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ABSTRACT 

Plasma Electrolytic Oxidation (PEO) is a high voltage plasma-assisted oxidation process 

uses an environmentally-friendly aqueous electrolyte to oxidize the metal surfaces to 

form ceramic oxide coatings which impart a high corrosion and wear resistance. One of 

the main advantages of PEO process is that it can be applied to treat samples with 

complex shapes, and surfaces with different composition and microstructure. The PEO 

process of Mg alloys is strongly influenced by such parameters as electrolyte composition 

and concentration, current or voltage applied and substrate alloy. Generally, these 

parameters have a direct influence on the discharging behavior. The discharges play an 

essential role in the formation and resulting composition of the 3-layer oxide structure. A 

detailed knowledge of the coating mechanisms is extremely important in order to produce 

a desired coating quality to reach the best performance of the PEO coatings in terms of 

corrosion resistance and tribological properties (wear rate, COF).  During PEO 

processing of magnesium, some of the metal cations are transferred outwards from the 

substrate and react with anions to form ceramic coatings. Also, due to the high electric 

field in the discharge channels, oxygen anions transfer towards the magnesium substrate 

and react with Mg
2+

 cations to form a ceramic coating. Although, in general, PEO coating 

of Mg alloys produces the three-layered structure, the relative proportions of the three-

layers are strongly influenced by the PEO processing parameters. In PEO process, the 

ceramic coating grows inwards to the alloy substrate and outwards to the coating surface 

simultaneously. For the coating growth, there are three simultaneous processes taking 

place, namely the electrochemical, the plasma chemical reactions and thermal diffusion. 

Optical emission spectroscopy (OES) was employed for the discharge characterization by 

following the substrate and electrolyte element present in the plasma discharge during the 

coating growth, and to determine plasma electron temperatures. The coating requirements 

for good tribological properties are somewhat different than for good corrosion 

performance. However, good tribological performance combined with good corrosion 

performance can be obtained through control of the PEO processing parameters. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background to this Dissertation 

There are many who believe that magnesium is the most exciting engineering material 

due to its intrinsic characteristics, particularly its light weight, that make it an attractive 

material wherever weight saving is at a premium, including the automotive and aerospace 

sectors. The United States federal government has mandated that all automobile 

manufacturers increase their vehicle fleet miles per gallon average to 35.5 by 2016 [1]. 

This will challenge automakers to focus on a new, highly fuel-efficient design and 

strongly suggests extensive use of magnesium alloys in construction [2]. In 2011, the 

United States Council for Automotive Research (USCAR) proposed a reduction of the 

mass of the baseline vehicle by 50% by light weighting, or replacing steel with lighter 

materials Al or Mg [3]. USCAR proposed a list of candidates for substitution materials 

including: carbon fiber composites, magnesium, aluminum, titanium, metal matrix 

composites and advanced high-strength steels. By comparing the cost, the recyclability 

and weight reduction of the proposed new materials, magnesium is the most promising 

material that fulfills all of the above requirements. This has led to extensive evaluation of 

the potential use of magnesium in transportation systems, but up to now substantial 

applications have been limited, e.g. in aircraft components [4]. Currently, magnesium 

alloys are widely used for automobile components, and are mostly produced by a high 

pressure die-casting process. Components made from high pressure die-cast, (HPDC) 

magnesium alloy, such as front and support assemblies, steering wheel armatures, 

instrument panels and steering column support brackets are playing a vital role in the 

automotive industry [5]. Indeed, more and more parts, such as the crank cases, doors, 

camshaft sprocket, gearbox housing, several covers, and the arm of an electric generator, 

in automobiles have been replaced by magnesium and its alloys [6,7]. But, in fact, many 

other applications, including aerospace, electronics, textile machinery, printing machines 

[4,8] and bicycle components, can benefit from a switch to lighter materials given the 

appropriate surface characteristics. With increasing capacity and falling prices, more and 
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more design engineers are turning to magnesium as an alternative to plastics, composites, 

zinc, aluminum, or even steel.   

However the limitations of magnesium alloys are primarily their inherently poor 

corrosion and low wear resistance. Song and Atrens [9] have concluded that internal 

galvanic attack and the instability of the magnesium hydroxide film formed on the 

surface of Mg alloys are the two main causes for corrosion of magnesium alloys. There 

are generally two possible ways to improve the corrosion behaviour of Mg and Mg 

alloys; modify the composition and microstructure, not only through alloying [10] but 

also through the development of optimized manufacturing methods and the availability of 

suitable raw materials and secondly by surface treatments or form coatings [11], which 

produce protective ceramic, polymer or composite layers. In order for a coating to 

provide adequate corrosion protection for Mg and Mg alloys, the coating must be 

uniform, pore-free, well adhered, and self-healing in case physical damage to the coating 

may occur. However Mg alloys low wear resistance, and galling phenomena which 

occurs with the counter material, was attributed to their low hardness and to the atomic 

structure of their crystals respectively [12]. Generally wear can be reduced by using a 

lubricant with appropriate anti-wear additives or surface treating of the alloys to create 

hard coating. Recent developments in the plasma electrolytic oxidation (PEO) process 

allows for the production of oxide layers on magnesium alloys with excellent tribological 

properties, and the potential to be used in many applications [13].  

 

1.2 Objective of this Research 

Although a wider picture of the PEO coating growth mechanisms, discharge behaviour 

and the fundamental characteristics of PEO processing parameters has become more 

clear, a number of challenges still remain concerning the correlation between processing-

structure-properties and performance. This is essential in order to specify the essential 

elements that can lead to more reproducible and consistent coatings. A detailed study of 

the relationship between PEO processing parameters and the resulting microstructure 

properties and, hence, coating performance is required. The present study examines 

possible approaches for improving the corrosion and wear resistance of Mg alloys by 

changing the current mode, current density and electrolyte chemistry.  
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The objectives of this study were to: 

 

 Study plasma/substrate interaction and plasma chemistry using an optical 

emission spectroscopy (OES) method and to characterize plasmas in terms 

of their electron density and discharge temperature, and their relationships 

with the layer formation mechanisms. 

 Better understand the parameters that influence the discharge phenomena 

and their effect on the mechanisms of coating formation. 

 Study the ceramic coating growth mechanisms in PEO processing 

 Study the relationships between the alloy composition and microstructure 

and the coating microstructure. 

 Study the interactive effects of PEO process parameters on corrosion and 

tribological properties as a general guide to the coatings qualities. 

 

1.3 Organization of the Dissertation 

This dissertation is divided into eleven main chapters. Following an introduction in 

Chapter 1, a literature review of the PEO coating process, and specific aspects of plasma 

electrolytic oxidation of magnesium alloys, is given in Chapter 2. Chapter 3 describes the 

materials and experimental details. The influence of current mode on the PEO process 

performance and improving the corrosion properties of the coatings on the Mg AJ62 

alloy are described in Chapter 4. Chapter 5 describes a study of processing-

microstructure relationships in the PEO coating of AM60B magnesium alloy. A study of 

the interactive effects of hybrid current modes on the tribological properties of a PEO 

coated AM60B Mg-alloy are presented in Chapter 6. Chapter 7 presents an investigation 

of ceramic coating growth mechanisms in PEO processing. In Chapter 8, the effect of 

processing parameters and substrate composition on the corrosion resistance of PEO 

coated magnesium alloys are presented. Chapter 9 describes the effect of cathodic current 

density on the corrosion protection of the oxide coatings formed on AZ91D magnesium 

alloy by plasma electrolytic oxidation. The roles of the electrolyte composition and 

concentration on the corrosion resistance of the oxide coatings formed on AZ91D 
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magnesium alloy by PEO process are given in Chapter 10. Chapter 11 summarizes the 

results from the present study and offers some suggestions for future work. 
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2.1. Introduction 

There seems to be general agreement that magnesium is a most exciting engineering 

material due to its intrinsic characteristics particularly its light weight, that make it an 

attractive material wherever weight saving is at a premium, including the automotive and 

aerospace sectors. With increasing capacity and falling prices, more and more design 

engineers are turning to magnesium as an alternative to plastics, composites, zinc, 

aluminum, or even steel. However, the application of magnesium alloys has been limited 

by their susceptibility to corrosion and inferior wear performance. Magnesium alloys 

exhibit very poor corrosion resistance caused by their chemically active nature, especially 

galvanic corrosion, which can further cause severe pitting corrosion on the metal surface 

resulting in decreased mechanical stability and an unattractive appearance [1,2]. One of 

the major steps in improving the corrosion resistance of magnesium alloys is considered 

to be the introduction of high purity alloys [3]. These impurities and intermetallic 

compounds “serve as intense local cathodes, driving anodic dissolution” of the 

magnesium and hence, reducing the corrosion resistance [4]. The relatively poor wear 

performance of magnesium and its alloys is related to a low hardness, magnesium’s high 

reactivity and relatively low melting point. The study by Chen and Alpas [5] for AZ91D 

alloy has shown two wear regimes, mild wear and severe wear, which are identified to be 
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due to oxidational wear for the mild wear regime and melt wear and severe plastic 

deformation wear, for the severe wear regime.  

 

2.2. Coatings for Magnesium Alloys. 

So far, a number of theoretical and experimental studies had been performed addressing 

different aspects of the corrosion of magnesium alloys. An overview of the different 

techniques used for the coatings of Mg and Mg alloys is shown in Fig. 2.1 [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Schematic Diagram showing coatings technologies for magnesium alloys 

[adapted from [6]]. 

Generally, coatings can be divided into three classes: conversion coatings, organic and 

inorganic deposited coatings. Conversion coatings are produced by chemical or 
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oxide layer that simultaneously grows inwards and outwards. Such conversion coatings 

represent an effective way to increase the corrosion and wear resistance of magnesium 

alloys or, as a pre-treatment, to enhance the adhesion of a final deposited coating [7]. 

Organic finishing including Sol-gel, painting and powder coating is typically used in the 

final stages of coating process. The method most applied to obtain organic coatings is 

simple dipping in an organic based solution. Protective coatings can also be produced 

from inorganic deposition coatings such as from the gas phase or other physical methods 

including plasma spraying, chemical vapor deposition (CVD), Diamond like coating 

(DLC) and lasers. Gas phase coatings are inappropriate for applications involving 

geometrically complex components. Moreover, physical deposition methods involve high 

energy consumption, high costs and complex facilities. 

The most common conversion layers are from electrochemical anodization. Recently, 

much research has been focused on the selection of electrolytes, including alkaline 

solutions with additives of phosphate, silicate, and borate substances [8,9]. However, the 

anodizing process sometimes suffers from relatively poor performance for example; the 

European Space Agency was having problems with the black anodizing process [10]. A 

comparison of the common surface treatments and coatings is given in Table 2.1 [11]. It 

is also common to combine two or more techniques for surface coating and/or 

modification, in order to obtain properties that are unattainable using an individual 

technique. 

The PEO process can be considered as a combination of anodizing (electrolytic 

oxidation) and plasma discharging processes. The main similarities between the PEO and 

anodizing processes are that both of them involve oxidation of the substrate using an 

electrolytic bath, and that the first stage of the PEO process is an anodization process.  

The PEO process can be distinguished from low voltage anodizing in aqueous solutions 

by its operation at electrode potentials greater than the typical breakdown voltages of the 

original oxide films (350-600 V) in AC, DC or pulsed AC/DC modes with asymmetric 

anodic and cathodic potential peak waveforms, depending on the alloy and electrolyte 

composition [12,13]. PEO also operates differently from high energy plasma coating 

under dry conditions in a controlled gas pressure chamber. 



 

8 
 

Table 2.1 A comparison of the common surface treatments and coatings for Mg- alloys 

[adapted from [11]]. 

Treatment/coating Drawback (general) Drawback 

(environment) 

Conversion (chromate, 

phosphate) 

Easily damaged Toxic, particularly 

Cr(VI) 

Anodizing Sensitive to impurities in the base 

metal to be coated 

Sulphuric acid baths 

Organic/polymer Weak mechanical and corrosion 

resistant properties 

Poor recyclability 

Gas phase deposition 

(PVD, CVD) 

Thin, porous Chlorine emission 

Thermal spray, cold 

spray 

Not suitable for components with 

complex geometry. Use of more 

noble materials that can cause 

corrosion at interface 

None 

Plasma electrolytic 

oxidation 

Lack of data on coating 

performance 

in practice 

None 

 

It has been shown that PEO room temperature technology has a number of unique 

advantages: including technological simplicity and the possibility to coat any size and/or 

complex structure including welded and riveted joints, and heterogeneous alloys [8]. 

Pretreatments and post treatments are not strictly necessary for the PEO, except for water 

rinses; this reduces environmental concerns with respect to pretreatment and post 

treatment solutions. The PEO process is capable of producing uniform and very thick 

coatings on the inner and outer surfaces of the substrate materials [14]. One of the main 

advantages of the PEO coating is that the oxide coating is integral with the metal 

substrate because the coating is a result of substrate oxidation. A comparison between 

PEO and the hard anodization processes is given in Table 2.2. 
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Table 2.2 Comparison of PEO with HA processes. 

Process PEO HA 

Voltage and current  

density 

High Low 

Deposition rate Fast (1~2μm/min) Slow (~0.3μm/min) 

Oxidation mechanism Chemical/ electrochemical 

and plasma chemical 

reactions 

Chemical/electrochemical 

reactions 

Coating on selected alloys Practical for various kinds 

of Al, Mg and Ti alloys 

Limited (not used for 

2000-series alloys, high 

zinc or silicon Al alloys 

and Al casting alloys) 

Microstructure Amorphous and crystalline 

phase / Inner dense layer 

and outer porous layer 

Amorphous / Columnar 

porous layer and very thin 

barrier 

Corrosion resistance 

(Relative) 

Excellent  (5) Good  (1) 

Hardness High (~Hv1600) Low (Hv600 max) 

Wear resistance (relative) Excellent (30) Fair (2) 

Thermal protection Excellent Good 

Electrolyte Alkaline solution Acid solution 

Dielectric strength Excellent Fair 

 

2.3 PEO Processing 

The formation of oxide films on metals using a PEO-like process was  first investigated 

at the beginning of the twentieth century by Günterschulze and then Günterschulze and 

Betz  [15]. They published their first studies on the electrolytic spark discharge produced 

on an aluminum foil in the early 1930s. In the 1960s and 70s scientists in the former 

Soviet Union investigated the anodizing process at potentials of over 200 volts for 

developing parts for the submarine sector and for military purposes. This led to plasma 

electrolytic oxidation (PEO) technology. The process for depositing an oxide coating on 

aluminum using the PEO process was first reported by Markov and co-workers in the 

1970s [16,17], and Yerokhin et al [18]  identify Markov as the ‘father’ of the PEO 

process. Many other researchers worked with the plasma electrolytic oxidation process 

throughout the 1980s [19,20]. It wasn’t until the 1990s that the PEO process gained 

worldwide recognition as an eco-friendly technology for depositing the tribologically 

superior ceramic coatings on aluminum and magnesium alloys [18]. Plasma electrolytic 

oxidation (PEO) technique has been developed quickly in recent years and is attracting 



 

10 
 

increased attention from both academic institutions and many industries [7,21]. To date, 

there are thousands of a scientific publications dealing with a plasma electrolytic 

oxidation technology that are distributed in a wide variety of journals and conference 

proceedings.  

Plasma Electrolyte Oxidation (PEO) is a novel surface engineering technology, 

considered as one of the most cost-effective and environmentally friendly ways to 

improve the corrosion and wear resistance of magnesium and magnesium alloys [22-23]. 

A driving force for these developments is the avoidance of expensive equipment required 

for competing vacuum-based plasma technologies. The PEO method can be used to form 

a thick, hard and adherent ceramic-like coating on the surface of Mg alloys as well as of 

lightweight metals (Al and Ti) and their alloys [18]. The substrate is immersed in an 

alkaline electrolyte (containing neither the concentrated sulphuric acid nor the chromate 

ions used for hard anodizing) and a high potential is applied to it. Different current modes 

have been utilized in the PEO treatment including, DC, AC, unipolar and bipolar current 

modes [18,24]. The formation mechanisms of the coating layer by PEO are complex due 

to the involvement of electro-, thermal-, and plasma- chemical reactions in the electrolyte 

[8]. PEO is certainly one of the most promising surface treatments for magnesium and 

magnesium alloys since it can provide both corrosion protection, and wear resistance. 

The high dielectric strength of the ceramic layers also reduces contact corrosion by 

preventing or eliminating the flowing of the current between dissimilar metals. 

The effects of the process parameters on the characteristics of the PEO coatings have 

been investigated in a number of different studies. Some publications deal with the 

influence of the electrolytes which are based on an alkaline solution with additions of 

silicates, phosphates and or aluminate [8] where the effect of using a combination of 

electrolytes is the production of different cations and anions in the solution which 

accordingly influences the resultant coating: see for example the work of Ghasemi et al 

[9, 22]. Other studies have examined the effect of current mode [13], current density [25], 

process time [26] and the chemical composition of the substrate materials [27].  

PEO technology can be applied to coat a variety of materials, such as aluminum, 

magnesium, titanium, and zirconium. It can also be applied to alloys that are difficult to 

anodize with conventional anodizing processes, such as high copper content and high 
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silicon content aluminum alloys (2000 series and A380), and magnesium alloys, with the 

deposition of layers such as phosphates, silicates and aluminates oxides [18]. This 

enables the surfaces of metals such as steel, stainless steel and titanium to be converted 

into very hard materials like TiN2, TiB2 or iron carbides.  

A schematic diagram of the commercial setup for PEO coating shown in Figure 2.2, 

where the PEO coating system used to produce the oxide coatings is similar to that used 

for electroplating or anodizing. It consists basically of a water-cooled container, with the 

alkaline electrolyte, a high anodic potential is applied to it (typically several hundreds of 

volts) that trigger numerous micro-discharge events at the metal-electrolyte interface, 

generating high instantaneous temperatures and pressures (T > 4000 K [12] and p ~ 100 

GPa, [18]). A stainless steel plate in the bath acts as a counter-electrode (cathode) with 

the coupons as the anode. Different current modes have been utilized in the PEO 

treatments [7,13,28] which play important roles in the consequent voltage breakdown, 

local melting and oxidation of the substrate, quenching and re-crystallization processes. 

The growth rate, porosity level and microstructure of PEO coatings are significantly 

influenced by the current mode. Technically, PEO can be made either by current or 

voltage controlled. For the current control, during the coating process, the voltage is 

increasing gradually with process time, as the coating thickness increased, so as to 

maintain the fixed current density. However, for the voltage control, the current decreases 

with process time as the oxide film thickness increased. The optimization of the timing 

(frequency), amplitude, and pulse shape of both anodic and cathodic electrical pulses are 

essential to achieve controllable, hard, smooth, high growth rates with minimum defect 

coatings structure [29]. 

 

 

  

 

 

Fig. 2.2 Schematic diagram of the PEO apparatus. 
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During the PEO process different type of discharges will take place [12,29]. An 

important consequence of the occurrence of those discharges is the development of 

metallurgical processes in the growing oxide layer, which are induced by the heat 

liberated in discharge channels from electron avalanches. Because of the local high 

temperature and the strong electric field, molten oxide is ejected from the 

coating/substrate interface into the coating surface where it is rapidly solidified and re-

crystallized by the electrolyte. Hence, the formation mechanisms for the coatings are 

complex due to the involvement of electro-, thermal-, and plasma- chemical reactions in 

the electrolyte [12]. 

The PEO process can be distinguished from low voltage anodizing in aqueous solutions 

by its operation at electrode potentials greater than the typical breakdown voltages of the 

original oxide films (400-600 V) in AC, DC or pulsed AC/DC modes with asymmetric 

anodic and cathodic potential peak waveforms, depending on the alloy and electrolyte 

composition [18]. PEO also operates differently from high energy plasma coating under 

dry conditions in a controlled gas pressure chamber. It is commonly accepted that the 

discharge in PEO occurs when the applied voltage reaches a certain critical value 

corresponding to the breakdown of the oxide layer (or at least of the barrier part of it) 

formed on the sample surface: this leads to the development of intense light emission 

generated at the numerous micro-discharge sites [18].  

 

2.4 PEO coatings for magnesium alloys. 

The PEO process involves the creation of plasma discharges around a metal component 

immersed in an environmentally friendly electrolyte. The discharge events have a 

profound effect on coating microstructure, and hence on the physical and mechanical 

properties of the coating [12]. During PEO coating, there are three simultaneous 

processes taking place, namely the electrochemical reactions, the plasma chemical 

reactions and thermal oxygen diffusion.  

In general PEO coatings on Mg alloys have been found to have a three-layered structure 

as shown in Figure 2.3 for an AM60B alloy. Figure 2.3(a) is a SEM micrograph of the 

surface of the coating. Figure 2.3(b) is a SEM micrograph of a cross-section of the coated 

alloy. Figure 2.3(c) is a schematic showing a porous outer layer, an intermediate layer 
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that is relatively dense and a thin inner dense (barrier) layer that is well adhered to the 

substrate. Although it is the intermediate dense layer that can provide good mechanical 

properties (eg wear) and corrosion protection, it is the inner dense layer that ultimately 

provides the best corrosion performance [30].  

Examination of the surface morphology of the coatings, Figure 2.3(a), shows pores of 

different size: the size reflecting the strength of the discharges that produced the pores. 

There are both open and closed pores. The relatively large open pores are concentrated on 

the surface of the PEO coatings whereas the closed pores are present in the middle region 

of the coating. The surface of the coatings shows a ‘pancake’ structure where the center 

of each pancake is a discharge channel through which the molten magnesium surged out 

of the channel and was quickly solidified by the relatively cool electrolyte, leaving 

distinct boundaries that define each pancake. The uneven melting and sintering effect 

causes the formation of a rough surface which could adversely affect the wear 

performance through an increase in the coefficient of friction (COF). The channels at the 

center of the pancake can penetrate as far as the substrate surface which will degrade the 

overall corrosion resistance. Thus, in producing PEO coatings, the elimination, or at least 

minimization, of the discharge channels is of primary concern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 SEM micrographs of PEO coating on AM60B alloy showing (a) the surface 

morphology and (b) cross-section. (c) general schematic. 
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2.5 Specific Aspects of Plasma Electrolytic Oxidation Of Magnesium Alloys. 

Coating surface morphology, porosity, structure and corrosion behavior of ceramic 

coatings on Mg-alloys, are affected by many parameters including, electrolyte 

composition and concentration, the substrate composition, and the process parameters 

(including current density, current mode, applied voltage, temperature, and treatment 

time.  

 

2.5.1 Electrolyte Effects. 

The electrolyte chemistry (concentration and composition) is an important parameter 

affecting the PEO discharge characteristics and breakdown voltage, and thereby 

microstructure, porosity, and thickness of the PEO coatings. Electrolytes typically used in 

PEO are environmentally friendly, free of chrome ions, non-corrosive, inexpensive, and 

easy to make up and maintain. The PEO coatings on Mg alloys and other lightweight 

alloys are normally produced in KOH/NaOH (base electrolyte) with the addition of the 

silicate, phosphate, aluminate [28,31-32] which can cause an increase of electrolyte 

conductivity and decreases the voltage breakdown. XRD patterns for PEO coatings on 

Mg alloys show that the coatings are comprised of amorphous and crystalline phases such 

as MgO, Mg2SiO4, Mg3(PO4)2 or MgAl2O4, depending on the electrolyte [22,31]. While 

the temperature of the electrolytes should be kept below 40 
o
C, normally using a water 

cooling system, the local plasma temperature in the discharge channels is higher than 

4,OOO
 
K, and it is this very high temperature leads to the formation of oxide coatings. 

Tungstate, zirconate and permanganate have also been explored as additives in the 

electrolytes used to prepare PEO coatings on Mg alloys [33]. An enrichment of the 

MgAl2O4 phase in the coating, together with a minimum amount of cubic MgO, has been 

shown to improve the corrosion resistance of the coated alloy [34]. MgAl2O4, which is a 

spinel phase is also much harder (7.5-8.0 Mohs scale) than MgO (6.0-6.5) or Mg (2.5) 

and can provide better wear resistance. 

The coatings formed using only KOH at different concentrations, consist of the unstable 

and easily corroded MgO phase [25,31]. The phosphate electrolytes and silicate 

electrolytes enhance both the corrosion resistance and the hardness of the PEO coatings 

[31,32], where the insoluble phases in water Mg2SiO3, Mg2SiO4, MgAlPO5and Mg2Si3O8 
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are formed in the coatings [34,35]. The use of sodium aluminate (NaAlO2) on AJ62 Mg-

alloys was investigated by Zheng et al [34] using unipolar current mode and the effects of 

additives (KF, NaOH, and KOH) in a (NaAlO2) based electrolyte, on the corrosion 

characteristics of PEO coatings on AZ91D Mg alloy were examined by Ryu et al [36]. 

Fluoride is incorporated into the oxides during PEO, where there is the addition of 

potassium fluoride KF in the electrolyte. This resulted in coatings with minimum defects 

and pores and a high growth rate of the coatings, together with the formation of the 

insoluble MgF2 phase, which enhances the corrosion resistance [33], and may be   

attributed to the large number of small discharges [37]. The PEO coating obtained in a 

KF-NaAlO2 electrolyte exhibited the highest corrosion resistance, which has been 

attributed to the presence of a thick, fluoride (F)-containing inner dense barrier layer with 

crystalline MgAl2O4 [38]. However, due to environmental protection or health concerns, 

other additives such as CrO3, H3BO3 [39], KF [31] are not extensively used [40]. 

 

2.5.2. Electrical Parameters. 

Although, in general, PEO coating of Mg alloys produces the three-layered structure 

shown in Figure 2.3, the relative proportions of the three-layers, their thicknesses, 

microstructure, porosity, phase content and composition are strongly influenced by the 

substrate composition, electrolyte composition and concentration and the PEO process 

parameters, including current density, current mode, applied voltage, frequency and duty 

cycle (ton/(ton+toff)), and treatment time. Increasing the current density and/or voltage 

leads to an increase in layer thickness, an enlargement of the surface craters and 

increased porosity and other coating defects. The growth rate, porosity level and 

microstructure of PEO coatings formed on Mg alloys are significantly influenced by the 

current mode. By adjusting the cathodic to anodic current ratio and their timing (ton and 

toff) the strongest plasma discharges can be eliminated, or at least reduced.  

With the aim of improving the characteristics of the ceramic coatings, many attempts 

have been made to improve the supplied current regimes, incorporating different forms 

and duration of the current pulses. For all PEO power sources, the electrical parameters 

(current density, duty ratio and pulse timing) play very important roles in the growth of 

the coating. Different current modes have been utilized in the PEO processing including 
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DC, AC, unipolar and bipolar current modes [13,39,41]. For a DC source, due to the 

difficulties in controlling the surface discharge characteristics, it is only used for simple-

shape components and thin coatings. A pulsed DC source can generate different current 

waveforms, providing the potential to adjust the plasma discharge duration. Thus the 

coating composition and structure can be controlled. Usually for the DC and pulsed DC 

PEO of magnesium alloys, the coating includes significant amounts of magnesium oxide 

and hydroxide, leading to poor corrosion protective properties and weak coating adhesion 

to the substrate [7,9,42].  An AC source can also control the process by means of arc 

interruption [41,43]. By changing the capacitance of the source in both half-cycles, the 

ratio of amplitudes of positive and negative current can be independently adjusted. 

However, the limitations in power (usually  10kW) constrain the range of its 

application. Also, the commonly used current frequency (50 Hz) can provide only a 

limited ability to control the discharge duration [43]. Recent studies on the effect of 

power supply modes on PEO coating properties have paid more attention to the bipolar 

current mode. Researchers [13,44] have tried to modify the morphology and structures of 

oxide coatings by altering the sparks during the PEO process. The properties of the 

plasma discharges themselves in the bipolar current mode differ from those of discharges 

obtained using a unipolar current mode. From the plasma discharge point of view, a 

significant reduction in the strong discharges [12] can reduce the detrimental effects 

associated with such discharge events. Coatings produced using a bipolar pulsed DC have 

a dense and fine-grained morphology. No trace of brittle fracture was observed. 

Comparatively, the coatings treated using AC exhibited brittle fractures indicating 

formation of some brittle fused phases on the surface. At present, the pulsed bipolar PEO 

power source is being widely used due to its ability to achieve high quality coatings that 

have a higher normalized thickness of functional layer (dense layer), high corrosion 

resistance, and good adhesion to substrates [13] than those coated by the AC method. 

Recent work by Gnedenkov et al. [13] utilized a pulsed bipolar current mode to make a 

dense and uniform oxide coating on a MA8 magnesium alloy with a fine-grained 

microstructure. 
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2.5.3 Electrochemistry of Plasma Electrolytic Oxidation (PEO) 

The growth of the oxide coating mainly occurs due to three different, yet simultaneous, 

processes, namely: the electrochemical reactions [18], the plasma chemical reactions 

[8,45-47] and thermal diffusion [24]. The electrochemical formation of surface oxide 

layers can occur through different mechanisms depending on the electrolyte, eg. silicates, 

aluminates, phosphates. The PEO coatings are usually produced by AC or bipolar current 

mode, containing both anodic and cathodic components. An early investigation of the 

basic electrochemical processes of AC PEO coatings on Ti, has been carried out by 

Yerokhin et al [47] using AC current mode and a complex aluminate-base electrolyte. 

According to their study an oxide layer formation is induced both by the ionic component 

of the current which is transmitted via surface discharges and by the anodizing current 

passing across the surface which is free of discharges (Figure 2.4). The other components 

of the current cause secondary electrochemical processes which lead to liberation of 

electrode gases (H2 and O2) and anodic dissolution of the titanium metal as shown in 

Figure 2.4.  

 

Fig. 2.4 Schematic diagram of current distribution during the PEO treatment of metals in 

AC mode [47]. 

For the PEO process on Mg alloys, the main electrochemical reactions occurring at the 

coating/electrolyte interface using silicate-, aluminate- or phosphate- containing 

electrolytes are as follows [48]: 
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During the PEO process the Mg ions are produced by the following reaction: 

Mg → Mg
2+

 + 2e
− 

             2.1 

These ions can be combined with AlO2
− 

anions in the alkaline solution to form MgAl2O4 

as in reaction (2.2) 

Mg
2+

 + 2AlO2
− 

→ MgAl2O4↓            2.2 

For SiO3
2-

 anions 

2Mg
2+

 + SiO3
2-

 + 2OH
− 

→ Mg2SiO4↓ + 2H2O       2.3 

For PO4
3- 

anions 

3Mg
2+

 + 2PO4
3- 

→ Mg3(PO4)2↓          2.4 

Also, magnesium hydroxide Mg(OH)2 is formed on the magnesium surface by: 

Mg
2+

 + 2OH
−
→ Mg(OH)2          2.5 

The cation released from the metal (reaction (2.1)) combines with the anion in the 

electrolyte to form compounds, Mg2AlO4, Mg2SiO4, Mg3(PO4)2 or Mg(OH)2 by reactions 

(2.2), (2.3), (2.4) and (2.5) depending on the electrolyte. Due to the thermal energy from 

the discharges in all PEO stages, the hydroxide is dehydrated to produce magnesium 

oxide MgO [48]. This reaction requires a high temperature, which is achieved during the 

discharge process and depends on the applied current density  

Mg(OH)2 → MgO↓ + H2O          2.6 

Hsiao and Tsai [49] showed that the presence of Al(NO3)3 in the base electrolyte resulted 

in the formation of Al2O3 and Al(OH)3 phases in the coating. The presence of Al2O3 in 

the coating improves the corrosion resistance in 3.5% NaCl. 

2.6. Corrosion protection afforded by PEO coatings for Mg-Alloys. 

Magnesium alloys exhibit very poor corrosion resistance due to their chemically active 

nature, especially internal galvanic corrosion [50], which can further cause severe pitting 

corrosion on the metal surface resulting in decreased mechanical stability and an 

unattractive appearance. For coated metals, including Mg-alloys, the corrosion 

performance of coatings is determined by the time taken to initiate corrosion in the metal 

substrate since this is much shorter than the time taken for the coating to degrade [51]. 

Generally the corrosion resistance of PEO-coated magnesium alloys depends on many 

factors that are summarized schematically in Fig 2.5.  

The overall protective abilities of the PEO coatings are governed by:  
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- Coating structures, mainly coating compactness in terms of porosity and other defect 

levels  

- Relative thicknesses of the three layers, particularly the coating/substrate interface 

layer,  

- Chemical composition of the coating.  

Therefore, the more compact and thicker the coating layers, the more difficult it is for the 

corrosive anions or oxidants (Cl
-1

 ions) to penetrate to the base magnesium substrate. The 

coating/substrate barrier layer plays a key role in decreasing the substrate area exposed to 

the aggressive solution. The phases present in the oxide coatings are also important in the 

overall corrosion resistance. The spinel phases (MgAl2O4, Mg2SiO4) are more resistant to 

dissolution than MgO which can quite readily be converted to Mg(OH)2 [52]. 

             

Figure 2.5 PEO processing parameters and performance 
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Since PEO coatings contain unavoidable pores, although most of them are discontinuous 

and the number of through thickness pores is very small, the overall corrosion resistance 

of PEO coated magnesium alloy depends on the retarding effect of the oxide layer 

porosity level and on the substrate/coating interface corrosion resistance. However, the 

more compact and thicker the coating and presence of phases more, the slower and more 

difficult access of the corrosive species can be. The presence of a PEO coated layer on 

the magnesium alloys causes a decrease of the corrosion current density by up to four 

orders of magnitude [7]. 

Song and Atrens have concluded that internal galvanic attack, due to potential difference 

between matrix and precipitates, and the instability of the magnesium hydroxide film 

formed on the surface of Mg alloys are the two main causes for corrosion of magnesium 

alloys [2]. When magnesium is exposed to an aqueous solution, both Mg(OH)2 and MgO 

can be formed: Mg(OH)2 is in contact with the metal, and on top of the hydroxide layer is 

a MgO layer that has direct contact with the aqueous solution. For pure Mg, this layer is 

not protective at pH values below 10.5, unless additional alloying elements are added to 

pure Mg. The corrosion mechanism for the Mg alloys is more complex than that for pure 

magnesium, due to a multi-phase microstructure. Shi et al [53] pointed out that corrosion 

rate of Mg alloys is strongly dependent on the composition of the α-Mg matrix and the 

distribution of the other phases. Such phases have the tendency to accelerate the 

corrosion of the α-phase. In order for a coating to provide adequate corrosion protection 

for Mg and Mg alloys, the coating must be uniform with minimum defects and pores and 

well adhered. 

Test methods most commonly used to determine a corrosion rate of the PEO coatings are 

potentiodynamic polarization studies and impedance spectroscopy (EIS) [54]. The 

electrochemical technique of Tafel extrapolation of polarization curves is also widely 

used for the evaluation of the corrosion of Mg alloys, in particular coated Mg alloys, 

because it is simple and fast. Electrochemical impedance spectroscopy (EIS) can provide 

valuable information about surface treatment layers on PEO-coated magnesium, and the 

interfaces between electrolyte/coating/substrate [55]. It also allows the kinetics of 

heterogeneous electron-transfer reactions, coupled chemical reactions, or adsorption 
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processes to be studied, and can provide information about pitting and crevice corrosion 

[1].  

Comparison of the corrosion protection results offered by PEO is very difficult, due to 

the variation of the experimental test parameters including solution composition, 

concentration, test time and other parameters. Ma et al. [25] reported that oxide films 

grown on a AM50 magnesium alloy from a phosphate solution have better corrosion 

resistance compared with coatings prepared in silicate solutions. However, Liang et al. 

[56] when comparing the PEO coatings on AM60B magnesium alloy formed in silicate 

and phosphate electrolytes concluded that PEO coatings produced in a silicate electrolyte 

are compact and uniform hence exhibit better corrosion resistance than coatings formed 

in a phosphate electrolyte, which were relatively porous. Liang et al [57] investigated the 

electrochemical degradation of a silicate- and phosphate-based PEO coatings on a AM50 

magnesium alloy using a pulsed DC power supply in NaCl solutions of different chloride 

ion concentrations (0.01, 0.1, 0.5 and 1 mol/L). They conclude that the corrosion 

resistance of the Si-PEO coating was superior and the corrosion deterioration was slower 

than that of the P-PEO coating in mild corrosive electrolytes (0.01M and 0.1M NaCl). 

However, in the more concentrated electrolytes (0.5M and 1M NaCl), the Si-PEO and P-

PEO coatings cannot provide a long-term protection to the magnesium alloy substrate due 

to the initiation of localized corrosion, and undergo further deterioration. Ding et al [58] 

investigated the influences of the addition of Na2WO4 to the silicate based electrolyte and 

breakdown voltage on the PEO coatings microstructure, hardness and wear resistance. In 

the presence of Na2WO4, the coatings have excellent compatibility and wear resistance. 

