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Abstract

Advanced Driver Assistance Systems (ADAS) aim at supporting the driver’s task in order

to improve vehicular safety. One of the most promising and most studied technologies in

this direction is Autonomous Driving (AD).

While control systems for AD based on lane markings have been proposed in the liter-

ature, few have addressed the problem of coping with the absence of lane references on the

ground. Moreover, many of these solutions resort to complex software and/or hardware.

In this project a relatively straightforward way of restoring suitable knowledge of the

position of the vehicle when the output of the Lane Recognition Camera (LRC) is not

available or degraded is presented. This is done exploiting a relatively new approach to

variable recovering which results in a so-called “virtual sensor”.

In order to show the potential of this solution, then, a control system based on a LRC is

first developed in the Simulink R© environment. Subsequently, the virtual sensor for precise

vehicle position reconstruction is implemented and evaluated against the first solution.

Simulations considering realistic driving conditions showed comparable levels of performance

between the two systems, demonstrating the effectiveness of this new approach.
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Chapter 1

Introduction

Vehicle safety is one of the most important factors which is influencing modern automotive

development. Over the past decades, passive safety improvements [1], as well as advance-

ments in road construction, government legislation and education, have contributed to de-

crease the occurrence and severity of vehicular accidents. The pursuit of the ultimate goal

of “ zero automotive fatalities ” [2] fosters the development of active safety systems, with

the task of assisting drivers in avoiding accidents before they even occur. EU Commission

reports [3] how the trend of the reduction of deaths linked to vehicular accidents is slowing

down in recent years (figure 1.1). In order to satisfy the target of halving the number of

road deaths by 2020 a major breakthrough is then to be sought, and the automation of

the dynamic driving task by means of suitable safety systems is the path selected by var-

ious companies in the automotive sector. These systems form the cluster of the so-called

Advanced Driver Assistance Systems (ADAS). SAE Standard J3016 groups the impact of

ADAS on the driving task in six levels of driving automation, from no automation to full

automation [4].

Current ADAS applications available on the market do not yet entail high or full automa-

tion of steering and acceleration/deceleration actions, but are rather designed to support the

driver with his/her driving task. Different authors have classified current and near-future
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1. INTRODUCTION

Figure 1.1: Road deaths in the European Union [3]. Solid blue: proposed objective; solid red: actual

data; dashed red: projected estimate

driver assistance systems ([5], [6], [7] and references therein). Despite the fact that there are

no fully automated production vehicles available nowadays, it is clear that the revolution of

AD - autonomous driving - is on the brink of flooding automotive mass markets. This is not

a revolution that will happen overnight, but rather it will come through a sequence of small

steps. Several companies already strive in the direction of AD, to name a few: Google [8],

Mercedes-Benz [9] [10], Delphi Automotive [11], Nissan [12], Audi [13] and Bosch [14]. The

first automaker that will be able to offer an automated driving system within its production

range will gain a crucial advantage in terms of appearance, reputation, technical know-how

and economic profit.

The objective of this work is to insert itself into the realm of the current efforts toward

AD by proposing an approach to deal with complex driving scenarios.

1.1 Problem statement

Control systems for automated driving based on the recognition of the lane from road

markings have been proposed in the literature (see e.g. [15, 63, 64, 65, 66, 67, 68, 69, 70]

for references on lane recognition and related applications). Current commercial assistance
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systems [16] [17] offer motorway aids that can help the driver maintain a predetermined

speed and distance from the vehicle ahead (ACC, Adaptive Cruise Control) and even apply

a torque on the steering wheel or on the brakes in order to keep the center of the lane

(LKAS, Lane Keeping Assist System; ALKA, Active Lane Keeping Assist).

A particularly complex problem arises when such lane references are incomplete or to-

tally missing. Until now, these kinds of situations have been addressed with highly complex

experimental hardware and software (see e.g. [18]), often relying on sophisticated mathe-

matical approaches for the detection of the physical road boundaries.

On real roads, references could be missing partially or entirely. They could be hidden by

obstacles (like other vehicles) in the line of sight of the camera or their detection could be

made difficult by harsh weather or illumination conditions. Some examples of challenging

scenarios comprise:

• Toll gates, motorway connections and similar scenarios characterized by lines of vehi-

cles;

• Country roads without road markings;

• Deflected or narrowing lanes due to maintenance work on the highway;

• Intersections governed by roundabouts which require specific rules of insertion and

exit of the vehicles.

These scenarios constitute problems encountered globally and represent a step up in com-

plexity compared to a pure highway driving context. A second cluster could also be defined

considering the situation in which a vehicle is entering a tunnel or an underpass and the

GPS signal is temporarily lost.

All these kinds of circumstances have in common the lack of specific references. This

poses the demand for simple and economical control systems, yet powerful enough to deal

with the absence of lanes and road markings. The ambition of this work is then to find a

relatively straightforward way of restoring suitable knowledge of the position of the vehicle

when the output of the Lane Recognition Camera (LRC) is not available or degraded.
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1.2 Objectives

In this section a more thorough description of the proposed objective of this project is

provided. As previously mentioned, the end goal is the design of a control system able to

perform the so-called precise position reconstruction for the considered vehicle. Exploited

information will include the following:

• Vehicle data from already installed sensors;

• Traditional GPS;

• Lane Detection Camera;

• Maps.

It is then faced the so-called data-fusion problem in which the objective is to exploit compli-

mentary and redundant information coming from the sensors in order to enhance precision

and robustness in the understanding of the driving situation. This is a widely employed tech-

nique that has been proved effective [19] and suitable for system performance enhancement

at different levels [20]. Data fusion techniques can be successfully employed in multi-sensor

environments in order to obtain lower error probability and higher reliability using data

from multiple sources.

The system to be designed will have to be modular in its structure in such a way as

to allow the possible addition - at a later time - of other ADAS modules or other, more

sophisticated sensors and actuators contributing to the system performance.

Two main clusters of possible applications for the system to be developed have been

identified. Firstly, as already mentioned, are those situations in which road signals are

missing, and hence the camera is unable to suitably define the boundaries of the driving

corridor: vicinity of roundabouts, country roads lacking suitable road signage, vehicle/queue

management when approaching toll gates or motorway connections, changing lanes due to

works on the highway, etc. Secondly, we have those scenarios in which a temporary absence

of the GPS may be present. This condition is more complex and, as a consequence, in this

work we will concentrate our attention mainly on the first group. Additionally, in order to
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guarantee a proper operation of the camera (as it will be discussed later), only speeds equal

or greater than 60 km/h will be considered here.

When not arranged as the only self-driving feature implemented on the vehicle, the

proposed system could be considered to realize a so-called limp-home strategy for an al-

ready existing, more sophisticated autonomous driving system. This means that a more

“traditional” system, heavily relying on the use of a LRC and/or a RADAR/LIDAR appa-

ratus (see, for instance, [19]) could be employed as the standard module for the self-driving

functions of the vehicle. In addition to this arrangement, a system similar to what will be

presented here could be added on-board the vehicle in such a way as to act as a sort of

safety net, capable of maintaining active - although degraded - self-driving capabilities of

the vehicle in the event that the road sensing apparatus of the main module is compromised.

Alternatively, the system could be employed together with an already existing self-driving

functionality in order to improve the reliability and performance of the overall setup.

Regardless of the methodology and design used, attention will be given to the perfor-

mances of the system, in terms of precision and repeatability of the selected algorithm. In

particular the system capability of avoiding departure of the vehicle from the road lane will

be considered of the utmost importance. Among the most relevant objectives we need to

include is the robustness of the estimation algorithm, i.e. its ability to tolerate perturba-

tions that might affect functionality, and the complexity of the network used to achieve an

acceptable performance. It will then be important to realize a system capable of satisfying

performance requirements, without resorting - as much as possible - to expensive and overly

complex solutions. A more quantitative description of the targets mentioned here will be

provided when discussing the results of the validation and simulation of the system.

1.3 Methodology

Let us now anticipate briefly the methodology that will be followed in the development

of this Thesis. The vehicle considered in this research is the “crossover” produced by

Fiat, the 2015 500X (figure 1.2). The data that will be used are those now becoming

commonly available on medium-range production vehicles, in accordance with the previously
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Figure 1.2: Considered vehicle: 2015 Fiat 500x

mentioned constraint of developing a system that doesn’t require the inclusion of additional

complex sensors or processing software. In particular, some of the most important sensors

for this project - with their respectively measured signals - are reported in the following list

[21]:

1. Vehicle sensors:

(a) Vehicle speed;

(b) 4 wheels speeds (or pulse count);

(c) Yaw-rate;

(d) Longitudinal acceleration;

(e) Lateral acceleration;

(f) Steering wheel angle;

2. GPS:

(a) Latitude;

(b) Longitude;

(c) Elevation;

(d) Speed;
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(e) Course angle (w.r.t. North);

(f) HDOP (position accuracy);

3. Lane Recognition Camera (LRC):

(a) Distance from left line;

(b) Distance from right line;

(c) Heading angle (w.r.t. lane);

(d) Lane curvature;

(e) Derivative of lane curvature over distance.

These signals are available in real time in the CAN network of the vehicle. It is important

to note that the employed GPS is that which is normally installed on a production vehicle.

The demo vehicle - which will be used only for the estimator algorithms design - will be

also equipped with a differential GPS, which will provide the same outputs as the normal

GPS but with much greater accuracy.

When lane markings are missing and hence the LRC functionality is impaired, the real

time estimator algorithms will be used to provide the variables necessary for ADAS control

functions (latitude, longitude, course angle and relevant state variables employed both in

longitudinal and lateral control). During the design stage, the best achievable accuracy will

be defined, as well as the confidence interval of the estimate in various clusters of scenarios.

For the sake of an easier comprehension of the next chapters, a simplified representation

of the control system that will be studied and developed in this Thesis (figure 1.3) is now

introduced. A more detailed description of each block’s details and design procedure will

be provided at a later time. What follows is a simple introduction for each component.

The block diagram represented in the figure resembles the actual system as it will be

developed in the graphical programming environment offered by MathWorks Simulink. As

a consequence, having this scheme in mind will help the comprehension of the role and

hierarchy of each component that will be added to the overall system.

In this scheme the Vehicle Dynamics block constitutes the mathematical description of

the plant, i.e. the system whose dynamics we want to control. As is suggested by its name,
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Figure 1.3: The proposed Control Scheme

this block contains all the necessary information to appropriately simulate the dynamics

of the vehicle of interest (the 2015 Fiat 500X ). This block contains two MATLAB R© S-

Functions compiled and made available by CRF (Centro Ricerche Fiat) S.C.p.A.: the first

one simulates longitudinal dynamics and the second one the lateral dynamics of the vehicle.

The two are combined in order to realize a plant whose inputs and outputs allow one to

design the control system. The symbol “x” refers to the state variables of the vehicle dy-

namics block: vehicle speed, wheels speeds, yaw rate, longitudinal and lateral acceleration,

et cetera.

Nonetheless a discrepancy between the inputs of the vehicle dynamics block and the

control algorithm is present. The lateral dynamics function, in fact, takes the angle of the

steering wheel as the command input, whereas the steering action is typically performed

by the control system, in terms of a torque to be applied to the steering column. This

mismatch requires the addition of the EPS block, which simulates the action of the Electric

Power Steering actuator. As will be discussed in detail in the appropriate section of this

Thesis, the EPS device will be modeled as a black-box.
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The LRC and GPS blocks simulate the information provided by the Lane Recognition

Camera and the Global Positioning System, respectively. The former provides a linear

approximation of the centerline of the lane in which the vehicle is traveling. The latter

provides information about the position of the standardly equipped vehicle’s on-board nav-

igation system.

Considering suitable inputs coming from the LRC, the Vehicle Dynamics and - when

the output of the camera is unavailable - the Position Observer, the Control System block

drives the inputs of the plant in such a way as to obtain the desired behaviour of the vehicle.

In particular, it drives the accelerator and brake pedals in order to match the prescribed

longitudinal speed in all driving conditions. It then demands a torque from the EPS actuator

which allows the vehicle to precisely track the previously mentioned approximation of the

centerline of the lane.

The last block that needs to be introduced is the Position Observer, i.e. the “Virtual

Sensor” (VS) which is intended to recover the precise position of the vehicle from GPS data.

This is the most important component of the developed system and it represents the main

unique contribution of this work. Although a precise physical and mathematical description

of this block will be provided in the next chapters, it is convenient to introduce the idea that

resides behind this crucial unit. Traditionally, when a non-measurable variable of a dynamic

system needs to be reconstructed a two-step approach is followed: first, a mathematical

model of the real system is derived and then an observer is designed in order to obtain an

estimate of the missing variables. This approach, widely employed in control theory, allows

for good performance with traditional estimator algorithms (Luenberger, Kalman) when

the system that is considered is linear. In the presence of highly non-linear systems - as

is the case here for the overall plant, sensors and actuators included - modified solutions

must be employed (e.g. extended Kalman filter) which often cannot guarantee sufficient

performance and robustness. In order to solve this problem a new, one-step approach has

been developed by researchers from Politecnico di Torino and Berkeley University [22].

The result of this approach is a virtual sensor directly estimated from the non-linear plant

(with any preferred identification technique), which can be proven theoretically to provide

quasi-optimal solutions even in worst-case estimation scenarios and boundedness properties.
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In the Control Scheme introduced in figure 1.3 a virtual observer is employed to precisely

reconstruct the position of the vehicle in the lane when the output from the camera is missing

or of poor quality.

Finally, figure 1.3 underlines which are the main inputs and outputs of the system. When

the controller is driven by the LRC, the main inputs are the desired longitudinal speed of the

vehicle vx and the instantaneous value of road curvature Kl. Conversely, when the controller

is fed by the virtual sensor the main inputs are vx and the GPS signal coming from the

on-board navigation system. The main output of the system is the linear approximation

y = q +mL of the lane centerline, and, in particular, the instantaneous distance q between

the vehicle’s center of gravity and the centerline of the lane. This quantity, as it will be

shown, can be easily converted into the trajectory followed by the vehicle in the X-Y plane.

1.4 Thesis Organization

This thesis is organized as follows:

In chapter 2, a brief review of some theoretical concepts useful for the following chapters

is offered. Furthermore, the mathematical justification of the operation principles of a

virtual sensor is discussed.

In chapter 3, an extended review of the literature concerning the general concepts of

automated driving, the system components and previous works conducted in the field will

be carried out.

In chapter 4, a detailed description of the design of the model will be provided. A section

is dedicated to each of the major components of the model.

In chapter 5, a general descriptions of the simulation and validation procedures is offered.

Moreover, the mathematical reasoning to obtain the trajectory followed by the vehicle is

presented.

In chapter 6, the results pertaining to the three versions of the model (uncontrolled,

controlled via LRC and controlled via virtual sensor) are shown and commented.

Finally, in chapter 7, a summarizing conclusion is drawn and some recommendations

and suggestions for future work are offered.
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Chapter 2

Theory

In this chapter some theoretical concepts are briefly exposed for easier comprehension of

the following parts of this thesis.

First, the analytical models of vehicle longitudinal and lateral dynamics are discussed

so as to provide a reference for the study of uncontrolled vehicle dynamic behaviour. In

particular, the famous “bicycle model” for vehicle lateral dynamics is presented. This model

will be widely employed in the definition of the lateral controller.

In the second part of this chapter the mathematical reasonings behind the concept of

the virtual sensor are illustrated schematically.

Finally, in the last part of the chapter two important techniques for model identification

- Neural Networks and Non-Linear ARX - are briefly introduced.

2.1 Vehicle Dynamics

In the control system for automated driving implemented in this work the block representing

vehicle dynamics is provided and considered as a black-box model. This means that the

block is treated only in terms of inputs and outputs, without any knowledge of its internal

workings. Nonetheless, a brief introduction to a linearized version of the longitudinal and

lateral dynamics in a vehicle is sketched here in order to define the analytical relation
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between the variables involved. Moreover, the development of the control algorithms will

consider a linearized rendering of the vehicle dynamics block.

2.1.1 Tire Contact Modeling

Except for aerodynamic forces, all external actions influencing vehicle dynamics are exerted

at the tire-road contact [55]. The understanding of the physics behind this phenomenon is

essential for the development of meaningful equations of motion. Figure 2.1 illustrates the

Figure 2.1: Longitudinal tire dynamics

main variables involved in longitudinal tire dynamics: wheel angular velocity (ωw), vehicle

speed (V ), vertical load (Fz), radius of the wheel (Γw), driving torque (Te), braking torque

(Tb), traction and “friction”1 forces (Ft and Ff , respectively).

The wheel angular dynamic equation is:

ω̇w = [Te − Tb − ΓwFt − ΓwFf ]/Jw (2.1.1)

where Jw is the moment of inertia of the wheel.

The tractive force developed at the contact patch is dependent on the (longitudinal)

wheel slip, i.e. the difference between the theoretical velocity of the wheel2 and the actual

velocity of the wheel, normalized by the maximum of the two (theoretical for braking, actual

for acceleration) [56]. The adhesion coefficient µ(λ) is a function of the wheel slip λ (figure

2.2).

1Here by “friction force” is intended the force resulting from the rolling resistance of the tire.
2The theoretical angular velocity of the wheel is the speed of the vehicle divided by the wheel radius

ωv = V/Γw, i.e. the velocity of the wheel in pure rolling condition.
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Figure 2.2: Typical µ(λ) curves for different road conditions. If scaled by the appropriate vertical

load Fz the ordinate axis represents the tractive force Fx

The tire tractive force is given by:

Ft = µ(λ)Fz (2.1.2)

where the vertical load Fz depends on the mass of the vehicle and the steering and suspension

dynamics.

With the tire lateral dynamics, a somewhat similar phenomenon occurs: when the

trajectory of the wheel is bended, a deformation in the tire contact patch is introduced

(figure 2.3) that determines the production of a force [57]. The sideslip angle α is due to

Figure 2.3: Tire contact patch deformation in a bend. Notice the (Side)slip angle α [58]
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the elastic nature of the tire structure, which allows the creation of an angle between the

direction the tire is pointing and its actual direction of travel (when a tread element enters

the contact patch, the friction between the road and the tire causes the tread element

to remain stationary, yet the tire continues to move laterally). Considering wheel speed

components vx and vy, α we can be defined as:

α = −arctan
(
vy
|vx|

)
(2.1.3)

The cornering force Fy developed by the tire is dependent on the sideslip angle α ac-

cording to a function qualitatively very similar to the one shown in figure 2.2. For small

angles this relation is approximately linear and it is possible to define the cornering stiffness

parameter of the tire as:

Cα =
Fy
α

(2.1.4)

2.1.2 Longitudinal Dynamics

In figure 2.4 the most relevant forces acting on a vehicle traveling on a straight road are

shown [58]. Considering these forces we can write:

Figure 2.4: Forces acting on the vehicle in longitudinal motion [58]

Max = Fx −Rx −DA −Rhx −W sin Θ (2.1.5)

where Rx is the rolling resistance force, DA the aerodynamic drag force, Rhx the towing

force and Fx is the tractive force. The longitudinal acceleration ax, presuming there is
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adequate power from the engine, is limited by the coefficient of friction at the tire contact

patch.

2.1.3 Lateral Dynamics

Assuming there is no interaction between longitudinal and lateral vehicle dynamics, the

latter can be described making reference to a basic bicycle model, i.e. a simplified model

where the two sides of the car are “fused” together (figure 2.5). In this figure, R is the

Figure 2.5: Cornering motion studied with the bicycle model [58]

turning radius, δ the steering angle, and αf and αr the front and rear slip angles, respec-

tively. These angles allow the tires to develop cornering forces such that the “centrifugal”

force acting on the vehicle’s center of gravity is compensated:∑
Fy = Fyf + Fyr = M

V 2

R
(2.1.6)

Now for the vehicle to be in equilibrium the sum of the moments acting around the center

of gravity must be null, hence:

Fyf = Fyr
c

b
(2.1.7)

Substituting this equation in the previous, defining the weight on each axle, Wf and Wr,

and solving for the slip angles we find

αf = WfV
2/(CαfgR) αr = WrV

2/(CαrgR) (2.1.8)
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which inserted in the geometrical relation expressed by figure 2.5 (i.e. δ = 57.3L/R+αf−αr

with L the wheelbase)3 gives:

δ = 57.3
L

R
+

(
Wf

Cαf
− Wr

Cαr

)
V 2

gR
= 57.3

L

R
+Kay (2.1.9)

where K is the Understeer Gradient [deg/g].

Equation 2.1.9 is a fundamental equation concerning the turning response of a vehicle:

it describes how the steering angle δ varies with the radius of the turn R and the lateral

acceleration ay. The parameter K can take three possible values:

• K = 0

When such a vehicle is negotiating a constant-radius turn, no change in steering angle

is required when the speed is varied. This is the so-called Neutral Steer condition.

• K > 0

On a constant-radius turn, the steer angle must be increased with increasing speed

by K times the lateral acceleration in g’s. This condition is termed Understeer4.

• K < 0

On a constant-radius turn, the steer angle must be decreased with the speed. This

third possible condition is termed Oversteer.

When discussing of lateral dynamics, one last fundamental quantity has to be intro-

duced. A “sideslip angle” was proposed when discussing the tire deformation so as to

quantify the mismatch between the direction the tire is pointing and the direction the cen-

ter of the wheel is following. A similar concept can be applied to the whole vehicle: a sideslip

angle may be defined at any point on the vehicle as the angle between its longitudinal axis

and the actual direction of travel at that point [58]. When taking the center of gravity, the

Vehicle Sideslip Angle β is defined as shown by figure 2.6.

For any speed, the vehicle sideslip angle β at the center of gravity is:

β = 57.3
c

R
− αr = 57.3

c

R
− WrV

2

CαrgR
. (2.1.10)

31 rad = 57.2958 deg
4The vehicle here considered, the 2015 Fiat 500X, has a positive understeer gradient.
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(a) Low-speed turn (b) High-speed turn

Figure 2.6: Vehicle Sideslip Angle β (positive in clockwise direction) [58]

2.2 Virtual Sensors

In this second part of chapter 2, the concept and mathematical foundation of Virtual Sensors

(VS) are presented. As already underlined, the application of a virtual sensor for precise

vehicle position reconstruction when the camera output is degraded will represent the main

original conclusion of this work.

The innovative approach of nonlinear variable identification through virtual sensors was

developed by Professors M. Milanese and C. Novara from Politecnico di Torino, Italy and

by Professors K. Hsu and K. Poolla from University of California at Berkeley, USA. A

detailed mathematical treatment of the problem and an application to the Lorenz attractor

nonlinear system are offered in [22].

Mathematical Justification

In control theory, a (state) observer is defined as follows [81].

Definition. State Observer A state observer is a system that provides an estimate of the

internal state of a given real system, from measurements of the input and output of the real

system.

How well internal states of a system can be inferred from the knowledge of its external

outputs depends on the observability of the system. Now, let us consider a non-linear
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discrete time system in state space form with input u and outputs [y, z]:

xt+1 = Fx(xt, ut)

yt = Hy(xt, ut)

where xt ∈ X ⊂ <n, ut ∈ U ⊂ <mu, yt ∈ Y ⊂ <my and Fx, Hy are unknown continuous

and differentiable functions.

