aryl 

radical that can further interact with carbon atoms on carbon substrate (Figure 1.4). 

Compared to other surface modifications, diazonium chemistry offers several 

advantages:12 1) it offers an array of functionalities (-NO2,-COOH,-SO3H, etc.) since aryl 

diazonium with different functionalities could easily be synthesized in the lab by 

demand; 2) the modification method shows stronger stability compared to thiol 

modification due to the covalent bonding;13 3) it is a mild functionalization method that 

avoids detrimental damage to the CNT being functionalized. Our group prefers the use 

of diazonium salt reduction over other functionalization methods to treat CNTs because 

the above stated advantages. 

 

1.2.2 Non-covalent functionalization 

 

CNTs could be non-covalently functionalized with aromatic molecules and surfactants  to 

break CNT bundles formed by strong adhesive forces, enabling an uniform dispersion of 
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CNTs. Non-covalent functionalization methods of CNTs includes π-π stacking, Van der 

Waals force, hydrogen bonding, and electrostatic forces.8,14 Figure 1.5 shows the 

absorbance of three types of surfactants (NaDDBS, SDS, and Triton X-100) onto 

nanotube surface, which all serves to separate CNTs from each other in solution. Chen 

et al. first reported the irreversible attachment of pyrenyl to SWCNT sidewall via π-π 

stacking,15 which functionalized SWCNTs with succinimide ester groups that are highly 

reactive with primary and secondary amines, which existed in abundance in various 

biomolecules. Non-covalent functionalization also uniformly disperse CNTs in aqueous 

solutions and organic solvents by spatial separation and charge repulsion from the 

amphiphilic nature of surfactants. Islam Et al. compared the dispersion of CNTs in SDS 

(sodium dodecyl sulfate), Triton-X, NaDDBS (sodium dodecylbenzene sulfonate) and 

showed that uniform dispersion of CNTs with concentration up to 20mg/ml could be 

achieved with surfactants. The uniform dispersion of CNTs allowed its application in 

deposition, microfluidics, fabrication of nano-based fibers, and composites where 

previously bundled CNTs showed inferior properties.  

 

Both non-covalent and covalent functionalization of CNTs are equally important for 

fabrication of a CNT based membrane and its activation into a fully functional one. For 

example, the non-covalent dispersion of CNTs are important for uniform dispersion in 

polymer, and covalent functionalization allows the grafting of dyes/ aptamers onto the 
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CNT membrane for gatekeeping. The details of CNT functionalization will be discussed in 

detail in chapter 2. 

 

1.3 General Applications of Carbon Nanotubes 

 

The functionalization of CNTs has opened opportunities for numerous potential 

applications. Due to their capability of being semiconducting (SWCNT) and conducting 

(MWCNT), CNTs was utilized for either FET-based sensors or electrodes for 

electrocatalysis.16 Their high aspect ratio allows them to be fabricated into ropes 

analogous to spinning yarns with 2% the diameter of a human hair, which possess 

strength, toughness, mechanical energy damping capability, and resistance to knot-

induced failure.17 The properties of CNTs also gives an advantage in electrocatalysis 

where expensive catalysts are required to be utilized with highest possible surface to 

mass ratio. It should be noted that the purity of CNTs is of critical importance in its 

performance as catalyst support, while usually commercially made CNTs usually contain 

metal catalyst particles, ash, and other residues. The residue catalyst particles contained 

in the commercially received CNTs can contribute toward the total observed catalytic 

behavior, causing confusion in the overall observed result.18 Described here in short are 

some previously developed applications of CNTs in catalysis, sensors, biomedics, and 

membranes which is most relevant to the topic of this thesis.  

 



7 

 

1.3.1 CNT as catalyst support 

 

CNTs are considered an ideal platform for catalysts due to their high surface to mass 

ratio, electric conductivity, and facile functionalization ability to provide catalytic sites.16 

They have been involved in development for better fuel cells, organic reaction catalysis, 

and platform for biomacromolecule immobilization. In the interest of developing clean, 

sustainable, and mobile power sources, much attention is given to proton exchange 

membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs).16,19 A practical 

problem associated with the realization of cheap fuel cells is the high cost of Pt 

catalysts. By depositing Pt catalyst on the surface of CNTs, reduced amounts of Pt is 

needed to reach the same catalytic activity. Some attempts have been made to anchor 

Pt catalysts on MWCNT to improve catalytic activity, which relies on strong oxidation to 

treat CNT surface to allow Pt deposition. Shown in Figure 1.6 is the schematic for Pt 

deposition on SWCNT and TEM image showing Pt on SWCNT in detail.20,21 Later X. Su, 

B.J. Hinds deposited ultrathin film of Pt on CNT functionalized by diazonium chemistry, 

where the electrochemically induced diazonium salt reduction allows uniform thin layer 

Pt deposition.22 Metal-modified SWCNTs and MWCNTs has also shown to exhibit 

organic reaction catalyzing abilities. The aldehyde group in prenal (3-methyl-2-butenal) 

has been hydrogenated using a Pt/SWCNT system yielding the unsaturated alchohol 

prenol (3-methyl-2-butenol). CNT supported group 9 and 10 metal catalysts has also 

been investigated for the hydrogenation of aromatic molecules with partial success,23 
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and the enhancement brought by CNT support maybe due to the low steric hindrance of 

catalysts mounted on sidewalls of CNTs, the authors conclude.  

 

1.3.2 CNTs in sensors 

 

CNTs are also viewed as ideal platforms for sensors due to their electric conductivity and 

large area available for functionalization. Due to their conductivity, electrical-based 

sensors are ideal due to easy electrochemical measurements, integration in electric 

circuits, and low costs. Pristine SWCNT can be used as wires to connect two electrodes, 

and the conductance between the electrodes can be easily measured as a function of 

the gate bias voltage. By the induction of gases with concentration as low as 200 ppm 

into contact with SWCNTs, conductance change of  up to 2 orders of magnitude maybe 

observed.24 This change of conductance is due to the binding of gas molecules on to 

SWCNT surface through its defects and dramatically changing its electronic energy 

states, thus changing its conductivity. Comparing to conventional solid state sensors, 

SWCNT sensors hold the advantage that they are fast in response (2min) and could be 

operational at room temperature.  

 

CNT may also be made into electromechanical sensors.25 In a study from T.W. tumbler, 

an individual SWCNT was suspended over cliffs, where AFM force on the side of the 

SWCNT caused it to bend into a v-shape and elongates reducing its diameter. Results 
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show that under AFM tip force conductance drops and when the AFM force is released 

the measured conductivity reversibly increase. This is due to the band-gap increase 

corresponding to metal-semiconductor change and deformation increases. 

Furthermore, either macromolecules or small molecules maybe functionalized onto 

CNTs allowing sensor in various environments. 

 

Electrochemical sensors based on CNT and aptamers will be discussed in more details in 

Chapter 3. 

 

1.3.3 CNTs for drug delivery 

 

CNTs are considered promising nano-carriers which were utilized in diagnostics or drug 

delivery.26 Via CNT functionalization, they become soluble in aqueous solutions and turn 

biocompatible for drug delivery in vitro and in vivo thanks to its uniform distribution.27 

Functionalized CNTs has been used for the delivery of drug molecules and larger 

biomolecules, such as proteins, DNA, and small iRNA in vitro and in vivo. Shown in Figure 

1.7 is the delivery of siRNA into cells by a covalent linkage onto CNTs which could later 

be reversibly cleaved and the siRNA released. Although previously viral-based siRNA 

delivery has shown great promise, the safety concern of viral vectors is significant which 

hampered its realization. In this regard CNTs emerged as a replacing carrier and 

successfully delivered siRNA into cells upon cleavage of a cleavable bond between 
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SWCNTs and siRNA, most importantly, arguably safer than viral vectors.28 One of the 

first works in the area was the use of carbon nanotubes as drug delivery vehicles for PTX 

in cancer treatment.29 PTX, paclitaxel is a widely used cancer chemotherapy drug. H. Dai 

et al. showed in vivo that PTX conjugated to a PEG (polyethylene glycol) chained SWCNT 

offered over 10-fold higher PTX tumor uptake than clinical Taxol in a 4T1 breast cancer 

model. In comparison, SWCNT-PTX showed a high tumor suppression efficacy of 59.4% 

compared to 27.7% from Taxol on Day 22. The much higher uptake of PTX by tumor and 

the increased drug efficacy owes to the prolonged blood circulation time and EPR 

effects brought by the SWCNT-PTX.  

 

CNT have shown their potential in biomedical applications. However, biocompatibility 

and toxicity of CNT is still in debate.28 It is therefore reasonable and much needed for a 

platform that harnesses the advantages of CNT for biomedical applications while 

avoiding their potential dangers in humans. CNT based membranes which controllably 

delivers drugs outside the body maybe such a solution.  

 

1.4 CNT Membrane: a versatile fast flow platform  

 

Cell membranes are amazing natural structures that demonstrate selective permeability 

and are critical to maintaining normal biological functions. The embedded proteins in 

the membranes acts as the gatekeepers that control flux in and out of membranes and 
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determines which substances are granted access. X-ray structures indicates that the 

conformation of ion channels can be controlled under voltage bias, which can open and 

close the controlled ion channels, and determine which ions are transported.30 Recent 

research has been trying to mimic the fascinating working principles of these 

membranes and their gatekeeping abilities. 

 

CNTs are structurally similar to proteins in biological membranes due to their tubular 

shape and hydrophobic graphitic inside wall. Hummer's molecular simulations envisions 

the formation of ordered water molecule column through the inside core of a CNT,31  

where the pulse transport of water through the near friction-less core allowed 

enhanced water flow. Crooks et al. reported the flow of polystyrene through a 

membrane containing only a single 150 nm diameter carbon nanotube,32 which 

confirms that transport through CNT inner core is valid experimentally, while previous 

reports show nano-pore transport with results averaged from an array of nano-pores. 

Later B.J. Hinds et al. reported a CNT membrane with well aligned multi-walled carbon 

nanotube formation shown in Figure 1.8.33 Aligned MWCNT were first grown vertically 

on quartz substrate by chemical vapor deposition method (CVD), then the MWCNT were 

embedded in polystyrene to make the membrane. Follow-up water plasma treatment 

not only cleared residue polymer at tips of membranes, excess Fe catalysts, they also 

oxidized carbon on the CNT and generated carboxylate groups, which could be used to 

covalently functionalize the tip of CNT for gate keeping chemistry. B.J. Hinds et al. 



12 

 

demonstrated that bulky molecules functionalized at the entrance of CNT can sterically 

hinder ion flux, similar to when a protein channel in the "closed" gating state. Majumder 

et al. further studied the gate keeping effects with respect to ion transport,34 where the 

anionic dye molecules were attached to the carboxylate groups at the tip of CNT tip as 

gate keeper. It was seen that due to charge attraction cationic molecule transport 

through the CNT membrane is greatly enhanced, which outlined the importance and 

viability of various gate keepers at CNT membrane to make it a biomimetic membrane. 

B.J. Hinds group also found that fluid flow through CNT membrane is 4-5 orders of 

magnitude faster than conventional fluid flow in 2005,35 resulting from the atomically 

flat core of the MWCNT and molecules being transported slipping through nearly 

frictionless. The similar results of fast transport in CNT membrane was also observed by 

the Holt group in 2006.36 Both the results from Hinds group and Holt group confirmed 

the Hummer group's molecular dynamics simulations,31 which seted the possibility of 

the CNT membrane as a fast fluid and gas transport/separation platform. 

 

There are merits to the CNT membrane that makes it ideal for transport/separations 

applications. First, they offer an amazing 4-5 magnitude higher fluid/gas flow that is 

comparable to biological membranes. Secondly, the CNT membranes are fabricated by 

embedding CNT in polymer, so they offer robustness which biological membranes lacks. 

Thirdly, the unique shape and chemistry of CNT allows functionalization at the tips 

allowing gatekeeping actions mimicking biological membranes. At last carbon nanotubes 
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are conductive allowing for electrochemical functionalization, control of gatekeeping by 

electric bias and energy efficient electroosmotic pumping. Modest regulation of ion 

transportation through the CNT membrane is seen with steric hindrance and 

electrostatic effects with functionalization at the tip. More pronounced regulation of ion 

transportation was seen with voltage bias controlling the anion tethered molecules  

shown in Fig 1.9.37 Although the overall trend of positive and negative bias on MV2+ and 

Ru(bpy)3
2+ transport rate is similar, the steric hindrance of the dye allowed the smaller 

permeate to transport at a higher rate thus resulting in a separation factor of 22 at -130 

mV bias.   

 

It should be noted that in the above report negatively charged dye molecules were 

functionalized to the CNT tip via two step functionalization chemistry. First the 

carboxylate group density on the tips of CNT is increased by electrochemical diazonium 

grafting. The second step is amide coupling of charged dye molecules to the carboxyl 

groups at the tip. Specifically, Electrochemical grafting of 4-carboxylphenyl diazonium is 

used to increase the carboxyl density. However simulations and experimental results 

show that by a normal electrochemical diazonium functionalization, carboxyl groups can 

also be created deeper down the CNT entrance, which disrupts the smoothness of the 

CNT wall and induce unwanted charge repellence.38 In order to reduce the unwanted 

functionalization deep down the CNT which reduces ionic flux, a flow grafting method 

was improvised. Specifically during flow grafting of diazonium, 10 cm water column on 
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the opposite side of the membrane is maintained so that a constant pressure flow keeps 

diazonium molecules reacting only with CNT surface at the tip, reducing diazonium 

reactions further down the tube.39 

 

Wu et al. used CNT membranes for programmable transdermal drug delivery on human 

skin in vitro.40 CNT membranes were produced using a method modified from Crooks et 

al. shown in Figure 1.10. Briefly, CNT-epoxy composite were fabricated by mixing CNT, 

epoxy, hardener, and surfactant. After curing to appropriate hardness, a microtome 

cutter is used to cut the CNT-epoxy block into 5 um thick membranes. It is notable that 

by using this method hundreds of membranes can be made in a short time frame, 

greatly simplifying the previous vertically aligned CNT membrane method. However by 

using this method CNTs are randomly dispersed and thus flux/CNT density maybe lower 

than aligned CNT membranes. Wu et al. also studied efficient electro-osmotic flow in 

CNT membranes as shown in Figure 1.11.41 Electro-osmotic flow (EOF) usually comprises 

only a small portion in the net electro-induced flow made up of electrophoresis and 

electroosmosis, but in this study CNT membranes made with SWCNT/DWCNT with small 

inner diameter and densely charged surface greatly enhanced electro-osmotic flow. 

They showed that the flux of neutral caffeine molecules was greatly enhanced by 

applying bias to induce electroosmosis, which contributed greatly to total observed 

flow. Compared to conventional modified anodic aluminum oxide membranes, the 

electro-osmotic velocities were enhanced by nearly 500 fold and the power efficiency 
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was enhanced by 19 fold. More importantly the electroosmosis effect is efficient under 

sufficiently low voltages of (0.3-0.6V), which reduced the energy requirements and 

allowed the potential applications for EOF effect in portable devices.  