However, with increasing sodium tungstate concentration, the size of micropores in the 

PEO coatings prepared in a NaOH electrolyte increased and the corrosion resistance of 

the PEO coatings decreased [59]. Using potentiodynamic polarization curves and 

electrochemical impedance spectroscopy, Barik et al [60] studied the corrosion 

performance of PEO coatings, and demonstrated that unsealed PEO coating allows 

permeation of the solution through the pores in the coating [60]. The corrosion rate of the 

various magnesium alloys coated using either the PEO method and composite polymer-

containing coatings has recently been investigated by Gnedenkov et al [61] using a 

scanning vibrating probe method (SVP). They established the origin of the superior 
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corrosion stability of the MA8 (Mg\Mn\Се) alloy as compared to that the VMD10 

(Mg\Zn\Zr\Y) magnesium alloy, and relate that to that the secondary phases in the 

VMD10 composition have more positive potential values compared with the α-phase of 

magnesium that results in the acceleration of the dissolution of the α-phase [61]. 

Arrabal et al [41] conclude that the AC PEO coating on Mg alloys reduces the corrosion 

rate by 2-4 orders of magnitude compared with uncoated alloys. Ma et. al. [25] showed 

that an enrichment of the MgAl2O4 spinel phase in the coating, together with the 

minimum amount of cubic MgO, improves the corrosion resistance of the coating. The 

study of Barchiche et al [62] shows that increasing the treatment time rather than current 

density will improve corrosion resistance of the PEO oxide layer on AZ91D as well as a 

more passive behaviour of anodized layer was obtained with the higher concentrated 

electrolyte (3M KOH) due to the formation of more compact layer with minimum 

defects. The corrosion protection effect of PEO coatings of Mg alloys shows that a 

considerable variation in the corrosion current density icorr were obtained, which is not 

directly related to the coating thickness [60-62].  

 

2.7 Tribological and Mechanical Properties of PEO Coatings. 

PEO coatings on Mg alloys have been studied under various testing methods to evaluate 

their physical and mechanical properties [32,63-64]. Different adhesion and tribological 

friction and wear tests have been performed on range of PEO coating thicknesses, 

including scratch adhesion, sliding wear, ball-on-plate and impact tests. 

As a result of the PEO coating process, the magnesium alloy surface is converted into 

ceramic-like coating layers that are hard, well adhered to the substrate and wear resistant 

[65]. PEO coatings mechanical and tribological properties depend on the characteristics 

shown schematically in Fig. 2.5: 

- Hardness is strongly dependent on the coating thickness, the nature of the dominant 

phases present, their ratio and distribution, and the density of porosity and micro-cracks 

in the coatings [12,66,67].   

- The sintering process during the formation of the PEO coatings occurs at extremely 

high temperatures and pressures, which results in the formation of magnesia phases. 

Bonding between coating and substrate created during thermal and plasma-chemical 
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process. The adhesion is influenced by the coating thickness. As the coating process 

progresses, significant changes take place in the inner layer structure as result of diffusion 

processes [68] and adhesion is improved.  

- The load that can be supported is affected by the coating thickness. Thicker coatings 

will give lower stresses at the coating-substrate interface and hence give better load 

support [12]. 

- The wear resistance of coatings mainly depends on hardness, coefficient of friction and 

roughness. Hence, porosity levels, chemical composition, thickness, and structure of the 

coatings are key parameters for wear performance of Mg alloys [66]. As coating growth 

continues, the coating surface roughness and outer layer porosity level will increase with 

increasing processing time. 

Since the coating hardness depends directly on the coating compactness, coatings 

produced with more porosity have lower hardness. Hence, a change of the process 

parameters, such as a current density and modes [66] and electrolyte composition and 

concentration [69], are important in controlling porosity levels to improve coating 

hardness. Coatings  produced in silicate solutions generally have a higher hardness than 

coatings produced in a phosphate solution under the same process conditions [67] since 

the oxide layers made in a silicate solutions contain Mg2SiO4, which has a higher micro-

hardness than MgO,  MgAlPO5 and Mg3(PO4)2 that are produced in phosphate solutions 

[21]. PEO coatings can increase the hardness of the magnesium alloys 5-9 times 

compared with the hardness of the base substrate [66]. However, the values of micro-

hardness close to the substrate/coating interface generally have the highest value 

compared to other locations, which may be attributed to its higher compactness compared 

with the outer porous layer [70]. The wear resistance of the coated samples is a complex 

process that involves surface roughness and hardness which are controlled by phase 

contents and porosity levels.  

The tribological performance of PEO coatings is not only affected by the PEO coatings 

and processing parameters, but are also influenced by other factors including: sliding 

loads (low, medium and heavy loads), sliding speed, counterpart materials, lubricated 

conditions, temperature and humidity [21]. The effect of two different coating thickness 

(10 and 20 µm)  and normal load on the wear behaviour of PEO coated AZ91 Mg alloy in 



 

24 
 

silicate based solution using dry sliding wear tests were studied by Srinivasan et al. [71]. 

For PEO coatings of 10 µm thickness, the increasing normal load damaged the coating, 

and causes a cracking and flaking off of the coating. When the coating thickness 

increased, the wear resistance increased due to the enhancement of the load bearing 

capacity of the coating [71]. Li et al. [72] studied PEO coatings on AM60B with a 

thickness of 22–32 µm produced in aluminate solutions and showed an improvement of a 

pin on disc wear resistance of the coatings produced in higher aluminate concentrations. 

Miao et al. [73] found that CrN–TiN multilayer coatings on AZ91D magnesium alloy 

could effectively improve the performance of wear resistance and corrosion resistance. 

The tribological properties of PEO coatings on Mg alloys have been evaluated under the 

dry sliding condition [67,71,72,74-75]. The PEO coatings showed a higher coefficient of 

friction but a lower wear rate than the untreated Mg alloys [76]. The tribological 

properties of PEO coatings on Mg alloys under lubrication conditions have been studied 

by Guo et al [64] and Zhang et al [75]. Guo et al [64] found for an Mg AM60B alloy that 

the micro-porosities on the coating surfaces acted as oil reservoirs and were beneficial to 

the oil-lubricated wear performance. Zhang et al [75] show that the lubricate sliding wear 

test results of AZ91D Mg alloy in the Hank’s solution is improved after PEO coatings 

and that the mass loss of untreated AZ91D Mg is 1.5 times higher compared with the 

PEO samples. The tribological properties of the PEO coatings on the Mg AJ62 alloy were 

evaluated by the reciprocating sliding wear tests under the boundary lubrication condition 

at the room temperature [34,77]. The coatings were composed of MgAl2O4 and MgO 

phases and a nano-structured interface about 400 nm thick and composed of nano-grains 

with the grain size of 10-20 nm in size. The interlayer was beneficial to the load-bearing 

capability of the thick coatings [34].  

There are situations where the structures for good corrosion and wear performance are 

not the same. An example would be for oil-lubricated wear where the presence of a 

porous outer layer in the PEO coating could act as an oil reservoir, improving wear 

performance [64]. 
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Chapter 3  

Experimental Procedures 

 

The collective behavior of the plasma discharge over the entire surface, rather than the 

individual discharges, is addressed in this work. The PEO process of Mg-alloys is 

strongly influenced by experimental parameters. These parameters have a direct influence 

on the discharging behavior which, in turn, plays an essential role in the formation and 

resulting composition of oxide structure as shown in Fig. 1.1. This, then, affects the 

physical, mechanical and chemical properties of the coating. Various current regimes 

including unipolar, bipolar, and hybrid (combination of unipolar and bipolar) modes, 

were used in this wok.  

 

Fig. 3.1 Effects of PEO process parameters on corrosion and tribological properties 
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This Chapter details the materials and techniques used for PEO processing of Mg alloys, 

characterizing the coatings produced and investigating the effects of these PEO coatings 

on corrosion and mechanical and tribological response. 

3.1 Experimental 

3.1.1 Material 

In this work three different types of Mg alloys (Table 3.1); AM60B, AJ62, and AZ91D 

were examined. Disc-shaped coupons (25×7mm) cut from Mg bars were used as the test 

samples in this study. The coupons were manually ground and polished on 240, 400, 600, 

and 1200 grit silicon carbide (SiC) waterproof abrasive papers to obtain a uniform 

surface roughness of 0.1 ± 0.02 µm. After cleaning with water, the samples were cleaned 

with acetone before the PEO treatment to ensure a similar initial surface condition for 

each sample.  

Table 3.1 Alloys Investigated 

Mg 

Alloys 

Composition (wt.%) 

 

General properties 

 

Al Mn  Zn Si Sr Mg 

AM60B 
5.5 to 

6.5% 
0.25% 0.22% 0.10% N/A balance 

Excellent combination 

of mechanical 

properties, castability, 

and reasonable 

corrosion resistance 

 

AJ62 6.1% 0.34% N/A N/A 2.1% balance 

Superior thermal 

stability at 150 °C, 

good die-castability 

 

AZ91D 
8.3-

9.7% 
0.15% 

0.35-

1.0% 
0.10% N/A balance 

Excellent ductility and 

toughness, with 

reasonable yield and 

tensile properties and 

castability 

 

 

Two samples were tested mechanically (compression or sliding). There were two samples 

for corrosion testing: 1 sample for cross-sectional analysis to study the coating thickness 

distribution and morphology and 1 sample for microstructure (phases present and 

elemental distribution).  
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3.1.2 PEO coating Process 

PEO processing involves the submersion of the metallic substrate in an aqueous 

electrolyte. The coatings were obtained mainly in an alkaline electrolyte containing 

sodium aluminate (Na2Al2O4) and potassium hydroxide (~1 g/l KOH) added to balance 

the pH at 12. Figure 3.2 is the schematic of a typical treatment unit. The unit consists of a 

container with the electrolyte and a powerful electrical source. The container is usually a 

water-cooling bath placed on a dielectric base and fixed in a grounded steel frame, which 

has an insulated current supply and a window to observe the process in operation. A 

stainless steel tank acts as the counter-electrode. The temperature of the electrolytes was 

kept below 25 
o
C by a water cooling system. In order to obtain a good connection 

between the power supplies to the samples, a threaded hole was drilled on one side of 

each sample. Then the sample was screwed onto an Al rod (and insulated by Teflon tape 

from the electrolyte) which carried the current from the power supply. The Mg samples 

(as the anode) and a stainless steel tank (as the cathode) were connected to two pulsed 

DC power supplies operating under a constant current control function to generate a 

different current modes: unipolar, bipolar and hybrid (combination of unipolar and 

bipolar) current mode.  

Two different current generators (MPE Magna-power supply and MDX Magnetron 

Drive) were used, which deliver current to the substrate with an amplitude in the range of 

0-5 A and 0-15 A respectively. These power supplies were specially designed to allow 

independent control over the main pulse parameters, such as pulse duration, amplitude 

and duty cycle, during both positive and negative biasing using a Spik 2000A controller. 

The pulse unit SPIK2000A can be operated in many modes (Bipolar, Unipolar, DC- and 

DC+ modes) with pulse duration (the ON and OFF times) being freely adjustable from 

the 5μs per pulse unit range to the 32ms per pulse duration range (30Hz to 50 KHz). The 

DC sources can be used in the voltage, the current or in the power controlled mode. 

Experiments were conducted using pulsed DC power supply (AE Magnetron MAX, the 

output voltage ranging from 0 to 1000V) with current control. A constant current density 

was set for each set of experiments. Since the conductance of the oxide film decreases 

with the increase in coating thickness, the input voltage between anode and cathode has 
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to be increased gradually to maintain the current density. Voltage increment verses 

treatment time was recorded for each sample. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.  Schematic diagram of the experimental apparatus. 

3.2 Coating Characterization Methods 

In order to correlate between processing parameters-resulting oxide structure-desired 

properties and performance it was important to study the distribution and nature of the 

coating, microstructures, and mechanical properties of these coatings. These studies were 

undertaken in this work utilizing different experimental techniques, which are explained 

in the following sub-sections. 

 

3.2.1 Surface morphology and coating thickness 

Scanning electron microscopy (FEI Quanta 200 FEG with solid state backscattered 

detector operated at 15 KV) in both the back scattered secondary electron (BSE) mode 

and  in the secondary electron (SE) mode was used to observe both the coating surface 

morphology and, through observation of sample cross sections, coating thickness and 

integrity. EDX is a technique that interprets the interactions between a source of high 

energy electrons and an atomic structure of a given sample. In this work, elemental 

composition and spatial distributions, both over surface and through the thickness, of 

different coatings, produced under different processing parameters, were studied by 
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energy-dispersive X-ray spectroscopy (EDX, Kevex 5100C), with an electron beam spot 

size of 3 nm operated at 12 kV, which was fitted in FEI Quanta SEM microscope. Major 

elements such as magnesium, aluminum and oxygen are expected to be present at 

different amounts in each coating and can form most of the coating volume. The surface 

and cross-sections for each coating were sputter-coated with carbon before examination 

to avoid surface charging. Cross-sections of samples were mounted with resin and 

polished first with a SiC abrasive paper of gradually decreasing grit size, then with an 

alumina suspension for the final polishing. 

The coating thicknesses for different treatment times were also determined using a 

PosiTector 6000 coating thickness meter with N type probes: this instrument uses the 

eddy current principle to measure the thickness of non-conductive coating (ceramic) on 

non-ferrous metal (magnesium). The dimensions of the magnesium alloy sample before 

and after oxidation were measured using a Mitutoyo Absolute ID-S112 spiral "Absolute 

Position" digital micrometer, from which the inner and outer thickness values at different 

treatment time were calculated. The meter was set to zero-position for the uncoated 

substrate then the total outer thickness measured after the coating, which represents twice 

the thickness of the sample dimension changes. 

 

3.2.2. X-ray Diffraction (XRD) 

It is expected that processing parameters can have major influence on microstructures of 

PEO coatings. As the coating starts to build up during processing, transformation 

processes take place, and more amorphous phases will transform into crystalline To 

identify the phases generated during the PEO coating, analytical X-ray diffraction (XRD) 

was performed on coated samples. Copper Kα radiation (λ= 0.15406 nm) was employed 

at a tube current of 45 mA and a voltage of 45 kV. For phase identification, the scan 

range varied from 10 to 80° (in 2θ) with a step size of 0.05
o
 and 1.5s in each step. 

 

3.2.3 Surface roughness 

The surface roughness (Ra) was measured using a stylus type surface profilometer 

(Mitutoya Surftest SJ-201P). Each roughness value given was an average of five test 

values. The accuracy of roughness tests is ± 0.01 µm. 
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3.3 Optical Spectrometry 

Since the discharges are occurring randomly (source is not emitting equally over 

the whole sample area), we therefore used an integrated signal that covers whole sample 

surface area, by focusing all signal emitted from the sample on the fiber optics that 

connect it to the spectrometer. In this study one spectrometer formed the main visible 

spectroscopy diagnostic arsenal. The Ocean Optics OES Sensor is PC2000-UV-VIS Fiber 

Optic Spectrometer with effective range of 200 nm~1100 nm. Its detector consists of a 

2048-element linear CCD-array (a charge- coupled device array detector) with a grating 

of (600 lines/mm). The optical bench is compactly mounted on a PC plug-in 1 MHz ISA-

bus A/D card, which fits into a slot in the PC. The entrance slit is fixed at 10 mm in 

width, 1000 mm in height. With no moving part, the optical bench is compactly mounted 

on a PC plug-in 1 MHz ISA-bus A/D card, which fits into a slot in the PC. The 

spectrometer collects light transmitted from Ocean Optic P400-2-UV/VIS fiber, which is 

a 2-meter-long, 400-mm-patch fiber (Fig. 3.2). The light emitted by the plasma was 

transmitted and focused through a quartz window and 20mm UV-grade fused-silica 

lenses mounted on the tank on to the 74-UV collimating lens, 5 mm in diameter, 10 mm 

in length, and screws on the end of the 400μm diameter optical fiber leading to the 

entrance slit of the spectrometer.  

 

3.4 Electrochemical testing  

3.4.1. Test procedures  

Cyclic potentiodynamic polarization tests were performed to study the general corrosion 

properties of the substrates and the as- fabricated coating at a temperature of about 25°C. 

A Solartron 1285 Potentiostat (with Corrware Software) and a conventional three-

electrode cell were employed for the corrosion tests.  A specimen with an exposed area of 

1.0 cm
2
 was the working electrode; a saturated calomel electrode (SCE) served as the 

reference electrode; a platinum rod was used as the counter electrode. The ratio of the 

volume of test solution to the sample contact area was 200 ml/cm
2
. All potentials are 

given with respect to the SCE.  

Before conducting the potentiodynamic polarization tests, the electrodes were placed in 

the test solutions under open circuit potential (OCP) for at least 20 mins. After the 
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electrochemical testing system was stable (the OCP reached a stationary value). The 

measurements were carried out in the test solution at a scan rate of 1 mV/s for 1 cycle. 

The cycle polarization curves were recorded from a potential -1.0 V to +1.0 V, and back 

to -1.0 V (Vs. OCP). 

Following the potentiodynamic polarization testing, the corrosion current densities were 

determined by linear extrapolation of the polarization curves, and the polarization 

resistance of the specimens was calculated for comparison. 

 

3.4.2 Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) was also used, through a frequency 

response analyzer which enabled the scan to be generated automatically under computer 

control. A three electrode cell with both the uncoated and PEO coated samples as the 

working electrode, exposing 1.0 cm
2
 of area to the solution during electrochemical 

measurements, an Ag/AgCl/sat KCl reference electrode, and platinum as a counter 

electrode, was used in the experiments. The EIS technique was employed using a 3.5 wt 

% sodium chloride solution and the impedance spectra were acquired over the frequency 

range between 100 mHz and 200 kHz with an AC signal amplitude of ±10 mV with 

respect to the open circuit potential (OCP). All EIS data were analyzed by curve fitting 

and equivalent circuit modeling using EC-Lab®   electrochemical analysis software 

version 10.02. Measurements were performed three times to ensure reproducibility of the 

results. Electrochemical impedance spectroscopy (EIS) measurements were performed at 

the open circuit corrosion potential on the PEO coatings after different initial delay times 

to stabilize the open-circuit potential (OCP). 

 

3.5. Tribological testing 

3.5.1. Pin-on-disk 

The wear resistance of coated and uncoated samples was evaluated using a pin-on-disk 

tester (FALEX ISC tribometer) under dry conditions with a 10 mm AISI 52100 steel ball 

as the wear medium (pin) and the samples as the disk. The tests were conducted at room 

temperature (20 °C), ~ 50% humidity, using a 2 N applied load and a rotation speed of 

75.0 mm/s with the sample running on a 4 mm radius track. The tests were stopped after 
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reaching a total wear distance of 100 m. After wear testing, the samples were cleaned in 

acetone, and dried in air. The wear tracks of the samples were characterized using a 

WYKO NT1100 optical profiler. The volume loss due to wear of the samples was 

calculated based on geometries (width and depth) of the wear tracks. 

3.5.2. Inclined impact–sliding wear instrument 

In this method, a hard ball (10 mm AISI 52100 steel ball) is mounted on the shaft of a 

double-way air cylinder with the piston driven by compressed air producing vertical 

oscillatory motions (see Fig 3.3). A steel ball is used in this test rather than a ceramic 

ball, since a ceramic ball could potentially fracture on the initial impact loading. The 

sample is set on an inclined sample holder which is returned to its position by a spring. 

An OMEGA LCKD-500 load cell is placed on the sample holder to record the normal 

force on the sample surface during the impact–sliding movement. The desired normal 

impact and compression forces were obtained by adjusting the pre-strain of the spring 

and the pressure in the air cylinder. The load cell was removed and the coated samples 

were placed on the sample holder for impact tests. After the counterpart ball completed 

the first full contact with the coating surface and formed a deep impact crater, a series of 

rebounds and impacts occurred. After the vibration stage, the load continues to change 

gradually until the pre-setup compression load (Fc) is reached, and then the ball starts to 

move up. This is named as the compression force stage, in which a tail with sliding 

failures was formed. 

 

 

 

 

 

 

Fig. 3.3 Inclined Impact-sliding Fatigue Test 
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CHAPTER 4 

INFLUENCE OF THE CURRENT MODE ON THE PLASMA 

ELECTROLYTIC OXIDATION (PEO) PROCESS PERFORMANCE 

AND IMPROVING THE CORROSION PROPERTIES OF THE 

COATINGS ON THE MG AJ62 ALLOY 

Published in: 

- Hussein R.O., Zhang P., Xia Y., Nie X. and Northwood D.O (2011) The effect of 

current mode and discharge type on the corrosion resistance of plasma electrolytic 

oxidation (PEO) coated magnesium alloy AJ62, Surface & Coatings Technology, 

206 (7) , pp. 1990-1997. 

- Hussein R.O., Zhang P., Northwood D.O. and Nie X. (2011) Improving the 

corrosion resistance of magnesium alloy AJ62 by a plasma electrolytic oxidation 

(PEO) coating process, Corrosion and Materials 36 (3), pp. 38-49. 

4.1 Introduction 

With the aim of improving the characteristics of the PEO coatings, many attempts have 

been made to improve the supplied current regimes, suggesting different forms and 

duration of the current pulses [1,2]. The properties of the plasma discharges themselves 

in the bipolar current mode differ from those of the discharges obtained with a unipolar 

current mode. From the plasma discharge point of view, a significant reduction in the 

strong discharges [3] can reduce the detrimental effects associated with such discharge 

events. Recent studies on the effect of power supply modes on PEO coating properties 

have paid more attention to the bipolar current mode. Various researchers [4-6] have tried 

to modify the morphology and structure of the oxide coatings by altering the nature and 

intensity of the sparks produced during the PEO process. Gnedenkov et al [4] utilized a 

pulsed bipolar current mode to fabricate a dense and uniform oxide layer with a fine-

grained microstructure on a MA8 magnesium alloy. A high corrosion resistance (Rp 

=3.3×10
5
 Ω cm

2
) was reported for the coated alloy made with a silicate-fluoride 

electrolyte.  
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A study by Zhang et al [7] on the AJ62 Mg alloy coated using the PEO process and a DC 

unipolar current mode showed that as the coating thickness increased, the galvanic 

corrosion resistance was improved. Also they showed that 5 micrometers of coating 

thickness effectively prevent the galvanic corrosion of magnesium, and did not 

significantly affect the heat transfer properties. The present study investigated the effect 

of current modes on the plasma discharge behavior and plasma temperature which were 

believed to have a significant effect on morphology and microstructures of the resultant 

oxide coatings for the Mg alloy. Thus, in this work, the PEO process operated at two 

different current modes (i.e., unipolar and bipolar pulsed DC current modes) with 

different electrical charge ratio CR to produce oxide coatings on an AJ62 magnesium 

alloy substrate. The application of both current modes, and the effect on coating 

morphology, structure and corrosion protection properties are discussed with respect to 

the plasma discharge behaviour and plasma temperature profiles. 

 

4.2. Experimental Procedures 

4.2.1 Materials and PEO Processing Method 

Since the current mode plays a significant effect in providing the appropriate conditions 

for the formation of a corrosion resistant layer on magnesium alloy produced by the PEO 

process, the PEO coating process was carried out using two different current modes: 

- A unipolar pulsed-DC mode (UPDC), i.e. under only positive polarization of the 

metal electrode operating at 2 KHz and duration time of 80% duty cycle (Fig. 4.1(a)). 

The specific frequency was chosen based on the dependence of coating growth rate 

and coating characteristics to current frequency [8].  

- A Bipolar current mode (BPDC), comprising two components i.e., a positive 

component and a negative component (Fig. 4.1(b)). In each pulse, the pulsed current 

reached its maximum, after which it remains constant for T0n time. In this work, it is 

represented by    
  , whereas,  corresponded to     

 +   
 +     

 .        

- Two different current generators (MPE Magna-power supply and MDX Magnetron 

Drive) were used, which deliver current to the substrate with an amplitude in the 

range of 0-5 A and 0-15 A respectively. These power supplies were specially 

designed to allow independent control over the main pulse parameters, such as pulse 

offT
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duration, amplitude and duty cycle, during both positive and negative biasing 

obtained using a Spik 2000A controller.  

 

 

 

 

 

  

 

 

 

 

 

Figure 4.1. Schematic form of the (a) unipolar and (b) bipolar current waveforms, 

showing the main controllable parameters of the pulses.  

 

The charge ratio parameter, CR, is introduced to represent the ratio of positive to the 

negative charge quantity: 

   
  

  
 

∫        
   
 

∫        
        

   

                                     4.1 

where I
+
 and I

-
 represent the values of the positive and negative currents respectively. 

Both pulse duration and current density were controlled in order to provide appropriate 

conditions to attain desirable coating morphology and microstructure. Process 

parameters, such as the frequency (f=1/T, where T is the pulse period), the duration of 

each pulse (   
  and    

-
 , the period of positive and negative pulse respectively) and the 

resting gap (break) between the positive and negative pulses (     
 and     

   respectively) 

are listed in Table 4.1.  
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Table 4.1.  PEO Process parameters for coating depositions on Mg 

Sample Current 

mode 

Time 

(min) 

I
+
 

(A) 

I
- 

(A) 

   
  

     

    
  

     

   
  

     

    
  

     

CR 

S1 Unipolar 45 1.0 N/A 400 100 N/A N/A N/A 

S2 bipolar 45 1.0 0.9 400 100 400 100 0.74 

S3 bipolar 45 1.0 0.7 400 200 600 100 0.63 

S4 bipolar 45 1.0 0.5 400 100 600 100 1.0 

 

AJ62 Magnesium alloy disc coupons (Φ25×7mm) were used after grounding and 

polishing as the test samples in this study. The coating was obtained in an alkaline 

electrolyte containing sodium aluminate (10g/l Na2Al2O4) and potassium hydroxide (~1 

g/l KOH) added to balance the pH at 12. The temperature of the electrolytes was kept 

below 25 
o
C by a water cooling system. Scanning electron microscopy (JEOL 2100 

operating at 15 KV and FEI Quanta 200 FEG with solid state backscattered detector 

operated at 10 KV) in both the secondary electron and back-scattered electron (BSE) 

modes was used to observe both the coating surface morphology and coating thickness 

and integrity through observation of sample cross sections. The samples were first 

sputtered with a gold film to make conductive before SEM analysis. The phases in the 

coatings on the Mg were studied by X-ray Diffraction (XRD) analysis using a Siemens 

D5000 X-ray powder diffractometer with Cu Kα radiation.  

 

4.2.2 Electron temperature measurement using OES. 

The main characterization of the micro-discharges was performed by means of optical 

emission spectroscopy (OES). Light emission of the discharges was collected using one 

spectrometer; this spectrometer has 4 channel slots, each of which covers a certain 

wavelength region. Six different spectral lines were recorded simultaneously, which 

eliminates discrepancies that may otherwise happen if the spectra are recorded at 

different times or with different samples. Spectroscopy with the OES spectrometer was 

utilized to examine the spectral lines (Table 4.2) [8] at 285.2 nm (Mg I), 383.8 nm (Mg 
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I), 518.3 nm (Mg I), 486.1 nm (Hβ), 589.5 nm (Na I), and 777 nm (OI). Atomic and ionic 

spectral lines were identified using the NIST online spectral database [9]. 

The plasma studied here falls into the category of optically thin plasma [10]. The relative 

intensities of spectral lines of the same atomic species can be used to calculate the plasma 

electron temperature. Once relative intensities are known, the temperature corresponding 

to a given line ratio is [10]: 

       
    

    
 

                

                
    {

           

  
}                                                                      4.2 

where kT is the thermal energy, I(1) and I(2) relative line intensities of lines of the same 

species in question, Amn(i) the transition probabilities, m the upper and n the lower level 

of the respective lines, gm(i) the statistical weight of the upper levels, Em(i) energies of the 

upper levels of lines and    (i) the wavelengths of the line centers in vacuum. Equation 

(4.2) is valid if the level populations of the lines in question are populated according to 

the Boltzmann law: in other words, at least partial thermodynamic equilibrium (LTE) 

must exist for these levels. 

Table 4.2. Spectral lines observed in this experiment with the wavelength (λ), transition, 

statistical weight of the upper and lower state gk and gi (respectively), energy difference 

and the transition probabilities (Aki) [9]. 

Line λ 

nm 

Transition gk gi Energy 

eV 

Aki 

    S
-1

 

Mg I 285.2 3s3p 
1
P → 3s

2
 
1
S 3 1 4.34 5.00 

Mg I 383.8 3s3d 
3
D → 3s3p 

3
P 7 5 3.22 1.68 

Mg I 518.3 3s4s 
3
S → 3s3p 

3
P 3 5 2.38 0.57 

Hβ 486.1 4d 
2
D → 2p 

2
P 4 2 2.55 0.172 

Na I 589.5 3p 
2
P → 3s 

2
S 3 3 1.36 0.614 

O I 777.2 2s
2
2p

3
 3p 

5
P → 2s

2
2p

3
 3s 

5
S 3 5 1.59 0.369 

 

The emission intensities of the selected Mg spectral lines were simultaneously recorded, 

and the intensity ratio of 518.3 nm (Mg I) to 383.8 nm (Mg I) (from the same ionization 

stage) was used to calculate the plasma electron temperature (Te) based on the partial 

thermodynamic equilibrium model (LTE). Since it has negligible effects, the line 

broadening effect was ignored in this experiment.  
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4.2.3 Corrosion Testing 

To determine the corrosion resistance of the PEO coating, potentiodynamic polarization 

in a 3.5% NaCl solution tests were carried out at 25±2 
o
C using a Solartron 1285 

Potentiostat with Corrware software. A three electrode cell with the samples as the 

working electrode, an Ag/AgCl/sat KCl reference electrode, and platinum as a counter 

electrode, was used in the experiments. When the corrosion potential remained stable, the 

potential was scanned from -0.15 V versus open circuit potential, up to -1.25 V versus the 

open circuit potential (OPC) at a rate of 1.0 mV/s. 

Electrochemical impedance spectroscopy (EIS) was also used, through a frequency 

response analyzer which enabled the scan to be generated automatically under computer 

control. A three electrode cell with both the uncoated and PEO coated samples as the 

working electrode, exposing 1.0 cm
2
 of area to the solution during electrochemical 

measurements, an Ag/AgCl/sat KCl reference electrode, and platinum as a counter 

electrode, was used in the experiments. The EIS technique was employed using a 3.5 wt 

% sodium chloride solution and the impedance spectra were acquired over the frequency 

range between 100 mHz and 200 kHz with an AC signal amplitude of ±10 mV with 

respect to the open circuit potential (OCP). All EIS data were analyzed by curve fitting 

and equivalent circuit modeling using EC-Lab®   electrochemical analysis software 

version 10.02. Measurements were performed three times to ensure reproducibility of the 

results. Electrochemical impedance spectroscopy (EIS) measurements were performed at 

the open circuit corrosion potential on the PEO coatings after different initial delay times 

to stabilize the open-circuit potential (OCP). 

 

4.3. Results and Discussion 

4.3.1 Optical Emission Characterization and Plasma Electron Temperatures  

In this experiment the OES spectrometer was utilized to examine the atomic spectral lines 

from the neutral atoms at 383.8 nm (Mg I). As the plasma coating process proceeds, the 

discharge appearance changes and the plasma emission intensities varied as shown in Fig. 

4.2. 
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Figure 4.2. Typical time variation of the emission line intensity during the PEO process  

(a)  unipolar current mode and (b)  bipolar current mode. 

 

Based on our discharge model [3], the Mg emission intensity signals were due to three 

different types of discharge which are classified according to the origins of such signals. 

The B-type discharge is due to dielectric breakdown in a strong electric field occurring 

through the oxide layer. The radiation intensities of the species are related to the 

excitation caused by electron impact under the high electric field imposed in the 

discharge channel. The A and C types of discharge are due to gas discharges occurring in 

micropores of the oxide film: type A are from the surface holes while type C are 

discharges in the relatively deep holes. While the high intensity spikes mainly correspond 

to B-type discharges, the remainder of the intensity profile was related to A and C 

discharges. Since the B-type discharge was the strongest, it would have the greatest effect 

on the plasma temperature, and hence on the surface morphology and coating 

microstructure. 

Fig. 4.2(a) shows the emission intensity profile for the Mg emission line using a unipolar 

current mode for a total treatment time of 30 min. As the PEO process proceeded, strong 

variations in the microdischarges were observed. When looking at the variation of the Mg 

emission line (Mg I 384 nm) as shown in Fig. 4.2(a), one distinguishes the strong 

discharges effects, where the curve shows many intense spikes which correspond to 

strong discharges initiated from the magnesium surface-coating interface. The spike 

height increases as the process proceeds, especially for process times longer than 25 

minutes. One of our main goals of this work is to eliminate such strong discharges (B-
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type discharge), therefore, a bipolar current mode was used for that purpose. Fig. 4.2(b) 

shows the emission intensity profile of Mg I 384 nm for the bipolar current mode. The 

spikes on this curve were reduced dramatically which may be due to the presence of the 

negative part of the current pulse and the off time of both the positive and negative parts 

of the pulses. Such an effect would allow enough time for the sample to cool down until 

the next discharge starts to appear.  

The intensity ratio of the recorded 383.8 nm (Mg I) to 518.3 nm (Mg I) spectra (IMg (3d → 

3p) / IMg (4s → 3p)) was used to determine plasma electron temperature (Te). The temperature 

results of experiments carried out under different conditions (Table 4.1) are presented in 

Fig 4.3.  

 

Fig. 4.3. Plasma temperature as a function of treatment time (min) determined from the 

intensity ratio of IMg (3d → 3p) / IMg (4s → 3p), for the samples S1 (at unipolar current mode), 

and S2-S4 for the bipolar current mode. 

 

10 20 30 40 50

2000

3000

4000

5000

6000

7000

T
e
 (

K
)

Treatment time (min)

unipolar ( S1)

(a)

10 20 30 40 50

2000

3000

4000

5000

6000

7000

Bipolar  C
R
=0.74 (S2)

T
e
 (

K
)

Treatment time (min)

(b)

10 20 30 40 50

2000

3000

4000

5000

6000

7000

T
e

 (
K

)

Treatment time (min)

Bipolar C
R
=0.63 (S3)

(c)

10 20 30 40 50

2000

3000

4000

5000

6000

7000

Bipolar  C
R
=1.0 (S4)

T
e
 (

K
)

Treatment time (min)

(d)



 

46 
 

It can be seen that the temperatures measured are in the range of 3300 - 7000 K for the 

unipolar case and for the bipolar case the range depends on the I
+
/I

-
 current ratio and the 

phase current and the pulse duration time. For the S2 case the range is 3300 - 4500 K 

whereas for the S4 case the range is 3300-6800 K. The low temperature range (~3300 K) 

corresponds to the early stage discharges.  

Fig. 4.3(a) shows plasma temperature profile for the unipolar current mode (S1), where 

the temperature fluctuated around 3300 K within the first 10 min, then the curve started 

to show a high number of closely-spaced temperature spikes ranging from 3300-4500 K 

with some of them reaching more than 6000K. These spikes corresponded to relatively 

strong discharges initiated from the sample surface-coating interface, the so-called B-type 

discharge [3], whereas the base line average is at ~3500 K. For the bipolar case S2 where 

CR-0.74 the curve shown in Fig. 4.3(b) shows that the small spikes start to appear after 20 

min, however, these spikes are less frequent and cooler than that of the other samples. 

The temperature was less than 4500 K which may be attributed to the negative current 

phase as well as the timing of the pulses. Hence, it is believed that the strong B-type 

discharges were reduced or eliminated Fig. 4.3(b). For the case of S3, within the 30 min 

after the start of the process the temperature is in the range 3300 - 3500 K. The average 

base temperature then started to increase to around 3500 K as can be seen from Fig. 

4.3(c), and the maximum temperature was less than 6000 K. For the bipolar case S4 

where CR -1.0 the curve shown in Fig. 4.3(d) shows that after 18 min from the start of the 

process, the spikes begin to appear with less density but the temperature reaches nearly 

7000 K in some cases. The competition between the current phases from one side and the 

pulse durations from the other side can have a significant influence on the discharge 

mechanisms of the PEO process. Therefore, the Te profile depends strongly on the type of 

discharge and the current mode, and by using a bipolar current mode, the strong 

temperature spikes (due to B-type discharges) could be suppressed, or only appear at later 

times.  

