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ABSTRACT OF DISSERTATION 

THE DEVELOPMENT AND BIOCOMPATIBILITY 
OF LOW TEMPERATURE CO-FIRED CERAMIC 
(LTCC) FOR MICROFLUIDIC AND BIOSENSOR 

APPLICATIONS 

Low temperature co-fired ceramic (LTCC) electronic packaging materials are 
applied for their electrical and mechanical properties, high reliability, chemical stability 
and ease of fabrication. Three dimensional features can also be prepared allowing 
integration of microfluidic channels and cavities inside LTCC modules. Mechanical, 
optical, electrical, microfluidic functions have been realized in single LTCC modules. For 
these reasons LTCC is attractive for biomedical microfluidics and Lab-on-a-Chip systems. 
However, commercial LTCC systems, optimized for microelectrics applications, have 
unknown cytocompatibility, and are not compatible with common surface 
functionalization chemistries.  

The first goal of this work is to develop biocompatible LTCC materials for 
biomedical applications. In the current work, two different biocompatible LTCC substrate 
materials are conceived, formulated and evaluated. Both materials are based from well-
known and widely utilized biocompatible materials. The biocompatibilities of the 
developed LTCC materials for in-vitro applications are studied by cytotoxicity assays, 
including culturing endothelial cells (EC) both in LTCC leachate and directly on the 
LTCC substrates. The results demonstrate the developed LTCC materials are 
biocompatible for in-vitro biological applications involving EC. 

The second goal of this work is to develop functional capabilities in LTCC 
microfluidic systems suitable for in-vitro and biomedical applications. One proposed 
application is the evaluation of oxygen tension and oxidative stress in perfusion cell 
culture and bioreactors. A Clark-type oxygen sensor is successfully integrated with 
LTCC technique in this work. In the current work, a solid state proton conductive 
electrolyte is used to integrate an oxygen sensor into the LTCC. The measurement of 
oxygen concentration in Clark-type oxygen sensor is based on the electrochemical 
reaction between working electrode and counter electrode. Cyclic voltammetry and

 



chronoamperometry are measured to determine the electrochemical properties of oxygen 
reduction in the LTCC based oxygen sensor. The reduction current showed a linear 
relationship with oxygen concentration. In addition, LTCC sensor exhibits rapid response 
and sensitivity in the physiological range 1─9 mg/L. The fabricated devices have the 
capabilities to regulate oxygen supply and determination of local dissolved oxygen 
concentration in the proposed applications including perfusion cell culture and biological 
assays. 

KEY WORDS: Low temperature co-fired ceramics (LTCC), Oxygen sensor, 

                          Microfluidic, Biocompatibility, Electrochemistry 
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Chapter 1 Introduction 

1.1 Motivation  

Microfluidic systems offer many advantages for biomedical diagnostics. 

Miniaturized features on microfluidic chips require less volume of solvents, reagents and 

cells. This is especially important for valuable samples and high-throughput screening. 

Microfluidic systems also offer the advantages of short reaction time, portability, low 

cost and integration with other miniaturized systems. This unique capability makes 

microfluidic technology a potential candidate for portable point-of-care medical 

diagnostic systems in global public health1, 2. The applications of microfluidic systems 

include separations coupled to mass spectroscopy3, high-throughput screening in drug 

development4, examination and manipulation of a single cell5 or single molecule6, 

bioanalysis7, cell biology8, chemical synthesis, disease diagnostics 9-12,  and drug testing 

13, 14. Microfluidic systems have also been used to separate deoxyribonucleic acid (DNA) 

for genetic diagnostics 15.  

Glass, silicon, steel have emerged as materials for the fabrication of microfluidic 

systems that require chemical, thermal and mechanical stability2. However, integration of 

electronic circuitry into those systems are complex and expensive16. Polymers, such as 

plastic and poly(dimethylsiloxane) (PDMS) based microfluidic systems are also 

fabricated with good mechanical flexibility and transparency. However, polymers can be 

dissolved in solvent, also not stable in high temperature and pressure2. The good 
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mechanical flexibility of polymers also makes it difficult in precise placement of the 

devices in tissues without flexing or breaking in medical diagnostics and bedside 

monitoring. 

Low temperature co-fired ceramic (LTCC) technology makes it very convenient to 

design and manufacture three-dimensional microfluidic ceramic systems with integration 

of complex functions. Low temperature co-fired ceramics (LTCC) consist of a ceramic 

substrate and any number of conductive, resistive and dielectric materials, which are 

assembled un-fired “green” in a layered process and consolidated into a functional device 

in a co-firing process, at a sintering temperature lower than 1000OC. LTCC technology 

has already been well established with low cost, high performance. 3D features including 

channels, via, cavities and internal electrical components can be created easily in LTCC 

systems. Mechanical, optical, electrical and fluidic functions have been realized in single 

LTCC module. The manufacture of the LTCC multilayer modules is a simple and fast 

process compared to traditional microfluidic silicone/glass micromachining. Miniaturized 

microfluidic LTCC systems have been used in flow sensors17, 18, optical detection 

sensor19, 20, biosensors21-23, chemical detection sensors24-31, and DNA detection32-34. The 

combination of microfluidics and electronics into one single monolithic LTCC systems 

will enable a wide range of biomedical diagnostic and bedside monitoring. The key 

aspects of various microfluidic technologies are compared to LTCC in Table 1.1. 
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Table 1-1: Comparison of key attributes of common microfluidic substrate architectures.  
(* Component costs of Glass and Silicon assume high volume manufacture, at low 
volumes capital/setup/yield considerations would increase costs by several orders of 
magnitude) 

Substrate 
Physical 

Patterning 
speed 

Electrical/Functional 
Integration 

Chemical/Physical 
Durability 

Costs: 
Start-

up/Component 

MLC 
Fast: Direct 

write, molding, 
punching 

Easy: single step 
screen printing High Moderate/Moderate 

(~$1 cm-2) 

PDMS 
soft 

lithography 

Fast: molding, 
punching 

Moderate: physical 
incorporation Unacceptable Low/Low 

(<$0.10 cm-2) 

Silicon 
Moderate: 

Chemical Etch, 
milling 

Moderate: Multistep 
(deposit, pattern, etch) 

Chemical: High 
Physical : Poor 

High/High 
(>$10 cm-2)* 

Glass 
Moderate: 

Chemical Etch, 
EXIMER Laser 

Moderate: Multistep 
(deposit, pattern, etch) 

Chemical: High 
Physical: Moderate 

Moderate/Moderate 
($10 cm-2)*35  

 

Commercial LTCC systems are available from Ferro, DuPont, Hereaus, and others. 

However, exact compositions of those systems are proprietary36. These, commercial 

LTCC systems have not been designed or approved for biomedical applications. Prior 

experimental studies by our group have shown that some elements in the commercial 

LTCCs may be leached out37. Some of the leached LTCC elements, such as heavy metals 

and Ni2+, may be toxic to cells in the cell culture. Dissolved Ni2+ can substitute for other 

divalent metals, such as Ca2+, Mg2+ and Zn2+, in enzymes and proteins and change the 

molecular structure. This may result in cell transformation and chromosome damage38. In 

order to increase the utility and acceptance of LTCC for biomedical applications, LTCC 

materials specifically designed for their biocompatibility should be developed. In the 

current work this will be achieved by starting with materials of known composition and 

biocompatibility. 
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The critical feature of LTCC technology being exploited for the current work is the 

possibility of integrating the microfluidic components, such as microchannels and 

reservoirs, with electronic and electrochemical functionality, including actuators and 

sensors. In order to demonstrate and advance these capabilities of LTCC technology the 

materials and methods required to integrate a lab-on-chip oxygen sensor into LTCC 

technology will be developed. Oxygen consumption is a very important index of the cell 

activity. It has been used to analyze the physiological response of the cells on exposure of 

chemical and physical stimulations39, 40. The measurement of oxygen concentration can 

be applied in clinical diagnostics, fermentation monitoring, pharmacological drug 

screening, tumor chemosensitivity and environmental toxicant monitoring39-44.  

1.2 Organization of the thesis 

The key goals of the present thesis are to understand the structure processing 

property relationships required to synthesize biocompatible LTCC for biomedical 

applications and to develop the materials and method required to integrate an oxygen 

sensor into LTCC for future microfluidic biomedical applications. 

The specific objectives of this thesis are: 

1. Design biocompatible LTCC materials: Commercial LTCC materials are not 

designed for biomedical applications. Biocompatible LTCC materials are needed 

which have been developed specifically for applications in the biomedical field. 

Alumina was used as the ceramic in LTCC, and low temperature glass frit was used 

as the flux to lower the sintering temperature and bond the alumina grains together. 

Basic material characterization methods were used to analyze the properties of the 
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materials. The densification of the green tape, phase evolution, structure 

characteristic and dielectric properties of the sintered LTCC were characterized. 

The biocompatibility of the LTCC was also evaluated through leaching the ceramic 

in cell culture media and cell growth on the surface of the ceramic 

2. Device applications: The goal of multilayer ceramic design is to apply the LTCC 

materials in the microfluidic systems to measure oxygen consumption of cells, 

which is an important parameter of cell activity.  LTCC microfluidic systems were 

integrated with Clark-type oxygen electrode.  The properties of fabricated LTCC 

based oxygen sensor were analyzed using electrochemical technique. 

Specific contents of each chapter are listed below: 

Chapter 1 introduce the motivation and organization of this thesis 

Chapter 2 provides the literature review of LTCC materials and technique and its 

application in microfluidic systems. The theoretical mechanism involving in sintering of 

ceramic is also reviewed. Finally, mechanisms of oxygen sensors involving luminescent 

sensing and electrochemical sensing techniques and the applications are discussed.  

Chapter 3 and 4 present the experimental works on the design and fabrication of 

biocompatible LTCC materials using ceramic filler and a low temperature glass. In 

chapter 3, a LTCC material is produced using Al2O3 ceramic filler and a commercial 

available soda-lime-silicate glass. In chapter 4, Al2O3 ceramic filler and an 

experimentally fabricated calcium alumina borosilicate glass are used to fabricate the 

LTCC material. Phase evolution, sintering properties, microstructure, dielectric properties 

and in vitro biocompatibility of the both developed LTCC material are analyzed.  
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Chapter 5 describes the design, fabrication and characterization of LTCC based 

Clark-type oxygen sensors. Solid state proton conductive electrolyte is used, and 

microfluidic function is realized in this device. 

Chapter 6 summarizes the research work of the thesis and future opportunities this 

research can be related with. 
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Chapter 2 Background 

Theoretical background related with the research work in this thesis is reviewed in 

this chapter. First, LTCC materials, processing and application in microfluidic systems 

are introduced. Second, the theories of ceramic sintering, especially sintering 

mechanisms with relevance to LTCC materials, are presented. Finally, the mechanism 

and applications of oxygen sensing, including luminescent optical sensing and 

electrochemical amperometric sensing techniques, are discussed. 

2.1 Low temperature co-fired ceramics (LTCC) 

Low temperature co-fired ceramics (LTCC) are widely utilized in the fabrication of 

compact, three dimensional, and highly integrated microelectronic components. Typical 

applications include military and mobile electronics applications requiring custom, 

hermetic, and/or high reliability packaging17, 19, 45, 46. These characteristics also make 

LTCC attractive for use in microfluidic and biomedical application19, 20, 26. 

2.1.1 LTCC materials 

Low temperature co-fired ceramics (LTCC) are a glass-ceramic composites with 

densification temperature lower than 1000OC. The LTCC was originally developed from 

high temperature co-fired ceramics (HTCC) in order to achieve low loss, high speed and 

high density package47. HTCC technology was originally developed in the late 50s and 

based on the technologies used in the substrate fabrication for current process, including 

green sheet fabrication technology, via forming technology, and multilayer laminate 

technology using the doctor blade48, 49. The HTCC was usually co-fired at the high 
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temperature of 1600 OC. Alumina insulating materials and conductor materials of Mo, W 

and Mo-Mn were used. However, materials with low electrical resistance, such as Cu, Au 

and Ag, were preferred in order to improve high speed transmission of signal50. LTCC 

materials were developed to be co-fired at low temperature, which is compatible with the 

sintering temperature of metals with low electrical resistance. The typical conductive 

metals used in the LTCC have high electric conductivity, including Ag, Cu, Au and their 

alloys (for example Ag-Pd, Ag-Pt, Au-Pt etc.)47. In addition, LTCC can be co-fired with 

support structure, resistive and dielectric materials in a furnace at the same time with 

sintering temperature lower than 1000OC.  

LTCC materials are available commercially in tape format (50-350 µm) and 

produced by tape casting of a ceramic slurry onto a polymer substrate such as Teflon®, 

Mylar®, or cellophane51. LTCC green (unfired) tapes are composed of ceramic particles, 

organic binder and fluxing materials. Organic binder is used to hold ceramic particles 

together, and make the green tape flexible. The fluxing materials are used to lower the 

sintering temperature. The most common ceramic filler is alumina, and nearly all 

commercial LTCC green tapes contains more than 50 vol% glass matrix, most between 

63 to 85 vol%46. The glass matrix in LTCC not only binds the ceramic together but also 

lowers the sintering temperature of the ceramic filler. Other ceramic fillers, were added to 

system to obtain LTCC with specific properties, such as high thermal conductive beryllia 

(BeO)52, ferroelectric barium strontium titanate (Ba0.7Sr0.3TiO3)53, and dielectric 

magnesium calcium titanate (MgCaTiO3)54. Standard ceramic processing is used to 

manufacture LTCC green tape, including ceramic powder preparation, colloidal 

processing, and tape casting technique55. 
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There are three possible approaches to formulate LTCC materials. The first way is 

based on a mixture of low melting temperature glass and high temperature ceramic filler. 

There is little reaction between the glass and ceramic powder, and the glass mainly acts 

as a binding agent between the ceramic grains. The second approach is through 

recrystallization. For example, the commercially available green tape Ferro A-6 is made 

of a crystallizable glass phase with low softening point. The glass recrystallizes to form 

the low loss dielectric ceramic wollastonite56. The third method is also a mixture of glass 

and ceramic powder, but the glass and ceramic will react with each other at the sintering 

temperature to form dense ceramic. An example of this kind of LTCC formulation is the 

Hereaus CT2000 system 57. This system consists of crystalline Al2O3, and a reactive B2O3, 

K2O, SiO2, CaO, SrO, and BaO glass phase. TiO2 has been added to acts as nucleating 

agent and dielectric anorthite-type crystalline is formed at the sintering temperature57. 

The glass phase helps densification of the ceramic.  

The recent trend in the LTCC development has been through the third type of 

reactive glass-ceramic systems. Typical glass systems used in LTCC include lime 

silicate58, borosilicate, lead borosilicate, and alkali earth borosilicate56, 57, 59. Many 

ceramic materials, such as ferroelectric perovskite, ferromagnetic spinels46, have been 

used depending on the required properties. Dielectric microwave ceramic has also been 

added as ceramic filler in LTCC for high frequency applications in wireless technology59, 

60. The ratio of ceramic and glass can be changed to obtain favorable sintering 

temperature and properties. Less glass can be added to retain the properties of the 

ceramic filler, and more glass can be added to lower the sintering temperature61. Table 2-

1 lists the properties of commercial LTCC materials.  
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Table 2-1: Properties of LTCC materials. Modified from the reference35, 45 

Properties DuPont 
DP 951 

DuPont 
DP 943 

Ferro 
A6M 

Heraeus 
CT 2000 

Heraeus 
HL2000 

Dielectric constant 7.85 7.5 5.9 9.1 7.3 
Dissipation factor 0.0045 0.001 0.002 0.002 0.0026 

Breakdown voltage 
(V/25 µm) > 1000 > 1000 > 1000 > 1000 > 800 

Resistance (Ωcm) > 1012 > 1012 > 1012 > 1013 > 1013 
Thickness – green 

(µm) 50, 112, 162, 250 125 125, 250 25, 50, 98, 127, 250 131 
Thickness – fired 

(µm) 42, 95, 137, 212 112 92, 185 20, 40, 77, 102, 200 87-94 

Shrinkage x,y (%) 12.7±0.3 9.5±0.3 14.8±0.2 10.6±0.3 0.16±0.24 
Shrinkage z (%) 15.0±0.5 10.3±0.3 27±0.5 16.0±1.5 32 
CTE (ppm/K) 5.8 4.5 7 5.6 6.1 
Thermal cond. 

(W/m.K) 3 4.4 2 3 3 

Density (g/cm3) 3.1 3.2 2.45 2.45 2.45 
Youngs Modulus 

(GPa) 152 - 92 - - 
Flexural Strength 

(MPa) 320 230 >170 310 >200 

Phase Structure α- Al2O3 
Ca(Si,Al)4O8 

α- Al2O3 
(Ca)Al2B2O7 
Ca(Si,Al)2O8 

CaSiO3 
MgSiO3 

SiO2 
CaB2O4 

α- Al2O3 
CaAl2Si2O8 

CaSiO3 

α- Al2O3 
CaAl2Si2O8 

CaSiO3 
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2.1.2 LTCC processing 

The fabrication of LTCC based devices starts from LTCC green tapes. LTCC 

green tapes are first cut into specific size in the standard LTCC process. Via holes and 

channels are patterned using mechanical punching or laser cutter. Electrical circuitry and 

interconnects, utilizing conductor, resistor and dielectric pastes, are produced by screen 

printing. Conducting holes (vias) providing electrical connectivity between tape layers 

are also filled with conducting pastes at this stage. The individual layers are then aligned, 

stacked together and laminated using uniaxial press under specified pressure and 

temperature. The laminated stack is co-fired to certain temperature to burn out organics 

and sintered at temperatures lower than 1000OC. The shrinkage (typically 10-15%) of the 

LTCC during the co-sintering should be carefully controlled and compensated in the 

design process. 

The sequence in the standard LTCC process is usually fixed, and more complex 

procedures are required to make mechanical microstructures in the LTCC. The sequence 

of the process is dependent on the structure of the LTCC and always contains some loops 

among mechanical processing, thick film printing and isostatic or uniaxial lamination. 

More than one step lamination is needed in most cases. Good workability is achieved in 

the “green” state, but mechanical processing in sintered LTCC is not feasible. Figure 2.1 

shows the LTCC preparation process. 
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Figure 2.1: Flow diagram of LTCC preparation processing from green tapes to sintering 

2.1.3. Applications of LTCC based microfluidic system 

The LTCC technology is commonly used for applications that require high 

packaging density and reliability, such as automotive and RF62. The LTCC technology 

has been used in the application of military, avionics and automotive areas, as well as in 

multi-chip modules (MCMs) for communications and computer applications in the last 

30 years46.  In most applications, the LTCC substrate works as a passive substrate for 
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electronic functions. However, the workability in the “green” non-sintered stage and 

flexibility of the layered manufacturing process allows integration of non-electronic 

functions very effectively. One of the important features of LTCC technique is the 

capability of fabricating three dimensional structures by stacking layers of green tapes. 

Features needed for a specific application can be designed on each layer of the green tape, 

including vias, cavities, channels, and electrical elements such as capacitors, resistors and 

conductors. Finally each layer of the green tape is stacked in a proper order. The design 

and manufacture of the LTCC substrate can be customize according to the applications.  

Silicon integrated circuit technology has been extensively used to combine 

microelectronics and micro-electromechanical systems (MEMS). The key advantage is 

the ability to densely fabricate and integrate micro and nano scale electrical and 

electromechanical components. However it requires costly purpose build facilities and 

equipment, and costs do not scale well for low volume production and/or large area 

macroscale devices46. The LTCC technology is widely used in the electronics for both 

specialty and high-volume fabrication of densely integrated multilayer printed circuit 

boards. The advantages of the LTCC processing methodology enables its’ application for 

the development and production of miniaturized total analysis systems (íTAS). These 

advantages includes: 1) inexpensive and direct fabrication of three-dimensional features, 

2) integration with passive electronic component, and 3) multilayer assembly16, 17, 46, 63-65. 

In certain applications (such as moderate volume or large area device), LTCC processing 

techniques can be a viable alternative to silicon micromachining. Additional advantages 

compared to traditional microfabrication substrates and methods (such as glass, silicon or 

polymers) including no need of special fabrication conditions ( as clean room), no need to 
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hermetically seal elements, “moldless” forming,  rapid prototyping, and highly scalable 

manufacturing16.  

One of the important advantages of LTCC technology is the easy integration of the 

three dimensional structures required for microfluidic components, such as 

microchannels, valves and chambers. LTCC has been previously demonstrated and 

commercialized in microfluidic systems for a variety of applications.  

Characteristics including high thermal isolation, chemical inertness, and integration 

of dense microfluidic networks has led to the successful development of LTCC based 

microfluidic systems in microreactor applications, including polymerase chain reaction 

(PCR) systems32-34, 66, 67. PCR is a powerful technique that can be used to copy DNA 

fragments through a sequential thermal cycling process, which can be further used to 

identify genetic diseases, cancer type, and human samples32. Microreactors for PCR 

require integration of multiple functionalities including mixing, heatering and 

temperature sensing. LTCC based PCR systems have been successfully developed and 

used for DNA measurement and amplification32-34.  

The 3D capability of LTCC processing also allows integration of multiple functions 

for microreactors. Microreactor systems developed by Smetana et al., not only contain a 

spherical reactor cell and channel for accumulation and mixing of reagent but also sensor 

arrays for monitoring hydrogen ions, oxygen, temperature and iodide as shown in Figure 

2.268, 69. LTCC-based devices have also been used for chemical detection and analysis20, 

24-31 including heavy metals26, pesticides25, organic compounds31, and toxic ions or 
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compounds in water27-30. A chromatographic apparatus for gas separations have also been 

developed in the LTCC substrate70. 

 

Figure 2.2: (a) Integrated device with inlet, outlet and optical fiber. (b) Inside view of the 
device with reactor cells and channels. Reprinted from reference68, 69. 

Microfluidic devices are also widely used in biosensing. Biosensors are used for 

detection and quantification of a wide range of various biological markers of health and 

disease. The sensitive and specific detection of biomarkers often relies on biological 

recognition through the integration of antibodies, enzymes, receptor proteins, nucleic acid, 

or cells used in the sensing elements. The easy integration of microfluidic functions with 
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electrical and mechanical components in the LTCC modules facilitates the development 

of suitable platform for biosensing systems. LTCC based biosensors have been developed 

to continuously monitor the glucose21 and to detect urea in biological fluids22. Antibodies 

and enzymes have also been immobilized on screen-printed LTCC and HTCC electrodes 

for electrochemical detection23. 

Microfluidic cell culture can provide important information for growth dynamics 

and the possibility of investigating physiological function and properties under 

application of mechanical and chemical stimuli. LTCC based microelectrode arrays have 

been used to monitor the change of media, growth of different species and toxicity level 

during cell culture71.  An LTCC-based micro cell analyzer integrating a fluorescence-

activated detection flow cytometer  has also been developed for detection and counting of 

bioparticles as shown in Figure 2.372.  

