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ABSTRACT OF DISSERTATION 

 

 

 

 

DESIGN OF HIGHLY STABLE LOW-DENSITY SELF-ASSEMBLED 

MONOLAYERS USING THIOL-YNE CLICK REACTION FOR THE STUDY OF 

PROTEIN-SURFACE INTERACTIONS 

 

 

 Protein adsorption on solid surfaces is a common yet complicated phenomenon 

that is not fully understood. Self-assembled monolayers have been utilized in many 

studies, as well-defined model systems for studying protein-surface interactions in the 

atomic level. Various strategies, including the use of single component SAMs[1, 2], and 

using mixtures of alkanethiolates with varying chain length and terminal functional group 

[3-5] have been used to effectively control the surface wettability and determine the 

effect of surface composition and wettability on protein adsorption. In this dissertation 

we report key new findings on the effect of surface density of functional groups on 

protein adsorption phenomenon.  

 

 In the first phase of this research, we developed a novel approach for preparation 

of low-density self-assembled monolayers (LD-SAMs) on gold surfaces, based on 

radical-initiated thiol-yne click chemistry. This approach provides exceptional adsorbate 

stability and conformational freedom of interfacial functional groups, and is readily 

adapted for low-density monolayers of varied functionality. The resulting monolayers 

have two distinct phases: a highly crystalline head phase adjacent to the gold substrate, 

and a reduced density tail phase which is in contact with the environment. 

 

 First, we investigated the feasibility of the proposed chemistry in solution-phase. 

In this approach, we synthesized “Y” shaped carboxylate-terminated thiol adsorbates via 

radical-initiated thiol-yne reaction. The LD-SAMs were then prepared through immersion 

of gold substrates into the solution of synthesized adsorbate molecules in hexane. The 

chemical structuring and electrochemical properties of resultant LD-SAMs were analyzed 

and compared with those of analogous traditional well-packed monolayers, using 

techniques such as. Characterization results indicated that resulting LD-SAMs have a 

lower average crystallinity, and higher electrochemical stability compared to well-packed 

monolayers. In addition, using a three-electrode system, we were able to show a 



 

reversible change in LD-SAM surface wettability in response to an applied voltage. This 

remodeling capacity confirms the low density of the surface region of LD-SAM coatings. 

 The second area of work was focused on using the developed chemistry in solid-

phase. The solid-phase approach minimized the required synthesis steps in solution-phase 

method and used the photo-initiated thiol-yne click-reaction for grafting of acid-

terminated alkynes to thiol-terminated monolayers on a gold substrate to create similar 

LD-SAMs as what were prepared through solution-phase process. We characterized the 

resulting monolayers and compared them to analogous well-packed SAMs and the also 

low-density monolayers prepared through the solution phase approach. The results 

confirmed the proposed two-phase structure with a well-packed phase head phase and a 

loosely-packed tail phase. In addition, the electrochemical studies indicated that the 

resultant monolayers were less stable than the monolayers prepared via solution-phase, 

but they are significantly more stable than typical well-packed monolayers. The lower 

stability of these monolayers were attributed to the partial desorption of adsorbates from 

the gold substrate due during the grafting process. 

 

 Building on the established chemistry, we studied the effect of lateral packing 

density of functional groups in a monolayer on the adsorption of Bovine serum albumin 

protein. We used surface plasmon resonance spectroscopy (SPR) and spectroscopic 

ellipsometry to evaluate BSA adsorption on carboxylate-, hydroxyl-, or alkyl- terminated 

LD-SAMs. For the LD-SAMs, the magnitude of protein adsorption is consistently higher 

than that of a pure component, well-packed SAM for all functionalities studied. In 

addition, it was seen that the magnitude of BSA adsorption the LD-SAMs was 

consistently higher than that of a pure component, well-packed SAM for all 

functionalities studied. The difference of protein adsorption on LD-SAMs and SAMs can 

not be associated to difference in lateral packing density, unless we eliminate the impact 

of other contributing factors in protein adsorption such as surface energy. In order to 

better understand the impact of packing density on protein-surface interactions, we 

prepared the mixed SAMs of (carboxylate/alkyl) and (hydroxyl/alkyl) with matching 

surface energy as the carboxylate and hydroxyl terminated LD-SAMs. It was found that 

the energy-matched mixed SAMs of carboxylate and hydroxyl functionality adsorbed 

more protein than the LD-SAMs. However, an opposite trend was seen for the alkyl 

surfaces, where surface energies are comparable for LD-SAMs and pure component 

SAMs, indicating that BSA proteins have higher affinity for methyl- terminated LD-

SAMs than well-packed SAMs. 

 

KEYWORDS: Low-Density Self-Assembled Monolayers, Thiol-Yne Click Chemistry, 

Protein Adsorption 
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1 Introduction 

 Protein adsorption is a complex process involving a careful balance of 

intermolecular interactions ranging from the relatively weak van der Waals to relatively 

strong electrostatic interactions. Although subtleties of surface-protein interactions are 

not completely described in the scientific literature, surface chemistry has consistently 

been shown to play a fundamental role in protein adsorption [1-9].  

The study of protein adsorption to solid surfaces is vital to development of 

systems in which biological fluids contact a surface [10]. The mechanism of protein 

adsorption plays an important part in biocompatibility of prosthetic implant surfaces,[10] 

and is decisive in improving the performance of systems applied in protein 

chromatography and clinical diagnostics [11]. The formation of well-defined organic 

layer, the ability to control the surface composition at the molecular scale, and generation 

of serially varied surface properties using two or more kinds of alkanethiols, have made 

SAMs excellent model systems for fundamental studies of the phenomena driving the 

biological response to these and other materials [12]. 

 In the field of biosensing, undesired non-specific protein adsorption on sensor 

surfaces, protein chips, or assay platforms is a serious problem degrading the sensing 

performance of the sensor [13]. Non-specific protein interactions occur as a result of 

hydrogen biding, charge interactions, or non-polar interactions [14-16]. Using SAMs, 

researchers have been able to form surfaces that prevent undesired non-specific binding 

to the surface. These protein inert surfaces generally involve incorporation of poly 

(ethylene glycol) or (PEG), either as surface-grafted chains or as polymers [17-19]. This 

protein resistance nature is typically attributed to the ability of PEG SAMs to stabilize an 

interfacial water layer, which prevents direct contact between the surface and protein 

[15]. These and similar surfaces have great potential for the design of medical devices or 

prostheses, which are exposed, to blood. 

 There have been numerous studies of protein adsorption focused on highly 

organized single or multiple components SAMs of alkanethiolates on gold. These studied 

have investigated the effect of surface wettability and functional groups on the protein-

surface interactions [20]. These factors do not modulate adsorption of different proteins 

equally. For instance, while it has been shown that plasma proteins, such as albumin, 

adsorb more firmly on hydrophobic surfaces such as CH3-terminated SAMs compared to 

OH-terminated SAMs, [6, 21-23] the fibrinogen protein in contrast, adheres more rapidly 

to both surfaces, having a slightly higher affinity toward the hydrophobic surface [6]. 

1.1 Interfacial Atomic Structure of Self-Assembled Monolayers  

 The field of self-assembled monolayers (SAMs) has witnessed tremendous 

growth in depth of characterization and application versatility over last 20 years. The first 

published work in this area goes back to 1946 when Zisman published the preparation of 

a monomolecular layer by adsorption (self-assembly) of a compound onto a clean metal 

substrate [24]. However, it was only in early 80s that this field attracted enormous 

interest when Nuzzo and Allara, published their discovery regarding the preparation of 

SAMs through adsorption of alkanethiolates on gold substrates [25]. The majority of 

research conducted prior to 1993 was focused on developing protocols for monolayer 

preparation formation and understanding the thermodynamic aspects of adsorption and 
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self-assembly [26]. After 1993, researches were more focused on studying different 

substrate and adsorbate systems [27]. Research in recent years has branched out to the 

study of preparation of SAMs with controlled chain packing density, and with increased 

interchain distances, as well as investigation of the potential of SAMs systems in 

biomaterials and biomedical fields [28-31]. 

 SAMs are ordered molecular two-dimensional assemblies formed from the 

spontaneous adsorption of active adsorbate molecules on a solid substrate [27]. As shown 

in Figure 1.1  SAMs are composed of adsorbate molecules on a solid surface. As system 

reaches the equilibrium, the van der Waals forces between the methylene groups 

stabilizes the monolayer and results in highly ordered crystalline lattices. Various 

adsorbate-substrate systems exist, such as silanes on hydroxylated surfaces, amines on 

platinum and carboxylic acids either on aluminum oxide or silver. However, the use of 

thiol adsorbates on a gold substrate is most common in the analysis of protein 

interactions.  

 In general, the quality of the monolayer formed is very sensitive to preparation 

conditions such as temperature, light, and preparation duration, as well as adsorbate 

backbone chain length, and to some extent to end group and head group of adsorbate 

[32]. Adsorbate molecules consist of three domains: 1) end group, 2) backbone, 3) head 

group. These domains are explained below, along with their effect on SAM structure. 

 

 
Figure ‎1.1. Schematic figure representing the well-packed SAM, which is formed by 

chemically adsorption of molecules on a solid substrate and formation of a 2D molecular 

assembly. 

1.1.1 End Group 

 The end group of adsorbate, which is at interface with the environment, typically 

defines the surface properties of well-packed SAMs. The notable exception is with LD-

SAMs, where there are significant contributions from the underlying backbone groups 

through gaps in between chain end groups. The effect of end groups on the structure of 

SAMs is typically weaker than the chain backbone contributions. However, there have 

been some reports showing that strongly associating endgroups can dominate over the 

backbone interactions. A specific example is where an azobenzene end group drives the 

ordering of alkyl thiols [33], where the end groups assemble into ordered structures and 

the underlying backbone domains are disordered. The end groups can also alter the SAM 

molecular ordering through chemical transformations as a result of solvent effects during 

or after monolayer formation. Most notably, the molecular crystalline plane in typical 

carboxyl terminated SAM lies at 38 (Θ) from the surface normal plane (Figure 1.2), 
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however after ethanolic rinses of the SAM coated substrate, the carboxyl groups are 

deprotonated and the molecular plane adapts the 66 angle(Θ) with respect to normal 

plane [31, 34]. 

 
 

Figure ‎1.2. Schematic presentation of a sphere unit cell of an alkanethiol molecule body-

centered crystal lattice, where Θ, Ψ, Φ refer to tilt angle, twist angle and tilt direction 

respectively, used to describe the molecular orientation. 

 The research in field of loosely-packed SAMs also suggest surface chemical 

functional switchability due to end groups readily adapting two different states, in 

response to an external stimuli, such as pH, temperature, and chemical or electrical 

charge [35, 36].  The external stimuli changes the molecular conformation of end groups 

and therefore the chemical nature of SAM [37]. 

1.1.2 Head Group 

 The head group of the adsorbate anchors each adsorbate to the solid surface in the 

present work, the two most common head groups are thiols and silanes [38] (Figure 1.3). 

Different head groups have varied affinity for particular substrates, such as thiols for gold 

substrates. Head groups have been shown to effect the overall molecular ordering within 

SAMs. For example, the use of thioacetates
 
reduces crystallinity resulting in a striped 

phase SAM, with flat-lying molecules antiparallel to each other, which is a typical 

signature of low-density monolayers. The use of a selenium, head group, has been shown 

to increase order of some aromatic SAMs [31, 39, 40]. 

 

 
Figure ‎1.3. Formation of functional Silane/SiO2 (A) and thiol/gold (B) monolayers. 

 Thiolate head groups have a strong affinity for gold surfaces. Both thioalkyl and 

di-alkyl disulfides form nearly indistinguishable monolayers with Au
+
 and thiolate (RS-) 

species resulting from similar chemisorption processes [41-43]. The cleavage and 

oxidative addition of S-S bond to the gold surface is possibly the mechanism of SAM 

formation from the disulfides: 
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Equation  1.1 

2RS + Au(0) → RS−Au+. Au(0) 

In the case of thiol, the reaction may be formally considered as an oxidative addition of 

S-H bond to the gold surface, followed by a reductive elimination of the hydrogen: 

Equation  1.2 

RSH + Au(0) → R − S− + Au+ + Au(0) +
1

2
H2 

The exothermic formation of H2 is likely important in the chemisorption energetics [41]. 

The bonding of head group (thiolate) is very strong and its chemical dissociation energy 

has been estimated to be approximately 40 kcal per mol [43, 44]. 

1.1.3 Backbone 

 The alkyl backbone of the adsorbate separates the end group and head group and 

can profoundly affect the molecular ordering and thermal/electrochemical stability of 

SAMs [36, 45]. The intermolecular interactions between backbone domains, which are 

typically governed by van der Waals forces, promote molecular ordering of SAMs. 

However, depending on the nature of the backbone, other intermolecular forces such as 

electrostatics, and - interactions might also play a part in molecular ordering of SAM 

[39]. There are dramatically conflicting reports regarding the effects of chain length on 

thiol SAM growth kinetics. Some studies consistently found that adsorption rate 

increased with chain length [46-48], while there is other studies have the opposite 

conclusion [49-51]. The reason of this discrepancy is the competing effect of two factors 

playing role in process of adsorption: adsorbate mobility and interaction between 

adsorbate and substrate. While the enhanced interactions between a longer chain and the 

surface would lower the energy barrier and increase the adsorption rate, lower mobility of 

longer chains which slows their movement into a structured layer, and therefore slows the 

growth rate of the quasi crystalline structure [32, 51]. 

1.2 Self-Assembled Monolayers Formation of Thiol Based SAMs 

 Among different adsorbate-substrate systems, perhaps the most studied, and 

perhaps the most understood system is alkanethiolates on gold surfaces, to date. Gold has 

received the most attention compare to other metal substrates. Gold doesn’t form a stable 

surface oxide, and its surface can be easily cleaned by removing the contaminants that are 

physically and chemically adsorbed on surface [52]. The formation of thiol SAMs on 

gold, which are considered one of the most organized SAM systems, is thought to be of a 

multistep process [53]. The initial step, which takes only a few minutes, is a diffusion-

controlled Langmuir adsorption and its duration strongly depends on the concentration of 

thiol adsorbates [46]. In the next step adsorbed molecules transition from a disordered 

state into two-dimensional crystal islands, which grow and coalesce into structured 

monolayer over several hours [54]. During this growth process, the individual alkane 

chains are organized from an initial low-order state of molecules laying down on the 

surface to a well-ordered crystalline state where the chains are densely packed and 

aligned at 30° from the surface normal to optimize the intermolecular van der Waals 

contact. There is a general consensus in the literature that the kinetics of this assembly is 

driven by alkane chain disorder (e.g., Gauche defects), the different components of chain-
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chain interaction (van der Waals, dipole-dipole, etc.), and the surface mobility of chains 

[27, 54]. Moreover, longer alkanethiols (n>10) are shown to result in a more organized 

SAMs than short alkanethiols , due to increased van der Waals interactions between 

backbone domains [27]. 

1.2.1 Formation Energetics of Thiol Based SAMs 

 Although it is generally accepted that thiol-based self-assembly on gold occurs 

through a chemisorption process, the exact nature and mechanism of this reaction are not 

well understood. In 1996, Ulman proposed that the chemisorption is occurring through an 

oxidative addition of the alkanethiol S-H bond to the gold substrate:   

Equation  1.3 

RSH + Au → RSAu +
1

2
H2 

 

To estimate the energetics of adsorption, we assume that the following steps comprise 

adsorption: (1) cleavage of the RS-H bond, (2) formation of the RS-Au bond, and (3) loss 

of the H as H2. The bond dissociation energies for these processes are as follows: RS-H 

(87kcalmol
−
), RS-Au (40kcalmol

−
), and H-H (104kcalmol

−
), From these values, the 

overall free energy of the reaction (Gads ) is calculated to be -5 kcalmol
-1

, suggesting an 

exothermic adsorption process [43]. Karpovich et al. proposed that the modest value of 

(Gads) shows a balance between the entropic and enthalphic contributions to adsorption. 

The enthalpy of adsorption Hads for an alkane thiol on gold was assumed to be -28 kcal 

mol
−1

,which is similar to that of a dialkyl disulfide on gold determined by Nuzzo et al. 

[43, 55]. The enthalpy and adsorption energy values are related to the entropy of 

adsorption (Sads) by following equation:  

Equation  1.4 

∆Gads = ∆Hads − T∆Sads 
 

Using the values of the enthalpy and the free energy of adsorption, (Sads) the entropy of 

adsorption, is estimated to be large and negative, which indicates the great degree of 

ordering that takes place as the alkanethiols molecules change from randomly distributed 

orientation and motion in solution to highly oriented two-dimensional (2D) crystalline 

lattice on the surface [43]. 

1.2.2 Defects 

 The quasi crystalline and ordered nature of thiol based SAMs is disrupted by 

defects. Defects act as nucleation sites of chemical or electrochemical degradation, and 

they occur due to several factors such as: substrate topology/morphology; formation 

parameters (time, temperature, concentration, solvent, deposition method); cleanliness of 

ambient formation environment; purity and conformational distortions of surfactants [31, 

56, 57]. 
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1.2.3 Mixed Self-Assembled Monolayers  

 In principle, direct regulation of the chemical composition of SAMs can be 

achieved by the preparation of mixed SAMs. Mixed SAMs consist of two or more 

different adsorbates, and are typically prepared through the coadsorption  of two-or more 

types of adsorbates onto a substrate (Figure 1.4) [4, 58]. However, mixed SAMs can also 

be formed by selectively changing the end group chemical functionality after SAM 

formation, [59] or by using asymmetrically substituted disulfides [60]. Importantly, with 

coadsorption  there is control over the final molecular composition and order of the SAM. 

However, formation of coadsorbed SAMs is more complicated than single component 

systems. For instance, the relative composition of adsorbates in the mixed coadsorbed 

SAMs on surface does not reflect the relative surfactant concentrations in solution [61].
 

The composition of mixed SAMs depends on adsorbate-solvent, backbone-backbone and 

backbone-substrate interactions, that occur during SAM formation [62]. 

 Mixed SAMs enable incremental control over the interfacial structure and therefor 

preparation of surfaces with a wide range of wettabilities. This is particularly important in 

biosensing research and understanding subtleties of the biomolecular interactions with 

artificial materials [63-65]. The design of mixed SAMs is not perfectly straightforward. 

 

 
Figure  1.4. Schematic presentation of a mixed self-assembled monolayer consisting of 

two different adsorbates with different chain length and terminal functional group. 

 The relative concentration of adsorbates in solution does not quantitatively 

describe the relative composition of adsorbates in the formed SAM [61]. The relative 

composition of adsorbates in a mixed SAM strongly depends on molecular interactions 

dominating the SAM formation such as chain-chain, adsorbate-substrate, and adsorbate-

solvent interactions [60]. Despite these limitations, mixed SAMs have been used greatly 

in biosensing research to determine the effect of the substrate composition and wettability 

on protein adsorption and retention [2, 22, 23, 63]. 

1.3 Low-Density Self-Assembled Monolayers (LD-SAMs) 

 Low-density self-assembled monolayers (LD-SAMs) are defined as self-

assembled monolayers with increased spacing between the alkyl chains. Increased chain 

spacing allows for changes in molecular-level conformation that are limited in crystalline, 

densely packed monolayers [66].The enhanced spacing between the chains results in 

additional freedom of chain motion within the SAM, leading to unique properties such as 

reversible conformational transitions in response to external stimuli,[28] and a capacity to 

intercalate guest molecules into the monolayer structure [67]. 

 Several approaches have been used to prepare LD-SAMs. One common approach 

is the coadsorption of molecules with different functional groups or chain lengths (Figure 

1.5). The coadsorption  process is affected by several factors, including different 

solubility, kinetics/thermodynamics of adsorption of each of adsorbates [66, 68]. A 
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typical drawback of this method is the formation of nonhomogeneous monolayers, as the 

adsorbates tend to segregate into islands of common functionality [68].  

 

 
Figure ‎1.5. Description of LD-SAM preparation process through coadsorption of 

adsorbates with different chain lengths. 

 Another simple LD-SAM approach circumvents the islanding issue, via the use of 

adsorbates with unsymmetrical alkyl disulfides [69-71]. However, application of this 

technique has been limited due to the poor stability of the resultant monolayer, as a result 

of the potential dissociation of disulfides upon adsorption on gold [41]. In addition, there 

has been some observations supporting the partial phase segregation caused by the 

unequal surface diffusion between the longer-chained and shorter-chained moieties upon 

adsorption [72-74]. 

 LD-SAMs are also possible through the adsorption of the dithiols and trithiols 

derivatives with bulky, branched head groups onto gold surface [68, 75, 76]. The 

resultant monolayer has a uniform structure with a low density of alkyl chains that are 

conformationally disordered. The biggest obstacle to this approach is synthetic 

complexity limiting this approach in practice to LD-SAMs with alkyl terminal 

functionality [66]. 

