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Abstract

Robots with predefined kinematic structures are successfully applied to ac-

complish tasks between the robot and the environment. For more sophisticated

and future applications, it is necessary to extend the capabilities of robots, and

employ them in more complex applications, which generally require accurate and

more changeable structural properties during the interaction with the environment.

The central focus of this research was to propose a robot with new properties to

address the reconfigurability problem, including its feasible solutions using model

based control strategies. First, these reconfigurable robots have to combine as

many properties of different open kinematic structures as possible and can be

used for a variety of applications. The kinematic design parameters, i.e., their

Denavit-Hartenberg (D–H) parameters, were modeled to be variable to satisfy any

configuration required to meet a specific task. By varying the joint twist angle

parameter (a configuration parameter), the presented model is reconfigurable to

any desired open kinematic structure, such as Fanuc, ABB and SCARA robots.

The joint angle and the offset distance of the D–H parameters are also modeled

as variable parameters (a reconfigurable joint). The resulting reconfigurable ro-

bot hence encompasses different kinematic structures and has a reconfigurable

joint to accommodate any required application in medical technology, space ex-

ploration and future manufacturing systems, for example. Second, a methodology

was developed to automate model generation for n-DOF Global Kinematic Model

(n-GKM). Then, advanced model based control strategies were employed to in-

crease performance as compared to less structured approaches. An algorithm was

developed to select a relevant kinematic structural robot configuration for any pre-

defined geometric task. The main contribution of this research is that it combines

a kinematic structural design with control design methods to optimize robot capa-

bility and performance. This combination has been established by developing an

algorithm to select the optimal kinematic structure and the most applicable control

approach to perform a predefined geometric task with high tracking performance.
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CHAPTER 1

Introduction and Preliminaries

1.1. Introduction to Robot Kinematics

A serial-link manipulator comprises a set of bodies called links connected in a

chain by joints. Each joint has one degree of freedom, either translational (sliding

or prismatic joint) or rotational (revolute joint). To describe the rotational and

translational relationships between adjacent links, Denavit and Hartenberg pro-

posed a matrix method of systematically establishing a coordinate frame to each

link of an articulated chain. The Denavit-Hartenberg (D–H) representation [35]

results a 4ˆ4 homogeneous transformation matrix representing each link’s coordi-

nate frame at the joint with respect to the previous link’s coordinate frame. To

analyze the motion of robot manipulator, coordinate frames are attached to each

link starting from frame F0, attached to the base of the manipulator link, all the

way to the frame Fn, attached to the robot end-effector as shown in Figure 1.1.

Every coordinate frame is determined and established on the basis of three rules:

(1) The zi´1 axis lie along the axis of motion of the ith joint.

(2) The xi axis is normal to the zi´1 axis.

(3) The yi axis completes the right-handed coordinate system as required.

As the frames have been attached to the links, the following definitions of the

link (D–H) parameters are valid:

‚ Joint angle θi is the angle around zi´1 that the common perpendicular

makes with vector xi´1.

‚ Link offset di is the distance along axis zi´1 to the point where the common

perpendicular to axis zi is located.

‚ Link length ai is the length of the common perpendicular to axes zi´1 and

zi.

‚ Link twist αi is the angle around xi that vector zi makes with vector zi´1.

1
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Figure 1.1. Definition of standard Denavit and Hartenberg (D–H)
parameters. Source; Manseur, [63].

For a rotary joint, di, ai, and αi are the joint parameters and remain constant

for a robot, while θi is the joint variable that changes when link i rotates with

respect to link i´ 1. For a prismatic joint, θi, ai, and αi are the joint parameters

and remain constant for a robot, while di is the joint variable.

1.2. Introduction to Reconfigurability Theory

Robotics technology has been recently exploited in a variety of areas and var-

ious robots have been developed to accomplish sophisticated tasks in different

fields and applications such as in space exploration, future manufacturing sys-

tems, medical technology, etc. In space, robots are expected to complete different

tasks, such as capturing a target, constructing a large structure and autonomously

maintaining in-orbit systems. In these missions, one fundamental task with the

robot would be the tracking of changing paths, the grasping and the positioning

of a target in Cartesian space. To satisfy such varying environments, a robot with

changeable configuration (kinematic structure) is necessary to cope with these

requirements and tasks. Another field of technology is the new manufacturing en-

vironment, which is characterized by frequent and unpredictable market changes.

A manufacturing paradigm called Reconfigurable Manufacturing Systems (RMS)

was introduced to address the new production challenges [52]. RMS is designed

for rapid adjustments of production capacity and functionality in response to new
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circumstances, by rearrangement or change of its components and machines. Such

new systems provide exactly the capacity and functionality that is needed, when

it is needed [39]. The rapid changes and adjustments of the RMS structure must

happen in a relatively short time ranging between minutes and hours and not days

or weeks. These systems’ reconfigurability calls for their components, such as ma-

chines and robots to be rapidly and efficiently modifiable to varying demands [48].

Robot manipulators working in extreme or hazardous environments (biological,

chemical, nuclear,..., etc.) often need to change their configuration and kinematic

structures to meet the demands of specific tasks. It is desirable and cost effective

to employ a single versatile robot capable of performing tasks such inspection,

contact operations, assembly (insertion or removal parts), and carrying objects

(pick and place). Robots with maximum manipulability are well conditioned for

dexterous contact tasks [16, 61] and configurations that maximize the robot links

and distance from the environment are suitable for payload handling [56]. The

optimization of a robot workspace over its link lengths, as the design parameters,

is reported in [55, 47], while optimization of kinematic parameters and criteria

for fault tolerance are discussed in [50].

In the literature, modular robotic structures are presented as a solution to cope

with reconfigurable structure of robots. A modular reconfigurable robot consists

of a collection of individual link and joint components that can be arbitrarily as-

sembled into a number of different geometries. Such a system can provide agility

to the user to cope with a wide spectrum of tasks through proper selection and

reconfiguration of a large inventory of functional components. Several prototyping

systems have been demonstrated in various research institutions, [87], [42], [67]

and [13]. An automated generation of D–H parameters methodology has devel-

oped for the modular manipulators [22]. The authors derived the kinematic and

dynamic models of reconfigurable robots using D–H parameters for different sets of

joints, links and gripper modules as shown in Figure 1.2. Furthermore, a library of

modules is formed from which any module can be called with its associated kine-

matic and dynamic models. In [58], a modular and reconfigurable robot design

is introduced with modular joints and links. The proposed design introduces zero
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Figure 1.2. Set of design variables of the 3-DOF configuration
modular robots, this set is a commercial product of AMTEC GmbH
Company. Source; I.M. Chen, [22].

link offsets to increase the robot’s dexterity and maximize its reachability. A mod-

ular and reconfigurable robot (MRR) with multiple working modes was designed

[59]. In the proposed MRR design, each joint module can independently work

in active modes with position or torque control, or passive modes with friction

compensation. With the MRR, the joint module was designed as a hybrid joint

in working modes and not in the sense of mechanical motion. A reconfigurable

robot was proposed [5] and achieves the reconfigurability by utilizing passive and

active joints. In [21], an automated approach was presented to build kinematic

and dynamic models for assembled modular components of robots. The developed

method is applicable to any robotic configuration with a serial, parallel or hybrid

structure. Reconfigurable plug and play robot kinematic and dynamic modeling

algorithms are developed [22]. These algorithms are the basis for the control and

simulation of reconfigurable modular robots. The reconfigurable robot (RRS) was

regarded as a modular system [20]. A task-based configuration optimization based

on a generic algorithm was used to solve a predefined set of joint modules for spe-

cific kinematic configuration. A modular and reconfigurable robot for industrial
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Figure 1.3. Mechanical set up of a modular and reconfigurable
robot (left). The ICT power cube Mechatronical component (right).
Source; Strasser, [84].

purposes has been introduced [84]. The PROFACTOR GmbH has presented a

modular and reconfigurable robot with power cube (Mechatronical Components)

modules depicted in Figure 1.3. These modules were designed to be identical and

self-contained with actuation, memory, and mechanical, electrical and embedded

programming. A reconfigurable robot has been introduced by [36] that unifies the

kinematic structure of industrial robots. In that unification process, eight mod-

ules were reconfigured by changing configuration parameters. These parameters

represent the trigonometric functions of the robot twist angles.

The main drawbacks of the modular robots proposed in the literature are the

high initial investment necessary in modules that remain idle during many activi-

ties, and the significant lead time for replacement, attachment and detachment of

the components prior to performing a specific task.

1.3. Robot Control

The use of advanced robot control laws may contribute significantly to improve

the robot functions and properties. The improvement of the robot design itself

can also contribute substantially to the desired increase in performance and capa-

bilities. The combination of the controller with proper sensors can provide some
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sense and awareness of the environment, and improve its accuracy and speed as

well.

Robotic 

Arm

Actuator

DC Motor

Outer Loop 

Controllers

PD, PID
/H 

,q q

, ,d d dq q q 
Trajectory 

Generation

,q qu

Robotic SystemMotion Control System

Host

Inner Loop 

Feedback 

Linearization

Controller

Figure 1.4. Robotic system with motion control system, inner and
outer loop controllers.

The former and current problems in the robotics application fields has affected

the research of robot control in a number of fundamental topics: modeling, position

control, robust control and motion planning. This has motives research in robot

modeling, simulation and control design. Therefore, position and trajectory control

is an important research field in robotics control. The position/motion control

problem has received a great deal of interest in robotics. Therefore, a survey that

covers the important control strategies is given with examples and applications.

PD and PID Control

The PD (Proportional-Derivative) and PID (Proportional-Derivative-Integral) con-

trollers are the most applied in industry, which is also true for robotics. Some

references propose a high gain PD controller to ensure global stabilization of the

robot [68, 69, 71], which is unsuited for practical applications due to excitation

of unavoidable higher dynamics and excessive noise amplification. PID controllers

are more suitable to eliminate the steady state error of the final position response.

These controllers introduce an integration action to the resulting closed loop im-

proving the performance tracking requirements.

Feedback Linearization Control

The application of feedback linearization theory to solve robotics control prob-

lems has led to the computed torque approach. Feedback linearization control
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methods are inner-outer loop control methods: the inner loop must linearize the

plant, whereas the outer loop must achieve the desired closed loop requirements.

Figure 1.4 shows the control motion structure (inner and outer control loops) of a

robot driven by a DC motor. The term Computed Torque Control (CTC) is the

application of PD control at the outer loop to a linearized system by the feedback

linearization control. In robotics, CTC is used to apply PD controllers at the outer

loop independently (every joint controlled separately) [53]. There are two impor-

tant features of the feedback linearization method that require attention: model

error and the outer loop controller design. Feedback linearization is based on the

exact model of the system. Therefore, the controller may be sensitive to modeling

errors such as parameter errors and unmodeled dynamics. Parameter uncertainty

is commonly addressed by either robust control methods or by the derivation of

adaptive controllers [66, 77]. In particular, when a restricted amount of parame-

ters must be estimated (in case of an unknown load), adaptive controllers can be a

suitable approach. The feedback linearization control actively linearized the plant,

such that the resulting system can be considered as a linear system. Therefore,

it is possible to apply one of many linear control methods to close the loop and

achieve the required performance. As a result, a large number of controllers for

the outer loop control are proposed: the standard PD loop of CTC, linear optimal

control [83, 78], sliding mode control, and H8{µ robust optimal controllers.

Lyapunov Based Control

An important tool for control of rigid body systems is Lyapunov stability theory,

which based on the strict dissipation of a suitable energy function [76]. Although

this theory is not constructive to design a controller, a simple structure of the equa-

tions of motion with some relevant assumptions allow a derivation of stabilizing

controllers. These assumptions may include bounded disturbances and bounded

parameter variations. The passivity based control approach attempts to reshape

the robot energy function, rather than imposing a completely different behavior

as with the CTC approach [14, 19]. Experiments have shown and indicated the
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passivity controllers are more robust than CTC. Another result of Lyapunov sta-

bility theory is the sliding mode control (SMC), which is considered to be a robust

control approach.

Robust Control

To ensure a suitable behavior of the closed loop robot, even in the presence of

modeling errors and disturbances, it is desired to design controllers that are ro-

bust with respect to these errors and disturbances. Modeling errors are generally

separated into parameter errors and unmodeled dynamics, which may have differ-

ent affect on the closed loop system. The standard control framework, adopted in

many textbooks on modern control [23, 60, 88], is shown in Figure 1.5. A con-

troller Kpsq is provided with measurement signals y and has to stabilize a plant

P psq with input signals u such that the cost variables z are minimal in some sense,

despite the disturbance signals w and the parametric and dynamic uncertainties

represented in ∆psq. The plant P psq is often called the generalized plant or stan-

dard plant since it usually does not only consist of the plant to be controlled, but

can also contain weightings, e.g., parametric and dynamic uncertainty weighting,

input signal thresholds, and the robot dynamic model to be simulated. Also the

other entities can be viewed in a generalized way, e.g., reference signals can be

incorporated as disturbances w and additional feedback paths can be taken in

case of a robust control problem to describe a set of systems, i.e., uncertainty.

A survey can be found covering a number of robust robot position controller de-

sign methods: passivity control, sliding mode control and linear robust control by

factorization approach in [82]. The most popular robust control design method

in robotics literature is the sliding mode control (SMC), also known as Variable

Structure Switching (VSS) control. Sliding mode control is commonly used to ad-

dress parameter uncertainty and bounded disturbances [76, 86]. As mentioned,

SMC is based on upon Lyapunov stability theory, and basically tries to determine

the nominal feedback control law and a corrective control action that steers the

controlled system to the desired behavior, defined as the ‘sliding surface’.
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Figure 1.5. Standard robust control problem.

Optimal Control

Apart from the application of linear outer loop control applied to the feedback

linearized robot, there have been some attempts made to apply optimal control

directly to the rigid body dynamics. The main problem with these approaches

is the amount of assumptions and choices that have to be made to allow for a

solution. For example in [30], an optimal quadratic control is considered with a

special choice optimization criterion, which results in a nonlinear PID controller.

Another example in [44], where an H8-optimal control problem is considered,

results in a nonlinear static state feedback PD controller. Following these methods

to construct a nonlinear controller does not allow the versatility required for a

controller design method needed to solve real-world problems.

The reason is that currently the nonlinear control theory cannot provide a

general robust controller design methodology, due to high complexity of both the

robot model and the involved design specifications. General cases addressed with

optimal control infrequently allow a closed solution, and one has to resort to com-

putationally intensive numerical methods. In the case of special properties of the

uncertainty, e.g., signal roundedness, there do exist applicable controller design

methods, e.g., sliding mode control. These control methods have restricted appli-

cabilities as they cannot exploit structural knowledge of the uncertainty. Linear

control theory does have that capability e.g. H8{µ controller design methods have

limited means of specifying the desired properties of the closed loop system. Linear

control theory also has its limits, but offers a larger variety of specifications.
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1.4. Problem Statement

Current robot structures have physical limitations with respect to their configu-

rations and capabilities. They are preconfigured to do specific tasks. For example:

a robot structure with 5-DOF (3R-2T) would have three revolute (rotational mo-

tion) and two prismatic (translational motion) joints with fixed coordinate frames

that cannot be automatically changed to any other configuration. The structure

of most robots can be changed only by physically replacing their joints or links

(modules). These limitations are reflected on the robot’s path, workspace, inertia,

torque, power concept,..., etc., making them unsuitable for future RMS.

1.4.1. General Problem Statement

The aforementioned leads to the following problem statement for this research:

Propose a robot with new properties to address the reconfigurabil-

ity problem, including its feasible solutions using model based control

strategies.

1.4.2. Research Approach

Structural robot design and control methods are combined to solve the reconfig-

urability problem. A rotational/translational reconfigurable joint is investigated

to add new properties necessary to extend the robot capabilities in performing

more sophisticated tasks. The D–H parameters of a reconfigurable robot will be

regarded as variable to describe all possible kinematic configurations. A Global

Kinematic Model (GKM) is developed based on specific reconfigurable parameters

to automate generation models for any robot configuration. Then, an automatic

generation of dynamic equations using the Global Dynamic Model (GDM) is con-

structed to auto-generate the equations of motion of any specified configuration.

The recursive Newton-Euler algorithm is employed to generate the dynamic ele-

ments: the inertia matrix, Coriolis torque matrix, centrifugal torque matrix, and

the gravity torque vector. The parameters of a reconfigurable robot are often

unknown, nonlinear or uncertain. Moreover, most of these parameters are time

varying, position and orientation (pose) dependent. Consequently, the following

control strategies were explored and analyzed thoroughly:
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‚ Nonlinear PD-Gravity control.

‚ Optimal robust control such as H8{µ controllers.

‚ Gain Scheduling control.

‚ Sliding Mode Control (SMC).

‚ Adaptive control.

Based on the dynamic parameter types, a reconfigurable control algorithm is devel-

oped, which leads to optimize the control method selection for a specific kinematic

structure.



CHAPTER 2

Development of a Reconfigurable Robot Kinematics

A development of the general n-DOF Global Kinematic Model (n-GKM) is

necessary for supporting any open kinematic robotic arm, and possible redundant

kinematic structures that are intended to support more than 6-DOF. The n-GKM

model is generated by the D–H parameters, given in Table 2.1 and as proposed by

Djuric, Al Saidi, and ElMaraghy [37]. All D–H parameters presented in the Table

2.1 are not fixed values; they are modeled as variables to satisfy the properties of

all possible open kinematic structures of a robotic arm. The twist angle variable

αi is limited to five different values, (00,˘900,˘1800), to maintain perpendicular-

ity between joints’ coordinate frames. Consequently, each joint has six different

positive directions of rotations and/or translations.

Table 2.1. D–H parameters of the n-GKM model.

i di θi ai αi

1 R1dDH1 ` T1d1 R1θ1 ` T1θDH1 a1 00,˘1800,˘900

2 R2dDH2 ` T2d2 R2θ2 ` T2θDH2 a2 00,˘1800,˘900

. . . . . . . . . . . . . . .

3 RndDHn ` Tndn Rnθn ` TnθDHn an 00,˘1800,˘900

The subscript DHn implies that the di or θi parameter is constant.

2.1. Modeling of a Reconfigurable Joint

The reconfigurable joint is a hybrid joint that can be configured to be a revolute

or a prismatic type of motion, according to the required task. For the n-GKM

model, a given joint’s vector zi´1 can be placed in the positive or negative directions

of the x, y, and z axis in the Cartesian coordinate frame. This is expressed in

Equations (1)-(2):

12
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Rotational Joints : Ri “ 1 and Ti “ 0 (1)

Translational Joints : Ri “ 0 and Ti “ 1 (2)

The variables Ri and Ti are used to control the selection of joint type (rotational

and/or translational). The orthogonality between the joint’s coordinate frames is

achieved by assigning appropriate values to the twist angles αi. Their trigonomet-

ric function are defined as the joint’s reconfigurable parameters (KSi & KCi) and

expressed in Equations (3)-(4):

Ksi “ sinpαiq (3)

Kci “ cospαiq (4)

To construct a reconfigurable joint, all six different positive directions of rotations

or translations must be included. The procedure will start from the first coordi-

nate frame by defining the orientation of the vector, Z0. Because there are six

combinations of vector Z0, the process starts from the first one, named Z1
0 . The

selection of vector Z1
0 , can be combined with four more orientations of vectors X0

and Y0. They are: X11
0 , Y 11

0 , X12
0 , Y 12

0 , X13
0 , Y 13

0 , X14
0 , Y 14

0 . The second combina-

tion of Z1
0 and its X0 and Y0 includes the new vector Z2

0 and the four combinations:

X21
0 , Y 21

0 , X22
0 , Y 22

0 , X23
0 , Y 23

0 , X24
0 , Y 24

0 . Similarly, all other possible combinations

of different Z1
0 and the X0 and Y0 vectors. This will produce a reconfigurable

joint having 24 different possible coordinate frames. Thus, a reconfigurable joint

model includes 6R and 6T different types of motion, which is the maximum num-

ber of motions that can be produced in 3D space. The following five definitions

are developed for proper use of the model.

Definition 2.1. The degree of the joints reconfigurability, RJ can be between

2 and 12. This parameter defines the level of the joints reconfigurable capabilities,

Equation (5).

2 ď Rj ď 12 (5)
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Definition 2.2. Similarly, the links reconfigurable parameter, RL, which is

simply the changeable link length, and can be any real number.

RL P R (6)

Definition 2.3. For any joint to be reconfigurable, the following condition

must be satisfied: the number of different motions should be a minimum of two,

Equation (7).

minpRjq “ 2 (7)

From those three definitions a clear description of the reconfigurable robot is

achieved.

Definition 2.4. The robot is reconfigurable if and only if it has a minimum

of one reconfigurable joint or link.

Definition 2.5. The n-DOF Global Kinematic Model (n-GKM) is a recon-

figurable model because it has all reconfigurable joints and links. Its joints satisfy

the maximum number of reconfigurations pRj “ 12q

The n-GKM model starts from the base frame, which represents the coordi-

nate frame px0, y0, z0q of the first joint, and has six possible frames for the second

joint, presented with coordinate frame px1, y1, z1q. From the second joint coordi-

nate frame px1, y1, z1q, there are again six different combinations for joint three’s

coordinate frame px2, y2, z2q, and so on, up to the flange frame pxn, yn, znq.
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Figure 2.1. Kinematic structures of the ABB and Stanford robots,
D–H parameters are from sources; Dawson, [57] and Spong, [80].

2.2. Modeling of Reconfigurable Open Kinematic Robots

The reconfigurability of a robotic arm is modeled based on the variable D–H

parameters and especially, the variable twist angle between adjacent links. Defin-

ing the varying twist angle as the configuration parameter allows the model to

achieve any kinematic structure by configuring the parameter accordingly. Figure

2.1 shows diverse industrial robots such as ABB and Stanford achieved as special
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Figure 2.2. The spherical wrist, joint axes 4, 5 and 6.

cases by changes to the configuration parameter. The kinematics of the n-GKM

model can be calculated using the multiplication of the all homogeneous matrices

from the base to the flange frame. The homogeneous transformation matrix of the

n-DOF Global Kinematic Model (GKM) is given by the following equation:

i´1Ai “

»

—

—

—

—

—

—

—

—

–

cospφiq ´Kcisinpφiq Ksisinpφiq aicospφiq

sinpφiq Kcipφiq ´Ksicospφiq aisinpφiq

0 Ksi Kci φi

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8)

where φi “ Riθi`TiθDHi. Using this transformation matrix, models of different

open kinematic structures can be automatically generated which characterizes the

new reconfigurable robot.

2.2.1. Spherical Wrist

The spherical wrist, shown in Figure 2.2, is a three joint wrist mechanism for which

the joints axes z3, z4 and z5 intersect at the center c. The D–H parameters of the

mechanism are shown in Table 2.2. A spherical wrist satisfies Piper’s condition

[45] when a4 “ 0, a5 “ 0 and d5 “ 0. The end effector coordinate frame is: n is

the normal vector, s is the sliding vector and a is the approach vector.
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Table 2.2. D–H of a spherical wrist, source; Spong, [80].

Link θi di ai αi

4 θ4 0 0 ´900

5 θ5 0 0 900

6 θ6 d6 0 00

2.2.2. Assumption

Assuming a spherical wrist is attached to the end effectors, the kinematic struc-

tures of the common industrial robots are determined by only the first three joints

and links. This assumption also defines the external and internal workspace bound-

aries. A spherical wrist that satisfies Piper’s condition only serves to orient the

end-effector within the workspace. A hybrid joint (revolute/prismatic) motion and

its selection parameters are mathematically expressed in the following Equation:

qi “ Riθi ` Tidi (9)

For a reconfigurable three links and joints (3-DOF), the resulting possible kine-

matic structure combinations are 23 “ 8: Articulated (RRR), Cylindrical (RTR),

Spherical (RRT), SCARA (RRT), Cartesian (TTT), TRR, TTR, RTT and TRT.

These kinematic structures are shown in Figure 2.3.

2.3. Reconfigurable Jacobian Matrix

The Jacobian matrix J P Rnˆm is a linear transformation that maps an n-

dimensional velocity vector 9qi into an m-dimensional velocity vector 9Vi:

9Vi “

»

—

–

v

w

fi

ffi

fl

“ Jpqq 9qi (10)

where the vector rvT , wT s are the end effector velocities and 9qi is the joint

velocities. For robot manipulators, the Jacobian is defined as the coefficient matrix

of any set of equations that relate the velocity state of the tool coordinate described

in the Cartesian space to the actuated joint rates of the joint velocity space. It is

necessary that Jpqq have six linearly independent columns for the end effector to
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Figure 2.3. All possible configuration models of a reconfigurable
hybrid joint.

be able to achieve any arbitrary velocity. Thus, when the rank Jpqq “ 6, the end

effector can execute any arbitrary velocity. Actually, the rank of the manipulator

Jacobian matrix will depend on the configuration q. Configurations for which
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the rank Jpqq is less than its maximum value are called singular configuration.

Identifying manipulator singularities is important for several reasons:

‚ Singularities represent configurations from which certain directions of mo-

tion may not be achievable.

‚ Singularities correspond to points of maximum reach on the boundary of

the manipulator workspace.