  

Figure 2.3: LTCC based module for cell analyzer. Reprinted from reference72.  
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2.2 Ceramic sintering theory 

This section describes current theory and mechanisms of ceramic sintering, and it 

includes four parts: solid state sintering, liquid state sintering, viscous sintering and non-

reactive liquid phase sintering. The sintering of glass-ceramic composite with a large 

volume of glass phase, such as LTCC, is controlled by the viscous flow of glass phase at 

the high temperature. Theories of both viscous sintering and non-reactive liquid phase 

sintering have been used to study the sintering mechanism of LTCC materials73-75. 

2.2.1 Solid state sintering 

Driving force for sintering 

The driving force for solid state sintering, 𝐷𝐹𝑆𝑇𝑆, is the reduction in the total free 

energy of the system76: 

∆𝐺𝑇 = ∆𝐺𝑉 + ∆𝐺𝑔𝑏 + ∆𝐺𝑠                                          (2.1) 

where ∆𝐺𝑉, 𝐺𝑔𝑏, and ∆𝐺𝑠 represents the change in free energy related with the volume, 

grain boundary, and surfaces of the grains respectively. If only the solid-vapor interface 

is removed during the sintering, the change in the surface free energy is described as  

∆𝐺𝑇 = ∆𝐺𝑠 = 𝛾𝑠𝑣×(Final surface area-Initial surface area)         (2.2) 

where 𝛾𝑠𝑣 is the solid-vapor interfacial energy. For spherical particles, the initial surface 

area per unit volume is given by 3/𝑎, where 𝑎 is the mean radius the ceramic particles. 

The driving force, defined as the force per unit area, is given by 
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𝐷𝐹𝑆𝑇𝑆 = 3𝛾𝑠𝑣 �
1
𝑎′
−

1
𝑎
�                                                  (2.3) 

where 𝑎′ is the mean radius of curvature after the sintering. In addition, local differences 

in free energy also lead to diffusion during sintering. Diffusion happens from a region 

with positive surface curvature to a region with a less positive, zero, or negative surface 

curvature. For the fully dense body, 3𝛾𝑠𝑣/𝑎 can be used to estimate the motivation for 

sintering 77.   

In hot pressing and hot isostatic pressing, an external compressive pressure is 

applied. This pressure provides extra driving force and enables sintering at lower 

temperature or fast sintering at constant temperature. The effect of the applied pressure 

on the driving force is given by 

𝐷𝐹𝑆𝑇𝑆 ∝ 𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 3𝛾𝑠𝑣
1
𝑎

                                          (2.4) 

Stages of sintering 

The ceramic green body is heated up to the temperature approaching the melting 

point of ceramic during the sintering. Grains and pores change in size and shape during 

the sintering. Elimination of pores results in densification or sintering of the ceramic. 

However pore shape change without an increase of the density only leads to coarsening. 

In case of densification, the average interparticle separation distance decreases. If the 

interparticle separation distance remains the same, coarsening happens. In classical 

sintering theory, sintering can be simplified and considered as three distinct stages: an 

initial stage, an intermediate stage and a final stage. 
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The driving force for the initial stage is the curvature difference between the 

particle surface and that of the neck. A more accurate assessment of the sintering driving 

force is described by the Gibbs free energy78. The change of the Gibbs free energy of the 

ceramic body at constant temperature without applied pressure, chemical reaction or 

phase evolution is given by 

∆𝐺 = ∆�𝛾𝑔𝑏𝐴𝑔𝑏� + ∆(𝛾𝑠𝑣𝐴𝑠𝑣)                                                        (2.5) 

where 𝛾𝑔𝑏, 𝛾𝑠𝑣 are the interfacial energies of the grain boundary (subscript 𝑔𝑏) and solid-

vapor surface (subscript 𝑠𝑣). And 𝐴𝑔𝑏  and 𝐴𝑠𝑣  refers to the area. The delta means the 

final state minus the initial states. The initial and final curvature of neck and particles 

surface gives the sintering driving force as described in the equation. The characteristic 

change occurring during the initial stage is neck formation. The initial stage also includes 

particle surface smoothing and rounding of pores. Grain boundaries form and only open 

pores exist. The six distinguishable diffusion paths of material transport, as shown in 

Figure 2.4, are the most probable mechanisms for neck growth. But not all these 

mechanism decrease the interparticle separation leading to densification. Surface 

diffusion, lattice diffusion and vapor transport at particle surface cause coarsening. 

Boundary diffusion, lattice diffusion at grain boundary, and plastic flow can lead to 

densification. The initial stage lasts until the neck reaches ~0.4-0.5 of the particle radius 

and there is an increase of the density to 65% of the theoretical density77. 
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Figure 2.4: Six pathways for material transport during the initial stage of sintering (taken 
from T. A. Ring76). 1: Surface diffusion at particle surface; 2: Lattice diffusion at particle 
surface; 3: Vapor transport at particle surface; 4: Boundary diffusion at grain boundary; 5: 
Lattice diffusion at grain boundary; 6: Lattice diffusion caused by plastic flow. Pathways 

1, 2 and 3 induce coarsening, where pathway 4, 5 and 6 lead to sintering. 

Intermediate stage starts after the pores reach their equilibrium shapes. In this stage, 

pores form continuous cylindrical channels at all three grain intersections.  The 

cylindrical pore simply shrinks to reduce the cross section resulting in densification in 

this stage. When the length to radius ratio exceeds a critical value, the cylindrical pore 

breaks up into isolated pores and the intermediate stage ends; this triggers the beginning 

of the final stage. Major densification occurs in this stage with density reaching ~90% of 

the theoretical value. Densification mechanism includes lattice diffusion and grain 
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boundary diffusion at grain boundary. Plastic flow is not considered to lead to a 

significant effect in single phase ceramic systems in the absence of a liquid phase.  

The final sintering stage consists of the removal of these closed pores. The removal 

of the pores will decrease the energy of the system. As the curvature of the pore increases, 

the driving force increases. The curvature of the pore is dependent on the dihedral angle 

and number of grains the pore contacts. The dihedral angle, 𝜓, has a relationship between 

𝛾𝑔𝑏 and 𝛾𝑠𝑣 : 

𝛾𝑔𝑏
2𝛾𝑠𝑣

= 𝑐𝑜𝑠
𝜓
2

                                                                         (2.6) 

The dihedral angle is only dependent on the interfacial energy79. As the dihedral 

angle increase, the curvature of the pore increase. As the grain growth occurs, the number 

of grains around pores decreases so the curvature of the pores increase and the pores will 

shrink leading to densification. However, the diffusion path increases resulting in slow 

shrinkage process. Lattice diffusion and grain boundary diffusion at the grain boundary 

play an important role in the pore reorganization. The isolated pores will migrate into the 

region with lowest energy. The intersection of four grains has the lowest energy in three 

dimensions. The pores at the intersection of four grains can disappear in a stable way 

during the sintering. However, grain growth at expense of others, discontinuous grain 

growth, traps the holes inside a grain. Once a pore is trapped, it is difficult to eliminate. 

Then the final density is less than the theoretical value. The final stage sintering is the 

most important for ceramic applications as it determines ultimate properties of the 

material.  
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2.2.2 Liquid state sintering 

Liquid phase sintering has been frequently used to lower the sintering temperature 

of ceramics. The presence of a liquid phase in the system can enhance densification. First, 

if the liquid can wet the ceramic surface and spreads around the ceramic particle, there 

will be a liquid bridge between ceramic particles.  The friction between the ceramic 

particles can be greatly reduced, and rearrangement of the ceramic particle can be 

improved. Second, the liquid provides a faster pathway for matter transport. The liquid 

bridge between the ceramic particles is many time larger than grain boundary in solid 

state and the diffusion in the liquid phase is much faster than in solids. 

The basic requirement for liquid phase sintering is a good wetting of the solid by 

the liquid. The degree of wetting is controlled by the contact angle 𝜃, which is related 

with the interfacial energy, 𝛾, for the solid-vapor (𝑠𝑣), solid-liquid (𝑠𝑙), and liquid-vapor 

(𝑙𝑣) interfaces80: 

𝛾𝑠𝑣 = 𝛾𝑠𝑙 + 𝛾𝑙𝑣𝑐𝑜𝑠𝜃                                                           (2.7) 

The spreading of liquid is governed by80: 

𝑆𝑙/𝑠 = 𝛾𝑠𝑣 − 𝛾𝑠𝑙 − 𝛾𝑙𝑣                                                       (2.8) 

where 𝑆𝑙/𝑠 is the spreading coefficient. When 𝑆𝑙/𝑠 is positive, spreading occurs. 

Densification during liquid phase sintering is dependent both on the contact angle 

and dihedral angle. The dihedral angle, 𝜓, is defined by 81: 
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𝑐𝑜𝑠
𝜓
2

=
𝛾𝑠𝑠

2𝛾𝑠𝑙
                                                                    (2.9) 

It has also been used to estimate the liquid penetration of the grain boundary and 

the shape of the liquid and the grains. For 𝛾𝑠𝑠
𝛾𝑠𝑙
≥ 2, the dihedral angle equals to 0O, and the 

liquid will penetrate through the grain boundary, all grains will be separated by the liquid 

phase. For √3 < 𝛾𝑠𝑠
𝛾𝑠𝑙

< 2, the dihedral angle takes the value between 0O and 60O, the 

liquid will penetrate through all three-grain boundary junctions but partially penetrate 

through the two grain interfaces. For 1 < 𝛾𝑠𝑠
𝛾𝑠𝑙

≤ √3, the dihedral angle is from 60O to 120O, 

and isolated liquid phase forms and partially penetrates through the three-grain junctions. 

If  𝛾𝑠𝑠
𝛾𝑠𝑙

< 1, and then the dihedral angle is larger than 120O, and isolated liquid phase only 

forms at the four-grain junctions. 

The chemical reactions between glass and ceramic particles are relatively weak in 

most liquid-phase sintering systems, so the interfacial energies are the dominant factors 

that control sintering. The driving force for liquid phase sintering is the reduction of the 

liquid-vapor interfacial area. For liquid bridge between two grains, the pressure 

difference is76: 

∆𝑝 = −
2𝛾𝑙𝑣𝑐𝑜𝑠𝜃

𝑑
                                                               (2.10) 

where 𝑑 is the distance between the grains. The pressure within the liquid is less than the 

external pressure. This pressure difference exerts a compressive force on the ceramic 

body. This compressive force is responsible for the particle rearrangement. For a 

spherical pore with radius, 𝑟, the  pressure difference becomes: 
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∆𝑝 = −
2𝛾𝑙𝑣
𝑟

                                                                 (2.11) 

The pressure difference also generates a compressive capillary force on the particles, 

and provides substantial driving force for sintering. 

Stages of sintering 

There are three stages in the liquid-phase sintering: liquid redistribution and particle 

rearrangement, solution-precipitation and final densification as shown in Figure 2.5. 

The glass phase melts as the sintering temperature increases, and capillary pressure 

causes the liquid flow, leading to the redistribution of the liquid and particle 

redistribution. The ceramic particles initially slide over one another, and then a glass 

bridge is built up between grains. Substantial particle rearrangement will take place to 

achieve a maximum packing and a minimum pore surface. The rearrangement is difficult 

when the liquid volume is small. Kingery82, 83 describes the rearrangement happens 

initially by viscous flow and is followed by plastic flow with an effective yield point, and 

derives the relationship of the shrinkage of the composite with time: 

∆𝐿
𝐿0

=
∆𝑉
3𝑉0

~𝑡1+𝑦                                                    (2.12) 

where t is time, ∆𝐿  and ∆𝑉  are the change in length and volume, 𝐿0  and 𝑉0  are the 

original length and volume,  𝑦  is positive constant with value less than one. Full 

densification can be achieved through rearrangement if sufficient liquid is present. 

Complete densification requires additional sintering process for systems with less than 35 

vol% glass phase82. 
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Figure 2.5: Schematic of the microstructure evolution of the three stages in the liquid-
phase sintering (taken from R. M. German84). 

Once rearrangement has been significantly slowed, the solution-precipitation 

process becomes dominant mechanism if the solid is soluble in the liquid. If there is 

insufficient liquid, further densification is dependent on the solid diffusion through the 

liquid. If the solid is not soluble in the liquid, then diffusion happens through solid-state 

densification.  For solution precipitation, the solid first dissolves into the liquid, 

preferentially from high energy region, and the dissolved solid diffuses through the liquid 

phase. Finally, the dissolved solid precipitates on the concave region, or large grains. 

Pores remains in the composite after the first stage especially for systems with low 

volume of glass. Solution-precipitation is the most important step to reach full 
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densification. There are three mechanisms for densification in this stage as shown in 

Figure 2.6. The first one is contact flattening described by Kingery82. The compressive 

capillary force exerted by a wetting liquid pull the grains together. The chemical potential 

or solubility at the contact point is significantly higher than that at other solid surfaces, 

and this provides a driving force for matter transport away from the contact points, 

leading to reduced center-center distance and densification. The second mechanism for 

densification is Ostwald ripening77, which involves dissolution of small grains and 

precipitation of large grain. Ostwald ripening does not lead to densification, however, 

grain shape accommodation occurs via Ostwald ripening, which improves the grain 

packing and reduces overall interfacial energy. The third mechanism involves growth of 

the intergrain contact through diffusion along the liquid wetted grain boundary84. The 

increased intergrain contact changes the grain morphology and increase the density. 

In the intermediate stage, if mass transport is controlled by interfacial events, it is 

reaction controlled solution-precipitation. The sintering shrinkage given by Kingery82 is 

described as: 

�
∆𝐿
𝐿
�
2

=
𝑔1𝑘𝛺𝛾𝑙𝑣𝑡𝐶
𝑅𝑇𝐺2

                                                          (2.13) 

where 𝑔1 is geometric constant, 𝑘 is the reaction rate constant, 𝑡 is the time, 𝐶 is the solid 

concentration in the liquid, 𝛾𝑙𝑣 is the liquid–vapor surface energy, 𝛺 is the atomic volume 

of the solid, 𝑅 is the gas constant, 𝑇 is the absolute temperature, 𝐺 is the solid grain size. 

If the matter transport is controlled by diffusion in the liquid, it is diffusion controlled 

solution-precipitation. The sintering shrinkage from Kingery82 is given by: 
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�
∆𝐿
𝐿
�
3

=
𝑔2𝛿𝑙𝛺𝛾𝑙𝑣𝐷𝑠𝑡𝐶

𝑅𝑇𝐺4
                                                   (2.14) 

where 𝛿𝑙 is the liquid layer thickness, 𝐷𝑠 is the diffusivity of the solid in the liquid, 𝑔2 is 

the geometric constant. 

The final stage of liquid phase sintering is driven by the residual porosity in the 

liquid, however, the densification rate decreases significantly. Microstructural coarsening 

by the Ostwald ripening becomes the dominant process. In the final stage, the porosity is 

less than 8%. If the pores are treated as isolated near spheres, the densification rate is 

given by85: 

𝑑𝜌
𝑑𝑡

=
12𝛺𝐷𝑠𝐶
𝑅𝑇𝐺2

𝛽 �
4𝛾𝑙𝑣
𝑑𝑃

− 𝑃𝐺�                                         (2.15) 

where 𝜌 is the relative density, 𝛽 is the pore density factor, 𝑃𝐺  is the gas pressure, 𝑑𝑃 is 

the pore size. 
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Figure 2.6: The three mechanism for densification during solution-precipitation in liquid 
phase sintering: (a) contact flattening, (b) Ostwald ripening, (3) solid-state bonding. 

(taken from R. M. German84). 

2.2.3 Viscous sintering 

For sintering of glassy materials, the mechanism of viscous flow is most 

significant86. The definition of viscous flow is given by87: 

𝑓 = 𝜂𝜀̇                                                         (2.16) 

where 𝑓 is the acting stress, 𝜂 is the viscosity, 𝜀̇ is the strain rate. For the occurrence of 

viscous flow, the stress is produced by surface tension. In the case of metals, viscous flow 

may not be observed, and the rate of sintering by the mechanism of viscous flow is much 

slower than that by volume diffusion. In the case of glass materials, the viscosity is very 

low at high temperature, and the sintering rate due to viscous flow should be much faster. 
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To model the sintering process analytically, three stages are used to define the 

process: initial stage, intermediate stage, and final stage. In the sintering of amorphous 

materials, the initial stage is characterized by rapid interparticle neck growth. Those sharp 

neck regions become smoothed with a network of inter-connected pores in the 

intermediate stage. In the final stage, only a uniform fluid with isolated pores exists88. 

Frenkel89 introduces a two spheres model for the initial stage regarding the neck growth 

rate between two spherical particles in contact. Frenkel has shown that if the bonding of 

two spheres occurs by viscous flow, the rate of initial neck growth is given by 

𝑥
𝑅

= �
3𝛾

2𝜂𝑟
�
1/2

(𝑡)1/2                                             (2.17) 

where 𝑅 is the radius of the sphere, 𝑥 is the distance between the center of the sphere and 

contact line, 𝑡 is the time, 𝑟 is the negative radius of the curvature in contact of the two 

spheres. The shrinkage rate is determined by: 

∆𝑉
𝑉0

=
3∆𝐿
𝐿0

=
9𝛾

4𝜂𝑅
𝑡                                                (2.18) 

Scherer90, 91 introduced a cylindrical model for the intermediate stage. An ideal 

cubic array of cylinders densifies by viscous flow driven by the reduction of surface 

energy in his model, which can be applied for sintering of materials with initial low 

density. The theory of viscous flow of Frenkel has been developed in the works of 

Mackenzie and Shuttleworth86, 92. Mackenzie and Shuttleworth consider an ideal large 

body with closed spherical pores in the final stage, and the relationship with the time and 

density are derived as: 
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𝛾𝑛
1
3

𝜂
(𝑡 − 𝑡0) =

2
3
�

3
4𝜋
�
1/3

�
𝑑𝜌

(1 − 𝜌)
2
3𝜌

1
3

𝜌

0
                               (2.19) 

where 𝑛 is number of pores per unit volume, 𝜌 is the relative density, 𝑡0 is an arbitrary 

chosen constant corresponding to 𝜌 = 0. 

2.2.4 Non-reactive liquid phase sintering 

Ewsuk et al. proposes a non-reactive liquid-phase sintering model to explain to 

sintering behavior of low temperature sintering ceramic filled glass composites 74, 75. 

According to this model, the densification process includes three stages: glass 

redistribution, grain rearrangement and viscous sintering. The microstructure evolution of 

the three stages is shown in Figure 2.7.  

The driving force in all three stages is to reduce the total volume free energy of the 

system. In the first stage, the driving force is the reduction of higher energy solid-solid 

and solid-vapor interface and creation of lower energy solid-liquid interfaces. The 

sintering stress or driving force, 𝐷𝐹, in glass redistribution is described as: 

𝐷𝐹𝑅𝑒𝑑𝑖𝑠 =
𝛾𝑙𝑣𝑐𝑜𝑠𝜃

𝑟
                                             (2.20) 

where 𝑟 is the radius of the curvature of the cylindrical pore channels. 𝛾𝑙𝑣 is the glass 

surface tension. 𝜃 is the wetting angle. 

As shown in Figure 2.7, the glass becomes liquid in the first stage and fills the 

capillary pore channels between the ceramic particles in the ceramic-rich region. No 

densification occurs in this stage. For a glass with viscosity, 𝜂, the time, 𝑡, required to 
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infiltrate the cylindrical pore channels with radius, 𝑟, a distance, ℎ, in the initial stage is 

defined as: 

𝑡𝑅𝑒𝑑𝑖𝑠 = �
ℎ𝜋
2
�
2

�
2𝜂

𝑟𝛾𝑙𝑣𝑐𝑜𝑠𝜃
�                                         (2.21) 

 

Figure 2.7: Microstructure evolution of the three stage in nonreactive liquid phase 
sintering model proposed by Ewsuk et al. Reprinted from the reference 74. 

The driving force in the intermediate stage is to balance the force on the filler 

particles caused by solid-vapor, solid-solid and liquid-vapor interfaces. The grain 

rearrangement force, 𝐹𝑔𝑟𝑎𝑖𝑛, equals to the force drawing the ceramic filler into glass, 𝐹1, 

minus the force drawing the particle into adjacent pores, 𝐹2: 

𝐹𝑔𝑟𝑎𝑖𝑛 = 𝐹1 − 𝐹2 = 2𝜋𝛾𝑙𝑣𝑅𝑠𝑖𝑛(𝜑 + 𝜃) − 2𝜋𝛾𝑙𝑣
𝑅2

𝑟
𝑠𝑖𝑛𝜑              (2.22) 

where 𝑅 is ceramic particle radius, and 𝜑 is the geometric factor related with the solid-

vapor-liquid intersection.  
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When 𝜑 = 90𝑜 , the maximum force 𝐹𝑔𝑟𝑎𝑖𝑛 is achieved. At the onset of the 

intermediate stage, strong grain rearrangement force favors pores closure. In a composite 

containing a good wetting glass, at the end of intermediate stage, the glass encompass the 

ceramic filler and only gross pores exists with 𝜑  reaching to 0O eventually. The 

intermediate stage is responsible for the main densification, and the density increases 

from 65% to ~90% of theoretical density and the gross pores are closed.  

In the final stage, only glass incorporated pores exist and there is no solid-vapor 

interface. The driving force for the first and intermediate stages disappears. The 

densification is controlled by viscous flow. The driving force for elimination of spherical 

pores is defined as: 

𝐷𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =
2𝛾𝑙𝑣
𝑟

                                                  (2.23) 

where 𝑟 is the radius curvature of the assumed spherical pores. For ceramic filled glass 

with dispersion viscosity, 𝜂𝑠, the time required to eliminate the spherical pores, 𝑡𝑣𝑖𝑠𝑐𝑜𝑢𝑠, 

has the expression: 

𝑡𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =
2𝑟𝜂𝑠
𝛾𝑙𝑣

                                                 (2.24) 

The relationship between the dispersion viscosity and fraction packing density of 

the filler particles, ∅, is described by: 

𝜂𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝜂𝑠
𝜂

= �1 +
𝑘

1
∅ −

1
∅𝑚𝑎𝑥

�

2

                            (2.25) 

where ∅𝑚𝑎𝑥 is the maximum packing density of the ceramic filler, and 𝑘 is a constant. 

The dispersion viscosity plays essential role in the time required to eliminate the residual 

10% enclosed pores. To ensure high densification, glass with low viscosity is required for 
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ceramic filled glass with high filler concentration. Likewise, glass with high viscosity is 

acceptable for composites with low filler concentration. 