 

1.5 Summary of Research 

 

CNT membranes exhibit amazing properties as a biomimetic membrane that can be 

used for drug delivery, catalysis, gatekeeping, ion flow regulation, etc. It is the focus of 

this thesis to contribute to the current applications of CNT membranes: improving its 

current capabilities in drug delivery, gate keeping, and ion flow mechanism. 

 

The first part of this thesis focus on CNT membrane for programmable drug delivery. Wu 

et al. shows that CNT membranes can be used for programmable delivery of nicotine in 

vitro and in vivo (Figure 1.12).40,42 Consequent in vivo study showed that the detection 

of small amounts of nicotine and its metabolized product is inaccurate. Also the 

robustness of the membranes is a concern if nicotine delivery patch devices for humans 

are to be developed in the future. Therefore in this context new generation CNT 

membranes was developed that have similar fluxes compared to previous studies yet 

with better mechanical stability by applying a support membrane below the CNT 

membrane. Under skin micro-dialysis membrane was used to help analyze nicotine flux 

as soon as it is permeates through the skin from patch delivery site. By the dialysis 
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membrane it is possible to use market nicotine cessation patches to gauge nicotine flux 

and therefore determine the effectiveness of our CNT patches. We may also analyze and 

measure the nicotine flux and resulting concentration right at the delivery site, before it 

is circulated through the body and diluted in the various body compartments. This 

would allow a more precise measurement tool to analyze the on/off and delivery 

potencies of our membrane, paving the way for future improvements.  

 

A setback for CNT membrane usage in transdermal drug delivery is the low passive flux 

rates of various important pharmaceutical drugs across skin such as clonidine. In order 

for the CNT membrane to be the rate limiting factor during delivery, the permeability of 

the drug through the skin has to be larger than the permeability of the drug through the 

CNT membrane, otherwise the skin will become the limiting factor. Currently there are 

numerous methods to improve drug permeability through the skin, such as 

electroporation, microneedles, iontophoresis, etc. Electroporation was chosen because 

it can be a non-invasive method to improve skin permeability, and the fact that it uses 

electric pulses combines well with the electric bias controlled on/off of the CNT 

membrane. Taking the best from the programmability of CNT membranes and the 

efficiency of electroporation, we hope to increase the range of drugs capable of being 

delivered and increasing flux to therapeutically required values. 
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The second part of the thesis sets to utilize CNT membranes for its gate keeping 

abilities, as CNT membranes have been demonstrated for ion selectivity and gate 

keeping abilities mainly due to charge repulsion effect and spatial confinement. In order 

to push the CNT membrane to be truly biomimetic, an ATP hairpin aptamer that could 

reversibly change conformation was functionalized onto CNT membrane tips to enable 

gating of ionic flux through membrane. By functionalizing ATP hairpin aptamers to the 

tip of CNT, the CNT membrane can be either in the “closed” state or “open” state 

depending on the target binding state of the aptamers. This is big step forward in CNT 

membrane technology and a basis for further development of functionalization at the 

tip that may perform more functions such as molecule grabbing, releasing, separation, 

or selective trafficking. Further studies also showed that CNT membranes with high ionic 

flux maybe functionalized to efficiently pump water by enhanced electroosmosis. In the 

future CNT membranes may rise to compete with conventional membranes in the 

treatment of water both in micro-environments and on the macroscale. 
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Figure 1.1 Schematic representation of a) formation of single-walled carbon nanotube 

by rolling up a grapheme sheet and b) three types of carbon nanotubes formed due to 
different rolling methods. Reproduced from ref.3 
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Figure 1.2 Currently used methods for carbon nanotube synthesis. Reproduced from 
ref.4 
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Figure 1.3 Covalent surface functionalization of CNT. Reproduced from ref.9  
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Figure 1.4 Schematic of reduction of aryl diazonium cation and subsequent covalent 

bonding onto a carbon atom of carbon substrate. Reproduced from ref.12   
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Figure 1.5 Schematic of typical surfactants absorbance onto nanotube surface. 
Reproduced from ref.8 
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a) 

 

b) 

Figure 1.6 a) Purification of SWCNT by concentrated HNO3, followed by surface 
oxidation in dilute HNO3, and then Pt loading by an ion exchange reaction. b) High 
magnification view of a single bundle showing typical Pt loading and sizes. Reproduced 

from ref.20 
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Figure 1.7 (a) A scheme of SWCNT-siRNA conjugation via disulfide linkage. (b) Confocal 
images of untreated cells (left) and SWNT siRNACXCR4 treated cells (right) after PE-anti 

CXCR4 staining. (c) CXCR4 expression levels on CEM cells three days after various 
treatments, including four types of liposomes and Luciferase control. Reproduced from 

ref.28 
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                        a                                                     b                                                    c 

Figure 1.8 a) As-grown MWCNT array produced by Fe-catalyzed chemical vapor 
deposition process. Scale bar 50 µm. (b) Schematic of the proposed membrane 

structure by embedding MWCNT array in polystyrene. (c) Cross section view of the CNT-
PS membrane after exposed to H2O plasma oxidation. Reproduced from ref.33 
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Figure 1.9 (a) Changes in separation coefficient with respect to voltage applied. (b) 
Fluxes of the two permeates at applied voltages across the CNT-FG membrane. 
Membrane area is 0.3 cm2. 
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Figure 1.10 (a) A typical multiwalled CNT used to make the single channel imaged by 
TEM. It has a uniform diameter over a length greater than 100 µm. (b) The single 
MWCNT embedded in epoxy and cut into sections using microtome. Reproduced from 
ref.32 
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Figure 1.11 (a) Schematic of highly efficient electro-osmotic pumping of neutral caffeine 

using various cations in SWCNT or MWCNT. The SWCNTs have inner diameter ranging 
from 0.8-2nm, and MWCNT have ~7 nm inner diameter. CAF (caffeine) with ~0.5 nm 
diameter (b) TEM of SWCNTs with ~2nm inner diameter. (c) 3 dimensional model of 
Ru(bpy)3

2+ moving in a (12,12) SWCNT. Reproduced from ref.41  
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Figure 1.12 (a) Flux of nicotine through CNT membrane with/without applying -300 mV 
bias. The on/off ratio of high flux to low flux under -300 mV bias and 0 mV bias is 5.5. 

Donor concentration is pH8 220 mM nicotine aqueous solution. (b) Schematic setup of  

nicotine delivery device with donor/CNT membrane/skin components. Reproduced from 
ref.40 
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Chapter 2 CNT Membranes in programmable nicotine delivery and electroporation 

enhanced drug delivery 

 

2.1 Introduction  

 

Oral delivery and hypodermic injection are the two most frequently administered drug 

delivery options in humans. However these two delivery routes are not perfect: patients 

taking oral drugs may suffer from undesired peaks in drug concentration; first pass 

effect of the liver can prematurely metabolize drugs administered by the oral route and 

greatly reduce bioavailability.43 Transdermal drug delivery emerges as an alternative 

seeking to overcome these setbacks and bring unique desirability to medical practices. 

By definition, transdermal drug delivery is “a term that should be restricted to the 

situation in which a solute diffuses through the various layers of the skin and into the 

systematic circulation for a therapeutic effect to be exerted”.44 

 

Transdermal drug delivery is by no means a new concept of the modern society. For 

over thousands of years man have placed substances on the skin for therapeutic effect 

and the practice have continued to the modern era. The first modern transdermal 

delivery system in the United States was approved in 1979- a three day patch that 

delivers scopolamine to treat motion sickness. In 1991 the approval of nicotine 

transdermal patches for nicotine replacement therapy (NRT) brought up the profile of 
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transdermal drug delivery in medical practices and general public. Today there exists a 

number of patches which delivers c8lonidine, fentanyl, lidocaine, nicotine, nitroglycerin, 

oestradiol, oxybutynin, scopolamine and testosterone.45,46 A list of drugs currently 

proved for transdermal delivery is detailed in table 2.1. With the variety of drugs 

available, the annual US transdermal market for transdermal patches is more than US $3 

billion alone.  

 

Transdermal drug delivery has many advantages compared with the oral route. Besides 

reducing the first pass effect of oral therapeutics, transdermal patches can also reduce 

side effects associated with oral delivery. For example, oestradiol patches for hormone 

replacement therapy are used by more than one million patients annually, and in 

contrast to oral doses, do not cause liver damage.45,47 Similarly, transdermal clonidine, 

nitroglycerin, and fentanyl exhibits less adverse effects than conventional oral dosage. 

More importantly, transdermal nicotine have helped smokers quit smoking more 

efficiently than other nicotine replacement therapy (NRT). One study shows that two 

years after transdermal nicotine patch therapy, patients were four times more likely to 

have quitted smoking compared to patients that received placebos.48 Using these 

experimental data, the time span nicotine patch was approved, and public sells figure of 

the patch, it was estimated that more than one million US smokers have quitted 

smoking with the help of nicotine patches.  
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Transdermal drug delivery also has some advantages compared to the injection route, 

which is painful and pose risk of disease transmission by needle re-use. Additionally, 

transdermal patches can be self-administered, which serves to increase patient 

compliance due to simplicity of use and time efficiency from saving trips to the 

hospital.43  

 

2.2 Structure of the skin 

 

The main barrier to the transdermal route is the skin. As shown in Figure 2.1, the skin 

can be categorized into three main layers: the epidermis which is the outmost layer that 

protectively wraps tissue beneath; the dermis which is mainly built of connective tissue, 

and the hypodermis. The epidermis can be further classified into five sublayers or strata: 

stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and 

stratum germinativum.  

 

The stratum corneum is comprised of layers of dead cells (corneocytes) surrounded by 

lipid rich matrix, sometimes the structure is referred to as “brick and mortar”. The lipid 

is organized in layers and hold tightly to adjacent corneocytes, providing barrier 

function. It is found that the outmost layer, the stratum corneum, provides almost the 

entirety of the barrier function of the epidermis due to its lipophilic nature although it is 

only 10-20 µm thick, quite thin compared to other layers of the skin.49 The barrier 
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function of the skin is reflected in its electrical properties, often characterized with 

impedance spectra.50 An equivalent circuit model consisting of a resistor (RS) in series 

with the parallel combination of a resistor (RSC) and a capacitor (CSC) have been well 

studied,51 where RSC and CSC represent properties of the stratum corneum, and RS the 

deeper layers (epidermis). Representative values are RSC=104-106 Ω cm2, CSC= 1-50 

nF/cm2, and RS=100-200 Ω cm2.52 Considering RSC being 2 to 4 magnitudes larger than RS, 

it is natural that the stratum corneum is identified as the main layer of resistance to 

drug delivery in the skin. 

 

2.3 Programmable transdermal delivery using CNT membranes 

 

One of the most important areas of transdermal drug delivery is in addiction treatment, 

where the overall costs of drug abuse in the United States exceed half a million dollars 

annually, as reported by the National Institute on Drug Abuse (NIDA).53 Nicotine 

transdermal patches has been widely used for treating nicotine addiction as a nicotine 

replacement therapy. Pain treatment forms another big potion of transdermal market 

sells, mainly fentanyl and clonidine (analgesic adjuvant). Together they occupy 44% of 

all transdermal products globally.54 Current patches on the market can be classified into 

two types: reservoir type and matrix type. In a reservoir type patch the drug delivery 

rate is controlled by a rate controlling membrane between the reservoir and skin. In the 

matrix type patch the drug, adhesive, and mechanical backing is combined into a 
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simpler design, and rate control is governed by skin permeability. However both 

membrane designs cannot provide variable delivery rates, lowering addiction cessation 

efficiency.55 A number of enhancement techniques has been through development to 

both enhance delivery rates and provide some rate control, including iontophoresis, 

electroporation, microneedles, abrasion, ultrasound, etc. Iontophoresis stands out as it 

can provide programmable and variable delivery rates, however a strong current is 

required which can cause skin irritation.56 The complexity of the device and high power 

requirements is also a concern and have limited its impact. A new transdermal drug 

delivery technology that provides programmable delivery rates, low power 

requirements, and simple design is much anticipated. 

 

CNT membranes has attracted much attention and received research focus, especially in 

gate keeping and controlling molecular flux.33,34,37 The fast flow, electric conductivity, 

and chemical versatility of CNT membranes make them ideal components in rate control 

of diffusing molecules. In 2010 J. Wu, B.J. Hinds published their in vitro results on 

programmable transdermal drug delivery using carbon nanotube membranes,40 details 

shown in figure 1.12. The CNT membrane replaces conventional polymer rate control 

membrane to be placed between the reservoir and skin. As the entire bottom side of 

the CNT membrane which is mechanically affixed to polycarbonate support is made 

conductive, counter wires positioned in the reservoir can be easily used to provide 

electric bias. Under 0 V, nicotine molecules passively diffuse through CNT membrane 
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and diffuse through the skin, providing the “off” flux. Under negative bias as low as -

600mV, cationic nicotine molecules diffuse through CNT membranes at accelerated 

rates due to combination of passive diffusion, electroporation, and electroosmosis. The 

result is an “on” nicotine flux, which can be up to 5.5 times the “off” flux, or called the 

on-off ratio. It should be noted in this case the CNT membrane is the rate-limiting 

barrier to nicotine flux, as nicotine diffusion coefficient for skin is higher than that of 

CNT membrane (2.68 × 10−8 cm2 compared to 1.07 × 10−10 cm2/s). This is important 

because if the skin is the rate limiting barrier, the rate control of the CNT membrane 

would have minor effect on final nicotine that diffuses through the skin. Later in vivo 

experiments on programmable nicotine delivery using CNT membranes was conducted 

by the same group in hairness guinea pigs.42 Figure 2.2 shows the schematic of the CNT 

membrane device and an optical image of the actual device. The device dimensions of 

the CNT membrane device is only 2.5 cm x 2.5 cmx 1.5 cm, which is quite compact 

compared to other transdermal rate-control or enhancement techniques. A button 

battery provided power for the membrane that can last up to 4-6 days without the need 

of battery replacement.  

 

2.4 New in vitro studies using supported fast flow CNT membrane and micro-dialysis 

sampling 

 

Although initial in vitro and in vivo studies using the CNT membrane for transdermal 

drug delivery has shown great results, a few setbacks needs to be solved in order for the 
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full potential of CNT membranes to be realized. First, data points for the in vivo studies 

is limited due to animal safety concerns and fast animal metabolism forming bi-product 

without known metabolic conversion rates. Secondly, although moderate flux rates was 

achieved for nicotine in vitro and in vivo, higher nicotine delivery rates or clonidine 

delivery rates is desired to encompass the requirements and open up new possibilities, 

which required the development of new CNT membranes with faster fluid flow. Thirdly, 

it is important to support CNT membranes with necessary mechanical backing, as the 

leak of concentrated nicotine can be dangerous for the test animal or possible later 

human subjects. 