 

4.3.2 Surface morphology and coating cross section. 

The surface morphologies of three sets of PEO coatings, prepared under the process 

parameters listed in Table 4.1 are shown in the SEM micrographs in Fig. 4.4. However, 
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sample S1, which was fabricated with the unipolar current mode, contained relatively 

large holes, Fig. 4.4(a). Some microcracks appeared on the coating surface, which could 

be attributed to the thermal stresses during the progress of coating as a result of melting 

and solidification of the ceramic compounds such as magnesium oxide [11]. Samples S2 

and S3, which were fabricated using the bipolar current mode, Fig. 4.4 (b-c), showed a 

reduction in pore density and size. Such morphology was expected since both the number 

and strength of the strong B-type discharges were reduced by using the bipolar current 

mode, mainly due to the negative part of the pulses, as well as the off time of the pulses. 

Compared to sample S3, sample S2 showed an increase of small curly projections which 

added more irregularity to the surface morphology. The effect of the negative part of the 

pulse is critical, since it acts to dramatically reduce the effect of the strong B-type 

discharges, i.e. there will be a balance of the discharge effect. By allowing enough time 

for the oxide to cool down before other pulses were initiated, provides for longer 

sintering times and, therefore, a thick and hard coating with minimum porosity was 

produced.  

                       

Fig. 4.4. SEM micrographs showing surface morphology of oxide coating on an Mg 

AJ62 alloy for: (a) unipolar and (b-c) bipolar current modes. 

Fig. 4.5 shows the SEM micrographs of cross-sections of the PEO coated Mg samples at 

two different current modes for treatment times of 45 min obtained using (a) back-

scattered electron mode (BSE) and (b) secondary electron mode. Back-scattered electrons 

emerge from an appreciable depth (a few micrometers), and BSE images are better able 

to reveal features such as microporosity and microcracks which appear as a fine network 

of channels. All coating-substrate interfaces had a wavy-jagged appearance, which may 

be the result of dissolution of the substrate in the early stages of the treatment. The 

S1 S2 S3 

 

10 µm 

 

10 µm 

 

10 µm 

(a) (b) (c) 
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coating-substrate interface appears to follow the α-Mg grain boundaries which are often 

decorated with the (Al, Mg)4Sr and Al3Mg13Sr intermetallics [28]. The BSE images for 

S2 given in Fig. 4.5 shows some evidence of intermetallics being retained at, or near, the 

coating/substrate interface. A similar interface appearance has been seen in a PEO-coated 

AM50 magnesium alloy [22]. This irregularity in the coating/substrate interface has a 

beneficial effect in improving the adhesion between the coating and substrate. The 

transverse section clearly shows that the coating is composed of two distinct layers, a 

porous outer layer on top of a denser inner layer. Also, there is evidence of a network of 

through-coating defects (micro cracks). Coating S1 at the unipolar current mode 

presented relatively porous microstructures, Fig. 4.5 (S1).  

The coating appeared to have significant connected porosity, holes and other structure 

defects existed within the coating and near the coating/substrate interface, which would 

have a detrimental effect on the corrosion resistance, since localized electrochemical 

impedance spectroscopy on a PEO-coated MA8 magnesium alloy has shown that the 

corrosion process develops predominantly at the Mg/coating interface [13].  

The coating thickness after the 45 min treatment time was about 40-60 µm at different 

locations of the cross section, and the loose layer accounts for about 30% or so of the 

total thickness. Such defects and porosity were likely caused by the strong B- type 

discharges. The high temperature generated by strong discharges melted the oxide and 

then some gases were likely trapped in the interface layer between the substrate and the 

coating.  

By using the bipolar current mode, there will be a balance of the discharge effects. The 

Toff duration should be long enough for the local molten oxide to be cool down before 

another pulse were initiated, while the Ton provided a long enough time for sintering and 

therefore a thick and hard coating with minimum porosity was produced. An inner layer 

was found underneath the relatively thin porous top layer in coatings S2 and S3, Fig. 

4.5(S2-S3), obtained with the pulsed bipolar current mode, with a smooth surface  and 

less porosity and defects close to surface/coating interface compared to S1. Fig. 4.5(S2) 

shows the oxide coating on samples S2 having thickness about 35-45 µm with very thin 

loose layer, while, the lower inner (dense) layer appeared to be smooth with minimum 

porosity. 
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Fig. 4.5. SEM micrographs using (a) back-scattered electron mode and (b) secondary 

electron mode of a polished section of coatings on an Mg AJ62 alloy by means of 

unipolar (S1) and bipolar (S2-S4) current modes.  
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It is clear that beside the improvement of the surface morphology, Fig. 4.4(b), which 

results in formation of dense surface layer with less porosity and defects, the cathodic 

component of the bipolar current might suppress the strong discharges through draining 

out the electrical charges accumulated in the positive phase. The S2 sample was applied 

with the largest negative current, thus the strong discharges and plasma temperature 

spikes were reduced significantly, Fig. 4.3. As a result, the coating on S2 had a dense 

microstructure. However, the coating growth rate was slowed down. Compared to the 

sample S2, the sample S3 showed a thicker coating with relatively more porosity in the 

inner layer, Fig. 4.5 (S3).  The thickness of the oxide layer was in the range of 40-55 µm, 

and the ratio of outer loose layer thickness over the total coating thickness was less than 

24%.  Compared to samples S2 and S3, sample S4 showed a thicker coating, about 55-80 

µm, with relatively more porosity in the dense layer with some microcracks, Fig. 4.5(S4).  

The phase composition and thickness of the coatings affect the corrosion resistance of the 

coatings. XRD analysis of the PEO coatings indicated that all the PEO coatings were 

mainly composed of MgAl2O4 and MgO. The melting point of the magnesia-alumina-

spinel, MgAl2O4, is 2135°C, and the presence of MgAl2O4 in the oxide layer is known to 

improve the corrosion resistance of Mg alloys. Ma et. al. [1] showed that an enrichment 

of the MgAl2O4 spinel phase in the coating, together with the minimum amount of cubic 

MgO, improves the corrosion resistance of the coating. The XRD patterns for PEO oxide 

coatings on a AJ62 alloy have previously been reported [7]. The coatings were composed 

of MgAl2O4 and the MgO phases. The (220), (311), (440) and (531) peaks of the 

MgAl2O4 phase were identified. The (200) and (220) peaks of MgO phase were found on 

all coatings. The (311) and (531) peaks of the MgAl2O4 phase overlapped with those of 

the Mg substrate. These phase compositions have recently been confirmed using a 

transmission electron microscopy (TEM) analysis using a unipolar mode [14].  

 

4.3.3 Corrosion Properties of the Coatings 

4.3.3.1 Potentiodynamic Polarization (E-I) Characteristics 

The overall corrosion reaction of magnesium in aqueous environments which is generally 

an electrochemical reaction with water generating magnesium hydroxide and hydrogen 

gas [29, 30]:  
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Mg + 2H2O → Mg(OH)2 + H2        4.3 

This overall reaction may be divided into the following anodic and cathodic partial 

reactions: 

Mg → Mg
2+

 + 2eˉ (anodic/oxidation reaction)      4.4 

2H2O + O2 + 4eˉ → 4OHˉ (cathodic/reduction reaction)     4.5 

Mg
2+

 + 2OHˉ → Mg(OH)2 (product formation)      4.6 

While the corrosion reaction of magnesium alloys has not yet received efficient study, 

Song et al [31] show that the above overall reaction of pure Mg are also applicable for the 

corrosion processes of AZ91D Mg alloy. However the existence of the alloying elements 

(Al, Zn) will have some effects on the reactions.  

Fig. 4.6 shows the potentiodynamic polarization curves of the uncoated AJ62 Mg alloy 

(S0) and the PEO coated specimens using either unipolar or bipolar current modes 

(curves S1 and S2-S4 respectively). The corrosion potentials, corrosion current density, 

and anodic/cathodic Tafel slopes ba and bc were derived from the test data. Based on the 

approximately linear polarization at the corrosion potential (Ecorr), the polarization 

resistance (Rp) was determined from the following equation [15]: 

)(3.2 cacorr

ca
p

bbi

bb
R


                                             4.7 

where icorr is the corrosion current density. A summary of the results of the 

potentiodynamic corrosion tests in a 3.5% NaCl solution is given in Table 4.3. The data 

clearly show the enhanced corrosion resistance afforded by the coatings.  

 Coating S1 exhibits the lowest corrosion potential and polarization resistance but highest 

corrosion current density. The porous structure leads to the poorer corrosion resistance of 

the coating. Comparatively, coatings S2-S4, having a thick and relatively dense oxide 

layers, present higher corrosion potentials and polarization resistances but lower 

corrosion current densities than the coating S1.  
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Fig. 4.6. Potentiodynamic polarization curves of the uncoated (S0) and coated samples 

using unipolar (S1) and bipolar (S2-S4) current modes. 

 

Table 4.3.  Potentiodynamic polarization corrosion test results in3.5%wt NaCl 

solution 

 S0 S1 S2 S3 S4 

Ecorr (V) -1.58 -1.54 -1.416 -1.448 -1.422 

Icorr (µA/cm
2
) 2.24×10

+1
 5.39×10

-1
 1.20×10

-2
 1.50×10

-2
 4.30×10

-2
 

βa (V) 0.19 0.14 0.07 0.06 0.09 

βc (V) 0.05 0.08 0.06 0.13 0.10 

Rp (Ω·cm
2
) 7.11×10

+2
 4.10×10

+4
 1.24×10

+6
 1.19×10

+6
 4.72×10

+5
 

Pi (mm/year) 5.12×10
-1

 1.23×10
-2

 2.74×10
-5

 3.43×10
-5

 9.83×10
-5

 

 

Since the bipolar current mode produces a thicker and denser coating, samples S2-S4 

show a higher polarization resistance up to 1.24×10
6
 Ω for S2 case (see Table 4.3) and 

lower corrosion current density than sample S1 coated by unipolar current mode, with a 

S1 
S0 

S2 
S3 

S4 

Log I (A/cm
2
) 

P
o
te

n
ti

al
 (

V
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polarization resistance of 4.10×10
4
 Ω and higher corrosion current density. Although the 

sample S4 has a thicker coating than S2 and S3, its corrosion resistance is lower than 

those of S2 and S3. This is likely attributed to the micro cracks and relatively porous 

inner layer. It is expected that a thicker coating gives rise to better corrosion resistance. 

However as the porosity level in the unipolar sample coating (S1) was quite high, it 

exhibited a lower corrosion potential compared to samples S2-S4 prepared using a 

bipolar current mode. Therefore, for better localized corrosion resistance the coating 

needs to be not only thicker, but also should be free from defects such as porosity 

[11,16]. The properties of the plasma discharges themselves in the bipolar current mode 

differ from those of the unipolar one. An increase of the A and C discharge types, and 

decrease of strong B discharges, moving over the surface being oxidized, have a 

significant effect on the coating properties, where a dense coating morphology could be 

achieved by adjusting the positive to negative current ratio and their timing to eliminate 

or reduce the strongest plasma discharges and thus the high temperature spikes [3]. 

In the potentiodynamic polarization method for measuring the corrosion rate of Mg 

alloys, the corrosion current density, icorr (μA/cm
2
) can be related to the average corrosion 

rate, Pi (mm/year) by the Stern–Geary equation [17]: 

        4.8

 

where M is the atomic mass in g, ρ is the density in g/cm
3
 of Mg and icorr is the corrosion 

current in μm/cm
2
. The corrosion current density, icorr (µA/cm

2
) can be related to the 

average corrosion rate, Pi (mm/year) by equation (4.9). 

Pi = 0.02285 × icorr          4.9 

The calculated values for Pi are also given in Table 4.3. Whilst it is recognized that 

corrosion rates obtained from Tafel extrapolations differ from those obtained from weight 

loss or hydrogen evoluation measurement [17], they do illustrate the protective nature of 

the PEO coatings.  

It is illustrative to compare our measured corrosion rate (Pi values) with other data in the 

literature for uncoated Mg and Mg alloys in 3.5 wt % NaCl solutions at ambient or near-

ambient temperature: see Table 4.4. The corrosion rate measured for AJ62 alloy is, in 

general, consistent with other data in the literature. The corrosion rates are influenced by 

corri i
M

p
2

1028.3 3


http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0145


 

54 
 

many factors including alloy composition, microstructure and phase distribution, 

temperature and environment [18]. All data in Table 4.4 are for 3.5 wt % NaCl solutions. 

The effect of temperature is nicely illustrated by the data for AZ91D where there was a 

significant increase in corrosion rate on increasing the temperature from 20 
o
C to 35 

o
C. 

Another important factor is time of immersion in 3.5 wt % NaCl before performing the 

potentiodynamic polarization testing. Shi et al [17], for instance, have shown Pi can vary 

from 0.9 to 1.8 mm/year for pure Mg and from 0.2 to 7.3 mm/year for AM60 alloy when 

the immersion time is varied from zero minutes to 7 days. Our data for the AJ62 alloy 

were obtained for an immersion time of 30 minutes. 

 

Table 4.4. Corrosion rate data for uncoated (bare) magnesium and magnesium 

alloys from potentiodynamic polarization studies in 3.5 wt % NaCl solutions. 

Mg alloy Temperature (
o
C) icorr (µA/cm

2
) Pi (mm/year) Reference 

AJ62 25±2 22.4 0.51 Current study 

Mg pure 25 12.5 0.29 19 

AZ91D 35±2 112 2.55 20 

AZ91D 20±2 6.2 0.14 21 

AM50B 20±2 12 0.28 21 

AM60B 20±2 8.2 0.19 21 

AZ31B 20±2 8.9 0.20 21 

 

4.3.3.2 Electrochemical Impedance Spectroscopy (EIS) Measurements 

The Nyquist diagrams are given in Fig. 4.7. The electrochemical properties of the 

coatings were examined using electrical equivalent circuits representing the various 

elements of the coatings. Taking both the physical structure of the PEO coatings and their 

impedance responses into account, and based on previous studies [22] an equivalent 

circuit model for the PEO-coated specimens was developed. Different combinations of 

elements (such as resistor, capacitor, and Warburg diffusion) in different sequences (i.e. 

parallel, series) were tried. The impedance data were analyzed using EC-Lab
®
   software 

and best-fitted to the appropriate equivalent circuit model. In the fitting method, a 

combination of randomize followed by the most widely used optimization algorithm, 

Levenberg-Marquardt fitting, was used [23]. A randomization has been added before the 
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fitting in order to help the algorithm to find the best couple of parameter values as close 

as possible to the real one (with minimum X
2
 value). The goodness of the fit for this 

method is around X
2 

≤ 1.  X
2
 used in this method is defined as follows [24]: 

              4.10 

where Zmeas (i) is the measured impedance at the fi frequency, Zmodel (fi, param) is function 

of chosen model, f is the frequency, param is the model parameters (ex: Rs, CPE1,…) 

and σi is the standard deviation. Taking both the physical structure of the PEO coatings 

and their impedance responses into account, and based on previous studies, the model 

chosen for the fitting was a commonly used model for PEO [12,22,25] and other ceramic 

coatings [26]. The choice of the circuit was a balance between a reasonable fitting of the 

experimental values and a good description of the electrochemical system by keeping the 

number of circuit elements at a minimum.  It is recognized that any electrode process is 

complex and usually consist of a many different sub-processes. The sub-processes 

include both mass transfer and charge transfer and can be in series or parallel with each 

other [27].More complex equivalent circuits have been proposed by Ghasemi et al [12] 

for PEO-coatings produced with KOH/Na3PO4 and KOH/NaAlO2 electrolytes. In this 

model, a more general Constant Phase Element (CPE) was used instead of a capacitive 

element, which reflects the distributed surface reactivity, surface roughness, electrode 

porosity, and current and potential distributions associated with electrode geometry [27].  

The proposed equivalent circuit (Fig. 4.8) consists of two time constants. RS is the 

solution (electrolyte) resistance. R1 is the coating resistance (virtual pore resistance [28]) 

which is parallel with a constant phase element CPE1 (CPE1 in model of Ryu et al [28]).  

CPE2 is the constant phase element for the double layer capacitance of the interface 

electrical double layer at or near the coating/substrate interface. R2 represent the 

polarization resistance which is the Faradic charge transfer resistance related to 

electrochemical reactions in the same coating/substrate interface region [15]. The use of a 

frequency-dependent CPE (Fs
n−1

cm
−2

) instead of pure capacitance will give better fitting 

between the theoretical and experimental data [22,23] due to a distribution of the 

relaxation times as a result of inhomogeneities in the morphologies, such as surface 
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roughness/porosity, or diffusion. The impedance of CPE is expressed by the following 

equation: 

                    4.11 

where ZCPE (Ωcm
2
) is the impedance of the constant-phase-element. The Q is CPE 

constant (Ω
−1

s
n
cm

−2
) is a combination of properties related to both the surface and the 

electroactive species, and is independent of frequency, j is the imaginary unit ( ),   

is the angular frequency (1 rad/s) of the sine wave being considered as , f is the 

frequency in Hz; the value of n ranges between 0 and 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. Nyquist diagrams of the EIS tests (a) S1, (b) S2, (c) S3 and (d) S4; the dots 

represent the experimental data; the solid lines correspond to the simulated values based 

on the equivalent circuit model. 

Depending on the value of exponent n, the physical meaning of the CPE of the circuit can 

be related to pure resistance (n=0), pure capacitance (n=1), pure inductance (n=−1), or 

mass transport related impedance, i.e. Warburg impedance (n=0.25–0.5).  

1

f 2

(a) S1 (b) S2 

(d) S4 
(c) S3 
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A good fit was observed between the experimental data and the simulated values (Fig. 4.7 

(a) and (b)). The circuit elements calculated from the fitting are summarized in Table 4.5.  

 

 

  

 

 

 

 

 

Fig. 4.8 The equivalent circuit model for coated samples. 

 

Table 4.5. Equivalent circuit data 

 
S1 S2 S3 S4 

Rs (Ω·cm
2
) 20 25 27 28 

CPE1-Q (µF/cm
2
 s

1-n
) 5.11 0.59 0.69 0.22 

CPE1-n 0.5378 0.5296 0.5631 0.5256 

R1 (Ω·cm
2
) 3.91E+04 4.7 E+05 2.4 E+05 6.3 E+03 

CPE2-Q (µF/cm
2
 s

1-n
) 0.076 2.97 4.64 1.01 

CPE2-n 0.9195 0.5664 0.7026 0.7752 

R2 (Ω·cm
2
) 3.19E+02 2.33E+06 1.56E+06 2.29E+05 

Rtotal  (Ω·cm
2
) 3.94E+04 2.80E+06 1.80E+06 2.35E+05 

 

The n values that are close to 0.5 for CPE1 indicates a diffusion (mass transfer) process 

of oxidized and reduced species. Diffusion components can be readily seen by the 

diffusion tails in the Nyquist diagrams for S2 and S3 coatings: see Fig. 4.7 (b) and (c). 

The relatively high coating resistance (R1) and lower coating capacitances (CPE1) of 
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bipolar samples S2 and S3 compared to the unipolar sample S1, reflect the smaller 

amount of ionic conducting pathways which could be pores or microcracks in the bipolar 

coatings. The very high R2 resistance values for samples S2 and S3 compared to S1 and 

S4 indicates that the microstructure at the coating/substrate interface in these two samples 

(S2 and S3) acts as a much better barrier to penetration of the aggressive electrolyte to the 

metal substrate. It is interesting to note that the values obtained by EIS for the total 

resistances of the coating R1 + R2 (see Table 4.5) follow the same order, S2>S3>S4>S1, 

as for Rp in the potentiodynamic polarization tests. 

 

4.4. Discussion 

The influence of current mode and pulse duration on the coating morphology, thickness 

and corrosion resistance was significant. The use of the unipolar current mode results in 

the production of significant porosity and other structural defects, eg microcracks, which 

degrade the coatings, corrosion resistance. The application of a bipolar mode with a 

cathodic component, changes the sample surface morphology, resulting in the formation 

of a thicker and denser inner layer with fewer defects, and a thin, porous outer layer. The 

properties of the plasma discharges themselves in the bipolar current mode differ from 

those of the unipolar one. An increase of the A and C discharge types, and decrease of 

strong B discharges [3], moving over the surface being oxidized, have a significant effect 

on the coating properties. The cathodic component not only helps to eliminate, or at least 

reduce, the strong B-type discharges during the subsequent anodic period, but also 

directly affects the coating growth process. By reducing or eliminating the strong B-type 

discharges, and hence reducing the high temperature spikes, the average plasma 

temperature was to some extent also decreased. However, these reduced temperatures are 

still sufficient to allow reaction between the magnesium and aluminum oxides leading to 

the formation of a surface layer with the magnesium aluminate spinel structure with good 

anticorrosion properties. This confirms the importance of current regimes together with 

the pulse timing in providing appropriate thermodynamic conditions for the formation of 

corrosion resistant PEO layers on magnesium alloys.  
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4.5. Conclusions  

- Two different current modes during the PEO processes in sodium aluminates 

electrolytes were used to produce oxide coatings on an AJ62 alloy. Both modes 

successfully improve the corrosion resistance compared to the uncoated alloy. However, 

the coating made using the bipolar current mode is more beneficial in improving the 

corrosion resistance of the PEO coating than the unipolar current mode.  

- The plasma temperatures were characterized by means of OES, and it was found that 

the plasma temperature vs. process time relationship were different under different 

current operating modes. The plasma temperature spikes were believed to be caused by 

the strongest plasma discharges initiated at the interface between the oxide coating and 

substrate. Controlling or reducing the strong discharges had significant effects on the 

plasma temperature profiles and the quality and characteristics of the coating layers. 

Compared to the unipolar current process, the application of pulsed bipolar current 

resulted in reducing the high spikes on temperature profiles and the average plasma 

temperature. This work showed that by appropriately controlling the ratio of the positive 

to negative pulse currents as well as their timing, the very strong plasma discharges and 

the resulted high temperature spikes could be eliminated and hence the quality of the 

coatings was considerably improved.  

- The results showed that the anions in the electrolyte solution directly contributed to the 

coating formation process. Apart from MgO which is a common phase in the coatings, a 

specific phase, MgAl2O4, resulted from the aluminate electrolyte. 

-This work shows that using a bipolar current mode helps to reduce the strong discharges 

(B-type discharge) that usually cause detrimental defects in the oxide layer for long 

treatment times (typically greater than 30-40 min for magnesium alloys).  This result was 

confirmed by spectroscopic measurements of the discharges during the PEO process. As 

a consequence, thick homogeneous layers may be grown with minimum porosity and 

defects.  

-The electrochemical corrosion experiments show that the corrosion resistance of the 

AJ62 alloy was considerably increased by PEO oxide coating 50 times for unipolar 

current mode and 2000 times for bipolar current mode.  The corrosion resistance of the 

PEO specimens was mainly determined by the structure of the oxide at, or near, the 
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coating/substrate interface. Samples coated using the bipolar current mode exhibit higher 

R2 –values indicating the presence of a good barrier to the penetration of the aggressive 

electrolyte to the metal surface. 
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CHAPTER 5  

PROCESSING-MICROSTRUCTURE RELATIONSHIPS IN THE 

PLASMA ELECTROLYTIC OXIDATION (PEO) COATING OF A 

MAGNESIUM ALLOY. 

Published in: 

Hussein R. O., Northwood D. O. and Nie X. (2014) Processing-Microstructure 

Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy, 

Materials Sciences and Applications (MSA), 5 (3), pp. 124-139. 

 

5.1 Introduction 

The PEO method can be used to form a thick, hard and adherent ceramic coating on the 

surface of Mg alloys, as well as other light weight metals Al and Ti, and their alloys [1-

3]. Many processing parameters can affect the PEO process, including electrolyte 

composition [4], substrate material [5], and electrical parameters, mainly current mode 

and current density [6]. Different current modes have been utilized in the PEO treatment 

including, DC, AC, unipolar and bipolar current modes [2] which play important roles in 

the consequent voltage breakdown, local melting and oxidation of the substrate, 

quenching and re-crystallization processes. Hence, the formation mechanisms for the 

coatings are complex due to the involvement of electro-, thermal-, and plasma- chemical 

reactions in the electrolyte [3,7,8]. 

It has been recognized that when using either DC or pulsed unipolar modes of PEO 

processing for Mg [9], the resulting oxide coating is porous, contains other defects, and is 

only partially adherent. Varying the current mode produces changes in the PEO discharge 

events both in terms of discharge intensity (how strong they are) and discharge density 

(number of discharges). The differences in the nature of the discharges have a profound 

effect on the coating microstructure, thickness, roughness, porosity, hardness, and the 

corrosion resistance of the coated magnesium alloy. PEO coatings formed using a bipolar 

current mode have been reported to have a more compact structure with fewer defects, 

and a more uniform coating thickness compared to coatings formed using a unipolar 

mode [8,10,11].  
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As noted by Dunleavy et al [12], methodologies to obtain quantitative data on the PEO 

discharge events and the associated plasmas, which are integral to the growth mechanism 

and strongly affect both the microstructure and properties of the coating, fall into three 

categories- optical, spectral and electrical. Optical measurements can provide information 

on the duration, size (spatial extent) and spatial distribution of the discharges. Optical 

measurements on Mg have shown discharge event durations of 50 to 1100 µs [8]. 

Electrical measurements can provide information on discharge currents, which are 

typically in the range of 1 to 100 mA [12]. Current density values can also be obtained if 

the discharge diameters are estimated using optical measurements [12]. Spectral analysis 

can provide information on the temperatures, densities and chemical compositions of 

plasmas [13]. 

The spectral diagnostic technique is an effective way to study the physical phenomenon 

in the PEO process by investigating the emission spectra of plasma. Optical emission 

spectroscopy (OES) has previously been applied to the PEO process for the detection and 

analyses of light that is emitted from the plasma species for Al [13,14], Mg [8,15,16] and 

Ti [17] alloys. OES has also been used in the study of coating mechanisms in the PEO 

process [15-18]. The optical emission spectra were recorded and plasma temperature 

profile versus processing time was constructed [13]. In these previous studies, the 

collective behavior of the plasma discharge over the entire surface, rather than the 

individual discharges, was reported. Based on the OES results, and with an assumption of 

local thermodynamic equilibrium (LTE) [19], plasma electron temperatures can be 

calculated using the relative intensities of spectral lines of the same atomic or ionic 

species [19]. Evaluations based on the spectroscopic method for an Al 1100 alloy show 

the electron temperatures to be in the range of 4000 - 7000 K for the unipolar current 

mode and 4000 - 5500 K for the bipolar current mode [15]. 

In this chapter, the plasma-microstructure relationships in the PEO processing of 

magnesium alloy AM60B are studied by optical emission spectroscopy (OES). The 

acquisition system for the plasma spectrum is described, and the effect of hybrid current 

modes (combination of bipolar and unipolar) on the plasma is analyzed through a 

comparison of the plasma spectra and plasma electron temperatures for two different 

hybrid current modes, unipolar followed by bipolar and bipolar followed by unipolar. The 
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single modes, unipolar and bipolar were, used for comparison purposes. The temporal 

characterizations of the lines for Hβ, Hα, Na I and Mg I are used in the analysis. These 

OES observations are then related to the microstructure of the resultant PEO coatings. 

 

5.2 EXPERIMENTAL ARRANGEMENT AND DIAGNOSTIC METHODS 

5.2.1. Material and PEO process  

Due to good ductility and toughness with reasonable yield and tensile properties, AM60B 

magnesium alloy (mass fraction: Al 5.6–6.4%, Mn 0.26–0.4%, Zn ≤ 0.2%, balance Mg) 

disc coupons (Φ25×5mm) were used as the test samples in this study. The coupons were 

manually ground and polished on 240, 400,600, and 1200 grit silicon carbide (SiC) 

waterproof abrasive papers. The coating was obtained in an alkaline electrolyte 

containing 7 g/l K4P2O7, and 3g/l Na2Al2O4 and potassium hydroxide (1 g/l KOH). A 

cooling system maintained the electrolyte at a temperature below 25 
o
C during the 

process.  

The PEO coating system used to produce the oxide coatings consists basically of a 

stainless steel water cooled container with the alkaline electrolyte and a powerful 

electrical source (output 300-1000 V). The stainless steel container acts as a counter-

electrode (cathode) with the coupons as the anode. The electrodes are connected to two 

pulsed DC power supplies (with an amplitude in the range of 0-5 A and 0-15 A) 

operating under a constant current control function (after the initial transitory regime) to 

generate different current waveforms. During the coating process, the voltage was 

increased gradually with process time so as to maintain a preset current density as the 

coating thickness increased. These power supplies were specially designed to allow 

independent control over the main pulse parameters, such as pulse duration, amplitude 

and duty cycle, during both positive and negative biasing using a Spik 2000A controller. 

To examine the effects of current mode on the resultant properties of the coatings, the 

PEO coating process was carried out using different current modes. Four different sets 

were prepared, with each set consisting of four coated samples. The process parameters 

are listed in Table 5.1.  

- Set U (a unipolar pulsed-DC mode) for 30 minutes.   

- Set B (a bipolar current mode) for 30 minutes. 
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- Set H1 used a combined unipolar (H11 for only 15 min) followed by bipolar (H12 for 

another 15 min) current mode for a total of 30 minutes.  

- Set H2 switched the sequence for the unipolar and bipolar modes compared with 

Sample H1 (H21 treated firstly using bipolar current mode; H22 completed the 

treatment using unipolar mode for second 15 minutes) as shown in Fig. 5.1 (a and b).      

Scanning electron microscopy (FEI Quanta 200 FEG with solid state backscattered 

detector operated at 10 KV) in both the secondary electron (SE) and back-scattered 

electron (BSE) modes was used to observe both the coating surface morphology and, 

through observation of sample cross sections, coating thickness and integrity. The 

samples were first sputtered with a gold film to make them conductive for SEM analysis. 

 

Table 5.1  PEO Process parameters for coating AM60B Mg alloy. 

Sample 
 Current mode Time 

(min) 
I

+
 

(A) 

I
- 

(A) 

   
  

     

    
  

     

   
  

     

    
  

     

CR 

U  Unipolar 30 0.7 N/A 400 100 N/A N/A N/A 

B  Bipolar 30 0.7 0.63 400 100 400 100 0.74 

H1 Hybrid 
Unipolar H11 15 0.7 N/A 400 100 N/A N/A N/A 

Bipolar H12 15 0.7 0.63 400 100 400 100 0.74 

H2 Hybrid 
Bipolar H21 15 0.7 0.63 400 100 400 100 0.74 

Unipolar H22 15 0.7 N/A 400 100 N/A N/A N/A 

 

 

 

 

 

Figure 5.1. Schematic representation of the experimental set-up for PEO coatings using 

(b) single current mode and (b) two current modes (hybrid). 
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5.2.2 Optical Emission Spectroscopy 

Passive spectroscopy diagnostics, in which light emitted from the plasma itself is 

recorded, are well established in plasma physics since they are non-destructive, and 

consequently do not affect the plasma. Radiating atoms, molecules and ions can provide 

an insight into plasma processes and plasma parameters, with the possibility of 

performing real time observations. In the passive method, one of the basic underlying 

processes is the excitation of particles (atoms, molecules, ions) by electron impact from 

level q to level k and the decay to level i by spontaneous emission with the transition 

probability Aki resulting in line emission εki.  

The importance of the population models is to determine the quantity of emitted photons 

and its dependency on the plasma parameters. In thermal equilibrium in a plasma, the 

population density of excited states is described by a Boltzmann distribution. However 

this equilibrium is essentially never achieved in laboratory plasmas. Therefore a less 

complete form of thermal equilibrium, known as Local Thermal Equilibrium (LTE), is 

considered [19].  

The observed spectral range was from 200 to 775 nm. A specially designed PC2000-UV-

VIS Fiber Optic Spectrometer (Ocean Optics Company) was used. A 1200 line 

holographic UV for bandwidth 200-500 nm and 1200 line holographic VIS for bandwidth 

450-770 nm gratings with the spectral resolution of 1.0 nm at mid to high sensitivity, 

were used to acquire the total spectrum from 200 nm to 770 nm. The spectral signals 

were then acquired by Sony ILX511B silicon CCD detector which consists of a 2048-

element linear CCD-array (a charge- coupled device array detector). As only relative 

intensities have to be measured, the intensity is in arbitrary units. The intensity of 

spectrum is the cumulative result of an acquiring cycle. Since the discharges occur 

randomly (the source does not always emit equally over the whole sample area), an 

integrated signal was used which was collected from the total sample surface facing the 

fiber optic. Before the experiments, a cross-check of the manufacturer’s spectrometer 

wavelength calibration was done using two different laser beams (He-Cd with λ= 442 nm 

and He-Ne with λ= 632.816 nm). An intensity sensitivity calibration was also performed 

using SL2 calibrated Lamp (StellarNet Inc.): excellent matching was found. 
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The emission intensities of the plasma species were monitored as a function of both time 

and current mode using the OES system. Six different spectral lines were recorded 

simultaneously, which eliminates discrepancies that may otherwise happen if the spectra 

are recorded at different times or with different samples. 

 

 

Figure 5.2.  Atomic level configuration of H- Balmer series and Mg I.  

 

5.3 Diagnostic method 

Plasma emission intensities were measured and analyzed by using optical emission 

spectroscopy to determine the plasma compositions and to calculate the electron 

temperature.  The plasma electron temperature Te, can be determined from the relative 

intensities of spectral lines of the same atomic species [19]. This method is valid if the 

level populations of the lines in question are populated according to the Boltzmann law: 

in other words, at least local thermodynamic equilibrium (LTE) must exist for these 

levels. Figure 5.2a shows the atomic level for hydrogen Balmer series whereas Figure 

5.2b shows the atomic level configuration for magnesium which is a two electron system. 

(a) H 
Balme

 656.2 

(a) H Balmer 
Atomic Level 

 656.2 
 486.1 

(b) Mg I 
Ionic Level 
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The levels are separated into two multiplet systems: a singlet and a triplet system. 

Optically allowed transitions (used in this calculation) which are excited from the same 

energy level are indicated by an arrow and labeled with the corresponding wavelength. 

Energy is measured relative to the ground state 3s 
1
S.  

5.4 Experimental Results 

5.4.1 Voltage behavior 

The voltage behaviour has been shown to be a limiting factor on the intensity of plasma 

discharges during PEO processing [12,20]. Fig. 5.3 shows the average output anodic 

voltage as functions of PEO processing time using four combinations of current modes. 

The average voltage–time profile for PEO process is highly reproducible.  
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Figure 5.3.  Plots of anodic voltage vs. treatment time during the PEO process using: (a) 

unipolar U, (b) bipolar B. (c) hybrid1 H1, and (d) hybrid2 H2 current modes. 

 

Clear differences were seen between the curves for the four current modes. For the 

unipolar current mode, Figure 5.3a the anodic potential raises quicker than that for the 

bipolar current mode, Figure 5.3b. It then continues to rise gradually, reaching ∼510 V 
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after 30 minutes. For H1 current mode when changing the mode from unipolar (H11) to 

bipolar (H12) current mode after 15 minutes, the voltage drops from 500 to 480 V then 

rise gradually to 504V, Fig 5.3c. However, for the H2 when the current mode changes 

from bipolar (H21) to unipolar (H22) after 15 minutes the voltage increased from 490 to 

510 V and then further increased gradually to 520 V (Fig. 5.3d).  

According to the evolution of voltage (for example Fig. 5.3b), the PEO process can be 

divided into four discharge stages, which have been described in detailed by Hussein et al 

[13]. In the early stage of the process, which mainly involves the rapid electrochemical 

formation of an initial insulating oxide film, a sharp increase in the voltage was seen 

where the breakdown voltage is not yet reached. Then the rate of voltage change starts to 

decreases. However, numerous sparks moving rapidly over the whole sample surface area 

start to appear, which indicates a start of the breakdown of the oxide layer. After that the 

rate of voltage increase becomes slower and concentrated discharges appear as relatively 

large and long lasting sparks. Finally, for the last stage, stage IV, the distribution of 

discharge is non-uniform and there are small variations in the voltage values. For hybrid1 

(H1) current mode, the changing of current mode delays the transaction from stage III to 

stage IV (see Fig. 5.3c) however, for H2 mode the current mode change accelerates the 

transition from stage III to the stage IV, which is dominated by the relatively strong 

discharges. 