In this model, both low viscosity and low wetting angle are necessary to obtain high 

densification for ceramic filled glass. The glass wets the filler in the first and second 

stage of sintering and low viscosity glass fills the gross pores in the final stage. The 

viscous flow is only responsible for the final stage during the sintering. For non-wetting 

behavior (𝜃 > 90𝑂), and then cos𝜃 < 0, and it further leads to repulsion force 𝐷𝐹𝑅𝑒𝑑𝑖𝑠 <

0, which indicates the glass can’t fill the capillary pores between the filler ceramic. Glass 

redistribution will not occur for non-wetting glass, and therefore no shrinkage takes place; 

instead of that, swell may happen. Ewsuk et al. described a composite with a non-wetting 

behavior exhibits poor densification in comparison with a glass with good wetting 

behavior 75.  

Kemethmuller et al. ’s work73 explains densification for glass-ceramic composite 

occurs by viscous flow although the glass does not wet the ceramic filler in the entire 

temperature range. For sintering of glass-ceramic composite with glass volume higher 

than 60%, the effect of the capillary force can be neglected and the wetting behavior is 

not decisive for the densification. The sintering process is predominantly controlled by 

the viscosity of the glass independent of the wetting behavior of the glass on the filler. 

The glass grains melt at first with sintering temperature increase, and then the glass fills 

the pores by viscous glass flow. The viscosity of the glass during sintering is the most 

important parameter for full densification. The schematic densification mechanism is 

shown in Figure 2.8.  
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Figure 2.8: Densification process of ceramic-filled glass composite by viscous flow. 
Reprinted from the reference73. 

2.3 Oxygen sensing for biological and microfluidic applications 

Cells consume the nutrients and oxygen to produce cellular energy, so oxygen 

consumption is a very important index of the cell activity. Microfluidic oxygen sensing 

has been used to analyze the physiological response of the cells on exposure of chemical 

and physical stimulations39, 40. Nutrients and oxygen supply are also very important for 

tissue engineering which emerges for the needs of the replacement of damaged or 

repaired tissues. Assessment of oxygen consumption and demand for the tissue is also of 

great importance93. Two common microfluidic techniques to detect dissolved oxygen in 

small sample volumes are luminescent optical sensing and electrochemical sensing. The 

mechanism of the optical oxygen sensors is based on the fact that the luminescent light 

emitted from the sensor is quenched in a concentration-dependent manner94. Fluorescent 

oxygen sensors have been introduced for real-time monitoring of the oxygen distribution 

in aqueous solutions and in tissue95. Electrochemical sensing mainly manifests as Clark-

type oxygen sensor. Clark-type oxygen sensor is a kind of oxygen sensor containing 

Clark oxygen electrode which takes advantage of electrochemical reaction involving 
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oxygen. It has been used to monitor and analyze respiration of mitochondria oxidative 

enzymes, and oxygen partial concentration in blood, in vitro organ respiration, respiration 

of aquatic organisms and photosynthesis of aquatic plants39, 40, 96-99. 

2.3.1 Luminescent oxygen sensor 

One type of optical oxygen sensor is based on the quenching of fluorescence of the 

fluorescent dyes in the presence of the oxygen. The processes involved in the 

fluorescence-quenching systems are in the following processes100: 

M+hv→M*          Photon absorption (Ia)                             (2.26) 

M*→M+hv          Luminescence (kr)                                   (2.27) 

M*→M+∆          Nonradiative decay (knr)                           (2.28) 

M*+O2→M+ O2* Collisional quenching, no emission (kq)            (2.29) 

The presence of a quencher O2 will consume the molecule in the excited state M*, 

which will results in the more rapid depletion of the excited-state population. It manifests 

as either a decrease in the steady-state luminescent intensity or as a shorter emission 

decay time. The change of fluorescence intensity and lifetime can be used to quantify the 

concentration of analyte. 

For luminescent oxygen sensor, the oxygen molecule acts as a quencher. Stern-

Volmer equations describe the relationship between the fluorescence intensity 𝐼  or 

lifetime 𝜏 as the following equations101-103: 
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𝐼0
𝐼

= 1 + 𝐾𝑆𝑉𝑆 [𝑂2] = 1 + 𝐾𝑆𝑉𝐺 𝑝𝑂2                                          (2.30) 

𝜏0
𝜏

= 1 + 𝐾𝑆𝑉𝑆 [𝑂2] = 1 + 𝐾𝑆𝑉𝐺 𝑝𝑂2                                         (2.31) 

𝐾𝑆𝑉𝑆 = 𝑘𝑑𝑠𝜏0      𝐾𝑆𝑉𝐺 = 𝑘𝑑𝐺𝜏0                                          (2.32) 

where 𝐾𝑆𝑉𝑆  and 𝐾𝑆𝑉𝐺  are the Stern-Volmer quenching coefficient for solution and gas 

respectively; [𝑂2] is the oxygen concentration; 𝑝𝑂2 is the partial pressure of oxygen gas; 

𝐼0 and 𝜏0 are the fluorescence intensity in absence of the oxygen respectively; 𝑘𝑑𝑆 and 𝑘𝑑𝐺  

are the bimolecular quenching constants for solution and gas respectively.  

The operation of luminescent based oxygen sensor is based on the phenomena of 

luminescent quenching by oxygen. Since the oxygen quenches the luminescence in the 

intensity and lifetime, there are two inherently different methods to measure the oxygen 

concentration by the luminescent probes. 

The first method to determine the oxygen concentration is through measuring the 

luminescent intensity directly. Figure 2.9 shows simplified example setup for intensity-

based optical oxygen sensing. The luminescent dye is excited by the filtered light from 

excitation source, which is matched with the excitation spectrum of the luminescent dye. 

The emitted luminescence passes through a filter to remove the extraneous light, and is 

detected by the detector probe. The advantages of this technique are simplification of the 

setup and compatibility with standard fluorescent microscopy equipment and techniques. 

However, intensity-based sensing has several disadvantages, which include sample 

absorption or scattering, detection optics and excitation light, susceptibility to 

36 
 



 

photobleaching and leaching, intensity dependence on dye layer concentration, film 

thickness, light-source intensity and the efficiency of transmission optics100, 104, 105. 

 

Figure 2.9: Simplified example setup for intensity-based optical oxygen sensing. 
Reprinted from the reference104. 

The second method is based on the detection of the luminescent lifetime in either 

time domain or frequency domain. The advantage of the luminescent lifetime 

measurement is inherent stability. The most commonly used lifetime-based detection 

method is based on the “pulse to and gate” method as shown in Figure 2.10.  

In general, the excitation light is applied by a square-wave pulse. And the lifetime 

of the luminescence in time domain is determined by the equation104:  

 𝜏 =
𝑡2 − 𝑡1

𝑙𝑛 �𝐴1𝐴2
�

                                                          (2.33) 
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Figure 2.10: Illustration of “pulse-and-gate” time-domain luminescence lifetime detection. 
Reprinted from the reference104.  

The fluorescent lifetime can also be determined in frequency domain by the 

calculation the phase shift (𝜃) between the reference signal (modulated excitation light) 

and the fluorescent detection signal via phase-based fluorescent lifetime detection. The 

lifetime 𝜏 and phase shift (𝜃) are related by the equation106: 

tan(𝜃) = 2𝜋𝑣𝜏                                                    (2.34) 

where 𝑣 is the modulation frequency. This method uses one window during the excitation 

pulse and the other after the pulse to determine the phase shift. The optimal modulation 

frequency can be determined from the 𝜏0  and 𝜏  (unquenched and quenched lifetime) 

using the equation104: 

2𝜋𝑣 =
1

�𝜏0𝜏
                                           (2.35) 

The disadvantages of the frequency-domain lifetime measurements are the need for 

the emission filter and incapability to separate the luminescent background.  
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This assay has been used to monitor the viability of the cells under the treatment of 

the toxic agents and under the influence of the physiological inducer such as cell death107. 

The method can be used to determine cell viability and cell growth as a predictable, 

reliable, and fast high-throughput technique107. The optical oxygen sensor has also been 

designed to monitor the respiration rate of cells in localized environment, such as 

microwell, or microchannel, a wide range of biological applications in cell-based 

biosensing, toxicology, and drug discovery106, 108. Microfluidic functions for cell culture 

can be integrated with luminescent oxygen sensor through the technique of soft 

lithography, which includes casting transparent and biocompatible PDMS structures with 

closed microfluidic channels and chambers bonded to another substrate109. Those kinds of 

microfluidic device has been used to culture different types of cells in interconnected 

chambers, trap single cell in defined environment to evaluate the oxygen consumption 

rate110, 111, provided a platform for simulating animal testing under chemicals and 

pharmaceuticals112, control and quantify the oxygen gradient in the cells’ environment109, 

113. Oxygen gradients in engineered tissue have also been determined by using a 

fluorescent sensor94. Figure 2.11 shows an illustration of the microfluidic device with 

integrated optical oxygen sensor. 

The advantages of this optical oxygen sensor are lack of electrical connection, no 

consumption of oxygen molecule, and longtime stability due to inherent properties when 

using luminescence lifetime detection technique114. 

However, the optical oxygen sensor requires setup of optical detection systems. In 

most cases, the luminescent indicator for optical oxygen sensor uses shortwave excitation 

and suffers from small Stroke shift, which leads to requirement of complex measurement 
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instrumentation115. The optical oxygen sensors also require the immobilization of the 

appropriate reagent (luminescent dye) on or near the optical fibre or waveguide. Those 

methods for immobilization are often complex, in most case, lack of reproducibility116. A 

general technique for fabricating low cost, reliable oxygen sensor needs to be developed. 

 

Figure 2.11: (a) Illustration of the microfluidic device with integrated optical oxygen 
sensor, (b) Image of the fabricated device, (c) Microstructure of the microfluidic 

multiplexor and oxygen concentration gradient generator. Reprinted from the reference109. 
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2.3.2 Electrochemical amperometric sensing: Fundamentals of electrochemistry 

Electrochemical analysis has been studied for centuries. It has been used to study 

the relationship between electricity and chemistry, or measure the electrical quantities, 

such as current, potential, and charge, and their relationship to chemical parameters, such 

as rate constants, equilibrium values, ionic concentration, and reaction mechanism of 

numerous chemical systems117, 118.  

Electrochemical reactions takes place at the electrode-solution interface, and the 

electrode surface is the junction between an ionic conductor and an electronic conductor. 

Electrochemical measurement systems typically contain three electrodes: a working 

electrode, a counter electrode and a reference electrode. The working electrode 

corresponds to the targeted analytes. The size is usually kept the smallest, so the current 

density is highest at the working electrode and most of the potential drops at the vicinity 

of working electrode. The potential of reference electrode is constant and independent of 

the solution. Measurement of electrochemical system is usually based on three electrode 

configurations in order to reduce parasitic contributions of the electrode system, 

including resistive drop in the media due to current or polarization of electrode surface. 

Since there is no or little current flow between working electrode and reference electrode, 

the potential measured between those two electrodes is mainly the potential drop at the 

working electrode. The voltage potential between the working electrode and reference 

electrode is controlled by dynamically adjusting the potential across working electrode 

and counter electrode119. 
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Two principal types of the electroanalytical measurements with three electrode 

configurations are potentiometric and potentiostatic117. The potentiometric method 

measures the resultant voltage between the working electrode and reference electrode by 

forcing a current from working electrode to the counter electrode. The controlled-

potential (potentiostatic) technique is based on a dynamic situation, and the resultant 

current due to an electron-transfer reaction is measured under the electrode potential 

drive. The current response is related to the concentration of the targeted analyte.  

The study of electrochemical systems is based on the basic principles of 

thermodynamics and fluid mechanics. Thermodynamic is used to study the chemical 

potential at different states, and fluid mechanic is to determine the transport of the 

analytes. The basic reaction of electroactive species is either oxidation or reduction 

according the following redox process: 

O + 𝑛𝑒− ⇆ R                                                        (2.36) 

where O and R are the oxidized and reduced forms, respectively. 𝑛𝑒−  reperents the 

number of transferred electrons during each reaction. Such reaction will occur in the 

potential region that makes the electron transfer thermodynamically favorable.  

If the electrochemical systems obey the law of the thermodynamics, the potential of 

the electrode can be used to determine the concentration of the electroactive species at the 

electrode surface according to the Nernst equation: 

𝐸 = 𝐸0 +
2.3𝑅𝑇
𝑛𝐹

𝑙𝑜𝑔
𝐶𝑜(0, 𝑡)
𝐶𝑅(0, 𝑡)

                                              (2.37) 

42 
 



 

where 𝐸0 is the standard potential for the redox reaction. 𝑅 is the universal gas constant 

(8.314 JK-1mol-1). 𝑇  is the Kelvin temperature. 𝐹  is the Faraday constant (96,487 

coulombs). 𝐶𝑜(0, 𝑡)  and 𝐶𝑅(0, 𝑡)  are the concentration of the oxidized species O and 

reduced species R at the electrode surface at time 𝑡. The Nernst equation describes the 

relationship of the equilibrium potential of the electrochemical systems with the 

concentration of the ions in the systems. This equation has been used to exploit the 

fabrication of pH sensor where the equilibrium potential is linearly related with the log of 

the ratio of the hydrogen ions in the inner and outer solutions across the membrane.    

The mass transport of electroactive species can occur by three different mechanisms: 

diffusion, convection and migration. Diffusion is the spontaneous transport of the species 

from regions of high concentration to the region of low concentration under the influence 

of the concentration gradient. Convection is the movement of species to the electrode 

under a physical influence such as stirring or flowing the solution, rotating or vibration 

the electrode. Migration is the movement of the charged species within an electrical field. 

The overall flux (𝐽) for the transport of the chemical species at a fixed point (𝑥) and time 

(𝑡) is determined by a differential equation117: 

𝐽(𝑥, 𝑡) = −𝐷
𝜕𝐶(𝑥, 𝑡)
𝜕𝑥

−
𝑧𝐹
𝑅𝑇

𝐷𝐶
𝜕𝛷(𝑥, 𝑡)
𝜕𝑥

+ 𝐶(𝑥, 𝑡)𝑉(𝑥, 𝑡)                 (2.38) 

where 𝐷 is the diffusion coefficient (cm2s-1), 𝑧 and 𝐶 are the charge and the concentration 

respectively. 𝜕𝐶/𝜕𝑥  is the concentration gradient. 𝜕𝛷/𝜕𝑥  is the potential gradient. 

𝑉(𝑥, 𝑡)  is the hydrodynamic velocity in the x direction. The current (i) is directly 

proportional to the flux (J): 
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𝑖 = −𝑛𝐹𝐴𝐽                                                            (2.39) 

where 𝐴 is the electrode surface. 

If the transport of electroactive species is limited by the diffusion, the flux equation 

is reduced to a simplified equation only dependent on the concentration gradient, which is 

Fick’s first law: 

𝐽(𝑥, 𝑡) = −𝐷
𝜕𝐶(𝑥, 𝑡)
𝜕𝑥

                                          (2.40) 

Many electrochemical systems are controlled by the diffusion process. 

If the diffusion coefficient is independent of the spatial position, the Fick’s second 

law for species O is presented as: 

𝜕𝐶𝑂(𝑥, 𝑡)
𝜕𝑡

= 𝐷𝑂
𝜕2𝐶𝑂(𝑥, 𝑡)

𝜕𝑥2
                                            (2.41) 

Fick’s second law has been extensively used to predict the spatial distribution of 

species concentration with time in one dimensional case. This equation can provide 

specific solution for situation constrained by boundary conditions.  

Diffusion limited response under semi-infinite boundary condition 

For an experiment in which the potential instantaneously changes from a value 

where only electrolysis occurs to a value where the current is controlled by mass 

transport, the current-time response can be predicted qualitatively by solving Fick’s 

second law using constrained boundary conditions. If planar electrode and unstirred 
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condition is assumed, the diffusion-limited current ( 𝑖 ) and the concentration profile 

(𝐶𝑜(𝑥, 𝑡)) according to the equation 2.41 can be quantified under the three boundary 

conditions:  

𝐶𝑂(𝑥, 0) = 𝐶𝑂∗                                                          (2.42) 

lim𝑥→∞ 𝐶𝑂(𝑥, 𝑡) = 𝐶𝑂∗                                                   (2.43) 

𝐶𝑂(0, 𝑡) = 0   (𝑓𝑜𝑟 𝑡 > 0)                                            (2.44) 

The first constrained condition (2.42) describes the homogeneity of the solution at 

the beginning of the experiment at 𝑡 = 0. The second condition (2.43) expresses it is 

semi-infinite condition, and the concentration of species O is constant in a region distant 

from the surface of the working electrode. The third expresses condition (2.44) is that all 

analytes reaching the working electrode are consumed immediately and the concentration 

at the working electrode is zero. In this case, if a large enough electrical potential is 

applied to the working electrode, the reaction at the electrode is limited only by the 

diffusion of the analyte to the electrode. 

The equation 2.41 can be solved using boundary condition from equation 2.42 to 

2.44. The concentration profile of species O is described as118: 

𝐶𝑂(𝑥, 𝑡) = 𝐶𝑂∗ �1 − 𝑒𝑟𝑓𝑐 �
𝑥

2(𝐷𝑂𝑡)1/2��                                  (2.45) 

Or  

𝐶𝑂(𝑥, 𝑡) = 𝐶𝑂∗𝑒𝑟𝑓 �
𝑥

2(𝐷𝑂𝑡)1/2�                                         (2.46) 
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The current-time response is determined by: 

𝑖(𝑡) = −𝑛𝐹𝐴𝐷𝑂 �
𝜕𝐶𝑂(𝑥, 𝑡)

𝜕𝑥
�
𝑥=0

                                (2.47) 

Finally, the calculated current is: 

𝑖(𝑡) = −
𝑛𝐹𝐴𝐷𝑂1/2𝐶𝑂∗

𝜋1/2𝑡1/2                                             (2.48) 

which is known as Cottrell equation. The Cottrell equation is particularly useful to 

determine the current-time response in unstirred conditions. The current gradually 

decreases at a rate proportional to the inverse square root of time. The reaction for the 

current to decrease is that the collection area remains constant but the transport distance 

for species to reach the working electrode is increasing with time. Figure 2.12 shows 

concentration profile for several time points. The concentration gradient near the 

electrode surface is time-dependent and gradually decreases, which also leads to the 

decreasing current with time. The Figure 2.13 shows the current response calculated 

using Cottrell equation. 

In a finite, one-dimensional electrode of length L, the value of constant current after 

the transient state has passed can be determined by solving the following equation120:  

𝜕2𝐶𝑂(𝑥)
𝜕𝑥2

= 0                                                    (2.49) 

The boundary conditions are: 

𝐶𝑂(0) = 0                                                        (2.50) 
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𝐶𝑂(𝐿) = 𝐶𝑂∗                                                         (2.51) 

The solution under the limited conditions is: 

𝐶𝑂(𝑥) =
𝐶𝑂∗

𝐿
𝑥                                                  (2.52) 

𝑖(𝑡) = −
𝑛𝐹𝐴𝐷0𝐶𝑂∗

𝐿
                                     (2.53) 

The limiting time 𝑡𝑙 , after which the transient time ceases can evaluated by 

comparing the temporary current in one-dimensional model (2.48) with the  constant 

current given in (2.53), which gives: 

𝑡𝑙 =
𝐿2

𝜋𝐷0
                                                     (2.54) 

The limiting time is proportional to the square of the length and inversely 

proportional to the diffusion coefficient. This equation can be used to determine the 

limiting time for the electrode with a recess. 
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Figure 2.12: Concentration profile of species for several times after the start of Cottrell 
experiment, 𝐷𝑂 = 2.1 × 10−5 𝑐𝑚2/𝑠. 

 

Figure 2.13: Simulated current response of species O2 using Cottrell equation, 𝐷𝑂 =
2.1 × 10−5 𝑐𝑚2/𝑠, 𝐴 = 0.2 𝑚𝑚2 
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Diffusion limited response under non-infinite boundary condition 

This section will consider the response of the electrochemical systems under the 

condition where the electrode is undisturbed, but the stirring of the solution occurs at 

some fixed distance from the electrode. Transportation of electroactive species to a fixed 

position away from the electrode is considered, so modification of the boundary 

condition is needed to study the steady state current. This configuration more closely 

resembles the electrochemical process in the Clark-type oxygen sensor119. 

The configuration of a classic Clark-type oxygen sensor contains electrolyte 

underneath the gas permeable membrane, which separates the electrolyte and sample 

solution. This construction can be simplified as a system in which the sample solution is 

directly contact with the electrolyte. In this system the electrolyte has a fixed thickness 

and a known diffusion coefficient, while the sample solution has a different diffusion 

coefficient. The configuration of this model is shown in Figure 2.14.  
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Figure 2.14: Configuration of an electrochemical system under the boundary condition at 
t=0 and t=∞). 

Two assumptions are made for this model. The first assumption is that the flux of 

species to and from electrode is controlled by diffusion only within the electrolyte. The 

second assumption made is that the concentration of the sample in the solution is kept 

constant. The second condition can be realized by continuous flow of fresh sample 

solution or stirring the media to increase the flux of the species to the surface of the gas 

permeable membrane above the working electrode. 

The boundary conditions of this model are listed in the following equations: 

𝐶𝑂(𝑥, 0) = 𝐶𝑂∗                                                          (2.55) 

𝐶𝑂(𝑥 = 𝑥1, 𝑡) = 𝐶𝑂∗                                                          (2.56) 

𝐶𝑂(0, 𝑡) = 0   (𝑓𝑜𝑟 𝑡 > 0)                                            (2.57) 
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The first condition (2.55) describes that the concentration of the species in the 

electrolyte and sample solution is uniform (𝐶𝑂∗) at 𝑡 = 0. The second condition (2.56) 

expresses that the concentration at the boundary of electrolyte and sample solution is kept 

constant during the whole electrochemical process. The third boundary condition (2.57) 

states that the species is consumed immediately at the surface of the electrode and 

concentration is zero. The general solution for this system can be obtained through 

combination of the boundary conditions and the Fick’s second law. 

The final form of the concentration profile of the electroactive species for this 

system with boundary conditions in the time interval 0 < 𝑡 < ∞ and the spatial interval 

0 < 𝑥 < 𝑥1 is presented in the following equation119: 

𝐶𝑂(𝑥, 𝑡) = 𝐶𝑂∗ � 
𝑥
𝑥1
� + �

2𝐶𝑂∗

𝑛𝜋
𝑒−�

𝑛𝜋
𝑥1
�
2
𝐷1𝑡𝑠𝑖𝑛

𝑛𝜋𝑥
𝑥1

∞

𝑛=1

                                        (2.48)  

where 𝑥1  is the thickness of the electrolyte, 𝐷1  is the diffusion coefficient in the 

electrolyte. 𝐶𝑂∗  is the initial concentration of the species in the electrolyte and the 

concentration in the sample solution. 

Figure 2.15 shows the simulated concentration response at different time intervals 

using the derived equation. The results indicate the concentration profile can reach a 

steady state in less than 5 s for a 20.54 µm thick Nafion 117 membrane.  

