
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Chemical and 
Materials Engineering Chemical and Materials Engineering 

2016 

IMPROVING THE CAPACITY, DURABILITY AND STABILITY OF IMPROVING THE CAPACITY, DURABILITY AND STABILITY OF 

LITHIUM-ION BATTERIES BY INTERPHASE ENGINEERING LITHIUM-ION BATTERIES BY INTERPHASE ENGINEERING 

Qinglin Zhang 
University of Kentucky, qinglinzhang@uky.edu 
Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.170 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Zhang, Qinglin, "IMPROVING THE CAPACITY, DURABILITY AND STABILITY OF LITHIUM-ION BATTERIES BY 
INTERPHASE ENGINEERING" (2016). Theses and Dissertations--Chemical and Materials Engineering. 60. 
https://uknowledge.uky.edu/cme_etds/60 

This Doctoral Dissertation is brought to you for free and open access by the Chemical and Materials Engineering at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemical and Materials Engineering by 
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cme_etds
https://uknowledge.uky.edu/cme_etds
https://uknowledge.uky.edu/cme
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Qinglin Zhang, Student 

Dr. Yang-Tse Cheng, Major Professor 

Dr. Thomas Dziubla, Director of Graduate Studies 



 

 

 

IMPROVING THE CAPACITY, DURABILITY AND STABILITY OF LITHIUM-ION 

BATTERIES BY INTERPHASE ENGINEERING 

 

------------------------------- 

DISSERTATION 

------------------------------- 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in the College of Engineering at the University of Kentucky 

 

 

By 

Qinglin Zhang 

Lexington, Kentucky, United States 

Director: Dr. Yang-Tse Cheng, Professor of Materials Engineering, 

University of Kentucky 

 

2016 

 

 

Copyright © Qinglin Zhang 

  



p. iii 
 

 

 

ABSTRACT OF DISSERTATION 

 

 

IMPROVING THE CAPACITY, DURABILITY AND STABILITY OF  

LITHIUM-ION BATTERIES BY INTERPHASE ENGINEERING 

 

This dissertation is focus on the study of solid-electrolyte interphases (SEIs) on 
advanced lithium ion battery (LIB) anodes. The purposes of this dissertation are to a) 
develop a methodology to study the properties of SEIs; and b) provide guidelines for 
designing engineered SEIs. The general knowledge gained through this research will be 
beneficial for the entire battery research community. 

 

KEYWORDS: Li-ion Batteries, Solid-Electrolyte Interphase, Surface Coatings,  
 Mechanical Properties, Engineered SEI 
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 Introduction 

 

Traditionally, energy generation and transmission/distribution are the two major 

components before energy utilization. For example, the electricity is generated by the gas 

turbines, and distributed through transmission lines to substations, then delivered at the 

end users. Usually, the electric power stations operate based on the demands. Another 

example is the traditional vehicles with internal combustion engines, the energy in 

gasoline can be converted by the engine to the mechanical motion, then transmitted to the 

wheels to drive the vehicles.  

However, there is a huge amount of energy waste due to the mismatch between the 

energy supplies and the demands, especially when considering the instability of 

renewable energy generation. For example, solar energy stations produce most energy 

during 1 to 3 PM of the day, but the high demands are usually after 4PM daily. One way 

to help balancing fluctuations in supply and demand is using energy storage systems. 

According to the Environmental Protection Agency (EPA) and the Department of Energy 

(DOE), in the United States, 95% of the electricity stored in pumped hydro stations. 

However, pumped hydro requires quite a lot of space, or certain terrains, making it 

impossible to be built in the big cities, such as New York City. There are urgent demands 

for smaller energy storage systems with higher energy density. Electrochemical energy 

storage systems can meet these requirements. 

Meanwhile, there are increasing demands for improving the fuel efficiency of 

vehicles. More customers are willing to buy vehicles with higher mileage per gallon to 

save the fuel cost and reduce the carbon footprint. Hence, automobile manufacturers 

changed their products to meet the customers’ requirements. In addition, government 

regulations also play an important role in promoting the fuel efficiency. Vehicle 

electrification is one of the most accepted strategies. Hybrid or plug-in electrical vehicles 

may be considered as energy storage systems connected to the smart grid. 
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The consumer electronics market is another example. After SONY® first 

commercialized them in portable electronic devices in 1991, lithium ion batteries (LIBs) 

have been used in portable electronic devices for more than 25 years, replacing Ni-metal 

hydride batteries and dominating the market. Today, electronic devices are equipped with 

ever larger screens, more powerful processors, and faster network capability, while 

becoming smaller and lighter.  All these features require advanced batteries.  

With the growing demands in so many fields, there is a significant amount of research 

efforts devoted to LIBs to develop battery cells with higher energy density, longer cycle 

life, and lower cost. In order to achieve these goals, research communities are exploring 

new electrode materials with new chemistry. For example, on the negative electrode 

material (or anode) side, silicon-based materials attract much attention. Si electrode has 

the highest theoretical capacity of 3600 mAh/g by forming Li4.4Si alloys. Moreover, 

elemental Si is the second most abundant element in the earth crust, which makes is 

possible to be low cost. However, the Si electrode material swells during Li insertion, 

causing severe degradation. The stress generated by the 300% volume change causes 

cracks in the electrode, hence prohibits the formation of stable solid-electrolyte 

interphase (SEI), leading to low cycling efficiency (or Columbic efficiency). 

In this dissertation, we focus on the study of solid-electrolyte interphase on advanced 

LIB anodes. The purposes of this dissertation are to a) develop a methodology to study 

the properties of solid-electrolyte interphase; and b) provide guidelines for designing 

engineered solid-electrolyte interphase. The general knowledge gained through this 

research will be beneficial for the entire battery research community. 

Chapter 1 gives a brief introduction on the motivation of the research. Chapter 2 

provides a brief background about LIBs and solid-electrolyte interphase. Chapter 3 

studies the naturally formed solid-electrolyte interphase, and revels the relationship 

between the properties of solid-electrolyte interphase and the impact on cycle efficiency 

and battery performances. Chapter 4 describes a simple way of determining the elastic 

properties of ultra-thin artificial solid-electrolyte interphase. Based on the knowledge 

learned from the naturally formed SEI, we identified two critical components in solid-

electrolyte interphase. With a further understanding of the synergetic effects between 
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these components, in Chapter 5, we designed several artificial solid-electrolyte 

interphases with high ionic transport and reduced electrolyte decomposition. In Chapter 

6, we demonstrated a chemically stable artificial solid-electrolyte interphase. The last 

Chapter concludes the dissertation and proposes possible future research directions. 
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 Backgrounds 

 

2.1 Lithium-ion Batteries 

 

Lithium-ion batteries (LIBs) store electrical energy as chemical energy. A typical LIB 

cell contains a transition metal oxide cathode, a porous polymer separator filled with 

organic electrolyte, and a carbonaceous anode. In the cell, Li ions move between positive 

electrode (cathode) and negative electrode (anode) through the electrolyte, while 

electrons move between two electrodes in the outer circuit. During this process, the 

chemical potential changes. The chemical potential difference determines the measured 

voltage between two electrodes. 

The positive electrode is generally composed of transition metal oxides, such as 

LiCoO2 (layered structure),[1, 2] LiFePO4 (olivine-type structure) [3-5] and LiMn2O4 

(spinel structure). [6, 7] The negative electrode is generally composed of different forms 

of carbon materials (graphite, hard carbon, porous carbon, etc.). [8, 9] 

The polymer separator blocks the two electrodes from short, and reduces the self-

discharge. Usually the separator is a tri-layer sandwich-like structure. The polyethylene 

(PE) is sandwiched between two polypropylene (PP) layers. The thickness is around 20 

μm. [10] 

The organic electrolyte is a liquid solution in commercial LIBs. The solution contains 

lithium salts, such as LiPF6 or LiBF4, with organic solvents, such as ethylene carbonate 

(EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC), or a combination of two 

or more. [11, 12] 

 

2.2 Solid-Electrolyte Interphase 

Both terms of solid-electrolyte interphase and solid-electrolyte interface are used in 

the literature. In this dissertation, solid-electrolyte interphase will be referred to as SEI. 
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SEI was first named by Peled in 1979.[13, 14] A SEI layer is typically on the order of ten 

nanometer in thickness. 

SEI is a passivation layer formed on the electrode surface (mainly on the negative 

electrode), as a result of electrolyte reduction. A stable SEI can effectively protect the 

electrode from further decomposition of the electrolyte. Usually, SEI contains multiple Li 

salts, and several polymeric species. The formation of SEI is a Li consuming process, 

which causes permanent Li loss in the system (as shown in Figure 2.1). The amount of Li 

is limited in a Li-ion cell. Due to its good air stability, Li is originally stored in the 

cathode side, in the form of metal oxides. During the formation cycle, Li transports 

though the electrolyte from cathode to anode, while SEI is formed on the anode surface. 

On carbon-based electrodes, such as graphite, once SEI is formed during the formation 

cycle, it barely changes, and acts as a stable protective layer on the electrode. However, 

for advanced electrode materials with greater storage capability of Li, such as Si-based 

anodes, the volume changes dramatically during the cycling, which leads to unstable SEI. 

When SEI or electrode particles break during the cycling, there will be additional 

electrolyte reduction to form new SEI, consuming Li and electrolyte continuously. Figure 

2.2 illustrates two cases with stable and unstable SEI formation, respectively. It is, 

therefore, important to study the properties of SEI systemically to understand their 

influences on cell performance.  

 

2.3 Characterization techniques 

 

In this dissertation, multiple techniques were used to characterize electrochemical 

features, and chemical/physical and mechanical properties.  

Electrochemical impedance spectroscopy, cyclic voltammetry and differentiate 

capacity-potential profiles were generally used to capture the electrochemical and kinetic 

features of the materials. X-ray photoelectron spectroscopy, time-of-flight secondary ion 

mass spectroscopy, Energy-dispersive X-ray spectroscopy were used to characterize the 

SEI’s chemical properties. The films’ physical properties were characterized by x-ray 
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diffraction/reflectivity, spectroscopic ellipsometry, nano-indentation, laser acoustic wave 

measurement were utilized to measure the mechanical properties. All the equipment and 

experimental details will be introduced in following chapters. 

 

 

Figure 2.1 Schematic illustration of solid-electrolyte interphase 

 

Figure 2.2 Schematic illustration of the available Li sources in the battery cell during 

cycling, with two cases: stable SEI and unstable SEI. The blue color indicates the amount 

of Li. 

Copyright © Qinglin Zhang 
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 The Study of Naturally Formed Solid Electrolyte Interphase: 

The Properties of Solid Electrolyte Interphase and Their Impact on Cycle 

Efficiency of Silicon-Based Negative Electrodes for Lithium Ion Batteries1 

 

3.1 Summary 

The solid electrolyte interphase (SEI) is a passivation layer formed on the electrode 

surface to ensure the long-term cyclability. An improved understanding of the 

relationships between the structure and properties of SEI is very important for revealing 

the capacity fading mechanisms, predicting the cycling stability, and designing high 

performance and durable electrode-coatings. In order to design better artificial SEI, we 

need to first understand the properties of SEI formed under natural electrolyte 

environment. 

