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ABSTRACT 

 

 This thesis examines various guidelines for conducting LCA studies on passenger vehicles, 

and ultimately develops a new LCA guideline. The new guideline balances workload and capturing 

the major factors of the vehicle’s life cycle. 

 For the analysis, three guidelines were applied to multiple FCA vehicles, representing 

conventional and alternative fuel drivetrains. The results of each guideline were assessed for their 

sources of variation, and the weight of each variable on the vehicle lifecycle. From the results, the 

vehicle’s material breakdown, basic driving emissions, use of climate control systems, and 

maintenance of parts, were found to have the highest environmental impact. 

 The new guideline was developed and applied to the same case studies, maintaining close 

agreement with the previous results. The results were also compared to LCA studies from other 

manufacturers. Impact categories that depend on the use phase showed little variation, but 

production dominated categories showed large discrepancies between manufacturers.  
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CHAPTER 1 

INTRODUCTION 

Problem Definition 

 The concept of Life Cycle Assessment (LCA) originated in the late 1960’s, but was not 

formalized until the 1990’s when the United States Environmental Protection Agency (US EPA) 

and the International Organization for Standardization (ISO) began publishing guidelines for LCA 

type studies (Jensen, et al. 1997). Despite its long history however, use of LCA varies from one 

major industry sector to another. The automotive industry has been applying LCA tools since 

before the ISO standards were published, but there is still no single, agreed upon standard, 

besides the ISO framework, for applying LCA to entire vehicles (ACEA 2012). This lack of an agreed 

upon standard or guideline has led to numerous studies by multiple manufacturers, each with 

unique methodology, assumptions, and conclusions. Although the usefulness of LCA is generally 

agreed upon amongst automakers, the resulting confusion from the differing studies has left some 

automakers questioning the validity, and their own understanding, of LCA (ACEA 2012). It can also 

be difficult to compare the LCA outcomes from one manufacturer to another, or from vehicle to 

vehicle, which to some degree, defeats the core purpose of conducting comparative LCAs. 

One such automaker coping with the growing adoption of LCA is Fiat Chrysler Automobiles 

(FCA). Having recently completed their first full vehicle life cycle assessment (Fiat S.p.A. 2014), 

FCA must now assess their newly developed LCA methodology. The specific issues include: 

 Which are the most critical criteria when conducting an LCA on whole vehicles? 

 How can the methodology be improved for comparability to other studies? and; 

 How does their analysis method compare to those used by other manufacturers? 

Thesis Objective 

This thesis examines a selection of the currently published guidelines for conducting LCA. 

As part of the examination, each of the LCA methodologies will be applied to multiple FCA vehicles 

sharing a similar chassis, but with differing fuel types. Not only will this application serve to answer 

the questions posed above, but it will also help to increase FCA’s knowledge base on the 

environmental impacts of their alternative fuel vehicles (AFVs). Moreover, the questions above 

are applicable to any automotive manufacturer applying LCA to its vehicles, and the results of this 
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thesis will be applicable for both automakers, researchers and any original equipment 

manufacturer (OEM) in the auto industry. 

Following the LCA studies, the current guidelines will be compared against their ability to 

identify the most critical criteria of the life cycle, produce reliable results for a range of scenarios, 

and the workload required. The thesis will then attempt to identify an ideal guideline: either by 

nominating one of the current guidelines, suggesting modifications, or by creating a new, unique 

guideline. The thesis will also comment on the applicability of the guidelines as possible bases for 

future regulations, or as standards for making environmental product declarations (EPDs).  

Motivation 

 Just as automakers have had a growing interest in LCA over recent years, so too have 

regulators, particularly those within the European Union (EU). Global concern for climate change 

is growing, a trend that can be seen by the increasingly strict emissions limits being set by 

government units worldwide (Figure 1). At the same time, regulators are becoming increasingly 

aware of not just global warming, but of all environmental impacts from industrial activities. This 

increased awareness has led to speculating whether LCA based regulations for industries may be 

forthcoming in the near future (ACEA 2012). 

 
Figure 1: Trend of fuel economy vs. time in the US and EU with projection of future regulations.  

Data taken from multiple sources: (Alson, Hula and Bunker 2013), (European Environment Agency 2013), (Department 
of Transportation 2012) 

In addition to environmental protection, regulators are concerned with environmental 

product declarations (EPDs). Companies regularly use EPDs to describe or advertise the 

environmental benefits of their products over competitors, so it is necessary that the EPD process 

generates results that are both accurate and consistent. A good understanding of LCA 
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methodology can assist regulators to ensure the EPD process meets these requirements, as well 

as giving automakers a competitive advantage should standards become a reality. The first set of 

product category rules (PCRs) for passenger vehicles was released in 2005, but has now expired 

and may be replaced (EPD International AB 2015). In 2015, the European Commission is currently 

in the pilot phase of a program to develop standards for writing EPDs, known as the Product 

Environmental Footprint (PEF) program (European Commission 2014). 

The automotive market place is also changing. Automakers are diversifying their brand 

images, and marketing their company’s sustainable initiatives. LCA studies generate reputable 

data that companies can use for reporting initiatives and progress on a company-wide level. 

Publications such as Fiat’s yearly “Sustainability Report”, and the company’s inclusion in third 

party analyses such as the Dow Jones Sustainability Index, are becoming increasingly important 

to their growth strategy. 

Methodology in Brief 

 To conduct the analysis proposed in this thesis it was first necessary to review the current 

literature on LCA methodologies and, in particular, any guidelines that are specific to automotive 

applications. They were compared to identify the differences between their suggested criteria, 

and their scope of analysis. These methodologies were then applied to a set of FCA vehicles, 

through which the effect of the criteria and scope of each methodology was determined for a 

wide range of analysis scenarios. Deeper investigation into the results of the LCA revealed exactly 

which criteria, for which scenarios, have the greatest, or least, impact on the outcome of the 

study. The need for a new guideline was then evaluated. Finally, the new guideline was developed 

and applied to the original vehicles, to assess the difference between the original guidelines and 

the new one. The new guideline was also compared against LCA study results published by other 

automakers. The flowchart on the following page illustrates the workflow through each chapter, 

detailing the contribution of each chapter to the whole. 



4 
 

 

Figure 2: Workflow diagram for thesis chapters 

INTRODUCTION

•The problem of the lack of standardization for LCA studies in the automotive industry is 
introduced

LITERATURE 
REVIEW

•Life Cycle Assessment is discussed, along with ISO and other pertinent standards

•Review of LCA guidelines that will be studied

METHODOLOGY

•The process of selecting guidelines and how the comparison will be done is described

•Requirements of an ideal LCA guideline are outlined

ASSESSING 
GUIDELINES

•The differences between LCA guidelines will be examined

•Hypotheses are made concerning the impact of each guideline on the study results

LIFE CYCLE 
MODELLING

•The data collection and modelling work done in GaBi (LCA software) are discussed in detail

•The limitations of the study and their impact on the results are discussed using the EUCAR 
guideline as an example

LIFE CYCLE 
IMPACT 

ASSESSMENT

•Results from the life cycle model are reviewed (results are shown by impact category using 
the eLCAr guideline as an example)

•Results from each guideline are compared in select impact categories

LIFE CYCLE 
INTERPRETATION

•The guidelines are compared based on the results from the previous chapter

•A series of case studies for particular life cycle scenarios is discussed

A NEW 
GUIDELINE

•The need for a new guideline is stated, and the new guideline is written

EVALUATION 
OF THE NEW 
GUIDELINE

•The impact category results using the new guideline are compared to the previous 
guidelines

•The new guideline is compared to other manufacturer's LCA studies

CONCLUSION

•The results of the project are summarised, recommendations given, and areas for further 
work identified
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CHAPTER 2 

LITERATURE REVIEW 

2.1 LCA Frameworks and Methodology 

Evolution of LCA 

The name “Life Cycle Assessment” was first adopted in 1990 during a workshop of the 

Society of Environmental Toxicology and Chemistry (SETAC). However, the idea was not new at 

the time (PE International 2015). LCA type studies first appeared in the late 1960s, in response to 

growing concerns over energy consumption. These early studies only considered a limited number 

of inputs and outputs, focusing primarily on total energy use and emissions, but also varied greatly 

in the assumptions and input data used (Scientific Applications International Corporation (SAIC) 

2006). Interest in life cycle studies grew rapidly throughout the 70’s however, and some 

standardized methodologies began to emerge. The first method to be published, known as 

Resource and Environmental Profile Analysis (REPA), consisted of a Life Cycle Inventory (LCI) of 

materials, energy use, and associated emissions throughout the product’s life cycle (Scientific 

Applications International Corporation (SAIC) 2006). Through the end of the 70s and most of the 

80s growth of LCA slowed, but interest remained and LCA studies slowly expanded to include 

impacts assessment and interpretation phases. In 1993 the US EPA published “Life-Cycle 

Assessment: Inventory Guidelines and Principles” and a few years later in 1997, ISO released their 

first standard on Life Cycle Assessment, ISO 14040. The new ISO standard incorporated 

requirements for defining the goal and scope of the study, inventory analysis, impact assessment, 

and interpretation of the results (Vigon, et al. 1993) & (ISO 2006). 

Common Frameworks 

 The two frameworks introduced in the preceding paragraph, ISO14044 and the US EPA’s 

“Life Cycle Assessment: Principles and Practice”, have formed the basis for most LCA studies 

carried out since their introduction. These frameworks provide a basic format for conducting LCA 

on any product, process, or industry, and are both very similar in nature. The ISO framework is 

shown in Figure 3.  
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Figure 3: Phases of an LCA study, as depicted in ISO 14040 and cited by the US EPA (ISO 1997) 

The US EPA framework is written mostly as a guide to suggested best practices, whereas the ISO 

methodology provides a slightly stricter set of analysis steps that must be carried out. Even though 

the creation of these frameworks has helped to standardize LCA practice, and increased the 

quality of LCA studies, they are too general to provide specific answers for applying LCA to a 

particular product (European Commission 2014). Ensuring consistently comparable LCA studies 

within an industry requires guidelines that are more detailed. 

LCA in Detail   

The basic LCA framework is comprised of four assessment phases: goal and scope 

definition, life cycle inventory analysis (LCI), life cycle impact assessment (LCIA), and life cycle 

interpretation (ISO 2006). In the goal and scope definition phase, the goals of the study are 

defined as well as the functional unit, system boundaries, and data quality criteria. The ISO 

framework states that the goals of the study should be developed taking into consideration the 

intended use of the study, anticipated audience, and motivation for making the study (ISO 2006). 

The functional unit defines the performance specifications and the number of products associated 

with the material and energy inventory. Performance specifications are particularly important in 

comparative studies; however, this case will be discussed later. The system boundaries separate 

the product being studied from the surrounding environment and through them pass only 

elementary flows of materials or energy. Materials include both raw materials for manufacture as 

well as waste emissions such as CO2 or VOCs, and the inventory does not discriminate with respect 

to the material state (ie. solids, liquids, and gases). During the inventory phase, data are collected 

to quantify the input and output flows for all life cycle stages, as shown in Figure 4. Both the ISO 
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and EPA frameworks give the same suggested methods for allocating inputs and outputs in cases 

where manufacturing processes result in multiple products and/or co-products (Scientific 

Applications International Corporation (SAIC) 2006). The preferred allocation processes are unit-

process division or expansion, whereby distribution of flows is determined analytically, but 

partitioning can also be done to approximate the distribution based off any physical principle that 

makes sense given the circumstance. How recycled materials are considered is somewhat unclear, 

particularly for open-loop recycling programs, but for closed-loop programs, both frameworks 

suggest crediting the recycled materials to the virgin supply. 

 

Figure 4: Life cycle stages as depicted for the inventory phase (Vigon, et al. 1993) 

In regards to the impact assessment phase, both frameworks cover the same steps shown 

in Figure 5; however, categorization, classification, and characterization are mandatory in the ISO 

14000 framework. Weighting and combining the results must always be done with caution as this 

involves value-choices, and are not recommended for comparative assessments by either 

framework (ISO 2006). The classification, characterizations, and weighting steps are necessarily 

complex, since similar environmental effects of different pollutants must be evaluated and 

balanced, and therefore many methodologies exist specifically for the LCIA phase. Depending on 

the impact category and specific emission, classification and characterization may also require 

geographic factors to account for the location of the emission or a specific ecosystem’s sensitivity. 

A detailed evaluation of LCIA methodologies is beyond the scope of this thesis; however, a concise 

review of current methodologies has already been published by the European Commission’s Joint 

Research Center (European Commission - Joint Research Center - Institute for Environment and 
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Sustainability 2011). For the studies conducted in this thesis, the method developed by the Leiden 

University Institute of Environmental Sciences (CML 2001) has been followed, as well as the 

methods suggested by the International Reference Life Cycle Data System (ILCD) for impact 

categories not used in the CML method. The CML 2001 method has been developed for a 

European context and is one of the most used LCIA methods available (Martinez, et al. 2015). 

 
Figure 5: Mandatory and optional elements for Life Cycle Impact Assessment (ISO 2000) 

The final phase of the LCA framework is the interpretation phase, which is mainly used 

for reviewing the completeness of the study and identifying any flaws or critical issues that may 

have been overlooked. During this phase, conclusions can be drawn from the results of the study 

and a course of action can be decided on or recommended. 

2.2 LCA and the Automotive Industry 

Applying LCA to Passenger Vehicles 

One year after the publication of ISO 14040 in 1997, the European Commission for 

Automotive Research (EUCAR), printed its own guideline for the application of LCA in the 

automotive sector (Rover Group Ltd 1998). The EUCAR guideline was one of the first published 

documents to suggest specific methods for considering details such as; data quality, use phase 

conditions, and impact assessment, and it still represents a viable standard for the needs of 

today’s automakers. At the time of its publication however, the majority of automotive LCA 

studies focused only on individual materials, components, or fuel cycles, (ECOBILAN S.A. 1996) 
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and so the EUCAR guideline does not describe a full vehicle LCA in significant detail. In Chapter 4, 

the EUCAR guideline will be discussed in greater depth and compared to the other guidelines.  

 Some of the first applications of LCA to an entire vehicle are the studies by Kobayashi and 

Lave, published in 1998 and 2000 respectively (Kobayashi, et al. 1998) & (Lave, et al. 2000). Both 

of these studies are academic in nature and use generic or hypothetical data for the vehicles being 

considered. Kobayashi uses a detailed breakdown of typical materials found in passenger vehicles 

to calculate the production phase emissions, similar to the technique used by FIAT shown in Figure 

6. Although simple in approach, this method represents a robust strategy for full vehicle LCA.  

 
Figure 6: Material breakdown as used by FIAT in their LCA study of the FIAT 500L 

(Bonino, Life cycle assessment (LCA): Fiat 500L bi-fuel 2013) 

 The study by Kobayashi only applies LCA to a single vehicle however, while the study by 

Lave introduces the complexity of comparing different vehicles running on different fuel types. Of 

particular difficulty when comparing multiple vehicles, on different fuels, is defining a realistic 

functional unit while maintaining equal functionality. Indeed, the study by Lave is unable to 

achieve this aspect and as such considers electric and internal combustion engine (ICE) vehicles 

separately (Lave, et al. 2000). Many recent LCA studies by vehicle manufacturers refer to the New 

European Driving Cycle (NEDC), or other regulated drive cycles, for their comparisons, but they 

are overshadowed by the fact that electric vehicles (EVs) are not able to achieve equivalent range 

or top speed as their ICE counterparts; so equivalent functionality has not been achieved (Del 

Duce, et al. 2013). As LCA is used more frequently by OEMs, and alternative fuels gain in 

popularity, the problem of achieving equivalent functionality will continue to grow in importance. 

NOM* = Natural Organic Materials  
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Environmental Product Declarations 

Environmental product declarations (EPDs) are claims made by companies regarding the 

environmental impact of their products. They interest both automakers and regulators because 

of their use as an advertising medium. Regulations for making an EPD are created by writing a set 

of product category rules (PCRs) that describe the method of analysis that must be done to 

generate the EPD. These PCRs are often based on LCA methods and could both contribute to, and 

benefit from, the development of LCA methodology. 

In 2005, a first set of PCRs for passenger vehicles was developed under the INTEND project 

(Macroscopio spa 2005). Only the manufacturing and use phases are included, while end of life 

vehicle (ELV) treatment is neglected due to the uncertainty from open loop systems. Only the 

main parts of the vehicle (e.g. body, engine, gearbox) are considered, while parts that vary 

between vehicle’s trim levels (e.g. seats, interior panels, electronics, etc…) are excluded 

(Macroscopio spa 2005). These exclusions simplify the PCR, but reduce the overall accuracy of the 

analysis. Other parameters and assumptions, such as the drive cycle, are specifically stated in the 

PCR, meaning results from different manufacturers should be highly comparable, but the accuracy 

and relevance of the analysis depend on these same assumptions. This PCR has since expired, but 

now it may be replaced with the outcome from the European Commission’s Product 

Environmental Footprint (PEF) project. 

The PEF project is an ongoing project by the European Commission to address the need 

for standardizing how product manufacturers make environmental declarations (European 

Commission 2014). Its three-year pilot phase was launched in 2013. The Environmental Footprint 

Guidance document states the problem with current standards: 

“Existing life cycle-based standards do not provide sufficient specificity to ensure that 

the same assumptions, measurements, and calculations are made to support comparable 

environmental claims across products delivering the same function” – (European 

Commission 2014) 

The problem statement above closely resembles that of this thesis. However, the PEF project is 

more concerned with generating a framework for creating PCRs: what would become known as 

Product Environmental Footprint Category Rules (PEFCRs). Interestingly, the results of this thesis 

could augment or further inform the development of the PEF guide, particularly concerning the 



11 
 

automotive sector. However, there has been resistance to the PEF program because of areas 

where the PEF guide has deviated from the ISO 14040 standard (Finkbeiner 2013). The PEF guide 

has also been criticized for not being sufficiently capable of achieving its stated objectives, namely 

increasing harmonization and comparability across LCA studies on similar products (Chair of 

Sustainable Engineering 2014). 