The physical parameter corresponded to the concentration that can be measured is 

the current measured at the working electrode, which is proportional to the slop of the 
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concentration profile, or species flux. The expression for the time dependent current is 

obtained as the derivative of the concentration equation98, 119: 

𝑖(𝑡) = −𝑛𝐹𝐴𝐷1 �
𝜕𝐶𝑂(𝑥, 𝑡)

𝜕𝑥
�
𝑥=0

= −𝑛𝐹𝐴𝐷1 �
𝐶𝑂∗

𝑥1
+ �

2𝐶𝑂∗

𝑥1
𝑒−�

𝑛𝜋
𝑥1
�
2
𝐷1𝑡

∞

𝑛=1

�      (2.59) 

where 𝑛 is the number of electrons that transfers to the electrode per each molecule, and 

𝐴 is the cross section area of the electrode. 

 

Figure 2.15: Concentration response of the simulated diffusion limited electrochemical 
systems. The boundary conditions are that the concentration at the electrode is zero and 
the concentration in the sample solution is constant. Diffusion coefficient of Nafion 117 

(0.4×10-6 cm2/s) 19 is used, and membrane thickness is 20.54 µm. 

This equation can be used to evaluate the current response of the electrochemical 

systems in which the concentration of the species is at equilibrium state throughout the 

media before step voltage is applied. A simulation of the current response is shown in 

Figure 2.16. The current decreases fast at the beginning when the step voltage is applied, 
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which is due to the depletion of the active species at the sensitive area of working 

electrode. And the current gradually becomes constant, which is because the 

concentration profile of active species reaches a steady state with time.  

 

Figure 2.16: Plot of current response of the electrochemical system under diffusion 
limited kinetics and specific boundary conditions. Diffusion coefficient of Nafion 117 
(0.4×10-6 cm2/s) 19 is used, and membrane thickness is 20.54 µm. It takes 2.5 s for the 

current to reach 120% normalized steady state current. 

2.3.3 Electrochemical sensing: Clark-type oxygen sensor 

The operation of the Clark-type oxygen sensor is based on the electrochemical 

reduction of the dissolved oxygen and measurement of the reduction current which is 

proportional to the oxygen concentration. The main advantage of this sensor is that the 

electrode and electrolyte required for operation are encapsulated within or underneath an 

oxygen gas permeable membrane. This unique configuration can prevent the interference 

of other species in the sample solution from giving additional reduction current signal 
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and improve accuracy of the measurement. Usage of this membrane also allows its 

application in delicate biological species such as blood41.  

Various Clark cell designs include both two electrode and three electrode 

configurations. In both cases, dissolved oxygen is transported through the gas permeable 

membrane and is reduced at the working electrode. In a voltage step measurement, the 

reduction is carried out at high enough voltage so the reduced current is controlled by the 

diffusion kinetics. To minimize the time for the diffusion of dissolved oxygen to the 

working electrode, the working electrode should be as close as possible to the gas 

permeable membrane. In the two electrode configuration, the materials used for electrode 

should be electrochemically stable in the aqueous electrolyte under applied voltage range. 

However, the lifetime is still limited by the consumption of anode, and failure of this 

sensor occurs once the anode materials have been consumed completely121. The three 

electrode configuration has a separate counter electrode and reference electrode. This 

structure is used to reduce the offsets caused by parasitic potentials within the system. 

Although very little current exist between working electrode and reference electrode, the 

lifetime of this structure is still limited by the dissolution of reference electrode122.  

The electrochemical equation (2.59) derived from the fixed boundary conditions 

under diffusion limited condition predicts that the current is directly proportional to the 

species concentration when the equilibrium state is reached during the testing, as shown 

in the following simplified equation:  

𝑖(𝑡) = −𝑛𝐹𝐴𝐷1
𝐶𝑂∗

𝑥1
                                                       (2.60) 
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If the species is the dissolved oxygen, we can tell the reduced current is 

proportional to dissolved oxygen concentration. 

In 1956, the first Clark-type electrode was developed by L.C. Clark in order to 

continually monitor the oxygen tension of blood circulating in the heart-lung machine 123. 

In this sensor, a two electrode configuration was used to detect the electrochemical signal, 

a platinum cathode and a silver wire as anode. A polyethylene membrane was used as the 

gas-permeable membrane. The cathode was pressed against the membrane to reduce the 

diffusion time of dissolved oxygen with a potassium chloride electrolyte as shown in 

Figure 2.17. The electrode gives a linear response in current flow with respect to oxygen 

content. 

At the early stage of the development, sensors with Clark-type electrodes were 

fabricated in a container or glass electrode holder with a gas-permeable membrane120, and 

it was difficult to further reduce the size of the sensor. In the last three decades, due to the 

progress of semiconductor and micromachining techniques, various miniaturized 

microfabricated Clark-type oxygen sensor have been developed with planar structures, as 

shown in Figure 2.18(b). Each microfabricated Clark cells must integrate the gas-

permeable membrane, electrolyte layer and detecting electrodes.  One early to 

incorporate the gas permeable membrane in the sensor was by intercalating a gas 

permeable membrane between two silicon substrates and fixing them with an adhesive124, 

as shown in Figure 2.18(b).  
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Figure 2.17: Oxygen electrode structure. Reprinted from reference 123 

The first complete microfabricated Clark-type oxygen chip was demonstrated by 

Koudelka using standard micro fabrication techniques125. The sensor was fabricated on a 

Si/SiO2 substrate. It consisted of an Ag cathode and Ag/AgCl reference anode. To realize 

the planar structure, a hydrogel (poly 2-hydroxyethyl methacrylate, pHEMA) was used as 

electrolyte, and a silicone rubber membrane was used as gas permeable membrane as 

shown in Figure 2.18(c).  
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Figure 2.18: Development of Clark-type electrode. Reprinted from the reference126. (a) 
Working electrode without gas permeable membrane; (b) Working electrode with gas 

permeable membrane intercalated and fixed between two silicon substrate; (c) Gas 
permeable membrane formed on a hydrogel containing electrolyte; (d) Electrolyte gel 

injected in a polyimide pool; (e) Electrolyte gel in an anisotropically etched groove on a 
silicon substrate; (f) A gas permeable membrane adhered on a microcontainer formed on 

silicon and glass as substrate and an filled electrolyte solution; (g) A gas permeable 
membrane adhered on a microcontainer formed on silicon and an filled electrolyte 

solution. (h), (i) Electrolyte solution filled from the back of the substrate. 

Suzuki and his co-worker made extensive progress in this silicon-based fabrication 

process and improved this chip by incorporating several new features41, 122, 127-132. They 

used micromachining and photolithographic techniques to fabricate miniature sensors 

with the three electrode configuration127.  The stability of the sensor was improved, with 

the residual current reduced to less than 7%, compared with a residual current ~20% for 

two electrode configuration127. To improve the capability of steam sterilization for the 

sensor, fluorinated ethylenepropylene (FEP) as gas permeable membrane was bonded to 

the chip through thermal etching, which provides good adhesion and temperature 
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tolerance130. Electrochemical cross talk between electrodes in miniature structure always 

resulted in unwanted residual current and extended response time, and made the reference 

electrode unstable. To minimize the crosstalk, grooves only over the electrode area were 

made with a long narrow channel connecting the electrode130. They also proposed a 

microfabricated Ag/AgCl reference electrode structure with improved stability and 

lifetime122, 131, and a polyimide protecting layer with a slit structure was coated on the 

center of silver electrode as shown in Figure 2.19.  

To form gas the permeable membrane on an aqueous electrolyte solution, a 

frequently used method was incorporation of hydrogel, such as calcium alginate gel 

containing potassium chloride electrolyte128, to hold the electrolyte solution125, 128, 133-135. 

In this case, the electrolyte layer and gas permeable layer were originally formed in a 

completely dry state, incorporation of water into the electrolyte is essential for the 

operation. Water can be introduced directly by osmosis just immersing the electrode in 

the water at room temperature. The electrode was instead activated by subjecting it to 

sterilization in an autoclave136.  This structure has also been used extensively in other 

electrochemical sensors. A different method was to fabricate the miropool in the sensor 

with a polymer such as polyimide [Figure 2.18(d)]137, 138 or in a etched groove on the 

silicon substrate [Figure 2.18(f)]132 allowing the aqueous electrolyte solution to be filled 

into the recess after bonding the sensors. Some variation in the shape of the container for 

electrolyte solution can be seen in Figure 2.18 (i-j)122, 130, 139-141. The criterions to design 

the shape of the recess for the electrolyte solution were to minimize the crosstalk between 

electrodes and reduce the response time. Because the size of the container was very small, 

the effects of the reaction products at the working electrode and counter electrode on the 
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performance were depended on the distance between the electrodes and geometries of the 

electrodes and container. The crosstalk resulted in the extended response time, unwanted 

residual current and a shift of the output current. A balance between miniaturization of 

the sensor and minimization of the crosstalk should be considered to design the shape of 

the sensors. 

For further miniaturization of the Clark-type oxygen sensor, a solid state proton 

conductive electrolyte was used to replace the aqueous electrolyte-filled compartment. 

The advantage was the simplicity and scalability of the fabrication and packaging 

procedures. The incorporation of solid state electrolyte not only lowered the size of chip 

but also reduced the cost and improved consistency.44, 98.  

Silicon rubber has been used predominantly as the gas permeable membrane with 

practical level of performance and reliability125, 126, 135. It shows excellent adhesion to the 

underlying layer or substrate and good oxygen permeability. The negative photoresist has 

also been used as gas permeable membrane. However, it suffered from a problem in 

oxygen permeability133. Thin PDMS membranes exhibit good oxygen permeability, and 

have also been used as the gas permeable membrane39, 40, 43, 142.  
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Figure 2.19: Structure of the miniature Clark-type oxygen sensor. Reprinted from the 
reference41. (a) Glass substrate with cathode and reference anode, (b) expanded view of 
the Ag/AgCl anode, (c) silicon substrate with the recess for the electrolyte solution, (d) 
completed oxygen sensor, (e) cross-section of the sensitive area, (f) experimental setup 

for measuring blood samples. 

Recently Wu et al. constructed a glass-based Clark-type oxygen chip by 

incorporation of glass substrate with functional Clark-type electrode to the 

polydimethylsiloxane (PDMS) gas permeable membrane immobilized with a PDMS 

reservoir as shown in Figure 2.2039, 40. A photoresist was used to construct the electrolyte 

groove on top of glass substrate and acted as insulator at the same time. A PDMS slab 

with a hole was bonded to a thin PDMS gas permeable membrane by oxygen plasma, and 

it was placed on top of the glass substrate as reservoir for sample solution. Elements to 

60 
 



 

control temperature have also been integrated into the planar to provide constant 

temperature environment for measuring cellular oxygen consumption rate.  

The advantage of the use of PDMS is the capability of irreversible bonding to 

PDMS and glass under oxygen plasma treatment, which enables good adhesion of the gas 

permeable membrane to glass substrate and realization of PDMS reservoir for holding 

sample solution. The disadvantage of PDMS as gas permeable membrane was susceptible 

to mechanical failure, which resulted in complete malfunction of the devices. 

 

Figure 2.20: The structure of Clark-type oxygen sensor. Reprinted from reference40. (a) 
Glass substrate with three electrode and electrolyte channel made by photoresist, (b) 

PDMS reservoir with gas permeable membrane. C, R, W refers to counter, reference and 
working electrode respectively. 

Gas permeable polypropylene (PP) and fluorinated ethylene propylene (FEP) 

polymer membranes have also been used in the Clark-type oxygen sensors43, 130. These 
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two membranes shows lower oxygen permeability compared with PDMS, and the oxygen 

permeability of PP, FEP, and PDMS were 1.6, 5.9, and 600 (where 1 Barrer is 1×10-11 

cm3cmcm-2s-1mmHg-1, respectively71. PP, FEP membrane had longer response time as 

shown in Figure 2.21. Bio-inert polytetrafluoroethylene (PTFE) has also been chosen as 

oxygen permeable membrane, and the bonding to solid state electrolyte (Nafion) was 

through pulsed plasma deposition technique. It showed good oxygen permeability98.  

 

Figure 2.21: The output current results of the fabricated oxygen sensor with PP, FEP, and 
PDMS membrane when the sensor changes from the full-oxygen state to the zero-oxygen 

state. Reprinted from the reference71. 

The incorporation of a gas permeable membrane enables the use of the Clark-type 

oxygen sensor in the delicate and complex biological environment. Miniature sensors 

have been used for real-time monitoring of pO2 in human whole blood41, 120. The 

accuracy of the values obtained was within 8% compared with a commercial blood gas 

analyzer41. In addition, the fabrication of Clark-type oxygen sensor has been integrated 
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with other sensing modules, such as pCO2 electrodes and pH electrodes134, 135, 138, 143. This 

type of sensors has been used to simultaneously monitor pO2, pCO2, and pH at the same 

time in the human blood.  

The Clark-type oxygen sensors have also been used to measure the oxygen 

consumption rate of tumor cells in vitro, and showing unique opportunities to 

demonstrate the effects of a given treatment on the respiratory rate. They have also 

exhibited high sensitivity in studying enzyme and chemical reactions involving 

consumption of oxygen144. In Wolf’s studies, a Clark oxygen electrode was externally 

inserted into the fluid exit port of a cell chip to measure the respiration rate of tumor cells 

under drug exposure. Another sensor was also integrated into the cell chip to monitor the 

cellular metabolism and pH value145-147. Heimburg et al. integrated a Clark-type sensor in 

a thermostatic chamber to investigate the oxygen consumption rate of cells in 

undifferentiated and differentiated states. The results indicated the differentiated cells had 

higher oxygen consumption than immature ones148. The respiratory rate of cells in 

suspension or attached cells with or without influence of chemicals, such as Carbonyl 

cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), was successfully demonstrated 

using Clark-type oxygen sensors39, 40, 43, 142. 
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Chapter 3 A biocompatible low temperature co-fired 

ceramic substrate for biosensors 

3.1 Introduction 

Microfluidics offer many advantages such as portability, low cost, fast response 

time and integration with other miniaturized features. The capability of microfluidic 

systems fills the technological requirement for portable point-of care medical diagnostic 

systems in global public health1, 2. Glass, silicon, polymer, and multilayer ceramic 

substrates and processing methods have all successfully been applied for the development 

of commercialized of microfluidic systems. The continued development of LTCC over 

the last two decades has resulted in a promising alternative technology for the fabrication 

of the microfluidic devices. LTCC materials are chemically inert, possess high 

temperature stability, exhibit high mechanical strength, allow the fabrication of three 

dimensional features, and are able to integrate functional components46. A variety of 

microfluidic LTCC devices have been successfully fabricated and reported for 

applications in biosensing33, 34  environmental sensing26, 27, and in point-of-care 

diagnostic systems. LTCC materials of various compositions from commercial suppliers 

have significantly different properties which can be vary dramatically between 

compositions68. Specifically, the chemical stability and leaching behavior of commercial 

LTCC materials in aqueous solutions can vary drastically37. In the current work, the key 

characteristics and advantages of LTCC materials are extended to include 

biocompatibility.  
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Biocompatibility is neither a universal property nor innate characteristic of a 

material or component. Rather it defined as the suitability of a material for use in a 

specific biological application. In the current work, biocompatibility is evaluated as the 

suitability of the material to perform as a substrate for the sustained in-vitro culture of 

endothelial cells. The intended application is for the development of biosensors 

incorporating live endothelial or other adherent human cell lines for cell based or cell 

enabled biosensing applications. In this context, the biocompatibility of the current LTCC 

formulation is expected to be dependent on the elemental composition, solubility, 

crystalinity, and atomic structure149. In addition, the substrate surface must support the 

attachment and proliferation of a target cell line. The compositional and microstructural 

complexity of commercial LTCC formulations makes it difficult to understand and tailor 

the biocompatibility of these materials. For these reasons, a custom LTCC formulation 

has been developed specifically with the specified application in mind.  

LTCC materials are primarily glass-ceramic composites, and several methods to 

fabricate LTCC have been reported in the literature. These methods include 

recrystallizable glasses56, 58 and mixtures of ceramic with a low melting temperature 

glass57, 60.  LTCC materials are developed specifically for their ability to be cofired with 

low resistivity metal electrode materials, such as gold and silver, therefore LTCC 

sintering temperatures must be lower than the melting temperature of these metals. In 

addition, the LTCC and electrode materials must be nonreactive and exhibit similar 

sintering behavior to prevent defects caused by differential shrinkage during the sintering 

possess. Full densification of LTCC is also essential to achieve required mechanical 
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properties and avoid penetration of the electrode into the defects. The other requirements 

for LTCC substrates are low dielectric constant and dielectric loss.  

The prospective research goal is to design and develop biocompatible LTCC by 

starting with well-known biocompatible raw materials. The developed materials are 

targeted for use in microfluidic chips as in vitro/in vivo devices for real time monitoring, 

portable diagnostics and bedside analysis. In this paper, a new LTCC system has been 

reported through sintering a low-melting glass and alumina ceramic.  The microstructure, 

dielectric properties and compatibility with electrode metal are reported. In addition, 

cytotoxicity results from both indirect leaching and direct attachment cell culture studies 

with human umbilical vein endothelial cells (HUVECs) are evaluated to assess the 

biocompatibility of sintered LTCC substrates.   

3.2 Tape casting technique 

Tape casting is a low cost and simple forming technique for shaping thin, flat 

ceramic. This method is originally developed for electronic ceramic in industry, including 

insulating substrate materials for electronic circuits, multilayered ceramic packages and 

multilayer ceramic capacitors150. The multilayer package is to laminate several individual 

layers with metallization and via interconnections together, which can be co-fired into a 

monolithic structure. The advantages of multilayer technique involves the capability to 

fabricate electronic circuit with relative short length, which leads to high speed computer; 

excellent thermal dissipation and structural strength; the ability to operate at high 

temperature. Other kind of electronic ceramic materials which act as resistor, sensors, 
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electrooptics, or magnetics are also dependent on tape casting for forming thin and flat 

electronic components.  

Tape casting has also been extensively used in construction of fuel cell components. 

The thin stabilized zirconia film which acts as the electrolyte in the solid state fuel cell is 

fabricated by tape casting151. All components in molten carbonate fuel cells including 

electrodes and electrolyte are manufactured by tape casting152. Tape casting has also been 

applied in fabricating and developing structural membranes and laminates. Shearing 

action under the doctor blade tends to orientate the grains in the slip, and highly ordered 

colloidal crystal membranes have been developed as a results of this process153, 154. 

Functional of gradient materials have been developed by lamination of materials with 

different compositions152. 

In tape casting, the slurry is spread over a surface covered with a removable sheet 

of paper or plastic using a carefully controlled blade referring to as doctor blade as shown 

in Figure 3.1. The dispersant is the very important organic addictive in that it serves to 

lower the viscosity of the slurry, and stabilize the slurry against flocculation by increasing 

the repulsion between the particles, thereby allowing the use of a high particle 

concentration. Another important selection is the binder-plasticizer combination. Binders 

are typically long chain polymers that serve the primary function of providing strength to 

the green body by forming bridges between the particles. However, the glass transition 

temperature Tg must be relatively low to aid the deformation of the binder during 

forming. A reduction in Tg involves essentially reducing the resistance to motion of the 

polymer chains. Plasticizer is generally organic substances with a lower molecular weight 

than the binder. The primary function of the plasticizer is to soften the binder in the dry 
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state, thereby increasing the flexibility of the green body. The binder-plasticizer must 

provide the required strength and flexibility of the green tape and must easily be burnt out 

prior to the sintering of the tape155. The process of tape casting is shown in Figure 3.2. 

 

Figure 3.1: Tape casting process. Reprinted from the website156 

Preparation of water based slurries is less expensive and toxic. But water 

elimination is big issue for the aqueous tape casting using water based slurries, so only 

very thin green tape layer is prepared. For water based binder, Latexes, polyvinyl 

alcohols (PVA), cellulose ethers such as hydroxyethyl cellulose (HEC), 

hydroxypropylmethyl cellulose (HPMC)157-159 are frequently used. It is very difficult to 

prepare high concentration PVA and cellulose ethers in water with low viscosity. The 

solid loads after adding binder is always lower the 40 vol%. Latex is defined as a stable 

colloidal dispersion of a polymer substance in aqueous mediums. The volume fraction of 

polymer can reach from 40% to 70%. The polymer particle is always spherical with 

surfactant surrounding the polymer. The surfactant can be anionic, nonionic and cationic. 

For aqueous tape casting, the polymer are often acrylic and the common surfactant is 

anionic. The surfactant can stabilize the emulsion and reduce the foam formation. And 

the surfactant can strong absorbed to the ceramic surface and inactivated during the 
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whole process. However, the common way to perform tape-casting is to use slurries with 

organic based solvents, such as ethanol, methanol, toluene, xylene, methyl ethyl ketone. 

One of the considerations in the selection of organic solvent is due to capability of highly 

volatilization, so less solid loading are requirement to prevent cracks. In order to dissolve 

the wide variety of the addictive in the slip, including dispersant, binder and plasticizer, it 

is common to use more than one solvent. Menhaden fish oil is one of the most common 

dispersants in organic solvent based tape casting, and it contains more than twenty 

different kinds of fatty acids. Fish oil primarily act as a kind of steric deflocculants. 

Oxidized brown menhaden fish oil develops active polar ester group, and it is a rather 

good deflocculant for oxide systems152. Majority of the binders fall into two main: 

polyvinyl and polyacrylate. Polyvinyl alcohol is typically used as binder in aqueous tape 

casting. Po1yvinyl butyral (PVB) as polyvinyl resin is commonly used in the organic 

solvent cast casting.  

The thickness of green tape has been theoretically analyzed. It is assumed that the 

slurry is Newtonian viscous and only laminar flow occurs during the tape casting. The 

thickness of dry tape, ℎ𝑑, is determined by77, 160: 

ℎ𝑑 =
𝛼
2
𝜌𝑤
𝜌𝑑

ℎ0 �1 +
ℎ02∆𝑝
6𝜂𝑈𝐿

�                                        (3.1) 

where 𝛼 (< 1) is correction factors, 𝜌𝑤 and 𝜌𝑑 are the densities of the slurry and the dry 

tape, ℎ0 and 𝐿 are the height and length of the doctor blade respectively, 𝜂 is the viscosity 

of the slurry, 𝑈 is the velocity, ∆𝑝 is the pressure difference determined by the height of 

the slurry in the reservoir. According to the equation, the thickness of the dry tape is 
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proportional to the height of the doctor blade if the second term, ℎ0
2∆𝑝

6𝜂𝑈𝐿� , is much 

less than 1. 

 

Figure 3.2: Flow diagram of tape casting. 