In this work, we were, for the first time, able to measure the mechanical properties of SEI 

formed on Si using a laser acoustic wave (LAW) method, and we correlated the SEI 

Young’s modulus with its composition. Furthermore, we investigated the impact of 

mechanical and chemical properties of SEI over cycling and deduce the influence of SEI 

history on the Li-Si electrode behavior. We found that the inorganic components in the 

SEI led to higher elastic modulus and provided better mechanical protection as well as 

higher cycle efficiency. We envision this work can enable improvements in the design of 

artificial SEIs on electrodes that undergo large volume change, thereby leading to 

improvements in current efficiency and life of lithium ion batteries. 

3.2 Introduction 

There are growing demands for high energy and power density batteries, especially for 

electrical vehicle (EV) applications. Lithium ion batteries (LIBs) have been, among many 

energy storage systems, the choice for EVs. Many high energy density electrode 

materials have been studied for LIBs to meet the requirements for smaller weight and/or 

                                                 
1 Reproduced from Zhang, Q.; Xiao, X.; Zhou, W.; Cheng, Y.-T.; Verbrugge, M. W.; Toward High Cycle 
Efficiency of Silicon-Based Negative Electrodes by Designing the Solid Electrolyte Interphase Adv. Eng. 
Mater. 2015, 5, 1401398, DOI: 10.1002/aenm.201401398 
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longer battery life. Silicon is able to deliver 3600 mAh g-1 by forming Li15Si4, which is 10 

times higher than that of the graphite electrode used in commercial lithium ion 

batteries.[15-17] However, the huge volume expansion and contraction during the 

lithation and delithation processes lead to several critical issues, including material 

fracture and low cycle efficiency. Extensive efforts have been devoted to tailor the 

nanostructure, such as reducing Si particle size and developing Si based nanocomposites, 

to mitigate mechanical degradation. The low cycle efficiency, due to the unstable solid 

electrolyte interphase (SEI) on the Si electrode surface may become more critical, 

considering the significant increase in surface area when nano-scaled Si materials are 

used in negative electrodes. [18, 19] 

The SEI is a passivation layer formed between the electrolyte (liquid) and electrode 

(solid). A stable SEI can effectively protect the electrode and prevent further 

decomposition of the electrolyte, thereby ensuring lithium ion battery cyclability with 

high efficiency. The stability of the SEI can significantly influence the Coulombic 

efficiency. For graphite and other electrode materials without large volume changes, the 

naturally formed SEI layer is stable and able to protect the electrode for thousands of 

charge-discharge cycles. However, for materials such as silicon, with a ~300% volume 

change during the charge and discharge, the desirable SEI must be able to accommodate 

the large volume expansion and contraction for stability. Recent research has shown that 

fracture is one of the main failure mechanisms of Si thin-film and/or Si particles.[20-22] 

Many approaches have been applied to stabilize the SEI on Si.[15, 23-27] Among them, 

both the ultra-thin coatings by atomic layer deposition and electrolyte additives showed 

promising improvements in the cycling performance of Si electrodes. [24, 25, 28] In 

order to design high performance and durable SEIs or engineer coatings as artificial SEIs, 

it is necessary to establish correlations between the structure, property, and performance 

of SEIs. 

SEI’s mechanical and chemical stability are crucial for the cycling life of electrode 

materials particularly with large volume change. In most cases, the SEI under 

investigation was formed on graphite. Previously, SEI layers have been characterized 

with a variety of techniques to identify the composition and chemical states.[29-31] SEI 
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contains organic and inorganic (crystalline) phases.[32, 33] The total resistance of the 

LIB cells can be obtained from electrochemical impedance spectroscopy (EIS). [34, 35] 

The formation of SEI can also be evaluated by EIS. The chemical stability of the SEI 

plays a dominate role for long-term cycle stability. Chemical composition can be 

characterized by X-ray photoelectron spectroscopy (XPS). Recently, more attention has 

been shifted to SEI formed on Si. [32, 36-39] However, measuring the mechanical 

properties of SEIs has been challenging because SEIs are only several nanometers in 

thickness, too thin even for nanoindentation measurements, which are commonly used 

method to measure the mechanical properties of thin films.[40] 

In this work, we utilized several surface sensitive experimental techniques to characterize 

the elastic properties, chemical states, and electrochemical properties of SEIs prepared at 

different electrochemical potentials. We reveal the impact of mechanical properties of 

SEI on the electrochemical performance of a Si electrode.  We believe that these results 

are useful for the design of coatings as artificial SEIs to improve the performance and 

cycle life of lithium ion batteries. 

3.3 Experimental Section 

Silicon thin-film electrodes with a thickness of 100 nm were deposited on copper current 

collectors by radio frequency (RF) magnetron sputtering system, and tested in coin cells 

for cycling stability. The Si electrodes were used as working electrodes, and pure lithium 

metal foil as counter and reference electrodes in CR2032 coin cells. A separator (Celgard, 

USA) was placed between working electrode and lithium foil, and 1M LiPF6 in ethylene 

carbonate and dimethyl carbonate (EC:DMC 1:1 volume ratio, Novolyte USA) was 

employed for the electrolyte. The Arbin battery test system (BT-2000) was used to cycle 

the coin cells, using the constant-current method (with a rate of C/3) and a voltage 

window of 0.05 V to 1.5 V vs. Li. Before cycling, some of the coin cells were held at 0.5 

V, 0.4 V, 0.3V, 0.2 V and 0.1 V for 100 hours. The EIS study was conducted in two-

electrode coin cells at the assigned voltage. The coin cells were rested for 24 hours until 

they were stabilized. The high-frequency (Ohmic) resistance of the coin cells ranged 

from 400 to 500 Ohms. The applied frequency range for EIS measurements was between 

1 MHz to 10 mHz. 
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Pouch cells were used for the formation of SEIs on Si wafers. N-type (100) direction Si 

wafers (Waferworld) were used in pouch cells. There are two reasons for using Si wafers: 

(1) single crystal silicon enables the best accuracy of LAW measurement and (2) Si 

wafers provide a similar surface environment to that of an actual Si electrode.[34] A 

piece of separator was placed between the lithium foil and wafer. At each side behind the 

wafer and lithium foil, there was a piece of copper current collector to connect to the 

electrical circuit (see Figure 3.1). The Bio-logic VMP3 potentiostat was used to hold the 

pouch cells to 0.4V, 0.2V and 0.05 V for 100 hours. (See Figure 3.2) After holding, the 

cells were charged to 1.2 V and held at 1.2 V until the current fell below 1 µA. This 

procedure ensures that the reversible Li is taken out, thereby reducing the samples’ 

sensitivity to air. It is also difficult to define the interface between electrolyte and SEI. In 

our case, we cleaned the SEIs on silicon wafers with dimethyl carbonate (DMC), attached 

the wafers on sample stages with conductive tapes, and placed the sample stages in air-

tight bottles for transfer. All these procedures were carried out in the glovebox to 

minimize the exposing time to air. The scanning electron microscope (SEM) images of 

SEI on Si wafer and cross-sectional SEM images were taken with an Hitachi S4800. The 

cross-sectional SEM samples were prepared by Hitachi IM4000 Cross Section & Flat Ion 

Milling system. Thermo Scientific K-Alpha XPS and PHI Quantera XPS Scanning 

Microprobe (Physical Electronics Chanhassen, MN) with a monochromated Al Kα source 

(1486.6 eV) were used for chemical analysis of SEI on Si. LAW equipment used for 

obtaining the mechanical properties of SEI was built by Fraunhofer Nanotech from 

Germany. The elastic properties were obtained by the fitting program of the LAW 

Analyzer.[41, 42] 

3.4 Results and Discussion 

The surface SEM images of Figure 3.3 show that SEI formed at 0.2 V (B) is much more 

uniform than that formed at 0.4 V (A). The surface morphology of SEI formed at 0.05 V 

(C) is rougher than others, which is because significant lithium was inserted into the top 

layer of the Si wafer.[43] The cross-section images of SEIs are shown in Figure 3.4. 

From XPS depth profiles and spectra, Li, O, C, F, and a very low concentration of P can 

be found in all SEIs. The low P concentration at all depths indicates that a small number 
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of LiPF6 salt molecules are trapped inside the SEIs (Figure 3.5).[44] All SEIs contain 

Li2CO3, LiO2 and polymeric species. However, only SEIs formed below 0.4 V contain 

LiF. The majority of the F1s signal can be attributed to LiF. There is a greater amount of 

LiF in the SEI formed at 0.2 V than that formed under other potentials (See Figure 3.5, b, 

e and h). Using the spectra of F1s and Li1s along with depth profiles, we found the 

following concentration relation of LiF in the SEIs formed under the three potentials:  

LiF: 0.2 𝑉𝑉 > 0.05 𝑉𝑉 > 0.4 𝑉𝑉 

The C1s and L1s spectra provide information about Li2CO3 and Li2O. The SEI formed at 

0.4 V contained mostly Li2CO3 and Li2O. The formation of Li2O can be attributed to the 

instability of Li2CO3 (Li2CO3 → Li2O + CO2), since Li2CO3 can be decomposed by Ar+ 

sputtering.[45] But Li2O is also found before sputtering (see Figure 3.7). The overall Li 

concentration is about the same for all samples (Figure 3.6), the ratio of different Li 

species can be obtained from the peak areas in Figure 3.5 g, h and i. The SEI formed at 

0.2 V contains the least amount of Li2CO3 (see C1s spectrum Figure 3.5e), and Li2CO3 is 

more concentrated near the surface (see Figure 3.9).  The overall concentration relation of 

Li2CO3 in SEIs can be represented as: 

Li2CO3 and Li2O: 0.4 𝑉𝑉 > 0.05 𝑉𝑉 > 0.2 𝑉𝑉 

The Si thin films were prepared on rough Cu surface).  The atomic percentage of Si after 

sputtering for a certain time is another indicator of the SEI film thickness, as less Si 

implies a thicker SEI film. Accordingly, the thickness of SEI formed at 0.4 V is greater 

than 0.2 V and 0.05 V (Figure 3.6). This is consistent with the SEM observations.  

Figure 3.10 shows the Nyquist plots of EIS spectra for the different voltages. The 

semicircular regions of the Nyquist plots are usually related to interfacial impedance, 

including that of the SEI and charge-transfer reactions. The first semicircle at high 

frequency corresponds to the surface passivation layer, the SEI, and the second semicircle 

corresponds to the charge transfer reaction. [46] At the low frequency region, the sloping 

line corresponds to diffusion resistance (ideally, the Warburg resistance). During the 100 

hours of SEI formation at 0.4 V, the electrolyte decomposition is incomplete, and the SEI 

composition is neither uniform nor stable. When the electrode is held at a lower voltage, 
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such as 0.05 V, there is additional SEI formed. During the 100 hours of SEI formation at 

0.2 V, the current drops to a very low value, indicating a near-equilibrium condition and 

cessation of electrolyte decomposition.  Hence, the SEI film is a stable and a uniform 

passivation layer has been formed over the surface of electrode, which can provide 

protection to the electrode. After discharge of the electrode to 0.05 V, there is no 

measureable increase in resistance. Compared with the electrode held at 0.05 V for 100 

hours, the overall resistance of electrode held at 0.2 V is smaller as well (cf. Table 3-2 

and Figure 3.10 Nyquist plots of AC impedance spectra of Si electrodes with different 

SEI films; left: 3D plots of EIS measurements under each holding voltages and 0.05 V; 

right: 2D plots of EIS measurements under 0.05 V only.). The overall resistance of the 

cells under the 0.05 V operating voltage is:  

Impedance: 0.4 𝑉𝑉 > 0.05 𝑉𝑉 > 0.2 𝑉𝑉 

Young’s modulus is very sensitive to the structure of material. The velocity 𝐶𝐶 of surface 

acoustic wave (SAW) is related to Young’s modulus 𝐸𝐸, Poisson’s ratio 𝑣𝑣 and density 𝜌𝜌.  