Environmental Impacts and Understanding of Results 

 A key aspect of all LCA frameworks is that they not only account for the entire life cycle 

of the vehicle, but also that they capture a well-rounded view of the many, diverse environmental 

impacts associated with a product. Unfortunately, this benefit is lost when an industry becomes 

fixated on a single environmental impact, a problem that is apparent in the automotive industry. 

A typical example can be seen in Figure 7, where a presenter has illustrated the breakdown of the 

“environmental impact” of a typical car (Jonnaert 2015). The illustration does not describe the 

impact category used, but closely resembles the breakdown of the global warming potential 

(GWP) impact or fossil energy consumption of a typical vehicle. Given the presented information, 

one might assume that production and end-of-life phases are negligible, so Well-to-Wheel (WTW) 

methods that focus on fuel energy related impacts should be sufficient in gauging the 

environmental impacts of a vehicle. This conclusion would be invalid however, as it neglects other 

environmental impact categories, such as Acidification Potential (AP) or Abiotic Depletion 

Potential (ADP), which are strongly influenced by the production phase (Bonino 2015). The focus 

on a single indicator then increases the risk of making decisions that could result in increasing the 

environmental impacts in other categories. 

 
Figure 7: Considering only a single impact category can reduce the value of an LCA (Jonnaert 2015) 

 The problem of fixating on a single impact category is further aggravated when a lack of 

understanding exists within an industry. The effect of vehicle pollution on global warming has 

been a key topic within the auto industry for many years, so the GWP impact category is well 
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understood by most key stakeholders. On the contrary, ozone depletion potential (ODP) is a new 

topic for the auto industry, as it is associated primarily with the consumption of lithium and 

solvents in the production of electric vehicles. The impact of the auto industry on ozone depletion 

is less understood than GWP, and this lack of understanding could lead decision makers within 

the industry to neglect the impact, or feel that it is of less importance than more commonly known 

impacts. Within the context of this thesis then, it will be necessary to recognize the relevance of 

each of the impact categories chosen, so that the intended audience can interpret and benefit 

fully from the life cycle analysis. 

2.3 Alternative Fuel Vehicles 

 From a life cycle perspective, there are unique advantages and disadvantages for different 

types of alternative fuel vehicles (AFVs). According to a 2001 study on toxic emissions from mobile 

sources, vehicles running on ethanol (E85) emit substantially more acetaldehyde emissions than 

conventional gasoline, while formaldehyde emissions are increased by about 200% by both E85 

and CNG fuels (Winebrake, Wang and He 2001). The study in question examined 14 different types 

of light duty vehicles; including HEVs, PHEVs, EVs, FFVs, LPG, CNG and CNG bi-fuel, and compared 

them across emissions of five air toxics: the three already mentioned, plus butadiene and 

benzene. Looking at all of the air toxic results, the battery electric vehicles (BEVs) outperformed 

the rest in both urban (usage phase) and total (fuel cycle) categories, while the gaseous fuels (LPG, 

CNG, and Bi-fuel) outperformed even the HEVs in most categories. As will be discussed later 

however, because EV emissions depend on the method of electricity production they are subject 

to variations in regional electricity supply. 

 The study by Winebrake, et al. excluded the more common air pollutants from mobile 

sources, such as CO2, NO and NO2 and chose to focus on select air toxics. A more typical study was 

conducted by a group at Carnegie Mellon University, which did account for life cycle CO2 emissions 

by evaluating the AFVs based on global warming potential (an index created by weighting the 

emissions of known GHGs based on the strength of their effect and measured in kg CO2 

equivalent/vehicle lifetime) (Lave, et al. 2000). This study examined nine different fuel/engine 

combinations as well as conventional gasoline using the input-output LCA method, which will be 

discussed later in the methodology section. In order to represent accurately the fuel classes, each 

vehicle was compared on an equal basis, meaning each vehicle was of approximately the same 

size, with similar power and range. EVs are excepted because they currently lack the energy 
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density to compete with the range of ICE vehicles. Using US data for energy generation, the EVs 

and HEVs showed much lower global warming potential than all other vehicles studied. The only 

alternative vehicles studied were dedicated CNG vehicles, but they had the least global warming 

potential of the ICE group. In their conclusion, the authors stated that while CNG appeared to be 

an attractive alternative, it is hampered by the limited energy density of the fuel. In order to 

achieve equivalent range to a gasoline vehicle (approx. 600km) they estimated a CNG vehicle 

would need to gain about 200kg in fuel, storage tanks, and supporting structure. 

Battery Electric Vehicles 

 
Figure 8: Illustration of the Fiat 500 electric 

*The figure above has been modified, from its original design in a Fiat technical report (courtesy FCA Italy S.p.A.) 

 Battery electric vehicles use one or more electric motors for propulsion and draw all of 

their energy from batteries carried on board, as distinguished from any form of hybrid electrical 

vehicle that uses an IC engine. The illustration in Figure 8 shows the layout of the Fiat 500e. The 

batteries are typically placed under the floor to avoid negatively affecting the vehicle’s handling 

from the large mass, and to minimize the loss of storage space. The vehicle shown uses a single 

electric motor; however, two and four motor configurations are also common. Gearboxes are 

typically not required due to the flat power curves associated with electric motors; however, a 
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reduction gear set is often needed to provide adequate torque to the driving wheels. From a life 

cycle perspective, one topic that has received little attention is the effect of battery disposal in 

the end of life phase. Zackrisson, et al. studied the impact of battery production and use and found 

that a 10 kWh battery will account for about 4400 kg CO2 of energy use during production; 

however, no attempt was made to examine the effects of toxic materials and rare metals on the 

environment (Zackrisson, Avellan and Orlenius 2010).  

Electricity Production 

 Unlike combustion engine vehicles, where the vehicle’s emissions depend on the fuel 

being used, emissions associated with electric vehicles depend on the method of electricity 

generation. Typically, GWP emissions per kilometer from BEVs due to electricity production are 

less than from IC engines. While this is not always true, examples proving the contrary are rare 

(Huo, et al. 2013). Figure 9 compares the average, electricity grid mix for all EU-27 countries with 

the grid mix from Sweden (thinkstep AG 2015). Both of these mixes have been used in this thesis 

and are discussed in Chapter 7. The average mix uses a much larger percentage of Lignite, Hard 

Coal, and Natural gas, which will create much higher emissions than from Nuclear or 

Hydroelectricity. As with ICE vehicles, the life cycle GWP emissions of EVs are still dominated by 

the use phase, despite the increased efficiency of electricity production and electric motors. 

 
Figure 9: Comparison of electricity grid mix between the EU-27 average mix and Sweden 
Note that the data for the Swedish mix is included in the average mix data for the EU-27 
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Bi-Fuel Technology 

 Although there are many varying definitions of a bi-fuel vehicle, most definitions specify 

that the vehicle should have two separate fuel systems and be capable of operating independently 

on either fuel (NGV Global 2011). Aside from the addition of the secondary fuel system there are 

relatively few differences between bi-fuel and conventional vehicles. A typical layout using CNG 

and gasoline is shown in Figure 10 (Fiat Group Automobiles S.p.A. - Parts & Services - Technical 

Services - Service Engineering 2014). CNG storage tanks are placed in the trunk and under the 

floor: maximizing the volume of CNG storage without diminishing the vehicle’s luggage capacity 

is critical for consumer appeal. A tank regulator (not shown) drops the pressure from a maximum 

of 25,000 kPa to a safe pressure for the fuel supply lines. In the engine bay, the gas is passed 

through a second pressure regulator and distributed to the injection ports where it is injected by 

dedicated fuel injectors. In the vehicle in Figure 10 there is only one engine control module (ECM), 

however some bi-fuel vehicles have separate ECMs for each fuel system. The vehicle is typically 

started under gasoline, at which point the driver can manually turn on the CNG system. The 

vehicle will then operate under only CNG and switch back to gasoline when the CNG supply has 

expired. Most bi-fuel vehicles available have longer combined ranges than their gasoline 

equivalents, which is because the gasoline tank is not usually downsized. The range of a typical bi-

fuel vehicle on only CNG is usually around 350 km, or less than half of the vehicle’s range on 

gasoline (Federmetano 2013).  

 

1. CNG Storage Tanks 2. CNG Filler Cap 3. Gasoline/CNG Switch 4. Pressure Regulator 
5. Gas Distributor 6. ECM (Engine Control Module) 7. Gas Injectors 

Figure 10: Illustration of the bi-fuel system on a Fiat Panda Natural Power 
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Assuming that a bi-fuel vehicle is used predominantly with CNG, they typically show an overall 

reduction in life cycle GHGs due to the reduction of CO2 emissions during the use phase, despite 

requiring more energy for the additional components and compression of the NG during refueling 

(Bonino 2013). 

Compressed Natural Gas Fuel Properties 

 Natural gas found in pipelines across North America is composed of approximately 87-

97% methane (CH4), 1.5-7% ethane (C2H4), various other hydrocarbons in trace amounts, and 

about 5.5 mg/m3 of sulfur for odor (Chemical Composition of Natural Gas n.d.). Because NG is 

almost entirely composed of methane, for most analyses only the chemical and physical 

properties of methane are considered. Methane has the highest ratio of hydrogen to carbon of 

all hydrocarbons, giving it the highest ratio of heat of combustion to molar mass in that group 

(Pourkhesalian, Shamekhi and Salimi 2010). Unfortunately, methane is a gas at room 

temperature, meaning the energy per unit volume is naturally very low. Even when compressed 

to over 20,000 kPa (U.S. Department of Energy 2013) the low energy per unit volume means that 

CNG vehicles struggle to achieve comparable range to gasoline vehicles. 

 Using methane in an internal combustion engine poses its own challenges and has both 

advantages and disadvantages. In a typical liquid fuel injection system, the fuel is vaporized on 

injection into the air box; which has the effect of cooling the intake charge and leads to increased 

volumetric efficiency. When injecting a gas however there is no vaporization of the fuel, so the 

intake charge remains at ambient temperature. In addition, because of the lower fuel density a 

greater volume of fuel is required. Combined, these two properties reduce the IC engine’s 

volumetric efficiency. Another problem is that methane has a slower flame propagation speed 

than gasoline, meaning that to achieve peak combustion pressure the spark must be advanced 

further. The greater spark advance increases the expansion of the combustion chamber gases 

prior to top-dead-center, increasing the negative work done by the piston and peak cylinder 

pressure. The combined effect is a drop in brake mean effective pressure (BMEP) and higher brake 

specific NOx creation. Furthermore, although methane has much lower volatile organic 

compound (VOC) emissions (Winebrake, Wang and He 2001), it has much higher CH4 emissions 

(Martins, Rocha and Sodré 2014). Despite these disadvantages, methane’s high ratio of heat 

capacity to molar mass results in the lowest brake specific fuel consumption and CO 

concentrations of all hydrocarbon based fuels (Pourkhesalian, Shamekhi and Salimi 2010). Table 
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1 illustrates how some of the key performance indicators for IC engines are affected when an 

engine is run on methane, as opposed to gasoline, and tuned for similar power output. 

Vol. Eff. BMEP BSFC BSNOx CO CO2 CH4 VOCs 

reduction reduction reduction increase reduction reduction increase reduction 
Table 1: Typical effects of methane on key performance indicators for an IC engine 

Items in bold are considered as improvements over gasoline 

Natural Gas Production & Distribution 

 Further promoting interest in CNG is the recent growth in the American natural gas 

industry, particularly due to the rapid development of shale gas and hydraulic fracturing 

techniques. According to a recent report by the Economist Intelligence Unit, shale gas production 

has grown so fast that the US is now poised to become the largest producer of oil and natural gas 

based liquids in the world by 2015 (The Economist Intelligence Unit 2014). Natural gas is also more 

affordable than gasoline; since 2005 the US DOE has tracked prices of alternative fuels and during 

this time period NG has never been more expensive than gasoline on a $/gasoline gallon 

equivalent basis (Clean Cities Alternative Fuel Price Report 2014). Because NG is produced 

domestically, its price is also much more stable than imported oil. Moreover, since the majority 

of homes in the US already have NG coming to them, there is the possibility to refill bi-fuel cars at 

home, although home refueling has not had the impact some experts would have hoped for 

(Mcallister 2013).  

 US natural gas production comes from primarily four sources: coalbed wells, shale 

reserves, oil wells, and gas wells. Figure 11 shows gross withdrawals from US NG wells for each of 

these four sources (Natural Gas Gross Withdrawals and Production 2014). Historically, NG 

production was dominated by gas wells, as the natural gas trapped in these wells is easy to reach 

and requires very little processing to prepare for distribution. In recent years however, the 

combination of horizontal drilling and hydraulic fracturing (or fracking) technology have 

dramatically increased the production from shale gas (Arthur, et al. 2008). This type of gas 

extraction does however, have some unique environmental impacts due to the high volumes of 

water consumed (Arthur, et al. 2008), and increased leakage of methane during the fracturing 

process (Howarth, Santoro and Ingraffea 2011). According to Howarth, et al., GHG emissions from 

shale gas production could be between 20 and 200% greater than conventional gas production 

due to methane leakage. 
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Figure 11: Total US production of natural gas vs. time, by source 

Bio-Methane 

 Another promising technology that has created interest in bi-fuel vehicles, more so in the 

EU than in the US, is bio-methane. Bio-methane, or biogas as its more commonly called, can be 

produced through fermentation using a number of different feed stocks, the most common being 

farmed crops, or waste/manure (Edwards, et al. 2014). In a 2014 report by the European 

Commission’s Joint Research Center (JRC), it was found that by preventing the spreading of 

manure on farmer’s fields and instead converting the waste into biogas, the net effect would be 

to remove GHGs from the atmosphere (Edwards, et al. 2014). Figure 12 shows the net GHG 

emissions for biogas as described in the JRC report; and although these numbers only represent 

a limited use, best-case scenario, they give some indication of the potential for biogas to reduce 

GHG emissions from automobile use. Another scenario for the production of biogas is discussed 

by Hatton (2015), in their article for Racecar Engineering. Hatton describes the use of engineered, 

bio-organisms that can be fed with solar energy and waste CO2 in order to create bio-methane. 

Using this method, biogas ICE vehicles could realistically produce fewer GHG emissions than even 

electric cars running on renewable electricity, while also having the capability to be up-scaled to 

the point of providing a sufficient replacement for conventional fossil fuels (Hatton 2015). 
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Figure 12: WTW GHG emissions from use of select biogas pathways. 

*Compressed Biogas (CBG)  
Further analysis of this data and its applicability to automotive LCA is provided in the appended presentation 

(Appendix A).  
Data extracted from (Edwards, et al. 2014) 

2.4 Automotive LCA Literature Reviews 

 Previous reviews of LCA studies in the automotive sector, conducted by the JRC in 1996 

and by Messagie, et al. (2013), have found that automotive LCAs tend to have a heavy focus on 

GHG emissions (ECOBILAN S.A. 1996). The literature reviews also mention the need for 

methodological improvements, and the need to balance the workload with the validity of the 

results. The EUCAR methodology attempted to solve many of the issues found in the JRC’s 1996 

review. From Messagie, et al.’s review in 2013 however, it is evident that the same methodological 

issues are still prevalent. Table 2 summarizes the two literature reviews, highlighting the issues 

that will be explored further in this thesis. 

 Methodological 
Issues 

High Impact 
Assessment Areas 

Suggested Areas for 
Improvement 

Overview of Life-
Cycle Assessment 
Studies in the 
Automotive Sector – 
(ECOBILAN S.A. 1996) 

- Methodology 
harmonization 
- Lack of studies on 
whole vehicles 
- Mostly European 
centered 

 - NA - Focus on yielding quick, 
but valid results 
- Creation of reliable LCA 
databases 
- Creation of common 
guidelines 

Key outcomes from 
Life Cycle Assessment 
of vehicles, a state of 
the art literature 
review – (Messagie, 
Macharis and Van 
Mierlo 2013) 

- Lack of consistency 
in results from similar 
studies 
- Data unavailability, 
especially for non OEM 
commissioned groups 
- Use of NEDC for use 
phase emissions 

- selection of 
vehicle and lifetime 
- electricity and fuel 
sources 
- Assumptions in 
LCI phase 
- LCIA impact 
categories used 

- Consideration of impact 
categories beyond GWP 
- Increase detail in LCI phase 
- Assessment of real 
recycling scenarios 
- Using a more realistic 
driving cycle 
- Including uncertainty and 
variability in results 

Table 2: Results from previous literature reviews on automotive LCA studies 
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CHAPTER 3 

METHODOLOGY 

Selecting Suitable Life Cycle Assessment Guidelines 

 The guidelines selected for analysis should be both specific to passenger vehicles and 

unique in their approach. For instance, the two frameworks discussed in the previous chapter (US 

EPA and ISO) would not be suitable for use in this comparison since they are too ambiguous. 

Because the frameworks are designed for use in many industries, they are written in broad terms, 

such that it would be relatively easy to complete an LCA study that conformed to both frameworks 

simultaneously. This overlap diminishes the ability to compare the methodologies since LCA 

studies adhering to either one could conceivably be the same: therefore, the more specific and 

different the demands of the guideline, the more likely that a unique solution will be found. Each 

guideline used should also have a roughly similar scope of analysis, so that comparisons can be 

drawn across many phases of the analysis. If a certain guideline omits a phase of the analysis, but 

provides reasoning or evidence of that phase being negligible, then this guideline would still be 

allowable since the guideline has still considered all phases of the analysis. Lastly, all the guidelines 

chosen should still be technically relevant and reasonably state-of-the-art. For example, it would 

be inappropriate to compare one guideline against an older version of itself, because the older 

revision would presumably be outdated and the newer revision considered more complete. 