 

It is part of this thesis that we conducted a series of experiments currently in vitro and 

preparing for in vivo to solve the problems described above. To better map time 

dependent dosage and on/off, a micro-dialysis membrane delivery rate sampling 

scheme was developed. By implanting the micro-dialysis membrane directly below the 

epidermis where the CNT membrane is located, drug concentration can be measured 

without having to frequently draw blood samples and study entire body metabolism or 

by product. Secondly, both high loading microtome cut CNT membrane and aligned 

carbon nanotube membrane provided by Porifera was used in the studies in an effort to 

improve nicotine flux and on/off ratios. Thirdly, membrane support consisting of nylon 

mesh was positioned below the CNT membrane and polycarbonate support to provide 

mechanical stability for the membrane. The stabilization can potentially cancel out 
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pressure from the skin/gel layer and external force applied from the top of the 

membrane device. 

 

2.4.1 Experimental setup of CNT membrane and micro-dialysis 

2.4.1.1 Chemicals and materials 

 

DWCNT with an average core diameter of 1.5 nm was purchased from cheaptubes.com. 

MHHPA(hexahydro-4-methylphtalic-anhydride, mixture of cis and trans), catalyst (2-

ethyl-4-methyl-1H-imidazole-1-propanenitrile, MES( 2-[N-morpholino]ethane sulfonic 

acid), EDC(ethyl-(N’,N’-dimethylamino) propylcarbodiimide hydrochloride), sulfo-NHS(N-

hydroxysulfosuccinimide), Direct blue 71 dye was purchased from Sigma Aldrich. Epon 

862 was purchased from Miller-Stephenson. Filter membranes with pore size 1 μm and 

20 μm PTFE unlaminated was purchased from Sterlitech. The micro-dialysis membranes 

was purchased from BASi Inc. Nylon mesh with 255 μm wire distance and 47% opening 

was purchased from Component Supply Company.  

 

2.4.1.2 Fabrication of the micro-tome cut DWCNT membrane and mounting 

 

DWCNT with 2% loading was fabricated with modifications from a previous method.32,40 

To describe it briefly 0.1 DWCNTs were first dispersed in 1L DI water with 2g SDS under 

tip sonication at 10W, 20% magnitude for 2h.(Qsonica, Model S-4000, tip size of 1/8 
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inch). The solution was filtered through 20 μm PTFE membrane to remove CNT bundles 

and impurities, then SWCNTs were gathered from the filtered solution on a 1 μm PTFE 

membrane. Next the purified SWCNTs was mixed with Epon 862, MHHPA, surfactant 

Triton X-100, and catalyst by a ThinkyTM centrifugal shear Mixer, and the mixed CNT-

epoxy was degassed through vacuum (Welch 1400B pump) to remove bubbles and then 

cured under 85OC to appropriate hardness. The cured composite was cut into 5μm thick 

membranes with a Reichert-Jung microtome, after which the cut membranes (0.6 cm x 

0.6 cm) were glued over a 3mm hole in polycarbonate plate to act as mechanical 

support. The top side of the membrane is in the recess of the hole and the bottom side 

of the membrane is designated on the bottom plane of the polycarbonate plate. Both 

sides of the as-prepared SWCNT membrane was treated with water plasma oxidation 

for 1min to remove extra polymer at CNT tip. As seen in figure 2.3, SWCNT have an 

average core diameter of ~1.5 nm and length of 5-30 μm as reported by the 

manufacturer.  The thickness of as-microtome cut membranes is ~5 μm subject to some 

variance in certain areas (figure 2.3b), and no cracks was observed for the membranes 

fabricated. 

 

The CNT membranes (~0.6x0.6 cm2) were glued over a 3mm diameter hole in 

polycarbonate plate (1mm thick) acting as mechanical support. To strengthen the CNT 

membrane from below, nylon mesh with 255μm openings was first glued onto 

polycarbonate plate, with the meshes covering the 3mm diameter hole. CNT 
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membranes was then glued onto the top of the nylon mesh. This stabilized CNT 

membranes on the nylon mesh plane and greatly reduced force being applied from the 

skin contact and above the membrane device. The top side of the membrane is in the 

recess of the whole and the bottom side of the membrane is on the bottom plane of the 

polycarbonate. The whole bottom side of the CNT membrane received gold coating ~30 

nm thick to provide electric conductivity to act as working electrode. The membrane 

area received less gold coating compared to surrounding polycarbonate support plate to 

reduce gold coating layer’s effect on decreasing membrane flux. 

 

2.4.1.3 Mounting of Porifera CNT membranes 

 

Received Porifera CNT membranes were round discs 12-16 cm in diameter as the 

aligned CNTs were grown on Si substrate discs. In order to mount them to allow flux test  

square pieces of 0.7x0.7 cm were cut from the large disc and glued onto the hole of 

polycarbonate plate (1mm thick) which the microtome fabricated CNT membranes were 

mounted on. Further gold coating and functionalization processes on the Porifera CNT 

membranes resembled that of the microtome-cut CNT membranes. 

 

2.4.1.4 Functionalization of CNT membrane 
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To functionalize the membrane with aptamers, the U-tube setup was used as shown in 

figure 2.4. First the DWCNT membranes are flow-grafted (FG) with benzoic acid by 

immersing the top of the membrane in 100 mM 4-carboxy phenyl diazonium 

tetrafluoroborate and under 2 cm DI water pressure at the bottom of the membrane for 

12 h. Flow grafting with 2 cm DI water pressure limits further dye functionalization to 

the tip of the carbon nanotubes. Immediately following diazonium grafting, 4mL fresh 

dye solution with 100mg direct blue 71 and 5mg EDC, 5mg sulfo-NHS is prepared. The 

top of the membrane is again immersed in the direct blue solution for functionalization 

for 12 hours under 2cm DI water column pressure. 

 

2.4.1.5 Preparation of skin 

 

Fresh porcine pig ear skin was obtained from a local abattoir. Front and back side ear 

skin was dermatomed to 250-300 µm pieces and kept in -20°C refrigerator until use. 

Before conducting an experiment the skin was taken out and thawed in 0.9% saline 

under room temperature. Dermatomed skin of 250-300 µm is preferred over heat 

separated epidermis as skin with intact epidermis better mimic in vivo skin 

environment.56 

 

2.4.1.6 Screening of CNT membranes for nicotine ON/OFF 
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Either microtomed cut membranes with high loading (2.5% weight) or aligned CNT 

membranes received from Porifera were screened for nicotine flux and on/off with U-

tube KCl screening and flow cell setup prior to in vitro micro-dialysis screening over skin 

because the individuality of CNT distribution and local polymeric conditions means not 

all membranes possess required flux and on/off. Following membrane fabrication and 

mounting, they were first screened in U-tube setups shown in figure 2.5. Edaq 

potentiostat was used to provide constant bias during measurements, and two Ag/AgCl 

electrodes were placed on the top and bottom side of the CNT membrane acting as 

working electrode and reference electrode, with distance between electrodes being 10 

cm. Following KCl screening experiments, CNT membranes were screened flow cell 

setup, will fresh PBS solution being supplied by syringe pump which flows into auto 

sampler. HPLC measurements were then made of the samples and flux and on/off ratios 

calculated. Membranes with suitable flux and on/off ratios pass to microdialysis flow 

cell study with skin.  

 

2.4.1.7 Microdialysis and flow cell setup 

 

The microdialysis membrane probe is shown in detail in figure 2.6 as depicted by the 

manufacturer. It is a hollow dialysis fiber with an outer diameter of 320 µm, length of 

5mm, and a MWCO of 30KDA, and hollow plastic tubing with outer diameter of 218 µm 

was collected on both sides of the probe to provide inlet and outlet. The 30KDA 
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molecular weight cutoff allowed nicotine molecules in the vicinity of the microdialysis 

membrane probe to permeate through and carried downstream by the constant PBS 

flow through probe and its tubing. The microdialysis membrane was implanted into the 

dermis so measured flux is the localized nicotine flux in the skin prior to systematic 

circulation or dilution. To prove that microdialysis can be used to sample nicotine 

concentration and to provide a comparable base line for CNT membrane nicotine 

delivery, commercial Nicoderm patches was used in a microdialysis study. The 

microdialysis membrane was implanted into the dermis of the full thickness skin (1.5 

mm), then the skin placed above the receptor chamber of a vertical Franz diffusion cell, 

with the stratum corneum facing the donor chamber. The commercial Nicoderm patch 

was cut into small size with area comparable to that of our CNT membrane (0.07 cm2) 

and fixed onto the stratum corneum. Fresh PBS flowed through the dialysis membrane 

with a rate of 2µL/min controlled by a syringe pump. The PBS that flows through 

microdialysis membrane was collected by a fraction sampler collecting at 1 h intervals. 

The receptor chamber was filled with fresh PBS and stirred with magnetic stir bar to 

simulate in vivo blood circulation to decrease the depot effect.   

 

Nicoderm microdialysis membrane experiments was performed using 200-300µm thin 

porcine skin. During full thickness skin Nicoderm experiments it was found that due to 

the strong skin depot ON/OFF ratios was not significant as expected. Even with the 

magnetic stirred receptor chamber nicotine could not be removed from the skin at a 
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sufficient rate causing “off” state nicotine concentration to drop very slowly on the 

measured nicotine profile. The thin skin Nicoderm experiment used a setup which 

combined the flow cell and the microdialysis is shown in figure 2.7, where the 

microdialysis probe sits below the thin microtomed skin, which was positioned above 

the sampling chamber. Phosphate buffer solution was injected by syringe pump into the 

sampling chamber which was collected by fraction sample collector downstream to 

simulate blood circulation. Another set of syringe pump and fraction sample collector 

was used to inject PBS into the dialysis probe and collect PBS solution flowing out of the 

probe to measure nicotine concentration.  

 

Programmable delivery of nicotine by CNT membrane was measured by the same setup 

as the Nicoderm experiments except the nicotine source, where in this case the CNT 

membrane replaced the Nicoderm patch and was positioned above the skin. The 

reference/counter electrodes shown in figure 2.7 and CNT membrane as working 

electrode provided bias for the membrane to switch between off state and on state. 

During OFF state 0 mV bias was applied and ON state -1.2V to -1.5V was applied by Edaq 

potentiostat, with off state lasting 12h and ON state lasting 12h for 1-3 cycles. 

 

2.4.2 Results and Discussion 

2.4.2.1 SEM of Porifera CNT membranes 
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Aligned CNT membranes from Porifera was preferred due to their large membrane size, 

mechanical stability, and expected high flux capability. The well aligned growth of 

vertical CNTs meant the membrane made from impregnating them in polymer would 

possess a high pore area, as all tubes face vertically. It is also possible then to grow 

desired length of CNTs and impregnate them with polymer to give the membranes 

mechanical robustness, the thicker the membrane the higher the robustness. Too long a 

CNT however means longer travel distance for molecules inside CNT cores and becomes 

undesirable, thus current Porifera membranes had thickness of 30-50 µm well showing 

reasonable mechanical robustness and diffusion time. 

 

The CNT membranes were checked for CNT distribution and membrane conditions by 

SEM with images shown in figure 2.8 (Batch 16 membranes were presented here due to 

high ON/OFF ratios). In figure 2.8a the surface of the membrane can be observed with 

an abundance of CNTs protruding out from the embedding polymer which appears as 

white dots on the SEM image, and no cracks spanning the membrane thickness was 

observed. In figure 2.8b both the top surface and cross section can be observed with 

CNTs, the CNTs on top surface appeared as white dots and CNTs from the cross section 

appeared in strands that protrude from the side. It was likely that during sample 

preparation the shear force cutting the cross section brought out tubes close to the 

cross section and appeared as it is on the SEM image, although they were initially 

vertically aligned. The observed CNTs/polymer surface was similar to the earlier report 
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by J. Wu, B.J. Hinds, where they observed the top surface of microtomed multi-walled 

carbon nanotube membrane with CNTs protruding out from embedding polymer. 

 

2.4.2.2 KCl ionic current screening and nicotine ON/OFF results 

 

All batches of membranes received from Porifera were first tested for ionic current flow 

in U-tube setup with 0.1 M KCl as the ionic species before nicotine flux and ON/OFF 

studies without skin in the flow cell setup. Table 2.2 shows the typical 0.1 M KCl 

screening current, nicotine flux and ON/OFF ratios of Porifera batches compared with 

the typical microtome-cut CNT membrane KCl screening current and nicotine flux. All 

ON/OFF ratios were calculated by dividing the flux of ON state nicotine flux under -1.5 V 

negative bias by OFF state nicotine flux under 0 V bias. Batch 13, 16, and 25 of Porifera 

CNT membranes showed moderate ON/OFF ratios ranging from 3.2 to 4.95, which was 

higher than reported by J. Wu, B.J. Hinds. However, nicotine ON flux of batch 13 and 25 

was below the required therapeutic flux, rendering the two membranes less useful in 

practice. Batch 16 membranes exhibited ON/OFF ratios of 4.95, with OFF and ON flux 

respectively being 0.4 µmole/h*cm2 and 1.98 µmole/h*cm2, which matched that of 

therapeutic requirements (0.3 µmole/h*cm2 and 1.1 µmole/h*cm2 respectively). 

Batches such as 46, 47, and 50 did not show noticeable ON/OFF ratios, two of which was 

less than 1, the notion that KCl screening current of a membrane was generally 

proportionate to its nicotine flux could not be applied to these membranes. 0.1 M KCl 



46 

 

screening current of these membranes was high compared to batch 16 although their 

nicotine flux was lower which was unexpected. It is speculated due to the small 

diameter of the CNTs in the membranes the majority of CNT tips were blocked by 

polymer reducing porosity, the abnormally high KCl ionic current probably resulting 

from the high conductivity of the CNTs. Further investigation would be required in the 

future to identify the exact cause of failure for some of the aligned CNT membranes in 

order to improve the fabrication process, as aligned CNT membranes are still desirable 

due to their mechanical stability and expected high flux.  

 

In comparison most microtome-cut membranes with 2.5% weight ratio showed 0.1M 

KCl ionic current of 8-10µA, high OFF and ON fluxes, and ON/OFF ratios as high as 7.94. 

Weight ratio of CNTs to embedding epoxy/hardener dictated OFF and ON fluxes: the 

higher weight ratios resulted in increase in porosity and thus higher OFF and ON fluxes. 

It should be noted however it is impracticable to significantly raise weight ratios beyond 

5%, as CNTs-epoxy composites beyond 5% poses incomplete mixing and difficulty in 

microtome-cutting due to hardness of CNTs.  

 

2.4.2.3 Microdialysis membrane measurements of Nicoderm released nicotine in full 

thickness porcine skin 
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Release profile of nicotine from a 0.07 cm2 Nicoderm patch (21mg/24h) was measured 

by a microdialysis membrane implanted inside the dermis shown in figure 2.9. The 

results show that microdialysis membrane implanted in the skin could successfully 

detect nicotine that was released by a commercial patch which permeated through 

stratum corneum into the lower skin layers with measured peak concentration to be 

~50 µg/ml. Upon removal of the patch measured concentration correspondingly 

decreased at a steady rate which lasted into hour 32, which is expected since nicotine 

would steadily be removed by phosphate buffer solution circulation. It is undesirable 

however that a lag-time of 26h was observed as high nicotine concentration was 

detected by the microdialysis membrane even after the Nicoderm patch was removed. 