𝐶𝐶 =
0.87 + 1.12𝑣𝑣

1 + 𝑣𝑣
�

𝐸𝐸
2𝜌𝜌(1 + 𝑣𝑣)

 

There is a property of SAW, the depth of SAW is proportional to the wave length: the 

higher the frequency, the smaller the depth penetration of the SAW. As a result, the phase 

velocity (SAW velocity 𝑣𝑣) depends on frequency𝑓𝑓, and the relation between 𝑣𝑣 and 𝑓𝑓 

called dispersion. The phase velocity is defined as:  

𝑐𝑐 = 𝑐𝑐(𝐸𝐸,𝐸𝐸′, 𝑣𝑣, 𝑣𝑣′,𝜌𝜌,𝜌𝜌′,𝑑𝑑,𝑓𝑓𝑘𝑘) 

𝐸𝐸: modulus of substrate,𝐸𝐸′: modulus of film 

𝑣𝑣: Poisson′s ratio of substrate, 𝑣𝑣′: Poisson′s ratio of film 

𝜌𝜌: density of substrate,𝜌𝜌′: density of film 

𝑑𝑑: film thickness 

𝑓𝑓𝑘𝑘: frequency along 𝑘𝑘 direction 
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The density of the SEI film is calculated by the ratio of possible components. From XPS 

analysis, we assumed that LiF contributed to the F1s signal and Li2CO3 contributed to 

C1s signal. The Poisson’s ratio was assumed to be 0.22. Thickness was measured by 

cross-sectional SEM.  

The procedure of commercial fitting program LAW Analyzer is based on the principle of 

minimizing the least-square errors: 

 

𝑀𝑀𝑁𝑁𝑀𝑀 ��[𝑐𝑐(𝑓𝑓𝑘𝑘) −
𝑘𝑘

𝑐𝑐(𝐸𝐸,𝐸𝐸′, 𝑣𝑣, 𝑣𝑣′,𝜌𝜌,𝜌𝜌′,𝑑𝑑, 𝑓𝑓𝑘𝑘)]2� 

𝑐𝑐(𝑓𝑓𝑘𝑘) indicates the measured curve and 𝑐𝑐(𝐸𝐸,𝐸𝐸′, 𝑣𝑣, 𝑣𝑣′,𝜌𝜌,𝜌𝜌′,𝑑𝑑, 𝑓𝑓𝑘𝑘) is the theory curve. 

Details about this part are described in reference [47-50]  

The LAW method is used to measure the Young’s modulus of the SEIs.  The SEIs were 

electrochemically formed on Si wafers in a pouch cell. (Details on making the pouch 

cells can be found in 3.3 Experimental Section.) Before testing the mechanical properties 

of the SEIs, a silicon wafer was tested by LAW system to obtain the mechanical 

properties of the substrate. The blue line in Figure 3.11 is the dispersion curve of the Si 

substrate along the [110] direction (primary flat). The phase velocity is 5081.32 ± 0.30 m 

s-1 with the variation smaller than 0.6 m s-1, which indicates that the wafer is clean and 

the LAW system is working properly.  The phase velocity refers to the theoretical 

velocity of (100) wafer along the [110] direction.[50] A few monolayers of silicon oxide 

can cause a small decrease in the phase velocity with increasing frequency. The fitting 

results for the substrate are shown in Table 3-1. The elastic properties determined for the 

Si wafer agree well with published values.[40] (Details about LAW methods and theories 

are described in Supporting Information and references.[41, 42, 51, 52]) The values in 

Table 3-1 were also used to obtain the moduli of SEI films.  

The blue, red and green solid lines are dispersion spectra of different SEI films formed 

under 0.2, 0.4, and 0.05 V, respectively. In order to fit the dispersion curves to obtain 

Young’s modulus values, the thickness and density need to be obtained by other 

independent techniques. Specifically, the thickness of the SEI film is measured from 
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cross-section SEM. (see Figure 3.4). The blue and red dots are the fitting results based on 

minimizing the least-square error for SEI formed at 0.2 V and 0.4 V. The other important 

parameters and Young’s moduli are shown in Table 1. Both fitting results of 0.2 and 0.4 

V samples show reasonable moduli of substrates. The substrates’ moduli match well with 

the C11 theoretical modulus of single crystal silicon.[40] The Young’s modulus of SEI 

formed at 0.05 V cannot be obtained, because of its high interfacial roughness (Figure 

3.3). The voltage of 50 mV is below the voltage where amorphization of Si by lithiation 

occurs, causing the change of substrate properties. [43] As it is shown in Table 3-1, the 

Young’s modulus of SEI formed at 0.2 V is 69.2 GPa, larger than SEI formed at 0.4 V, 

42.1 GPa. From cross-section SEM images, we found that SEI formed at 0.2 V is thinner 

than that of 0.4 V.  

Coulombic efficiency is an important indicator to evaluate the cycling stability of 

electrodes. Si thin films with SEIs formed under a controlled potential holding have been 

tested in coin cells (see Experiments section). Figure 3.12 (a) shows that the controlled 

SEI formation process at various fixed voltages leads to significantly improved 

Coulombic efficiency (red and blue dots) when compared with the control sample 

(black). After the cycle stabilized (after 10 cycles), the samples held at 0.2 V shows the 

best Coulombic efficiency, 99.87±0.03%. Figure 3.12 (b) shows that the average 

Coulombic efficiency of the first 100 cycles for various initial holding potentials, ranging 

from 0.5 V to 0.1 V. We find that 0.2 V is the optimal holding potential to achieve the 

best cycling performance. 

Naturally formed SEIs usually contain inorganic species (such as LiF and Li2CO3) and 

organic polymers.[53] The less dense organic species are usually contained in thicker 

layers than the inorganic species. The inorganic components also introduced greater 

resistance of the surface films due to the poor ionic conductivity. In our case, the SEI 

formed under 0.4V contains the most inorganic species, hence greatest resistance. The 

stability of inorganic salts is also better than the organic species (in this work, we do not 

consider organic additives used to stabilize the surface). LiF has been widely believed to 

lead to protective films over the surface of Si electrodes, and LiF has been associated 

with improved cycling stability, especially when fluoroethylene carbonate (FEC) is 
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employed as an electrolyte additive.[36, 37, 39]  Previous research has shown that LiF 

contributes to the improvements of cycling stability, perhaps because LiF is unlikely to 

be dissolved in organic electrolytes.[25, 36, 37, 54] The good cycling performance of the 

0.2 V prepared SEI (Figure 3.5) is thus likely caused by its high concentration of LiF. 

Thus it would appear that relation between performance (in terms of Coulombic 

efficiency) and surface chemistry can be exploited. Samples with a higher concentration 

of LiF on surface show higher Coulombic efficiency; however, higher concentrations of 

Li2CO3 show lower Coulombic efficiency. This work shows that, by certain potential 

treatment, favorable species in terms of a robust and protective SEI can be increased, 

thereby improving the cycling performance. 

The elastic properties of SEIs formed on the surface can influence the cycling 

performance. One major issue with Si based electrodes is the cracks generated during 

charge-discharge cycles. In accommodating the large volume change, cracks may be 

generated to release built-up strain energy. Additional SEI forms on crack-generated new 

surfaces.   Furthermore, cracks can isolate the electrode material, losing electrical contact 

and capacity permanently. This coupled mechanical and chemical degradation can be 

reduced by surface engineering, including surface coatings and controlled SEI 

formation.[28] In our study, thin-film Si electrodes were used during the test. The 

majority of volume expansion is along the thickness direction. SEI formed under 0.2 V is 

stiffer than that of 0.4 V (higher Young’s modulus). Stiffer films attached to the Si 

surface will increase the energy barrier for crack nucleation and propagation, and reduce 

the formation of micro-cracks on Si electrode surfaces. Stiffer SEI films can also help 

reduce micro-crack formation significantly, leading to improve cycling stability.  

3.5 Conclusion 

In summary, SEI films formed under different potentials have been characterized 

including electrochemical behavior, surface chemistry, and, for the first time, mechanical 

properties. We reveal the relation between the cycling efficiency and properties of the 

SEIs. Stiffer SEIs provide better protection for Si thin film electrodes due to the increase 

in the energy barrier for crack formation and propagation; low resistance and LiF rich are 

favorable for improving the cycling efficiency. This work provides an improved 
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understanding of the relation between SEI properties and cycle performance, thereby 

enabling improvements in the design of artificial SEI on electrodes that undergo large 

volume changes. 

 

 

 

Figure 3.1 Schematic figure of the setup of pouch cells (left); photo of single layer pouch 

cell (right) 

 

Figure 3.2 Potential holding process example: 0.4 V. Top: potential profile v.s. Li/Li+; 

bottom: current response. 
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Figure 3.3 SEM images show the surface morphologies for different SEI formations. A: 

0.4 V; B: 0.2 V; C: 0.05 V and D: bare silicon wafer 
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Figure 3.4 Cross-section SEM image of SEI sample hold at 0.4 V/0.2 V. The thickness of 

SEI hold at 0.4 V is about 57.18 nm (a and b), the thickness of SEI hold at 0.2 V is about 

24.31 nm (c). The lower right corner image shows the sharp edge of blank silicon wafer, 

as a comparison group (d). 
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Figure 3.5 XPS F1s, C1s and Li1s spectra of silicon electrode sample with 0.4 V, 0.2 V 

and 0.05 V potential treatment for 100 hours. 

 

Figure 3.6 XPS depth profile of Si electrode with 0.4 V, 0.2 V and 0.05 V potential 

treatment 
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Figure 3.7 Average concentration of different SEIs for etching time of 200s. 

 
Figure 3.8 XPS Li1s spectrum of SEI film formed at 0.4 V without etching (surface) 

 
Figure 3.9 C1s spectra-depth profile of SEI film formed at 0.2 V. 
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Figure 3.10 Nyquist plots of AC impedance spectra of Si electrodes with different SEI 

films; left: 3D plots of EIS measurements under each holding voltages and 0.05 V; right: 

2D plots of EIS measurements under 0.05 V only. 