Let zt be any variable of interest defined in <mz (zt ∈ Z ⊂ <mz, a subspace included in

<n); also noise corrupted measurements of ũt, ỹt are available for all times t. It is of interest

to know zt for ∀t starting from a certain time instant tm.

The standard approach for observer design considers a two-step procedure:

1. Identification of a process model in terms of state space equations (i.e. of matrices A,

B, C and possibly L):

ẋ(t) = Ax(t) +Bu(t) + Lξ(t), E{ξ(t)} = 0, ∀t

x(t) ∈ <n, u(t) ∈ <m, ξ(t) ∈ <p

y(t) = Cx(t) + θ(t), y(t) ∈ <p, θ(t) ∈ <p ;

2. Design of an observer based on the identified model:

˙̂x(t) = Ax̂(t) +Bu(t) +H [y(t)− Cx̂(t)]

= [A−HC] x̂(t) +Bu(t) +Hy(t)

ŷ(t) = Cx̂(t) .

The system is to be preferably determined from “inside”, i.e. based upon physical laws

describing the process. The observer is often a Kalman filter (KF): H = KOBS is the

optimal Kalman gain matrix, as in figure 2.7.

The main problem with this procedure is that problems in automotive dynamics are

usually strongly non-linear. As a result, the performance of the KF, which is designed to be

a minimum variance filter, deteriorate due to modeling errors (unavoidable in such complex
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Figure 2.7: Standard observer design approach (from [82])

and nonlinear dynamics). Furthermore, observers are typically implemented as Extended

KF, i.e. approximations of the KF where the gain matrix H is variable and evaluated on-line

at every sampling time. The discrete and recursive algorithm employed for this computation

provides poor performance and it is not even able to guarantee bounded estimation errors.

The practical realization of this kind of filter is then complex and stable estimation

performance is not guaranteed. In more recent times, an increasing interest is developing

for new approaches based on the direct identification of the estimator model starting from

a set of noisy data.

This is the so called one-step approach: it implies the identification of an overall model

including by itself the dynamic behaviour described by the previously mentioned equations,

as in figure 2.8. Let us consider again the non-linear discrete time system in state space

form with input u and outputs [y, z]:

xt+1 = Fx(xt, ut)

yt = Hy(xt, ut)

zt = Hz(xt, ut)

where Hz is a continuous and differentiable function as well. Also, noise corrupted mea-

surements of ũt, ỹt are available for all times t whereas zt is measured only for t < Tm. It is
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Figure 2.8: One step approach for virtual sensor design (from [82])

of interest to determine zt for t > Tm.

Milanese et al. demonstrated in [83] that, for (Fx, Hy) observable, ∃F0 and integers

nu, ny such that the variable of interest zt may be calculated as:

z̃t = F0(Ỹt, Ũt) + dt, t = 0, 1, 2, ..., Tm

Ỹt = [ỹt, ỹt−1, ..., ỹt−ny+1]

Ũt = [ũt, ũt−1, ..., ũt−nu+1]

where F0 is a parametric functional and dt is due to the uncertainty of zt, yt and ut and

where the sequence of dt is supposed to be bounded.

As a consequence, the problem of identifying the observer representing the “virtual” sen-

sor is transformed in the estimation of a functional FA(Y,U) as a parametric approximation

of F0, computed using any desired nonlinear estimation method within a bounded subset

of the regressor space zt and its appropriate orders [nu, ny]. In this one step approach the

observer model is built up from “outside”, by means of an identification process. Virtual

sensors derived in this fashion can be theoretically proven to provide quasi-optimal solu-

tions even with worst-case estimations and to guarantee boundedness properties, realizing

anyway “minimum” variance estimators (a similar result is not assured by KF techniques).
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They appear to provide good results even for complex nonlinear models and work with

reduced sets of measured data.

In chapter 3 some applications related to virtual sensors will be discussed. In chapter 4

the implementation in this project of the virtual sensor for the problem of precise vehicle

position reconstruction is presented in detail. Finally, chapter 6 describes the performance

of the system in which the controller is using the information coming from the virtual sensor.

2.3 Neural Networks and System Identification through ARX

An important role in this project is occupied by the necessity of identifying models from

input-output data pairs. As will be discussed in more detail in the following chapters,

black-box modeling is necessary mainly for two reasons:

• To identify models from experimental data, when the inner workings of the real system

are unknown or too complex to be fully reproduced here without making the system

overly intricate in those areas that are not the main focus of the project;

• To linearize complex non-linear dynamics for the purpose of focusing attention on

the bulk of the input-output relation, letting out all non-linearities and subtleties not

strictly necessary.

The first case - which (more strictly speaking) pertains to the category of black-box mod-

els - makes reference to the model of the Electric Power Steering actuator whose internal,

highly non-linear characteristics are supposed unknown.

The second point is mainly related to the necessity of developing simple yet high-

performing control for the longitudinal and the lateral dynamics of the vehicle. Despite

their simplicity, in fact, PID and LQR controllers can achieve good performance if their

tuning is done accurately and robustly. Now, because those control techniques are linear in

nature, they require first and foremost a linearization of the plant they aim to control.

In both cases model identification techniques can be successfully used to complete the

task. Let us introduce the two techniques that were used in this project: Artificial Neural

Networks and ARX models.
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2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are models based on the biological structure of the brain.

They are constituted by interconnected processing units, the neurons. The strength of each

connection can be altered by changing the value of a numeric weight. This adaptivity

makes ANNs capable of learning relations between data (see [105] for details about training

algorithms and procedures). A neural network is then suitable for defining black-box models

when only input-output pairs are known. Niu et al. in [106] demonstrate how feedforward

neural networks can be used to perform model fitting over complex data with performance

comparable with traditional regression analysis approaches.

Figure 2.9: ANN with 3 inputs, 4 hidden nodes, 2 outputs

As figure 2.9 shows, the term “network” in Artificial Neural Network refers to the inter-

connection of several neurons: input neurons which send data via synapses to the second

layer of (hidden) neurons, and then via more synapses to the third layer of output neurons.

More complex networks will have two or more layers of hidden neurons. In all cases, the

synapses store parameters (called “weights”) that manipulate the data in the calculations.

Let us consider a simple (hidden) neuron: figure 2.10. The processing of the scalar input

p is as follows:

• The input p is multiplied by the (scalar) weight w to form the product wp;
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Figure 2.10: A simple neuron [103]

• The weighted input wp is added to the scalar “bias” b to form the net input n;

• Finally, the net input is passed through the transfer function f , which produces the

scalar output a.

The fundamental aspect of this process is that parameters w and b are both adjustable

scalar parameters of the neuron: the central idea of neural networks is that such parameters

can be adjusted so that the network will predict a known output within a desired level of

accuracy.

The output of the neuron a = f(wp+ b) depends also on the transfer functions f which

maps the net input to the output. Different transfer functions can be used, two of the most

common ones are the linear transfer function and the sigmoid transfer function.

The workflow for the neural network design process consists in seven primary steps:

1. Collect data;

2. Create the network;

3. Configure the network;

4. Initialize the weights and biases;

5. Train the network;

6. Validate the network;

7. Use the network.
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Configuring the network means making it compatible with the problem at hand, i.e.

with the collected sample data. The parameters of the network (weights and biases) must

then be tuned in order to optimize the performance of the network. This tuning process is

referred to as training and requires the network to be provided with example data.

The training of ANN is the fundamental phase in which an optimal solution to the

problem is sought, where “optimal” means that no other solution has a “cost” lower than

that of the optimal solution. If examples of input-output data pairs are given to the network

and the objective is to closely match the examples, the learning is referred to as supervised.

In this case, a commonly used cost function is the MSE (Mean Square Error), which is used

to minimize the average squared error between the network’s outputs and the target values.

A simple algorithm to minimize the MSE cost function is the gradient descent : a local

minimum of the function is searched by taking steps proportional to the negative of the

gradient of the function at the current point. When one tries to apply gradient descent

to feed-forward artificial networks of non-linear neurons (called “multilayer perceptrons”),

one obtains the common and well-known backpropagation algorithm for training neural

networks. MATLAB’s Neural Network Toolbox can implement this and more sophisticated

training algorithms.

Some of the most important tasks ANNs are used for include:

• Function approximation (regression analysis): system modeling, etc.;

• Classification: pattern and sequence recognition, etc.;

• Data processing: filtering, clustering, etc.

• Robotics;

• Control.

2.3.2 Non-linear ARX

A non-linear ARX (nlarx or NARX ) is a nonlinear autoregressive model which has exoge-

nous inputs [107]. This means that a model of this kind links the current value of a time

series to both a) the past values of the same series (autoregressive) and b) the current and
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past values of an externally determined (exogenous) series that acts on the series of interest

(figure 2.11).

Figure 2.11: nlarx structure

The basic ARX model from which the nlarx is derived is a linear SISO (single-input

single-output) ARX model, which has the following structure:

y(t) + a1y(t− 1) + a2y(t− 2) + · · ·+ anay(t− na) = b1u(t− nk) + b2u(t− 1− nk)+

+ · · ·+ bnbu(t− nb − nk + 1) + e(t)

(2.3.1)

where na is the number of past output values, nb the number of (current and) past input

values, nk the input delay and e(t) the error source. Here y(t) is the variable of interest

and u(t) is the externally determined variable.

This structure implies that the present value of the output (y(t)) can be evaluated as a

weighted sum (linear combination) of past output values and current and past input values.

The delayed input and output variables (y(t− 1), y(t− 2), . . . , y(t−na), u(t−nk), u(t− 1−

nk), . . . , u(t− nb − nk + 1)) are called regressors.

The structure of equation 2.3.1 can be extended to create a non-linear form replacing

the weighted sum with a non-linear mapping function, f :

y(t) = f(y(t−1), y(t−2), . . . , y(t−na), u(t−nk), u(t−1−nk), . . . , u(t−nb−nk+1)) (2.3.2)

where the regressors can be delayed input-output variables and/or more complex non-linear

expressions (e.g. products, powers, etc. of delayed input and output variables). Figure 2.12

shows how a non-linear ARX block operates (see [103]). The “nonlinearity estimator block”

links the regressors to the output of the system using both linear and non-linear functions.

The numbers na, nb and nk are the orders of the model and, concerning the values

they should assume, nothing but initial guidance exists in the literature. Data to be used
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Figure 2.12: nlarx model in a simulation scenario

in the system identification are first divided into estimation and validation sets (e.g. by

splitting the experimental outcomes in two data sets using random indexes). Subsequently,

in MATLAB, data are prepared for nonlinear identification by creating iddata objects. It

is important to split available experimental data into estimation and validation sets in order

to properly assess the capability of the model to work well not only on data which were

used for the determination of its own coefficients (estimation data), but also on new data

not employed to determine the final form of the model (validation data).
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Chapter 3

Background and Literature review

In this chapter an in-depth look at the material available in the literature which proved to

be useful for the progress and the completion of this work is provided. In order to rationally

expose the content of the chapter, the latter is subdivided in three parts.

The first part exposes the general context in which this project is inserted: the impor-

tance of vehicle safety, the classification of ADAS systems, the various levels of automation

in which they can be arranged and the concept of data fusion.

The second part provides a detailed description and relevant examples for the com-

ponents constituting the model developed in this Thesis. The practical implementation of

virtual sensors is discussed. In this way a backbone for the discussion of the model presented

in chapter 4 is offered.

Finally, in the last part, a review of the work done in the field by automakers, startups

and research institutes is provided. Additionally, an example of an Advanced Driver Assis-

tance System designed to cope with the absence of ground lanes in urban environments is

also examined.

27



3. BACKGROUND AND LITERATURE REVIEW

3.1 General Concepts

3.1.1 Vehicle Safety

The problem of automobile safety is a complex one. A thorough understanding of this matter

requires one to consider not only the vehicle itself, but also the construction, the equipment

and the set of regulations aimed at reducing the number and severity of road accidents.

The World Health Organization reports [23] that there were 1.25 million road traffic deaths

globally in 2013, i.e. a traffic-related fatality occurs every 25 seconds. Half of these fatalities

involve “vulnerable road users” (motorcyclists, pedestrians and cyclist) [24] and only 28

countries (7% of world’s population) have suitable legislation concerning traffic accidents

[25]. In low-income countries one-percent of the globally registered vehicles causes 16% of

the world’s road traffic deaths [25]. These numbers underline how important the creation

of modern transport infrastructures and the diffusion of suitable legal countermeasures are

in the pursuit of a reduction of traffic-related deaths.

Passive Safety

Considering the vehicle itself, it becomes mandatory to design the car body is such a

way as to protect occupants during a crash. This is the task of the so-called passive safety

features. Occupant protection is achieved by mitigating crash forces and limiting the contact

of delicate body parts against the structure of the vehicle. For this purpose, passengers are

then kept in a “life space” throughout the crash, and this life space is kept as safe as

possible. Crumple zones are designed to absorb and distribute crash forces before they

can reach passengers. At the same time, seats, airbags and seat-belts help retain the

occupants inside the life space. Engineering societies (e.g. SAE [30]), governmental agencies

(e.g. NHTSA [31]) and automakers dedicate ample efforts at studying and advertising

passive safety systems. These safety features are extremely important when it comes to

decreasing the severity of crash-related injuries, and as such they have undergone significant

development in recent years. Modern vehicles, in fact, are often equipped with pretensioning

systems for a quicker action of seat-belts, advanced headrests for the reduction of the risk

of whiplash, numerous airbags to prevent the contact of several structural components with
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the passengers and sophisticated, FEA-designed, energy-dissipating chassis components.

Active Safety

That said, several studies [26, 27, 28] shows the extensive impact of human error on motor

vehicle crashes. In particular, the most thorough analysis of crash causation, the Tri-Level

Study of the Causes of Traffic Accidents published in 1979 [29], found that “human errors

and deficiencies” were a definite or probable cause in 90-93% of the incidents examined.

In [35] the principal causes of fatal accidents are identified (in order of importance) as the

following:

• Loss of alertness;

• Alcohol;

• Fatigue.

A substantial possibility for the reduction of the accidents linked to vehicular accidents

appears then to avoid an accident before it even occurs. This idea of supporting the driver

in their task has fostered the development of active safety systems. These safety features

are active prior to an accident, in contrast with their passive counterpart that are “active”

during an accident. Examples of very successful active safety features comprise the ABS

(Anti-lock Braking System), whose objective is to prevent wheel locking and to maintain

vehicle drivability even in extreme braking maneuvers, and the ESC/P (Electronic Stability

Control/Program), which — trough a combination of actions on the engine power output

and the individual brakes — helps in keeping the vehicle on the intended path even in the

presence of severe yaw angles (see figure 3.1 [32]).

In recent years, active safety is becoming more and more synonymous with systems

able to grasp an understanding of the state of the vehicle with the task of both avoiding

and minimizing the effect of a crash. These sensor-based, forward looking systems fall in

the already mentioned category of ADAS systems. Features like brake assist systems and

adaptive cruise controls can be considered active safety systems.

The main reason why these safety-targeted driver assistance systems are becoming in-

creasingly diffused in modern vehicles production is that, although the improvement of
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Figure 3.1: ESP intervention in an extreme steering maneuver

passive and early active safety systems has allowed a significant reduction in the number

of road fatalities (see the already cited European Commission report, [3]), the trend is now

slowing down, showing the need for a leap forward in the treatment of road safety. This will

be most likely achieved by initially supporting and ultimately replacing the human driver,

arguably the greatest threat to car safety.

3.1.2 ADAS

A unique definition of the expression ADAS -Advanced Driving Assistance Systems - ap-

pears to be lacking in the literature. Nonetheless, a tentative explanation (see also [33]) of

the term can be given as follows:

Definition. ADAS Advanced Driver Assistance Systems are systems designed to auto-

mate/adapt/enhance vehicle systems for safety and better driving. These technologies al-

lows the prevention of incidents by warning the driver of potential dangers, by implementing

preventative actions or by taking control of the vehicle.

These systems could help the driver to manage dangerous situations created by external

factors (e.g. a forward collision warning system alerting the driver of a sudden braking of the

vehicle ahead) or they could compensate for shortcomings of the driver them-self, in terms of
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their capabilities or awareness. Even if this last point could pose some problems to salesmen

(as jokingly underlined by [6]), these systems are indeed moving into the marketplace.

ADAS Benefits, History and Problems

There are a number of reasons [34] why, in recent years, electronic driving aids are becoming

more and more the focus of large investments from automakers and suppliers. As mentioned

in the previous section, this clearly relates first and foremost to the unacceptable number

of accidents, i.e. to safety. ADAS systems can, in fact, be used to support the driving task,

alert the driver of potentially hazardous situations and, if needed, even take over control.

Other important arguments are of economic nature: saving time is a way of saving money.

Many more vehicles could be accommodated on a highway under some form of automatic

control and inter-vehicle communications. Of course, comfort of the driver is another crucial

selling point. Drivers with reduced or impaired capabilities — e.g. elderly, inexperience

drivers — could benefit of the backing of ADAS systems. Finally, environmental concerns

(reduced fuel consumption and hence pollutant emissions) also play a relevant role in the

diffusion of electronic driving aids.

Even though, for many drivers, these systems have only recently started to become an

integral part of their every-day routes, driver assistance systems have a considerable history

of development. One of the very first initiatives concerning these kinds of systems is the

“Prometheus” project, started by several European car manufacturers and research insti-

tutes in 1986. The European Union launched the “DRIVE” (Dedicated Road Infrastructure

for Vehicle Safety in Europe) program shortly after this. Under these projects, consider-

able efforts were put in solving practical problems and in defining requirements and design

standards for intelligent driver support systems [36].

Now, these systems are designed not only for automobile drivers but also for profes-

sionals. They promise, in fact, an always active copilot to reduce the stress and improve

vigilance on long journeys. Nonetheless, several studies — e.g. Van Ouwerkerk et al.

(1986), Janssen, Wierda and Van der Horst (1992) — show how carefully any impact on

driver alertness and vigilance must be assessed before a new system is released on the mar-

ket. In particular, behavioral changes could occur in the driver, with a potential threat for
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safety. Poorly designed systems inside vehicles, in general, can have negative effects on the

human driver. Acceptance of this kind of system by the end-user is also a critical aspect:

ADAS devices limited to provide information are most likely to be well received, whereas

more intrusive devices could be perceived skeptically.

Speaking of behavioral changes, Brookhuis et al. [34] point out that automation could

be linked to an increase of the reaction time of the driver. There are also studies which

show how a continuous monitoring of the systems looking for malfunctions could actually

lead to high workload, even if the processing requirements for these tasks are low in itself.

Another source of stress for the driver could be the following: if the normal operation of the

vehicle is carried out by the automatic control systems, the driver will need to face only the

abnormal driving conditions (those resulting from some problem). But, as a consequence of

the automation itself, the experience of the driver will be limited, while abnormal conditions

may require complex and unusual actions. This scenario gets even worse considering that

the response of the driver could be sup-optimal because of the sudden pressure induced by an

emergency, see Bainbridge (1983). All of this is linked to so-called “complacency” — Wiener

and Curry (1980) — which is an attitude of over-dependence from automated systems. The

other side of the coin is, as mentioned, the acceptance of ADAS: the resistance to giving up

part of the control of the vehicle. Bekiaris et al. showed that the driver population could

be reluctant to abandon vehicle control, except for emergency situations.

In conclusion, while ADAS systems hold great potential, their acceptance will be heavily

dependent on how good their performance will prove to be, on how clear their benefit to

the end-user will be, and on how legislation will distribute responsibility and liability.

ADAS Classification

Currently available Advanced Driver Assistance Systems are mainly designed to support

the task of the driver, and not to replace it. These systems, inserted in the domain of active

safety, aim at avoiding accidents before they occur. In the following an overview of the most

important ADAS devices is presented. Both currently available solutions and near-future

prospects are briefly introduced.

The main commercially available systems are divided into the following categories [5]:
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• Lateral Control

Lateral control ADAS systems are mainly subdivided into the following three subcat-

egories.

– Lane Departure Warning (LDW) systems, whose task is to warn the driver of an

unintentional — i.e. not preceded by blinker activation — change of lane (figure

3.2 [37]).

Figure 3.2: Lane Departure Warning system

The relevance of this kind of system is underlined by Headley (2005), who reports

how 55 % of fatal crashes are caused by unintended lane departures. These

systems relies on the use of video cameras able to recognize lane markings on

the road. Variations of these devices can combine steering wheel vibrations with

actual corrections of the steering wheel angle via the application of a suitable

torque (Siemens VDO, 2005). The action of the system can be overridden if

needed.

– Blind Spot Detection systems aim at enhancing driver awareness of vehicle’s

surroundings by providing information whether vehicles, cyclists or pedestrians

are present in the area not directly or indirectly visible to them. The driver

is usually informed by a lamp on the side mirror or the A-pillar triggered by

a difference in speed between driver’s vehicle and incoming traffic. Detections

of the objects in the blind spot area is usually carried out through infrared

sensors. These passive sensors are less expensive and sometimes more reliable

(Wang et al. (2005)) than active ones and their principle of operations relies on

the temperature readings of the blind-spot area: if vehicles or pedestrians are

present a difference in temperature with respect to a reference part of the road
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will be measured.

– Lane Change Assistance (LCA) systems integrate the two previously discussed

devices in order to warn the driver if they are returning to the original lane too

soon after an overtake.

• Longitudinal Control and Avoidance Systems

Some of the most relevant longitudinal control and avoidance systems can be grouped

in the following categories.

– Adaptive Cruise Control (ACC) expands the functionality of a traditional cruise

control systems by ensuring that an appropriate distance from the vehicle ahead

is kept even if the latter is decelerating (figure 3.3 [38]).

Figure 3.3: Adaptive Cruise Control system

When the vehicle in front accelerates again, the car equipped with ACC will

follow it, keeping the optimal distance — e.g. Ford (2005). If the deceleration

required is more than want the system can provide, warnings will be issued to

prompt the driver to act on the brakes. (Future) ACC system performance is

enhanced by incorporating information on road curvature (in such a way as to

more accurately determine which vehicle is occupying the same lane as the ego-

vehicle1) and digital maps that can be used to estimate if vehicle speed is too

high to negotiate the curve ahead. These so-called Curve Management systems

1The term “ego-vehicle” indicates the car, truck or motorbike on which the ADAS system is installed

and/or whose longitudinal and lateral behaviour we want to control.
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require the use of GPS antennas and maps specifically developed for ADAS.

– Traffic Jam Assist/Stop&Go systems are a variant of ACC designed to conduct

the vehicle in congested traffic conditions by following a reference car ahead.

– Forward Collision Warning (FCW) systems are employed to minimize the risk

of collision. A set of sensors (laser or microwave radars) are used to compute the

relative position and speed with respect to an obstacle. If a risk of crashing is

recognized, the driver is alerted.