The cause of this lag-time was due to nicotine depot effect in the skin and no viable 

routes of clearance for the trapped nicotine inside skin. This lag-time could be 

detrimental to our experimental design to show ON/OFF using CNT membranes as 

measured ON/OFF ratios will be significantly less than actual due to the trapped 

nicotine. The actual lag-time is expected to be shorter in in vivo studies because of 

blood circulation in the dermis quickly clearing deposited nicotine. To better simulate in 

vivo microdialysis results with sufficient body clearance in preparation for in vivo 

studies, thin skin microdialysis studies with Nicoderm patch was conducted.    

 

2.4.2.4 Microdialysis membrane measurements of Nicoderm released nicotine in 

dermatomed (200-300 µm) thin porcine skin 
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As described in the experimental section and drawn in figure 2.7, a combination of flow 

cell and microdialysis membrane sampling was used to measure nicotine release by 

Nicoderm patches. Flow cell provided constant phosphate buffer flow through the 

sampling chamber beneath the thin skin and microdialysis probe, simulating in vivo 

blood circulation. This served two purposes: 1) To reduce the skin depot effect which 

resulted in considerable lag-time 2) To compare microdialysis results with conventional 

flow cell results to better understand nicotine delivery profiles measured by 

microdialysis and possible in vivo behavior. From the results of the thin skin studies 

which are shown in figure 2.10, it can be observed an initial burst of nicotine 

concentration measured by the probe in 0-4 h which was expected due to inherent lag-

time of nicotine diffusion through skin and the design of the Nicoderm patch. From hour 

4 onward until Nicoderm patch removal at hour 12, the nicotine delivery reached a 

semi-steady state delivery profile which was justified by previous studies by Y.B. Bannon 

et al.57 The main difference between thick full skin nicotine release and thin skin release 

was the fast clearance time demonstrated by the latter: via efficient clearance of the 

underlying phosphate flow through sampling chamber, a switch from ON state to OFF 

state was reached within 2 hours compared to that of more than 26 hours in thick skin 

experiments. The average amount of nicotine measured starting 2 hours after the 

removal of Nicoderm patch was 0.0016 µmoles, which is 13.75 fold smaller than the 

mean steady state nicotine concentration of 0.022 µmoles (per 0.07 cm2 area 

membrane and per hour), an figure small enough to be considered as residue value 

since the ON/OFF ratios of current CNT membranes are in the range of 6-13.6. This fast 
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clearance rate of ~2h indicates the microdialysis probe’s potential to accurately map out 

CNT membrane nicotine delivery ON/OFF profile. 

 

2.4.2.5 Switchable transdermal delivery of nicotine by CNT membrane 

 

Switchable nicotine delivery by CNT membranes was performed on the flow 

cell/microdialysis system following demonstration of viability and calibration by 

Nicoderm patches. As shown in figure 2.11, cumulative nicotine release profile from CNT 

membrane/porcine skin was measured by microdialysis for a total of 3 ON/OFF cycles. 

For the ON cycle -600 mV bias was applied to electrophoretically and electroosmotically 

pump nicotine through cores CNTs along with passive diffusion, while for the OFF cycle 

electric bias was maintained off at 0 mV for nicotine to passively diffuse through CNT 

membrane into skin, which is mainly governed by the concentration gradient. As 

discussed previously the diffusion coefficient for nicotine through skin is larger than the 

coefficient through CNT membrane, so the rate of release through CNT membrane/skin 

was determined by the CNT membrane. In cycle I OFF flux was 0.01 µmoles/(cm2*hr), 

ON flux 0.17 µmoles/(cm2*hr, which yields an extraordinary ON/OFF ratio of 13.6. In 

cycle II OFF flux was 0.04 µmoles/(cm2*hr), ON flux 0.11 µmoles/(cm2*hr, indicating an 

ON/OFF ratio of 2.4. In cycle I OFF flux was 0.02 µmoles/(cm2*hr), ON flux 0.11 

µmoles/(cm2*hr, showing an ON/OFF ratio of 4.8. The first cycle ON/OFF of 13.6 was 

quite remarkable as previous report by J. Wu and B.J. Hinds showed ON/OFF ranging 
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from 3.5 to 5.5. We contribute the improvement in ON/OFF ratio the exclusive use of 

DWCNTs here as compared to the use of both DWCNTs and MWCNTs in their study. 

DWCNTs with their smaller diameter will improve electroosmosis velocity for fluids 

presumably due to the smaller diameter forcing larger percentage of the solvent to be 

pushed by ions, increasing electroosmosis velocity which in turn contributed to the total 

observed nicotine delivery rate during ON phase.41 

 

2.4.3 Conclusions 

 

The preliminary data shows that we have successfully demonstrated multiple cycle 

ON/OFF nicotine delivery by CNT membrane measured using a microdialysis membrane 

setup. The measured nicotine profile fits well with previous studies and have shown its 

potential to map out nicotine concentration profiles in vivo with a large amount of data 

points with short time intervals which the conventional blood draw method could not 

achieve due to animal safety concerns. Follow up detailed animal protocol using 

hairness guinea pigs is currently being developed within the group to prove the concept 

in hairness guinea pigs. Since transdermal drug delivery studies typically last for several 

days, the regrowth of hair will significantly affect the contact between skin and 

transdermal patches, resulting in errors in diffusion rates; the use of hairness guinea 

pigs are ideal in solving this problem.  Simplified outline of experimental design is herein 

given to provide an idea of how the experiments will be carried out: 1) 6 hairness guinea 
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pigs will be divided into 2 groups of 3. 2) Each group will be anesthetized for 

implantation of microdialysis setup below skin. Upon successful implantation one end of 

the microdialysis probe will be connected to a syringe pump supplying fresh phosphate 

buffer solution and the other end connected to a flow cell collecting nicotine sample 

data. The animals will be monitored for their health condition. 3) Since no blood draw 

will be taken on the guinea pigs, commercial nicotine patches (Nicoderm) with 0.07 cm2 

area will be applied to the test subject dorsal area for 1-2 days to calibrate the nicotine 

permeation behavior of each subject as individuality exists. 4) The commercial nicotine 

patch will be removed for 1 day prior to CNT membrane nicotine delivery studies to give 

the animal sufficient recovery time and for the local nicotine concentration to drop 

below residue values. 5) CNT membranes will be applied to the animals for multiple 

ON/OFF cycle delivery of nicotine. 

 

One innovative approach to improve addiction treatments efficacy is to couple remote 

counseling via phone or internet survey to program a delivery device, which has been 

proven to be more effective than self-administered treatments.58 Future plans of the 

group are to continue switchable CNT membrane drug delivery in human subjects after 

proving it to be effective in animals, as the membrane device is compact, energy 

efficient, and can be easily coupled with WIFI/ Bluetooth watch to control delivery rates.  
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2.5 Electroporation in enhancement of drug delivery 

 

Nicotine can permeate through the skin well over therapeutically required rates 

because of its small size (162 Da). Due to the strong stratum corneum barrier, only a 

limited amount of drugs can permeate through the skin in significant amounts. The 

transport of most drugs through skin is slow with long lag-times and suffers from low 

flux rate, which greatly limits the potentials of transdermal drug delivery. CNT 

membranes may be the solution as a wide range of drugs such as clonidine and fentanyl 

could be delivered similarly to nicotine. However their slow permeation rates through 

the skin means the skin is the rate-controlling component and renders CNT membrane 

rate control ineffective. To improve drug transport through the skin, enhancement 

methods therefore are required to step up drug transport through the skin up to 

therapeutic level. A number of approaches have been developed previously by various 

groups around the world which seeks to disrupt the skin barrier to allow faster drug 

transport through the skin, which were detailed in the following sections. 

 

2.5.1 Chemical enhancement methods 

 

Chemical enhancers were a natural approach of enhancement because it can readily be 

formulated into the drug containing layer of a transdermal patch. Many effective 

chemical enhancers disrupt the highly ordered structures of the stratum corneum by 
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inserting amphiphilic molecules into the bilayers to disorganize their packing or by 

extracting lipids using solvents and surfactants to create packing defects.59 Hundreds of 

chemical enhancers were studied, including existing molecules and molecules which 

were specifically designed for this purpose, such as Azone (1-dodecylazacycloheptan-2-

one) and SEPA (2-n-nonyl-1,3 dioxolane). Systematic designing and screening processes 

of chemical enhancers was also proposed.60 Although chemical enhancers have seen 

some success, it did not bring change to the structure of the skin so the key obstacle 

was not tackled, inherently limiting its effectiveness  in most cases. 

 

2.5.2 Iontophoresis 

 

Iontophoresis was an enhancement method seeking to increase the range of drugs 

available for transdermal drug delivery with reversible mechanisms that poise minimum 

skin irritation. The delivery of drugs is accompanied by a small constant electric current 

that drives the drug ion into the skin, which is depicted in figure 2.12. The drug 

formulation containing the ionized drug molecule (D+) is placed in the anode 

compartment.61 Application of electric potential leads to a flow of electrons in the 

system. Due to the flow of electric current in the forward direction, D+ drug ions is 

electrophoretically delivered into the skin. To compensate for the flow Cl- ions move 

from the skin into the anode compartment. One advantage of iontophoresis is the 

controllability of drug flux: the amount of drug compounds is heavily related to the 
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quantity of electric charge flow, the duration of the current application, and active area 

of contact. Improved onset time and also a more rapid offset time also makes 

iontophoresis desirable. A wide range of drugs used for various purposes were tested 

for iontophoretic delivery, notably including lidocaine for local anesthetics,62 fentanyl 

for pain management,63 piroxicam (a NSAID),64 etc. Although iontophoresis have 

achieved some success, the maximum delivery rate is limited by skin irritation and pain 

caused inability of electric current confinement in the stratum corneum. Iontophoretic 

patches devices can also be quite costly because microprocessors were required to 

control current magnitude.65 Human trials have gone under way the  

 

2.5.3 Microneedles 

 

A straightforward approach to improve drug flux through skin is simply breaking the 

stratum corneum structure by punctuation with microneedles. With the micro-sized 

sharp needles, the stratum corneum barrier could be broken and minimum pain 

inflected on the paint thanks to the fine geometry of the needles. Both solid 

microneedles that broke the skin for controlled delivery by a patch and hollow 

microneedles with drugs directly coated on for rapid release were developed.66 

Although microneedles are desirable due to their low cost and simplicity, a key problem 

was not well addressed: the number of drugs available for transdermal delivery can be 

increased by the use of microneedles, yet it still lacks a rate controlling component of 



55 

 

delivery, as typically an external patch was applied to the punctured skin afterwards. 

The actual delivery rate of drugs still depended on the delivery rate of the polymer rate- 

controlling membrane in the patch and that rate is typically not switchable. 

Another key drawback with microneedles was the self-relaxation and healing of skin 

overtime after the enhancement was deployed, which rendered long term patch 

application impossible. 

 

2.5.4 Electroporation 

 

Amongst other active enhancement methods developed to enhance transdermal drug 

delivery, electroporation stands out due to its long lasting effect, controllable delivery 

rate, and simplicity of device. Electroporation is the use of short, high-voltage pulses to 

temporarily disrupt the stratum corneum structure to allow enhanced delivery of 

molecules of interest. The use of short, high voltage pulses is a well-known method to 

disrupt cell membrane for gene transfection and other applications.67 The 

electroporation of mammalian skin was later studied by M.R. Prausnitz, J.C. Weaver et 

al. for enhanced drug delivery of calcein.68 The fluorescent marker calcein with 622 Da, -

4 charge that naturally permeates through the skin in very small quantities (less than 10 -

4 µg/cm2*hr) was used as the test molecule. By application of a number of electric 

pulses with voltage from 55-300V on porcine and human skin, enhancement of up to 4 

magnitudes and enhancement duration of up to 24 h was seen. Parameters such as 
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pulse voltage, pulse number, pulse duration, design of electrode, and intrinsic 

properties of the drug such as charge, lipophilicity, molecular weight, formulation 

determined the efficiency and magnitude of electroporation assisted transdermal drug 

delivery. Since then extensive in vitro research on transdermal drug delivery by 

electroporation was carried out by individual groups, including calcein, fentanyl, Lucifer 

yellow, dextran sulfate, nalbuphine, tetracaine, buprenorphine, etc.69 Electroporation 

has also been combined with other enhancement methods such as chemical enhancers, 

ultrasound, iontophoresis for the combined benefit.  

 

The major current challenge in the clinical acceptability of electroporation is debates of 

its after effect on the skin, underlying tissue, and human sensations. A number of 

methods have been used to assess skin’s tolerance to electric pulses, including visual  

examination, measurement of skin electric properties, TEWL (trans-epidermal water 

loss), as well as clinical studies. A list of electroporation effects on the skin is shown in 

table 2.3.69 Although most studies show perturbation to the skin being “reversible” and 

“minimal”, patient pain, sensation, and muscle stimulation is still of the primary 

concern. As initially the electric field is applied on the high resistance stratum corneum, 

subsequent lowering of resistance of the stratum corneum will introduce electric field 

deeper into underlying tissues where nerve endings are more populated, although 

innovative electrode geometry may help to confine electric field to the surface of skin 

and reduce associated pain. Shown in figure 2.23 is an illustration of simulated 
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transverse and lateral electroporation, where the rectangles and their stacking 

represents idealized stratum corneum layered structure and each rectangle was 

attributed a resistance value.70 50V was applied to the in (a) transverse electroporation 

and (b) lateral electroporation geometry. The modeling system calculated electric field 

strength in the vicinity of each rectangle and if the threshold voltage was reached (1V), 

the block was considered electroporated and its resistance reduced to that of low 

resistance electrolyte. When a rectangular block is electroporated, electric field and 

current were redistributed, and the illustration herein represents the final status of the 

blocks under 50V electric voltage after many redistribution intermediate phases. It could 

be seen that in the case of transverse electroporation, electric field penetrated all layers 

of corneocytes and electric field distribution was deep into skin, where in the lateral 

electroporation electric field was largely confined to the outer surface of stratum 

corneum. This local confinement limited electric field in the stratum corneum, or at 

larger voltages, the epidermis, where the lack of nerve endings results in reduced pain 

and contraction associated with electroporation. K. Sugibayashi et al. studied 

transdermal drug delivery by combination of electroporation and microneedle array, 

which is shown in figure 2.14.71 The microneedle array served two purposes: they either 

punctured the skin alone, or acted as electrodes of lateral electroporation and the flux 

enhancement results being studied synergically. The small distance of 0.4 mm and 4.0 

mm between positive and negative microneedle electrodes meant large electric field 

even with a small applied bias. The results showed that a 7-fold increase in the delivery 

of test molecule FD-4 resulting from microneedle puncture (no electroporation), a 20-
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fold increase from electroporation alone (the microneedles contacted skin with no 

puncture), and 140-fold flux increase when the microneedles punctured the skin with 

applied voltage also applied. This proves that lateral electroporation alone could provide 

substantial flux enhancement and benefit controllable drug delivery, from which we 

gained the evidence to develop a lateral wire-mesh electrode electroporation array.  

