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ABSTRACT 

 

The objective of this research is to develop an experimental facility that is able to 

characterize the work hardening behaviour of metal sheets up to large 

deformations greater than 50 percent effective strain. 

A hydraulic bulge test die was designed with a 120-mm diameter piston to push 

the forming fluid against the sheet specimen, a 135-mm diameter opening and a 

3-mm radius on the fillet of the die. This die was built and installed in a double-

action hydraulic press and is capable of reaching a forming pressure of 60 MPa.  

DP600 steel sheet specimens were also flat rolled to effective strains of 0.2, 0.4, 

0.6, 0.8 and 1.0 and tensile tests were conducted on the as-rolled specimens 

following ASTM E8 standards. A power law curve was fitted to the data, and 

yielded  ̅=1026.851  ̅0.1951 in the rolling direction and  ̅=1022.456  ̅0.1758  in the 

transverse direction. Hydraulic bulge tests were successfully run and the 

experimental data was fitted to  ̅=1104.6  ̅0.2029
.  

Finite element (FE) models of the hydraulic bulge test and uniaxial tensile test 

were constructed. FE models were validated using an appropriate validation 

metric, and the predicted uniaxial tension flow curve showed a validation score of 

0.97 and the flow curve predicted for the hydraulic bulge test achieved a score of 

0.98, compared to the experimental curves. 

Power law, Ludwik and Voce functions were fitted to the experimental data and 

hardening parameters were determined for both the tensile test with successive 

flat rolling and the hydraulic bulge test flow curves. Comparison metrics were 

established at 0.94, 0.87 and 0.94, respectively. 

Comparisons were made between the tensile test flow curve and the hydraulic 

bulge test flow curve which showed that the hydraulic bulge test is better suited 

for the characterization of work hardening behaviour up to large strains. 
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Chapter 1 Introduction 

1.1 Background 

Sheet metals have been used in a wide variety of industrial applications including the 

aerospace and automotive sectors [1], but are also used in packaging, casings and other 

industrial applications [2]. An effective way of saving money in the production of 

manufactured goods is by reducing the amount of material used in each application: not 

only does this reduce manufacturing costs, but it also results in savings for the 

consumer. A new government mandate was passed in 2012 that will require all 

automotive fleets on the road to have an average of 54.5 miles per gallon by the year of 

2025 [3]. One way to approach this fuel economy is to drastically reduce vehicle weight. 

This is being done by adopting advanced materials, such as Advanced High Strength 

Steel (AHSS) sheets, since their greater strength allows thickness and mass reduction [4] 

without compromising stiffness and crash-resistance. Another significant advantage is 

their increased formability at higher strengths, which allows for greater design 

flexibility, part complexity, and may lead to part consolidation and reduction of 

manufacturing costs since fewer parts require less welding and weld flanges [4]. 

Figure 1-1 illustrates [5] the different steels and their range of total elongation (%) 

versus tensile strength (MPa). Low strength steels have greater total elongation, which 

makes them ideal candidates for various high-deformation metal forming applications. 

However, both their yield and tensile strength are quite low.  

Ultra-high strength steels, which are on the right hand side of Figure 1-1, exhibit high 

tensile strength but low total elongation. A suitable combination of strength and 

elongation needs to be found in order to effectively contribute to weight reduction. 

Various efforts have been put forth in order to identify suitable constitutive models for 

AHSS. 
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Figure 1-1. Total elongation (%) vs. tensile strength (MPa) 

In order to carry out finite element analysis (FEA) simulations and reliably predict the 

outcome of sheet metal forming operations, critical mechanical properties must be 

known. A flow stress curve is typically determined from a uniaxial tension test, which 

provides the work hardening behaviour of the sheet material but this may not be as 

good as other test data [6]. Values of strain attained in a uniaxial tension test are lower 

than those in a metal forming process due to the onset of strain localization. Metal 

forming processes usually result in biaxial states of stress, which are different from 

uniaxial tension. This requires tensile data to be extrapolated beyond the range of 

available data in order to be useful for FEA simulations of forming processes up to large 

deformations. Figure 1-2 illustrates how the extrapolation of tensile data can lead to 

different results depending on the hardening function that is used to describe the flow 

curve. The results of numerical simulations are heavily relied upon for building 

production tools for industrial manufacturing processes such as hydroforming, blanking, 

stamping, deep drawing, and several others [7]. By carrying out characterization tests 

that generate biaxial loading conditions, a more accurate representation of the 

specimen behaviour should be expected [6]. As the experimental flow stress curve is 

extended to a greater strain range, numerical simulations of forming processes which 

use the flow curve as input will become more accurate. This in turn should lead to 



3 
 

reduced manufacturing costs associated with more accurate design of the tooling and 

forming process.  

 

Figure 1-2. Variation in FEA extrapolation [8] 

  

The hydraulic bulge test is commonly used [9] to characterize the flow behaviour of 

sheet materials under a balanced biaxial state of stress. In this test, a circular sheet is 

securely clamped around its periphery and pressurized from one side with a hydraulic 

fluid; as the pressure on the sheet increases, the blank will increasingly stretch and 

bulge out through the opening in a die. The bulge test can be continued until the onset 

of fracture. The bulge test can therefore be used to determine the flow curve and work 

hardening behaviour of any sheet material in balanced biaxial tension.  

Another way to determine the work hardening behaviour of sheet materials up to large 

deformations is to carry out a combination of flat rolling followed by tensile tests. By flat 

rolling a sheet specimen, the sheet material is pre-strained prior a tensile test, which 

allows the material to reach a high level of effective strain prior to the onset of strain 

localization in uniaxial tension. By progressively increasing the thickness reduction in the 

rolling process, greater values of pre-strain can be applied, thus allowing the total 

effective strain to be significantly increased prior to failure in uniaxial tension. This 
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allows a flow stress curve to be produced up to much larger deformations (over 100% 

strain) compared to a uniaxial tension test carried out on the as-received sheet material. 

However, this method is very time consuming as it requires a minimum of 3-5 tensile 

tests to be completed after each level of thickness reduction in rolling. Therefore, the 

bulge test is no doubt a more efficient characterization test.  

1.2 Objectives  

The challenges with manufacturing automotive parts made from AHSS increase as new 

higher strength sheet materials are produced; mechanical characterization tests up to 

large deformations are required for input into FEA codes, and therefore the need for an 

experimental facility to deform sheet metal specimens in biaxial tension has practically 

become a necessity in order to support advanced research in sheet metal forming. The 

objectives of this work are to: 

- Characterize the work hardening behaviour of DP600 sheets up to high strains 

using successive cold rolling and uniaxial tensile tests, 

- Design and build a hydraulic bulge test facility that can be installed and operated 

in the hydraulic, double-action Eagle press in the Mechanical Testing Laboratory, 

which would in turn require: 

o The integration of suitable equipment for use with the bulge test, such as 

a piston and seal and a pressure transducer. 

 

o Determination of the range of materials and sheet thickness that can be 

burst with the desired pressure requirements of DP600, while also 

considering future high strength materials.   

 

o Implementation of a robust clamping mechanism in order to prevent any 

leaks or the sheet specimen from drawing in.  
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o Installation of an adjustable camera mount above the press that is in a 

suitable range to record the full deformation of the specimen during the 

bulge test. Selecting an appropriate lens, working distance, minimum 

height and working angle. 

 

o Producing flow stress curves from the experimental bulge test data, using 

digital image correlation (DIC) to measure strains and the hardware and 

software necessary to record raw data. 

 

- Development of FEA models of the hydraulic bulge test and tensile test using LS-

DYNA in order to predict the outcome of experimental testing and guide the 

design of the bulge test facility 

- Determination of the experimental measure error of flow curves as well as 

establishing a validation metric [10]  

Chapter 2 provides an in depth review on current testing and analysis methods that are 

used to obtain a flow stress curve from a hydraulic bulge test. The literature review also 

includes various other mechanical tests that are used to determine the flow behaviour 

of sheets, including the shear test and cruciform test. A summary of each work 

hardening test is outlined listing the advantages and disadvantages. 

Chapter 3 presents the bulge test design and how the piston size was determined, the 

available configurations for the clamping ring of the hydraulic bulge test are also 

outlined. Catia models of the various components associated with the hydraulic bulge 

test are provided. 

Chapter 4 outlines detailed experimental procedures for the tensile test with successive 

flat rolling as well as for the hydraulic bulge test. 

Experimental results are presented in chapter 5 for both the as-received tensile tests, 

the tensile tests after successive flat rolling and the hydraulic bulge tests. 
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Chapter 6 describes the implicit finite element models for the tensile test as well as the 

hydraulic bulge test.  The numerical model of the hydraulic bulge test was used to 

determine how much pressure would be required to burst a referenced high strength 

material and to help establish the maximum pressure capacity of the hydraulic bulge 

test. Mesh sensitivity studies were completed and analyzed for both models and 

validation metrics were established.  

Chapter 7 provides a discussion of the flow curves obtained from the successive flat 

rolling and tensile test, as well as from the hydraulic bulge test. Recommendations are 

also proposed for future improvements. 
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Chapter 2 Literature Review 

2.1 Work hardening  

Work hardening, or strain hardening, is the ability of a metal to increase in strength with 

plastic deformation. When a metallic specimen is plastically deformed dislocations are 

generated; as the dislocation density increases, dislocations interact with one another 

which restricts their mobility. As plastic deformation continues, additional force is 

required for dislocations to become mobile, thus leading to an increase in the flow 

stress of the material [11]. Dislocation density is quantified as the total dislocation 

length per unit volume of material and is proportional to the strength of a material. For 

example, a metal may have a dislocation density of 103 mm-2 in the as-received 

condition, while its dislocation density may increase to 109-1010 mm-2 [12] after cold 

rolling.  

Many forming operations take advantage of the ductility of metals to form and shape 

products in a deformation process. However, the more a metal is work hardened by 

plastic deformation, the less ductility remains after forming. 