Analysis of Guidelines 

Once a suitable set of guidelines has been determined, they will be tested by being 

applied to a series of similar vehicles produced by FCA. Table 3 summarizes the vehicles proposed 

for this analysis. The Fiat 500 model line has been selected since it is one of Fiat’s most popular 

models (carsitaly.net 2015) and is the only Fiat model also offered with an electric powertrain 

(although only in California and Oregon, as well as limited use for urban car sharing programs in 

Italy). A CNG powered version of the 500 does not exist currently; however, data can be taken for 

the CNG fuel system from the Fiat Panda. The Panda and 500 share the same chassis, and come 

with a similar range of engines, making the Panda a suitable surrogate (topgear.com n.d.). By using 

gasoline, electric, and natural gas models, the vehicles studied cover a wide range of fuel options 

representing the current state-of-the-art of the automotive industry (conventional fuels, 

electrified powertrains, and alternative fuels). 
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 Fiat 500 Fiat 500e Fiat 500 Natural Power Fiat 500 GPL 

Fuel Gasoline Battery electric Gasoline + Compressed 
Natural Gas 

Gasoline + Liquefied 
Petroleum Gas 

Modifications 
from gasoline 

 Battery + electric 
motor + gearbox 

CNG storage tank + fuel 
system 

LPG storage tank + fuel 
system 

Table 3: Vehicles proposed for study and their characteristics. 
*Note that the 500 Natural Power and GPL models have the same gasoline fuel system as the standard model, in 

addition to the secondary fuel system, while the 500e has only an electric powertrain. 

 By applying each guideline to multiple AFVs, the flexibility of the methodology to account 

for many different input parameters can be assessed. It will also be possible to see the effects of 

each assumption or parameter used by further analyzing the LCA results. This analysis of the 

results will be done by examining the breakdown of each impact category, to identify the material 

flows that have a strong effect in each. The assumptions and parameters associated with each 

material flow will then be determined and the most critical parameters missing from each 

guideline can be identified. As well, variables that require more data but that do not significantly 

affect the study can also be identified.  

Finding an Ideal Guideline 

 The ideal guideline should balance the work required to complete the study, while still 

capturing the most important variables in the vehicle’s life cycle. If the current guidelines are 

insufficient at meeting the ideal requirements, a new guideline will be created. The intended 

application will be use by automakers in basic, comparative LCA studies of small passenger cars. 

For automakers operating in multiple markets, the guideline should give advice for LCA studies 

with a North American or European focus. PCRs require very strict and exacting criteria, but the 

new guideline will need to be more flexible so that automakers can choose the most appropriate 

scenario for their studies. The guideline will, therefore, not be developed with the intention of 

use as a PCR. 

 Developing requirements for an LCA guideline is a formidable challenge. There is a very 

broad scope of variables to consider, and an inherent lack of knowledge on true environmental 

impacts. For instance, attempting to determine the accuracy of an LCA study is a rather futile 

endeavor, since it is impossible to know the exact environmental impact of a particular product 

without knowing the exact details of the product’s life cycle scenario. Because LCAs are often 

developed for a particular set of circumstances, the results of the LCA would only be applicable in 

that scenario and difficult to extrapolate to others.  
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 Instead, to reduce the complexity, a condensed set of requirements have been chosen for 

the new guideline proposed herein.  

1. The most basic and starting requirement is that the new guideline should be robust, or 

valid in many situations, by various OEM’s. Robustness requires that the guideline 

consider a broad enough range of variables that might change or otherwise have a 

significant impact on the results, based on the chosen scenario. 

2. The variables that have the most significant effects on the study results or outcomes 

should be identified, and recommendations will be given for making assumptions on the 

key parameters of the study (use phase length, drive cycle and use pattern). 

3. The guideline should also identify variables that do not have a significant impact on the 

study’s outcome, such that these variables can be ignored in future studies. By limiting 

the number of variables that the LCA practitioner’s must address, it will be possible to 

reduce the workload associated with LCA studies. More time could then be placed on 

improving knowledge of the higher impact life cycle variables. 

 
Figure 13: Relationships between robustness and comparability 

 The trade-off between robustness and the comparability of separately conducted studies 

is presented in Figure 13. Robustness requires considering a broad spectrum of variables, but this 

means that the results of the study could change significantly based on the assumptions made. 

Variations in results from different OEM’s will make product comparisons more difficult. However, 

this outcome may be a necessary trade off to include a variable that may change the outcome of 

a study, or avoid making an incorrect conclusion. By limiting the variables considered to only those 

with the greatest impact, and providing clear recommendations on how to develop the study, the 

new guideline should still be able to enhance the comparability between studies.  

Robustness

•Achieve meaningful results in 
a range of scenarios

Comparability

•Ability to clearly distinguish a 
"winner" or best alternative
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Applying the Guideline 

 If a new guideline is developed, then the LCA study for each of the chosen vehicles will be 

re-evaluated and the results compared against those from the original studies. The overall 

benefits and improvements of the new guideline can then be evaluated referring to the original 

starting points. For a further evaluation of the guideline, the results of the final study will be 

compared to LCA results published by other OEM’s. This comparison will highlight any potential 

areas for improvement that were not considered in the original scope of the guideline, and give 

the ability to comment on the comparability of the new guideline to other methods. 

GaBi Life Cycle Software 

 To complete the life cycle assessment, Thinkstep’s GaBi software will be used. GaBi is a 

process model life cycle assessment tool: each step in the product life cycle is defined as a 

separate object (Hendrickson, et al. 1997). The process model contrasts the economic input-

output (EIO LCA) method, which uses a correlation matrix to relate activities and emissions 

between all sectors of the economy. In his study, Hendrickson compares the results of both GaBi 

and EIO LCA and found that while the EIO LCA did account for a larger range of emissions, the 

emissions that were accounted for in both models were not significantly different. The EIO LCA 

model tended to predict higher emissions because it counts emissions in other industry sectors 

(Hendrickson, et al. 1997). For this thesis, the differences between GaBi and EIO LCA are relatively 

inconsequential because the focus is on comparing the assumptions used for each analysis. For 

this purpose, the GaBi model allows for better control of the processes occurring within the 

system, making it easier to compare and contrast the effects of small changes to the analysis. 

Methodology Summary 

 A summary of the methodology is shown in Table 4. During the analysis phase, the most 

important life cycle factors are determined as well as potential areas for improving the 

comparability of similar studies. This knowledge is then used to evaluate the current guidelines, 

and, if necessary, a new guideline will be created. 

Preparation Modelling Analysis Synthesis Evaluation 
- Selection of 
suitable 
guidelines 

- Create GaBi 
model for 
each vehicle 
and guideline 

- Evaluate pros and 
cons of each guideline 
- Determine highest 
weight aspects of the 
life cycle 

- Modify current 
guideline or 
create new 
guideline 

- Compare new guideline 
to previous guidelines 
- Compare new guideline 
to LCA studies by other 
OEMs 

Table 4: Methodology summary 
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CHAPTER 4 

ASSESSING GUIDELINES 

Selection of Guidelines 

 In Chapter 2, several of the LCA guidelines considered for testing were already introduced: 

EUCAR’s Automotive LCA Guidelines and the Product-Category Rules for preparing an 

environmental product declaration for “Passenger vehicles” (PCR 2005:3). The study by Kobayashi 

was also intended to be a model for future LCA studies on vehicles, so the application of his 

method was considered as a guideline as well. The only guideline considered here that was not 

introduced in the literature review is the recently published eLCAr Guideline for the LCA of electric 

vehicles. Although the eLCAr guide was specifically developed for application to electric vehicles, 

the suggested practices and assumptions can be easily carried over for use on ICE vehicles. Table 

5 below gives a brief summary of the scope for each of the guidelines considered. 

 eLCAr EUCAR PCR Kobayashi 

Pages (~) 140 20 10 8 

Year of Publication 2013 1998 2005 1998 

Goal and Scope Definition X X X X 

Production X X X X 

Use Phase X X X X 

End of Life Vehicle X X  X 

Life Cycle Impact Assessment X X X  

Life Cycle Interpretation X  X  
Table 5: Comparison of scope for the considered guidelines 

 The eLCAr guide covers all formalized aspects of LCA and is fully compliant with both ISO 

14044 and the ILCD Handbook (Del Duce, et al. 2013), making it one of the most complete and 

exhaustive guidelines available today. The system boundaries described in the eLCAr guide are 

illustrated in Figure 14. Although these boundaries include many aspects that other methods do 

not, such as road infrastructure, the other methods have similar construction. 

 
Figure 14: System boundaries, as illustrated in the eLCAr guideline (Del Duce, et al. 2013) 
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 The EUCAR guideline and Kobayashi’s method also attempt to comply with ISO 14040, but 

they exclude certain aspects of the analysis. The EUCAR guideline does not contain any 

recommendations for interpretation of the analysis beyond the assessment phase, while 

Kobayashi ignores both LCIA and interpretation phases. Although Kobayashi’s method seems to 

use a thorough technique for the LCI phase, similar to that of the EUCAR guideline, he has 

neglected the LCIA and Life Cycle Interpretation phases; therefore, his method was not selected 

for further evaluation. In contrast to the other guidelines, the PCR represents a minimal LCI phase. 

It excludes ELV treatment and only requires the consideration of main chassis and powertrain 

components during part production and logistics. However, these simplifications are not expected 

to result in a significant reduction of the study’s accuracy because the end-of-life and production 

phases typically have a small impact on the total life cycle emissions. The PCR provides a good 

starting point to contrast other methods because of its simplicity. Moving forward, the eLCAr, 

EUCAR, and PCR guidelines were considered. 

Guideline Specifications 

 Each guideline considered provides a mix of specific criteria, as well as suggestions that 

are more open for the LCA practitioner to interpret. For this thesis, where there is ambiguity 

surrounding a certain variable within the guideline, the value or method most different from those 

suggested by the other guidelines will be used to demonstrate the maximum possible variation in 

results. Table 6 summarizes select analysis aspects that are described in each guideline. 

 eLCAr EUCAR PCR 

Functional Unit   X 

Foreground vs. Background Data X  X 

Data Quality X X X 

Allocation X X X 

In Process (Closed-Loop) Recycling X X  

Co-Product Evaluation X   

Allocation to Individual Components  X  
Table 6: General issues or processes covered by the available guidelines 

 The PCR necessitates a strict definition of the functional unit such that all studies 

completed will be comparable, while both the eLCAr and EUCAR guides leave the functional unit 

up to the discretion of the practitioner. The eLCAr guideline does however, stress the need for 

functional equivalence when undertaking comparative studies, such as in the case of a BEV 

compared to an ICEV (Del Duce, et al. 2013). In the BEV case, it may be necessary to add the use 
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of a rental car for long distance trips to achieve functional equivalence, so the effect of these 

additional considerations could also be evaluated. 

 Allocation of production data refers to assigning generic data from an assembly plant 

producing many products, to one product. Each guideline recommends a similar mix of 

alternatives, although preference seems to vary amongst them. Depending on the production 

scenario, allocation can have a significant impact on production emissions, so it is important that 

the method chosen accurately reflects the real scenario. Consider the case of a paint shop that is 

painting both small cars and large vans. If allocation by the number of vehicles was used for all 

production data from that plant, VOC emissions for the small car may be overestimated. If instead, 

allocation of VOC emissions were done by surface area or weight of all products painted, then 

VOC emissions would be significantly reduced for the smaller vehicle. The PCR recommends mass 

and strictly forbids economic allocation due to variations created by changes in the economy, 

while the EUCAR and eLCAr methods suggest allocation by number of products produced, mass, 

or surface area. In-process recycling is typically allowed for credit against the virgin material 

coming in, but the PCR does not permit the use of any credits. Depending on the material and 

recycling program considered, recycling credits can have a significant or negligible impact on 

production emissions, so it will be important to consider these effects (Broadbent 2011). 

 The use phase of the automobile is often considered the most important phase of the life 

cycle since it accounts for the largest percentage of GHG emissions. It would make sense then, 

that any factors considered in the use phase should have a large impact on the overall results of 

the study. Table 7 shows the factors related to this phase included in each guideline in which the 

eLCAr guideline is the most exhaustive. This arises because the usage of accessories, such as 

heating, air conditioning, and lights, has a much higher impact on the range and power draw of 

electric vehicles than ICE vehicles (Del Duce, et al. 2013). Another factor for planning the use phase 

is that with an EV the power required for each drive cycle can be quite easily calculated because 

an electric motor has an almost constant efficiency curve versus speed. With an ICE vehicle 

however, the engine efficiency is non-trivial, so it is much more difficult to calculate the required 

power for a drive cycle without full scale testing (Del Duce, et al. 2013). 
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 eLCAr EUCAR PCR 

Lifetime (mileage) 150,000 to 250,000 km 150,000 km (<1500 kg) 
200,000 km (>1500 kg) 

150,000 km  
(M1 Type) 

Lifetime (years) 10 to 13 12 10 

Basic drive cycle NEDC, CADC, or WLTC NEDC NEDC 

Climate control systems use X - - 

Auxiliaries use X - - 

Non-exhaust emissions X - - 

Noise - - X 

Vehicle maintenance X X - 

Road construction X - - 
Table 7: A selection of specifications for the use phase that differ across each guideline 

 Some recently published OEM LCA studies have cited that vehicle maintenance does not 

have a large impact on the overall life cycle of the vehicle (Volkswagen AG 2008). One exception 

for BEVs is the consideration of including a second battery to replace the first one. The battery 

has a large impact on the production phase emissions, and there is little data available for the 

lifetime of traction batteries in EVs (Gerssen-Gondelach and Faaij 2012). In the case of the Fiat 

500e, the battery is covered under an 8 year warranty, however all guides recommend a vehicle 

lifetime exceeding 8 years, so the use of a second battery should be considered (FCA US LLC 2015). 

 The impact categories used and their method of evaluation can have significant results on 

the interpretation of the LCIA. All the guidelines selected suggest a specific list of impact 

categories, shown in Table 8. However, the methodology followed for calculating the midpoints 

and endpoints can alter the results even if the same impact categories are used. Midpoints are 

more typically used in automotive LCA studies and they represent the category indicator results 

(example Figure 4, on page 7). Endpoints meanwhile represent the outcomes after weighting all 

impact categories and summing the effects. However, because endpoints involve aggregation, 

they may not be easily understood. The PCR gives its own set of instructions for calculating 

midpoints and neglects endpoint analysis, but the EUCAR and eLCAr both suggest multiple 

methodologies (Macroscopio spa 2005, Del Duce, et al. 2013, Rover Group Ltd 1998). It is not 

within the scope of this thesis to provide a detailed analysis of multiple LCIA methodologies, as 

this is a complex topic and has already been covered in detail by the ILCD (European Commission 

- Joint Research Center - Institute for Environment and Sustainability 2011). The ILCD has reviewed 

numerous methodologies for calculating each impact category and assigned recommendation 

levels for specific methodologies. The recommendation levels are based on relevance, robustness, 

and transparency of the evaluated methodology (European Commission - Joint Research Center - 
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Institute for Environment and Sustainability 2011). For an automotive guideline, sensitivity to 

individual flows used in the life cycle model, and their ability to portray different advantages and 

disadvantages of each alternative fuel, should also be considered when recommending impact 

categories. Further work beyond this thesis could include estimating the contribution of the 

automotive industry as a whole on each impact category, and comparing to global or regional 

emissions. 

Impact Category 
(midpoints) eLCAr EUCAR PCR 

ILCD 
Class Contributors 

Global Warming X X X I Combustion of fossil fuels 

Ozone Depletion X X X I Use of refrigerants 

Acidification X X X II Electricity production 

Eutrophication X X X II  

Photochemical Oxidant Formation X X X II Non CO2 tailpipe emissions 

Resource Depletion X X X II/III  

Human Toxicity X X  II/III  

Environmental Toxicity X X  II/III  

Chemical Oxygen Demand  X    

Land Use X X  III  

Nuisance  X    

Occupational Health and Safety  X    

Solid Waste (Hazardous)  X    

Solid Waste (Non-Hazardous)  X    

Waste Heat Production  X    

Carcinogens X     

Respiratory Inorganics X   I PM and dust emissions 

Ionizing Radiation X  X II Nuclear energy 
Table 8: Suggested impact categories for each guideline and their ILCD recommendation level 

*Categories without an ILCD Class specified are not listed in the ILCD Handbook 

Hypotheses 

 Predictions of the effect of each guideline on the results of the LCA study are shown in 

Table 9. However, there is little evidence to suggest how much the results will change given the 

variations in each guideline. Some studies have cited that maintenance has a small impact 

(Volkswagen AG 2008), although this may only be considering GWP. Other factors, such as climate 

control systems or charging infrastructure, are suspected to have a high impact (Messagie, 

Macharis and Van Mierlo 2013) 
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 Guideline Features Suspected Impact 

PCR - Limited scope 

(no end-of-life phase) 

- reduced or missed environmental impacts 

EUCAR - Includes vehicle maintenance - increased use phase emissions 

- use phase will become more important in 

impact categories typically dominated by 

production phase 

eLCAr - Includes use of climate control systems 

 

- Includes use phase factors not directly part 

of vehicle (ie. road maintenance, charging 

infrastructure) 

- Increased use phase emissions, which will 

be more prevalent for BEVs 

- Increase in use phase importance in impact 

categories besides GWP 

Table 9: Hypothesis of the major effects each guideline will have on the LCA study 
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CHAPTER 5 

LIFE CYCLE MODELLING & INVENTORY 

5.1 Inventory Data Scope & Details 

Primary Data Collection 

 The data required for conducting the LCA studies were collected with the aid of FCA’s 

Logistic and Supply Chain Masterplan, Network Design, and Environmental Health and Safety 

departments, as well as Robert Bosch Battery Systems. Table 10 lists the facilities included for 

primary data collection, along with the scope of primary and logistical data collected. 

Facilities Included 

FCA US LLC 
Toluca Car Assembly 
Toluca, Mexico 
 
FCA Italy S.p.A. 
Tychy Assembly 
Plant 
Tychy, Poland 

FCA Italy S.p.A. 
Termoli Plant (Engine) 
Termoli, Italy 
 
FCA Italy S.p.A. 
Stabilimento Mirafiori 
(Gearbox) 
Turin, Italy 

Robert Bosch Battery Systems, LLC 
Manufacturing Facility (EV Battery) 
Springboro, Ohio, USA 

Plant Operations Data 

Plant electricity usage 
Plant water consumption 
Categorized wastes (non-hazardous, hazardous, and VOC’s), including waste destination 
(landfill, incineration facility or energy recovery plant) 
Additional materials associated with part delivery and handling 
Quantity of in process, raw material recycled 

Logistics Data 

Shipment of assembled engines from Termoli plant to Tychy assembly plant 
Shipment of assembled gearboxes from Mirafiori plant to Tychy assembly plant 
Shipment of EV batteries from Bosch, Springboro facility to Toluca Car Assembly 
Shipment of electric motors from Reutlingen, Germany to Toluca Car Assembly 

Vehicle Data 

Materials breakdown 
Table 10: List of facilities included for primary data collection, as well as scope of data.  