 A more recently proposed approach by Lahann et al. [28] provides LD-SAMs 

with carboxylate terminal functionality. In this method, adsorbates with bulky globular 

tail groups and a thiol head group were synthesized from (2-chlorophenyl) 

diphenylmethyl ester derivatives of 16-mercapto hexadecanoic acid (MHA). Adsorption 

of these adsorbates results in a LD-SAM that is densely packed with respect to the space-

filling globular end groups but loosely packed with respect to the hydrophobic chains. 

Subsequently, the cleavage of the ester releases the globular tail groups and establishes a 

LD-SAM of MHA (Figure 1.6). 

 
Figure ‎1.6. Description of LD-SAM preparation process through adsorption of molecules 

and subsequent cleavage of bulky groups. 

 Inspired by this technique, the Jennings group reported the formation of hydroxyl 

terminated LD-SAMs via the hydrolysis of an ester- bound fluorocarbon group [66]. By 

inverting the ester, this work provided a hydroxyl-terminated analogue to the LD-SAMs 

of Lahann. Frechette et al. introduced a novel approach relying on non-covalent ion-pair 

interactions in solution, to control the molecular spacing of thiols in a SAM. In the first 

step, the neutral ion-pairs are formed between the carboxylate tail-group of MHA and 

tetraalkylammonium (TAA+) hydroxide salts of various alkyl side-chain lengths. These 

ion-pairs are then introduced to gold substrate to form an ion-pair film. Subsequently, the 
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ion-pair film was dissociated with a solution of potassium perchlorate, which releases the 

TAA+ from the surface, yielding a loosely packed MHA monolayer (Figure 1.7) [77]. 

 

 

 
Figure ‎1.7. Description of LD-SAM preparation process through supermolecular ion-pair 

synthesis of LD-SAMs. 

So far, this is the most convenient method for controlling the molecular spacing of thiols 

in a SAM. However, ion-pair assembly is still limited to ionic tail group functionalities. 

1.4 Click-Chemistry 

 In 2001, Sharpless and co-workers proposed the development of a set of powerful, 

selective, and highly reliable reactions for the rapid synthesis of useful new compounds 

and combinatorial libraries through heteroatom links (C-X-C) and termed the approach 

“click chemistry” [78]. 

 Click reactions are defined to be modular, stereospecific, wide in scope, and to 

have the potential to give high product yields and create only inoffensive by-products 

[78-81]. Ideally, starting materials and reagents for ‘click’ reactions are readily available 

from nature or can be obtained by steam cracking of alkanes in the petrochemical 

industry [78]. The click chemistry has had a pervasive impact in a diverse range of 

applications, such as bioconjucation, drug discovery, and polymer and materials science 

[82].  

 Some of the known reaction processes that meet the requirements of a click 

reaction (Figure 1.8): nucleophilic ring opening reactions such as: epoxides, aziridines, 

aziridinium ions etc.; non-aldol carbonyl chemistry: formation of ureas, oximes and 

hydrazones etc.; additions to carbon–carbon multiple bonds: especially oxidative 

addition, and Michael additions of Nu–H reactants; and cycloaddition reactions: 

especially 1,3-dipolar   cycloaddition reactions, and also the Diels–Alder reaction. 

Among all these processes, most attention has been focused on the Huisgen 1,3-dipolar 

cycloaddition of alkynes and azides to yield 1,2,3-triazoles, due to the general ease of 

execution, facile reaction conditions, and impressive orthogonality of this reaction [83-

86].  
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Figure ‎1.8. A selection of reactions that match the click chemistry criteria [87]. 

1.4.1 Thiol-ene Click-Chemistry 

 In mid-19
th

 century, Charles Goodyear introduced the vulcanization of natural 

rubber (poly (cis-isoprene)) by sulfur and that brought a great deal of attention to the 

reactions of sulfur containing compounds with alkenes [88]. The Goodyear vulcanization 

process was the birth of classical thiol-ene chemistry [89]. Thiol-ene reactions are 

typically defined as hydrothiolation process of thiols through the addition to unactivated 

carbon–carbon double bonds, such as maleimides, acrylates, and norbornenes, regardless 

of reaction mechanism (Figure 1.9) [90].  

 
Figure ‎1.9. The hydrothiolation of a C=C bond with anti-Markovnikov orientation [81]. 

 There are multiple features that make thiol-ene reaction a favorable and versatile 

process. Firstly, thiol-ene reactions are typically extremely rapid in ambient temperature, 

pressure, air/oxygen, and moisture, and do not require inert gas purging. Secondly, thiol-

ene hydrothiolation process can proceed under different conditions including: a radical-

initiated pathway [91], catalytic pathways mediated by nucleophiles, acids and bases 

[92], without initiator nor catalyst in a highly polar solvents such as water or DMF [93], 

and through supramolecular catalysis using b-cyclodextrin [94]. This versatility allows 

reactions to be designed with conditions tailored to most reasonable synthetic needs. The 

third powerful feature of thiol-ene reactions, is a wide variety of thiols and alkenes that 

can serve as suitable substrates, including activated, non-activated, and multiply 

substituted olefinic bonds.  

 

 Among different possible pathways for thiol-ene reactions, the most studied is the 

photochemically or thermally induced radical mediated process [91, 95, 96]. As shown in 

Schematic Figure 1.10, the process initiates by the formation of a thiyl radical via 

hydrogen abstraction from a thiol through irradiation of a photoinitiator species. Addition 



 

10 

of a thiyl radical to C=C bond results in the formation of an intermediate carbon-centered 

radical followed by chain transfer to a second thiol. This yields the thiol-ene addition 

product in an anti-Markovnikov orientation, and also generates an active thiyl radical 

species for further reaction. Under most conditions, this chain process terminates by 

typical, bimolecular, radical–radical coupling processes [81, 97]. 

 

 
Figure ‎1.10. Mechanism of radical thiol-ene coupling, including initiation, propagation 

and termination steps [87]. 

1.4.2 Thiol-Yne Click-Chemistry 

 In an attempt to increase the overall rate of hydrothiolation process, polymer 

chemists have studied a variety of thiole-ene related click chemistries. In 2009, Bowman 

and co-workers showed that a tetrafunctional thiol readily polymerizes with dialkynes via 

a photoinduced radical step growth process identical to that for traditional thiol-enes [98]. 

They reported that the reaction proceeded at high rates under ambient temperature and 

pressure to high conversion, therefore demonstrating an exceptional efficient process for 

fabricating high performance networks [99]. A radical mediated, thiol-yne click reaction 

initiates via a chemical radical source, UV irradiation, or sunlight at ambient temperature 

(Figure 1.11) [90]. In a thiol-yne reaction, each alkyne functional group is capable of 

consecutive reaction with two thiol functional groups and therefore this reaction exhibits 

attributes typically associated with highly efficient thiol-ene chemistry. The reaction 

beautifully combines the readily available building blocks of the copper (I) azide–alkyne 

click reaction and the thiol–ene chemistry, and provides a platform for synthesis of new, 

highly-functional monomeric and polymeric species [79, 96, 100, 101].  
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Figure ‎1.11. Reaction mechanism for addition of thiols to alkynes [102]. 

 The thiol-yne reaction proceeds via the addition of a thiyl radical to an alkyne to 

form a vinyl sulfide radical. The resulting carbon centered radical subsequently abstracts 

a hydrogen from a thiol, generating the vinyl sulfide and producing another thiyl radical 

at the same time. In certain conditions, a second cycle will subsequently follow, in which 

a thiyl radical adds across the double bond of the vinyl sulfide, generating the 1,2-

disubstituted adduct and a new thiyl radical. This multi-step process, significantly 

enhances the maximum attainable cross-link density in a polymer-polymer conjugation 

process, as well as the degree of small molecule substitution in such polymers compared 

to a traditional thiol-ene process [79]. Thiol-yne click chemistry enables the formation of 

“Y” shaped branched molecules, of varied functionality through radical initiated addition 

of an alkyne to two thiol containing molecules.    

1.5 Concluding Remarks 

 Protein adsorption to solid surfaces is an important phenomenon in the behavior 

of biomaterials. Mechanistic aspects of protein adsorption to surfaces have been 

extensively studied at the atomic level using SAMs. SAMs of alkanethiols with different 

wettabilities, chain lengths, and terminal functionalities have been used in many studies 

with proteins and cells because they form highly ordered systems, are easy to prepare, 

and permit a wide range of functional groups to be explored [64, 103]. Despite the vast 

research in this area, there is a lack of knowledge on the impact of lateral packing density 

of tail groups on the extent of protein adsorption on SAMs. To date, a comprehensive 

study on the influence of chain density on adsorption is complicated by a lack of a 

versatile, simple approach for preparation of highly stable LD-SAMs. An optimal LD-

SAM system would offer precise control over lateral packing density of functional groups 

a diverse range of terminal functionality and long shelf life. 

1.6 Objectives 

 There are three main objectives to this dissertation. Firstly, we are proposing a 

novel approach based on solution-phase thiol-yne click chemistry, to prepare LD-SAMs 

of high stability as shown in (Figure 1.12). In this approach we exploit synthesis of 

adsorbate moieties and their subsequent self-assembly on gold substrate. These LD-

SAMs are unique among monolayer systems as they are more electrochemically stable 

than typical well-packed monolayers, as well as low-density monolayers prepared by 
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conventional techniques. In addition, the resultant monolayers have high conformational 

freedom of interfacial functional groups, which allows the surface to reorient as the 

response to an external potential. The unique two-phase structure of these monolayers, 

consisting of a well-packed phase adjacent to the gold substrate and a loosely-packed 

phase in contact with the environment, accounts for exceptional properties of the 

resultant LD-SAMs.   

 
Figure ‎1.12. Description of Solution-phase synthesis of LD-SAMs composed of thiol-yne 

adsorbates. 

 Secondly, a solid-phase preparation of LD-SAMs based on thiol-yne click 

chemistry is designed (Figure 1.13). In this technique, we utilize a solid-phase synthesis 

of the monolayer through the deposition of a well-packed alkane dithiol monolayer 

followed by the addition of up to one alkyne tail group for every two surface-

immobilized thiol groups. The resulting monolayers simultaneously provide both high 

stability and low chain packing density through the layered doubly bound structure. This 

approach eliminates the drawbacks of the solution-phase approach by circumventing the 

purifications required by solution phase synthesis and also offering variable tail group 

density.  

 
Figure ‎1.13. Description of Solid-phase synthesis of LD-SAMs composed of thiol-yne 

adsorbates. 

 The third objective is to determine the effect of lateral packing density of SAMs 

on protein adsorption. For this purpose, the adsorption of bovine serum albumin (BSA) 

on LD-SAMs of varied functionalities prepared through solution-phase approach is 

studied in real time, using surface plasmon resonance (SPR). The results are then 

contrasted with those of analogous well-packed SAMs as well as mixed SAMs of 

matching surface energy.  
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2 Surface Characterization Techniques  

 In this research various analytical techniques were used for SAM analysis. A 

short description of the utilized characterization techniques is provided in this following 

sections. 

2.1 Contact Angle Goniometry 

 Contact angle goniometry has been extensively used in research as the simplest 

and quickest method to measure a surface’s wettability and its free energy. The contact 

angle quantifies the wettability of a surface by probing the outermost surface layer, which 

is directly involved in effects of wettability and adhesion [104]. 

 Contact angle (θ), is defined as the angle between tangent of vapor-liquid 

interface at the three phase boundary where liquid, vapor, and solid intersect (Figure 

2.1a). Young’s equation describes the surface tension balance at the three-phase contact 

of solid-liquid and gas: 

Equation ‎2.1 

γSV = γSL + γLVCos(θY) 

 

The interfacial tensions - solid/vapor (γsv), solid/liquid (γsl), andliquid vapor (γlv) - form 

the equilibrium contact angle of wetting, many times referred as Young contact 

angle, θY.  A small contact angle is observed when probe liquid spreads on surface, while 

a large contact angle is observed when liquid beads on surface. The surface is hydrophilic 

when wetting is favorable and fluid spreads over a large surface area is hydrophobic 

when the wetting is unfavorable and the fluid minimizes its contact area with the surface.  

 
Figure ‎2.1. a) Illustration of contact angle and the associated forces acting at the 3-phase 

boundary, b) illustrations of advancing and receding contact angles. 

 Contact angles can be divided into static and dynamic angles. When the three-

phase contact line is on standing mode, the contact angle produced is called the “Static” 

contact angle. This is perhaps the most common type of measurement. A single reading is 

taken on a static sessile drop shortly after its creation. The contact angle is “dynamic” 

when the three-phase contact line is in actual motion. Dynamic angles have become 

popular because of recent interest in super hydrophobic and self-cleaning surfaces [105], 

time dependent wettability studies[106], and stimuli responsive surfaces [107]. The 

contact angle formed by expanding and contracting the liquid is referred to as the 

advancing contact angle θa and the receding contact angle θr, respectively (Figure 2.1b). 

 We manually measured the static contact angles of deionized water, on a Rame-

Hart model 100 goniometer, at room temperature and ambient relative humidity (Figure 

2.2).  
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Figure ‎2.2. Photograph of Goniometer used for all the measurements [108]. 

 Measurements were taken using the sessile drop method, whereby liquid is 

pumped into and out of a droplet to achieve first the advancing and then the receding 

angles. The advancing and receding contact angle measurements were taken for one side 

of a drop volume of approximately 5 μL. 

 Further, to study the capacity of a produced surface to reconfigure in response to 

an applied potential. Specifically, we measured the advancing and receding contact 

angles while applying either positive or negative potentials (−0.1 or +0.29 mV vs 

Ag/AgCl) to a monolayer coated gold electrode. A   standard   three-electrode   

arrangement   was   used   to   apply   a   potential   to   the monolayer-coated   gold   

substrate   within   a   5   μL, 0.1   M   KCl   drop (adjusted to pH 11 with KOH). The 

monolayer coated gold substrate was used as the working electrode, a platinum wire was 

used as the counter electrode, and a Ag/AgCl wire was used as a pseudo reference 

(Figure 2.3).  

 
Figure ‎2.3. Schematic illustration of advancing and receding contact angle measurement 

setup 

 The potential of the pseudo reference electrode was measured to be 0.20 ± 0.05 V 

with respect to a standard Ag/AgCl reference electrode (Princeton Applied Research 

K0265). The potential of the gold substrate, relative to the Ag/AgCl wire, was controlled 

using a Reference 600 potentiostat (Gamry Instruments). 

2.2 Electrochemical Impedance Spectroscopy 

 Electrochemical impedance spectroscopy (EIS) is a powerful surface 

characterization technique. EIS is being widely used to understand the chemical structure 

of a thin monolayer, the dielectric constant and the apparent constant of electron transfer 

rate of the redox probes in solution [109]. This is accomplished using the effect of the 

solution resistance to ion transport through the thin layer, the charge of double-layer, and 
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related current the diffusion or the processes occurring in the SAMs [110]. EIS is 

particularly suitable for applications such as physical electrochemistry, sensors, coatings, 

and corrosion.  

 Our electrochemical setup consisted of an electrochemical cell (the system under 

investigation), a potentiostat (Gamry Reference 600), and a computer for data acquisition 

and analysis (Figure 2.4). 

 

 
Figure ‎2.4. Photograph of the Gamry Reference 600 setup. 

 The electrochemical cell in an impedance experiment can consist of two, three, or 

four electrodes. In our studies, we used a three-electrode configuration for the 

electrochemical cell, which is most common for typical electrochemical applications.  

 Usually, the electrode under investigation is called the working electrode, the 

electrode necessary to close the electrical circuit is called the counter electrode, and a 

third electrode (the reference electrode) is used to determine the potential across the 

electrochemical interface accurately. The electrodes are usually immersed in a liquid 

electrolyte. Since the absolute potential of a single electrode cannot be measured, all 

potential measurements in electrochemical systems are performed with respect to a 

reference electrode. A reference electrode, therefore, should be reversible, and its 

potential should remain constant during the course of the measurement [111]. In our 

setup, the monolayer coated gold substrate was used as the working electrode (WE), a 

clean gold substrate (platinum wire in dynamic contact angle testing setup) was used as 

the counter electrode(CE), and a standard Ag/ AgCl electrode was used as the reference 

electrode(RE), and is usually placed close to WE (Figure 2.5). The impedance of the cell 

is measured between the RE and a fourth electrode called the working sense electrode 

(WS). In a three-electrode setup, the working electrode and working sense leads are 

attached. Figure 2.5 shows the diagram of a three-electrode cell setup [111]. 
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Figure ‎2.5. Schematic representation of a three-electrode electrochemical cell, b) side 

image of experiment setup showing working electrode (green clip) and working sense 

electrode (blue clip) connecting to SAM coated gold substrate, c) top image of 

experiment setup presenting Ag/AgCl reference electrode, and gold substrate counter 

electrode immersing in electrolyte solution in close distance from SAM coated gold 

substrate. 

 A flat cell (Princeton applied research, model K0235) was used to expose 1 cm
2
 

of the SAM coated working electrode to an electrolyte solution of 1 mM K3[Fe(CN)6], 1 

mM   K4[Fe(CN)6], and   0.1   M   Na2SO4. Data were taken between 10
−1

 and 10
4
 HZ and 

fit to a simplified Randles equivalent circuit to determine resistance and capacitance 

values. 

2.3 Reductive Desorption 

 A monolayer coated gold substrate acting as the working electrode in an 

electrochemical cell, can be characterized to determine the molecular order (as described 

in preceding section using EIS experiment), surface coverage and the intermolecular 

interaction strengths [112-114]. Reductive desorption experiment using cyclic 

voltammetry (CV) is a widely used electrolytic method for studying alkanethiolate 

monolayers [112, 115-117]. It has been shown that the alkanethiolate SAMs formed on 

gold substrates desorb in a solution (pH >11) and through the three-electron oxidative 

and one electron reductive paths in equations 2.2 and 2.3, respectively.  

 

Equation  2.2 

RS − Au + 2H2O → Au(0) + RS− + 4H+ + 3e− 

Equation  2.3 

RS − Au + e− → Au(0) + RS− 
 

 Reductive desorption experiments were done in the same three-electrode setup, 

with the same electrodes as for EIS experiments. The measurements were taken using a 

nitrogen purged, 0.5 M KOH electrolyte solution. Current was measured while the 

potential was cycled starting from 0.345 V to −1.545 V (vs Ag/AgCl), at scan rate of 100 

mV/s, with at least two cycles. Current indicates oxidative + Reductive chemical 
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reactions. We measure the reduction peak position (potential) to get insight into 

intermolecular interactions in SAM. The bonds between the gold substrate and thiolated 

molecules are generally identical across varying molecular geometries. The higher the 

potential needed to desorb the monolayer, the stronger the interactions between 

molecules in the SAM, and the more stable the monolayer is. Information about the 

surface density of the molecules is provided by measuring the area under the desorption 

peak [118]. The area under the peak indicates the total charge required to desorb the 

monolayer through reducing the adsorbates according to equation 2.4.  

  

Equation ‎2.4 

ΓAu‑SR =
QAu‑SR

nFA
 

 

where QAu‑SR is the total charge in the desorption peak, n is the number of electrons 

involved in the electron-transfer process (n = 1 for this reaction), F is the Faraday 

constant, and A is the electrode surface area exposed to the alkaline solution.  

2.4 Surface Plasmon Resonance 

 We used surface plasmon resonance (SPR) for studying the protein adsorption on 

monolayer surfaces. SPR is a powerful label-free method increasingly used to study 

binding between two macromolecules in real-time, and has become a promising 

alternative for current immunoassays. SPR biosensors are rapid, sensitive and provide 

quantitative in-situ analysis [119]. SPR biosensors are widely used in bioanalytical 

chemistry to determine antibody-antigen interactions, study DNA hybridization,  

investigate the dynamic interactions of the molecule-ligands-receptor type, diagnose 

bacteria- and virus-induced diseases [120-122]. 

 In SPR experiments, typically, one of the two interacting partners is immobilized 

on a sensor chip surface, and the other is flowed through a microfluidic system in contact 

with the chip surface. SPR system are mostly built according to the Kretschmann 

configuration (Figure 2.6). In our use of this design, a polarized laser beam is directed 

onto the side of BK7 equilateral prism (Esco Products, Inc.). The prism is index matched 

to a metal coated microscope glass slide, and a BK7 specific index matching fluid 

(Cargille Labs), and is directed at the glass surface. The light reflects off the gold and 

passes back through the prism to a detector. Changes in reflectivity versus angle or 

wavelength give a signal that is proportional to the amount of analyte bound near the 

surface.  