Figure 2-1 [12] illustrates the trend of work hardening. The blue dot represents the yield 

stress, which can be seen to increase with the percent cold work. The red dot represents 

the ultimate tensile stress which follows the same trend. The green dot represents the 

strain at fracture; as percent cold work increases the fracture strain value decreases.  
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Figure 2-1. Stress as a function of percent prior cold work and strain [12] 

 

2.2 Strain definitions 

Before discussing the large deformation behaviour of sheet materials, it is necessary to 

first review various definitions of strain. The Seth-Hill family of strain is defined as 

follows [13] [14]: 

  
 

 
(    )         (1) 

where   is defined as 
 

  
 and   is a constant that depends on the type of strain. The 

following types of strain include: 

1. Engineering Strain (ϰ=1):            
     

  
   (2) 

2. Logarithmic strain (ϰ=0):          ( )      (
 

  
)  (3) 

3. Lagrange strain (ϰ=2):        
 

 
(    )   (4) 

If the strain is defined in one of the above manners it can be easily converted into any 

other form, as needed. Generally, strains are defined in either engineering or 
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logarithmic strain. DIC software calculates Lagrangian strains which must then be 

converted into more a common type.  

If the strain type is not specified, then it is only accurate to one significant digit even 

though the results may be reported with more than one significant digit. As an example, 

if an experimental strain was reported with  = 1.01000, then the three types of strain 

would be     =0.01000,     =0.00995,     = 0.01005. The maximum difference 

between these strain values is 1.5 %, but this difference increases with the magnitude of 

the strain.  

2.3 Bulge test background 

A two-dimensional schematic of a typical bulge test set up is illustrated in Figure 2-2 

[15]. A thin sheet specimen is placed firmly on the lower die which has a cavity 

containing an incompressible fluid; oil is generally preferred over water since it does not 

corrode the dies as water would. The sheet specimen is then clamped between the 

upper and lower dies. A lock-bead in the die prevents the sheet specimen from drawing 

into the die cavity. Generally, drawbeads are used to control material flow into a die 

cavity to minimize wrinkling and prevent fracture [16]. However, in a bulge test the 

sheet material should be fully stretched and therefore a lock-bead is used rather than a 

drawbead.  As the lower punch rises, it pushes the piston at a predetermined speed, and 

causes a gradual increase of the pressure on the sheet specimen. The pressurized fluid 

causes the sheet specimen to deform and bulge. As the pressure continues to build, 

thinning occurs at the pole of the bulging specimen as it stretches, and eventually the 

specimen will burst; the whole forming process is completed with only a fluid in contact 

with the specimen. 
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Figure 2-2. Schematic of a typical bulge test showing the important test parameters 

Some disadvantages of the bulge test include the large height difference between the 

as-received specimen and the final bulged specimen. This may result in the sheet 

moving outside the calibrated field of view of the digital cameras when DIC is used for 

strain measurement, as the gauge area is quite large compared to that of other tests. 

Adequate sealing of the specimen in the bulge test apparatus in order to ensure that 

there are no oil leaks or pressure drops requires specialized equipment such as a piston 

seal and a suitable technique for sealing the sheet between the upper and lower dies.  

There are several different bulge test apparatus configurations, depending on the 

diameter of the die cavity and the clamping tonnage capability. The bulge test design of 

Ceok Koh [17] relied on DIC software to track the position of the bulge and a plunger to 

displace the viscous medium. Gerhard Gutscher [18] designed a bulge test using a 

position transducer to track the displacement of the apex of the sheet specimen and a 

punch to displace the viscous medium. Generally, a press with a higher tonnage allows 

sheet materials with a wider range of tensile strengths to be tested, as well as sheet 

specimens with greater thickness. Figure 2-3 and Figure 2-4 show the various designs of 

bulge test facilities, and Figure 2-5 [19] shows an example of a bulged specimen. 
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Figure 2-3. Ceok Koh’s design of a bulge test [17] 

 

Figure 2-4. Gerhard Gutscher’s design of a bulge test [18] 

 

Figure 2-5. Example of a bulged specimen 
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2.4 Bulge test loading methods  

There are two common ways of loading a hydraulic bulge test: the most common way, 

which will be investigated in this paper, is to load the specimen uniformly. This 

eliminates possible stress waves that may result from impulsive loading. These stress 

waves can lead to premature bursting with respect to the actual burst pressure of the 

specimen. Figure 2-6 shows the difference between static loading and impulsive loading 

[20] [21]. The end results are similar but the intermediate steps vary from one another. 

 

Figure 2-6. Static loading (left) vs. impulsive loading (right)[20] 

 

It is important to apply a quasi-static loading during a bulge test in order to produce 

accurate flow stress curves. A slower rate of increase with respect to the piston height 

will allow the pressure to remain uniformly distributed across the sheet specimen. If the 

piston moves in a jerky fashion, stress waves will be produced and will lead to unreliable 
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results [20]. Another parameter that may affect the generation of stress waves is the 

diameter of the fluid cavity. The smaller the cavity is, the lower the pressure increment 

can be applied since the volume change per millimeter of stroke is small.  This will result 

in a higher maximum pressure that can be achieved but will also result in a lower 

maximum volume capacity and thus an increased stroke length; an appropriate fluid 

volume must be chosen for the desired specimens to be tested. At a minimum, the 

volume of fluid displaced by the piston must be equal to the volume required to bulge 

the sheet specimen to a height equivalent to half its diameter. For example, a specimen 

with a 200 mm diameter would require a maximum volume of a half sphere having a 

radius of 100 mm.  

2.5 Introduction to flow stress curve 

Determining the flow stress curve from a tensile test is a simple and direct procedure: 

the raw force-displacement data are exported from the tensile testing machine, and 

converted to an effective stress versus effective strain curve. Determining the flow 

stress curve from bulge test data is not as straightforward. The pressure and dome 

height may be measured throughout the test using a pressure transducer and a 

potentiometer, respectively. The sheet thickness and radius of curvature at the top of 

the dome are difficult to measure continuously, and are therefore usually calculated. 

Once they are determined, however, the flow stress curve can be plotted using Eq. (5) 

and Eq. (6) below. Equation (5) will be discussed in further detail later in the chapter 

[15] [22]. 

 ̅  *
  

  
  +

 

 
                    (5)  

 ̅     
  

  
           (6) 

where  ̅ is the effective stress,   is the instantaneous radius at the apex of the dome, 

   is the thickness at the apex of the dome,   ̅is the effective strain,   is the hydraulic 

pressure, and   is the initial thickness of the sheet.  
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An experimental setup was designed by Gologranc [23] that allowed all four of these 

variables to be simultaneously measured. This allowed for a direct measure of the flow 

stress curve without any need for post-processing of strain data measured with an 

optical measuring system or mathematical calculations. However, this testing facility 

was quite complex to build and operate, and difficult to obtain data from.  

2.6 Analytical background and methodology  

In order to determine a flow stress curve through the use of a bulge test, two methods 

can be used, a mathematical approach and a DIC approach. Several methods have been 

conducted in order to determine a flow stress curve, with the use of computation 

models, experimental results, and DIC software [24] [25] [26]. A common mathematical 

approach to determining the flow stress curve using the bulge test is to apply the 

membrane theory [27]. Since the membrane theory neglects bending stresses, it can 

only be used for thin sheet specimens which is generally applicable to most bulge tests. 

For a thin walled assumption to be valid there generally must be a wall thickness no 

greater than one-tenth of its radius [28]. When a sheet specimen is subjected to an 

internal gauge pressure p it will deform into the shape of a dome with radius r and wall 

thickness t. In its deformed state, the bulging specimen can be considered as a spherical 

thin walled pressure vessel, as illustrated in Figure 2-7. Since the spherical specimen is 

under static equilibrium, it must obey Newton’s third law of motion. The stress must 

thus balance the internal pressure, which leads to the following equation: 

                       (7) 
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Figure 2-7. Spherical cross section illustrating internal pressure [29] 

Equation (7) describes the static equilibrium in the pressurized specimen. The 

mathematical model must relate the known parameters to the unknown parameters, 

which in this case are the parameters that cannot be measured directly through the use 

of measuring instruments.  

 

 
 
  

  
 
  

  
          (8) 

   and    are the principal stresses in the plane of the sheet and   and    are the 

corresponding radii of the curved surface, t is the sheet thickness at the apex of the 

dome. In the case of an axisymmetric bulge test, the principal stresses are equal to one 

another and    =    =     and   =    =   . 

Eq. (8) can therefore be simplified to the following: 

  
   

   
         (9) 

Since the pressure is applied to the inside surface of the sheet, thus no normal forces 

act on the outer surface. This leads to the average through-thickness stress in the sheet, 

  
 

 
(    )  

 

 
(  ). The effective stress can then be calculated using Tresca’s 

yield criterion which states: 

 ̅             
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This leads to Equation (5) as defined earlier: 

 ̅  *
  

  
  +

 

 
         (5) 

It can be seen through Equations (7) to (9) that two of the variables are difficult to 

measure directly during the experiment, they are: 

1. Instantaneous radius of curvature,    

2. Instantaneous wall thickness at the apex of the dome,    

It is generally assumed that the top of the dome is spherical, which allows for a 

simplified calculation of the radius at the top of the dome, according to Equation (10) 

[15]: 

   
  
    

 

   
          (10) 

where   is the diameter of the cavity and     is the height of the dome. Equation (10). 

assumes that there is no fillet in the cavity, but in most bulge test facilities this is not the 

case. Equation (11) takes into account the fillet of the cavity [15]. 

   
((    )    )

    
       

   
        (11) 

where   is the fillet in the cavity. These equations were demonstrated by Pankin [30] 

who measured the radius at the top of the dome of the final bulged specimen using 

radius gauges. These results were compared to the calculated values of the radius at the 

apex of the dome using the dome height measurement, assuming that the dome is a 

part of a sphere and considering the fillet in the cavity. It was found that the calculations 

agreed with the experimental values for values up to           . In Gologranc’s [23] 

paper the experimental values also agreed for values up to           .  

In order to calculate the thickness at the apex of the dome, Hill [31] assumed that the 

locus of each point on the sheet is a circle during the physical test. Thus Hill proposed 

the following relationship: 
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     (
 

  (
   
  
)
 )

 

        (12) 

This equation was used for several years until Chakrabarty and Alexander [32] proposed 

a slight modification which takes into account the strain hardening of the sheet as it 

deforms: 

     (
 

  (
   
  
)
 )

   

       (13) 

where n is the strain hardening exponent in the power law function. Figure 2-8 shows 

the effects that the strain hardening index has on the sheet thickness at the apex of the 

dome, as predicted by Eq. (13).  

 

Figure 2-8. Sheet thickness predicted at the apex of the dome vs. the strain hardening index using Eq. (13) [22] 

The initial conditions were set to a predetermined value, in this case an original 

thickness of 1 mm, a die cavity of diameter 100 mm and a dome height of 50 mm. The 

vertical axis shows what the theoretical thickness at the apex of the dome would 
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correspond to. When the strain hardening index is equal to two there is theoretically no 

change in thickness. 