‚ At singularities, bounded end effector velocities may correspond to un-

bounded joint velocities.

2.3.1. Decoupling of Singularities

In general, it is difficult to solve the nonlinear equation det Jpqq “ 0. Therefore,

decoupling the singularities and division of singular configurations into arm and

wrist singularities are considered [80]. The first step is to determine the singular-

ities resulting from motion of the arm, and the second is to determine the wrist

singularities resulting from motion of spherical wrist. For a manipulator of n “ 6

consisting of a 3-DOF arm and 3-DOF spherical wrist the Jacobian is a 6 ˆ 6

matrix and a configuration q is singular if and only if:

detpJpqqq “ 0 (11)

where the Jacobian Jpqq is partitioned into 3ˆ 3 blocks as:

Jpqq “ rJP JOs “

»

—

–

J11 J12

J21 J22

fi

ffi

fl

(12)

Since the final three joints are always revolute and intersect at a common point

c, Figure 2.2, then JO becomes:

JO “

»

—

–

0 0 0

z3 z4 z5

fi

ffi

fl

(13)

In this case the Jacobian matrix has the block triangle form:
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Jpqq “

»

—

–

J11 0

J21 J22

fi

ffi

fl

(14)

with determinant:

detJpqq “ detJ11detJ22 (15)

As a result, the set of singular configurations of the manipulator is the union of the

set of arm configurations satisfying detJ11 “ 0 and the set of wrist configurations

satisfying detJ22 “ 0.

2.4. Manipulability and Singularity

The workspace of a reconfigurable manipulator defines a variable volume de-

pending on the variable D–H parameters of joint twist angle, link offset and link

length. A variable workspace of a 3-DOF reconfigurable manipulator with an RRR

configuration is shown in Figure 2.4. The variable workspace is calculated with

twist angle change values of π{16, π{8, π{4, and π{2. The resulting workspace is

a union set of spherical and elliptical volumes around the first manipulator joint.

In a similar fashion, Figure 2.5 shows a variable workspace of a reconfigurable

RRT configuration with different third link lengths of 0.15, 0.3 and 0.45 m. The

workspace layers are spherical with increasing volume radially from the center of

the first joint. To compute the results, the Matlab Robotic Toolbox was used [34].

2.4.1. Manipulability

A manipulability index was introduced by Yoshikawa [89] to measure the distance

to singular configurations. The approach is based on evaluating the manipulability

ellipsoid that is spanned by the singular values of a manipulator Jacobian. The

manipulability index is given as:

µ “
a

detpJpθqJT pθqq “ σ1σ2...σm (16)

Manipulability can be used to determine the manipulator singularity and optimal

configurations in which to perform certain tasks. In some cases, it is desirable to
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Figure 2.4. Workspace of RRR Configuration with four different
twist angle values π{16, π{8, π{4, and π{2.

perform a task in a configuration for which the end effector has maximum ma-

nipulability. For the ABB manipulator robot with RRR kinematic structure and

D–H parameters given in Table 2.3, the Jacobian matrix is calculated in Equation

(17), where S23 “ sinpθ2 ` θ3q. Then, the manipulability index is calculated and

given in Equation (18).

Table 2.3. D–H parameters of the ABB manipulator robot, source;
Spong, [80].

Link θi di ai αi

1 θ1 d1 0 π/2

2 θ2 0 a2 00

3 θ3 0 a3 00
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Figure 2.5. Workspace of RRT Configuration with different link
lengths 0.15, 0.3 and 0.45 m.

Jpθq “

»

—

—

—

—

—

–

´a2S1C2 ´ a3S1C23 ´a2S2C1 ´ a3S23C1 a3C1S23

a2C1C2 ` a3C1C23 ´a2S1S2 ´ a3S1S23 a3S1S23

0 a2C2 ` a3C23 a3C23

fi

ffi

ffi

ffi

ffi

ffi

fl

(17)

µ “ |λ1λ2...λm| “ |det J | “ a2a3|S3|pa2|C2| ` a3|C23|q (18)

The resulting manipulability index, shown in Figure 2.6, is a function of θ2 and

θ3 and the singularity configuration occurs when S3 “ 0 and a2C2 ` a3C23 “ 0. As

a result, two types of singularities are present, at any θ1, for pair pθ2, θ3q: p˘π{2, 0q,

p˘π{2,˘πq and for all θ3 “ 0 or θ3 “ ˘π. The optimal value of the manipulability

index µ “ 0.079 was resulted with the associated pθ2, θ3q “ p´159.37˝,´71.70˝q

and also the singular configurations already found analytically. For the Stanford

manipulator with RRT kinematic structure and D–H parameters given in Table

2.4, the Jacobian matrix is computed in Equation (19).
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Table 2.4. D–H parameters of the Stanford manipulator robot,
source; Spong, [80].

Link θi di ai αi

1 θ1 0 0 -π/2

2 θ2 d2 0 π/2

3 0 d3 0 00
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Figure 2.6. 3D profile of the manipulability index measure of RRR
configuration.

Jpθq “

»

—

—

—

—

—

–

´d2C1 ´ d3S1S2 d3C1C2 C1S2

´d2S1 ` d3C1S2 d3S1C2 S1S2

0 d3S2 C3

fi

ffi

ffi

ffi

ffi

ffi

fl

(19)

The manipulability index is calculated as:

µ “ |detJpθq| “ ´d2d3C1|S1| ´ d
2
3|S

3
2 | ´ d

2
3|S2|C

2
2 ` d2d3|S1|C1 (20)

As a result, the singularity is present, at any θ1, for pθ2 “ 0,˘πq. Figure 2.7 shows

the singularity and optimal manipulability index µ “ 0.999 with configuration

pθ2, θ3q “ p´71.7˝,´92.33˝q. A reconfigurable robot manipulator spans the union

of at least two configurations RRR and RRT and hence it has the ability to perform
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Figure 2.7. 3D profile of the manipulability index measure of RRT
configuration.

a wider range of tasks within the workspace by avoiding the singular configurations.

2.5. Jacobian Condition and Manipulability

The Jacobian linear system v “ Jpqq 9q maps the joint velocities to end-effector

Cartesian velocity. The Jacobian is regarded as scaling the input q to yield the

output. In a multidimensional case, the equivalent concept is to characterize the

output in terms of an input that has unit norm as follows [80]:

‖ 9q ‖“ 9q2
1 ` 9q2

2 ` . . .` 9q2
n ď 1 (21)

If the input (joint velocity) vector has unit norm, then the output (end-effector

velocity) will be positioned within an ellipsoid and defined :

‖ 9q ‖2
“ 9qT 9q

“ pJ`vqTJ`v

“ vT pJJT q´1v (22)

where J` is the Jacobian pseudo inverse and the derivation of Equation (22)

in Appendix (A). In particular, if the manipulator Jacobian is full rank, then
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Equation (22) defines m-dimensional ellipsoid known as the manipulability ellipsoid

. Replacing the Jacobian by its Singular Value Decomposition (SVD), J “ UΣV T

vT pJJT q´1v “ vT
“

pUΣV T
qpUΣV T

q
T
‰´1

v

vT pJJT q´1v “ vT
“

UΣ2UT
‰´1

v

vT pJJT q´1v “ pvTUqΣ´2
pUTvq

where U P Rmˆm and V P Rnˆn are orthogonal matrices and the singular value

Σ P Rmˆn is given as follows:

Σ´2
m “

»

—

—

—

—

—

—

—

—

–

σ´2
1

σ´2
2

. . .

σ´2
m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Substitute: w “ UTv, yields:

wTΣ´2
m w “ Σ

w2
i

σ2
i

ď 1 (23)

Equation (23) represents a surface of 3-dimensional ellipsoid of the end-effector

Cartesian velocity space. If this ellipsoid is close to spherical, its radii are of the

same order value, the end-effector can achieve arbitrary Cartesian velocity. But

when one or more radii are very small this indicates that the end-effector cannot

achieve velocity in the directions corresponding to those small radii. Figure 2.8

shows the RRR manipulator (Elbow Configuration) with three different twist an-

gle values pπ{16, π{6, π{2q of the second joint. End effector linear velocities with

twist angle π{2 were represented by an ellipsoid of almost equal radii in the y

and z directions. This indicates that the end-effector can achieve higher Cartesian

velocities in the y and z-directions than in the x-direction. While Cartesian ve-

locities with twist angle (π{6 and π{16) were represented with ellipses indicating

limited velocities in the y and z directions. This result shows that the optimal

configuration to obtain maximum Cartesian velocities in the y and z directions is
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Figure 2.8. Cartesian velocity ellipsoid of RRR configuration with
different twist angle values of pπ{16, π{6, π{2q degrees.

when twist angle value of π{2. Figure 2.9 illustrates the Cartesian velocities of

the end-effector of the RRT manipulator (Stanford Configuration). The velocity

ellipsoid disks are calculated with second joint prismatic increment length values

of 0.1, 0.2 and 0.3 m.

2.5.1. Joint-Space and Cartesian Trajectories

One of the most common requirements in robotics is to move the end-effector

smoothly from pose A to pose B. Two approaches to generate trajectories are

analyzed: straight lines in joint-space and straight lines in Cartesian space. In

joint-space motion, it is considered that the motion of 6 axes (3-DOF links and

3-DOF spherical wrist) ABB robot is moved in straight line from initial y-axis (0.2

m) to final y-axis (-0.2 m) and the z-axis of the tool is rotated with pπ{2q degrees.

Thus, the end-effector motion lies in xy-plane with the approach vector oriented

downwards. As shown in Figure 2.10 (left), the joint angles of the shoulder θ2 and

elbow θ3 are constant values while the base joint angle changes its value with time

to move the end-effector from pose A to B. The spherical wrist angles are changes

to orient the end-effector approach vector downwards. The Cartesian motion of
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Figure 2.9. Cartesian velocity ellipsoid of RRT configuration with
different prismatic lengths of 0.1, 0.2 and 0.3 m.

the end-motion in x, y and z directions are shown in Figure 2.10 (right). The path

of the end-effector in the xy-plane is shown in Figure 2.11 (left) and it is obviously

not a straight line. The reason is that as the robot rotates around its base joint

the end-effector will follow a circular path between the initial and final poses. The

orientation of the end-effector, in roll-pitch-yaw angles form, is shown in Figure

2.11 (right), in which the roll angle varies from π to π{2.

On the other hand, a straight line in Cartesian space is needed in many appli-

cations, which is known as Cartesian motion. Following a straight line path, the

ABB robot joint angles are shown in Figure 2.12 along with the path of the end-

effector in Cartesian space and xy-plane. The first difference when comparing with

the joint motion is that the end-effector in Cartesian motion follows a straight line

in the xy-plane as shown in Figure 2.13 (left). The other difference is that the

position and orientation of the end-effector varies linearly with the time as shown

in the right of Figures 2.12 and 2.13.

2.5.2. Motion Through a Singularity

In the following, a Cartesian motion trajectory that moves through the ABB robot

singularity is intentionally chosen. As shown in Figure 2.14 (left), the rate of

change of the wrist joint angles θ4 and θ6 has become very high at time t « 0.7s.
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Figure 2.10. Joint angles during joint-space motion (left). Carte-
sian coordinates of the end-effector in x, y and z directions (right).
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Figure 2.11. Cartesian position locus in the xy-plane (left). Euler
angles roll-pitch-yaw versus time (right).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2

−1

0

1

2

3

4

Time (s)

Jo
in

t A
ng

le
s 

(r
ad

)

 

 
q1
q2
q3
q4
q5
q6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

C
ar

te
si

an
 p

os
iti

on

 

 

x
y
z

Figure 2.12. Joint angles during Cartesian motion (left). Carte-
sian coordinates of the end-effector in x, y and z directions (right).
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Figure 2.13. Cartesian position locus in the xy-plane (left). Euler
angles roll-pitch-yaw versus time (right).
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Figure 2.14. Joint angles follow Cartesian path through a wrist
singularity (left), joint angles follows joint-space path (right).

The reason is that θ5 has become almost zero which means the rotational axes

of θ4 and θ6 are almost aligned, resulting in a singular robot position. The joint

alignment means that the robot has lost one degree of freedom and is now 5-axis

robot. The joint-space motion in Figure 2.14 (right) has not shown any unusual

joint rate change since it does not require the solution of the inverse kinematics.

The manipulability measure Equation (16) for this path is plotted in Figure 2.15

and shows that manipulability is almost zero around the time of rapid wrist joint

motion.
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CHAPTER 3

Reconfigurable Robot Dynamics

In this chapter, the dynamics of a reconfigurable open kinematic robot is devel-

oped and analyzed following the method given by Djuric, Al Saidi and ElMaraghy

[38]. The motor that actuates the jth hybrid joint exerts a torque that causes the

outward link, j, to accelerate and also exerts a reaction on the inwards link j ´ 1.

Gravity acting on the outward links j to n exert a weight force, and rotating links

also exert gyroscopic forces on each other. The resulting inertia from the motor

exertion is a function of the configuration of the outward links.

3.1. Reconfigurable Global Dynamic Model

The Global Dynamic Model (n-GDM) includes the link’s masses, m1,m2, . . . ,mn

and center of masses, PC1, PC2, . . . , PCn. The center of mass PC1 is between joint

1 and joint 2, PC2 is between joint 2 and joint 3,..., etc., up to the last link. The

coordinates of any center of mass PCi is defined relative to the joint i ` 1 frame:

(xi`1, yi`1, zi`1). For the n-GDM model, which includes n reconfigurable joints,

the center of mass can be in 24 different places between any two successive joints.

This means that for each selection of the zi`1 coordinate frames, there are four

possible centers of mass: P 1
Ci, P

2
Ci, P

3
Ci, P

4
Ci. To find the center of mass of each

link for the n-GDM model, all possible coordinate frames are included and for all

joints. The analysis was done for the center of mass between joint 1 and joint 2.

The same procedure can be applied to the other n´ 1 center of mass. A selection

of the z1
0 axis can support four different x-axis: x11

0 , x12
0 , x13

0 , x14
0 . For joint 2,

there are four different combinations of x1: x11
1 , x12

1 , x13
1 , x14

1 . Each of the four

x-combinations has four more combinations of the joint 2 coordinate frame. In

total there are sixteen different combinations of the first coordinate frame. By ob-

serving the coordinates of each center of mass, P 1
C1, P 2

C1, P 3
C1, and P 4

C1, relative to

31
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all sixteen possible combinations, the general unified solution has been developed

and presented in Equation (24):

PCi “

»

—

—

—

—

—

–

´cospθDHiq
ai
2

KCisinpθDHiq
ai
2
´KSi

dDHi

2

´KCisinpθDHiq
ai
2
´KCi

dDHi

2

fi

ffi

ffi

ffi

ffi

ffi

fl

, i “ 1, 2, . . . , n (24)

The moment of inertia about the center of mass for each link is related to

its shape and dimension. The inertia tensor matrix of the n-GDM is shown in

Equation (25):

Ii “

»

—

—

—

—

—

–

Ixi 0 0

0 Iyi 0

0 0 Izi

fi

ffi

ffi

ffi

ffi

ffi

fl

, i “ 1, 2, . . . , n (25)

The n-GDM model is derived and presented in state space form using the

aforementioned information. The equations of motion for an n-DOF manipulator

are given as follows:

Mpqq:q `Bpqqr 9q 9qs ` Cp 9qqr 9q2
s `Gpqq “ τ (26)

Matrix M is the n ˆ n symmetric positive definite inertia matrix. B is the n ˆ
řn´1
i“1 pn´iq, Coriolis torque matrix. C is the nˆn centrifugal torque matrix and G

is the nˆ 1 gravity torque vector. The vectors 9q, :q are the vectors of joint velocity

and acceleration, respectively. The velocity product vector r 9q 9qs is given as r 9q 9qs “

r 9q1 9q2 9q1 9q3 . . . 9q1 9qn . . . 9qn´1 9qns and r 9q2s “ r 9q2
1 9q2

2 . . . 9q2
ns is the vector of squared

velocity. The n-GDM model is calculated using the RNE (Recursive Newton-

Euler) algorithm which is developed and can be applied for any reconfigurable

open kinematic manipulator.

3.2. Forward Computation for Reconfigurable Robot

Using D–H parameters in Table 2.1, the general homogeneous transformation

matrix is expressed in Equation (8). The upper 3ˆ3 sub-matrices of the each
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homogeneous transformation matrix represent the rotational matrix for each joint,

and they are presented as follows:

i´1Ri “

»

—

—

—

—

—

–

cospRiθi ` TiθDHiq ´Kci sinpRiθi ` TiθDHiq Ksi sinpRiθi ` TiθDHiq

sinpRiθi ` TiθDHiq Kci cospRiθi ` TiθDHiq ´Ksi cospRiθi ` TiθDHiq

0 Ksi Kci

fi

ffi

ffi

ffi

ffi

ffi

fl

,

i “ 1, 2, ..., n

(27)

The next step is to find the transpose of all rotational matrices pi´1Riq
T , as

shown in Equation (28):

p0R1q
T “

»

—

—

—

—

—

–

cospR1θ1 ` T1θDH1q sinpR1θ1 ` T1θDH1q 0

´Kc1 sinpR1θ1 ` T1θDH1q Kc1 cospR1θ1 ` T1θDH1q Ks1

Ks1 sinpR1θ1 ` T1θDH1q ´Ks1 cospR1θ1 ` T1θDH1q Kc1

fi

ffi

ffi

ffi

ffi

ffi

fl

,

i “ 1, 2, ..., n

(28)

The upper right 3ˆ1 sub-matrix for each homogeneous transformation matrix

represent the position vectors for each joint and are stated in Equation (29):

i´1Pi “

»

—

—

—

—

—

–

aicospRiθi ` TiθDHiq

aisinpRiθi ` TiθDHiq

RidDHi ` Tidi

fi

ffi

ffi

ffi

ffi

ffi

fl

, i “ 1, 2, ..., n (29)

The linear and angular velocity vectors and acceleration vectors for n joints

are presented in Equation (30):

i´1 9Pi “

»

—

—

—

—

—

–

0

0

9di

fi

ffi

ffi

ffi

ffi

ffi

fl

, i´1 9θi “

»

—

—

—

—

—

–

0

0

9θi

fi

ffi

ffi

ffi

ffi

ffi

fl

, i´1 :Pi “

»

—

—

—

—

—

–

0

0

:di

fi

ffi

ffi

ffi

ffi

ffi

fl

, i´1 :θi “

»

—

—

—

—

—

–

0

0

:θi

fi

ffi

ffi

ffi

ffi

ffi

fl

, i “ 1, 2, ..., n (30)
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Using the rotation matrices and angular velocity vectors, the angular and linear

velocities for rotational and translational joints can be calculated from Equations

(31) and (32), respectively:

i
p
0wiq “

iRi´1

”

i´1
p
0wi´1q `Rip

i´1 9θiq
ı

, i “ 1, 2, ..., n (31)

ip0Viq “
iRi´1

i´1p0Vi´1q `Ri r
ip0wiq ˆ

iRi´1
i´1Pis `

Ri

!

iRi´1

”

i´1 9Pi `
i´1p0wi´1q ˆ

i´1Pi

ı)

, i “ 1, 2, ..., n

(32)

The linear and angular acceleration for two joints are calculated from Equations

(33) and (34) respectively:

i
p
0αiq “

iRi´1

!

i´1
p
0αi´1q `Ri

”

i´1
p
0wi´1q ˆ

i´1 9θi `
i´1 :θi

ı)

, i “ 1, 2, ..., n (33)

ip0aiq “
iRi´1

i´1p0ai´1q `
i´1p0αi´1q ˆ

i´1Pi `
i´1p0wi´1q ˆ p

i´1p0wi´1q ˆ
i´1Piq`

Ri

”

2 i´1p0wi´1q ˆ p
i´1 9θi ˆ

i´1Piq `
i´1 :θi ˆ

i´1Pi `
i´1wi ˆ p

i´1 9θi ˆ
i´1Piq

ı

`

Ti

”

2 i´1p0wi´1q ˆ
i´1 9Pi `

i´1 :Pi

ı

, i “ 1, 2, ..., n

(34)

The linear acceleration of the center of mass is calculated from Equation (35):

i
p
0aciq “

i
p
0aiq `

i
p
0αiq ˆ

i
p
iPciq `

i
p
0wiq ˆ

“

i
p
0wiq ˆ

i
p
iPciq

‰

, i “ 1, 2, ..., n (35)

The calculation of the radial distances to center of mass PCi is already given in

Equation (24).

3.3. Backward Computation of Forces and Moments

The general gravity vectors for the n-GKM model are expressed:

ig “ iR0
0g, i “ 1, 2, ..., n (36)
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The gravity vector projection is expressed in x, y and z coordinates:

0g “

»

—

—

—

—

—

–

gx

gy

gz

fi

ffi

ffi

ffi

ffi

ffi

fl

(37)

where g “ 9.81 m{s2. The parameters gx, gy, and gz are used to define the gravity

vector elements. These parameters depend on the selected kinematic configuration.

Once the velocities and accelerations of the links are found, the joint forces and

moments can be computed for one link at a time starting from the end-effector

and ending at the base link. It is assumed that there is no load at the end-effector,

therefore, npnfToolq “ 0, and npnnToolq “ 0.

i
pfiq “ ´mi

i
p
0aciq, i “ 1, 2, ..., n (38)

i
pniq “ ´

iIi
i
p
0αciq ´

i
p
0wciq ˆ

“

iIi
i
p
0wciq

‰

, i “ 1, 2, ..., n (39)

The force and moment balance equations about the center of mass of ith link in

recursive form can be written as:

i
pfiq `

i
p
i´1fiq ´

i
p
ifi`1q `mi

ig “ 0, i “ 1, 2, ..., n (40)

i
pniq “

i
p
i´1niq ´

i
p
ini`1q ´

“

i
p
i´1Piq `

i
p
iPCiq

‰

ˆ
i
p
i´1fiq `

i
p
iPCiq ˆ

i
p
ifi`1q

“ 0, i “ 1, 2, ..., n (41)

i
pniq “

i
p
i´1niq ´

i
p
ini`1q ´

“

i
p
i´1Piq `

i
p
iPCiq

‰

ˆ
i
p
i´1fiq `

i
p
iPCiq ˆ

i
p
ifi`1q

“ 0, i “ 1, 2, ..., n (42)

Once the reaction forces and moments are computed in the ith link frame, they

are converted into the pi´ 1qth link frame by the following equations:

i
p
i´1fiq “

i´1Ri
i
p
i´1fiq, i “ 1, 2, ..., n (43)

i
p
i´1niq “

i´1Ri
i
p
i´1niq, i “ 1, 2, ..., n (44)
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Torques τi and forces fi are obtained by projecting the moments and forces onto

their corresponding joint axes respectively:

τi “
i
p
i´1niq

T i´1Zi´1, i “ 1, 2, ..., n (45)

fi “
i
p
i´1fiq

T i´1Zi´1, i “ 1, 2, ..., n (46)

The RNE procedure produced the final n expressions of the actuators’ torques and

forces τi, i “ 1, 2, . . . , n. Each of these n equations contains the sum of products

of the matrices’ elements M,B,C,G, and trigonometric terms. To be able to get

a dynamic equation in the form of Equation (26), each matrix was generated i.e.

M,B,C, and G, and their elements were calculated:

m11,m12, . . . ,m1n, . . . ,mnn, b112, b113, . . . , b1pn´1qn, . . . , bnpn´1qn,

c11, c12, . . . , c1n, . . . , cnn, g1, g2, . . . , gn.

To avoid complications when factoring out each element in each expression, the

Automatic Separation Method (ASM) is used, which produces an automatic gen-

eration of matrix elements [38]. Using the Newton-Euler recursive method for

calculating the forces and/or torques of the links for any open kinematic chain will

result n-equations. Each equation is a solution for force and/or torque of the link,

which includes four elements: the first one is related to inertia force/torque vector,

the second one is related to Coriolis force/torque vector, the third one is related

to centrifugal force/torque vector and the fourth one to gravity force/torque vec-

tor. These results will be coupled with the dynamics of different motors to form

a block diagram for control purposes. The elements of the matrices of the inertia

matrix, Coriolis matrix, centrifugal matrix and the gravity vector were calculated

to construct a complete block diagram of a robot. For these calculation, the ASM

method was used by starting the calculation of angular acceleration elements re-

lated the inertia, Coriolis centrifugal and gravity elements, Equations (53)-(60).