 

5.4.2 Acquisition of the PEO Plasma Spectra 

The plasma spectrum from 200 to 775 nm for PEO using a unipolar current mode is 

shown in Fig. 5.4. It is found that the plasma spectrum includes both continuous and line 

spectra. The continuous spectrum is generated by free-to-free transitions 

(Bremsstrahlung) of thermo electrons and recombination radiation of electrons and ions 

(free-to-bound transitions). The line spectrum consists of both atomic spectra and ionic 

spectra which may emitted from different plasma regions [16]. Fig. 5.4 shows typical 

emitted spectra in the NUV and visible regions of the plasma discharge, and show that 

the PEO plasma contains magnesium, aluminum and Mn (from substrate, but no spectral 

lines of other alloying elements, such as Zn, due to their low concentrations), silicon, 

oxygen, sodium, potassium, hydrogen α and β Balmer lines (from the electrolyte). The 
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phosphorus lines from the electrolyte were not seen, since P emission in the 270–775 nm 

range comes from energy levels that required 9.5 eV (110000 K) and therefore cannot be 

recorded at the relatively low PEO plasma temperature, ≈ 0.5 eV (5800 K).  
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Figure 5.4.  Typical emission spectrum using two channels of the spectrometer. 

 

5.4.3. Temporal Characterization of Line Spectrum 

In order to study the influence of the current modes on the PEO plasma, it is necessary to 

investigate the changes in plasma spectrum with time. The acquisition frequency is about 

3 Hz. The intensity of spectrum is corresponds to the cumulative result of all discharge 

events during the acquisition period. An OES spectrometer was used to record the key 

spectral lines at 383.8 nm (Mg I), 518.3 nm (Mg I), 470.3 nm (Mg I), 552.8 nm (Mg I), 

486.1 nm (Hβ), 589.5 nm (Na I), and 656.2 (Hα) (see Table 5.2) [21], and their variation 

with time. 

The spectra of the PEO plasma for different species of PEO coatings using H1 and H2 

current modes are shown in Figs. 5.5 and 5.6 for a total coating process time of 30 min. 

The characteristic peaks that were observed are the result of excitation of these specific 

elements during the PEO process. Figs. 5.5 and 5.6 show that the discharges are from the 

components of the electrolyte (Na and Hβ) and the substrate (Mg) which are excited 

during the process. The emission line intensity results indicate that most of the species in 

the plasma exhibited similar trends over the treatment time. This confirms that during the 

discharges the local plasma temperature is high enough to excite all the species that exist 

in those locations at that particular time. The line intensities produced using unipolar 
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current mode, U, were higher than the intensities of the samples produced using a bipolar 

current mode, B. By using the bipolar current mode, there will be a balance of the 

discharge effects. The cathodic component of the bipolar current mode, as well as the 

longer Toff duration, has a significant effect on the discharge behavior [18]. 
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Figure 5.5. Typical time variation of the emission line intensity during the PEO process 

using hybrid current mode, unipolar followed by bipolar. 
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For the singlet spectral lines of Mg I 470.3 nm and 552.8 nm, the intensity does not 

increase as much as that of the triplet Mg I lines (518.3 nm and 383.8 nm), because these 

singlet lines require a higher excitation energy.  
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Figure 5.6. Typical time variation of the emission line intensity during the PEO process 

using hybrid current mode, bipolar followed by unipolar. 
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The observed strong excitation of sodium seems not contribute to the coating structure, 

since the EDX analysis of the coatings in a previous study [22] demonstrated that Na was 

not incorporated into the coating. This suggests that the PEO plasma discharges provide 

the required energy for the coating formation but all the elements excited by the plasma 

do not get incorporated into the coating. 

 

Table 5.2 Spectral lines observed in this experiment with the wavelength (λ), transition, 

statistical weight of the upper and lower state gk and gi (respectively), photon energy 

(ΔE) and the transition probabilities (Aki) [21]. 

Line λ 

nm 

Transition gk gi ΔE  

eV 

Aki 

     S
-

1
 

Mg I 383.8 3s3d 
3
D → 3s3p 

3
P 7 5 3.22 1.68 

Mg I 518.3 3s4s 
3
S → 3s3p 

3
P 3 5 2.38 0.57 

Mg I 470.3 3s5d 
1
D → 3p

1  
  3 5 2.63 0.22 

Mg I 552.8 3s4d 
1
D→3p

1  
  3 5 2.24 0.14 

Hβ 486.1 4d 
2
D → 2p 

2
P 4 2 2.55 0.172 

Na I 589.5 3p 
2
P → 3s 

2
S 3 3 1.36 0.614 

Hα 656.2 3d 
2
D → 2p 

2
P 4 2 1.89 0.539 

 

For the hybrid current mode starting with unipolar followed by bipolar (H1), Fig. 5.5, 

distinctive intensity spikes of Mg 518 nm can be seen in the period between 7 to 15 

minutes from the start of the process. These spikes may be attributed to the strong 

discharges as well as to the particular discharge stages (I-IV) as described in [18]. On the 

other hand, the intensity of the same Mg I 518 nm line shows fewer spikes with lower 

intensities in the bipolar current mode period indicating weaker discharge events. Also 

the spikes only start to appear during the last six minutes of the processing time. For the 

hybrid current mode (H2), Fig. 5.6 shows that by starting with a bipolar current mode the 

Mg I 518.0 nm emission intensity signals are weak. When the current mode was switched 
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to the unipolar mode, the intensity of the spectral lines increase rapidly and, although the 

spark sizes were small, they later grow to a larger size.  

 

5.4.4. LTE Analyses and Self-Absorption 

The LTE model describes a state of plasma in which a population distribution is 

determined by the law of statistical equilibrium except that radiation processes are not in 

a detailed balance. The population distribution of LTE plasmas can be described by 

Boltzmann and Saha equations [19] and free electrons have a Maxwellian energy 

distribution [19]. The LTE state is often found in laboratory plasmas of relatively high 

density and relatively low temperature when collisional processes are far more important 

than radiative processes. Even in non-LTE plasmas, it is always possible to find levels for 

which collisional transitions are dominant compared with radiative transitions depending 

on plasma conditions. Those levels said to be in partial LTE. The Boltzmann and Saha 

equations can be conveniently applied for the relative population distributions among the 

levels in partial LTE. The partial LTE state occurs when the collisional de-excitation rate 

from the upper level to the lower level greatly exceeds the spontaneous decay rate. The 

assumption of LTE is fulfilled when the electron density is high enough so that:  

Ne ≥ 1.6 × 10
18

Te
1 /2 

(ΔE)
3
 (m

−3
)                5.1 

where ΔE (in eV) is the largest energy gap in the atomic energy level system and Te (in 

K) is the electron temperature of plasma [19]. When the electron temperature is 6 000 K, 

the threshold value of electron density to fulfill the LTE assumption is about 5.4 × 10
22

 

m
−3

. Plasma electron densities of the PEO plasmas from our previous measurements [13] 

are lower than the threshold value. Therefore partial LTE should be considered where the 

concentration yield is given by [23]: 

)()(100.7 32
1

2
2

17

7
24  m

EZ

kT

n

Z
N

H

e
                           5.2 

where kT is the electron temperature in (eV), EH (eV) is the ionization potential for the 

corresponding element , z is the ionization stage (z =1 for neutral atoms) and n is the 

principle quantum number of the lowest quantum level included in the partial LTE (for 

the H, z =1 and n=2). The plasma electron concentration obtained from our previous 

work [13], which is in good agreement with the results of [16], were (0.7 – 1.2) ×10
22

 m
-3 
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which is higher than the minimum plasma electron concentration for partial LTE, Ne > 

0.4×10
22

 m
−3

, and therefore partial LTE exists, and the electron temperature estimated by 

Boltzmann assumption and Stark broadening effect reflect the characteristics of the 

plasma correctly.  

Dunleavy et al [20] has discussed the opacity problem in the PEO plasma. Following 

their discussion which is based on the results presented in ref. [24] on the effect of the 

absorption coefficient for water on the Balmer line intensity ratio, as a function of 

wavelength in the range of 580-790 nm, it can be estimated that the fraction of trapped 

photons in passage through up to about 10 cm of water would be less than 12% which is 

negligible for the present purposes. Consequently, the PEO plasma was assumed to be 

optically thin, i.e. none of the observed lines emitted from the plasma were affected by 

self-absorption. 

5.4.5 Plasma electron temperature 

The intensity ratio of the recorded 656.2 nm (Hα) to 486.1 nm (Hβ) spectra IH (3d
2

D → 2p
2

P) / 

IH (4d
2

D → 2p
2

P) (from the same ionization stage) (Te1) and the ratio of 552.8 nm (Mg I) to 

470.3 nm (Mg I) IMg (3s4d 1D→3p1  
 

) / IMg (3s5d 1D → 3p1  
 

) (Te2) were used to determine 

plasma electron temperature (Te). The Te results for experiments carried out using four 

different current modes are presented in Fig. 5.7. The average temperatures of each two 

curves are also shown in Fig. 5.7. It can be seen that the average measured temperature of 

the two ratios are in the range of 5800 - 6800 K for the unipolar case, 6100 - 6700 K for 

bipolar case, 6300 – 6600K for H1 case and in the range 5900 – 6700 K for H2 case. 

These results are in good agreement with the Te results for Mg AJ62 alloy [15]. 

Fig. 5.7a shows plasma temperature profile for the unipolar current mode (U). Te1 is 

initially around 7000 K which corresponds to the early stage discharges where the density 

of the discharges is very high. Te then drops to about 5000 K after about three minutes 

and then fluctuated around 5600 K for the reminder of the time. Electron temperatures 

measured using the second pair of lines Te2 (552.8 nm to 470.3 nm) are slightly higher 

than those obtained from the first pair of lines Te1 (656.2 nm to 486.1 nm) particularly 

after the first two min. The curve started to show a high number of closely-spaced 

temperature spikes some of them reaching up to 7000 K. These spikes corresponded to 
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relatively strong discharges initiated from the sample surface-coating interface, the so-

called B-type discharge [13], whereas the base line average is at ~6000 K. 
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Figure 5.7. Plasma temperature as a function of treatment time (min) determined from the 

intensity ratio of (Te1) IH (3d
2

D → 2p
2

P) / IH (4d
2

D → 2p
2
P) (656.2 nm/486.1 nm) and (Te2) IMg 

(3s4d 1D→3p1  
 

) / IMg (3s5d 1D → 3p1  
 

) (552.8 nm/470.3 nm), for the samples U at unipolar, B 

at bipolar, H1 and H2 at Hybrid current mode. 

 

For the bipolar case B, Fig. 5.7b shows that the base line average is ~5500 K for the first 

20 min and then spike around 21 min to 6100 K and then fluctuates around 5900 K. 

Electron temperatures measured using the second pair of lines Te2 shows relatively 

higher temperature than those obtained from the first pair of lines Te1 during the entire 

treatment time after 4 min. Temperature spikes start to appear after 8 min. However, 

these spikes are less frequent and cooler than that for the unipolar samples.  

Applying a hybrid current mode, sample H1, treated using a unipolar mode first followed 

by a bipolar mode, clearly shows the effect of current mode on the plasma temperature 
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where the average temperatures of the plasma during the bipolar mode were higher than 

those during the unipolar mode (Fig 5.7c). This is attributed to the fact that when 

suppressing the strong B-type discharges the number of other discharges, A-, C- and mild 

B- types, will increase which will then increase the base line temperature. Fig 5.7c also 

shows that the Te1 results are in very good agreement with the Te2 results for the bipolar 

treatment period.  The use of a hybrid current mode, sample H2, where the sample was 

coated first using a bipolar current mode followed by the unipolar current mode, shows 

almost the same trends as for H1 samples, in terms of the bipolar period having higher 

average electron temperatures, and the good agreement between Te1 and Te2.  

 

Table 5.3  Spike and average plasma electron temperatures for the four different current modes. 

Sample # Plasma electron temperature: K 

Unipolar (U) 5000-7000 

[5700] 

Bipolar (B) 5200-6600 

[6100] 

H1 

(H11+H12)) 

5500-7500 

[6000]/[6500] 

H2 

(H21+H22) 

4200-7500 

[6500]/[5500] 

 

Table 5.3 summarizes the average background temperature and maximum spike 

temperatures for the four sets of samples. We therefore conclude that the Te – time profile 

depends strongly on the type of discharge and on the current mode, as a result of the 

competition between both the current phases (positive and negative) and the pulse timing. 

When using a bipolar current mode, the strong temperature spikes (due to B-type 

discharge) are suppressed, or only appear at later times, and since the total number of all 

types of discharge (A-, C- and mild B-type discharges) will be increased, it has the 

largest effect on the average (background) plasma temperature and hence on the coating 

microstructure and surface morphology.   

 

5.5 Discharge behaviour and coating microstructure 

The fluctuations in signal intensities and temperature during the coating process (i.e. 

weak and strong signals) reflect differences in location of both the discharge initiation, 
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and discharge type. Based on our discharge model described in detail in [13], the Mg 

emission intensity signals were due to three different types of discharge that are 

differentiated according to the origins of such signals. The B-type discharge is due to 

dielectric breakdown in a strong electric field occurring through the oxide layer. The A- 

and C- types of discharge are due to gas discharges occurring in micropores of the oxide 

film. Type A are from the surface pores, while the C- type are from discharges on 

relatively deep pores. While the high intensity spikes mainly correspond to the B-type 

discharge, the background intensity profile was related to the A-type and C-type 

discharges. The observed differences in the intensity: time trends between unipolar, 

bipolar, and the hybrid current modes suggest that the current mode plays a significant 

role in the coating process [11]. 

Fig. 5.8 (i) shows the SEM micrographs of the coating surfaces obtained using secondary 

electron mode (SE): H11 treated using unipolar current mode only for 15 minutes, H12 

by completing the treatment of H11 using bipolar current mode for another 15 minutes; 

H21 treated firstly using bipolar current mode; H22 completed the treatment using 

unipolar mode for second 15 minutes. Fig. 5.8 (ii) which are SEM micrographs of the 

coating cross-sections also obtained using the secondary electron mode. As can be seen 

from Fig. 5.8 c and d for unipolar followed by bipolar compared with Fig. 5.8 a and b for 

unipolar only, the addition of a bipolar part improves the coating quality compared with 

the unipolar current mode, in terms of surface morphology where the porosity levels were 

reduced significantly and the cross-sectional microstructure for the H12 shows a coating 

with fewer-defects that is more adherent to the substrate compared to the H11 sample, 

which was treated using a unipolar mode only. Therefore, the bipolar part seems to act as 

a repair mode for the coatings.  

The coating surface morphology and cross-sectional microstructure that are obtained can 

be linked to the plasma discharge behavior. Fig. 5.9 a is a schematic diagram of the 

discharge process for a Mg-alloy sample, and shows the influence of the discharges on 

the intensity profile, Fig. 5.9 c, as well as on the coating microstructure (Fig. 5.9b and d). 

The high intensity spikes correspond to the strongest discharges (B-type discharge) which 

significantly affect the microstructure and morphology of the coating [25]. These strong 

discharges produce a more porous coating. Strong discharges can be reduced, or 
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eliminated, by appropriately adjusting the bipolar current and the on and off time interval 

of the pulses as can be seen in Figs. 5.5 and 5.6. Elimination of the B-type discharges 

leads to denser microstructures with less porosity. 

A modified growth model that not only includes Type A, B and C discharges but also 

discharges that occur in large pores near the interface between the inner and outer layers 

(type D) and those which may form the pancake-structures that occur mainly within the 

outer coating layer (type E) has been proposed by Cheng et al [26]. However, according 

to our discharge model [13], the pancake-structures are due to strong Type B discharges 

initiated close to the substrate surface. Fig. 5.9b is a SEM micrograph of a coating 

prepared using a unipolar current mode and shows a large number of ‘pancake’-like 

features and discharge pores which irregularly arranged on the coating surface: This is a 

common characteristic of PEO coatings.  Fig. 5.9b, shows that some of the regions on the 

coating surface were covered with freshly solidified magnesium oxide, leaving the 

adjacent regions uncovered.  

The relatively large holes in the center of the pancake suggest that they were produced by 

strong discharges and such holes might penetrate deep in to the coating. Some micro-

cracks were present on the coating surface, which could have resulted from thermal 

stresses generated during the rapid solidification of the molten oxide product in the strong 

discharge channel [27]. The stronger the discharge, the larger is the molten mass 

produced by a single discharge. When this molten mass erupts from the discharge 

channel, it rapidly solidifies around the discharge channels, thus, giving rise to the 

‘pancake-like’ features and randomly distributed discharge pores on the coating surface. 

Both of these features cause an increase in the surface roughness. The micro-pores are 

due to gas bubbles ejected from surface discharges and are referred to as A- and C- type 

discharges. 
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  (i) Surface morphology (ii) Cross-section 
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Figure 5.8. (i) morphology of oxide coatings on an Mg AM60B alloy using secondary 

electron mode (SE) (ii) SEM micrographs of  polished sections of coatings using 

secondary electron mode (SE) and for: (a, b) unipolar H11, (c, d) hybrid1 (uni + bipolar), 

(e,f) bipolar H21 and (g , h) hybrid2 (bi + unipolar) current modes. 
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Fig. 5.9d is a SEM micrograph of the cross-section of a sample produced using the 

unipolar current mode (U). The coating has a significant amount of connected porosity, 

holes and other structural defects both within the coating and near the coating/substrate 

interface. Such defects and porosity were likely caused by the strong B- type discharges 

and gas trapping in the vicinity of electrical discharges at such an area due to a fast 

solidification process. The average coating thickness after the 30 min treatment time for 

H1 was about 25-30 µm and 33-40 µm for H2. The coating-substrate interfaces had a 

wavy-jagged appearance, which may be the result of dissolution of the substrate during 

the treatment time and/or the presence of intermetallics at the grain boundaries. Also, 

there is evidence of a network of through-coating defects (microcracks). One of major 

concerns is the substrate/coating interface, where the very strong B-type discharge is 

initiated.  

The main effect of the bipolar current mode is a discharge disturbance, which prevents 

the development of long lived, very large microdischarges. By using the bipolar current 

mode there will be a balance of the discharge effects [15]. A unipolar current mode 

produces a thicker coating than the bipolar: see Fig. 5.8 b compared with Fig. 5.8 f. 

Coatings prepared using a combination of unipolar followed by bipolar modes (H1) had a 

dense inner layer with fewer defects with lower growth rate compared with coatings 

prepared using reverse order i.e. bipolar followed by unipolar (H2) as can be seen from 

comparing Figs. 5.8 d and h.  

X-ray diffraction (XRD) analysis was used to further investigate the changes in 

composition of PEO coatings due to the changes of the current mode. XRD analysis 

results of the substrate Mg alloy (uncoated) and the PEO-coated samples are shown in 

Fig. 5.10. The PEO coatings formed on AM60B in a mixed phosphate-silicate electrolyte 

consist mainly of MgO together with smaller amounts of Mg2SiO4, MgAlPO5 and 

MgAl2O4. However, there are some differences in phase contents. The bipolar mode 

seems to promote the formation of MgO phase. A unipolar mode is more likely to 

promote the formation of the Mg2SiO4 and MgAl2O4 phases. Higher intensity MgO peaks 

are seen in samples prepared using bipolar and hybrid current modes compared to ones 

prepared using the unipolar mode, while the intensities of the Mg2SiO4 and MgAl2O4 

peaks were higher when the unipolar and hybrid current modes were used.  MgO is 
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formed via substrate metal oxidation during PEO treatment, while the Mg2SiO4 and 

MgAlPO5 phases are derived from the co-deposition of the alkaline electrolyte 

components into the coating structure.  
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Figure 5.9. Schematic diagram of the discharge model showing the influence of B-type 

discharges on plasma temperature profile, surface morphology and on the cross section of 

the oxide coating. 
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Fig. 5.10.  XRD patterns of (unc. Mg) uncoated and coated samples using (U) unipolar, 

(B) bipolar and (H1 and H2) hybrid current modes. 

 

5.6 Porosity and pore size analysis 

Fig. 5.11a shows relatively low magnification SEM images which were image-processed 

for porosity analysis. The surfaces of the coatings were dominated by many randomly 

arranged donut-shaped projections with open or sealed microporosities in the center. The 

large microporosities are considered as footprints of the plasma discharge channels, 

through which the Mg and Mg
2+

 from the substrate were likely ejected and reached the 

coating/electrolyte interface during the plasma-induced melting, then combined with the 

electrolyte anion including 
-2

42OAl  or -OH  and reacted with O2 generated due to 

electrolysis, and finally sintered and deposited on the coating surface, contributing to the 

coating growth. Fig. 5.11 gives the average porosities (which represent the percentage of 

the surface areas of black spots relative to the total image area) for each of the four cases. 

The averaged porosities of each sample, was determined from SEM images for a typical 

surface area of 620 by 675 μm. The pores varied in size from very small diameters (<1 
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µm) through medium size (few µm) to large pores (>10 µm). Pore sizes can be linked 

with the discharge type described in detail by Hussein et al [13].   

 

 

 

 

 

 

 

           

 

           

 

Figure 5.11. (a) Low and (b) high magnification SEM images and the processed images 

with corresponding porosities distribution chart for (c) H11, (d) H12, (e) H21 and (f) 

H22. 

Sample H11 (unipolar for 15 minutes only) with an average porosity of 14.4% exhibited 

a large number of pores with diameter <10 µm. H12 (unipolar followed by bipolar) 
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showed a lower porosity (4.3 %) than H11 but, some large pores were also present on the 

surface. The porosity of H21 and H22 are 8.4% and 7.2% respectively, with medium pore 

sizes. H11 (only unipolar) showed the highest level of porosity which may be attributed 

to the large number of the strong and irregularly distributed B-type discharges which are 

generally associated with the unipolar current mode [10,14]. However after applying a 

bipolar current mode for the second 15 minutes, H12, the porosity was reduced to the 

lowest value of all four modes. Such morphology was expected since both the number 

and intensity of the strong B-type discharges [15] are reduced by using a bipolar current 

mode. Porosity has a significant effect on the mechanical properties of ceramic coatings, 

mainly hardness and stiffness: 20% of porosity can reduce the hardness by 60-70% from 

the fully dense value [29], and may also reduce the stiffness by 30% [30]. 

According to Curran and Clyne [26], the porosity of the PEO coatings should be higher 

than the measured values for H11, H12, H21 and H22 due to the existence of  very fine 

scale porosity (< 100 nm). Such fine scale porosity although detectable using techniques 

such as mercury porosimetry, densitometry and BET adsorption measurements as used by 

Curran and Clyne 
31

, cannot be seen on the low magnification SEM micrograph. 

However, examination of the coating surface at a higher magnification, Fig. 5.11b, 

reveals the presence of such fine scale, interconnected porosity. In addition of the very 

fine scale porosity, Fig 5.11b also shows different sizes of pores, tiny and very small 

sizes which are related to the discharge behaviors, A-, and C- type discharges however 

the medium and large pore sizes are related to the mild and strong B- type discharges, 

shown in Fig 5.9. 

 

5.7 Corrosion resistance of the coatings 

Fig. 5.12 shows the potentiodynamic polarization curves of the uncoated AM60B Mg 

alloy (unc. Mg) and the PEO coated specimens using either unipolar, bipolar or hybrid 

current modes (curves U, B and H1-H2 respectively). A summary of the results of the 

potentiodynamic corrosion test in a 3.5% NaCl solution is given in Table 5.4. Compared 

to the uncoated AM60B, all PEO-coated samples exhibited a higher polarization 

resistance, a lower corrosion current density and a higher (more noble) corrosion 

potential.  The more porous coating on samples U leads to the poorer corrosion 
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resistance. Comparatively, coating H1 (U+B), having thick and relatively dense oxide 

layers, has a higher polarization resistance and lower corrosion current densities than the 

other PEO coatings.  

Table 5.4  Potentiodynamic polarization corrosion test results in a 3.5%wt NaCl solution 

 
Uncoated 

AM60B (S0) 
U B H1 H2 

Ecorr (V) -1.51 -1.46 -1.43 -1.48 -1.421 

Icorr (µA/cm
2
) 100 0.316 0.072 0.0071 0.100 

βa (mV) 26.7 59.4 398.6 114.6 55.1 

βc (mV) 139.5 149.0 211.8 210.0 191.3 

Rp (Ω·cm
2
) 97.4E+02 5.84E+04 8.35E+05 4.54E+06 1.86E+05 

Pi (μm/year) 2285 7.2 1.6 0.16 2.3 

PEF % N/A 209 3015 16,450 673 

 

The use of a hybrid current mode, sample H2, where the samples were coated using a 

bipolar current mode first, followed by a unipolar current mode, the corrosion current 

density was  1.00×10
-7

 A/cm
2
 while the corrosion potential increased to (-1.42 V) with 

polarization resistance of 1.86×10
+8

   Ω cm
2
. Applying a hybrid current mode, sample 

H1, treated using unipolar mode first followed by a bipolar mode, gives the highest 

polarization resistance compared with other samples with a value  of 4.54×10
+9

   Ω cm
2
 

and the lowest corrosion current density of 7.10×10
-9

 A/cm
2
, but the corrosion potential 

decreased to (-1.48 V). Use of an unipolar current mode sample U, gives the lowest 

polarization resistance compared with other samples with a value  of 5.11×10
+7

   Ω cm
2
 

and corrosion current density of 5.65×10
-7

 A/cm
2
 and the corrosion potential of (-1.44 V). 

Sample H1 with a coating thickness of 24 to 36µm appeared to have the best corrosion 

resistance of the coated AM60B coupons. Potentiodynamic polarization corrosion test 

results showed that these PEO coatings significantly increased the corrosion resistance of 

AM60B alloy. The ranking for corrosion resistance in 3.5% NaCl medium was Mg 

uncoated < sample U < sample H2 < sample B < sample H1. 



 

87 
 

 

Fig. 5.12.  Potentiodynamic polarization curves of the uncoated (S0) and coated samples 

using unipolar (U), bipolar (B) and Hybrid (H1 and H2) current modes. 

There are three main parameters that can have a significant effect on the corrosion 

properties of the PEO coatings. These parameters are: coating phase composition; 

porosity level and other coating defects; and, to some extent, the coating thickness. Since 

the bipolar current mode produces a dense coating with minimum defects, while the 

unipolar mode gives the more chemically stable Mg2SiO4 spinel phase, a combination of 

the two modes has improved the coating properties in terms of both microstructure and 

corrosion resistance, as is shown for sample H1. The order of the applied current modes 

(unipolar and bipolar modes) has a significant effect on the coating characteristics as can 

be seen from a comparison of the morphology, phase structure, cross section and 

corrosion resistance of samples H1 and H2. For sample H1, which was unipolar followed 

by bipolar, the unipolar mode produced an inner layer containing the more corrosion 

resistant spinel phase plus a top layer that was dense and corrosion resistant. 

It is generally expected that a thicker coating gives rise to better corrosion resistance. 

However, as the microcrack, defect and porosity levels in the unipolar sample coating U 

was quite high, it exhibited a lower corrosion resistance compared to other samples even 

though it was thicker. Therefore, for better localized corrosion resistance the coating 

needs to be not only thicker, but also should be free from defects such as porosity. The 
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substrate-coating interface layer seems to have an important effect on the corrosion 

resistance; it acts as a barrier layer from the corrosion medium. The significant amount of 

connected porosity, holes and other structural defects both within the coating, and near 

the coating/substrate interface, for sample U2, treated using a longer off-time unipolar 

mode, causes the corrosion resistance to be the lowest of the coated samples.  

It is illustrative to compare the corrosion protection properties afforded by the PEO-

coatings for different Mg-alloys. In the potentiodynamic polarization method for 

measuring the corrosion rate of Mg alloys, the corrosion current density, icorr (μA/cm
2
) 

can be related to the average corrosion rate, Pi (mm/year) by the Stern–Geary 

equation [32] (chapter 4, equation 4.4). The calculated values for Pi and the protection 

efficiency (PEF %) afforded by the coating are also given in Table 5.4. It should be 

stressed that these values of Pi are for specimens that were not subjected to impact–

sliding. Generation of craters and cracks during impact–sliding wear would degrade the 

corrosion resistance [33]. 

 

5.8 Conclusions 

Four different current modes (unipolar, bipolar and hybrid (unipolar-bipolar and bipolar-

unipolar)) were used in the PEO processing of Mg-alloy AM60B in a mixed aluminate 

and phosphate electrolyte. The effects of current mode on the plasma parameters were 

investigated and the following conclusions are made: 

-Plasma electron temperatures (Te) were determined by the line intensity ratios of two 

pairs of H and Mg lines, the 656.2 nm to 486.1 nm (Te1) and the 552.8 nm and 470.3 nm 

(Te2) lines respectively. Plasma electron temperatures were found to in the range of 5000 

- 7000 K for the unipolar case, 5200 - 6600 K for the bipolar case, 5500 – 7500K for the 

unipolar + bipolar case and 4200 – 7500 K for bipolar + unipolar case. 

- Controlling or reducing the strong discharges had a significant positive effect on the 

plasma temperature profiles and leads to denser inner layer microstructures with less 

porosity.  

- A careful examination of the plasma characterization results obtained by OES analysis 

and the SEM results of the coating morphology and microstructure, highlights clear 

differences between samples coated using unipolar, bipolar or hybrid current modes. A 

http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0145
http://www.sciencedirect.com/science/article/pii/S0257897212010559#t0020
http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0085
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hybrid (H12) current mode improves the coating quality compared to the unipolar mode 

(H11) in terms of having a dense inner layer with fewer defects due to the combination 

effects of the two current modes. The fluctuations in the measured line intensities 

(different spike) support the discharge model and the resulting coating microstructures.  

- Where the bipolar current mode produces a dense coating with minimum defects, while 

the unipolar mode gives more chemically stable Mg2SiO4 spinel phase, a combination of 

the two modes has improved the coating properties in terms of microstructures and 

corrosion resistance.  

- The corrosion performance is more closely related to the protective nature of the dense 

oxide layer at the coating–substrate interface. In this regard, the most protective oxide is 

formed by using the H1 current mode [unipolar + bipolar]. The protection efficiency of 

the H1 coating is approximately 25 times more than for the H2 [bipolar + unipolar] 

coating. In the H1 case, the bipolar mode appears to repair the damage produced during 

the unipolar cycle. 
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CHAPTER 6 

A STUDY OF THE INTERACTIVE EFFECTS OF HYBRID 

CURRENT MODES ON THE TRIBOLOGICAL PROPERTIES OF A 

PEO (PLASMA ELECTROLYTIC OXIDATION) COATED AM60B 

MG-ALLOY 

Published in: 

Hussein R. O., Northwood D. O., Su, J.F. and Nie X. (2013) A study of the interactive 

effects of hybrid current modes on the tribological properties of a PEO (plasma 

electrolytic oxidation) coated AM60B Mg-alloy, Surface & Coatings Technology, 215, 

pp. 421–430. 

6.1 Introduction 

Recent developments in the plasma electrolytic oxidation (PEO) process allow the 

production of oxide layers on magnesium alloys with excellent tribological properties, 

and the potential to be used in many applications [1]. While the tribological properties of 

these coatings have been extensively studied, there is little information available on 

coating failure mechanisms. The tribological properties of PEO-coated Mg alloys have 

been evaluated by a number of research groups under dry sliding conditions [2-5]. The 

PEO-coated materials show a higher coefficient of friction (COF) but a lower wear rate 

than the uncoated alloy. It has also been found that the wear resistance increased with 

increasing coating thickness due to an enhanced load-bearing capability. The wear 

properties of PEO coatings on Mg AM60B alloy under boundary lubrication conditions 

were studied by Guo et al. [6]. It was found that the micro-porosities at the coating 

surfaces acted as oil reservoirs and were beneficial to the oil-lubricated wear 

performance. The effects of the PEO process parameters (electrolyte concentration, 

current density, current frequency and treatment time) on the tribological properties of 

the coatings under boundary lubrication conditions have also been studied by Zhang et al. 

[6]. The treatment time is one of the most significant factors affecting the COF [7], since 

roughness increased with treatment time which leads to an increased COF. The wear rate 

is influenced by many factors including, in decreasing order of importance, current 
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density, electrolyte concentration, frequency and treatment time. Yerokhin et al. [8] 

reported that PEO coatings may reduce the fatigue limit of magnesium alloys by no more 

than 10%, which is substantially lower than the effect of anodizing. 

For applications which involve repetitive impact and sliding motions at relatively high 

contact loads or sudden impact (defense, biomedical implant, or electronic device covers) 

the coated components usually have to withstand high contact loads and the effect of 

scratches. To do this, the coatings must have good adhesion to the base material in order 

to withstand high loads and shearing forces without chipping or peeling, and a low 

coefficient of friction to reduce wear [9]. Many testing methods, including the pin-on-

disk test, impact test and scratch test have been used to study coating failures on various 

substrates [10-12]. For applications where dynamic repetitive loadings are applied, a 

vertical ball-on-plate impact test was first introduced to evaluate the adhesive and 

cohesive failures of hard coatings [13]. Bantle and Matthews [14] pointed out that three 

failure regions are involved in the impact indent: a central region with cohesive failure; 

an intermediate region with cohesive and adhesive failures; and a peripheral region with 

circular crack failure plus piling up of the material. The general effect of repetitive 

dynamic impact is the degradation of the coating due to fatigue [9] and [15]. However, 

there was still a need for a testing method to study the coating wear properties under a 

combination of impact and sliding motions (repetitive impact–sliding motions). For 

repetitive impact–sliding motions, impact–fatigue wear testing methodology has been 

developed and used to study coating failure behavior under vertical impacting motions 

(vertical ball-on-plate) [16]. Also an inclined impact–sliding fatigue test method, which 

uses a combination of impact force and compression force [17] has been developed. 

Changing the current mode produces changes in the PEO process characteristics, 

including the breakdown voltage and discharge events, both in terms of discharge 

intensity and density. The discharges have a profound effect on the coating 

microstructure, thickness, roughness, porosity, hardness, and coating growth rate, and 

hence affect the corrosion and wear resistance of the coated magnesium alloy. In this 

chapter we investigated the effect of current mode (unipolar, bipolar or hybrid 

(combination of both)) on the corrosion and wear properties of PEO coatings formed on 

an AM60B magnesium alloy. The tribological properties were determined by both a pin-
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on-disk method and an inclined impact–sliding fatigue test method. The corrosion 

resistance was determined by potentiodynamic polarization testing. The structure is 

related first to the discharges produced by using the different current modes and then to 

the tribological and corrosion performance. 

6.2. Materials and experimental methods 

6.2.1. PEO coating preparation 

AM60B magnesium alloy specimens with a disk shape (25 × 7 mm) was used as the test 

coupons for the coating process. For reasonable coating growth rates, the electrolyte used 

for the PEO process was composed of potassium phosphate (7 g/l K4P2O7), sodium 

aluminate (3 g/l Na2Al2O4) and potassium hydroxide (~ 1 g/l KOH to keep the pH value 

at 12) in distilled water. The electrolyte bath capacity was 3 l. The temperature of the 

electrolyte was kept at 25 ± 2 °C using a water cooling system. 

Three different sets were prepared with each set consisting of four coated samples. 

Sample U was coated using a unipolar current mode for 30 min. Sample B was coated 

using a bipolar current mode for 30 min. Sample H1 was coated using a combined 

unipolar (for 15 min) followed by bipolar (for 15 min) current mode for 30 min in total. 

For sample H2 the sequence for unipolar and bipolar was reversed compared with sample 

H1. The process parameters are listed in Table 6.1. All samples were processed using the 

same current density (50 mA/cm2) and the voltage was increased gradually with time, as 

the coating thickness increased. 

Table 6.1. PEO process parameters for coating depositions on an AM60B Mg alloy. 

Sample 
Current 

mode 

Time 

(min) 

I
+
 

(A) 

I
−
 

(A) 

Ton
+
 

(μs) 

Toff
+
 

(μs) 

Ton
−
 

(μs) 

Toff
−
 

(μs) 
CR 

U Unipolar 30 0.7 N/A 400 100 N/A N/A N/A 

B Bipolar 30 0.7 0.63 400 100 400 100 0.74 

H1 
Unipolar 15 0.7 N/A 400 100 N/A N/A N/A 

Bipolar 15 0.7 0.63 400 100 400 100 0.74 

H2 
Bipolar 15 0.7 0.63 400 100 400 100 0.74 

Unipolar 15 0.7 N/A 400 100 N/A N/A N/A 
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6.2.2. Characterization of PEO coatings 

Scanning electron microscopy (FEI Quanta 200 FEG with a solid state backscattered 

detector operated at 10 kV) in both the secondary electron (SE) and back-scattered 

electron (BSE) modes was used to observe both the coating surface morphology and, by 

observation of sample cross sections, the coating thickness and integrity. For the energy 

dispersive X-ray analysis (EDX) the SEM was operated at 15 kV with an electron beam 

spot size of 3 nm. A Mitutoyo SJ-201P surface profiler with precision of 0.01 μm was 

used to measure the surface roughness of all samples. 