As Figure 2-8 illustrates, the strain hardening index is a factor that significantly affects 

the specimen thickness and must be considered in order to achieve accurate results 

when using Hill’s equation. 

To determine the flow stress curve, the radius and the thickness were calculated as a 

function of the dome height and the strain hardening exponent (n value). The following 

iterative process can be used to determine the flow curve. Figure 2-9 illustrates the 

process. 

 

Figure 2-9. Iterative process to determine strain hardening index and the flow curve 

A database must be made with a series of FE simulations that involve different material 

properties, in this case different n values. The database illustrates how the thickness and 

radius of curvature at the apex of the dome change with the dome height as the strain 

hardening index varies.  

From the flow diagram, it is seen that pressure and dome height are easily measured 

throughout the test. In order to calculate the radius of the dome, an n value must be 
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assumed. The same is done for the thickness at the top of the dome. Both of these 

results are taken from the created database.  

It was determined that with a constant strain hardening index the strength parameter in 

the power law function (K-value) varies linearly with stresses. This means that the K 

value has no influence on the deformation of the specimen when undergoing a bulge 

test [15]. The K value and the initial n value can be determined from a tensile test. 

The effective stress and effective strain can be calculated with the assumed database 

values, knowing the K value and using the following Hollomon power law equation a 

new strain hardening index value can be calculated as shown in Eq. (14): 

    ̅          (14) 

This process is done until the difference between successive n values is equal to or less 

than 0.001 [22]. 

More recently (2002), Kruglov et al. [33] proposed a method to determine the 

instantaneous thickness at the apex of the dome which does not require an iterative 

calculation. This equation takes into account the bulge radius as well. This was 

investigated and shown to provide the most accurate results in respect to the thickness 

at the dome [34]. Equation (15) was proposed by Kruglov et al. [33] 

     (
     

     (
  
  
)
)

 

        (15) 

 

2.7 Considering anisotropy  

The above procedure assumes that the sheet material work hardens according to the 

Hollomon power law equation. It also assumes that the sheet material is isotropic, and 

therefore the Tresca yield criterion was used to calculate the effective stress. The flow 

stress curve that is predicted with these assumptions may not be accurate if the sheet 
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material is anisotropic. Anisotropic sheet materials have mechanical properties that vary 

from one direction to another and this needs to be accounted for when calculating the 

flow stress curves [22]. 

The plastic strain ratio (Lankford coefficient) is defined as: 

   
  

  
          (16) 

where    is the true width strain in a uniaxial tensile specimen as defined below: 

      (
  

  
)         (17) 

where    and   are the final and original width of the tensile specimen, respectively, 

and    is the true thickness strain in the tensile specimen, as defined in Eq. (18): 

      (
  

  
)         (18) 

where   and   are the final and original thickness of the tensile specimen, respectively. 

The plastic strain ratio R can be calculated for each of three orientations with respect to 

the sheet rolling direction, 0°, 45° and 90°, and these values are referred to as    ,    , 

and    , respectively. The ASTM standard E517 [35] provides a detailed procedure for 

determining R values, in which the elastic component of the total strain must be 

removed in order to calculate the plastic strain ratio.  

The following equation shows some modifications that allow the sheet anisotropy to be 

taken into account [36]: 

 ̅    √
      

    (    )
 ̅          (19) 

If the sheet specimen has a normal anisotropy (       ) then Equation (19) reduces to: 

 ̅    √
 

 ̅   
 ̅           (20) 
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where  ̅ is average plastic strain ratio, defined by Eq. (21) 

 ̅   
           

 
        (21)  

2.8 Shear test 

The shear test is another simple and effective way to determine the work hardening 

behaviour up to large strains. The shear test can be readily implemented into a universal 

tensile testing machine by using appropriate mounting fixtures. One of the main 

objectives involved with the design of a shear test is to limit the deformation to the 

intended gauge only, while also producing uniform strains. Miyauchi [37] designed an 

experimental setup for the determination of planar shear for sheet metals, in which the 

specimen has symmetrical slits, thus producing two areas of simple shear. Miyauchi’s 

proposed specimen design was tested by several other institutes and was validated as 

an accurate and effective way of measuring shear strains [38] [39] [40]. 

Zillman et al. [41] investigated the length of the shear zone as it affects the measured 

work hardening. A new specimen was proposed that included shorter shear zones which 

lead to more accurate results. Figure 2-10 shows the different specimens designed by 

Zillman et al. [41]. Figure 2-11 schematically illustrates the deformation that occurs 

during a shear test. The indicated areas are clamped and the middle section is displaced 

vertically. There are several other experimental setups for shear test specimens that 

have been developed, some include designs by Brosius et al. [42], Yin et al. [43] and 

Shouler [44]. 
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Figure 2-10. Shear test specimens designed by (a) Miyauchi [37] and (b) Zillman et al.[41]  

 

Figure 2-11. Shear test specimen before and after deformation [41] 

The shear stress, τs , can be calculated from the following formula: 

   
 

     
         (22) 

where F is the applied force, l is the length of the sheared area, and t is the thickness of 

the specimen. 

The shear strain, γ, can be calculated from the following formula: 

  
 

   
         (23) 

where u is the displacement of the sheared specimen and w is the width of the shearing 

zone. 
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The ASTM B831 shear test standard was developed and designed for thin, wrought 

sheet metals (see figure 2-12). This simple shear test is designed to measure the 

ultimate shear strength of thin sheets while being adapted into a tensile testing 

machine. However, several issues occur with this design: firstly, stress concentrations 

occur at the notches of the specimen. Secondly, under monotonic loading the specimen 

also exhibits severe distortion. In order to overcome such issues, a modified specimen 

was created by Kang et al. [45], which includes a thickness reduction in the gauge 

section, that helped eliminate the rotation of the shear zone. Another shear specimen 

was designed by Merklein et al.  [46] and includes a slight modification to the ASTM 

B831 specimen by adding a fixture to avoid any undesired distortion of the specimen. 

Figure 2-13 illustrates the modified specimen with the added fixture.  

 

 

Figure 2-12. ASTM B831 shear specimen 
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Figure 2-13. Modified ASTM B831 shear specimen with holder [46] 

 

Peirs et al. [47] introduced a shear specimen illustrated in Figure 2-14 that was designed 

with two eccentric notches. The test was designed for use over a range of strain rates, 

as well as up to high strains. The geometry of the eccentric notches in the middle of the 

specimen was optimized in order to produce uniform strain readings throughout the 

test.  As with all of the above tests, DIC was used to measure the strains directly on the 

surface of the specimen during the test. This allowed for direct readings and easy 

observation of strain patterns. This specimen was experimentally tested and results 

were promising, both in terms of uniformity of strains as well as limiting the 

deformation to the intended gauge area only.  
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Figure 2-14. Eccentric notch shear specimen [47] 

Figure 2-15 shows the typical differences that are seen between the flow curves 

obtained from a standard tensile test and from a shear test. It can be noted that the 

yield point in a shear test is much lower compared to that in a tensile test. The yield 

point is also not as well defined as in the tensile test, and the work hardening behaviour 

is also different. 

 

Figure 2-15. Comparison of tensile test and shear test flow stress curves 
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2.9 Cruciform test 

The cruciform test is another method of obtaining biaxial states of stress and has some 

distinct advantages. This test method can measure the elastic – plastic behaviour of 

sheet materials for an arbitrary principal stress ratio (    ⁄ ) [48]. The entire test is 

completed in one plane, which is a key advantage compared to the out-of-plane 

deformations that occur in hydrostatic bulge testing. The four arms of the cruciform 

specimen are given a displacement, which in turn generates tensile forces in two 

perpendicular directions. 

For successful biaxial testing the strain distribution must be symmetric throughout the 

test. In order to achieve this, bending must not be induced into the test specimen. A 

generic cruciform specimen is shown in Figure 2-17 [49]. Tests have been done that 

show the difference between four actuators (case a) and two actuators (case b). In case 

a, the cruciform specimen maintains co-linearity which avoids any bending moments. 

Each arm of the specimen is pulled at a force that is equal to that in the opposing arm, 

in this case P to P’ and F to F’. Another requirement is that the direction of the collinear 

forces F and F’ must be exactly perpendicular to that of forces P and P’ [49].  

Case b in Fig. 2-16 illustrates the type of cruciform specimens that rely on only two 

actuators and have the other two arms of the specimen clamped/fixed. As can be seen, 

the centre of the specimen is subject to lateral bending, which is undesirable. This also 

leads to non-uniform strain distributions throughout the specimen. In reality, it is very 

difficult to avoid any bending in the arms of the specimen when it is loaded with only 

two actuators. Using four actuators allows the specimen to be constantly and evenly 

loaded in two perpendicular directions throughout the test. 
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Figure 2-16. Cruciform specimen with four actuators (case a) and two actuators (case b) 

The cruciform test was first studied by Kuczynski et al. [50] and Kelly [51]. This was done 

in the 1960’s to late 1970’s. The specimens designed were able to achieve a near 

homogeneous strain distribution but were not able to reach necking or fracture, each 

for different reasons.  Müller and Pöhland [52] were able to design a specimen that was 

used to determine the yield-locus. Hoferlin et al. [53] also achieved the same thing by 

using small clamps to prevent bending moments.  

Hanabusa et al. [54] stated that the majority of cruciform specimens fall into two 

categories, the first being specimens that have a reduced thickness area, and the second 

being specimens that have a uniform thickness. Over the years, several different types 

of specimens have been proposed. Pascoe introduced a specimen that included 

spherical recesses on both sides of the central region. [55] Shiratori introduced a 

specimen that consisted of one cross-shaped sheet sample and eight plates in order to 

reinforce the four arms [56]. Both of these specimens have a gauge area with a reduced 

thickness. The fabrication of these types of specimens is quite challenging and requires 

extra machining. Another issue that results from reduced thickness is the change in 

material properties due to the manufacturing, such as work hardening. 

Kuwabara et al. [57] introduced a cruciform specimen with a uniform thickness that also 

had a number of slots in each arm. The parallel slots were implemented to ensure that 

the stress distribution in the gauge area is kept as uniform as possible throughout the 
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test. Figure 2-17 shows the proposed specimen without any dimensions. Several other 

authors have also done research on this type of cruciform specimen which shows 

promising results [53] [57] [58]. 