This procedure has three steps. The first step is to simplify and organize the an-

gular and linear velocity equations. To overcome these problems it is necessary to
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implement the basic trigonometric rules expressed in Equations (47)-(49):

sinpRiθi ` TiθDHiqcospRi`1θi`1 ` Ti`1θDHpi`1qq`

KCicospRiθi ` TiθDHiqsinpRi`1θi`1 ` Ti`1θDHpi`1qq

“ sinpRiθi ` TiθDHi `KCiRi`1θi`1 ` Ti`1θDHpi`1qq, i “ 1, 2, ..., n

(47)

cospRiθi ` TiθDHiqcospRi`1θi`1 ` Ti`1θDHpi`1qq`

KCisinpRiθi ` TiθDHiqcospRi`1θi`1 ` Ti`1θDHpi`1qq

“ cospRiθi ` TiθDHi `KCiRi`1θi`1 ` Ti`1θDHpi`1qq, i “ 1, 2, ..., n

(48)

sin2pRiθi ` TiθDHiq ` cos
2pRiθi ` TiθDHiq “ 1, i “ 1, 2, ..., n (49)

The reconfigurable parameters of the model are given in Table 3.1. This leads to

Table 3.1. Reconfiguration parameters values

KS1 “ sinp˘900q “ ˘1 KC1 “ cosp˘1800, 00q “ ˘1

KS2 “ sinp˘900q “ ˘1 KC2 “ cosp˘1800, 00q “ ˘1

KS3 “ sinp˘900q “ ˘1 KC3 “ cosp˘1900, 00q “ ˘1

two more simplifications shown in Equations (50)-(51)

K2
Ci “ 1, K2

Si “ 1, i “ 1, 2, ..., n (50)

K3
Ci “ 1, K3

Si “ 1, i “ 1, 2, ..., n (51)

The second step consists of ordering parameters of each element of the equation,

which will help to continue the calculation without much complexity. The form is

given in Equation (52):

element “ KSiKCiaidisinpRiθi ` TiθDHiqcospRiθi ` TiθDHiq, i “ 1, 2, ..., n

(52)

The third step is separation of elements, which is important for further calcula-

tions. This method is first applied to the angular acceleration ip0αiqi and linear

acceleration of the center of mass ip0aiq, such that these expressions are written

as a sum of separated elements, as a function of the parameters of the vectors
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r:qs, r 9q 9qs, r 9q2s:

i
p
0αiqipαiq “

„

ip0αiqipαiq1
ip0αiqipαiq2

ip0αiqipαiq3



, i “ 1, 2, ..., n (53)

i
p
0αiqipω2

i q
“

„

ip0αiqipω2
i q1

ip0αiqipω2
i q2

ip0αiqipω2
i q3



, i “ 1, 2, ..., n (54)

i
p
0αiqipωijq “

„

ip0αiqipωijq1
ip0αiqipωijq2

ip0αiqipωijq3



,
i “ 1, 2, ..., n,

j “ 1, 2, ..., n

(55)

i
p
0αiqip :diq

“

„

ip0αiqip :diq1
ip0αiqip :diq2

ip0αiqip :diq3



, i “ 1, 2, ..., n (56)

i
p
0aciqipαiq “

„

ip0aciqipαiq1
ip0aciqipαiq2

ip0aciqipαiq3



, i “ 1, 2, ..., n (57)

i
p
0aciqipω2

i q
“

„

ip0aciqipω2
i q1

ip0aciqipω2
i q2

ip0aciqipω2
i q3



, i “ 1, 2, ..., n (58)

i
p
0aciqipωijq “

„

ip0aciqipωijq1
ip0aciqipωijq2

ip0aciqipωijq3



, i “ 1, 2, ..., n (59)

i
p
0aciqip :diq

“

„

ip0aciqip :diq1
ip0aciqip :diq2

ip0aciqip :diq3



,
i “ 1, 2, ..., n,

j “ 1, 2, ..., n

(60)

The calculation of the inverse dynamics can be done such that all elements of the

matrices from Equation (26) can be automatically generated. Using Equations

(47)-(60), the automatic generation of all matrix elements can be produced, as

shown below:

mij “
i
pRi´1

i nipαiq ` T
i´1
i fipαiq ` T

i´1
i fip :diq

q
T i´1Zi´1,

i “ 1, 2, ..., n,

j “ 1, 2, ..., n

(61)

bij “
i
pRi´1

i nipωijq ` T
i´1
i fipωijqq

T i´1Zi´1, i “ 1, 2, ..., n, j “ 1, 2, ..., n (62)

cij “
i
pRi´1

i nipω2
i q
` T i´1

i fipω2
i q
q
T i´1Zi´1, i “ 1, 2, ..., n, j “ 1, 2, ..., n (63)

gi “
i
pRi´1

i nipGRiq ` T
i´1
i fipGRiqq

T i´1Zi´1, i “ 1, 2, ..., n, j “ 1, 2, ..., n (64)

3.4. Development of the 3-GDM Model

In this section, a 3 DOF General Dynamic Model (3-GDM) model is devel-

oped to represent the first three reconfigurable joints of any open kinematic chain
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Table 3.2. Reconfigurable D–H parameters of the 3-GKM model

i di θi ai αi

1 R1dDH1 ` T1d1 R1θ1 ` T1θDH1 a1 00,˘1800,˘900

2 R2dDH2 ` T2d2 R2θ2 ` T2θDH2 a2 00,˘1800,˘900

3 RndDHn ` Tndn Rnθn ` TnθDHn an 00,˘1800,˘900

manipulator, assuming a spherical wrist is attached to the end effector. The D–H

parameters of the 3-GKM kinematic model are given in Table 3.2.

»

—

—

—

—

—

–

m11 m12 m13

m21 m22 m23

m31 m32 m33

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

:q1

:q2

:q3

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

b112 b113 b123

b212 b213 b223

b312 b313 b323

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

9q1 9q2

9q1 9q3

9q2 9q3

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

c11 c12 c13

c21 c22 c23

c31 c32 c33

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

9q1
2

9q2
2

9q3
2

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

G1

G2

G3

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

τ1

τ2

τ3

fi

ffi

ffi

ffi

ffi

ffi

fl

(65)

The matrices (M,B,C,G) of the dynamic system Equation (26) are calculated

for the 3-GKM model using the Equations (61)-(64) form which each element of

the four matrices was automatically generated forming Equation (65).

3.4.1. Model Validation

The validation of the 3-GKM model was done by using 2-DOF and 3-DOF config-

urations. The selected configurations (RR, RT, TR, and TT planar and SCARA)

are used to illustrate the model general capabilities.

RR Planar Manipulator

The RR planar kinematic structure is graphically shown in Figure 3.1. The kine-

matic and dynamic parameters of the planar kinematic structure are shown in

tables 3.3 and 3.4, respectively. Using these parameters and the 3-GDM model,

the RR configuration results the dynamic Equations (66).
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Figure 5: RR planar kinematic structure 
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Figure 3.1. RR planar kinematic structure.

Table 3.3. Kinematic initial parameters of 2-DOF RR configuration

Configuration Ri Ti KSi KCi dDHi θDHi

Joint 1 1 0 0 1 0 00

Joint 2 1 0 0 1 0 00

Table 3.4. Dynamic initial parameters of 2-DOF RR configuration

Configuration Gx Gy Gz Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

RR Planar 0 ´1 0 Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

»

—

–

1
4
pa2

2m2 ` 4a2m2cospθ2qa1 ` 4Iz2 `m1a
2
1 ` 4Iz1q

1
4
pa2

2m2 ` 4a2m2cospθ2qa1 ` 4Iz2q

1
4
pa2

2m2 ` 4a2m2cospθ2qa1 ` 4Iz2q
1
4
pa2

2m2 ` 4a2m2cospθ2qa1 ` 4Iz2q

fi

ffi

fl

»

—

–

:q1

:q2

fi

ffi

fl

»

—

–

´1
2
a1sinpθ2qm2w1w2a2

0

fi

ffi

fl

9q1 9q2 `

»

—

–

0 ´1
2
a1sinpθ2qm2w

2
2a2

´1
2
a2sinpθ2qm2w

2
2a2 0

fi

ffi

fl

»

—

–

9q2
1

9q2
2

fi

ffi

fl

`

»

—

–

1
2
gpa2m2cospθ1 ` θ2q ` a1sinpθ1qm2sinpθ1 ` θ2q ` a1cospθ2qm2cospθ1 ` θ2q ` a1m1cospθ1q

1
2
a2m2cospθ1 ` θ2qg

fi

ffi

fl

“

»

—

–

τ1

τ2

fi

ffi

fl

(66)

RT Planar Manipulator

The RT planar kinematic structure is graphically presented in Figure 3.2. The
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Figure 6: RT planar kinematic structure 
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Figure 3.2. RT planar kinematic structure.

kinematic and dynamic parameters of the RT planar kinematic structure are shown

in tables 3.5 and 3.6. Using these parameters and the 3-GDM model, the RT

configuration results the dynamic equations (67).

Table 3.5. Kinematic initial parameters of 2-DOF RT configuration

Configuration Ri Ti KSi KCi dDHi θDHi

Joint 1 1 0 0 1 0 00

Joint 2 0 1 0 1 0 00

Table 3.6. Dynamic initial parameters of 2-DOF RT configuration

Configuration Gx Gy Gz Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

RT Planar 0 ´1 0 Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

»

—

–

m2a1a2 `
1
4
a2

2m2 ` Iz2α1 `m2a
2
1 `

1
4
a2

1m2 ` Iz1 0

0 m2
:d2

fi

ffi

fl

»

—

–

:q1

:q2

fi

ffi

fl

`

»

—

–

0

0

fi

ffi

fl

9q1 9q2 `

»

—

–

0 0

0 0

fi

ffi

fl

»

—

–

9q2
1

9q2
2

fi

ffi

fl

`

»

—

–

1
4
cospθ1qgpa2m2 ` a1m1q

0

fi

ffi

fl

“

»

—

–

τ1

τ2

fi

ffi

fl

(67)

TR Planar Manipulator

The TR planar kinematic structure is graphically presented in Figure 3.3. The

kinematic and dynamic parameters of the TR planar kinematic structure are shown

in tables 3.7 and 3.8. Using these parameters and the 3-GDM model, the TR

configuration results the dynamic equations (68).
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Figure 7: TR planar kinematic structure 
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Figure 3.3. TR planar kinematic structure.

Table 3.7. Kinematic initial parameters of 2-DOF TR configuration

Configuration Ri Ti KSi KCi dDHi θDHi

Joint 1 0 1 0 1 0 00

Joint 2 1 0 0 1 0 00

Table 3.8. Dynamic initial parameters of 2-DOF TR configuration

Configuration Gx Gy Gz Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

TR Planar 0 ´1 0 Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

 

Figure 8: TT planar kinematic structure 
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Figure 3.4. TT planar kinematic structure.

»

—

–

m1 `m2 0

0 1
4
a2

2m2 ` Iz2

fi

ffi

fl

»

—

–

:q1

:q2

fi

ffi

fl

`

»

—

–

0

0

fi

ffi

fl

9q1 9q2 `

»

—

–

0 0

0 0

fi

ffi

fl

»

—

–

9q2
1

9q2
2

fi

ffi

fl

`

»

—

–

0

1
2
a2m2cospθ2qg

fi

ffi

fl

“

»

—

–

τ1

τ2

fi

ffi

fl

(68)

TT Planar Manipulator

The TT planar kinematic structure is graphically presented in Figure 3.4. The

kinematic and dynamic parameters of the TT planar kinematic structure are shown

in tables 3.9 and 3.10. Using these parameters and the 3-GDM model, the TT

configuration results the following dynamic equations (69).
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Table 3.9. Kinematic initial parameters of 2-DOF TT configuration

Configuration Ri Ti KSi KCi dDHi θDHi

Joint 1 0 1 0 1 0 00

Joint 2 0 1 0 1 0 00

Table 3.10. Dynamic initial parameters of 2-DOF TT configuration

Configuration Gx Gy Gz Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

TT Planar 0 ´1 0 Ix1 Iy1 Iz1 Ix2 Iy2 Iz2

Table 3.11. Kinematic initial parameters of 3-DOF SCARA con-
figuration

Configuration Ri Ti KSi KCi dDHi θDHi

Joint 1 1 0 0 1 dDH1 00

Joint 2 1 0 0 -1 0 00

Joint 3 0 1 0 1 d3 00

»

—

–

m1 `m2 m2

m2 m2

fi

ffi

fl

»

—

–

:q1

:q2

fi

ffi

fl

`

»

—

–

0

0

fi

ffi

fl

9q1 9q2 `

»

—

–

0 0

0 0

fi

ffi

fl

»

—

–

9q2
1

9q2
2

fi

ffi

fl

`

»

—

–

0

0

fi

ffi

fl

“

»

—

–

τ1

τ2

fi

ffi

fl

(69)

3-DOF Scara Kinematic Structure Manipulator

The validation of 3-GDM model is done using SCARA kinematic structure which

is graphically shown in Figure 3.5. The kinematic and dynamic parameters of the

SCARA kinematic structure are presented in tables 3.11 and 3.12. Using these

parameters and the 3-GDM model, the Scara configuration results the dynamic

equations (70). The dynamic model for the three-axis Scara robot in Equations

(70) is only slightly more complex than the dynamic model for two-axis planar

articulated robot. This is because a Scara robot is essentially a two-axis articulated

robot used to establish the horizontal tool position, plus an orthogonal one-axis

prismatic link used to establish vertical tool position.
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Figure 3.5. Scara kinematic structure.

Table 3.12. Dynamic initial parameters of 3-DOF SCARA config-
uration

Conf. Gx Gy Gz Ix1 Iy1 Iz1 Ix2 Iy2 Iz2 Ix3 Iy3 Iz3

Scara 0 0 ´1 0 1
12
m1a

2
1

1
12
m1a

2
1 0 1

12
m2a

2
2

1
12
m2a

2
2

1
12
m3d

2
3

1
12
m3d

2
3 0

»

—

—

—

—

—

–

`

m1

3
`m2 `m3

˘

a2
1 ` pm2 `m3qcospθ2qa1a2 ` p

m2

3
`m3qa

2
2

pm3 `
m2

3
qa2

2 ` pm3 `
m2

2
qcospθ2qa1a2

0

pm3 `
m2

3
qa2

2 ` pm3 `
m2

2
qcospθ2qa1a2 0

pm3 `
m2

3
qa2

2 0

0 m3
:d3

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

:q1

:q2

:q3

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

´2pm3 `
m2

2
qsinpθ2qa1a2 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

9q1 9q2

9q1 9q3

9q2 9q3

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

0 ´pm3 `
m2

2
qsinpθ2qa1a2 0

pm3 `
m2

2
qsinpθ2qa1a2 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

9q2
1

9q2
2

9q2
3

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

0

0

´m3g

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

τ1

τ2

τ3

fi

ffi

ffi

ffi

ffi

ffi

fl

(70)

It is clear from (70) that the motion of the third joint is completely independent

of the other two joints. The motion of the first two joints depends on the mass
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of the third link, which as acts as a load, but otherwise independent of the third

joint.

3.5. Parameter Properties of a Reconfigurable Robot

The equations of motion (E.O.M) of various manipulators derived in the previ-

ous sections, can be described with a set of coupled differential equations in matrix

form:

τ “Mpqq:q ` Cpq, 9qq ` F 9q `Gpqq (71)

where q, 9q and :q are respectively the vector of generalized joint coordinates, ve-

locities and accelerations. M is the joint-space inertia matrix, C is the Coriolis

and centripetal coupling matrix, F is the friction force, G is the gravity loading,

and τ is the vector of generalized actuator torques associated with the generalized

coordinates q. This equation describes the manipulator rigid-body dynamics and

is known as the inverse dynamics, given the pose, velocity and acceleration it com-

putes the required joint forces and torques. In the previous sections, An efficient

reconfigurable recursive Newton-Euler algorithm was developed to compute the

Equation (71) for any open kinematic chain manipulator. This algorithm starts at

the base and working outwards adds the velocity and acceleration of each joint in

order to determine the velocity and acceleration of each link. Then working from

the tool back to the base, it computes the forces and moments acting on each link

and thus the joint torques.

In this section, the effect of varying configurations on dynamic parameters such

as the inertia and gravity load terms of a reconfigurable manipulator is analyzed

and investigated thoroughly. The D–H parameters of a predefined kinematic struc-

ture (PUMA 560) are given in Table 3.13 by Corke [33]. Using these parameters,

the workspace of the first three revolute joints and links is calculated and shown

in Figure 3.6. The workspace of a reconfigurable robot manipulator with simi-

lar kinematic structure to the PUMA 560 is also calculated and shown in Figure

3.7. The resulting variable workspace shows a union of three layers that indicates

the workspace variability property of any reconfigurable manipulator. The three

workspace layers are calculated based on turning the third joint into a prismatic
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Table 3.13. D–H parameters of the PUMA 560 Manipulator,
source; Fu, [41].

Joint j θj dj aj αj Joint range

1 θ1 0.3302 0 -π{2 -160 to +160

2 θ2 0 0.2032 0 -225 to 45

3 θ3 -0.05 0 π{2 -45 to 225

4 θ4 0.2032 0 -π{2 -110 to 170

5 θ5 0 0 π{2 -100 to 100

6 θ6 0 0 0 -226 to 266

Figure 3.6. The workspace of a predefined kinematic structure of
the PUMA 560.

one (translational motion). This variable workspace was generated when the third

joint has translated with 0.1, 0.2, 0.3 m.

3.5.1. Gravity Load Term

Gravity load term in Equation (71) is generally a dominant term and present

even when the manipulator is stationary or moving slowly. The torque on a joint

due to gravity acting on the robot depends strongly on the robot’s pose. The

torque on the shoulder joint 2 is much greater when the robot is stretched out

horizontally as shown in Figure 3.8. The gravity torque on the elbow is high when

the pose changes due to joint reconfiguration from revolute to prismatic as the
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Figure 3.7. The workspace of a reconfigurable manipulator.

results are shown in Figure 3.9. From the analysis of the gravity load variations,

the gravity torque on joint 2 varies between ˘18Nm and for joint 3 varies between

˘18Nm. This analysis is important to determine the required torque capacity for

the motors.

3.5.2. Inertia Matrix Term

The inertia matrix is a positive definite symmetric matrix in which the matrix

elements are functions of the manipulator pose. Locking the joint 4 into prismatic

type, the inertia tensor matrix of the reconfigurable manipulator is calculated for

nominal configuration qn “ r0, π{4,´π, 0, π{4, 0s in Appendix A.

The inertia matrix is symmetric and the diagonal elements Mij describe the

inertia exerting the joint j by torque Qj “Mijqj. The first two diagonal elements,

corresponding to the robot’s waist and shoulder joints, are large since motion of
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Figure 3.8. Gravity load variation with a reconfigurable manipu-
lator pose (shoulder gravity load).
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Figure 3.9. Gravity load variation with a reconfigurable manipu-
lator pose (Elbow gravity load).

these joints involves rotation of the heavy upper- and lower-arm links. The off-

diagonal terms Mij “ Mji, i ‰ j represent coupling of acceleration from joint j

to the torques and forces on joint j ´ 1. The variation of the inertia elements as

a function of robot configurations are shown in Figures 3.10-3.11 and 3.12. The

results indicate a significant variation in the value of M11 which changes by a factor

of: max(M11(:)) / min(M11(:)) = 1.7683. The off-diagonal term M12 represents
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Figure 3.11. Variation of inertia matrix elements M12 with con-
figuration.

coupling between the angular acceleration of joint 2 and the torque on joint 1.

This means if the joint 2 accelerates then a torque will be exerted on joint 1 and

vice versa.

3.5.3. Coriolis Matrix Term

The Coriolis matrix Cpqq is a function of joint coordinates and joint velocity. The



3.5. PARAMETER PROPERTIES OF A RECONFIGURABLE ROBOT 50

−4

−2

0

2

4

−4

−2

0

2

4
3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

q2 (rad)q3 (rad)

M
22

 (
K

g 
m

2 )

Figure 3.12. Variation of inertia matrix elements M22 with con-
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Figure 3.13. Joint 2 inertia as a function of joint 3 angle, M22pq3q.

centripetal torques are proportional to 9qi
2, while the Coriolis torques are propor-

tional to 9qi 9qj. The Coriolis matrix is calculated for a nominal pose with all joints

moving 0.5 rad/s: qd “ 0.5 ˚ r1 1 0 1 1 1s. The resulting numeric matrix

has been shown in Appendix A. The off-diagonal terms Cij represent coupling of

joint j velocity to the generalized force acting on joint i. C1,2 “ ´0.9505 is very

significant and represents coupling from joint 2 velocity to torque on joint 1. Since
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the elements of this matrix represent a coupling from velocity to joint force they

have the same dimensions as viscous friction or damping, however the sign can

be positive or negative. The joint torques in this example have been shown in

Appendix A.

3.5.4. Effect of Payload Term

A specified maximum payload of any real robot shapes two dynamic effects. The

first is that a mass at the end of the robot will increase the inertia influence by the

joints which reduces acceleration and dynamic performance. The second is that

mass generates a weight force which the joints needs to support. Consequently, the

increased gravity torque component might exceed the rating of one or more motors.

As an example, a 2.5 kg point mass is added to the reconfigurable manipulator

end effector which is its rated maximum payload at an offset of 100 mm in the

z-direction of the wrist frame. From the numerical results shown in Appendix (A)

that the diagonal elements have increased significantly, for instance the elbow joint

inertia has increased by 60% which reduces the maximum acceleration by nearly

two thirds. Reduced acceleration impairs the robots ability to accurately follow a

high speed path. The inertia of joint 6 is unaffected since this added mass lies on

the axis of this joint’s rotation. The off-diagonal terms have increased significantly,

particularly in rows and column three, four (prismatic) and five. This indicates

that motion of joints 4 and 5, the wrist joints, which are moving the offset mass

give rise to large reaction forces that are covered by all the other robot joints.



CHAPTER 4

Linear Control

In this chapter, the synthesis and analysis of optimal linear controllers are

viewed and derived for different robot configurations.

4.1. Optimal Robust Control

In this section, a Scara robot model is considered for design and analysis of

robust H8{µ controllers. The motivation of this consideration is that the model

is essentially a two-axis articulated robot used to establish the horizontal tool

position, plus an orthogonal one-axis prismatic link used to establish the vertical

tool position. This robot has the minimum dynamic coupling, which reduces the

complexity of the overall equations of motion. It is clear from Equation (70) that

the motion of the third joint is completely independent of the other two joints.

The motion of the first two joints depends on the mass of the third link, which

acts as a load, but is otherwise independent of the third link. Since the first two

joints only move the robot in the horizontal plane, the gravity load G is zero.

Nominal Systems

Linear dynamical systems are generally described in either state-space form, or as

a transfer function. The state-space description of a general linear time invariant

(LTI) system G is commonly represented by:

9xptq “ Axptq `Buptq, xpt0q “ x0

yptq “ Cxptq `Duptq (72)

The system matrices, A,B,C,D, represent the linear nominal model of the sys-

tem. The transfer function description can be related to the state-space form by

52
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Figure 4.1. Closed loop configuration with mixed sensitivity
consideration.

introducing the Laplace variable s P C:

sxpsq “ Axpsq `Bupsq

ypsq “ Cxpsq `Dupsq (73)

Eliminating xpsq from the equation results in:

ypsq “ Gpsqupsq, Gpsq “ CpsI ´ Aq´1B `D (74)

Control Design Objectives

The standard feedback system is shown in Figure 4.1. The closed loop response

is:

y “ pI `GKq´1GKr ` pI `GKq´1Gdd (75)

where the following closed loop transfer functions are defined:

L “ GK loop transfer function

S “ pI `GKq´1 “ pI ` Lq´1 sensitivity function

T “ pI ` GKq´1GK “ pI ` Lq´1L complementary sensitivity function where

S ` T “ I. The control error is:

e “ y ´ r “ ´Sr ` SGdd (76)

The corresponding system input signal is;

u “ KSr ´KSGdd (77)
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The control design objectives in feedback control are:

(1) Performance, good disturbance rejection: need large controller gains

L large.

(2) Performance, good command following: L large.

(3) Stabilization of unstable system: L large.

(4) Small magnitude of input signals: K small and L small.

The disturbance rejection and command tracking are obtained with S « 0, or

equivalently, T « I in the low frequency range. The weighted sensitivity function

S is an indicator of closed loop performance. The design performance specifications

in terms of S include:

(1) Minimum bandwidth frequency wB (defined as the frequency where }Spjwq})

crosses 0.707 (« ´3dB).

(2) Maximum tracking error at selected frequencies.

(3) System type, or maximum steady state tracking error.

(4) Maximum peak magnitude of S, ‖ Spjwq ‖ďM .

These specifications can be captured by an upper bound, }1{wP }, on the magnitude

S, where wP is a weight selected by the designer. The performance requirements

become:

|Spjwq| ă 1{|1{wP pjwq|, @w

ô }wPS} ă 1, @w ô }wPS}8 ă 1 (78)

4.2. Mixed Sensitivity H8 Control

A control system is robust if it remains stable and achieves certain performance

criteria in the presence of parametric (Inertia and viscous friction)and dynamic

(structural unmodeled high frequency) uncertainties. H8 control design uses a

combination of cost functions to achieve good tracking and simultaneously limit

the control signal energy. The mixed sensitivity S{KS control problem for a
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reconfigurable robot is to find a stabilizing controller K that minimizes [75]:

min
Kstabilizing

›

›

›

›

›

›

›

pI `GKq´1

KpI `GKq´1

›

›

›

›

›

›

›

8

(79)

where the sensitivity function S “ pI ` GKq´1 is shaped along with the closed

loop function transfer function KS. This cost function can be interpreted as the

design objectives of nominal performance (without Uncertainties), good tracking

or disturbance rejection, and robust stabilizing with additive uncertainties. The

sensitivity function S is the transfer function between the disturbance d and the

output y as shown in Figure 4.1. The KS is the transfer function between d and

control signal u. The KS function is regarded as a mechanism for limiting the

gain and bandwidth of the controller, and hence the control energy used. A scalar

high pass (weighting) filter is designed with a crossover frequency approximately

equal to that of the desired closed loop system. The disturbance d is usually a low

frequency signal, and therefore it will be rejected if the maximum singular value of

S is made small over the same low frequencies. A scalar low pass filter (weighting)

function wp is selected with a bandwidth equal to that of the disturbance frequency.

yu

w z

( )K s

( )P s

Figure 4.2. General H8 control configuration.