The facilities included above only represent a fraction of the actual work to manufacture the 

vehicle, since the vast majority of components arrive pre-fabricated from suppliers. 

Manufacturing operations carried out within the assembly facilities are only those for the forming 

and welding of the body-in-white, although this accounts for roughly ¼ of the vehicle’s mass. 

Primary data was also supplied for the assembly of the traction battery for the Fiat 500e, however, 
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it was unclear which operations are carried out within the Springboro facility and which parts 

arrive pre-fabricated.  

 In regards to the use phase, primary data included fuel consumption based on drive cycle 

testing, and maintenance parts and materials. Where possible, the vehicle’s owner’s manual was 

used to judge oil, coolant, and other service intervals, as well as data collected and presented in 

the EUCAR guideline (Rover Group Ltd 1998) on average component service life (refer to appendix 

D). Although the data collected is quite old, circa 1994, and newer model vehicles should have 

longer component lifespans, the data nonetheless represents a worst case scenario for vehicle 

maintenance. The end of life phase is difficult to model due to limited involvement with vehicle 

recyclers and the unknown path of post recycling material. The end of life phase has therefore, 

been modelled based on the main recovery scenarios outlined in the EUCAR guideline (Rover 

Group Ltd 1998). 

Allocation of Primary Data 

 Each of the guidelines used for preparing the LCA studies suggest a number of methods 

for allocating primary data, such as plant electricity consumption, that cannot be otherwise 

attributed directly to a single product. The simplest and most often used method is allocation by 

the number of products produced, and this method is recommended by both the EUCAR and 

eLCAr guidelines (Del Duce, et al. 2013) (Rover Group Ltd 1998). Allocation by number of products 

can, however, be misleading if the range of products manufactured in a single plant varies widely, 

such as the case of Toluca Car Assembly plant, where the small Fiat 500 is manufactured alongside 

much larger vehicles such as the Dodge Journey and Fiat Freemont. For this reason, the PCR 

guideline suggests allocation by mass in all cases where allocation is necessary (Macroscopio spa 

2005). Unfortunately, the data required for allocation by mass was unavailable from FCA, so 

allocation of materials and energy by the number of products has been done for all guidelines. A 

previous LCA study by Fiat showed that the assembly plant operating data had a small impact on 

the outcome of the study, so the allocation method should not greatly influence the results 

(Bonino, Life cycle assessment (LCA): Fiat 500L bi-fuel 2013). As well, plant VOC emissions are 

already monitored closely and reported from the plant by surface area painted, so no further 

allocation was necessary. 
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Logistics 

 Logistics data for the shipment of finished vehicles was estimated using the online 

EcoTransIT World tool. For the Fiat 500e, manufactured in Toluca, Mexico, the impacts of shipping 

to San Francisco, USA, and Turin, Italy, were evaluated. These cities were chosen for their location 

because both represent an approximate mid-range to the vehicle’s potential market, California 

and Oregon, and the European Union respectively. For the other vehicle models, all manufactured 

in Tychy, Poland, for the EU market, shipment to Turin was once again assumed. In the case of the 

use phase for the 500e, transportation of a replacement battery was also considered, this time 

from the Robert Bosch Battery Systems Manufacturing Facility in Springboro, Ohio, to the same 

two cities. 

  
Figure 15: Maps indicating the route of the finished Fiat 500e from Toluca to North American and EU markets 

Vehicle Materials Data 

 Materials data for the Fiat 500 and Fiat 500e were collected using different procedures 

because of the different data management systems in North America and Europe. In Europe, all 

vehicle manufacturers and Tier 1 parts suppliers are required to use the International Materials 

Data System (IMDS), which catalogues the materials of the vehicle based on specific material 

codes (refer to Appendix E). In North America however, the 500e vehicle materials data were 

collected using the Knowledge-based Recyclable Materials System (KRMS), which uses a more 

simplified set of material classifications. In order to improve the consistency between the 500 and 

500e data sets, the material breakdown data for the 500 was converted to match the categories 

used for the 500e. The loss of data associated with the conversion has been discussed in the 

following section on the limitations of the study. The finalized data for both the 500 and 500e 

models is shown in Table 11 and Figure 16. 
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Material Categories Fiat 500 
(1.2L Gasoline) 

Fiat 500e 

Metals Ferrous 643.56 744.35 

Metals Non Ferrous 52.60 224.31 

Glass 24.76 91.32 

Fluids 38.67 43.01 

Polymers 6.51 17.86 

Thermoplastic 98.16 170.39 

Thermoset 14.02 16.33 

Elastomers 34.74 49.91 

Other 20.84 50.23 

Monomers 8.21 0.53 

 942 (kg) 1386 (kg) 
Table 11: Materials categories and vehicle masses used for the LCA studies  

 From the data in Table 11 one can see that the Fiat 500e uses much more ferrous metal, 

non-ferrous metal, and thermoplastics than the Fiat 500. A significant portion of this weight is due 

to the battery pack; however, the chassis and body also have an impact. Specifically, the body of 

the 500e has been reinforced to meet stricter side impact regulations in North America. It is also 

worth noting that the Fiat 500e is not an optimized design for an EV, rather a conversion of the 

standard Fiat 500. If the chassis and body were optimized around the battery pack and electric 

drivetrain, the vehicle could potentially be lighter. The impact of these modifications is further 

discussed in Chapter 7, in the case study on cross-market vehicle comparisons. 

  
Figure 16: Overall material breakdown for Fiat 500 and Fiat 500e 
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 In addition to the basic material breakdown, some specialty materials, such as the coolant 

fluid, engine oil, and brake linings/pads, were modelled separately for their unique environmental 

impacts, and because they are replaced at regular service intervals. As well, for the 500e’s electric 

battery and 500 Natural Power’s CNG storage tanks, separate and unique material breakdowns 

were generated. Table 12 provides a summary of the additional materials considered. With the 

exception of the exhaust catalyst and engine oil, which are not present in the 500e, the use of 

these materials was modelled for all vehicles. 

Vehicle Component Mass (kg) Replacement 

Interval 

Material Classification 

Coolant fluid 5.05 30,000 km Ethylene Glycol 

Battery (Electrolyte mass only) 2.78 4.3 yrs Electrolyte 

Windscreen washer fluid 2.50 30,000 km Methanol  (diluted 1:1) 

Brake fluid 0.50 30,000 km Polyethylene glycol 

Break pads / linings            6.44  60,000 km Ceramic (copper + ceramic fiber) 

Engine oil            5.39 30,000 km Oil based 

Exhaust catalyst 0.003 120,000 km Platinum 
Table 12: Detailed breakdown of specialty materials  

(*these weights are included in those listed in Table 8) 

The materials data for the traction battery in the Fiat 500e was provided via the IMDS system, 

with some additional material classifications as well. Of particular interest for the LCA are the 

Electrolyte and Lithium compounds used inside the battery’s cells because these materials are 

energy intensive in their production and come from diminishing reserves (Gaines, et al. 2010). 

 
Figure 17: Material breakdown of the traction battery for the Fiat 500e. Total battery mass is 272 kg. 
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Use Phase Data 

 As suggested by all three guidelines, the basic use phase fuel consumption has been 

calculated using the vehicle’s homologation data based off the NEDC, or US EPA driving cycles. 

Although these driving cycles are often criticized for not reflecting true driving patterns or habits 

(Del Duce, et al. 2013), they do serve as an equal basis for comparison. This method does, 

however, introduce the problem of comparing vehicles sold in different markets, because their 

actual consumption data will be no longer comparable. Additionally, homologation data fails to 

capture some of the discrepancies between alternative and conventional fueled vehicles, such as 

increased methane emissions from using CNG. For this analysis the method used in the JRC’s Tank-

to-Wheels Report has been adopted (Huss, Maas and Hass 2013). The approach assumes that for 

a gasoline or LPG vehicle, 10% of the total hydrocarbon emissions (THC) limit is methane, while 

for a CNG vehicle 60% of the THC limit is methane. All other non CO2 tailpipe emissions have been 

assumed to be those of the regulatory limits. 

 Previous FCA life cycle assessments have not included the use of a second traction battery 

during the life of the Fiat 500e, based on the 160,000 km warranty provided. However, the 

warranty is only valid for 8 years and the minimum lifetime suggested by the guidelines is 10 years. 

Both the eLCAr and PCR guidelines suggest evaluating the necessity of using a second battery 

during the lifetime of an electric vehicle. Although it is not explicitly stated in the EUCAR guideline, 

replacing the traction battery should be included with the vehicle maintenance parts, and so it 

has been added to all use phases.  

 In addition to the basic driving cycle, the eLCAr guideline suggests calculating the power 

draw to operate the climate control and other auxiliary systems on board the vehicle (Del Duce, 

et al. 2013). Power draw calculations are a relatively simple procedure for electric vehicles, 

although a large number of assumptions are required for determining the usage pattern. Table 13 

outlines the parameters used in this study. Climate data for Milan was used, as it was the nearest 

city to Turin with available climate data, and was taken from the European Climate Assessment 

and Dataset project (A.M.G. and Coauthors 2015). The climate control systems are modelled using 

the maximum electrical power consumed as listed in the Fiat 500e technical specifications for the 

cabin heater and A/C units, and the same method as the eLCAr guideline was applied to determine 

the usage pattern and annual energy consumption (Del Duce, et al. 2013). The main assumptions 

for determining the climate control systems use pattern are: 
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 3 trips per day: 2 at daily maximum temperature and 1 at daily minimum temperature 

 Maximum A/C when temperature is greater than 25°C 

 Medium A/C (1/2 power) when temperature is between 20 and 25°C 

 No A/C or heating when temperature is between 15 and 20°C 

 Medium heating when temperature is between 10 and 15°C 

 Maximum heating when temperature is less than 10°C 

A full explanation of the assumptions and detailed calculations can also be found in Appendix F. 

In an ICE vehicle, the cabin is heated using the excess waste heat from the engine, so there is no 

increase in fuel consumption associated with heating (Del Duce, et al. 2013). The power 

consumption of the A/C system has been modelled using the maximum engine power consumed, 

listed in the technical specifications for the Fiat 500's A/C compressor. Fuel mass required to 

power the A/C unit was then calculated using the average efficiency of each engine, estimated 

over the NEDC. These calculations are also explained in greater detail in Appendix F.  

Parameters Fiat 500e Fiat 500 Unit 

Annual vehicle mileage in km 15000 15000 km/y 

Days using max heating 92 92 Days 

Days using medium heating 67 67 Days 

Days without heating or air conditioning 55 55 Days 

Days at medium air conditioning 55 55 Days 

Days at max air conditioning 91 91 Days 

Power demand of heating  unit 5500 0 Watts 

Power demand of air conditioning unit 6500 1260 Watts 

Annual energy consumption of comfort devices 1,824,088 185,757 Wh/y 

Mean energy consumption per km 121.6 12.4 Wh/km 
Table 13: Parameters for calculating energy consumption of climate control systems  

(Climate data is for Milan, 2005 (A.M.G. and Coauthors 2015)) 
 (Orange cells indicate chosen LCA parameters; blue, vehicle data; and green, calculated values) 

 The increase in non-CO2 tailpipe emissions associated with A/C use was estimated using 

the results of a National Renewable Energy Laboratory (NREL) report regarding the effect of 

climate control systems on internal combustion vehicles. Testing was conducted with a variety of 

vehicles that were subjected to the SC03 drive cycle while running with and without the air-

conditioning active (Farrington and Rugh 2000). The results used as data inputs are summarised 

in Table 14. 
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 Avg. Increase 

CO +71% 
NOx +81% 

Hydrocarbons +30% 
Table 14: NREL test data used to determine impact of AC use during the use phase. 

Average is calculated from 7 different cars subjected to the SC03 drive cycle with and without AC active. 
Air conditioning use time is assumed the same as for the electric vehicle (146 days) 

 The eLCAr guideline also suggests including the impact of road maintenance and non-

tailpipe emissions to increase the realism of the study (Del Duce, et al. 2013). To attribute a certain 

amount of roadwork to each vehicle’s use phase, a calculation was made for new road laid per 

new vehicle registered. It would also have been possible to use an alternate attribution method, 

such as total road area per total number of vehicles, but the new road per new vehicle method 

yielded the highest attribution of road area, so it represents a worst-case assumption. For the US 

road network an estimation of the new road area laid each year was available in online literature, 

however no similar numbers were found for the EU scenario. For this scenario, an estimate was 

made using the quoted total length of the road network in the EU, and assuming average lane 

widths, and the same growth rate of the road network as in the US. Full calculations and 

explanations can be found in Appendix G. The same quantity of roadwork was applied for all 

vehicles, according to the results of Viton’s study that showed the majority of damage to roads to 

be caused by large trucks, and damage from different classes of passenger vehicles largely 

indistinguishable (Viton 2012). Concerning non-tail pipe emissions, emissions factors were based 

on the results of a literature review of the US EPA’s MOVES 2014 software, and are shown in Table 

15 (Office of Transportation and Air Quality 2014). Once again, emissions from different sized 

passenger cars are indistinguishable, so the same emissions factors have been applied in all 

studies. No attempt was made to classify the compounds or materials associated with these 

emissions, so they have only been modelled as dust particles. 

 PM2.5 [mg/km] PM10 [mg/km] 

Brake Wear Emissions 2.3 18.5 
Tyre Wear Emissions 0.9 6.1 

Table 15: Brake and tyre wear emission rates as used in the eLCAr simulation 

5.2 Modelling in GaBi 

 The table in Appendix B shows a breakdown of each model created using the GaBi 

software. Each full life cycle is prepared by assembling four smaller simulations (referred to as 

“plans”), for the production, use, maintenance, and end of life phases. Individual or “black box” 
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operations are modelled using processes, which require inputs in the form of materials or energy 

flows. Processes contain all necessary calculations and data for generating the environmental 

impacts of a certain activity, and they are scaled based on the quantity of the flows entering or 

exiting the process. The principle processes included for each guideline and life cycle phase are 

highlighted in Table 16 and further elaborated on in this section.  

 PCR EUCAR eLCAr 

Production Raw material extraction Raw material extraction 
Vehicle delivery 
In process recycling 

Raw material extraction 
Vehicle delivery 
In process recycling 

Use Basic fuel consumption 
Traction battery 
replacement (EV only) 

Basic fuel consumption 
Traction battery 
replacement (EV only) 
 

Basic fuel consumption 
Traction battery replacement 
(EV only) 
Auxiliary fuel usage 
(Climate control, lights) 
Non-tailpipe emissions 
Roadwork 

Maintenance None Raw material extraction Raw material extraction 
End of life of used parts 

End of life None End of life treatment 
Variable process for 
applying open-loop 
recycling credits 

End of life treatment 
Shipment of waste materials 
Most likely EoL treatment 
only (no variable credits) 

Table 16: Summary of processes modelled in each life cycle phase for each guideline 

Production Phase 

 For the production phase, the assembly plant operations are modelled as a single process, 

with all vehicle materials, as well as energy, water, and supplementary materials for plant 

operations, flowing into the assembly process. A portion of the manufacturing phase plan for the 

FIAT 500, 1.2L Gasoline model is shown in Figure 18. Emissions and flows associated with the 

engine and gearbox assembly facilities have been modelled separately in their own plans; 

however the materials for these parts have been included in the regular material flows shown in 

the diagram. For the electric and bi-fuel vehicles however, the battery production and CNG tank 

production, have been modelled separately with their own materials flows because of the 

specialized materials used for their construction. 
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Figure 18: Production phase plan created in GaBi Software for FIAT 500, 1.2L Gasoline 



40 
 

 
Figure 19: Comparison of use phase scope for each guideline (use phase for Fiat 500e shown) 
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Use and Maintenance 

 The use phase saw the largest differences between the recommended approach for each 

guideline, and therefore the GaBi plans changed considerably for each simulation. The aspects of 

the use phase corresponding to each of the guidelines are highlighted in Figure 19. The figure 

shows the use phase for the 500e model; however, the scope remains the same for the other 

vehicles studied, the only difference being that the electricity flow is replaced by the flow of 

gasoline or compressed natural gas. The PCR is the simplest, and contains only the basic electricity 

consumption associated with the driving cycle and the second battery for the BEV. The EUCAR 

guideline adds the consideration of maintenance materials and end of life treatment, while the 

eLCAr guideline includes all the previous parameters, plus additional electricity consumption for 

auxiliary components (air conditioning, headlights, etc…), the impact of road maintenance, and 

non-tailpipe emissions. Non-tailpipe emissions cannot be seen in Figure 19 however, as they have 

been modelled internally to the basic driving process, and not as their own process. 

End of Life 

 The largest variable when modelling the end of life phase of vehicles is typically the 

application of – and justification of – open loop recycling credits. To simplify the guideline and 

reduce variability the PCR guideline foregoes any end of life considerations, while the EUCAR and 

eLCAr methods spend a considerable amount of time discussing them. In the studies conducted, 

the effect of open loop recycling was evaluated with two models. The first model is of a typical 

end of life scenario, as reported in the EUCAR guideline (Rover Group Ltd 1998), while the second 

uses a generic, parameterized recycling process that can be used to vary the amount of credit 

applied for all recyclable materials. Figure 20 illustrates the typical end of life scenario applied 

according to the eLCAr guideline. Once again, separate plans have been created for the traction 

battery and electric motor recycling, although this is more for convenience of modelling than 

necessity. For the traction battery, the structural materials have been treated similar to the 

vehicle’s materials, and disposal of the cells has been modelled with an Ecoinvent dataset for the 

disposal of NiMH and Li-ion batteries. For the eLCAr model, transportation of the end of life 

components has also been considered; and for the battery, shipment was calculated from San 

Francisco to Trail, British Columbia. Trail was chosen as the most likely destination for the traction 

battery because Toxco, a commercial Li-ion recycler that has already been experimenting with the 

processing of traction batteries for EVs is located there (Gaines, et al. 2010). 
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Figure 20: End of life plan for the Fiat 500e 
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5.3 Limitations of the Study 

 In order to complete the LCA, many assumptions and simplifications of the real world 

systems were necessary. One of the major limitations from the manufacturing phase was the 

discrepancy between the materials breakdown of the Fiat 500 done with the IMDS and the Fiat 

500e done with the KMRS. In order to retain the original comparison between the two models, 

the 500 data was translated into the same material categories as the 500e data. Unfortunately, 

this simplification resulted in some loss of accuracy since the KRMS material categories are less 

detailed than the IMDS. 