 
Figure  2.6. Schematic representation of the Kretschmann SPR configuration. 
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 When incident light (visible or near infrared) is shined through the glass slide and 

onto the gold surface at angles and wavelengths near the so-called “surface plasmon 

resonance” condition, it causes the excitation of plasmons at the metal/solution interface 

[122]. The excitation of surface plasmons is detected as a minimum in the intensity of 

reflected light at the resonance angle () (Figure 2.6). The value of , depends on the 

dielectric constant of the interfacial region that is in contact with the gold and depends on 

the thickness of an adsorbed layer of analyte. The wavelength corresponding to the 

minimum intensity is the coupling wavelength which will change as the incident angle 

changes. The thickness of the gold layer deposited on the microscope glass slide greatly 

impacts the magnitude of the dip in the reflectivity spectrum. The suggested gold 

thickness for this setup that results in an optimum dip intensity was from 45nm to 65nm 

[123]. In this work, the thickness of the gold was between 50 nm and 55 nm.  

In this study, we used a homemade single mode SPR sensor (Figure 2.7) and we 

took our measurements in the wavelength interrogating configuration, where the 

reflectivity can be calculated versus wavelength by fixing the thickness of gold layer. The 

incident light produced using a halogen lamp (Model DH-2000, Ocean Optics, Inc.) using 

a 200 µm core multi-mode optical fiber and a collimating lens. The polarization of the 

incident light was controlled by a calcite Glan-Taylor polarizer (ThorLabs, Inc.), and the 

angle of incidence was set at 65.5° (inside BK7 prism). The reflected light was collected 

by another lens and coupled to a multimode fiber, which routed it to a CCD based 

spectrometer (OceanOptics model HR-4000). All the data acquisition and analysis were 

performed using a custom software developed in LabView (National Instruments). The 

theoretical fits to the spectrum were based on a data set for the dielectric constant of gold, 

provided by Johnson and Christy.[124] 

 

 
 

Figure ‎2.7. Photograph of the homemade SPR setup used for all measurements.[125] 

 Protein adsorption studies on monolayer surfaces were carried out by sequential 

injections of deionized water for 4 minutes, phosphate buffer saline (10 mM phosphate, 

150 mM sodium chloride, pH = 7.2, T = 25 C) for 4 minutes and 45 seconds, BSA 

solution in phosphate buffer saline (0.38 µM) for 9 minutes and 45 seconds, and then 

replacing it with the PBS buffer for 4 minutes and 45 seconds, and at the end flowing 

deionized water for 4 minutes. As a control test, similar sets of experiments were run on 

identical monolayers, with an additional injection step of aqueous glycerol solution (1%) 

with a known bulk refractive index change of 0.00113, in the beginning of each 
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experiment. Changes in bulk solution and BSA immobilization on monolayers resulted in 

a resonance wavelength shift as will be discussed in following section. Results shown are 

averaged from at least four samples. The reported values are the average ± standard 

deviation. 

2.5 Spectroscopic Ellipsometry 

 Spectroscopic ellipsometry (SE) is a non-contact, non-destructive, and fast 

technique for measuring the dielectric functions of thin films. It can be used to analyze 

single or multi-layer structures through characterization of polarization of light 

transmitted through coatings and reflected off of substrates. Standard ellipsometric 

measurements are commonly performed in an external configuration. This approach uses 

a polarized light beam propagating through air, which is reflected by, or transmitted 

through a sample, and then it propagates again in air before arriving at the detector 

(Figure 2.8a). SE measures the change in the light polarization by quantifying the 

amplitude (Ψ) and the phase difference (Δ). In SE, (∆, Ψ) are measured by changing the 

wavelength of light in our experiments developed on J.A. Woollam Company M-2000V 

Ellipsometer (Figure 2.8b) from 350–1700 nm region, and at angle of incidence 

65°,70°,75°. The sensitivity of SE in polarization phase and modulus measurements, is 

exploited to determine thin film thickness with an angstrom resolution [126].  

 

 
Figure ‎2.8. a) Schematic setup of an ellipsometry experiment. b) Photograph of 

J.A.Woollam Ellipsometer M-2000. 

 SE is applicable to films with thickness less than a nanometer to several 

micrometers. The sample must be composed of a small number of discrete, well-defined 

layers that are optically homogeneous, isotropic, and non-absorbing[127]. Violation of 

these assumptions will invalidate the standard ellipsometric modeling procedure, and 

more advanced variants of the technique must be applied.  

In this work, prior to surface modifications, the complex refractive index of the 

gold substrate was determined using measurements taken from 375 to 1000 nm at 

incident angles of 65°−75° with 2° increments. Additional scans were taken of the 

monolayer coated substrate, from 245-725 nm at incident angles of 65º to 75º with 2º 

increments. The monolayer coating thickness and optical constants were fit to 

experimental data using a standard Cauchy model (Equation 2.5). 

2.5.1 Data Acquisition and Analysis 

 Optical modeling and data analysis were done using the WVASE 32 software 

package. To analyze (∆, Ψ), it is required to construct a theoretical layered structure in 

the form of an optical model. From this data analysis, physical properties of each layer is 
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extracted. In this work, we used a four-layer model composed of a silicon wafer, the 

chromium layer (used to adhere gold to silicon surface), the bulk gold layer underneath 

an organic layer, which was used to represent the molecular layer (Figure 2.9). 

 

 
Figure ‎2.9. Four-layer model used for analysis of the ellipsometric data representing the 

monolayer formed on gold coated silicon wafers. 

 The thickness of the monolayer film was fitted using the Cauchy expression for a 

normal dispersion, with the assumption that the refractive index has only a nonzero real 

component [128]. 

 

Equation ‎2.5 

n (λ) = A +
B

λ2
+

C

λ4
 

 

where n is the refractive index, λ is the wavelength, A, B, and C are coefficients that can 

be determined for a material by fitting the equation to measured refractive indices at 

known wavelengths. In this work the best fit occurred for A=1.45, B= 0.01, and C=0, 

which is the value commonly proposed for such systems [129, 130]. 

2.6 Fourier Transform Infrared Spectroscopy (FTIR) 

 We used Infrared Spectroscopy to get an insight into the molecular packing and 

orientation in our SAMs and LD-SAMs. An infrared spectrum represents a precise 

fingerprint of a sample with absorption peaks which correspond to the frequencies of 

vibrations between the bonds of the atoms making up the material. Therefore, FTIR can 

result in a qualitative analysis of every different kind of material and surface. In this work 

we used grazing angle FTIR (Agilent 680) with an MCT detector, which is equipped with 

a universal sampling accessory for grazing angle analysis of thin organic coatings on 

metal surfaces. For SAM measurements, spectra were collected using 100 scans at an 

incident angle of 80° from the surface normal using a plasma cleaned gold substrate as a 

background (Figure 2.10). 

 

 
Figure ‎2.10. Photograph of FTIR instrument Agilent 680 [108]. 
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 A grazing angle FTIR sample analysis process consists of several steps (Figure 

2.11). The process starts by the emitted infrared beam passing through the interferometer 

where the amount of energy presented to the sample is controlled. The beam later enters 

the sample compartment where it is reflected off the sample surface. At this step, the 

specific frequencies of energy, which are characteristics of the sample are adsorbed. 

beam travels to the detector for final measurements, and is sent to the computer where the 

Fourier transformation takes place. The final IR spectrum represents absorption peaks 

and frequencies associated with the molecular bonds and functional groups present in the 

sample. 

 
Figure ‎2.11. The IR instrumentation process. 
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3 Solution-Phase Synthesis of Thiol-Yne LD-SAMs 

This chapter has been adapted with minor modifications from the following published 

article: [Stevens, Christopher A., Leila Safazadeh, and Brad J. Berron. "Thiol-yne 

adsorbates for stable, low-density, self-assembled monolayers on gold."Langmuir 30.8 

(2014): 1949-1956] 

3.1 Abstract  

 In this work, we present a novel approach towards carboxylate terminated low-

density monolayers (LD-SAMs) on gold by the adsorption of 10,11-Bis (10-

mercaptodecylthio) undecanoic acid (BMUA).  Adsorbates are synthesized in room 

temperature toluene through the thiol-yne addition reactions of two thiol containing head 

groups to an alkyne containing tail group. The resulting monolayers termed “BMUA LD-

SAMs”, have two distinct phases: a highly crystalline head phase adjacent to the gold 

substrate, and a lower packing density tail phase which is in contact with the 

environment. The lower packing density of the tail phase, leads to the increased 

conformational freedom of the thiol-yne LD-SAMs and a potential for stimuli 

responsiveness. Simultaneously, the high packing density of the head phase provides 

exceptional stability compared to that of traditional self-assembled monolayers (SAMs) 

and other LD-SAM chemistries.  

 Contact angle measurements indicate an intermediate surface energy for the 

product LD-SAM surface. This is due to the low packing density of the product LD-SAM 

which likely exposes methylene functionality at the surface in addition to the carbonyl 

terminal group, resulting in a mixed surface yielding an intermediate surface energy. In 

addition, the presence of a peak in carbonyl stretching region on FTIR spectra for the 

product LD-SAM, supports the existence of carboxylate group at the surface. Also, in the 

methylene stretching region of the FTIR spectra for the product LD-SAM, we see the 

peaks associated to asymmetric and symmetric stretching of methylene groups have 

shifted towards higher wavenumbers compared to those of well-packed SAM, which 

shows a lower crystallinity at the product LD-SAM surface. Moreover, the results from 

ellipsometry and electrochemical impedance spectroscopy measurements support the 

proposed two-phase structure for the product LD-SAM.  

 The high conformational freedom at the surface was confirmed by monitoring the 

receding contact angle changes indicative of surface remodeling in response to an 

external electrical potential. The stability of the thiol-yne LD-SAMs has been studied by 

reductive desorption. The anodic peak positions for the desorption of the adsorbed 

thiolate molecules indicates improved stability of the thiol-yne LD-SAMs over that of the 

well-packed SAMs. The proposed approach is not limited to carboxylate functionality 

and can be adapted for LD-SAMs of varied functionality. 

3.2 Introduction 

 Protein-surface interactions are important phenomena in the behavior of 

biomaterials in contact with biological environments [4]. These surfaces occur in 

materials used in molecular and cell biology; in materials for contact lenses, dental 

prostheses , devices for drug delivery, biosensors , implant devices, chromatography and 

enzyme-linked immunosorbent assays (ELISA) [64, 131, 132]. 
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 Because of its central importance, the adsorption of proteins to man-made 

surfaces has been studied extensively. A broad goal of our research is to investigate the 

protein interactions with surfaces at the atomic level to understand the interactions of 

proteins with ligands, and surfaces with different hydrophobicity and structuring. Model 

systems designed to elucidate the protein adsorption kinetics and mechanisms must have 

a structurally well-defined surface with properties that can be tailored and controlled 

simply and allow the complex functionality relevant to biochemistry to be introduced at 

the surface [133-135]. 

 Self-assembled monolayers (SAMs) are powerful coating alternatives for polymer 

coatings, where the physical and chemical properties of a surface are readily tailored by 

the molecular layer on the substrate. SAMs use a deposition process, through the 

immersion of the substrate in a solvated adsorbate [136-138]. SAMs are formed from 

individual molecules, which adsorb to the substrate, and are stabilized by a balance of 

forces into a coating, which is largely free of defects [47, 139, 140]. Thiol/gold systems 

are among the most commonly employed monolayers, owing to a combination of the 

inert character of gold and the versatility of the thiol chemistry. Gold substrates have 

additional advantages of being electrically conductive and active to surface plasmon 

sensing, where thiol/gold monolayers have been particularly effective in biological 

sensing [141] or stimulation [142] approaches. With the popularity of thiol monolayers, 

the commercial availability of functional thiol molecules has dramatically increased. 

Adsorbates typically contain methylene chain regions between 6 and 16 carbons long to 

enable stabilization through van der Waals interactions. Importantly, the lateral adsorbate 

density of linear alkane systems is typically dense and dictated by the chain packing in 

the linear methylene region [143].  

 Traditional monolayer techniques offer little capacity for tuning of functional 

group density. Low-density self-assembled monolayers (LD-SAMs) have emerged as an 

approach towards increased conformational freedom of functional groups over traditional 

SAMs [37, 144, 145]. In LD-SAMs, the interchain spacing of the molecular adsorbates is 

increased, leaving the resulting monolayer lacking in the crystalline structure which is 

characteristic of traditional SAMs [29]. The increased chain spacing of LD-SAMs 

provides a uniquely disordered environment for physical and chemical processes. These 

coatings offer improved binding of some adsorbates [66, 67, 146] reduced confinement 

for chemical reactions within the monolayer [147, 148] and molecular rearrangement in 

response to external stimuli [37, 144]. The formation of LD-SAMs is challenging, owing 

to the exchange process which typically produces defect free dense SAMs [66]. 

Approaches involving short monolayer deposition time yield islanded structures with 

little conformational freedom apart from edge sites [47]. Coadsorption of long and short 

chain molecules yet again will result in islanded regions of long chain molecules of high 

crystallinity [46, 143]. 

 LD-SAMs on gold substrates are typically created through a two-step process 

involving the adsorption of a SAM with a labile bulky tail group and the subsequent 

cleavage of the tail group, yielding a monolayer of lower packing density [29, 37, 66]. 

This basic approach was first demonstrated by Lahann and coworkers in the cleavage of a 

polyaromatic group from mercaptohexadecanoic acid, yielding carboxylate-terminated 

LD-SAMs on gold [37, 149, 150]. To date, the most convenient synthetic approach is 

from the Frechette Group [29] where carboxylate anions are paired with bulky cations 
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prior to immersion, and subsequent cleavage of the ion pair results in a carboxylate LD-

SAM of similar structure to that of Lahann [144]. The Jennings lab demonstrated the 

hydrolysis of an ester-bound fluorocarbon group to yield a hydroxyl terminated LD-SAM 

[66]. Other groups have employed complex chemical synthesis to generate adsorbates 

with bulky head groups at the thiol/gold interface, but these approaches have been limited 

to methyl-terminated LD-SAMs.[151] To date, the diversity of tail group functionalities 

available in LD-SAMs on gold is minimal when compared to their densely packed 

analogues [76, 151, 152]. 

 The increased interchain spacing of LD-SAMs comes at the cost of a drastic 

reduction in van der Waals interactions, a major force in the stability of SAMs. The 

reduction in stabilization was previously supported electrochemically, where the 

reductive potential required to cleave the adsorbed thiolate was lower for the LD-SAMs 

than in classical SAMs of identical chemical composition [153]. The role of van der 

Waals forces in this stabilization was also demonstrated by backfilling a thiolate into an 

LD-SAM, which partially restored the electrochemical stability of the LD-SAM to that of 

a well-packed SAM. The instability of LD-SAMs is also observed through restructuring 

of the monolayer over time. Previous work studied the influence of extended storage on 

the low density structuring of cleavage-based LD-SAMs, where monolayers stored in 

ambient conditions showed dramatic rearrangement of the LD-SAM adsorbates over 

several weeks into islanded regions of high adsorbate density [154]. This surface 

migration process is hypothesized to be driven by an opportunity to increase in van der 

Waals interactions. This also demonstrates a possibility for even backfilled LD-SAMs to 

migrate and phase separate provided sufficient intermolecular driving forces. 

 Here, we propose an adaptable approach towards LD-SAMs of varied 

functionality and high structural stability with respect to time, temperature, and solvent. 

The described monolayer accomplishes both stability and low interfacial density through 

two distinct phases: a head group phase adjacent to the substrate, and a tail group which 

interfaces with the environment (Figure 3.1a). Each adsorbed molecule has an inverted 

“Y” shape, where each chain in the tail phase is bound to two chains from the head phase, 

leading to formation of a loosely packed tail phase. The high density of the head phase 

limits rearrangement of chains, preventing monolayer restructuring and loss of tail group 

spacing. We expect the covalent double binding of the head phase to the substrate and 

intermolecular forces between the adsorbates in the highly packed head phase to provide 

these monolayers improved stability even over that of traditional SAMs as well as LD-

SAMs created by other synthesis methods (Figure 3.1b). The high density of the head 

phase limits rearrangement of chains, preventing monolayer restructuring. 

 We utilize thiol-yne chemistry as a simple approach to synthesizing branched 

adsorbates. Radical-mediated, thiol-yne reactions proceed rapidly in an orthogonal 

fashion to quantitatively yield the 1,2-addition product. While thiol-yne reactions have 

been well studied in organometallic catalysis [155, 156] application of thiol-yne click 

chemistry was limited in materials chemistry until very recently [79, 80, 98, 157, 158] 

and is virtually unexplored in monolayer chemistry. Thiol-yne reactions consist of a two-

step reaction in which individual thiols are added sequentially. First, an activated thiol 

(thiyl radical) is added to an alkyne, resulting in a vinyl sulfide, and the radical is 

transferred to a second thiol group [92]. In the second step, a thiyl radical is added to the 

vinyl sulfide product, yielding a 1,2-disubstituted product. The net reaction is chain 
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transfer limited, as indicated by a near first order (0.8 power) dependency on thiol and a 

near zero order (0.1 power) dependency on alkyne [159]. 

 The Hoyle group demonstrated the orthogonality of thiol-yne grafting reactions as 

a powerful tool in functionalized dendrimer synthesis [92]. Their addition of 

functionalized thiols to functional alkynes (2:1 stoichiometry) resulted in quantitative 

conversion and an absence of side products in a 10 minute, solution phase reaction. 

Additionally, thiol-yne chemistry is highly selective in the presence of acid, alcohol, 

silane, and other functional groups [92]. Here, we demonstrate and characterize a highly-

stable, low density monolayer that is acid terminated. The orthogonally of thiol-yne 

chemistry supports the extension of this general thiol-yne adsorbate strategy to a wide 

range of other functional groups and applications. 

 

 

Figure  3.1. The design of thiol-yne adsorbates for low interfacial density and high 

monolayer stability. (a) Solution phase synthesis of a bifunctional adsorbate through 

click-chemistry and subsequent adsorption [160]. (b) Description of stabilizing forces in 

thiol-yne SAMs [160]. 

3.3 Experimental Section 

3.3.1 Materials. 

 1,10-Decanedithiol (98%) was obtained from TCI America. n-Hexane (95%), 

10-Undecynoic acid (95%), ethanol (>99.5%), dichloromethane (>99.8%), potassium 

hexacyanoferrate(III) (>99%), potassium hexacyanoferrate(II) (>99.99%), sodium sulfate 

(>99%),11-mercaptoundecanoic acid (95%), and silica were purchased from Sigma 

Aldrich (St. Louis, MO) and were used as received. Irgacure-184 was used as received 

from Ciba Specialty Chemicals. Deionized water was produced using an 18 MΩ 

Millipore water purification system. Silicon wafers (P/Boron <1-0-0>), 150+/-0.2mm 

diameter, with thickness of 600-650 µm, and resistivity of <0.4, were obtained from 

WRS Materials. 

3.3.2 Gold Substrate Preparation. 

 Gold-coated silicon wafers with chromium adhesion layers (100 Å Cr, 500 Å Au) 

were prepared using Hummer 8.1 DC sputter. Silicon wafers were plasma cleaned and 

then placed into the sputter system chamber, where chromium (100 nm) and gold (500 

nm) were sequentially deposited onto silicon wafers. The gold substrates were typically 

cut to 1 x 3 cm, rinsed with ethanol, and dried under a stream of N2 prior to use. 



 

26 

3.3.3 Synthesis of 10,11-Bis (10-Mercaptodecylthio) Undecanoic Acid 

 Synthesis procedure is explained in detail in section 7.3.1.  

3.3.4 Preparation of Monolayers 

 The 10,11-bis(10-mercaptodecylthio) undecanoic acid (BMUA) product was 

reconstituted in pure hexane to a concentration of 1 mM. Gold substrates were immersed 

in this solution for 24 h at room temperature to form SAMs. The samples were then rinse 

in 1 mM aqueous dithiothreitol for 5 minutes. Samples were rinsed with ethanol, 

followed by a brief rinse with deionized water, pure ethanol, and dried with a stream of 

nitrogen gas prior to measurement. Results shown are averaged from at least three 

measurements on at least four samples. The reported values are the average ± standard 

deviation. Throughout this chapter, we have referred to our low-density monolayer made 

of BMUA compound as BMUA LD-SAM. 

3.3.5 Fourier Transform Infrared Spectroscopy (FTIR) 

  The FTIR spectrometer used for analysis of the chemical structuring of the 

monolayer. Details on instrument used are provided in section 2.6. 

3.3.6 Electrochemical Impedance Spectroscopy (EIS) 

 Electrochemical measurements were performed to determine monolayer 

resistance and capacitance to ions transport in solution. More details provided in section 

2.2. 

3.3.7 Spectroscopic Ellipsometry 

 SAM thicknesses were measured with a spectroscopic ellipsometer. More details 

provided in section 2.5. 

3.3.8 Static Contact Angle Goniometry 

 Static contact angles of deionized water on monolayer surfaces were manually 

measured with a contact angle goniometer. More details provided in section 2.1. 