 

Figure 2-17. Cruciform specimen designed by Kuwabara et al. [57] 

Yu et al. [59] introduced a unique specimen that also achieved successful results. The 

intent behind the design of this specimen was to obtain the most uniform stress 

distribution as possible in the central region. In order to achieve this the center of the 

specimen was thinned down, with an additional thickness reduction in the shape of a 

cross, and inside of that a dished circular area. This specimen geometry was optimized 

using FEA. The various shades of gray show the thinned areas. 
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Figure 2-18. Cruciform specimen proposed by Yu et al. [59] 

 

Green et al. [60] used a cruciform specimen with a thinned gauge area and with slots in 

the arms that allowed the gauge area to exhibit reasonably uniform strain distributions, 

for a range of stress ratios, up to relatively large deformations ( ̅     ). 

The greatest challenge with cruciform specimens is to calculate the stresses in the gauge 

area, since this cannot be done from direct measurement of the forces applied to the 

arms. Stresses in the gauge of a cruciform specimen can be calculated using an iterative 

procedure in which the force-displacement curves in the arms predicted by FEA are 

compared with the experimental curves. A correction is then applied to the assumed 

input flow curve of the material and simulations of the test are carried out again until 

the error between the predicted and experimental force-displacement curves is less 

than a specified amount. 
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2.10 Summary of work hardening tests 

Tensile testing after successive rolling can achieve strains over 100% compared to 

results without rolling which leads to uniform elongations of only 15-30 % strain. The 

pre-strain of the specimen can be calculated and it is known beforehand, allowing for 

accurate strain increments to be obtained when plotting a flow stress curve. However, 

this process is labour-intensive and a tensile test is still limited to uniaxial loading. 

The shear test can provide data upwards of 40% strain and has the advantage of being 

able to be implemented into a uniaxial tensile testing apparatus. However, gripping of a 

shear test specimen is generally an issue and is hard to control. Moreover, producing 

uniform shear strains in the gauge is also a challenge and the shear test is still limited to 

a single loading direction. 

An advantage of the cruciform test is that it is a biaxial test with no out-of-plane 

deformations. When manufacturing a cruciform specimen there may be a change in 

material properties due to the outer layer of the specimen being removed. A complex 

cruciform specimen can cost over $1000; comparing this to a tensile test specimen at a 

few dollars leads to a big cost discrepancy. Another disadvantage is the possibility of the 

specimen being subject to in-plane bending throughout the gauge during the test. 

The bulge test is a biaxial test that can produce strains beyond 60% and it does not have 

as many issues as the other tests mentioned above. A bulge test is not a labour-

intensive process, clamping of the specimen is easier to control, and the cost of a 

specimen is cheaper than a tensile test specimen. However, producing a flow stress 

curve is more involved compared to the tensile, shear, and cruciform tests. 
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Chapter 3 Bulge Test Design  

 

The bulge test die was designed such that it could be operated in a 240-ton double-

action hydraulic press located in the Mechanical Testing laboratory at the University of 

Windsor. The features and maximum capacity of this press helped to determine the 

dimensions and limitations of the bulge test tool. This chapter will present both the 

design criteria and the final design of the bulge test die, as it was constructed. 

3.1 Determination of piston size 

A piston and seal will be mounted to the inner punch rod and will be used to displace an 

incompressible fluid, in this case oil, inside a compression chamber which will cause a 

circular sheet specimen, clamped around its periphery, to bulge out. The maximum 

pressure that can be generated in the compression chamber will determine the 

maximum tensile strength and thickness of sheet materials that can be bulged to failure. 

Likewise, the maximum pressure will be limited by the design of the piston and the 

maximum punch force capacity of this press, which is 1000 kN. 

Step 1: determination of piston diameter.  

A volume versus pressure capacity table was created to determine an appropriate 

piston diameter that met the desired goals in terms of maximum pressure. The 

following procedure was implemented in order to determine the required design 

parameters. The pressure was determined using Eqn. (24): 

  
 

 
          (24) 

where F is the maximum clamping force (1000 kN) and A is the surface area of the blank 

that is pressurized by the forming fluid. The surface area is calculated from the diameter 

of the blank that is yet to be determined. Table 1 shows the maximum pressure that can 

be achieved for corresponding values of piston diameter. 
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Diameter (mm) Maximum 

Pressure (MPa) 

Maximum 

Pressure (psi) 

100 127 18466 

105 115 16749 

110 105 15261 

115 96 13963 

120 88 12824 

125 81 11818 

130 75 10927 

135 69 10132 

140 64 9421 

145 60 8783 

150 56 8207 

155 53 7686 

160 49 7213 

165 46 6783 

170 44 6389 

175 41 6029 

180 39 5699 

185 37 5395 

190 35 5115 

195 33 4856 

200 31 4616 

Table 1. Piston diameter versus maximum pressure 

 

This data is also shown in the form of a graph in Figure 3-1. 
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Figure 3-1. Maximum achievable pressure for a given piston diameter 

A blank diameter of 135 mm was selected because it allowed sufficient room on the 

outer edge to clamp the specimen into place. This was also a blanking die configuration 

available at the University of Windsor, thus allowing for blanks to be made in house. 

Step 2: determination of the volume of the pressure chamber 

When a 135 mm diameter blank is fully bulged into a hemispherical shape, the radius of 

the bulged specimens would be 67.5 mm. Even the most ductile sheet materials will not 

likely bulge further than a perfect hemisphere without rupturing. Assuming this is the 

limiting case, the maximum volume of fluid that needs to be displaced in order to fully 

bulge a formable specimen is determined by Eqn. (25) 

  
    

 
         (25) 

where r is the radius of a sphere. If the radius of a fully bulged specimen is 67.5 mm, 

then the maximum volume of fluid required to fully bulge the specimen would be half of 

the corresponding sphere, i.e. 1,288,253 mm3. 
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Since the maximum punch stroke of the press is 508 mm, the maximum piston stroke 

must be somewhat less than this in order to displace a volume of fluid within the 

compression chamber that will fully bulge a sheet specimen. Table 2 presents the 

volume change per millimeter of piston displacement as well as the piston stroke 

required to achieve maximum volume capacity, for selected piston diameters.  

Piston Diameter 

(mm) 

Volume Change 

Per 1 mm Piston 

displacement 

(mm
3
) 

Maximum 

Piston Stroke to 

Achieve Desired 

Volume (mm) 

% of Maximum 

Press Piston 

Stroke 

100 7853 266 52.49% 

105 8659 241 47.61% 

110 9503 220 43.38% 

115 10386 201 39.69% 

120 11309 185 36.45% 

125 12271 170 33.60% 

130 13273 157 31.06% 

135 14313 146 28.80% 

140 15393 136 26.78% 

145 16513 126 24.97% 

150 17671 118 23.33% 

155 18869 111 21.85% 

160 20106 104 20.51% 

165 21382 97 19.28% 

170 22698 92 18.16% 

175 24052 87 17.14% 

180 25446 82 16.20% 

185 26880 77 15.34% 

190 28352 73 14.54% 

195 29864 70 13.80% 

200 31415 66 13.12% 

Table 2. Piston diameter, volume change per mm of piston displacement and percentage of maximum stroke 

As shown in Figure 3-2 the smallest piston diameter would lead to 53 % of the maximum 

stroke being used while the largest diameter would lead to 13.12 % of maximum stroke 
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being used. The entire range of piston diameters is thus acceptable with respect to 

displacing the required maximum volume of fluid. As mentioned in Chapter 2, a smaller 

volume change per millimeter of piston displacement is beneficial as it allows better 

control of the sheet bulging process. 

As the maximum piston stroke is increased in the design, so also does the size of the 

pressure chamber as well as the overall size of the die. In order to minimize the cost of 

the die, the volume of steel needed to build the die must also be minimized. Therefore, 

an appropriate combination of piston diameter and piston stroke was determined in 

order to achieve the complete bulging of sheet specimens and good process control 

while limiting the cost of the die. 

 

Figure 3-2. Required piston stroke to achieve desired volume 

Step 3: determination of piston diameter. 

Designing a piston that is capable of sealing pressures illustrated in Figure 3-1 was 

challenging when considering 100 to 200 mm diameters. After research, the greatest 

standard piston size that could be purchased was found to seal up to a pressure of 69.9 

MPa with a diameter of 120 mm. A pressure greater than this would lead to the seal 
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failing. Thus a piston diameter of 120 mm was chosen, this provided a good combination 

of maximum achievable pressure as well as volume change per mm of piston 

movement. This also allowed the tooling of the press to be small enough to fit into the 

opening of the hydraulic press; a higher stroke would have required a bigger tool in 

terms of height. With a piston diameter of 120 mm, the current working space between 

the upper and lower dies when the press is fully opened is 6 inches; any smaller of a 

piston would have resulted in a working space of only 4-5 inches, which is not practical. 

Two solutions were produced in order to ensure that the pressure does not exceed 69.9 

MPa. 

Solution 1: The maximum punch force was reduced to 780 kN in order to ensure that 

with a piston diameter of 120 mm the maximum pressure achievable did not exceed 

69.9 MPa. 

Solution 2: The pressure transducer was set-up with a cut-off point, as soon as the 

pressure reached a certain value that was programmed, the press would turn off and 

thus the pressure would be immediately stopped. A safety factor of 1.1 was also 

incorporated.  

By implementing two safety precautions, one in the maximum press force, and one in 

the software of the press, the piston pressure will not exceed 69.9 MPa. 

Step 4: An FEA model was created in order to ensure that a pressure of 69.9 MPa could 

burst a 1.5 mm thick DP600 steel. Details of the FEA model can be found in chapter 6 

A referenced sheet material, 8650 wrought steel, was used in one simulation. The 

mechanical properties of this sheet material were taken from Varmint Al’s Engineering 

page [61]. 8650 wrought steel has a yield stress of 1000 MPa and an ultimate tensile 

stress of 1300 MPa, whereas DP600 has a yield stress of 400 MPa and an ultimate 

tensile stress of 650 MPa [62]. The sheet thickness that was used in the simulation was 

also increased to 1.7 mm compared to the thickness of the DP600 steel sheets that will 

be used which is 1.5 mm.  



37 
 

In the FE simulation, the 8650 wrought steel specimen was bulged to the maximum 

bulge height, in this case one half of the 135 mm diameter, a bulge height of 67.5 mm, 

and this required a predicted pressure 52 MPa. This demonstrates that 69 MPa is indeed 

sufficient to bulge DP600 to the desired bulge height considering that 8650 wrought 

steel has a higher yield and tensile strength while also being thicker. 