– Electronic Brake Assist (EBA) devices are commonly found on ABS-equipped

vehicles. These systems recognize an emergency braking action and, if the driver

has not applied a sufficient force on the pedal, they can support driver action

in order to reach maximum braking power. Forward Crash Mitigation (FCM)

systems expand the functionalities of FCW and EBA by, in case of high crash

probability, warning the driver and, if the latter does not respond, applying the

maximum brake force and simultaneously pretensioning the seat-belts.

– Traffic Sign Recognition supports the driver with information about the cur-

rent speed limit. System performance is enhanced by integrating data from the

GPS to avoid un-realistic limits that could result from faded or partially-covered

signals.

• Reversing/Parking Aids

These devices perform obstacle detection at low speeds and notify the driver when the

vehicle is becoming too close to an obstacle. A signal of increasing frequency and/or

volume is employed to warn the driver of the distance reduction from an obstacle.

Some commercial variants of the system can provide visual indications to the driver

on how to maneuver the vehicle and can also detect the presence of curbs or pedestri-

ans. Some manufacturers have developed systems that can detect a suitable potential

parking space and automatically perform the necessary steering actions to complete

a parallel parking while the driver controls accelerator and brake (figure 3.4 [39]).
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Figure 3.4: Siemens VDO’s Park Mate

• Vision Enhancement Systems

In order to support the driver task in driving environments with reduced visibility,

different technological aids have been developed:

– Night Vision systems employ cameras and near-infrared lights to illuminate the

area in front of the vehicle. Another possible approach is to use infrared sensors

which create a thermal map of the vehicle surroundings that allows the driver to

“see” the external world, even in case of extreme darkness. These devices allow

a considerable improvement of safety at night and in bad-weather conditions as

well as a significant reduction of stress.

– Smart Headlamps grant useful functionalities to increase driving safety of the car

on which they are installed, as well as of oncoming traffic: headlamps that can

follow the profile of a curve, automatically dim when there is the risk of dazzling

other drivers, or adjust their height as a function of the load and speed of the

vehicle.

• Driver Monitoring Systems

These devices are employed to study the driver’s physiological condition to discover

potential abnormal statuses. Driver impairment could be the result of fatigue, alcohol

or drug abuse, distraction or sudden illness. In order to detect potential problems
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Driver Vigilance Monitoring systems examine driving patterns (e.g. erratic lateral

position changes) or eyelids movements.

• Pre-Crash Systems

These systems are intended to detect unavoidable accidents and take suitable coun-

termeasures. Some of the most relevant applications are the following:

– Smart Restraint Systems determine imminent crashes, warn the occupants and

activate the airbags best positioned to achieve maximum protection. Critical

conditions are determined on the basis of different sensors and systems like those

pertaining to ABS and ESC. System operation is made less invasive by making

interventions reversible if the crash does not occur.

– Rear End Collision Avoidance and Rear-Collision Warning systems are intended

to sense the possibility of an accident with a vehicle on the same driving lane and

to warn the driver if the time to collision is below a pre-programmed limit. If

the driver takes no action then the system can activate the brakes or trigger the

pretensioner of the seat-belts. Certain systems — e.g. Ford Advanced Telematics

(2005) — can alert incoming traffic with the rear-mounted lights.

• Road Surface/Low Friction Warning Systems

Systems triggered by road surface conditions fall into this category. The information

about road friction is gathered by vehicle (and, in the future, road-mounted) sensors

and used by the relevant active safety systems. Studies are conducted to assess the

possibility to transmit this information to other vehicles (V2V — Vehicle to Vehicle)

or to the infrastructure administrators (V2I — Vehicle to Infrastructure).

Active safety features that makes use of road information are ABS (Anti-Lock Braking

System), EBD (Electronic Brake Force Distribution), TCS (Traction Control System),

VSC (Vehicle Stability Control), DAC (Downhill Assist Control System), HAC (Hill-

Start Assist Control) and others.

What was briefly summarized here are the currently available ADAS systems. In the

near-future it is to be expected a strong development in the field. Let us then review some

37



3. BACKGROUND AND LITERATURE REVIEW

of the solutions that will reach the market in the next few years.

The ACC and LDW functions discussed previously will most likely be more and more

combined into a unique “autonomous” driving capability in the future. Several companies,

e.g. Honda [16], Mercedes [9], Google [8], Delphi [11], etc., are working in this direction

and a glimpse of the future can be seen in the highway autonomous drive function currently

offered by Tesla Motors on its production range, nicknamed “Autopilot”. This feature,

cited as one of the ten 2016 Breakthrough Technologies by the MIT Technology Review

[40], “allows Model S [and Model X] to steer within a lane, change lanes with the simple

tap of a turn signal, and manage speed by using active, traffic-aware cruise control. Digital

control of motors, brakes, and steering helps avoid collisions from the front and sides, as

well as preventing the car from wandering off the road. Model S can also scan for a parking

space, alert you when one is available, and parallel park on command” [41].

Of course a requisite for the implementation of more and more effective and complete

driving automatic control is the substitution of the traditional, mechanical links of steering

and pedals, with by-wire controls. This has already been done extensively in the past for

the accelerator pedal (i.e. Electronic Throttle Control, a system widely diffused since the

early 2000s [42]), the diffusion of by-wire brake and steering control has been slower. In

particular, besides a few exceptions (the first production vehicle to implement this was the

Infiniti Q50), by-wire steering is still a system yet to be fully released to the market. The

combination of LDW, ACC and by-wire controls is a key element of future highway systems

that strive for safe and efficient travel.

Other important developments are the integration of vehicle speed control with traffic

control systems (a topic that will be discussed better in the section dedicated to V2I). This

synthesis between vehicle data and traffic data (read from traffic signs and lights and/or

received from regional traffic centers) could help drivers through adverse traffic and weather

conditions and facilitate navigation (e.g. reduce congestion and limit speeding).

Further development of ADAS expected in the near future comprises Intersection Col-

lision Avoidance, a system able to warn the driver of a possible risk for collision at an

intersection, and Pedestrian or Obstacle Detection, a system aimed at detecting and avoid-

ing possible incidents with the most vulnerable road users: cyclists and pedestrians. The
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detection of these obstacles is made more difficult by their reduced dimension, which calls

for very robust detection systems.

The implementation of this and other sensing technologies is aimed at achieving a Per-

ception of Vehicle Surroundings that allows the ego-vehicle to create an instantaneous map

of the surrounding area — Headley (2005). This strong understanding of the driving situa-

tion is the key to enhance the vehicle’s ability to perform intelligent and effective decisions

to provide safe and efficient driving. The “situation awereness” thus obtained from the on-

board sensors can be further enhanced by integrating information from Digital Maps and

Satellite Positioning. Maps purposefully developed for ADAS could empower active safety

systems by helping reduce false positives in the computation of road curvature, by orienting

smart headlamps before the vehicle has even entered a curve, by enhancing radar vehicle

detection that could mistakenly interpret the disappearance of the vehicle in front behind

the crest of a hill as the sign that the road is clear and that it is possible to accelerate, etc.

Finally, in the near future the increase of the CPU’s computational power, of sensor

precision and of the amount of gathered data is expected to significantly enhance the current

implementations of ADAS systems, by making them not only able to perform more and more

functions, but also by blending them more and more un-noticeably in the habits of millions

of drivers worldwide.

3.1.3 Levels of Automations

It was mentioned in the introduction to this Thesis that the revolution of Autonomous

Drive (AD) will not happen overnight. Many steps will be involved, and the journey has

just started. It is going to be a “revolution through evolution” as some journalists have

termed it. It appears, then, important to introduce a distinction between the different terms

that have been introduced to describe the world of automated vehicles.

This need has been understood by the key institutions of the field and several classifica-

tions have been proposed. In particular, in January 2014, the SAE - Society of Automotive

Engineers - has introduced a system based on six degrees of automated driving to try to

shed light on the confusion that was previously reigning. This standard, which has now

become one of the most widely used classification systems, identify the share of responsibil-
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ity in performing the various aspect of the so-called “dynamic driving task”2 that must be

fulfilled by the driver and the system itself. The use of this classification allows the different

actors involved in making autonomous driving a reality - from the R&D Engineer to the

Legislator and the public - to be on the same page. SAE, it must be mentioned, is not

the only institution who has devoted effort in classifying the various faces of AD: the US

National Highway Traffic Safety Administration (NHTSA), the German Association of the

Automotive Industry (VDA) and the German Federal Highway Research Institute (BASt)

have all generated taxonomies. Nonetheless, since these classification systems typically cor-

respond to a high degree, only the SAE one will be here reported and used as a reference

in the following chapters of this Thesis.

SAE Standard J3016 [4] reports six levels of driving automation, ranging from no au-

tomation to full automation. The six levels are described in figure 3.5 and elements refer

to the minimum system capabilities for each level. The term “system” is here employed to

define the driver assistance system, combination of driver assistance systems or automated

driving systems. Warning and momentary intervention systems, as SAE specifies, are ex-

cluded because they do not automate any part of the driving dynamic task on a sustained

basis and therefore do not change the human driver’s role in performing the dynamic driving

task.

Making reference to the summarizing table in figure 3.5, it can be seen that the distinc-

tion between a level and the next one is offered by the four elements reported on the top

right, namely:

• Who (among the driver and the system) is in charge of controlling lateral (steering)

and longitudinal (acceleration/deceleration) vehicle dynamics;

• Who (among the driver and the system) is in charge of monitoring the driving envi-

ronment;

• Who (among the driver and the system) is in charge of the fallback performance of

2SAE International’s standard J3016 defines the dynamic driving task as including “the operational

(steering, braking, accelerating, monitoring the vehicle and roadway) and tactical (responding to events,

determining when to change lanes, turn, use signals, etc.) aspects of the driving task, but not the strategic

(determining destinations and waypoints) aspect of the driving task.”
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Figure 3.5: SAE International’s standard J3016

the dynamic driving task;

• What is the system capability in terms of driving modes, i.e. of different driving sce-

narios with characteristic dynamic driving task requirements (e.g. high-speed cruising

vs. low-speed traffic jam).

At level zero, all aspects of the dynamic driving task are managed by the driver. Warning

or intervention systems could help the driver in specific situations, but - as mentioned - they

do not automate the driving task.

At level one3, part of the driving task (either steering or acceleration/deceleration) is

automated by a driver assistance system, while all the remaining aspects are carried out by

the driver.

3The five levels of driving automation are sometimes referred to as: “hands on”, “hands off”, “eyes off”,

“mind off” and “driverless”.
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At level two, both steering and acceleration/deceleration are performed by the system.

“Partial Automation” is then achieved, since the driver is still expected to monitor the

driving environment.

At level three, a key distinction occur: if up to level two the human driver is still involved

in part of the dynamic driving task, at level three the automated driving system performs

the entire dynamic driving task. We still refer to level three as “Conditional Automation”,

though, because the driver is still expected to intervene when notified by the system.

At level four, this aspect of human intervention as a fallback is dismissed and a com-

pletely autonomous system, as far as some driving scenarios are considered, is achieved.

Finally, at level five, “Full Automation” is achieved by an automated driving system that

can carry out all the aspects of the dynamic driving task under all possible environmental

conditions that can be managed by a human driver. Systems of this kind are sometimes

referred to as “self-driving”, “autonomous” or “driverless”. If level four is a somewhat

short-term goal (experts believe that by year 2025 there will be fully automated systems

able to carry out all aspects of the driving task in certain scenarios), level five is probably a

more distant future prospect. Vehicles with this level of automation, in fact, do not require

a driver at all.

3.1.4 Look-down and Look-ahead Approaches

In order to implement driver assistance systems able to help the driver in specific tasks or

in automating part or all of the dynamic driving task it is necessary to equip the ego-vehicle

of sensing technology able to detect suitable references on the roadway.

While a more precise description of the sensors specifically used in this project will be

offered in the following sections, it is worth mentioning here how these technologies can be

divided on the basis of their working principle and operation.

In particular, two (not mutually exclusive) approaches can be followed in developing

a (partially) automated driving system. References can, in fact, be detected in front of

the vehicle (so-called “look-ahead” sensing) or beneath the vehicle (so-called “look-down”

sensing) [43]. Clearly, each sensing scheme has its advantages and disadvantages.

Look-ahead sensing can be obtained using vision sensors. As will be discussed in the
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following, vision systems can be either realized with monocular cameras or stereo-cameras.

Other kinds of look-ahead sensors include, but are not limited to, RADAR (RAdio Detection

And Ranging) and LIDAR (LIght Detection And Ranging) which can be used to detect

physical objects in front of the vehicle. The electromagnetic wave generated by the device

is reflected from obstacles in its path and it is received and processed by an unit that allows

to determine properties of the objects. The characteristics of this sensors — the fact that

they “look” ahead of the vehicle — provides systems which make use of them with the

advantage of a more stable close-loop control [43]. The literature offers several examples

of AD applications that rely on the use of these kinds of sensors. Figure 3.6 shows an

application of a camera sensor described in [19]. The output of the front-facing camera is

Figure 3.6: Lane Recognition through a camera sensor

suitably pre-processed and analyzed in such a way as to make possible the extraction of

features from the image that can then be modeled as lane markings and used for LDW and

lateral control. The drawback of this approach is that image processing is expensive, both in

terms of equipment needed and in terms of computational power demanded to the analyzing

softwares. Moreover, difficult weather and/or road conditions can make the processing of

optical images complex and poor-performing.
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Look-down sensors, on the other hand, are realized in such a way as to interact with the

roadway beneath the vehicle. These devices can be classified as continuous or discontinuous

and are usually based on electrified wires or buried permanent magnets. Malan et al.

[45] show an example of look-down control in which the vehicle lateral displacement is

obtained through an antenna (mounted on the front part of the vehicle) able to interact

with transponders “drowned” into the road (see image 3.7). The use of of either electrified

Figure 3.7: Look-down sensing apparatus composed of an antenna and transponders

wires or permanent magnets can be carried out with relatively inexpensive sensors and

minimum data processing. Moreover, this kind of technology is independent from weather

and road conditions. Nonetheless, these schemes give no indications about the upstream

road conditions (this problem was non-existent in [45] because the route to be followed was

known a priori) causing the control system to be less stable and performance to be affected,

and they can require an expensive infrastructure to be built on the road.

An intelligent combination of the two approaches can be exploited to take advantage of

the best characteristics of each sensing technology ([43]). For what concern this project a

look-ahead structure based on a camera sensor is the basic layout onto which the concept

of a virtual sensor is applied.

3.1.5 Data Fusion

The problem of data-fusion is extensively taken on in the academic [46] and industrial [20]

literature, often making reference to automotive applications [47]. Researchers in this field

agree that the most accepted definition of data fusion was provided by the Joint Directors
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of Laboratories (JDL) workshop [49]:

Definition. Data Fusion A multi-level process dealing with the association, correlation,

combination of data and information from single and multiple sources to achieve refined

position, identify estimates and complete and timely assessments of situations, threats and

their significance.

The combination of multiple sources that ensues from the use of data fusion allows to

obtain improved information; in this context, improved information means less expensive,

higher quality, or more relevant information [48].

In order to achieve this, data coming from different sensors is mixed accordingly to the

relationship between the different streams of data. Now, this relationship is not always the

same; it is in fact possible to distinguish three types of relation between the sources [48]:

• Complementary : when the information coming from the input sources is representa-

tive of different parts of the global framework. In this case data fusion can be used

to achieve a more comprehensive assessment of the situation. An example of compli-

mentary information is given by the video streams produced by two cameras pointed

on the same target but with different fields of view;

• Redundant : when the input sources provide information about the same situation. In

theory, no new information is gathered. This circumstance is analogous to the repeti-

tion of the measurement of a certain quantity varying only the measurement device.

The objective of exploiting redundant information is to increment the confidence we

can attribute to the understanding of the situation and to provide a fall-back in case

one of the input sources is impaired;

• Cooperative: when the input information is fused into new information, more complex

than the original. The combination of audio and video could be considered coopera-

tive.

In our case study data fusion will be the fundamental technique exploited to obtain an

enhanced understanding of the driving scenario, compensating for the lack of one of the

sensors (the LRC).
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Data fusion can be classified according to different criteria (the aforementioned relation-

ship between input sources is one of them) [20]. The Joint Directors of Laboratories (JDL)

Data Fusion Model distinguishes low level processing and high level processing of data:

• Low Level

– Track Estimation, i.e. the evaluation of states (e.g. position, velocity,... ) used

for control loops;

– Object Discrimination

∗ Detection of objects;

∗ Classification of objects into predefined classes;

• High Level

Algorithms for situation assessment and control of the data fusion process (e.g. allo-

cating resources).

Another possible classification of data fusion can be drawn considering the kind of

information that is processed [20]:

• Raw data represent minimally preprocessed data (e.g. pixels of an image). When raw

data fusion is performed the whole information provided by the single sensors is used.

On the other hand large amount of data have to be transmitted and processed and,

because of the particular nature of the handled data, fusion algorithms will be rather

inflexible;

• Feature level data are data in which some features of interest have been extracted

from raw data. The fusion of this kind of data has the advantage of involving smaller

information quantities. Furthermore, fusion algorithms will be more modular and

easily extended. The drawback is that the full information coming from the sensors

is no more available;

• Decision level approach uses decisions made in earlier steps and fuses them to achieve

a more exhaustive verdict. This kind of approach is flexible and well suited to situation

assessments.
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An example of feature-level data fusion applied to ADAS is offered by N. Kaempchen

and K.C.J. Dietmayer who developed a fusion algorithm to associate information coming

from a laser-scanner and a videocamera installed on a vehicle [19]. Figure 3.8 shows the

Figure 3.8: Fusion of Laserscanner (blue) and Videocamera (green)

principle of operation of this data fusion application: thanks to the combination of the two

information sources it becomes possible to assign to specific regions of interest (ROI) the

corresponding distance from the ego-vehicle. The Laserscanner is exploited to track and

classify vehicles (included motorbikes and pedestrians) and the camera is used to estimate

the position of the ego-vehicle in the lane, as well as to improve the measurement of the

lateral position and of the velocity of the objects detected.

The two sensors are used in a complimentary way: in the area immediately in front

of the vehicle objects are detected making reference to the very accurate Laserscanner; in

the far field the camera attention is controlled by the Laserscanner and it is used to refine

the lateral offset estimation. The result is a system capable of identifying with precision

objects in front of the vehicle and correlate them with their position in the lanes4. This

allows the algorithm to accurately predict when a preceding vehicle is about to change lane.

The paper is then an interesting example of how data fusion can be exploited in an ADAS

application to improve situation understanding.

3.1.6 V2X

Let us conclude the introduction to the general context of ADAS with one of the most

relevant and promising developments that is about to enter the automotive world in the

near future. As of now, when discussing of communication technology applied to vehicles, it

is principally intended intra-vehicle communication, i.e. communication within the vehicle

4The Laserscanner can be employed only to detect physical objects. As a result, painted lane markings

can be only identified if the attention of the camera is dedicated to the region around the detected vehicle.
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boundaries between the various sensors, actuators and CPUs (see [50] for an extended

review of intra-vehicle networks). While this is a fascinating field exhibiting extremely

complex challenges due to ever increasing bandwidth and safety requirements, the area in

which the most innovation in terms of communication technology in vehicles is expected

is represented by inter-vehicle communications. Experts often make reference to this kind

of communication as V2X - which stands for Vehicle-to-X - to collect under this term all

kind of communication between a vehicle and an entity, be it another vehicle (V2V ) or an

infrastructure (V2I ).

Efforts made in the direction of vehicular communication fall under the framework of

Intelligent Transportation Systems (ITS). Siemens [51] defines V2X as:

Definition. Vehicle-to-X An intelligent transport system where all vehicles and infras-

tructure systems are interconnected with each other. This connectivity will provide more

precise knowledge of the traffic situation across the entire road network which in turn will

help:

• Optimize traffic flows;

• Cut accident numbers;

• Reduce congestion;

• Minimize emissions.

This definition captures well the idea behind V2X and it is intended to be applied to

all kinds of vehicles, not only cars. The primary objective of this emerging technology is to

reduce the number of road deaths.

One of the most important ways in which V2X can accomplish this is by warning drivers

of hidden dangers that would be otherwise impossible to discern with traditional sensing

technologies. Other crucial advantages reside in the possibility of managing traffic in order

to avoid congestions and hence reduce the impact on environment and shorten driving times.

Table 3.1 shows some of the uses for the connected-car technology [52]. The first two

columns shortly summarize the advantages to vehicle safety of both declinations of V2X.

The third one lists some of the expected advantages that this technology can bring to drivers.
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It is interesting to notice that the benefits of V2X are not exclusive to autonomous driving

Table 3.1: Advantages of V2X in terms of safety and convenience to drivers

V2I Safety V2V Safety Convenience

Red light violation warning
Emergency brake light

warning
Eco driving

Curve speed warning Forward collision warning Smart cities

Spot weather Red light violation Parking information

Work zone safety Slow traffic ahead Truck platooning

Bridge height Aggressive driver warning Speed harmonization

Pedestrian in crossing

signal

Emergency vehicle

notification
Queue warning

Stop sign gap assist Road hazard detection Insurance pricing

applications only, but can be successfully implemented in standard vehicles, too. The de-

vices that make this possible work using DSRC (Dedicated Short-Range Communications),

two-way, short-range wireless communications [53] between vehicles and infrastructures (e.g.

traffic lights).

For what concerns automated driving, V2X could prove itself very useful in increasing

the amount of data received by a vehicle regarding its surroundings (for instance every

pedestrian who carries a smartphone could broadcast its position through low-energy Blue-

tooth [54]). This allows vehicles to be aware of hidden, out-of-sight obstacles, like cars

stopped on the road or trucks approaching around blind corners. Infrastructures could be

set up to transmit their position and hence act as stations for DGPS (see section on GPS).

Inter -vehicles communication could make complex maneuvers (e.g. overtaking) simpler by

establishing a “conversation” between the involved vehicles. As a side effect, better man-

aged vehicular flows would also mean lower economical and environmental losses due to

congestions.
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As of now, obstacles to the diffusion of V2X are represented by safety and privacy

concerns. It is in fact paramount, as the network of the vehicle becomes more and more

“open”, to suitably protect information from noise-corruption and illegal activities. In this

way trust among the consumers can be build and the technology can become accepted and

successful.

3.2 Model Components

In this second part of the literature review, a more detailed look at the components of the

model of interest shown in figure 1.3 is given.

3.2.1 Electric Power Steering

One of the actuators which were not embedded in the vehicle dynamics block discussed in

chapter 2 is the Electric Power Steering (EPS). Electric power assisted steering (EPS/EPAS)

systems use the torque generated by an electric motor to help the driver maneuvering the

steering wheel (figure 3.9).

Figure 3.9: Electric Power Steering actuator

Such systems are rapidly superseding traditional hydraulically-assisted systems because

of their greater fuel efficiency (the system operates only when necessary, compared to the

oil pump of an hydraulic system which constantly draws power from the engine), simpler

manufacturing and maintenance and possibility to embed various assistance systems (e.g.