3.3.9 Dynamic Contact Angle Goniometry 

 A standard three-electrode arrangement was used to apply a potential to the 

monolayer-coated gold substrate, to evaluate the film reconfiguration capacity in 

response to an applied potential. More details provided in section 2.1(Figure 3.2). 
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Figure ‎3.2. a) Idealized representation of the transition between straight (hydrophilic) and 

bent (hydrophobic) molecular conformations (ions and solvent molecules are not shown). 

b) Schematic illustration of advancing and receding contact angle measurement setup. 

Inset shows how the BMUA LD-SAMs exposed within the drop are more sensitive to 

external stimulus. 

3.3.10 Reductive Desorption. 

 Cyclic voltammetry measurements were taken to evaluate monolayer’s 

electrochemical stability as well as the packing density of adsorbate molecules at 

interface with the gold substrate. Details are provided in section 2.3. Averages and 

standard deviations are based on the analysis of at least 9 samples of each monolayer. 

3.4 Results and Discussion  

3.4.1 Structure of 10,11-Bis (10-Mercaptodecylthio) Undecanoic Acid Adsorbed on 

Gold. 

 Analysis of nanoscale coatings requires complementary analyses to support the 

proposed physical and chemical structure of the coating. Grazing angle FTIR is 

commonly used to provide insight into both chemical composition and structuring of thin 

films. 10,11-Bis (10-mercaptodecylthio) undecanoic acid monolayers on gold exhibit 

distinct peaks associated with asymmetric (~2929 cm
-1

) and symmetric (~2854 cm
-1

) 

methylene stretching, as well as the carbonyl-stretching peak (~1714 cm
-1

) associated 

with the carboxylic acid tail group (Figure 3.3a and 3.3b). We contrast this structure with 

that of a traditional, well-packed mercaptoundecanoic acid SAM, where the asymmetric 

and symmetric methylene stretching peak positions of BMUA LD-SAM are left shifted 

from those seen in typical acid-terminated monolayers (2917 and 2848 cm
-1

, respectively) 

[66]. This red shift is commonly interpreted as a decrease in overall crystallinity for the 

methylene regions of materials, where the BMUA LD-SAM monolayer is more 

disordered on average than a standard well packed monolayer. This finding is consistent 

with other reports of low-density monolayers, where asymmetric stretching is previously 

observed at 2931cm
-1

 and symmetric stretching is observed at 2860 cm
-1

 [161].  
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Figure  3.3. Representative FTIR spectra for the product BMUA low-density monolayer, 

11-mercaptoundecanoic acid monolayer, and 1,10-decanedithiol self-assembled 

monolayer. The spectra have been offset vertically for clarity. (a) methylene stretching 

region, υas(CH2) and υs(CH2), (b) carbonyl stretching region [160].  

 

 We further elucidate the structure of the BMUA LD-SAM monolayer by 

analyzing the chain packing in a 1,10 decanedithiol monolayer of similar expected 

structuring to the lower region of the BMUA LD-SAM monolayer. The methylene 

packing in the dithiol monolayer is relatively crystalline, with asymmetric and symmetric 

peaks at 2923 and 2848cm
-1

, respectively. When considering this well-packed base layer 

and the overall low crystallinity of the BMUA LD-SAM monolayer, the majority of the 

disordered character of this monolayer is expected to be in the upper (environment 

interfacing) portion of the monolayer. 

 Analysis of the ellipsometric thickness further supports the proposed monolayer 

structure. The lower layer of the monolayer structure is expected to be of comparable 

thickness as a standard 1,10-decanedithiol monolayer (~19 Å). The upper phase is 

expected to have one chain per every two chains of the lower phase, resulting in 50% of 

the density of a well-packed monolayer of comparable chain length. As such, the non-

solvated monolayer thickness of the upper layer should be half of the measured thickness 

of a mercaptoundecanoic acid monolayer (monolayer ~16 Å). Combining expected layer 

thickness for the upper (8 Å) and lower (19 Å) layers, we calculate an expected thickness 

of ~27 Å, which is in close agreement with our measured value of 27 ± 2 Å for the 

BMUA LD-SAM monolayer (Table 3.1). 

 For further refinement of the BMUA LD-SAM monolayer structure, we break the 

investigation into two discussions: 1) the monolayer’s upper layer interaction with the 

environment, and 2) the monolayer’s lower layer interaction with the gold surface. 

 

Table ‎3.1.Ellipsometric thickness of monolayers 

 Monolayer Thickness (Å) 

11-mercaptoundecanoic acid 16 ± 3 

1,10-Decanedithiol 19 ± 3 

BMUA LD-SAM 27 ± 2 
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3.4.2 Monolayer Interaction with the Environment.  

 Contact angle goniometry is a convenient means of exclusively probing the outer 

1 nm of a material’s structure. Here, we expect acid-terminated methylene chains at 50% 

of the surface coverage of a well-packed mercaptoundecanoic acid monolayer. Prior 

reports of low-density acid monolayer surfaces with ~50% surface coverage prepared by 

alternative methods have yielded intermediate surface energies (θA ~68º) [162] which are 

comparable to our new BMUA LD-SAM surfaces (θ A ~70º).  

 The Cassie equation[66] provides an estimate of fractional composition of a 

smooth surface by quantifying the relative contribution of functional groups to the overall 

surface energy.[61] Here, we have adapted the Cassie equation (Equation 3.2) to describe 

the expected surface energy of our BMUA LD-SAM monolayers by examining the 

relative contribution of the terminal acid groups and the partially exposed methylene 

functionality of the underlying chains. 

   

Equation ‎3.1 

cos (θBMUA LD-SAM) = COOH cos (θCOOH) + (1 - CH2 ) cos (θCH2) 

 

Where COOH denotes the fraction of the surface exposing carbonyl functionality, θ BMUA 

LD-SAM is the contact angle of the mixed functionality surface, θCOOH is the contact angle 

of a pure carbonyl surface, and θCH2 is the contact angle on a polyethylene surface. When 

experimental values for the acid surface (36º), the BMUA LD-SAM surface (70º), and 

polyethylene (101º, from literature)[163] , (Table 3.2) , are used in Equation 2, we 

estimate that ~48% of the surface is covered by carbonyl groups and the remainder by 

methylene groups, further supporting the reduced surface density of the environment 

interfacing chains. 

 

Table ‎3.2.Water advancing and receding contact angles for monolayers on gold 

Monolayer ӨA ӨR 

11-mercaptoundecanoic acid 36 ± 4 13 ± 3 

Polyethylene (PE) [163] 101 ± 3  no data 

BMUA LD-SAM 70 ± 3 35 ± 3 

 

 The low density of the surface region of BMUA LD-SAM coatings is also 

evidenced by evaluation of the surface’s capacity for remodeling in response to external 

stimuli. The enhanced conformational freedom of low-density, acid terminated SAMs has 

been previously exploited to dynamically control surface energy in response to an applied 

voltage, where densely packed surface do not exhibit a dynamic response [153, 164]. 

Thus, a change in surface wettability will support our claim of a reduced chain density at 

the surface. The largest potential-dependent change in contact angle is typically observed 

in the receding angle, where it is postulated that a surface will restructure only in the 
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region of applied potential (wetted area), which will have a greater impact on the 

receding angle [164]. 

 Advancing and receding contact angle values of aqueous 0.1 M KCl, pH 11, on 

either an BMUA LD-SAM or an MUA monolayer were measured at different applied 

potentials. Five subsequent cycles between a negative potential (-0.1 V vs Ag/AgCl) and 

a positive potential (0.290 V vs Ag/AgCl), were measured and are provided in Figure 3.4. 

This applied potential is within the range of stability of studied monolayers on gold [28]. 

In each applied potential, the mercaptoundecanoic acid monolayer showed identical 

receding contact angles, indicating little capacity for the standard acid-terminated SAM 

to reconfigure in response to an applied potential (Figure 3.4b). The receding contact 

angle of the BMUA LD-SAM monolayer shows a repeatable voltage dependency of ~10º 

over 5 cycles (Figure 3.4a). The magnitude of this change is comparable to that of other 

low-density monolayers. In the BMUA LD-SAM monolayer, the chain spacing is 

dictated by a 2:1 ratio of chains in the lower phase to chains in the upper phase. This 50% 

chain density of carboxylate groups is directly comparable to stimuli-responsive 

monolayers reported by the Frechette group (50% chain density), where a ~10º change in 

receding contact angle was observed under similar conditions [29, 37, 165]. 

 
 

Figure  3.4. Cosine of receding and advancing contact angles while applying either -0.1 or 

+0.29 mV vs. Ag/AgCl to a monolayer coated gold electrode. Left side (a, c) is data taken 

using the BMUA low-density monolayer on gold. Right side (b, d) is data taken using the 

well-packed MUA monolayer on gold. Error bars are smaller than symbols, typically ± 3º 

[160]. 

3.4.3 Monolayer Structure at the Gold Interface.  

 The proposed structure of the lower, gold-interfacing portion of the BMUA LD-

SAM monolayer is expected to be consistent with other well-packed monolayers in both 
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resistances to water and ion transport and in packing density at the surface. We used 

electrochemical impedance spectroscopy to gain insight into molecular structuring and 

barrier properties of monolayer. Based on the fits of impedance spectra by the Randles 

model, estimates of the monolayer’s resistance and capacitance were determined and 

compiled in Table 3.3 and Figure 3.5. The film resistance of the BMUA LD-SAM 

monolayer is expected to be dictated by the well-packed lower phase, as the upper, low-

density layer should provide little barrier to charge transfer. We estimate the resistance of 

a well-packed base layer through the use of an analogous 1,10-decanedithiol monolayer 

(Rf ~10
4.8

 Ω cm
2
). We determined a comparable film resistance for the BMUA LD-SAM 

monolayer (~10
5.0

 Ω cm
2
), supporting the presence of a well-packed base layer. The 

capacitance, however, is expected to roughly scale with the inverse of coating thickness 

for similarly structured monolayers, and the relatively thicker BMUA LD-SAM 

monolayer has a lower capacitance (~1.5 µF) than the decanedithiol (~2.6 µF) or the 

mercaptoundecanoic acid (~3.4 µF) monolayers. 

 
Figure  3.5. Electrochemical impedance spectra obtained in 1 mM K3Fe(CN)6 and 1mM 

K4Fe(CN)6 in 0.1 M Na2SO4(aq) for monolayers on gold. Spectra are shown for BMUA 

LD-SAM, densely packed 11-mercaptoundecanoic acid (MUA) and densely packed 1,10-

Decanedithiol. Experimental data are shown as symbols, where lines are fits of circuit 

models to the data  [160] . 

 

Table ‎3.3.Values for monolayer capacitance and resistance 

Monolayer Log(Rf) 

(Ω-cm
2
) 

Cf 

(µF/cm
2
) 

1,10-Decanedithiol 4.81 ± 0.61 2.55 ± 0.20 

MUA 4.81 ± 0.20 3.40 ± 0.31 

BMUA LD-SAM 4.95 ± 0.24 1.50 ± 0.60 
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Figure  3.6. Cyclic voltammograms of well-packed self-assembled monolayer of 11-

mercaptoundecanoic acid and BMUA LD-SAM. Potential continuously cycled between -

1.545 and +0.345 V at a sweep rate of 0.1 V s
-1

. Spectra are offset vertically for clarity. 

 

 Reductive desorption was used to quantitatively determine the density of chains at 

the gold surface through the electrochemical reduction of the sulfur-gold bond. Using a 

monolayer-coated gold substrate as the working electrode, the potential was swept at 100 

mV/s from 0.345 V to -1.545 V vs. Ag/AgCl in 0.5M KOH while measuring the current 

(Figure 3.6). The total charge required to desorb the monolayer is then determined and 

converted into a density of thiol-gold bonds (see section 7.1) [116, 166]. The surface 

coverage of the studied monolayers are summarized in Table 4. The density of chains at 

the gold surface of both our BMUA LD-SAM (5.70.6 chains/nm
2
) and conventional, 

well-packed MUA monolayers (5.60.4 chains/nm
2
) are equivalent. This well-packed 

structure at the gold interface is expected to provide exceptional stability for this low 

interfacial density product monolayer and mitigate the rearrangement of the chains over 

time observed in other low-density monolayer systems. 

 

Table ‎3.4. Reductive desorption analysis of surface chain density and stability. 

 

Monolayer 

Q
Au-SR

 

(C/cm
2
) 

Density of chains at Au 

(nm
2
/molecule) 

Peak position 

(V) 

MUA 89.4  6.2  0.18  0.01 -0.880.05 

BMUA LD-SAM 91.1  9.1 0.18  0.02  -1.050.01 

 

3.4.4 Stability of 10,11-Bis (10-mercaptodecylthio) Undecanoic Acid Low Density 

Monolayers.  

 Several previous studies examined the stability of low-density monolayers and 

have compared that to their well-packed counterparts. Peng et al. [150] examined the 
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temporal stability of the low-density monolayers (LD-SAMs) by monitoring the alkyl 

chains of LD-SAMs by grazing-angle Fourier transform infrared spectroscopy as a 

function of time. Independent of storage conditions, their data suggested an increased 

ordering of the alkyl chains over time for LD-SAMs and a corresponding localized loss in 

alkyl chain spacing.  

 Luo et al. [165] investigated the electrochemical stability of BMUA LD-SAM 

made from mercaptohexadecanoic acid (MHA). The position of the cathodic peak for the 

reductive desorption provides quantitative information on the stability of monolayers 

[116]. For instance, it was previously shown that a longer alkyl chain shift the reductive 

desorption peak to a more negative potential, showing the stronger van der Waal 

stabilization among the adsorbed chains [166-168]. Desorption experiments by Luo et al. 

indicate that LD-SAMs are significantly less stable than a full MHA monolayer, which is 

caused by the relatively weak intermolecular interactions of the LD-SAMs [153]. 

 We expect the bifunctional nature of the adsorbate molecule to work 

synergistically with the highly ordered packing of the head phase to provide LD-SAMs 

improved monolayer stability over that of traditional well-packed monolayers. We 

compared the electrochemical stabilities of our BMUA LD-SAM against that of well-

packed MUA SAM on gold by reductive desorption. When the potential was scanned in 

the negative direction from +0.345 V, cathodic peaks corresponding to the reductive 

desorption of the product BMUA LD-SAM and MUA SAMs were observed at -1.05 V 

and -0.88 V, respectively (Table 3.4). The position of the cathodic peak, corresponding to 

desorption of the thiolate SAM, shifted negatively for the product BMUA LD-SAM 

compared to the MUA SAM, reflecting an increase in the stability of the product BMUA 

LD-SAM compared to that of MUA SAM. This higher stability further supports the 

proposed structure of the product monolayer. The gold-interfacing phase of the low-

density product monolayer, having a highly crystalline structure similar to MUA SAM, is 

stabilized by van der Waals interactions as well as covalent bonding between the thiol 

and gold substrate. Additionally, the two thiol-gold linkages per adsorbate further 

increase the stability of the BMUA LD-SAM over that of a traditional well-packed SAM. 

This stability is particularly interesting, given the typical instability of low-density 

monolayers. The present work reverses the trend, enabling exceptional adsorbate stability 

for a low density of environment-interfacing functional groups. 

3.5 Conclusions 

 A new synthetic approach was developed to create a highly-stable, carboxylate-

terminated, low-density self-assembled monolayers on gold. Adsorbate molecules were 

formed through thiol-yne click-chemistry and were subsequently self-assembled on a 

gold substrate. FTIR, contact angle goniometry, spectroscopic ellipsometry, and 

electrochemical impedance spectroscopy measurements, and comparison of those to 

results from well-packed monolayers of mercaptoundecanoic acid and decanedithiol, 

support the proposed structure for the thiol-yne LD-SAMs. The lower crystallinity, 

enhanced thickness, intermediate surface energy, and interfacial restructuring under 

potential all support the enhanced conformational freedom of thiol-yne LD-SAM 

interface. Cyclic voltammetry measurements support an enhancement in stability for the 

thiol-yne SAMs over a well-packed MUA SAMs. Overall, these thiol-yne structures offer 

exceptional stability while providing a uniformly-reduced interfacial chain density. 
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Further, the specificity and simplicity of the adsorbate synthesis makes this approach 

attractive for the synthesis of coatings with a low functional group density for application 

in stimuli-responsive coatings and specialized interfacial binding and reaction studies. 
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4 Solid-Phase Synthesis of Thiol-Yne LD-SAMs 

This chapter has been adapted with minor modifications from the following published 

article: [Safazadeh, L.; Berron, B. J. Photopatterning of stable, low-density, self-

assembled monolayers on gold Langmuir 2015, 31, 2689– 2696].  

4.1 Abstract 

  We propose an alternative approach based on photo-initiated thiol-yne chemistry 

as a click reaction for grafting of acid-terminated alkynes to thiol-terminated monolayers 

on gold substrate to create stable, low-density monolayers. The resulting monolayers are 

compared with a well-packed 11-mercaptoundecanoic acid monolayer and the analogous 

low-density monolayers prepared through a solution phase synthetic approach. The 

overall structuring of the monolayer prepared by solid-phase grafting is characterized by 

contact angle goniometry and Fourier transform infrared spectroscopy. Consistent with a 

low-packing density of the chains at the monolayer surface, the product monolayer has an 

intermediate surface energy and a more disordered chemical structuring than a traditional 

well-packed self-assembled monolayer. The prepared low-density monolayers have a 

higher electrochemical stability than traditional well-packed monolayers, which results 

from the crystalline structure at the gold interface. Solid phase thiol-yne grafting allows 

for simple, fast preparation of low-density monolayers of higher stability than well-

packed monolayers. The use of a photomask to restrict light access to the substrate 

yielded these low-density monolayers in patterned regions defined by light exposure. 

This general thiol-yne approach is adaptable to a variety of analogous low-density 

monolayers with diverse terminal chemical functionalities. 

4.2 Introduction 

 In the previous chapter we proposed a versatile approach towards LD-SAMs with 

controlled molecular spacing between alkyl chains, high electrochemical stability, and 

capacity to reversibly reconfigure in presence of an external stimuli. Despite the 

versatility of this method, it involves organic synthesis and time consuming purification 

steps. This limitation motivates us to develop an even simpler preparation technique, with 

no purification steps, is adaptable to broad range of functional groups, and provides 

systematic control over packing density of lateral functional groups.  

 Self-assembled monolayers (SAMs) are organic assemblies formed by the 

adsorption of molecular species from solution onto the surface of solids [169, 170]. These 

adsorbates organize spontaneously into structurally well-defined and stable surfaces [137, 

171] that have been widely used for studies in surface modification and surface 

interactions [170, 172]. The adsorbate molecules consist of headgroups with a specific 

affinity for a substrate and tail groups of different functionalities at the exposed interface 

[173]. Self-assembled monolayers of alkanethiolates on gold are among the most popular 

classes of SAMs [61, 160, 171]. The high affinity of alkanethiols for gold surfaces [143] 

the inert properties of gold, and the versatility of the thiol chemistry make it possible to 

construct well-defined surfaces with alterable chemical functionalities [160, 174]. 

 While the crystalline structuring of traditional SAMs produces highly stable 

surface modifications, there are numerous applications where SAMs with more 

conformational freedom of functional groups are desired [175, 176]. In particular, the 

interaction of proteins and other macromolecules with a surface of low chain density is 
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distinct from interactions with traditional, densely-packed SAMs. In the seminal work of 

Choi et al. [177] low chain density SAMs bound to human serum albumin more 

tenaciously than for a densely-packed SAM. While similar phenomena are expected in 

other protein/SAM systems, there are few stable, low-density monolayer systems 

available for these studies [151, 178, 179].  

 Here, we present a simplified synthetic strategy for stable, adaptable, low-density 

monolayers based on y-shaped, thiol-yne adsorbates (Figure 4.1a). We utilize a solid 

phase synthesis of the monolayer through the deposition of a well-packed alkane dithiol 

monolayer followed by the addition of up to one alkyne tail group for every two surface-

immobilized thiol groups.  

 
Figure  4.1. Schematic description of LD-SAM preparation processes: a) solid-phase 

synthesis of LD-SAMs composed of thiol-yne adsorbates, b) solution-phase synthesis of 

LD-SAMs composed of thiol-yne adsorbates, c) supermolecular ion-pair synthesis of LD-

SAMs, d) LD-SAM synthesis through adsorption of molecules and subsequent cleavage 

of bulky groups.  

 The resulting monolayers simultaneously provide both a high stability and low 

chain packing density through a layered, doubly-bound structure. The high density of 

head phase[143] and chelated structure[180] increase the energetic barrier to chain 

desorption from the gold surface and also prevents the loss of tail group spacing. Loss of 

tail group spacing is a significant challenge in some previous LD-SAM approaches, 

where the monolayer restructures into domains of densely-packed chains [154]. This 

restructuring is primarily driven by the lack of van der Waals interactions between 

laterally spaced chains. Some stability is recovered through backfilling of those LD-SAM 

structures [181]. In contrast, the present work uses a densely packed lower layer to 

sterically prevent the restructuring of the environment-interfacing layer of reduced lateral 

packing density.  