A maximum pressure of 69 MPa also provides the capability to carry out bulge tests up 

to the onset of failure using AHSS sheet specimens with greater tensile strength and/or 

greater sheet thickness than even this 8650 wrought steel reference material that was 

used in this numerical simulation.  

3.2 Clamping the sheet specimen  

When conducting a hydraulic bulge test, it is necessary to stretch-form the specimen so 

that it is subjected to fully balanced biaxial tension. This requires that the specimen be 

securely clamped around its periphery in order to avoid any material drawing in. 

However, the closing force of the blankholder may not be sufficient when testing higher 

strength sheet materials. If the blankholder force is insufficient, there is a risk that the 

sheet material will flow into the forming zone. The maximum blankholder force capacity 

of the press is also 1000 kN. In cases where this blankholder force is not sufficient to 

securely clamp the specimen, the bulge test die was designed with an additional 

clamping mechanism. 

The hydraulic bulge test die was designed with a support ring that can be used to bolt 

the sheet specimen into place using 12 M12 bolts which have a minimum tensile 

strength of 400 MPa [63]. This bolted support ring allows for an additional distributed 

load to be applied around the periphery of the specimen and also ensures that the 

specimen will not draw in during a bulge test. 

The hydraulic bulge test can be conducted in one of two configurations: configuration 1 

consists of conducting a test without the use of the 12 M12 bolts, and configuration 2 

makes use of the 12 M12 bolts to add extra clamping force. For lower strength sheet 
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materials, configuration 1 offers the convenience of saving the time and cost involved in 

drilling holes in each circular blank prior to testing.  However, high strength sheet 

materials usually require the additional clamping force provided by the bolted support 

ring. 

A third clamping solution was also considered for higher strength sheet materials in 

which the blank would be held in place using a lockbead. The upper die is removable, 

and thus it would be possible to design an upper and a lower ring with a mating 

lockbead. The mating upper and lower rings would be designed with clearances suitable 

for a narrow range of sheet thicknesses and might also allow for the height of the 

lockbead to be adjustable, depending on the severity of the bends required to lock the 

sheet material [64]. 

The final design of the bulge test die has the following key dimensions shown in Table 3: 

Piston Diameter  120 mm 

Diameter of the cavity in the upper die 135 mm 

Number of M12 bolts 12 

Radius of the fillet  3 mm 

Maximum Piston Stroke 170 mm 

Maximum Force 10,000 kN 

Table 3. Bulge test critical parameters 

A detailed component list of the bulge test die can be found in Appendix 1 

3.3 Main die block  

The main die block, shown in Figure 3-3, has a length of 400 mm, a width of 395 mm and 

an overall height of 265 mm. There are 12 concentric threaded holes around the 

opening in the block. The piston has diameter of 120 mm. The bottom of the main block 

has a 100 mm diameter encasement that functions as a downward stopper for the 

piston, to prevent the piston with its seal from being pulled out from the bottom of the 

die block as this would damage the seal. The red arrows indicate that the top of the die 

is designed with a 25-mm-step for protection: in the event that an oil leak occurs during 
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a test, the oil under pressure will first hit the protective step rather than endangering 

the press operator. 

 

 

Figure 3-3. Main die block (Catia model) 

 

 

 

3.4 Clamping ring 

The clamping ring was designed with the purpose of securely clamping and sealing the 

specimen around its periphery, while allowing it to bulge up inside the ring. The two 

black arrows show the position of the clamping ring in Figure 3-4. The clamping ring 

incorporates two locating holes so that the locating pins will ensure that the clamping 

ring is always located in a consistent position.  

Protective Step 
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Figure 3-4. Clamping ring with 12 bolt holes and 2 locating holes (Catia model) 

The inside diameter of the clamping ring is 135 mm, which allows the sheet material to 

bulge out within this opening. A 3 mm radius, as can be seen in Figure 3-5, on the inside 

fillet of the clamping ring ensures that the specimen does not shear when the sheet 

specimen bulges and wraps around this inside radius.  

Clamping ring 
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Figure 3-5. Clamping ring with 12 bolt holes and 2 locator holes (Catia model) 

 

3.5 Upper die block 

The upper die block was designed to close down onto the clamping ring to hold the 

sheet specimen in place and seal the pressure chamber during a bulge test. This was 

implemented by designing a 50° chamfer from top to bottom. The eight threaded holes 

are used to install the upper block onto the top of the Eagle press, and the four slots are 

used to locate the upper block in place. 

This design of the upper die block also includes a central opening that allows the digital 

cameras mounted on top of the press to focus on the specimen through the large 

chamfered opening in the crown of the press, while providing sufficient light to properly 

illuminate the test specimen. This allows the digital cameras to record higher quality 

images due to a lower aperture being used.  Figure 3-6 illustrates the upper die block. 

3mm radius 
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Figure 3-6. Upper die block with central chamfered opening (Catia model) 

 

3.6 Piston and honed tube 

A custom piston head was designed so as to be able to accommodate a specialized seal 

that can operate up to a maximum specified pressure of 69.9 MPa. This piston head was 

machined and customized in order to meet the requirements of the seal manufacturer 

and ensure that the maximum operating pressure could indeed be attained.  

A custom honed tube was purchased that is specifically designed for uses in hydraulic 

fluid applications. The honing process involves using abrasive polishing stones and 

abrasive paper to remove small amounts of material and produce an inside surface with 

very precise dimensions and tolerances, and a surface roughness no greater than 0.4 

µm. A Team Tube-Metric Honed tubing was used with an inner diameter of 120 mm, an 

outer diameter of 6 inches and a length of 245 mm. The honed tube is made of a 

specially treated 1026 steel  
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3.7 Seals, O-rings and fittings 

An AS568-225 O-Ring was selected with an inner diameter of 47.22 mm and a cross- 

section of 3.53 mm, and was mounted on the top surface of the piston head, as 

indicated by the black arrow in Figure 3-7. Figure 3-8 shows the technical drawing of the 

seal. 

 

Figure 3-7. AS568-225 O-Ring 

 

Figure 3-8. Drawing of the AS568 O-rings used in the bulge test die 
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A specialized Selemaster DSM piston seal was purchased that was selected based on the 

120 mm piston diameter size. Selemaster piston seals are manufactured with a highly 

compression resistant nitrile. This allows it to reach very high pressures. Figure 3-9 

shows the schematic for the Selemaster DSM piston seal. 

 

Figure 3-9. Selemaster DSM piston seal schematic 

Dn 120 mm 

d 100 mm 

L 35 + 0.2 mm  

L1 9.52 + 0.1 mm 

d1 112.80 +/- 0.05 mm 

d2 117.5 +/- 0.07 mm 

Table 4. Selemaster DSM piston seal parameters 

Fittings are used as leak-free connections for power and instrumentation in the bulge 

test design. In order to properly connect the pressure transducer and the dump valve 

proper fittings were needed. A Parker high-pressure 69.9 MPa pipe fitting steel ½ ‘’ inch 

NPT (National Pipe Taper) nipple, Figure 3-10, as well as a Parker high-pressure 10k pipe 

fitting steel ½ ‘’ NPT 90 degree elbow, Figure 3-11, were used for the pressure 

transducer and dump valve, respectively. NPT are used for connections where pressure 

tight joints are made on the threads utilizing a thread sealant.  All fittings were made in 

stainless steel. 
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Figure 3-10. Pipe fitting 1/2'' NPT nipple 

T1 ½ ‘’ 

T2 ½ ‘’ 

W Hex 7/8’’  

D ins. 1.89 ‘’  

Table 5. NPT nipple parameters 

 

 

Figure 3-11. Pipe fitting 1/2'' NPT elbow 

 

Thread Size ½’’  

A 1.31” 

B 1.32” 

C A/F  1.00” 

Table 6. NPT elbow parameters 
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3.8 Pressure transducer  

In order to continuously measure and record the actual pressure inside the pressure 

chamber of the bulge test die, it was designed to be equipped with a built-in pressure 

transducer. A Barksdale 423 series general industrial (amplified) pressure transducer 

was selected because of its compatibility with the control system and data acquisition 

system of the hydraulic press. An excitation voltage of 24 VDC was used with an output 

of 4-20 mA and a secondary output possible with 0-10 volts. A range of 0-69 MPa is 

available with a frequency response of 2 kHz and a resolution of 0.006895 MPa. Figure 

3-12 shows a photograph of the pressure transducer that was used. The electrical 

connection was made with a 3 conductor, 24 American wire gauge (AWG), PVC jacked, 

shielded cable that is 1.0 m long with integral strain relief and case grounding. 

 

Figure 3-12. Photograph of the Barksdale pressure transducer 
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Chapter 4 Experimental Procedures  

4.1 Tensile test procedures 

Rectangular blanks were flat rolled to effective strains of 0.2, 0.4, 0.6, 0.8 and 1.0 and 

then were prepared for tensile tests following ASTM E8 standards. Electro-etching was 

used to measure the width strains of the specimen and DIC measurements were used in 

conjunction with a mechanical and video extensometer to calculate the principal strains. 

A Matlab code was created to produce the flow stress curve. 

4.1.1 Specimen preparation 

A guillotine shear was used to cut tensile specimens to a width of 30 mm and an overall 

length of 500 mm.  Figure 4-1 shows the dimensions required by the ASTM E8 [65] 

standard for thin sheet metals. The overall length is to be 200 mm, while the overall 

height should be 20 mm. By shearing the sheet to a length of 500 mm, two tensile 

specimens can be machined to the final shape using wire-EDM. An overall height of 30 

mm allows for a sufficient working tolerance to properly machine the tensile specimens.  

 

Figure 4-1. Tensile test specimen dimensions[65] 

 

 

 

 



48 
 

Parameters Dimension (mm) 

L 180 

B 41.671 

A 60 

W 12.5 

C 20 

G 60 

R 30 

t 1.5 

Table 7. Tensile test specimen parameters and dimensions 

4.1.2 Electro-etching 

Digital image correlation (DIC) can be used to measure the strain distribution across the 

gauge area of a tensile test specimen. A random speckle pattern can be applied onto the 

tensile test specimen and both an initial and a final picture of the specimen can be 

taken, once the successive rolling is completed. This allows for the DIC to record an 

original, un-deformed configuration to which all images of deformed configurations can 

be compared. A virtual width strain can be implemented on the two images and thus a 

virtual gauge can be applied. The virtual strain gauge would then be used to calculate 

the width strain that resulted from the rolling.  