6.2.3. Tribological testing 

6.2.3.1. Pin-on-disk 

The wear resistance of coated and uncoated samples was evaluated using a pin-on-disk 

tester (FALEX ISC tribometer) under dry conditions with a 10 mm AISI 52100 steel ball 

as the wear medium (pin) and the samples as the disk. The steel ball was used, rather than 

the normal WC ball, so as to make the testing comparable to that of the inclined impact–

sliding test. The coated samples were lightly polished using sand papers up to 2500 grit 

prior to wear testing to ensure a relatively smooth surface with minimum roughness. The 

tests were conducted at room temperature (20 °C), ~ 50% humidity, using a 2 N applied 

load and a rotation speed of 75.0 mm/s with the sample running on a 4 mm radius track. 

The tests were stopped after reaching a total wear distance of 100 m. After wear testing, 

the samples were cleaned in acetone, and dried in air. The wear tracks of the samples 

were characterized using a WYKO NT1100 optical profiler. The volume loss due to wear 

of the samples was calculated based on geometries (width and depth) of the wear tracks 

[18]. 

6.2.3.2. Inclined impact–sliding wear instrument 

A schematic diagram of the inclined impact–sliding wear tester can be found in Ref. [19]. 

In this method, a hard ball (10 mm AISI 52100 steel ball) is mounted on the shaft of a 

double-way air cylinder with the piston driven by compressed air producing vertical 

oscillatory motions. A steel ball is used in this test rather than a ceramic ball, since a 

ceramic ball could potentially fracture on the initial impact loading. The sample is set on 

an inclined sample holder which is returned to its position by a spring. 
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An OMEGA LCKD-500 load cell is placed on the sample holder to record the normal 

force on the sample surface during the impact–sliding movement. The desired normal 

impact and compression forces were obtained by adjusting the pre-strain of the spring 

and the pressure in the air cylinder. For all tests, the impact and compression loads were 

set as 325 N and 210 N, respectively. The impact/compression forces were recorded and 

a typical load cycle is presented in Fig. 6.1(a) which shows the force curve in one impact 

cycle. The load cell was removed and the coated samples were placed on the sample 

holder for impact tests. The load curve demonstrates the three stages in each impact 

cycle, i.e. impact force Fi, vibrating stage and compression force Fc as shown in Fig. 

6.1(a). When the counterpart ball contacts the impacted sample surface for the first time, 

the first peak in the load occurs, which is defined as the effective impact force Fi. 

According to the Hertzian contact stress equation [20] for a sphere-on-plane contact 

condition, when Fi = 325 N, the maximum and mean contact pressures in the impact 

crater for the first impact should be around 3.24 GPa and 2.16 GPa, respectively, which 

are larger than the yield strength (130 MPa) and compression strength of the AM60B Mg 

alloy. After the counterpart ball completed the first full contact with the coating surface 

and formed a deep impact crater, a series of rebounds and impacts occurred. After the 

vibration stage, the load continues to change gradually until the pre-setup compression 

load (Fc) is reached, and then the ball starts to move up. This is named as the 

compression force stage, in which a tail with sliding failures was formed. 

 

Fig. 6.1.  The force curve in one impact cycle under Fi/Fc = 325 N/210 N at a 2.5 Hz 

impact frequency. 
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The distance d between the steel ball and the sample is fixed at 1.3 mm which is the same 

distance between the load cell and the ball. The impact frequency used in this study was 

2.5 Hz, which gives a total impact time, including the up and down motion, of 400 ms. 

The static air pressure, P was set around 0.12 MPa. Each coated sample was scheduled to 

be impacted 2000 cycles. Coating failure mechanisms of samples U, B, H1 and H2 were 

investigated. After a test, a crater head and a sliding wear track could be seen on the 

coating surface as illustrated in Fig. 6.1(b). 

 

6.3. Results and discussion 

6.3.1. Microstructure of the coatings 

Fig. 6.2(a,c,e,g) shows the SEM micrographs of the U, B, H1 and H2 samples, obtained 

using a back-scattered electron mode (BSE). Projections and microporosities were 

observed in all the coated samples. However, the size and the shape of the projections 

and the microporosity were different. The surfaces of the coatings were dominated by 

many randomly arranged donut-shaped projections with open or sealed microporosities in 

the center. The microporosities are considered as footprints of the plasma discharge 

channels, through which the Mg and Mg2 + from the substrate were likely ejected and 

reached the coating/electrolyte interface during the plasma-caused melting, then 

combined with the electrolyte anions including Al2O42 − or OH− and reacted with O2 

generated due to electrolysis, and finally deposited and sintered on the coating surface, 

contributing to the coating growth. Fig. 6.2(c and e) for the bipolar and H1 current mode 

respectively, shows a reduction in pore size (with an average pore size of ~ 9.5–10 μm) 

relative to the unipolar and H2 modes (with an average pore size of ~ 13.5–15 μm) (Fig. 

6.2(a and g)). Such morphology was expected since both the number and intensity of the 

strong B-type discharges [9] are reduced by using a bipolar current mode. The average 

pore size for the H2 mode is ~ 13.5 μm which may be attributed to the current mode for 

the last cycle, which in this case with the unipolar coming after the bipolar mode, causes 

some strong B-type discharges and, hence, relatively large pores are produced. 

Nevertheless, the four current modes show relatively similar surface morphology since 

such morphologies reflect the very last discharge events before the process was ended. 

Some microcracks appear on the coating surface. Thermal stresses are one source of 
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residual stress and can be categorized as: (i) stresses caused by differential thermal 

contraction between the coating and the substrate and (ii) stresses caused by temperature 

gradients within the coating during treatment. 

The PEO coatings have an outer porous layer and an inner dense layer which exhibits 

excellent mechanical properties, as shown in Fig. 6.2(b,d,g,h) which are SEM 

micrographs of cross-sections using a secondary electron mode. Coating growth rate, 

structure and composition of the regions are substantially influenced by substrate 

composition, electrolyte composition and treatment regime [21]. Plasma discharge 

channels were found in the porous top layers. These channels went through the porous 

layer but stopped at the inner layer, and thus could be categorized as C-type plasma 

discharges, which occur in the micropores under the relatively deep surface [22]. The 

oxide coating morphology and microstructure were also significantly different under 

different current operating modes. The bipolar current mode could improve the coating 

quality compared with the unipolar current mode, in terms of surface morphology and 

cross-sectional microstructure. 

The average surface roughness of all the coated samples is listed in Table 6.2, together 

with the coating thickness and pore size. A unipolar current mode gives rise to thicker, 

more porous (amounted size) coatings with a higher surface roughness than those 

produced using a bipolar current mode. 
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Fig 6.2.  (L) SEM micrographs of polished sections of coatings using secondary electron 

mode (SE) and (R) morphology of oxide coatings on an Mg AM60B alloy using back-

scattered electron mode (BSE) for: (a, b) unipolar, (c, d) bipolar and (e, f, g and h) hybrid 

current modes. 
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Table 6.2. Characterization of coated samples and dry sliding wear results. 

Sampl

e 

Coating 

thickness 

(μm) 

Surface 

roughness 

Rz (μm) 

Level of 

porosity and 

other defects 

Average 

pore sizes 

(μm) 

COF 

Wear rate 

× 10
− 4

 mm
3
/N m 

U 40 to 55 44.3 ± 1.6 

Porous with 

many 

microcracks 

15.0 
0.72 to 

0.8 
6.24 ± 2.0 

B 31 to 42 31.3 ± 0.7 

Low level of 

porosity and 

microcracks 

9.5 
0.55 to 

0.6 
1.78 ± 0.4 

H1 22 to 38 34.2 ± 0.5 

Low level of 

porosity and 

microcracks 

10.0 
0.55 to 

0.6 
4.14 ± 1.0 

H2 21 to 39 37.1 ± 1.2 

Intermediate 

level of 

microcracks 

and porosity 

13.5 
0.65 to 

0.7 
4.96 ± 1.2 

S0 NA 2.6 ± 0.2 NA NA 0.4 to 0.5 9.0 ± 2.7 

 

6.3.2. Tribological properties 

Fig. 6.3 presents optical micrographs of the wear tracks on the uncoated and coated 

samples using the pin-on-disk method. Severe worn grooves were found on the uncoated 

sample under a 2 N load (Fig. 6.3 (S0)). As noted previously, during the wear tests the 

maximum compressive stresses exerted on the uncoated Mg sample are estimated to be 

about 590 MPa for a 2 N load [23]. Thus, the compressive stress is much larger than the 

yield strength of the Mg alloy (about 130 MPa according to the datasheet from Meridian 

Lightweight Technology Inc. [23]). Therefore, during the wear test, a large amount of 

plastic deformation occurred in the Mg alloy, resulting in severe plowing wear. Under a 2 

N normal load, sample B showed the smallest wear tracks of all coated samples. Coating 

H1 had the second best wear rate among all coatings. Under 2 N load only coating U 

exhibited deep but not penetrating wear tracks. The dark areas seen on the wear tracks in 

optical micrographs of the coated samples are due to material transfer from the AISI 

52100 steel ball during sliding. 
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Fig. 6.3. Optical micrographs of the wear tracks after pin-on-disk tests for the uncoated 

AM60B Mg alloy (S0), and the coated substrate using unipolar (U), bipolar (B), and the 

hybrid current modes (H1 and H2). 

 

Fig. 6.4 gives the COF versus sliding distance plots for all coated samples (U, B, H1 and 

H2) and the uncoated sample (S0). Compared with the S0, the four coated samples 

exhibited higher COFs when slid against the ASTM E52100 steel ball under dry (un-

lubricated) conditions: see Table 6.2. The differences in coefficients of friction between 

the four samples are attributed to the different morphologies and surface roughness as 

shown in Fig. 6.5 for the roughness parameter Rz. A higher surface roughness and a less 

dense (more porous) coating lead to a higher COF. Based on the data presented in 

Fig. 6.4, Fig. 6.5 and Fig. 6.6 shows a linear relation between Rz and COF. Fig. 6.7 

shows the wear rates, calculated using a volume loss method, of the uncoated Mg alloy 

and the four coated samples. The uncoated Mg alloy has a high wear rate of 

(8.99 ± 2.7) × 10
− 4

 mm
3
/N m. The sample coated using unipolar current mode has a wear 

http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0020
http://www.sciencedirect.com/science/article/pii/S0257897212010559#t0010
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0025
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0020
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0025
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0030
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0035
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rate of (6.24 ± 2.0) × 10
− 4

 mm
3
/N m while the wear rates of samples coated using the 

bipolar current mode (sample B) are (1.78 ± 0.43) × 10
− 4

 mm
3
/N m. Using the hybrid 

current mode (H1 and H2) wear rates are in the range of (4.14 ± 1.0)–

(4.96 ± 1.2) × 10
− 4

 mm
3
/N m, which indicates that the PEO coatings have much better 

wear resistance than the Mg alloy substrate. Furthermore, samples B, H1 and H2 have 

better wear resistance than sample U, which is consistent with the measured COF during 

the sliding period. The enhancement of the wear resistance can be attributed to the 

enhancements of the microstructure of coatings prepared using hybrid or bipolar current 

modes which have a more compact structure than that of sample U. In addition, the 

different phase composition of the coating might also partly account for the higher wear 

resistance of samples B and H1. Previous work [24] has shown that the bipolar mode 

seems to promote the formation of MgO phase. The unipolar is more likely to promote 

the formation of the Mg2SiO4 and MgAl2O4 phases. Since a hybrid mode is a 

combination of unipolar and bipolar modes, MgO, Mg2SiO4 and MgAl2O4 phases were 

detected [24], but with different intensities, for the H1 and H2 modes. The H1 mode 

shows lower Mg2SiO4 and MgAl2O4 phase contents compared to the H2 mode. This is 

consistent with the fact that the “final” layer on H1 was produced using a bipolar mode. 

The wear resistance of the coated samples is a complex process that involves surface 

roughness and hardness which are controlled by phase contents and porosity levels. In the 

unipolar mode where type B-discharges are dominant, plasma temperatures can reach 

7000 K [21] and the formation of Mg2SiO4 and MgAl2O4 phases is more likely. The 

hardness of these phases is high in the fully dense form. However, the unipolar mode or 

H2 mode (finished with unipolar) generates relatively large pores thus would reduce the 

overall hardness and hence, reduces the wear resistance of the coated samples. 

http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0135
http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0135
http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0015
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Fig. 6.4. Coefficients of friction vs. sliding distance for samples U, B, H1, and H2 and the 

S0 uncoated Mg alloy substrate. 

 

 

Fig.6.5. Roughness parameter Rz of the oxide coatings formed using different current 

modes and the uncoated Mg alloy substrate. 
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Fig. 6.6. Coefficients of friction vs. roughness parameter Rz of the oxide coatings on an 

Mg alloy substrate. 

 

Fig. 6.7. Wear rates of the oxide coatings formed using different current modes and the 

uncoated Mg alloy substrate. 

6.3.3. Inclined impact–sliding wear 

Before discussing the results, caution should be exercised when using surface 

observations to interpret failure mechanisms. It is always possible that the damage 

observed at the surface is not representative of that occurring at the sub-surface. Fig. 6.8 

http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0040
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shows SEM images of the impact–sliding tracks of the U sample, EDX spectrum showing 

the material transferred from the steel ball to the remaining coating, and a schematic 

illustration of the failure modes. Of the four principal failure mechanisms detailed in 

Refs. [16 and 17], namely cohesive failures (mainly chipping); adhesive failures (mainly 

peeling); material transfer; and fatigue cracks, only peeling was not detected in the PEO 

coated specimens. Material transfer, which is the dark area in the SEM micrograph and 

the schematic diagram of Fig. 6.8, was more severe at spots where the surface had 

become rougher due to other failure mechanisms. 

 

Fig. 6.8. (a, d) SEM images of the PEO coating using U current mode, (b, c) EDX 

spectrum showing the material transferred from the steel ball to the remaining coating 

and (e) illustration of failure modes. 

http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0105
http://www.sciencedirect.com/science/article/pii/S0257897212010559#bb0110
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0040
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Fatigue cracks were found at the impact-induced crater. The coating was still present at 

the center of the crater together with Fe transferred from the steel ball. Fatigue cracks 

appeared at the boundary of the crater (Fig. 6.8(d)), in the coating itself and on the sliding 

track. Peeling where the substrate was exposed (no coating) was not observed at the 

applied impact force used in this work. Chipping occurred without penetrating the 

coating through to the substrate–coating interface (Fig. 6.8(a and e)). 

Fig. 6.9 shows the optical micrographs of the impact–sliding tracks of all samples after 

2000 impact cycles. By using Photoshop and Image-Pro Plus software on the optical 

images shown in Fig. 6.9, the total track area and the crater area of the coated samples 

were calculated and are shown in Table 6.3. Compared to samples U and H2 samples B 

and H1 show the smallest crater area. PEO-coated samples showed better resistance to 

impact than S0. Samples B and H1 show relatively smaller crater areas compared with 

samples U and H2. Although a coating (such as a ceramic oxide) with a high hardness 

and large thickness could reduce the plastic deformation of the coated substrate at a low 

impact load, the effect was limited at a high impact load. It should be noted that the 

craters are created by the impact dynamic energy during the impact hammering. 

 

Table 6.3. Impact–sliding track area and crater area of coated samples. 

Sample Total track area (mm
2
) Crater area (mm

2
) 

S0 4.95 N/A 

U 3.81 0.86 

B 2.43 0.65 

H1 3.53 0.63 

H2 3.63 0.91 

http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0040
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0040
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0045
http://www.sciencedirect.com/science/article/pii/S0257897212010559#f0045
http://www.sciencedirect.com/science/article/pii/S0257897212010559#t0015
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Fig. 6.9. Optical micrographs showing the craters (after 2000 impact cycles) of the PEO 

coatings prepared using (a) unipolar, (b) bipolar, (c) hybrid 1, and (d) hybrid 2 current 

modes and (e) the uncoated sample. 

Fig. 6.10(a) is a SEM image showing the three layers of PEO coated specimen H2 after 

the impact–sliding test. There is an outside unaffected top layer, a slightly affected 

second layer which represents the inner dense layer, and the third layer corresponding to 

a very dense interface layer. Fig. 6.10(b) is a schematic of these three layers. The dark 

layer is due to the material transfer (Fe) from the steel ball due to the impact force. 



 

108 
 

 

Fig. 6.10. (a) SEM images and (b) schematic showing the three layers exposed after 

impact testing. 

Fig. 6.11a shows a typical EDX line scan across the impact crater of sample U. A back-

scattered electron image of the coating is also given in Fig. 6.11b which shows the 

existence of a high Z element (Fe) as a white area near the center of the crater. Looking at 

the EDX line scans from location A (undamaged coating at the left side of Fig. 6.11(a)) to 

location B (undamaged coating at the right side of Fig. 6.11(a)), the following 

observations can be made. The Mg intensity is relatively constant, except that it increases 

in what is layer 2 (Fig. 6.10) where the coating has peeled off the porous outer layer. The 

O signal increases at the edge and center of the crater area. The line scan for Fe shows a 

significantly higher Fe content at the center of the crater. This increase in iron and 

oxygen at the center of the crater is confirmed by the area EDX scan given in Fig. 

6.11(c). Thus Fe was transferred from the steel ball during the impact and sliding 

processes to the PEO coating. Although the coating was still intact, this kind of material 

transfer could result in enhanced adhesive wear. 
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Fig. 6.11. SEM image showing the crater of the PEO U coating with a typical EDX. (a) 

Line scan EDX from location A to B, (b) backscattered electron image of the crater and 

(c) area scan of the crater for the Mg, O and Fe. 

6.4. Conclusions 

1.The growth rate, porosity level and microstructure (including phase content) of PEO 

coatings formed on an AM60B magnesium alloy are significantly influenced by the 

current mode. The thickness, porosity, defect level and roughness are increased by using 

a unipolar or hybrid 2 (finished with unipolar) current mode, where type B-discharges are 

dominant, compared to coatings prepared using a bipolar or hybrid 1, finished with 

bipolar current mode. 

2.The denser coatings with lower surface roughness that are produced by the B and H1 

current modes compared to the U and H2 modes lead to improved tribological 

performance in both pin-on-disk and inclined impact–sliding tests. 

3.In the pin-on-disk tests, the COF is shown to be directly dependent on the surface 

roughness, Rz. 
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CHAPTER 7 

AN INVESTIGATION OF CERAMIC COATING GROWTH 

MECHANISMS IN PLASMA ELECTROLYTIC OXIDATION (PEO) 

PROCESSING. 

Published in: 

Hussein R. O., Nie X. and Northwood D. O. (2013) An investigation of ceramic coating 

growth mechanisms in Plasma Electrolytic Oxidation (PEO) processing, Electrochimica 

Acta 112, pp. 111-119. 

 

7.1 Introduction 

Besides the process technology, the growth mechanisms of the PEO coating, and the 

coating's microstructure and properties, are gaining more and more attention [1,2]. To 

further our understanding of the Plasma Electrolytic Oxidation (PEO) process, and to aid 

in the optimization of the process, it is important to identify the mechanisms of coating 

formation. During plasma electrolytic oxidation, complex physical and chemical process 

occurs near the interface between electrolyte and the electrode. Several micro-discharge 

formation models have been proposed [3-7]. In the first model [4], the micro-discharges 

appear as a result of the oxide film dielectric breakdown in a strong electric field. The 

second group of models considers each micro-discharge as a gas/glow discharge 

occurring in a micropore of the oxide film [5]. The formation of a gas phase in the pore 

(and discharge ignition in it) is believed to be induced by an initial dielectric breakdown 

of a barrier layer in the bottom of the micropore [3]. The third model [7] assumed the 

possibility of free electron generation and glow discharge ignition in the gaseous media at 

the oxide-electrolyte interface, which leads to heating, melting and quenching the 

underlying oxide layer. Any other model considers the formation of the micro-arc 

discharge as an electronic ‘avalanche’, or due to an electronic tunneling effect [6]. 

Yerokhin et al [3] found that the above models [4-7] do not fit the spatial, temporal and 

electrical characteristics of micro-discharge phenomena which were observed in their 

investigation. They suggested a new model based on the analogy with contact glow 

discharge electrolysis. The model assumes the possibility of free electron generation and 
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glow discharge ignition in the gaseous media at the oxide-electrolyte interface, which 

leads to heating, melting and quenching of the underlying oxide layer.  

Recently, optical emission spectroscopy (OES) has been used to investigate the plasma 

discharge behavior during the PEO process [8,9]. Due to the extreme nonlinearity of 

plasma discharge, monitoring the evolution of spectral signals and microstructure is 

helpful in understanding the mechanism underlying PEO process. Species from the 

substrate (Mg, Al and Ti) and the electrolyte (H, OH, Na and K) were found to be 

involved in the plasma discharge during the PEO process. The evolution of the spectra is 

considered to reflect the change in mechanism that initiated the plasma discharge, from 

bound-bound transitions of electrons between atomic level to collision–radiative 

recombination of electrons (bound-free transitions) and Bremsstrahlung radiation (free-

free transitions).  According to Dunleavy et al [9], the plasma emission spectra indicated 

that there were two distinct regions of the plasma, a central core of high temperature 

(~16, 000 ± 3500 K), with a high electron density (Ne ~5×  10
17

 cm-3) and a peripheral 

region, probably extending into the surrounding electrolyte, which was much cooler 

(~3000-4000 K) and less dense (Ne ~5× 10
15

 cm-3). Hussein et al studied the evolution 

of the emission spectra of plasma discharge during the PEO process [10]. The 

fluctuations in plasma intensities and temperatures during the plasma discharging as well 

as the coating morphology were found to be due to the different types of discharge, which 

originated at the metal/coating interface (type B), within the coating upper layer (type C), 

or at the coating surface/electrolyte interface (type A) [8]. Type B discharges are 

responsible for the high temperature spikes (up to 10 000K) present in the electron 

temperature profiles. On the other hand, type A and C discharges produce the base 

temperature profile and any small fluctuations around this base line (~ 4500K). Hussein 

et al. [10] have described the coating development during PEO processing based on a 

general theory of the breakdown of a metal/dielectric system in an electric field, optical 

emission spectroscopy observations and SEM/EDX analysis of the coatings. Their 

general coatings mechanisms can be applied to the PEO processing of any of the light-

weight metals (Mg, Al, Ti or Zr). However process parameters including electrolyte 

composition or electrical parameters (DC, AC, unipolar, bipolar, constant current or 

voltage) have a significant effect on such mechanisms. 
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The AJ62 Magnesium alloy (MgAl6Mn0.3Sr2) is a die castable alloy that has good creep 

resistance and has been used in the mass production of an automotive powertrain 

crankcase. Magnesium alloy AJ62 has recently been developed as a structural automotive 

powertrain material.  This alloy is characterized not only by a high strength-to-weight 

ratio synonymous with magnesium alloys but also by relatively good properties at 

elevated temperatures [11-13]. Its high temperature performance has led engineers to use 

this alloy as an engine block material initially with an Al-Si alloy liner [14]. AJ62 is the 

only Mg–Al alloy thus far to have been used in the mass production of an automotive 

power train crankcase [14]. 

The main objective of this work is to develop a correlation between the oxide ceramic 

layer formation processes and the growth rate during PEO coating. To do this, we 

examine the production and diffusion of oxygen and its effect on the coating formation. 

In this chapter, coatings up to 110 µm thick were produced on a AJ62 Mg-alloy substrate 

using the PEO process. Optical emission spectroscopy (OES) was employed to follow the 

microdischarges and substrate and electrolyte elements present in the plasma discharge 

during the coating growth, and to determine plasma electron temperatures. 

 

7.2. Experimental procedures 

7.2.1 Materials and PEO processing method 

A PEO coating system as described in Chapter 3 was used to produce the oxide coating 

on the samples. The PEO coating process was carried out using a bipolar current mode 

which consists of two components, a positive component and a negative component. 

During the coating process, the positive I
+
 and negative I

-
  current density was maintained 

at 0.07 and 0.06 A/cm
2
 respectively and the voltage was increased gradually with time, as 

the coating thickness increased, process parameters for PEO treatment are listed in Table 

7.1.  

The AJ62 Magnesium alloy disc coupons (Φ25×5mm) were used as the test samples in 

this study. The coupons were manually ground and polished on 240, 400,600, and 1200 

grit silicon carbide (SiC) waterproof abrasive papers. The coating was obtained in an 

alkaline electrolyte containing sodium aluminate (10g/l Na2Al2O4) and potassium 

hydroxide (1 g/l KOH). The temperature of the electrolyte was kept below 25 
o
C by a 
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water cooling system. The PEO processing parameters for the coated Mg samples are 

listed in Table 7.1. 

 

Table 7.1  PEO Process parameters for coating AJ62 Mg alloy. 

Sample Current 

mode 

Time 

(min) 

I
+
 

(A) 

I
- 

(A)  


onT  

(µs)
 



onT
(µs) 

 



offT

(µs) 

 



offT

(µs) 

 

CR 

S1-S9 Bipolar 3-120 0.7 0.6 400 100 400 100 0.77 

 

7.2.2 Optical emission spectroscopy 

The main characterization of the micro-discharges was performed by means of optical 

emission spectroscopy (OES). Four different spectral lines were recorded simultaneously, 

which eliminates discrepancies that may otherwise happen if the spectra are recorded at 

different times. The spectral lines (Table 7.2) at 285.2 nm (Mg I), 486.1 nm (Hβ), 656.2 

nm (Hα), and 777.2 nm (O I) were recorded.  

Table 7.2 Spectral lines used in this experiment together with their wavelength (λ), 

transition, statistical weight of the upper and lower state gk and gi (respectively), 

photon energy (ΔE) and the transition probabilities (Aki) [15]. 

Line λ (nm) Transition gk gi ΔE (eV) Aki      S
-1

 

Mg I 285.2 3s3p 
1
P → 3s

2
  

1
S 3 1 4.33 5.0 

Hβ 486.1 4d 
2
D → 2p 

2
P 4 2 2.55 0.172 

Hα 656.2 3d 
2
D → 2p 

2
P 4 2 1.89 0.539 

O I 777.2 3p 
5
P → 3s 

5
S  7 5 1.59 0.369 

 

7.2.3 Coating characterization 

The samples were cut to be about 4-mm-thick sections normal to the Tangential-Radial 

surface and mounted with resin and polished to a mirror finish then sputtered with a gold 

film to make them conductive before SEM analysis. The coating thicknesses for different 

treatment times were determined using a PosiTector 6000 coating thickness meter with N 

type probes: this instrument uses the eddy current principle to measure the thickness of 
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non-conductive coating (ceramic) on non-ferrous metal (magnesium). The dimensions of 

the magnesium alloy sample before and after oxidation were measured using a Mitutoyo 

Absolute ID-S112 spiral "Absolute Position" digital micrometer, from which the inner 

and outer thickness values at different treatment time were calculated. The meter was set 

to zero-position for the uncoated substrate then the total outer thickness measured after 

the coating, which represents twice the thickness of the sample dimension changes.  

 

7.3 Results 

7.3.1 Voltage behavior. 

Fig. 7.1 show a typical output anodic (VA) and cathodic (-VC) voltage change during the 

120 min of PEO treatment. By combining the output voltage results with the OES 

emission intensities and plasma temperatures, four discharge stages can be identified in 

the PEO process, namely: Stage I:  In the early stage of the process which mainly 

involves the rapid electrochemical formation of an initial insulating oxide film, a sharp 

increase in the voltage was seen. In this stage the breakdown voltage is not yet reached. 

Stage II: The rate of the voltage change decreases in this stage, which is characterized by 

numerous sparks moving rapidly over the whole sample surface area. This indicates a 

start of the breakdown of the oxide layer, an increase in temperature and, therefore, 

melting of the substrate metal. Stage III: In this stage the rate of voltage increase 

becomes slow; this stage is characterized by larger but slower moving discharges. As the 

oxide layer grows, its electrical resistance increases, therefore the nature of the plasma 

changes. Stage IV: In this stage the rate of voltage variation is even slower than that in 

stage III and concentrated discharges appear as relatively large and long lasting sparks. 

However the occurrence of the strong discharges is less frequent than that in stage III due 

to the thicker coating causing more difficulty in the initiation of such discharges. For 

some cases, such strong discharges may cause irreversible damage to the coatings in 

stage IV. 
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Fig. 7.1.  Plots of anodic and cathodic voltage vs. treatment time during the PEO process 

using bipolar current mode. 

7.3.2 Optical emission characterization.  

As the plasma coating process proceeds, the discharge appearance changes and the 

plasma emission intensities varied as shown in Fig. 7.2. Fig. 7.2 shows the optical 

emission intensity profile of the Mg line (285.2 nm) for a bipolar current mode for a total 

treatment time of 120 min: this illustrates the time evolution of a substrate element 

present in the plasma discharge during the coating growth.  
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Fig.  7.2.  Typical time variation of the emission line intensity of Mg I during the PEO 

process. 

 As the PEO process preceded, relatively strong variations in the microdischarges were 

observed, indicated by many separated spikes in Fig.7.2. These spikes correspond to the 

relatively strong discharges (B-type discharge) [16-17], which are initiated from the 
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magnesium surface-coating interface. The spike height increases as the process proceeds, 

particularly after 40 minutes processing time. Optical emission spectra of oxygen line at 

777.2 nm spectral line were used to follow the time evolution and the behavior of the 

oxygen in the plasma discharge during the coating growth. The intensity spectrum of O I 

for three different treatment times 30, 50 and 120 min respectively are shown in Fig. 

7.3(a-c).  
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Fig.  7.3.  Typical time variation of the emission line intensity of O I during the PEO 

process at three different treatment times. 

For the 30 min treatment time relatively low O I intensity signals are observed as shown 

in Fig. 7.3(a). The oxygen signal started to be noticeable for the period 40 to 50 min, see 

Fig. 7.3(b). As the coating process proceeds, the oxygen (O I) intensity signal generally 

increased with the treatment time (Fig 7.3(c)); this is likely due to the increased amount 

of oxygen evolution as the process preceded, as has been previously observed for 

aluminum by Snizhko et al [18]. By comparing the optical emission intensity of oxygen 

Fig. 7.3(c) with Fig. 7.2 for Mg, the evolution of oxygen is related to the intensity of the 

microdischarges, where after 40 minutes processing time, both the O and Mg signals 
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increase due to the existence of B-type discharges. However, the O signal densities are 

larger than that of Mg due to its relatively low excitation energy (1.59 eV) compared to 

that of Mg (4.33 eV) [15].  

7.3.3 Plasma electron temperature 

The spectral lines selected for the calculation should belong to the same atomic or ionic 

species and are emitted in the same ionization stage. In this case, the intensity ratio of the 

recorded 656.2 nm (Hα) to 486.1 nm (Hβ) spectra IH (3d
2

D → 2p
2

P) / IH (4d
2

D → 2p
2

P) were used 

to determine plasma electron temperature (Te) which is presented in Fig. 7.4. The average 

temperatures are also shown in Fig. 7.4.  
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Fig.  7.4.  Plasma temperature as a function of treatment time (min) determined from the 

intensity ratio of Hα (656.3 nm)/Hβ (486.1 nm) 

It is commonly accepted that the discharge in PEO occurs when the applied voltage 

reaches a certain critical value corresponding to the breakdown of the oxide layer (or at 

least of the barrier part of it) formed on the sample surface: this leads to the development 

of intense light emission generated at the numerous micro-discharge sites. Fig. 7.4 shows 

plasma temperature is initially around 5500 K which corresponds to the early stage 

discharges where the density of the discharges is very high (accumulation of the 

individual discharge temperatures). Te then drops to about 4500 K after about ten 

minutes and then increased to about 5000 K at 25 min after that drops to around 4500 K 

at 40 min. Then the average electron temperatures curve started to gradually increase to 
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reach up to 5000 K. There were a high number of closely-spaced temperature spikes 

some of them reaching up to 5800 K. These spikes corresponded to relatively strong 

discharges initiated from the sample surface-coating interface, the so-called B-type 

discharges. 

7.3.4 Microstructure of the coatings. 

Figs. 7.5 (a-f) present SEM micrographs of the surface morphologies of coatings 

produced using different processing times. Projections and microporosity with different 

sizes and shapes were observed on all the coated samples. Curly projections were found 

to be dominant on the surfaces of coatings.  

 

 

 

 

     

 

 

(a) 30 min 

 

    

Fig. 7.5 SEM micrographs showing the surface morphology of oxide coatings on AJ62 

for different treatment times. 

The surfaces of the coatings were dominated by a ‘pancake’ shaped projections with open 

or sealed microporosity in the center. Short processing times, eg 3 minutes (Fig. 7.5(a)), 

show the highest density of open (un-sealed) channels at the centers of the ‘pancake’ 

structures. The microporosity is considered to be “footprints” of the plasma discharge 

channels, through which the Mg and Mg
2+

 from the substrate were likely ejected and 

reached the coating/electrolyte interface during the plasma-generated melting. The Mg 

50 µm 

50 µm 50 µm 50 µm 

50 µm 50 µm 

(f) 120 min (e) 90 min (d) 60 min 

(c) 30 min (b) 15 min (a) 3 min 
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and Mg
2+

 then reacted with O2 generated by electrolysis, and finally sintered and 

deposited on the coating surface, thus contributing to coating growth.  

Figs. 7.6 (a-f) present SEM micrographs of cross-sections of coated samples using 

different treatment times. The dashed-line on the micrograph indicates the approximate 

position of the original surface of the magnesium alloy specimens before PEO treatment. 

All coating-substrate interfaces had a wavy-jagged appearance, which may be the result 

of dissolution of the substrate in the early stages of processing and/or the presence of 

intermetallic phases at the grain boundaries. The α-Mg grain boundaries in the AJ62 alloy 

are often decorated with the (Al, Mg)4Sr and Al3Mg13Sr intermetallics [117]. During the 

total PEO processing time, the coating is composed of two distinct layers, namely, an 

outer layer with a significant amount of connected porosity, cracks and other structural 

defects and a more compact inner layer. The distributions of porosity and other defects 

were inhomogeneous in both layers but was more evident in the outer layer . However, 

the relative proportions of the two layers change with PEO processing time. It should also 

be emphasized again that the PEO processing parameters were chosen to produce a 

compact and adherent coating.  

During plasma discharges, processes including melting, melt-flow and re-solidification 

continuously occur in the outer layer thus causing a fluctuating repetitive increase and 

decrease in surface temperature which leads to a porous structure.  The inner layer was 

dense and adhered well to the substrate and exhibits excellent mechanical properties. A 

thin and very dense coating/substrate interface layer is clearly shown for coatings with 

processing times longer than 15 minutes. The oxide coating on the sample treated for 3 

min, Fig 7.6(a), was 5 to 8 µm thick and was almost completely composed of a porous 

outer layer. This is consistent with the surface morphology, Fig. 7.5(a), which showed a 

high density of open (un-sealed) channels at the center of the ‘pancake’ structures, which 

could extend to the coating substrate interface. As the processing time increases, the 

coating thickness increases. The thickness of the oxide layer was in the range of 70-90 

µm and 100-115 µm for the samples treated for 90 and 120 min, respectively. 
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 Fig. 7.6 SEM micrographs of cross-sections of coatings on AJ62 for different treatment 

times. 

 

7.3.5. PEO coating thickness. 

The results shown in Figs.7.7 and 7.8 for the variation of the total coating thickness with 

treatment time, as well as the results of the outwards growing part (Lo) towards the 

coating surface and the inward (Li) part towards the original magnesium surface, are in 

good agreement with the results of [1]. Thus, there is a combination of two growth 

mechanisms: growth of an outer layer onto the surface of the coated sample away from 

the surface by microdischarges, ejection of melting Mg which then oxidizes and 

solidifies, and growth of an inner layer into the substrate by an oxygen diffusion process. 

The variation of the average total coating thickness, Lt, obtained by two different 

techniques, SEM cross section and Eddy current, with PEO processing time is shown in 

(d) 60 min (e) 90 min 

(a) 3 min (b) 15 min (c) 30 min 

(f) 120 min 
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Fig. 7.7. There is good agreement between the two methods and that the total thickness of 

coatings increases linearly with processing time. 

The slope of the LT vs. time plot, which is determined by the positive current density 

[19], gives an average growth rate of 0.9 ± 0.1 µm/min: a coating with a thickness of 110 

± 5 µm is obtained after 120 min coating. The total thickness (Lt) is composed of an 

outer Lo and an inner Li layer, where Lo is the coating thickness above the original 

surface of the sample before oxidation and, Li is the coating thickness below the original 

surface towards the magnesium alloy substrate. The variations of Lo and Li with PEO 

processing time are shown in Fig. 7.8(a). In the initial stages up to about 45 minutes, the 

coating growth towards the coating surface, Lo, is larger than that towards the 

magnesium alloy substrate, Li. After about 50 minutes, the value of Li dramatically 

increases compared to Lo, indicating that the coating growth rate towards the magnesium 

alloy substrate is greater than that towards the coating surface. 
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Fig. 7.7 Average coating thickness variation with PEO processing time. 