 The surface grafting approach (Figure 4.1a) parallels the solution phase approach 

of our prior work (Figure 4.1b) [160] but the solid-phase approach simplifies adsorbate 

purification. For a solution phase synthesis, all sulfur containing side products must be 

removed prior to SAM formation. While radical mediated thiol-yne addition is highly 
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specific in the presence of many functional groups, the ditihiol reactant alone is prone to 

formation of oligomer and disulfide products [99, 102]. A solid phase approach 

eliminates the purification challenges associated with the solution phase synthesis [182]. 

The highly-crystalline, thiol-presenting surface of the precursor dithiol monolayer 

prevents the formation of undesired side products, while unreacted alkyne species 

materials are simply rinsed away after reaction.  

 Solid phase synthetic approaches are not without limitation, as 100% grafting is 

difficult to attain [175]. Further, the solvents used in the grafting process may destabilize 

the underlying dithiol monolayer [171]. Our experimental approach investigates each of 

these limitations. We quantify the grafting efficiency through surface energy analysis and 

ellipsometric thickness, while the destabilization of the underlying monolayer is 

investigated through impedance analysis and the electrochemical stability of the solid 

phase LD-SAM. 

 In addition to a simplified reaction scheme, the light-mediated aspect of grafting 

gives several unique advantages over our prior solution phase approach. First, the 

reaction time is easily controlled through irradiation time, allowing fine tuning of 

reaction conditions. As radical life times in similar photoinitiated systems are on the 

order of s [183-185] the reaction time can be controlled to well below 1 s. Secondly, the 

surface modification only proceeds in the presence of light, allowing patterning of low-

density monolayers on gold with the use of standard photomasks. Previous “adsorb and 

cleave” LD-SAM methods (Figure 4.1c,d) are incompatible with photopatterning. The 

simplest approach to patterning these conventional LD-SAM chemistries is to pattern the 

underlying metal, requiring additional materials processing. Thus, this work also 

represents the first low-density monolayer chemistry capable of being deposited in 

arbitrary patterns on a uniform surface of gold.  

4.3 Experimental Section 

4.3.1 Materials 

 1,10-decanedithiol   (98%) was   obtained   from   TCI America.   n-Hexane  

(>95%), 10-undecynoic   acid   (95%),   ethanol (>99.5%), potassium   

hexacyanoferrate(III)   (>99%),   potassium   hexacyanoferrate(II)   (>99.99%),   sodium 

sulfate (>99%),11-mercaptoundecanoic acid (MUA; 95%), and eosin-y (>99 %) were 

purchased from Sigma Aldrich (St. Louis, MO) and were used as received. Deionized, 

ultrafiltered water was purchased from Fisher Scientific. Silicon wafers (P/Boron <100>), 

150 ± 0.2 mm diameter, with thickness of 600−650 μm and resistivity of <0.4, were 

obtained from WRS Materials. The photomask used for surface patterning was a chrome 

coated glass mask purchased from Louisville Photomask. Solution-phase product LD-

SAM was prepared as described previously [160]. 

4.3.2 Gold Substrate Preparation 

 Gold-coated   silicon   wafers   with chromium adhesion layers were prepared 

using Hummer 8.1 DC sputter system. Silicon wafers were plasma cleaned and then 

placed into the sputter system chamber, where chromium (10 nm) and gold (50 nm) were 

sequentially deposited onto silicon wafers. The gold substrates were typically cut to 1 × 3 

cm, rinsed with ethanol, and dried under a stream of N2 prior to use. 
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4.3.3 Monolayer Preparation 

 Solid-phase low-density monolayers were prepared by immersing the clean gold 

substrates in a 1 mM solution of 1,10-decanedithiol in pure hexane for 24 h at room 

temperature to form SAMs. The samples were then rinsed in 1 mM aqueous dithiothreitol 

for 20 min to eliminate the presence of disulfides on the monolayer surface. Samples 

were rinsed with ethanol, followed by a brief rinse with deionized water and pure ethanol, 

and then dried with a stream of N2 prior to the grafting reaction. The substrates were then 

transferred to a round Pyrex petri dish, containing 3 mL of an ethanolic solution of 10-

undecynoic acid (50 mM) and eosin-Y (2.5 mM) and 20% DI-water, where they were 

irradiated with 530 nm light (THORLabs LED model M530L3, 10 mW/cm
2
) for 7 

minutes at room temperature. The illumination time was selected as long enough to 

promote the grafting reaction (as determined by surface energy and ellipsometry) and not 

sufficiently long to promote a breakdown of the underlying dithiol monolayer (as 

determined by lowering of film resistance by EIS). The irradiated substrates were 

sequentially rinsed with ethanol, deionized water, and ethanol, and dried with a stream of 

N2 gas prior to measurement. Solution-phase low-density monolayers were prepared 

according to our previously described method [160]. 

4.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 

 The FTIR spectrometer used for analysis of the chemical structuring of the SAM 

samples. Data are from at least three measurements on at least four samples, and the 

values are reported as the mean ± standard deviation. See section 2.6 for more details. 

4.3.5 Electrochemical   Impedance   Spectroscopy (EIS)  

 Electrochemical measurements were performed to determine resistance and 

capacitance of monolayers to ions transport in solution. Data are from at least nine 

samples, and the values are reported as the mean ± standard deviation. See section 2.2 for 

more details. 

4.3.6 Reductive Desorption  

 Reductive desorption measurements were taken using the same apparatus as for 

EIS, to determine the electrochemical stability of monolayers. Data are from at least three 

measurements on at least nine samples, and the values are reported as the mean ± 

standard deviation. See section 2.2 for more details.  

4.3.7 Spectroscopic Ellipsometry 

 Ellipsometer was used to measure the monolayer thickness. Data are from at least 

three measurements on at least nine samples, and the values are reported as the mean ± 

standard deviation. See section 2.5 for more details. 

4.3.8 Static Contact Angle Goniometry 

 Static water contact angles were measured with a manual contact angle 

goniometer. Data are from at least three measurements on at least nine samples, and the 

values are reported as the mean ± standard deviation. See section 2.1 for more details. 
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4.3.9 Potential-Dependent Contact Angle Goniometry  

 Advancing and receding contact angles of 0.1M KCl (pH11) on monolayer coated 

gold substrates were measured, as the potential switched between positive and negative 

values. Data are from at least three measurements on at least six samples, and the values 

are reported as the mean ± standard deviation. See section 2.1 for more details. 

4.3.10 Micropatterning of Low-Density Monolayers 

 A SAM of 1,10-decanedithiol was formed on the gold substrate in hexane, as 

described above. The SAM covered surface was then irradiated through a mask (Figure 

4.2a) with 530 nm light with the intensity of 50 mW/cm
2
 for 10 minutes. The substrate 

and mask were separated by 40 μm spacers from one another and the gap in between was 

filled with an ethanolic solution containing 10-undecynoic acid (50mM) and eosin-y 

(2.5mM), and 20 volume% DI-water (Figure 4.2b). After disassembly of the mask-

substrate system, the substrate was rinsed in a stream of ethanol and then briefly 

immersed in ethanol for visualization of the pattern.  As the gold substrate was removed 

from the ethanol, the pattern was observed through selective wetting of the patterned 

regions of the surface. 

 

 
Figure  4.2. (a) Close up view of mask used for photopatterning, (b) Irradiation of the 

monolayer coated gold substrate through mask with 530 nm light 

4.4 Results and Discussions 

 The overall goal of this work is to demonstrate a simplified, patternable approach 

to create a stable monolayer with a reduced density of chains at the surface. The photo-

mediated, thiol-yne grafting of an acid terminated alkyne ligand to a dithiol monolayer is 

expected to yield a surface with a densely packed base monolayer and an environment-

interfacing region of reduced lateral packing density. The overall structure of the 

undecynoic acid grafted surface was supported by comparing our acid terminated thiol-

yne grafting product to control monolayers. A control system with the optimal 2:1 thiol to 

alkyne grafting was prepared according to solution phase synthesis of a thiol-yne 

adsorbate, as previously described [160]. A standard, well-packed decanedithiol SAM 

was used to relate to the expected structure of the dithiol base layer, and a well-packed 

mercaptoundecanoic acid SAM was used to contrast the properties of our acid 

terminated, LD-SAM with that of an acid-terminated, well-packed SAM. 

4.4.1 Monolayer Interaction with the Environment  

 Our first objective is to demonstrate a low packing density at the surface for our 

alkyne grafting approach. We used advancing and receding contact angles of water to 

investigate the chemical structure of the top few angstroms [186] of the solid-phase 

product monolayer (Table 4.1). The advancing contact angle for solid-phase product LD-

SAM is 85  2°. The higher advancing contact angle of the solid-phase LD-SAM 

compared to that of a solution-phase LD-SAM (65  3°) is consistent with a lower 
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density of carboxylate groups at the surface and a larger contribution from the underlying 

methylene functionality. To further elucidate the chemical composition at the surface, we 

calculate the relative distribution of these functionalities with the Cassie equation 

(Equation 4.2) [173]. 

 

Equation  4.1:  cos (θsolid-phase LD-SAM) = COOH cos (θCOOH) + (1 - CH2 ) cos (θCH2) 

 

 

Where COOH denotes the fraction of the surface with carboxyl functionality, θsolid-phase LD-

SAM is the contact angle of the solid-phase product monolayer, θCOOH is the contact angle 

of a pure carboxylate surface, and θCH2 is the contact angle on a polyethylene surface. 

From equation 4.2, we estimate that approximately 26 ± 3% of the mixed surface of 

solid-phase LD-SAM is covered by acid functionalities, and the remainder by methylene 

functionality. This is lower than the theoretical prediction of 2:1 thiol-yne complete 

grafting, which would yield 50% surface coverage of the carboxylate groups. The low 

grafting efficiency of the solid-phase approach could be the result of the steric congestion 

[175, 176] which would limit the accessibility of alkynes to surface bound thiols.  

 

Table ‎4.1. Advancing and Receding Water Contact Angles for Monolayers on Gold 

Monolayer A R 

11-mercaptoundecanoic acid (MUA) 26  6 12  7 

Polyethylene(PE)[187] 101  3 No data 

Solution-phase product LD-SAM 65  3 34  4 

Solid-phase product LD-SAM 85  2 50  2 

 

 One of the most commonly observed phenomena of low-density monolayers is 

the potential-dependent change in receding contact angle.[28, 188] Advancing and 

receding contact angles were measured for a low-density monolayer coated gold 

electrode, in an aqueous solution of 0.1M KCl (pH 11). Data were taken for five 

subsequent cycles when the potential to the gold substrate, was switched between -0.1 

and +0.29 mV w.r.t. Ag/AgCl (Figure 4.3). A reversible change in receding contact angle 

is observed for the solid phase LD-SAM (Figure 4.3a), while switching is not observed 

for a well-packed, acid-terminated SAM [160].  
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Figure  4.3. Cosine of receding and advancing contact angles (a,b respectively) for solid-

phase thiol-yne LD-SAM. Data were taken while applying either +0.29 or –0.1 mV w.r.t. 

Ag/AgCl to a monolayer coated gold working electrode. 

 

 The applied potential is in the stability range for alkanethiolate SAMs on 

gold[189, 190]preventing the reductive desorption of the thiolates from the surface. This 

is further supported by the reversibility of the measurements, where any desorption 

would cause irreversible changes in the contact angle. The measured value for the 

receding contact angle of solid-phase product is 68  1º at an applied potential of +0.29 

mV, and 55  1º at an applied potential of -0.1 mV. The magnitude of receding contact 

angle change for solid-phase product (13°) is comparable to that reported previously for 

low-density monolayers with 50% chain density of carbonyl groups (10°) [77, 181]. 

Taken together, the traditional and potential-dependent contact angle analysis supports 

the lower surface density of carbonyl groups in a solid-phase LD-SAM. 

4.4.2 Overall Structure of Solid-Phase Monolayer 

 A comparison of the ellipsometric thickness of the solid-phase LD-SAM to that of 

the control SAMs provides insight into the structure of the solid phase LD-SAM. A 

standard well-packed 1,10-decanedithiol SAM is 19Å (Table 4.2), and this provides a 

thickness estimate for the lower layer of our solid-phase product LD-SAM. Any 

additional thickness for the solid-phased LD-SAM is attributed to the grafting of an 

undecynoic acid ligand. If the undecynoic acid layer were densely packed, it would have 

the approximate thickness of a well-packed, 11-mercaptoundecanoic acid SAM (~16Å). 

By determining the fractional thickness of the undecynoic acid layer (100% = 16Å) on 

top of the 1,10-decanedithiol base layer (19Å), we estimate a lateral packing density of 

the undecyoic acid layer to be 31 ± 6 % of a densely packed layer. The surface density 

estimate of the solid-phase LD-SAM is in close agreement with our surface coverage 

estimate based on the Cassie equation of 26 ± 3%.  
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Table ‎4.2. Ellipsometric Thickness of Monolayers 

Monolayer Thickness (Å) 

11-mercaptoundecanoic acid (MUA) 16  3 

1,10-decanedithiol 19  2 

Solution-phase product LD-SAM 28  2 

Solid-phase product LD-SAM 24  1 

 

 The low packing density is further supported by grazing angle FTIR analysis. 

Grazing angle FTIR is a common technique to investigate the chemical composition and 

aggregate structuring of thin films. Figure 4.4 shows the methylene stretching region of 

the FTIR spectra for solid-phase product low-density monolayer. The methylene 

stretching peak positions for solid-phase product LD-SAM (as = 2935cm
−1

 and s = 2856 

cm
−1

) clearly contrast with that of a well-packed 11-mercaptoundecanoic acid SAM, 

where the peaks associated with asymmetric and symmetric stretching have shifted 

towards higher wavenumbers from what is seen for well-packed SAM (2918 and 2849 

cm
-1

, respectively) [161]. The shift towards higher wavenumber of in the methylene 

region is commonly interpreted as a decrease in overall crystallinity for the methylene 

regions of monolayer, supporting a more disordered overall methylene region for the 

solid-phase product monolayer when compared to a traditional SAM. This trend is 

consistent with other studies of altered monolayer packing [154, 161, 181]. 

 

 

Figure  4.4. Representative methylene stretching region, as(CH2) and s(CH2) of the 

FTIR spectra for the solid-phase and solution-phase product low-density monolayer, 11-

mercaptoundecanoic acid monolayer, and 1,10-decanedithiol monolayer. The spectra 

have been offset vertically for clarity. 

 The asymmetric and symmetric methylene stretching peaks for solid-phase 

product are even more disordered (higher wavenumber) than the control, solution-phase 

thiol-yne surfaces (2928 and 2853 cm
-1

, respectively) [160]. The lower overall 
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crystallinity of solid-phase product monolayer when compared to the optimal structure of 

the solution-phase LD-SAM is consistent with both a lower chain density and a potential 

disruption of the methylene packing in the dithiol base layer.  

 To further evaluate the potential disruption of the dithiol base layer, we studied 

the electrochemical barrier properties of the coating. Based on the fits of impedance 

spectra by the Randles model (Figure 7.1), estimates of the monolayer’s resistance and 

capacitance were determined and are compiled in Table 4.3 and Figure 4.5 and Figure 

4.6. The majority of the resistance to charge transfer across a thiol-yne LD-SAM 

monolayer is afforded by the lower-phase well-packed structure, as the upper phase has a 

loose, poorly-organized structure. If the structuring of the dithiol base layer is 

undisturbed by the solid-phase grafting of undecynoic acid, we would expect that the 

product LD-SAM will have a comparable resistance to ion-transport as traditional well-

packed monolayer of 1,10-decanedithiol [160]. A densely packed base layer is clearly 

observed in the solution-phase thiol-yne SAM, where the solution-phase product LD-

SAM (~10
5.3 

Ω cm
2
) is comparable to that of a 1,10-decanedithiol SAM (~10

4.8
 Ω cm

2
). 

This is contrasted with the measured film resistance for solid-phase product LD-SAM 

(~10
4.1 

Ω cm
2
), where the lower film resistance for solid-phase product LD-SAM 

indicates the presence of gaps between alkanethiolate chains at gold interfacing, 

providing a channel for ion-transport to the gold electrode surface and thus lowering the 

film resistance.  

 

Table ‎4.3. Values for Monolayer Resistance and Capacitance 

Monolayer Log (Rf) (Ω cm
2
) Cf (F/ cm

2
) 

11-mercaptoundecanoic acid (MUA) 4.9  0.3 2.8  0.4 

1,10-decanedithiol 4.8  0.6 2.7  0.3 

Solution-phase product 5.3  0.3 1.5  0.2 

Solid-phase product 4.1  0.5 4.1  1.1 

 

 Film capacitance also provides an insight into the structuring of these monolayer 

systems. In most monolayer systems, the film capacitance is roughly proportional to the 

inverse of film thickness. Therefore, as the monolayer gets thicker, it is expected that 

capacitance gets smaller. For the proposed structure, the solid-phase product LD-SAM is 

expected to have a higher thickness than the control well-packed monolayers. Instead, the 

capacitance for solid-phase product LD-SAM (~4.10F) is higher than that for well-

packed monolayer of MUA (~2.75F) and 1,10-decanedithiol (~2.66F). This 

unexpectedly high interfacial capacitance is supportive of defects in the coating, 

potentially attributed to the partial desorption of alkanethiolates from gold surface. 
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Figure  4.5. Electrochemical impedance spectra obtained in an aqueous solution of 1mM 

K3[Fe(CN)6], 1mM K4[Fe(CN)6], and 0.1 M Na2SO4 for monolayers prepared on gold. 

Experimental results are shown as symbols, where lines are fits of circuit models to the 

data [191]. 

   

 

 
Figure  4.6. Nyquist diagram (Zim vs. Zre) for the Faradaic impedance measurement of 

the alkanethiol monolayer coated gold electrode in an electrolyte solution of 1mM 

K3[Fe(CN)6], 1mM K4[Fe(CN)6], and 0.1M Na2SO4.: (a) 11-mercaptoundecanoic acid 

SAM, (b) 1,10-decanedithiol SAM, (c) solid-phase LD-SAM, (d) solution-phase LD-

SAM. The impedance spectra were recorded within a frequency range of 0.1 Hz to 100 

kHz. The ac amplitude of the alternate voltage was 10 mV. 

 Both FTIR and electrochemical impedance analysis are consistent with a 

disruption of the dithiol base layer of the solid phase LD-SAM. Any disruption to the 

base layer would require a lower density of thiol-gold bonds at the gold surface to allow 

space for non-crystalline chain conformations. Alkanethiolates desorb from gold 

substrate through one electron reduction process in alkaline solution [114, 116]. To 

further investigate the base structure of the solid-phase product LD-SAM at gold, the 

density of alkanethiolate chains at surface was determined from the total electrical charge 

required for desorption of monolayer from the gold, breaking the sulfur-gold bond [116, 

166]. The chain density at the gold interface is expected to be consistent with that of a 

well-packed monolayer with analogous base structure. Using a potentiostat, the potential 

of a monolayer coated gold working electrode was swept from 0.345V to -1.545 V vs 
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Ag/AgCl in 0.5M KOH electrolyte at 100 mV/s. The surface coverage of the studied 

monolayers is summarized in Table 4.4. 

 
Figure  4.7. Cyclic voltammograms obtained for studied monolayers in 0.5 M KOH as 

potential was swept at scan rate of 0.1 Vs
-1

 from 0.345 V to -1.545 V vs. Ag/AgCl 

reference electrode. Spectra are offset vertically for clarity. 

Table ‎4.4. Reductive Desorption Analysis of Surface Chain Density and Stability 

Monolayer Q
Au-SR 

(C/cm
2
) 

Density of chains 

(nm
2
/molecule) 

Peak positions 

(V vs. Ag/AgCl) 

11-mercaptoundecanoic 

acid (MUA) 
92.1  7.4 0.18  0.01 -0.86  0.06 

Solution-phase product  86.8  6.0 0.19  0.01 -1.01  0.02 

Solid-phase product  88.43  7.3 0.18  0.02 -0.96  0.01 

 

 The mean surface chain density for the solid phase LD-SAM is equivalent to that 

of either a solution-phase LD-SAM or a well-packed MUA due to similar base structure. 

Critically, the standard deviation of the measurement accounts for 11% of the mean chain 

density, and this measurement is insensitive to a small proportion of dithiol adsorbates, 

which may have desorbed from the gold substrate. Given the lower electrochemical 

resistance for ion-transport as shown with EIS, it is likely that there is some loss of 

structuring in the dithiol layer in the solid phase LD-SAM, but the magnitude of this loss 

is below the limit of detection by reductive desorption in these systems.  