By combining these two objectives in one cost function Equation (79), the

problem is to find a stabilizing control that minimizes this cost function while

achieving the required performance. In order to implement a unified solution

procedure, the above cost function is recast into a standard H8 configuration

shown in Figure 4.2. The solution can be obtained by using the LFT (Linear

Fractional Transform) technique, in which the signals are classified into sets of

external inputs, outputs, input to the controller and output from the controller.
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The external inputs (reference and disturbance) are denoted by w, the output

signals to be minimized which includes both performance and robustness measures,

y is the vector of measurements available to the controller K and u the vector of

control signals. P psq is called the generalized plant or interconnected system. The

objective is to find a stabilizing controller K to minimize the output z over all w

with energy less than or equal to 1. This is equivalent to minimizing the H8-norm

of the transfer function from w to z. The mixed sensitivity problem [75] shown in

Figure 4.3 (left) is formulated to reject the disturbance when w “ d. The output

error signal is defined as z “

»

—

–

z1

z2

fi

ffi

fl

, where z1 “ wpy and z2 “ ´wuu. It is also

calculated that z1 “ wpSw and z2 “ wuKSw and the elements of the generalized

plant P are:

»

—

—

—

—

—

–

z1

z2

v

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

wp wpG

0 ´wu

´I ´G

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

–

w

u

fi

ffi

fl

Then:

z “ FlpP,Kqw “ rP11 ` P12KpI ´ P22Kq
´1P21sw

where the FlpP,Kq is the lower linear fractional transformation of P and K:

FlpP,Kq “

»

—

–

wpS

wuKS

fi

ffi

fl

(80)

Another formulation of the S{KS mixed sensitivity optimization is in the stan-

dard tracking control form as shown in Figure 4.3 (right). This is a tracking prob-

lem in which the input signal is the reference command r and the error signals are

z1 “ ´wpe “ wppr ´ yq and z2 “ wuu. The results of the tracking problem is to

minimize z1 “ wpSr and z2 “ wuKSr.

4.3. H8 Control Design

This section is mainly concerned with the design of an H8 feedback control to

stabilize the closed loop of a linear reconfigurable robot in the presence of uncertain



4.3. H8 CONTROL DESIGN 57

u

w r
1z




G

K

2z

e r y 

P
pw

uw

w d

u

1z



 


G

K

2z

0r 
e r y 

P

uw

pw

y

v e v e

Figure 4.3. S/SK mixed sensitivity optimization in regulation
form (left), S/SK mixed sensitivity minimization in tracking form
(right).
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Figure 4.4. Uncertain system representation.

parameters. The robust stability of the resulting closed loop has been analyzed

based on the structured singular value µ approach [75]. The nominal and robust

performance were also analyzed based on the minimizing of performance criteria

functions such the sensitivity and limiting control functions.

Uncertain Systems

For control design purposes, the possibly complex behavior of dynamical systems

must be approximated by models of relatively low complexity. The difference be-

tween such models and the actual physical system is called the model uncertainty.

Another cause of uncertainty is the imperfect knowledge of some components of

the system, or the change of their behavior due to changes in operating condi-

tions. Uncertainty also originates from physical parameters whose value is only

approximately known or varies in time. There are two major classes of uncertainty:
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Figure 4.5. Standard H8{µ control structure (left), A control
structure for closed system analysis (right).

‚ Dynamical uncertainty, which consists of dynamical components neglected

in the linear model as well as of variations in the dynamical behavior dur-

ing operation. For example, high-frequency flexible modes, nonlinearities

for large inputs, slow time variations,..., etc.

‚ Parameter uncertainty are usually expressed in terms of accuracy coming

from calibration and its imperfect nature. Moreover, it originates from

imperfect knowledge of the physical parameter values, or from variations

of these parameters during operation. Examples of physical parameters

include inertia, stiffness and damping coefficients in mechanical systems.

It is important to consider the errors between a model and the system it rep-

resents, which can be presented in figure 4.4. The system Gpsq is the extended

system with inputs and outputs that connect with the uncertainty ∆, representing

the model error. ∆ is assumed to be known and bounded, and may have a specific

structure. The uncertainty structure is captured by defining the set ∆, which is

the set of block diagonal matrices with a specified fixed structure:

∆∆∆ “
 

diagrδ1Ir1 , . . . , δsIrS ,∆1, . . . ,∆F s : δi P C,∆j P Cmjˆmj , }∆} ă 1
(

(81)

Hence any matrix in ∆∆∆ is block diagonal with two types of blocks: repeated scalar

(complex or real) and full blocks. S, F are the number of repeated scalar blocks

and full blocks, respectively. The repeated scalar block dimension is ri ˆ ri, while

the full block dimension is mj ˆmj.
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System Interconnections

The standard control structure of the H8{µ controller design is shown in Figure

4.5 (left), representing the control design problem: the ’generalized plant P psq’

contains the nominal system model as well as the system weighting functions

representing the design specifications, disturbance spectra, uncertainty and input

weightings, etc. The uncertainty ∆psq represents the uncertainty model which is

assumed to be normalized. Finally, the controller Kpsq has to be designed so that

the influence of w on z is small. Here w includes external signals that excite the

system, such as disturbance, noise and reference signals. The output z contains

signals which are to be kept small, such as error and control signals. To illustrate

the main idea of design and analysis of a perturbed system, it is useful to define

the lower and upper linear fractional transformation (LFT) denoted by Fl and Fu,

respectively. The closed loop transfer function matrix N between error signals and

external inputs, shown in Figure 4.5 (right), is related to P and K by a lower LFT:

N “ FlpP,Kq “ P11 ` P12KpI ´ P22Kq
´1P21 (82)

The closed loop N can be partitioned as follow:

N “ FlpP,Kq “

»

—

–

N11 N12

N21 N22

fi

ffi

fl

(83)

Similarly, the uncertain closed loop transfer function from w to z is related to N

and ∆ by an upper LFT:

F “ FupN,∆q “ N22 `N21KpI ´N11Kq
´1N12 (84)

To analyze robust stability and performance of F , the perturbed close loop

system is rearranged with structured uncertainties as shown in Figure 4.6 (right).

Now, two important measures will be introduced that are used as performance

measure for the H8{µ control configurations.
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H8-Norm

A measure for the gain of a stable system N is the H8 norm, defined as:

}N}8 “ sup
}u}2ą0

}Nu}2
}u}2

(85)

which can be viewed as the largest possible amplification that N will induce, given

the worst-case input signal uptq. It is shown by Qu [69], that:

}N}8 “ sup
wPR

σ̄pNpjwqq (86)

where σ̄ denotes the largest singular value. If N22 represents a nominal closed loop

system, then }N22}8 ď 1 indicates that the performance requirements have been

met (Nominal Performance).

µ-Norm

An important question is whether a nominal stable transfer function N , as defined

in Equation (82) remains stable for all ∆ P ∆ and if not, what the smallest size is

of a perturbation that can destabilize N . This is defined by the structured singular

value µ:

µ∆pN11q
´1
“ min

∆
tσ̄p∆q|detpI ´N11∆q “ 0 for structured ∆ : σ̄p∆q ď 1u (87)

An uncertain closed loop system has been shown in Figure 4.6 where the input

w is to describe the disturbance and reference signals, z is the output to describe

the error signal. Robust stability, nominal performance and robust performance

are analyzed as follows:

‚ Robust stability (RS) is achieved if µ∆pN11pjwqq ď 1, @w.

‚ Nominal performance (NP) is achieved if }N22pjwq} ď 1, @w.

‚ Robust performance (RP) is achieved if µ∆epNpjwqq ď 1, @w

where ∆e “

$

’

&

’

%

¨

˚

˝

∆ 0

0 ∆p

˛

‹

‚

∆ P∆∆∆, }∆p} ă 1,

,

/

.

/

-

.

where the performance complex uncertainty ∆p has the performance channel di-

mension of pdim r ` dim dq ˆ pdim e` dim uq.
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Figure 4.6. A control configuration with extended uncertainty
structure.

H8-Optimal Control

Based on the definition of the H8 norm it is straightforward to define the H8-

optimal control problem. Assume there is no uncertainty present, see Figure 4.2,

such that the control problem can be viewed as:

K “ min
K
}FlpP,Kq}8 (88)

for stabilizing K. There are two problems associated with this definition. First,

the controller K that minimizes the H8 norm is not unique. Secondly, it is not

directly solvable. However, it is possible to construct a controller K that satisfies:

}FlpP,Kq}8 ă γ (89)

for a feasible γ, where γ is the lower bound on the H8 norm.

4.4. µ-Optimal Control

The next step is to include the uncertainty model into the control design prob-

lem and solve:

K “ min
K
}FlpP,Kq}µ (90)

The solution of this problem is iterative and referred to as DK-iteration. It starts

with the µ upper bound problem by minimizing the scaled singular value of the

closed loop matrix FlpP,Kq:

µ∆pFlpP,Kqq ď inf
DpwqPD

σ̄pDpwqFlpP,KqDpwqq
´1 (91)
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Figure 4.7. µ-Synthesis Control Procedure.

where D is the set of block diagonal matrices whose structure is compatible to that

of ∆∆∆ described in Equation (81). Dpwq is a frequency dependent scaling. Thus

the µ upper bound problem is to minimize:

min
K

‖ DpwqFlpP,KqDpwq´1 ‖8 (92)

over all controllers K that stabilizes P and over all functions Dpwq P D. This

problem is solved as follows:

‚ Solve an H8 optimization problem over all K:

min
K

‖ DpwqFlpP,KqDpwq´1 ‖8 (93)

over all stabilizing K and let the minimizing controller denoted by K̂.

Thus minimizing H8 norm of the scaled maximum singular value of the

closed loop system matrix.
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‚ Minimize µ upper bound σ̄rDpwqFlpP, K̂qDpwq
´1s over Dpwq point-wise

across frequency. This minimization produces a new scaling function

D̂pwq.

‚ Replace Dpwq with D̂pwq and return to first step.

The DK-iteration procedure is displayed in Figure 4.7.

4.5. H8 Gain Scheduled Control

There are two considerations that motivate the application of robust gain sched-

uled control, namely:

‚ In the previous chapter, an H8 control is designed in face of the involved

parametric uncertainties δJ and δV . The frequency and time domain re-

sponses have indicated that the desired performance specifications are not

achieved with an acceptable control amplitude.

‚ The parameters of a reconfigurable robot dynamics such as the inertia

Mpqq and damping F p 9qq parameters are strongly dependent on robot

configuration. These variable parameters completely define the operating

point of the robot and are assumed to be measured in real time.

These two considerations motivate the design of a control system that is scheduled

with the measured parameters Mpqq and F p 9qq and such that it might provide

higher performance for large variation in these parameters. Gain scheduling or

linear parameter varying (LPV) techniques are used for controlling LPV systems.

An LPV controller consists of designing a linear time invariant LTI controller that

is adapting itself when the operating conditions change. In this control method,

the system is assumed to depend affinely on a measured vector of time varying

parameters. Assuming on-line measurements of these parameters, they can be fed

to the controller to optimize the performance and robustness of the closed loop

system.

4.5.1. Analysis of LPV Polytopic Systems and Controllers

Linear parameter varying LPV systems are systems whose state-space matrices are

fixed functions of a time varying parameter θptq. Hence LPV systems are described
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by state-space equations of the form:

9x “ Apθptqqxptq `Bpθptqqu

y “ Cpθptqqxptq `Dpθptqqu (94)

where

θptq “ pθ1ptq, ¨ ¨ ¨ , θnptqq, a ď θiptq ď b (95)

is a time varying vector θptq. The state-space matrices of Equation (94) are con-

sidered to be affinely dependent on the time varying real parameters vector θptq

of Equation (95). LPV systems can be interpreted as follows:

‚ They can be viewed as linear time invariant LTI systems subject to time

varying parameter uncertainty θptq.

‚ They can be models of linear time varying systems or result from the lin-

earization of a non-linear system along trajectories of the vector parameter

θptq.

The first class of LPV systems falls within the scope of robust controller synthesis.

For the second class of LPV systems, the parameter θiptq is no longer uncertain

and can be on-line measured during the system operation. Consequently, LPV

controllers can exploit the available measurements of θiptq to improve the resulting

performance. It is assumed that the designing controller has the same parameter

dependence as the system:

9xk “ Akpθptqqxk `Bkpθptqqy

u “ Ckpθptqqxk `Dkpθptqqy (96)

where y denotes the vector of measurements and u the control input. By incor-

porating the parameter measurements, the controller Equation (96) adjusts to the

variations in the system dynamics in order to maintain stability and high perfor-

mance along all parameter trajectories θptq. LPV control synthesis is related to

the quadratic H8 performance, in which the controller seeks a single quadratic

Lyapunov function to ensure H8 performance for all possible trajectories of the

LPV system. Such an approach remains conservative in the face of slowly varying
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parameters, since quadratic Lyapunov techniques allow for arbitrarily fast param-

eter variations. The underlying concepts (polytopic systems and quadratic H8

performance) of the LPV control synthesis are briefly introduced.

Polytopic Systems

An LPV system is called polytopic when it can be represented by state-space

matrices Apθptqq, Bpθptqq, Cpθptqq and Dpθptqq, where the parameter vector θptq

ranges over a fixed polytope and the dependence of Ap.q, Bp.q, Cp.q and Dp.q on θ

is affine. The describing matrices of the LPV system Equation (94) are collected

into a system matrix:

Spθptqq “

¨

˚

˝

Apθptqq Bpθptqq

Cpθptqq Dpθptqq

˛

‹

‚

(97)

and the parameter vector θptq ranges within a box as given by Equation (95).

LPV system Equation (97) is called a polytopic system matrix if it ranges within

a convex hull of a finite number of vertex systems Si with fixed dimension matrix:

Spθptqq P CotS1, . . . , Sru “

#

r
ÿ

i“1

αiSi, αi ě 0,
r
ÿ

i“1

αi “ 1

+

(98)

where S1, . . . , Sr are the vertex (frozen) systems.

Quadratic H8-Control Performance

The performance of an LPV system is assessed by using the energy gain (L2-

induced norm) as:

}z}L2
ă γ }w}L2

(99)

This H8 performance condition can be rewritten as:

ż 8

0

}zptq}2 dt ď γ2

ż 8

0

}wptq}2 dt (100)
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An LPV system has a quadratic H8 performance γ if and only if there exists a

single positive definite matrix X ą 0 such that:
¨

˚

˚

˚

˚

˚

˝

ApθptqqTX `XApθptqq XBpθptqq CpθptqqT

BpθptqqTX ´γI DpθptqqT

Cpθptqq Dpθptqq ´γI

˛

‹

‹

‹

‹

‹

‚

ă 0 (101)

for all admissible values of the parameter vector θptq. Then the single quadratic

Lyapunov function V pxq “ xTXx establishes global asymptotic stability, and the

L2-gain of the LPV system is bounded by γ along all possible parameter trajec-

tories θptq. The bounded real lemma Equation (101) imposes an infinite number

of constraints that are difficult to solve. Using the convexity property of poly-

topic systems Equation (98), this condition can be reduced to a finite set of LMIs

constraints given as:

¨

˚

˚

˚

˚

˚

˝

ATi X `XAi XBi CT
i

BT
i X ´γI DT

i

Ci Di ´γI

˛

‹

‹

‹

‹

‹

‚

ă 0, X ą 0, for i “ 1, ¨ ¨ ¨ , r (102)

4.5.2. Synthesis of LPV Polytopic Controllers

LPV control is applicable to time varying and non-linear systems whose linearized

dynamics are approximated by an affine parameter dependent system in the form

of:

9x “ Apθptqqx`B1pθptqqw `B2pθptqqu

z “ C1pθptqqx`D11pθptqqw `D12pθptqqu

y “ C2pθptqqx`D21pθptqqw `D22pθptqqu (103)

where the time varying parameter vector θptq ranges within a known interval.

w Ñ z is the channel to describe the performance specifications. The system
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Equation (103) is further assumed to be polytopic:

¨

˚

˚

˚

˚

˚

˝

Apθptqq B1pθptqq B2pθptqq

C1pθptqq D11pθptqq D12pθptqq

C2pθptqq D21pθptqq D22pθptqq

˛

‹

‹

‹

‹

‹

‚

P Co

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˝

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

˛

‹

‹

‹

‹

‹

‚

, i “ 1, 2, ¨ ¨ ¨ , r

,

/

/

/

/

/

.

/

/

/

/

/

-

(104)

where Ai, B1i, ¨ ¨ ¨ , denote the values of Apθptqq, B1pθptqq, ¨ ¨ ¨ , at the polytope ver-

tices. The system matrix dimensions are given by:

Apθptqq P Rnˆn, D11pθptqq P Rp1ˆm1 , D22pθptqq P Rp2ˆm2 (105)

Then an LPV polytopic controller of the form Equation (96) can be employed to

assure the quadratic H8 performance γ of the resulting closed loop system:

9xcl “ Aclpθptqqx`Bclpθptqqw

z “ Cclpθptqqx`Dclpθptqqw (106)

where

Aclpθptqq “

»

—

–

Apθptqq `B2pθptqqDkpθptqqC2pθptqq B2pθptqqCkpθptqq

BkpθptqqC2pθptqq Akpθptqq

fi

ffi

fl

Bclpθptqq “

»

—

–

B1pθptqq `B2pθptqqDkpθptqqD21pθptqq

BkpθptqqD21pθptqq

fi

ffi

fl

Cclpθptqq “ rC1pθptqq `D12pθptqqDkpθptqqC2pθptqq D12pθptqqCkpθptqqs

Dclpθptqq “ D11pθptqq `D12pθptqqDkpθptqqD21pθptqq (107)

Synthesis of an LPV control is to ensure the following:

‚ The resulting polytopic closed loop system Equation (106) is enforced to

be stable over the entire parameter polytope and for arbitrary parameter

variations.

‚ The L2-induced norm of the performance channel w Ñ z is bounded by

γ for all possible trajectories within the parameter vector θptq.
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4.5.3. Analysis of LPV Systems with LFT System Description

In this section, the analysis of LPV systems based on the linear fractional trans-

formation LFT systems description will be introduced. The LPV system (103) can

be represented by the upper LFT interconnection as:

»

—

–

z

y

fi

ffi

fl

“ FupP psq,Θptqq

»

—

–

w

u

fi

ffi

fl

(108)

where P psq is an LTI system and Θptq is a block diagonal time varying matrix

with the block-diagonal structure:

Θptq “ diagpθ1ptqIr1 , ¨ ¨ ¨ , θkptqIrkq (109)

u

( )t

( )P s

( )K s

( )t

pz

y

pw

uw uz

cw cz

LPV System

LPV Control

Figure 4.8. The structure of the LPV system and control using
Linear Fractional Transformation (LFT) description system.

The LPV system structure with LFT interconnection is shown in Figure 4.8.

In this control structure, the LTI system P psq can be written in state-space form

as:

»

—

—

—

—

—

—

—

—

–

9x

zu

zp

y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

A Bu Bp B1

Cu Duu Dup Du1

Cp Dpu Dpp Dp1

C1 D1u D1p D11

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

–

x

wu

wp

u

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(110)
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where A P Rnˆn, Duu P Rrˆr, Dpp P Rzpˆwp , D11 P Rp1ˆm1 , with time varying

parameters entering as

wu “ Θptq zu (111)

The LTI system associated with the state-space form Equation (110) can be written

as:
»

—

—

—

—

—

–

zu

zp

y

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

Puupsq Puppsq Pu1psq

Ppupsq Ppppsq Pp1psq

P1upsq P1ppsq P11psq

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

wu

wp

u

fi

ffi

ffi

ffi

ffi

ffi

fl

(112)

where wu Ñ zu is to capture the influence of the parameters, and wp Ñ zp is

interpreted as the performance channel. Now, the LPV system Equation (108)

can be written in terms of uncertain LTI system with Θptq entering as:

»

—

–

zp

y

fi

ffi

fl

“ FupP psq,Θptqq

»

—

–

wp

u

fi

ffi

fl

“

»

—

–

Ppp Pp1

P1p P11

fi

ffi

fl

`

»

—

–

Ppu

P1u

fi

ffi

fl

ΘptqpI ´ Puuq
´1

„

Pup Pu1



(113)

Consistently with (108), an LPV controller is selected as follows:

u “ FlpKpsq,Θptqqy (114)

where the LTI controller system:

Kpsq “

»

—

–

K11psq K1cpsq

Kc1psq Kccpsq

fi

ffi

fl

(115)

specifies the LFT dependence of the controller on the measured parameters θptq.

The resulting closed loop system from the exogenous input wp to the controlled

output zp is given by:

zp “ FlpFupP,Θptqq, FlpK,Θptqqqwp (116)
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4.6. Linear Control Applications (Simulation Results)

4.6.1. Application of Mixed Sensitivity H8 Control (Simulation and

Results)

The Bosch Scara robot with RRT kinematic structure is considered based on the

experimental setup published in [73]. The first two joints and links are shown in

Figure 4.9 and the third joint is considered to be mechanically decoupled from the

motions of the other joints. The inertia and Coriolis matrices are given as follows:

Mpθq “

»

—

–

I1 ` 2I2 cospθ2q I3 ` I2 cospθ2q

I3 ` I2 cospθ2q I3

fi

ffi

fl

(117)

Cpθ, 9θq “

»

—

–

´2I2 sinpθ2q
9θ1

9θ2 ´ I2 sinpθ2q
9θ2
1

I2 sinpθ2q
9θ2
1

fi

ffi

fl

(118)

The complete system of the first two links is shown in Figure 4.9, including

servo motors with gearboxes, and the dynamic cross-coupling torques (Coriolis

effects). A spring-damper is introduced to model the torsion stiffness of the robot

shaft between each DC motor and the link. The dynamic coupling appears in the

joint systems as torques on the joint axes and is considered as an independent

disturbance torque. The nominal values of the robot parameters are estimated at

the null position of the first two joints shown in Figure 4.10 and given in Table

A.1. The state equations of the first link is derived as follows:

9x1 “ x2

9x2 “
1

JL1

pKsx3 `DsN1x4 ´ Fv1x2 ` τDLq

9x3 “ N1x4 ´ x2

9x4 “
1

Jm1

pKm1x5 ´N1k5x3 ´ Fv1x4q

9x5 “
1

Lm1

p´Rm1x5 ´Km1x4 ` x6 `Kp12u´Kp12x5q

9x6 “ ´ki12x5 ` ki12u

y “ x1 (119)
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Figure 4.10. Schematic top view of the Bosch Scara robot in null
position.

The state space and model description of the Bosch Scara robot are given in

Appendix B, in which the input u is the motor torque and the output y is the

joint angle of first link. Mixed sensitivity H8 controllers are designed and analyzed

based on this model in Subsection 4.6.1.
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For the nominal model derived in equation (119), the input weight is selected

to be about 1 or less to bound the magnitude of the input signal, and therefore a

simple weight wu “ 1 is selected. The performance weight is selected in the form :

wp1 “
s{M ` wB
s` wBA

; M “ 1.5, wB “ 10, A “ 10´4 (120)

The value wB “ 10 has been selected to achieve approximately the desired crossover

frequency wc “ 10 rad{s. The H8 problem is solved with the µ-toolbox in Mat-

lab. The simulation results are as follows: An optimal H8 norm of 0.9856, so the

weighted sensitivity requirements are almost satisfied with }S}8 “ 1.15, }T }8 “

1.0 and wc “ 9.96 rad{s. This design shows the tracking is very good as shown

by curve y1 in Figure 4.12 (Up), but from the curve y1 in Figure 4.12 (down), the

disturbance response is very sluggish. In case of the disturbance rejection is the

main concern, a performance weight can be selected to specify higher gains at low

frequencies:

wp2 “
ps{M1{2 ` wBq

2

ps` wBA1{2q2
; M “ 1.5, wB “ 10, A “ 10´4 (121)

The inverse of this weight is shown in Figure 4.11 and from the dashed line

to cross 1 in magnitude at about the same frequency as weight wp1 , but specifies

tighter control at lower frequencies. With the weight wp2 , the design with an H8-

optimal norm of 1.32, is yielding }S}8 “ 1.35, }T }8 “ 1.3 and wc “ 15.30 rad{s.

In conclusion, the first design is best for reference tracking whereas design 2 is best

for disturbance rejection.

4.6.2. Application of H8 Control (Simulation and Results)

The parameter variation and structural dynamics are important properties of the

reconfigurable dynamic system described by Equation (71). The inertia variations

and the nonlinear behavior of the viscous friction can be modeled as parametric

uncertainties bounded with upper and lower limit values. The nominal values of

these parameters are measured and given in Tables (A.1 and A.2) for different joints

links of the robot. The dynamic coupling affects the first link. The Coriolis torque,

cross coupling inertia, and centrifugal torques are regarded as disturbance torque

τLD1. Figure 4.13 shows that the uncertain parts of the viscous friction (damping
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part) and link inertia are pulled out of the nominal system. The inertia variation

of the first link is given in Table A.3 for different joint positions (θ2 “ 0, θ2 “ π) of

link 2. These variations are modeled as multiplicative uncertainty as is the friction.