Etching a grid onto the surface of the specimens is a more common and practical way of 

determining strains and this method that was used to calculate width strains. Strips of 

DP600 steel were electro-etched prior to pre-straining by flat rolling. A thorough 

cleaning of the specimen was first carried out and clean gloves were used to handle the 

specimen since fingers contain natural oils that would negatively affect the etching 

process and result in a poorer quality etching finish. 

Etching uses an acid or mordant to slightly cut into the uncoated metal. For use on 

DP600 steel a chemical solvent was made with a mixture of 22 grams of sodium nitrate 

per liter of water. If the etching is too deep, the material may be damaged and could 
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lead to less accurate results in the subsequent tensile tests. If the etching is not 

sufficiently deep, the grid may be removed during the rolling process.  

There are several different stencil patterns that can be used for etching a sheet metal 

blank, and the most common are squares and circles. Squares are easier for calculating 

the deformation and thus the width strain in this case. An electro-etched specimen is 

shown in Figure 4-2. 

 

Figure 4-2. Photograph of the electro-etched grid on a tensile specimen 

4.1.3 Rolling tests 

In order to obtain accurate thickness measurements, three different measurements 

were taken along the length of the specimen and were then averaged and these values 

were used for further calculations. A minimum of three tensile tests were conducted 

after each level of effective pre-strain. Table 8 summarizes the various specimens that 

were rolled and the average of three thickness measurements that were obtained in 

both the rolling and transverse directions. 
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Specimen 

Designation 

Average Thickness  

Rolling Direction 

(mm) 

Average Thickness 

Transverse 

Direction (mm) 

SR1-1 1.483 1.484 

SR1-2 1.493 1.481 

SR2-1 1.494 1.483 

SR2-2 1.492 1.484 

SR3-1 1.494 1.484 

SR3-2 1.490 1.487 

SR4-1 1.491 1.486 

SR4-2 1.491 1.486 

SR5-1 1.491 1.484 

SR5-2 1.484 1.482 

SR6-1 1.486 1.488 

SR6-2 1.491 1.485 

Table 8. Specimen name and thickness in rolling and transverse direction 

In order to calculate effective strains with proper increments between one another, a 

theoretical analysis of the rolling was done. By manipulating the following equations: 

 ̅  √
 

 
(           )       (26) 

      
    

  
          (27) 

and assuming constancy of volume  

                   (28) 

where   ,    and    are the plastic strains and   ̅is the total effective strain. Rolling is 

generally considered to be a plane-strain deformation, i.e. the width strain is assumed 

to be     . This leads to the following: 
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                 (29) 

Rolling was carried out in successive stages, and the desired effective strain increments 

at each stage were chosen to be 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 each being associated 

with specimen SR1, SR2, SR3, SR4, SR5 and SR6, respectively. This allowed for an even 

distribution of effective strain in successive specimens. With these values being 

substituted into Eqn. (27), the only unknown left is     . Table 9 shows the calculated 

theoretical and the experimental values obtained for the rolling direction. 

Specimen  

Designation 

Theoretical 

Thickness 

Rolling 

Direction 

(mm) 

Total 

Theoretical 

Effective 

Strain - 

Rolling 

Direction 

Measured 

Thickness 

Rolling 

Direction 

(mm) 

Total 

Experimental 

Effective 

Strain - 

Rolling 

Direction 

SR1-1 1.483 0.0 1.483 0.0 

SR1-2 1.493 0.0 1.493 0.0 

SR2-1 1.256 0.2 1.262 0.193 

SR2-2 1.255 0.2 1.259 0.196 

SR3-1 1.057 0.4 1.067 0.386 

SR3-2 1.054 0.4 1.067 0.386 

SR4-1 0.887 0.6 0.892 0.593 

SR4-2 0.887 0.6 0.894 0.591 

SR5-1 0.746 0.8 0.764 0.772 

SR5-2 0.742 0.8 0.736 0.815 

SR6-1 0.625 1.0 0.631 0.993 

SR6-2 0.627 1.0 0.625 1.004 

Table 9. Rolling theoretical thickness and effective strain in comparison to achieved thickness and effective strain 

Table 10 below shows the calculated theoretical and the experimental values obtained 

for the transverse direction. 
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Specimen  

Designation 

Theoretical 

Thickness 

Transverse 

Direction 

(mm) 

Total 

Theoretical 

Effective Strain 

- Transverse 

Direction 

Measured 

Thickness 

Transverse 

Direction 

(mm) 

Total 

Experimental 

Effective Strain 

- Transverse 

Direction 

SR1-1 1.484 0.0 1.484 0.0 

SR1-2 1.481 0.0 1.481 0.0 

SR2-1 1.246 0.2 1.253 0.194 

SR2-2 1.247 0.2 1.261 0.187 

SR3-1 1.048 0.4 1.064 0.383 

SR3-2 1.051 0.4 1.068 0.3801 

SR4-1 0.883 0.6 0.891 0.590 

SR4-2 0.883 0.6 0.891 0.590 

SR5-1 0.742 0.8 0.756 0.778 

SR5-2 0.741 0.8 0.751 0.817 

SR6-1 0.626 1.0 0.634 0.981 

SR6-2 0.625 1.0 0.637 0.976 

Table 10. Transverse theoretical thickness and effective strain in comparison to achieved thickness and effective strain 

From Table 9 and Table 10 it can be noted that the overall effective strain was closely 

reached for both the rolling direction and the transverse direction.  

A Stanat 10 HP rolling mill was used, and the spacing between the rollers was manually 

adjusted using a turning wheel. Due to the manual adjustment of the roll gap, the 

targeted thickness strains were approximately achieved since the rolls experience an 

elastic deformation each time a specimen is rolled and the final thickness of a rolled 

specimen is not the same as the roll gap.  

In order to ensure that the width strains are indeed approximately zero, the distance 

across seven etched squares was measured in the width of the strip before and after 

rolling. The overall width of these seven grids was 17.62 mm before rolling and the 

maximum distance measured across the same grids after rolling was 17.82 mm, which 

represents a width strain of 1.12% or 0.0112. This was located on SR6-2 in the rolling 
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direction. Whether or not this width strain is accounted for in the calculation of the 

effective strain did not change the value of the effective strain significantly. Therefore, 

the width strain induced by rolling was considered negligible since it did not contribute 

to the total effective strain in successive rolled DP600 specimens. 

4.1.4 Preparation of tensile specimens  

The specimens were machined by wire-cut electrical discharge machining (EDM) 

according to ASTM E-8 standards. Each rolled strip was used to produce two tensile 

specimens, yielding a minimum of four tensile specimens for each rolling increment.  

In order to obtain accurate DIC results a speckle pattern must be applied onto all 

specimens. A successful speckle pattern was achieved by applying three layers of white 

spray paint onto the specimen and allowing it to fully dry. Taking a black spray paint 

nozzle and slowly applying pressure to the nozzle allowed for bigger black dots to be 

sprayed onto the specimen. This allowed for the DIC software to produce the most 

accurate results in comparison with the mechanical and video extensometers. Figure 4-3 

was taken directly from the MATLAB code that will be used to calculate the tensile test 

flow stress curve as shown in the appendix. More details of this code are provided in 

chapter 5. Figure 4-3 shows the comparison between the mechanical extensometer 

(blue), video extensometer (orange) and DIC (yellow). The three strain measurements 

coincide perfectly throughout the test. 
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Figure 4-3. Load – strain curve of a DP600 tensile specimen obtained using different strain extensometers 

In order to implement the video strain readings from the camera, a blue permanent 

marker was used to mark circles onto the specimen. The blue circles were spaced 25 

mm from each side of the specimen center, and also in the center of the specimen 

vertically, thus reproducing a 50 mm gauge length in the centre. This allowed an 

operator to manually select the targets on the video extensometer software 

beforehand. By marking these dots at the same gauge length as the mechanical 

extensometer the strain results fully matched with one another. Two dots were also 

placed 10 mm vertically apart at the centre of the specimen in order to obtain the minor 

strain. Lastly, three more dots were placed, one in the centre of the specimen, and the 

final two spaced equidistant of 12.5 mm from the centre, producing a 25 mm gauge 

length. This allowed for another calculation of the principal strain. Figure 4-4 shows the 

placement of the dots as well as the speckle pattern implemented.  
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Figure 4-4. Tensile test specimen with speckle pattern 

4.1.5 Tensile tests  

All tensile tests were conducted on a 50 kN MTS universal testing machine. The MTS 

machine uses integrated software, called MTS TestSuite that allows a user to program 

the same set up for all tensile tests. The set up was specified such that tensile tests were 

conducted with a crosshead speed of 5mm/min. The software was also programmed to  

use a video extensometer and a mechanical extensometer with a 25 mm gauge during 

each tensile test. Once both extensometer profiles were programmed, the specimen 

was mounted into the lower grip. The mechanical clip gauge was mounted on one edge 

of the specimen to ensure that it did not block the line of sight for the video camera. 

Some specimens were rolled to such a reduced thickness that placing the mechanical 

extensometer on the edge was difficult, and in some cases the extensometer snapped 

off.  

The camera was set up behind the MTS machine and a 1:1.4 25 mm lens with a 

diameter of 30.5 mm was mounted onto the video camera. Focusing the camera in and 

out allowed for the field of view to be adjusted accordingly, once initially set up the 

camera does not need to move again. LED lighting was placed close to the camera in 

order to be able to narrow the aperture. By having a narrow aperture highly collimated 
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rays are admitted, which results in a sharp image. If the software shows red dots on the 

specimen, this indicates that there is too much light being let into the lens, thus over-

saturating the camera.  The video software allows for targets to be chosen, which 

should correspond to the previously marked crosses on the specimen. The MTS machine 

requires the mechanical extensometer and load cell to be verified, which is done 

manually every time the power button is turned on. Readings were set to zero and the 

specimen was clamped into the bottom and top jaws. When a tensile test was 

conducted, the video extensometer recorded images of the gauge area that would later 

be analyzed by the DIC software. All data, both the MTS raw data and the video files, 

were saved and exported to a USB drive. 