 The cyclic voltammograms of solid-phase LD-SAMs and MUA monolayers 

exhibit a broad peak at -1.1 V (Figure 4.7). These peaks are observed in other reports of 

the reductive desorption of thiolates from annealed gold substrates [192-196]. The more 

negative desorption peak on the voltammograms is attributed to the field-induced 

rearrangements of surface domains within the electrical double layer [194]. Based on 

these prior studies, we interpret the less negative peak as resulting from the cleavage of 

the gold-sulfur bond. This interpretation is further supported by both the expected 

position of the MUA desorption and the sharpness of the desorption peak [153]. While 

the more negative peak is likely due to the previously reported, field-induced 

rearrangement of adlayer domains [192, 194]. 
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4.4.3 Stability of Solid-phase Product Thiol-yne LD-SAM 

 Long-term electrochemical stability is essential to many applications of low-

density monolayers, and process of preparing LD-SAMs with long stability over time is 

challenging. It has been shown by Lahann and co-workers [28] that acid-terminated LD-

SAMs prepared through a cleavage-base technique have a significant decrease in alkyl 

chain fluidity over the course of four weeks storage, because of increased ordering of 

alkyl chains on the surface [154]. Additionally, the acid terminated LD-SAMs prepared 

by non-covalent interactions of ion-pairs in solution, developed by Frechette’s group [77] 

were less electrochemically stable than their well-packed mercaptohexadecanoic acid 

counterparts, which is caused by weak intermolecular interactions of the LD-SAMs 

[181].  

 In a reductive desorption analysis of the electrochemical stability of monolayers, 

the cathodic peak is observed at -0.96 V for solid-phase product LD-SAM that is more 

negative than the potential observed for the well-packed MUA monolayer (-0.86V, Table 

4.4, Figure 4.7). An increase in required potential to desorb the molecules, is commonly 

interpreted as an increase in overall stability of monolayer [51, 181, 188, 197]. This 

higher stability supports the proposed structure of the resulting monolayer, consisting of a 

highly crystalline structure adjacent to gold substrate similar to MUA SAM. The head 

phase of product LD-SAM is stabilized through van der Waals interactions. In addition, 

the doubly covalent bond between every two alkanethiolates in lower phase and one 

alkyne ligand on upper phase as a result of thiol-yne click chemistry further improves the 

monolayer stability over that of a traditional SAM. We also contrasted the reductive 

desorption data for solid-phase product LD-SAM to that of solution-phase product LD-

SAM (Table 4.4, Figure 4.7). The position of the cathodic peak, corresponding to 

desorption of the alkanethiolates, shifted more negatively for the solution-phase product 

LD-SAM compared to solid-phase product LD-SAM. This lower stability of solid-phase 

LD-SAMs further supports the likely partial desorption of thiolates from the gold 

substrate. As described in our previous work [160] the two thiol-gold linkage per 

adsorbate resulted in ~50% surface coverage of carbonyl groups for solution-phase 

product LD-SAM and had a major effect on enhancing the stability of product 

monolayer. This effect is less pronounced for solid-phase product LD-SAM with ~30% 

surface coverage, and this is reflected by the lower desorption potential required to fully 

desorb the monolayer from gold surface. 

4.4.4 Surface Photopatterning via Thiol-yne Click Reaction 

 Patterned, densely-packed SAMs have sophisticated microscale features which 

provide well-characterized supports for physicochemical and biochemical processes 

[198]. Thiol-yne grafting provides a general, patternable method to prepare low-density 

monolayers with diverse terminal chemical functionalities and exceptional stability. 

Using light-initiated thiol-yne grafting reaction, we introduce patterned features into 

dithiol monolayer coated gold substrates. These structures are expected to be as stable as 

seen in the large surface area materials studied by reductive desorption, while presenting 

a low packing density described by complementary surface energy, ellipsometry, and 

FTIR analyses.  

 Here, we graft undecynoic acid terminal groups only regions irradiated with 

collimated 530 nm light. The chrome coated quartz photomask used here consists of a 
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square grid of 200 µm circle openings (Figure 4.8a). After grafting, the surface was 

rinsed in a stream of ethanol and then briefly dipped in ethanol. Upon exiting the ethanol, 

the ethanol selectively wetted the carboxyl functionalized domains owing to the contrast 

in surface energy with the unirradiated, thiol-terminated regions (Figure 4.8b).  

 

 
 

Figure  4.8. Photopatterning of thiol-yne grafting reaction for micropatterning of a stable, 

low-density monolayer on gold. (a) Mask used for photo-irradiation; (b) Site-selective 

formation of ethanol droplets obtained by dipping the patterned surfaces in ethanol. 

4.5 Conclusions 

 Highly stable, low-density self-assembled monolayers on gold were prepared 

through thiol-yne click chemistry between alkyne ligands and thiol-terminated organic 

monolayers. The product monolayer has a two-layer structure with a highly crystalline 

head phase adjacent to gold substrate similar to a well-packed SAM. The presented 

methods parallel the solution-phase synthetic approach we recently developed to create 

highly stable, acid terminated LD-SAMs on gold. The product LD-SAMs were compared 

to that of an acid terminated well-packed monolayer and the LD-SAM prepared through 

solution-phase approach. Analysis of goniometry, ellipsometry, FTIR and EIS, support 

our claimed structure for the resulting monolayer, and suggest a partial desorption of 

thiolates from thiol terminated monolayer at head phase. The reductive desorption data 

shows that the solid-phase product LD-SAMs are more electrochemically stable than 

well-packed MUA SAMs, while they are less stable than LD-SAMs prepared by 

solution-phase approach. Both solution-phase and solid-phase LD-SAM approaches 

result in LD-SAMs with high stability (compared to a well-packed SAM), and are 

expected to be compatible with varied tail group functionalities. While the solution-phase 

approach results in more electrochemically stable LD-SAMs, with higher surface 

coverage of desired chemical functionalities, it requires the chemical synthesis of 

adsorbates, and is more experimentally challenging. The solid-phase approach, allows for 

faster and simpler preparation of LD-SAMs, but with less control over surface coverage 

and distribution of chemical functionalities. Finally, it is simple to photopattern the 

grafting of acid terminated alkynes to a 1,10-decanedithiol covered gold substrate using 

this general solid phase approach.  
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5 Protein Adsorption on Low-Density Self-Assembled Monolayers 

[This chapter has been adapted with minor modifications from the following article in 

review:Leila Safazadeh, Victor E. Zehuri, Samuel P. Pautler, J. Todd Hastings, Brad J. 

Berron
, 

The Contribution of Lateral Packing Density to Protein Adsorption on 

Monolayers, Colloids and Interfaces B. 2016] 

5.1 Abstract 

 Low-density monolayers (LD-SAMs) with carboxylate-, hydroxyl-, or alkyl- 

terminal functional groups were prepared through photo-initiated solution-phase thiol-yne 

click reaction. The magnitude of protein adsorption on LD-SAMs was determined by 

surface plasmon resonance spectroscopy (SPR) and spectroscopic ellipsometry, where the 

magnitude of adsorbed protein increased as the surface energy of the monolayer 

decreased. For the LD-SAMs, the magnitude of protein adsorption is consistently higher 

than that of a pure component, well-packed SAM for all functionalities studied. To 

eliminate the potential impact of surface energy on the comparison of protein adsorption 

in SAMs versus LD-SAMs, mixed SAMs of (carboxylate/alkyl) and (hydroxyl/alkyl) 

with matching surface energy as the carboxylate and hydroxyl terminated LD-SAMs 

were also analyzed. The energy-matched, dense SAMs of carboxylate and hydroxyl 

functionality adsorbed more protein than the LD-SAMs. For the alkyl surfaces, where 

surface energies are comparable for LD-SAMs and pure component SAMs, the opposite 

trend suggests the methyl LD-SAM surface is capable of greater interaction with 

proteins. This study demonstrates and quantifies the significant interplay between surface 

energy, chain packing, and protein adsorption on monolayer surfaces. 

5.2 Introduction 

In the preceding chapters, we presented a novel technique for preparation of 

highly stable carboxylate-terminated low-density self-assembled monolayers (LD-SAMs) 

on gold with controlled lateral density of end groups. We proposed the solution-phase 

approach, where the adsorbates were synthesized through the thiol-yne addition of two 

thiol-containing head groups to an alkyne-containing end groups, and monolayers were 

simply prepared through immersion of a gold substrate into 1mM solution of synthesized 

adsorbates in pure hexane. To minimize synthesis steps, we then proposed the solid-phase 

approach, where LD-SAMs were prepared through grafting of carboxylate-terminated 

alkynes to thiol-terminated SAMs on a gold substrate. The grafting process is enabled via 

a photoinitiated thiol-yne click reaction. As shown in preceding chapters, thorough 

surface characterization of product LD-SAMs, prepared through either of these 

approaches, indicated that the resulting monolayers have two phase distinct phases, 

including a highly crystalline head phase adjacent to the gold substrate and a loosely 

packed end phase with a lateral packing density of ~%45, which is in contact with the 

environment. Having a simple and versatile approach for preparation of LD-SAMs with 

controlled lateral density of end groups, we were able to investigate the magnitude of 

protein adsorption on LD-SAMs compared to typical well-packed SAMs, as well as the 

contribution of ligands’ packing density on affinity of proteins for interacting with 

monolayers. 

The nature of protein adsorption onto solid surfaces is critically important across 

all areas of biotechnology, biomaterial science, and medicine. As a specific example, 
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thrombogenesis, which proceeds by a series of protein adsorption and platelet adhesion 

events on medical implants, remains a significant obstacle for clinically appropriate 

medical device lifetimes [4, 6, 199, 200]. While protein adsorption on a solid surface is 

greatly affected by surface properties such as chemical functionalities, surface 

wettability, and surface charge [201] the extent to which each of these factors contributes 

to the magnitude of protein adsorption is not fully understood. As a result, there remains 

a critical need to improve upon the molecular level contributions to the interaction of 

proteins with solid surfaces. 

Self-assembled monolayers (SAMs) are frequently used to investigate the 

mechanistic aspects of interfacial protein adsorption [63]. SAMs of long alkanethiols on 

gold are convenient, as they form stable and well-defined organic layers that enable the 

simple preparation of surfaces with different chemical functionalities through selection of 

appropriate terminal groups (Figure 5.1a) [202]. Another advantage is that adsorption 

from mixtures of two or more kinds of alkanethiol allows for the formation of mixed 

SAMs with systematically varied surface properties [63, 203]. Several studies using 

alkanethiol SAMs have determined the effects of surface properties on protein attachment 

and subsequent cell proliferation [1, 203-205]. Most commonly, the effect of surface 

energy is assessed with either homogeneous SAMs with only one functional group [1, 4] 

or mixed SAMs with multiple functional groups (Figure 5.1c) [4, 5, 63]. In the 

homogeneous studies, the adsorption of plasma proteins such as albumin [2, 22] indicate 

that albumin adsorb more strongly on more hydrophobic surfaces such as alkyl-

terminated SAMs, and surfaces with more wettability such as OH-terminated SAMs are 

generally associated with low protein adsorption [23, 206, 207]. This general tendency of 

low adsorption on hydrophilic SAMs concurs with the antifouling literature, where the 

recent focus is on zwitterionic [128, 208, 209] and PEG [210-212] based coatings, which 

favor a surface hydration layer to protein interactions. Conversely, low energy surfaces 

favor strong interactions with proteins over those of water. For alkanethiol SAMs 

composed of two functional groups, Martins and Ratner investigated the effect of surface 

composition on human serum albumin (HSA) adsorption [4]. They coadsorbed different 

ratios of functional thiols to systematically control surface energy. Upon exposure to 

HSA, they observed protein adsorption gradually decrease with increasing of the surface 

energy.  

The effect of the lateral packing density of SAMs is not well understood. This 

question is of particular significance for nanoparticles in the bloodstream. The structure 

of a conventional SAM formed on the surface of a nanoparticle is of a reduced chain 

density, owing to faceting and surface curvature of the gold. The low chain density of 

SAMs on nanoparticle surfaces is commonly exploited in noncovalent drug loading, and 

the available space between the methylene chains of SAMs on a curved surface allows 

the intercalation of hydrophobic guest drugs [172, 213, 214]. Despite the clear 

discontinuity between well-packed SAMs and the low density of chains on nanoparticles, 

there is sparse literature on low chain density systems. One study indicates human serum 

albumin protein (HSA) binds more tenaciously on a LD-SAM than to a densely packed 

SAM. The more tenacious binding of HSA to LD-SAMs was attributed to the specific 

interactions between the alkyl chains on the surface and the HSA binding pockets [177]. 

This argues in favor of the important role that specific binding and intercalation potential 

play in binding of proteins to LD-SAMs. 
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While alkyl terminated monolayers appear to have an increase in protein binding 

with increasing chain spacing, chain spacing shows the opposite trend in oligo ethylene 

glycol (OEG) chains [19]. OEG terminated monolayers with amorphous conformations 

(gauche-trans-gauche) are reported to be protein resistant. The quantification of adsorbed 

amount of fibrinogen on LD-SAMs and well-packed SAMs of OEG, using infrared 

absorption (FTIR) and surface plasmon resonance (SPR), revealed that the predominantly 

crystalline helical and the amorphous forms of OEG on gold substrates are resistant to 

adsorption of proteins, while the analogous a densely packed “all-trans” form of OEG 

SAM present on silver surfaces adsorbs more protein [[19]. In this case, the amount of 

protein adsorption was attributed to the conformation-dependent degree of solvation of 

the PEG based materials. Given the contrasting trends in protein adsorption with chain 

density for different terminal functionalities, there is significant opportunity to learn more 

about the general trends in these low-density systems. 

 

 
Figure ‎5.1. Three classes of monolayers studied. a) Traditional SAMs of high packing 

density and homogeneous adsorbate composition (From left to right: carboxylate, 

hydroxyl, and methyl terminated SAMs). b) LD-SAMs with 50% lateral packing density 

of traditional SAMs and homogeneous adsorbate composition (From left to right: 

carboxylate, hydroxyl, and methyl terminated LD-SAMs). c) mixed SAMs of high 

packing density and binary adsorbate composition (From left to right: carboxylate/methyl 

mixed SAMs, and hydroxyl/methyl mixed SAMs). 

 

A major obstacle to the systematic study of protein adsorption on these low 

density surfaces is their preparation on planar substrates. Of the previously studied LD-

SAM systems, each preparation method has a distinct set of limitations in the analysis of 

protein adsorption. The temporally controlled deposition of silanes is difficult to achieve 

reproducibly, is limited in terminal functional group selection, and excludes the use of 

gold substrates required for surface plasmon resonance (SPR) analysis. Alternatively, 

there is significant growth in the area of LD-SAMs on gold through adsorption of a bulky 

adsorbate and subsequent cleavage of the bulky group to yield laterally spaced chains. 
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This approach offers exceptional control over packing across a large range of lateral 

chain density, and preparation methods based on ionic interaction are very simple [28, 

77]. The limitations of these adsorb-and-cleave approaches are the reduced stability of 

these adsorbates relative to conventional SAMs, which leads to alteration of the spacing 

between the adsorbates and consequently a change in the nature of molecular 

intercalation [28, 77].This synthetic is also limited to a small range of potential terminal 

groups left behind after the cleavage process [28, 77, 134]. 

Our group is among several that have explored incorporating a permanent bulky 

group into the nonterminal end of the molecular structure. Bulky group approaches are 

synthetically more challenging than adsorb-and-cleave approaches, and as a result, this 

work has also been previously limited to a small range of functionalities. We recently 

developed a new strategy using the thiol-yne click-chemistry for preparing low-density 

monolayers, which is adaptable to a wide range of functional groups and yields terminal 

groups at a 50% chain density of a conventional SAM [160, 191]. Our adsorbates are 

based on a y-shaped molecule (Figure 5.1b), where the 2:1 ratio of gold interfacing 

groups to environment interfacing groups gives a predicable 50% chain density. These 

thiol-yne are even more electrochemically stable than conventional SAMs by virtue of a 

doubly bound adsorbate and significant van der Waals interactions in the region near the 

gold substrate. A limitation of this initial approach is the lack of variation in tail group 

density. This limitation was partially alleviated through our follow up surface grafting 

approach to generate similar structures, allowing variation in the surface chain group 

packing. Critically, these densities are limited to <50% that of a conventional SAM, and 

the spacing of the resulting monolayer chains is likely irregular. 

Here, we broaden the knowledge of protein-surface interactions base by 

investigating the effects of surface chain density on the adsorption of bovine serum 

albumin (BSA). We use the functional diversity of thiol-yne [160] to prepare surfaces 

with 50% lateral density of carboxylate (COO-),  hydroxyl (OH), and alkyl (CH3) 

terminal groups (Figure 5.1b). This work is the first report of LD-SAMs prepared by 

thiol-yne chemistry with hydroxyl and alkyl terminal groups. The LD-SAM adsorption 

data are contrasted against those obtained for analogous well-packed SAMs with the 

same terminal functional groups (Figure 5.1a). While previous adsorption studies on 

alkyl chains had little change in surface energy and charge with varying chain density, 

the alteration of carboxylate and hydroxyl based SAMs will dramatically alter these 

parameters. To better isolate the effect of surface density, we also evaluate protein 

adsorption on wettability-matched surfaces made from mixed SAMS of carboxyl/alkyl 

and hydroxyl/alkyl (Figure 5.1c). 

5.3 Experimental  

5.3.1 Materials and Methods 

1,10-Decanedithiol (98%) was obtained from TCI America. n-Hexane (>95%), 

acetone (>99.9%), 10-undecynoic acid (95%), 1-hexyne (97%), 5-hexyn-1-ol (96%), 

ethanol (>99.5%), dichloromethane (>99.8%), potassium hexacyanoferrate(III) (>99%), 

potassium hexacyanoferrate(II) (>99.99%), sodium sulfate (>99%),11 

mercaptoundecanoic acid (MUA; 95%), 11-mercapto-1-undecanol (%97) , 1-

dodecanethiol (%96) , glycerol (>99.5%) and silica gel (35-60 mesh particle size) were 

purchased from Sigma Aldrich (St. Louis, MO) and were used as received. 3-



 52 

Mercaptopropyl trimethoxysilane (95%) was purchased from Gelest, and used as 

received. Irgacure-184 was used as received from Ciba Specialty Chemicals. Deionized 

water was produced using an 18 MΩ Millipore water purification system. Silicon wafers 

(P/Boron ⟨1−0−0⟩), 150 ± 0.2 mm diameter, with thickness of 600−650 μm and 

resistivity of <0.4, were obtained from WRS Materials. BK7 glass microscope slides 

were purchased from Fisher Scientific. Gold (99.9%) and chromium (99.9%) targets used 

in sputtering was purchased from Kurt J. Lesker, Inc. BK7 specific index matching fluid 

was purchased from Cargille, Inc. 

5.3.2 Preparation of SPR Sensors 

The experimental SPR sensor consists of a glass substrate, a spin-coated layer of 

diluted ethanoic solution of 3-mercaptopropyl trimethoxysilane (MPTS), and a ~50 nm 

gold layer. Microscope slides (VWR Micro slides, 48382-171, 1 mm thick) were cut to 

1.5 cm square pieces, and rinsed sequentially with acetone, ethanol and rinsed with 

deionized water for 5 minutes each in an ultrasonic bath to remove any organic 

compounds and impurities. After being blown dry with a stream of nitrogen, slides were 

spin coated with a solution of MTPS:ethanol:water with a weight ratio of (1:95:5) with 

2000 rpm for 30 s. Samples were then placed on a hot plate at 110 C for 10 minutes to 

remove residual solvent. MPTS is applied as the adhesion promoter to increase the 

adhesion of gold to the glass substrate. Slides were immediately transferred to a Hummer 

8.1 DC sputter system chamber where gold (50-55 nm) was deposited onto the MPTS 

layer. Slides were rinsed with ethanol and deionized water and blown dry with a stream 

of nitrogen prior to use. 

5.3.3 Gold Substrate Preparation  

For all non-SPR studies, gold-coated silicon wafers with chromium adhesion 

layers (100 Å Cr, 500 Å Au) were prepared using the sputter system. Silicon wafers were 

plasma cleaned and then placed into the sputter system chamber, where chromium (100 

nm) and gold (500 nm) were sequentially deposited onto silicon wafers. The gold 

substrates were typically cut to 1 x 3 cm, cleaned with piranha solution (3:1 H2SO4:30% 

H2O2) for 1 minutes, rinsed with deionized water, and dried under a stream of N2 prior to 

use. 