 A study was done comparing the production of the Fiat 500 based on the IMDS materials 

list to that based on the KRMS and the results are presented in Table 17. The results based on the 

KRMS breakdown are generally lower than those from the IMDS, and for some impact categories 

there is a significant difference. The two human toxicity categories, however, only received an 

ILCD recommendation of II/III, so it is possible that these categories are overly sensitive to 

particular flows. For example, 82% of the Fiat 500 NP’s life cycle human toxicity (cancer) impact is 

from the chromium steel used for the compressed natural gas tanks. The specific alloys of the 

other steels used in the chassis cannot be determined however, so the comparison would be 

between a generic group of materials and a specific alloy. It is conceivable that the same alloy of 

chromium steel could have been used in the chassis, but not recorded in the collected data. 

Therefore, the comparison would be unreliable. 

 IMDS KRMS Diff 

Global Warming Potential 4.10E+03 4.00E+03 2% 

Ozone Layer Depletion Potential 4.25E-05 3.68E-05 13% 

Acidification Potential 2.38E+01 1.97E+01 17% 

Eutrophication Potential 3.65E+00 2.53E+00 31% 

Photochem. Ozone Creation Potential 2.33E+00 2.37E+00 2% 

Resource Depletion, fossil and mineral 1.71E+00 1.99E+00 14% 

Marine Aquatic Ecotoxicity Pot. 2.20E+06 2.29E+06 4% 

Human toxicity non-canc. Effects 6.41E-04 5.08E-04 21% 

Human toxicity cancer effects 8.89E-05 1.41E-04 59% 
Table 17: LCIA results for the Fiat 500 production, using different material breakdowns 

(right-hand most column indicates absolute difference)  

 In regards to the production phase, the other main limitations are the lack of logistics data 

for materials and parts going to and coming from Tier 1 suppliers, as well as lack of data from Tier 

1 supplier’s plants. Due to the often-complex nature of the supply chain, sometimes including Tier 
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2 and 3 suppliers, and the large number of parts and suppliers associated with the vehicle’s 

production, collecting logistics and plant data can present a formidable challenge. In addition, 

many suppliers may not be readily willing to divulge plant operational data to the extent required 

for an LCA study. From the logistics data gathered however, parts shipping has a very small effect 

on the overall vehicle production impact. Finding suitable datasets for each material used also 

poses a challenge. The most notable case in this study is brake fluid. Few datasets suitable for 

brake fluid were found, so a generic solvent production stream was used instead. Figure 21 shows 

some of the impact category results for the production phase of the Fiat 500.  

 
Figure 21: Production phase impacts for select impact categories, normalized for each category 

(Percentage is percent contribution of each material flow to the total for that category) 
(Bars not totaling 100% indicate the impact of in process recycling) 

 The All Logistics category in Figure 21 includes the impact of shipping the engine (80 kg, 

over 2000 km), the gearbox (33 kg over 1300 km), and the finished vehicle itself (942 kg over 1300 

km), and yet the largest impact of the All Logistics category is 0.5% of the vehicle’s production 

GWP. Given that the heaviest and largest components, which represent a worst-case scenario for 

the logistics impact, have a very small impact on the study, ignoring the rest of the logistics should 

not have a significant impact. For the Fiat 500e however, the logistics do have a significant effect 

in many impact categories. The impact of the logistics for the Fiat 500e is largely due to the weight 

and size of the battery, as well as the distance and method of shipment. The battery, which weighs 
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approximately 200 kg, is shipped in batches of 33 batteries by truck over 3000 km. The long 

distance, heavy load, and inefficient mode of transport are the primary causes of the All Logistics 

impact shown in Figure 22. 

 
Figure 22: Breakdown of production phase for the Fiat 500e 

(Shipping from Toluca to Torino scenario) 

 Figure 21 also shows the electricity consumption of the vehicle assembly plant, engine 

plant, and gearbox plant, which have a significant impact in many categories. Plant operating data 

from Tier 1 suppliers, such as brake and steering component manufacturers, have not been 

included. Therefore, the study is potentially under estimating the production phase by a 

significant amount. 

 Consider the following. The Body-in-White (BIW) accounts for about ¼ of the vehicle’s 

mass, but the electricity consumption associated with BIW manufacturing is accounted for 

because it is stamped and formed within the assembly plant. The engine and gearbox account for 

another 12% of the vehicle’s mass and their manufacturing electricity consumption generates 

about 5% of the production phase GWP impact. The remaining, approximately 63% of the 

vehicle’s mass is manufactured by Tier 1 suppliers. If a similar electricity consumption as the 

engine and gearbox were assumed for manufacturing the Tier 1 supplied components, then the 
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GWP would increase roughly 30% over the current figure. Clearly, a 30% increase in GWP is a very 

crude estimate, but the exercise indicates that accounting for the electricity consumption from 

manufacturing each component part could have a significant impact on the study’s results. Given 

that the production phase accounts for roughly 15% of the Fiat 500’s total GWP impact, this 30% 

increase would result in a roughly 5% increase in total life cycle GWP emissions. 

 The largest limitation of the use phase is treatment of the air conditioning system, as this 

system has a large impact on the overall results. The eLCAr guideline recommends using the 

maximum power rating of the vehicles air conditioning and cabin-heating units in order to 

calculate the annual energy consumption. However, the guideline also cites that most heating and 

A/C units draw about 5000, and 1000 Watts respectively (Del Duce, et al. 2013). The Fiat 500e’s 

A/C unit has a maximum consumed power of 6500 W, although it was not confirmed if the A/C 

unit actually draws this amount of power during regular use. A/C data for the Fiat 500 is more in 

line with typical values, so the A/C energy consumption for the ICE vehicles is much lower than 

that of the Fiat 500e. Therefore, the study conducted may overestimate the Fiat 500e’s A/C energy 

consumption, increasing the 500e’s use phase emissions with respect to the Fiat 500 and 500 NP. 

Lastly, the calculation method for all vehicles is heavily dependent on the average speed assumed 

for the vehicle’s lifetime. For this study, the NEDC cycle was used resulting in an average speed of 

just 33 km/h. If a higher average speed were assumed then the annual power draw of the climate 

control systems could be significantly reduced. 
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CHAPTER 6 

LIFE CYCLE IMPACT ASSESSMENT 

6.1 Impact Category Results by Vehicle Life Cycle 

 The impact categories used to evaluate the LCI results can have a significant sway on how 

the study is interpreted. However, the LCIA phase is not only influenced by the methodology, but 

also the point of view of the LCA recipient. If the recipient’s understanding of the impact 

categories is limited, then the LCIA phase should also present additional information to inform 

their interpretation. In this chapter, the impact categories shared by all guidelines are discussed 

in depth, as well as a selection of other categories that are also relevant to understanding the LCI 

results. All results presented in this subchapter are those from the eLCAr guideline based 

simulation, as it includes all the variables used in the EUCAR and PCR guidelines, with additional 

variables as well. The effect of the methodology on the results of the study is discussed in the next 

subchapter. Due to the inherent complexity of the characterization methods, an extensive 

analysis of CML or other LCIA models is beyond the scope of this thesis. Instead, focus is placed 

on the relevance of each impact category to the vehicle life cycle. 

Global Warming Potential 

 Global Warming is the most widely understood and most frequently discussed 

environmental impact associated with passenger car use, largely because of the impacts the 

transportation sector has on global greenhouse gas emissions (United States Environmental 

Protection Agency 2013). The production and end of life phases have little impact on the overall 

GWP impact. For the production phase, GWP emissions result from a variety of the material flows, 

as well as energy generation. For ICE vehicles, the life cycle GWP is primarily a function of CO2 

emissions during the use phase. Methane (CH4) and Nitrous Oxide (N2O) also have strong 

greenhouse effects at 25 and 298 times that of CO2 respectively. However tailpipe emissions of 

these gases are 3 to 4 orders of magnitude less than CO2 (117 versus 0.01 [g/km] for CO2 and CH4 

respectively), and thus their effect is less significant. 
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Figure 23: GWP Impact calculated in GaBi for the whole life cycle using the CML 2001 method 

 Figure 23 above highlights the cumulative GWP impact for each vehicle by life cycle phase, 

while Figure 24 shows a detailed breakdown of the use phase. From the use phase breakdown, 

one can see that the majority of emissions come from the basic driving emissions, although a 

significant portion of the Fiat 500e’s emissions are due to the auxiliary systems use. For the ICE 

vehicles, the auxiliary usage category includes both TTW and WTT emissions from the use of 

climate control systems, where-as TTW and WTT emission from the primary driving cycle are 

displayed separately (light blue and dark red bars respectively). The additional considerations 

suggested by the eLCAr guideline, such as roadwork and maintenance parts, have a small impact, 

but little effect on the overall results. 

 
Figure 24: Use phase breakdown for all vehicles  

(Low impacting emission sources have been removed for clarity) 

 Figure 24 also highlights the difference between the NAFTA and EMEA vehicles studied. 

In regards to the Fiat 500, note that the NAFTA and EMEA models use different engines, so the 

difference in GWP emissions is due to both the engine and the different drive test cycle. Looking 
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at the Fiat 500e; however, the use phase GWP emissions are about the same, due to slightly 

reduced GWP emissions from the US electricity grid mix that offset the increased fuel 

consumption rating from the US EPA test cycle. 

Ozone Depletion Potential 

 Ozone depletion refers to the destruction of ozone gas in the upper atmosphere, which 

is mainly attributed to the use of Chlorofluorocarbons (CFC’s) in aerosol products (US 

Environmental Protection Agency 2010). The majority of modelled ODP emissions are generated 

during the manufacturing and maintenance phases (Figure 25), and come from the production of 

brake fluid. However, this result is uncertain because the brake fluid was modelled using a dataset 

for generic solvents. The electric vehicle exhibits higher ODP emissions than the conventional 

vehicles because of the extraction and production of Lithium Manganese Oxide, which was used 

as a substitute process to model producing lithium compounds inside the battery. Disposing the 

vehicle’s used coolant fluid also has small influence on use phase ODP emissions, although this 

could depend on the disposal method modelled. 

 
Figure 25: Life cycle ODP emissions, calculated using CML 2001 method 

 
Figure 26: ODP emissions breakdown for the use phase, based on the CML method.  

Note the large impact of maintenance and battery production. 
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Acidification 

 Acidification Potential (AP) measures the ambient acidity of the environment resulting 

from emissions to the atmosphere. This leads to effects such as acid rain, and can damage the 

ecosystem’s ability to support biodiversity (Acero, Rodriguez and Ciroth 2014). Because some 

ecosystems are more sensitive to acid rain than others are, some LCIA models use regionally 

specific factors. The CML method however, uses global factors that only account for the ability of 

a particular emission to form acid rain in the atmosphere (European Commission - Joint Research 

Center - Institute for Environment and Sustainability 2011). AP emissions are predominantly the 

result of electricity generation, which results in increased emissions in both the production and 

use phase for the electric vehicle (Figure 27).  

 
Figure 27: Life Cycle AP emissions, calculated using CML 2001 method 

Eutrophication 

 Eutrophication is related to the artificial introduction of excess nutrients into an 

ecosystem, and is particularly harmful to marine ecosystems where excess nutrients can lead to 

algal blooms (Acero, Rodriguez and Ciroth 2014). Characterization factors can be local or global 

depending on the modelling method, although global factors lack the ability to precisely model 

impacts (European Commission - Joint Research Center - Institute for environment and 

sustainability 2011). The CML 2001 method used herein uses global factors. Eutrophication 

emissions are relatively dispersed across many of the flows, as well as across the production, use, 

and maintenance phases (Figure 28). The greatest emitters for the Fiat 500e are electricity 

generation, production of electronics for control units, and lithium extraction and processing, 

while for the Fiat 500 they are the WTT fuel cycle, driving emissions, and electronics production. 
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Figure 28: Life cycle EP emissions, calculated using CML 2001 method 

Photochemical Oxidant Formation 

 Photochemical Oxidant Formation, or Photochemical Oxidant Creation Potential (POCP), 

relates to the generation of smog, and is particularly important for vehicles operating in urban 

environments due to the respiratory impacts of the emissions (Nemry, et al. 2008). An ICE vehicle 

operating in the city will emit POCP emissions in close proximity to the general population, and 

therefore have a greater human health impact than an electric vehicle, where the emissions are 

generated at the electricity generating plant. 

 In the manufacturing phase, the largest contributor to POCP is VOC emissions. In fact, the 

elevated POCP for the Fiat 500e manufacturing, shown in Figure 29, is mainly a result of 

differences between the painting areas in the assembly plants, as opposed to any differences in 

vehicle design. Use phase POCP emissions are mainly the result of the non-CO2 tailpipe emissions 

and electricity generation; NOx is the strongest contributor, however NMHC, CO, and CH4 all 

contribute as well. 

 
Figure 29: Life cycle POCP emissions, calculated using CML 2001 method 
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Resource Depletion 

 Resource depletion is one of the few impact categories that is almost equally discussed 

for all types of vehicles. Of course, the consumption of diminishing petroleum supplies is a highly 

discussed topic in relation to ICEV’s; however, the availability of lithium for future fleets of BEV’s 

has also been questioned in recent years. In regards to the GaBi simulation however, the 500e’s 

increased resource depletion impact is generated by the large amounts of copper used in the 

vehicle’s electrical components and battery (Figure 30). 

 
Figure 30: Resource depletion, calculated using ILCD recommended method (CML 2002) 

Other Significant Impact Categories 

 Similar to POCP, Respiratory Inorganics (or Particulate Matter [PM]) are associated 

primarily with the vehicle use phase and are more damaging to human health when the emission 

is generated in close proximity to the general population. The major sources of PM emissions are 

the Well-to-Tank fuel cycle and electricity generation. Tire and brake wear also contribute to this 

category, however their impact is minor. In reality however, the impact of tire and brake wear 

may be higher due to the proximity of the emissions to the population; however, this is not 

modelled in the LCIA methodology. 

 
Figure 31: Respiratory inorganics, calculated using the RiskPoll methodology as recommended by the ILCD handbook 
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 Human and environmental toxicity are recommended impact categories in both EUCAR 

and eLCAr guidelines, although the methodology for their measurement can vary. For Figure 32 

to Figure 34, the ILCD recommended methods have been used, which divide the impacts into 

human (non-cancer causing), human (cancer causing), and toxicity to fresh water. The major 

contributing factors for the ICEVs non-cancerous toxic effect are the disposal of used engine oil, 

and the Well-To-Tank gasoline cycle, while the BEV’s main emitters are the production of 

electronic components and electricity generation. The cancerous toxic effect of the 500 Natural 

Power is dominated by the production of Chromium Steel for the gas cylinders, which were 

modelled similar to the traction battery for the 500e. Ecotoxicity for all vehicles is primarily a 

result of the production of electronic components, raising the ecotoxicity levels for the 500e. 

 
Figure 32: Non-cancer causing toxic impact, calculated using the USEtox method 

 
Figure 33: Cancer causing toxic impact, calculated using the USEtox method 
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Figure 34: Ecotoxicity for aquatic fresh water, calculated using the USEtox method 

 Ionizing radiation is a result of releases of radioactive materials into the environment, and 

therefore depends on the use of nuclear energy in the chosen electricity mix. Not surprisingly, the 

electric vehicle impact in this category is almost 10x that of gasoline, or natural gas vehicles.  

 
Figure 35: Ionizing radiation calculated according to the ReCiPe 1.08 Midpoint (H) method. 
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more sensitive to electricity generation than fossil fuel life cycles, leading to high emissions from 

the Fiat 500e. These tendencies are dependent on both the vehicle studied, and the guideline 

used, resulting in large variances in some impact categories between each guideline used. 

 The estimated Global Warming Potential, shown in Figure 36, is similar when using either 

the PCR or EUCAR guidelines because it depends mainly on fuel use and not maintenance 

materials. The eLCAr guideline shows an increase in GWP emissions when including climate 

control systems: this significantly decreases the performance gap between the Fiat 500e and Fiat 

500. As was mentioned in the section on limitations however, the power draw of the climate 

system for the Fiat 500e may be overemphasized because of the larger than average A/C power 

draw assumed in the study. Compared to the PCR study, the eLCAr guideline yields an 11% 

increase in use phase emissions for the Fiat 500, but a 37% increase for the Fiat 500e. The differing 

effect of the climate control systems between the BEV and ICE decreases the difference in use 

phase emissions between the two vehicles from a 20% difference calculated using the PCR 

guideline, to a mere 1% using the eLCAr guideline. Similar results occur for POCP emissions, which 

also depend heavily on fuel consumption. 

 
Figure 36: GWP Impact across all guidelines and vehicles studied 

 The ODP impact shows a steady increase depending on the guideline used, although ODP 

depends mainly on raw material flows and is therefore almost the same for EUCAR and eLCAr 
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EUCAR to the eLCAr results is more pronounced for the Fiat 500e because of the impact of 

electricity generation in both these categories (Figure 38). 