4.1.6 DIC analysis  

A DIC system from Correlated Solutions Inc. was used to measure the strain distribution 

across the specimens as well as the history of the deformation. First, individual images 

were extracted from the recorded video at a rate of 17 frames per second. Once the 

images were extracted, they were imported into the VIC-2D software. A seed point 

location was then selected in an area of the image that is subject to the least 

movement. A subset size of 30 was chosen, the subset size controls the area of the 

image that is used to track the displacement between images. A step size of 2 was used, 

the step size controls the spacing of the points that are analyzed. For example, a step 

size of 5 means that every 5th pixel in both the horizontal and vertical direction, while a 

step size of 1 means that every pixel is analyzed in both directions. As the step size is 

decreased, the calculation time increases significantly, as well as the accuracy of the 

results. The fastest computation time being a step of five while the most intensive 

computation time being for a step of one. Once the analysis is complete a virtual 

extensometer is placed onto the area of interest, in this case the major and minor strain 

directions. The output of the strain analysis is then exported into a .csv file. 
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4.1.7 Output 

All the DIC results were post-processed using a MATLAB code. The MATLAB code 

requires customized inputs that are specific to each specimen tested, such as specimen 

width, thickness, and pre-strain from the initial rolling. All data formats must be in a .txt 

file with ANSI format in order for MATLAB to be able to read the code.  The MATLAB 

program will then output the desired graphs, and if strain results are appropriate no 

smoothing is needed. But if the calculated strain results are not monotonically 

increasing, the strain data may need to be smoothed. In cases where the outputs were 

not monotonically increasing due to fluctuations in the data, the MATLAB command 

smooth was used, which eliminates noise from a data set. A final file is then outputted 

showing the work hardening behaviour of that specimen. Once all tests were 

completed, all data files were assembled together to output the final flow stress curve. 

The final output displays an effective stress (MPa) vs. total effective strain. ASTM 

standards were followed for standard testing methods for tensile strain-hardening 

exponents [66]. Caution needs to be taken as the mechanical extensometer will have a 

pre-strain added to it from the clamping of the jaws onto the specimen. This can be 

treated in two ways, manually adjusting the mechanical data so it starts at zero, or by 

starting the video analysis before the jaws are tightened.  

4.2 Bulge test procedures 

4.2.1 Specimen preparation 

Sheet specimens were first sheared to a square shape having a size of approximately 

250 mm x 250 mm using the guillotine shear. Square specimens were further reduced to 

circular blanks having a diameter of 230 mm using a blanking die. This size allowed for 

sufficient space outside the 135 mm diameter bulge zone to securely clamp the 

specimen. When using 12 concentric M12 bolts to clamp the specimen, the 230-mm 

diameter blanks would require further drilling of 12 holes around the periphery of the 

blank. A custom drilling gauge (see Figures 4-5 to 4-7) was created in which several 

specimens were placed between two steel plates with a hole for each of the 12 
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fastening bolts and 2 additional holes for the 2 locating dowels. A drill-press was used to 

drill these holes through several specimens at once.  

 

Figure 4-5. Bottom plate of the drilling gauge 

 

Figure 4-6. Specimen located on the bottom plate                 Figure 4-7. Top plate fixed onto the specimen 
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A random speckle pattern of fine dots was then applied to each circular blank by first 

spraying three layers of white paint, and then by slowly applying pressure to the nozzle 

in order to apply a random pattern of small black dots. An example of a blank prepared 

with a speckle pattern is shown in Figure 4-8. 

 

Figure 4-8. Bulge test blank specimen after a random speckle pattern was applied 

4.2.2 Press setup 

Generally, the operation of a double-action hydraulic press requires that the inner 

punch and the outer press slide be at the same level before moving together to close 

the die. Once the die is closed, the punch is made to move through its forming cycle, 

independently of the outer slide. And once the forming cycle is complete, the punch 

returns to its “die-closed” position and then both the punch and outer slide retract 

together to open the die. In order to ensure that the bulge test piston is correctly 

located at the “bottom dead centre” position relative to the bulge test die prior to a 

test, the operator must specify an offset of the inner punch relative to the outer press 

slide. An insufficient offset value could cause the piston to pull out of the bottom of the 
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die, which would catastrophically damage the piston seal. An excessive offset value 

would cause the piston to start above the “bottom dead centre” position, which at best 

would cause an oil spill in the press and leave insufficient oil in the die to fully bulge the 

test specimen, and at worst, could cause the piston to exit the top of the die, which 

would risk damaging the piston seal when the piston was drawn back into the oil 

chamber. 

With the die open and the piston in the bottom dead center position, the oil chamber of 

the bulge test die was filled with food-grade oil to the brim. The oil must be poured into 

the chamber until a slight overflow occurs in order to ensure that the chamber is indeed 

completely filled. The sheet metal specimen was then carefully placed on top of the oil-

filled chamber. It is important to avoid entrapping air bubbles in the chamber during a 

test because air is compressible, and this could alter the results of the test [67]. 

Moreover, the high pressure generated during a test could cause an elastic shock wave 

when the specimen burst. 

The clamping ring was then mounted onto the blank specimen by using the locating pins 

on the bulge test tool and on the clamping ring. The operator can select one of two 

different clamping rings: one which can bolt down onto the blank and one which simply 

rests on the blank. In case the first clamping ring is used, the clamping ring is screwed 

down onto the specimen using 12 M12 bolts.  

4.2.3 Press control 

A custom profile was created in the press control system for bulge tests that ensures 

that a bulge test will be executed correctly and completely in the automatic control 

mode. The press cycle for a bulge test has three stages that are divided into smaller 

steps.  

Stage one: consists of points 1-4 of the press cycle which control all the actions prior to 

the forming cycle, in this case the closing of the bulge test tool to its fully clamped 

condition. Points 2 and 3 are optional points used to slow down the press into the 
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forming portion of the cycle. The bulge test die must be closed very slowly in order to 

ensure that the offset between the outer press slide and the inner punch is maintained. 

If there is any offset, oil may spill and this may lead to air bubbles being introduced.  

Stage two: consist of points 5-9 which control the forming cycle. Points 6 through 9 are 

optional points that can be introduced into the bulge test to control the displacement 

speed of the inner punch. A bulge test should be carried out, as much as possible, at a 

constant strain rate. In order to achieve this the displacement speed of the inner punch 

must be decreased as the test progresses. If the punch speed is not slowed down as the 

test progresses, a higher strain rate will be seen towards the end of the test, which is 

undesirable.  

Stage three: consists of points 10-14 which control the opening of the bulge test die and 

its return to its starting position. Points 11-13 are not mandatory.  

4.2.4 Protecting the cameras 

A bulge test has the potential to burst a specimen thus causing the pressurized oil to 

shoot up toward the cameras. Oil cannot shoot out through the side due to the 

protective casing designed in the die. But in the event that a sheet specimen does burst, 

the digital cameras located above the opening in the top of the press must be 

protected. Therefore, a sheet of Lexan glass was placed over the opening in the press to 

act as a protective cover. In order to test the durability of Lexan glass and to ensure that 

the glass can take the projectile involving the specimen and oil, several tests were 

conducted right to burst without the cameras installed. DP600 and TRIP780 steel were 

rapidly bulged and ruptured thus causing the oil to shoot upward, nevertheless the 

Lexan glass was able to take the impact without any damage to the glass. 8 repeat tests 

were conducted. 

The procedures detailed above allow for the determination of the flow stress curves. 

The results of both the tensile test and the hydraulic bulge test will be presented in 

chapter 5.   
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Chapter 5 Experimental Results 

 

All experimental tests were conducted on DP600 having the mechanical properties as 

shown in Table 11. Table 11, 12, and 13 are referenced from the Metal Forming Process 

Research project [68].  

Yield Strength at .2 % 380 MPa 

Ultimate Tensile Strength 619 MPa 

Total Elongation 25.1 % 

Thickness 1.496 mm 

Coating Type Galvanized  

Table 11. DP600 mechanical properties 

The chemical composition of DP600 is displayed in Table 12. 

C 0.107 

Mn 1.497 

P 0.011 

S 0.001 

Si 0.175 

Al 0.038 

Cu 0.05 

Ni 0.015 

Cr 0.181 

Sn 0.004 

Mo 0.214 

V 0.0044 

Nb 0.0017 

Ti 0.025 

B 2E-04 

Ca 0.003 

N 0.006 

W 0.003 

Sb 0.0013 

Table 12. Chemical composition of DP600 
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The phase volume fractions are presented in Table 13. 

Phase Ferrite Martensite Bainite 

Volume Fraction (%) 92 4.7 3.3 
Table 13.Phase volume fractions of DP600 steel 

5.1 Tensile test results  

All experimental data obtained from tensile tests were processed through a custom 

MATLAB code (attached in the appendix) in order to determine true stress and true 

strain data. 

Section one of the MATLAB code indicates all the variables associated with the 

specimen and the variables that need to be defined by the user; these include specimen 

properties, the points that determine the linear portion of the experimental data that 

will be used to calculate the elastic modulus and also the pre-strain that is induced by 

flat rolling prior to the tensile test. Finally, the name of the output file must also be 

defined in the “name” variable, and the code will export the calculated effective stress 

vs. effective strain data as a text file.  

Section two loads the test data from the MTS, video, and DIC machines. Each variable is 

indicated in the code. In order to add the pre-strain from placing the specimen into the 

MTS test, the first strain value was added from the MTS machine data to the video and 

DIC data. The first data point from the MTS machine is the pre-strain from the clamping 

of the specimen.  

Section three synchronizes the DIC strain data to the video extensometer and MTS 

strain data. This is done by interpolating the DIC strain data and the number of readings, 

to the number of frames in the video time. The video extensometer reads 17 frames per 

second, thus the strain from the DIC data is interpolated in respect to the 17 frames per 

second multiplied by the length of the video. The true stress is also calculated from the 

strain measured by the mechanical extensometer. Equation (30) is used to obtain true 

stress. 

          (   
   )       (30) 
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 In order to obtain strain values from the DIC system, a virtual extensometer is placed on 

the first un-deformed image. As the digital images of the specimen gauge show 

increasing evidence of deformation, the virtual extensometer becomes elongated and 

the engineering strain is calculated from the following equation. 

      
     

  
         (31) 

where L is the final length of the virtual extensometer and    is the initial, un-deformed 

length of the virtual extensometer. The engineering strain is then converted to true 

strain in the MATLAB code using the following equation: 

          (      )        (32) 

In order to determine the elastic modulus and yield stress from the experimental data, 

two points must be defined by the user. The first point Ep1 is located at the start of the 

linear portion of the true stress vs. true strain curve, and Ep2 near the end of the linear 

portion. The elastic modulus is defined as the ratio of the stress to the strain in the 

linear elastic region: 

E=  
 

 
          (33) 

An interpolation is made to determine the values of stress and strain at the user-defined 

points, and the elastic modulus is then calculated. The yield stress at 0.2% offset and the 

corresponding yield strain were determined using a MATLAB code obtained online from 

Douglas Schwarz [69] 

In order to correctly determine the flow curve, defined as the true stress vs. true plastic 

strain curve, the total strain data must be further processed to remove the elastic strain, 

so that the curve starts at the yield stress and ends at the point that corresponds with 

the maximum engineering stress. In order to achieve this a MATLAB command called 

“trunc” was used to truncate the data at user defined points [beginning, end]. The first 

user-defined point being the yield stress and the second user-defined point being the 
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maximum engineering stress. The elastic strains are then subtracted from the total 

strain values using the following equation in the elastic region. 