The state equations of the perturbed first link system is derived as follows:

9x1 “ x2

9x2 “ q1 `
1

JL1

pKsx3 `DsN1x4 ´ Fv1x2 ´ q2 ` τDL1q
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9x3 “ N1x4 ´ x2

9x4 “
1

Jm1

pKm1x5 ´N1k5x3 ´ Fv1x4q

9x5 “
1

Lm1

p´Rm1x5 ´Km1x4 ` x6 `Kp12u´Kp12x5q

9x6 “ ´ki12x5 ` ki12u (122)

The outputs of the perturbed system are:

y “ x1

p1 “ q1 `
1

JL1

pKsx3 `DsN1x4 ´ Fv1x2 ´ q2 ` τDLq

p2 “ x2 (123)

Then, the state space representation is cast as follows:
»

—

—

—

—

—

–

9x

y∆

y

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

A B1 B2

C1 D11 D12

C2 D21 D22

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

x

u∆

u

fi

ffi

ffi

ffi

ffi

ffi

fl

(124)

The system Gpsq includes all nominal parameter values of the model with diagonal

uncertainty matrix ∆ “ diagpδJ , δV q as shown in Figure 4.14. The matrix ∆ is

unknown and called the uncertainty matrix and has a fixed diagonal structure. The

frequency response of the perturbed open loop system is computed for different

values of the perturbed parameters for ´1 ď δJ , δV ď 1 as shown in Figure 4.15.
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Design Requirements of Closed Loop System

The design objective is for a linear system Gpsq to find a feedback control upsq “

Kpsqypsq which ensures the following properties of the closed loop system.

Nominal Stability and Performance

The controller design should make the closed loop system internally stable and the

required performance should be achieved for the nominal system Gpsq by minimiz-

ing the following objective criterion:

›

›

›

›

›

›

›

WppI `GKq
´1

WuKpI `GKq
´1

›

›

›

›

›

›

›

8

ă 1 (125)

where S “ pI ` GKq´1 is the sensitivity function of the nominal system, and

Wp, Wu are wighting functions chosen to represent the frequency characteristics
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Figure 4.16. Singular value of the closed loop with H8 controller.

of the disturbance d and the input control level. The simulation results shown

in Figure 4.16 indicate that the norm inequality has been satisfied and the closed

loop system has reduced the effect of the disturbance τLD1 achieving the required

performance.

Selection of Weighting Functions

The weighting functions wp and wu are used to reflect the relative significance

of the performance requirements over the frequency ranges. Finding appropriate

weighting function is a crucial step in robust controller design and needs a few

trials. The selected performance weighting function is a scalar function as:

Wppsq “ 0.95
s2 ` 1.8s` 10

s2 ` 8s` 0.01
(126)

which ensures for disturbance rejection and good transient response (settling time

less than 10 and overshoot less that 20% for the nominal system). The control

weighting function Wu is chosen as scalar Wu “ 10´2.

H8-Controller Design

An H8 controller is designed using the system connection shown in Figure 4.17.

The generalized plant P psq includes the performance and uncertainty weightings.

The inputs to the plant are u∆, d, r, u and the outputs are y∆, ep, eu, y. The con-

troller minimizes the norm of FlpP,Kq over all stabilizing controllers, where the
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Figure 4.17. H8 control structure.

transfer function matrix FlpP,Kq is:

»

—

–

d

r

fi

ffi

fl

“ FlpP,Kq

»

—

–

ep

eu

fi

ffi

fl

(127)

To achieve the desired performance of disturbance rejection (or tracking reference),

it is necessary to satisfy the inequality }WppI ` GKq´1}8 ă 1. Since Wp is a

scalar function, the singular values of the sensitivity function pI `GKq´1 over the

frequency range must lie below that of 1
wp

. This indicates }WppI `GKq´1}8 ă 1

if and only if for all frequencies σrpI ` GKq´1pjwqs ă |1{Wppjwq|. Figure 4.18

shows that the sensitivity function is below the performance weighting function

for all frequencies.

Analysis of Closed Loop System with H8-Controller

The robust stability has been analyzed based on the perturbed closed loop transfer

function matrix FlpP,Kq. Since the uncertainty considered is structured, verifica-

tion of the robust stability and robust performance needs the frequency response

in terms of µ values. To achieve robust stability it is necessary that the transfer

function matrix pI ´ N11Kq
´1 Equation (84) is not singular. This implies that

the µpN11q must be less than one over the frequency range and that the closed
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Figure 4.18. Sensitivity and performance weighting function with
H8 controller.
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Figure 4.19. Robust stability analysis with H8 control.

loop system with H8 control achieves robust stability as shown in Figure 4.19.

The maximum value of µ is 0.90675 which implies that the structured perturba-

tions with norm less than 1
0.90675

are allowable, i.e. the stability maintains for

}∆}8 ă
1

0.90675
. The nominal performance of the closed loop system is analyzed

by means of the frequency response of the pN22q Equation (84). The nominal sta-

bility is achieved if and only if µpN22q ă 1 for all frequency range. The robust

performance of the closed loop system with H8 control is also tested by means of

mu-analysis. The block uncertainty structure includes 2ˆ2 diagonal parametric

uncertainty block and 1ˆ2 performance block as follows:
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Figure 4.20. Nominal and robust performance with H8 control.

r∆ “

$

’

&

’

%

»

—

–

∆ 0

0 ∆p

fi

ffi

fl

: ∆ P R2ˆ2,∆p P C1ˆ2

,

/

.

/

-

(128)

The robust performance of the closed loop system is achieved if and only if is

less than one for each frequency. The frequency responses showing the nominal

and robust performance are plotted in Figure 4.20. The frequency responses indi-

cate that the system achieves the nominal performance with µpN22q ă 1 but fails

to satisfy the robust performance criterion. From the calculations, the nominal

performance has maximum of 0.94998 while the µ curve (blue dotted line is the

µ value and the red dotted line is the maximum singular value) for the robust

performance has a maximum of 1.7584. With respect to the robust performance,

the size of perturbation matrix ∆ must be limited to }∆}8 ď
1

1.7584
to ensure the

perturbed performance function satisfying:

µ
r∆pNq ă 1, @pw, r∆q

The frequency responses of the perturbed closed loop systems are shown in Figure

4.21. The step and disturbance responses are shown in Figures 4.22 and 4.23,

respectively. In both cases, the overshoot does not exceed 20% which demonstrates

satisfactory performance in the presence of parametric perturbations.
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Figure 4.21. Perturbed (set of family) of closed loop systems with
different uncertainty values.
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Figure 4.22. Transient response to reference input with H8 control.

4.6.3. Application of µ-Synthesis Control and DK Iterations (Simu-

lation and Results)

The uncertainty block ∆ given in Equation (128) is diagonal and corresponding to

the inertia and viscous damping uncertainties of the robot link. The block ∆p is

an uncertainty block that is introduced to represent the performance requirements

in the control structure of the µ-approach. The following optimization problem
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Figure 4.23. Transient response to disturbance input with H8 control.

is formed to minimize the upper bound of µ values which in turn reduced the

maximum value of µ.

min
K

min
Dlpsq,Drpsq

‖ DlpsqFlpP,KqD
´1
r ‖8 (129)

where

Dlpsq “

»

—

—

—

—

—

–

d1psq 0 0

0 d2psq 0

0 0 d3psqI2

fi

ffi

ffi

ffi

ffi

ffi

fl

(130)

and

Drpsq “

»

—

—

—

—

—

–

d1psq 0 0

0 d2psq 0

0 0 d3psqI2

fi

ffi

ffi

ffi

ffi

ffi

fl

(131)

where d1psq, d2psq and d3psq are scaling transfer functions. Then, µ-synthesis is

to find a minimum value of the cost function and construction of a stabilizing

controller K such that for each frequency w P r0,8s the structured singular value

satisfy the condition:

µ∆̃rFlpP,Kqpjwqs ă 1 (132)

Satisfying the above condition ensures robust performance of the resulting closed

loop.
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Robust Stability and Performance of µ-Control

µ-Control has been employed to achieve robust stability and performance against

structured uncertainties. From the iteration summary, it is seen that the value of

γ decreases to 0.97, which means that the robust performance has been achieved.

Iteration Summary

----------------------------------------------------------------

Iteration # 9 10 11 12 13

Controller Order 17 15 15 13 13

Total D-Scale Order 12 10 10 8 8

Gamma Achieved 1.020 1.013 1.016 1.013 1.01

Peak mu-Value 1.021 1.012 1.007 1.000 0.97

MU iteration number: 14

The nonlinear properties of the inertia and viscous parameters are modeled as

parametric uncertainties in addition to full block representing the performance

channels. Figure 4.24 shows the sensitivity function of the closed loop system

with the 13th-order controller. The sensitivity function is below the inverse of

the performance weighting function, which implies that the nominal performance

is achieved. The robust stability of the closed loop system is analyzed by the

magnitude of the upper and lower bounds of µ as shown in Figure 4.25. The

robust stability of the closed loop system is achieved since the maximum value of

µ is equal to 0.49734. i.e. the system stability is preserved for ||∆||8 ă
1

0.49734
. The

frequency responses of the nominal and robust performance criteria are obtained

as shown in Figure 4.26.

The maximum value of µ in the robust performance analysis is 0.97512. This

means that the closed loop system with µ-controller achieves robust performance

since:
›

›

›

›

›

›

›

WppI `GKq
´1

WuKpI `GKq
´1

›

›

›

›

›

›

›

8

ă 1 (133)
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Figure 4.24. Sensitivity and weighting functions of Mu-Control.
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Figure 4.26. Nominal and robust performance of Mu-Control.
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for every diagonal ∆ with ||∆||8 ă 1. The frequency response of the sensitivity

functions of the perturbed closed loop systems Figure 4.27, shows the robust prop-

erties of system with the µ-controller. These responses remain below the frequency

response of the inverse of the performance weighting function. The magnitude re-

sponse of the wighted mixed sensitivity function Equation (133) are shown in

Figure 4.28.
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Figure 4.27. Sensitivity functions of perturbed systems with Mu-
Control.
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Figure 4.28. Performance of perturbed systems with Mu-Control.
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Figure 4.29. Frequency responses of perturbed closed loop sys-
tems with Mu-Control.

The robust performance has been satisfied for all perturbed systems, because

the magnitudes over frequency range are below 1. The frequency responses of

the perturbed closed loop systems are shown in Figure 4.29. We see from the

figure that the closed loop perturbed systems maintain their magnitude over a

wider frequency bandwidth. This would expect faster responses with the designed

closed loop system. Figures 4.30 and 4.31 show the transient responses of the

closed loop system to reference and disturbance inputs, respectively. Comparing

with th responses Figures 4.22 and 4.23, we see that the µ-controller ensures smaller

overshoot (10 %) while maintaining the similar settling time. Figure 4.32 shows

the transient responses (to input reference) of a family of perturbed closed loop

systems with µ-controller. In all cases the overshoot does not exceed 20 % which

demonstrates satisfactory performance in the presence of parametric perturbations.
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Figure 4.30. Transient response to step reference input with Mu-
Control.
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Figure 4.31. Transient response to disturbance input with Mu-Control.
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Figure 4.32. Transient responses of perturbed closed loop with
Mu-Control.
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4.6.4. Comparison of H8 and µ-Controllers

In this subsection, a comparison between H8 and µ controller are given based on

criteria such as robust stability, nominal and robust performance. The compari-

son of the designed systems with H8 and µ controller begins with the frequency

responses of these controllers. µ-control is characterized by larger gains in the

frequency range above 10 rad/s compared with the H8 control as shown in Figure

4.33. The phase response are close to each other uo to 3 rad/s and after that

frequency the µ controller continues to introduce a larger phase delay. The closed

loop system with the H8 and µ controllers are characterized by larger bandwidth

that leads to faster dynamics in response to reference inputs as shown in Figure

4.34.
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Figure 4.33. Frequency responses of H8 and µ-controllers.
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Figure 4.34. Frequency responses of closed loop systems.
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Figure 4.35. Comparison of robust stability of H8 and µ-controllers.

The comparison of robust stability is shown in Figure 4.35. The frequency

response of µ curve shows lower amplitude that the H8 control. Therefore, the

system with the µ controller allows larger norm of perturbations and maintaining

the robust stability. Figure 4.36 shows the nominal performance amplitude using µ

controller is less the H8 curve, resulting better performance. The µ values over the
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frequency for the two controller are plotted in Figure 4.37. The curves confirm that

the system with H8 controller does not achieve the robust performance criteria.

The µ curve is less than one which indicates that the robust performance has been

achieved against the specified structured uncertainties.
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Figure 4.36. Comparison of nominal performance of H8 and µ-
controllers.
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Figure 4.38. Performance degradation of H8 and µ-controllers.

In summary, the two controllers ensure robust stability of the closed loop sys-

tem with respect to the parametric perturbations that included in the 2 ˆ 2

diagonal uncertainty matrix. However, the closed loop system performance varies

in a different manner than the action of these diagonal uncertainties. In the follow-

ing, the worst-case perturbation is determined with respect to performance and to

compare the two systems when the norm of perturbations increases. The results

in Figure 4.38 show that the µ ensure robust performance for large perturbations.

The performance of the closed loop system deteriorate rapidly with the increasing

of perturbation magnitude in case of H8 controller. From the simulations above,

using µ-controller in case of structured uncertainties will always produce more

more satisfactory performance and less conservative controller.

4.6.5. Order Reduction of µ Control

As given in the iteration summary, the order of the µ-controller is 13, which makes

it difficult to implement. The Hankel-norm approximation method is used and

implemented to reduce the µ-controller order. Applying the method, generates a

balanced realization by removing the unobservable and uncontrollable modes, if

the system is not minimal. The Hankel singular values of the system can be used

in selecting the order of reduced controller.
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SVD(H) =

2.869862534849350

0.286015061736286

0.173452442893747

0.119289861739874

0.006086495977984

0.000706061440223

0.000259732952475

0.000067884568817

0.000066859740534

0.000025222140549

0.000024129302080

0.000003363897582

0.000002670567341

0.000000242490855

0.000000022118556

0.000000003521916

0.000000002664316

some of these values are very small, which implies that the controller (13th-

order) can be greatly reduced. A 4th-order reduced controller is tested and plotted

with full order one in Figure 4.39. Actually, a 3rd-order controller has been tried as

well, but a noticeable differences in th frequency responses in the range 10´1´ 101

rad/s. The system matrices of this fourth order controller are:

Ak =

1.0e+007 *

-1.10885243042 -0.20413296615 -0.00661216668 0.00001181105

0 -0.01072683827 -0.00000616026 0.00000087279

0 0 -0.00008493253 0.00000009118

0 0 0 -0.00000000012

Bk =
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1.0e+003 *

2.523918720864480

0.173155981648059

0.016190561288115

-0.000084889826165

Ck =

1.0e+003 *

2.51310707644 0.29103575422 -0.00129673347 -0.00008032023

Dk =

0.00567015468

The frequency responses coincide with each other for low frequencies which

implies that the same closed loop performance for both controllers. The transient

responses of the closed loop systems with full and reduced order are indistinguish-

ably comparing the Figure 4.39 with Figure 4.30. Obviously, the implementation

of the 4th order controller is much easier compared to the 13th order one.
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Figure 4.39. Frequency responses of full and reduced order controllers.
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Figure 4.40. Transient response for reduced order controller.

4.6.6. Application of LPV Control (Simulation and Results)

In this subsection, an LPV polytopic control is designed for the LPV linear system

given in Equation (119) with two parameters configuration dependent Mpqq and

F p 9qq. These two coefficients, given in Table A.3, satisfy Mpqq P rMmin,Mmaxs

and F p 9qq P rFmin, Fmaxs. Assuming that Mpqq and F p 9qq are on-line measurable

parameters, the controller is allowed to incorporate these measurements in the

same fashion as the system. The resulting LPV controller exploits all the avail-

able measurements of Mpqq and F p 9qq to provide a smooth and automatic gain

scheduling. The LPV control design procedure is similar to the H8 loop shaping

approach except that the closed loop functions are now parameter dependent. The

LPV control structure displayed in Figure 4.41 consists of the LPV linear system

P pθptqq and three LPV polytopic controllers. The reference velocity 9qd and posi-

tion qd are fed directly to the LPV feedforward controllers K1pθptqq and K2pθptqq,

respectively, while the robot configuration position q is fed back to the LPV feed-

back controller K3pθptqq. The LTI performance function Wp is chosen to weight

the resulting error e between the reference position qd and measured joint angle

position q. The function K3pθptqqSpθptqq is weighted using an LTI input weighting

function Wu to ensure robustness against unmodeled dynamics. The LPV control

objectives are as follows:

(1) To get internal stability of the closed loop system.
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Figure 4.41. LPV control structure includes the LPV system
P pθptqq, performance weighting functions Wp, robustness function
Wu, and LPV polytopic controllers (K1pθptqq, ¨ ¨ ¨ , K3pθptqq and in-
put filter Wf .

(2) To enforce the performance and robustness requirements by minimizing

the L2-gain of the closed loop performance channel.

These objectives should be satisfied for the time varying trajectories Mpqq and

F p 9qq. The design procedure is performed with describing the LPV system P pθptqq

Equation (119) by two affine parameter-dependent models. Using the LPV loop

shaping procedure, the resulting LPV polytopic system is placed within a polytope

convex hull of four vertex systems CotPi, i “ 1, ¨ ¨ ¨ , 4u. The vertices Pi are the

values of P pθptqq at the four vertices (the four corners P1, ¨ ¨ ¨ , P4q of the following

parameter box:

p1 “

»

—

–

Mmax

Fmax

fi

ffi

fl

, p2 “

»

—

–

Mmin

Fmax

fi

ffi

fl

p3 “

»

—

–

Mmax

Fmin

fi

ffi

fl

, p4 “

»

—

–

Mmin

Fmin

fi

ffi

fl

(134)

The LPV synthesis problem illustrated in Figure 4.41 is solved using the Mat-

lab/LMI control toolbox. To solve this problem, the input should be parameter

independent [43]. This condition is satisfied by prefiltering the control input u
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with a high pass filter Wf as follows:

Wf “
ps` 2π ˚ 100 ˚ 0.4q

p1{2000 s` 2π ˚ 100q

The optimization problem is to find an LPV controller to minimize

›

›

›

›

›

›

›

WpS

WuKS

›

›

›

›

›

›

›

L2

(135)

Weight Selection

The performance weighting functions Wp and Wu are designed to enforce the per-

formance and robustness specifications in Equation (135). An appropriate scaling

of the system has been performed so that the input about or less than one in

magnitude, and therefore select a simple input weight Wu “ 1. The performance

weight is chosen in a form as follows:

Wp “
ps{M ` wcq

s` wcA
(136)

The value wc “ 10 has been selected to achieve approximately the desired

crossover frequency wc of 10 rad{s. The steady state error requirement is deter-

mined by the selection of the parameter value of A, which is chosen to be A “ 10´4.

Analysis of LPV Control Design

The two parameter Mpqq and F p 9qq are frozen to some values in the parameter box

specified in Equation (134). The LPV close loop system is simulated for frozen

parameters 10%, 30%, 60% and 90% of their nominal values. The step response

of the gain scheduled system is simulated along the following spiral parameter

trajectory shown in Figure 4.42:

Mpqq “ 2.25` 1.7e´4tcosp100tq (137)

V pqq “ 50` 49e´4tsinp100tq

The step response shown in Figure 4.43 indicates the the performance require-

ments are satisfied in terms of the steady state and speed of response.
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CHAPTER 5

Nonlinear Control

In Chapter 5, the mechanical nonlinearities of the robot arm have been consid-

ered as torque disturbance within bounded limits between 13.01 ď τLD ď 53.32.

Optimal robust controllers were created for a linearized robot, such that the con-

trolled system can track the desired pose with a sufficiently high bandwidth. In

fact, the nonlinearity inherent in the arm dynamics is so dominant and influ-

ences the arm performance enough that it promotes the development of control

approaches that incorporate it into the control design process. The theory that

will be treated here provides a tool for reducing the influence of the nonlinearities

of the arm dynamics by means of feedback. Feedback linearization control is re-

garded as inner loop control; a robust nonlinear control has been designed to drive

the error dynamics to a sliding surface, achieving high tracking performance of the

robotic arm.

General Properties of Nonlinear Arm Dynamics

The general model of an n-joint robotic arm considered in this chapter is rewritten

and explained as follows:

Mpqq:q ` Cpq, 9qq 9q `Gpqq ` F p 9qq ` τd “ τ (138)

where q P Rn is the joint coordinate vector, Mpqq P Rnˆn is the inertia matrix,

Cpq, 9qq P Rn describes the centrifugal and Coriolis forces, Gpqq P Rn is the gravity,

F p 9qq P Rn is the frictional forces, τ P Rn is the control torque, and τd P R
n is the

disturbance torque.

Consequently, the characteristics of the above dynamic model have the follow-

ing properties:

97
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‚ Highly nonlinear: each element of (138) contains nonlinear factors such

as trigonometric functions, and other mathematical models such as satu-

ration, square functions,..., etc.

‚ High degree of coupling between the dynamics of adjacent joints and links.

‚ Model uncertainty and time-variance: the load will vary when the robot

moves the objects or when the joint friction torque changes over time.

The mathematical formation of these characteristics are:

‚ The inertia matrix Mpqq is a positive definite, symmetric and bounded

matrix, i.e. there exists positive constants m1 and m2 such that m1I ď

Mpqq ď m2I.

‚ The centrifugal and Coriolis matrix Cpq, 9qq is bounded, i.e., there exits a

known cbpqq such that |Cpq, 9qq 9q| ď cbpqq} 9q}.

‚ The matrix 9M ´ 2C is a skew-symmetric matrix, i.e., xT p 9M ´ 2Cqx “ 0,

where x is a vector.

‚ The known disturbance is satisfied with }τd} ď τM , where τM is a known

positive constant.

5.1. Position Control

The position control problem is considered by designing a PD-Gravity control

based on a Lyapunov function [74]. The resulting control compensates the gravity

element and assures step tracking, and linear and curvature trajectories satisfying

the required performance specifications. In Section 5.1.1, the dynamics of a servo

DC motor is combined with the link dynamics to form a compact servo mechanism

description. The derivation of the position control is given in Section 6.20 and the

simulation results have been presented in Subsections 5.1.3 and 5.1.4.

5.1.1. Link Dynamics. Let qi denote the generalized coordinate variable of

the hybrid joint and τi is the actuator torques vector of the n-axes of an open

kinematic structure robot. The general equation of motion can be rewritten as:

n
ÿ

j“1

Mijpqq :qj `

˜

n
ÿ

k“1

ÿ

j‰k

ckjpqq 9qk 9qj `
n
ÿ

k“1

ckkpqq 9q2
k

¸

` gipqq ` bip 9qq “ τi i “ 1...n

(139)
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Equation (139) can be recast in a compact form as follows:

Mpqq:q ` cpq, 9qq 9q ` gpqq ` bp 9qq “ τ (140)

Here Mpqq is the inertia tensor matrix, the matrix cpq, 9qq defines the generalized

Coriolis and centrifugal forces. The matrices gpqq and bp 9qq are the gravity and

frictional generalized forces, respectively. To facilitate control of the arm, it is

useful to reformulate the nonlinear dynamic model as a first-order system of 2n

equations called state equations. The key to transforming to the state-space form

is isolation of the acceleration vector :q in Equation (140). This can be easily done

because the manipulator inertia tensor Mpqq is symmetric and positive-definite

and therefore nonsingular. The state equations of a robotic manipulator are given

in the following form:

9q “ v

9v “ M´1
pqq rτ ´ cpq, vq ´ gpqq ´ bpvqs (141)

5.1.2. PD-Gravity Control

For a reconfigurable robotic arm system, an n-axis proportional-derivative (PD)

control is developed such that the generalized joint position qptq of the closed loop

system closely tracks a constant reference input rptq “ a for t ě 0. This is called

the regulator problem or set-point control problem. The nonlinear controller PD

with an explicit gravity compensation term is given as:

e “ r ´ q

τ “ Ke` L 9e` gpqq (142)

Here K and L are n ˆ n symmetric positive definite matrices called the position

and velocity gain matrices, respectively. Notice that torque τ consists of terms

proportional to the error and the derivate of the error plus a nonlinear gravity

term, gpqq. The controller Equation (142) is substituted in Equation (141), and

this yields the following state closed loop equations of motion:

9q “ v
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9v “ M´1
pqq rKpr ´ qq ` Lp 9r ´ vq ´ cpq, vq ´ bpvqs (143)

Assume rptq “ a for t ě 0, for some set point a. To analyze the resulting equilib-

rium points of the closed loop system, the right hand side of the Equation (143)

is set to zero and solved for q and v. This yields:

v “ 0

M´1
pqq rKpa´ qq ´ cpq, 0q ´ bp0qs “ 0 (144)

The Coriolis cpq, 0q “ 0 and bp0q “ 0, as they are functions of velocity with a

zero value at v “ 0. Thus, Kpa ´ qq “ 0 and the closed loop system has a single

equilibrium point:

pxT “ raT , 0T s (145)

Then, the resulting equilibrium point at pxT “
“

aT , 0T
‰

of the closed loop system

represents the desired steady state solution of the nonlinear system when the

reference input is rptq. To satisfy the required performance of the closed loop

using the PD controller (142), it is sufficient to prove that the equilibrium point

pxT is asymptotically stable and its domain of attraction encompasses the entire

state space [46].