 
Figure 37: ODP emissions for all guidelines 

 
Figure 38: Acidification potential for each vehicle and guide 

 Resource Depletion is the only impact category that has reduced emissions when using 

the EUCAR and eLCAr guidelines, although this is only true for the Fiat 500e. The decrease is 

because of battery recycling: in the EUCAR guideline, recycling of a single battery at the vehicle 

end-of-life phase is included, while in the eLCAr guideline, recycling of the first and second 

batteries is included. For all vehicles however, the results from each guideline are much more 

similar for resource depletion than many of the other impact categories. 
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Figure 39: Resource depleting impact from all guidelines 
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CHAPTER 7 

LIFE CYCLE INTERPRETATION 

7.1 Post LCA Comparison of Guidelines 

 This chapter assesses the benefits and trade-offs of each guideline in detail. Because of 

the limitations discussed in Chapter 5, particularly those associated with the production phase, it 

was not possible to comply with all of the suggested practices from every guideline. Almost all of 

the recommendations in the PCR guideline were completed, although for parts such as the 

steering and brake systems, their production phase has only been considered in terms of the raw 

material extraction. Since these systems are supplied in whole by Tier 1 suppliers, the emissions 

associated with their direct production have not been considered. Table 18 provides an overview 

of the advantages and disadvantages of each guideline.  

PCR EUCAR eLCAr 
Advantages Disadvantages Advantages Disadvantages Advantages Disadvantages 

Concise 
definition of 
the required 
functional unit 
 
Easiest to reach 
full compliance 
 
Simple use 
phase does not 
require any 
data not readily 
available 
 
Results should 
be very 
comparable 
across OEMs 

Short use phase 
(150,000 km) 

 
Misses 
important 
considerations 
(maintenance, 
climate) 

 
No end-of-life 
consideration 

Allows for 
alternative 
functional units 
(passenger∙km) 

 
Simple 
treatment of in-
process 
recycling and 
ELV 
 
Only requires 
logistics data in 
global scenarios 
 
Precise 
definition of 
maintenance 
materials for 
ICE vehicles 

Use of 
alternate units 
could result in 
misleading 
studies 
 
Does not 
provide 
guidance 
specific to EVs 
 
Does not 
include use of 
climate 
systems 
 

 

Clear direction 
for BEVs and 
use scenarios 
 
Very thorough 
in all life cycle 
phases 
 
Specific 
guidance on 
use phase 
assumptions 
 
Detailed 
guidance on 
end-of-life 
scenarios, 
specifically for 
BEVs 

Limited scope 
makes it difficult 
to apply to non 
BEVs 
 
Some suggested 
considerations 
are difficult or 
impractical to 
include 
 
Does not 
provide 
guidance 
specific to ICEVs 

Table 18: Comparison of advantages and disadvantages of the three guidelines 

 One aspect neglected by all guidelines is precise guidance on how to interpret the raw 

material flows, a.k.a. the material breakdown procedure, during the production phase. The PCR’s 

concise, and easy to follow rules ensure that any study following the guideline should be 

comparable, but its limited scope neglects some of the important life cycle attributes included in 

the other guides. In contrast, the eLCAr guideline has very wide scope, and some could not be 
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included also in this thesis; for example, charging infrastructure. The scope of the EUCAR guideline 

seems to be balanced between comprehensiveness and practical limitations. 

 Following from Table 18 a list of requirements for the new guideline is generated. Table 

17 demonstrated the importance of the material breakdown procedure, so it should be covered 

by the new guideline. Climate control systems should also be included because of their influence 

on the use phase emissions of electric vehicles. To summarise Table 18, the new guideline should: 

 Give a concise definition of the functional unit required for all studies 

 Provide guidance for determining a vehicle’s material breakdown and treatment of high 

impact materials 

 Precisely define vehicle components to be evaluated as maintenance parts during the use 

phase of the vehicle 

 Include auxiliary fuel consumption from use of climate control systems and give detailed 

guidance on making assumptions for the use pattern 

 Give clear direction for making comparative studies between electric, combustion and 

hybrid vehicles 

7.2 Analysis of Life Cycle Variables 

 In Table 19 the studies have been deconstructed to show the life cycle variables used in 

each guideline. The difference between each guideline is created mainly by which variables are 

included and which are not, because there is little variation in how each variable is treated by the 

guidelines. In the table, the Weight column is determined by assessing the amount that each 

variable contributes to the LCIA categories discussed previously. A light weight means that the 

variable contributes minimally to the majority of impact categories considered. A medium weight 

means there is a small impact in some categories but higher in others. A heavy weight means 

there is a very high impact in one or more categories. The workload is estimated by subjectively 

assessing the number of external contacts required to obtain the data, lead-time, and any 

assumptions that must be made. 
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Variable Guidelines Life Cycle Phase Weight Workload 

 PCR EUCAR eLCAr Prod. Use EOL  PCR EUCAR eLCAr 

Logistics 
 

X X X X X  Light High High High 

In-Process 
Recycling 

X X X X   Light Low Low Low 

Raw 
Materials 

X X X X   Heavy High High High 

Assembly 
Plant Energy 

X X X X   Medium Low Low Low 

Primary Fuel 
Use 

X X X  X  Heavy Low Low Low 

Maintenance 
Materials  

 X X  X  Heavy - High High 

Roadwork 
 

  X  X  Light - - High 

Auxiliary Fuel 
Usage 

  X  X  Medium - - High 

Non-Tailpipe 
Emissions 

  X  X  Light - - High 

End of Life 
Processing 

 X X   X Light - Med High 

Open-Loop 
Recycling 

 X X   X Light - Med High 

Table 19: Analysis of life cycle variables with respect to goals of the new methodology 

 From Table 19 one can see that the variables with the strongest influence on the results 

are the primary fuel use, raw material extraction and maintenance materials (which includes 

battery replacement for the Fiat 500e). The highest workload variables are those that require 

large networks of contacts or large quantities of data not typically readily available, such as the 

logistics and end of life processes. Collection of raw material data is somewhat of an exception 

because if the data required currently exists in the IMDS, then collection is relatively easy. If it is 

not however, then data collection can be very time consuming, possibly requiring the disassembly 

of a new vehicle if suppliers are not able to update the IMDS. Likewise, collecting data for auxiliary 

fuel usage from A/C or other systems should be relatively easy for an OEM, but because this data 

is not required for any current government regulations, they are typically not recorded. This 

means collecting A/C consumption data could require a dedicated test by the OEM, a costly and 

time consuming proposition. Data for roadwork and non-tailpipe emissions pose even greater 

difficulty because it may be beyond the OEM’s capability to measure, requiring alliances with 

research groups or other parties to collect the necessary data.  
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Fiat 500 Fiat 500e Fiat 500 Fiat 500e 

7.3 Case Studies 

 The scenarios developed in this section represent irregular or limit situations that 

companies conducting LCA studies may encounter. For these studies each scenario is evaluated 

uniquely, as opposed to comparing each guideline or using always the same guideline. The first 

case tests the impact of applying recycling credits and the second investigates the comparability 

between NAFTA and EMEA vehicle homologation procedures. The last three cases focus on 

reducing the GWP emissions of the use phase because increasing fuel economy and reducing CO2 

emissions are two of the most significant market forces driving the automobile design.  

Open-Loop Recycling Credits 

 To evaluate the effect of recycling processes a study was undertaken comparing a zero 

recycling scenario against the scenario in which 100% of recyclable materials (steel, aluminium, 

plastic, copper, and glass) are recovered. All of the guidelines describe how to treat end-of-life 

processing, but none give precise rules on how much credit to apply. This scenario then, evaluated 

how much end-of-life could affect a study’s outcome. The study was done following the EUCAR 

methodology, so the use phase only considered maintenance materials and basic driving 

emissions. Figure 40 displays the results for the GWP and Resource Depletion impact categories. 

Most impact categories have little change, similar to the GWP category (3% and 9% reductions for 

the Fiat 500 and Fiat 500e respectively). The Resource Depletion potential however, is heavily 

affected in the case of the Fiat 500e (26% reduction) because of copper recycling. Copper 

extraction is also the main contributor to the Resource Depletion in the production phase.  

 
Figure 40: Comparison of GWP and Resource Depletion for recycling scenarios 

Cross Market Vehicle Assessment 

 Global manufacturers are interested in comparing the environmental impacts of their 

NAFTA and EMEA vehicle models. However, none of the guidelines examined provide guidance 
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on this type of comparison. Current guidelines often suggest using a vehicle’s homologation data 

for calculating the use phase impacts, but this practice reduces the effectiveness of LCA studies 

on vehicles sold in different global markets if the homologation tests vary between them. The LCA 

practitioner must also assess which impact categories are based on local criteria, or global 

influences, and avoid any indicators that might only be valid for particular regions of the world. 

Figure 41 shows the GWP impact from just the primary fuel use for the Fiat 500, 1.4L gasoline 

model, a vehicle that was sold in the EMEA market and then imported to the NAFTA market. The 

NAFTA vehicle has a 15% increase in use phase GWP emissions over the EMEA model. This 

discrepancy is because of both structural changes that add weight to the chassis, as well as the 

more energy intensive US EPA driving cycle. The structural modifications add about 130 kg to the 

vehicle, which is estimated to increase fuel consumption by roughly 8%. The remaining 7% 

increase is because of the driving cycle. Because of the difference in chassis design and driving 

cycle, current guidelines are insufficient for manufacturers that would like to compare their 

NAFTA and EMEA vehicle models. 

GaBi Object GaBi Parameter NAFTA EMEA Units 

Fiat 500 Gasoline Use (1.4L, 16V) CO2 Emissions 156 140 [g/km] 

Fiat 500 Gasoline Use (1.4L, 16V) Gasoline Consumption 8.1 6.1 [l/100km] 

Fiat 500e Use Electricity Consumption 180 170 [Wh/km] 
Table 20: Parameters for case study on EMEA and NAFTA homologation data 

 
Figure 41: Comparison of GWP impact from primary fuel use based on EMEA and NAFTA homologation data 

Near Future, Lightweight ICE Vehicle 

 For this scenario it was assumed that a substantial portion of the vehicle’s mass in steel, 

was changed to aluminum, reducing the weight and therefore decreasing the fuel consumption. 

The critical parameters for the scenario are shown in Table 21, and the results for the GWP impact 

are presented in Figure 42. The results are those from using the PCR guideline, so only the basic 
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driving cycle has been considered in the use phase. The aluminum production yields higher GWP 

emissions per unit weight than steel. However the lighter overall weight means the net effect is 

roughly equivalent GWP emissions for both vehicles during the production phase. The improved 

fuel economy reduces use phase emissions over the whole life cycle. 

 Steel 
Mass [kg] 

Aluminum 
Mass [kg] 

Total 
Mass [kg] 

Fuel Consumption 
[L/100 km] 

CO2 Emissions 
[g/km] 

Benchmark 
Vehicle 

643.5 52.6 942 5.1 117 

Lightweight 
Vehicle 

243.5 152.6 642 4.1 95 

Delta -400 100 -300 -0.97 -22.36 

Table 21: Parameters for case study on vehicle lightweighting 
*Fuel consumption delta based on Fuel Reduction Value of 0.6 (as suggested by EUCAR guideline) 

 
Figure 42: GWP impact of Fiat 500 1.2L (benchmark) vs hypothetical lightweight vehicle 

Green Energy Mix 

 Often considered for LCA studies on BEVs, green energy mixes can substantially reduce 

the vehicle’s lifecycle GHG emissions. As opposed to the previous case study however, a green 

energy mix can reduce the use phase GWP emissions to the point of becoming less than the 

production phase emissions (Figure 43). Reducing use phase emissions of this magnitude should 

shift the focus of the LCA study from the use phase to the production phase, thereby placing 

increased importance on correct modelling of the production phase. At this point, the LCA 

practitioner should begin to work with an increased number of suppliers, to collect LCA data on 

component production and logistics. Lastly, depending on the energy mix, acids and other 

emissions from energy production facilities can also be significantly reduced. 
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Figure 43: GWP and AP of Fiat 500e using EU-27 Energy mix and Swedish Energy Mix 

Refer to Figure 9 for description of EU-27 and Swedish energy mixes 

Bio-Methane for Use in Bi-Fuel Vehicle 

 This case study represents a potential future scenario given that production and use of 

bio-methane is very limited. As previously discussed in the literature review, only small amounts 

of bio-methane are currently being produced globally, and their distribution networks are limited 

(DENA 2010). Nonetheless, the use of bio-methane presents the opportunity to significantly 

decrease vehicle emissions while still using conventional, ICE technology. Figure 44 shows the use 

phase GWP impact for two forms of bio-methane (grass and waste) as well as traditional natural 

gas. Although not as drastic as the low GWP energy mix, bio-methane from grass has the potential 

to significantly reduce the use phase GWP emissions. 

 
Figure 44: Use phase, basic driving emissions from two forms of Bio-Methane and CNG 
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CHAPTER 8 

A NEW GUIDELINE 

 From the previous comparison of the three guidelines, it is evident that each guideline 

provides unique advantages and disadvantages. The eLCAr guideline is broad and covers many 

details in depth, but requires significant amounts of data and includes many factors that are 

insignificant compared to the whole. By contrast, the PCR is straightforward and simple to follow, 

but neglects critical aspects of the lifecycle that can affect the interpretation of the study. The 

case studies also showed that there are some common scenarios where all of the guidelines fail 

to provide the necessary guidance. Consequently, a new guideline was developed. 

8.1 Goal and Scope Definition 

 The goal of the new guideline is to identify which aspects of the vehicle life cycle have the 

most significant contribution to its overall impact, while trying to reduce the overall workload and 

provide clear guidance for OEM’s. Because most LCAs are primarily intended to compare one 

option against another, the guideline focusses on those variables which can be used to distinguish 

one vehicle from another, instead of variables that are more or less the same for all vehicle 

models. The guideline will also enhance comparability, and decrease the time to implement LCA 

studies by eliminating variables that increase uncertainty. Enhancing comparability between 

studies and providing a clear methodology also makes the LCA study easier to communicate to an 

unfamiliar audience. In addition, the straightforward guideline can be more easily integrated into 

the product development process. The following sections are written as “to-do” series of actions 

for the LCA practitioner, and at the end of each subchapter, a checklist summarises the key 

aspects and decisions in each LCA phase. The checklist below gives an example for the goal and 

scope definition phase. 

Goal and Scope Checklist 

Goal of the Study Compare environmental advantages and disadvantages of electric, natural 
gas, and gasoline vehicles 

           

Market Scenarios NAFTA  EMEA X LATAM  APAC  Other  

           

Cross Market Analysis YES  YES, but without direct comparison  No X 

           
Vehicle Models Fiat 500e (electric) 

 Fiat 500 Natural Power (CNG) 

 Fiat 500 1.2L (gasoline) 
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8.2 Life Cycle Inventory Phase 

Manufacturing Phase 

 In regards to the manufacturing phase, the most critical data pertain to the raw materials 

used in the vehicle. Prior to collecting material data the LCA practitioner should: 

 Identify any materials or processes that may have abnormally high environmental impacts 

(ie. Lithium compounds, synthetic materials such as graphite, rare metals such as 

platinum, and highly alloyed metals like chromium steels). For the breakdown of regular 

materials, the IMDS materials categories are recommended, if possible. 

 In regards to BEVs, copper and electronic equipment should be modelled as high impact 

materials. 

 Vehicle fluids filled in the assembly plant should also be included. 

 At least 95% of the vehicle’s mass should be accounted for in the raw material breakdown, 

excluding the inclusion of high impact materials. 

 For manufacturing and assembly plant operations: 

 It is sufficient to only record data on VOC emissions and electricity consumption. It is not 

necessary to account for normal plant refuse or in-process recycling of raw material. 

 In all cases, the mass of materials modelled entering the plant should be equal to the total 

mass products produced. Allocation by number of products is acceptable in cases where 

a plant produces a similar range of products/vehicles. If a plant produces many different 

products that vary significantly in size, weight, or energy intensity, then allocation by 

another means should be used. 

 If an assembly plant receives a large number of pre-assembled component parts from 

third party suppliers, the supplier’s plant energy consumption should be included in the 

LCI for any assemblies accounting for more than 5% of the vehicle’s total mass. 

 When analysing future automotive scenarios with low use phase emissions, it is 

recommended that a higher degree of supplier cooperation be used to reduce the 

uncertainty in the study. 

 For supplied parts, production energy and emissions of individual components as little as 

2% of the vehicle’s total mass should be accounted for. 
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 Logistics data for delivering supplied parts to assembly facilities can generally be 

neglected, except in cases where exceptionally long distance transport is required for very 

large, or heavy components (such as the delivery of traction batteries). 

Life Cycle Inventory – Production Phase Checklist 

Raw materials   

(>95% of vehicle mass)   
   

High impact materials identified   

Production Materials:  Vehicle Materials: 
ie, Oils and hydraulic fluids  ie, Lithium compounds 

Solvents,  Rare metals 

Lacquers,  Highly alloyed or specialty metals 

  Electronics 

  Copper and copper alloys 

  Composites or other synthetic materials 

   

IMDS breakdown used   

   

Vehicle fluids included   

   

Production electricity consumption   

   

VOC emissions   

   
Allocation method used  ie, Number of products 

   

Energy consumption of Tier 1 suppliers   

Indicate to what level of detail  ie, Battery, IC engine, gearbox 

   

Logistics data in necessary cases   

Indicate cases  ie, Battery to assembly plant 

Use Phase 

 The variable with the greatest use phase impact is the driving cycle. There is still significant 

debate as to which regulatory cycles are the best suited to recreate real world use. This guideline 

does not recommend a specific cycle to use; however, in the case of comparative studies, all 

vehicles in the study should be compared using the same driving cycle and data collection 

methods. If possible: 

 Real world or simulated data should be collected for non CO2 tailpipe emissions, but 

regulatory limits can be used if this data is unavailable. 
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 Should real world or simulated data be collected, it should be done in accordance with 

the regulated testing methods. 

 Cross market comparisons with different regulated tailpipe emissions are not 

recommended, due in part to the effect of the driving cycle on fuel consumption, as well 

as the effect of non CO2 tailpipe emissions on the POCP impact category. 

 Should a cross market comparison be desired, then only fuel consumption and CO2 

tailpipe emissions should be considered, and the POCP impact category should not be 

included in the study. 

 The use of climate control systems can have a large impact on use phase emissions as well 

as the interpretation of the study. Modelling their use however requires a number of assumptions 

and can fluctuate depending on regional weather profiles and customer behaviours. The optimal 

solution would be to collect real fuel consumption data by completing regulated driving cycles 

while using the climate control systems, with one full driving cycle conducted for each climate 

setting. Should this level of testing not be possible, then the eLCAr method (described in Chapter 

5 detailed in Appendix F) should be used. Any usage pattern may be assumed, and climate data 

from the European Climate Assessment and Dataset project are recommended. All assumptions 

and climate data used should be made available if the study is published. 