5.3.4 Preparation of Low-Density Monolayers 

Complete molecular synthesis procedures are provided in the supporting 

information. The 10,11-bis (10-mercaptodecylthio) undecanoic acid was synthesized 

according to described method in section 7.3 [160]. 5,6-bis (10-mercaptodecylthio) 

hexan-1-ol and 5,6-bis(10-mercaptodecylthio) hexane adsorbates were prepared in an 

analogous synthetic approach using 5-hexyn-1-ol and 1-hexyne in place of 10-

undecynoic acid, respectively. The product adsorbates were then reconstituted in pure 

hexane to a concentration of 1 mM. Gold substrates were immersed in this solution for 24 

h at room temperature to form SAMs. Samples were rinsed three times with ethanol, 

followed by a brief rinse with deionized water and pure ethanol, and then dried with a 

stream of nitrogen gas prior to measurement.  
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5.3.5 Preparation of Pure and Mixed Monolayers 

 Pure solutions of 11-mercaptoundecanoic acid (HS(CH2)10CO2H), 1-

dodecanethiol (HS(CH2)11CH3), and 11-mercapto-1-undecanol (HS(CH2)11OH) were 

prepared in ethanol at a concentration of 1mM. Mixtures of two thiols (CH3(CH2)11SH / 

HS(CH2)10CO2H) and (CH3(CH2)11SH/ HS(CH2)11OH) were obtained by mixing the pure 

1 mM thiol solutions in different percentages. Gold substrates were immersed in 

alkanethiol solutions at room temperature for 24 h. After incubation, the monolayers were 

washed three times with ethanol followed by deionized water, and blown dry with a 

stream of nitrogen prior to measurements. 

5.3.6 Spectroscopic Ellipsometry 

SAM thicknesses were measured with a spectroscopic ellipsometer (see 

section2.5). To study protein adsorption, we immersed monolayer coated gold substrates 

in series of solutions, sequentially. The samples were initially immersed in deionized 

water for 4 minutes, followed by immersion in phosphate buffer saline (pH=7.4) for 285 

s, then in BSA solution in phosphate buffer saline (0.38 uM) for 540 s. To remove any 

weakly adsorbed BSA from surface, samples were then immersed again in PBS and 

deionized water rinses for 285 s, and 240 s, respectively, and then dried in a stream of N2.  

The surface concentration of the adsorbed BSA was estimated by measuring the 

ellipsometric thickness of the monolayer coated gold substrates pre-exposed to BSA 

under identical experimental conditions as used in SPR. To calculate the surface 

concentration in (mass per area) of BSA (M) through ellipsometic thickness values, we 

simply applied the density formula, using known value of density of BSA (=1320 g/l)  

[215] and assuming area of 1 cm
2
. Results shown are averaged from at least three 

measurements on each of at least four samples. The reported values are the average ± 

standard deviation. 

5.3.7 Contact Angle Goniometry 

Static contact angles of deionized water on monolayer surfaces were manually 

measured with a contact angle goniometer (see section 2.1). Results shown are averaged 

from at least three measurements on each of at least four samples. The reported values are 

the average ± standard deviation. 

5.3.8 Surface Plasmon Resonance 

SPR spectroscopic measurements for the BSA adsorption study on monolayers 

were performed by a homemade SPR system based on the traditional Kretschmann 

configuration [123]. See section 2.4 for more information on of SPR measurement 

protocol. 

5.3.9 Calculation of the Adsorbed BSA Concentration on Surface  

The relation between the SPR resonance wavenumber shift and surface 

concentration of the adsorbed BSA was established by model calculations that correlated 

the multilayer structure characteristics and the position of the dip of the SPR spectrum in 

an intensity versus wavelength plot. The wavelength corresponding to the dips of the 

spectrum is the coupling wavelength, which will shift as the incident angle change [123]. 

Using the theoretical Fresnel multilayer model (parameters shown in Table 5.1), we 
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related changes in SPR resonance wavelength to changes in binding layer thickness [123, 

216-218]. This model gives a linear dependence between the wavelength change and 

thickness, where 1 nm in wavelength corresponded to 0.63 A in thickness. The value of 

surface concentration of BSA (M) in units of mass per area is calculated by the following 

equation: 

Equation ‎5.1     

Where nb and np are the refractive indices of the PBS buffer and BSA solution, dp is the 

protein layer effective thickness and dn/dc=0.182 mL/mg. To simplify the simulation, we 

assumed the adsorbed protein and SAM surface as a single layer in modeling, as the 

optical constant values are very close. The reported values are taken from Reference 15, 

17, 42 and 43. 

 

Table ‎5.1. Parameters used for the correlation of SPR data with mass of adsorbed Protein. 

Layer Media n k Reference 

1 Glass prism and substrate 1.52 0.0 [207, 219] 

2 Gold film on the SPR sensor 0.17 4.86 [207, 219] 

3 SAM layer on gold film &  

Protein layer adsorbed on SAM surface 

1.45 0 0[23, 207] 

4 PBS buffer solution 1.33 0 [207, 220] 

 

5.4 Results and Discussion: 

Given the abundance of serum albumins in blood, BSA is a relevant protein to use 

in the study the protein based interactions of surfaces with blood. BSA is a globular 

protein (average MW 66 kDa), which belongs to the soft proteins class, which can easily 

change their structure and conformation. Adsorption of BSA to surfaces of different 

functionalities is widely studied [221-223]. On a charged surface, the predominant 

driving force is the electrostatic attraction between the surface and the oppositely charged 

functional groups of BSA. On uncharged surfaces, the relatively weak nonpolar 

interactions drive the interaction of BSA with the surface. In either case, BSA adsorption 

is usually restricted to a monolayer [224, 225]. Here, we seek to determine the role of 

chain packing density on the adsorption of BSA by decoupling the influence of packing 

density from that of surface energy effects.  

5.4.1 Differences in Magnitude of BSA Adsorption Between SAMs and LD-SAMs 

SPR enables the comparison of BSA adsorption on SAMs to that of LD-SAMs 

with the same terminal group. We measured the net changes in resonance wavelength 

caused by BSA adsorption on monolayers and calculated the concentration of the 

adsorbed BSA on each surface. Figure 5.2, shows the concentration of adsorbed BSA on 

pure component SAMs and LD-SAMs. For pure component SAMs, the magnitude of 

adsorbed protein increases (adsorption: COOH < OH < COOH) with decreasing surface 

energy (energy: COOH > OH > COOH). This trend qualitatively agrees with previous 

M  
d p ( n p  n b ) 

( d n 
d c 

) 
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observations in adsorption onto pure component SAMs [4, 226]. Within LD-SAMs, this 

same qualitative trend of increasing adsorption with decreasing surface energy also holds 

true.  

 
Figure ‎5.2. SPR analysis of BSA adsorption on SAMs and LD-SAMs. A) Representative 

SPR data for monolayers studied. B) Calculated adsorbed mass per area on SAMs and 

LD-SAMs. 

 To further support the adsorption trends observed with SPR, we also studied the 

BSA adsorption on SAMs and thiol-yne LD-SAMswith ex-situ ellipsometry. The 

ellipsometric thicknesses of each monolayer before/after exposure to BSA protein 

solution were measured, and the concentration of BSA adsorbed on surfaces was 

calculated from the thickness change caused by BSA adsorption (Figure 5.3). In 

agreement with the SPR analysis, there is a qualitative trend for increasing adsorption 

with decreasing surface energy when considering the SAMs and LD-SAMs, separately. 

This supports surface energy as playing a significant role in the adsorption of proteins 

onto both traditional SAMs and LD-SAMs. This trend suggests that hydrophobic 

interactions are a dominant driving force for BSA adsorption on these surfaces. 

Quantitatively, there is a significant difference between the magnitude of adsorption 

determined by ellipsometry and by SPR (OH SAM: p=1x10
-4

, OH THIOL-YNE LD-

SAM: p=4x10
-5

, COOH SAM: p=2x10
-7

, COOH THIOL-YNE LD-SAM: p=4x10
-8

, CH3 

SAM: p=5x10
-9

, CH3 THIOL-YNE LD-SAM: p=4x10
-10

).  

 
Figure ‎5.3. Mass of adsorbed BSA on well-packed self-assembled monolayers and their 

corresponding loosely packed monolayer measured by ellipsometry. Each column is the 

average value of at least 9 measurements. 
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Across all present studies, the maximum adsorbed mass measurement of ~1300 

ng/cm
2
 relates to a layer thickness of ~1 nm, and is lower than expected for a BSA 

monolayer of any protein orientation (BSA crystal structure gives dimensions of 14 x 4 x 

4 nm).[227] As such, all measurements are within reason, and describe submonolayers of 

adsorbed BSA. The differences in the measurement are attributed to these techniques 

fundamentally measuring different properties. SPR measures the in situ solvated coupling 

of resonances to the surface, while ellipsometry measurement is the ex situ analysis of 

dehydrated residual protein on the surface. The aggregate SPR measurement approach is 

able to provide a statistically significant difference in adsorption on hydroxyl versus 

carboxylate surfaces (OH SAM vs. COOH SAM: p=1.x10
-5

, OH LD-SAM vs. COOH 

LD-SAM: p=9x10
-11

), while our ellipsometric approach is unable to determine 

differences between these surfaces (OH SAM vs. COOH SAM: p= 0.28, OH LD-SAM 

vs. COOH LD-SAM: p= 0.08). As a result, the subsequent studies are performed 

exclusively with SPR. While we report absolute magnitudes here, the difference between 

SPR and ellipsometric measurements suggests the potential for error in these absolute 

values. However, the agreement of measured trends within the SPR data set, the 

ellipsometric data set, and prior publications supports the use of the SPR analysis to 

establish relative trends between surfaces [10, 228-230]. 

When contrasting BSA adsorption on SAMs and LD-SAMs for each functional 

group (Figure 5.2,5.3), the amount adsorbed on LD-SAMs is consistently higher than that 

on SAMs of the same terminal functionality. When considering the driving force of these 

differences, it is important to revisit the magnitude of intermolecular interactions. The 

strongest driving forces considered here are electrostatic interactions. BSA has an 

isoelectric point of 5.2. At our experimental pH of 7.4, the BSA surface is expected to 

have a net negative charge of -17. The carboxylate-terminated adsorbates in SAMs and 

LD-SAMs have a dissociation constant around 6, and expected to be deprotonated at pH 

7.4 [231, 232]. Lower adsorption of BSA on the acid terminated SAMs and LD-SAMs is 

partly attributable to electrostatic repulsions. As a result, the reduced surface density of 

the charge in the LD-SAM directly results in a decreased electrostatic repulsion and 

therefore higher BSA adsorption. This change in surface charge and hydrophilicity 

between the SAMs and the LD-SAMs prevents a direct, conclusive determination of the 

influence of chain packing based on this data set alone. 

For the hydroxyl terminated SAMs, the relatively weaker polar interactions 

promote a hydration layer to exist at the polar hydroxyl terminus of the adsorbate. As a 

result, proteins are discouraged from interacting with the surface. Similar to the 

carboxylate terminated system, the changing lateral density of the polar groups between 

the SAMs and the LD-SAMs alters the hydrophilicity of these surfaces and limits the 

conclusions made on this data set concerning the role of chain density on protein 

adsorption.  

For the nonpolar alkyl SAMs and LD-SAMs, the higher adsorption on LD-SAMs 

is largely driven by van der Waals interactions. In this case, the lateral spacing of the 

alkyl groups has a negligible effect on surface charge, polarity, and hydrophilicity. This is 

further supported by comparable contact angles for alkyl (~107º) [4] and methylene 

surfaces (~101) [187]. As a result, the adsorption differences observed for this system are 

likely driven by changes to the surface conformation. This system also closely mirrors the 

previous work by Choi and Foster on the adsorption of HSA on laterally spaced alkyl 
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chains. They observed a similar increase in adsorption with increasing chain spacing, and 

they hypothesized the major driving force for the increase in adsorption was intercalation 

of the chains into hydrophobic pockets in the HSA. For our data, we also see an increase 

in adsorption. This is potentially attributed to the void spaces between the chains of the 

adsorbates, allowing for intercalation of BSA molecules into the monolayer. The 

intercalated BSA molecules would increase the van der Waals interactions between the 

BSA molecules and the surface [134, 233]. While we cannot verify the specific site of 

intercalation, the absence of charge density or hydrophobicity effects supports 

intercalation as a likely mechanism for increasing protein adsorption on the alkyl LD-

SAMs. 

5.4.2 Decoupling Chain Density from Surface Energy and Charge Contributions 

In order to isolate the effect of chain packing density on protein adsorption, we 

studied protein adsorption on well packed SAMs with similar wettability and 

functionality as the acid and hydroxyl LD-SAMs. Self-assembled monolayers containing 

binary mixtures of carboxylate/alkyl or hydroxyl/alkyl terminated alkanethiols with 

similar chain length were prepared on gold to systematically vary surface charge and 

wettability. The advancing and receding values of contact angle of water on these 

surfaces were measured and plotted against the solution phase molar percentages of the 

HS(CH2)10CO2H or HS(CH2)11OH in the solution relative to the HS(CH2)11CH3 (Figure 

5.4). The pure component advancing and receding angle for carboxylate[58, 130], 

hydroxyl[174], and alkyl[234] terminated monolayers agree well with other literature 

reports on these surfaces. The general nonlinear trend qualitatively agrees with previous 

reports of carboxylate/alkyl[63] and hydroxyl/alkyl[234] mixed monolayer systems.[4] 

The advancing and receding values of water for the prepared LD-SAMs are presented in 

Table 5.2, and lines corresponding to the advancing contact angle of each LD-SAM are 

also provided in Figure 5.4. For the carboxylate terminated monolayers, there is good 

agreement between both the advancing (70º) and receding (35º) water contact angles for 

the LD-SAM and a mixed SAM with a solution phase molar composition of 70% 

HS(CH2)11COOH. This agreement in wettability supports at least a moderate agreement 

in carboxylate surface density by virtue of the Cassie Equation[191]. We also find a 

solution phase molar fraction of 60% HS(CH2)10OH agrees well with the advancing water 

contact angle of a hydroxyl terminated LD-SAM (70º), while there is only moderate 

agreement in receding contact angles (LD-SAM ~36º, mixed SAM ~47º).  

 

Table ‎5.2. Advancing and Receding contact angle of water on loosely packed monolayers 

synthesized through solution-phase thiol-yne click-reaction. 

Monolayer θA θR 

COOH LD-SAM 69 ± 2 34 ± 3 

OH LD-SAM 74 ± 2 36 ± 1 

CH3 LD-SAM 104 ± 2 93 ± 2 
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Figure ‎5.4. Water contact angle dependence on solution phase composition of thiols in 

mixed self-assembled monolayer systems. Total thiol content in ethanol 1 mM with 

overnight incubation. Horizontal dashed line indicates advancing water contact angle of 

the corresponding LD-SAM. Vertical dashed line indicates mixed SAM composition to 

give matched advancing water contact angle. (a) Mixed SAMs of HS(CH2)10COOH and 

HS(CH2)11CH3. (b) Mixed SAMs of HS(CH2)11OH and HS(CH2)11CH3. 

 

 
Figure ‎5.5. Mass of adsorbed BSA per area on monolayers with matched advancing 

contact angle.  

We then used these charge and energy matched surface to specifically investigate 

the influence of chain density on the magnitude of protein binding on hydroxyl and 

carboxylate terminated surfaces. For both functionalities, BSA adsorption on carboxylate 

and hydroxyl terminated LD-SAMs are lower than on the charge and energy matched 

SAMs (Figure 5.5, p=2x10
-14

 and p=2x10
-9

, respectively). This is similar to the trend 

observed with PEG monolayers, where the loosely packed form of OEG SAM are more 

resistant to protein adsorption than their analogous densely forms of PEG monolayers 

[19].  

In all, the matched hydrophobicity studies show a different influence of chain 

density on protein adsorption for carboxylate and hydroxyl terminated chains when 

compared to alkyl terminated chains. The carboxylate and hydroxyl LD-SAMs are more 

resistant to BSA adsorption than their well-packed analogue, while the alkyl LD-SAMs 

encourage more adsorption of BSA than a densely-packed SAM. For monolayer/protein 

interactions, the differences in chain density and functionality play a significant role. Pure 

component and mixed SAMs are highly crystalline, and this highly stabilized structuring 

prohibits the response of the SAMs to even large electrochemical potential driving forces 
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on charged SAMs [160, 164]. In contrast, LD-SAMs are capable of molecular level 

rearrangement in response to changes in applied electrochemical potential [28] or in the 

presence of an intercalating solvent [161]. These rearrangements may alter the nature of 

protein-monolayer interactions through intercalation [133]. Intercalation is only favored 

if the chains favor interaction with the hydrophobic protein core. This likely drives the 

major adsorption differences we observe in the role of chain density between hydrophilic 

and hydrophobic functional end groups. The hydrophilic groups at the end of chains lack 

favorable interactions with the hydrophobic core of the protein. This scenario provides 

little benefit for the loosely packed chains to penetrate and interact strongly with the 

protein when compared to a densely packed surface. For hydrophobic end groups, the 

alkyl chain greatly prefers interaction with the hydrophobic protein core over interaction 

with an aqueous environment. As a result, the driving force for intercalation is 

significantly greater for the hydrophobic alkyl chains when compared with the 

hydrophilic carboxylate and hydroxyl end groups.  

5.5 Conclusion 

Adsorption of BSA was studied on pure LD-SAMs of different terminal 

functionalities, and results were contrasted against those for traditional well-packed 

SAMs. As detected by SPR and spectroscopic ellipsometry, BSA adsorption was 

significantly higher on LD-SAMs, compared to SAMs, which can be associated with the 

intercalation potential of LD-SAMs for BSA molecules in monolayer film. To eliminate 

surface energy effect on BSA adsorption, we compared adsorption of BSA onto LD-

SAM and mixed-SAM with matched wettability. BSA adsorption on hydrophilicity 

matched SAMs was higher than an LD-SAM film. In addition, a significant increase in 

BSA adsorption was observed on hydrophobic, alkyl-terminated LD-SAMs and SAMs 

surfaces. This trend is opposite that associated with hydrophilic tail groups, and these 

differences are attributed to the favorability of functional group intercalation into the 

hydrophobic core of BSA. 
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6 Conclusions and Future Work 

6.1 Research Summary  

 In this work, we studied the impact of lateral surface density of ligands on BSA 

adsorption. we initially developed a surface chemistry towards preparation of low-density 

self-assembled monolayers (LD-SAMs) exceptional stability. The proposed technique, is 

adaptable to a variety of analogous low-density monolayers with diverse chemical 

functionalities. We investigated the feasibility of the proposed chemistry in solution-

phase. Once the characterization techniques confirmed the proposed structure for the 

synthesized compound and the proposed chemistry, we then investigated the solid-phase 

approach, which was based on the same chemistry, but without the need for synthesic 

purification steps. The surface characterizations confirmed the proposed chemical 

structuring of the prepared monolayer. The prepared LD-SAMs were then used as model 

systems to study bovine serum albumin protein-surface interactions. We were specifically 

interested in the effect of surface lateral density of functional groups on the protein 

adsorption. The real-time monitoring of protein adsorption on prepared LD-SAMs versus 

well-packed analogous self-assembled monolayers, using surface plasmon resonance 

technique, indicated that lateral packing density of functional groups on hydrophilic 

surfaces such as hydroxyl- and carboxylate- terminated LD-SAMs, has a less significant 

impact on the extent of protein adsorption, than on hydrophobic surfaces such as methyl- 

terminated LD-SAMs. 

 As described in detail in chapter 3 of this thesis, we first studied the radical 

initiated thiol-yne click-chemistry in solution-phase for synthesizing “Y” shaped 

adsorbates. Monolayers prepared from these adsorbates have two distinct phases: a highly 

crystalline head phase adjacent to the gold substrate, and a reduced density tail phase 

which is in contact with the environment. Carboxylate-terminated adsorbates were 

synthesized, and the LD-SAMs were prepared through immersion of gold substrates in 1 

mM solution of the adsorbates in hexane for 24 hours. The resulting monolayers were 

evaluated and compared with a well-packed 11-mercaptoundecanoic acid monolayer 

(MUA SAMs), using characterization techniques such as FTIR, ellipsometry, EIS, 

reductive desorption, and contact angle goniometry, to understand the chemical 

structuring of the LD-SAMs at their interface with environment, with gold substrate as 

well as its overall structuring, verifying the feasibility of solution-phase approach. 

Characterization results indicated that resulting LD-SAMs have a lower average 

crystallinity compared to a typical monolayer. The conformational freedom at the surface 

was demonstrated through remodeling the thiol-yne surface under an applied potential. In 

addition, using reductive desorption, we also showed that the resulting LD-SAMs are 

electrochemically stable than typical well-packed SAMs. 

 We then used the proposed chemistry in chapter 3 with a solid-phase approach in 

chapter 4. This technique allows for simple, fast preparation of LD-SAMs of higher 

stability than well-packed monolayers. In this approach, we used the photo-initiated thiol-

yne click-reaction for grafting of acid-terminated alkynes to thiol-terminated monolayers 

on a gold substrate to create stable LD-SAMs. The resulting monolayers were compared 

with a well-packed MUA SAMs and the analogous low-density monolayers prepared 

through a solution phase synthetic approach. The results show that the product monolayer 

has an intermediate surface energy and a more disordered chemical structuring compared 
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to a traditional well-packed SAMs, showing a low-packing density of the chains at the 

monolayer surface. 