50



3. BACKGROUND AND LITERATURE REVIEW

self-parking).

The operation of the system is as follows: the EPS control system first considers the

torque requested by the driver and then accounts for the vehicle speed (with the so-called

boost curves) in order to modify such requests. On the basis of these inputs, the EPS motor

is activated in such a way as to add a torque sufficient to overcome the resistance of the

steering rack (friction, tires, etc.). The system is highly nonlinear in nature.

More in detail, as described in the paper [59], the system of interest can be represented

as in Fig. 3.10. The torque applied by the driver Tdr to the steering wheel is provided to

the control system’s ECU by a sensor based on the measurement of the torsion angle of a

deformable bar. This torque is then increased of the quantity Tdem necessary to compensate

the resistance Frk coming from the steering rack in such a way as to facilitate the movement

of the steering wheel.

The control law of the electric power steering can be made dependent on a number of

variables in order to tailor system response on driving conditions. Some Fiat vehicles, for

instance, offer a second, driver-selectable assist map that is suited to city driving.

(a) EPS layout (b) EPS control

Figure 3.10: EPS layout and control loop

A typical EPS control module is designed to perform the following functions:

• Assistance torque generation, employed to support driver operation of the steering

wheel;

• System stabilization, derived from the frequency response of the system;
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• So-called inertia compensation, used to reproduce the “feeling” of a more traditional

hydraulically-assisted system;

• Self-centering, adopted to avoid static residual steering angle after release.

Example of EPS Control

In [60] an example of a two-layer control (figure 3.11) for the unmanned command of an

electrically-assisted steering system is proposed. This interesting application uses an high-

level fuzzy logic controller to compute the target position of the steering wheel. The fuzzy

Figure 3.11: Two-layer steering wheel controller [60]

controller is chosen because it mimics human behaviour. This characteristic allowed system

designers to avoid the necessity to determine mathematical models which are either rather

complex or not suited to manage the strong non-linearities of the system. At the lower

level a traditional PID controller regulates the input of the electric motor to track the

reference steering position. This layout, combined with a real-time kinematic differential

GPS (RTK-DGPS) providing an exact measurement of the ego-vehicle’s position, shows

excellent results.

3.2.2 Lane Recognition Camera

As previously discussed, look-ahead control approaches require the vehicle to be somehow

able to detect features of the road in front. One of the most important functions that must

be performed is lane detection and estimation. The knowledge of the lane boundaries is

crucial for controlling vehicle’s lateral position in many ADAS applications: lane departure

warning (LDW), lane keeping assistance (LKA), lane change assistance (LCA) and vehicle

self-positioning [61] in the lane.
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Lane Detection (LD) is typically performed by using cameras as the main source of data

[15]. The reason why cameras have such an important role in driving automation is no

different from the reason why eyes are so important to all animal species: no other sensor

can match the resolution, the details and the vividness of a scene that vision can capture.

Two main types of videocameras are employed in ADAS applications [62]. A monocular

(i.e. “single-eyed”) system employs a single camera sensor to capture the video to be

processed. A stereo-vision system exploits two cameras, each separated from the other

(figure 3.12). Some remarks on the differences between the two systems are given in table

Figure 3.12: Subaru’s “Eyesight” system (Lisa Calvi photo)

3.2. The most relevant advantage offered my stereo systems is represented by their superior

understanding of the 3D features of the world.

Lane Detection Algorithms

Algorithms and softwares used in image processing are often complex and sophisticated.

In the following a brief overview of the main phases implemented in lane detection and

road understanding is given. In particular three modules are often recognized as the most

important ones in the literature [15] [62]: image pre-processing, feature extraction and

model-fitting.

Image pre-processing deals with the enhancement of the frames by making them bet-

ter suited for the next phases. Noise is reduced and pixel-wise operations are performed to
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Table 3.2: High-level comparison between mono and stereo camera ADAS systems [62]

Mono-camera system Stereo-camera system

Number of image sensors,

lenses and assemblies
1 2

Physical size of the system Typically small

Two small assemblies

separated by 25− 30 cm

distance

Frame rate 30 to 60 fps 30 fps

Image processing

requirements
Medium High

Reliability of detection and

emergency situation

assessment

Medium High

System reliable for Object detection

Object detection and

distance-to-object

calculation

System cost 1x 1.5x

Software and algorithm

complexity
High Medium

improve image contrast and brightness. The video is often converted to gray-scale, too. Illu-

mination variations, shadows and imagining artifacts make this phase extremely important

and difficult.

Once the frame has been suitably pre-processed the image is searched for the features

of interest. Considering lane markings, one of the most relevant feature extraction methods

is the Hough Transform (HT), that employs a voting procedure in order to obtain likely

candidates. This method is suited mainly for detecting straight lines. To reach an higher

level of performance, the HT can be applied to an Inverse Perspective Mapping (IPM)
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procedure which removes the perspective effect (figure 3.13) from the image, mapping it

to a 2D domain. A more conventional approach for LD exploits a combination of gradient

Figure 3.13: IPM-Hough method for feature extraction. Top left: original image; top right: IPM

image; bottom left: Canny edge image; bottom right: Hough lines [15]

magnitude in the edge image and Kalman filters to achieve robust performance. In this case

lane markings are detected based on the variations in gradient magnitude in the edge image.

Figure 3.14 shows the main idea behind this method: a brightness gradient is expected near

every point along the markings of the lanes. The larger the magnitude of the gradient, the

higher the probability of detecting a lane marking.

Detected features are then compared to set of models in order to classify them properly.

Model-fitting of lane signs is usually performed using straight line models, hyperbolas, least

square method, B-snake, B-spline, clothoids5, and RANSAC (RANdom SAmple Consensus)

model fitting. Once lane delimiters have been recognized their tracking is done using Kalman

filters that predict the future position of the vehicle in the lane. Machine learning models

such as Support Vector Machine (SVM) and Convolutional Neural Networks (CNNs) can

be used as classifiers to label lane markings in real time.

If the most common, currently-available LD methods are proven to work well in simple

5Clothoids, or Euler spirals, are curve whose curvature changes linearly with their length. They are widely

employed in railroad engineering/highway engineering for modeling transitions between rail/road portions.
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Figure 3.14: Lane detection through maximum gradient magnitude search. Top left: edge im-

age; top right: looking for gradient magnitude; bottom left: model fitting; bottom right: LD results

(detected vehicle regions are not accounted) [15]

highway environments, problems could arise in more complex situations. Urban scenarios,

in particular, remain a challenge. Complex road shapes and faded lane markings severely

affect detection performance. Image clarity problems (overexposed frames, shadows or

rain/snow on the road) as well as poor visibility (fog, heavy rain or sun reflections) are

some of the most demanding issues to LD algorithms. Finally, some systems (the simpler

ones) are highly dependent on the speed the vehicle is traveling at: the lower the speed the

more difficult the correct identification of the road boundaries becomes. This is one of the

reason why the algorithm developed here is mainly targeted at speeds higher than 60km/h.

Examples of LRC Applications

In this last part of the section dedicated to LRC applications to ADAS some examples of

possible utilizations are discussed.

M. Aly [63] developed a LD algorithm for urban streets. This sophisticated approach

exploits an IPM transform to map the tri-dimensional image generated by the camera to a

bi-dimensional top view of the road. The resulting frame is filtered using selective oriented

Gaussian filters and fitted using a new and fast RANSAC algorithm. A post-processing step
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extends and refines the generated splines. Despite some false positives due to stop lines,

cross-walks and passing cars are found, the algorithm proves to be an efficient, real-time

and robust technique for detecting lanes in urban environments.

Wang, Teoh and Shen developed a LD procedure based on B-Snake lane model [64].

“Snakes” are curves defined within an image domain which can be moved by internal or

external forces. Internal “forces” come from the curve itself, whereas external “forces” are

determined by image data (figure 3.15). In this application a simplified form was used

Figure 3.15: Example of external “forces” causing the lane model (dashed lines) to move towards

the real road edges (solid lines) [64]

(B-Spline) to describe lane boundaries. The assumption of parallel road boundaries is used

in order to fully recover 3D information from the 2D image. The approach described by

the paper proves to be robust against noise and illumination variations. A very interesting

outcome is the fact that it can deal with both marked and unmarked roads, with dashed or

solid lines.

Many other interesting applications can be found in the literature (e.g. [65, 66, 67, 68]).

Particularly interesting is [69] which defines a vision-based lateral localization algorithm.

The system can handle missing lane-markings by storing a matrix of previously detected

lane-markings. Finally, in [70] a LOIS (Likelihood Of Image Shape) algorithm is used to

develop a LDW system that warns the driver when the measured vehicle offset from the

right or left lane markings is falling below a certain threshold too rapidly.
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In conclusion, it appears clear how important vision devices are for look-ahead auto-

mated driving algorithms. The challenge is then two-fold: on one side, there is the urge

to make cameras as reliable as possible in the largest possible set of scenarios and, on the

other side, there is the effort to devise systems able to temporarily cope with the lack of

information from the vision system.

3.2.3 Global Positioning System

Normal production vehicles are often fitted with GPS-equipped navigation systems. [71]

provides the following definition:

Definition. Global Positioning System (GPS) The Global Positioning System (GPS) is a

space-based navigation system that provides location and time information in all weather

conditions, anywhere on or near Earth where there is an unobstructed line of sight to four

or more GPS satellites.

The GPS is, in fact, a network of 24 satellites placed into orbit by the U.S. Department

of Defense. The system is nowadays available to civilians and its operation is based on

trilateration of the position of a point on Earth using four satellites.

Theoretically only three satellites could be used to identify the position of a point on the

Earth if we reject absurd results: the distance from one satellite defines a sphere of possible

positions, a second satellite will narrow down possible locations to the circle defined by the

intersection of two spheres and finally a third satellite further reduces the possibilities to

two points, of which one can be rejected because of its absurd distance from the ground or

traveling speed (see figure 3.16). Distance from a satellite is measured precisely counting

how long a radio signal takes to reach the receiver from that satellite. In order to provide

accurate results, precise timing is a crucial aspect for both the transmitter (the satellite)

and the receiver. This problem is solved at the transmitter end by using sophisticated (and

expensive) atomic clocks. Doing the same at the receiver end is simply impossible and

it is here that the fourth satellite signal comes into play: because of the lack of perfect

synchronization the fourth measurement will not intersect the position given by the first

three. The receiver can then look for a single correction factor that it can subtract from
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Figure 3.16: Position estimate through trilateration [72]

all its timing measurements that would cause them all to intersect at a single point. The

remaining issue is that of knowing the exact position of the transmitting satellites in order

to finally compute the location of the receiver. This is solved by supplementing the known

location on the orbit a satellite should occupy with precise radar measurements.

Despite the level of sophistication of the system, errors could still emerge due to atomic

clocks’ drift, orbit errors, ionosphere and troposphere disturbances, receiver noise and signal

bouncing [73]. As a result a vehicle (or any other civilian GPS-equipped receiver) can only

count on a position measurement accurate to around 10m.

It was already mentioned that in this project, for the purpose of designing the algorithm

of the position estimator, far more accurate positioning measurements will be employed.

This will be achieved by using a differential GPS on the demo vehicle. Such technology can

increase ten-fold the accuracy of the system by using the knowledge of the exact position of

a fixed receiver. In fact, if such station is sufficiently close to the moving receiver installed on

the vehicle, their measurements will be affected by virtually the same errors (excluding those

related to the specific receiver hardware and signal bouncing that could occur around the

moving receiver). Now, since the absolute position of the fixed station is accurately known

a priori, its software can calculate how long the traveling time of the signal should be. By

measuring the difference to the actual signal traveling time, the fixed station can compute
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an “error correction” factor, which is then broadcast to the moving receivers which are found

in the same geographical area. Clearly, using such technology for improving the accuracy

of the navigation system installed on commercial vehicles would be a major breakthrough

for facilitating and improving autonomous driving systems. Unfortunately the cost and the

complexity of such an infrastructure still represent a barrier to the diffusion of differential

Global Positioning Systems in vehicles.

As mentioned in the introduction, the GPS receiver will be used to provide the position

observer with the following signals:

• Latitude;

• Longitude;

• Elevation;

• Speed;

• Course angle, i.e. the direction of travel;

• HDOP (Horizontal Dilution Of Precision), i.e. position accuracy. A low value is desir-

able, since it indicates a better positional precision due to a larger angular separation

between the satellites used to calculate the receiver position [74].

For easier elaboration of the virtual sensor’s algorithm these quantities will be converted

in the X-Y position occupied by the vehicle.

GPS Applications to ADAS

In the literature GPS signals are widely employed to support autonomous driving algo-

rithms. In [75] an automated driving system without video-camera is presented. The project

shows the feasibility of using a system based on GPS and IMU (Inertial Measurement Unit)

only.

3.2.4 Control Systems

In the attempt of improving vehicle dynamic behaviour, automotive companies and research

institutes have always looked at control systems as a promising way to enhance vehicle safety
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[76]. Well-known examples comprise ABS, traction control and electronic stability program

(ESP/ESC). The latter, in particular, is an example of a successful closed-loop automatic

control system able to fully govern vehicle lateral dynamics in critical scenarios. Other

interesting and more recent examples include active suspensions, active steering and, of

course, automated driving.

The growing importance of AVCS (Advanced Vehicle Control Systems) is yet again to

be found in the fact that the vast majority of incidents is due to human errors. Trying then

to completely take over or at least support the task of the driver is a way to reduce the

number of incidents and cut down traffic congestion. An overview of recent developments

in automotive controls is offered in [77]. In particular three major areas are investigated:

• Longitudinal Control

The objectives of longitudinal control comprise keeping the safe distance from the

vehicle in front, maintaining a constant speed with the least brake use (in order

to reduce fuel consumption) and applying the brakes as swiftly as possible in an

emergency situation.

Intelligent (ICC) or adaptive (ACC) cruise controllers expand traditional cruise con-

trol functionalities by acting on both accelerator and brake commands. The correct

design of these devices must consider a smooth switching between the two in order to

guarantee a smooth and fuel efficient ride.

A promising area of development for longitudinal controls considers the possibility to

have groups, or platoons, of two or more vehicles traveling on the same lane closely

spaced. Vehicle platooning can be realized by devising cruise control systems (AICC

- Autonomous Intelligent Cruise Control) able to account for the velocity and ac-

celeration of the vehicle immediately preceding. Even better results can be reached

by establishing a V2V communication between the ego-vehicle and the vehicles im-

mediately before and after it as well as the lead vehicle. These CICC (Cooperative

Intelligent Cruise Control) systems determine the minimum distance to be kept be-

tween vehicles in regards to velocities and braking abilities. In the following, examples

of successful applications of the platooning concept will be provided.
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• Lateral Control

The tasks of lateral control systems amount to proper vehicle turning and lane keeping,

as well as lane changing and obstacle avoidance in extreme conditions. Considering

that a third of all U.S. highway fatalities is due to vehicles leaving the road [78], au-

tomated steering could significantly reduce road deaths by preventing lane departure

and steering overcorrection due to a blown tire.

As already previously discussed, automated vehicle control can be realized via two

different approaches: look-down and look-ahead reference systems.

Some of the most recent developments in look-ahead technologies perform sophisti-

cated template matching based on features of the roads (lane stripes, signs, tire tracks,

oil spots, etc.) to determine the vehicle’s traveling lane without pavement markings.

• Integration of Longitudinal and Lateral Controls

The development of suitable longitudinal and lateral automated controls represent

the first step towards AD. Nonetheless, problems could arise in the case in which the

integration between the two is not properly addressed.

Several scenarios require high collaboration between the two systems for a successful

vehicle control. Sharp turns at high speed, for instance, require the vehicle to slow

down and apply the right steering angle to lose the least amount of speed. Another

critical scenarios is represented by obstacle avoidance, in which the controller needs to

determine whether the vehicle should try to stop, go over or swerve around an object

in front of it. Finally, if a vehicle looses control the automatic system must wisely

evaluate the amount of braking and steering to be applied.

Automated Longitudinal and Lateral Vehicle Controls

The literature offers numerous examples of cruise and lateral controls. [56] presents, for

instance, a comprehensive analysis of different controllers which can be used in longitudinal

control. In that particular application, PID, PI, sliding mode and fuzzy controllers are all

designed to match vehicle dynamics control requirements and then a Fuzzy Supervisory
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Expert System is implemented to choose the best option according to the specific dynamic

conditions.

The design of traditional Proportional-Integrative-Derivative (PID) and Proportional-

Integrative (PI) controllers will be discussed in detail in the next chapter when the lon-

gitudinal control used in this project will be discussed. Sliding Mode Control (SMC) is a

sophisticated robust control approach, i.e. it explicitly deals with the uncertainty in the sys-

tem to be controlled (generally referred to as the “plant”). This nonlinear control method

applies to the plant a discontinuous control signal that forces the plant to “slide” along a

cross-section of the system normal behaviour. Fuzzy controllers, on the other hand, rely

on fuzzy logic, a branch of mathematical logic which, as opposed to Boolean logic, employs

truth variables which can assume any values between 0 and 1. Figure 3.17 shows how differ-

Figure 3.17: Example of fuzzy logic applied to temperature variables [79]

ent membership functions (labeled “cold”, “warm” and “hot” in the figure) could be used

to assign to the same temperature (vertical line) different levels of truth. So, for instance,

the considered temperature could be seen as “not hot”, “slightly warm” and “fairly cold”.

Instead of “crisp” true and false values, fuzzy logic then deals with the concept of “partially

true”. When this concept is employed for control systems design the biggest advantage

is that the solution of the problem can be posed in terms easily understood by human

operators, characteristic that makes for an easy, experience-based system tuning.

Speaking of lateral control approaches, a more complex plant is usually considered. As a

result, considering that controllers must be necessarily designed on approximated models of

the real plant, it is important to ensure that the control algorithm will perform suitably also

in the presence of bounded differences between plant and model. In order to guarantee this,
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an approach typically used is H-infinity Loop-Shaping, which combines traditional control

methods with H∞ mathematical optimization.

Examples of Lateral Control Design

Naranjo et al. [60] and Nishimori et al. [80] illustrate two examples of fuzzy control

applied to automated driving. Naranjo et al. [60], in particular, depicts the combination of

two different control algorithms to achieve greater performance. In the first layer a fuzzy

controller is implemented to select the adequate position of the steering wheel to negotiate

a curve, in the second layer a traditional PID controller moves the steering wheel to track

the position targeted by the first layer. This cascade-control paradigm is particularly useful

when there is a significant time delay between the variable to be controlled (vehicle turning

angle) and the variable upon which the system is acting (steering position). The reason

why a fuzzy controller is implemented is that because of its nature it can be more easily

tuned to imitate human drivers. Another crucial advantage is that a detailed knowledge of

the vehicle dynamics is not needed (much in the way that a driver does not need one). The

resulting steering maneuver is very similar to human driving.

The work by Malan, Milanese, Borodani and Gallione [45] was already cited concerning

the use of look-down references. Here it is recalled for its interesting control algorithm

designed with a combination of feedforward and feedback structures. The feedback action

is obtained with three nested loops, of which the outer one is non-linear. The reason why

this structure is used is that it provides better performances, it is more robust to plant

perturbations and it is better suited for disturbances attenuation. Controllers employed

are of the lead, lag or lead-lag types. These so-called “compensators” act on the root locus

of the closed-loop plant in order to attain desirable characteristics (stability and speed of

response for lead compensators and steady-state performance for lag compensators).

3.2.5 Virtual Sensors

In chapter 2 the mathematical justification of virtual sensors (VS) was discussed making

reference to the theory developed by Professors M. Milanese and C. Novara from Politecnico

di Torino, Italy and by Professors K. Hsu and K. Poolla from University of California at
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Berkeley, USA. In this section, some interesting applications of VS to automotive problems

are presented.

Applications

In synthesis, the idea behind virtual sensors is that of extracting the information of any

physical variable z using only available information y. The values assumed by z may not

be available from direct sensors, either because difficult to measure or requiring expensive

sensing apparatus. Two scenarios are of interest for virtual sensors applications:

• In safety critical control systems it is paramount to properly manage sensor failures.

This is usually accomplished through diagnostics and analytical redundancy. This

allows the system to both detect and handling errors: if the direct sensors measuring

z brake down, it is still possible to achieve a slightly degraded functionality (limp

home) because the variable can be recovered using available information y;

• The introduction of new competitive functions often urges automakers to look at cost

reduction. This can be accomplished by using a reduced set of sensors or inexpensive

sensors measuring y, when the measurement of z could only be performed by complex

or expensive sensors. In this way, the measurement of z is performed only in an initial

set of experiments for the proper design of the virtual sensor.

Borodani discussed in [82] one interesting application for each scenario.

In the first application the safety-critical, feedback control loop of ESP (Electronic

Stability Program) is considered. Commercially available ESP systems normally use the

measured steering wheel angle and vehicle speed to determine the desired response of the

vehicle in terms of yaw rate (and sometimes vehicle sideslip angle or sideslip rate). Then it

compares the desired response with the measured (yaw rate) or estimated (sideslip angle)

ones. When the discrepancy increases above a certain threshold the system applies the

brakes to reduce such a difference. The yaw rate and lateral acceleration sensors’ signals

are then essential for a proper operation of the ESP. For this reason, in [82], a virtual sensor

is designed to perform precise yaw rate signal (z) reconstruction from the velocity signals

at each wheel, the steering angle and the lateral acceleration of the vehicle (y).
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In the second application the cost reduction possibility for the vertical dynamics control

of shock absorbers is investigated. A common control strategy for this kind of applica-

tion is the “skyhook” approach, which adapts the damping ratio according to the running

conditions. The minimum set of physical sensors necessary consists of three vertical ac-

celerometers installed on the vehicle frame and other two, on the front wheel hubs. In the

paper a signal reconstruction is carried out to substitute this original set of five sensors with

four stroke sensors, mounted on the dampers bodies, with the objective of not modifying the

existing control law. This requires that using these four signals the chassis modal velocities

(heave ż, roll φ̇ and pitch θ̇) must be dynamically reconstructed. Also in this case, starting

from experimental data a virtual sensor can be successfully designed to match required

performances.

3.3 Ongoing Research and AD in Urban Scenarios

It was already mentioned how several companies and research institutes are investing heavily

in the field of Autonomous Vehicles (AV). As interest for this area of automotive research

and development builds up different actors have started to look at possibilities to make

this new opportunity profitable. Various venture-capital backed companies have received

funding or support from established automotive brands or technology businesses. Consider,

for instance, that it has been recently announced that General Motors will acquire the San

Francisco-based autonomous vehicle technology developer Cruise Automation for more than

$1 billion [84].

Let us review some of the work carried out in the field of autonomous driving, see [85].

Audi [13] has revealed a number of autonomous vehicle prototypes from their A7 and

RS7 models. The AD feature developed by the company — referred to as “Audi Piloted

Driving” — is set to be commercialized on the next generation of the brand’s premium

saloons and it is expected to qualify either as Level 2 or Level 3 Automation. Audi is also

part of the German consortium — including Daimler and BMW — that bought Nokia’s

HERE mapping assets in 2015, a fundamental step in the direction of capable AV.