 

2.6 Electroporation enhanced CNT membrane transdermal drug delivery  

2.6.1 Primary hypothesis 

 

Passive drug flux through skin varies greatly between each individual because of the 

individuality in pore number/size, hair conduit, skin layer thickness, gender, and health 

condition. Electroporation may enhance drug flux 1-3 orders of magnitude and thus 

minimize individual differences so a wider variety of drugs may be delivered and at 

similar flux rates. As therapeutic needs may change each hour or day of the treatment a 

rate control system is also greatly desired to be incorporated with electroporation, 

which the CNT membrane have previously achieved in the delivery of nicotine in vitro 

and in vivo. It is proposed that by periodical electroporation of the skin to enhance skin 

permeability, CNT membrane could be used to control the flux rates of drug molecules 

through the skin as post-electroporation drug permeability through skin becomes 

greater than that of CNT membrane. Drugs previously incompatible with transdermal 

delivery due to their low permeability through skin may now be delivered into skin at 



59 

 

switchable rates. Drugs that demands careful flux regulation such as fentanyl and 

clonidine may also be delivered now transdermally with reduced side effects compared 

with oral delivery. 

 

 

In order for CNT membrane to be the rating controlling component, permeability of the 

drug through skin has to be greater than the flux though the CNT membrane, otherwise 

the skin would become the rate limiting component in the system. A special wire mesh 

electrode would have to be designed to efficiently electroporate the skin while requiring 

low voltage and power consumption to make the system portable. 

 

2.6.1 Experimental 

2.6.1.1 Wire mesh fabrication 

 

Two types of micro array electrodes was fabricated in the lab with insulated aluminum 

wires because of the unusual case of weaving (Most companies weave bare metal wire 

mesh for various applications). Figure 2.15(a) shows the freestanding wire mesh type 

with wires secured in frame on the four sides, with average wire distance between wires 

being 200-250 µm, which limits electric current to the surface of epidermis and caused 

less pain in the subject.72 To fabricate the wire mesh, two combs were mounted on 

stands with their teeth facing each other and in proximity; notches were cut on the top 
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of each teeth so they could lock wires in place. A rod was positioned in a plane below 

the combs being parallel to the combs direction to allow a looming geometry of wires 

(PAC insulated aluminum wires with outer diameter of 75µm was used for fabricating 

the wire mesh). The leading wire was locked and tied on the teeth of the first comb, 

winded down to the bottom plane rod then leaded back to the first teeth of second 

comb, similar to the conventional fabric weaving mechanism. The wires was locked in 

place in the teeth along the span of the comb until a minimum of 12-14 vertical wires 

were weaved. After the vertical wires was spun horizontal wires was added in 

successively by a repetition of interlocking the combs, placing in a horizontal wire, and 

then pulling apart the two combs. Glue was used on the sides of the wire mesh to define 

the edges of the mesh and hold wires in place. In order for the wire mesh junction 

points to act as electrodes the wire mesh was polished using sandpaper to expose the 

bottom plane of the wire mesh, the side view of a typical polished wire mesh contacting 

skin is shown in figure 2.16. Electric field would be confined to the bottom plane of wire 

mesh and top surface of skin since only the junction points of the wire mesh was 

polished, preventing discharge in other locations and directions. 

 

A second type of wire mesh was developed shown in figure 2.15(b) with more defined 

structure since the freestanding wire mesh may move during contact with skin changing 

electrode distance. Insulating wires was interweaved onto a nylon wire mesh with ~200 

µm spacing which acted as frame for the woven wire mesh. The skin-contact 
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conjunction points was polished similar to the freestanding wire mesh to act as 

electrodes.  

 

2.6.1.2 Chemicals and experimental methods 

 

Calcein was selected as the test molecule for measurement of electroporation efficiency 

with wire mesh electrode array. Calcein is a fluorescent molecule with MW of 622.55, -4 

charge, and solubility in water at low concentrations. At pH=7.4, 1mM concentration 

calcein solution appeared yellow-green, with the excitation wavelength and emission 

wavelength being 495/515 nm, respectively. Calcein was selected for this study because 

it crosses intact skin in very small amounts under passive diffusion conditions and was 

used commonly in electroporation studies for its simplicity of detection. The donor 

solution is 1mM calcein mixed with 0.9% saline, with pH was adjusted to 7. The receptor 

solution is 0.9% saline. MCNTs and SWCNTs were bought from cheaptubes.com. 

 

Fresh porcine pig ear skin was obtained from a local abattoir. Front and back side ear 

skin was dermatomed to 250-300 µm thick pieces and kept in -20°C refrigerator until 

use. Before conducting an experiment the skin is taken out and thawed in 0.9% saline 

under room temperature. Skin with resistance below 6kohms/cm2 is discarded because 

the low electric resistance indicated a damaged skin and another piece of skin is tried.  
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Pulses were delivered by a Keithley 2430 potentiostat. In this study 180-360 pulses of 

100-150 V were delivered at 1-5 ms duration and 1 Hz,  which were the electric 

parameters which electroporated the stratum corneum with high electrical efficiency 

according to a previous report.73 Pulses from Keithley 2430 were checked by an 

oscilloscope to ensure that pulses with desired voltage and duration were obtained 

from the potentiostat. 

 

A flow cell setup was used to measure calcein flux enhancement from wire mesh 

electroporation which is shown in figure 2.17. Upstream of the sample chamber is a 

syringe pump with the injection speed set to 400 µL/h. The diffused calcein through skin 

is carried by the flow of saline into the autosampler, which was set to rotate every 30-60 

min so samples were collected every 30-60 minutes, depending on the needs of the 

specific experiment. The calcein concentration from collected samples was measured on 

a Fluorospectrometer with the calibrated detection limit to be 10-4 µg/L.  

 

2.7 Electroporation results and discussion 

2.7.1 Electroporated skin resistance recovery 

 

Transverse skin resistance was routinely used to gauge the integrity of the barrier 

function of the stratum corneum, so a U-tube setup was used to measure transverse 

skin resistance with the skin clamped between 2 U-tube half-cell. 0.1M KCl solution 
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filled both sides of the U-tube and 2 Ag/AgCl electrodes were used as working and 

reference electrode, with the working electrode on one side of the U-tube and the 

reference electrode on the other side of the U-tube. Under this setup, intact fresh 

dermatomed skin measured 11-22 kΩ/cm2, which agreed well with previous 

publications. Electroporation was applied to the skin with electric parameters of 5ms 

duration, 180 pulses, and 100V using the wire mesh array as electrodes, after which the 

electroporated skin was quickly mounted in the U-tube setup in order to measure 

transverse skin resistance. Skin resistance measured 3-4 kΩ/cm2 immediately following 

electroporation. This drop in resistance was associated with the creation of new 

aqueous pathways and enlargement of existing conduits, which allowed increased ionic 

current through the skin resulting in decreased skin resistance. In a time span of 2-4 

hours resistance of the skin recovered to70-80% of its original value of 11-22 kΩ/cm2, 

with the final value dependent on the voltage used. It is generally accepted that 

resistance recovery time is related to flux enhancement duration and the resistance 

recovery percentage indicating reversibility of electroporation, as extremely high 

voltages of up to 300+ volts have been used to electroporate the skin and have shown 

low reversibility with the end skin resistance covering to 20-30% of its initial value. In 

this case not only aqueous pathways were created but also permanent changes to the 

stratum corneum structure.  

 

2.7.2 Electroporation enhanced calcein flux 
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Dermatomed skin pieces with intact stratum corneum structure were electroporated by 

the wire mesh electrode with the setup shown in figure 2.17. Typical flux enhancement 

plot as measured by fluorospectrometry is shown in figure 2.18. It can be seen that after 

electroporation of the skin at start of hour 2, calcein flux continued to increase from 

hour 2 to hour 6 until it stabilized at ~1*10-3 µg/(cm2*h), which is ~10 fold enhancement 

compared to initial flux. This enhancement ratio understands well with similar lateral 

electroporation device reports, but is smaller compared to transverse electroporation 

enhancement which can yield enhancement factors up to 1-3 orders of 

magnitude.68,70,71 As shown in figure 2.13, lateral electroporation sacrificed some of the 

enhancement efficiency for a more practical lateral geometry which can be exploited in 

building compact electroporation devices. Conventional electroporation devices were 

designed to clamp the skin or “pinch” the skin in order to partially transverse the skin, 

which is impractical for long-term transdermal drug delivery and cumbersome. Lateral 

electroporation by means of either wire mesh or electrode array could be easily coupled 

with transdermal patches/ CNT membrane on one single piece of device.  Both 

freestanding wire meshes and nylon mesh supported wire meshes have successfully 

shown the ability to electroporate the skin to increase calcein diffusion flux through the 

skin, yet the nylon mesh supported wire mesh is probably preferred in future 

experiments due to its robustness.  

 

2.7.3 Outlook of electroporation enhanced CNT membrane transdermal drug delivery 
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 The combination of CNT membrane and electroporation may be the solution to a key 

practical problem with transdermal drug delivery: the need for a programmable rate 

controlling device that can deliver beyond a small set of drugs, limited by low diffusion 

flux. CNT membranes have shown their ability to programmably deliver nicotine and 

other molecules. It is planned that coupled with an electroporation device to disrupt the 

skin barrier, CNT membranes may be able to programmably deliver a variety of drug 

molecules at an enhanced rate. Although a series of electroporation experiments with 

wire mesh have been shown to greatly enhance calcein test molecule flux, the results 

were inconsistent through a series of repetitions. In some trials the enhancements were 

only 2-3 fold and in some experiments enhancement was not noticeable. Upon scrutiny 

of wire mesh contact with skin, the main problem was identified to be insufficient wire 

mesh electrode contact with skin: although initially the skin was rigid and firm at the 

start of experiment when it topped the sampling chamber, after 4-6 hours it became 

loose and bent due to solution flow hydration, which meant the loss of contact between 

the skin and the wire mesh.  The second problem identified was the mediocre quality of 

wire mesh and the polishing process: even though wire meshes were home-made to the 

highest standard, over-polishing occurred in some of the junction points which meant 

electric field was not only confined to the skin but also being released into the donor 

solution, dissipating electric energy. This did not have adverse effects in previous 

reports as in their practices the skin was first dry electroporated, the electroporation 

device removed from skin, and then the donor solution being applied so no contact of 

donor solution and electrodes existed during electroporation.73 In our system where a 
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continuous electroporation setup the contact between donor solution and electrodes 

was necessary, electric field confinement became a serious problem. 

 

A possible solution was to measure electroporation enhancement flux by the 

microdialysis setup which was discussed in the previous section. The removal of a 

solution flow filled sample chamber meant the wire mesh is in firm contact with skin, 

ensuring the confinement of electric field to the stratum corneum so the entirety of 

electric energy would be released on the skin. Another possible solution would be the 

use of a confined electrode array as reported by J.C. Weaver et al,74 where an insulation 

disc was used to completely surround disc shaped electrode on all sides except the side 

that was in contact with skin to force electric field through skin instead of dissipated in 

donor solution. This approach however requires sophisticated micro-fabrication, which 

at the present stage seemed hard to be combined with a CNT membrane. 

 

2.8 Conclusions 

 

In this chapter CNT membranes were utilized for its abilities to programmably deliver 

molecules. The research was divided into two related sections: 1) The use of CNT 

membranes to transdermally deliver nicotine with switchable rates and the use of 

microdialysis to accurately map time dependent delivery profile; preparation of nylon 

mesh supported CNT membranes for safe animal studies. 2) The use of electroporation 
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combined with CNT membranes to expand the types of deliverable drugs and enable 

delivery with switchable rates. For the first section promising in vitro results showed 

that microdialysis could accurately map nicotine delivery profiles under skin and 

following in vivo hairness guinea pig experiments were expected in the future. In the 

second section results were not so promising, the major setback being insufficient wire 

mesh electrode contact with skin which resulted in inconsistent results. Either a 

microdialysis setup that removes the sampling chamber to ensure electrode-skin 

contact or micro-fabricated insulated disc electrode was suggested to solve the 

problem. Only after wire mesh electrodes could electroporate the skin with good 

repetition rates and high enhancement ratio can we combine it with CNT membranes to 

show programmable transdermal delivery of a variety of drugs  in the future. 

 

The eventual vision was a portable transdermal device that could safely and 

programmably deliver a variety of drugs under remote counseling, as in addiction 

treatments of nicotine it is most effective to administer psychological counseling, 

although currently prohibitive due to high costs.75 By using smartphones which can be 

designed to programmably control CNT membrane delivery rates by simply a change in 

voltage bias, remote counseling could be achieved over the phone or by internet. The 

patient can receive doctor administered delivery profiles at home and conveniently use 

smartphones to control drug flux without making visits to the hospital.  
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Table 2.1 List of transdermal patches and characteristics  

Active  

ingredient 

Product name Dose and size 

Of patch 

Dose delivered Clinical  

indication 

Clonidine Catapres-TTS 2.5–7.5 mg 

in 3.5–10.5 cm2 

0.7–2.1 mg in  

7d 

Hypertension 

Ethinyl oestradiol  

(EO) 

Ortho-Evra 0.75 mg EO and 

6 mg N in 20 

cm2 

0.14 mg EO and 

1.05 mg N in 7 d 

Birth control 

Fentanyl Duragesic 2.5–10 mg in 

cm2 

1.8–7.2 mg in 3 

d 

Analgesia 

Nicotine  Habitrol 

Nicoderm-CQ 

Nicotrol 

8.3–114 mg in 

3.5–30 cm2 

5–22 mg in 16–

24 h 

Smoking 

cessation 

Nitroglycerin Nitro-Dur 

Transderm-

Nitro 

12.5–160 mg 

in 5–40 cm2 

1.2–11.2 mg in 

12–14 h 

Angina 

17β-oestradiol Alora, Climara 

Esclim, 

Estraderm 

FemPatch, 

Vivelle 

0.39–20 mg in 

2.5–44 cm2 

0.075–0.7 mg 

in 3–7 d 

Hormone  

Replacement 

Oestradiol (O), 

norethindrone (N) 

CombiPatch 0.51–0.62 mg O 

and 2.7–4.8 mg 

N in 9–16 cm2 

0.15–0.20 mg O 

and 0.42–1.0 

mg N in 3–4 d 

Hormone  

Replacement 

Oxybutynin Oxytrol 36 mg in 39cm2 11.7–15.6 mg in 

3–4 d 

Overactive 

bladder 

Scopolamine Transderm Scop 1.5 mg in 

2.5 cm2 

1.0 mg in 3 d Motion 

sickness 

Testosterone Androderm 

Testoderm TTS 

10–328 mg 

in 37–60 cm2 

2.5–6 mg in 1 d Hypogonadism 

 

Data reproduced from ref.45 
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Table 2.2 KCl screening current and nicotine ON/OFF ratios of Porifera membranes; 
comparison with microtome-cut CNT membranes  

Membrane CNT Inner 
Diameter  (nm) 

0.1 M KCl 
screen
ing 
Curren
t (µA) 

Nicotine 
flux in flow 
cell setup 
w/o skin 
OFF state 
(µmole/h*c
m2) 

Nicotine 
flux in flow 
cell setup 
w/o skin 
ON state 
(µmole/h*c
m2) 