 Modelling roadway maintenance and non-tailpipe vehicle emissions also require a 

number of assumptions and external data. These however have little impact on the study 

outcome, especially since current data cannot distinguish between the emissions and subsequent 

effects of different passenger vehicles (Viton 2012) (Office of Transportation and Air Quality 

2014). Including roadway maintenance and non-tailpipe emissions is, therefore, not 

recommended. 

 Maintenance materials, including the consideration of a second battery for BEVs, is the 

third most influential variable for use phase GWP emissions: in many other impact categories it is 

the most influential. It is recommended that manufacturers use their dealer, or registered 

maintenance center networks to collect data on the lifetimes of components covered in Appendix 

9 of the EUCAR guideline (also shown in Appendix D of this document), as well as the lifetime of 

traction batteries, motors, and high power electronics for BEVs. Should this data not be available, 

then using the data from Appendix 9 of the EUCAR guideline is recommended. Logistics data for 
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the delivery of replacement parts need not be included. End of life processing of used engine oil 

and used coolant fluid is also not required because of their low impact if properly disposed of. 

Life Cycle Inventory – Use Phase Checklist 

Driving cycles NEDC  US EPA  WLTC  CADC  Other  

           

Non CO2 tailpipe emissions Measured  Regulatory Limits  Other  

           

Climate control systems Measured  Calculated    

      
If measured, describe test details: Drive cycle, # of cycles, climate settings used 

      
 Climate data used: City and Year 

       
 Usage pattern: Temperature limits for climate settings,  

  driving routine 

       

Maintenance materials EUCAR Data  Service Manual  Other  

       
High Impact Materials: ie, Engine Oil 

 Ie, Brake Fluid 
 

End of Life Phase 

 The vehicle end of life phase was shown to have very little impact in all environmental 

impact categories examined, while also being highly subjective in its modelling method and 

allocation of open loop recycling credits. To reduce the modelling effort required for the LCA, it is 

recommended that no end of life processes be included in the life cycle modelling of passenger 

vehicles. This will also enhance the clarity and comparability between studies, by reducing the 

assumptions required. The previous statements do not, however, mean that the vehicle end-of-

life management is not important, but in the context of this analysis their significance is limited. 

8.3 Life Cycle Impact Assessment Phase 

 This guideline recommends specific impact categories that should be evaluated, however, 

it leaves the choice of impact modelling technique to the practitioner. The highest recommended 

impact categories are Global Warming Potential, Ozone Depletion Potential and Respiratory 

Inorganics. These categories have been chosen as they are based on simple, well understood and 

globally applicable models, all of which are recommended for use by the International Life Cycle 

Database. GWP, ODP, and Respiratory Inorganics also present a diverse range of impacts that 
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highlight the unique benefits of different alternative fuels. Acidification, eutrophication, resource 

depletion, and photochemical oxidant creation are recommended by all guidelines examined in 

this study, and are also recommended by this guideline. In the case of acidification, and 

eutrophication, the practitioner used should verify if local or global characterisation factors are 

used, and make sure that the method is applicable for the study. Human and ecological toxicity 

categories received low scores from the International Life Cycle Database evaluation, and have 

been shown to be highly sensitive to specific material flows; their use is not recommended. Finally, 

in the case of studies involving electric vehicles, ionizing radiation is recommended. To enhance 

the clarity of the results, each impact category should be shown as the sum of its production and 

use phase emissions, with the effect of maintenance materials and climate control systems 

highlighted separately. 

Impact Category Recommendation 

Global Warming Potential Recommended 

Ozone Depletion Potential Recommended 

Respiratory Inorganics Recommended 

Photochemical Oxidant Creation Recommended 

Resource Depletion Recommended 

Acidification Recommended, only with validation of LCIA method 

Eutrophication Recommended, only with validation of LCIA method 

Ionizing Radiation Recommended, only for studies involving electric vehicles 
Table 22: Summary of recommended impact categories 

Life Cycle Impact Assessment Phase Checklist 

Geographic Scope Global  North America  Europe  Other  

           

LCIA Methodology CML  TRACI  ReCiPe  ILCD  Other  

           
LCIA Impact Categories:    
    

Global Warming Potential  Respiratory Inorganics  

    

Ozone Depletion Potential  Resource Depletion  

    

Photochemical Oxidant Creation  Ionizing Radiation  

    

Acidification  Validation of LCIA method  

    

Eutrophication  Validation of LCIA method  
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CHAPTER 9 

EVALUATION OF THE NEW GUIDELINE 

 The proposed guideline was evaluated by re-running the prior simulation to validate its 

integrity and effectiveness. The first check was comparing the results of the new guideline against 

those from the currently published guidelines, and then to compare the results of this study with 

those from other automakers. Comparing the new guideline against the previously conducted 

studies tested if, given the assumptions considered for this analysis, the new guideline captured 

all significant environmental impacts and still highlighted the main advantages and disadvantages 

of the alternative fuel options studied. By further analysing the results with respect to the LCA 

studies performed by other automakers, any omissions or differences inherent to the modelling 

technique were exposed. Finally, the potential for the new guideline to be used as a starting point 

for LCA based regulations was examined, and any potential alterations or additions suggested. 

9.1 New Results Compared to Previous Guidelines 

  The new guideline has been verified against the published guidelines using the five 

recommended impact categories from Table 22. AP and EP impact categories have been included 

in Appendix J, but were not discussed in detail here. Neither of the impact categories were 

affected significantly by end of life processing. As a result, the new guideline results are very 

similar to those from the eLCAr guideline. Ionizing radiation has also been ignored since it is only 

dependent on electricity use. Looking at Figure 45 one can see the effect the new guideline 

(labelled as “KC-15” in the figure) has on the interpretation of the vehicle’s GWP impact. Since the 

Fiat 500e is more affected by both A/C use and ELV treatment than the ICE vehicles, it became 

the highest GWP emitter in the study. The difference from the eLCAr study is minimal though, 

going from a 2% reduction to a 3% increase when comparing the Fiat 500e to the Fiat 500. As well, 

it should be noted again that the assumptions used to calculate the A/C impact favored the ICE 

vehicles, and in reality the GWP impact of the 500e is suspected to be closer to that of the Fiat 

500 NP. 
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Figure 45: GWP impact compared against all vehicles and guidelines studied. 

 Looking to the Ozone Depletion Potential, compared in Figure 46, one can see that the 

production phase emissions remain unchanged across all guidelines. The KC-15 guideline 

underestimates the ODP compared to the eLCAr, and even EUCAR guidelines, but only by a small 

percentage. This difference is predominantly because of not including a disposal method for the 

vehicle’s coolant fluid during the maintenance and end-of-life phases. Because different 

processing methods could have different environmental impacts, these emissions could fluctuate 

from study to study. 

 
Figure 46: Ozone Depletion Potential compared for all vehicles and guidelines studied 

 The eLCAr guideline yields the highest PM emissions for all vehicles because it includes 

non-tailpipe emissions. This emission is equivalent for all vehicles however, so not including it has 

little effect on the overall interpretation of the study. With respect to the eLCAr guideline, the KC-

15 guideline increases the performance gap between the Fiat 500e and Fiat 500 because end-of-
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life processes are omitted. The best performing vehicle is the Natural Power model, which has far 

less use phase emissions than the others due to the relatively clean WTT cycle for natural gas. 

 
Figure 47: Emissions of respiratory inorganics for all vehicles and guidelines. 

 POCP emissions are mainly a function of the use phase emissions from the non CO2 

tailpipe emissions, and Well-To-Tank cycle, but are significantly increased in the ICE vehicles by 

the use of air conditioning (Farrington and Rugh 2000). The performance gap between the Fiat 

500 and Fiat 500e is reduced when comparing the KC-15 guideline to the eLCAr results: going from 

a 32% reduction in emissions to 30%. Once again, it would be ideal for the non-tailpipe emissions 

to be measured for both A/C on and off, in order to confirm these findings. 

 
Figure 48: POCP emissions for all vehicles and guidelines 

 The most stable of all impact categories – resource depletion – depends on only a few 

raw material flows, and therefore changes little across all guideline. The end of life phase has the 

greatest impact in this category, since any recycled material can directly substitute virgin raw 
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material. Neglecting the end of life, therefore, increases the Fiat 500e’s resource depletion 

impact, although it is a minimal reduction and does not change significantly the relative impacts 

between fuel types. 

 
Figure 49: Resource depletion for all vehicles and guidelines 

9.2 Comparison to Other Manufacturer’s Studies 

 The most prevalent LCA studies comparable with the studies in this thesis are those by 

Volkswagen, Renault, and Ford. Each of these manufacturer’s has their own methodology for 

completing LCA studies. However, the basis for each remains quite similar, and many are using 

GaBi Life Cycle software similar to the version used for this thesis. The table in appendix I displays 

the similarities and differences across the studies collected. One of the biggest differences, which 

could have significant impacts on the study results is the variance in material data collection 

systems. Both Renault and Volkswagen are using in-house developed systems. Volkswagen’s Life 

Cycle Inventory data collection system is, in fact, so well-coordinated with their operating 

processes that they are able to account for the material impact of machine tool and mold use 

(Schweimer and Levin 2000). Despite this increased level of detail however, most environmental 

impacts reported are within the same range as those found in this study, and those of the other 

OEMs. Figure 50 highlights the GWP impact declared for the studies examined in detail. One can 

see that most of the results fall within the range of 20 – 35 metric tonnes of CO2 per vehicle. VW 

and Renault both declare that their EV models are less emitting than their ICE counterparts. 

However, the new guideline and Ford’s studies show the EVs produce the same or more emissions 

than their ICE counterparts. Similar to the new guideline, Ford has also considered air conditioning 

in their studies, so this could point to the impact of climate control systems on the LCA study. 
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Figure 50: Global Warming Potential from other OEM LCA studies.  

Error bars indicate +/-1 standard deviation from the average value. 

 Volkswagen was the only other OEM to declare ODP emissions; however, their results are 

significantly larger than those declared in the studies by FCA are. This is most probably due to a 

material flow accounted for in their data system that was omitted from the FCA studies. ODP 

emissions in the FCA study were mostly resulting from solvents and lithium extraction, so it is 

possible that VW’s superior data collection during the production phase has captured the use of 

increased solvents or waste fluids. This loss of data is tolerable though, since even VW cites that 

their reported ODP emissions are small when compared to the average ODP impact attributable 

to a single person in the EU-15 (Volkswagen AG 2008). 

 
Figure 51: ODP emissions declared by VW are significantly higher than those by the FCA studies 
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 The declared POCP emissions fall within a close grouping, similar to the results for GWP: 

most likely a function of both POCP and GWP being highly dependent on the use phase. The 

studies by Ford, however, stand out as being significantly higher than the other studies examined. 

This is potentially because Ford’s LCI data was derived by internal testing that included the use of 

air conditioning systems (Ford of Europe 2007). With the exception of the studies by Ford then, 

most POCP results are similar to those found by the studies herein. 

 
Figure 52: POCP Emissions found by VW and Renault are similar to those of the FCA studies 

9.3 Relationship with Potential LCA Based Legislation 

 Competing requirements make it difficult for an LCA guideline to be both flexible enough 

for use in many situations, as well as rigid enough to be used as an industry standard for 

comparison. The most significant influence that has not been directly addressed by the KC-15 

guideline is the length of the use phase, which can scale up the use phase emissions significantly. 

All studies in this thesis considered a use phase of 150,000 km. This lifetime is commonly used by 

OEMs since it was first recommended by the EUCAR guideline, but the eLCAr guideline suggests 

200,000 km and even 250,000 km. In the U.S., the average age of roadworthy passenger vehicles 

has been estimated to be near 260,000 km (Tuttle 2012), which suggests that future LCA studies 

should consider a use phase length of at least 250,000 km. In regards to GWP, POCP, and PM 

emissions, increasing the use phase length would have the effect of magnifying the use phase’s 

importance, and diminishing the impact of the other phases. If an LCA based regulation were to 

come into force, it would have to specify a use phase length and set time interval. For the other 
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impact categories, resource depletion, AP, EP, and ODP, which depend on the production and 

maintenance, a set of rules should be drafted regarding the collection of data on maintenance 

parts. 

 Another important variable in the use phase that would require agreement is the 

treatment of air conditioning. In particular, climate data and the usage pattern would need to be 

set for all OEM’s because this can change both the magnitude of the GWP impact, and the 

difference between fuel types. Since ICE vehicles only have to power the A/C unit, and not the 

heater, colder climates could skew the analysis towards an ICE vehicle. The climate data used in 

this study had almost equal use of A/C and heating, so it could be a sufficient starting point. It is 

suspected however, that the method used to calculate the annual energy consumption of the A/C 

system on the Fiat 500e has overestimated its consumption. Requiring OEM’s to follow this 

method if they cannot produce test results could, therefore, push them to begin more road testing 

with climate control systems. 

 For collecting vehicle materials data the IMDS system is recommended. The IMDS has 

already gained wide acceptance and is in use by both OEM’s and Tier 1 suppliers. Unfortunately, 

materials data collection can still be problematic if IMDS data is not yet available for new model 

products. Electricity consumption and VOC emissions data should be readily available for all 

assembly plants. Some variance could be found in the identification of high impact materials, and 

so a more detailed list of specific materials to be included should be drafted. High impact materials 

should be identified for not only the vehicle mass, but also for materials or chemicals associated 

with the production phase. For instance, one potentially high impact material that has not been 

included in these studies was the permanent magnetic material used in the Fiat 500e’s electric 

motor; for future studies, it is recommended that this type of material be addressed. 

 The LCIA method chosen for the study can have a significant impact on the results; 

however, it can also depend on the scope of the study and location where impacts are to be 

considered. The ILCD handbook, composed by the JRC, has already covered in detail the majority 

of LCIA methods within a European context, and presented a list of recommended LCIA methods. 

For legislation within Europe then, following the ILCD recommendations would be advised. 

Outside of Europe, the LCIA methods should be verified for having characterization factors that 

are appropriate to the location of interest. Although this is less applicable for global impact 

models, it is critical for models with local effects (AP and EP).  
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

 The primary objectives of this thesis were to answer the questions being asked about 

multiple LCA methodologies, and to find or develop an LCA guideline that would be 

straightforward and robust while still capturing the major life cycle impacts of passenger vehicles. 

By comparing the PCR, EUCAR, and eLCAr guidelines, as well as a set of case studies, the need for 

a new guideline was established, and the new guideline was developed. 

 The highest impact life cycle inputs were identified to be the raw material flows, the 

vehicle’s primary fuel use, use of climate control systems, and the maintenance materials used 

throughout the vehicle’s life time. The raw material flows, were responsible for the majority of 

the production phase impacts, with many impact categories dominated by a few flows. Likewise, 

the raw material flows used to represent the maintenance parts had large impacts for the use 

phase in the ODP, AP, and EP impact categories. Unfortunately, this sensitivity to particular flows 

creates uncertainty in the results and the modelling technique used. One solution to address this 

uncertainty would be for each LCA practitioner to use the same material breakdown system and 

life cycle datasets for each model created, although this solution may be unrealistic. All studies 

included the use of a second battery throughout the Fiat 500e’s life cycle, despite being 

impractical given the cost of the battery and amount of vehicle teardown that would be required 

for replacement. The current warranty offered on the Fiat 500e battery is 8 years and 150,000 

km, so replacement within the timeframe considered for these studies (10 years, 150,000 km) is 

debatable; however, increasing the use phase up to 250,000 km has been suggested. If the 

lifetime of the vehicle were to be increased, then to compare a BEV to a conventional ICE, either 

battery replacement, or the partial life cycle of a second BEV would need to be considered. Some 

of the additional life cycle considerations recommended by the eLCAr guideline, such as non-

tailpipe emissions and road maintenance, were found to have small impacts, but required many 

assumptions and were difficult to evaluate for a particular vehicle. Climate control systems, 

although difficult to model, were found to have a significant impact on the use phase and to 

potentially change the interpretation of the study.  
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 The goals of the new guideline were to balance the work required to complete LCA 

studies, while still capturing the most important aspects of the vehicle life cycle. The new guideline 

has managed to identify aspects of the vehicle’s life cycle that have typically been overlooked in 

LCA studies by automakers, such as the use of climate control systems and inclusion of 

maintenance parts, although including these systems does present a greater difficulty to complete 

the LCA study. The increase in use phase detail has been balanced by suggesting that the end-of-

life treatment of the vehicle be omitted, because of the difficulty in defending the modelling 

method and the relatively low impact on the recommended impact categories. 

 The guideline that was created focused on yielding a basic overview of environmental 

impacts, promoting external communications of product qualities, and supporting design 

decisions. In order to provide completely comparable LCA studies however, industry wide 

agreement is required on the treatment and application of specific LCI data, such as the product 

lifetime and distance, and the modeling method for raw material flows and climate control 

systems use. Within the guideline, recommendations have been given regarding which data to 

collect, and certain cases that require more or less complexity to treat. The sacrifices made to 

reduce the complexity of the analysis have had a small impact, but may also inhibit the guidelines 

further use should infrastructure or technological improvement result in large changes to the 

vehicle’s life cycle in the near future. For this reason the guideline presented should be considered 

valid only for the current state of the automotive industry, and should be re-evaluated as new 

technologies and processes are introduced.  

 It is also important to recall the uncertainty in the production phase, so future studies 

should target Tier 1 suppliers to obtain more comprehensive knowledge about the production 

supply chain. There is also uncertainty in the use phase, since the EU regulatory limits were used 

for non CO2 tailpipe emissions, as opposed to measured values. These emissions can also vary 

depending on climatic conditions and the state of the vehicle’s catalytic converter. Furthermore, 

use phase emissions ultimately depend on the driver, so real vehicle emissions can vary 

significantly from the figures presented here. However, uncertainty regarding the user is difficult 

to quantify. Conversely, any such uncertainty may be equally applicable to any of the vehicles 

studied. Therefore, while uncertainty can impact an LCA study, if it is a relative error, it may have 

less effect on the study outcome than expected. 
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 Evaluating the results of the new guideline against those from other manufacturers 

reinforced the relationships found throughout the study. For studies with the same lifetime and 

distance, impact categories dependent on use phase emissions showed consistent results, albeit 

with a high standard deviation, while impact categories dependent on production phase data or 

raw material flows varied significantly.  