The BMW and Chinese search giant Baidu 2014 partnership has resulted in the pro-
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duction of an autonomous 3 Series-based prototype that drove an 18.6-mile route around

Beijing. BMW has recently announced an aggressive strategy for the promotion of electric

and automated vehicle under the banner “BMW iNEXT” [86].

The world’s largest automotive supplier, Bosch, has recently largely invested in AD

applications [14]. More than 2,000 engineers have been dedicated by the company to driver-

assistance systems. Vehicle connectivity is another important area of interest for Bosch,

which agrees to the projection that 2020 will see “driverless” cars in action, at least on

highways [87].

Several European trucking brands - DAF, Daimler, Iveco, MAN, Scania and Volvo -

experimented the already discussed concept of platooning, in which multiple trucks form a

“train” controlled by a lead truck [88]. Advantages of this driving approach include lower

cost (fewer people are required for control) and efficiency (lower space occupied by the

convoy on the road and fuel savings provided by the lower aerodynamic drag).

Delphi, a large automotive supplier headquartered in the UK, has developed sensors and

softwares packages to transform existing car models into AV. An Audi SQ5 outfitted with

Delphi technology completed a 3000-mile trip across the US, performing 99% of the driving

by itself [11]. More recently, Delphi showcased a concept of human-machine interface which

is designed to bridge the gap before Level 4 Automation is ready. The concept vehicle is

designed to encourage consumers to trust the car AD capabilities, while still keeping drivers

vigilant so they can take the wheel if necessary [89].

Ford plans for promoting innovation, including vehicle connectivity and autonomous

vehicle, culminated in the formation of the subsidiary Ford Smart Mobility LLC in March

2016 [90]. Ford has also pioneered the testing of selfing-driving cars in hostile environments,

such as snowy Michigan and complete darkness.

General Motors is one of the most aggressive companies in AD. Besides GM’s acquisition

of Cruise Automation, other important investments where made in the companies Sidecar

and Lyft. Furthermore, GM has also been developing its own semi-autonomous technol-

ogy in-house, with its “Super Cruise” technology slated for commercialization on high-end

Cadillac models in 2017.

Google’s “X” company has led one of the most high-profile autonomous vehicle programs
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[8]. The company rolled out several in-house prototypes, some of which are not fitted with

steering wheels [91]. Google has recently opened to collaboration with automotive OEMs,

such as Fiat Chrysler Automobiles [92].

Honda is testing autonomous vehicles on Californian public streets and in the GoMen-

tum Station proving ground. This facility is the largest secure bed site for connected and

autonomous vehicles in the U.S. [93]. Honda is also offering advanced-driver assistance

systems - lane keeping, automatic braking and adaptive cruise control - options even for its

entry-level vehicles.

Mercedes-Benz has developed semi-autonomous prototypes fitted with “Intelligent Drive”

technology which where tested on German and Californian highways and streets [9] [10].

The company has also showcased its vision for future automobile driving with the F 015

research car. The focus of this project has been the impact of AD on daily life: “anyone

who focuses solely on the technology has not yet grasped how autonomous driving will

change our society”, emphasizes Dr Dieter Zetsche, Chairman of the Board of Management

of Daimler AG and Head of Mercedes-Benz Cars. Passengers in self-driving cars can, in

fact, use their newly gained free time while traveling for relaxing or working as they please

(figure 3.18).

Figure 3.18: Interior of the Mercedes-Benz F 015 seen as a living space [94]

The automotive supplier Mobileye focuses on advanced driver assistance systems and

its products are used by many vehicle manufacturers. The firm’s technology is based on the
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use of optical vision systems with motion detection algorithms, unlike many other systems

which use a combination of visual detection, radar, and laser scanning [95].

Nissan-Renault Alliance is working on the development of AVs [12], with promise of

having 10 vehicles on sale by 2020 with “significant autonomous functionality” [96]. Nissan

is also collaborating with Toyota in a joint effort to develop standardized “intelligent” maps.

PSA Groupe companies Peugeot, Citroën and DS announced to have reached Level 3

Automation when two Citroën cars had driven “eyes off” from Paris to Amsterdam. While

this system is scheduled to arrive by 2021, semi-autonomous “hands off” modes will be

available by 2020 [97].

Electric car manufacturer Tesla has been very public about self-driving technology [40]

[41], claiming that fully autonomous vehicle are only “two to three years away” [98]. Com-

pany’s in-house “Autopilot” features which enable auto steering, lane changing and parking

capabilities have already been discussed.

Toyota’s case is an interesting example of how critical autonomous driving is more and

more perceived by automakers for their success. In fact, if in 2014 Toyota claimed that it

would not have developed a driverless car, one year later the company announced a $1 billion

budget for autonomous driving research. Toyota has hired staff from academic institutes

(included Standford University and the MIT) and from AV companies [99].

Uber ride-sharing company is strongly investing in autonomous cars and is reportedly

working with major automakers to place orders of self-driving cars [100].

Volvo, besides its trucking efforts detailed previously, has also made progress with self-

driving passenger vehicles. The ambitious goal of company’s “Intellisafe” system is to make

Volvo cars “deathless” by 2020. Interestingly, the company - which has also partnered with

Microsoft to further its research efforts in this space - has announced that it will accept

full liability when its vehicles are in autonomous mode [101]. The issue represented by

legislation (or better, lack thereof) in the field of Autonomous Driving is in fact one of the

major challenges that must be confronted before full AV potentiality can be exploited.

Finally, let us mention that also the field of autonomous buses is currently under de-

velopment. Chinese bus manufacturer Yutong, for instance, has been researching driverless

buses since 2012 [102].
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3.3.1 Example of ADAS for Unmarked Urban Scenarios

In this last section of the literature review an example of an ADAS system designed for

operation in unmarked scenarios is presented. It was mentioned in the introduction that

the system to be designed in this project is targeted to be simple and cheap in its imple-

mentation. What it will be shown here is, on the contrary, a more complex solution to the

problem of missing painted road boundaries.

C. Guo, J. Meguro, Y. Kojima and T. Naito proposed in [18] a stereovision-based

multimodal ADAS system devised for expanding usability of ADAS functions to daily urban

traffic and, in particular, to unmarked roads. The outcome of this work is an example of how

important comprehensive situational awareness is for the effectiveness of advanced driver

assistance systems. In order to allow proper operation of LKA (Lane-Keeping Assist), ACC

(Adaptive Cruise Control) and PCS (PreCrash System) when there are difficulties detecting

the targets, such as the drivable roads and the nearby vehicles, it is crucial to understand

the targets in the context of the traffic scene. The system designed by Guo et al. aims at

doing that with the multimodal system in figure 3.19.

Figure 3.19: Flow diagram of the system proposed in [18]

As it can be seen the system consists of four modules: road detection, vehicle detection,

low-level detection improvement, and high-level road structure estimation.

Road detection works with different types of roads, weather conditions and time of the

day. The system uses, as the exclusive criterion for road detection, the reasonably flat road

geometry properties: a disparity map is employed, which allows to find the most likely
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physical road boundary as the one between nearly flat and non-flat regions (figure 3.20).

Figure 3.20: Example of road detection: (a) Reference image; (b) Disparity map; (c) Flatness cost

map: higher intensities represent big flatness costs and hence less flatness (e.g. curbs and nearby

vehicles); (d) Detection result of the physical road boundary, indicated in red [18]

Vehicle detection is performed with a latent SVM to learn a set of object template,

figure 3.21. As shown each template consists of a “root” filter and several “part” filters:

Figure 3.21: Example of vehicle detection: (a) Model structure: the red box represents the root

filter, the yellow boxes the part filters and the springs represent the deformation cost functions; (b)

Vehicle detection result [18]

the former corresponds to the outline of the vehicle, whereas the latter represent different

sections of the vehicle.
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Supplemental contextual scoring is then employed to reduce false positives. For instance,

detected vehicle in unreasonable position or of unrealistic size are rejected. For what con-

cerns the road structure, a clothoid road model is employed and the result is the creation

of a virtual driving lane.

In summary, the complete system provides the following four outputs (figure 3.22):

• Physical road boundaries, which are used to distinguish drivable from non-drivable

regions;

• Virtual lane markings, which define the driving corridor for vehicle normal driving

behaviour;

• Suggested path, which fundamentally reflects the virtual lane markings but with a

safety margin offset;

• Virtual PCS emergency lane, which is an obstacle-free route within the physical road

boundary used for collision avoidance in emergency situations.

As a result the system designed in [18] is successful in expanding conventional ADAS

functions (LKA, ACC, PCS) to normal urban streets. Nonetheless, the system relies on

high software complexity and does not account explicitly for the possibility of a camera

sensor failure.
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Figure 3.22: Results provided by the system: (a) Physical road boundary; (b) Vehicle detection

with many false negatives due to occlusion and far distance; (c) Vehicle detection with the candidate

vehicle objects; (d) Road understanding result: virtual lane markings (yellow/cyan), suggested path

(blue), vehicle detection (magenta) and leading vehicle in the suggest path of host lane (magenta

region); (e)-(f) Virtual emergency lanes to avoid obstacles that interrupt the suggested path of host

lane [18]
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Chapter 4

Description of the Model

In this chapter an in-depth look at the proposed model is presented. In the first part a

brief description of the software tools used for the implementation of the model is provided.

The remainder of the chapter presents a detailed account of the work done on each of the

model components, namely the vehicle dynamics block, the EPS actuator, the LRC sensor,

the longitudinal and lateral controllers, and the virtual sensor.

4.1 Blocks Modeling

Let us start this chapter mentioning briefly the software resources employed for the con-

struction of the building blocks of the proposed model (shown again in figure 4.1).

4.1.1 Modeling Softwares

The main software used for the implementation of the blocks constituting vehicle dynamics

and the automated driving system is Simulink R© by MathWorks.

This software package allows one to model, simulate and analyze multi-domain dynamic

systems in a graphical programming environment and it was selected for its great flexibility,

the vast library of processing blocks available and the full integration with MATLAB R©.
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Figure 4.1: The proposed Control Scheme

As it is compatible with the requirements imposed by the provided vehicle dynamics

S-Functions, the fixed-step “ODE4” solver is employed. This solver implements the classic

Runge-Kutta method and allows for an extremely fast and efficient model simulation.

In addition to the Simulink package, two MATLAB toolboxes were used in the modeling

of the system’s blocks. Let us first briefly introduce the functionalities of these two blocks

and then discuss in more detail the technical foundation of each technique supported by the

toolboxes. Furthermore, the simulating software package CarMaker R© was also employed

for the generation of vehicle data useful for the development of the virtual sensor.

Neural Networks Toolbox

This toolbox was employed for the training of neural networks with the objective of modeling

the highly non-linear relationship between input and output data.

The interface of the toolbox (figure 4.2) allows for the easy creation of the neural network

and subsequent implementation of the model.

The toolbox has advanced functionalities for the creation and training of networks, even
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Figure 4.2: Neural Networks Toolbox interface

those of great complexity. Graphical and quantitative information for an efficient and user-

friendly validation of the created network are made available. A vast number of network

architectures and training algorithms can be selected, and support of multi-core processing

provides fast network training.

System Identification Toolbox

This toolbox provides MATLAB functions, Simulink blocks and an app for constructing

mathematical models of dynamic systems from measured input-output data.

The toolbox is particularly useful for those situations in which the derivation of a model

from first principles or specifications (a so-called white-box or glass-box model) is difficult

or impossible. When such scenarios arise, black-box models are often employed, i.e. the

primary interest is in fitting the data regardless of a particular mathematical structure of the

model [103]. The toolbox allows one to easily exploit time-domain and frequency-domain

input-output data to identify continuous or discrete-time transfer functions, process models

and state-space models. For the purpose of this work, the toolbox was mainly employed to

derive linear and non-linear ARX models (discussed in the following). Identified models are

then easily implemented in Simulink using pre-defined blocks available in the library.
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CarMaker

This software commercialized by IPG Automotive is a vehicle simulation tool intended to

be applied to every step of the vehicle development process: from early simulations to

Hardware-in-the-Loop (HIL) tests on single or multi-ECU systems through to HIL tests

on large system test rigs. The most relevant applications for this software are vehicle

dynamics simulations, testing and development of chassis control systems, driver assistance

systems and system networks where chassis control systems interact with other vehicle

areas [104]. This package is equipped with a sophisticated driver model that can perform

complex driving maneuvers. CarMaker will be used to generate vehicle data necessary for

the identification of the virtual sensor model.

4.2 Vehicle Dynamics

In the section of the Literature Review dedicated to the vehicle dynamics, a description

of the main variables involved in both longitudinal and lateral dynamics was provided in

addition to the simplified relationship between them. This was achieved by presenting two

linear models, one for longitudinal dynamics and one (the notorious bicycle model) for

lateral dynamics.

In the system implemented in Simulink neither of these models is used. A much more

complex (and realistic) plant is implemented through two MATLAB S-Functions. Nonethe-

less, it has to be pointed out that the use of two distinct S-Functions to model separately

longitudinal and lateral dynamics limits the amount of interaction between the longitudinal

and lateral motion of the vehicle that can be captured.

An S-Function is a computer language description of a Simulink block written in MAT-

LAB, C, C++ or Fortran. In particular, different MEX (“MATLAB Executable”) files are

called by the two S-Functions in such a way as to make C, C++ or Fortran code readable

by Simulink.

The result is two black-box models that, for the purpose of building the overall system,

need only be discussed insofar as their inputs and outputs are concerned.
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4.2.1 Longitudinal Dynamics

The longitudinal dynamics block is controlled through the following inputs:

• Percentage of throttle pedal [%];

• Pressure of the brake system [bar];

• Initial gear engaged;

• Wind speed [m/s];

• Slope of the road [rad].

The first two inputs are referred to as command inputs, i.e. they are the user-controlled

inputs employed to control the plant. They will be used as the two inputs manipulated by

the controllers in order to have the vehicle speed following the targets.

The longitudinal dynamics S-Function is linked to a MEX file for the automatic shifting

of the gears. As a consequence, only a good guess for the initially engaged gear has to be

provided as the third input.

The last two inputs are the disturbances introduced in the plant by the presence of winds

and/or by the inclination of the road. They are not used for control itself, but to impose

boundary conditions to the longitudinal motion of the vehicle.

The outputs produced by the block are:

• Longitudinal velocity [m/s];

• Longitudinal acceleration [m/s2];

• Engine rotational speed [RPM ];

• Currently engaged gear.

The last two outputs are not of interest for the project. The longitudinal velocity is

the fundamental output we want to control with a dedicated controller and it constitutes

one of the inputs of the lateral dynamics block. The longitudinal acceleration, while not

explicitly used for control, will be useful for imposing conditions on the maximum values of

acceleration and of jerk, in order to ensure a comfortable ride for the passengers.
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4.2.2 Lateral Dynamics

Similar considerations hold for the lateral dynamics block. This S-Function is linked to a

MEX file which takes in input:

• Longitudinal velocity [m/s];

• Steering wheel angle [rad].

The first input is taken directly from the first output of the longitudinal dynamics block

(figure 4.3). The second input is the angle imposed by the driver to the steering wheel.

Figure 4.3: Longitudinal (magenta) and lateral (yellow) dynamics blocks. The seven outputs are

represented in bold font. The saturation block is used to avoid null longitudinal speed being fed to

the lateral dynamics block

Since in a typical lateral dynamics control system the variable acted upon is the torque

applied to the steering column, the EPS actuator must be added to the model.

The outputs provided by the lateral dynamics block are:

• Vehicle yaw rate [rad/s];

• Lateral velocity [m/s];

• Lateral acceleration [m/s2];

The later acceleration is not of particular interest for the control, even though similar

considerations to those applied to the longitudinal acceleration and jerk can be made.
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Lateral velocity and yaw rate, on the other hand, are the crucial variables determining the

lateral dynamics of the vehicle and as such are employed in the control. They will be used

as inputs of the analytical model of the Lane Recognition Camera, whose outputs will be

the fundamental parameters used for lateral control.

4.3 EPS - Electric Power Steering

The necessity of modeling the Electric Power Steering was justified in the previous section.

In the literature review the operating principle of this actuator was explained. The objective

is to determine a model as described by equation 4.3.1 able to link the output (steering

wheel angle, δsteering [deg]) to the two inputs (torque applied by driver, Tdr [Nm] and

vehicle velocity, V el [km/h]).

δsteering = f(Tdr, V el) (4.3.1)

Now, for the purpose of this study the details of the EPS control loop are supposed

to be unknown, hence a black-box model is what will be derived and implemented in the

overall system. The only aspects about this system that will be considered as known are:

• The system is a low order one;

• The frequency plot of the
δsteering
Tdr

transfer function is supposed to be known (green

curve Fig. 4.4, model linearized for a velocity ' 60 km/h).

The first point expresses the necessity of identifying models of moderate complexity, i.e.

without resorting to high orders of the narx model or excessively large numbers of nodes

in the ANN model. The second result basically confirms the first one: the behaviour is

that of a low order model, with a pole clearly identified between 2 and 3 Hz. A resonance

between 10 and 20 Hz can also be determined. This resonance is eliminated if the green

curve (which deals with all the functions of the EPS actuator implemented) is considered.

4.3.1 Experimental Data

Experimental data have been made available as readings from the CAN network of the vehi-

cle (2015 Fiat 500X ). Tests have been conducted on two days (07-29-2015 and 07-30-2015)
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Figure 4.4: Bode plot of the transfer function from Tdr to δsteering, courtesy of P. Borodani

at FCA proving-ground “Balocco”. Testing maneuvers simulate sharp steering movements

(steps) of various amplitude and at different speeds and sweeping tests at variable frequency,

amplitude and vehicle speeds (see figure 4.5). Maximum driver torque Tdr in the tests is

Figure 4.5: Portion of experimental torque input signal Tdr [Nm] vs. time t [s] displaying a step

test and a sweep test

limited for safety reasons to ± 3 to 4 Nm.
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For the analysis of the EPS only 6 of the more than 800 CAN-generated signals are of

interest:

• Input signals:

– VehicleSpeedVSOSig : vehicle speed in [km/h];

– TorqueOverlaySteeringReq : driver torque in [Nm]:

• Output signals:

– LwsAngle: steering wheel angle in [deg];

• Fault indicator signals:

– TorqueOverlayIntActivated : indicates whether the EPS is actuating the request

(must be = 1);

– TorqueOverlayFault : indicates a fault in the system (must be = 0).

Data processing is carried out as follows. First, a MATLAB script examines the entire

data collection and builds one input matrix and one output vector only if the values of

both fault indicator signals indicate that the system is working properly. Subsequently,

data are interpolated according to a common time reference. It is, in fact, necessary to

consider that each signal is registered by a different sensor and although the updating

frequency (100 Hz) is the same for all of them, they start to register at slightly different

instants in time. Network training attempts have been performed without interpolation,

but consistently lower performance values were found. Considered time instants are then

further reduced, eliminating infinite or non-existent values (NaN) and restricting the signals

only to the actual test intervals. Finally, as shown in figure 4.6, a shift of the output steering

angle δsteering is performed in order to have null values when the input torque Tdr is zero.

4.3.2 Neural Network Models

A large number of models were derived using different kinds of ANNs in order to obtain

satisfactory performance values. For brevity, in the following only the base and the final

models are presented.
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Figure 4.6: Example of experimental step test. Displayed signals: red, vehicle speed (V el), blue,

input torque (Tdr), yellow, assist torque provided by EPS (Tdem) and violet, output steering angle

(δsteering). Left figure: the red circle highlights a portion of the test where the torque provided by

the EPS and thus the steering angle is different from zero even when Tdr is null: this behaviour

cannot be explained by our model and it is hence eliminated. Middle figure: the green circle shows

the necessity of shifting the output steering angle δsteering to zero when the input torque is null.

Right figure: final result.

Using data from both test days a feedforward neural network is trained using all the

default settings of the NN ToolboxTM:

• Levenberg-Marquardt training algorithm;

• Randomly divided data into training, validation and test sets;

• 1 hidden layer with 10 neurons;

• Hidden layer transfer function: tansig.

The training requires on average about 160 epochs before coming to a stop when the

number of validation checks (introduced in the following) is reached. Performance values of

the network are illustrated in figures 4.7 and 4.8. Since data are divided in the training,

validation and test data sets (see [108]) randomly, each time a new configuration of the

NN parameters is tried the simulation must be run several times in order to ensure that
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(a) Validation performance: MSE (b) Training history

Figure 4.7: Default ANN model results: MSE and training history

(a) Error histogram (b) Regression plot

Figure 4.8: Default ANN model results: error histogram and regression plot

significantly better or worse than average results are not mistaken for the true behaviour

of the network.

What we see in figures 4.7 and 4.8 are the four plots generated by the toolbox:

1. The parameter used to evaluate the performance of the network (in this case the mean
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square error 1) is plotted against each pass of the (input, output) data pairs, called an

epoch. Ideally training should come to a stop when such parameter has met a value

as close as possible to zero (within the limits imposed by overtraining);

2. In the second plot the parameters of interest are the gradient of the performance curve

(which should be close to zero, as to indicate that we have reached an asymptote) and

the number of validation checks. As stated by [108] the number of validation checks

represents “the number of successive iterations that the validation performance fails

to decrease”. When such value is met (before the performance target) the training

comes to a stop;

3. The error histogram shows how the errors ti − yi are statistically distributed (ideally

a peak around 0.0 should appear);

4. Finally the regression plot provides an insightful information on how well the trained

network approximates both the training data and two different data sets that have

not been used for the training. The correlation coefficient ’R’ provides an indication

of how well the fit line interpolates the (target, output) data pairs (a value at least

equal to 0.75 is advisable to prove that some correlation exists; a value of 1 indicates

perfect fit) and the slope of the line tells us how close the fit line is to the perfect

agreement between real system and mathematical model represented by Y = T .

Compared to preliminary attempts made on crude, non-elaborated data the perfor-

mances shown by the default neural network appears to be rather good. Interpolation and

non-physical data elimination prove to be important phases in the preparation of train-

ing and validation datasets. Nonetheless, performances can be further improved by proper

tweaking of the network and training parameters.

In general, greater performances (better agreement between model and real system) can

be achieved by:

1MSE =
1

2n
·
∑n

i=1E
2
i =

1

2n
·
∑n

i=1(ti − yi)2 where ti is the target value, yi is the actual output value

and n is the number of (input, output) data pairs. Note that MSE is computed referring to un-normalized

target and output values, although for enhanced performances the ANN is trained with normalized data.
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• Increasing the number of validation checks: an highly non-linear system may have a

performance function with many local minimums. In order to avoid to remain trapped

in one of such minimums and to search for the global minimum a larger number of

validation checks can help;

• Increasing the number of nodes in the hidden layer: a network with a larger number of

DOFs (degrees of freedom, i.e. the weights and biases of the neurons) is more capable

of capturing the non-linearities present in the training data;

• Increasing the number of hidden layers: theoretically, a larger number of hidden layers

should provide greater interpolating capabilities to the network. It is however typically

assumed that one hidden layer is sufficient for the large majority of problems [109];

• Changing the training algorithm: considering the large size of the training data set

the Toolbox guide [105] suggests the use of the Scaled Conjugate Gradient learning

algorithm: trainscg. This is related to its smaller memory requirements;

• Changing the nodes’ transfer function: when the application of the ANN is — like in

this case — model fitting, a good choice is represented by the Radial Basis transfer

function. When this kind of approach is used the hidden layer neurons are radial

effect functions2 like the Gaussian function. The advantage of this type of function

in a neural network application, as stated in [111], is that the output of the hidden

layer node will have a large value only when the input signal is near the center of the

range which characterizes the utilized function. If such centers are properly chosen,

then, RBF networks allow for fast and efficient training and good approximations.