ON/O
FF 
ratio 
of 
nicoti
ne 
flux 

13 batch Porifera 3 0.3-0.4 0.25 1.6 6.40 

16 batch Porifera 6 1-2 0.40 1.98 4.95 

25 batch Porifera 3 0.6-0.8 0.028 0.13 4.64 

46 batch Porifera 2 40-50 0.08 0.04 0.50 

47 batch Porifera 2 45-50 0.09 0.05 0.56 

50 batch Porifera 6 3-7 0.04 0.04 1.00 

Microtome cut CNT 
membrane (2.5%) 

1.6 8-10 0.17 1.35 7.94 
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Table 2.3 Effects of electroporation on the skin and analysis methods. Reproduced from 
ref. 69 
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Figure 2.1 Detailed structure of the skin. Reproduced from ref.44 
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Figure 2.2 (a) Schematic of the CNT membrane for the in vivo transdermal drug delivery 
of nicotine in hairness guinea pigs. (b) Optical image of the top of the device. 
Reproduced from ref.42 
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Figure 2.3 (a) TEM of the DWCNT as purchased (cheaptubes.com). (b) SEM Cross section 

of the as-microtomed DWCNT membrane (Model S-3200-N Hitachi SEM). (c) Top view of 
as-microtomed DWCNT membrane. 
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Figure 2.4 Schematic of U-tube setup for CNT membrane functionalization. The top side 
of the membrane is immersed in either diazonium solution or direct blue solution with 

EDC and sulfo-NHS. 2cm DI water pressure column is maintained to confine 
functionalization to the tip of the membrane. The average membrane area is 

approximately 0.07 cm2.  
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Figure 2.5 Schematic of U-tube setup for KCl screening of CNT membranes.  
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Figure 2.6 Schematic of microdialysis probe. Reproduced from BASi, the manufacturer. 
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Figure 2.7 Schematic of microdialysis& flow cell setup.  
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Figure 2.8 SEM images of batch 16 Porifera membranes. (a) Top view of CNT membrane 
surface. The white dots are CNT tips which protrude out of embedding polymer. (b) Top 

and cross section view of the membrane. The top surface can be seen with protruding 
CNTs, while many CNTs can be seen protruding out from the cross section.  
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Figure 2.9 Nicotine flux measured by microdialysis membrane implanted in complete 
thickness porcine skin with Nicoderm application (0-6h) and removal (6-32h). 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

0 5 10 15 20 25 30 35

N
ic

o
ti

n
e

 c
o

n
ce

n
tr

at
io

n
(µ

g/
m

l)

Time (hrs)



80 

 

 

Figure 2.10 Nicotine flux measured by microdialysis membrane below 200-300 µm thin 
skin. Nicotine was administered by a 0.07 cm2 Nicoderm patch (cut to the same size as 
CNT membrane for comparison) during 0-12h and removal 12-24h. Three cycles of 
ON/OFF with 12h ON and 12h OFF were used. 
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Figure 2.11 Switchable nicotine delivery of CNT membrane measured by microdialysis. 
Shown with 3 cycles of ON/OFF.  
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Figure 2.12 Iontophoresis using Ag/AgCl electrodes. The ionizable drug D+ with its 
counter ion A- is placed within anode compartment. Application of current flows within 
the iontophoresis system. Electromigration transports the cations D+ into the skin. The 
flow of drug ions is counterbalanced by transport of endogenous Cl - ion movement. 
Reproduced from ref.61 
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Figure 2.13 Illustration of (a) transverse and (b) lateral electroporation. The array of 
rectangles represent the brick and mortar structure of the stratum corneum. 
Reproduced from ref.70  
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Figure 2.14 In-skin electroporation device built on a microneedle array. (a) The 
microneedles were separated into two groups with one group being applied positive 
bias and the other group being applied negative bias. (b) Upon contact with the skin, 
lateral electric field will electroporated the skin in the stratum corneum layer. The 
distance between electrodes vertically aligned are 0.4 mm, and horizontally aligned 4.0 
mm. Reproduced from ref.72 
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Figure 2.15  (a) freestanding type wire mesh after polishing out metal contacts  viewed 
under microscope. It is stained orange/green of the calcein. (b) Optical image of nylon 
mesh supported wire mesh.  
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Figure 2.16 Side view of polished wire mesh in contact with skin. In unpolished areas 
aluminum is insulated by PAC coating so electric discharge is confined to the bottom 
plane. The silver segments show exposed aluminum acting as electrodes for 
electroporation.  
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Figure 2.17 Flow cell setup of wire mesh electroporation. The syringe pump supplies PBS 
at set rate which flows into the sampling chamber and carry out permeated calcein. The 
fraction sampler collector collect samples at set intervals which was examined by 
fluorescence spectroscopy. 
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Figure 2.18 Calcein flux after electroporation. Electroporation using wire mesh electrode 
was applied at start of hour 2 with 180 pulses of 100V, 5 ms duration. 
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Chapter 3 Aptamer based gating of ionic transport through CNT membranes 

 

3.1 Introduction 

 

Due to their remarkable properties carbon nanotubes were fabricated into carbon 

nanotube membranes and previously utilized for programmable delivery of nicotine. 

However the smooth frictionless inner sidewall, small diameter, high conductivity, and 

unique geometry of carbon nanotubes make them equally ideal for studying ionic flow 

phenomenon in nano-sized tunnels. A series of studies by various groups was performed 

to explore mass flow inside carbon nanotubes and through CNT membranes. L. Sun, 

R.M. Crooks studied mass transport in a single carbon nanotube membrane, though due 

to the large 150 nm diameter of the carbon nanotube no significant deviation from 

conventional continuum model was observed.32 F. Fornasiero, O. Bakajin et al. observed 

fast single profile water flow in sub-2-nm CNT membrane and ion rejection due to steric 

hindrance and charge repulsion at CNT tip. Later H. Liu, S. Linday, C. Nuckolls et al. 

successfully translocated single stranded DNA through single-walled carbon nanotubes, 

using ionic current change during DNA blocking of carbon nanotubes during 

translocation for detection.76 J. Wu, B.J. Hinds et al found that as the mobile cation 

diameter matched the inner diameter of single walled carbon nanotubes, nearly ideal 

electroosmostic flow rate of  0.16 cm s-1 V-1could be achieved, which is 25-110 fold 

improvement compared to conventional nanoporous materials.41 J. Wu, B.J. Hinds et al 

also studied electrophoretically induced aqueous flow through small diameter single 
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walled carbon nanotubes,77 where under low ionic concentrations the observed 

electrophoretic mobility of K+ was three times higher than that of bulk electrophoretic 

mobility. A potential explanation given for the efficient electroosmosis is that at 

sufficiently low concentrations, the anionic carboxylate groups at CNT tips can reject 

anions allowing only cations to flow through CNT core resulting in net enhanced 

electroosmosis flow. An interesting ionic flow rectifying diode effect based on ionic size 

was also observed for the first time, while a similar previous observation of rectification 

was primarily based on surface charge exclusion.78 

 

Basing on these interesting studies on ionic flow phenomenon in carbon nanotube core, 

in this chapter we utilize the special attributes of carbon nanotube membranes to study 

the reversible aptamer gating of CNT membrane and enhanced electroosmosis effect of 

CNT membranes for water pumping.   

 

3.2 Aptamer Introduction 

 

Aptamers are short (15-70 nucleotides) synthetic DNA or RNA strands that can 

specifically bind to non-nucleic acid targets, such as peptides, proteins, drugs, organic 

and inorganic molecules with high affinity.79,80,81,82 Since the first reports in 1990 that 

short RNA and ssDNA with high binding affinity could be screened from a large 

randomized library, potential application of aptamers was quickly explored, especially in 
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the field of therapeutics and diagnostics.83 There are several advantages that make 

aptamers ideal for use in analytics. Firstly, aptamers could be screened and mass 

replicated in vitro via SELEX (Systematic Evolution of Ligands by EXponential 

enrichment) technique without the need of animal hosts or expensive cell culturing 

facilities.84 The schematic flow chart of SELEX method is shown in figure 3.1,85 where a 

large pool of single stranded oligonucleic acid sequences (>1010) were contacted with 

the target molecule under certain conditions during which some would specifically bind 

to the target. The sequences that specifically binded to the target are isolated and 

repeatedly contacted with the target again for refining the selection process, and only 

the most adequate sequences were finally isolated and amplified by PCR, yielding the 

final aptamer sequence. It should be noted that multiple aptamer sequences may rise 

for a single target but only the one with highest affinity and specificality was usually 

chosen for further applications. 

 

Aptamers have also shown remarkable specificality and affinity comparable to 

traditional bio-recognition agents and anti-bodies. R.D. Jenison et al. 

reported theophylline binding RNA with Kd values in the picomolar range which was 

superior to their anti-body counterparts.86 They also found that the dissociation 

constant for theophylline is 10,000 fold greater than the RNA’s affinity for caffeine, even 

though caffeine differs from theophylline only by a methyl group at nitrogen atom N-7. 

These results show that aptamers hold great potential in target recognition and 

discrimination. 
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Finally aptamers have shown to be versatile and robust molecules that could be 

functionalized with various linkers and immobilized on an array of substrate surface to 

exert their recognizing capabilities while preserving its natural structure. Fluorophores, 

enzymes, and other functional molecules such as carbon linkers, amines, biotin, cyanine, 

and thiols could be attached to aptamers during their synthesis process , making them 

viable for further functionalization and grafting. 

 

Due to these desirable properties aptamers have been used in development of 

aptasensors,87 for bioanalysis,88 drug delivery,89 and molecular beacons. A molecular 

beacon is a modified aptamer sequence that consisted of the original sequence and a 

complementary base sequence which allowed the formation of a hairpin structure. As 

shown in figure 3.2, before binding to the target no fluorescence is emitted from the 

aptamer because the fluorophore is close to the quencher. Upon binding to the target, 

the conformation of the aptamer dramatically changes, opening up into single profile 

which separates the quencher and fluorophore, as the result fluorescence is emitted 

from the aptamer and detected. Molecular beacon type hairpin aptamers are of special 

interest to us because their ability to dramatically change configuration upon binding of 

a target. Shown in figure 3.3(a) is an original ATP binding aptamer which exhibited 

minimal conformation change upon binding to 2 AMP molecules; in 3.3(b) considerable 

conformation change was displayed by a modified hairpin type ATP binding aptamer. 

Upon binding to 2 AMP target molecules, the added hairpin sequence dissociated from 
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its complementary section of the original aptamer, leaving a single strand behind. The 

ability of the molecular beacon type aptamer to change conformation upon target 

identification and binding is ideal for the gating of CNT membranes pores to exert a 

switch mechanism between high and low flux. 

  

3.3 Hypothesis of reversible CNT membrane gating by ATP hairpin aptamer 

 

Carbon nanotube (CNT) membrane is a robust platform that mimics natural cell  

membranes with the advantages of fast flow and selectivity. Crooks et al. reported the 

flow of polystyrene through a membrane containing only a single 150 nm diameter 

carbon nanotube, which was the first quantitative study of mass transport through 

carbon nanotubes.32 B.J. Hinds et al later reported a CNT membrane fabricated by 

embedding vertically aligned MWCNT array in polystyrene which made possible macro-

scale studies of fluid/gas flow and ionic transport in carbon nanotubes.33 Carbon 

nanotube membranes offer unique attributes which make them desirable for acting as 

artificial biomimetic membranes: (1) an amazing 4-5 orders of magnitude higher 

enhanced fluid/gas flow compared to conventional polymeric membranes. (2) High 

conductivity allowing electrochemical grafting and electrophoretic/ electroosmosis 

transport. In previous pursuits to mimic biological membranes, gatekeeper molecules 

were placed at the tip of carbon nanotubes of CNT membranes to allow to an extent ion 

flux control and selectivity. Majumder et al. studied the gate keeping effects of CNT 

membranes with respect to ion transport selectivity and flux by functionalizing the CNT 
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tips with negative dyes, observing 4 times cationic molecule flux increase over as-made 

membranes.34 By the combination of tip functionalization coulombic attraction and 

efficient electrophoresis& electro-osmosis, J. Wu, B.J. Hinds et al. achieved the 

controllable delivery of nicotine by CNT membranes in vitro and in vivo.40,42 In this regard 

remarkable flux control and selectivity were realized on CNT membranes either through 

passive reactions induced by functionalization or combined electrophoresis& electro-

osmosis effects by applying an electric bias. However to our knowledge stimuli 

responsive gating of CNT membranes by aptamers have not been reported before, even 

though the use of aptamers in nanopore gating have been reported previously: Abelow 

et al. modified 20 or 65 nm glass nanopores with cocaine aptamers to control ion 

transport upon reversible binding of the aptamer with cocaine molecules90. Zhu et al. 

showed that controlled release of Ibuprofen from mesoporous silica nanoparticles could 

be achieved by deploying aptamer-gold nanoparticle as a molecular gate.91 Similarly, V. 

C. Ozalp et al. used molecular beacon type ATP aptamer to gate mesoporous silica 

nanoparticles and regulate the release of fluorescein upon reversible binding to ATP 

target in the environment.92,93  

 

We herein report the first case of gating CNT membranes with molecular beacon type 

ATP aptamers to allow ionic flux control through the core of CNTs, using the 

ATP/adenosine binding sequence originally selected by Huizenga et al.94 The original 

ATP binding aptamer was transformed into a molecular beacon type aptamer by adding 
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an additional hairpin sequence (figure 3.3a, b) which gave the aptamer pronounced 

conformation change upon binding to the target, allowing more efficient gating.85 The 

aptamer was grafted on to the tip of single-walled carbon nanotubes in the CNT 

membrane, in its natural state resuming a hairpin double helix configuration at the 

nanotube tip with a width of ~2nm. The small inner diameter of SWCNT (average inner 

diameter 1.5 nm) meant that this double helix structure could spatially limit the flux of 

ions through the carbon nanotube core and acts as a molecular gate. Upon binding to 

the target molecule (AMP), the hairpin-like structure breaks down leaving in the 

proximity of the carbon nanotube tip a single-stranded region, allowing higher flux of 

ions to transport through the carbon nanotube core thus opening the gate. The changes 

in ionic flux could quantitatively be determined by applying potentiostatic bias to the 

CNT membrane system and measuring current, which in turn confirms the conformation 

change of the aptamer. This stimuli responsive CNT membrane gating mechanism 

represents a new direction in development of smart biomimetic artificial membranes. 

 

3.4 Experimental 

3.4.1 Materials 

 

SWCNT with an average core diameter of 1.5 nm was purchased from cheaptubes.com. 

MHHPA(hexahydro-4-methylphtalic-anhydride, mixture of cis and trans), catalyst (2-

ethyl-4-methyl-1H-imidazole-1-propanenitrile, MES( 2-[N-morpholino]ethane sulfonic 
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acid), AMP(adenosine 5' monophosphate), EDC(ethyl-(N’,N’-

dimethylamino)propylcarbodiimide hydrochloride), sulfo-NHS(N-

hydroxysulfosuccinimide), Direct blue 71 dye, Dowex monosphere 650C cation resin, 

Dowex monosphere 550A anion resin was purchased from Sigma Aldrich. Note that 

AMP was used for binding experiments instead of ATP because the aptamer binds to 

both ATP and AMP, however AMP is more stable than ATP in solution, so it is frequently 

chosen for binding experiments. The hairpin type ATP aptamer with the sequence 5'-

CAC CTG GGG GAG TAT TGC GGA GGA AGG TTC CAG GTG-NH2-3' was synthesized by 

Sigma Aldrich. Filter membranes with pore size 1 μm and 20 μm PTFE unlaminated was 

purchased from Sterlitech. [Ru(bpy)3]3[Fe(CN)6]2 solution was obtained by first ion 

exchanging K3Fe(CN)6 into H3Fe(CN)6 and Ru(bpy)3Cl2 into Ru(bpy)3(OH)2 , then mixing of 

the two solutions. 