 With the surface chemistry well-established we utilized SPR and ellipsometry 

techniques to study BSA protein adsorption on LD-SAMs and to investigate the effect of 

lateral packing density of functional groups on the extent of protein adsorption. We 

prepared hydroxyl-, carboxylate- and methyl- terminated LD-SAMs (via photo-initiated 

solution-phase thiol-yne click-reaction) and their analogous well-packed SAMs on gold 

coated SPR sensors. It was found that for the LD-SAMs, the magnitude of protein 

adsorption is consistently higher than that of a pure component, well-packed SAM for all 

functionalities studied. In addition the extent of BSA adsorption the LD-SAMs, was 

consistently higher than that of a pure component, well-packed SAM for all 

functionalities studied. The difference of protein adsorption on LD-SAMs and SAMs can 

not be associated to difference in lateral packing density, unless we eliminate the impact 

of other contributing factors in protein adsorption such as surface energy. In order to 

better understand the impact of packing density on protein-surface interactions, we 

prepared the mixed SAMs of (carboxylate/alkyl) and (hydroxyl/alkyl) with matching 

surface energy as the carboxylate and hydroxyl terminated LD-SAMs. The energy-

matched mixed SAMs of carboxylate and hydroxyl functionality adsorbed more protein 

than the LD-SAMs. However, an opposite trend was seen for the alkyl surfaces, where 

surface energies are comparable for LD-SAMs and pure component SAMs, indicating 

that BSA proteins have higher affinity for methyl- terminated LD-SAMs than well-

packed SAMs. 

6.2 Recommendations for Future Work 

 This study demonstrates and quantifies the significant interplay between surface 

energy, chain packing, and protein adsorption on monolayer surfaces. Here, we have 

proposed several lines of research arising from this work which should be pursued. 

6.2.1 Exploring Other Contributing Factors in Protein-Surface Interactions  

 Despite the importance of the findings of this research about protein-surface 

interactions, the knowledge in this area can be extended in several ways. Firstly, in this 

research, analysis is only based on the adsorption of proteins. Therefore they only reflect 

the thermodynamic interactions between proteins and monolayers, and they may not take 

into account the dynamic interactions between the protein and adsorbate chains and also 

dynamic interactions between protein molecules. Also, for the study of surface 

biocompatibility, one should ultimately consider the perturbations on the native 

conformations of the interacting proteins caused by monolayer surfaces. Nature of these 

interactions can be investigated future using spectroscopic tools such as surface-enhanced 

Raman, solid-state NMR and surface plasmon resonance [235]. 

 More importantly, it is central for developing any protein recognition technique, 

to discover the ligands that binds the targeted protein, with high affinity. Experimental 

procedures towards discovering of small molecules that bind a specific protein tightly, 

while retaining the protein natural properties, can be time consuming and costly. 

However, computational approaches, can speed this process, through simulation and 

modeling. In particular, structure-based modeling uses the three-dimensional atomic 

coordinates of the targeted protein to calculate the binding free energy of a proposed 
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ligand, or at least to rank candidate ligands according to their predicted affinities for the 

target [236]. Incorporating this information into design and synthesis process of 

biosensors can significantly enhance sensor accuracy.  

6.2.2  Protein imprinted LD-SAMs 

 Another area of future work is in combining the proposed solid-phase approach of 

forming LD-SAMs (chapter 4), with knowledge gained about the protein interactions 

with different functional groups (see section 6.2.1). We propose investigation of 

molecular imprinting of proteins in thiol-yne LD-SAMs as an alternative to antibody 

based biological recognition techniques. Despite the common application of antibodies, 

they are far from ideal tools, as they are unstable when not in their native environment 

and often in short supply, and a natural receptor for a particular molecule of interest may 

not exist. Therefore, there have been extensive research towards creating tailor-made 

receptors that are capable of recognizing and binding the desired target molecule with a 

high affinity and selectivity. Moreover, the substitute technique should be cost-effective, 

stable and accessible to target molecules for which natural receptors do not exist.  

 Molecular imprinting of polymers (MIPs), is a simple way of generating artificial 

molecular receptors, that has attracted great deal of attentions in recent years. In MIP, a 

molecular “memory” is imprinted on the polymer, which is complementary to the 

template in size and shape and is now capable of selectively rebinding the template. 

Despite MIPs success in in recognizing small molecules, their application for 

macromolecules like proteins is limited [237-239]. Molecular imprinting in monolayers 

(MIMs) provides several advantages over MIPs, such as faster mass transfer of template 

macromolecule in and out of the imprinted cavities. 

 

 
Figure  6.1. Schematic representation of our proposed approach towards molecularly 

imprinted monolayers using thiol-yne click chemistry. A) Monolayer is exposed to a 

mixture of ligands and template protein. Ligands bind to template proteins as well as 

thiolated surface. B) UV irradiation locks ligands onto surface. Unreacted regions on 

thiolated surface are backfilled with PEG-maleimide. C) Surface is rinsed with surfactant 

to release the template proteins. 

 

 Conventional MIMs only rely on size complementarity of binding sites in 

recognition, and suffer from unspecific detection of smaller molecules that can fit in the 

imprints in monolayer [240]. This unspecific detection significantly lowers the biosensor 

reliability. To avoid this problem, using the knowledge we gain from studying the protein 

affinity for alkynes different functional groups, combined with the developed solid-phase 

thiol-yne grafting approach, we propose a novel technique for creation of protein 

imprinted sites functionalized with the functional groups that complement the groups on 

protein structure to maximize the specificity and binding strength.  
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 The proposed approach, as shown in Figure 6.1, involves exposing a dithiol SAM 

to a mixture of ligands and template protein, so that ligands can bind to template proteins 

as well as thiolated surface. The ligands are then grafted onto surface via UV irradiation, 

and any unreacted region on thiolated surface will be backfilled with PEG-maleimide 

(protein resistant adsorbate). At the end the surface will be rinsed with surfactant to 

release the template proteins. Functionalized binding cavities will be quantitatively 

analyzed with X-ray photoelectron spectrometer, electrochemical impedance 

spectroscopy, surface plasmon resonance, and cyclic voltammetry.  

 MIMs prepared through solid-phase thiol-yne reaction are expected to be stable 

with respect to time and are very selective in recognition of proteins due to binding sites 

that are chemically and geometrically complementary to target proteins. The 

orthogonality of the click chemistry, allows preparation of MIMs with binding sites that 

are functionalized with variety of chemical groups such as alcohol, carboxyl, alkyl or 

amine, suitable for detection of wide range of proteins with different surface chemistries. 

6.2.3 Immobilization of guest molecules through intercalation at monolayer 

 As mentioned earlier, LD-SAMs have interstitial spaces between their thiolates 

which can accept the intercalation of linear hydrophobic and amphiphilic analyte 

molecules. This potential could be used to immobilize biological molecules such as DNA 

(Figure 6.2). The intercalated/immobilized guest biomolecule on monolayers would be 

useful for studying molecular recognition because many experimental procedures can be 

readily applied to examine interactions with guest molecules. 

 We believe our method for generating LD-SAMs has the potential to become an 

effective approach for creating a dynamically responsive surface with precisely 

controllable density characteristics and which has the capacity for tunable intercalation of 

compatible target molecules. One should assess the intercalation potential of a wide 

variety of analytes, including those with potential clinical applications. Evaluation of the 

contributing factors such as analyte concentration and the influence of solution pH and 

ionic strength would also deepen our understanding of the intercalation process.  

 

 
Figure  6.2. Possible schematic illustration for interaction of thiol-yne LD-SAM with 

DNA through intercalation 

 

 The intercalation into LD-SAMs should lead to increased restriction of chain 

conformations, and a more tightly-packed structure, which can be detected as a shifted 

asymmetric and symmetric -CH2- stretch peaks towards higher wavenumbers. EIS 

measurements can also be used to study the intercalation capacity of the monolayer 

system, until the impedance reaches an equilibrium value, revealing the maximum 

intercalation capacity of the monolayer.  
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Appendix 

Sample Calculations for Reductive Desorption Study 

 

Equation ‎0.1 

Au-SR  = 
QAu-SR  

nFA
 

QAu-SR: The total charge in the desorption peak  

n: The number of electrons involved in the electron-transfer process (n=1 for this 

reaction) 

F: The Faraday constant (9.648 x 10
4
 C mol

-1 
) 

A: The electrode surface area exposed to the alkaline solution 

 

Average values of total charge applied to reductively desorb the BMUA LD-SAM and 

MUA self-assembled monolayers(QBMUA LD-SAM and QMUA  ) are91.1  9.1 and 89.4 

6.2,respectively.  

The surface coverage (nm
2
/molecule) for these surfaces are calculated as follows: 

BMUA LD-SAM  = 

      

Surface coverage =

                

MUA  =  

     

Surface coverage =

                

Simplified Randles model fitting equations 

 In our studies, the monolayers’ resistance and capacitance values are calculated 

based on the experimental results using nonlinear least square fitting routine provided by 

Q L D - B M U A   

n F A 
 

9 1 . 1  9 . 1 

( 1× 9 . 6 5  1 0 
4 
 1 ) 

 ( 9 . 4 4  0 . 9 4 )  1 0 
 1 0 

( m o l / c m 
2 
) 

  1 0 
1 4 

 L D - B M U A  N A 
 

1 0 
1 4 

9 . 4 4  0 . 9  1 0 
 1 0  6 . 0 2  1 0 

2 3  0 . 1 8  0 . 0 2 ( n m 
2 

/ m o l e c u l e ) 

Q M U A   

n F A 
 

8 9 . 4  6 . 2 

( 1  9 . 6 5  1 0 
4 
 1 ) 

 ( 9 . 2 6  0 . 6 5 )  1 0 
 1 0 

( m o l / c m 
2 
) 

  1 0 
1 4 

 M U A  N A 
 

1 0 
1 4 

9 . 2 6  0 . 6 5  1 0 
 1 0  6 . 0 2  1 0 

2 3  0 . 1 8  0 . 0 1 ( n m 
2 

/ m o l e c u l e ) 
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Gamry Echem Analyst
TM

 software program. The impedance data was fitted with a 

simplified Randles model (Figure 7.1).  

 
Figure ‎0.1. The equivalent simplified Randles circuit for the impedance spectroscopy 

measurement with the self-assembled monolayer coated gold electrode. 

 

 The total impedance of a simplified Randles circuit is vector sum of individual 

impedance values of elements in circuit, which are solution resistor Rs, monolayer 

resistor Rf and double-layer capacitor Cdl.  

Equation ‎0.2 

Ztotal = ZRs
+ ZRf

+ ZCdl
 

 

To calculate the total impedance of the cell, the reciprocal of the impedance of the 

monolayer resistor and double-layer capacitor, which are in parallel to each other, must 

be calculated first. This sum is then added to the impedance of the solution resistor. 

 

Impedance Expression for Double layer capacitance 

 In our EIS measurements, the current was measured upon altering the potential of 

the working electrode with a 10 mV sinusoidal perturbation of varying frequency. The 

following equation is then applicable:  

 

Equation ‎0.3 

Ztotal =
𝐸(𝑡)

𝐼(𝑡)
=

𝐸0𝐶𝑜𝑠(𝑤𝑡)

𝐼0𝐶𝑜𝑠(𝑤𝑡 − 𝜑)
= 𝑍0

𝐶𝑜𝑠(𝑤𝑡)

𝐶𝑜𝑠(𝑤𝑡 − 𝜑)
 

 

where Z is the system impedance, E(t) is the time dependent potential, I(t) is the time 

dependent current resulting from the applied potential, Eo is the amplitude of the 

potential, Io is the amplitude of the resulting current, Zo is the magnitude of the system 

impedance, ω is the radial frequency of the applied potential, and φ is the phase shift of 

the output. The magnitude of the total impedance is related to the real and imaginary 

components.  

 

Equation ‎0.4 

𝑍0 = √(𝑍𝑟𝑒𝑎𝑙)2 + (𝑍𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦)2 
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Equation ‎0.5 

Zreal = ZRs
+ ZRf

 

 

Equation ‎0.6 

𝑍𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 = ZCdl
= −j (

1

ωC
) 

Equation ‎0.7 

1

ZCdl

=
1

−j (
1

ωC)
=

ωC

−j
= jωC 

Impedance Expression for self-assembled monolayer resistance: 

Equation ‎0.8 

ZRf
= (Rf + 0j ) = Rf 

Equation ‎0.9 

1

ZRf

=
1

Rf
 

Impedance Expression for electrolyte solution resistance: 

Equation ‎0.10 

ZRs
= (Rs + 0j ) = Rs 

 

Thus the overall impedance of the simplified Randles circuit can be written as: 

Equation ‎0.11 

1

Z
=

1

ZRf

+
1

ZCdl

 

 

Equation ‎0.12 

Z =
Rf − j(ωRf

2C)

1 + (ωRfC)2
 

 

And total impedance of the circuit is calculated from: 

 

Equation ‎0.13 

Ztotal = Rs +
Rf − j(ωRf

2C)

1 + (ωRfC)2
 

 



 67 

General Procedure for Synthesis of Thiol-yne LD-SAM adsorbates 

 The alkyne moiety with desired terminal group is mixed with 1,10-decanedithiol 

at a molar ratio of 1:4 in dichloromethane. Excess 1,10-decanedithiol was used to ensure 

the reaction would go to completion and limit cyclization. Irgacure-184 photoinitiator 

was added at 3% the weight of the 1,10-decanedithiol. Just enough solvent was used to 

dissolve the reagents and the photoinitiator. The solution was then exposed to 365 nm 

light (THORLabs LED, Model M365L2) with the intensity of 12 mW/cm2 for 1.5 h at 25 

°C. Intensity was measured by (Sper Scientific Direct, Model 850009). Reaction progress 

was monitored with thin layer chromatography, where the appearance of a substance at a 

specific Rf value, using the appropriate mobile phase was associated with the product 

(Table A.1). After the completion of reaction, the solvent was evaporated under a stream 

of nitrogen, leaving only the oily product and excess reactants. Purification of the residue 

was done by silica gel column chromatography giving the desired product in high yield, 

and eluted materials were monitored by thin layer chromatography. The purified product 

solution was then placed under a N2 environment to evaporate the solvent. 

 

Table ‎0.1. Synthesis details for formation of adsorbates used in this work 

Compound Alkyne Mobile Phase Rf 

10,11-Bis(10-mercaptodecylthio) 

undecanoic acid 

11-MUA Hexane/Dichloromethane 

(85:25) vol% 

0.44 

5,6-Bis(10-mercaptodecylthio) 

hexan-1-ol 

5-Hexyn-1-ol Hexane:Acetone  

(80:20) vol% 

0.36 

5,6-Bis(10-mercaptodecylthio) 

hexane 

1-hexyne Hexane:Acetone  

(95:05) vol% 

0.48 

 

Synthesis of 10,11-Bis (10-mercaptodecylthio) undecanoic acid 

 The 10,11-Bis (10-mercaptodecylthio) undecanoic acid adsorbate was synthesized 

according to the described procedure [160]. Separation was achieved using column 

chromatography with silica as the stationary phase , yielding ~%85 10,11-Bis (10-

mercaptodecylthio) undecanoic acid adsorbate. The chemical structure of the purified 

product was analyzed with 
1
H NMR and 

13
C NMR, and gas chromatography, and results 

confirmed the expected structuring. 
1
H NMR (CDCl3): δ 1.2-1.5 ppm (36 H), 1.5-1.8 ppm 

(12H), 2.34 ppm (2H), 2.45 ppm (8H), 2.5-2.8 ppm (3H). 
13

C NMR confirmed the 

presence of the branched point with a peak at 46 ppm. The use of an HSQC pulse 

sequence linked this 46 ppm carbon shift with the proton shift of 2.64 ppm. 

 Gas chromatography coupled with mass spectrometry (GC-MS) confirmed the 

presence of a species of 594 Da molecular weight, consistent with the expected structure 

of the 10,11-Bis (10-mercaptodecylthio) undecanoic acid adsorbate. 

 

 

 
Figure ‎0.2. Schematic illustration of 10,11-Bis (10-mercaptodecylthio) undecanoic acid 

adsorbate. 
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Synthesis of 5,6-Bis [10-mercaptodecylthio) hexan-1-ol 

 The 5,6-Bis [10-mercaptodecylthio) hexan-1-ol adsorbate was synthesized 

according to the described procedure, followed by silica gel column chromatography, 

yielding ~%85 5,6-Bis [10-mercaptodecylthio) hexan-1-ol. The chemical structure of the 

purified product was analyzed with 
1
H NMR and 

13
C NMR, and gas chromatography, 

and results confirmed the expected structuring.  

1 H NMR (CDCl3): δ 1.2−1.42 (30H), 1.5−1.7 (10H), 2.46-2.6 (8H), 2.6−2.9 (3H), 3.62-

3.72 (2H). 13C NMR confirmed the presence of the branched point with a peak at 45.7 

ppm. The use of an HSQC pulse sequence linked this 45.7 ppm carbon shift with the 

proton shift of 2.72 ppm. 

 Gas chromatography coupled with mass spectrometry (GC-MS) confirmed the 

presence of a species of 510 Da molecular weight, consistent with the expected structure 

of the 5,6-Bis[10-mercaptodecylthio) hexan-1-ol adsorbate. 

 
Figure ‎0.3. Schematic illustration of 5,6-Bis [10-mercaptodecylthio) hexan-1-ol adsorbate 

Synthesis of 5,6-Bis [10-mercaptodecylthio) hexane 

 The 5,6-Bis [10-mercaptodecylthio) hexan adsorbate was synthesized according 

to the described procedure, followed by silica gel column chromatography, yielding 

~%87 5,6-Bis [10-mercaptodecylthio) hexan. The chemical structure of the purified 

product was analyzed with 
1
H NMR and 

13
C NMR, and gas chromatography, and results 

confirmed the expected structuring.1 H NMR (CDCl3): δ 0.86-0.98 (3H), 1.2−1.44 

(30H), 1.52−1.76 (10H), 2.48-2.6 (8H), 2.62−2.9 (3H). 13C NMR confirmed the 

presence of the branched point with a peak at 45.82 ppm. The use of an HSQC pulse 

sequence linked this 45.82 ppm carbon shift with the proton shift of 2.7 ppm. 

We also used GC-MS to confirm the chemical structuring of the product adsorbate from 

the molecular weight standpoint. The GC-MS supported the expected molecular weight 

of 490. 

 
Figure ‎0.4. Schematic illustration of 5,6-Bis [10-mercaptodecylthio) hexan adsorbate. 

List of Abbreviations and Symbols 

 

% percent 

%R  percent reflectance 

%T  percent transmission 

(g)  gas 

˚  degrees 

μ  micro 

V:V Relative molar volume 

Å  angstroms 
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BSA bovine serum albumin 

C  celcius or carbon 

c  centi 

CA  contact angle 

CV cyclic voltammetry 

Da dalton 

DMSO  dimethylsulfoxide 

DNA  deoxyribonucleic acid 

DI  deionized 

ECM  extracellular matrix 

EDTA  ethylenediaminetetraacetic acid 

EIS electrochemical impedance spectroscopy   

FT-IR fourier transform infrared spectroscopy 

g  gram or gravity 

H  proton or hydrogen 

h  hours 

H2O water 

Hz hertz 

HCl  hydrochloric acid 

HPLC  high performance liquid chromatography 

HSA human serum albumin 

in  inch 

IR  Infrared 

k  kilo 

L  liters 

LD-SAM low-density monolayer 

BMUA LD-

SAM 

low-density surface composed of 10,11-Bis (10-mercaptodecylthio) 

undecanoic acid  

MHA 16-mercapto hexadecanoic acid  

MUA 11-mercaptoundecanoic acid 

m  milli, multiplet, or meter (as appropriate) 

M  mega 

M  molar 

MPTS 3-mercaptopropyl trimethoxysilane 

mol  mole 

MS  mass spectrometry 

N  nitrogen (atom) 

N2  nitrogen (diatomic) 

NaCl  sodium chloride 

NMR  nuclear magnetic resonance 

nm  nanometer 

PBS phosphate buffered saline solution 

p  pico, Probability value  

PBS phosphate buffered saline solution 

ppm parts per million 

PDMS polydimethylsiloxane 
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QCM quartz crystal microbalance 

rpm revolutions per minute 

SAM self-assembled monolayer 

s second 

SDS sodium dodecyl sulfate 

SERS surface enhanced Raman spectroscopy 

SPR surface plasmon resonance 

t triplet 

V volts 

XPS x-ray photoelectron spectroscopy 

δ chemical shift 

Δ heat/reflux or change 
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