These general guidelines were combined in several attempts in order to improve the

quality of the EPS model. In particular, satisfactory results were obtained using a one-

layer feedforward network implementing radial basis transfer functions. Many rules of

thumb exist for the determination of a starting number of neurons to be implemented in

2A RBF (Radial Basis Function) is a real-valued function whose value depends only on the distance from

the origin: φ(x) = φ(‖x‖)[110].
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the hidden layer [109]; the one used here is expressed by equation 4.3.2.

Nh =
Ns

(α ∗ (Ni +No))
(4.3.2)

where Ns is the number of samples in the training data set (default = 70% of all data), Ni

and No are the number of input and output neurons, respectively, and α is an arbitrary

scaling factor (range [2÷ 10]). For the data produced during the EPS tests, this results in

Nh = 3000 approximately using a value of α between 9 and 10.

When such a large network is employed, model fitting of the training data appears

good (i.e. the coefficient R is above 0.88, slope coefficient of 0.78 and data compactly

organized around the fit line) but lack of generalization is present (the regression parameter

is significantly smaller for validation and test data sets). This phenomenon is referred to as

overfitting.

When an overfitting phenomenon occurs it means that the network has learned to model

training data but it has lost the capability to generalize to new situations (i.e. other data

sets). One could say that the network has learned the training data too well. This result

could be caused by the use of a too complex network. In fact, when the size of the network

increases, also the DOFs of the network increase as well as its ability to generate complex

functions. When the network is powerful enough to fit precisely every experimental point it

may lose the capability of generalizing since it has incorporated the measurement noise. A

first possible solution to avoid overfitting is then exactly that of reducing the size of the net-

work, decreasing its “power” or degrees of nonlinearity. Of course, knowing a priori the best

dimension of the network for a certain application is not possible. Recognizing this diffi-

culty, the NN toolbox provides two other methods to improve generalization: regularization

and early stopping.

The latter is exactly what the validation dataset is used for: stopping the training when

the minimum of the performance index is reached not for the training data set, but for

completely independent data, known as the validation set.

The former requires a change in the performance function (default : F = MSE).

It is possible, in fact, to add a term equivalent to the sum of the network parameters

(weights and biases) squared: MSW . The network training will be still aimed at minimizing
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F = γMSE + (1 − γ)MSW 3, but in this case weights and biases will be forced to be

smaller, which causes a network response to be smoother and less prone to overfitting.

Still, the choice of the parameter γ is not straightforward and hence an algorithm designed

to automatically select this regularization parameter would be advisable. One training

function made available by MATLAB that implements this is trainbr, which incorporates

a statistical technique referred to as Bayesian regularization (see [112] for details).

In order to reduce the likelihood of overfitting, the number of nodes is reduced to 1000,

the number of validation checks to 50 (from the previous 200) and the training algorithm

changed to trainbr. The results of such network over experimental data are shown in figure

4.9.

(a) Training parameters (b) Regression plots

Figure 4.9: Learning algorithm: trainbr

A possible way of dealing with the presence of noise that is corrupting the data is that

of smoothing down the experimental signal. MATLAB offers different tools to cope with

the problem. The command that was used here is smooth, which can be used to build a

3Note that, as previously mentioned, input/output data are normalized prior to NN training. Once this

phase has ended the output and F are computed as un-normalized: it is then difficult to determine a target

value for the performance function.
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moving average filter (figure 4.10).

Figure 4.10: Detail of the Tdem signal before (blue) and after (red) filtering

Data appear to be better interpolated by the fit line (figure 4.11), which has an angular

coefficient closer to unity. Further refinements of the networks provided only minor improve-

(a) Error histogram (b) Regression plots

Figure 4.11: Smoothed data. Learning algorithm: trainbr

ments, hence a regression coefficient of 0.87 was accepted has the best result achievable by

a standard, feed-forward neural network.
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4.3.3 Non-linear ARX Models

The same data sets used for NN training are employed for ARX non-linear model estimation.

With the help of the iddata command two data objects (one for identification, one for

validation) are created and then loaded in the System Identification Toolbox.

The approach by means of which the non-linear ARX model is determined is iterative

in nature: the objective is to determine the simplest model able to suitably describe system

dynamics. When performance goals are not met another model structure, model order

and/or identification algorithm must be tried until the model is considered good enough.

If needed data preprocessing and noise modeling can be used (see [103] and [113]).

The System Identification App (figure 4.12) in the MATLAB environment provides

powerful tools to quickly load data and estimate a model. A first attempt is performed

Figure 4.12: System Identification App interface

considering all the default model and estimation options. Regressors are built with two

input and two output terms and the delay is set to one. The model output y(t) is then

estimated using the following non-linear autoregressive equation:

y(t) = f (y(t− 1), y(t− 2), u(t− 1), u(t− 2))

where f , the nonlinearity estimator, is Wavelet Network by default. Wavelet Networks are

actually kinds of Neural Networks in which the processing function corresponds to Wavelet
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transform. Such transforms closely resemble Fourier transforms in which the test function

(the wavelet) allows one to focus on local regions of the signal (see [114]) and decompose

it. With a fit of just over 50% the standard narx model proves to be inferior to the base

ANN model. An extensive trial-and-error procedure is then started with the objective of

improving the quality of the identified model.

Because of the highly non-linear characteristics of the EPS operation the derivation of

a suitable model requires more complex autoregressive structures. Non-linearities are not

only ascribable to the influence of the vehicle speed on the assistance curve, but also to the

hysteresis cycle due to self-centering of the steering wheel. This phenomenon is particularly

strong for low levels of torque applied to the steering column and it tends to make the

model less accurate in this region.

At the end of the identification process, two different narx models were identified. The

first and best performing one was identified resorting to the following modifications to the

base structure:

1. Increased model order. Keeping in mind the objective of employing an order as low

as possible while still aiming for the highest performance, a satisfactory result was

achieved by resorting to a third order model. This means that three past values of

both the output (δsteering) and the inputs (Tdr and V el) are accounted for;

2. The selected regressors consider also custom expressions between them. For instance,

it was noted that at increasing speeds the same level of applied torque produces in-

creasingly small steering angles. As a result a custom regressor, inversely proportional

to the past value of vehicle speed, was added. Additionally, to better capture the in-

teraction between the two inputs, a certain number of products between the past

values of the inputs were added;

3. Increased number of units in the wavelet network. This parameter is found to be

important to increase the DOFs of the model, making it more suitable to approximate

highly non-linear relations. Sigmoid non-linearities were also tried, without much

success.

The model determined in this way proves to be successful in capturing the complex
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characteristics of the EPS actuator. Figures 4.13 and 4.14a show the performances of this

model. The general behaviour of the system is well captured as it can be seen from the

Figure 4.13: Performance of NARX model with custom regressors: plot superposition between

validation data (blue) and model output (red)

comparison between the model output and the validation data, and the resulting regression

coefficient plot which shows (almost) all points compactly organized around the ideal fit

line.

This model matches the requirement of explaining more than 95% of data and it sur-

passes all models achieved with Neural Networks. Nonetheless, when simulating the model

with the validation signal composed of 28 steps and 11 sweeping tests the required CPU

time surpasses 20 minutes. When this block is integrated with the other ones composing

the system, this time increases even more.

A second model was developed trying to keep the good fit, while reducing the compu-

tational cost of the model. A systematic analysis of the influence of the model parameters

was carried out and a satisfactory result is achieved when the cross products among the

different regressors are removed.

Furthermore, identification data were modified by adding a small portion of signal in

which — at different speeds — the steering angle δsteering and the applied torque Tdr are
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(a) Regression plot for NARX model with custom

regressors: R = 0.967, slope = 0.92

(b) Regression plot for NARX model without

custom regressors: R = 0.942, slope = 0.93

Figure 4.14: Comparison between the two EPS models

both null. While performances are not affected, the centering of the steering wheel is

improved when no torque is applied. This will allow the controller of the EPS to provide

less torque to maintain the direction of travel in straight portions of roads, with subsequent

lower energy consumption of the system.

Compared with the previously discussed model, the degradation in performance (re-

gression coefficient just below 95%, figure 4.14b) is outmatched by the faster computational

times: the same validation signal — when fed to this second model — results in CPU times

just above 2 seconds, i.e. 600 times faster than the previous outcome. This will allow the

possibility of running a large number of simulations of the overall system during the design

of the controllers and the position observer. Once this design phase is completed and greater

accuracy sought, the first model can be easily restored in Simulink.

4.4 LRC - Lane Recognition Camera

The importance of the Lane Recognition Camera in look-ahead approaches for automated

driving was underlined in the literature review.
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In this section the methodological approach for the development of a simple camera

model starting from the dynamic states of the car model and the curvature of the road is

presented. It was mentioned previously that, among the outputs of the vehicle dynamics

blocks, the motion of the ego-vehicle is described in terms of:

• Longitudinal velocity: vx(t) [m/s];

• Lateral velocity: vy(t) [m/s];

• Yaw rate: ψ̇ [rad/s].

These quantities can be easily obtained also from the linearized dynamics. Information

about the geometry of the road is provided by the curvature parameter Kl [1/m], defined

as the inverse of the instantaneous radius of curvature R. In [115, 116] these aforementioned

quantities are combined into a dynamic system that provides a linear approximation of the

centerline of the lane through two outputs:

• The distance, measured along the vehicle-fixed y axis, between vehicle’s center of

gravity and the approximation of the lane centerline (i.e. vehicle current position in

the lane): q [m];

• The angle between vehicle’s longitudinal axis and the approximation of the lane cen-

terline (i.e. vehicle direction in the lane): m [rad].

As figure 4.15 illustrates, this configuration is chosen because the amount of steering

angle selected by a driver to negotiate an incoming curve is based on the distance yfb =

mL+ q between this linear approximation of the centerline and the longitudinal axis of the

vehicle (i.e. vehicle future position in the lane), L meters ahead from the vehicle center of

gravity.

This parameter, termed the look-ahead distance, was found to cover an important role

in the steering decision by M. F. Land and D. N. Lee by simultaneously recording the

steering-wheel angle and the driver’s gaze direction in a series of experimental tests [117].

From a mathematical point of view, the relation between the coefficients m and q, and

the variables describing vehicle motion can be expressed through the following dynamic

94



4. DESCRIPTION OF THE MODEL

Figure 4.15: Lane modeled through the linear approximation of its centerline

equations:

q̇ = vx ·m− ẏ − L · vx ·Kl

ṁ = vx ·Kl − ψ̇
(4.4.1)

where, under the assumption of small steering angles, it was considered tan(m) ≈ m and

Kl is measured at the look-ahead point. The validity of this simplified set of equations is

guaranteed only under the assumptions of the single track model. The equations correspond

to considering the vehicle initially perfectly aligned with the centerline of the lane (m =

q = 0). Subsequently, the effect of a change in the road curve on the dynamics of m and q

is observed.

For constant q, m and yfb, the equations simplify to m =
L

R
which can be geometrically

interpreted as the larger the curvature radius R, the smaller m, and vice versa. From the

point of view of the implementation of such equations in Simulink, a very simple block

scheme can be built using standard elements: figure 4.16 . The task of the controller will be

then that of acting on the steering command on the basis of the measurements provided by

the vision system. Using yfb as the feedback quantity leads to greater comfort compared to

feedback based on position error measured at the center of gravity (look-down reference).

The parameter q, on the other hand, being more closely related to the position of the

vehicle in the lane, is the typical variable used for the definition of system specifications.

95



4. DESCRIPTION OF THE MODEL

Figure 4.16: Simplified LRC model implemented in Simulink

Keeping in mind this observation, [116] underlined how the look-ahead distance parameter

was correlated to the comfort/system performance trade-off that can be achieved by the

automated driving system: an increase of L improves comfort performances even though it

tends to cause a larger lateral position error at the center of gravity (i.e. a larger q) when

a curve is approached.

4.5 Controllers Design

In this section, the design procedure for the controllers employed to handle longitudinal and

lateral dynamics as desired by the user is presented.

Combining together the blocks discussed to this point, a full vehicle model whose dy-

namics can be controlled by accelerator and brake pedals, as well as by the torque applied

to the steering wheel is obtained. Additionally a simplified camera model provides, given

the curvature of the road, the instantaneous distance of the vehicle center of mass from

the linear approximation of the centerline of the lane and the instantaneous angle between

vehicle longitudinal axis and the aforementioned linear centerline approximation.

Now, as far as control design is considered, an important consideration relies in the fact

that the considered system is highly nonlinear. This opens two distinct possibilities for the

implementation of suitable controllers: either use a non-linear control technique capable

of dealing with the non-linearities of the system or implement a linear control technique
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which, although it will not explicitly account for non-linearities, is able to control the system

reasonably well when parameters do not change significantly.

Considering that:

• The speed of the ego-vehicle will vary approximately in the 60 to 130 km/h range;

• The curvature of the road will not exceed typical values of highway scenarios;

• The design of the controller is not the main focus of the project;

the latter control approach will be chosen. The first point, in fact, guarantees that vehicle

motion will always be carried out in the two highest gears, with a lower and almost constant

inertia of the vehicle; longitudinal vehicle dynamics will then be accurately approximated

by a linear model. For the lateral vehicle dynamics, the already mentioned bicycle model

will correctly predict vehicle response considering that, as guaranteed by the second point,

the steering angles will be small. Finally, given that the control is not the main focus

of this work, it is possible to resort to simple linear control techniques to satisfy control

requirements.

4.5.1 Longitudinal Control

The task of the longitudinal dynamics controller is that of applying the correct amount of

accelerator or brake pedal in order to match the instantaneous speed requested by the user

(traditional Cruise Control functions, plus brake operation).

The design of a linear controller for this purpose requires the evaluation of a suitable

linear model. This can be easily achieved through the System Identification Toolbox and

its linear techniques. Data for the identification of the model are obtained through simula-

tions of the provided longitudinal dynamics S-Function: steps of the accelerator and brake

commands are used to continuously vary4 the speed in the considered range.

The resulting linear model is a simple, discrete time, LTI (Linear Time Invariant) model

of the first order. This model is MISO (Multiple Inputs Single Output): accelerator and

brake pedal signals are the inputs, vehicle speed is the output. The pole of the linear model

4For an accurate identification it is of primary importance to avoid sharp deviations of the output(s)

which cannot be directly related to variations of the input(s).
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has a positive real part and, hence, it is unstable. Feedback-loop control is then required also

for stabilization purposes. Figure 4.17 shows the regression plot quantifying the agreement

between the provided non-linear model (truth model) and the linearized first-order model

(simplified model) for a free slow-down from 80 km/h. As can be seen in figure 4.17, the

Figure 4.17: Vehicle slow-down: agreement between truth model and simplified model

agreement is very good at higher speeds, while it starts degrading below ≈ 12 m/s (i.e.

≈ 45 km/h). This is not a concern since, as already pointed out, considered speeds will

always be higher than 60 km/h.

The equivalent mass of the vehicle is given by M+Mr, where M is the actual translating

mass of the vehicle and Mr is the equivalent mass of the rotating components. The ratio

(M + Mr)/M is the mass factor and it increases roughly quadratically [58] with the gear

ratio, i.e. it is smaller at higher gears. This means that a faster dynamics of the vehicle is

observed at higher gears.

Once a properly defined linear model is derived, a linear controller can be designed

according to the procedures discussed in the classical control theory. Of course, when the

designed controller will be transfered on the truth model, the added complexity (the so-

called un-modeled dynamics) of this model compared to the linearized one will require a

fine (re-)tuning of the controller’s parameters.
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As stated previously, the controller selected for realizing this cruise control is a PI

controller. A PI controller is a particular case of the well-know and widely-employed PID

control technique. As figure 4.18 illustrates, the name of this controller (Proportional-

Figure 4.18: Structure of a PID controller

Integral-Derivative) infers from how the error signal (difference between the desired target

for the process variable (so-called set point) and the variable itself) is handled.

In the proportional path the error is multiplied by a constant Kp, in the integral path

the error is multiplied by a constant Ki and then integrated and in the derivative path it is

multiplied by Kd and then differentiated. The three results are then summed together to

produce the controller output. TheK terms are called gains and can be adjusted (i.e. tuned)

to a particular plant with a specific set of requirements. The tuning of these parameters

changes how sensitive the system is to each of these different paths.

The error term is, in fact, a signal, i.e. a function of a time. The proportional path will

then produce an output identical to the error signal, except for the scaling factor Kp. The

integral path will, on the other hand, produce an output proportional to the area of the

error signal. This term is then particularly important to remove constant errors: no matter

how small the constant error, eventually the summation of that error will be significant

enough to adjust the controller output5. The derivative path, finally, will contribute to the

5This result can be seen as a simple explanation of the famous Internal Model Principle, a fundamental

result of the modern control theory. This principle states that, in order to achieve a null steady state error,

the loop function L = PC of a control system composed of a plant P and a controller C must have a number

of poles at the origin k (i.e. of integrators
1

s
) equal to m + 1, where m is the exponent of the polynomial

input to the system (e.g. for a step input, m = 0 and hence one integrator in either the plant P or in the

controller C is enough to guarantee a null steady state error).
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controller output proportionally to the rate of change of the error signal. All three paths

are not always needed, and as a consequence simpler layout can be used, with advantages

in terms of implementation, tuning and conceptual complexity. Tables 4.1 summarizes the

effect of increasing each gain on the performance of the overall system.

Table 4.1: Effects of increasing a parameter independently

Parameter Rise time Overshoot
Steady-state

error
Stability

Kp Decrease Increase Decrease Degrade

Ki Decrease Increase Eliminate Degrade

Kd Minor change Decrease
No effect in

theory

Improve if

“small”

A PI control block is readily designed in Simulink and applied to the linearized longi-

tudinal dynamics (figure 4.19).

Figure 4.19: Simulink design of the longitudinal dynamics controller

The input to the system is the desired vehicle speed (magenta), the output the actual
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longitudinal speed of the vehicle. The PID gains are initially tuned with the Ziegler-Nichols

tuning method: the proportional gain Kp is progressively increased up to the “ultimate”

value Ku at which the closed-loop system oscillates with a constant amplitude and an

oscillation period Tu. The gains are then set according to table 4.2.

Table 4.2: Ziegler-Nichols’ heuristic tuning technique for PID controllers and related variants

Controller Kp Ki Kd

P 0.5Ku − −

PI 0.45Ku 1.2Kp/Tu −

PD 0.8Ku − KpTu/8

PID 0.6Ku 2Kp/Tu KpTu/8

Gains values determined in this way are only a starting point. A trial-and-error proce-

dure is then carried out in order to improve the performances of the system. In particular,

limits on the acceleration and the jerk are imposed in order to improve system comfort for

the passengers. For the internal model principle the presence of an integrator in the closed

loop guarantees for a step input a zero steady state error.

Given the similarity between linearized and truth models, the PI controller requires only

marginal re-tuning of its parameters to keep the same level of performance when applied

on the actual system. Performance results will be shown in the next chapters.

4.5.2 Lateral Control

What was shown as the design procedure for the longitudinal controller holds also in the

case of the lateral controller. Some particular considerations must nonetheless be made due

to the larger complexity of the lateral dynamics subsystem.

The design of a lateral controller is carried out by first tuning the system on a linearized

model of the interested dynamics. The model of the LRC presented in the previous chapter

is — if parametrized according to vx — already linear and hence it does not require mod-

ifications. On the contrary, particular attention must be devoted to the modeling of the
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lateral dynamics and, above all, of the EPS actuator.

In the literature several examples of combined lateral dynamics-LRC linear models can

be found [115, 116], and here only the final result is reported:

ẋ1

ẋ2

ẋ3

ẋ4


=



v̇y

ψ̈

q̇

ṁ


= [A]



vy

ψ̇

q

m


+ [B]

 δsteer

Kl

 (4.5.1)

 y1

y2

 =

 yfb

q

 = [C]



vy

ψ̇

q

m


+ [D]

 δsteer

Kl

 (4.5.2)

where

[A] =



−
Cf + Cr
Mvx

−(vx +
Cf lf − Crlr

Mvx
) 0 0

−
Cf lf − Crlr

Jzvx
−
Cf l

2
f + Crl

2
r

Jzvx
0 0

-1 0 0 vx

0 -1 0 0


,

[B] =



kCf
M

0

kCf lf
Jz

0

0 −Lvx

0 vx


,

[C] =

 0 0 1 L

0 0 1 0

 ,
and [D] is a 2x2 null matrix. In this analytical model M is the mass of the vehicle, Jz its

inertial moment around center of gravity referred to the vertical axis, Cf and Cr are the

cornering stiffnesses of the front and rear axles, respectively, lf and lr are the distances of

the center of gravity from the front and rear axles, respectively, and k is the front wheels

angle/steering-wheel ratio (expressed in [rad/deg]). The first two equations of 4.5.1 can be
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easily identified as the bicycle model, whereas the last two are the usual equations for the

linear approximation of the centerline provided by the LRC.

Of course, as an alternative to this 4th order, linear, analytical model, an identified

model - as in the case of the longitudinal dynamics - could be used. However, given the

excellent accuracy (regression coefficient R equal or above 99%) with which the dynamic

behaviour of the vehicle is reproduced in the region of interest, there is no reason to do

that.

The analysis of the eigenvalues of matrix [A] highlights the instability of the system:

two integrators (i.e. poles at the origin) can be found in the transfer functions from both

inputs δsteer and Kl to the outputs yfb and q. Again, then, feedback control is required for

guaranteeing the stability of the lateral dynamic motion of the vehicle.

The problem with the model introduced here is that the variable the controller will

act upon is not the steering wheel angle, but the torque applied to the steering column.

It is then necessary to provide a linear model for the EPS actuator, too. This is readily

accomplished by identifying with the System Identification Toolbox a linear, second-order

state space model starting from data coming from simulations of the truth model. Given

the strong non-linearity of the latter, only a small region of the system operation could

be accurately modeled. As a consequence the linear model is optimized only for the most

common operating scenarios in our system (60 to 130 km/h speed range and 2 to 5 Nm

torque range).

Control From Future Vehicle Position

In order to simplify the discussion on the lateral controller, let us first discuss its imple-

mentation on the linearized lateral dynamics model discussed above.