 

3.4.2 Membrane fabrication 

 

SWCNT with 2% loading was fabricated with modifications from a previous method.32 To 

describe it briefly 0.1g DWCNTs were first dispersed in 1L DI water with 2g SDS under tip 

sonication at 10W, 20% magnitude for 2h (Qsonica, Model S-4000, tip size of 1/8 inch). 

The solution was then filtered through 20 μm PTFE membrane to remove CNT bundles 

and impurities, after which SWCNTs were gathered from the filtered solution on a 1 μm 

PTFE membrane. The purified SWCNTs are then retrieved and mixed with Epon 862, 
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MHHPA, surfactant Triton X-100, and catalyst by a ThinkyTM centrifugal shear Mixer. The 

mixed CNT-epoxy is degassed through vacuum (Welch 1400B pump) to remove bubbles 

and cured under 85OC to appropriate hardness for cutting into 5μm thick membranes 

with a Reichert-Jung microtome. The cut membranes (0.6 cm x 0.6 cm) were glued over 

a 3mm hole in polycarbonate plate to act as mechanical support, where the top side of 

the membrane is in the recess of the hole and the bottom side of the membrane is 

designated on the bottom plane of the polycarbonate plate. Both sides of the as-

prepared SWCNT membrane were treated with water plasma oxidation for 1min to 

remove extra polymer at CNT tip.  

 

3.4.3 SWCNT membrane functionalization 

 

To activate the membrane surface, the SWCNT membranes were first flow-grafted (FG) 

with benzoic acid by immersing the top of the membrane in 100 mM 4-carboxy phenyl 

diazonium tetrafluoroborate and under 2 cm DI water pressure at the bottom of the 

membrane for 12 h using U-tube fitting setup. Following diazonium grafting, aptamers 

were grafted onto the tip of carbon nanotubes by an EDC/sulfo-NHS coupling reaction 

between the diazonium carboxylate groups on the CNT and amine groups on the 3’ end 

of aptamers. It should be noted that flow grafting with 2 cm DI water pressure limited 

diazonium and subsequent aptamer functionalization to the tip of the carbon 

nanotubes, protecting the inner sidewalls of carbon nanotubes from undesired 

C 
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reactions. Several buffers and solutions were prepared for the functionalization process: 

1) 50 mM MES (2-(N-morpholino) ethanesulfonic acid) pH 5, PBS (phosphate buffered 

saline) pH 7.4, and PBS (phosphate buffered saline) pH 8.0.  

 

To describe it briefly, the CNT membrane surface is first rinsed with 50 mM MES buffer 

pH 5. Immediately before use, a solution containing 50 mg/mL ethyl-

(N’,N’dimethylamino) propylcarbodiimide hydrochloride (EDC) and 50 mg/mL sulfo N-

hydroxyl succinimide ester (Sulfo-NHS) in 50 mM MES buffer at pH 5 were added to the 

membrane surface in the hole recess (CNT membrane top side) for 15 min incubation to 

activate the carboxylate groups. The supernatant was removed quickly after 15 min and 

100 µM aptamer solution (12.5 nmoles of aptamer was dissolved in 125 µL PBS pH 7.4 

to make 100 µM aptamer stock solution) was added onto the top of the membrane for 

grafting for 2 hours under mixing conditions. Rigorous pipetting of the aptamer solution 

was maintained throughout the grafting process as a means of mixing due to the small 

size of the 3mm hole. The membrane surface was rinsed afterwards with PBS after 

grafting and incubated with 50 mM ethanolamine in PBS 8.0 for 60 minutes  to 

deactivate unreacted moieties. 

 

3.4.4 Experimental setup and methods 
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An U-tube fitting setup shown in figure 3.5 was used to measure ionic current through 

the CNT membrane. The two electrode system was used with the working electrode 

(W.E.) being Ag/AgCl electrode and Reference electrode (R.E.) being Ag/AgCl electrode, 

the distance was 10 cm between the two electrodes. An Edaq potentiostat provided 

constant bias and ionic current was recorded and analyzed using E-chem software.  

 

3.5 Results and Discussion 

3.5.1 Membrane pore area calculation 

 

Membrane pore area was calculated by ionic current in a U-tube fitting setup with 0.1 M 

KCl as the probe ions using Ag/AgCl electrodes as both the working and 

reference/counter electrode using the following equations95: 

Ap =
M ∗ l

μEM ∗ C ∗ E
                         3.1(1) 

M = I ∗
t+

e ∗ N
                                3.2 (2) 

Where Ap is membrane pore area; M is the electrophoretic molar flow rate of K+ ions 

through SWCNT membrane; l is the thickness of the membrane(5 μm); μEM  is the the 

experimentally measured K+electrophoretic mobility of 0.1 M in SWCNTs (~8x-10-08 

m2/s-V)[41]; C is the concentration of KCl solution (100mM); E is the applied bias(-0.6V); 

I is ionic current measured; t+ is K+ transport number(0.5); e is the elementary charge 
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and N is the Avogadro constant. For a typical 2% loading SWCNT membrane used in the 

following experiments, the trans-membrane ionic current in 0.1 M KCl under -0.6 V bias 

is 1.5 μA, which gives a pore area of 8.7x10-12 m2. It is important to note that the pore 

area of different membranes are not exactly the same, likely due to varying carbon 

nanotube dispersion and opening of nanotube tips.     

 

3.5.2 Ionic current reduction with diazonium chemistry functionalization  

 

It has been shown previously by J. Wu, B.J. Hinds that the grafting of diazonium and dye 

on the tips of carbon nanotubes in CNT membranes cause small molecule ionic current 

rectification,95 where ionic rectification factor is defined as the ratio of maximum 

current applying a negative bias (-0.6V) divided by the maximum current applying a 

positive bias (0.6V). Ratios of 2.18-2.3 on 2% SWCNT membranes were obtained by us 

after diazonium grafting, which is close to 2.3 as reported by J. Wu, B.J. Hinds et al. 

Figure 3.6 compares 0.1 M KCl ionic current of a SWCNT membrane in the as -made 

condition and after diazonium grafting, yielding the rectification ratio of 2.18. The 

rectification is likely due to carboxylate groups covalently grafted on carbon nanotube 

tips drawn toward the pore entrance under positive bias  which causes charge repulsion 

and hinders ionic transport, while no such hindrance existed under negative applied 

bias.   
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The rectification observed by us shows agreement with literature and proves that 

diazonium carboxylate was successfully functionalized onto the SWCNT membrane. The 

abundance of diazonium chemistry generated carboxylate groups were key to 

subsequent high yield grafting of aptamer onto SWCNT membranes. In membranes with 

defect or low diazonium grafting density no ionic current rectification was observed. 

 

3.5.3 Aptamer gating causing ionic current reduction 

 

Potentiostatic ionic current measurements traversing a CNT membrane could be used to 

probe the opening and closing of CNT pores similar to the measurement of DNA 

translocation in solution, based on the fact that ionic flux is  directly related to available 

pore area. When the carbon nanotube pores are gated by the ATP aptamer (the 

“closed” state), ionic current is subject to decrease due to the steric hindrance of the 

aptamer spatially limiting the flow of ions into the carbon nanotube core. 

 

As can be seen in figure 3.7, under negative applied bias, transmembrane ionic current 

after aptamer grafting was substantially decreased compared to the current before 

grafting, which proves aptamers was successful grafted onto carbon nanotube tips. 

Specifically in this case where 0.1 M KCl solution was used for probing, the ionic current 

reduction after aptamer grafting reduction was 39.6%. This reduction percentage may 

be compared to a previous report where 20 nm and 65 nm diameter glass nanopores 
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were functionalized on the sidewalls with cocaine-binding aptamers and approximately 

15-35% current reduction was achievd.90 In their case the size of the aptamer was 

substantially smaller compared to the large pore diameter (20 nm and 65 nm), therefore 

only partial blocking of the pores was achieved and thus a smaller reduction in ionic 

current. 

 

Under positive applied bias rectification ratio of ~2 was observed in the SWCNT 

membrane both before and after aptamer grafting, presumably because negatively 

charged groups caused weak charge repulsion which led to the rectification effect. 

Higher rectification ratio after the grafting of aptamers was initially expected because 

the phosphate groups on aptamers which replaced diazonium carboxylate groups was 

more negatively charged, which should in turn cause stronger charge repulsion& 

rectification. We proposed two explanations for the fact that observed rectification was 

almost identical in both cases: 1) The Debye screening length is less than 1 nm in 0.1M 

KCl which is smaller than the dimensions of the CNT core and DNA double helix, thus 

charge repulsion would be dramatically reduced even if the CNT tip was functionalized 

with aptamers41; 2)The long relaxed geometry of the aptamer means that not all 

negative charges were concentrated at the pore entrance, which means weaker charge 

repulsion of ions& rectification effect. 
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3.5.4 Big anion/cation ionic current with aptamer gating 

 

[Ru(bpy)3]3 [Fe(CN)6]2 solution was used to examine the effect of ion size on the blocking 

efficiency of CNT membranes by aptamers, as [Ru(bpy)3]2+
 and [Fe(CN)6]3-

 are 

respectively larger than K+ and Cl-. The ionic diameter of [Ru(bpy)3]2+
 and [Fe(CN)6]3-

  is 

close to the CNT core diameter of 1.5 nm which should result in noticeable ionic current 

reduction due to spatial confinement, both at the core entrance and through the length 

of carbon nanotubes. Transmembrane ionic current measured in 1mM [Ru(bpy)3]3 

[Fe(CN)6]2 is shown in Figure 3.8. As can be seen, the maximum current measured under 

the negative bias of -0.6 V dropped 2 orders of magnitude from ~1x10-6 A using 0.1M KCl 

to ~3x10-8 A when measured with the large cation/anion [Ru(bpy)3]3 [Fe(CN)6]2 solution. 

This result is expected because the magnitude of ionic current is directly related to per 

area ionic molar flow rate, which was substantially decreased due to the larger size of 

[Ru(bpy)3]2+
 and [Fe(CN)6]3-. The decrease in the number of ions flowing across the 

membrane also resulted in the observed fuzziness of the potentiostatic plot as ionic 

current dropped near residue current value. Current reduction percent increased from 

39.6% using 0.1 M KCl to 70.1% in 1mM [Ru(bpy)3]3 [Fe(CN)6]2, which shows that while 

using large cation/anions for probing the aptamer more efficiently blocked carbon 

nanotube pores and hindered ion flow.  
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Rectification of [Ru(bpy)3]3 [Fe(CN)6]2 solution ionic current under positive bias was not 

observed in both before and after aptamer grafting, likely due to the carbon nanotube 

pore steric hindrance effect outweighing the charge repulsion effect under positive bias: 

it is equally difficult for the large ions to enter the CNT core under either positive or 

negative bias, so the rectification effect related to charge repulsion is negligible. 

 

3.5.5 The reversibility of CNT membrane gating 

 

Reversibility of aptamer gating measured by ionic current is important not only to show 

that the ionic current reduction is truly due to aptamer acting as gating molecules 

hindering ion flow, but also to show that the gating of CNT pores is reversible. In order 

to demonstrate the reversibility of aptamer gating, the transmembrane ionic current 

was measured after each step of membrane functionalization: 1) H2O plasma oxidized 

(the as-made membrane); 2) after diazonium grafting (attachment of carboxylate 

groups to CNT tips); 3) after aptamer grafting (which spatially gates the CNT 

membrane), 4) after AMP binding to the ATP aptamer. For the H2O plasma oxidized, 

diazonium grafted, and after aptamer grafted state phosphate buffer solution without 

AMP addition was used for ionic current measurements. For the AMP binding case 

phosphate buffer solution with AMP target molecule addition was used.  
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As can be seen in figure 3.9, the as-made H2O plasma etched membrane potentiostatic 

bias-current plot is linear because a minimum amount of charged molecules existed on 

the membrane and also blocking of carbon nanotubes pores was non-existent, resulting 

in a perfect curve following equation 3.1. After diazonium grafting, rectification effect 

with a ratio of ~2 was seen due to weak charge repulsion because diazonium 

functionalization introduced negatively charged carboxylate groups onto tips of carbon 

nanotubes. After aptamers are grafted onto carbon nanotube tips via linkage with 

carboxylates, large ionic current reduction was seen under negative applied bias 

presumably due to the steric hindrance of the grafted aptamers. Specifically, ionic 

current after aptamer grafting under negative applied bias  decreased 50.2% when 

compared to the as-made membrane due to the large double helix hairpin size of the 

aptamer in the natural state(2nm) blocking SWCNT pores tips(0.8-1.6 nm inner 

diameter).  A schematic of the ATP aptamer gating the CNT membrane is shown in 

figure 3.4(a).  

 

When PBS solution without addition of AMP was replaced with PBS+10mM AMP 

solution, each aptamer binds to 2 AMP molecules and changes their conformation as 

depicted in figure 3.4(b) (c). The aptamer resumes a more linear and relaxed 

conformation by releasing the hairpin upon binding to AMP and leaves only a single 

strand at the carbon nanotube tip, thus the membrane enters an “open state” and ionic 

current is greatly increased, partially recovering up to ~88% of the as-made membrane 
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value. During this process ionic current under positive applied bias showed little change, 

as described previously rectification already existed after diazonium grafting. It should 

be noted that the positive bias rectification ratio may differ from membrane to 

membrane due to the broad distribution of carbon nanotube diameter and functional 

density variance between membranes. Diazonium grafted membranes have shown 

rectification ratios ranging from 1.5 to 2.2. 

 

To show the multiple cycle reversible switching of aptamer gating, the 

binding/unbinding of AMP to the aptamer was conducted for three full cycles. 

Specifically, after the transmembrane ionic current was measured with PBS with no 

AMP addition, the solution is removed and the U-tube refilled with PBS with 10mM AMP 

addition on the aptamer grafted side of the membrane (top side) and the ionic current 

measured. For removing AMP we simply replaced PBS with 10mM AMP addition with 

fresh PBS, and this process was repeated 3 times. 5 minutes was allowed each cycle for 

the full binding of AMP molecules to the aptamer before taking any measurements. 

10mM AMP was well above the saturation concentration required to ensure the full 

binding of aptamers.94 The stable ionic current under AMP binded and unbinded state 

was recorded under -0.6 V negative bias and shown in figure 3.10. Ionic current change 

corresponded well to the binding and unbinding of AMP molecules to aptamer.  