Fig. 7.8(b) shows the variation with processing time of the ratios, Lo/Lt and Li/Lt. The 

ratio Lo/Lt gradually decreases from 0.75 and finally reaches 0.4, which indicates that in 

the initial stages the PEO coating grows mainly outwards. On the other hand, the Li/Lt 

ratio increases from 0.2 to 0.6 with increasing processing time: this may indicate oxygen 

diffusion through the coating. 
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Fig. 7.8 Inwards and outwards coatings portion during PEO coatings (a), coatings portion 

ratios to the total thickness (b) vs. treatment time. 

 

7.4. Discussion 

7.4.1. PEO-Coating mechanisms. 

Fig. 7.9 is a schematic of a PEO coating process on a magnesium alloy substrate. For 

PEO an appropriate electrical potential is applied to magnesium to increase the thickness 

of the thin oxide MgO layer on the surface of the magnesium (Fig. 7.9(a)). This natural 

outer layer is not dense, because it’s Pilling- Bedworth ratio, ~ 0.81<1, indicates that the 

underlying metal cannot be completely covered. As the surface has been passivated by 

non-conductive oxide coating, the voltage between the substrate and the electrolyte 

rapidly rises as the native oxide thickens (Fig 7.9(b)) and within a few minutes the 

voltage reaches several hundred volts. It increases until it has becomes too high for the 

dielectric coating and a microscopic plasma discharge breaks the coating and generates a 

large number of very short-lived, very small plasma discharges (Fig 7.9(c)). These 

discharges result in localized plasma reactions, with conditions of high temperature and 

pressure which modify the growing oxide. This breakdown results in the formation of a 

slightly thicker coating, which will be broken again in the course of the next cycle, under 

a slightly higher potential difference. Processes including melting, melt-flow, re-

solidification; diffusion, sintering and densification of the growing oxide are parts of the 

PEO coating process.  

For the coating growth, there are three simultaneous processes taking place, namely the 

electrochemical reactions, the plasma chemical reactions [18,20,21] and thermal 

diffusion. The main electrochemical reactions occur at the coating/electrolyte interface. 
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During the PEO process different types of discharge take place [16]. An important 

consequence of the occurrence of those discharges is the development of metallurgical 

processes in the growing oxide layer, which are induced by the heat liberated in discharge 

channels from electron avalanches. Molten oxide is ejected from the coating/substrate 

interface into the coating surface where it is rapidly solidified and re-crystallized by the 

electrolyte, Fig 7.9(d). As a result, decomposition of metal hydroxide to oxide and 

formation of complex compounds can occur, Fig 7.9(e). The direction and intensity of 

these processes depend on the density and power of the discharges which are known to be 

defined by thickness of the oxide layer. Therefore, the thicker the layer, the less frequent, 

yet more powerful and extended, the discharges become [18].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.9 Schematic of the coating process during PEO treatment. 
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The PEO coating thickness depends on current mode type and density, electrolyte 

composition and concentration and treatment time. The PEO coatings of Mg alloys are 

comprised of amorphous and crystalline phases such as MgO, Mg2SiO4, Mg3(PO4)2 or 

Mg2AlO4, depending on the electrolyte [21]. While the temperature of the electrolytes 

should be kept below 20 
o
C, normally using a water cooling system, the local plasma 

temperature in the discharge channels is higher than 4000
 
K (see Fig. 7.4), which leads to 

the formation of oxide coatings. For the PEO process on Mg alloys, the main 

electrochemical reactions occurring at the coating/electrolyte interface using an 

aluminate-containing electrolyte are given by equations 2.1 - 2.6. 

 

7.4.2 Growth mechanisms 

The plasma chemistry of the surface discharges is quite complex in nature, involving, on 

one hand, charge transfer at the substrate/electrolyte interface, and on the other hand, 

strong ionization and charge transfer effects between the substrate surface and the 

electrolyte through the oxide layer with the aid of the plasma [22]. Generally, the 

discharge event tends to occur in the coating–substrate interface or regions near the 

interface, which are responsible for the thermal and chemical conditions at the metal 

surface, thus playing an important role in formation, composition, and structure and stress 

state of phases formed. However, it is worth mentioning that the discharges induce no 

changes of substrate microstructure or texture. Processes such as melting, melt-flow, re-

solidification; sintering and densification of the growing oxide take place during the PEO 

coating process.  

1- Linearity of the growth rate: Most PEO studies indicate that the coating 

thickness increases linearly with coating time [1,19]. However, some research [9,20-21] 

shows that such linearity could break down at longer treatment times. According to 

Sundararajan et al.’s proposed growth mechanism [1,23], the growth of oxide layers 

results only from molten substrate elements which are oxidized when flowing out through 

the discharge channels that are created due to the oxide layer breakdown . In this way, an 

oxide is formed which contributes to the layer when being ejected from the channels and 

rapidly cooled at the surface–electrolyte interface. Discharge channels are continuously 

formed and move on the coating surface and since they have a finite life, they are formed 
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and closed continuously through the coating process and contribute to the coating 

thickness. 

2- Inward and outwards coating growth: The variation in geometrical dimensions 

during PEO processing is an important issue for understanding the coating growth 

mechanisms [20]. The growth mechanism of the ceramic coating layer is a combination 

of inwards to the alloy substrate (inner layer) and outwards to the coating surface (outer 

layer) simultaneously. During the early stages, the coating grows mainly outwards. After 

the coating reaches a certain thickness the inner layer grows faster than the outer layer. 

However, at this time, the coating thickness continues to increase in both directions. The 

inner growth is attributed to the growth of the compact layer at the film/substrate 

interface by diffusion or transport of oxygen, while the growth of outer layer onto the 

surface are due the electrochemical and the plasma chemical reactions.  

3- Growth of compact layer at film/substrate interface by diffusion or transport 

of oxygen: At longer processing times, the inward coating growth rate increases. This 

change may be connected to the increase of thermally-activated diffusion. For PEO 

process, both thermally-activated diffusion and ions transformation have an important 

contribution leading the coating growth [23]. Inward oxygen diffusion plays a key role in 

coating growth, and the growth rate of the PEO process coating is controlled by the rate 

of transferring oxygen towards the magnesium substrate as shown in the schematic 

diagram of Fig. 7.9(b-e).  

4- Growth rate dependence on the process parameters: The rates of growth of the 

outer and inner oxide layers are process parameter dependent. They result from a 

combination of three processes namely, (i) discharge processes causing the substrate to 

melt and oxidize when flowing out through the discharge channels and being rapidly 

cooled at the surface–electrolyte interface, (ii) partial destruction of the outer layer due to 

strong discharges and (iii) diffusion of oxygen process from the electrolyte towards the 

substrate through the coating.  

Fig. 7.10 is a schematic diagram of the coating development during PEO. The dashed line 

between Lo and Li in Fig. 7.10 represents the position of the original surface of 

magnesium alloy before PEO treatment. 
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Fig. 7.10 Schematic diagram of dimension changes of magnesium alloy before and after 

PEO treatment 

 

It can be seen in Fig. 7.7 that the total thickness of coatings (Lt) increases linearly with 

increasing oxidation time which is the common observation in PEO treatments.  

In this work for processing times higher than 45 min, the inward coating growth rate 

increases. This change may be connected to the increase of thermally-activated diffusion. 

As shown in the schematic diagram of Fig. 7.9(b) and during PEO of magnesium, the 

metal cations that transfer away from the metal substrate react with anions to form a 

ceramic coating. On the other hand, oxygen anions transfer into magnesium substrate due 

to the high electric field of 10
6
 V/cm [24] in the discharge channels and react with Mg

2+
 

cations to form a ceramic coating. Fig 7.3 shows the intensity distribution of oxygen ion 

(777.2 nm) as a function of treatment time. The amount of oxygen that is excited due to 

the high plasma temperature increases significantly after 45 minutes processing time. The 

high oxygen signal spikes shown in Fig. 7.3(c) are due to B-type plasma discharges 

which may enhance the delivery of oxygen into the internal layer of the coating through 

the discharge channels. Therefore, inward oxygen diffusion plays a key role in coating 

growth, and the growth rate of the PEO process coating is controlled by the rate of 

transferring oxygen towards the magnesium substrate as shown in the schematic diagram 

of Fig. 7.9(b-e). 

According to Fick’s first law of diffusion, the rate at which atoms or ions diffuse in a 

material directly depends on the diffusivity or diffusion coefficient D. The kinetics of 

diffusion is strongly temperature dependent, where D (cm
2
/s) is related to temperature by 

equation (3.2) [25]: 

Electrolyte 

Mg alloy substrate 

Lt (Total thickness) Lo (Outer layer) 

Li (Inner layer) 
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)exp(0
RT

Q
DD


          7.1 

where Do (cm
2
/s) is a constant for a given system (0.000043 cm

2
/s for O diffusion in 

MgO [25]), T (K) is the temperature, R is the gas constant (1.987 cal / mole·K), and Q 

(cal/mol) is the activation energy for a given system (82100 cal/mol for O diffusion in 

MgO [25]). By using the average time variation of the plasma temperature results shown 

as a red line in Fig. 7.4, together with equation (7.1), the temporal variation of the 

diffusivity was calculated and is presented in Fig. 7.11. As the temperature of the plasma 

process increase, the diffusion coefficient D increases and, therefore the flux of oxygen 

towards the substrate increases as well. The instantaneous high temperature and high 

pressure in the discharge zone greatly enhance inter diffusion between the oxygen anions 

and magnesium cations in the coating near the discharge zones. At higher plasma 

temperatures, the thermal energy supplied to the diffusing ions (O
2-

) allows the ions to 

overcome the activation energy barrier and more easily move and interact with the 

magnesium cations Mg
2+

 produced during the discharges to form MgO.  Hence, the inner 

oxide layer (Li) is the major contributor to the total coating thickness Lt. At the very 

early stage of the process, the number of very small discharges are extremely large and 

each of them contributes to the overall plasma temperature. Hence, Te is high and then 

decreases due to the changes in the number of small discharges. However, as shown in 

Fig. 7.3, the concentration of oxygen is relatively low, and hence the diffusion effect 

during the first 45 minutes of processing time is lower than that after 45 min where the 

plasma temperature and oxygen concentration start to increase. This appears to explain 

the variation of the Lo and Li with time. On the other hand, the diffusion processes are 

controlled by the increase in thickness of ceramic coating, which may slow down the 

growth rate of the coating. 

In PEO process, the formation of the new coating and the dissolution of the previously 

formed coating occur simultaneously [21]. In the present study, a strong alkaline 

electrolyte was employed (ph=13) and the ceramic coating is mainly composed of 

MgAl2O4 and the MgO phases [26], which do not readily dissolve in a strong alkaline 

electrolyte [27]. Therefore the process of dissolution of outer oxide layer in the 

electrolyte is significantly reduced, while the magnesium substrate is oxidized. The three 
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types of discharges (A,B and C) contribute to the oxide layer growth as described earlier, 

but strong B discharges may destroy some of the formed layer. This may explain the 

reduction in outer oxide layer thickness after 45 min, which is where the strong 

discharges start to appear as shown in Fig. 7.2. Therefore, change in thickness of the 

oxide layer results from a competition between three processes, namely oxide growth due 

to plasma discharging processes, partial destruction of oxide and diffusion of oxygen into 

substrate.  
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Fig. 7.11 Diffusion coefficient (D) of O in MgO as a function of treatment time, during 

PEO processing of AJ62 Mg alloy. 

 

7.5 Conclusions. 

- In PEO process, the ceramic coating grows inwards to the alloy substrate (inner layer) 

and outwards to the coating surface (outer layer) simultaneously. During the early 

stages, the coating grows mainly outwards. After the coating reaches a certain 

thickness the inner layer grows faster than the outer layer. However, at this time, the 

coating thickness continues to increase in both directions. 

- The rates of growth of the outer and inner oxide layers are process parameter 

dependent. They result from a combination of three processes namely, (i) discharge 

processes causing the substrate to melt and oxidize when flowing out through the 
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discharge channels and rapidly cooled at the surface–electrolyte interface, (ii) partial 

destruction of the outer layer due to strong discharges and (iii) diffusion process.  

- Oxygen diffusion into the Mg-alloy substrate plays a leading role in coating growth. 

The growth rate of the coating is influenced by the plasma temperature, which 

enhances the rate of oxygen transfer into the magnesium substrate. 
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CHAPTER 8 

THE EFFECT OF PROCESSING PARAMETERS AND SUBSTRATE 

COMPOSITION ON THE CORROSION RESISTANCE OF PLASMA 

ELECTROLYTIC OXIDATION (PEO) COATED MAGNESIUM 

ALLOYS. 

Published in: 

Hussein R. O., Northwood D. O. and Nie X. (2013) The effect of processing parameters 

and substrate composition on the corrosion resistance of plasma electrolytic oxidation 

(PEO) coated magnesium alloys, Surface & Coating Technology, 237, pp. 357-368. 

 

8.1 Introduction 

When magnesium is exposed to an aqueous solution, both Mg(OH)2 and MgO can be 

formed: Mg(OH)2 is in contact with the metal, and on top of the hydroxide layer is a 

MgO layer that has direct contact to the aqueous solution [1]. For pure Mg, this layer is 

not protective at pH values below 10.5, unless additional alloying elements are added to 

pure Mg. Due to a multi-phase microstructure, the corrosion mechanism for the Mg 

alloys is more complex than that for pure magnesium. Generally the two important 

factors that influence the corrosion performance of a multi-phase magnesium alloy are 

hydrogen evolution and the stability of the corrosion film [2]. The corrosion performance 

of magnesium alloys largely depends on the alloying elements and impurity elements. 

Song et al. [3] described the interface of several Mg-Al-Zn alloys after exposure at the 

corrosion potential. For the AZ91-alloy there are three layers in the oxide film: enriched 

Al2O3, MgO and Mg(OH)2. Marker et al. performed a test with fourteen elements alloyed 

with pure magnesium, and measured the corrosion rate with immersion tests in 3% 

sodium chloride solution [4]. They concluded that elements such as Fe, Ni, Cu and Co 

have the greatest effect in accelerating the corrosion rate even at a very low 

concentration.  Ag, Ca and Zn have smaller effect in the accelerating corrosion rate, 

while Al, Sn, Cd, Mn, Si and Na have little or no effect at concentrations below 5%. The 
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most common alloying element used in magnesium is aluminum [5]. Since Mg is a soft 

metal, aluminum can improve its strength. The major secondary phase, which can greatly 

increase the corrosion resistance in this system, is MgAl12. Zn is another important 

alloying element that is usually added along with aluminum with the maximum amount 

of 1.5-2%. Manganese has no direct effect to improve or reduce the corrosion resistance 

of Mg alloys; however, it can reduce the detrimental effects of impurities when their 

concentration exceeds the tolerance limits [6]. Atrens and Song summarized the 

mechanism of galvanic corrosion in magnesium. If the alloy contains elements such as 

Fe, Cu or Ni, galvanic corrosion becomes a significant factor for overall corrosion.  If the 

alloy contains alloying elements such as Al, Mn, Zn, or Cd, the galvanic corrosion is less 

harmful.  

Electrochemical impedance spectroscopy (EIS) can provide valuable information about 

surface treatment layers on PEO-coated magnesium, and the interfaces between 

electrolyte/coating/substrate [8,9]. It also allows the kinetics of heterogeneous electron-

transfer reactions, coupled chemical reactions, or adsorption processes to be studied [10], 

and can provide information about pitting and crevice corrosion [11]. In this study the 

effect of substrate composition on the electrochemical properties of PEO coatings on Mg 

and Mg alloys (AM60B, AJ62, and AZ91D) was investigated. The coatings 

morphologies were also investigated to assess the relationship to their intrinsic alloy 

corrosion rate. 

 

8.2. Experimental Procedures 

Disc-shaped coupons (25×7mm) cut from Mg and Mg alloys (AM60B, AJ62, and 

AZ91D)  (Table 8.1) bars were used as the test samples in this study. The coupons were 

ground and polished with up to 600 grit SiC abrasive papers. The coating was obtained in 

an alkaline electrolyte containing sodium aluminate (10g/l Na2Al2O4) and potassium 

hydroxide (~1 g/l KOH) added to balance the pH at 12. The electrodes are connected to 

two pulsed DC power supplies operating under a constant current control function to 

generate a bipolar current mode. Process parameters, are listed in Table 8.2.  All samples 

were processed using the same current density (50 mA/cm
2
). Scanning electron 

microscopy in the back secondary electron (SE) mode was used to observe both the 
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coating surface morphology and, through observation of sample cross sections, coating 

thickness and integrity. The coating thicknesses of coated pure Mg and Mg alloy for 

different treatment times were determined using a PosiTector 6000 coating thickness 

meter with N type probes: this instrument uses the eddy current principle to measure the 

thickness of non-conductive coating (ceramic) on non-ferrous metal (magnesium).  

 

Table 8.1 Nominal composition of alloying elements in Mg alloys. 

Mg 

Alloys 

Composition (wt.%) 

 

Al Mn min. Zn Si Sr Mg 

AM60B 5.5 to 6.5% 0.25% 0.22% 0.10% N/A balance 

AJ62 6.1% 0.34% N/A N/A 2.1% balance 

AZ91D 8.3-9.7% 0.15% 0.35-1.0% 0.10% N/A balance 

 

Table 8.2.  PEO Process parameters for coating  AJ62 Mg alloy. 

Sample 

Current 

mode 

Time 

(min) 

I
+
 

(A) 

I
- 

(A) 
)( s

Ton





 
)( s

Ton





 
)( s

Toff





 
)( s

Toff





 
CR 

All Bipolar 0-30 0.7 0.6 400 100 400 100 0.77 

 

To determine the corrosion resistance of the PEO coating, electrochemical impedance 

spectroscopy (EIS) were performed for uncoated and coated samples at 25±2 
o
C using a 

Solartron 1285 Potentiostat with Corrware software, through a frequency response 

analyzer. Measurements were performed three times to ensure reproducibility of the 

results. Electrochemical impedance spectroscopy (EIS) measurements were performed at 

the open circuit corrosion potential on the PEO coatings after 30 minute of initial delay to 

stabilize the open-circuit potential (OCP) 

 

8.3 Results and discussion 

8.3.1. PEO coating thickness. 

The variations of the average total coating thickness (at different positions) for pure Mg 

and AJ62,AM60B and AZ91D Mg alloys with PEO treatment time are shown in Fig. 
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8.1(a), which shows that the coating thickness increases linearly with coating time which 

is in good agreement with most of the PEO experiments [12]. The slope of the linear 

variation of the layer thickness as a function of the treatment time which is determined, 

for bipolar current mode, by the positive current density [13] gives an average growth 

rate of 0.9 ± 0.05 µm/min. However AZ91D Mg alloy shows relatively higher coating 

thickness compared with other samples. 

To cross check the coating thickness results, the variation of the average total coating 

thickness of AJ62 Mg alloy with the treatment time from two different techniques, SEM 

cross section results and from Eddy current method are presented in Fig. 8.1(b). It shows 

good agreement between the two methods and that the total thickness of coatings 

gradually increases with oxidation time.  
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Fig. 8.1(a) Average coating thickness variation with PEO processing time for different 

Mg alloys and (b) a comparison of the coating thickness from two different methods  

 

8.3.2 Microstructure of the coatings. 

Fig. 8.2 presents the SEM micrographs of the surface morphologies of coatings produced 

for different processing times using different alloys. The average porosities (which 

represent the percentage of the surface areas of porous relative to the total image area) 

measured by Image software are also given in Fig. 8.2.The averaged porosities of each 

sample, was determined from SEM images for a typical surface area of 620×675 μm
2
.  

The coatings has a large number of micropores mainly due to oxygen gas trapping and 

evolution and/or electrolyte vapors. Zhou et al [14] point out that the main reason for 
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high porosity of PEO coatings on magnesium alloys is the low Pilling–Bedworth ratio of 

magnesium. 

The back scattered electron micrographs in Fig. 8.2 show a large number of ‘pancake’-

like features and discharge pores which irregularly arranged on the coating surface: This 

is a common characteristic of PEO coatings.  The relatively large holes in the center of 

the pancake suggest that they were produced by strong discharges and such holes might 

penetrate deep in to the coating. Some micro-cracks were present on the coating surface, 

which could have resulted from thermal stresses generated during the rapid solidification 

of the molten oxide product in the strong discharge channel [15]. The stronger the 

discharge, the larger is the molten mass produced by a single discharge. The micro-pores 

are due to gas bubbles ejected from surface discharges and are referred to as A- and C- 

type discharges in ref [16]. 

It can readily be observed that the morphology of each coating is, to some extent, 

different from coating to coating and all the coatings exhibit different levels of porosity. 

The pores varied in size from very small diameter (<1 µm) through medium size (few 

µm) to large pores (>10 µm). Pore sizes can be linked with the discharge type described 

in detail by Hussein et al [16].  For 3 and 6 minutes treatment times, alloy AM60B with 

average porosities of 11.5%, and 7.6% respectively, exhibited a large number of pores 

with diameters <1 µm to >10 µm. Alloys AJ62 also contained large pore sizes. For pure 

Mg, the average porosities are around 6% for all treatment times. While the porosity 

levels generally decreases with treatment time for Mg alloys, alloy AJ62 shows high 

average porosity values with some large pores (~ 10 µm) for the 30 minutes case. 

AM60B and AZ91D alloys showed a lower porosity (2- 4. %) for treatment times of 10 

minutes and longer than AJ62 and pure Mg. AJ62 is one of the typical alloys comprised 

of two or more phases, which are deadly seen in the SEM micrographs of Fig. 8.2 for 

treatment time of 3 min. The microstructure of this alloy consists of α-Mg matrix and 

interdendritic compounds distributed at grain boundaries (the grey white region) which 

are the phase Al4Sr [17]. 
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Fig. 8.2 SEM micrographs showing the surface morphology of PEO coated Mg and Mg 

alloys at different treatment times showing the data of pore analysis (Percentage area of 

porosity,%). 

  

8.3.3 Electrochemical Impedance Spectroscopy (EIS) Measurements 

In order to obtain a physical picture of the corrosion processes of the coatings at the 

electrode/electrolyte interface, the processes occurring due to the changes of the electrode 

surface and in the coatings layer, experimental EIS data were modeled using nonlinear 
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least-squares fit analysis software and the electrical equivalent circuits representing the 

various elements of the coatings.The Nyquist and the Bode (frequency dependencies of 

impedance modulus |Z| and phase angle theta) diagrams from the EIS analysis of 

experimental and fitted curves of different Mg alloys treated by PEO at five different 

coating treatment times are given in Figs. 8.3-8.6. Taking both the physical structure of 

the PEO coatings and their impedance responses into account, and based on previous 

studies [8,18], equivalent circuits employed for curve fitting of the untreated, PEO-

treated pure Mg and PEO-treated AJ62, AM60B and AZ91D Mg alloys were developed 

and are illustrated in Fig. 8.7 a, b and c, respectively. Different combinations of elements 

in different sequences were tried. The results shown in Fig. 8.8 for the uncoated and in 

Figs. 8.3-8.6 for PEO-coated Mg and Mg alloys show different EIS behavior, and the 

difference was present for all of the frequency range of the EIS plots. It is evident from 

these plots that these different materials have different corrosion behaviour which is 

summarized in sections 8.3.3.1 and 8.3.3.2. 
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Fig. 8.3 EIS plots of coated AJ62 Mg alloy at different treatment time ((a) Nyquist, (b) 

Impedance and (c) angles plots) (equivalent circuit is shown in Fig8.7(a)) 
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Fig. 8.4 EIS plots of coated AM60B Mg alloy at different treatment time ((a) Nyquist, (b) 

Impedance and (c) angles plots) (equivalent circuit is shown in Fig8.7(a)) 
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Fig. 8.5 EIS plots of coated AZ91D Mg alloy at different treatment time ((a) Nyquist, (b) 

Impedance and (c) angles plots) (equivalent circuit is shown in Fig8.7(a)) 
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Fig. 8.6 EIS plots of coated Pure Mg alloy at different treatment time ((a) Nyquist, (b) 

Impedance and (c) angles plots) (equivalent circuit is shown in Fig8.7(b)) 

 

 

 

 

 

 

 



 

144 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.7 The equivalent circuit models for (a) coated Mg alloy, (b) coated pure Mg and 

(c) uncoated Mg alloys. 
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8.3.3.1 PEO coated samples 

The PEO coatings studied in this work were obtained using regimes that are different not 

only in terms of Mg alloys used, but also in coating treatment time. Hence, with 

increasing coating treatment time, the corrosion protection performance of PEO coatings 

is directly dependent on their thickness, uniformity and amount of porosity and other 

defects as indicated by the significant decrease in average porosity values with coating 

treatment time (Fig. 8.2).  In order to get a quantitative measure of the alloying elements 

effect, the EIS spectrum of the coated Mg alloy was modeled using the same equivalent 

circuit presented in Fig. 8.7(a). Again, an agreement between the experimental and 

modeled data is excellent, thus justifying the use of the proposed equivalent circuit. 

 

8.3.3.1.1 PEO coated AJ62 

Fig. 8.3 shows the Nyquist and Bode plots of experimental and fitting curves of the 

coated AJ62 Mg alloy as a function of coating time. The model chosen for the fitting of 

the PEO-treated Mg alloy was a commonly used model for PEO [19,20]. It is recognized 

that any electrode process is complex and usually consist of a many different sub-

processes. The sub-processes include both mass transfer and charge transfer and can be in 

series or parallel with each other [8]. The proposed equivalent circuit used describes the 

behavior of a process characterized by two time constants, namely the high-frequency 

(HF) time constant (CPE1−R1) and low-frequency (LF) time constant (CPE2−R2), where 

the low frequency data are on the right side of the Nyquist plot and higher frequencies are 

on the left. In all of the applied equivalent circuits in this work, RS represent the 

resistance of the solution between reference and working electrodes. RS has nothing to do 

with the electrode process and its value depends mainly on the geometry of employed cell 

and the conductivity of the test solution. R1 is the coating resistance which is parallel with 

a constant phase element CPE1 (CPE1 in the model of Ryu et al [21]).  CPE2 is the 

constant phase element for the double layer capacitance of the interface electrical double 

layer at, or near, the coating/substrate interface. R2 represent the polarization resistance 

which is the Faradic charge transfer resistance related to electrochemical reactions in the 

same coating/substrate interface region [19]. Therefore, the high frequency (HF) range of 

impedance diagrams can be associated with the properties of the coating/electrolyte 
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interface, while the low frequency (LF) range characterizes the mass-transport processes 

through the formed dense substrate/coating interface layer or an (activation-controlled 

step.  

A good fit was observed between the experimental data and the simulated values (Fig. 8.3 

(a,b and c)). The values of the circuit elements calculated from the fitting for the 

spectrum recorded on the coated AJ62 Mg alloys surfaces are summarized in Tables 8.3. 

The fitting quality was evaluated by the chi-squared (x
2
) values [22], which were in the 

range of 1×10
-3

–1×10
-4

 indicating good agreement between the experimental and 

equivalent circuit data. 

Table 8.3. Fitting results of EIS diagrams of PEO treated AJ62 Mg alloy using different 

coating times. Equivalent circuit is Rs+CPE1/(R1+CPE2/R2) 

sample R1 

(Ω·cm
2
) 

CPE1-Q 

(µF/cm
2
 s

1-

n
) 

CPE1-n R2 

(MΩ·cm
2
) 

CPE2-Q 

(µF/cm
2
 s

1-n
) 

 

CPE2-n R3 

(MΩ·cm
2
) 

3 min 20.48 0.452 0.610 0.261 0.980 0.208 0.256 

6 min 20.22 0.387 0.566 0.472 0.905 0.852 0.512 

10 min 20.05 0.254 0.620 0.800 0.622 0.971 0.810 

15 min 20.59 0.252 0.679 1.025 0.547 0.825 1.981 

30 min 20.41 0.055 0.751 1.970 0.465 0.515 2.191 

 

According to the data obtained for the AJ62 coating the magnitudes of R1 and R2 are 

increasing with coating time where they start from 0.26, 0.25 M Ω cm
2
 for short 

treatment time reaching almost 2, 2.2 M Ω cm
2
 for 30 min treatment time, respectively, 

implying that the two layers contributed almost equally to the anti-corrosion performance 

of the coatings. Bode phase angle diagram shown in Fig. 8.3(c) shows that as the for the 

low frequency the phase angle is shifted to lower angle as the coating time increased 

whereas at the HF range, phase angles becomes closer to each other around -60
o
. 

Whereas Bode impedance diagram (Fig. 8.3(b)) shows the impedance modulus at the LF 

range, vary from 10
5.5 

to 10
6.5

 Ω cm
2
 with the coating time.  

 

8.3.3.1.2 PEO coated AM60B 

The Nyquist and Bode plots of experimental and fitting curves as a function of PEO time 

of coated AM60B are shown in Fig. 8.4. In the LF range, the phase angle is shifted to 

lower angle as the coating time increased reaching -45
o
 for the sample coated for 30 min. 
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The impedance modulus ranges from 10
5.7 

to 10
6.6

 Ω cm
2
. As shown in Table 8.4, 

significantly larger values of R2 compared to that of R1 suggests that the corrosion 

protection is provided predominantly by the inner barrier layer where R2 reaches 8.8 M 

Ω cm
2
 compared to R1 of 1.9 M Ω cm

2
 for the 30 min sample. Also, the relatively lower 

value of CPE1 (9.4×10
-8

  F/cm
2 

s
n-1

) reflects the lower double layer capacitance resulting 

from the relatively low porosity of the coating. A low R1 and a much higher R2 value 

point to the fact that the porous layer of the coating was not able to provide high 

resistance against corrosion and the total resistance of the coating was mainly derived 

from the inner layer which is directly adjacent to the metal surface, and acts as a barrier 

to prevent the corrosive electrolyte from reaching the substrate. 

 

Table 8.4. Fitting results of EIS diagrams of PEO treated AM60B Mg alloy using 

different coating times. Equivalent circuit is Rs+CPE1/(R1+CPE2/R2) 

Time 

(min) 

Rs 

(Ω·cm
2
) 

CPE1-Q 

(µF/cm
2
 s

1-n
) 

CPE1-n R1 

(MΩ·cm
2
) 

CPE2-Q 

(µF/cm
2
 s

1-n
) 

 

CPE2-n R2 

MΩ·cm
2
 

3  20.31 1.995 0.882 0.209 0.109 0.833 0.370 

6  20.67 0.429 0.678 0.218 0.497 0.811 0.392 

10  20.88 0.581 0.674 0.679 0.573 0.804 1.042 

15 20.55 0.190 0.727 0.71 0.580 0.551 5.070 

30  20.52 0.094 0.804 1.875 0.320 0.819 8.796 

 

8.3.3.1.3 PEO coated AZ91D 

In spite of the fact that the PEO- coated AZ91D exhibits a much higher corrosion rate 

than the coated AJ62-alloy and the n values are close to 0.5 for CPE1, the Nyquist plot 

does not show a clear Warburg behaviour (slope of a 45
o
 between Z’ and Z’’). This is 

primarily due to the fact that current (flow of ions) can pass relatively easily through the 

coating layer due to the existence of pores. The Nyquist and Bode plots of experimental 

and fitted curves for the coated AZ91D presented in Fig. 8.5 are similar to coated AJ62. 

Therefore, the analysis of the equivalent circuit and corresponding mechanism of 

corrosion process is similar to that of AJ62. However, when compared to AJ62, the 

values of R2 are higher ranging from 0.38 to 12 M Ω cm
2
 and CPE1 (1.1×10

-7
  F/cm

2 
s

n-

1
), nevertheless CPE2 is 3 times lower for AZ91D than AJ62 (Tables 8.5 and 3). As a 

result, R2 of coating AZ91D was much higher compared with the R1 value of AJ62, and 
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hence the dense layer of the coating was able to provide high resistance against the 

corrosion and the total resistance of the coating was mainly derived from the inner layer 

which was dense. The Bode diagrams of Fig. 8.5 (b and c) shows that in the LF range, the 

phase angle is shifted to -55
o
 for the sample coated for 30 min compared to -10

o
  for the 3 

min coated sample and the impedance modulus changing from 10
5.6 

to 10
6.8

 Ω cm
2
. In 

comparison with the other coatings, AZ91D exhibited higher values of R2 and lower 

value of CPE2 (Table 8.5) which indicates that the coating has high corrosion resistance. 

Table 8.5. Fitting results of EIS diagrams of PEO treated AZ91D Mg alloy using 

different coating times. Equivalent circuit is Rs+CPE1/(R1+CPE2/R2) 

sample Rs 

(Ω·cm
2
) 

CPE1-Q 

(µF/cm
2
 s

1-

n
) 

CPE1-n R1 

(MΩ·cm
2

) 

CPE2-Q 

(µF/cm
2
 s

1-

n
) 

 

CPE2-n R2 

(MΩ·cm
2
) 

3 min 20.19 0.786 0.709 0.186 0.960 0.021 0.376 

6 min 20.21 0.533 0.651 0.564 0.723 0.660 1.281 

10 min 20.88 0.240 0.692 0.611 0.693 0.713 1.523 

15 min 20.15 0.186 0.755 1.576 0.668 0.888 5.069 

30 min 20.47 0.116 0.753 1.188 0.162 0.994 12.142 

 

In summary, analysis of equivalent circuits of all the above coatings demonstrates a two 

layered structure of the films as characterized by the presence of two time constants. 

However, the values of the circuit components vary. This is because an equivalent circuit 

is based on a possible physical model which represents the physicochemical process that 

occurs in the system under investigation. Depending on factors such as film 

characteristics, and whether the charge transfer process is affected by diffusion 

limitations, the features of EIS spectra and their corresponding equivalent circuits may 

vary 

 

8.3.3.1.4 PEO coated pure Mg  

It is obvious that the Nyquist results for the coated pure Mg presented in Fig. 8.6 exhibit 

a distinctly different behaviour compared to that of the PEO-coated Mg alloy samples. In 

the low frequency range, the curve attains negative values forming a curve known as an 

inductive loop [20]. This loop may be attributed to decomposition of metal to ions 
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leading to the formation of corrosion products, and then to the adsorption of electro-

active species of the electrolyte, which leads to localized corrosion followed by the 

formation of pits on the surface [20,23]. 

Table 8.6. Fitting results of EIS diagrams of PEO treated Pure Mg using different coating 

times. Equivalent circuit Rs+CPE1/R1+CPE2/R3/(R3+L) 

T 

Min 

Rs 

Ω·cm
2
 

CPE1-Q 

µF/cm
2
 s

1-n
 

CPE1

-n 

R1 

Ω·cm
2
 

CPE2-

Q 

µF/cm
2
 

s
1-n

 

 

CPE2-

n 

R2 

Ω·cm
2
 

R3 

Ω·cm
2
 

L 

(H) 

3  20.44 2.540 0.602 213.5 11.15 0.575 944.3 2337 99.9 

6  20.61 0.337 0.765 417.3 8.011 0.801 646.3 696.1 34.8 

10  20.76 0.335 0.751 541.1 5.529 0.804 874.2 1097 60.0 

15  20.13 0.310 0.744 810 3.475 0.666 2238.2 2978 13.4 

30  20.84 0.291 0.768 1127 3.422 0.791 1575.3 2014 60.0 

Fig. 8.7 (b) and Table 8.6 shows the equivalent circuit giving the best fit for the 

impedance data of the coated pure Mg samples. The circuit consists of two time constants 

together with an inductor (with inductance L) and a resistor (RL) which are parallel with 

one of the time constant components. It is clear that the equivalent circuit has an 

additional inductive element compared to that of the coated Mg alloys. The inductor 

represents the negative loop of the Nyquist curve. Fig. 8.1 shows that the thicknesses of 

the coating on pure Mg during all 5 treatment time are lower than that on the Mg-alloys. 