Theorem: Let pxT “
“

qT , vT
‰

be the solution of the robotic arm described in

(141), assuming that τ is computed using the control law in (142). If rptq “ a for

t ě 0, then the equilibrium point pxT “
“

aT , 0T
‰

is asymptotically stable and the

domain of attraction is Ω “ R2n. This means, for each xp0q P R2n:

xptq Ñ px as tÑ 8

Proof: the equilibrium point is first moved to the origin by letting, z “ q ´ a.

Then, the closed loop equations in (143) can be written in terms of z and v as:

9q “ 9v

9v “ ´M´1
pz ` aq rKz ` Lv ` cpz ` a, vq ` bpvqs (146)

Since cpz ` a, 0q “ 0 and bp0q “ 0, it follows that pz, vq “ p0, 0q is an equilibrium

point of the transform system (146). The Lyapunov function candidate (energy
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function) is:

V pz, vq “
1

2
zTKz `

1

2
vTMpz ` aqv (147)

Since the inertia tensor Mpqq is a continuously differentiable positive definite ma-

trix and the position gain matrix K is also a positive definite matrix, it follows that

Equation (147) is a valid Lyapunov function, [51]. It is shown that the evaluation

of the function 9V pzptq, vptqq decreases along the solutions of the state Equation

(146) as follows:

9V pz, vq “
d

dt

ˆ

zTKz ` vTMpz ` aqv

2

˙

9V pz, vq “ zTK 9z ` vTMpz ` aq 9v `
vT 9Mpz ` aqv

2

9V pz, vq “ zTKv ´ vT rKz ` Lv ` cpz ` a, vq ` bpvqs `
vT 9Mpz ` aqv

2

9V pz, vq “ pzTKvqT ´ vT rKz ` Lv ` cpz ` a, vq ` bpvqs `
vT 9Mpz ` aqv

2

9V pz, vq “ vTKT z ´ vT rKz ` Lv ` cpz ` a, vq ` bpvqs `
vT 9Mpz ` aqv

2

9V pz, vq “ vTKz ´ vT rKz ` Lv ` cpz ` a, vq ` bpvqs `
vT 9Mpz ` aqv

2

9V pz, vq “
vT 9Mpz ` aqv

2
´ vT rLv ` cpz ` a, vq ` bpvqs

9V pz, vq “ vT

«

9Mpz ` aqv

2
´ cpz ` a, vq

ff

´ vT rLv ` bpvqs (148)

The Coriolis and centrifugal torque term cpz ` a, vq can be expressed in terms

of 9Mpqq and a skew-symmetric matrix Npq, vq, yielding:

cpz ` a, vq “
1

2
r 9Mpz ` a, vq ´Npz ` a, vqsv (149)

Substituting Equation (149) in Equation (148) yields:

9V pz, vq “
1

2
vTNpz ` a, vqv ´ vT rLv ` bpvqs (150)

The first term does not contribute to 9V pz ` a, vq because it is a skew matrix:

NT pq, vq “ ´Npq, vq, which is given as follows:

vTNpz ` a, vqv “
1

2
vTNpz ` a, vqv `

1

2
vTNpz ` a, vqv
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vTNpz ` a, vqv “
1

2
vTNpz ` a, vqv `

1

2
rvTNpz ` a, vqvsT

vTNpz ` a, vqv “
1

2
vTNpz ` a, vqv `

1

2
vTNT

pz ` a, vqv

vTNpz ` a, vqv “
1

2
vTNpz ` a, vqv ´

1

2
vTNpz ` a, vqv

vTNpz ` a, vqv “ 0 (151)

Combining equations (150) and (151), the expression for 9V pz, vq along the

solution of the closed loop state equation in (143) reduces into:

9V pz, vq “ ´vT rLv ` bpvqs (152)

9V pz, vq “ ´rvTLv ` vT bpvqs (153)

Since L is positive definite and the friction coefficient is nonnegative, then

9V pz, vq ď 0 along the solution of closed loop system (143). From Equation (153),

the following yields:

9V pz, vq ” 0 ñ vptq ” 0

ñ 9vptq ” 0

ñ M´1
pzptq ` a, 0qKzptq ” 0

ñ zptq ” 0 (154)

Consequently, the equilibrium point pz, vq “ p0, 0q is asymptotically stable.

The domain of attraction is the set Ω where:

Ω “ tpz, vq : V pz, vq ă ρu

Ω “

"

pz, vq :
zTKz ` vTMpz ` aqv

2
ă ρ

*

(155)

Here, V pz, vq is a Lyapunov function and the asymptotic stability conditions

[51] are satisfied on Ωp for every ρ ą 0. Since K and Mpz ` a, vq are positive

definite matrices, V pz, vq Ñ 8 as }z} ` }v} Ñ 8. Thus, the domain of attraction

is the entire state space Ω “ R2n. This implies, the equilibrium point pq, vq “ pa, 0q

is asymptotically stable.
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5.1.3. A Reconfigurable Robot with PD-Gravity Control

As an application of a PD-Gravity control, a two-axis reconfigurable robot is con-

sidered with RR and RT configurations. In the case of an RR configuration, i.e.

both joints are revolute (rotational motion), the manipulator represents a two-

axis planar articulated robot shown in Figure (3.1). The dynamic model of this

planar robot was developed in Equation (66). Positive definite gain matrices are

ensured by using Equation (142) to be diagonal matrices with positive diagonal

gain elements:

K “ diagtk1, k2, . . . , knu (156)

L “ diagtl1, l2, . . . , lnu (157)

The implementation of the PD-Gravity control in Equation (142) is given as fol-

lows:

e “ r ´ q (158)

τ1 “ k1e1 ` l1 9e1 ` g

„

´m1

2
`m2

¯

a1cospθ1q `
1

2
m2a2cospθ1 ` θ2q



(159)

τ2 “ k2e2 ` l2 9e2 `
1

2
gm2a2cospθ1 ` θ2q (160)

In general, K and L can be any real symmetric matrices with positive values.

By varying the values of the components of K and L, the position and speed

can be controlled with which the two joints are driven to the desired set point.

With some experimentation and control gain tuning, the gains k1 “ 80 and l1 “

50 are found to work well to track a step function generated from second order

differential shown in Figure 5.1 (step function is the blue line and step response

is the green line). The motor torque needed to drive the first link is shown in

Figure 5.1. The position tracking of the second link of the RR configuration is

presented in Figure 5.2, with PD-Gravity gains k2 “ 310 and l2 “ 30. The motor

torque shows that higher torque in Figure 5.2 due to the static coupling with

the first link. The tracking performance of the applied PD-Gravity is satisfied

as the tracking errors of both revolute joints shown in Figures 5.3 are very low.

For the two-axis reconfigurable robot, the RT configuration shown in Figure 3.6
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Figure 5.1. Performance of PD-gravity controller, RR configura-
tion; tracking step position of joint 1 (left), motor torque (right).

is simulated using the same reference step function. The simulation result of the

revolute link has similar tracking properties as the RR configuration. But with

the RT configuration, the second joint turns to be prismatic and consequently the

second link translates to follow the step function. The dynamic model was given in

Equation (67) in which the gravity term of the second link is zero. The calculation

of the PD-Gravity control is given as follows:

e “ r ´ q (161)

τ1 “ k1e1 ` l1 9q1 `

´a1m1 ` a2m2

4

¯

gcospθ1q (162)

F2 “ k2e2 ` l2 9q2 (163)

Figure 5.4 (left) shows that the reference position is well tracked by the second

link using controller gains K2 “ 245 and l2 “ 55. The control force needed to

drive the prismatic link is shown in Figure 5.4 (right).

5.1.4. Three-Axis Robot Structure with PD-Gravity Control

As a second example of a PD-Gravity controller, a three-axis Scara structure

robot shown in Figure 3.5 is considered for control application. The selection of

the Scara robot because of the robot kinematic structure RRT (two revolute and
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Figure 5.2. Performance of PD-gravity controller, RR configura-
tion; tracking step position of joint 2 (left), motor torque (right).
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Figure 5.3. Performance of PD-gravity controller, RR configura-
tion; tracking step position error joint 1 (left), tracking position error
joint 2 (right).

one prismatic). The intent is to provide a thorough analysis in designing a PD-

Gravity control to an industrial robot. The diagonal gains K and L are selected,

as in Equation (156). Because of the kinematic structure and geometry of the

Scara robot, there is no gravity load on the first two revolute joints. From the
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Figure 5.4. Performance of PD-gravity controller, RT configu-
ration; tracking position of prismatic joint 2 (left), motor torque
(right).

derived dynamic model in Equation (70), the gravity loading on the prismatic

joint is Gpqq “ m3g. Thus, the PD-Gravity controller given in Equation (142) is

formulated as follows:

e “ r ´ q (164)

τ1 “ k1e1 ` l1 9e1 (165)

τ2 “ k2e2 ` l2 9e2 (166)

F3 “ k3e3 ` l3 9e3 `m3g (167)

In the simulation, the joints of the Scara robot follow a numerical path de-

scribed in degrees. The circular path is well tracked by the first joint of the robot

as shown in Figure 5.5 (left). The motor torque needed to drive the first joint is

plotted in Figure 5.5 (right). The tracking trajectory and the control torque of the

second joint are shown in Figure 5.6. For the first two joints, the tracking error

Figure 5.7 to the circular path shows very low values, which indicates suitable

controller gain selection and well satisfied performance error requirements.
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Figure 5.5. RRT configuration (Scara); tracking circular path of
joint 1 (left), motor torque of joint 1 (right).
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Figure 5.6. RRT configuration (Scara); tracking circular path
joint 2 (left), motor torque of joint 2 (right).

Conclusion

With PD-Gravity control, once the effects of the gravity have been eliminated, the

nonlinear robotic arm can be controlled using a simple linear PD controller. The

only constraints on the closed loop system to b stable is that the controller gains
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Figure 5.7. RRT configuration (Scara); tracking circular path
error joint 1 (left), tracking circular path error joint 2 (right).

K and L be symmetric positive definite matrices. The practical significance of the

PD-gravity control Equation (142) lies that it requires no detailed knowledge of

the manipulator inertia tensor Mpqq, the Coriolis and centrifugal coupling vector

cpq, vq, or the friction vector bvpq but it does require knowledge of the gravity

loading vector hpqq.

5.2. Trajectory Control

5.2.1. Feedback Linearization Control

One of the results of differential geometric nonlinear control theory [49, 62] con-

cerns the equivalence of nonlinear systems with linear systems, in case of feedback.

The (input-output) feedback linearization utilizes the feedback transforms (invert-

ibility of the system) to render linear input-output dynamics.

Mathematical Preliminaries Some mathematical preliminaries will be in-

troduced related to the differential geometry [4]: Suppose that h : Rn Ñ R1 is a

smooth scalar function and f : Rn Ñ Rn, g : Rn Ñ Rn are vector fields, then:



5.2. TRAJECTORY CONTROL 109

Bh

Bx
“

„

Bh

Bx1

, . . . ,
Bh

Bxn



L0
fh “ h

L1
fh “

n
ÿ

i“1

Bh

Bxi
fipxq “

Bh

Bx
fpxq

...

Lkfhpxq “ Lf pL
k´1
f hpxqq “

BL
pk´1q
f h

Bx
fpxq for k “ 0, 1, . . . ,

LgL
k
fhpxq “ LgpL

k
fhpxqq “

BLkfh

Bx
gpxq

Bh
Bx

is called the gradient of hpxq and Lkfhpxq is called the Lie derivative of

Lk´1
f hpxq along the vector field (f).

5.2.2. Input-Output Linearization

Consider an n-dimensional single-input single-output nonlinear system of the form:

»

—

—

—

—

—

–

9x1

...

9xn

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

f1px1ptq, . . . , xnptqq

...

f1px1ptq, . . . , xnptqq

fi

ffi

ffi

ffi

ffi

ffi

fl

xptq `

»

—

—

—

—

—

–

g1px1ptq, . . . , xnptqq

...

g1px1ptq, . . . , xnptqq

fi

ffi

ffi

ffi

ffi

ffi

fl

uptq (168)

where uptq is the one-dimensional input, yptq is the one-dimensional output, fi :

Rn Ñ R1, gi : Rn Ñ R1, i “ 1, . . . , n, and h : Rn Ñ R1 are smooth functions with

f1p0, . . . , 0q “ . . . “ fnp0, . . . , 0q “ hp0, . . . , 0q “ 0. Equation (168) can be written

into the following compact form:

9x “ fpxptqq ` gpxptqquptq

y “ hpxptqq (169)

where the fpxq, gpxq and hpxq are n-dimensional vector-valued smooth functions

defined on Rn called vector fields in Rn. The goal is now to find an integer ρ and

a state feedback control law:

u “ αpxq ` βpxqv (170)
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where αp.q and βp.q are smooth functions defined in a neighborhood of some point

(equilibrium point) x0 P Rn and βpx0q such that the resulting system has the

property that the ρth-order derivative of the output is given by:

ypρqptq “ vptq, t P Γ (171)

where Γ is an open interval containing t “ 0. The vector fields αpxq and βpxq

can be found by differentiating the output y until the input u appears explicitly.

Differentiating y results in:

y1
ptq “ Lfhpxptqq

. . .

ypρ´1q
ptq “ L

pρ´1q
f hpxptqq

ypρqptq “ Lρfhpxptqq ` LgL
pρ´1q
f hpxptqquptq

ypρqptq “ αpxq ` βpxquptq (172)

with

LgL
pρ´1q
f hpx0q ‰ 0

Then the control law (170) yields:

u “
´Lρfhpxptqq ` vptq

LgL
ρ´1
f hpxptqq

(173)

The new system (171) may not be fully observable, if ρ ă n. Hence, it is important

that the zero-dynamics of:

9x “ fpxptqq ` gpxptqqαpxptqq ` gpxptqqβpxptqqvptq

y “ hpxptqq (174)

is stable. The zero dynamics is defined to be the part of the system dynamics that

complies to y ” 0, which can be true for some nontrivial pairs of xptq, uptqq. If

the zero dynamics are asymptotically stable, the system is called an asymptotically
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minimum phase system.

Asymptotic Tracking

The resulting system (174) has a special structure, where the input v directly

governs the motion of the output. Therefore, the design of an inversion model

controller for various objectives such as asymptotic tracking problem is addressed

to design a control law such that the output yptq asymptotically tracks a given

trajectory rptq. The desired tracking can be achieved by requiring that the error

eptq “ yptq ´ rptq satisfies:

epρqptq ` αpρ´1qe
pρ´1q

` ¨ ¨ ¨ ` α1e
p1q
ptq ` α0eptq “ 0 (175)

where α0, . . . , αρ´1 are such that:

λρ ` αpρ´1qλ
pρ´1q

` ¨ ¨ ¨ ` α1λ` α0

is a Hurwitz polynomial, then:

eptq “ yptq ´ rptq

ep1qptq “ yp1qptq ´ rp1qptq

. . .

eρ “ yρ ´ rρptq

eρ “ vptq ´ rρptq (176)

solving for vptq yields:

vptq “ rpρqptq ´ pαpρ´1qe
pρ´1q

` ¨ ¨ ¨ ` α1e
p1q
ptq ´ α0eptqq (177)

The composition of Equation (173) and (177) leads to form the following control

law:

uptq “
´Lρfhpxptqq ` r

pρqptq ´
řρ´1
k“0 αke

pkqptq

LgL
ρ´1
f hpxptqq

(178)

which achieves asymptotic tracking for the system (169).



5.2. TRAJECTORY CONTROL 112

5.2.3. Sliding Mode Control (SMC)

One approach to robust control design is called sliding mode control (SMC) method-

ology, which is also a type of variable structure control system (VSCS) [76]. The

most significant feature of SMC is the complete insensitivity to parametric uncer-

tainty and external disturbances during the sliding mode. The VSCS uses a high

speed switching control law to achieve two objectives. Firstly, it drives the nonlin-

ear system’s state trajectory along a specified and user chosen surface in the state

space which is called the sliding or switching surface. This surface is named the

switching surface because a control path has one gain if the state trajectory of the

system is above the surface and a different gain if the trajectory drops below the

surface. Secondly, it maintains the system’s state trajectory on this surface for all

subsequent times. During the process, the control system’s structure varies from

one to another and therefore it grants the name variable structure control. The

feedback linearization control law (178) achieves asymptotic tracking by satisfying

the error equation (175). Next, a sliding surface in Rn is defined as follows:

sptq “ epρ´1q
ptq ` αpρ´1qe

pρ´2q
` ¨ ¨ ¨ ` α1eptq ` α0

ż

eptqdt “ 0 (179)

where αρ´1, . . . , α0 are such that:

λρ ` αpρ´1qλ
pρ´1q

` ¨ ¨ ¨ ` α1λ` α0

is a Hurwitz polynomial. The derivative of the sliding surface sptq is given by:

9sptq “ epρqptq ` αpρ´1qe
pρ´1q

ptq ` ¨ ¨ ¨ ` α1e
p1q
ptq ` α0eptq (180)

To satisfy the asymptotic tracking objective, the requirement is:

9sptq “ 0 (181)

Now, instead of satisfying the tracking error equation (175), a sliding condition is

described as follows:

Sliding Condition. There exists a positive number µ such that

1

2

ds2

dt
ď ´µ|s| (182)
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The sliding condition can be written in the following equivalent form:

9s ď ´µ, sptq ą 0

9s ě µ, sptq ă 0
(183)

Using the conditions of Equation (183), the surface becomes locally attractive in

the sense that trajectories nearby the surface will be attracted to the surface de-

fined by sptq “ 0 in a finite time. Furthermore, since 9sptq is a stable differential

equation in e, satisfaction of 9spt0q “ 0 for some t0 implies:

lim
tÑ8

eptq “ 0 (184)

which leads to the asymptotic tracking. It is also possible to solve for u, given an

exogenous input v such that:

9s “ v (185)

Equation (180) can be rewritten as:

9sptq “ pypρqptq ´ rpρqptqq ` αpρ´1qe
pρ´1q

ptq ` ¨ ¨ ¨ ` αp1qe
p1q
ptq ` α0eptq

“ apxq ` bpxqu´ rpρqptq ` αpρ´1qe
pρ´1q

ptq ` ¨ ¨ ¨ ` αp1qe
p1q
ptq ` α0eptq

(186)

Therefore, the control law u is calculated as:

u “
v ´ apxq ` rpρqptq ` αpρ´1qe

pρ´1qptq ` ¨ ¨ ¨ ` αp1qe
p1qptq ` α0eptq

bpxq
(187)

By letting:

v “ ´k sgnpsq (188)

where k ą µ and the sign function is:

sgnpsq “ 1, s ą 0

sgnpsq “ ´1, s ă 0 (189)

Substituting Equation (188) into Equation (187) gives the overall control law as

follows:

u “
´k sgnpsq ´ apxq ` rpρqptq ` αpρ´1qe

pρ´1qptq ` ¨ ¨ ¨ ` αp1qe
p1qptq ` α0eptq

bpxq
(190)
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From Equation (190), the tracking control law (178) can be viewed as a special case

of the sliding mode control by letting k “ 0 in Equation (190). The discontinuity

of the sign function will cause chattering in the closed loop system. In practice,

the sign function is often replaced by a saturation function sat(s{ε), where sat(.)

is defined as follows:

satpxq “ x, if |x| ď 1

satpxq “ sgnpxq, if |x| ą 1 (191)

Using this replacement will introduce tracking error. Trade-offs between the track-

ing error and control bandwidth can be made by suitably selecting the boundary

layer.

5.2.3.1. Linearity in Parameters

The dynamic parameters of a reconfigurable robot are not constant and function

of the robot configuration. The robot dynamics (71) can be written in the form

[80]:

Mpqq:q ` Cpq, 9qq 9q `Gpqq “ Y pq, 9q, :qqϕ (192)

where Y pq, 9q, :qq is an nˆr matrix of known time functions and ϕ is an rˆ1 vector

of unknown constant parameters. This property is formulated by Graig [46] in

that it shows the separation of unknown parameters and known time functions.

The reason that the robot dynamics can be separated in this form is that the

robot dynamics are linear in the parameters expressed in the vector form ϕ. This

separation of unknown parameters and known time functions will be used in the

formulation of the adaptive update rule.

5.2.4. Sliding Mode Control Based on Estimated Model

In this subsection, sliding mode controllers are derived based on estimated models

and a 3-DOF reconfigurable robot is simulated to track a trigonometric reference

signal. For the desired trajectory as qdptq, the tracking error is defined as follows:

e “ qd ´ q
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Define the reference velocity [76]:

9qr “ 9qd ` Λpqd ´ qq (193)

Where Λ is a positive diagonal matrix. Define a parameter vector error to be

ϕ̃ “ pϕ ´ ϕ, where pϕ is the estimated vector of ϕ. According to the parametric

linear property, the robotic dynamic equation is now formulated as:

Mpqq:qr ` Cpq, 9qq 9qr `Gpqq “ Y pq, 9q, :qqϕ (194)

And the dynamic error equation is:

M̃pqq:qr ` C̃pq, 9qq 9qr ` G̃pqq “ Y pq, 9q, :qqϕ̃ (195)

Where M̃pqq “Mpqq ´ xMpqq, C̃pqq “ Cpqq ´ pCpqq and G̃pqq “ Gpqq ´ pGpqq.

Define the sliding surface s as:

s “ 9e` Λe (196)

Select the Lyapunov function as:

V ptq “
1

2
sTMpqqs (197)

The Lyapunov function derivative is:

9V ptq “
1

2

”

sTMpqq 9s` sT 9Mpqq ` 9sTMpqqs
ı

(198)

Using the symmetric property of matrices:

9V ptq “
1

2

”

2sTMpqq 9s` sT 9Mpqqs
ı

(199)

9V ptq “ sTMpqq 9s`
1

2
sT 9Mpqqs (200)

Since s “ 9q ´ 9qr and 9s “ :q ´ :qr, then:

9V ptq “ sT pMpqq:q ´Mpqq:qrq `
1

2
sT 9Mpqqs (201)
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From the equation of motion:

Mpqq:q ` Cpq, 9qq 9q `Gpqq “ τ (202)

The following yields:

Mpqq:q “ τ ´ Cpq, 9qq 9q ´Gpqq (203)

9V ptq “ sT rτ ´ Cpq, 9qq 9q ´Gpqq ´Mpqq:qrs `
1

2
sT 9Mpqqs (204)

9V ptq “ sT rτ ´Mpqq:qr ´ Cpq, 9qqps` 9qrq ´Gpqqs `
1

2
sT 9Mpqqs (205)

9V ptq “ sT rτ ´Mpqq:qr ´ Cpq, 9qq 9qr ´Gpqqs ´ s
TCpq, 9qqs`

1

2
sT 9Mpqqs (206)

Using the skew-symmetric property:

Npq, 9qq “
1

2
sT

´

9Mpqq ´ 2Cpq, 9qq
¯

s “ 0 (207)

The following yields:

9V ptq “ sT rMpqqp:qr ´ :qq ` Cpq, 9qqp 9qr ´ 9qqs

9V ptq “ sT rMpqq:qr ` Cpq, 9qq 9qr `Gpqq ´ τ s (208)

The Lyapunov derivative is negative by designing the controller as:

τ “ xMpqq:qr ` pCpq, 9qq 9qr ` pGpqqq ` τs (209)

Where τs is the robustness element to be designed to compensate for the para-

metric uncertainty. From equations (208) and (209), the following yields:

9V ptq “ sT rMpqq:qr ` Cpq, 9qq 9qr `Gpqq ´ xMpqq:qr ´ pCpq, 9qq 9qr ´ pGpqqq ´ τss

9V ptq “ sT rM̃pqq:qr ` C̃pq, 9qq 9qr ` G̃pqq ´ τss

9V ptq “ sT rY pq, 9q, :qqϕ̃´ τss (210)
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The robustness factor can be selected as:

τs “ ki sgnpsiq ` si “

»

—

—

—

—

—

–

k1 sgnps1q ` s1

. . .

ki sgnpsiq ` si

fi

ffi

ffi

ffi

ffi

ffi

fl

(211)

or select a saturation function as:

τsat “ ki satpsiq ` si “

»

—

—

—

—

—

–

k1 satps1q ` s1

. . .

ki satpsiq ` si

fi

ffi

ffi

ffi

ffi

ffi

fl

(212)

5.2.5. Simulation of 3-DOF Reconfigurable Manipulator

A 3-DOF reconfigurable robot is considered with reconfigurable D–H parameters

as given in tables 3.2 and 3.1. The parameter linearized matrix Y pq, 9q, :qq and the

unknown parameter vector ϕ are calculated and shown in Appendix D. The matrix

and vector are reformulated as follows:

rϕ “

„

rϕ1 rϕ2 rϕ3 rϕ4 rϕ5

T

, |rϕi| ď ¯̃ϕi , i “ 1, 2, 3, 4, 5

where ¯̃ϕi is the upper bound limit of the error parameter ϕ̃i.