 

Figure 3.11  Dispersion curves obtained from LAW measurement and fits for 0.2 V and 

0.4 V holds. 
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Figure 3.12 (a) Comparison with Coulombic efficiency of samples with different 

potential holds of 100 hours. Blue: 0.2 V, red: 0.4 V, black: controlled experiment 

without holding; (b) average Coulombic efficiencies of first 100 cycles for potentials 

holds ranging from 0.1 to 0.5 V with standard error bars. (The error bars for 0.2, 0.4 and 

0.5 V overlapped with the dots) The red dot line shows just the trend line. 

 

 

Table 3-1 Young’s modulus obtained from [110] direction of N-type (100) silicon wafer 

by LAW measurements 

 C11 C12 C44 

Young’s modulus (GPa) 165.568 ± 0.077 63.520 ± 0.127 79.527 ± 0.022 

 

 

a 

b 
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Table 3-2 Summary the properties of different SEI films 

Preparation method Under 0.4 V for 100 hours Under 0.2 V for 100 hours 

Average Coulombic 

efficiency (%) 

99.18 ± 0.02 99.87 ± 0.03 

Thickness (nm) 57.18 ± 0.18 24.31 ± 0.15 

Young’s modulus (GPa) 48.08 ± 1.29 69.18 ± 2.40 

Resistance* after 100 hours 

(Ohm) 

1276.93 ± 11.92 1204.76 ± 16.94 

Resistance* at 0.05 V 

(Ohm) 

2301.18 ± 12.22 1354.84 ± 8.89 

Uniformity Rough Uniform 

Chemical composition Li2CO3 (+ Li2O) + 

Polymeric species 

LiF+Li2CO3 (+ Li2O) + Polymeric 

species 

*Resistance is defined by the semicircles  

 

 

 

 

 

 

 

 

Copyright © Qinglin Zhang 

 

  



24 
 

 A Non-Destructive Method to Measure the Mechanical 

Properties of Artificial Solid Electrolyte Interphase2 

 

4.1. Summary 

The mechanical properties of ultrathin, protective films are critical for the reliability of 

Li-Si negative electrodes; however, it has been a challenge to get reliable measurements 

of the critical mechanical properties for further optimizing the system due to the 

influence from the substrate. In this work, we used a non-destructive method - laser 

acoustic wave measurement - to study the elastic properties of protective Al2O3 thin 

films. Al2O3 is widely used as artificial SEI on lithium-ion battery electrodes. The 

measured properties were consistent with previous work using other complicated and 

destructive approaches, such as nanoindentation. This straightforward approach can be 

easily applied to measure the mechanical properties of various ultrathin films for multiple 

applications, including the mechanical properties of the (artificial) solid electrolyte 

interphases (SEIs), and thus enables methods to improve the cycle and calendar life of 

lithium ion batteries. 

4.2. Introduction 

Atomic layer deposition (ALD) is a thin film preparation technique which the film is 

grown layer-by-layer. Since it is a self-limiting surface reaction process which involves 

alternatively inputting different precursor for one cycle, the thickness of ALD coating, 

and can be precisely controlled by the cycle number. [55, 56]  Also, the gaseous 

precursors can contact with any substrate surfaces exposable to gas, so thin films can be 

deposited on, for the most part, any shape and geometry.[55, 57] ALD can be used to 

deposit oxides (Al2O3, HfO2, TiO2, ZnO, etc.),[58-61] sulfides (ZnS, SrS, etc.),[62, 63]  

fluorides (CaF2, LaF3, etc.),[64, 65] metals (Ir, Pt, etc.)[66, 67] and polymers (PMDA, 

etc.)[68]; the nature of the coatings strongly depends on the precursors selected. ALD has 

been widely used in various applications, for instance, high-k gate oxides,[69, 70] 

                                                 
2 Reproduced from Zhang, Q.; Xiao, X.; Cheng, Y.-T.; Verbrugge, M. W.; Appl. Phys. Lett. 2014, 105, 
061901 
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passivation of crystal silicon solar cell,[71, 72] coating of nanoporous structures,[63, 73] 

metal coatings for fuel cell catalyst layer,[74, 75] adhesion layers.[76] The rapid 

development towards scaling down device size, improving performance, functionality, 

and reliability by the microelectronics industry has been enhanced by nanotechnology, 

particularly by ALD. Very recently, ALD has been employed for surface modification of 

different components in lithium ion batteries (LIBs), including negative and positive 

electrodes and separators, to mitigate the undesirable side reactions and improve the 

battery life.[77-80] 

In those applications, the mechanical properties of the ultrathin thin films are the key. 

The mechanical properties for low dimensional materials, such as ALD films, are 

typically different from the material’s bulk properties, primarily because of the 

differences of materials structures, and the large ratio of surface area to volume. The 

mechanical properties are critical for high-k dielectrics. The elastomechanical response to 

thermal cycling will significantly influence the compatibility and long term reliability.  

An objective for the use ALD coatings on lithium ion battery electrodes is to suppress 

electrolyte reduction as well as to stabilize the inherent SEI layers that form during cell 

operation, thereby suppressing mechanical fracture in the electrodes, which can be 

problematic for high lithium-capacity materials, such as Si and Sn.  Understanding the 

elastic properties of thin films will be indispensable for designing the electrode coatings 

for high energy electrode materials with huge volume change (over 300%) and internal 

stress during lithiation and delithiation.[28]   

Nanoindentation (NI) has been applied to obtain the Young’s modulus of ALD thin films. 

[81] NI tests require the depth of indents less than 1/10 of the film thickness to neglect 

the influence of the substrate. For such studies, the ALD films need to be thick, such as 

300 nm. The effective deposition rate (thickness increment per time unit) of ALD is low. 

Films of 300 nm require approximately 2000 reaction cycles, which can lead to time-

consuming processing. Other testing methods, such as bulge testing and pointers,[82] 

require either thick films or complicated substrates.  

In this work, elastic properties of ALD alumina thin coatings were characterized by laser 

acoustic wave (LAW) method. LAW is a non-destructive sonic technique to obtain the 
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mechanical properties of thin films. It has been successfully applied to coatings such as 

diamond like carbon (DLC), silicon nitride, etc.[50, 83] The LAW technique, along with 

other characterization methods, enabled us to obtain the elastic properties of thin ALD 

films in a straightforward manner. At the same time, we also measured the influence of 

deposition temperature on elastic properties of ALD Alumina films. 

4.3. Experimental Section 

Al2O3 thin coatings were grown on (100) Si wafer (etched with 10% HF water solution to 

reduce the influence of native SiOx surface species). Trimethylaluminium (TMA) and 

high performance liquid chromatography (HPLC) water were used as precursors in the 

ALD system. The pulse time is 0.015 s, exposure time is 2 s, and purging time is 8 s for 

both precursors. The growth temperature is chosen as 120 oC for LIB applications. 

Higher temperatures lead to the damage of polymer binders in the electrode, and lower 

temperatures lead to poor film quality. The thickness of Al2O3 films were controlled by 

cycle numbers, ranging from 50 to 250 cycles. 

For measuring the influence of deposition temperature on ALD films’ elastic properties, 

deposited 150 of ALD reaction cycles under different temperatures, ranged from 60 oC to 

160 oC. 

Young’s modulus is very sensitive to the structure of material. The velocity (c) of surface 

acoustic wave (SAW) is related to Young’s modulus 𝐸𝐸, Poisson’s ratio 𝑣𝑣 and density 𝜌𝜌:  
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By generating different frequencies of sound waves, the modulus can be fitted with the 

predetermined density, thickness, and Poisson’s ratio. The depth of the SAW is 

proportional to the wave length, for example, higher frequencies lead to smaller 

penetration depths by the acoustic waves. The phase velocity is frequency dependent and 

is influenced by the substrate and the film; however, the film contribution dominates at 

higher frequencies. The relation between frequency and phase velocity (called dispersion 

relation) can be obtained for the set up, and thereby used to determine the mechanical 

properties of thin films. Experiments provide us the dispersion curve, the relation 
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between phase velocity and frequency, and the aforementioned model can be used to fit 

the experimentally obtained dispersion curves by the least squares method.  Details can 

be found in references.[47-50] In order to obtain the right elastic properties of thin films 

using LAW, thickness and density needs to be measured with other techniques 

independently as the inputs for LAW Analyzer. LAW equipment (Fraunhofer Nanotech) 

was used for obtaining the dispersion curves.  The measuring distance was 10 cm. 

X-ray reflectivity (XRR) techniques use X-ray reflection intensity curve from a grazing 

incident beam to determine the thickness and density of thin films. XRR was performed 

with a Bruker D8 Advanced, with 2 theta varying from 0o to 8o. The X-ray wavelength 

from Cu Kα was 1.54 Å. The voltage and electron beam current were controlled at 40 kV 

and 20 mA, respectively. Thickness and density were then obtained by fitting the XRR 

data (Bruker Leptos).  In addition, ellipsometry measures the thickness by the change in 

polarization state of light reflected from the surface of a sample.  Electron probe 

microanalysis (EPMA) was used to verify the density of ALD films. Data were collected 

in static and in scanning mode over a 30 μm area at 10 different positions in the sample. 

The electron beam conditions were 20 kV and 20 nA. The Si, Al, and O x-ray intensities 

from the samples and standards (pure Al, pure Si, and SrTiO3) were used to estimate the 

area density of the Al2O3 coating on the Si substrate using thin film modeling program 

GMRFILM. LAW equipment (Fraunhofer Nanotech) was used for obtaining the 

dispersion curves.  

 

4.4. Results and Discussion 

4.4.1. Thickness and density of films 

Figure 4.1 shows the thickness and density of all films with 50 to 250 reaction cycles. 

The blue dots show the thicknesses of ALD alumina films ranging from 7.6 nm to 37.9 

nm by XRR, corresponding to 50 to 250 reaction cycles. The average growth rate is 1.5 

Å/cycle. The linear relation is shown as the dashed line. By fitting the XRR data, the 

thickness and density are estimated simultaneously. The density ranges from 3.1 to 3.4 

g/cm3, with an average density of 3.26 g/cm3 (triangles in Figure 1). EPMA is also used 
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to estimate the density for sample with 250 reaction cycles. The area density obtained is 

11.8 ± 0.2 µg/cm2. By inputting the thickness information obtained from XRR (37.9 nm), 

we are able to estimate the density of the film. The density extracted by EPMA is 3.11 

g/cm3, which matches well with the XRR results (Table I). Both thickness (growth rate) 

and density match well with previous ALD work.[84] EPMA also provides the 

composition information about the sample. The sample contains 44.8 % of Al and 55.2 % 

of O in terms of atomic percent. The low concentration of O is consistent with oxygen 

deficiency. Previous studies show that the O vacancies in ALD amorphous films have 

similar parameters in crystalline α-Al2O3 and γ-Al2O3. [85] 

4.4.2. Elastic properties of alumina ALD films 

SAWs propagate parallel to the surface measured, and they interact significantly with the 

film on surface, with penetration depths as thin as 1/100 of the wavelength.[47] Hence, 

SAWs are suitable for determining the elastic properties of very thin films. In our 

experiments, the use of single crystal silicon substrate enables us to obtain the phase 

velocity accurately for ultra-thin films. (thickness < 20 nm) Other polycrystalline 

substrates, such as steel, can cause ultrasonic scattering and reduce the sensitivity of the 

measurements.[41] 

Figure 4.2 shows the dispersion relation (phase velocity versus frequency) for all films. 

The number on up-right corner of each figure is the reaction cycle number. As would be 

expected, for the pure silicon substrate, the phase velocity of SAW doesn’t change 

significantly with frequency range of 50 to 230 MHz. All the diagrams in Figure 2 show 

that the alumina films decrease the phase velocity with increasing frequency. The phase 

velocity descends faster with increasing the alumina thickness. As described previously, 

the phase velocity is dependent on elastic properties, density of both substrate and film, 

and the thickness of the film; and the film thickness and density can be determined by 

XRR and EPMA. The elastic properties of substrate are provided in Table 3-1. The 

values agree well with published values. The density of Si substrate is 2.33 g/cm3. 