Furthermore, the SEM micrographs revels that the porosity levels are high in the coated 

pure Mg allowing the electrolyte to pass through the coating easily and reach the 

substrate. The diffusion of electrolyte species into the pores will be easier at higher 

frequencies thereby resulting in adsorption at the inner barrier layer. Due to this 

adsorption, the Nyquist curve shows an inductive behavior in the LF range [24]. For the 

PEO coated pure Mg, relatively small R2 values indicated a relatively open access of the 

electrolyte into the coating region due to the defects in this layer. Figs. 8.3-8.6  show that 

the impedance modulus of the coated pure magnesium increases with the coating 

treatment time from 630 Ω cm
2 

for 3 min coating time reaching 2000 Ω cm
2
 for 30 min 

treatment time these values are higher than those for the uncoated pure Mg, but still lower 

than for all the coated Mg alloys. 
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8.3.3.2 Uncoated Mg alloys 

The impedance response of the uncoated Mg alloys is somewhat different from that of the 

coated specimens. The equivalent circuits employed, a metal/solution system, is 

illustrated in Fig. 8.7(c). This circuit models a cell where polarization is due to a 

combination of kinetic and diffusion processes. The shape and magnitude of impedance 

in the Nyquist and Bode plots of the pure Mg and Mg alloys are in very good agreement 

with previously reported results [8,21]. The experimental Nyquist diagram recorded 

shows a semicircular trend, characterized by a one-time-constant behavior (single peak of 

the phase angle Bode diagram with maximum angle of 70
o
). The impedance modulus of 

the pure magnesium is far less than all other samples. The differences in the impedance 

may be related to the corrosion protection mechanisms of the alloys provided by the 

naturally formed oxide layer which is very thin (about few nm) and easily corroded by 

the corrosive electrolyte. 

Table 8.7. Fitting results of EIS diagrams of untreated Mg alloys. Equivalent circuit    

Rs+CPE1/(R1+CPE2) 

 sample RS 

(Ω·cm
2
) 

CPE1-Q 

(F/cm
2
 s

1-n
) 

CPE1-n R1 

(Ω·cm
2
) 

CPE2-Q 

(F/cm
2
 s

1-n
) 

 

CPE2-n 

Pure 

Mg 

42.21 6.528e-6 0.925 7 650.5 0.193 5 8.475e-3 

AJ62  41.78 13.79e-6 0.811 9 4 748 0.048 8 5.812e-6 

AM60B 40.85 4.742e-6 0.929 9 2 632 7.283e-3 0.183 4 

AZ91D 41.68 4.823e-6 0.946 5 2 470 0.359 6e-3 0.383 6 

  

The CPE2 is in the range from 0.2 F/cm
2 

s
n-1

 for pure Mg and 3.6×10
-4

 F/cm
2 

s
n-1

. CPE1 

values were in the range of 4.8-13.8 μF/cm
2 

s
n-1

, which is equivalent to a double layer 

capacitance, where n~1 (Table 8.7). The charge-transfer resistance, R1, has a minimum 

value of 650 Ω cm
2
 for pure uncoated Mg to 4750 Ω cm

2
 for uncoated AJ62 alloy while 

Rs value is 41 Ω cm
2
. The Nyquist plot for the uncoated AZ91D Mg alloy shows a 

different behavior than for other alloys but is similar to previous reports [18,25] and is 

characterized by two capacitive loops (Fig. 8.8). At low frequencies (i.e. higher real 

impedance values, Z′) the circle is distorted due to the contribution of the second 
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capacitance. The Nyquist diagrams, shows first a semicircle which can be fitted to an 

Rs+R1//CPE1, Randles Cell circuit, while the next part requires a second constant phase 

element Q2 for the fitting routine, Fig. 8.7 (c). It was reported that the first loop was 

associated with the charge transfer and the smaller capacitive loop was attributed to the 

corrosion products formed on the surface of AZ91D Mg alloy [8].  
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Fig. 8.8 EIS plots of uncoated Mg alloys at different treatment time ((a) Nyquist, (b) 

Impedance and (c) angles plots) (equivalent circuit Fig8.7(c)) 

 

Based on the electrochemical results, the total resistance ( 



n

n

nT RR
2

) of the coating is 

listed in Table 8.8, and it can be summarized that EIS measurements showed poor 
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corrosion resistance of all uncoated sampled as indicated by relatively low RT. The 

corrosion resistance of the coated Mg alloys improved substantially by PEO-coating 

however, the corrosion resistance of the coated pure Mg improved slightly.  

 

Table 8.8. The total resistance (RT)  (MΩ·cm
2
)  of the uncoated and coated different Mg 

alloys. 

Sample Pure Mg AJ62 AM60B AZ91D 

uncoated 6.50×10
-4

 4 .75×10
-3

 2. 63×10
-3

 2. 47×10
-3

 

3 min 3.50×10
-3

 0.52 0.58 0.562 

6 min 1.76×10
-3

 0.98 0.61 1.85 

10 min 2.51×10
-3

 1.61 1.72 2.13 

15 min 6.02×10
-3

 3.06 5.78 6.65 

30 min 4.71×10
-3

 4.161 10.67 13.33 

 

8.4 Conclusion  

- The results showed that surface morphologies, coating thickness and porosity 

level were affected by both the alloying elements and coating treatment time. 

- As the time of coating increased, the corrosion protection performance of PEO 

coatings is directly dependent on their thickness, uniformity and amount of 

porosity and other defects as indicated by the significant decrease of average 

porosity values with coating treatment time which could slow down the 

penetration rate of the electrolyte into the PEO coating. Therefore, the total 

impedance also increased. 

- Each coating has a different phase composition and surface morphology due to 

the effect of different alloying elements. This in turn affects the corrosion 

mechanism of these coatings which is reflected in their respective EIS curves. 

Thus, different types of equivalent circuits have been modeled to best fit these 

curves. 

- Electrochemical impedance spectroscopy data indicate that the bipolar PEO 

coated AZ91D Mg alloy demonstrates a higher corrosion resistance when 

compared to coated AM60B, AJ62 and pure Mg. The ranking for corrosion 

resistance in 3.5% NaCl medium was Mg uncoated < coated pure Mg < coated 

AJ62< coated AM60B < coated AZ91D which is consistent with the coating 
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average thickness results. That may be attributed to the discharging behaviors, 

coating structure, thickness and amount of porosity. 
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CHAPTER 9 

EFFECT OF CATHODIC CURRENT DENSITY ON THE 

CORROSION PROTECTION OF THE OXIDE COATINGS 

FORMED ON AZ91D MAGNESIUM ALLOY BY PLASMA 

ELECTROLYTIC OXIDATION. 

Published In: 

Hussein R. O., Nie X. and Northwood D. O. (2013) Effect of cathodic current density on 

the corrosion protection of the oxide coatings formed on AZ91D magnesium alloy by 

plasma electrolytic oxidation. Corrosion and Prevention 2013”, Australia 2013, paper no. 

112. 

9.1 Introduction. 

Magnesium is one of the most attractive materials for lightweighting, and has seen a 

sharp rise in industrial consumption. However, since magnesium and its alloys are very 

active chemically, corrosion protection is a critical factor which can decreased 

mechanical stability and an unattractive appearance. There are generally two possible 

ways to improve the corrosion behavior of Mg and Mg alloys. These are either to change 

the chemical composition, phase constituents and distribution, and thereby modify the 

microstructure [1], which is often difficult and would be a long-term goal [2], or by 

surface treatments or form coatings [3], which produce an independent protective 

ceramic, polymer or composite layers on the Mg alloys [4].  

The corrosion performance of magnesium alloys largely depends on the alloying and 

impurity elements. In order for a coating to provide adequate corrosion protection for Mg 

and Mg alloys, the coating must be uniform, pore free, well adhered and self-healing in 

case there is physical damage to the coating. Plasma electrolytic oxidation (PEO) has 

been used to rapidly and economically produce oxide coatings on magnesium alloy 

components of almost any shape and size. A promising approach to produce high-quality 

oxide coatings with good corrosion and wear resistance on magnesium alloys is to use the 

PEO process. 

The effects of electrical parameters mainly current density [5] and current mode [6] on 

the microstructure and corrosion behaviour of PEO coatings on Mg alloys have been 
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widely investigated. Increasing the current density and/or voltage led to an increase in 

layer thickness, as well as enlargement of the surface craters. Changing the current mode 

produces changes in the PEO process characteristics, including the breakdown voltage 

and discharge events, both in terms of discharge intensity and density [7]. The discharges 

have a profound effect on the coating microstructure, thickness, roughness, porosity, 

hardness, and coating growth rate, and hence affect the corrosion resistance of the coated 

magnesium alloy. PEO coatings formed using a bipolar current mode have been reported 

to have a more compact structure with fewer defects, and uniform coating thickness 

compared to coatings formed using a unipolar mode [8]. However, the unavoidable 

porous structures in the PEO coatings decrease the corrosion resistance, which may 

restrict any future potential applications for Mg alloys.  

 In this study the role played by current density using bipolar current modes on the 

microstructural characteristics of oxide coatings produced by a PEO process on a AZ91D 

Mg alloy is investigated. The coatings morphologies were also investigated to assess the 

relationship to their intrinsic alloy corrosion rate. Corrosion resistance is used as the 

measure of change in coating properties. 

  

9.2. Experimental Procedures 

Due to its excellent combination of mechanical properties and castability and reasonable 

corrosion resistance, AZ91D magnesium alloy disc coupons (Φ25×5mm) were used as 

the test samples in this study. 8 g/l Na2Al2O4and 1 g/l KOH were dissolved in de-

ionized water and was used as the electrolyte in PEO processing. Process parameters are 

listed in Table 9.1. Scanning electron microscopy (FEI Quanta 200 FEG with solid state 

backscattered detector operated at 10 KV) in the back scattered secondary electron (BSE) 

mode was used to observe both the coating surface morphology and, through observation 

of sample cross sections, coating thickness and integrity.  
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Table 9.1.  PEO Process parameters for coating  AZ91D Mg alloy. 

S Current 

mode 

Time 

(min) 

I
+
 

(A) 

J
+
 

(A/cm
2
) 

I
- 

(A) 
)( s

Ton





 
)( s

Ton





 
)( s

Toff





 
)( s

Toff





 
CR 

S1 Bipolar 30 0.68 0.05 0.5 400 100 400 100 0.9 

S2 Bipolar 30 0.95 0.07 0.7 400 100 400 100 0.9 

S3 Bipolar 30 1.5 0.11 1.1 400 100 400 100 0.9 

 

To determine the corrosion resistance of the PEO coating, potentiodynamic polarization 

in a 3.5% NaCl solution tests were carried out for uncoated and coated samples at 25 
o
C 

using a Solartron 1285 Potentiostat with Corrware software (Chapter 3). Electrochemical 

impedance spectroscopy (EIS) was also used for uncoated and coated samples, through a 

frequency response analyzer which enabled the scan to be generated automatically under 

computer control. Measurements were performed three times to ensure reproducibility of 

the results. Electrochemical impedance spectroscopy (EIS) measurements were 

performed at the open circuit corrosion potential on the PEO coatings after 30 minute of 

initial delay to stabilize the open-circuit potential (OCP). 

 

9.3 Results and Discussion. 

9.3.1 Microstructure of the Coatings. 

The surface morphologies of the three sets of PEO coatings, prepared under the process 

parameters listed in Table 9.1 for treatment times of 30 min obtained using back-scattered 

electron mode (BSE) are shown in Fig. 9.1(a-c). All samples show micro-pores, micro-

cracks and a ‘pancake’ structure wherein the center of each pancake was a discharge 

channel through which the molten magnesium surged out of the channel and quickly 

solidified leaving distinct boundaries that define each pancake. The micro-cracks are 

attributed to internal stresses in the PEO coatings formed as a result of complex 

interactions between the stress generation and stress relaxation processes [8].  Figure 

9.1(c) is a SEM micrograph of Sample S3, fabricated with the current density of 0.11 

A/cm2, and shows a number of pancake features and relatively large pores in the coating. 

The relatively large holes in the center of the pancake suggest that there are strong 

discharges and such holes may penetrate deep into the coating thickness: these discharges 

are called B- type discharges by Hussein et al [9] in their discharge model.   
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SEM micrographs showing the cross-sections of the PEO coated samples for the three 

different current densities are also presented in Fig. 9.1.  

 

 

S1 

 
 

 
 

 

 

S2 

  
 

 

 

 

S3 

  
 

Figure 9.1. SEM micrographs showing the surface morphology and cross section of oxide 

coatings on AZ91D alloy for (a,d) S1(J=0.05 A/cm
2
) , (b,e) S2(J=0.07 A/cm

2
)  and (c,f) 

S3(J=0.11 A/cm
2
)  samples respectively. The insert figures are micrographs at higher 

magnifications. 

The micro-pores are due to gas bubbles ejected from surface discharges and are referred 

to as A and C discharges [9]. In the specimen processed using current density of 0.07 

100 µm 

100 µm 

100 µm 

100 µm 

100 µm 

100 µm (d) (a) 

(b) 

(c) 

(e) 

(f) 

20 µm 

20 µm 

20 µm 
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A/cm2, Fig. 9.1(b), the pore density is reduced, and the size of the pores is smaller 

relative to the S3. However, sample S1 shows some holes in the center of the relatively 

smaller pancake diameter compared to S2 and S3 pancake diameter, indicating a 

reduction of the strength of the discharges. Stronger discharges have greater energy 

inputs which cause a larger amount of substrate and its oxide to melt down, and 

eventually the molten material is ejected onto the surface, forming larger pancake 

features when it is rapidly cooled by the electrolyte. 

All coating-substrate interfaces had a wavy-jagged appearance, which may be the result 

of dissolution of the substrate in the early stages of the treatment and the substrate 

intermetallic phases. Figure 9.1(f) shows the cross section of a ceramic coating for the S3 

sample.  

The coating showed significant porosity, holes and other defects within the coating and 

near the coating/substrate interface. Such defects would have a detrimental effect on the 

coatings corrosion resistance. The average coating thickness was in the range of 50-70 

µm. Current density plays an important role during the formation of PEO coatings.  

When the current density increases, the strength of the discharges increases, hence 

discharge channels and the amount of ejected molten oxide become larger which leads to 

thicker coating quicker, combined with relatively larger holes and more coating defects. 

For the S2 case, Fig. 9.1(e), the oxide layer was thinner than for the S3 case, 23 - 50 µm. 

Ii was clear that besides the improvement of the surface morphology, the cross sections 

show the coating improvement in terms of porosity and other defects. The PEO coating 

on S1 samples had an average thickness in the range of 18-26 µm and were composed of 

a network of through-coating defects (micro cracks).  

 

9.3.2 Corrosion Resistance 

9.3.2.1 Potentiodynamic Polarization 

It is illustrative to compare the corrosion protection properties afforded by the PEO-

coatings for different current densities using a bipolar current mode. The 

potentiodynamic polarization curves of the uncoated AZ91D Mg alloy and the PEO 

coated specimens after immersion in a 3.5% NaCl solution for different times up to 24 h 

are shown in Fig. 9.2. Compared to the uncoated AZ91D, all PEO-coated samples 
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exhibited a higher polarization resistance, a lower corrosion current density and a higher 

(more noble) corrosion potential. The first point to note is that the variation of corrosion 

resistance with current density is not linear. Some of the polarization curves eg. S3 at 

0.5h, and S1 at 24h, exhibit evidence of a “passive behaviour”. However, this passive 

behaviour dose not lead to significant reductions in corrosion current densities, 

particularly at longer immersion times.  

It is generally expected that a thicker coating gives rise to better corrosion resistance. 

However, a thicker coating obtained using a higher current density (S3) offered less 

protection than coatings obtained using lower current densities (S1 and S2). This 

indicates that the defect density is the dominating influence rather than the coating 

thickness. Increasing the coating thickness did not reduce the amount of open defects that 

provided access for the electrolyte to the magnesium alloy substrate. Sealing the coating 

would appear to be necessary to protect against long term exposure in aggressive 

environments. Comparatively, coating S2, having relatively thick and dense oxide layers, 

has a higher polarization resistance and lower corrosion current densities than the other 

PEO coatings (Table 9.2). Hence, with increasing current density, the corrosion 

protection performance of PEO coatings is directly dependent on their uniformity and 

amount of porosity and other defects. 
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Fig. 9.2. Potentiodynamic polarization curves of the uncoated (S0) and PEO-coated 

samples using different current densities (S1-S3) after three different immersion times. 

 

Table 9.2.  Potentiodynamic polarization corrosion test results in3.5%wt NaCl 

solution    

Immn. 

time 

S Ecorr (V) icorr 

µA/cm
2
 

βa(mV) βc(mV) Rp (KΩ/cm
2
) Pi 

(mm/year) 

0.0 h S0 -1.797 22.43 110.0 168.3 1.29 5.12×10
-1

 

0.5 h 

S1 -1.717 0.005 173.0 91.8 5214.0 1.14×10
-4

 

S2 -1.673 0.004 96.2 126.9 5947.7 9.14×10
-5

 

S3 -1.586 0.011 216.0 134.1 3270.2 2.51×10
-4

 

6 h 

S1 -1.632 1.05 414.2 334.2 76.52 2.40×10
-2

 

S2 -1.541 0.801 348.0 304.3 88.12 1.83×10
-2

 

S3 -1.525 2.12 387.0 353.6 37.93 4.84×10
-2

 

24 h 

S1 -1.585 14.39 111.2 308.5 2.47 3.29×10
-1

 

S2 -1.547 10.93 261.5 330.0 5.80 2.50×10
-1

 

S3 -1.536 10.85 169.1 273.8 4.19 2.48×10
-1
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In the potentiodynamic polarization method for measuring the corrosion rate of AZ91D 

Mg alloys, the corrosion current density, icorr (µA/cm
2
) can be related to the average 

corrosion rate, Pi (mm/year) by the Stern-Geary equation [10], the calculated values for Pi 

are also given in Table 9.2. Potentiodynamic polarization corrosion test results showed 

that these PEO coatings significantly increased the corrosion resistance of AZ91D alloy. 

The ranking for corrosion resistance in 3.5% NaCl medium was Mg uncoated < sample 

S3 < sample S1 < sample S2 for 0.5h and 6h immersion times. However for 24h 

immersion time the ranking is sample S1 < sample S2 and S3 which may attributed to the 

smaller coating thickness of S1coating that may be partially dissolved during the 

immersion period compared to S2 and S3 coatings. 

 

9.3.2.2 Electrochemical Impedance Spectroscopy (EIS) Measurements 

The Nyquist and the Bode diagrams from the EIS analysis of experimental and fitted 

curves of AZ91D Mg alloy treated by PEO at three different current densities during 

three different immersion times are given in Figs. 9.3-9.5. Taking both the physical 

structure of the PEO coatings and their impedance responses into account, and based on 

previous studies [11,12], equivalent circuits employed for curve fitting of the untreated 

and PEO-treated AZ91D at different treatment time are listed in the Tables 9.3-9.5 and 

are illustrated in Figs. 9.6 (a) and (b). The choice of the circuit was a balance between a 

reasonable fitting of the experimental values and a good description of the 

electrochemical system by keeping the number of circuit elements at a minimum. For the 

uncoated samples the presence of Warburg element and its resistance R3 is an evidence 

for a diffusion control processes. 

The results shown in Fig. 9.3 are for AZ91D alloy without and with PEO treatment after 

immersion in 3.5 % NaCl solution for 0.5h. Nyquist plots of untreated AZ91D alloy were 

characterized by an inductive loop in the low frequency (LF) region (enlarged part of Fig. 

9.3). Figs. 9.4-9.5 for PEO-coated Mg alloy immersed for 6h and 24h respectively shows 

different EIS behavior, and the difference was present for all of the frequency range of 

the EIS plots. As shown in the Bode plot (Fig. 9.4), the impedance modulus at low 
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frequencies decreased during the first 6 h of immersion, indicating continuous dissolution 

of the magnesium matrix.  

 

9.3.2.2.1 0.5h Immersion Time. 

In order to get a quantitative measure of the current density and immersion time effects, 

the EIS spectrum of the coated Mg alloy was modeled using the equivalent circuit 

presented in Fig. 9.6. An excellent agreement between the experimental and modeled 

data was obtained. Fig. 9.3 shows the Nyquist and Bode plots of experimental and fitting 

curves of the coated AZ91D Mg alloy as a function of current density after immersion in 

3.5 % NaCl solution for 0.5h. 

The values of the circuit elements calculated from the fitting for the spectrum recorded on 

the coated AZ91D Mg alloys surfaces are summarized in Table 9.3. The fitting quality 

was evaluated by the chi-squared (x
2
) values [13], which were in the range of 1×10

-3 
to 

1×10
-4

 indicating good agreement between the experimental and equivalent circuit data. 

According to the data obtained for the PEO-coated AZ91D coating immersed for o.5h in 

the solution, exhibits a much higher corrosion rate than those for 6 and 24h immersion 

time, and the magnitudes of R1for the coated samples are varying with current density, 

however it is in the range (0.167-0.23 M Ω cm
2
), and Q1 values increases from 0.14 for 

S1 to 0.24 µF/cm
2 

s
n-1

 for S3. Bode impedance diagram (Fig. 9.3(b)) shows the 

impedance modulus at the LF range, vary from 10
5.5 

Ω cm
2
 for S3 to 10

6.5
 Ω cm

2
 for 

S1and S2. The Nyquist curves for the uncoated AZ91D Mg alloy presented in Fig. 9.3 

exhibit, a negative values in the low frequency range forming a curve known as an 

inductive loop [12]. This loop may be attributed to decomposition of metal to ions 

leading to the formation of corrosion products. The impedance modulus at the LF range 

for uncoated sample is 10
3.1 

Ω cm
2
 (Fig. 9.3(b)). 
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Fig. 9.3. EIS plots of coated and uncoated AZ91DMg alloy at different current densities 

for 0.5 h immersion time ((a) Nyquist, (b) Impedance and (c) angles plots) 

 

9.3.2.2.2 6h Immersion Time. 

The Nyquist and Bode plots of experimental and fitting curves as a function of current 

density of coated AZ91D for 6h immersion time are shown in Fig. 9.4. Although, the 

same equivalent circuit was used as for the 0.5h immersion time, PEO-coated Mg alloy 

immersed for 6h shows different EIS behavior, and the difference was present for all of 

the frequency range of the EIS plots. The experimental Nyquist diagram recorded shows 
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a semicircular trend with diameters (which reflects the corrosion resistance of the sample) 

in the range of 29-60 kΩ cm
2
. This loop may be attributed to decomposition of metal to 

ions leading to the formation of corrosion products, and then to the adsorption of electro-

active species of the electrolyte [12,14].  

 

Table 9.3. Fitting results of EIS diagrams of PEO treated AZ91D Mg alloy using 

different current densities. 

Immn. 

time 

S Rs 

Ω·cm
2
 

CPE1-Q 

µF/cm
2
 s

1-n
 

CPE1-

n 

R1 

(Ω·cm
2
) 

CPE2-Q 

µF/cm
2
 s

1-n
 

 

CPE2-

n 

R2 

 (Ω·cm
2
) 

0.5h 

S1 70 0.14 0.68 1.67×10
5
 0.70 0.55 2.5×10

23
 

S2 70 0.20 0.63 2.30×10
5
 0.70 0.60 2.2×10

7
 

S3 67 0.24 0.68 2.00×10
5
 0.74 0.74 2.0×10

6
 

6h 

S1 70 1.1 0.67 3.97×10
4
 9.2 0.78 1.7×10

4
 

S2 70 0.75 0.61 5.81×10
4
 25.7 0.99 2.0×10

3
 

S3 70 1.1 0.62 7.87×10
2
 0.0059 0.93 2.8×10

3
 

 

 

In the LF range, the phase angle is shifted to lower angle around 0 to -7
o
 for S3 and 

(S1&S2) samples respectively. The impedance modulus ranges from 10
4.5

 to 10
4.75

 Ω 

cm
2
. As shown in Table 9.3, the values of R1 ranging from 5.8 ×10

2
   Ω cm

2
 for S3 to 7.9 

×10
4 

M Ω cm
2
 for s1 sample. The values of CPE1 are about 1.0 µF/cm

2 
s

n-1
.  
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Fig. 9.4. EIS plots of coated and uncoated AZ91DMg alloy at different current densities 

for 6 h immersion time ((a) Nyquist, (b) Impedance and (c) angles plots). 

 

9.3.2.2.3  24 h Immersion Time.  

The impedance response of the coated AZ91D Mg alloys immersed for 24h is somewhat 

different from that of the 0.5h and 6h immersion samples. This circuit models a cell 

where polarization is due to a combination of kinetic and diffusion processes. The 

experimental Nyquist diagram recorded shows a semicircular trend, with much smaller 

diameter compered to 6h case which in the range of 2.8-8 kΩ cm
2
. Fitting results of EIS 

diagrams of PEO treated samples immersed for 24h, reveals some negative values of the 

elements which has no physical meaning hence the semi-circle diameter were used as an 

indicator of the corrosion resistance. In the low frequency range, the curve attains 
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negative values forming an inductive loop curve [12]. The longer immersion time allows 

the electrolyte to pass through the coating easily and reach the substrate. The diffusion of 

electrolyte species into the pores will be easier at higher frequencies thereby resulting in 

adsorption at the inner barrier layer. Due to this adsorption, the Nyquist curve shows an 

inductive behavior in the LF range [15]. Fig. 9.5 (b) and Table 9.4 show the equivalent 

circuit giving the best fit for the impedance data of the 24h immersion time. The 

magnitude of impedance modulus /Z/ was reduced to the range of 10
3.5

 to 10
3.9

 Ω cm
2
 for 

S1 and (S2 and S3) respectively, which can be attributed to the electrolyte penetration 

through the PEO coating after the coating degradation, however /Z/ is still higher than 

that of the uncoated Mg alloy with 0.5h immersion time.  
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Fig. 9.5. EIS plots of coated and uncoated AZ91DMg alloy at different current densities 

for 24 h immersion time ((a) Nyquist, (b) Impedance and (c) angles plots) 

 

Table 9.4. Fitting results of EIS diagrams of PEO treated AZ91D Mg alloy using 

different current densities for 24h immersion time. 

S Rs 

Ω·cm
2
 

CPE1-Q 

 F/cm
2
 s

1-n
 

CPE

1-n 

R1 

Ω·cm
2
 

CPE2-Q 

µF/cm
2
 s

1-n
 

 

CPE2

-n 

R2 

Ω·cm
2
 

CPE3-Q 

µF/cm
2
 s

1-n
 

 

CPE3-

n 

R3 

Ω·cm
2
 

S1 70 1.5×10
-5

 0.6

3 

1.56

×10
4
 

17.4 1 40 -26.8 0.22 -

21740 

S2 70 2.3×10
-6

 0.6

7 

-95 1.8 0.4 5537 300 0.002 -11.81 

S3 70 4.5×10
-8

 0.8

6 

185 0.82 1 -5.6 3.8 0.64 8563 
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Table 9.5. Fitting results of EIS diagrams of untreated AZ91D Mg alloy (S0) for 0h 

immersion time. 

S Rs 

Ω·cm
2
 

CPE1-Q 

F/cm
2
 s

1-n
 

CPE

1-n 

R1 

 Ω·cm
2
 

CPE2-Q 

µF/cm
2
 s

1-n
 

 

CPE2

-n 

R2 

Ω·cm
2
 

CPE3-Q 

F/cm
2
 s

1-n
 

 

CPE3

-n 

R3 

 Ω·cm
2
 

S0 70 6.0×10
-9

 1 -30 10.16 0.88 1433 0.057 0.55 0.98 

 

 

 

 

 

 

 

 

 

 

Fig. 9.6 The equivalent circuit model for (a) coated AZ91DMg alloy for 0.5, 6h 

immersion time, (b) coated Mg alloy for 24h immersion time and uncoated Mg alloys. 

 

9.4 Conclusions 

 

- It is concluded that the corrosion protection performance of the PEO coatings is 

indirectly dependent on the current density and is controlled by the amount of 

porosity and other coating defects which could slow down the penetration rate of 

the electrolyte through the PEO coating. Although, increasing the cathodic current 

density during the PEO processing of AZ91D magnesium alloy from 0.05 A/cm
2
 

to 0.11A/cm
2
 produced a thicker coating (thickness increased from 22µm to 60 

(a) Rs+CPE1/(R1+CPE2/R2) 

CPE1 

CPE2 

Rs 

R2 

R1 

CPE3 

w R3 
(b) Rs+CPE1/(R1+CPE2/R2+CPE3/(R3+W)) 
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µm), there was a corresponding increase in coating defects, including porosity and 

microcracks, which affected the overall corrosion performance. 

- Based on the potentiodynamic polarization and EIS results, it was found that all 

PEO coated offered significant corrosion protection to the AZ91D alloy for short 

immersion times (0.5 hour) prior to corrosion testing. Compared to uncoated 

alloy, the corrosion rate from potentiodynamic polarization was reduced by at 

least three orders of magnitude. The high impedance and R2 values in the EIS 

results demonstrated that the PEO coating did not undergo any significant 

degradation and that the coating at the metal-substrate interface was providing 

significant protection. 

- As the immersion time prior to corrosion testing was increased from 0.5 hours to 

6 hours and finally to 24 hours, the protective properties of the PEO coatings were 

greatly reduced such that for the 24 hour immersion samples, the corrosion rates 

for the PEO-coated samples were comparable to those for the uncoated alloy with 

no immersion before corrosion testing. [N.B. 24 hour immersion of the uncoated 

alloy would have substantially degraded the alloy]. Sealing of the PEO coating 

would appear to be necessary for long-term exposure in aggressive environments. 
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CHAPTER 10 

THE ROLES OF THE ELECTROLYTE COMPOSITION AND 

CONCENTRATION ON THE CORROSION RESISTANCE OF THE 

OXIDE COATINGS FORMED ON AZ91D MAGNESIUM ALLOY BY 

PLASMA ELECTROLYTIC OXIDATION. 

Published in: 

Hussein R. O., Nie X. and Northwood D. O. (2014) The roles of the electrolyte 

composition and concentration on the corrosion resistance of the oxide coatings formed 

on AZ91D magnesium alloy by plasma electrolytic oxidation, Corrosion and Prevention 

2014; Australia 2014; Code 109535 

10. Introduction. 

Energy efficiency is currently one of the top concerns in industry. For the automotive and 

aerospace sectors, a reduction in the weight of vehicles will reduce the consumption of 

gas and, hence, promote environmental friendliness. Magnesium is the lightest of all the 

engineering metals. This combined with a high strength-to-weight ratio, recyclability, 

good castability and weldability, makes magnesium alloys one of the most promising 

materials for many future applications [1]. However, magnesium and its alloys are not 

without their disadvantages which include: low elastic modulus, limited strength and 

creep resistance at elevated temperature and high chemical reactivity with associated 

poor corrosion resistance [1]. The protective properties of passive films on Mg are low, 

so they are less able to protect this very active metal against environmentally induced 

degradation. The idea of “stainless magnesium” is attractive. If we try to mimic the 

development of stainless steel, where the addition of greater than 12%Cr led to the 

replacement of native (non-protective) oxide with a passive (protective) oxide, we run 

into a number of “problems”. As pointed out by Birbilis et al [2], most elements have 

limited solubility in Mg and therefore it is impossible to reach the critical alloying 

content to form the passive oxide. However, Birbilis et al [2] were able to produce 

“stainless magnesium” through the development of a low strength Mg-3.7wt%As alloy. 
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Rather than forming a passive oxide, arsenic acts as an inhibitor, by inhibiting hydrogen 

atom recombination. The Mg-As exhibited filiform corrosion in tests 0.1M NaCl, instead 

of uniform corrosion. Consequently, one of the major methods for improving the 

corrosion resistance of magnesium alloys is an appropriate surface treatment [3]. 

Coatings have found wide usage for corrosion protection of magnesium alloys and the 

plasma electrolytic oxidation (PEO) method has demonstrated a particular effectiveness 

in producing coatings with not only corrosion protection but also enhanced wear 

properties, hardness and toughness with better thermal stability and dielectric properties 

[4]. PEO-coated Mg alloys have found application in automotive engineering, electronic 

technology and aerospace industries. One of the earlier successful applications of PEO 

coated magnesium was the improvement of the corrosion resistance of helicopter gear 

box housings [5]. 

Plasma Electrolytic Oxidation (PEO), is a high voltage plasma-assisted oxidation process 

that transforms the magnesium metal surface, as well as other light weight metals Al and 

Ti, into thick, ultra-hard ceramic oxides by a plasma discharge in an electrolytic bath [6-

7]. The PEO process can be considered as a combination of anodizing (electrolytic 

oxidation) and plasma discharging processes. The main similarities between the PEO and 

anodizing processes, is that both of them involve oxidation of substrate using an 

electrolytic bath and the first stage of the PEO process is an anodization process.  

Generally, for better protection of magnesium alloys from corrosion, the coatings should 

be compact and sufficiently thick with minimum defects, so as to isolate the magnesium 

alloy surface from the surrounding environment. They also should be hard enough to 

resist scratches and have a high dielectric strength, so that the flow of current between 

dissimilar metals can be reduced, thus minimizing contact corrosion. The majority of 

magnesium components are die-cast products, so the coating processes should be able to 

cope with some surface imperfections of the die-cast components, such as pores, 

impurities, and composition and microstructure variations. One of the main advantages of 

PEO process is that it can be applied to treat samples with complex shapes, and surfaces 

with different composition and microstructure.  

The structures of the oxide layer produced by the PEO process depend on various 

processing parameters, including chemical composition and concentration of the 
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electrolyte, substrate composition and the electrical parameters including: current density, 

current mode and processing time [3]. In particular, the electrolyte chemistry 

(concentration and composition) has a significant influence on the electrochemical 

reactions, discharge characteristics and breakdown voltage. This, in turn, affects the 

microstructure, the density of porosity and other defects, thickness, and hence, the 

corrosion resistance of PEO coatings. Therefore, the selection of the proper electrolyte 

composition is important for improving the corrosion resistance of PEO-coated Mg 

alloys.  

PEO coatings on Mg alloys and other lightweight alloys are normally produced using 

environmentally friendly base electrolytes (NaOH/KOH) with the addition of silicate, 

aluminate, phosphate or polyphosphate-containing alkaline electrolytes to increase the 

conductivity of the electrolyte solution. The coatings formed using only KOH at different 

concentrations, consist of the unstable and easily degradable MgO phase [8,9]. Addition 

of Na2SiO3 and NaAlO2 to the KOH electrolyte, produces spinel phases, Mg2SiO4 or 

MgAl2O4, in the PEO coatings which provide better corrosion resistance, higher hardness 

and better wear properties [3, 10,11]. Increasing the amount of Na2SiO3 [10,11] or 

NaAlO2 [3] in the electrolyte, increases the amount of the spinel phases relative to the 

MgO, thus further improving the corrosion properties. 

There has been a significant research interest in the addition of polyvalent metal anions, 

such as chromate, tungstate and vanadate, to the electrolyte in the PEO processing of 

aluminum, titanium and magnesium alloys. With respect to a tungstate addition, the 

majority of the studies have been on aluminum alloys [12-17] with a more limited 

amount of data on titanium alloys [14,15,18-20] and magnesium [21-25]. With the 

exception of the study by Zhao et al [22], it was generally found that incorporation of 

tungstate into the electrolyte produced a more compact coating with improved corrosion 

and wear resistance.  

Figure 10.1 schematically illustrates the parameters that affect the coating quality. During 

PEO coating, there are three simultaneous processes taking place, namely the 

electrochemical reactions, the plasma chemical reactions and thermal oxygen diffusion 

[3]. The PEO process of light-weight metals is strongly influenced by such parameters as 

electrolyte composition and concentration, current or voltage applied and substrate alloy. 
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Generally, these parameters have a direct influence on the discharging behavior: type, 

size, duration, population density and temperature. The discharges play an essential role 

in the formation and resulting composition of the 3-layer oxide structure, by influencing 

phase transformations, crystallization and sintering. This, then, affects the physical, 

mechanical and chemical properties of the coating. A detailed knowledge of the coating 

mechanisms is extremely important in order to produce a desired coating quality to reach 

the best performance of the PEO coatings in terms of corrosion resistance and 

tribological properties (wear rate, COF).  

In this study PEO coatings were formed on an AZ91D magnesium alloy using a base 

KOH electrolyte with additions of an aluminate (Na2Al2O4) and tungstate (Na2WO4) to 

increase the electrolyte conductivity. The effects of modifying the electrolyte on the 

surface morphology, microstructure and chemical composition of PEO coatings were 

determined using scanning electron microscopy (SEM) and energy dispersive analysis 

(EDS). The corrosion resistance was determined using potentiodynamic polarization in a 

3.5% NaCl solution and is then related to the coating structure. 
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Fig. 10.1 PEO process properties, mechanisms and performance 

 

 

10.2. Experimental Procedures 

10.2.1 Materials and PEO Processing Method 

Disc-shaped coupons (25×7mm) cut from AZ91D bar was used as the substrate. The 

coating was obtained in an alkaline electrolyte containing different concentrations of 

Na2Al2O4, KOH and Na2WO4.2H2O, as shown in Table 10.1. The processing parameters 

for the coated Mg samples are listed in Table 10.2. The PEO coating process was carried 

out under a constant current using a bipolar current mode. Process parameters, are listed 

in Table 10.2.   