Recommendations 

 Following the results from the work presented herein, the largest recommendation put 

forward to improve the state of LCA in the automotive industry is the need for agreement on 

common parameters and methodology between manufacturers. Unfortunately, this is difficult 

both technically and politically. Politically, manufacturers may fear that unanimous agreement on 

LCA methodologies would increase the likelihood of LCA based regulations, presenting yet 

another normative with which to comply. Technically, for manufacturers operating in different 

parts of the world with differing processes and varying access to life cycle data, coming to an 

agreement may limit the usefulness of the methodology. The guideline presented here offers a 

basic level of LCA study that could be equally applied by any OEM. 

 Automakers operating on a global scale may be interested in comparing similar models 

sold in different markets. This type of comparison is not recommended, unless the goal of the 

study is to evaluate the differences between the markets themselves or if the data and the 

modelling can be adjusted to account for significant differences. As was shown for the Fiat 500, 

1.4L gasoline, the structural modifications required for the different crash test regulations, 

combined with the different driving cycle, significantly change the emissions of the vehicle. 

Summary of Thesis Contributions 

 This thesis has contributed to the state-of-the-art of life cycle assessment by presenting 

a comprehensive comparison of similar LCA guidelines. To the author’s knowledge no similar 

comparisons have been previously conducted, although some studies have evaluated the impact 

of changing certain life cycle parameters (the energy grid mix of an electric vehicle for example). 

Additionally, the thesis has highlighted the importance of several aspects of the LCA previously 

overlooked, most notable the vehicle’s maintenance, and use of climate control systems. The 

guideline developed offers a streamlined approach to vehicle LCA, using existing elements from 

known life cycle approaches. The new guideline is different from previous guidelines and will allow 
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automakers to focus on improving key areas of their LCA programs. If followed, the new guideline 

should create higher confidence in the results of LCA studies and make the LCA process more 

efficient. 

Further Work 

 Future work would include completing the same or similar studies using a different LCI 

database to validate equivalency across databases. This thesis compared different material 

breakdowns, demonstrating the variability resulting from selection of raw material flows. It would 

be interesting to explore these effects further, using different GaBi datasets for each of the 

identified material groups. Ideally, more data should also be collected regarding typical use of 

climate control systems and the precise power consumption of these devices during use.  

 Regarding electric vehicles, this study and others have shown that their life cycle 

emissions are highly dependent on the method of electricity generation. It is clear that while 

electric vehicles have the potential for reducing global warming and other climate impacts, this 

potential has not yet been realized. Therefore, further research should focus on developing green 

energy sources worldwide, as well as improving the consumer appeal of the vehicles. Finally, in 

the coming years many of the new BEV’s on the market will be reaching the rated lifetime of their 

batteries, so it will be interesting to see the end of life methods developed to deal with these new 

wastes; as well as, if in fact the batteries are capable of reaching their rated lifetimes. 
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APPENDICES 

Appendix A 

Review of JRC Report: Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in 

the European Context 

 

Data Comparison
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Scope

• The report follows the Well-to-Wheel method, covering all aspects of 
fuel extraction, processing, transport, distribution, and use.

• Tank-to-wheel phase is treated the same for all end fuels, regardless 
of fuel production pathway considered
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Assumptions for CBG Data

• No energy or emissions 
associated with collection of 
feedstock

• Heat for processing is assumed 
to come from raw biogas, 
electricity from grid

• Only local distribution has been 
concerned (transport phase 
energy and emissions are 0)

• CO2 emissions from use phase 
are considered null for both CBG 
pathways

• Unabated GHG emissions from 
raw manure are credited to 
OWCG21 pathway

• Further credits are applied for 
using digestate as fertilizer (both 
pathways)

 

Discussion of Critical Points

• Assumptions for collection and distribution describe a limited, local 
usage scenario

• Considering no use phase CO2 emissions for CBG may be overly 
optimistic, given lack of discussion on carbon cycle

• GHG emissions from raw manure are mainly due to poor farming 
practices that should be changed

• Impact of using digestate as fertilizer is somewhat unclear, although 
negative side-effects seem to be minimal in comparison to benefits

 
Reference: (Edwards, et al. 2014) 
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Appendix B 

Matrix of all Studies Performed 

>>> Vehicle >>> 500 1.2L Gasoline 500 1.4L Gasoline 500 0.9L CNG 
(Simulated Vehicle) 

>>> Market >>> EMEA NAFTA EMEA 

Production PCR EUCAR eLCAr   PCR EUCAR eLCAr 

Use PCR EUCAR eLCAr PCR EUCAR eLCAr PCR EUCAR eLCAr 

ELV PCR EUCAR eLCAr   PCR EUCAR eLCAr 

Maintenance PCR EUCAR eLCAr   PCR EUCAR eLCAr 

 

>>> Vehicle >>> 500 1.2L GPL 500e 

>>> Market >>> EMEA NAFTA EMEA 

Production   PCR EUCAR eLCAr   

Use PCR EUCAR eLCAr PCR EUCAR eLCAr PCR EUCAR eLCAr 

ELV   PCR EUCAR eLCAr   

Maintenance   PCR EUCAR eLCAr   
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Appendix C 

Explanation of GaBi Process for FIAT 500, 1.2L Gasoline 

 

 

  



94 
 

Appendix D 

Component Lifetimes for Vehicle Maintenance 

 
Taken from Appendix 9 of EUCAR, Life Cycle Analysis Data and Methodologies (Rover Group Ltd 1998) 
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Appendix E 

Material Codes for IMDS 

Material Code Description 

1 Steel and iron materials 

1.1 Steel / cast steel / sintered steel 

1.1.1 unalloyed, low alloyed 

1.1.2 highly alloyed 

1.2 Cast iron 

1.2.1 Cast iron with lamellar graphite / tempered cast iron 

1.2.2 Cast iron with nodular graphite / vermicular cast iron 

1.2.3 Highly allowed cast iron 

2 Light alloys, cast and wrought alloys 

2.1 Aluminium and aluminium alloys 

2.1.1 Cast aluminium alloys 

2.1.2 Wrought aluminium alloys 

2.2 Magnesium and magnesium alloys 

2.2.1 Cast magnesium alloys 

2.2.2 Wrought magnesium alloys 

2.3 Titanium and titanium alloys 

3 Heavy metals, cast and wrought alloys 

3.1 Copper (e.g. copper amounts in cable harnesses) 

3.2 Copper alloys 

3.3 Zinc alloys 

3.4 Nickel alloys 

3.5 Lead 

4 Special metals 

4.1 Platinum / rhodium 

4.2 Others 

5 Polymer materials 

5.1 Thermoplastics 

5.1.a filled Thermoplastics 

5.1.b unfilled Thermoplastics 

5.2 Thermoplastics elastomers 

5.3 Elastomers / elastomeric compounds 

5.4 Duromers 

5.4.1 Polyurethane 

5.4.2 Unsaturated polyester 

5.4.3 Others 

5.5 Polymeric compounds (e.g. inseparable laminated trim parts) 

5.5.1 Plastics 

5.5.2 Textiles 

6 Process polymers 

6.1 Lacquers 

6.2 Adhesives, sealants 

6.3 Underseal 

7 Other materials and material compounds (scope of mixture) 

7.1 Modified organic natural materials (e.g. leather, wood, cardboard, …) 

7.2 Ceramics / glass 

7.3 Other compounds (e.g. friction linings) 

8 Electronics / electrics 

8.1 Electronics (e.g. pc boards, displays) 

8.2 Electrics 

9 Fuels and auxiliary means 

9.1 Fuels 

9.2 Lubrificants 

9.3 Brake fluid 

9.4 Coolant / other glycols 

9.5 Refrigerant 

9.6 Washing water, battery acids 

9.7 Preservative 

9.8 Other fuels and auxiliary means 
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Appendix F 

Assumptions and Calculations for Climate Control Systems 

Temperature Profile 

 
Minimum and maximum daily temperatures, recorded for Milan, 2007 (A.M.G. and Coauthors 2015) 

Heating and air conditioning usage profile 

  Occurrences 
at daily min 

Occurrences 
at daily max 

Heating @ max power:               ambient temperature < 
10 °C 135 71 

Heating @ med power: 10 °C < ambient temperature < 
15 °C 82 60 

No heating or A/C: 15 °C < ambient temperature < 
20 °C 77 44 

A/C @ med power: 20 °C < ambient temperature < 
25 °C 60 52 

A/C @ max power: 25 °C < ambient temperature 6 133 

Distribution of daily 
driving: 

1/3 of trips at daily minimum 
2/3 of trips at daily maximum 

  

Assumptions for air conditioning and heating usage pattern. Medium power is assumed to be ½ of max power. Use of 
anti-fog systems has not been considered. 
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Calculations for energy consumption of climate systems 

Total annual vehicle 
operation time in hours 

𝑡𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑑𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑚𝑒𝑎𝑛⁄  

Days at max heating 

𝑡𝐻𝑚𝑎𝑥 = 1
3⁄ 𝐷𝑎𝑖𝑙𝑦 min 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 

× 2
3⁄ 𝐷𝑎𝑖𝑙𝑦 max 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 

Annual  consumption of 
heater (@max power) 

𝐸𝑎𝑛𝑛.𝐻𝑚𝑎𝑥 = 𝑃𝐻𝑚𝑎𝑥 × 𝑡𝐻𝑚𝑎𝑥/360 × 𝑡𝑎𝑛𝑛𝑢𝑎𝑙  

Calculations used for completing the table on the following page. Calculations are repeated for each device and each 
power setting (medium or maximum). 

 

Parameters   Fiat 500e Fiat 500 Unit 

Annual vehicle mileage in km dannual 15000 km/y 

Mean cycle speed of the specific cycle vmean 33.3 km/h 

Total annual vehicle operation time in hours tann 450 h 

Days at max heating tHmax 92 Days 

Days at medium heating tHmed 67 Days 

Days without heating or cooling tno clima 55 Days 

Days at medium A/C tACmed 55 Days 

Days at max A/C tACmax 91 Days 

Power demand of heating  in W PHmax 5500 0 W 

Power demand of air conditioning in W PACmax 6500 1260 W 

Annual energy consumption of heater (max 
power) 

Eann.Hmax 634474 0 Wh/y 

Annual energy consumption of heater (med 
power) 

Eann.Hmed 231343 0 Wh/y 

Annual energy consumption of A/C (max power) Eann.ACmax 736299 142729 Wh/y 

Annual energy consumption of A/C (med power) Eann.ACmed 221972 43028 Wh/y 

Annual mean energy consumption of comfort 
devices 

  1824088 185757 Wh/y 

  121.6 12.4 Wh/km 
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Calculations for fuel consumption of ICE vehicle attributed to A/C use 

𝐼𝐶𝐸 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 [𝑘𝑔] =
𝐸𝐴𝐶 [

𝑊ℎ
𝑘𝑚

] × 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒[𝑘𝑚]

𝐼𝐶𝑒𝑓𝑓.𝑁𝐸𝐷𝐶
𝐸𝑑𝑒𝑛𝑠.𝑓𝑢𝑒𝑙 [

𝑊ℎ

𝑘𝑔
]⁄  

Where: 

𝐼𝐶𝑒𝑓𝑓.𝑁𝐸𝐷𝐶 =
𝐸𝑐𝑜𝑛𝑠.𝑁𝐸𝐷𝐶 [

𝑊ℎ
𝑘𝑚

]

𝐹𝐸𝑁𝐸𝐷𝐶 [
𝐿

𝑘𝑚
] × 𝐸𝑑𝑒𝑛𝑠.𝑓𝑢𝑒𝑙 [

𝑊ℎ
𝐿

]
 

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 = 150,000 𝑘𝑚 

𝐸𝑑𝑒𝑛𝑠.𝑓𝑢𝑒𝑙 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑢𝑒𝑙 (𝑢𝑠𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 [
𝑊ℎ

𝐿
] 𝑜𝑟 [

𝑊ℎ

𝑁𝑚3] 

𝐸𝑐𝑜𝑛𝑠.𝑁𝐸𝐷𝐶 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑, 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑁𝐸𝐷𝐶 𝑝𝑒𝑟 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟∗ 

*Calculated based on vehicle weight, drag, and rolling resistance 

ICE efficiency data and calculation results 

 500 500 NP 500 GPL 

FE rating 5.1 L/100km 4.8 m3/100km 6.6 L/100km 

Weight 900 kg 1080 kg 865 kg 

Drag coefficient 0.23 0.23 0.23 

Cross-sectional area 2.058 m2 2.058 m2 2.058 m2 

Rolling resistance 
coefficient 0.007 0.007 0.007 

Theoretical required 
energy for NEDC 119.78 Wh/km 126.29 Wh/km 118.52 Wh/km 

Fuel Gasoline Methane Propane 

Sourced energy content     50 MJ/kg 46.4 MJ/kg 

Conversion factors     277.8 Wh/MJ 277.8 Wh/MJ 

    0.72 kg/m3 0.55 kg/LLPG 

Fuel energy content 8.76 kWh/L 13889 Wh/kg 12889 Wh/kg 

CO2 emissions factor 2340 gCO2/Lgasoline  2400 gCO2/kgmethane  1665 gCO2/LLPG 

Fuel energy provided 446.76 Wh/km 480.00 Wh/km 467.87 Wh/km 

ICE EfficiencyNEDC 26.8% 26.3% 25.3% 
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Appendix G 

Calculations and Data for Roadwork Attributable to a Single Vehicle 

United States Road Network Data (American Road & Transportation Builders Association 
2015) 

Miles of road 
(Total) 

4,090,000 Square miles of new road / year 
(Average, 2000-2012) 

66.3 

US Vehicle Registrations 

Number of vehicles registered 
 
(International Council on 
Clean Transportation 2013) 

231,000,000 New vehicle registrations / year 
(Average, 2008-2012) 
(The Economist Intelligence 
Unit 2013) 

12,465,400 

Square meters of new road 
attributable to one new 
vehicle 
 

14 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑖𝑙𝑒𝑠 𝑜𝑓 𝑛𝑒𝑤 𝑟𝑜𝑎𝑑 𝑦𝑒𝑎𝑟⁄

𝑁𝑒𝑤 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑦𝑒𝑎𝑟⁄

×
𝑚𝑒𝑡𝑒𝑟𝑠

𝑚𝑖𝑙𝑒
 

European Union Road Network Data 

EU-27 Paved roads + 
Motorways 
(Total, km) 
(European Commission 2012) 

5,066,700 km2 of new road / year 
(Assuming same growth rate as 
US and 7m wide roads on 
average) 

125 

EU-27 Vehicle Registrations (International Council on Clean Transportation 2013) 

Number of vehicles registered 
 

239,000,000 New vehicle registrations / year 
(2012) 

12,000,000 

Square meters of new road 
attributable to one new 
vehicle 

10.5 
 

𝑠𝑞𝑢𝑎𝑟𝑒 𝑘𝑚 𝑜𝑓 𝑛𝑒𝑤 𝑟𝑜𝑎𝑑 𝑦𝑒𝑎𝑟⁄

𝑁𝑒𝑤 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑦𝑒𝑎𝑟⁄
× 10002  
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Appendix H 

New Guideline Completion Checklist 

Goal and Scope Definition 

Goal of the Study  

           

Market Scenarios NAFTA  EMEA  LATAM  APAC  Other  

           

Cross Market Analysis YES  YES, but without comparison  No  

           
Vehicle Models  

  

  

  

 

Life Cycle Inventory Phase – Production 

Raw materials   

(>95% of vehicle mass)   
   

High impact materials identified   

Production Materials:  Vehicle Materials: 
   

   

   

   

   

   

   

IMDS breakdown used   

   

Vehicle fluids included   

   

Production electricity consumption   

   

VOC emissions   

   
Allocation method used   

   

Energy consumption of Tier 1 suppliers   

Indicate to what level of detail   

   

   

Logistics data in necessary cases   

Indicate cases   
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Life Cycle Inventory Phase – Use 

Driving cycles NEDC  US EPA  WLTC  CADC  Other  

           

Non CO2 tailpipe emissions Measured  Regulatory Limits  Other  

           

Climate control systems Measured  Calculated    

      
If measured, describe test details:  

      
 Climate data used:  

       
 Usage pattern:  

   

       

Maintenance materials EUCAR Data  Other Data Source    

Life Cycle Impact Assessment Phase 

Geographic Scope Global  North America  Europe  Other  

           

LCIA Methodology: CML  TRACI  ReCiPe  ILCD  Other  

           

Global Warming Potential    

    

Ozone Depletion Potential    

    

Respiratory Inorganics    

    

Photochemical Oxidant Creation    

    

Resource Depletion    

    

Acidification  Validation of LCIA method  

    

Eutrophication  Validation of LCIA method  

    

Ionizing Radiation    
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Appendix I 

Comparison of LCA studies by other manufacturers 

 Renault VW Ford FCA 

diesel x x x   

petrol x x  x 

electric x   x x 

CNG   x  x 

 GaBi4.4 GaBi5/GaBi6 GaBi GaBi ts 7.0 

150000 kms x x   x 

160000 kms         

200000 kms         

Materials Data Internal MISS   

Vehicle x x   x 

Engine / transmission x x   x 

battery x -   x 

Fuel consumption x x   x 

Electric consumption x -   x 

CO2 [g/km] x x   x 

Tailpipe Emissions EURO 5 EURO 3/ 4 /5 EURO 5 EURO # 

Vehicle Maintenance available not included   EUCAR guideline 

Tier 1 suppliers included     Battery 

From plant to dealer included       

Recycling phase 
Literature / 

recycling center VW SiCon     

References: (Ford of Europe 2007), (Schweimer and Levin 2000), (Renault 2011) 
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Appendix J 

Acidification and Eutrophication Potential for All Guidelines 
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Appendix K 

Copyright Release for Figures Taken from ISO 14040 and 14042 
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