3.3 Biocompatibility of the materials 

Biomaterials are defined as “a nonviable material used in a medical device, 

intended to interact with biological systems”161. Many synthetic materials have been 

applied in medical applications such as prostheses, implants162 and tissue engineering 

matrices163. One big problem is the foreign-body reaction when a synthetic biomaterial 

implanted into human body. All kinds of protein absorbed to the surface when the 

synthetic materials contact with the physiological environment. Then cells attack the 

materials, and form giant cells, and finally dense vascular collagen capsule is formed to 
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exclude the foreign materials, which may further cause infections, local tissue waste, 

implant encapsulation, thrombosis and embolization164. Biocompatibility has been 

defined as “the ability of a material to perform with an appropriate host response in a 

specific application”165. The concept of biocompatibility can be divided into two 

principles: biosafety and biofunctionality. Biosafety are related with adverse effects, such 

as carcinogenic effects, when cells contact with the materials or the release of the 

materials contents166. Biofunctionality is concerned with the performance of a given 

materials contacted with a particular tissue. 

Cytotoxicity of materials is to evaluate the toxicity of the materials. Cytotoxicity 

evaluation can be performed by using direct contact with a layer of cells. In addition to 

the direct test, another widely used in vitro cytotoxicity testing method is the extraction 

test. The test material is extracted with a liquid, which can be cell culture medium, saline 

solution, vegetable oil, or another solvent that are relevant to the application of the test 

materials. The biofunctionality can be evaluated by criteria such as cell adhesion, cell 

spreading, cell proliferation, etc. 

3.4 Experimental Procedure 

3.4.1 LTCC fabrication and sintering 

A soda-lime silicate glass frit (Schott B 270 Superwite, MO-SCI, Rolla, MO) with 

major components CaO, Na2O, K2O, Al2O3, and SiO2 was used in this experiment. The 

glass frit has a glass transition temperature (Tg) 533OC, softening temperature 724OC, and 

density 2.55 g/cm3. The mean particle size and Brunauer–Emmett–Teller (BET) specific 

surface area of the glass are 320 nm and 11.68 m2/g respectively. The ceramic filler is 
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alpha alumina (HP-DBM, Baikowski Malakoff, Inc., Malakoff, TX) with particle size 

300 nm, and BET specific surface area 6.99 m2/g.  

The slip formulation for tape casting consisted of a glass and alumina mixture in a 

ratio of 46:54 wt%. This mixture was first ball milled with zirconia media for 24 hr in a 

xylene/ethyl alcohol solvent with menhaden fish oil dispersant. Then a binder (polyvinyl 

butyral) and plasticizers (polyalkalene glycol and butyl benzyl phthalate) dissolved in 

solvent were added for another 24 hr ball-milling. The total solid loading of the slurry 

was about 45 wt%.  

The slip was tape cast onto a silicone-coated Mylar film (R.E Mistler, Yardley, PA) 

using a bench-top caster with a single doctor blade (TTC-1200; R.E. Mistler, Yardley, 

PA). The thickness of the resulting green tape was about 110±15 µm. Several layers of 

green tape were aligned and laminated together at 6.9 MPa at 70OC for 20 min using a 

uniaxial press (3851, Carver, Wabash, IN). Then the green tape was cut into square size 

using a CO2-laser milling system (VLS 3.50, Universal Laser Systems, Scottsdale, AZ). 

The green tapes were first burnt out through 1 OC/min heating up to 450OC with a 1 hr 

dwell time then sintered at different temperatures with 5 OC/min heating rate. 

Thermogravimetry (TGA) and differential scanning calorimetry (DSC) of the green tape 

was measured using a Netzsch STA 449C. Phase evolution of the sintered ceramic was 

analyzed using X-ray diffraction (XRD, Model-D500, Siemens, Munich, Germany). The 

shrinkage of the green tape as a function of sintering temperature was analyzed by 

measuring the dimensional change in the x and y directions. The stability of green tape 

with gold was also tested by co-firing the  green tape with screen printed gold pattern 

with line width 0.5 mm and length 12 mm, using TC8101 paste (Heraeus, Thick Film 
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Division, West Conshohocken, PA). Ten layers of green tape with width 8.5 mm and 

length 10.9 mm were laminated together and total thickness of the lamination was 1.06 

mm. The microstructure was analyzed using a scanning electron microscope (SEM, S-

4300, Hitachi, Tokyo, Japan). For measuring the dielectric characteristics, one surface of 

the sintered LTCC with thickness 0.5 mm was printed with conductive Ag electrode paste 

(DuPont 6160, Research Triangle Park, NC) and the opposite surface was printed with a 

circle with diameter 7.8 mm. Then it was post fired at 850OC for 10 min. The dielectric 

properties were obtained by measuring the capacitance and loss at room temperature 

using a precision LCR meter (Agilent E4980A, Agilent, Santa Clara, CA). 

3.4.2 Biocompatibility 

HUVECs were used to evaluate cytotoxicity.  HUVECs were cultured in culture 

flasks with endothelial growth medium-2 (EGM-2) (Lonza, Allendale, NJ) and 

maintained in incubator with 5 % CO2 at 37OC. Figure 3.3 shows the experimental 

procedure. 

For the leaching study, the LTCC were sintered at 900OC for 2h. The LTCC 

coupons were sterilized by sonicating in DI water for 5 min, isopropanol (IPA) for 5 min, 

and autoclaving at 121OC for 30 min. Then the LTCC leachate medium was obtained by 

soaking the LTCC in 1 ml of EGM-2 per square centimeter of LTCC surface area (1 

mL/cm2 EGM-2) in a cell culture incubator at 37 OC for 7 days. The resulting medium 

(LTCC Leachate) was pipetted off and stored for later use. 

For the adhesion study three LTCC discs were sintered at 900OC for 2h, followed 

by soaking in Dulbecco’s phosphate-buffered saline (DPBS) for 1 day to eliminate any 
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easily leachable components. The DPBS used in the experiment was generated by adding 

4 g NaCl, 0.5 g Na2HPO4, 0.1 KCl and 0.1 g KH2PO4 to 500 ml de-ionized water. The 

discs were then sterilized by sonicating in water for 5 min, IPA for 5mins, and 

autoclaving at 121OC for 30 min.  Finally the LTCC discs were dried, sprayed with 

ethanol, and placed under the hood in UV light for 1 hr. Then the ceramics were placed 

into three wells in a twelve well cell culture plate, and 0.5 mL 25 µg/mL of fibronectin 

solution (Invitrogen, Carlsbad, CA) was added and placed in an incubator for  2 hr to 

allow the fibronectin adsorb to the LTCC surface. After 2 hr the fibronectin solution was 

removed by pipetting and the LTCC discs were rinsed with 1mL DPBS three times.   

For the final study, HUVEC cells were seeded into nine standard polystyrene cell 

culture wells at concentration of 25,000 cells/cm2. Fresh medium was used for three wells 

as “controls” and for three wells containing the fibronectin coated LTCC discs. The 

LTCC leachate medium was used to culture the cells in the remaining three well. The 

medium was changed after one day incubation. For leachate study, the leachate medium 

was used to change the medium. After two days incubation, Calcein-AM (Invitrogen, 

Carlsbad, CA), a green-fluorescent LIVE cell stain; and Ethidium homodimer I (EthD-I) 

(Invitrogen, Carlsbad, CA), a red-fluorescent nucleic acid or DEAD stain, were used to 

stain the live and dead cells respectively. Digital images were taken using fluorescence 

microscope with the appropriate fluorescent filter cubes. The number of number of LIVE 

cells, DEAD cells and total cell number were counted using automated image analysis 

software. 
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To determine if there was a significant difference between cytocompatibility data, 

results were analyzed using Student’s T-test. Results were reported to be significant when 

the P-value was equal to or lower than 0.05. 

 

Figure 3.3: Experimental procedure for biocompatibility testing 

3.5 Results and discussion 

3.5.1 LTCC fabrication and sintering 

A preliminary sintering study using dry pressed pellets was performed to identify 

the appropriate amount of glass frit addition required to reduce the sintering temperature 
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into the range compatible with LTCC materials and processing. On the basis of these 

results a composition with 46% by weight of glass frit in alumina was selected for the 

preparation of LTCC tapes. Figure 3.4 presents the TGA and DSC curves of the prepared 

green tape. There was a large initial burnout of organic additives from 200OC to 320OC, 

followed by a slow burnout process up to 460OC. The burnout process was completed by 

460OC with total weight loss 25 wt%. At temperatures lower than 600OC, the exothermic 

peaks were attributed to organic additive burnout. Only one crystallization peak was 

observed with the onset point of crystallization (Tc) at 940OC. The sintering profile was 

created based on the TGA results. A slow heating rate of 1OC/min up to 450OC with a 1 

hr dwell time was applied to ensure complete burn out the organic additives. A heating 

rate of 5OC/min was employed up to the final sintering temperature with a 2 h dwell time 

at the sintering temperature. 

The density and linear shrinkage without metallization of the LTCC tapes sintered 

at different temperatures is shown in Figure 3.5. The density of the LTCC initially 

increases with sintering temperature, and the density is found to be higher than 95% 

theoretical density for sintering temperatures from 850OC to 950OC. The density then 

decreases with further increase in sintering temperature. The shrinkage of the green tape 

stays in the range of 20% at  sintering temperatures higher than 800OC. Open porosity 

measured by the water immersion’ method was also substantially decreased with values 

less than 0.2% at sintering temperatures higher than 800OC. The highest density was 

achieved at a sintering temperature of 900OC. These results confirm high density ceramic 

with 46 wt% glass and 54 wt% Al2O3 formulation can be obtained with sintering 

temperature lower than 950OC. 
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Figure 3.4: DSC and TGA of the green tape with 46 wt% glass at heating rate of 5 

OC/min. 

 

Figure 3.5: Densification, open porosity and shrinkage in the x and y directions of the 
green tape at different sintering temperature. 
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XRD patterns of the glass frit and the LTCC sintered at different temperatures are 

shown in Figure 3.6. No crystalline peaks were observed in the XRD pattern of the raw 

glass frit, indicating complete vitrification and no recrystallization of the glass phase. In 

the tapes sintered at 850OC, all observed peaks can be indexed as alumina. In addition an 

amorphous hump was observed in the region 20 to 35O two theta.  As the sintering 

temperature increased to 900OC, a second crystalline phase nucleated (identified as 

anorthite CaAl2Si2O8, PDF No: 41-1486) and the area of the amorphous peak was also 

decreased. This is consistent with the reaction of the glass phase with alumina resulting in 

second phase formation. The crystallization behavior in XRD results was also consistent 

with the DSC curve, and the exothermic peak at 940 OC in the DSC result was 

subsequently attributed to anorthite crystallization.  

 

Figure 3.6: XRD of the LTCC sintered at different temperature. 
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A dense glass ceramic microstructure was observed in SEM images of the fracture 

surface of the LTCC sintered at 900 OC, as shown in Figure 3.7. The glass formed an 

interconnected matrix phase, almost completely encapsulating the alumina particles. For 

sintering temperatures greater than or equal to 900 OC, isolated spherical pores were 

observed in lower magnification micrographs. The size of the pores was less than 5 µm. 

These pores were attributed to glass bloating due to over sintering, and were not observed 

for sintering temperatures less than 900 OC.  This is consistent with the gradual decrease 

in density observed for tapes sintered above 900oC. 

Many common LTCC formulations are composed of a mixture of a high 

temperature ceramic filler and a low-melting temperature glass. In these cases the 

sintering of the LTCC occurs primarily by viscous flow due to the large volume of glass 

utilized in such formulations.  

Ewsuk and colleagues proposed a non-reactive liquid phase sintering model, in 

which the densification follows a three stage sintering process, including glass 

redistribution, grain rearrangement, and viscous flow74, 75. Good wetting behavior 

between the glass and ceramic phases play an important role in the first and second stage. 

Poor densification or swelling would occur due to poor wetting between the glass and 

ceramic phases. Elimination of the residual pores (~10%) occurs in the final stage. 

Densification in the final stage is independent of the wetting behavior, occurring by 

viscous flow. The ceramic filler increases the relative viscosity of the glass-ceramic 

composite. Glass with low viscosity is required to fill the closed pores for LTCC with 

high ceramic filler concentration. Low ceramic filler concentration is required to 

eliminate closed pores for glass with high viscosity73-75. The glass chosen in this 
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experiment has the alkali oxides, Na2O and K2O present as the network modifiers. The 

alkali oxides reduce viscosity of the glass, and the volume percent of ceramic filler in this 

experiment can reach as high as 44 %. 

 

 

Figure 3.7: SEM of the LTCC fracture surface 
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The low sintering temperature of LTCC is intended so as to allow cofiring of high 

conductivity, low melting temperature metal electrodes, including Au, Ag and Cu. In this 

experiment commercial gold ink paste (TC8101, Heraeus, Thick Film Division, West 

Conshohocken, PA) was co-fired with the LTCC at 900OC.  Figure 3.8 shows the 

resulting interface between the electrode gold and the LTCC.  There was a clear interface 

between the LTCC and gold, which confirms the gold was stable and no reaction 

occurred when co-fired with the LTCC. In addition no cracking, camber or delamination 

was observed.   

 

Figure 3.8: SEM of the interface between gold electrode and LTCC sintered at 900 OC. 

The dielectric constant of LTCC sintered at 900OC was stable with value ~ 9.3 and 

at frequency from 1 kHz to 2 MHz as shown in Figure 3.9. The dielectric loss decreased 

with increasing frequency, with value less than 0.5% in the frequency range from 1 kHz 

to 2 MHz. The dependency of dielectric loss on the frequency may be due to hopping 
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conductivity of alkali ions in the glass phase167. The anorthite phase has a low dielectric 

constant ~5, and the formation of anorthite from the glass reduces the amount of alkaline 

earth, and it is an advantage for LTCC microelectronic application168. The dielectric 

properties are comparable to the reported typical values specified for the low dielectric 

constant LTCC formulations169.  

 

Figure 3.9: Dielectric properties of the LTCC sintered at 900 OC. 

3.5.2 Biocompatibility 

In this work, two different methods were used to evaluate the biocompatibility for 

the intended application.  The first method is indirect cytocompatibility assessed by 

exposing HUVECs to leachate obtained by soaking the LTCC substrates in cell culture 

medium. In the second experiment cells were directly seeded and cultured on fibronectin 

coated LTCC coupons.  
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Figure 3.10 shows example images obtained from a LIVE/DEAD assay conducted 

after 48 hours, in which live cells appear green and dead cells appear red. The resulting 

images correspond to HUVECs seeded on standard tissue culture coated cell culture wells 

(Control), cells grown on fibronectin coated LTCC substrates (LTCC), and cells cultured 

on tissue coated wells using LTCC leachate medium (Leachate). Table I summarizes 

quantitative image analysis the LIVE/DEAD assay.  

 

 

Figure 3.10: Pictures of the cultured cells using fresh medium (control), leachate medium 
(LTCC leachate) and on fibronectin coated LTCC substrate (LTCC). 
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Figure 3.11 shows telative cell density of LTCC and LTCC leachate compared with 

that of control. The cells attached and spread in the LTCC leachate and on the 

fibbronectin coated LTCC surface as shown in Figure 3.10. Some of the cells in the three 

groups have cobblestone-like morphology. The cells were not fixed in this experiment, 

and the morphology of some cells changed to a spherical shape during the staining and 

imaging process. Other than that, no abnormal morphology was observed.  

The percent of live cells in the control, the LTCC surface and LTCC leachate 

medium were all higher than 99%. The cell density observed in the LTCC leachate 

solution and on the LTCC surface was a little lower than that of the control, 80%±6% and 

87%±7% of the value in control respectively. However, no significant differences (p > 

0.05) were observed among the control, the LTCC leachate medium and fibronectin 

coated LTCC.  On this basis it has been established that no significant cytotoxicity of the 

LTCC was observed in this experiment. 
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Figure 3. 11: Relative cell density of LTCC and LTCC leachate compared with control. 

Table 3-1: Live cell percent and cell concentration of the cultured cells using fresh 
medium (control), leachate medium (LTCC Leachate) and on fibronectin coated LTCC 

substrate (LTCC). 

 
Control LTCC LTCC 

leachate 

Live cells 99.8±0.1% 99.5±0.1% 99.5±0.1% 

Cell density 
(Cells/cm2) 32000±2500 28000±2400 26000±2100 

Relative cell density 100±7% 87±7% 80±6% 

Commercial LTCC substrate, such as DP 951 (DuPont), has been reported to 

exhibit congenial surface for mammalian cell culture growth71, 170, however, DP 951 has 

also been reported to contains lead171. The advantage of this LTCC is free of lead, 

cadmium, cobalt and nickel to reduce the potential toxicity to living cells and meet 
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environmental registration36, 38. The biocompatibility study of this LTCC with HUVECs 

indicates developed LTCC also provide hospitable surface for living cells. 

3.6 Conclusion 

The current work describes the preparation and evaluation of a biocompatible 

LTCC. The best formulation of glass and ceramic for tape casting was found to contain 

46 wt% glass and 54 wt% ceramic. The density of the developed LTCC initially increases 

with sintering temperature, and then decreases at higher temperature. The density of 

LTCC sintered at temperature from 850OC to 950OC is higher than 95% of theoretical 

density. The co-firing results of the LTCC and gold electrode indicates the ceramic layer 

is compatible with the gold electrode layer. The material also exhibits dielectric 

properties typical of a low dielectric constant LTCC material. HUVECs were observed to 

readily attach and spread on the surface of fibronectin coated LTCC and in the LTCC 

leachate, and the cell density and percentage of live cells on fibronectin coated LTCC 

substrate and LTCC leachate are comparative with those of control. There is no 

significant difference among the control, LTCC leachate and fibronectin coated LTCC. 

The results confirm that the developed material is biocompatible and will provide a 

suitable LTCC substrate for microfluidic and lab-on-chip applications utilizing live cell 

sensing. 
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Chapter 4 Sintering behavior and biocompatibility of a 

low temperature co-fired ceramic for microfluidic 

biosensors   

4.1 Introduction: 

The prospective goal of the current study is to design and fabricate biocompatible 

LTCC, using well-known biocompatible raw materials as a starting point. The potential 

application for this material is in the rapid prototyping and custom manufacture of cell 

based microfluidic sensors for both scientific research and clinical portable diagnostic 

applications. Borosilicate glass has been reported to exhibit biocompatibility for joint and 

cortical implantation and has also been most extensively used as cell culture coverglass, 

plate, dishes and tubing172, 173. Alumina is highly mechanical and chemical stable, 

nontoxic and biocompatible174, 175. Based on these considerations, borosilicate glass and 

alumina ceramic were chosen as raw materials with composition based on the report by 

Muller. R.176. In this paper, the densification behaviors and sintering properties were 

analyzed using MSC theory. The microstructure, dielectric properties and compatibility 

with electrode Ag and Au were also investigated. In addition, the biocompatibility of the 

sintered LTCC was examined through the human umbilical vein endothelial cell 

(HUVECs) proliferation in LTCC leachate medium and on cell culture coated LTCC 

substrates. 
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Microfluidic devices provide powerful tools for biological analysis and biomedical 

research such as clinical diagnostics, toxicity monitoring, DNA, cellular and protein 

analysis because of small volume of sample and reagent utilized in these devices. They 

have been considered as promising candidates for portable point-of-care medical 

diagnostic systems in global public health177, 178. Glass, silicon, polymers and ceramic 

have been extensively used to develop microfluidic devices. However, the selections of 

substrate materials have profound effects on the design and functionality of the 

microfluidic devices. The cytocompatibility, immunogenicity, biodegradability and 

wetting properties, in particular for biological samples such as cells, are important179. 

Low temperature co-fired ceramics (LTCCs) have emerged as potential alternative 

materials for development of microfluidic devices. The advantages of the LTCC include 

chemical inertness, high temperature stability, high mechanical strength and easy 

fabrication of systems with microfluidic functional components46. Microfluidic devices 

developed using LTCC technology have been successfully applied in biosensing, 

environmental sensing, and point-of-care diagnostic systems26, 27, 33, 34, 180. However, 

commercially available LTCCs are optimized for microelectronic applications and the 

biocompatibility of these materials generally unknown68. The biostability and leaching 

behavior of commercial LTCC materials in biological fluids can also vary drastically37, 

149. It is very difficult to understand and modify the biocompatibility of commercial 

LTCCs because of their use of complex and generally proprietary formulations. For these 

reasons, a custom LTCC formulation has been fabricated specifically considering 

biocompatibility.  
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Biocompatibility is “the ability of a material to perform with an appropriate host 

response in a specific situation181.” This definition advances the understanding that 

“biocompatibility” is not a universal set of characteristics and that biomaterials must be 

considered and designed as an active and integral component of each specific biological 

system. For implantable devices, biocompatibility includes features such as the immune 

and inflammatory response. For cell based biosensors used outside human body, 

biocompatibility comprises the feasibility of sustaining cell cultures on the material 

surface, and the absorption of the intended analyte such as antigen or bioreceptor such as 

DNA and antibodies on the devices surface180. The developed LTCC substrate in this 

work is targeted for biosensor incorporating live endothelial or other adherent human cell 

based biosensing applications. In this context, biocompatibility of developed LTCC is 

that the LTCC surface supports the attachment and proliferation of the targeted cell line 

without toxicity effects from the leachate elements. 

LTCCs are generally glass-ceramic composites and several methods to develop and 

formulate LTCC systems have been reported in the literature including recrystallizable 

glasses,56, 58  mixtures of low melting temperature glass and ceramic57, 60, 167. Perhaps the 

most common is the second which combines a low melting temperature glass and with a 

high temperature ceramic filler. In this approach low temperature glass frits function as a 

flux, which serves to reduce the sintering temperature of the ceramic filler. In addition to 

the glass frit, the advantages of this second method are the capability to control the 

sintering temperature, and modify electrical and mechanical properties by adjusting the 

ratio of glass phase and ceramic. This is the approach taken in the current work. 
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The master sintering curve (MSC) concept proposed by Su and Johnson has been 

used to predict and optimize the densification behavior quantitatively in practical 

sintering processes182.  The MSC curve and the activation energy for sintering can be 

estimated empirically using sintering data obtained through either isothermal sintering at 

different temperature or constant heating rate sintering at different heating rate. Once the 

MSC curve is constructed, and it can be further applied to predict the densification 

behavior for any combination of sintering time and temperature. It also allows 

identification of the dominant densification mechanism183. The MSC was originally 

developed to analyze the solid-state sintering with isotropic sintering behavior, and it has 

been further extended to study the anisotropic sintering behavior by liquid-phase 

sintering and viscous flow sintering184-187. LTCC contains high volume of glass phase, 

and sintered by viscous flow73. The accurate prediction of LTCC densification behavior 

using the MSC can enable process optimization and reproducibility.    