Poisson’s ratio of Si is 0.22, alumina is 0.21. With these parameters, we are able to obtain 

the Young’s modulus of the films by fitting the model (dashed line) to the experiment 

data (solid line). The Young’s modulus is shown in Figure 4.3 and Table 4-1. The 
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thinnest film, with 50 reaction cycles (7.6 nm thick), shows slightly lower Young’s 

modulus. The others modulus values range between 170 and 180 GPa: there is no 

significant change of Young’s modulus with increasing the thickness of film. The last 

row of Table 3-1 shows the extracted modulus for the substrate. The values are close to 

measured and theoretical values for single-crystal Si.  

According to our measurement of alumina ALD films ranging from 7.6 to 37.9 nm, there 

is no obvious trends for of elastic properties, density, or growth rate varying with 

thickness, which indicates that the structure of the ALD films is substantial invariant. The 

thickness range we measured cannot be used to revel the material properties at the Si-

alumina interface, as the interfacial transition layer is only a few atomic layers (usually 

less than 5 Å), and the thinnest ALD film we can measure is about 80 Å.  We expect the 

interfacial zone is less than 10% of the total measured film thickness. To date, we are not 

aware of an experimental technique that enable one to extract elastic properties for film 

less than 1 nm in thickness; hence, computational modeling is helpful in terms of 

understanding the ALD interfacial effects. 

The Young’s modulus values obtained from this work is comparable with literature 

values. Higher ALD deposition temperatures will produce stiffer films (cf. Table 4-3). As 

mentioned, nanoindentation usually requires film thicker than 100 nm as the indent depth 

should within 1/10 of the film thickness to neglect the influence of substrate. If 

nanoindentation is used to obtain Young’s modulus for films thinner than 100 

nanometers, both continuous stiffness measurement and modeling are necessary. The 

nanobeam deflection method requires a complicate sample fabrication. The films we 

measured using LAW method, thickness ranging from 7.8 nm (50 reaction cycles) to 38 

nm (250 reaction cycles), are much thinner than prior work. The measurement is simple 

and fast, as well as non-destructive. This method can be applied to most ALD films to 

obtain the elastic properties. 

The density of ALD alumina films (~3.2 g/cm3) is lower than reported crystal density 

(3.9 - 4.1 g/cm3) and amorphous density (3.5 - 3.7 g/cm3) for Al2O3,[86] due to the low 

deposition temperature. This agrees with the previous study of ALD. [84] The EPMA 

results show a relative low concentration of oxygen atoms, indicating the oxygen 
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deficiency. That leads to the lower modulus values, 170 - 180 GPa, as compared to single 

crystal Al2O3 (530 GPa)[87] and many ceramics (344.83 - 408.99 GPa. [86]). However, 

lower modulus is favorable in many cases. For example, low modulus coatings can 

usually better accommodate the volume change of the substrate material, particularly for 

Si based high capacity electrode materials in lithium ion batteries.  

 

4.4.3. Influence of ALD deposition temperature on elastic properties 

Figure 4.4 shows the dispersion curves for alumina ALD samples deposited under 

different temperature, which are similar with Figure 4.2. The deposition temperature is 

shown in the upper-right corner of each figure. By using XRR to measure the thickness 

and density of the films, we can obtain the elastic modulus of each film. Figure 4.5 shows 

the elastic properties of the films deposited under different ALD deposition temperature. 

The general trend is, higher temperature leads to higher density of the film, hence larger 

values of elastic moduli. Table 4-4 shows the detail properties of ALD films deposited 

under different temperature. 

 

4.5. Conclusion 

In this work, we develop and implement a non-destructive method to obtain the 

mechanical properties of ultra-thin ALD (atomic layer deposition) films. The mechanical 

properties are critical for designing coatings for many applications. We used ALD 

alumina coatings to demonstrate the approach, as such coatings are of immediate interest 

for lithium ion batteries. With the LAW (laser acoustic wave) technique, along with XRR 

(X-ray reflectivity), we are able to extract the mechanical properties of ALD films as thin 

as a few nanometers. The Young’s modulus was found to be relatively constant for 

thicknesses ranging from 7.6 to 37.9 nm, corresponding to 50 to 250 reaction cycles, 

respectively. The methods described in this work can be widely used in determining the 

elastic properties of thin films and artificial SEIs. 
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Figure 4.1 Thickness of ALD Al2O3 films.  The thicknesses correspond to 50 to 250 

reaction cycles and varies from 7.6 nm to 37.9 nm as determined by XRR (filled circles). 

The growth rate is 1.51 Å /cycle (constant growth rate). Dashed line corresponds to the fit 

results to the XRR thickness data; triangles are measured density by XRR for all films, 

with an average density is 3.26 g/cm3; the density does not change much with the 

thickness/cycle number. 
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Figure 4.2 Dispersion curves (phase velocity versus frequency) for alumina-ALD 

samples: solid-lines are LAW data; dashed lines are model fits; and the reaction cycles 

are shown in upper-right corner of each figure. 

 

Figure 4.3 Young’s modulus obtained from LAW. Except the thinnest film, 50 cycles 

(7.6 nm), the modulus is similar for all films and varies from 170 to 180 GPa.  
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Figure 4.4 Dispersion curves (phase velocity versus frequency) for alumina-ALD 

samples: solid-lines are LAW data; dashed lines are model fits; and the disposition 

temperatures are shown in the upper-right corner of each figure. 
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Table 4-1 Summary of the properties of different ALD alumina films. 

Cycle 

number 

Thickness 

(nm) 

Growth 

rate 

(Å/s) 

Density 

(g/cm3) 
E (GPa) 

250 37.91 1.52 3.10 171.22±1.04 

225 34.29 1.52 3.24 172.86±0.72 

200 29.84 1.49 3.28 177.96±0.88 

175 26.53 1.52 3.19 171.34±0.68 

150 23.37 1.56 3.29 175.63±0.88 

125 19.45 1.56 3.30 170.42±1.67 

100 15.09 1.51 3.37 175.76±1.05 

75 11.49 1.53 3.33 175.21±2.15 

50 7.62 1.52 3.27 160.56±2.96 
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Table 4-2 Area density measurements of the Al2O3 coating as determined by EPMA 

quantitative measurements and GMRFILM thin film modeling program using scanning 

mode (30 μm area). 

Position  Area density 

(μg/cm2)  

1  11.9  

2  11.7  

3  11.7  

4  11.6  

5  12.0  

6  12.1  

7  11.6  

8  11.7  

9  11.7  

10  11.6  

Average  11.8  

Std. dev.  0.2  
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Table 4-3 Summary of Young’s modulus of different alumina ALD film in literature and 

this work. 

Deposition 

temperature 

(oC) 

Thickness 

(nm) 
Testing method 

Young’s Modulus 

(GPa) 
Reference 

300 60 Nanoindentation* 220±40 [81] 

177 300 Nanoindentation 180±8.2 [82] 

177 100 
Nanobeam 

deflection 
168±8 [82] 

177 50 
Nanobeam 

deflection 
182±32 [82] 

120 7.62 LAW 160.56±2.96 
This 

work 

120 11.5-38 LAW 170-180 
This 

work 

100 300 Nanoindentation 150-155 [88] 

*Continuous stiffness method combined with simulation results 

 

 

Figure 4.5 Elastic modulus of different ALD films prepared under different deposition 

temperature. The moduli range from 90 to 190 GPa. 
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Table 4-4 Summery of the properties of different ALD alumina films deposited under 

different temperature. 

Cycle Number 

Deposition 

Temperature 

(°C) 

Thickness 

(nm) 

Density 

(g/cm3) 

[Estimate] 

Elastic 

Modulus 

(GPa) 

150 60 20.71 2.48 93.56 ± 0.99 

150 80 20.06 2.64 117.28 ± 1.24 

150 100 23.37 2.88 139.13 ± 0.92 

150 120 20.63 3.29 175.63 ± 0.88 

150 160 20.77 3.4 186.18 ± 0.11 
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 Design the Artificial Solid Electrolyte Interphase by Utilizing 

the Synergetic Effects of Inorganic Components to Facilitate the Ionic 

Transport and Reduce the Electrolyte Decomposition3 

 

5.1. Summary 

As previously discussed in Chapter 3, there are two important inorganic components 

identified: lithium fluoride and lithium carbonate. It is well known that LiF is a good 

electron insulator. Although lithium carbonate and lithium fluoride have relatively low 

ionic conductivity, we found that a composite coating made of both components creates a 

defective interface with space charge, which significantly improved lithium ion transport. 

The synergetic effect of both inorganic components lead to high current efficiency and 

cycling stability. We envision that the defective composite coating is a promising 

artificial solid electrolyte interphase (SEI) layer to suppress the undesirable side reactions 

and improve the life of lithium ion batteries employing silicon negative electrodes. 

5.2. Introduction 

Lithium ion batteries (LIBs) have been the choice for many electrochemical energy 

storage systems, including portable electronic devices, uninterruptible power supplies 

(UPSs), and electrical vehicles (EVs).[89, 90] High energy and power density, along with 

durability are three key goals for developing advanced LIB systems.  (Note: cost and 

recharge time are also important.) Silicon has been considered as the next generation 

negative-electrode material due to its highest theoretical specific capacity (over 3600 

mAhg-1) by forming Li15Si4. [15-17] However, silicon electrodes have poor durability, 

caused by the mechanical degradation originated from the huge volume change while 

cycling.[23] In order to meet the desired ultra-long life requirements for EV applications, 

much research has been devoted to stabilizing the electrodes for LIBs. One of the 

promising approaches is to reduce the Si particle size to achieve better mechanical 

                                                 
3 Reproduced from Qinglin Zhang, Jie Pan, Peng Lu, Mark W Verbrugge, Brain W Shelton, Yang-Tse 
Cheng, Yue Qi and Xingcheng Xiao, "Synergetic Effects of Inorganic Components in Solid Electrolyte In-
terphase on High Cycle Efficiency of Lithium Ion Batteries," Nano Letters, 16 (3) : 2011-2016 (2016) 
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integrity during cycling. [15, 32, 91, 92]  However, nanosized silicon particles have high 

surface area exposed to the electrolyte, forming large amounts of SEIs.[35, 93] The SEI 

is a passivation layer formed on the electrode surface that is critical for stabilizing lithium 

ion battery electrodes. However, the formation of SEI on negative electrodes consumes 

Li irreversibly in Li-ion cells. The unstable SEI on electrode surface, caused by the Si 

volume changes during lithiation and delithiation, leads to low cycling efficiency and 

irreversible capacity loss. Therefore, stabilizing the SEI is of great interest to the research 

community for Si electrodes. [93] 

Intensive research efforts have been devoted into studying the properties of the SEI and 

stabilizing the SEI by electrolyte additives, surface modification and geometric 

design.[25, 36, 37, 94]  Our previous study has revealed the relationships among the 

structure, property, and cycling performance of naturally formed SEI. Typically, an SEI 

layer with a high modulus can provide better mechanical protection, leading to higher 

cycle efficiency and improved capacity retention. [93] 

In a naturally formed SEI, inorganic components are concentrated near the electrode 

surface and organics on the top of inorganics. There are three major components in 

naturally formed inorganic SEI: lithium carbonate, lithium oxide and lithium fluoride.[93, 

95] These lithium containing components play important roles in mechanically stabilizing 

the SEI. In the past, several inorganic coatings, including oxides, carbonates, and 

fluorides, have been developed as the artificial SEI to stabilize the electrode. These 

individual components have been shown to yield different electrochemical behavior as 

well as different transport properties. [28, 94, 96, 97] 

The ionic and electronic transport through the artificial SEI depends on the defect 

chemistry in the multi-component SEI coated on electrodes. On one hand, the dominant 

defect type in a pure LiF coating on anodes is a Schottky pair (cation and anion vacancy 

pair).[98]  It has been reported that LiF is a good electronic insulator (~10-31 S/cm) but 

has a poor ionic conductivity.[98] On the other hand, the main defect in Li2CO3 is Li ion 

vacancy with its charge balanced by free electrons.[99] As a result, Li2CO3 can provide 

relatively higher ionic conductivity (~10-8 S/cm) but maintains a considerable electron 

concentration on negative electrodes.[100] Either one of them alone will not work, but 
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they appear to work in a combined way, likely for the reasons just described, and similar 

with naturally-formed inorganic SEI. 