Y pq, 9q, :qq “ rYijs, |Yij| ď Ȳij, i “ 1, 2, j “ 1, 2, 3, 4, 5 (213)

where Yij is a matrix element with dimension iˆ j, then:

ki “
5
ÿ

j“1

Ȳij ¯̃ϕj , i “ 1, 2 (214)

The parameters given in Equations (213) and (214) are substituted in Lyapunov

derivative Equation (210) to proof that Lyapunov derivative is negative:

9V ptq “

2
ÿ

i“1

5
ÿ

j“1

siYijϕ̃j ´
2
ÿ

i“1

siki sgnpsiq ´
2
ÿ

i“1

s2
i

“

2
ÿ

i“1

5
ÿ

j“1

siYijϕ̃j ´
2
ÿ

i“1

|si|Ȳij ¯̃ϕj ´
2
ÿ

i“1

s2
i
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ď ´

2
ÿ

i“1

s2
i ď 0

This proves the negative definiteness of the Lyapunov function’s derivative. The

reconfigurable robot is simulated with desired trajectories qd1 “ sinp2πtq, qd2 “

sinp2πtq and qd3 “ sinp2πtq. The tracking error parameter Λ of the sliding surface

is selected Λ “ diagp5q. Using the controller Equation (209), the bounded value

of the error parameter between the estimated and constant parameter is chosen:

r̄ϕi “ | rϕi|`0.05. For both joints, the robust element values of the switching control

(211) are chosen: ki “ 2. The sliding mode control with switching robust control

is shown in Figure 5.8. To eliminate the chattering that the controller may cause,

a saturation control with boundary layer thickness is Φi “ 0.05 is implemented.

Figure 5.9 shows that the sliding mode control that refined within the selected

boundary layers. Figures 5.10 shows the tracking position to a trigonometric

reference signal for both joints. It initially exhibits small tracking errors at the

start of motion, but then converges to follow the trajectory with zero errors. The

joint velocity response shown in Figure 5.11 has similar behavior as the position

and for the both joints. The trajectory tracking errors shown in Figure 5.12 are due

to the initial conditions and the nonlinear coupling of links and joints influencing

the joint motion.
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Figure 5.8. Motor torques of joints 1 and 2 using control law (211);
the chattering is due to the sign function.
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Figure 5.9. Motor torques of joints 1 and 2 when replacing the
function sgnpsq with satps{Φq.
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Figure 5.10. Tracking positions of joints 1 and 2 using the control
law (209.) Reference position (solid), actual position (dotted).
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Figure 5.11. Tracking velocities of joints 1 and 2 using the control
law (209.) Reference velocity (solid), actual position (dotted).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−5

0

5

10

15

20

25

e1

de
1

phase trajectory error of Joint # 1

 

 
s tracking error
s=0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−5

0

5

10

15

20

25

e2

de
2

phase trajectory error of Joint # 2

 

 
s tracking error
s=0

Figure 5.12. The phase portrait of the trajectory errors of joints
1 and 2.

5.2.6. Sliding Mode Control Based on Bounded Model

In this subsection, sliding mode control is derived based on bounded model pa-

rameter. The Lyapunov derivative function Equation (208) can be rewritten as:

9V ptq “ ´sT rτ ´ pMpqq:qr ` Cpq, 9qq 9qr `Gpqqqs (215)

9V ptq “ ´sT rτ ´ Y pq, 9q, :qqϕs (216)
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τ “ k̄i satpsiq ` si “

»

—

—

—

—

—

–

k̄1 satpsiq ` si

. . .

k̄i satpsiq ` si

fi

ffi

ffi

ffi

ffi

ffi

fl

(217)

The 3-DOF reconfigurable robot is simulated with the following bounded k̄i:

k̄i “
5
ÿ

j“1

Ȳijϕ̄ij , i “ 1, 2 (218)

Using the Equations (217) and (218), Lyapunov derivative function becomes:

9V ptq “ ´

«

2
ÿ

i“1

sik̄i sgnpsiq `
2
ÿ

i“1

s2
i ´

2
ÿ

i“1

5
ÿ

j“1

siYijϕj

ff

“ ´

«

2
ÿ

i“1

5
ÿ

j“1

|si|Ȳijϕ̄j `
2
ÿ

i“1

s2
i ´

2
ÿ

i“1

5
ÿ

j“1

siYijϕj

ff

ď ´

2
ÿ

i“1

s2
i ď 0

This proves the negative definiteness of the Lyapunov function’s derivative. The

resulting simulations, which have similar behavior as the estimated control results.
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Figure 5.13. Motor torques of joints 1 and 2 using control law
(217); the chattering is due to the sign function.



5.2. TRAJECTORY CONTROL 122

0 0.5 1 1.5 2 2.5 3
−1000

−500

0

500

1000

time(s)

C
on

tr
ol

 J
oi

nt
 #

 1
 (

N
.m

)

0 0.5 1 1.5 2 2.5 3
−500

0

500

1000

1500

2000

2500

time(s)

C
on

tr
ol

 o
f J

oi
nt

 #
 2

 (
N

.m
)

Figure 5.14. Motor torques of joints 1 and 2 when replacing the
function sgnpsq with satps{Φq.
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Figure 5.15. Tracking positions of joints 1 and 2 using control law
(209). Reference position (solid), actual positions (dotted).
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Figure 5.16. Tracking velocities of joints 1 and 2 using control law
(209). Reference velocities (solid), actual positions (dotted).
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Figure 5.17. The phase portrait of the trajectory errors of joints
1 and 2.

5.2.7. Sliding Mode Control Based on Computed Torque Method

In this subsection, sliding mode controllers are derived based on the computed

torque method. This control can be designed for the general equation of motion

(71), as follows:

xMpqqν ` pCpq, 9qq 9q ` pGpqqq “ τ (219)

where ν is the auxiliary control input, and xMpqq, pCpq, 9qq, pGpqq are the respec-

tive estimations of Mpqq, Cpq, 9qq and Gpqq by using inertial parameter pϕ of the

manipulator, where rϕ “ ϕ ´ pϕ. Substituting Equation (219) into Equation (26)
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results:

Mpqq:q ` Cpq, 9qq 9q `Gpqqq “ xMpqqν ` pCpq, 9qq 9q ` pGpqq

xMpqq:q “ xMpqqν ´ rĂMpqq:q ` rCpq, 9qq 9q ` rGpqqs

xMpqq:q “ xMpqqν ´ Y pq, 9q, :qqrϕ (220)

If the vector parameter estimation pϕ makes xMpqq invertible, then the above equa-

tion can be rewritten as:

:q “ ν ´ pxMpqqq´1Y pq, 9q, :qqrϕ “ ν ´ rr (221)

The sliding variable is selected as:

s “ 9e` Λe (222)

where e “ qd ´ q, 9e “ 9qd ´ 9q, for for a set of sliding surfaces s “ rs1s2 . . . sns
T

and Λ is a positive diagonal matrix. The derivation of the sliding surface results:

9s “ :e` Λ 9e “ p:qd ´ :qq ` Λ 9e “ :qd ´ ν ` rr ` Λ 9e (223)

Then, the control structure is proposed as follows:

ν “ :qd ` Λ 9e` r (224)

where r “ prr ` ηq sgnpsq, }rr} ď rr, η ą 0

This yields:

9s “ rr ´ r (225)

The Lyapunov function is selected as:

V “
1

2
sT s

The derivative of the Lyapunov function is given as follows:

9V “ sT 9s “ sT prr ´ rq

“ sTrr ´ rrsT sgnpsq ´ ηsT sgnpsq

ď ´η}s} ď 0
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The simulation results show, the more precise the estimation of pϕ is, the smaller

upper bounded limit of the parameter error and then smaller chattering behavior.

The tracking position of the first two joints to trigonometric reference signals

using the controllers (219) and (224) are shown in Figure 5.18. Using saturation

function instead of sign function, the control of the first two joints are shown in

Figure 5.19. The trajectory tracking error Figure 5.20 shows that the robot end

effector perfectly tracks the desired trajectory and the origin equilibrium point is

asymptotically stable.
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Figure 5.18. Tracking positions of joints 1 and 2 using the control
law (219). Reference position (solid), actual positions (dotted).
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Figure 5.19. Motor torques of joints 1 and 2 using the control law
(224), replacing the function sgnpsq with satps{Φq.
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Figure 5.20. Trajectory errors of joints 1 and 2.

5.2.8. Adaptive Control.

Adaptive control is an approach to control systems, which have constant or slowly-

varying uncertain parameters [76]. The basic theory in adaptive control is to esti-

mate the uncertain system parameters on-line based on measured system signals,

and exploit the estimated parameters in the control input computation. Thus, an

adaptive control can be regarded as a control with on-line parameters estimations

which maintain consistent performance of a system in the presence of uncertainty

or unknown variation in system parameters. The resulting dynamic parameters

of a reconfigurable manipulator are uncertain and time varying due to the con-

figuration change and joint pose dependency. This leads to consider the adaptive

control approach as a way of automatically adjusting the controller parameters in

the face of changing robot dynamic parameters. An adaptive control system is de-

picted schematically in Figure 5.21. It is composed of three parts: a reconfigurable

robot with unknown parameters, a feedback control law containing adjustable pa-

rameters, and an adaptation mechanism for updating the adjustable parameters.

The operation of the adaptive controller is as follows: at each time instant, the

estimator sends to the controller a set of estimated system parameters pϕ, which

was calculated based on the system input τ and output q, 9q. The controller finds

its corresponding parameters and then computes a control input τ based on the

controller parameters and measured signals. The control input τ causes a new
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Figure 5.21. Control structure diagram of the adaptive control.

system output to be generated and whole cycle of parameter estimation and input

updates is repeated.

5.2.9. Derivation of Adaptive Sliding Mode Control

An adaptive controller is derived and developed for a 3-DOF reconfigurable ro-

bot described in tables 3.2 and 3.1. The trajectory control problem is solved by

developing a robust controller for the actuator joints, and an estimation law for

the unknown parameters, such that the manipulator output qptq closely tracks the

desired trajectory qdptq. The tracking error is defined as in Equation (196). Define

the reference velocity [76]:

9qr “ 9qd ` Λpqd ´ qq (226)

Where Λ is a positive diagonal matrix:

Λ “ diag pλ1, λ2, ¨ ¨ ¨ , λnq, λi ą 0

The sliding variable is defined as:

s “ 9e` Λe
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The energy conservation of the system Equation (71) can be formalized by the

Lyapunov function as follows:

V ptq “
1

2
sTMs`

1

2
rϕTΓrϕ (227)

Where the estimation error is: rϕ “ pϕ´ ϕ, and

Γ “ diagpγ1, γ2, ¨ ¨ ¨ , γnq, γi ą 0

The Lyapunov function derivative is:

9V ptq “ sTM 9s`
1

2
sT 9Ms` rϕTΓrϕ

9V ptq “ sT pM :q ´M :qrq `
1

2
sT 9Ms` rϕTΓrϕ

9V ptq “ sT pτ ´ C 9q ´G´M :qrq `
1

2
sT 9Ms` rϕTΓrϕ

9V ptq “ sT pτ ´ Cps` 9qrq ´G´M :qrq `
1

2
sT 9Ms` rϕTΓrϕ

The proposed controller is selected to be:

τ “ pτ ´KDs “ xMpqq:qr ` pCpq, 9qq 9qr ` pG´KDs (228)

Where the dynamics of the first part were exactly known and KD is a positive

definite gain matrix:

KD “ diag pKd1, . . . , Kdnq, Kdi ą 0

Using the proposed control Equation (228) yields:

9V ptq “ sT
´

xMpqq:qr ` pCpq, 9qq 9qr ` pG´KDs´ Cps` 9qrq ´G´M :qr

¯

`
1

2
sT 9Ms`rϕTΓrϕ

9V ptq “ sT
´

M̃pqq:qr ` rCpq, 9qq 9qr ` rG´KDs´ Cs
¯

`
1

2
sT 9As` rϕTΓrϕ

The manipulator equation of motion are linear in the inertia parameters in the

following sense. There exists an n ˆ l regression function, Y pq, 9q, :qq and an l
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dimensional parameter vector rϕ such that the equation of motion (71) can be

written as:

M̃pqq:qr ` rCpq, 9qq 9qr ` rG “ Y pq, 9q, :qqrϕ (229)

Therefore,

9V ptq “ sT pY rϕ´KDs´ Csq `
1

2
sT 9Ms` rϕTΓ 9

rϕ

9V ptq “ sT pY rϕ´KDs´ Csq `
1

2
sT p 9M ´ 2Cqs` rϕTΓ 9

rϕ

9V ptq “ sT pY rϕ´KDsq ` rϕTΓ 9
rϕ

9V ptq “ rϕTY T s´ sTKDs` rϕTΓ 9
rϕ

9V ptq “ rϕT pY T s` Γ 9
rϕq ´ sTKDs

Then, the parameter of the adaptive law is designed as follows:

9
pϕ “ ´Γ´1Y T s (230)

Therefore,

9V “ ´Γ´1KDs ď 0

This results that the tracking error goes to zero: rq Ñ 0 as tÑ 8

5.2.10. Simulation Results of 3-DOF Reconfigurable Robot

The tracking position of the first joint to a trigonometric reference signal has been

shown in Figure 5.22 (above), the trajectory tracking error (central) and the control

torque required to drive the joint (below). The tracking position of the second joint

shown in Figure 5.23 has similar features as the first joint. The convergence of

trajectories tracking has been assured by the adaptive rule Equation (230). The

estimation values of the inertia parameters pϕ1, ϕ2, ϕ3, ϕ4q are normalized and

showed in figures 5.24 and 5.25, respectively. The parameter estimation error

remains bounded rather than going to zero. The reason for this type of bounded

parameter error is that the error system given by Equation (229) is constantly

being excited by the input dynamics on the right-side of Equation (229).
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Figure 5.22. Tracking position of the joint 1 to a trigonometric
function (above), reference position (solid) and actual position (dot-
ted). The tracking error (central), and the control torque (below).
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Figure 5.23. Tracking position of the joint 2 to a trigonometric
function (above), reference position (solid) and actual positions (dot-
ted). The tracking error (central), and the control torque (below).
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Figure 5.24. The normalized values of the inertia parameters ϕ1

(above) and ϕ2 (below).
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Figure 5.25. The normalized values of the inertia parameters ϕ3

(above) and ϕ4 (below).



CHAPTER 6

Kinematic and Control Selection Algorithm

To realize a reconfigurable robot, an algorithm has been developed that com-

bines the selection of an applicable kinematic structural robot configuration with

control design methods to optimize robot capability and performance. Assuming

a spherical wrist attached to the end effector, the kinematic structures of common

industrial robots are determined by the first three links and joints, which also

define the external and internal workspace boundaries. A spherical wrist; which

satisfies Piper’s condition [45] when a4 “ 0, a5 “ 0 and d5 “ 0; only serves to

orient the end effector within the workspace. The resulting reconfigurable robot

includes eight kinematic structures: Cartesian TTT, Cylindrical RTT, TTR, TRT,

Articulated RRR, Spherical/Scara RRT, TRR, and RTR.

In this chapter, an algorithm with configuration and control phases is developed

to select an optimal kinematic configuration structure with the most applicable

control approach to perform a specified trajectory with high tracking performance.

6.1. Configuration Phase

The configuration algorithm shown in Figure 6.1 starts by defining the geo-

metric task in terms of its shape, dimensions, etc. To build the entire trajectory

sequentially, the task is divided into segments according to trajectory shape (lin-

ear/curvature). To perform the first segment, the algorithm begins with the TTT

kinematic structure. The kinematic model for this structure can be automatically

generated using the generic kinematic algorithm developed in Chapter 2. The

workspace of the kinematic structure is calculated from the Cartesian coordinates

of the position vector partitioned from the homogeneous matrix transformation.

Then, the workspace singularity of the configuration is evaluated by calculating the

determinant of the Jacobian. The reachability property of the segment within the

workspace is tested by calculating the inverse kinematics of the structure. In case

132
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Figure 6.1. Configuration phase.

of a singular configuration, the algorithm will select the next kinematic structure

and repeat the same tests. The structural kinematic selection continues until it

arrives at a structure that satisfies the Jacobian and inverse kinematic conditions

without singularity.

6.1.1. Internal D–H Parameters Optimization

For a selected configuration, the values of the three variable D–H parameters; link

offset, link twist angle and the joint angle are used in internal loops to test the in-

verse kinematics and singularity conditions. The first internal loop starts with the

minimum value of the link offset parameter. The kinematic model is generated ac-

cording to the selected new link offset value. Then,the resulting kinematic model

is tested for the inverse kinematics and singularity conditions. If the test fails,

then the loop continues to choose the next offset value and repeat the same two

condition tests. The internal loop continues till reaching the maximum link offset

limit value. In case the two conditions are not satisfied, the algorithm will switch

to the next loop, the link twist angle range values. The process of calculating the

kinematic model and testing the two conditions will continue until reaching the

maximum limit value of the link twist angle. If the two conditions are not satisfied,
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the loop will switch to the joint angle internal loop, and the same process will be

repeated as the previous loops till reaching the maximum joint angle value. If

the inverse kinematics and Jacobian singularity are not satisfied using the three

internal loops, then the algorithm will select the next kinematic structure and the

entire process will be repeated again. The structural kinematic selection continues

until it arrives at a structure that satisfies the inverse kinematic and Jacobian

without singularity. A manipulability index (explained in details in Chapter 2)

can be used here to determine the optimal configuration and its singularity. If

the algorithm has called all the eight kinematic structures and the conditions are

not satisfied, then the geometric task is out of the robot design and the kinematic

specifications should be changed to adapt to the required geometry task. The

algorithm calculate the dynamics whenever the two conditions are satisfied gener-

ating the required equations of motion automatically. If the configuration is TTT,

then linear equations of motion would have to generate for control purposes. If

the resulting configuration is RRR, then the generated equations of motion are

nonlinear due to the dynamic coupling of revolute joints. In case the kinematic

structure has revolute-translational joints, such as the Scara kinematic structure,

the equations of motion can be decoupled into linear and nonlinear subsets.

6.2. Control Phase

Having generated the dynamic equations for a specific kinematic configuration,

a reconfigurable control methodology shown in Figure 6.2 is developed to select a

control approach depending on the parameters type. This control methodology is

constructed to find an appropriate control approach that minimizes conservatism

and maximizes obtained performance specifications. Selecting a control approach

is not easy to perform as different methods are formulated in different time and

frequency domains. It is difficult, if not impossible, to reformulate the reconfig-

urability problem in one domain without losing design insights and introducing

conservatism.
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Figure 6.2. Control phase.

In this phase, the most applicable control approach is selected to achieve high

tracking performance for the optimal kinematic structure. The general time and

frequency performance requirements are given as follows:

Time Domain Performance Requirements

‚ Steady state error (ess).

‚ Speed of response (Time constant).
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‚ Rise time and settling time.

‚ Relative stability.

Frequency Domain Performance Requirements

‚ At low frequency bandwidth: disturbance rejection and reference tracking

of low frequency commands can be achieved by shaping the sensitivity

function given in Equation (78).

‚ At high frequency bandwidth: trajectory tracking and noise attenuation

can be achieved by shaping the complementary function T “ I ´ S.

6.2.1. Dynamic Parameter Properties

The dynamic equations of motion of a reconfigurable robot are fully characterize

by the type of its parameters. In case of translational motion, these equations

are linear with constant mass, gravity and Coriolis parameters. For rotational

motion, the inertia, gravity and Coriolis parameters are variable and nonlinear

due to inertial coupling, kinematic coupling, gravity load, friction term saturation,

and transcendental functions. The properties of the dynamic parameters of a

reconfigurable robot are presented in Table 6.1.

Table 6.1. Dynamic parameter properties of a reconfigurable robot

Parameter
Configuration

dependent
Nonlinear

Bounded
value

Structured
uncertainty

Inertia ˆ ˆ ˆ ˆ

Coriolis
Centrifugal

ˆ ˆ ˆ

Gravity ˆ ˆ ˆ

Viscous
friction

ˆ ˆ

The inertial, Coriolis and gravity parameters are nonlinear and their values are

configuration dependent as calculated and showed in Figures 3.8 and 3.10.

6.2.2. The Reconfigurable Control Algorithm

In general, the reconfigurable control algorithm is classified into linear, nonlinear

and robust control methods. This classification depends on the parameter proper-

ties of the equations of motion. The algorithm shown in Figure 6.2 starts when the
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equations of motion are linear (TTT configuration), a linear control, such as PD

or PID, is selected to track a reference trajectory achieving the required perfor-

mance. For an Elbow manipulator (RRR configuration) and partially decoupled

dynamics (TTR, TRT, RTT, RRT, TRR, RTR), the physical dynamic parameters

are variable, uncertain and nonlinear. The types of these dynamic parameters can

be specified as follows:

‚ Immeasurable parameters (nonlinearity feature).

‚ Measurable parameters (configuration dependent) parameters.

‚ Known parameters (exact parameter knowledge).

‚ Unknown parameters (constant mass change in case of pick and place).

‚ Unknown and time varying parameters (variable mass change.

When the uncertain dynamic parameters are not measurable, the algorithm selects

the robust control approaches. With this approach, the nonlinear property of the

dynamic parameters is modeled as parametric uncertainties for a linearized model.

By applying a µ controller, the resulting performance can be improved in case of

structured parametric and dynamic uncertainties. With robust control methods

such as H8 and µ controllers, the immeasurable parameters are can be modeled

as uncertainties into the following types:

‚ Dynamic uncertainty (structural modes).

‚ Parametric uncertainty (parameter variations).

‚ Time invariant (constant) uncertainty.

‚ Time varying uncertainty.

In case of parameter dependent configuration (on-line measurable parameters), a

robust Linear Varying Parameter (LPV) controller is selected to obtained the spec-

ified performance requirements. In this approach, the measured and time varying

parameters such the inertial and viscous friction are fed back to the controller to

obtain high tracking performance specifications. If the dynamic parameters are

exactly know, a feedback controller can be applied as an inner loop with linear PD

or PID controllers in the outer loop control. Sliding mode control can be applied in

case of unknown parameters which have the a robust component (sign/saturation

function) in the outer loop control. In case the equations of motion are nonlinear,

then a control approach is selected as follows:
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‚ If the robot has variable and immeasurable parameters: the nonlinear

equations of motion have to be linearized and the variations would be

modeled as bounded uncertainties within known limits. An LFT (Lin-

ear Fractional Transformation) control problem is composed and an H8-

optimal control is designed to ensure the maximum norm of a stacked

performance cost function is less than one. The resulting control con-

trol design is conservative in allowing less sizable uncertainties to ensure

Nyquist stability of the system. Therefore, for structured uncertainties, µ-

optimal controllers can be designed, which allows more sizable parameter

variations and improves the robust performance.

‚ Variable and measurable parameters: if the parameters are measurable,

then for a linearized system, a linear parameter varying (LPV) control can

be designed, which results in high tracking performance in the presence

of disturbances. Gain scheduling or linear parameter varying (LPV) tech-

niques are used for controlling LPV systems. An LPV controller consists

of designing a linear time invariant LTI controller that is adapting itself

when the operating conditions change. In this control method, the sys-

tem is assumed to depend affinely on a measured vector of time varying

parameters. Assuming on-line measurements of these parameters, they

can be fed to the controller to optimize the performance and robustness

of the closed loop system.

‚ Known parameters of the nonlinear equations of motion: a feedback lin-

earization can be designed to cancel the known parameters of the robot.

This control inversion model step is regarded as an inner loop control to

decouple the system dynamics and renders double integrators. Then, PD

controllers can be designed in the outer loop control to drive the error

system to zero exponentially.

‚ Unknown and uncertain parameters: a sliding mode control (SMC) (feed-

back linearization control plus robust component) can be designed to

achieve stability and high tracking performance in the presence of para-

metric and unmodeled dynamic uncertainties. The most significant fea-

ture of the sliding mode control is the complete insensitivity to parametric
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uncertainty and external disturbances during the sliding mode. The SMC

uses a high speed switching control law to achieve two objectives. Firstly,

it drives the nonlinear system’s state trajectory along a specified and user

chosen surface in the state space, which is called the sliding or switch-

ing surface. This surface is named the switching surface because a control

path has one gain if the state trajectory of the system is above the surface

and a different gain if the trajectory drops below the surface. Secondly, it

maintains the system’s state trajectory on this surface for all subsequent

times.

‚ Constant or slowly time varying parameters: an adaptive control with

adaptation rule can be designed to achieve stability and satisfy the track-

ing performance requirements. Adaptive control is an approach to con-

trol systems that have constant or slowly-varying uncertain parameters.