As underlined multiple times, two procedures exist in order to realize a feedback loop

controller acting on the vehicle’s lateral dynamics:

1. Exploit the future vehicle position yfb to direct the steering action;

2. Use the current vehicle position q to implement a suitable steering control.

In order to take advantage of the camera output and to mimic driver’s behaviour [117], the
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basic approach that will be followed is the first one, known as look-ahead control.

Now, an important consideration has to be made. While yfb (i.e. q+mL) is the preferred

variable to serve as a starting point for the control action, it is generally q which imposes a

constraint on the system. In fact, while yfb can assume large instantaneous values without

affecting the quality of the control, q must be necessarily kept close to zero. Failure to do

so will result in the risk of crossing the boundaries of the lane with potentially catastrophic

results. American and European codes generally prescribe lane widths ranging from 2.7 to

3.6 m [118]. In the worst case scenario, considering a vehicle width of 1.8 m, this leaves to

the driver roughly 0.4 m per side of displacement with respect to the lane centerline before

a wheel could exit the lane. A general guideline could then be that of halving this value:

|q| ≤ 0.2 m in all conditions.

If the variable used for feedback (i.e. the variable the controller will force to be zero) is

yfb we can predict the value that q will assume in the following two conditions:

• Steady state motion on a straight road.

We mentioned in the section dedicated to the LRC that in steady state condition (i.e.

when q, m and hence yfb are constant) equations 3 and 4 in 4.5.1 simplify to m ≈ L

R
.

On a straight road R → ∞ and thus m → 0. In such condition q = yfb − mL ≈

0− 0 = 0, which is the desired outcome;

• Steady state motion in a curve.

Similar considerations hold and they lead to q = yfb−mL ≈ 0−mL = −L
2

R
. Assuming

L = 11.5 m6 and R = 200 m, q would be approximately −0.66 m (result confirmed in

simulations).

This means that in a curve of R = 200 m, if feedback is performed from yfb the only way

to achieve |q| ≤ 0.2 m is to use L ≤ 6.3 m: while this is theoretically possible, such a small

value of L would most certainly negatively impact driving comfort. This consideration rules

out the possibility to realize a simple controller from yfb, similarly to what was done for

6This value of L is selected because it guarantees a good trade-off between performance and comfort

requirements.
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longitudinal dynamics. The approach that was followed to meet the requirements is inspired

by the LTR (Loop Transfer Recovery).

Loop Transfer Recovery

According to this approach the output of the camera yfb is selected as the output from

which feedback is performed, but this variable is first used to reconstruct the parameter q

which is then minimized by the controller. Traditionally this is accomplished by designing

a Kalman Filter (KF) for state estimation and then a Linear Quadratic Regulator (LQR)

for control (LQG design approach).

Figure 4.20: Closed-loop observer scheme

For simplicity let us first consider the system without the EPS actuator. This system

is conveniently described by the A,B,C,D matrices previously introduced and it plays the

role of the plant (figure 4.20) whose state must be reconstructed for control purposes. In

this work, the implementation of the observer was done according to Luenberger’s theory:

an LTI dynamic system with inputs equal to the plant’s input u and output y is built in

order to obtain an estimate (x̂) of the plant’s state. If A,B,C,D are the matrices of the

plant, then the differential equation describing the observer is:

˙̂x = (A− LC)x̂+ Ly + (B − LD)u. (4.5.3)

In equation 4.5.3 the matrix L7 is chosen according to a traditional eigenvalue placement

technique in such a way as to stabilize the dynamics of the error e = x− x̂ and to bring its

value rapidly to zero.

The reason why a Luenberger observer is designed is that now for control purposes both

a complete estimate of the states describing vehicle lateral dynamics and an estimate of

7Not to be confused with the scalar L, the look-ahead distance.
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the parameter q (i.e. the third state x3) are made available. Both these quantities will be

employed in the design of an LQI controller.

An LQI controller is an extension of a standard LQR control. LQR control is a well-

known, linear control technique which allows one to define the control law considering an

optimality criteria. A cost functional accounting for both the energy (i.e. the L2 norm) of

the states x and of the input u is created:

J(u, x) = ||x||2Q,2 + ||u||2R,2 =

∫ ∞
0

x(t)TQx(t) dt+

∫ ∞
0

u(t)TRu(t) dt

where matrices Q and R are selected so that to determine the best trade-off between

performances (minimization of ||x||2) and command activity (minimization of ||u||2). A

third contribution
∫∞
0 2x(t)TNu(t) dt can also be added as an additional degree of free-

dom. Closed-loop stability is ensured by the minimization of ||x||2. The solution of this

optimization problem is the control law u∗(t) = −Kx(t), i.e. state feedback. The matrix

K is determined by solving the Algebraic Riccati Equation, which is automatically done by

MATLAB.

Now, the LQI control technique retains the same structure with a change: an additional

state is obtained by integrating the tracking error (difference between the desired q and

the actual q) and added to the system. Once this augmented system is built, the matrix

K defining the state feedback controller can be computed in the same way. The resulting

structure can be found in figure 4.21.

As can be seen, the Luenberger observer is used for reconstructing the four states of the

linear model of the lateral dynamics and LRC, and providing an accurate estimate of the

parameter q (which is nothing but one of these states). This information is then fed back,

subtracted from the reference (q = 0) and integrated in order to build the fifth state used

for control. The reason why the integral of the tracking error is added as one of the states

of the feedback-loop is that in this way constant errors in steady-state can be eliminated.

Results pertaining this system will be shown in chapter 6.

Once the matrices Q, R and N have been selected, the model is expanded by adding

the identified, linear EPS model. In order to retain the LQI structure, another Luenberger

observer is added to reconstruct the states of the EPS model. The computation of the

matrix K is now repeated for the overall system given by the series connection of the EPS
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model and the lateral dynamics (and LRC) model. As a consequence a total of seven states

is now considered: four from the model of lateral dynamics, two from that of the EPS and

one from the integration of the tracking error.

As with longitudinal dynamics, once proper tuning is achieved on the linearized model,

the controller is implemented on the non-linear system (“truth model”). Unavoidably a

slight decrease in performances is to be expected, even if something can be recovered with

proper fine-tuning. Again, more detailed representations of performance and stability results

will be given in the proper section of chapter 6.
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4.6 Virtual Sensor Design

In chapter 2 the mathematical treatment of virtual sensors was considered. In this section

the set of data and the procedure used to build this component are reported. Finally the

implementation of this block in the overall model is discussed.

4.6.1 Used Data

Let us first consider the data necessary for the identification of the virtual sensor. Consider-

ing the objective of reconstructing the precise vehicle position starting from the information

provided by the standard GPS, it is clear that first and foremost it will be fundamental to

record simultaneously these two quantities. As a consequence, testing on a vehicle equipped

with both standard and differential GPS should be conducted. Furthermore, vehicle data

(in particular, velocity vx, longitudinal and lateral acceleration ax and ay, steering angle

δsteer and yaw rate ψ̇) must be available to have sufficient inputs for the non-linear identi-

fication process that allows the creation of the virtual sensor block. These signals are, in

fact, essential to provide the additional information about the vehicle dynamics necessary

to correct and improve the position provided by the standard GPS.

Considering this necessity, CRF made available the following data sets:

1. GPS acquisitions performed on a vehicle equipped with both differential8 and standard

positioning system (figure 4.22);

2. Vehicle simulations of the 2015 Fiat 500X with complete data recordings.

Both data sets are needed for the following reason. The first set provides GPS acquisi-

tions from a test on the “Centro Sicurezza” track in Orbassano (Turin) and hence satisfies

the requirement of having standard and differential GPS data recorded simultaneously.

While position data from this test are available, no information considering the dynam-

ics of the vehicle was recorded. The second set, on the contrary, consists of full vehicle

data generated through accurate simulations of the vehicle model in the CarMaker software

package. In this second set, the vehicle closely follows a precise trajectory (corresponding

8Differential GPS data are transmitted trough VSAT technology.
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Figure 4.22: Differential GPS (VSAT, blue) and standard GPS (red) acquisitions made at the

“Centro Sicurezza” track in Orbassano. X and Y axes dimensions are expressed in meters

again to the “Centro Sicurezza” track) that can be considered the equivalent of the precise

vehicle position (i.e. the signal corresponding to the differential GPS), but no standard

GPS data is available. As explained in the following, the complementarity between these

two sets of data will be exploited to identify the virtual sensor.

4.6.2 Procedure

The procedure to be followed in order to develop the Virtual Sensor (VS) requires that one

first elaborates available data and then identifies a suitable non-linear relationship between

input and output data.

Data Elaboration

Track acquisitions consist of longitude and latitude measurements provided by differential

and standard GPS. The first elaboration that should then be performed is to transform
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longitude and latitude coordinates in the trajectory followed in the X-Y plane. This trans-

formation is performed in order to obtain more easily interpreted data.

The conversion is readily accomplished by first converting the “degrees.minutes” format

in degrees and then by applying the following equations:

X = (long − long0)K cos(lat)

Y = (lat− lat0)K
(4.6.1)

where long and lat are the longitude and latitude in degrees, respectively, and K =

111317.1 m/deg is the coefficient used to convert degrees in meters assuming a spheric

shape for the earth. The parameters long0 and lat0 represent the origin selected for the X

and Y trajectories (the same origin is exploited for all acquisition data, see figure 4.22).

Once GPS trajectories have been converted, they can be used in order to create data

for the development of the virtual sensor. The identification of the virtual sensor will be

performed considering the second set mentioned in section 4.6.1. This is of course linked

to the necessity of having suitable vehicle data for the identification itself. The lack of

standard GPS signal in this set is overcome by extracting from the first set a model linking

differential and standard GPS.

It is in fact possible to compute the instantaneous difference between the two GPS signals

in the first set. This difference is then summed to the trajectory followed by the vehicle

in the CarMaker simulations (considered equivalent to the position signal as provided by

the differential GPS) in order to obtain the corresponding position provided by a standard

GPS. Particular attention must be given to the correct sampling of the considered signals

and to the matching between their starting positions. Once this operation is complete, it is

now made available a full set of vehicle and position signals to be used for the identification

of the virtual sensor.

Virtual Sensor Identification

As was shown in chapter 2, a VS is built when, given a non-linear system of input u and

outputs [y, z], it is of interest to determine zt for t > Tm, considering that noise corrupted

measurements of ũt, ỹt are available for all times t and that zt is measured only for t < Tm.
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As already discussed, a functional F0 and integers nu, ny must exist such that the variable

of interest zt may be calculated as:

z̃t = F0(Ỹt, Ũt) + dt, t = 0, 1, 2, ..., Tm

Ỹt = [ỹt, ỹt−1, ..., ỹt−ny+1]

Ũt = [ũt, ũt−1, ..., ũt−nu+1]

As a result, the problem of developing the virtual sensor becomes the problem of estimating

a functional FA(Y, U) as a parametric approximation of F0, computed using any desired

nonlinear identification method.

Now, considering the problem at hand, the quantity z is represented by the precise vehi-

cle position provided by a differential GPS. The inputs u which can be used to reconstruct

z are:

• Vehicle position as provided by a standard GPS;

• Vehicle dynamics data:

– Velocity vx;

– Yaw rate ψ̇;

– Steering angle δsteer;

– Longitudinal and lateral accelerations ax and ay.

The technique that will be employed in order to perform this identification is the non-

linear ARX, which proved successful in the development of a model for the EPS actuator.

As already discussed, the nARX structure can be expressed as follows:

y(t) = f(y(t− 1), y(t− 2), . . . , y(t− na), u(t− nk), u(t− 1− nk), . . . , u(t− nb − nk + 1))

The variables that can be managed to improve the fit on experimental data are then

the numbers of past values of inputs and outputs (orders na and nb), the delays nk and the

non-linearity f .

Considering that the information provided by the GPS is converted in X-Y format before

being processed, the VS block will be built by identifying two non-linear models (one for

the X coordinate and one for the Y coordinate) in the System Identification Toolbox.
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A large number of different configurations are tested in the attempt to get the highest

level of precision for the sensor. The best results are achieved by means of the following

two expressions:

XV SAT = f(XGPS , vx, ψ̇, ax) (4.6.2a)

YV SAT = f(YGPS , vx, ψ̇, δsteer) (4.6.2b)

where the subscript V SAT makes reference to the precise vehicle coordinates provided by

the differential GPS and the subscript GPS to the standard GPS coordinates. The reason

why in equation 4.6.2 the lateral acceleration ay is not used is that numerical errors are

present in this signal. This does not represent a problem because with vehicle speed, yaw

rate and steering angle a full picture of the lateral dynamics is obtained anyway.

The non-linearity f is a Wavelet Network and the orders employed are in the range 2

to 3 for all variables involved.

Now, as already discussed, the objective of the virtual sensor is to reconstruct the

position of the vehicle in the lane when the output of the LRC is degraded or unavailable.

This device is then intended to provide the precise vehicle position for short distances,

in such a way as to allow the control systems to continue their operation waiting for the

signal from the LRC to be restored or the driver to intervene. As a consequence, the VS is

identified considering short portions of the test track. Results pertaining the identification

and implementation of the virtual sensor are discussed in chapter 6.

4.6.3 Implementation

In order to easily implement the virtual sensor in the overall model, two already existing

blocks are exploited. Figure 4.23 shows how the Virtual Sensor block (orange) is added to

the existing model. The VS takes as input the position provided by the GPS in X and Y

form (magenta) as well as vehicle data necessary for the two nARX models embedded in

the virtual sensor, and gives as output the corrected position.

The precise vehicle position is then elaborated by the Input Coordinate Transformation

block (dark green, see chapter 5) which converts the X and Y coordinate in vehicle speed

vx and road curvature Kl. The vehicle speed is then sent to the longitudinal controller.
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Figure 4.23: Schematic implementation of the Virtual Sensor block (orange) into the existing

model exploiting the Input Coordinate Transformation block (dark green) and the Lane Recognition

Camera block (red)

Now, considering that the lateral controller is designed to work with (an estimate of)

the parameter q, the easiest way to implement the virtual sensor into the overall model is

to retain the Lane Recognition Camera block (red). However, this does not mean that the

camera is working. Instead, the LRC block should be considered in this case as nothing

more than an algebraic processing unit used to convert the road curvature Kl into an output

(the distance yfb, and hence the parameter q) that the lateral controller can use in order

to guide vehicle motion in the lane.

An advantage brought by this kind of implementation is the ease with which it is possible

to switch from the LRC-driven to the VS-driven system. This can be readily accomplished

by implementing in Simulink a time-dependent switch swapping the source of road curvature

Kl as necessary.
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Chapter 5

Simulation Procedures

In this brief chapter an overview of the simulation and validation procedures used to an-

alyze the system performance is given. Numerical and graphical results coming from the

simulations will be provided in chapter 6.

5.1 Simulations Description

The development of this project required the completion of two milestones: first, the design

of a suitable control strategy for the autonomous operation of the vehicle and, second, the

design of a device — the virtual sensor — able to overcome the loss of data ensuing from a

failure or degradation of the camera sensor.

Clearly, the unique contribution of this research comes from the latter part of the project,

but it is nonetheless important to quantify the system performances also for the “standard”

layout. This is the reason why in the next chapter results will be shown for the following

three conditions:

1. Uncontrolled system.

Considerations on the dynamics of the vehicle under purely human operator control

can be made as a benchmark for further discussion;
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2. System controlled via LRC.

Simulations of this system layout will allow one to achieve a double objective: show

the need for a suitable controller to manage the unstable dynamics of the car and

provide a baseline for comparison with the system equipped with the virtual sensor.

3. System controlled via virtual sensor.

Testing the performance of the system in which vehicle position is reconstructed by

the previously described position observer will illustrate the usefulness of this solution

and will serve as basis for the assessment of the value added by the implementation

of this system on an automated vehicle.

The testing missions will either represent worst case scenarios in terms of combinations

of vehicle speed and road curvature or will correspond to actual road profile such as the

CRF proving ground where GPS data have been acquired.

5.2 Model Validation

Given the nature of the designed control systems designed the most important parameters

that will be considered in evaluating the performance of the system in the three aforemen-

tioned cases are the speed at which the vehicle is traveling and the distance of the vehicle’s

center of gravity from the centerline of the lane.

Both these parameters are evaluated against their target values (the prescribed longitu-

dinal speed and a null distance from the centerline, respectively). In order to quantify the

quality of the fit the regression plot will be often employed. Several examples of its use were

presented in chapter 4. Additionally, a validation metric will be used to rapidly quantify

the error, i.e. the difference between the expected and the actual values. This metric is

considered necessary by W.L. Oberkampf and T.G. Trucano, who, in their paper [119], rec-

ognize the importance of numerically quantifying the agreement between the computational

and the experimental data. Such metric, V , is computed as:

V = 1− 1

tend − t0
·
∫ tend

t0

tanh

∣∣∣∣N(t)− T (t)

T (t)

∣∣∣∣ dt (5.2.1)

where N represents the experimental data and T the target data.
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In equation 5.2.1, because of the linearity of the hyperbolic tangent near the origin, the

validation metric V essentially represents the complement to 1 of the average error. A value

V = 1 would mean exact agreement between numerical and analytical results. When the

error increases, the hyperbolic tangent saturates to 1 causing V to approach zero.

Both the regression plot and the validation metric offer interesting information about the

data they are applied to. The former quantifies how much better the model is at capturing

the trend of data compared to just taking their average. The latter gives a fast way to

assess how large the average error is compared to the magnitude of the working data.

5.3 Vehicle Trajectory in the X-Y Plane

As seen, GPS data are presented as X-Y coordinates. Moreover, expressing the position of

the vehicle in terms of coordinates with respect to a fixed point helps one to better visualize

movements in the lane. It is then convenient to add two blocks to the system in such a way

as to change the inputs and the outputs to the X and Y coordinates when needed.

5.3.1 Input Coordinates Transformation

The inputs of the controlled system are the desired longitudinal vehicle speed (vx) and the

curvature of the road (Kl). In this case it is then of interest to implement a transformation

of these two quantities to X and Y .

This is readily accomplished by implementing the two following expressions:

vx =
√
Ẋ2 + Ẏ 2 (5.3.1a)

Kl =
Ÿ Ẋ − Ẏ Ẍ

(Ẋ2 + Ẏ 2)3/2
(5.3.1b)

where derivatives are taken with respect to time.

Equation 5.3.1a is intuitive. An explanation behind equation 5.3.1b can be found in

[120]. In this way it will be possible to provide to the system the time signals of the X and

Y coordinates of the centerline of the lane without modifying existing components.
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5.3.2 Output Coordinates Transformation

The designed system is based on body fixed coordinates. This is a solution suitable for

control system design, since the controller must use body fixed measurements (m and q) of

the position error.

On the other side, in order to better appreciate the trajectory followed by the vehicle,

it is convenient to plot its position at each instant in an inertial frame of reference.

Rajamani proposed in [121] a simple way of obtaining the actual position of the vehicle

starting from the desired one:

X = Xdes − q sin(ψ)

Y = Ydes + q cos(ψ)
(5.3.2)

where Xdes and Ydes are the global coordinates of the point on the road centerline which

lies on a line along the lateral axis of the vehicle. Now, in our case, Rajamani’s expressions

will lead to an approximate result. The reason is that q, because of the simplified model

of the camera, is not the distance from the actual lane centerline, but from its linear

approximation. Nonetheless, being R >> L in all conditions, it is possible to assume that

the error introduced is small.

118



Chapter 6

Results and Discussion

This chapter reports the results of the simulations of the system. As already pointed out,

the chronological order with which the model was developed is going to be followed in the

representation of the results. First, some results pertaining to the pure, uncontrolled vehicle

dynamics will be given in order to show the need for control. Then, the implementation

of the longitudinal and lateral controllers will offer the possibility to show the degree of

performance reached with the simple, linear controllers discussed in chapter 4.

Finally, a comparison will be drawn between the system controlled using the output of

the Lane Recognition Camera and that based on the position reconstruction provided by

the Virtual Sensor.

6.1 Uncontrolled Model Performance

When the linear model for the lateral vehicle dynamics and LRC was introduced, it was

mentioned that the system was unstable with respect to both the steering angle δsteer and

the road curvature Kl.

This result can also be easily confirmed for the non-linear, “truth” model by providing

suitable step inputs. Figure 6.1 shows how a small step applied to the steering angle (2

deg at 30 s) produces a diverging response of the distance between vehicle’s C.G. and road
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Figure 6.1: Effect of a step steering angle input (orange) on the distance from the centerline

(magenta) as a function of time [s]

centerline.

This effect is even more pronounced when considering the effect of the road curvature.

Figure 6.2 clearly illustrates that a change in the curvature of the road determines an

Figure 6.2: Effect of a step steering road curvature (green) on the distance from the centerline

(magenta) as a function of time [s]

unstable response of the parameter q, which rapidly diverges from zero.
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These results confirm what was determined analytically by analyzing the eigenvalues

of the linearized model and underline the necessity of a controller to stabilize the plant.

The stabilizing task is typically performed by the human driver, who, on the basis of the

instantaneous variation of the look-ahead position yfb, corrects the value of the steering

angle in order to keep the vehicle centered on the lane. This behaviour will be imitated by

the lateral controller. If this device is designed using fuzzy control techniques (such as in

[60]), then the controller will copy closely the reasoning of the driver. In the case presented

here, in which the knowledge of the plant is complete, better performances can be achieved

by using traditional control techniques which exploit existing information on the system to

be controlled.

6.2 Controlled Model with LRC

Let us now consider the performance of the controlled system. The information of the

vehicle position in the lane comes from the LRC sensor. For simplicity, the effect of the

longitudinal controller is evaluated first.

6.2.1 Longitudinal Control

The instability of uncontrolled longitudinal dynamics is illustrated by applying the Nyquist

Criterion1. The application of this criterion to the linearized longitudinal model shows

that the closed loop system in which the output (vx) is fed back and subtracted to the

reference in order to obtain the input of the longitudinal dynamics, is unstable (Z = 1 for

the accelerator input, Z = 2 for the brake input). The design of a suitable PI control for

both inputs stabilizes the closed loop plant (Z = 0 for both input pedals). Moreover, given

the already cited Internal Model Principle, the integral path will ensure null steady state

error.

Let us now see how this translates graphically. Figure 6.3 shows how the actual speed

of the vehicle tracks the target value as a function of time. The limits imposed on the

1The Nyquist Criterion states that the number Z of poles of the closed loop function T (s) with real part

≥ 0 is given by the sum of the number N of clockwise encirclements around (−1, 0) of the Nyquist diagram

of the open loop function L(s) plus the number P of poles of L(s) with real part > 0.

121



6. RESULTS AND DISCUSSION

Figure 6.3: Comparison between targeted longitudinal speed (orange) and actual speed (blue) as a

function of time [s]

derivatives of the speed result in a smooth operation of the pedals and a comfortable ride

(maximum acceleration 1.5m/s2, maximum deceleration −3m/s2).

The system, as designed here, meets the minimum requirements for testing the overall

layout with and without the operation of the position observer. Thanks to the modularity

of the system, however, the cruise control presented here can be easily replaced by a more

sophisticated unit embedding ADAS functions. For instance, an ACC system could be

implemented that regulates the speed in order to keep a safe distance from the vehicle

ahead.