In order to identify the role of different components in the SEI systems and explore the 

optimum composition of SEI which can effectively passivate Li-ion battery electrodes 

and facilitate the Li ion transport, we designed the artificial SEI with the aforementioned 

three inorganic components co-existing in the naturally formed SEI on silicon thin film 

electrodes. Silicon thin film electrodes provide a good platform to investigate the 

functions of artificial SEI layers: they can avoid the severe mechanical degradation 

compared with silicon particles, avoiding the impact of newly formed SEI associated 

with surface damage. The relatively smooth and well defined surface enables us to carry 

out well-controlled and unambiguous chemical and mechanical characterization using 

many surface sensitive techniques.  

 

5.3. Experimental Section 

Si thin-film electrodes (~100 nm) were prepared by RF magnetron sputtering on copper 

current collectors, and tested in coin cells for electrochemical characterizations. Surface 

coatings were also prepared by RF magnetron co-sputtering of lithium fluoride and 

lithium carbonate targets on as-prepared Si thin-film electrodes. The ratio of the coating 

materials was controlled by the sputtering rate (power control).  

The Si electrodes (or coated Si electrodes) were used as working electrodes, and pure 

lithium metal foil as counter and reference electrodes in CR2032 coin cells. A separator 

(Celgard, USA) was placed between working electrode and lithium foil, and 1M LiPF6 in 

ethylene carbonate and dimethyl carbonate (EC:DMC 1:1 volume ratio, BASF) was 

employed as the electrolyte. The Arbin battery test system (BT-2000) was used to cycle 

the coin cells, using the constant-current method (with a rate of C/3) and a voltage 

window between 0.05 V to 1.5 V. The electrochemical impedance spectroscopy (EIS) 

study was conducted in two-electrode coin cells at the assigned voltage. The coin cells 

were rested for 24 hours until they were stabilized.[46] The high-frequency (Ohmic) 

resistance of the coin cells ranged from 400 to 500 Ohms. The applied frequency range 
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for EIS measurements was between 1 MHz to 10 mHz by a VMP3 potentiostat 

(Biologic). 

Thermo Scientific K-Alpha X-ray photoelectron spectroscopy (XPS) with a 

monochromated Al Kα source (1486.6 eV) was used for chemical analysis of coatings 

and the SEIs on the electrodes. Transmission electron microscopy (TEM) sample was 

prepared by FEI Helios Nanolab 660 dual beam focused ion beam (FIB), and high-

resolution TEM pictures were taken by JEOL 2010F under an acceleration voltage of 200 

kV. 

For the isotope exchange experiment, the as-prepared LiF/Li2CO3 thin films (of three 

compositions, <1% LiF, 15% LiF, and 50% LiF) were soaked in 0.1M 6LiClO4 (95% 6Li 

abundance, 6Li+/7Li+ ~ 20) dimethyl carbonate solution in an Ar glove box for 3 min. 

After the immersion, the specimens were rinsed thoroughly with dimethyl carbonate 

(DMC), dried in the glove box, and transferred under Ar in a special vessel to the analysis 

instrument.  

The time-of-flight secondary ion mass spectrometry (TOF SIMS) analyses were 

performed on a PHI TRIFT V nanoTOF spectrometer (Physical Electronics, Chanhassen, 

MN). The analysis chamber of the instrument was maintained at a pressure of less than 5 

× 10-7 Pa during the analyses. A 30kV Au+ ion source was used for both sputtering and 

analysis. The analysis area was 50 µm × 50 µm, within a sputter area of 200 µm × 200 

µm. A uniform sputter rate of 0.1 nm/s (calibrated with 100 nm SiO2) was used to 

calculate the sputter depth.  

 

5.4. Results and Discussion 

By controlling the power of each RF source, the deposition rate of Li2CO3 and LiF will 

change accordingly, allowing on to modulate the final composition of artificial SEI films 

(cf. Figure 5.1). The deposited artificial SEI films have been characterized by XPS.  

Figure 5.2 shows the depth profiles of different artificial SEI films. Obviously, SEI1 has 

the highest concentration of F. The atomic percentage of F is around 15%. If counting the 
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films as Li2CO3/Li2O and LiF (by molar), half of the inorganic components are LiF. SEI2 

and SEI3 contain 15% and <1% of LiF, respectively, as shown in Table 5-1. 

XPS was also carried out on the artificial SEI films after cycling. From the XPS spectra 

(Figure 5.3), we can see that the composition of artificial films remain unchanged, and 

the concentration of each element/species is kept the same (see Figure 5.4 for the depth 

profile). This is an indication that artificial SEI films are stable upon cycling. 

Coulombic efficiency is an important indictor on the prediction of cycle life for Li-ion 

battery electrodes, especially when evaluating the performance in full-cell. In Li-ion full 

cells, usually the Li is brought into the cell with the new (air-stable) lithiated cathode 

(e.g. LiCoO2, LiFePO4); this fixes the amount of Li available for cell electrochemical 

operation.  Any irreversible Li reaction will cause permanent capacity loss of Li-ion cells. 

Thus, Coulombic efficiency measurement can often be used as an indicator of irreversible 

Li loss during each cycle. High Coulombic efficiency is essential for durable Li-ion 

cells.[101] Figure 5.5 shows the comparison of Coulombic efficiency of Si electrodes 

with different artificial SEI coatings. The cells were tested without any electrolyte 

additives. All the artificial SEI coated Si samples show improved Coulombic efficiency, 

improved from an average of 98.46% (bare Si) to 99.43% (SEI1), 99.27% (SEI2) and 

98.95% (SEI3). For the first cycle, Coulombic efficiency was improved by applying the 

artificial SEI coatings. The first cycle Coulombic efficiencies are 81.81% (bare Si), 

88.15% (SEI1), 88.78% (SEI2), and 84.99% (SEI3).  The decreasing of general trends of 

Coulombic efficiency can be attributed to the mechanical degradation of Si thin film 

electrodes. Figure 5.5 also shows the capacity retention for different samples. SEI1 has 

the best capacity retention. In order to correlate the mechanical properties of artificial 

SEIs with performance, we measured the hardness and elastic moduli of different SEIs by 

nanoindentation, as shown in Table 1. Among all three artificial SEI films, SEI1 has the 

highest modulus and hardness, which are 86 GPa and 2.2 GPa, respectively. Previous 

study shows that the elastic properties of SEIs can impact the cycling performance. The 

elastic properties of SEIs can influence the energy barrier for crack nucleation and 

propagation, and the generation of cracks is one of the major causes for low Coulombic 

efficiency and capacity degradation. Low Coulombic efficiency is caused by forming 
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new SEI on the cracks, and permanent capacity loss is due to lithium consumption at the 

interface, and the isolation of the electrode material, and loss of electrical contact 

between regions of otherwise active material. 

The rate testing was also performed on Si electrodes with different SEI coatings, as 

shown in Figure 5.5. Under low rate (C/5 or C/3), all the Si electrodes behave similarly. 

When cycling the cells at higher rates, Si electrodes with SEI 1 coatings have the highest 

capacity, and bare Si electrodes show the lowest capacity. Compared with bare Si 

electrodes, all the artificial SEIs enhance the rate capability. This is an indication that the 

coated SEI layers are better than that which is naturally formed, with SEI1 providing the 

best rate capability, consistent with SEI1 having promoting the fastest ionic transport. 

Figure 5.6 right shows the typical EIS recorded for Si electrodes with different artificial 

SEIs (at 0.6 V immediately after lithiation) in Si/Li half cells. The typical EIS spectra 

comprised two semi-cycles in medium frequency range. It is generally accepted that the 

first semi-cycle at higher frequency originates from interfacial resistance (Rint) and the 

semi-cycle at lower frequency originates from charge-transfer process. The lower 

frequency tale of EIS spectra corresponds to semi-infinite diffusion, or Warburg 

resistance.[46] The EIS results show that even for Si thin films coated with thick artificial 

inorganic SEI layers, the overall impedance is not greatly affected. We fit the first semi-

circle of EIS spectra to get the interfacial resistance (Rint). Figure 5.6 (right) shows an 

example of fitting and the equivalent circuit (embedded).[102] Figure 5.6 (left) shows the 

fitting results of voltage depended Rint of different artificial SEI samples. The general 

trends of Rint are the same for all the samples: Rint started a drop when discharged 

(lithiated) from 0.4 V to 0.2 V for Si samples coated with SEI1, 2 and 3, and from 0.6 V 

to 0.2 V for Si samples without coatings. The Rint drop corresponds to the irreversible 

process during galvanostatic cycling. [103] The Rint for bare Si, Si coated with SEI1, 2, 3 

are 305, 196, 302, 225 ohm respectively. After stabilization, SEI1 has the lowest Rint 

value (around 200 ohm).  

The underlining reason for promoting the total ionic conduction by introducing LiF into 

Li2CO3 as a composite artificial SEI is the formation of LiF/Li2CO3 interface. Figure 

5.7(a) shows the high resolution TEM images on all three artificial SEI coatings show 
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mixed LiF, Li2O and Li2CO3 nanocrystals, with randomly orientated interfaces. TEM 

characterization identified three phases: 1) nanocrysalline LiF, 2) nanocrystalline Li2O, 

and 3) amorphous and poorly-crystalized Li2CO3. Li2CO3 is known to be unstable during 

TEM sample preparation with a low dissociation barrier, which is easily to be 

decomposed to Li2O and CO2.[104-106] SEI 1 structure characterized by high resolution 

transmission electron microscopy (HRTEM) and selected area electron diffraction 

(SAED). Figure 5.7 (a) shows a typical HRTEM image of the SEI 1, showing 

nanocrystals (2 - 5 nm in size). The inset is an SAED pattern taken from the SEI 1. The 

SAED pattern shows a diffraction halo and multiple diffraction rings. Figure 5.7 (b) 

shows the profile of the highlighted box in (a) which is obtained by converting the 2-

dimensional diffraction pattern into 1-dimensial spectrum to show the positions of 

diffraction peaks. Peak 1 (the broad peak at 3.79 Å) is the diffraction halo and 

corresponds to the (1�11) of Li2CO3. This indicates Li2CO3 is an amorphous phase. Peaks 

2 at and 6 uniquely belong to the (111) and (113) of LiF; and Peak 4 uniquely to the 

(022) of Li2O. The rest peaks (3 and 5) can be an overlap of both LiF and Li2O due to 

their close atomic plane distance (i.e., d-spacing). Figure 5.7 (c) shows the colored and 

zoomed-in SAED pattern (for better visualization) showing the diffraction halo. Figure 

5.7 (d) shows a typical HRTEM image, showing the poor crystallinity of the (1�11) of 

Li2CO3. The HRTEM shows the coexistence of both Li2CO3 and LiF, and there are huge 

around of interface between them. 