The basic theory in adaptive control is to estimate the uncertain system

parameters on-line based on measured system signals, and exploit the es-

timated parameters in the control input computation. Thus, an adaptive

control can be regarded as a control with on-line parameters estimations

which maintain consistence performance of a system in the presence of

uncertainty or unknown variation in system parameters. This leads one

to consider the adaptive control approach as a way of automatically ad-

justing the controller parameters in the face of changing robot dynamic

parameters.

The algorithm shown in Figure 6.2 performs the selection (as per the criteria

above) of the applicable kinematic configuration and control method for each seg-

ment sequentially, returning to the path planning node after completion of each

segment to start the process for the next one. Thus, the reconfigurable control

scheme shown solves the control design problem from a pragmatic perspective,

rather than seeking an exact treatment of the performance problem.
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Figure 6.3. A comprehensive algorithm for configuration and con-
trol of a reconfigurable robot
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6.3. Algorithm Implementation (Simulations and Results)

Based on the singularity conditions of the inverse kinematic and Jacobian of

the given trajectory segments, two reconfigurable robots with certain kinematic

structures are selected. For a specified segment, the singularity conditions are

verified for each kinematic structure starting with the TTT, TTR, TRT, RTT,

RRT,TRR, RTR, and RRR configurations. The kinematic structure with the

smallest condition number of the Jacobian matrix is chosen. Two reconfigurable

robots with specified kinematic structures are simulated and viewed to follow two

different trajectories. Position and trajectory control methods are employed to

achieve the specified performance specifications.

6.3.1. Trajectory of Two Circles in Joint Space Motion

Two sheet cylinders are manufactured with radius 0.10 m and centered at (-0.25,

0.25, -0.5) and (-0.25, 0.25, 0) meters, as shown in Figure 6.4. The Jacobian sin-

gularity condition of the eight kinematic structures is determined for each of the

following poses: The center point (-0.25,0.25,-0.5) of the lower cylinder and for the

other vertices (-0.35,0.25,-0.5), (-0.25,0.15,-0.5), (-0.15,0.25,-0.5), and (-0.25,0.35,-

0.5). The RRR kinematic structure has the smallest value of the Jacobian con-

dition number, which indicates that the cylinders are reachable within the RRR

workspace and without singularity compared to the other configurations. The D–

H parameters of the RRR reconfigurable manipulator are given in Table 3.13. The

motion of the end effector starts at the lower circle executes a circular motion in

the xy planes of radius 0.20 m around the manufactured cylinder. Then it follows

a line in vertical motion to execute the upper circle. The joint coordinates of the

lower circle are depicted in Figure 6.5 which show a change in the fourth joint

angle from π to ´π. This change occurs in a very short number of samples which

indicates the flip of the end effector. The Cartesian motion of the end effector is

shown in Figure 6.6 and it is clear that the motion was executed in the xy-plane.

Euler angles of the end effector shown in Figure 6.7 indicate a change of the roll

angle from ´π{2 to π{2 and a high frequency oscillation of the yaw angle to main-

tain a circular motion in the xy-plane. The manipulability index is calculated for

the circular motion and shown in Figure 6.8. The index value approaches zero
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when the fourth joint angle of the end effector flips its direction with almost 180

degrees to execute the required circle path.

Figure 6.4. A reconfigurable robot follows a trajectory motion
(lower and upper circles)
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Figure 6.5. The joint coordinates of a reconfigurable robot during
the joint space path.
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Figure 6.6. Cartesian position (x,y,z) of the end effector during
the joint space trajectory.
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Figure 6.7. The Euler angles (roll, pitch, yaw) of the end effector.
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Figure 6.8. Manipulability of the reconfigurable robot following a
joint space trajectory.

6.3.2. Straight Line Trajectory in Joint Space

Given the start (0.4064, 0.5, 0.3303) and final (0.8032, 0.5, 0.3302) poses of a

straight line trajectory, the condition number of the Jacobian matrix is deter-

mined for each of the eight configurations. The RRT kinematic structure has the
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smallest value of the Jacobian condition number compared to the other configu-

rations. Therefore, a reconfigurable manipulator with RRT kinematic structure is

selected and its workspace with three envelopes is generated and shown in Figure

6.9. The first envelope is generated when the joints of the robot are set up in a

revolute structure. The second and third envelope are created when the reconfig-

urable joint moves translational to the next envelope. It is considered that the end

effector is moving from pose (0.4064, 0.5, 0.3303) with end effector orientation of

180 degrees to the pose (0.8032, 0.5, 0.3302) with changing orientation to 90 de-

grees. This motion lies in the xy-plane with the end effector orientated downward.

The required trajectory lies within the workspace envelope of the reconfigurable

manipulator by calculating the Jacobian singularity at the start and end trajecto-

ries. Using the geometric inverse kinematics, the reachability condition of the final

pose is validated and satisfied. The initial and final joint coordinates associated

with the two poses are shown in Figure 6.10. The joint coordinates trajectories are

moving smoothly in the joint space motion between the two poses as shown in Fig-

ure 6.11. The Cartesian motion of the end effector is shown in Figure 6.12 where

the x-coordinate shows a smooth transition along x-coordinate from the location

0.4064 to 0.8032. The figure also shows a slight deviation in the y-axis due to the

joint space motion of the manipulator. The Cartesian locus of the end effector in

the xy-plane shown in Figure 6.13 indicates that the trajectory is not a straight

line. This is expected since only the Cartesian coordinates of the end poses were

specified. As the robot rotates about its waist joint during the motion, the end

effector will follow a circular arc. The orientation of end effector in roll-pitch-yaw

angles form are plotted in Figure 6.14 against time. The roll angle varies from π

to π{2 as specified in the initial and final poses.
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Figure 6.9. Front view of the workspace in the xz-plane of a re-
configurable robot.

Figure 6.10. End effector motion from pose (0.4064, 0.5,0.3303)
to (0.8032, 0.5,0.3303).
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Figure 6.11. Joint coordinates motion versus time.
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Figure 6.12. Cartesian position of the end effector versus time.
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Figure 6.14. Euler angles, roll-pitch-yaw of the end effector versus
time.

6.3.3. Position (Linear) and Trajectory (Nonlinear) Control Method

Selection
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Position and trajectory control methods are selected based on the dynamic pa-

rameter type as follows:

‚ measured or unmeasured parameters leads to position control methods.

‚ known or unknown parameters leads to trajectory control methods.

‚ constant or time varying parameters leads to adaptive control method.

Position control involves linear control methods such as robust H8, µ and

Linear Varying Parameter (LPV) controls. Robust control methods model the

nonlinear property of the parameters as parametric uncertainties for a linearized

plant. A manipulator with RRR configuration, initially at rest (q1 “ 0, q2 “ 0, q3 “

0), is commanded to a step signal. The inverse weighting function shown in Figure

6.15 is designed with large gain at low frequencies to reject disturbance and follow

reference commands, which represents the required performance objectives. The

nonlinear property of the inertia, Coriolis and viscous friction are modeled as

parametric uncertainties. Using LFT control configuration, a linearized model

with uncertainties is set up for robust control design. The resulting step and

disturbance responses are shown in Figure 6.16 and 6.17, respectively. The step

response shows an overshoot of 1.73 after 1.8 sec and a settling time of 6.85 sec.

The time domain performance specifications can be improved by using µ control

for structured uncertainties.
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Figure 6.17. Disturbance response using H8-control.

Selecting the LPV control method, the inertia and viscous friction are con-

sidered to be configuration dependent parameters and measured on-line. The

performance weighting function shown in Figure 6.18 is designed to have high gain

at low frequencies to satisfy the performance requirements in disturbance rejection

and tracking reference command. The resulting step response for 20 frozen pa-

rameters shown in Figure 6.19 indicates the high speed of response, 1% overshoot

and 1.56 sec settling time. The control amplitude (joint torque) shown in Figure

6.20 implies the torque needed is mostly high at the start time to move the first

joint from its initial to final position. The steady state error keeps low value after

for the simulated frozen parameters as shown in Figure 6.21.
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Figure 6.19. Step response of 20 frozen parameters using gain-
scheduled controller.
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Figure 6.20. Gain-scheduled control amplitude.
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The algorithm leads to the SMC control method when the dynamic parameters

are unknown. The feedback linearization control (inner loop control) cancels the

nominal values of the parameters where the variation is compensated by a robust

control component at the outer loop. The trajectory tracking of the first joint of

the RRR configuration manipulator is shown in Figure 6.22. The tracking error
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shown in Figure 6.23 points out that the tracking error goes to zero, achieving

the performance requirements. In the case of time varying parameters (varying

payload mass) the algorithm leads to employ the adaptive control method. The

trajectory tracking of the first joint is shown in Figure 6.24. The tracking error

shown in Figure 6.25 goes to the origin satisfying the performance requirements

in disturbance rejection and following the reference command.
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Figure 6.22. Trajectory tracking for a trigonometric reference
command using SMC method.
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Figure 6.24. Trajectory tracking for a trigonometric function us-
ing the adaptive control method



6.4. COMPARISON BETWEEN LINEAR AND NONLINEAR CONTROL APPROACHES 156

0 0.5 1 1.5 2 2.5 3
−0.15

−0.1

−0.05

0

0.05

0.1

time (s)

A
m

pl
itu

de
 (

m
)

Tracking error of Joint # 1

Figure 6.25. Tracking error for time varying dynamic parameters
using adaptive control method

6.4. Comparison between Linear and Nonlinear Control Approaches

Based on the dynamic parameter type, two main control approaches (linear ro-

bust and nonlinear controllers) have been employed to achieve the required tracking

performance for the most applicable kinematic configuration. The properties of

the two control methods are viewed and compared as follows:

‚ A robust control is capable of accounting for unmodeled dynamics, param-

eter variations, disturbance rejection, and command tracking. It is conser-

vative against nonlinearities or large parameter variations. The adaptive

control approach, such as parametric adaptive control, represents a design

methodology which enhances system design response, especially against

unpredicted variations.

‚ Gain scheduling controllers can be applied for systems with a high rate of

parameter variation. The application of gain scheduling controllers in case

of a system with highly varying dynamics is assumed to be beneficial in

terms of the closed loop performance. The application of gain scheduling

instead of robust control should be considered when the parameter is

measurable.
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‚ The major drawback of classical gain scheduling involves the lack of guar-

anteed global robustness, performance and stability. Only in the case of

slowly varying parameters can these designs guarantee stability.

‚ Adaptive control is superior to robust control in dealing with uncertainties

in constant or slowly-varying parameters. The basic reason lies in the

learning behavior of adaptive control systems. An adaptive controller

improves its performance as adaptation goes on, while a robust controller

simply attempts to keep consistent performance. Another reason is that

an adaptive controller requires little or no a priori information about the

unknown parameters, while a robust controller usually requires a priori

estimates of the parameter bounds.

‚ Conversely, robust control has some desirable features that adaptive con-

trol does not have, such as its ability to deal with disturbances, quickly

varying parameters, and unmodeled dynamics.

‚ Adaptive control for nonlinear systems requires linear parametrization of

the system dynamics. Full parametrization and thus adaptive control

cannot be achieved in case of parametric uncertainty.

6.5. Summary

In this chapter, a methodology is developed to combine the design of a recon-

figurable robot with control design methods as shown in Figure 6.3. The purpose

of this combination is to extend the capability and properties of a reconfigurable

robot to perform any required task. In comparison to predefined fixed kinematic

structure robots, the D–H design parameters are modeled to be variable, which

are the main constraints to improve any robot abilities. Using a reconfigurable

robot will go beyond the control design constraints in performance improvement

by changing the kinematic structure of the robot instantaneously as needed when

it is needed. The methodology has been divided into the configuration phase and

control phase.

In the configuration phase, a task defined by its shape and dimensions is par-

titioned into trajectory segments. To perform a segment, the algorithm selects

a kinematic structure and test it for the reachability and Jacobian singularities.
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In case of these two conditions are not satisfied, the algorithm run three inter-

nal loops. These loops can change the parameters; link offset, link twist angle

and joint angle; within their range limits. Kinematic models were calculated for

each parameter value and tested against the two mentioned singularity conditions.

Then, equations of motion are generated automatically to represent the selected

configuration.

In the control phase, a specific control design method is selected based on the

parameter types. H8{µ controllers are selected for immeasurable parameters with

linearized system. A Linear Parameter Varying (LPV) parameter is selected when

the parameters are measured and can be fed back to the controller. A Computed

Torque Control (CTC) is designed for known parameter that canceled by the

control parameters. These parameter cancellation by the feedback linearization

control represents the inner loop control. At the outer loop, PD or PID linear

controllers can be designed to achieve high tracking performance. A Variable

Structure Control (VSC) is designed for systems with unknown and uncertain

parameters. The structure of this control includes a feedback linearization control

and a robust element to drive the system state towards the sliding surface achieving

the global stability. An adaptive control can be applied to systems with constant

or slowly varying parameters to obtain high tracking performance.



CHAPTER 7

Conclusions and Recommendations

7.1. Conclusions

A reconfigurable robot has been investigated with features such as variable link

twist angles, length links and (translational/rotational) joint types. The kinematic

design parameters, i.e., the D–H parameters, were modeled to be variable and

can generate any required kinematic structure to facilitate a specific application.

The joint angle and the offset distance of the D–H parameters were also modeled

as variable parameters (reconfigurable joint). The resulting reconfigurable robot

hence encompasses different kinematic structures and has a reconfigurable joint to

accommodate any required application in medical technology, space exploration

and future manufacturing systems, among others. The reconfigurability problem

was proven to be feasible and solved using model based control strategies.

First, a global kinematic model has been developed to automatically generate

any kinematic configuration of three links and joints robot manipulator. In the

next step, the recursive Euler-Newton algorithm was extended to automatically

generate each element of the inertia matrix, Coriolis torque matrix, centrifugal

torque matrix, and the gravity torque vector. Then, the following advanced model

based control strategies were employed as follows:

‚ PD-Gravity control.

The practical significance of this control law lies in the fact that it requires

no detailed knowledge of the manipulator parameters: inertia tensor ma-

trix Mpqq, the Coriolis and centrifugal coupling matrix Cpq, 9qq, or the

friction vector F p 9qq. It does require knowledge of the gravity loading vec-

tor Gpqq, but this is relatively easy to determine in comparison to other

elements of the dynamic equations of motion. Using Lyapunov’s second

method, a nonlinear control with gravity compensation was proved to

satisfy the closed loop stability and performance requirements.

159
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‚ H8{µ optimal controllers.

With a reconfigurable robot, the dynamic parameters (the inertia, Corio-

lis, centrifugal and gravity) components were uncertain due to their depen-

dency on the robot configuration. The parameter variations were modeled

as bounded parametric uncertainties and an H8-optimal control was de-

signed to achieve the performance specifications in the presence of these

uncertainties. The resulting closed loop system was analyzed using the

singular structured value (µ) approach.

‚ Sliding mode controller (SMC) controller.

Sliding mode controllers were designed for a 3-DOF reconfigurable robot.

The developed SMC controllers were based on estimated, bounded models

and on the computed torque method. The resulting closed loop system

was completely insensitive to the parametric uncertainties and external

disturbances during sliding mode.

‚ Adaptive control.

The nonlinear dynamic equations of a 3-DOF reconfigurable robot were

linearized using the regressor function property in which the dynamics are

separated into a known matrix of time functions and an unknown constant

parameter vector. This separation of the robot dynamics was used in the

formulation of an adaptive update rule and also in the stability analysis

of the tracking error system.

‚ Gain scheduled or linear parameter varying (LPV) controller.

In this control approach, the link inertia and joint viscous parameters were

considered to be time varying and on-line measured parameters. Here the

state-space matrices of the feedback linearized system are assumed to de-

pend affinely on the two time varying parameters. These parameters are

fed to the controller to optimize the performance and robustness require-

ments of the closed loop system. The resulting closed loop system was

shown to perfectly fulfill the performance specifications along the param-

eter trajectories. The LPV control scheme employed here suffers from

conservatism in the face of slowly varying parameters, since the employed



7.1. CONCLUSIONS 161

quadratic Lyapunov functions allow for arbitrarily fast parameter varia-

tions.

An algorithm was developed to select a relevant kinematic structural robot

configuration for any predefined geometric task. Assuming a spherical wrist at-

tached to the end effector, the kinematic structures of common industrial robots

are determined by the first three links and joints, which also define the external

and internal workspace boundaries. A spherical wrist, which satisfies Piper’s con-

dition only serves to orient the end effector within the workspace. The resulting

reconfigurable robot includes eight kinematic structures: Cartesian TTT, Cylin-

drical RTT, TTR, TRT, Articulated RRR, Spherical/Scara RRT, TRR, and RTR.

The algorithm starts by defining the path planning (linear/curvature) and test-

ing the workspace singularity and manipulability index of the selected kinematic

structure. In case of a singular configuration, the algorithm will select the next

kinematic structure and test its workspace singularity. The structural kinematic

selection continues until it arrives at a structure that satisfies the reachability con-

dition without singularity. Then, equations of motion are automatically generated

with elements that describe the involved dynamics of the selected structure. If

the equations of motion are linear, a linear control, such as PD or PID, is se-

lected to satisfy the performance requirements. In case the equations of motion

are nonlinear, then a control approach is selected based on the parameter types as

follows:

‚ Variable and immeasurable parameters: the nonlinear equations of motion

have to be linearized and the variation would be modeled as bounded un-

certainties within known limits. An LFT (Linear Fractional Transforma-

tion) control problem is composed and a H8-optimal control is designed

to satisfy the maximum norm of a stacked performance cost function.

If the resulting control design is conservative and the uncertainties can

be modeled as structured uncertainties, an µ-optimal control can be de-

signed, which allows more sizable parameter variations and improves the

robust performance.

‚ Variable and measurable parameters: if the parameters are measurable,

then for a linearized system, a linear parameter varying (LPV) control can
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be designed, which results in a high tracking performance in the presence

of disturbances.

‚ Known parameters of the nonlinear equations of motion: a feedback lin-

earization with PD control can be designed to satisfy the performance

requirements.

‚ Unknown and uncertain parameters: a sliding mode control (feedback

linearization control plus robust component) can be designed to achieve

stability and high tracking performance in the presence of parametric and

unmodeled dynamic uncertainties.

‚ Slowly time varying parameters: an adaptive control with adaptation rule

can be designed to achieve stability and satisfy the tracking performance

requirements.

The predefined trajectory of the given task can be partitioned into segments

according to their geometry (linear, circular, etc.). The algorithm performs the

selection (as per the criteria above) of the applicable kinematic configuration and

control method for each segment sequentially, returning to the path planning node

after completion of each segment to start the process for the next one.

7.2. Recommendations

This research systematically went through a full design process for a recon-

figurable robot by applying the most effective control approach for a kinematic

structure. Yet, it still leaves many points of research open for more thorough in-

vestigation, some at the abstract level of modeling and simulation, and some at

the lower level of detail in practice.

‚ Some applications require not only reaching a point in 3D space, but also

with the desired orientation at that point. Therefore, wrist singularities

should be investigated for a reconfigurable robot.

‚ Determination of the optimal reconfigurable configuration to perform a

task using the maximum manipulability index.
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‚ Integrating CAD drawing information in a manner that allows the top

level control system to specify a geometric task and would turning a re-

configurable robot into a self-reconfigurable one.

‚ Develop and design a reconfigurable joint, an electro-mechanical design

concept that can be perform dual rotational/linear motions.

‚ Dynamics, not taken into account by the model based controller and still

occurring in practice should be considered in control design strategies.

The most important part is the flexible deformations of the links and the

friction (static/dynamic) components. Including these elements would

lead to improve the tracking performance of the robot.



Appendix A: Bosch Scara Model

This Appendix includes the simulation results calculated and explained in

Chapter 3: inertia tensor matrix, Coriolis matrix, joint torques vector and payload

matrix.

The inertia matrix:

M =

2.9074 -0.4458 0.0574 -0.1294 0.0000 0.0000

-0.4458 4.1243 0.8523 -1.2755 0.0446 -0.0000

0.0574 0.8523 1.8197 -2.0192 0.0805 -0.0000

-0.1294 -1.2755 -2.0192 3.8508 -0.1768 0.0000

0.0000 0.0446 0.0805 -0.1768 0.1963 0.0000

0.0000 -0.0000 -0.0000 0.0000 0.0000 0.1941

The Coriolis matrix:

C =

0.0000 -0.9505 -0.2611 0.4278 0.0062 -0.0000

0.3601 -0.0000 -0.0355 -0.1612 0.0351 0.0000

0.1688 0.0178 0.0000 -0.1612 0.0530 0.0000

-0.2786 0.0806 0.1612 0.0000 -0.0884 0.0000

-0.0000 -0.0351 -0.1061 0.1768 0.0000 -0.0000

0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000

The joint torques vector is:

Torque =

-0.2582

0.1170

0.0392

-0.1432

0.0708
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-0.0000

The payload matrix:

Ratio =

1.0290 0.9295 9.0895 2.9280 - 805.6685 1.0000

0.9295 1.0689 1.9923 2.5822 268.7898 1.0000

9.0895 1.9923 1.6006 2.6996 138.8876 1.0000

2.9280 2.5822 2.6996 2.6727 86.8056 1.0000

-161.1389 268.7898 138.8876 86.8056 1.1454 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Derivation of General Inverse (Pseudo Inverse) of the Jacobian Matrix:

} 9q}2 “ 9qT 9q

“ pJ`vqT pJ`vq

“ rJT pJJT q´1vqsT rJT pJJT q´1vs

“ vT rpJJT q´1
qs
TJJT pJJT q´1v

“ vT rpJJT q´1
s
Tv

“ vT rpJJT qT s´1v

“ vT pJJT q´1v

where A` is an mˆ n and computed as follows:

A` “

$

’

’

’

’

’

&

’

’

’

’

’

%

AT pAAT q´1 m ď n

A´1 m “ n

pATAq´1AT m ě n



Appendix B: Bosch Scara Model

In this Appendix, the parameters of the Bosch Scara robot are given with

the state space representation of the linearized model. Table A.1 includes the

parameter values of the first two links and joints. The parameters of the first two

DC motors are given in Table A.2.

Table A.1. Nominal parameter values of the Bosch Scara robot arm

Servo/ Link 1 Value Units

Fv1 0.001 Nms/rad

FvL 90 Nms/rad

Km1 0.24 Nm/A

Rm1 1.45 Ω

Jm1 1.075 10´2 kgm2

Lm1 ď 1.5 10´3 H

N1 129´1 [1]

L1 0.445 m

Servo/ Link 2 Value Units

Fv2 0.005 Nms/rad

Km2 0.099 Nm/A

Rm2 1.87 Ω

Jm2 4.2 10´4 kgm2

Lm2 ď 1.0 10´4 H

N2 101´1 [1]

L2 0.355 m

Table A.2. Nominal parameter values of the Bosch Scara robot arm

Amplifier 1 Value Units

KP11 27.9 [1]

KI11 646.5 sec´1

τ1 8 10´5 sec´1

KP12 1.42 V/A

KI12 227 V/As

Amplifier 1 Value Units

KP21 28 [1]

KI21 413.3 sec´1

τ2 8 10´5 sec´1

KP22 2.67 V/A

KI22 280 V/As
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Table A.3. Different values for inertias and damping for different
joint position of link 2 (left). Estimated parameter values for stiction
and Coulomb friction (right).

Parameter θ2 “ 0 θ2 “
1
2
π Units

M “ JL1 10.9 7.46 kgm2

Jc 8.2 104 7.6 104 Nm/rad

Torque joint 1 joint 2

F “ FsrN ms 17.92 11

FcrN ms 14.1 9

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

9x1

9x2

9x3

9x4

9x5

9x6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0

0 ´
FV L

JL1

Ks

JL1
´DsN1

JL1
0 0

0 ´1 0 N1 0 0

0 0 ´N1Ks

Jm1
´
FV 1

Jm1

Km1

Jm1
0

0 0 0 ´Km1

Lm1

´Rm1´Kp12

Lm1
1

0 1 0 0 ´Ki12 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

x1

x2

x3

x4

x5

x6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

0

0

0

0

Ki12

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

u`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

1
JL1

0

0

0

Ki12

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

τLD

y “

„

1 0 0 0 0 0 0



»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

x1

x2

x3

x4

x5

x6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` r0sD (231)

The notations of state space parameters are given in the Nomenclature.



Appendix C: Kinematic Calculations

The linear parameter matrix for a 3-DOF kinematic structure is calculated as

follows:

Y pq, 9q, :qq “

»

—

–

:q1 cospq2qp2:q1 ` :q2q ´ sinpq2qp2 9q1 9q2 ` 9q2
2q :q2 g cospq1q g cospq1 ` q2q

0 cospq2q:q1 ` sinpq2q 9q2
1 :q1 ` :q2 0 g cospq1 ` q2q

fi

ffi

fl

(232)

And the parameter vector is given as follows:
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The linear parameter matrix for a 2-DOF kinematic structure is calculated as

follows:

Y pq, 9q, :qq “

»

—

—

—

—

—

–

:q1 cospq2qp:q1 ´ 2:q2q ´ sinpq2qp2 9q1 9q2 ´ 9q2
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0 ´2cospq2qp:q1 ` 2sinpq2q 9q2
1 :q1 ` :q2 0

0 0 0 :d3

fi
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ffi

ffi

ffi

ffi

fl

(233)

And the parameter vector is given as follows:
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