Co-firing ceramic with high-electrical-conductivity metals, such as gold and silver, 

is one of the most important steps in the development of low temperature ceramic 

packages. The LTCC materials and electrode are required to be nonreactive. For example, 

lime borosilicate glass has been reported nonreactive with electrode and has been 

extensively used in fabrication of LTCC176, 188, 189. The sintering temperature of LTCC 

should also match that of electrode. Low sintering temperature may cause incomplete 

densification of the electrode. High sintering temperature may induce metal diffusion and 

migration at the interface leading to current leakage and dielectric breakdown190. In 

addition, mismatch between the sintering behaviors of LTCC and electrode could cause 

undesirable co-firing defects including delamination, cracking and camber191-193. 
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Therefore, the co-firing and microstructure of the internal metal electrode and ceramics 

should be carefully controlled for reliable performance in LTCC devices. The other 

requirements for LTCC substrate are low dielectric constant and dielectric loss.  

4.2 Master sintering curve 

Sintering is considered as a complicated process. It is very difficult to interpret the 

sintering behavior quantitatively because the sintering always involves microstructure 

evolution due to several different diffusion mechanisms. Early studies define the sintering 

process into three stages and use well defined geometric models to analyze only one of 

the three stages194, 195. Only in special cases, the geometric approximation results are 

consistent with the experiments196. There is a considerable interest to generate a model to 

predict the densification during the entire sintering process. The master sintering curve 

(MSC) proposed by Su and Johnson is a new approach to quantitatively predict the 

sintering process of practical powder182, 197.  

The formulation and construction of MSC model is derived from combined stage 

sintering model182, 198: 

−
𝑑𝐿
𝐿𝑑𝑡

=
𝑑𝜌

3𝜌𝑑𝑡
=
𝛾𝛺
𝑘𝑇

�
𝛤𝑣𝐷𝑣
𝐺3

+
𝛿𝛤𝑏𝐷𝑏
𝐺4

�                                   (4.1) 

where 𝐿 is the sample dimension, 𝑡 is sintering time, 𝜌 is the relative density, 𝛾 is the 

specific surface energy, 𝛺 is the atomic volume, 𝑘 is the Boltzmann constant, 𝑇 is the 

absolute temperature, 𝐺  is the average grain diameter, 𝛿  is the width of the grain 

boundary, 𝐷𝑣  and 𝐷𝑏  are the coefficient of volume diffusion (subscript 𝑣 ) and grain 
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boundary diffusion (subscript 𝑏), 𝛤 is the individual component of the lumped scaling 

parameter, which is related with the driving force, mean diffusion distance, and other 

geometry features of the microstructures, such as mean grain size.  

If 𝐺  and 𝛤  are only functions of density and only one diffusion mechanism 

dominates during the sintering, the equation can be simplified, rearranged and integrated 

as follows: 

�
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� 𝑑𝑡

𝑟

0
                            (4.2) 

where 𝜌0  is the green density of the powder composite, 𝑄  is the apparent activation 

energy for sintering, 𝐷0 = (𝐷𝑣)0  and 𝑛 = 3  when volume diffusion dominates, 𝐷0 =

(𝐷𝑏)0 and 𝑛 = 4 when grain boundary diffusion dominates during the sintering. The left 

side of this equation is only related with density, and the right side is related with the 

temperature-time trajectory. Further rearrangement of the equation makes the equation 

became: 

Φ(𝜌) ≡ (
𝑘
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and 
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where 

Φ(𝜌) = Θ(𝑡,𝑇(𝑡))                                           (4.5) 
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The relationship between 𝜌 and Φ(𝜌) is defined by master sintering curve (MSC). 

The MSC is unique for a given powder and green-body process independent of sintering 

path. A simple way to construct the MSC is to use the equation. The integration of 

equation (4.4) can be calculated for any arbitrary sintering path as long as 𝑄 is known or 

estimated. Otherwise a series of experiment with different sintering time and/or 

temperature is needed to construct a MSC. 

Several assumptions are made to generate this model. First of all, MSC model is 

only applied to the same green power, green-body process and green density. Different 

powder results in difference in particle size, particle size distribution. Green-body process 

causes difference in pore-size distribution and packing properties and green density.  

Those quantities will affect densification process. Secondly, MSC model also assumes 

the microstructure evolution, both particle size and geometry, is only dependent on the 

density independent of the sintering temperature and heating rate. Another assumption is 

that only one diffusion mechanism, either volume or grain boundary diffusion, dominates 

during the sintering process. Surface diffusion and vapor transport causes coarsening 

without increase of the density, and they also retard the densification. The MSC may be 

not applied in these cases when surface diffusion and vapor transport dominate. However, 

the surface diffusion typically dominates at the beginning of sintering at low temperature, 

and it is insignificant compared with grain boundary diffusion over wide sintering 

temperature. Vapor transport dominates at high temperature approaching melting point, 

which is not expected at sintering temperature in most cases. This assumption to 

construct MSC model can be generally satisfied197. 
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Su and Johnson originally use polynomial function to fit the data point of 𝜌 and 

Φ(𝜌). The best estimate of 𝑄 is found when the mean of the residual squares of the data 

points with respect to the fitted line is minimum182. The mean residual square (MSS) is 

given by: 

𝑀𝑆𝑆 =
1
𝑛
�(𝜌𝑖 − 𝜌)2
𝑛

𝑖−1

                                            (4.6) 

where 𝜌𝑖 is the experimentally measured relative density, and 𝜌 is the predicted relative 

density, 𝑛 is the number of data points. 

A sigmoid function also provides a good fit between 𝜌 and Φ(𝜌) 183, 199: 

𝜌 = 𝜌0 +
1 − 𝜌0

1 + exp (− (𝑙𝑛Θ − 𝑎)
𝑏 )

                                    (4.7) 

where 𝜌0 is the green density of powder composite at the start of sintering, 𝑎 and 𝑏 are 

constant defining the curve. 

A different sigmoid function has also been used to define the MSC200: 

𝜌 = 𝜌0 +
𝑎

�1 + exp (− (𝑙𝑛Θ − 𝑙𝑛Θ0)
𝑏 )�

𝑐                                 (4.8) 

where 𝜌0 is the green density of powder composite at the start of sintering, 𝑎, 𝑏 and 𝑐 are 

constant, 𝑙𝑛Θ0 is the abscissa coordinate of the reflection point of the curve. 

The MSC has also been modified to analyze the grain growth by Ostwald ripening 

with time and temperature in Park et al.’s work201. Two assumptions are made to modify 
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the MSC. First, microstructure evolution, both grain size and geometry, is only dependent 

on the density. Secondly, the apparent activation energy, 𝑄 , is a constant during the 

sintering. Then the equation of grain growth is transformed into the MSC form given by: 

𝐺 = �𝐺03 + 3Θ
3

                                                                (4.9) 

Θ = �
𝑘𝐷0𝐶𝛺𝛾
𝑅𝑇(𝑡)

f(V𝑙)exp (−
𝑄

𝑅𝑇(𝑡)
)𝑑𝑡

𝑡

0
                                (4.10) 

where 𝐺0  is the initial grain size, 𝐺  is the mean grain size,  𝐷0  is the pre-exponential 

factor of the diffusivity of the grain atoms in the matrix, f(V𝑙) is a function of the liquid 

volume fraction V𝑙, 𝑘 is a constant,  𝑡 is the sintering time, 𝐶 is the grain atoms’ solubility 

in the matrix, 𝑅 is the gas constant, and 𝑇 is the absolute temperature. The grain size in 

the MSC curve is only dependent on the initial grain size, independent of the sintering 

cycle path. The experiment results also show that the grain sizes lie on a single curve 

regardless of sintering time and temperature. 

The MSC is originally developed for powder composite systems that exhibit solid 

state sintering with isotropic sintering behavior 182. The MSC concept has been further 

extended to analyze the liquid phase sintering and viscous sintering with anisotropic 

sintering behavior183, 184, 187, 199, 202, 203. The MSC has been used to predict and control the 

sintering in practical applications, and the predicted density by the MSC is consistent 

with the experimentally measured sintered densities202, which verifies the validity of the 

MSC. Another powerful tool of MSC is to analyze the apparent activation energy for 

densification, 𝑄183, 204.  Comparisons of the apparent activation energy calculated by the 
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MSC with the reported in the literature for grain boundary or volume diffusion allows 

verification of dominated diffusion mechanism, and it also allows the detection of any 

change in the dominate diffusion mechanism. The MSC is also a powerful tool for 

quantifying sintering process which involves phase changes in multiphase sintering 

systems183.   Grain boundary diffusion tends to dominate for powder with a small particle 

size, where volume diffusion tends to dominate for composites with a large particle size. 

Effects of the particle size on the diffusion mechanism can be observed readily by the 

MSC in practical sintering204. The MSC has also been applied to study the sintering 

kinetics of LTCC, although LTCC are glass based composite with high volume of glass 

phase and the sintering of LTCC occurs by viscous flow. The apparent activation 

energies obtained by MSC are consistent with the values achieved by master viscosity 

curve on isothermal data184, 187, which indicates the validity of the MSC application to 

LTCC systems.  

4.3 Experimental: 

4.3.1 LTCC fabrication and sintering 

A calcium alumina borosilicate glass frit with composition 38.3CaO-4.5Al2O3-

49.8SiO2-7.5B2O3 (mol%) was prepared by the rapid melt quenching method. A 

stoichiometric mixture of SiO2 (Kentucky Mudworks, Lexington, KY), Al(OH)3 

(Kentucky Mudworks), CaCO3 (Sigma-Aldrich, St. Louis, MO) and B2O3 (Acros 

Organics, Pittsburgh, PA) was mixed in an agate and melted in a covered alumina 

crucible at 1500OC for 1 hr. The melt was subsequently quenched into cold de-ionized 

water in a steel pot. The glass powder was dried in an oven and grounded into fine 
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powder. The powder was vibratory milled in alcohol using magnesia-stabilized zirconia 

cylinders (US Stoneware, Mahwah, NJ) on a vibratory mill (ML16-5, Sweco, Florence, 

KY) for 36 hr. There was less than 1% weight loss of zirconia media observed after the 

milling step. The images of the glass powder was taken using scanning electron 

microscope (SEM, S-4300, Hitachi, Tokyo, Japan), and the particle size was analyzed to 

be around 2.9 µm using Image-Pro Plus 6.0 software. Brunauer–Emmett–Teller (BET) 

specific surface area, 2.1 m2/g was determined by BET surface area analyzer. (TriStar 

3000, Micromeritics, Gosford, NSW, AUS). The glass transition temperature, Tg=680OC 

at heating rate of 5OC/min, was evaluated using differential thermal analysis (DTA, STA 

449C, Netzsch, Burlington, MA). The glass density, ρ=2.741 g/cm3, was obtained by 

pycnometry (AccuPryTM 1330, Micromeritics, Gosford, Australia). The ceramic filler 

was alpha alumina (LS-DBM, Baikowski Malakoff, Inc., Malakoff, TX)) with averaged 

particle size 1.3 µm, BET specific surface area 3.5 m2/g.  

The slurry formulation for tape casting contained 75 vol% glass and 25 vol% 

alumina, based on the formulation described in the report by Muller. R.176 . Xylene and 

ethyl alcohol in 1:1 volume ratio was used as organic solvent. The mixture of glass and 

alumina were first ball milled with zirconia media for 24 hr in the solvent with menhaden 

fish oil dispersant (R.E. Mistler, Yardley, PA). Then a binder, polyvinyl butyral (R.E. 

Mistler), and plasticizers, polyalkalene glycol (R.E. Mistler) and butyl benzyl phthalate 

(R.E. Mistler), dissolved in solvent were added into the slurry for another 24 hr ball-

milling. The total solid loading of the slurry was 58 wt%. 

A bench-top tape caster with single doctor blade (TTC-1200; R.E. Mistler, Yardley, 

PA) was used to cast the slurry onto a silicone-coated Mylar film (R.E Mistler) at a speed 
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of 5.3 cm/min. The resulting green tape had a thickness of about 155±15 μm. Several 

layers of green tape were aligned and laminated together at 6.2 MPa at 70OC for 20 min 

using a uniaxial press (3851; Carver, Wabash, IN). Then laminated green tape was 

vacuum sealed in a plastic bag, and 6.2 MPa isostatic pressure was applied at 70OC for 15 

min using a warm isostatic press (WIP 4.52230, Avure technologies, Inc.). The green 

tape was cut into squares for sintering experiments. The green tapes were first heated up 

to 450OC at ramp rate of 1OC/min with 1 h dwell time to completely burn out the organic 

additives, followed by sintering at different temperatures from 725OC to 900OC with 1, 3, 

5 and 10 OC/min heating rate. Thermogravimetry (TGA) and differential thermal analysis 

(DTA) of the green tape was analyzed using Netzsch STA 449C instrument. The bulky 

density and open porosity was measured using Archimedes method. X-ray diffraction 

(XRD, Model-D500, Siemens, Munich, Germany) was carried out to analyze the phase 

evolution of the sintered ceramic. 

4.3.2 Master Sintering Curve Analysis: 

Four different heating rates (1OC/min, 3OC/min, 5OC/min and 10OC/min) were 

employed up to the sintering temperature and quenched into air for MSC study. The 

shrinkage of the green tape with sintering temperature was determined by measuring the 

dimensional change in x and y directions before and after sintering.  A single theoretical 

density was calculated from the density and volume fraction of the glass and ceramic 

using mixing rule. The sintered density and theoretical density was used to calculate the 

relative density. Densification of the LTCC at heating rates of 1 OC/min, 3 OC/min, 5 

OC/min and 10 OC/min are used for the construction of MSC curves. 
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4.3.3 Microstructure and Co-firing with electrode 

The compatibility of the green tape with gold paste, TC8101 (Heraeus, Thick Film 

Division, West Conshohocken, PA), and silver paste, TC0307 (Heraeus, Thick Film 

Division, West Conshohocken, PA), was also tested by co-firing the green tape with 

screen printed electrode patterns. The width and length of electrode pattern line were 0.25 

mm and 166 mm respectively, and two pads were at the end of the patterned line as 

contact leads for testing resistance. Ten layers of green tape were laminated together with 

width 21 mm, length 23 mm and thickness 1.45 mm. Two layers contain electrode 

patterns. One was on top of the lamination, and the other one was on the bottom of the 

lamination covered by one layer of green tape leaving two pads open for resistance 

testing. The laminate was co-fired at 825 OC for 30 min, and resistance was tested using a 

multimeter. The microstructure of the fracture surface was analyzed using SEM (S-4300, 

Hitachi, Tokyo, Japan). The microstructure of the polished surface was analyzed using 

both SEM and energy-dispersive X-ray spectrometry (EDS, S-3200, Hitachi, Tokyo, 

Japan). The sintered LTCC with painted conductive Ag electrode (DuPont 6160, 

Research Triangle Park, NC) was fired at 800OC for 10 min for further measuring of the 

dielectric characteristics. The dielectric properties analysis was carried out by measuring 

the capacitance and loss at room temperature using precision LCR meter (Agilent 

E4980A, Agilent, Santa Clara, CA). 

4.3.4 Biocompatibility: Cytotoxicity assay of LTCC leachate 

Human umbilical vein endothelial cells (HUVEC) were used to evaluate 

cytotoxicity of LTCC leachate. For the LTCC leachate study, the sterilization procedure 
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for the LTCC consisted of sequentially sonication in de-ionized water for 5 min, 

complete drying in an oven, followed sonication in isopropanol for 5 min and autoclaving 

at 121OC for 30 min. Finally the LTCC substrates were dried in an oven. After 

sterilization, and the LTCC was then sprayed with ethanol, placed under the hood in UV 

light for 1h. Finally the LTCC leachate medium was obtained by soaking the LTCC 

substrates in 1 ml endothelial growth medium-2 (EGM-2) (Lonza, Allendale, NJ) per 

square centimeter of LTCC surface area (1 mL/cm2 EGM-2) in cell culture incubator at 

37OC for 5 days. EGM-2 medium was also incubated at the same time to monitor the 

change during the 5 days incubation, and it was called “blank” for short in the following 

paragraph. For control experiment, fresh medium without incubation was used. The 

HUVECs were seeded into 12-well tissue culture-treated polystyrene plate at 

concentration of 1.25×104 cells/cm2 at passage 6. Three each wells were used for control, 

blank and LTCC leachate experiments respectively. After one day incubation a 

LIVE/DEAD assay (Invitrogen, Carlsbad, CA) was conducted to determine viability. Old 

medium was removed from the wells, and 1ml fresh medium with 0.2 (v/v%) Calcein 

AM for staining live cells and 0.3 (v/v%) Ethidium Homodimer-1 (EthD-1) for staining 

dead cells was simultaneously added into each well. After 20 min incubation, images 

were taken using fluorescence microscope (ECLIPSE LV100, Nikon). Live and dead 

cells were imaged in green color and red color respectively.  The cell number in seven 

images with surface area 20 mm3 and five images with surface area 5 mm3 for each well 

was counted using software NIS-Elements DR 3.10. The viability of the cells was 

evaluated by cell density and live cell percent. 
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4.3.5 Biocompatibility: Endothelial cell adhesion and growth 

LTCC substrates were sterilized as described above. Substrate surfaces were 

modified to promote cell adhesion by coating with fibronectin (a common mediator of 

cell adhesion). Substrates were randomly placed into three wells in of a 12-well tissue 

culture-treated polystyrene plate.    Half a milliliter of a 25 μg/mL of fibronectin solution 

(Invitrogen) added to each well containing a substrate and allowed to soak for 2 hr in the 

incubator. The solution was removed and substrates were gently rinsed with 1mL 

Dulbecco’s phosphate buffered saline solution (DPBS) three times, and the formulation 

of DPBS used in the experiment was 0.79% NaCl, 0.1% Na2HPO4, 0.02% KCl and 0.02% 

KH2PO4 in de-ionized water. HUVEC cells were seeded onto the fibronectin coated 

LTCC substrate at concentration of 1.25×104 cells/cm2 at passage 6. For the control 

experiment, HUVECs were also cultured randomly in three additional wells in the same 

well plate. The cells were incubated for 14 hr for cell adhesion evaluation. The cell 

density was quantified by counting the cell number after staining the cells as described in 

above. To evaluate the cell proliferation, the culture medium was replaced every day, and 

the cells were incubated for 74 hr. The cells were imaged using fluorescence microscopy 

after the cells were stained, and the cell density was calculated by counting cell number. 

Statistical significance was determined using ANOVA and Turkey test. A p-value 

equal to or less than 0.05 was considered to be significant. 
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4.4 Results and discussion: 

4.4.1 LTCC fabrication and sintering 

Thermal analysis (TGA/DTA of the prepared tapes was conducted to determine 

initial processing conditions for organic burnout and sintering, as shown in Figure 4.1.  

 

Figure 4.1: TGA and DTA of the green tape at heating rate of 10 OC/min. 

The organic additives decomposed rapidly starting at 200OC continuing to 400OC. 

Decomposition continued at a reduced rate up to 630OC. The burnt out process was 

completed by 630OC with a total weight loss of 14.6 wt% at heating rate of 10OC/min. 

Higher temperature are required to completely burn out the organic additives for faster 

heating rate. However, the slow burn out process started at around 400OC, which 

indicates the organic additives can be burnt out at this temperature as long as slow 

heating rate is employed and enough time is allowed. A slow heating rate of 1OC/min up 
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to 450OC with 1 h dwell time was applied to burn out the organic additives. Two 

exothermic crystallization peaks were observed in the DTA curve with two crystallization 

peaks (Tp) at 950OC and 967OC. The two crystallization peaks were attributed to the β-

wollastonite, the low temperature polymorph of Ca3Si3O9 and anorthite, CaAl2Si2O8 

respectively176.  

Figure 4.2 shows the XRD results for specimens sintered at 850OC under heating 

rate of 1 OC/min and at 900OC under heating rate of 10 OC/min.  

 

Figure 4.2: XRD of the glass, LTCC sintered at 825OC, 850OC for 1 h with 5 OC/min 
heating rate, and LTCC sintered at 850OC with 1 OC/min heating rate and at 900OC with 

10 OC/min heating rate. 

The XRD results indicate only alumina crystal peaks show up in these two samples. 

In other words, there will be no crystallization for LTCC sintered at temperature up to 

850OC with heating rate of 1 OC/min, 3 OC/min and 5 OC/min, and at temperature up to 

900OC, with heating rate of 10 OC/min. No extra crystal peaks show up even for samples 
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sintered at 825OC and 850OC for 1h. In this experiment, no crystallization occurred in the 

sintering process, so the MSC approach can be used to accurately predict the viscous 

sintering densification behavior. 

4.4.2 Mater sintering curve study 

MSC analysis allows the development of a mathematic model of the densification 

of the LTCC versus sintering temperature. The densification of the LTCC at different 

heating rate of 1OC/min, 3OC/min, 5OC/min and 10OC/min are shown in Figure 3. The 

densification of the LTCC is very sensitive to the heating rate. The LTCC reached full 

densification at 825OC for heating rate of 1 OC/min. However, the densification was less 

than 65% at 825OC for heating rate of 10 OC/min. The LTCC achieved high densification 

eventually independent of the heating rate. 

Based on the densification data in Figure 4.3, MSC curve was constructed as shown 

in Figure 4.4 using MSC software200. The optimum activation energy is 452.4 kJ/mol, an 

energy of sintering in this range is consistent with expected values for viscous 

sintering184-187.  

The MSC curve is unique for a given powder and green-body process independent 

of the sintering process. Once the MSC curve is constructed, the densification can be 

predicted under different sintering profile. Heating rate 5 OC/min was employed to 

sintering the LTCC at temperature from 725 to 850 OC. Figure 4.5 presents densification 

of the LTCC and predicted densification using MSC. The experimental density was very 

low (<65%) when sintered at 750OC, and increased fast with increasing sintering 

temperature. The densification of the LTCC was higher than 97% when the sintering 
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temperature was above 775OC. The highest density was achieved at sintering temperature 

825OC. The density decreased with further increase of the sintering temperature, 

indicating glass blowing due to over firing at temperature higher than 825OC. The 

predicted densification using constructed MSC curve matched well with experiment 

value. The experimental densification value was higher than predicted value at 

temperature 725OC and 750OC, and lower than predicted value at higher temperature. The 

largest difference between experiment density and predicted value was at temperature 

850OC and it implied glass bloating because of over firing. The open porosity of the 

LTCC also greatly decreased when sintered at temperature 800OC and higher. The 

shrinkage of the green tape was as high as 17% when sintered at 825OC. 

 

Figure 4.3: The densification of the LTCC versus sintering temperature at heating rates of 
1OC/min, 3OC/min, 5OC/min and 10OC/min. 
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Figure 4.4: Master sintering curve and averaged residual square vs apparent activation 
energy. The optimum activation energy is 452.4 kJ/mol. 

 

Figure 4. 5: The contour map of the predictions of the sintering time. The dash line is for 
relative density 95%. 
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The sintering time required to reach a particular densification at a constant 

temperature was predicted using the constructed MSC. Figure 6 shows the contour map 

of the predictions for the sintering time. Less than two minutes were needed to sinter the 

LTCC with 98% densification at temperature higher than 875OC as shown in Figure 4.6. 