 

The simulation result shows that, the defects concentration at the interface between 

Li2CO3 and LiF has been significantly promoted in Li2CO3 by introducing LiF, and 

generating the Li2CO3 and LiF interfaces, as shown in Figure 5.8.  

In order to correlate the electrochemical performance and simulation results, we carried 

out the isotope ion-exchange experiments to investigate the effect of interface between 

two phases. Figure 5.9 compares the isotope ratio 6Li+/7Li+ verse depth profile measured 

by ToF-SIMS after 3 min of 6Li+ ion exchange. The 6Li+/7Li+ ratio becomes almost 

constant in the top coating layer for all three SEIs. However, the ratios are significantly 

different among these samples. The higher ratio means higher 6Li+ exchange, which is an 
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indication of faster Li+ transport. The simulation in the previous section shows that LiF 

has fewer charger carriers than Li2CO3. However, by adding LiF into Li2CO3, the rate of 

Li ion exchange in fact increases. Apparently, the mixing of Li2CO3 and LiF creates more 

interfaces between Li2CO3 and LiF, leading to more ion exchange in those regions. The 

results are consistent with the rate capability test shown in Figure 5.5.  

 

5.5. Conclusion 

Engineered multi-component inorganic SEIs consisting of LiF and Li2CO3 have been 

successfully applied on thin film Si electrodes. The properties and performance of these 

electrodes support the following conclusions: (1) LiF is a critical component in SEI for 

stabilizing the SEI layer and improving the cycling efficiency; (2) The synergetic effects 

of LiF and Li2CO3 interfaces, which not only facilitate Li ion transport, but also further 

enhance the passivation function to suppress electrolyte decomposition. We envision this 

work can be beneficial in helping design the surface coatings/electrolyte additives for Li-

ion cells, hence improving the durability of Li-ion battery electrodes. 

 

 

Figure 5.1 Illustration of co-sputtering process to form the artificial SEI coatings on Si 
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Figure 5.2 XPS depth profile for different SEI films before cycling. 
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Figure 5.3 XPS spectra of SEI 1, 2 and 3, before and after cycling 

 

Figure 5.4 XPS depth profile for different SEI films after cycling. 
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Figure 5.5 (above) Capacity, Coulombic efficiency (upper plot) and rate capability (lower 

plot) of Si electrodes with different artificial SEI coatings; SEI1 has the highest LiF 

content.  
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Figure 5.6 Left: Interfacial resistance (Rint) of different samples under different lithiation 

(de-lithiation) stage. Right: example of fitting of interfacial resistance at medium 

frequency range (at 0.05 V). 
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Figure 5.7 High resolution transmission electron microscopy (HRTEM) image and 

selected area electron diffraction (SAED) of SEI1: (a) A typical HRTEM image, the inset 

is an SAED pattern; (b) Profile of the highlighted box in (a) which is obtained by 

converting the 2-dimensional diffraction pattern into 1-dimensial spectrum to show the 

positions of diffraction peaks. (c) Colored and zoomed-in SAED pattern (for better 

visualization) showing the diffraction halo. (d) An HRTEM image showing the poor 

crystallinity of the (1�11) of Li2CO3 
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Figure 5.8 Schematic figure showing the defect reaction[𝑁𝑁𝑁𝑁𝑁𝑁 → 𝐿𝐿𝑁𝑁𝑖𝑖∙(𝐿𝐿𝑁𝑁2𝐶𝐶𝐶𝐶3) + 𝑉𝑉𝐿𝐿𝑖𝑖′ (𝐿𝐿𝑁𝑁𝐿𝐿)] 

and defect distribution near the LiF/Li2CO3 interface (bulk defect concentration [98, 

100]: 𝑐𝑐𝐿𝐿𝑖𝑖𝑖𝑖∙
∞ ≈ 1015 𝑐𝑐𝑐𝑐−3, 𝑐𝑐𝑉𝑉𝐿𝐿𝑖𝑖′

∞ ≈ 10−2 𝑐𝑐𝑐𝑐−3). 

 

 

Figure 5.9 TOF-SIMS results of the ratio between 6Li and 7Li, after 3 min of 6LiClO 

solution soaking. 
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Table 5-1 Composition of different artificial SEIs before and after cycling 

Artificial SEI Estimate 

thickness 
F atomic 

percentage 

before cycling 

F atomic 

percentage after 

cycling 

Approximate LiF 

percentage (counts 

as LiF, Li2CO3 and 

Li2O) 
SEI1 100 nm 15% 15% 50% 
SEI2 100 nm 4% 3% 15% 
SEI3 100 nm <1% <1% <1% 

 

 

Table 5-2 Mechanical properties of different SEI films, obtained by nanoindentation 

 Hardness (GPa) Modulus (GPa) 

SEI1 2.22 ± 0.10 86.43 ± 1.28 

SEI2 1.02 ± 0.08 63.73 ± 3.49 

SEI3 0.65 ± 0.07 25.92 ± 1.05 

 

 

 

 

 

 

 

 

Copyright © Qinglin Zhang 
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  A Chemically Stable Artificial Solid Electrolyte Interphase: 

Hafnium Oxide Coatings by Atomic Layer Deposition 

 

6.1. Summary 

The importance of coating’s chemical stability has been demonstrated by this study. It is 

well known that the mechanical properties determine the cycle life, and chemical stability 

or chemical degradation rate determines the calendar life. In this study, we used HfO2 

atomic layer deposition coatings as an example to show the chemical stability of the 

coatings for lithium ion battery electrodes. 

6.2. Introduction 

Lithium ion batteries (LIBs) have been the choice of energy storage systems for portable 

electronic devices, uninterruptible power supplies and electrical vehicles. Exploring 

novel electrode materials with higher capacity, better rate capability, longer life and 

lower cost is in urgent need for using LIBs in wider applications. For example, Si 

electrode is able to deliver over 3600 mAh/g capacity, but the cycle and calendar life is 

not desirable due to both  intrinsic issues of electrodes (such as large volume change) and 

surface chemical instability.[23, 107-111] 

 Mechanical and chemical degradation are two major degradation mechanisms of most 

LIBs. Usually, the cycle life is determined by the mechanical degradation rate; and the 

calendar life is determined by the rate of chemical degradation. [101] The stability of the 

electrode-electrolyte interphase, or solid-electrolyte interphase (SEI) in non-aqueous 

electrolyte is critically important for stabilizing the electrodes and enabling the long-term 

cyclability.[112-119] The stability of SEI can significantly influence the life of LIBs. 

Intensive research efforts have been devoted to designing the SEI by incorporating 

electrolyte additives, such as FEC, VC, and LiBOB.[120-127] These electrode additives 

can help form stable SEIs on electrodes to prevent further decomposition of electrolytes. 

Even with the additives, however, the formation of SEI is still a Li consuming process, 

which causes irreversible Li loss (or capacity loss) during the formation cycles. 
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In addition to electrolyte additives, surface coatings have been employed to improve the 

functionalities of electrodes.[28, 94, 128, 129] There are many advantages of surface 

coatings, such as reducing the irreversible capacity loss, improving the kinetics of 

electrodes and better control of SEI layers.[94, 130] The surface coatings, or artificial 

SEIs (a-SEIs), need to be electronic insulating (suppress the electrolyte reduction), Li ion 

conducting, and chemically stable. [112] 

Recently, several coatings made by atomic layer deposition (ALD) have been 

demonstrated to be effective a-SEIs to protect the electrodes. There many advantages of 

ALD , such as the film was deposited under a relative low temperature with controllable 

thickness of atomic precision, good stoichiometric, excellent uniformity and conformity. 

[28, 55, 56, 131, 132] TiO2, Al2O3, ZnO2, SnO2, and SiO2 coatings are used as protection 

layers for both cathodes and anodes of LIBs.[59, 133-135]  

In this work, we introduce the HfO2 as a-SEI to stabilize Si electrodes. Hafnium oxides 

have been widely used as high-k dielectrics in semiconductor industry due to its good 

electronic insulating capability. Moreover, HfO2 is known for its stability under various 

conditions, [136-138] which may be desirable for LIB applications. We use x-ray 

photoelectron spectroscopy (XPS) to demonstrate the stability of HfO2 coatings by 

comparing the cycle-aged electrode coatings with freshly prepared coated electrodes. The 

results show that, unlike other coatings that change their chemical compositions after 

cycling, HfO2 coatings maintain chemically stability, hence improving the cycling 

stability of the Si electrode significantly. 

 

6.3. Experimental Details 

Silicon thin film electrodes were deposited on a copper current collector by RF 

magnetron sputtering. The sputtering rate was 0.1 nm/s, and the thickness was controlled 

to be 100 nm.  

Atomic Layer Deposition (ALD) has been used to grow metal oxide thin films with 

uniform chemical composition and precisely controlled thickness because of ALD’s self-

limiting growth mechanism. Thin films with consistent quality can be grown by ALD 
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conformally on a variety of substrates, including substrates with high aspect-ratios, rough 

and porous, which tremendously broadens the application field of ALD [139-142]. In the 

present work, HfO2 was deposited on Si electrodes and wafers using ALD (Cambridge 

NanoTech, Inc.) at 300°C. The Hf atoms were provided by the amide precursor 

tetrakis(dimethylamido)hafnium (TDMAH), and the oxidant was H2O. TDMAH and H2O 

were supplied sequentially into the ALD chamber with TDMAH supplied first. TDMAH 

was heated up to 75°C to provide a high enough vapor pressure. The nitrogen carrier gas 

was provided at a flow rate of 20 sccm (standard cubic centimeters per minute). The 

pulse time of 20 seconds was long enough to meet the saturation requirement of each 

ALD cycle. After deposition of HfO2, a multi-angle Spectroscopic Ellipsometry (J. A. 

Woollam M3000 V) was used to measure the coating thickness and optical constants 

(refractive index, n, and extinction coefficient, k) of the thin HfO2 films.  

Si and HfO2 coated Si electrodes were used as working electrodes. Lithium metal foil 

was used as counter and reference electrode. CR 2025 coin cells were assembled in the 

Ar filled glovebox with control of oxygen and moisture concentration below 0.1 ppm. 

Microporous membrane (Celgard 3501) was used as the separator. 1M LiPF6 in ethylene 

carbonate and diethyl carbonate (EC:DEC 1:1 volume ratio, BASF) was used as the 

electrolyte. The Biologic VMP3 was used to cycle the coin cells between 1.2 and 0.05 V 

vs. Li/Li+ under a charge/discharge rate of C/3 (1C corresponds to 3600 mA/g). The 

electrochemical impedance spectroscopy (EIS) was conducted in two-electrode coin cells 

at assigned voltages. The coin cells were rest for 24 hours until stabilized before EIS 

measurements. The frequency range applied was 1MHz to 10 mHz. The fitting of 

equivalent circuit was performed using the EC-Lab software (Biologic). 