 

 



107 

 

 

For comparison the ionic current reduction before/after aptamer grafting is shown with 

three different probe solutions in table 3.1. The ions are of different sizes thus resulting 

in varying degrees of spatial hindrance caused by aptamer gating. Using 0.1 M KCl as the 

probe solution the smallest ionic current reduction was observed, which is expected as 

KCl solution has the smallest ions when compared to phosphate buffer solution and 

[Ru(bpy)3]3 [Fe(CN)6]2. Using [Ru(bpy)3]3 [Fe(CN)6]2 as the probe solution ionic current 

reduction of 70.1% was observed which is moderate considering the gating system is 

not yet utilized, because multiple facing of grafted aptamers exists which will lower the 

gating efficiency; only the upright aptamers gate pores with the highest efficiency.  

 

3.5.6 Conclusions 

 

We have shown that aptamers at the tip of CNT membrane may act as gatekeepers and 

regulate ionic flux passing through the membrane. We also showed that this CNT 

membrane-aptamer gating system is reversible over multiple AMP binding and 

unbinding cycles as measured by ionic current. The gating efficiency is closely related to 

the size of the probe ion, underlining the spatial blocking ability of the aptamer. Overall 

the reversible aptamer gated CNT membranes herein reported may have significant 

impact on active membrane design, drug delivery, and molecular sensing. By utilizing 

aptamers at CNT membrane surface, we closely mimics how nature's ion channels works 
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by binding to signal molecules and regulate flux. Further work in the future may be in 

the direction to enhance the efficiency of membrane pore gating by increasing aptamer 

grafting density and improving grafting design. Target molecules beyond ATP/AMP may 

be sensed by grafting their respective recognition aptamers at CNT membrane surface. 

Aptamers may also be coupled with other chemistry at the CNT membrane surface to 

perform not only gating, but other functions such as active pumping, sensing, and 

separation. 

 

3.6 Enhanced Electroosmosis of CNT Membrane 

3.6.1 Introduction 

 

Electroosmosis refers to the bulk motion of electrolyte induced by an applied potential 

across a fluid conduit. Electroosmosis flow can be the primary method to control fluid 

flux in small scale systems such as microfluidics, medical implants, drug delivery and 

chemical separations.40,96,97,98 It is commonly used for pumping or removal of liquids 

across interfaces and in and out of micro compartments. For example, proton 

exchange membrane fuel cells (PEMFCs) have been developed for electric power 

generation for portable hand held devices, however cathode flooding with water 

occurs during normal exchange operations which greatly reduces its performance and 

robustness. C. R. Buie et al used porous glass electroosmostic pump to remove 

hydration from the cathode and resulted in increased PEMFC power density and 
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current density.99 As shown in figure 3.11, typical electroosmosis efficiency depended 

heavily on charge density of the microchannels where the fluid contacts.  By proper 

functionalization and surface chemistry treatment, J. Miao et al. fabricated 

micropumps which was based on enhanced electroosmotic effect in AAO 

membranes.100 A. Brask et al. developed an efficient low operating voltage 

electroosmosis based on ion exchange membranes packed with dense charged groups. 

Despite the amount of interest and work in electroosmosis, it is still a relatively 

inefficient process which have so far shown promising but limited applications.  

 

Although electroosmosis was first extensively researched in porous glass pumps, C.R. 

Martin et al. studied electroosmosis flow in CNT membranes with large diameter (200 

nm) and found that by functionalizing charged (positive or negative) groups inside core 

of CNTs the direction of electroosmosis could be altered.101 The attributes of 

functionalized CNT meets well the requirements for efficient electroosmosis: 1) high 

surface charge 2) small diameter 3) slippery interface. Sun and Crooks found that no 

enhanced fluid flux or electroosmosis velocity was observed in a single carbon nanotube 

embedded polymer membrane because of the large diameter of their carbon nanotube 

(500 nm). Later efficient electroosmosis was observed in carbon nanotube based 

membranes by J. Wu, B.J. Hinds et al, where electroosmosis velocity of ions was 

compared in single-walled, multi-walled, and conventional polymeric membranes.41 

Electroosmosis flow up to 1-3 orders of magnitude faster was observed in SWCNTs and 
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MWCNTs compared to conventional AAO membrane with larger diameter. A neutral 

molecule caffeine was efficiently pumped through CNT core by electroosmosis, where 

the steady state flux was increased by ~4 times. Because of the absence of  𝐽𝑒𝑝  from 

electrophoresis for the neutral caffeine molecule, applying the below equations the flux 

increase could be entirely attributed to electroosmosis flow 𝐽𝑒𝑜 . Applying -300 mV bias, 

electroosmosis velocity as high as 0.054 cms-1(0.018 s-1 V-1) was obtained by J. Wu, B.J. 

Hinds et al. which should the promising electroosmosis applications based on carbon 

nanotubes.  

𝐽(𝑥) = 𝐽𝑒𝑝 + 𝐽𝑒𝑜                     (1) 

𝑣𝑒𝑜 = 𝐽𝑒𝑜 /𝐶                            (2)       

 

3.6.2 Hypothesis of highly efficient CNT membrane electroosmotic pump  

 

It is suggested here that highly efficient electroosmosis could be achieved by 

functionalized high porosity vertically aligned CNT membranes. We also plan to directly 

observe water movement as a result of electroosmosis, where in previous reports 

concerning carbon nanotube electroosmosis ionic current was primarily used to 

determine electrolyte transfer. We based the study on the following assumptions: 1) 

High porosity vertically aligned CNT membranes could be fabricated. Although in J. Wu, 

B.J. Hinds’ earlier report a remarkable 1.8*10-1 cm s-1 V-1 electroosmosis velocity was 

observed in SWCNTs, the small membrane area of 0.07 cm2 and low porosity of 0.0027% 
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in microtome fabricated CNT membranes meant electroosmosis could only be used in 

micro-scale applications. Porifera is a company which fabricates vertically aligned CNT 

membranes via CVD method, where CNT membrane discs with area up to ~80 cm2 could 

be synthesized. With the earlier reported electroosmosis velocity of 1.8*10-1 cm s-1 V-1, 

possible aligned CNT membrane porosity of 0.1%, 1.22 L water could be 

electroosmotically pumped under 1V bias in 24h if the whole CNT membrane area was 

utilized, which greatly surpasses that of “microscale”. 2) Both sides of the carbon 

nanotube membrane could be functionalized with negatively charged dye molecules 

which serves two purposes as shown in figure 3.12. Dye functionalization with 

carboxylate groups functionalized on the positive (donor) side would attract positive 

ions close to the tip which preferentially flows into CNT core. This increases the feed of 

positive ions in the CNT core which is the active pumping ions under the forward bias 

direction and also repel negative ions although they generally flow in the opposite 

direction. On the receptor side, the functionalized carboxylate groups would greatly 

repel negatively charged ions from entering the CNT core under the current direction 

and thus maintain the dominance of forward pumping ions in the CNT core. Since 

SWCNTs and DWCNTs with diameter close to positive ions would be used for the study, 

efficient electroosmosis pumping can be expected with the “ratchet” type 

functionalization on both sides of the CNT membrane. 
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To directly observe electroosmosis flow visually, a glass capillary can be used to determine 

small volume liquid changes by the movement of water meniscus against time, which in 

turn yields electroosmosis velocity. It can be estimated that by using a 1mm inner 

diameter glass capillary, a 0.07 cm2 area CNT membrane with 0.01% porosity could pump 

0.0252 cm2 under 1V pumping bias in 1 hour, which translates into 3.21 cm meniscus level 

rise, well observable by water level marking or photography. 

 

3.6.3 Experimental setup and outlook 

 

A proof of concept electroosmosis setup for CNT membrane is shown in figure 3.13. The 

CNT membrane was functionalized with dye groups on both sides according to steps given 

in chapter 2 and 3. The functionalized CNT membrane is clamped between two glass tubes, 

separating the donor and receptor compartment. Depending on the study, either 5 mM 

KCl solution or 5mM K3Fe(CN)4 solution filled both side of the donor and receptor solution. 

A two electrode setup was used, with Ag/AgCl as the working electrode in the L shape 

donor compartment and Ag/AgCl as the reference electrode in the straight receptor 

compartment. The receptor compartment was filled in such a way that no bubble was 

present and water transport from the donor compartment would entirely be contributed 

to meniscus rise in the receptor compartment capillary. The experiment was performed 

in constant temperature room to rid of temperature related water volume expansion. 
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Water meniscus level rise was seen in a few electroosmosis experiments, however 

results was not consistent through a series of repetitions. This could be attributed to a 

few possibilities: 1) Electroosmosis velocity depends heavily on the quality of the CNT 

membrane, and currently Porifera and microtomed CNT membranes showed porosity 

which was lower than expected. 2) Electrolysis of water would generate hydrogen ions 

and hydroxide ions which likely occurs due to positive ion movement. These ions would 

change pH of the compartments limiting further electroosmosis beyond the initial 

pumping phase. 3) Absolute levelness between the donor and receptor compartments is 

extremely important in order to rid of gravity related water flow artifacts. Under current 

experimental conditions this was hard to achieve and we hope in the future more 

sophisticated setups could be utilized to solve this problem.  
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Table 3.1 Potentiostatic ionic current reduction comparison between three probe 

solutions with varying ion size.  

 

Probe solution 
Potentiostatic current reduction after 

aptamer functionalization 

0.1M KCl 39.6% 

1mM [Ru(bpy)3]3 [Fe(CN)6]2 70.1% 

1x  5M PBS 50.2% 
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Figure 3.1 Principle of the “systematic evolution of ligands by Exponential enrichment”, 
SELEX, for identification of aptamers that binded to a specific target. Reproduced from 

ref. [88] 
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Figure 3.2 Schematic of a hairpin aptamer. Stringed circles indicate the aptamer 

sequence which binded to the target, the straight line the linker. Q: Quencher. F: 
Fluorophore. Reproduced from ref. [88] 
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Figure 3.3 (a) the original ATP binding aptamer, a single 27-mer oligonucleotide. (b) The 
hairpin (molecular beacon) form of the ATP binding aptamer, which was created by 

adding 7 hairpin forming nucleotide sequence at its 3’ end. Reproduced from ref. [88] 
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Figure 3.4 Aptamer grafting on CNT membrane. A) The sequence of the ATP-binding 
hairpin. The blue sequence is the ATP/adenosine binding aptamer sequence originally 

selected by Huizenga et al. [97] the red sequence is the hairpin forming sequence. B) 
Conformational change of the ATP hairpin upon binding 2 AMP molecules, going from 

the closed state to the open state. C) Schematic of the ATP hairpin functionalized at the 

tip of a SWCNT that exhibits gating function and regulates ionic flow. Representation of 
the ATP hairpin with references from V.C. Ozalp et al. [96] 

 

 

 

5'- CAC CTG GGG GAG TAT TGC GGA GGA AGG TTC CAG GTG-NH2-3' 
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Figure 3.5 Schematic of I-V current measurement setup. For ionic current 
measurements, Working electrode(W.E.) is a Ag/AgCl electrode. Reference 

electrode(R.E.) is Ag/AgCl electrode. Constant potential is provided with Edaq 
potentiostat. Counter electrode(C.E.) is a sintered Ag/AgCl electrode from IVM 

company. The membrane area is approximately 0.07 cm2. The distance between the 
electrodes is 10 cm and kept constant in all experiments. 
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Figure 3.6 Rectification effect of diazonium chemistry on tip of SWCNTs . Ionic 
rectification of as-made membrane was compared to SWCNT membrane after 
diazonium grafting chemistry. Both sides of the U-tube cell was filled with 0.1 M KCl, 
working and counter/reference electrode is both Ag/AgCl. 
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Figure 3.7 Ionic current reduction due to aptamer grafting gating the CNT membrane. 

0.1M KCl was used on both side of u-tube cell. The working electrode is Ag/AgCl on the 
bottom side of membrane, and the Counter/reference electrode is Ag/AgCl on the top 

side of the membrane where aptamer was grafted.  
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Figure 3.8 Ionic current before and after aptamer grafting using a big cation/anion 

probe solution. 1mM [Ru(bpy)3]3 [Fe(CN)6]2 was used on both sides of U-tube setup. The 
working electrode is Ag/AgCl on the bottom side of the membrane, and the 

Counter/reference electrode is Ag/AgCl on the top side of membrane where aptamer is 
grafted. 
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Figure 3.9  Ionic current changes due to aptamer grafting and AMP binding. 1x5M PBS 

solution was used for SWCNT H2O plasma etched, SWCNT diazonium grafted, and 
SWCNT-Aptamer measurement. For the SWCNT-Aptamer in AMP case a 1x5M PBS with 

20mM dissolved AMP solution is used. The working electrode is Ag/AgCl on the bottom 
side of the membrane, and the Counter/Reference is Ag/AgCl on the top side where the 

aptamer is grafted.  
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Figure 3.10 Reversibility of AMP target binding to ATP aptamer and unbinding as 
measured by transmembrane ionic current. The plot is shown with three cycles of 

binding and unbinding. 
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Figure 3.11 Schematic of electroosmosis pumping of liquids 
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Figure 3.12 Schematic of double dye functionalization at tip of CNTs on CNT membrane 
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Figure 3.13 CNT membrane electroosmosis setup 
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Chapter 4 Conclusions and future work 

 

Carbon nanotubes are allotropes of carbon with fascinating attributes which was 

extensively studied and applications continues to be explored. Through the hard work of 

researchers carbon nanotubes have been used in various fields of science, shining in the 

physics sciences, chemistry, materials, and medical fields. The current group under Dr. 

Hinds first synthesized aligned CNT membranes which bridged the gap between nano-

sized carbon nanotubes and the macro-scale. They continued to show that carbon 

nanotubes could be efficiently functionalized for enhanced electroosmosis/ 

electrophoresis and gatekeeping, which saw switchable transdermal nicotine delivery 

realized as a practical application. More work will be done from the group utilizing 

carbon nanotubes to for discovery of interesting new phenomenon and concepts as well 

as working current results into applications. 

 

As described in chapter 2, microdialysis sampling will be used to accurately map nicotine 

delivery profiles of CNT membrane in vivo to show the potential of CNT membrane 

ON/OFF and examine existing shortcomings. With sufficient experience and proof of 

concept, the final vision would be portable and rate switchable transdermal devices 

which could be administered via phone or internet counseling. This would revolutionize 

and expand the current transdermal market. To expand the range of drugs compatible 

with transdermal drug delivery, electroporation device that reliably weakens the 



129 

 

stratum corneum skin barrier would be developed and coupled with CNT membrane to 

programmably deliver. This would be a great advancement in nicotine replacement 

therapy and addiction drug treatments where dosage is sensitive.  

 

Active gating and functionalization of carbon nanotube membranes would be continued 

to further mimic natural membranes to show potential beyond molecular detection, 

discrimination, but also separation of ions and proteins, fluid transport, catalysis and 

possibly development of a multi-functional membrane.  

 

However the basis of these new phenomenon and applications would be a truly robus t, 

fast flow, and easy to synthesis carbon nanotube membrane. Remarkable advances in 

the fabrication of carbon nanotube membranes have been made in the past, but will still 

be needed in the future. We truly would like to see carbon nanotubes being used to 

improve our everyday life. 
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