However, high sintering temperature can easily lead to glass bloating because of high 

volume of glass phase in LTCC. Certain dwell times are required to co-firing the LTCC 

and electrode, usually for 20-30 min at peak sintering temperature for commercial 

available electrode paste.  To achieve higher than 95% densification, the sintering 

temperature for 30 min dwell time predicted by MSC was higher than 800OC.  

 

Figure 4.6: Densification, open porosity, shrinkage of the LTCC and predicted 
densification using constructed MSC curve sintered at different sintering temperature for 

30 min. 
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4.4.3 Microstructure of LTCC and Co-firing with electrode 

The microstructure of the LTCC substrate was characterized using SEM. The SEM 

of the fracture surface of LTCC substrates sintered at 825OC for 30 min are shown in 

Figure 4.7, revealed dense microstructure. The glass formed interconnected matrix and 

encapsulated the alumina ceramic particles. Isolated spherical pores with size less than 3 

μm were observed in lower magnification micrographs in Figure 4.7(a). These pores were 

attributed to glass bloating due to over sintering, and this also explains the experimental 

density was less than the theoretical density calculated using constructed MSC curve as 

shown in Figure 4.6. Figure 4.8 (a) shows the SEM of the polished fracture surface of the 

LTCC. Figure (b) and (c) exhibits corresponding alumina and calcium EDS mapping. 

The bright grains in the SEM were rich in alumina elements. Grey area was rich in 

calcium. The XRD results in Figure 4.2 demonstrated no crystallization at 825OC, so 

bright grains were attributed to alumina ceramic and grey area was glass phase. 

Compatibility of the LTCC co-fired with electrode was also analyzed. Figure 4.9 

shows the interface between the LTCC substrate and the silver (TC0307, Heraeus, Thick 

Film Division, West Conshohocken, PA) and the interface between the LTCC and gold 

(TC8101, Heraeus, Thick Film Division, West Conshohocken, PA). No pores, 

delamination, crack and camber were observed. The smooth interface between the 

electrode and LTCC indicated no electrode diffusion and reaction happened at this 

sintering temperature.  
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Figure 4.7: SEM of the fracture surface of the LTCC sintered at 825OC for 30 min. 
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Figure 4.8: (a): SEM of the polished surface of the LTCC sintered at 825OC for 30 min; 
(b) and (c): the EDS mapping of the element Al and Ca; (d): the intensity of the Al Kα 

and Ca Kα in the EDS across the line from left to right in the SEM image. 
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Figure 4.9: Back-Scattered Electron (BSE) images of LTCC cofired with silver (TC0307, 
Left) and gold (TC8101, Right) at 825OC for 30 min. 
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Figure 4.10: Optical images of TC0307 silver (a) and TC8101 gold (b) pattern on LTCC 
surface after cofired at 825OC for 30 min. 

The sheet resistance of these two electrodes was also studied. Silver and gold 

electrode paste pattern was screen printed with 165 mm length and 250 µm width. The 

resistances of the electrode lines after co-firing with LTCC at 825OC for 30 min were 
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measured. The images of the electrode patterns on the surface of LTCC after co-firing 

were shown in Figure 4.10. Surface resistance was calculated using the following 

equation: 

𝜌 =
𝑅𝑊𝑡
𝐿

 

where 𝜌 is the resistivity, and R is the resistance. W, t and L are the width, thickness and 

length of the electrode. The results are listed in Table I. The resistivity of gold electrode 

didn’t change much when co-fired on the LTCC surface or buried inside the LTCC. And 

the resistivity of the silver co-fired in the surface was a little higher than the value of the 

silver buried in the LTCC. The averaged thicknesses of the silver and gold electrodes 

buried inside of the LTCC were around 7.4 and 8.3 µm respectively, as shown in Figure 9.  

Table 4-1 Surface resistance of the co-fired electrode. 

 TC8101 TC0307 
Reported Resistivity <15×10-8 Ω∙m ≤ 4.5×10-8 Ω∙m 
Resistivity on LTCC 

surface 
9.2±0.1×10-8 Ω∙m 3.0±0.1×10-8 Ω∙m 

Resistivity buried in 
LTCC 

9.7±0.3×10-8 Ω∙m 2.5±0.1×10-8 Ω∙m 

The dielectric constant was stable at frequency from 1 kHz to 1.5 MHz as shown in 

Figure 4.11 and it changed from 9.18 at 1 kHz to 9.13 at 1.5 MHz with change less than 

1%. Although the dielectric loss increased with increasing frequency, it had value less 

than 0.15% in the frequency range from 1 kHz to 1.5 MHz. The dielectric constant and 

loss are comparable to those reported for low loss LTCC169, 182, 197.  
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Figure 4.11: Dielectric properties of the LTCC sintered at 825OC for 30 min 

4.4.4 Biocompatibility: Cytotoxicity of LTCC leachate 

Following procedures described above a standard biocompatibility assay was 

conducted using the leachate obtained from fresh LTCC substrates following sterilization. 

LIVE/DEAD results of HUVEC cultured in fresh medium (Control), medium incubated 

in incubator for 5 days (Blank) and LTCC leachate medium (LTCC) are shown in Figure 

4.12. Quantitative image analysis of live cell percent and cell concentration are shown in 

Figure 4.13. The cell cultured using LTCC leachate medium spread onto the surface.  The 

cell density and live cell percent of LTCC leachate medium are statistically equivalent 

(p>0.05) between control and LTCC leachate medium.  
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Figure 4.12: LIVE/DEAD images of HUVEC cultured for 1 day using: fresh media 
(Control), media stored in incubator for 5 days (Blank), or leachate media stored with 

LTCC in incubator for 5 days (LTCC). 
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Figure 4.13: Live cell percent and cell concentration from LIVE/DEAD assay of HUVEC 
cultured for 1 day using:  fresh media (Control), media stored in incubator for 5 days 

(Blank), or leachate media stored with LTCC in incubator for 5 days(LTCC).(Error bars 
represent standard error). For ANOVA and Turkey test, p is 0.02 between control and 

blank; p is 0.65 between control and LTCC, p is 0.14 between blank and LTCC.  

4.4.5 Biocompatibility: Endothelial cell adhesion and growth 

HUVECs were seeded on fibronectin coated LTCC (LTCC) and 24 well tissue 

culture-treated polystyrene plates (Control). Adhesion was studied after 14 hr, and the 

proliferation after 74 hr. Cell images on fibronectin coated LTCC and control at 14 hr and 

74 hr are shown in Figure 4.14. Cells attached and spread both on control and LTCC after 

14 hr and cells proliferated on both samples after 74 hr. Quantitative image analysis of 

the cell density and live cell percent at 14 hr and 74 hr are shown in Figure 4.15. 

Although more dead cell exhibited on LTCC after 14 hr, the live cell density of LTCC 

was statistically equivalent (P>0.05) to that of control after 14 hr. The cell concentration 

on control and fibronectin coated LTCC substrate significantly increased after 74 hr. Live 
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cell percent on LTCC surface were statistically equivalent to that of control with value 

higher than 99% after 74 hr. The cell number on fibronectin coated LTCC were higher 

than that of control after 74 hr.  

 

Figure 4.14: Pictures of the cultured cells on the well plate (control), and on the 
fibronectin coated LTCC surface (LTCC) for 14 hr and 74 hr. 

The higher proliferation rate observed on LTCC substrate may be due to surface 

morphology and element leachate. First the rough surface of LTCC in this experiment 

may be beneficial to the proliferation of HUVECs. The roughness of the surface effects 

the growth of all kinds of cells and the topographies of the surfaces on LTCC may be 

related with the improved HUVECs growth205. Second enhanced proliferation may be 
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likely due to dissoluted ions from the glass phase, such as Ca2+. The calcium leachate rate 

of HL2000 LTCC in physiological solution has been reported to be 1.48×10-2 µg/cm2h 37. 

Dissolution of calcium from the glass phase may stimulate the HUVECs differentiation 

and proliferation in this experiment. And this may also explain the cell concentration in 

LTCC leachate medium were a little higher than blank in cytotoxicity study of the LTCC 

as shown in Figure 4.12 and 4.13. More experiments are needed to analyze the glass 

dissolution and effects of ion dissolution on HUVECs proliferation. 

 

Figure 4.15: Live cell percent and cell concentration of the cultured cells on the well plate 
(control), and on the fibronectin coated LTCC surface (LTCC) for 14 hr and 74 hr. For 
ANOVA and Turkey test, p is less than 0.001 between control and blank after 14 h cell 

culture; p is less than 0.001 between control and LTCC for 74 h cell culture. 

4.5 Conclusion 

An LTCC with 75 vol% borosilicate glass frit and 25 vol% alumina was fabricated 

using tape casting method. DTA and XRD results indicated no formation of secondary 
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crystalline phase at sintering temperature less than 900OC. MSC curve was constructed to 

analyze the densification behavior and apparent activation energy of the LTCC for 

optimization of the sintering process, and the apparent activation energy was estimated to 

be ~ 452.4 kJ/mol. The densification predicted using constructed MSC was in good 

agreement with experimental value. The dielectric properties of the LTCC were also 

studied, demonstrating dielectric properties suitable for low dielectric constant LTCC 

materials. The dielectric constant of full sintered LTCC was stable, with value less than 

9.5, and the dielectric loss was less than 0.15% in the frequency range from 1 kHz to 1.5 

MHz. Biocompatibility was demonstrated by seeding of endothelial cells (HUVEC) in 

LTCC leachate medium and on fibronectin coated LTCC substrate. The cell density and 

percentage of live cells cultured after 1 day in LTCC leachate were comparative with 

those of control. The cells attached, spread and proliferated on fibronectin coated LTCC. 

The results indicate developed LTCC are biocompatible and can be regarded as a 

potential candidate in the microfluidic and lab on the chip application using live cell 

sensing. 
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Chapter 5 A low temperature co-fired ceramic (LTCC) 

microfluidic Clark-type oxygen sensor for real-time 

oxygen sensing 

5.1 Introduction 

In this work, we present a design and development of a microfluidic LTCC based 

Clark-type oxygen sensor for the real-time assessment of localized dissolved oxygen. 

LTCC materials were chosen because of its ease fabrication, rapid prototyping, fast 

incorporation of electronic and microfluidic components. The microfluidic oxygen sensor 

consisted of an LTCC substrate with electrodes for detecting electrochemical signals, 

solid-state electrolyte, oxygen permeable membrane, and a fluidic microchannel sealed to 

a glass slide. A solid proton conductive electrolyte was chosen instead of liquid 

electrolyte and microfluidic function was realized easily in this system. Since the reduced 

current was detected with testing solution flowing in microchannel and the old solution 

was replaced by new solution during the testing, the problem of the oxygen consumption 

was solved in this microfluidic oxygen sensor. And it can also be used to monitor the 

change of dissolved oxygen over time. The usage of solid-state proton conductive matrix 

(PCM) membrane also provides mechanical support to gas permeable membrane and 

eventually extends the lifetime of the membrane. Clark-type oxygen sensor reported in 

the literature only detected dissolved oxygen in static fluids in biological environment, 

and flowing of the testing samples would lead to signal shift or change39, 40, 142.  The 

developed device was capable of oxygen delivery and real-time detection of dissolved 
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oxygen in a flowing medium at various flow rates. Incorporation of microfluidic function 

to the integrated Clark-type oxygen sensor is a unique improvement for the potential 

application in biological assays and bioreactor. 

The delivery of oxygen supply and accurate measurement of dissolved oxygen 

concentration are very important in the environmental monitoring, biological assays, 

bioreactors and other applications40, 41, 93, 97, 106, 108, 148. Oxygen sensing has been 

frequently used to monitor the cellular metabolic activity and rapidly determine the cell 

viability 40, 93. Adequate supply of oxygen plays a key role in cell proliferation and 

differentiation, and abnormal supply of oxygen may lead to a diseased state206. 

Monitoring cellular oxygen consumption rates and cellular respiration provides important 

information for metabolism, apoptosis, mitochondrial function, toxicological responses to 

various drugs in the critical biochemical study106, 206. There is an increasing need for the 

development of low-cost, flexible oxygen sensor with easy and rapid fabrication as the 

integrated microfluidic devices for biological applications.  

Two common techniques for sensing dissolved oxygen in microfluidic applications 

are luminescent optical sensing and electrochemical sensing. Both demonstrate high 

sensitivity to oxygen at low concentration101. The mechanism of luminescent optical 

sensing is based on the excitation of fluorescent dyes encapsulated in a polymer matrix 

and that the luminescent intensity and lifetime are related with oxygen concentration102. 

Fluorescent oxygen sensing (such as the XF Extracellular Flux Analyzer recently 

commercialized by Seahorse Biosciences) has seen widespread adoption due to its 

inherent stability207. However, the applications of this technique are limited by the 

complicated fabrication and expensive lifetime-sensing apparatus105, 142, 208. Fluorescent 
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sensing also has a longer response time than electrochemical oxygen sensors. 

Electrochemical sensors are widely used and available in a number of styles from various 

manufacturers142, 209. The most common embodiment of the electrochemical sensor is the 

Clark-type configuration, incorporating a cathode, anode, electrolyte solution and a gas 

permeable membrane. The majority of these sensors require large sample volumes (10’s-

100’s mL), employing macroscopic probe style electrodes which must be immersed into 

the specimen of interest. The principle of amperometric devices is to take advantages of 

electrochemical reaction of dissolved oxygen and detect reduced current which is 

proportional to the dissolved oxygen concentration. The advantages of Clark type 

dissolved oxygen sensor are easy fabrication, low cost and fast response compared with 

luminescent sensing technique. However, those sensors also have some limitations and 

suffer from problems such as consumption of dissolved oxygen at the working electrode 

which results in the change of oxygen concentration in the sample solution. Due to the 

consumption and local depletion of the dissolved oxygen mechanical agitation or 

circulation of the testing sample may be required40, 142.   Thin gas permeable membrane 

suspended on top of liquid electrolyte in the Clark-type oxygen sensor also lead to 

susceptibility of membrane failure by mechanical agitation. It is also difficult to adapt the 

functionality of this type of sensor to continuous monitoring, automation and high-

throughput measurements210. However, several microfabricated sensors are available for 

microfluidic and high throughput sensing. These include probe style sensors (such as 

from Strathkelvin Instruments) incorporating microelectrodes to reduce oxygen 

consumption and sample volume requirements (~100 µL), and single or multiwell plates, 
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up to 90 wells (from Bionas GMBH), incorporating printed microelectrodes. In the 

current work, these concepts are expanded upon for use in a microfluidic flow cell.  

5.2 Sintering of LTCC: Self-constrained sintering 

One of the limitation of the LTCC process is shrinkage in the x, y directions during 

the sintering process45, typically from 10 % to 15 %. The shrinkage in x, y directions is 

identical to or slightly different from that in z direction. Shrinkage variation in lateral 

direction occurs in free sintered composites, which is up to 0.5%. This leads to the 

difficulty to control the geometric precision, and further limits the capability to large 

volume production of modules in the LTCC211-213. Zero shrinkage technology is an option, 

which limits the transverse shrinkage to a great extent and only allows longitudinal 

shrinkage. The technology used in LTCC sintering includes self-constrained sintering, 

pressure-assisted sintering, pressureless-assisted sintering and LTCC-M method, which 

uses metal as substrate213-216. HeraLockTM HL2000 tape has been developed using self-

constrained sintering method, and it has shrinkage 0.2 % in x, y direction and tolerance 

±0.02% after sintering211, 212. This tape was processed without sacrificial layer and 

sintered without pressure.  

This tape contains three layers of tape sintering at different temperature intervals. 

The top and bottom layers have regular LTCC formulation with ceramic filler and a glass. 

The middle layer is the self-constraining layer and consists of a refractory ceramic and a 

wetting agent that help the glass phase in top and bottom layers diffuse into the porous in 

the middle layer211. Figure 5.1 shows 178 mm × 280 mm LTCC laminate cut in half with 
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and without sintering. The low shrinkage and shrinkage tolerance of the HL2000 LTCC 

enable production of LTCC components with large panel sizes. 

 

Figure 5.1: Image of the HL2000 LTCC with plenty of electrical circuits before and after 
sintering to demonstrate zero shrinkage in x,y direction. Reprinted from the reference211. 

5.3 Experimental: 

5.3.1 Geometry and design of microfluidic flow cell incorporating Clark-type 

electrodes 

This LTCC based Clark type oxygen sensor was mainly composed of LTCC 

substrate with three electrodes (Au working electrode, Au counter electrode and Ag/AgCl 

reference electrode), Nafion solid-state electrolyte, PDMS gas-permeable membrane, a 

PDMS storage channel for testing sample and glass cover sealed to the channel. The inlet 

and outlet connected with microfluidic channel for the sample solution was included in 

the LTCC substrate layer. Figure 5.2 shows the basic structure of Clark type oxygen 

sensor.  
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PDMS was chosen as oxygen permeable membrane in this device because of its high 

permeability to oxygen gas101. In addition, the hydrophobic PDMS membrane also 

isolated the electrolyte and electrode from the sample medium, which prevents the 

interference of other reactive and electroactive species. DPMS was also used as the 

material for the microfluidic channel due to its non-toxicity and easy fabrication with soft 

lithography rapid prototyping techniques. The disposable PDMS microfluidic layer 

allowed easy reconfiguration using soft lithographic techniques without requirement for 

the change of LTCC substrate. Various channel sizes can be employed using the same 

reusable electrode substrate. PDMS material used both as gas-permeable membrane and 

microfluidic channel improved the adhesion between LTCC substrate and the 

microfluidic layer under mechanical fixation.  

The final dimension of the sintered LTCC substrate with total thickness 0.7 mm was 

3.8×3.6 mm. The surface area of working, counter and counter electrode were 0.2 mm2, 

0.75 mm2 and 1.5 mm2 respectively. 

 

Figure 5.2: Schematic illustration of the reaction mechanism and conceptual presentation 
of the microfluidic LTCC based Clark-type oxygen sensor. 
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5.3.2 Fabrication of LTCC substrate with Clark-type electrodes 

Fabrication of microfluidic flow chambers and microelectrodes was performed 

using typical multilayer co-fired ceramic processing methods. For prototyping purposes, 

commercially available HL2000 green tapes (Heraeus, Thick Film Division, West 

Conshohocken, PA) were used as substrate materials. Electrical conductors were printed 

using TC8101 gold paste (Heraeus) for working and counter electrodes, and TC0307 

silver paste (Heraeus) for fabrication of reference electrode. The cavities (inlet and outlet) 

and channels in the green tapes were cut using a CO2-laser milling system (VLS 3.50, 

Univer-sal Laser Systems, Scottsdale, AZ). Green tapes were then laminated together 

under pressure 6.1 MPa at 75 0C for 10 min using a uniaxial press (3851, Carver, Wabash, 

IN). Subsequently, another layer of green tape (layer 7) was laminated on top under 

pressure 6.1 MPa at 75 0C for 20 min as an insulator layer to define the sensitive area of 

the electrodes. The consolidated laminate was trimmed with a razor blade and sintered 

following manufacturer’s guidelines, 1 0C/min up to 450 0C then 7 0C/min up to 875 0C 

with a 30 min hold followed by inertial cooling. Chemical oxidation with aqueous FeCl3 

(Fisher Scientific) was used to produce AgCl. A 0.1 M FeCl3 was applied to sintered Ag 

electrode for 10 min at room temperature. DI water was used to clean the substrate.  

5.3.3 Incorporation of solid-state electrolyte and oxygen permeable membrane 

A polymeric proton conducting membrane (PCM) was used as solid electrolyte. 

The PCM solution consisted of a mixture of one part of 5 wt.% Nafion 117 (Aldrich) 

solution and one part of 1.25 wt.%  polyvinylpyrrolydone (PVP360, Sigma) and 0.04 wt.% 

addition of 2,6-bis(azidobenzylidene)-4-Methylcyclohexanone)) (Santa Cruz 

126 
 



 

Biotechnology). Nafion provides the required proton conductivity and PVP improved 

adhesion between the electrode and LTCC surface.  

To prepare the surface, the LTCC substrate was dipped into a mixture of 3-

(trimethoxysilyl) propyl methacrylate (Acros), ethanol and dilute acetic acid (1:10 glacial 

acetic acid:water) in a ratio of 1:200:6 for 3 min. The substrate then was rinsed with 

ethanol to remove any residual reagent, and dried thoroughly at 60 0C for 5 min. The 

PCM solution was pipetted on the device surface and dried at 70 0C for 1 h. The thickness 

of the PCM membrane was ~8.4 µm, observed using optical microscopy.  

The PCM membrane was then covered by an oxygen permeable membrane (OPM). 

The OPM was prepared from a mixture of PDMS (polydimethylsiloxane, Sylgard 184, 

Dow Corning) with curing agent in a weight ratio 10:1. Xylene was used to adjust the 

viscosity in order to obtain uniform PDMS membrane with desired thickness. The LTCC 

substrate was spun at 2000 rpm and the xylene-PDMS mixture (1: 3, v/v) was spread on 

the surface for 1 min. And the PDMS was cured at 60 0C for 2 h and the thickness was ~ 

20.8 µm observed under optical microscopy. 

5.3.4 Fabrication of PDMS channel and its bonding to LTCC substrate 

The channel layer was fabricated from 1 mm thick  PDMS The channel, with width 

2.2 mm and length 23 mm, was cut using CO2-laser milling system. A transparent glass 

was cut into suitable size and cleaned in isopropanol and dried. Both the glass and 

PDMS-channel layer were treated with O2 plasma, and the plasma treated surface of the 

PDMS was pressed against on the plasma treated surface of the glass. Irreversible cross-

linking between PDMS and glass surface results in strong adherence of the two materials.  
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The LTCC substrate with PCM membrane and OPM was placed on top of boiled 

water for 1 h in order to saturate the PCM membrane with water. The LTCC substrate 

and PDMS-glass substrate were manually aligned and mechanically secured with spring 

clips. Figure 5.3 shows the image of the bonded microfluidic LTCC based Clark-type 

oxygen sensor. 

5.3.5 Characterization of the LTCC based oxygen sensor 

Commercially available dissolved oxygen meter was purchased from Milwaukee 

(MW600) to monitor the dissolved oxygen in the solution. Both cyclic voltammetry and 

chronoamperometry measurement were used to obtain the calibration curves and quantify 

the oxygen concentration by measuring the reduced oxygen currents. To get sample 

solution with specific oxygen concentration, N2 gas was flown into the solution for 10 

min and 0.1 wt.% sodium sulfite was added to stabilized oxygen concentration of the 

solution at open environment. And then the solution was magnetically stirred, and 

dissolved oxygen meter was used to monitor the oxygen concentrations. And stirring 

should stop when the oxygen centration reached expected value. Oxygen depleted 

solution was prepared by adding 0.1 M sodium sulfite. The electrochemical 

measurements and characterization were performed using a potentiostat (MPG-2, Bio-

logic) with computerized control and data acquisition software (EC-Lab V10.32).  
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Figure 5.3 Image of the bonded microfluidic LTCC based Clark-type oxygen sensor. 