A Thermo Scientific K-Alpha XPS system with a monochromatic Al Kα source 

(1486.6 eV) was used for chemical analysis of coatings and SEIs on the electrodes before 

and after cycling. The post-cycled electrodes were harvested from the dissembled coin 

cells, washed with DMC in the Ar-filled glovebox before transferring to the XPS analysis 

chamber. The transferring process was completed by a specially designed air-tight 

transfer holder to avoid sample exposure to air. 
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6.4. Results and Discussion 

During the deposition, a Si wafer was placed adjacent to the Si electrodes in the ALD 

reaction chamber. The as prepared HfO2 film on the Si wafer was characterized by 

ellipsometry to confirm the thickness. The measured thickness for 20 layers of HfO2 is 

25.09±0.0226 Å, corresponding to 1.25 Å per layer. The thickness matches well with 

previous studies of HfO2 growth. [81, 138, 139] 

Figure 6.1 shows the cycling performance of bare Si electrodes, Si coated with 5 

layers (0.63 nm), 10 layers (12.5 nm) and 20 layers (25.1 nm) of HfO2 under the constant 

current with a charge/discharge rate equivalent to C/3 (C = 3600 mA/g). Figure 6.1 (a) 

shows capacity retention. The first cycle discharge capacity is about 3600 mAh/g, then 

stabilized around 2800 mAh/g for all samples. After 100 cycles, the Si electrode coated 

with 20 layers of HfO2 shows 2019.58 mAh/g capacity, with 70.1% capacity retention. In 

comparison, the bare Si electrode without coating only show a capacity of 1331.73 

mAh/g after 100 cycles, with 45.9% capacity retention. The Si electrodes coated with 5, 

and 10 layers of HfO2 show improved performance, but not as good as that of 20 layers. 

The Coulombic efficiency (CE) is an important indicator to evaluate the performance of 

LIB electrodes. Figure 6.1 (b) shows the CE of different samples. The first cycle CE was 

68.3%, 79.7%, 78.6% and 78.5% for bare Si electrode, with 5, 10 and 20 layers of HfO2 

coatings, respectively. The low first cycle CE can be attributed to the formation of SEI on 

the electrodes and stainless steel conducting coin-cell cases. The results show that, with 

the HfO2 coatings, the first cycle CE has been improved, due to the suppressed formation 

of SEI on the electrodes. The CE for coated samples raised above 99% during the first 20 

cycles, in comparison with bare Si samples, which is lower than 99%. The majority of the 

reactions during SEI formation is caused by electrolyte reduction. The improved CE for 

coated samples indicates that, compared with naturally formed SEIs, HfO2 coatings can 

be a more effective in blocking the electrons from contributing to electrolyte reduction 

reactions. 

To characterize the kinetic properties of the coated Si electrodes, EIS was carried out 

before and after cycling. Figure 6.2 shows the Nyquist plots of impedance spectra 
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recorded for bare Si electrodes and Si coated with HfO2 coatings at open circuit potential, 

before and after cycling. The semi-circle (at high frequency region) originates from the 

interfacial resistance (Rint). The low frequency tail of EIS spectra corresponds to the 

semi-infinite diffusion, or Warburg resistance.[46] By fitting the semi-circles, we 

obtained the interfacial resistance which is given in Figure 6.2. For the fresh electrodes 

before cycling, the HfO2 coatings can significantly reduce the Rint from 600 Ohm (bare) 

to 200-300 Ohm (coated). We also compared the Rint after 10 cycles, when the surface 

passivation has been stabilized. After 10 cycles, Si electrodes coated with 20 layers of 

HfO2 has the lowest Rint (71 Ohm), and compared with bare Si w/o coating, all HfO2 

coated samples show reduced Rint (100 Ohm for 5 layers of HfO2, 79 Ohm for 10 layers 

of HfO2 and 117 Ohm for bare Si electrodes). The increased resistance results in 

incomplete charge/discharge of the cells, especially when increasing the cycling 

rate.[143] The reduced Rint for 20 layers of HfO2 coated on Si electrodes indicates that 

the HfO2 coating reduces the Rint to more favorable values.  

Figure 6.3 compares the cyclic voltammetry (CV) curves of bare Si electrode, and 20 

layers of HfO2 coated Si electrode for the 1st and 2nd electrochemical cycle. There are 

three reduction peaks for bare Si electrode in the 1st cycle: the peak around 0.5 V 

corresponding to the formation of SEI,[28] two peaks around 0.2 V and 0.1 V 

corresponding to Li insertion into Si electrodes. [110] [144] There are also two oxidation 

peaks during the reverse scan, corresponding to the Li extraction peaks, which match 

with the insertion peaks during the reduction scan. However, due to the irreversibility of 

SEI formation, there is no oxidation peak accounting for SEI formation. For the 2nd cycle, 

the majority formation of SEI is complete, therefore there are only two reduction peaks 

for Li insertion/extraction. For Si electrode coated with HfO2, the identical SEI formation 

peak around 0.6 V does not appear, the SEI formation has been suppressed. This result 

can be correlated with the first cycle CE, which has been discussed in previous content. 

However, the first cycle reduction curve is not perfectly overlap with the 2nd cycle, which 

means that there is still some addition SEI formed, but the reactions are likely different 

from that on the bare Si electrodes. The analysis of the formation of SEI will be 

demonstrated in the next section on XPS analysis. 
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XPS was used to track the changes of HfO2 coatings before and after cycling. Ar 

sputtering was used for depth profiling. Figure 6.4 (a) and (c) show the HfO2 coated on 

the Si electrode before cycling; (a) shows that only Hf4+ was found on the top surface of 

the HfO2 coating, (c) shows that both Hf4+ and metallic Hf0 were found with longer 

sputtering time, and approached to the HfO2 and Si interface. [145] There are two 

possible reasons for the existence of Hf0 4f peaks: (1) the ion sputtering preferentially 

remove oxygen; and (2) metallic Hf is segregated to the Si/HfO2 interface. [145] Figure 

6.4 (b) and (d) show the Hf 4f XPS spectra of cycle-aged electrode. For both (b) and (d), 

we observed the similar peaks as that of fresh samples. Unlike other metal oxide ALD 

coatings, such as Al2O3, TiO2 and SiO2, HfO2 coatings show good stability on Si 

electrode upon cycling. [28] Since the formation of LiMOx (M=Al, Ti, Si, etc.) is also a 

Li consuming process, the stability of HfO2 can help prevent additional Li loss during 

electrochemical cycling. 

Figure 6.5 shows the depth profile of atomic percentage for the electrodes after 

cycling. Both electrodes show the existing of Li, O, P, C, F and Si elements, and HfO2 

coated sample shows, as expected, Hf signal. The Hf can be detected even after 

approximate 20 nm of sputtering, due to the surface roughness of Si thin-film electrodes. 

The low percentage of P2p means that the electrolyte has been cleaned by DMC 

thoroughly. The F signal is accounted for by the existence of LiF in the SEI. It is 

generally believed that LiF is favorable for improving the performance of Si 

electrode.[112, 125, 146] There is a higher F concentration for HfO2 coated Si electrode, 

although the mechanism is still unclear. The percentage of Si is an indication of the 

thickness of SEI: the more Si detected corresponding to less SEI founded at the detected 

depth level. In our experiment, the detection of Si on HfO2 coated sample increased more 

rapidly with increasing of sputtering time, which indicates that less or thinner SEI was 

formed on HfO2 coated Si electrode.  

 

6.5. Conclusion 

HfO2 coatings have been shown to be effective surface passivation layers on Si 

electrodes to prevent  chemical degradation. As a highly insulating material, HfO2 can 
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effectively block the electrons that are necessary for reducing the electrolyte. Comparing 

with other oxide coatings, we found HfO2 to have a better stability under electrochemical 

cycling. In addition to previously recognized desirable properties of artificial SEIs, such 

electronic insulating, ionic conducting and mechanically “tough”, we show in this work 

that the chemical stability is also needed to achieve long the cycle life and shell life. We 

envision that this work will provide helpful guidelines to design better a-SEI for Li-ion 

cells. 
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Figure 6.1 (Left) Discharge (lithiation) capacity (right) Coulombic efficiency of bare Si 

thin film electrodes, Si with 5/10/20 layers of HfO2 coatings. 

 

Figure 6.2 . Compare the EIS spectra for fresh and cycle-aged (10 cycles) electrodes The 

EIS spectra for cycle aged (10 cycles) with/without HfO2 coatings. EIS was measured 

under OCV.  
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Figure 6.3 Cyclic voltammetry curves of bare Si electrodes (left) and Si coated with 20 

layers of HfO2 (right) 

 

Figure 6.4 The Hf4f XPS spectra of the electrode surface before and after cycling; a and 

c: before cycling; b and d: after cycling (10 cycles) 
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Figure 6.5 XPS depth profiles of bare Si electrode (left) and Si coated with 20 layers of 

HfO2 (right) 

 

Table 6-1 Interfacial resistance (Rint) of electrodes with/without HfO2 coatings, fit from 

the semicircle of EIS measurements 

 

 

Fresh Electrode (Ohm) After 10 Cycles (Ohm) 

Bare Si 611.4 116.9 

5 HFO2 283.6 90.98 

10 HFO2 231.3 79.24 

20 HFO2 274.7 71.37 

 

 

 

 

 

 

Copyright © Qinglin Zhang 
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 Conclusion and Future Work 

 

 

Surface coatings are essential for LIB positive electrodes, which can promote the 

electronic conductivity, or reduce the metal ion dissolution. While the LIB industry is 

trying to replace graphite electrodes with advanced anodes with greater Li ion storage 

capability. Anode coatings, or artificial SEIs, may be new industrial standard for LIBs.  

We conclude that, the ideal coatings (artificial SEIs) should have four features: 

(a) Electronic insulating (to reduce the formation of SEIs) 

(b) Ionic conducting (to allow fast Li ion transport) 

(c) Mechanically “strong” (to protect large strain electrodes) 

(d) Chemically stable (to remain unchanged during cycling to reduce irreversible Li 

loss) 

There is not a single general rule to guide the design of SEI, because different 

electrode materials require different levels of protection. For example, Si anode requires 

more mechanical protection, due to large volume change of this material during cycling. 

The selection of coating depends on its actual application. For example, the power battery 

requires large current during a short period of time (ionic conduction becomes more 

important); while the battery for medicinal devices requires longer calendar life 

(chemical stability becomes more important), etc. Depending on the systems and 

applications, one or more standards mentioned above are more critical than others.  

 

The future directions for this topic should firstly be determining the limitations of 

current works. Most of the characterizations, especially the mechanical measurements, 

were carried out on the freshly made electrodes, or right after the formation cycle. 

However, the evolution of coatings, as well as the evolution of SEIs, should also be 

examined. The property change will continuously influence the performance of the 

electrode-coating systems.  
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Secondly, it will be interesting to see whether the conclusions presented in this 

dissertation can be tested on electrodes consisting micro- and nano-particles. In this 

research, thin-film electrode systems were used to facilitate the characterization of 

artificial/natural SEI. Some of the conclusions may be different if the coatings are applied 

to the surfaces of particle electrodes. 
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