6.2.2 Lateral Control

The need of a lateral controller was already highlighted by the necessity of stabilizing

the dynamics of the vehicle. Stabilization, however, is not enough: the required system

performance is very high and must be met even in worst case scenarios. Safety concerns,

in fact, require the vehicle to stay inside the limits of the lane in all operating conditions.

Failure to do so could mean that the vehicle is entering the lane of incoming traffic or exiting

from the tarmac.

Let us first consider the performances of the first implementation of the LQI controller
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on the linearized lateral dynamics. In figure 6.4 an abrupt change in road curvature at

Figure 6.4: Effect of a step road curvature (red) on the distance from the centerline (blue) as a

function of time [s]; linearized model, no EPS actuator

t = 30 s occurs. The speed imposed here is 90km/h and the curve radius is 200m: a rather

demanding condition is then considered. The blue signal illustrates the variation of the

distance q between vehicle center of gravity and road centerline. Despite the harsh driving

condition, as it can be seen, the distance from the road centerline never overcomes 0.3 m

before being smoothly brought to zero in steady state.

This results confirms the quality of the implemented LQI control, compared to the use

of a PID control fed directly by the future vehicle position yfb (let us recall that that scheme

cannot reduce q below 0.66m in the considered situation). A more aggressive tuning of the

matrices Q and R allows to further reduce the maximum value of q to just above 20 cm.

The drawback is in that case a less smooth operation of the steering wheel.

Now, when the lateral vehicle model is replaced by the actual non-linear model and,

even more so, when the EPS model is added, it is expected some amount of degradation of

the performances of the control system. On the other hand, there are no worries regarding

robustness and stability:

• Stability of lateral control.
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The Separation Principle holds, i.e. if the controller and the observer are stable when

considered alone (which is, as said, an automatic result for the LQR controller and a

consequence of the chosen eigenvalues for the observer), then also the overall system

is stable;

• Robustness2 of lateral control.

It is known from classical control theory that the Linear Quadratic Regulator (when

combined, as in this case as it will be shown, with a “fast” observer) is robust.

Figure 6.5: Effect of a step road curvature (red) on the distance from the centerline (blue); truth

model and EPS actuator

In figure 6.5 the same vehicle speed of 90 km/h and the same curve radius of 200 m

are considered for the actual vehicle model. As it can be seen, with a fine tuning of the

parameters of the LQI controller, the same level of performance expressed in figure 6.4 can

be achieved. A certain amount of oscillation is present but their effect is barely noticeable

on the trace of the lateral acceleration.

Figure 6.6 shows the variation of the steering wheel torque Tdr referred to the aforemen-

tioned maneuver in the time range 28 to 38 s. As can be seen, the torque (and hence the

2Robustness is the property of a controller by which it can control all the models of the actual plant

inside a specific uncertainty set.
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Figure 6.6: Steering wheel torque Tdr as a function of time

steering wheel angle) varies opposite to the expected direction for a brief amount of time.

After that the torque approaches the steady state value with an overshoot that is rapidly

damped down.

What has been presented here allows one to see the variation of the controlled variable

(q) as a function of time. Let us recall that the LQI controller acts on an estimate of q

provided by the relative Luenberger observer. Figure 6.7 shows that the estimate and the

actual value of q are always very close. The state observer can then be considered “fast”

enough for control purposes and the LQI controller can be considered robust.

Trajectory in the X-Y Plane

In chapter 5 the possibility of graphically visualizing the motion of the vehicle in the X-Y

plane (i.e. from the top) was introduced. By implementing the equations reported in that

chapter we can plot the desired path of the vehicle C.G. versus its actual trajectory.

In figure 6.8 the trajectory that corresponds to a sudden curvature variation from 0 to
1

200
m−1 is plotted in blue. In the same figure, the red trace corresponds to the actual path

followed by the vehicle. The two signals appear well superimposed. The red box is used to

represent the dimension of the vehicle and allows one to better understand the dimension

125



6. RESULTS AND DISCUSSION

Figure 6.7: Comparison between the actual value of q as provided by the LRC model (red) and the

value estimated by the state observer (blue) as a function of time

Figure 6.8: Desired trajectory (blue) and actual vehicle path (red) in the X-Y plane

of the curve.

The most critical area of the curve is clearly the sharp transition between the straight
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and the curved part of the road. A zoomed image of the first 30 m (in the X direction) is

shown in figure 6.9.

Figure 6.9: Vehicle trajectory in X-Y plane (90 km/h). Blue: desired track for vehicle’s C.G.

Light green: ±0.2m offset from the desired track. Dark green: ±0.4m offset from the desired track.

Red: actual path followed by the C.G. of the vehicle

As it can be seen, the vehicle does not immediately track the desired path but even steers

away briefly from it (see torque plot in figure 6.6). After this first brief phase, however, the

controller will provide a large amount of steering angle which brings the actual trajectory

closer to the requested one. After about three seconds from the start of the change in

curvature the tracking error is reduced to zero and kept that way for the remainder of the

curve.

It was mentioned in chapter 4 that, in the worst case scenario, the center of gravity must

not displace more than roughly ±0.4m from the centerline, otherwise the vehicle could face

the risk of having one or more wheels outside the traveling lane.

This requirement appears satisfied in a variety of test maneuvers, including high speed

(> 130 km/h) cornering with small radius (< 200 m). This range of values is extremely

unrealistic in actual driving of the vehicle since they bring the tires to the limit of their grip
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capabilities and cause very uncomfortable levels of lateral acceleration (almost 1 g).

With regard to the second target of keeping the tracking error below ±0.2 m (which

means a safety factor of at least 2 in all conditions), a standard tuning of the LQI controller

does not appear to be able to satisfy it in demanding conditions. On the other hand, when

more reasonable level of speeds and of curvature radius are considered, the requirement is

easily satisfied: figure 6.10.

Figure 6.10: Evolution of position error q considering a speed of 70km/h and a radius of curvature

of 300m

In order to understand better this point let us make reference to figure 6.11, in which

the values of q are plotted as a function of vx and R. As expected, the higher the vehicle

speed vx the larger the minimum radius of curvature R that can be followed keeping the

magnitude of q below 0.2 m. At 60 km/h a radius of 280 m or larger can be managed while

keeping |q| ≤ 0.2 m. At 130 km/h the same requirement can be respected only for curves

of radius of 360 m or larger. Figure 6.12 graphically illustrates the combinations of vehicle

speed and road curvature that grant |qmax| ≤ 0.2 m.

In conclusion, the designed LQI controller appears to provide suitable performances

when the considered driving scenarios exclude high speed cornering. Besides the physical

limits of how fast and accurately the steering wheel can be maneuvered and how much

traction the tires can develop, the reason behind this behaviour is found in the linear
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Figure 6.11: Values of the distance q [m] between vehicle’s C.G. and lane centerline as a function

of the vehicle longitudinal speed vx [km/h] and the radius of curvature R [m]

Figure 6.12: Contour plot of q [m] as a function of vx [km/h] (ordinate) and R [m] (abscissa). The

green line represents |qmax| = 0.2 m; the blue lines |qmax| < 0.2 m; the orange lines |qmax| > 0.2 m

nature of the employed controller. When the tires, in fact, approach large slip angles, their

characteristics depart from the linear region and the simplified model becomes more and
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more different from the “truth” model. At the same time previously made assumptions

(e.g. tan(m) ≈ m) become less and less realistic. All these factors contribute to deteriorate

control system performance in high speed cornering scenarios. Nonetheless, even when

“extreme” situations are considered (speeds above 130km/h, curvature radius below 200m

and lane width of 2.7 m), the difference between the lane centerline and the path followed

by the vehicle’s center of gravity never surpasses 0.4 m, preventing vehicle departure from

the tarmac and potentially hazardous situations.

Let us conclude this part with a remark on the robustness of the system. In chapter 4 it

was mentioned how the vehicle dynamics block can be influenced by wind speed and road

slope. By changing these parameters, their influence on the overall system can be studied

and the result is that, as long as the engine has sufficient power to maintain the required

longitudinal speed, the control systems are able to quickly compensate for any external

disturbance with a minimum effect on the dynamics of the vehicle.

6.3 Controlled Model with Virtual Sensor

In section 6.2 general considerations on the robustness and performance of the control

algorithm were made and they will not be repeated here. In this part, the attention will be

concentrated on illustrating the performance difference between the system with the LRC

and that with the Virtual Sensor (VS).

The validation of the VS is performed on a curved portion of the testing track (figure

6.13). As the figure shows, the agreement between VS output and the ideal path to be

followed (considered equivalent to what the differential GPS would provide) is very good.

The validation metrics V for the X and Y coordinates are 98.28% and 99.92%, respectively.

It is important to mention, however, that when the VS is employed along longer paths

and/or tighter curves the goodness of fit rapidly deteriorates. If the sensor is identified on

longer portions of road (e.g. several laps of the Centro Sicurezza track) then its behaviour

appears more generalized, even if less precise.

It is then confirmed that the operation of the VS is suitable to substitute for the LRC

only for brief periods. Let us now evaluate the performance of the virtual sensor and then
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Figure 6.13: Validation route for the virtual sensor in X-Y plane. The blue curve represents the

ideal path to be followed, the red curve the path generated by the virtual sensor

compare it with the system equipped with LRC.

Remark on X and Y Input Coordinates

The first consideration that should be made when dealing with input data coming from

differential GPS (and even more so from standard GPS) is that the behaviour of the system

modifies with respect to the situation in which the path to be followed was artificially created

with a speed vx and a road curvature Kl. In this latter case, in fact, the profile of the road

is very smooth and the variation of the various vehicle states continuous and gradual. On

the other hand, when considering X and Y input coordinates, the speed and the curvature

imposed to the controllers have a more irregular profile. The effect of this difference is

present both when the VS is implemented and when the camera is implemented. As will

be discussed later, the vehicle dynamics acts as a filter that avoids erratic behaviors of the

vehicle.
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6.3.1 Longitudinal Control

In order to compare the performance of the model with either the LRC-based controller

or the VS-based controller, the portion of the Centro Sicurezza track already used for VS

validation and shown in figure 6.13 will be employed. The standard system (LRC-based)

will be directly fed with the differential GPS (i.e. exact) position coordinates. The system

with the VS will be of course supplied with the coordinates of the standard GPS.

(a) LRC-based system

(b) VS-based system

Figure 6.14: Comparison between input speed (red) and actual vehicle speed (blue)
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Let us now consider the two plots of figure 6.14. As previously stated, the input speed vx

that results from the GPS coordinates is very erratic in nature. Nonetheless the combined

effect of the controller (which limits the values of longitudinal acceleration and jerk) and

of the inertia of the vehicle dynamics tends to filter out high frequency components of the

input speed providing more constant outputs.

The variability is definitely higher in the case in which the VS is employed even if the

higher frequency of the signal means that the output is actually more constant. In both

cases the mean is very similar (around 77 km/h) and close to the mean of the speed at

which vehicle simulations were carried out (around 75 km/h).

6.3.2 Lateral Control

Again the model is tested considering precise vehicle position for the system with LRC (so

as to simulate the camera extracting the curvature information from the actual road) and

the approximate vehicle position for the system with VS. Let us consider first the former

system.

As shown for the instantaneous value of vx, also the road curvature Kl has a strongly

variable behavior. In figure 6.15 this parameter is plotted together with the variable q, i.e.

the instantaneous distance between vehicle center of gravity and linear approximation of

the road centerline.

Figure 6.15 highlights again that most of the variability of the input signal (Kl) is

canceled by the filtering action of the controller and the inertia of the vehicle. Nonetheless,

at first sight the values assumed by q appear extremely large (figure 6.16).

From a purely mathematical standpoint this is due to the very high peaks of road

curvature generated by the Input Coordinate Transformation block (which correspond to

curvature radii of about 20 m). As a result the distance q reaches values of 1 m while

maximum acceptable levels are less than the half of that.

As it can be seen by figure 6.17, however, the trajectory followed by the vehicle in the

X-Y plane appears well inside the ±0.4 m boundaries built around the exact position signal.

Occasionally, the position of the vehicle oscillates around the desired path (figure 6.18)

and briefly “touches” the limits at ±0.4 m from the desired path.

133



6. RESULTS AND DISCUSSION

Figure 6.15: Road curvature Kl (red, magnified 100 times) and distance CG-lane centerline q

(blue) (LRC-based system)

Figure 6.16: Distance q between vehicle’s CG and lane centerline (LRC-based system)

An apparent contradiction between figures 6.16 and 6.18 arises. The former indicates

that the vehicle should be (often) found at a distance larger than 0.4 m from the lane

centerline, whereas the latter clearly shows that this is not the case. In order to understand

the reason of this mismatch the following considerations should be made:

• Each component of the model has a certain level of inertia.

This is true not only for the longitudinal and lateral vehicle dynamics, but also for

the other dynamic blocks in the model (such as the Luenberger observers). All these
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Figure 6.17: X-Y trajectory of the vehicle (red) and ±0.4 m boundaries built around VSAT position

signal (dark green) (LRC-based system)

Figure 6.18: Portion of the X-Y trajectory of the vehicle (red) plotted together with the desired

path (blue) and the limits at 0.2 and 0.4 m from the centerline (light and dark green, respectively)

(LRC-based system)
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components will cause the vehicle model to respond more gradually to the inputs,

making the vehicle follow an average signal;

• The average value of q is below 1 cm.

As a consequence, even if at times the vehicle does not follow exactly the lane center-

line, it never distances itself significantly from it;

• The parameter q expresses the distance between vehicle’s center of gravity and the

linear approximation of the lane centerline.

The rapidly varying nature of q and m indicates that the linear approximation of

the lane centerline varies substantially on an instantaneous basis, whereas the actual

centerline has a much smoother profile. It can be concluded that while the vehicle

actually has a large distance from the instantaneous approximation of the centerline,

on average, its distance from the actual centerline is much smaller.

Let us now repeat the analysis considering the vehicle speed and the road curvature as

provided by the virtual sensor.

Similarly to what happened to vx, whose behavior was degraded compared to the situ-

ation in which the LRC drives the lateral controller, also the road curvature Kl resulting

from the VS is more variable and has larger peak values.

Figure 6.19: Distance q between vehicle’s CG and lane centerline (VS-based system)

Figure 6.19 shows a strongly variable behavior and large peaks of more than 2 m. Com-

pared to what is shown in figure 6.16 there is a clear degradation in terms of performance.
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Nonetheless, once again figure 6.20 shows that the vehicle always stays within the re-

quested boundaries of ±0.4 m from the lane centerline. The first few meters, corresponding

Figure 6.20: X-Y trajectory of the vehicle (red) and ±0.4 m boundaries built around VSAT position

signal (dark green) (VS-based system)

to roughly 2 s of vehicle traveling, show the vehicle exiting from the desired region in

the X-Y plane. This appears to be caused by large values of the derivatives in the Input

Coordinate Transformation block.

After this first phase, vehicle motion remains well confined inside the desired boundaries.

As figure 6.21 shows, even in the most demanding portion of the track, the system is able

to maintain the distance from the lane centerline below (or equal to) 0.4 m.

The apparent contradiction between figures 6.19 and 6.21 can be understood consider-

ing the discussion on block inertia, average value and centerline approximation previously

carried out.

It is then possible to conclude that, when the Virtual Sensor substitutes the Lane Recog-

nition Camera in providing to the lateral controller a reference path to be followed, the

overall control system retains its ability to keep the vehicle inside the lane.

The limited amount of suitable GPS data does not allow more extensive verification

of the performance of the model in more demanding conditions. Nonetheless, it is clear
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Figure 6.21: Portion of the X-Y trajectory of the vehicle (red) plotted together with the desired

path (blue) and the limits at 0.2 and 0.4 m from the centerline (light and dark green, respectively)

(VS-based system)

from the analysis carried out on the data generated at the Centro Sicurezza track, that a

decrease in performance has to be expected when the VS is employed. The following points,

in particular, can be underlined:

1. The reconstructed vehicle position signal is significantly less smooth than that pro-

vided by the differential GPS and this translates into more variability in the vx and Kl

signals. This can lead to numerical problems (e.g. high values of position derivatives

in the Input Coordinate Transformation block);

2. The average distance from the actual centerline is, in the system implemented with

the VS, above 4 cm. This is an indication of the general degradation in performance

experienced when the LRC is replaced with the VS;

3. The movement of the vehicle in the lane appears more erratic and larger steering

angles are used. In general, a decrease in the comfort level has to be expected. This

effect was noticed also when the inputs of the model are changed from vx and Kl to

the exact X and Y coordinates of the lane centerline. Nonetheless, this issue gets even
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more relevant when the coordinates are estimated through the virtual sensor.

In the attempt to quantify the amount of performance degradation experienced when

implementing the Virtual Sensor, it is possible to refer to the mathematical agreement be-

tween the desired vehicle path (lane centerline as provided by the differential GPS) and

actual vehicle path. Considering the system based on the LRC, for the portion of the track

considered above, the validation metric V equals 99.33 and 99.89% for the X and Y coor-

dinates, respectively. When making reference to the system based on the VS, these values

reduce to 98.24 and 99.74%, respectively. The amount of degradation is then minimum.

In order to further improve the performance of the VS-based system, a possibility is

to decrease vehicle speed. When this occurs the movement of the vehicle appears slightly

less jerky. A possible strategy could then be that of reducing vehicle speed when the main

source of position information switches from LRC to VS.
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Chapter 7

Conclusion and Recommendations

In this last chapter of this thesis a brief conclusion is drawn and some recommendations for

future work are offered.

In chapter 1 the general context in which this project is inserted was introduced. All

major automakers and top tier suppliers are looking at the promising area of autonomous

drive with the important objective of reducing the number of deaths still occurring on the

road. It was in fact pointed out how, in the vast majority of the cases, the largest cause of

automotive accidents is linked to improper driver behavior. It is then extremely important

to try to support the driver in his/her task and, where possible, to automatize the driving

duty.

The systems dedicated to this purpose, collected under the term Advanced Driver As-

sistance Systems (ADAS), are expected to flood the market in the next few years and some

interesting examples are already on the road. In the vast majority of the cases these sys-

tems rely on the so-called look-ahead approach, i.e. they are based on video sensors (Lane

Recognition Camera, LRC) used to capture useful information on the portion of road ahead

of the vehicle. Usually the information to be captured is the relative position of the vehicle

with respect to the lane markings, which mark the boundaries of the drivable portion of the

road. It may occur that this crucial information is lacking, either because road markings
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are not present or because their visibility is somehow reduced.

In order to overcome this difficulty and to sustain — at least for a brief amount of

time (until look-ahead information is restored or driver active intervention is resumed) —

autonomous driving functionalities, a simple and economic way of dealing with the lack of

data provided by the LRC was presented in this project. Two fundamental outputs were

then provided in the previous chapters:

1. An autonomous driving vehicle model built in Simulink. This model embeds all the

most relevant components necessary to simulate the behaviour of a real automated

vehicle: accurate longitudinal and lateral dynamics to simulate vehicle motion, sensors

and actuators to allow the correct interaction of the vehicle with the surroundings and

a suitable control system capable of dealing with the constraints imposed both on the

longitudinal and lateral dynamics;

2. A Virtual Sensor designed to substitute the LRC when its operation is degraded or

impaired. This device, whose mathematical foundations and practical implementation

were presented in chapters 2 and 4, allows the reconstruction of the precise vehicle

position by fusing together different data: GPS coordinates and vehicle dynamic

states.

The development of the overall model required the application of several techniques of

increasing interest in the engineering field: Neural Networks, ARX and the already-cited

Virtual Sensor. The performance of the system was evaluated considering three distinct

implementations:

• Uncontrolled vehicle dynamics.

Simulations of the vehicle not subject to the action of the driver or of control devices

were carried out with the task of showing the instability of the system and the need

of control;

• Controlled dynamics via Lane Recognition Camera.

Testing the model controlled through look-ahead approach allowed to appreciate its

stabilizing action and its effectiveness with which tight performance requirements were
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satisfied in a broad spectrum of situations;

• Controlled dynamics via Virtual Sensor.

The system implementing the VS is successful at substituting the video sensor in

those situations where road markings are unavailable. The GPS signal is combined

with vehicle data in order to reconstruct the desired path which is then followed by

the system only with a slight degradation in performance.

As mentioned in chapter 6, though, the Virtual Sensor as designed here shows limitations

in its application: because of the deterioration of the GPS signal due to external factors, the

VS does not always correctly generalize its behavior to situations different from those used

for its identification. As a result, the Virtual Sensor as presented here is to be intended as

useful at reconstructing vehicle position for brief periods in which the camera sensor output

is unavailable, rather than a system intended to completely eliminate the need of the LRC.

Considering this limitation and some possible areas of improvement met in the develop-

ment of this project it is possible to highlight some recommendations for future work:

• The functionalities of the presented system can be expanded exploiting its modularity.

ADAS systems could be implemented in the overall model in order to enhance its

appeal for on-vehicle implementation. Adaptive Cruise Control and Lane Departure

Warning are two simple examples. As a result, the presented model could obtain

a greater understanding of the driving scenario and hence get closer to level three

automation;

• The performance of the controllers could be increased by resorting to non-linear control

devices, better suited to the characteristics of the vehicle dynamics. Alternatively,

more configurations of the LQI controller could be studied in order to improve the

trade-off between comfort and performance. Suitable strategies to switch between

different controller tunings could be implemented in order to adapt to the different

driving conditions;

• Due to the lack of time, some parts of the model were implemented according to

the simplest approach available. As a result, the coordinate transformation blocks
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could be improved and replaced with more sophisticated units. Filtering of the GPS

coordinates would allow for less erratic behavior of the input signals;

• Similarly, the LRC block could be designed in such a way as to provide higher order

approximations of the lane centerline in order to better suit the design of the road;

• Concerning the crucial implementation of the Virtual Sensor, a larger dataset would

allow for better identification and hence higher precision of the system in different

situations;

• The Virtual Sensor design should be expanded in such a way as to consider a wider

set of inputs, including those related to the degradation of performance of a standard

GPS (e.g. synchronization errors, atmospheric disturbances, etc.). The identification

and validation sets used in this project were, in fact, portions of the same track.

This means that they were recorded at similar time instants and similar geographi-

cal locations, making them much less sensitive to external factors than what would

be expected for real position data acquired in different days and different locations.

Furthermore, an analytical model computing the expected vehicle position could be

added so as to be compared with the GPS signal and further refine the estimate;

• The switch between the LRC-based and the VS-based solution should be analyzed to

identify and solve possible negative effects on the control of the vehicle. More in detail,

a strategy should be elaborated in such a way as to identify the conditions that should

determine the switch between the two configurations of the model. A possible solution

could be that of having the VS-based implementation always running in parallel to the

main module driven by the LRC; then, when the information provided by the LRC

becomes inconsistent with the position computed by the VS, the switch is performed;

• Finally, testing the system on actual driving conditions and actual hardware would

allow for a more meaningful validation.
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