5.4 Results and discussion: 

5.4.1 Theory of operation 

The reaction mechanism of Clark type oxygen sensor is based on the 

electrochemical reduction of the dissolved oxygen which diffuses through gas permeable 

membrane to the electrolyte at the working electrode. Figure 5.2 shows the reaction 

mechanism at the working and counter electrode. The reduction of dissolved oxygen at 

the working electrode is a two-process step98. The reaction was summarized by: 

O2+2H++2e-→H2O2                                                     (6.1) 

H2O2+2H++2e-→2H2O                                                  (6.2) 

The reaction at the counter electrode was production of oxygen:  

2H2O→ O2+4H++4e-                                                    (6.3) 
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5.4.2 Cyclic voltammetry of the sensor 

Cyclic voltammetry measurements were used to determine the bias point for oxygen 

reduction and verify that there is no other competitive reaction at the selected bias point. 

Cyclic voltammetry measurements for oxygen reduction in oxygen saturated DI water 

was performed over a voltage range from 0 V to -1.0 V with scanning rate 100 mv/s, as 

shown in Figure 5.4. With the initial application of a negative voltage (starting from 0 V), 

a commensurate change in the current was observed, consisting with a kinetically limited 

reaction.  The plateau current started to appear around an applied voltage of -0.75 V. The 

diffusion controlled region for oxygen reduction was observed to be in the range of -0.75 

V to -1.0 V, and no other competitive reaction was observed. The subsequently 

chronoamperometric reduction currents measured at an applied voltage -0.75 V were 

used to characterize the oxygen concentration.  

 

Figure 5.4: Cyclic voltammetry of the DI water 
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5.4.3 Oxygen sensing and flow rate effects 

Initial evaluation focused on the dynamic range of the developed sensor for oxygen 

saturated and oxygen depleted solutions of Dulbecco’s phosphate-buffered saline (DPBS, 

4 g NaCl, 0.5 g Na2HPO4, 0.1 KCl and 0.1 g KH2PO4 in 500 mL DI water), as shown in 

Figure 5.5. Chronoamperometry was used to determine the dynamic behavior of the 

device. The measurement was obtained by applying a step voltage change from -0 V to -

0.75 V and measuring the current response for 1 min. DPBS was saturated with oxygen 

by bubbling with O2 gas for 5 min. Dissolved oxygen in DPBS can be easily depleted by 

adding sodium sulfite (𝑁𝑎2𝑆𝑂3) . The averaged current detected in oxygen depleted 

DPBS in static condition was -4.9±1.7 nA (mean ± SD), and no big change was observed 

for flow rate 0.2, 0.5, 1.0 ml/min.  

The current values greatly increased for oxygen saturated DPBS compared with 

oxygen depleted solution, and the higher current response corresponded to higher flow 

rate. The current values gradually decreased after the application of a voltage step for 

oxygen saturated DPBS when the solution was not flowing. The averaged currents 

measured in chronoamperometry curves from 55 s to 58 s were -306.5±5.3 nA (mean ± 

SEM, n=6). However, the current value reached a steady state for flow rate 0.2, 0.5, 1.0 

mL/min. The times for the current to reach the plateau were 10 s, 11 s and 14 s for flow 

rate 0.2, 0.5, 1.0 mL/min respectively. The averaged currents at steady state measured in 

chronoamperometry curves were -418.9±1.8 nA, -469.3±2.2 nA and -502.7±2.4 nA 

(mean ± SEM, n=6) for flow rate 0.2, 0.5, 1.0 mL/min respectively. 
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Figure 5.5: Chronoamperometry of oxygen saturated DPBS under different flow rate, and 
chronoamperometry of oxygen depleted DPBS 

5.4.4 Medium effects on measured oxygen concentrations 

Oxygen concentrations in the DI water and DPBS with the same dissolved oxygen 

were tested using developed oxygen sensor. The chronoamperometry curves of DI water 

and DPBS demonstrated the similar trend as shown in Figure 5.6, which indicates the 

positive and negative ions in DPBS showed no effects on the chronoamperometry results 

under static and flow conditions.  

Nafion membranes have a wide application due to their high ion conductivity217. 

However a trace amount of cations, such as Na+, Ca2+, Li+ and K+ will contaminate the 

Nafion membrane. These cationic ions will replace protons in Nafion, because these 

cationic ions have higher affinity with sulfonic acid group (-SO3-) in Nafion than protons, 

which will further results in considerably different conductivities218. Nafion electrolyte 
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will easily be contaminated by the reagent in the sample solution if the Nafion electrolyte 

was directly contacted with testing sample, which will leads to discontinuity between 

different solution and unexpected interference signal. The advantage of the fabricated 

sensor was that the solid state Nafion membrane was coated with a gas permeable 

membrane, PDMS. PDMS was not only permeable to gas but also acted as protective 

layer for Nafion electrolyte. At the same time, the solid-state PCM electrolyte also 

provides mechanical support for PDMS oxygen permeable membrane, and prevents the 

mechanical failure during the usage, which increasing lifetime of the membrane. 

 

Figure 5.6 Chronoamperometry of the oxygen saturated DI water, DPBS under different 

flow rate. 
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5.4.5 Calibration curve  

The oxygen in DI water was depleted through bubbling N2 gas, and 0.06 wt.% 

sodium sulfite was added to stabilize the oxygen concentration in the open environment 

and the dissolved oxygen concentration was adjusted through magnetically stirring the DI 

water. Solutions of different dissolved oxygen concentration were introduced into the 

sensor at various flow rates to obtain chronoamperometry curves. Figure 5.7 to Figure 

5.11 shows the resulting calibration curves under flow rates of 0.0, 0.2, 0.5, 1.0 mL/min.  

Higher current values in chronoamperometry curves corresponded to larger dissolved 

oxygen concentration. The dissolved oxygen concentrations tested were in the range from 

0.0 to 8.1 mg/L. All fitted calibration curves demonstrated a good linear relationship, 

with correlation coefficients 99.77%, 99.54%, 99.66%, 99.67% for flow rate of 0.0, 0.2, 

0.5, 1.0 mL/min respectively, which indicate negligible or no crosstalking between 

electrodes. The slope coefficient and residual currents of the fitted calibration curves 

were shown in table I. The slope coefficient increased with the increase of flow rate.  The 

averaged residual current for oxygen depleted solution measured in oxygen depleted 

solution were 3.4%, 1.0%, 1.0% and 2.0% of the current measured in oxygen saturated 

solution for flow rate 0.0, 0.2, 0.5, 1.0 ml/min respectively. The residual currents 

measured in this experiment were comparable to that of the Wu et al.’ works39 and 

Suzuki’s studies122, 130.  

The reduced currents in DPBS were also measured to verify the calibration curve, 

and the data were also fitted well into the calibration curve under different flow rates. The 

developed oxygen sensor can be used to detect the dissolved oxygen in real time 

regardless of the ions in the testing sample 
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Figure 5.7: CA curves (a) of the DI water with different oxygen concentration under 
static condition, and calibration curve (b) obtained using the results of CA. The Current 
values in the CA curves of DPBS were shown in the calibration curve for comparison. 
(Reported oxygen concentrations determined by hand held oxygen meter Milwaukee 

MW600).  
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Figure 5.8: CA curves (a) of the DI water with different oxygen concentration under flow 
0.2 ml/min, and calibration curve (b) obtained using the results of CA. The Current 

values in the CA curves of DPBS were shown in the calibration curve for comparison. 
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Figure 5.9: CA  curves (a) of the DI water with different oxygen concentration under 
flow 0.5 ml/min, and calibration curve (b) obtained using the results of CA. The Current 
values in the CA curves of DPBS were shown in the calibration curve for comparison. 
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Figure 5.10: CA curves (a) of the DI water with different oxygen concentration under 
flow 1.0 ml/min, and calibration curve (b) obtained using the results of CA. The Current 
values in the CA curves of DPBS were shown in the calibration curve for comparison. 
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Figure 5.11: Calibration curves obtained from the results of chronoamperometry of DI 
water with different dissolved oxygen under flow rate 0.0, .02, 0.5, 1.0 mL/min. 

Table 5 - 1: Slop coefficients and residual currents of the linear fitted calibration curves 
under different flow rates. 

Flow rate (mL/min) 0.0 0.2 0.5 1.0 

 (n=6) (n=6) (n=6) (n=6) 

Slope coefficient 
(nA/(mg/L)) (mean ± SE) -36.25±0.31 -52.95±0.26 -58.08±0.30 -60.42±0.25 

Residual current (nA) 

(mean ± SE) 
-9.25±1.22 -10.78±1.07 -9.56±1.20 -8.68±1.10 

 

5.4.6 Response time 

The response time of the LTCC based Clark type oxygen sensor was measured 

using chronoamperometry at -0.75 V through injection of 0.1 M sodium sulfite. A 90% 
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response time was defined as the time for the current decreased 90% of the value 

measured at oxygen saturated state when the sensor changed from oxygen saturated state 

to oxygen depleted state. The Figure 5.12 shows the current change when 0.1 M sodium 

sulfite was pipetted into the air-filled channel. 0.1 M sodium sulfite solution was used in 

order to effectively remove oxygen around the sensitive area of working electrode. The 

current measured in air-filled channel was -692.6±2.1 nA (mean ± SD), which was much 

higher than that measured when the channel was filled with oxygen saturated DI water or 

DPBS. This was due to higher solubility of oxygen in Nafion than that of water. The 

solubility of oxygen in Nafion is 159.4 mg/l219, almost twenty times of that in water. The 

current values stayed constant when air filled the channel in the sensor, which indicated 

that a balance reached between the diffusion of oxygen from air to working electrode and 

the reaction of oxygen at working electrode. When the 0.1 M sodium sulfite was injected 

into the channel, the current value decreased to -6.6 ± 1.4 nA (mean ± SD). The measured 

response time was 10.9 ± 0.6 s (mean ± SEM, n=7). The diffusion time for the dissolved 

oxygen through the membrane can be estimated by square of membrane thickness (t) 

divided by diffusion coefficient of oxygen in the membrane (D)142. For the oxygen 

transport from testing solution, it diffused through PDMS oxygen permeable membrane 

and Nafion electrolyte. Since the diffusion coefficient of PDMS (3.55×10-5 cm2/s) was 

much higher than that of Nafion electrolyte (0.4×10-6 cm2/s)219, 220, and the thickness of 

PDMS was in the same scale with that of Nafion electrolyte, the diffusion time of oxygen 

through PDMS was negligible. The response time of the developed oxygen sensor can be 

estimated by the diffusion time of oxygen through Nafion electrolyte. After considering 
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30 % maximum swell of Nafion electrolyte saturated with water217, the calculated 

diffusion time is 5.6 s, which is similar to the response time obtained experimentally.  

 

Figure 5.12: Response curve of Clark-type oxygen sensor were tested by injection of the 
zero -oxygen solution, 0.1 M sodium sulfite. 

5.4.7 Lifetime and stability of the sensor 

The Ag/AgCl electrode has been extensively used as reference electrode in the 

microelectronic circuit application due to its stable potential, low dependence on 

temperature and independence on pH value of the electrolyte39. However, the dissolution 

of AgCl was a big issue, which results in limited lifetime of Clark-type oxygen sensor40, 

131. One common used method to slow down the dissolution of AgCl was through coating 

of a gel or polymer materials221, 222. Nafion coating has been used to slow down the 

degradation of Ag/AgCl reference electrode and improve the stability for long time 

implantation223.  Solid state Nafion used as electrolyte instead of the liquid electrolyte in 
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the oxygen sensor also acted as a diffusion layer for AgCl and extend the lifetime of the 

the Ag/AgCl reference electrode. And the hydrophobic PDMS membrane was a barrier 

layer which prevents further dissolution of AgCl to the sample solution. A relatively 

constant concentration of chloride ions will be formed gradually at around Ag/AgCl 

electrode221, which will eventually extended the lifetime of Ag/AgCl electrode.  

Before the first usage of the oxygen sensor, the Nafion membrane needed to be 

hydrated with water. PDMS was not permeable to liquid water but water gas. If the 

oxygen sensor was stored in dry environment, and the Nafion membrane will be dried 

gradually and be completely dried eventually. Rehydration was needed for next 

experiment. To prevent the dehydration of water in Nafion, and the LTCC substrate was 

stored in water for further usage. Figure 5.13 shows the chronoamperometry results tested 

in DI water before and after the oxygen sensor stored in DI water for eight day. Mismatch 

was observed in chronoamperometry curves of the dissolved oxygen sensors tested for 16 

s, and the current value was higher after the sensor was stored for 8 days. However, the 

current values in chronoamperometry curves matched well with that of the fresh sensor 

after 16 s, which indicates the sensor can be used to measure the dissolved oxygen 

concentration at least for 8 days without rehydration.  
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Figure 5.13: Chronoamperometry of the oxygen saturated DI water under static condition 
and flow rate 1.0 ml/min tested using developed oxygen sensor before and after the 

sensor stored in DI water for eight days 

The properties of the other Clark-type oxygen sensor are summarized in Table 5-1. 

The LTCC based microfluidic oxygen sensor developed in this work provided 

comparable response time and residual current compared with the other Clark-type 

oxygen sensors. In addition, a solid state Nafion electrolyte and PDMS gas permeable 

membrane were integrated in LTCC package. Microfluidic function was realized in 

Clark-type oxygen sensor with the capability of real-time monitoring of the dissolved 

oxygen, which also reduces the effects of the consumption of the localized dissolved 

oxygen at the sensitive area of working electrode. In addition, it offered rapid and 

inexpensive fabrication and a more flexible platform for detecting dissolved oxygen.  
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Table 5 - 1: Comparison of the properties of LTCC based microfluidic Clark-type oxygen 
sensor and other Clark-type oxygen sensor. PP: Polypropylene; FEP: Fluorinated 
ethylene propylene. 

Response 
time (s) 

Residual 
current Electrolyte OPM membrane Type of 

geometry 
Testing 
Method Reference 

10.9 <3.5% Nafion PDMS Planar Flowing This work 

6.8 ~18% Liquid PDMS Planar Dipping 40 

13.4 ~1.0% Liquid PDMS Planar Dipping 39 

4.9 ~2% Liquid 
PDMS 

PP  
FEP 

Planer Dipping 43 

9.4 ~1.3% Liquid PDMS Planer Dipping 142 

20 0.7% Liquid Silicone Rubber Microprobe Dipping 143 

20-50 - Liquid Silicone Rubber Microprobe Dipping 41 

- ~3% Nafion PTFE Microprobe Dipping 98 

- 40% Nafion No 
Membrane Microprobe Dipping 44 

5.5 Conclusion 

This work describes design, fabrication and characterization of a microfluidic 

LTCC based Clark-type oxygen sensor. Precise oxygen determination and real-time 

detection of dissolved oxygen was realized in this integrated microfluidic devices. The 

devices were characterized by using cyclic voltammetry and chronoamperometry 

measurement in both DI water and DPBS, and no effects of ions in the testing sample on 

the results was observed. The calibration curves of the oxygen sensor shows good 

linearity with correlation coefficient higher than 99.5% for flow rates 0.0, 0.2, 0.5, 1.0 

mL/min. The 90% response time of the developed oxygen sensor was 10.9 s. The fast 

response of the oxygen sensor is beneficial to monitor variation of the oxygen 

concentration in the biological samples. The usage of the solid-state electrolyte extended 
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the lifetime of the oxygen sensor and realized the microfluidic function in the Clark-type 

oxygen sensor. The amperomatric performance of the developed oxygen sensor is 

comparable to the sensors described in the literature, with rapid and inexpensive 

fabrication and a more flexible platform for detecting of dissolved oxygen. The 

developed oxygen sensor can be applied in long term measurement and monitoring of the 

local oxygen concentration in biological applications, which include cell culturing in a 

microfluidic configuration, real-time detection of dissolved oxygen in biological fluids. 
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Chapter 6 Summary and future work 

6.1 Summary 

This section summarizes the research work present in this thesis, which includes the 

development of low temperature co-fired ceramic and biocompatibility evaluation of 

produced materials corresponding to the contents in chapter 3 and 4, and the design, 

fabrication and characterization of LTCC based Clark-type oxygen sensor corresponding 

to the work present in chapter 5. 

6.1.1 Development of a biocompatible low temperature co-fired ceramic substrate 

using a commercially available soda-lime-silicate glass and Al2O3 ceramic filler 

Commercial LTCC systems are not designed for biomedical applications, and have 

unknown biocompatibility. In the current work an LTCC tape has been developed 

starting with materials of known composition and biocompatibility, specifically a 

commercially available soda-lime-silicate glass and alumina. The main components of 

the glass are CaO, Na2O, K2O, Al2O3, and SiO2. The formulation of the LTCC is 46 wt% 

glass and 54 wt% alumina ceramic. The organic additives used to bind the ceramic 

particles in green tapes can be burnt out at temperature lower than 500 OC. Tapes achieve 

high density for sintering temperatures compatible with LTCC processing 

(850<T<1000OC). A second crystalline phase, anorthite CaAl2Si2O8, nucleated as 

sintering temperature reaches 900OC. The LTCC also exhibits low dielectric constant (K 

= 9.3) and dielectric loss (tan d < 0.005). A commercial gold electrode paste has also 

been co-fired with the LTCC, with no delamination, cracks nor camber observed. In-vitro 
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biocompatibility was subsequently evaluated using human umbilical vein endothelial 

cells (HUVECs).  HUVECs are observed to attach and spread on fibronectin coated 

LTCC substrates, and also in the leachate obtained by soaking LTCC in cell media for 

seven days. These results establish that the developed LTCC material is biocompatible 

and suitable for in-vitro applications utilizing live cells. 

6.1.2 Sintering behavior and biocompatibility of a low temperature co-fired ceramic 

developed using an experimentally fabricated calcium alumina borosilicate glass 

and Al2O3 ceramic filler 

A lime-borosilicate (LBS) glass-alumina low temperature co-fired ceramic (LTCC) 

has been formulated and evaluated for use in-vitro microfluidic sensors and cell culture 

experiments. The advantage of this formulation is lack of sodium. The release of sodium 

gives rise to an increase in pH and in osmotic pressure in its vicinity, which will 

influence the viability of living cells and microorganisms147. In aqueous environment, the 

release rate of sodium in glass is much higher than other elements, including calcium, 

aluminum and strontium, almost ten times of that for calcium224, 225.  

 The sintering behavior was studied using master sintering curve (MSC) theory. The 

apparent activation energy of the sintering for viscous flow was ~ 452.4 kJ/mol obtained 

from the MSC results. The sintering and microstructure of the LTCC during firing was 

studied using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning 

electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). Using a 

75/25 vol % glass to alumina ratio, high density, with no secondary phase, was achieved 

for sintering temperatures < 900OC. The organic additives added to the green tapes can be 
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burnt out at temperature lower than 630 OC obtained from the DTA results. The 

fabricated LTCC exhibited full densification. Commercial gold and silver electrode 

pastes were co-fired with the LTCC, and no reaction with the electrode was observed. 

The resulting LTCC demonstrated dielectric properties with dielectric constant, 9.2, and 

dielectric loss, 0.12%, at the frequency 1.5 MHz. In-vitro biocompatibility of LTCC was 

evaluated using human umbilical vein endothelial cells (HUVECs). The cell density 

cultured in leachate medium obtained by soaking LTCC in cell medium for five days was 

statistically equivalent to that of control. The HUVECs also attached on fibronectin 

coated LTCC after 14 hr and proliferated after 74 hr. On the basis of these results the 

current LTCC formulation is viable candidate for the continued development of LTCC 

based microfluidic biosensors. 

6.1.4 A microfluidic LTCC based Clark-type oxygen sensor for real-time oxygen 

sensing 

A microfluidic platform for real-time monitoring of dissolved oxygen was designed 

and developed in a flowing microfluidic environment fabricated using LTCC technology. 

The fabricated Clark-type oxygen sensor consisted of three electrodes (working electrode, 

counter electrode and Ag/AgCl reference electrode), a solid-state proton conductive 

matrix (Nafion 117 membrane) and polydimethylsiloxane (PDMS) as the oxygen 

permeable membrane. The usage of a solid-state proton conductive matrix as the 

electrolyte in the design of the oxygen sensor makes it feasible to integrate this device in 

a typical LTCC fabrication process. Cyclic voltammetry and chronoamperometry 

measurement were used to characterize electrochemical properties of the developed 

oxygen sensor. The reduced current was linearly related with the dissolved oxygen 
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concentration ranging from 0-8.1 mg/L under different flow conditions (0.0-1 mL/min). 

The residual currents of the oxygen sensor were less than 3.5% of that measured in 

oxygen saturated state, and the average response time was 10.9 s. The current device 

represents an improved Clark-type oxygen sensor with the advantages of easy fabrication, 

flexible configuration, fast response time, incorporation of microfluidic analyte 

introduction and real-time detection of dissolved oxygen.  The potential applications 

include material synthesis, cell culture, biological assays incorporating controlled 

introduction of reagents or analytes and real-time monitoring of dissolved oxygen in a 

microfluidic environment.  

7.2 Future work 

The work described in this thesis includes the development of biocompatible LTCC 

materials and fabrication of LTCC based Clark-type oxygen sensor. In addition to the 

research covered in this thesis, more efforts to this research are to be done. Some 

suggestions for further work are listed: 

1. The peak sintering temperature of the LTCC material made using 75 vol% calcium 

alumina borosilicate glass and 25 vol% Al2O3 ceramic filler described in chapter 4 

is 825 OC. There is a need to make the peak sintering temperature in the range of 

850 – 875OC, because the sintering temperatures of most commercial available 

electrode paste are in this range. The sintering temperature of the LTCC can be 

adjusted by varying the ratio of the glass and ceramic phase. To make the sintering 

temperature higher, more ceramic filler can be added. 
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2. The permanent bonding the LTCC based Clark-type oxygen sensor as a whole chip 

is needed. Binder clips are used to bond all elements together. A method to bond all 

elements together is needed to be investigated, so the penetration of oxygen from 

the outside environment can be limited. Oxygen plasma can be used to treat the 

surface of PDMS membrane and PDMS channel, and irreversible bonding between 

them can be achieved by pressing treated surface against each other. 

3. There is a need to miniaturization of the LTCC based Clark-type oxygen sensor. 

The optimum distance of the working, counter and reference electrode should be 

investigated, so the crosstalk between three electrodes can be limited and further 

miniaturization of the sensor is realized.  

4. The effects of the thickness of solid state electrolyte on the properties of the Clark-

type oxygen sensor should be studied. A better understanding how the 

electrochemical properties of the sensor change with thickness of the electrolyte can 

improve the reproducibility. Response time can be shortened by reducing the 

thickness of the electrolyte. 

5. The effects of the surface area of working electrode on the electrochemical 

properties of sensors should be also investigated. The measured reduced current 

increases with the increase of surface area in working electrode, and detailed studies 

would be useful.   
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