Scanning electron microscopy (FEI Quanta 200 FEG with solid state backscattered 

detector operated at 10 KV) in the secondary electron (SE) mode was used to observe 
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both the coating surface morphology and, through observation of sample cross sections, 

coating thickness and integrity. To identify the phases generated during the PEO coating, 

analytical X-ray diffraction (XRD) was performed on all coated samples. Copper Kα 

radiation (wavelength k = 0.15406 nm) was employed at a tube current of 45 mA and a 

voltage of 45 kV. For phase identification, the scan range varied from 10 to 80° (in 2θ) 

with a step size of 0.05o and 1.5s in each step. 

Table 10.1 Electrolyte composition for PEO processing of AZ91D 

Sample KOH (g/l) Na2Al2O4 (g/l) Na2WO4.2H2O (g/l) 

S1 2 8 0.0 

S2 2 8 1.0 

S3 2 8 2.0 

S4 2 8 6.0 

S5 2 15 0.0 

 

Table 10.2.  PEO processing parameters for coating  AZ91D Mg alloy. 

Sample Current 

mode 

Time 

(min) 

I
+ 

(A) 

I
-  

(A) 
)( sTon 

 

)( sTon 

 

)( sToff 

 

)( sToff   CR 

All Bipolar 15 1.0 0.8 400 100 400 100 0.83 

 

To determine the corrosion resistance of the PEO coating, potentiodynamic polarization 

tests were carried out for uncoated and coated samples at 25 
o
C using a Solartron 1285 

Potentiostat with Corrware software. A three electrode cell with the coated samples as the 

working electrode, an Ag/AgCl/sat KCl reference electrode, and platinum as a counter 

electrode, was used in the experiments. When the corrosion potential remained stable the 

potential were scanned from -0.15V versus open circuit potential up to -2.0 V versus the 

reference electrode at a rate of 1.0 mV/s. 

 

10.3. Results 

10.3.1 Voltage Behavior. 

Figure 10.2(a) shows plots of the anodic output voltage versus treatment time for the 5 

electrolyte compositions. Such plots are typical for the PEO process [27] except that only 
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three stages, I, II, III, are seen. The normal stage IV was not seen since the PEO treatment 

time used, namely 15 minutes, was too short for stage IV to be attained. The three stages 

seen were as follows: Stage I:  In the early stage of the process, which mainly involves 

the rapid electrochemical formation of an initial insulating oxide film corresponding to 

the traditional anodizing stage, a sharp increase in the voltage was seen. Stage II: The rate 

of the voltage change decreases in this stage, which is characterized by numerous sparks 

moving rapidly over the whole sample surface area. This indicates the start of the 

breakdown of the oxide layer and corresponds to the moment when the surface of the 

alloy becomes totally covered by the PEO film. Stage III: In this stage the voltage 

remains relatively stable and characterized by larger but slower moving discharges.  

The slope of the curve at initial stages (region I) depends strongly on the electrolytic 

composition. This behavior is more clearly observed in the inset, Fig. 10.2(b). For the S1 

and S5 samples which were coated in an electrolyte containing no tungstate, the time 

required to reach the breakdown voltage (the point on the curve where the slope 

drastically changes and the initiation of sparks occurs) is longer than that for samples 

coated in electrolytes which contain tungstate (S2,S3 and S4): see Table 10.3. Also, as 

the aluminate concentration increases, S1 to S5, the slope increases. Samples coated in an 

electrolyte containing tungstate (S2,S3 and S4) show sharper increases in V-t slope 

compared with S1 and S5 and as the concentration of the tungstate increases, the slope 

also increases, indicating that the time to reach breakdown voltage is shorter for sample 

S4 compared with S1, S2  and S3. Looking at the breakdown voltages for the different 

electrolytes, Table 10.3, compared to the breakdown voltage (390 V) for the base 

aluminate/KOH electrolyte, S1, there is a decrease in breakdown voltage on increasing 

either the aluminate concentration or adding tungstate. 



 

179 
 

0 2 4 6 8 10 12 14 16

200

300

400

500

600

III

II
A

n
o

d
ic

 V
o

lt
a

g
e

 (
V

)

Treatment time (min)

 S1

 S2

 S3

 S4

 S5

S2

S5

S1
S4

S3

I

(a)

 

Fig. 10.2  Plots of anodic voltage vs. treatment time during the PEO process using bipolar 

current mode: the three discharge stages I, II and III are identified with respect to sample 

S2. 

Table 10.3 Breakdown voltage and time, thickness, color and composition of coating. 

Sampl

e 

Break down Coating 

thickness 

(µm) 

Color Composition (wt%
*
) 

v(V) t(min) O Mg Al W 

S1 390 2.0 25.2±2.5 gray 37.33 33.3 29.08 0.0 

S5 360 1.5 22.8±2.3 gray 38.28 26.9 34.71 0.0 

S2 375 0.50 30.0±3.0 gray/light green 37.44 33.4 26.85 2.3 

S3 360 0.40 28.5±2.9 gray/medium green 36.13 30.7 30.06 3.1 

S4 280 0.25 43.4±4.5 Green with black spots 35.18 29.3 26.91 8.6 

* As neasured at the surface of the coatings using EDS 

The results for the effect of the NaWO4 addition on the breakdown voltage are consistent 

with those of Ding et al [24] for an AM60B Mg-alloy in a silicate-KOH electrolyte, 

namely as the tungstate content increases, there is a corresponding decrease in the 

breakdown voltage. Ding et al [24] relate this decrease in the breakdown voltage to the 



 

180 
 

increase in electrolyte conductivity with increasing tungstate concentration as predicted 

theoretically by Ikonopisov [28].  

 

10.3.2 Coating Microstructure, Morphology and Composition.  

A summary of the coating microstructures, morphology and compositions is given in 

Table 10.3 and Fig. 10.3. Figure 10.3 contains three sets of information on the PEO 

coatings obtained using the five different electrolytes. Figs. 10.3(b,e,h,k and n) are SEM 

micrographs of the surface morphology. Figs. 10.3 (a,d,g,j and m) are SEM micrographs 

of cross-sections of the coatings. The coating thickness values listed in Table 10.3 were 

obtained from these cross-sections. Figs. 10.3(c,f,i,l and o) are the EDS spectra obtained 

from the surface of the coatings. The quantitative compositional analysis obtained using 

these spectra are given in Table 10.3.  

The SEM micrographs of the coating surfaces, Figs. 10.3(b,e,h,k and n) show that all 

surfaces consist of a number of ‘pancake-like’ features and discharge pores which are 

irregularly arranged on the coating surface. Because of the local high temperature and the 

strong electric field, molten oxide is ejected from the coating/substrate interface into the 

coating surface where it is rapidly solidified and re-crystallized by the electrolyte which 

may also cause micro-cracks which are present on the coating surface. Sample S5 

produced with a concentrated aluminate electrolyte shows a relatively smoother surface 

compared with S1 produced with a more dilute aluminate electrolyte. Samples S2,S3,S4 

coated with a tungstate-containing electrolyte show relatively larger ‘pancake-like’ 

features indicating strong discharges and thereby increase the roughness of the surface. 

The cross-sectional micrographs, Figs. 10.3(a, d, g and m), show that all coatings are 

composed of a porous outer layer, an intermediate layer that is relatively dense and a thin 

inner dense (barrier) layer that is well adhered to the substrate. Such a multilayer 

structure is common for PEO coatings on magnesium alloys [3] but the relative thickness, 

microstructure and composition of the layers depends on both the material and the PEO 

processing parameters. If we first compare the coatings produced without a tungstate 

addition, we can see that the coating prepared in the dilute (8g/l) aluminate electrolyte, 

S1, is about 25 µm thick but contains a significant amount of connected porosity and 

other defects both within the coating and near the coating/substrate interface, Fig. 10.3(a). 
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Large pores were also evident on the surface of the coating, Fig. 10.3(b). Increasing the 

aluminate concentration to 15 g/l, S5, produced a slightly thinner coating (≈22µm) but 

the coating was denser and contained less micro-scale defects and cracks, Figure 10.3(d). 

Also compared to S1 there were fewer large pores visible on the surface, Figure 10.3(e). 

As an increasing amount of tungstate was added to the 8g/l aluminate, there was a general 

increase in thickness, Figs. 10.3(g,j,m). However, it is important to note a key change in 

the barrier layer at the substrate/coating interface which becomes thicker and is clearly 

visible in Figs. 10.3(j) and (m). It is this barrier layer that is particularly important in 

determining the corrosion resistance [3]. 

Turning now to the composition of the coatings, as given Table 10.3 and obtained from 

the EDS spectra given in Figs. 10.3(c,f,i,l,o), we can readily see that the main 

components af all coatings are O, Mg and Al. It is instructive to examine any changes in 

composition relative to sample S1, i. e. lower aluminate concentration (8g/l) and no 

tungstate addition.  

Increasing the aluminate concentration to 15g/l (S5), gives a small increase in O content, 

a significant increase in Al content and matching decrease in Mg content. This is 

consistent with previous studies that showed that increasing the amount of NaAlO2 in the 

electrolyte lead to an increase in the amount of the spinel phase, MgAl2O4, relative to 

MgO. The addition of tungstate to the base aluminate (8g/l) electrolyte produced a 

somewhat different result: see S2, S3 and S4. The O and Mg contents were reduced, 

relative to S1, for higher tungstate additions, namely 2.0 and 6.0g/l. The Al content 

fluctuated but generally decreased with increasing tungstate addition. The W content of 

the coating increased with increasing tungstate addition to electrolyte, indicating the 

incorporation of tungsten into the oxide. This is also reflected in a color change of the 

PEO coating from gray to green to green with black spots: Table 10.3. Thus in the higher 

tungstate electrolytes, rather than forming more spinel phase, as in the high aluminate 

electrolyte, a tungsten-containing oxide is formed, possibly WO3 [24,29]. 
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Fig. 10.3 EDS and SEM micrographs showing the surface morphology and cross section 

of oxide coatings on AZ91D alloy for different electrolyte concentration and 

compositions.  
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(a) S1 (b) S5 (c) S4 

Fig. 10.4 Elements linear scanning analysis of the PEO coating formed in electrolyte 

containing (a) 0 g/l (Na2WO4) to the base 8g/l Na2Al2O4/KOH electrolyte (b) 0 g/l 

(Na2WO4) to the 15g/l Na2Al2O4/KOH electrolyte and (c) 6 g/l (Na2WO4) to the base 

electrolyte by EDX. 

 

To identify the generation of phases during the PEO, energy dispersive spectroscopy 

(EDS) element line scanning analysis has also been performed across the entire cross 

section as shown in Fig. 10.4. The result of EDS shown in Fig 10.4(a) indicates that Mg, 

O, and Al elements were the major components and distributed almost regularly across 

the thickness of the coating formed in an electrolyte containing 8g/l g/l Na2Al2O4 with no 

tungstate added to the electrolyte: sample S1. The results for S5, 15 g/l Na2Al2O4 with no 

tungstate added, show that the aluminum concentration increases close to the 

coating/substrate interface, Fig. 10.4(b). However Fig. 10.4(c) shows that for the coating 

formed in an electrolyte containing 6 g/l Na2WO4 addition to the base Na2Al2O4/KOH 

electrolyte, Mg, O, Al and W were the major components and the W concentration 

gradually increases with the coating depth reaching a maximum value near the 

coating/substrate interface.  

 

10.3.3 The XRD patterns of the coatings 

X-ray diffraction (XRD) analysis was used to further verify the above microstructural 

phase identification, and to investigate the changes in composition and phase analysis of 

PEO coatings due to the changes of the electrolytic composition and concentration. XRD 

spectra of all PEO-coated samples are shown in Fig. 10.5(a). Detailed identification of 

the phases present for samples S1 and S4 are given in Fig. 10.5(b) and (c), respectively. 
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For the oxide coatings formed on AZ91D in a KOH-NaAl2O4 electrolyte without the 

addition of tungstate, the periclase phase MgO, together with the spinel phase MgAl2O4, 

are the main phases present in the coatings, regardless of the aluminate concentration. 

Some amorphous phase was also observed, which appears on the XRD pattern as a broad 

peak at 2Ɵ values less than 17
o
. However, the treatment of AZ91D Mg alloy in the 

electrolyte containing concentrated aluminate sample S5 increases the amount of 

MgAl2O4.  Based on the intensities of the strongest peaks corresponding to MgAl2O4 at 

2Ɵ values of 19
o
, 31

o
 and 45

o
, the relative amount of MgAl2O4 in the coating was 

increased by 1.3 to 1.7 times, when comparing S1 and S5 see Fig. 10.5(a). These 

observations are consistent with those of an earlier study of PEO-coating formed on a 

AM60B Mg-alloy [24] which showed that when the aluminate concentration increased, 

the relative amount of the spinel MgAl2O4 phase to the MgO phase also increased. For 

coatings produced using mixed aluminate-tungstate electrolytes (S2, S3, S4) as well as 

MgO, and an increased amount of  MgAl2O4, the tungsten containing phases WO3 and 

MgWO4 are also present. The addition of 1g/l tungstate to the base electrolyte (S2) 

increases the intensity of the spinel phase MgAl2O4 relative to the MgO phase. The 

intensity of the amorphous phase also increases and the MgWO4 phase starts to appear in 

the XRD pattern. Fig. 10.5(a) shows that the addition of 2g/l tungstate to the base 

electrolyte (S3) further increases the fraction of spinel phase MgAl2O4 and decrease the 

fraction of periclase MgO. The addition of 6g/l tungstate (S4), Fig. 10.5(c), causes the 

amorphous phases to disappear leaving the hard spinel MgAl2O4 phase, and creates the 

new phases, WO3 and MgWO4 which cause the greenish color with some black spots on 

the samples. The peaks due to the substrate Mg decrease dramatically indicating that the 

coating gets thicker and more compact. The addition of the tungstate to the base 

electrolyte influences the PEO discharge processes due to the changes in electrolyte 

conductivity characteristics which then influence the deposition growth rate and phase 

composition of the oxide coatings. Hwang et al [30] have shown that the presence of 

WO3 in the oxide layers will significantly improve the adhesion strength between the 

substrate and the oxide coating. 
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Fig. 10.5 XRD patterns of oxide coatings formed in aluminate-KOH electrolyte with 

addition of different concentrations of Na2W04: (a) all samples (b)0 g/l Na2W04, and (c) 

6.0 g/l Na2W04. 

 

10.3.4 Electrochemistry of Plasma Electrolytic Oxidation (PEO) 

The growth of the oxide coating mainly occurs due to three different, yet simultaneous, 

processes, namely: the electrochemical reactions; the plasma chemical reactions; and 

thermal diffusion [27]. The electrochemical formation of surface oxide layers can occur 

through different mechanisms depending on the electrolyte, eg. silicates, aluminates, 

tungstate. The main electrochemical reactions occur at the coating/electrolyte interface. 

The plasma chemistry of the surface discharges involves, on one hand, charge transfer at 

the substrate/electrolyte interface, and on the other hand, strong ionization and charge 

transfer effects between the substrate surface and the electrolyte through the oxide layer 
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with the aid of the plasma.  During the PEO process different type of discharges will take 

place [3]. An important consequence of the occurrence of those discharges is the 

development of metallurgical processes in the growing oxide layer, which are induced by 

the heat liberated in discharge channels from electron avalanches.  

The increase in conductivity of the electrolyte may cause an increase in the deposition 

growth rate of PEO coatings. Complex compounds (oxides of both the substrate material 

(Mg) and electrolyte-base elements (Al and W)) can be created inside the discharge 

channels formed during PEO process across the growing oxide layer. During the PEO 

coating of magnesium alloys in the electrolyte contains aluminates, the aluminate ions 

enter into the film through the main electrochemical reactions that occurs at the 

metal/oxide and oxide/electrolyte interfaces are as follows [3]: 

  eMgMg 22

                
10.1 

2

2 )(2 OHMgOHMg                  10.2 

OHMgOOHMg 22)(                 10.3 

 

422

2 2 OMgAlAlOMg                10.4  

The cation released from the metal (reaction (10.1)) combines with the anion in the 

electrolyte to form compounds Mg(OH)2 and/or Mg2AlO4. As the concentration of 

Na2Al2O4 increase, more aluminate ions participate in coating formation which results in 

an increase in the volume fraction of the MgAl2O4 phase and an increase in corrosion 

resistance. The unstable hydroxide Mg(OH)2 dehydrates to MgO by the high temperature 

(reaction (10.3)), resulting in the discharge channels from the plasma discharge.  

The existence of Na2WO4.2H2O in the electrolyte will cause some of the WO4
2-

 ions to 

lose the electrons forming the black WO3 compound. The main electrochemical reactions 

occurring during the PEO process in tungstate-containing electrolytes are as follows [29]:  

2WO4
2-

- 4e
-
→2WO3+O2 ↑                          10.5 

WO3 + 3Mg → 3MgO+W                           10.6  

As noted in section 10.3.2, the ceramic layer which was formed in the electrolyte with 

addition of Na2WO4.2H2O exhibit different colors. The greenish color with some black 

spots may be related to the presence of WO3 and Na2WO4 in the coating.  
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10.3.5 Corrosion Resistance of the Coatings 

The potentiodynamic polarization curves at room temperature of uncoated AZ91D Mg 

alloy and PEO-coated materials at two different aluminate concentrations and four 

different tungstate concentrations after immersion in a 3.5% NaCl solution for 0.33h 

immersion time are shown in Figs. 10.6(a) and (b) respectively, and the associated 

electrochemical data are listed in Table 10.4. The corrosion potentials (Ecorr), corrosion 

current density (Icorr) and anodic/cathodic Tafel slopes βa and βc were derived from the 

test data. Based on the approximately linear polarization at the corrosion potential, the 

linear polarization resistance (Rp) values were calculated. The average corrosion rate, Pi 

(mm/year) can be calculated from the corrosion current density, icorr (µA/cm
2
) using the 

equation 4.4 (chapter 4). The protection efficiency (PEF %) afforded by the coating has 

also been calculated using the equation 3.5: 
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Fig. 10.6 Potentiodynamic polarization curves of the uncoated (S0) and coated samples 

with (a) different aluminate concentrations (S1 and S5) and (b) different tungstate 

concentrations (S1 – S4), for 0.33h immersion time. 

 

Compared to the uncoated AZ91D, all samples with PEO-coatings exhibited a higher 

polarization resistance, a lower corrosion current density and a higher (more noble) 

corrosion potential, regardless of the composition or concentration of the electrolyte.  For 

the uncoated AZ91 Mg alloy, the corrosion current density (Ecorr), associated corrosion 

potential (Icorr), and corrosion resistance Rp were determined to be -1.64 vs. Ag/AgCl/sat 

KCl., 7.97 µA/cm
2
, 3.0 KΩ/cm2, respectively. The differences in the level of protection 

observed for the five samples are considered to be related to differences in coating 
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compactness, thickness, porosity and density of other defects. The changes in the curves 

caused by an increase in the aluminate content in the electrolyte (Fig. 10.6(a)) are to shift 

the polarization curves to a lower corrosion current density and a higher (more noble) 

corrosion potential. By changing the concentration of tungstate from 0g/l to up to 6g/l in 

the electrolyte, the corrosion current density decreased from 1.56×10
-1

 µA/cm
2
 to 

9.00×10
-3

 µA/cm
2
, the corrosion potential increased from (-1.52 V) to (-1.47 V) and the 

polarization resistance increased from 120   kΩ/cm
2
 for S1 to 3640 kΩ/cm

2
 for S4, as 

shown in Fig. 10.6(b) and Table 10.4.  

 Table 10.4.  Potentiodynamic polarization corrosion test results in3.5%wt NaCl 

solution 

Sample Immersion 

time 

Ecorr (V) Icorr 

(µA/cm2) 

βa 

(mV) 

βc (mV) Rp 

(KΩ/cm2) 

Pi 

(mm/year) 

PEF 

% 

S0 0.33 h -1.64 7.97 100 123.6 3.0 1.82E-01 N/A 

S1 0.33h -1.52 0.156 73.1 104.9 120 3.56E-03 39 

24h -1.53 4.60 90.3 271.1 6.4 1.05E-01 1.1 

S3 0.33h -1.46 0.006 122.2 133.5 462 1.37E-3 237 

24h -1.48 3.100 221.8 261.8 16.8 7.08E-02 4.5 

S4 0.33h -1.47 0.0009 150.7 150.8 3640 2.06E-04 153 

24h -1.48 0.386 225.3 247.4 133.3 8.82E-03 43 

S5 0.33 h -1.49 0.043 153.3 211.3 898 9.83E-4 1212 

24 h -1.49 2.12 309.1 330.9 32.8 4.84E-02 10 

 

This significant improvement of the corrosion resistance of S4 relative to S1 is attributed 

to the two factors. First, the coating is more compact with lower porosity/defects density. 

Secondly, the coating contains the W-containing phases, WO3 and MgWO4, and a higher 

MgAl2O4 spinel content than coatings produced using dilute aluminate-only electrolyte 

(S1). Hence, for short immersion time, it is suggested that the aggressive Cl
-
 ions 

penetrate through the larger pores in the outer layer, possibly through the intermediate 

dense layer, but are prevented from reaching the Mg-alloy substrate by the dense 

interface layer, where the tungsten content is highest (see Fig 10.4(c)), and it is possible 
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that WO3 or MgAl2O4 may act in the manner of an inhibitor. These results showing an 

improvement in corrosion resistance with increased tungstate additions to an aluminate-

based electrolyte are in agreement with the results of previous studies [23,24] for 

tungstate additions to a silicate-based electrolyte, which were also obtained at short 

immersion times. 

Figure 10.7 shows the relationship between
 
polarization resistance (Rp) and coating 

thickness. If we look only at the data for coatings produced with an electrolyte containing 

8g/l aluminate and 0-6g/l tungstate, a cursory examination of the data would suggest, as 

indicated in Fig. 10.7, that there is a linear relationship between Rp and the thickness of 

the PEO coating. However, as described in Sections 10.3.2 and 10.3.3, a change in the 

electrolyte composition and concentration produces not only a change in thickness 

(growth rate) of the coating but also a change in the multilayer structure of the coating, 

including porosity and phase composition. This is further reinforced when comparing S1 

with S5, where the aluminate concentration in the electrolyte has been increased from 

8g/l to 15 g/l. Although Rp for the coating has been increased seven-fold, from 120 to 

898 kΩ/cm
2
, the coating thickness (growth rate) was slightly decreased. This increased 

corrosion resistance is due to a lower level of porosity and defects in the coating and the 

partial replacement of MgO with the spinel phase MgAl2O4. These observations are 

consistent with other studies [31,32] of anodic films formed on a Mg-Al alloy which have 

shown that as the aluminate concentration increased, the solution conductivity increased, 

the breakdown voltage decreased, and the relative amount of the spinel MgAl2O4 phase to 

MgO phase increased.  
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Fig. 10.7. Polarization resistance (Rp) as a function of coating thickness 

 

The potentiodynamic polarization curves of the uncoated AZ91D Mg alloy (S0) for 0.33h 

and PEO-coated samples as a function of aluminate concentration and tungstate 

concentration in the electrolyte for a 24h immersion time are shown in Figs. 10.8(a) and 

(b), respectively. As shown in Fig. 10.8(a) and Table 10.4, the potentiodynamic 

polarization corrosion test results for the coated AZ91D Mg alloys after 24 hours 

immersion prior to corrosion testing are significantly different from those of the 0.33h 

immersion. The experimental polarization diagram recorded for the 24h immersion time 

shows a significant increase in Icorr compared to the 0.33h immersion. There is a 

corresponding reduction in polarization resistance from 120 to 6.4 KΩ cm2 for the 

coating formed in a dilute aluminate electrolyte (S1*) and from 898 to 33 KΩ/cm2 for the 

coating formed in concentrated aluminate electrolyte (S5*). The longer immersion time 

allows the electrolyte to penetrate through the coating via the interconnected micro-pores 

and reach the substrate. There may also be partial dissolution during the immersion 

period. The magnitude of Pi was increased to the range of 0.1 to 0.05 mm/year for S1* 

and S5* respectively. However, Rp, at least for the high aluminate coating, was still 10 

times higher than that of the uncoated Mg alloy. Sealing the coating would appear to be 

necessary to protect against long term exposure in aggressive environments.  



 

191 
 

-6 -5 -4 -3 -2 -1 0
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

P
o

te
n

ti
a

l 
(V

)

Log I(A/cm
2
)

 S0

 S1*- 24h

 S5*- 24h

 S1- 0.33h

 S5-0.33h

S0

S1
S1*

S5

S5*

-7 -6 -5 -4 -3 -2 -1 0

-2.0

-1.6

-1.2

-0.8

-0.4

P
o

te
n

ti
a

l 
(V

)

Log I (A/cm
2
)

 S0- 0.33h

 S1-0.33h

 S3-0.33h

 S4- 0.33h

 S1*- 24h

 S3*- 24h

 S4*- 24h

S0

S1

S1*

S4

S4*

S3*

S3

(b) Tungstate

 

 

Fig. 10.8 Potentiodynamic polarization curves of the uncoated (S0) for 0.33h and coated 

samples with (a) two aluminate concentration (S1 and S2) and (b) different tungstate 

concentrations (S1, S3 and  S4). (*) for 24h immersion time. 

 

The effect of tungstate addition to the electrolyte on the corrosion properties of the coated 

samples immersed for 24 h is shown in Fig. 10.8(b) and Table 10.4. Due to the relatively 

thicker and more compact coatings on S4 treated with the addition of 6g/l tungstate to the 

electrolyte, the value of the polarization resistance after 24h immersion time is 133 

KΩ/cm2 which is higher than the corrosion resistance of the other coated samples 

immersed for 24h and is 50 times better than the uncoated sample immersed for 0.3h. The 

magnitude of Pi was increased to the range of 0.1 to 0.009 mm/year for S1* and S4* 

respectively. As shown in Table 10.4, the values of Rp ranging from 6.4   kΩ cm2 for S1 

to 900 kΩ cm2 for S4 sample. According to the change of the potentiodynamic 

polarization curves and corrosion behavior with immersion time, the protective properties 

of the PEO coatings in aggressive environment can be severely degraded after 24 hours 

immersion prior to corrosion testing. This can be attributed to the high levels of 

connected porous (microcracks and residual pores from plasma discharges). With 

increasing of immersion time, not only the outer porous layer but also the interface dense 

layer was also partially penetrated by the aggressive Cl- ions by thinning MgO, 

MgAl2O4 and MgWO4 of the interface layer, reaching the substrate. Sealing the outer 

porous layer using techniques such as simple sealing using sodium silicate (water glass), 

or by boiling in hot water, or using a multi-layer system (painting or sol-gel coating) 

seems to be a useful solution for further improving the service life [33].  
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Returning to the coatings formed in a tungstate-containing electrolyte (S2, S3, S4), as 

well as the enhanced formation of the spinel phase, there is a higher growth rate of the 

coating, i. e. thicker coatings, and the incorporation of a tungsten-containing oxide 

(WO3) into the coating. There is also a thicker barrier layer at the coating-substrate 

interface in S3 and S4, Figs. 10.3(j,m). It is this barrier layer and the relatively dense 

intermediate layer, rather than the outer porous layer that is easily penetrated by the 

electrolyte that are the main contributors to any enhanced corrosion resistance. There is 

the open question as to whether the tungsten-containing oxide acts like the spinel in 

improving corrosion resistance or whether it has some inhibitive effect. Although there is 

not a linear relationship between Rp and the tungstate concentration in electrolyte or wt% 

W in coating, our results showing an improvement in corrosion resistance with increased 

tungstate additions to an aluminate-based electrolyte are in agreement with those by Li et 

al [23] and Ding et al [24] for tungstate additions to a silicate-based electrolyte.     

 

10.4. Conclusions 

Potentiodynamic polarization corrosion testing of an AZ91D Mg-alloy PEO coated in a 

base electrolyte containing 2g/l KOH together with varying levels of Na2Al2O4 (8 or 15 

g/l) and Na2WO4 . 2H2O (0, 1, 2, 6 g/l) show that the electrolyte concentration and 

composition directly influences the surface morphology, coating microstructure, porosity 

level, thickness and phase composition of the coatings, which, in turn, affects the 

corrosion performance.  

- Increasing the aluminate concentration in the electrolyte from 8 to 15 g/l, 

produces a coating that is denser and contains a higher amount of the spinel phase 

relative to MgO. This produces a more corrosion resistant coating.  

- The addition of tungstate to an electrolyte containing 8g/l aluminate, increases the 

conductivity of the electrolyte, lowers the break-down potential, lowers the 

porosity/defect density of the coatings, increases the coating growth rate and 

producing thicker substrate/coatings interface layer, increases the MgAl2O4 spinel 

phase content and leads to the formation of the tungstate-containing phases WO3 

and MgWO4..  
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- The corrosion resistances of the W-containing coatings, at least at the highest 

tungstate addition to the aluminate electrolyte, are much improved over those 

produced using only the aluminate electrolyte.  

- According to the change of the potentiodynamic polarization curves and corrosion 

behavior with immersion time, the protective properties of the PEO coatings in 

aggressive environment can be severely degraded after 24 hours immersion prior 

to corrosion testing. Sealing of the porous outer layer of the coating is suggested 

as a mean of increasing the overall service life. 
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CHAPTER 11  

CONCLUSIONS AND FUTURE WORK 

11.1 General conclusions. 

Current coating schemes are complex, multilayer systems that incorporate many different 

technologies and must be conducted very carefully in order to adequately protect 

magnesium and magnesium alloys from wear and corrosion in harsh service conditions. 

In order to achieve higher levels of protection, one of the most promising coating 

methods is the PEO technique.  

This work has afforded us a greater understanding of the process mechanisms, 

particularly the plasma discharge behaviour. Quantitative studies have been performed 

relating processing to performance. It has been confirmed that a PEO processing of Mg 

alloys is strongly influenced by such parameters as electrolyte composition and 

concentration, current mode (unipolar, bipolar and hybrid (combination of both)) and 

substrate alloy (AM60B, AJ62 and AZ92D Mg-alloys). Generally, these parameters have 

a direct influence on the discharge behavior: type, size, duration, population density and 

temperature. The discharges play an essential role in the formation, and resulting 

composition of the 3-layer oxide structure, by influencing phase transformations, 

crystallization and sintering. This, then, affects the physical, mechanical and chemical 

properties of the coating. For PEO-coated materials, the primary enhancement of the 

corrosion and wear resistance comes from the 3-layer oxide structure (outer porous layer, 

dense intermediate layer, and dense interface layer), particularly the inner, dense barrier 

layer, but also the relatively dense intermediate layer. 

 

11.2 Key findings 

The key findings from this research can be divided into three main topic areas, namely: 

A. Plasma Discharge Effects on Microstructure of Coating. 

B. Coating Growth Mechanisms 

C. Relationships between Processing Parameters and Performance (Corrosion and 

Wear). 
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A. Plasma Discharge Effects on Microstructure of Coating: 

In this topic area, the effects of (1) current mode, (2) current density, (3) 

magnesium alloy composition and (4) electrolyte concentration and composition 

were studied. The main conclusions were: 

- Controlling or reducing the strong discharges (by bipolar current mode, 

appropriately controlling the ratio of the positive to negative pulse currents as 

well as their timing) had a significant positive effect on the plasma 

temperature profiles and leads to denser inner layer microstructures with less 

porosity.  

- The fluctuations in the measured line intensities (different spike) support the 

discharge model and the resulting coating microstructures.  

- Plasma electron temperatures were found to be in the range of 5000 - 7000 K 

for the unipolar case, 5200 - 6600 K for the bipolar case, 5500 – 7500K for 

the hybrid1 (unipolar followed by bipolar) case and 4200 – 7500 K for 

hybrid2 (bipolar followed by unipolar) case. 

- The order of the combined current modes is essential, hybrid1 case improves 

the coating quality compared to other cases as the bipolar mode acts to repair 

the damage caused by the unipolar mode.  

- A bipolar current mode improves the coating quality compared to the unipolar 

mode in terms of having a dense inner layer with fewer defects. 

- The results showed that the anions in the electrolyte solution directly 

contributed to the coating formation process. Apart from MgO which is a 

common phase in the coatings, a specific phase, MgAl2O4, resulted from the 

aluminate electrolyte. 

 

B. Coating Growth Mechanisms 

Processes including melting, melt-flow, re-solidification; diffusion, sintering and 

densification of the growing oxide are parts of the PEO coating growth process. The 

main conclusions are: 

- In PEO process, the ceramic coating grows inwards to the alloy substrate 
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(inner layer) and outwards to the coating surface (outer layer) simultaneously. 

During the early stages, the coating grows mainly outwards. After the coating 

reaches a certain thickness the inner layer grows faster than the outer layer. 

However, at this time, the coating thickness continues to increase in both 

directions. 

-  The rates of growth of the outer and inner oxide layers are process parameter 

dependent. They result from a combination of three processes namely, (i) 

discharge processes, (ii) partial destruction of the outer layer due to strong 

discharges and (iii) diffusion process.  

- Oxygen diffusion into the Mg-alloy substrate plays a leading role in coating 

growth. The growth rate of the coating is influenced by the plasma 

temperature, which enhances the rate of oxygen transport into the magnesium 

substrate. 

C. Relationships between Processing Parameters and Performance (Corrosion 

and Wear). 

A schematic describing these general relationships is given in Fig 11.1. The main 

conclusions are:  

- The PEO process of Mg alloys is strongly influenced by such parameters as 

electrolyte composition and concentration, current or voltage applied and substrate 

alloy.  

- Generally, these parameters have a direct influence on the discharging behavior: 

type, size, duration, population density and temperature. 

-  The discharges play an essential role in the formation and resulting composition of 

the 3-layer oxide structure, by influencing phase transformations, crystallization and 

sintering.  

- This, then, affects the physical, mechanical and chemical properties of the coating.  
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Fig 11.1 PEO process properties, mechanisms and performance [reproduced from Figure 

10.1 in Chapter 10] 

 

11.4 Major Advances: 

The major advances from this work are in two areas: 

 

11.4.1 Related discharge behaviour to coating formation mechanisms 

- Plasma discharge characteristics including temperature, density and composition 

during discharge (relates to incorporation of elements from substrate and electrolyte) 

were identified using OES.  

- Demonstrated that the PEO coatings grow in both the outward direction towards the 

surface and into the substrate. Developed a model for this coating growth that 

includes oxygen transport into the Mg alloys which is dependent on the plasma 

temperature. 

- Controlling the strong B-type discharges had a significant positive effect on the 

plasma temperature profile and lead to denser inner layer microstructures with less 

porosity. 
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11.3.2 Developed Processing-Structure-Performance relationships. 

-     For PEO-coated materials, the primary enhancement of the wear and corrosion 

resistance comes from the 3-layer oxide structure: outer porous layer, intermediate 

layer and inner dense (barrier) layer. 

-     Relative thickness, microstructure and composition of the layers depends on both the 

material and the PEO processing parameters. 

-     The corrosion performance is more closely related to the protective nature of the 

dense oxide layer at the coating–substrate interface. 

-     The wear performance is effected mainly by intermediate layer. Since the coating is 

integral with the substrate, there is good adhesion. 

 

11.4  Suggestions For Future Work 

There exists significant potential for further work. Most importantly an examination of 

the voltage and current profiles during each discharge cycle needs to be done for 

understanding and developing a correlation between discharging behaviour 

(concentrating on the reduction of the strong discharge (type-B)) with coating 

microstructural and phase composition over a range of experimental conditions. Based on 

the results of the present study, the following suggestions are made for future work: 

- An understanding and improvement of the process optimization, repeatability and 

efficiency.  

- New experiments sets are required to give a physical interpretation of the EIS results 

and the equivalent circuits used.  

- Investigate the possibility of achieving specific coating characteristics, e.g. 

reproducible and uniform coating thickness on complex-shape substrates by 

incorporating the OES technique into the PEO process control module. 

- A promising new research direction lies in the selection of methods which could 

lower the discharging voltage, and eventually lower the energy consumption.  

- Understanding the initiation step of the discharge events and the nonlinear growth 

rate of the oxide ceramic layer during early stage of the PEO coating is a key aspect 

of discharge behaviour which is not yet fully understood. 
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- Further improvement of the corrosion resistance mainly after longer immersion time, 

particularly by producing composite coatings, by co-deposition of materials including 

polymers and organic materials, within the PEO layers. 
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