         =  
 

 
         (34) 

The last section of the MATLAB code calculates the von Mises effective stress and strain. 

The von Mises effective stress,  ̅ , is defined as follows: 

 ̅  
√ 

 
√(     )  (     )  (     )     (35) 

where   ,   ,and    are the principal stresses. In this case of uniaxial tension,   and    

are zero thus the equation reduces to: 

 ̅  
√ 

 
√(  )  ( )  (   )   

 ̅  
√ 

 
√(   )   

Leading to  

 ̅      

The von Mises effective strain is defined as: 

 ̅  √
 

 
(           )       (36) 

In the case of a uniaxial tensile test,    was measured using the mechanical 

extensometer whereas    and    were taken from the DIC analysis.    and    are 

approximately zero and results were not affected by incorporating    and   . Plotting 

 ̅ vs.   ̅leads to the desired flow curves for both the rolling and transverse directions, as 

shown in Figure 5-1 and Figure 5-2.  
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Figure 5-1. Effective stress vs. effective strain behaviour of DP600 steel in uniaxial tension in the rolling direction  

 

Figure 5-2. Effective stress vs. effective strain behaviour of DP600 steel in uniaxial tension in the transverse direction 

 

5.1.1 Fitting of tensile test data with successive rolling  

The same analysis that was used to determine the tensile flow curve of the as-received 

sheet material was also used to determine the flow curve for specimens that were 

tested in uniaxial tension after successive flat rolling. These tensile tests were conducted 

with specimens that were flat rolled to 0.2, 0.4, 0.6, 0.8, and 1.0 effective strain along 
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the rolling direction of the sheet. The entire flow curve of the as-received sheet was 

then plotted on a stress-strain diagram, but only one data point from each flow curve 

obtained from specimens prestrained to 0.2, 0.4, 0.6, 0.8, and 1.0 effective strain was 

plotted on the same diagram: for each level of prestrain, the single data point plotted 

corresponded with the maximum engineering stress. Due to this, there are many more 

data points between 0 and 0.2 effective strain compared to the number of points in the 

range from 0.2 to 1.0 effective strain. The flow curves obtained by combining the data 

from each level of rolling prestrain are shown in Figures 5-3 and 5-4 for the rolling and 

transverse directions of the sheet.  

 
Figure 5-3. Effective stress vs. effective strain curve in the rolling direction of DP600 after successive rolling passes 

𝜎 ̅ = 1035.7𝜀 ̅ 0.1999 
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Figure 5-4.Effective stress vs. effective strain curve in the transverse direction of DP600 after successive rolling passes 

 

If one was to fit a power law function to this unique set of data, the fitting would be 

heavily influenced by the beginning portion of the curve, which contains the majority of 

the data. Thus a MATLAB code was created to reduce the number of points at the 

beginning of the test in order to fit a power law curve that is more evenly distributed 

among all points.  

The MATLAB code was designed to retain every “Xth” data point in a sequential fashion 

from the data for the first tensile test (0.0 induced effective prestrain), while keeping 

the data from prestrained specimens untouched. For example, in the rolling direction 

there are 1624 data points, and 1619 of them belong to the first tensile test (zero 

prestrain). The code will retain only every “Xth” point from the 1619 data points and 

remove the remaining data. Figure 5-5 and 5-6 show how the parameters in the power 

law function (the strain hardening index and the constant value K) are affected when 
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they are fitted after removing different numbers of data points. The frequency of points 

retained on this graph means that every “X” data point was retained for curve fitting.  

 

Figure 5-5. Frequency of points retained vs. power law parameters for the rolling direction 

 

Figure 5-6. Frequency of points retained vs. power paw parameters for the transverse direction 
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As presented in these figures, the parameters in the power law function reach stable 

values when at least every 25th point is retained for the rolling direction, and when at 

least every 20th point is retained for the transverse direction.  

 

“X
th

” point 

retained for 

curve fitting 

N K 

5 0.200 1035 

10 0.203 1034 

15 0.206 1034 

20 0.209 1034 

25 0.211 1034 

30 0.195 1026 

35 0.195 1026 

 

Table 14. Frequency of points retained for the rolling direction  

 

“X
th

” point 

retained for 

curve fitting 

N K 

5 0.194 1035 

10 0.197 1034 

15 0.197 1034 

20 0.175 1022 

25 0.175 1022 

30 0.175 1022 

35 0.175 1022 

 

Table 15. Frequency of points retained for the transverse direction  
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Figure 5-7 and Figure 5-8 show the effective stress vs. effective strain curves when every 

35th point was retained from the tensile data obtained after 0.0 effective prestrain. 

 

 

Figure 5-7. Effective stress vs. effective strain in the rolling direction when retaining every 35
th

 data point 

𝜎 = 1026.83𝜀  ̅ 0.1951 
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Figure 5-8. Effective stress vs. effective strain curve in the transverse direction when retaining every 35
th

 data point 

5.2 Bulge test results 

All bulge test results were processed using the MATLAB code attached in the appendix. 

In order to produce a flow curve from the hydraulic bulge test data, the following 

equations were used to calculate the effective stress and effective strain: 

 ̅  *
  

  
  +

 

 
          (5)  

 ̅     
  

  
           (6) 

Table 16 shows the variables required and whether they were calculated or measured. 

 

 

 

 

𝜎 = 1022.46𝜀  ̅ 0.1758 
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 Variable Equation How was data 

Obtained 

Original thickness of 

sheet 

   N/A Measured 

Radius of the fillet     N/A Measured 

Diameter of the Cavity    N/A Measured 

Dome Height    N/A DIC Software 

Pressure   Force/Area Eagle Press Software / 

Pressure Transducer 

Radius of the Dome 

Height 

   ((    )     )
    

       
   

 
Calculated 

Thickness at the apex 

of the dome 

   

  (
     

     (
  
  
)
)

 

 

Calculated 

Table 16. Bulge test parameters  

The variables and equations in Table 16 were entered into the MATLAB code, which 

calculated the flow curve data. Section one of the MATLAB code loads the displacement 

file from the DIC software and the press data file from the hydraulic press. The test 

duration, and the position, displacement and load of the piston are extracted from the 

data. The actual piston load (kN) is then converted into a pressure (MPa), by using Eqn. 

(24). 

Section two of the MATLAB code interpolates the displacement of the dome height, 

which is recorded by the DIC software in terms of a frame number and a corresponding 

displacement, so as to convert these data into time vs. displacement data. All other 

measured variables including sheet thickness, diameter of the cavity and radius of the 

fillet are entered here as well. 

Section three calculates the flow stress, point by point, using the equations listed in 

Table 16. Bulge test parameters, and a graph is then created showing the final flow curve. 

The data is exported to an ASCII file. 
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In order to determine the burst pressure of DP600, three bulge tests were conducted 

until the specimen failed. These tests were used to determine the maximum piston load 

that leads to the failure of this DP600 sheet material. The maximum piston load was 

determined to be 258, 262 and 263 kN, in successive bulge tests conducted to failure.  

Figure 5-9 shows the experimental data recorded during one of these tests that were 

conducted in order to determine the maximum piston load. The press was programmed 

to record the position of the piston, the position of the outer ram, the clamping load 

which was set to 1000 kN, the piston load which was continuously monitored and lastly 

the process point (PP) of the test. As expected, DP600 showed evidence of necking, as 

seen by the decrease in the piston load between 4700-5000 ms. Necking occurs as a 

result of strain localizing in a small region of the material [70]. 

 

 

Figure 5-9. Bulge test trial run to determine maximum load 

 

Once the burst pressure was known for this DP600 sheet material, a series of bulge tests 

was then conducted while recording digital images with stereo cameras. In order to 

ensure that the specimen did not burst and risk damaging the cameras and lenses, these 
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pressure of 23 MPa. Figure 5-10 shows the data when the piston load was stopped at 

260 kN. 

 

Figure 5-10. Bulge test final run 

The final flow stress curve obtained from the bulge test is shown in Figure 5-11 with a 

fitted power law curve. The result is the average of three successful tests completed at a 

maximum inner piston load of 260 kN. 

 

Figure 5-11. Flow stress curve of DP600 steel obtained from the bulge test 
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Fitting a power law curve to the data results in a strain hardening index n = 0.2029 and a 

constant K of 1104.6.  

The final flow stress curves for the tensile test was determined to be  ̅=1026.851  ̅ 0.1951 

in the rolling direction and in the transverse direction  ̅=1022.456  ̅ 0.1758. The hydraulic 

bulge test flow curve produced a power law curve fitting of  ̅ = 1104.6  ̅0.2029. The FEA 

models presented in Chapter 6 will use the original tensile test flow curve and a 

hydraulic bulge test flow curve as input to determine the work hardening behaviour of 

DP600 steel. A discussion on the extended tensile test after successive flat rolling and 

the hydraulic bulge test curves will be presented in chapter 7.  
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Chapter 6 Finite Element Analysis 

 

FEA models of both the tensile test and the hydraulic bulge test were created in order to 

be able to numerically predict the outcome of both these experimental tests. Each 

simulation model must also be validated in order to ensure that the results obtained 

follow the fundamental energy laws and accurately predict the mechanical behaviour of 

DP600 sheet as determined experimentally. The results of both FEA models will be 

evaluated by comparing them with corresponding experimental data, and a validation 

metric will be calculated in order to provide a measure of the agreement between the 

experimental results and FEA model. Furthermore, a mesh sensitivity study will be 

conducted for both models in order to ensure that the mesh does not influence the 

results. A Dell precision T7610 with a E5-2687W v2 @ 3.4 GHz processor and 32 GB of 

ram was used for all simulations.  

The material model used for both tests will be an isotropic power law hardening 

function, material model 18 in LS-DYNA. However, since two different experimental flow 

curves were obtained, the power law function will be fitted to each experimental curve, 

and both fitted curves will be used in the numerical simulations. The power law was 

fitted to the tensile curve (Figure 5-1), the extended tensile flow curve in the rolling 

direction (Figure 5-7) and to the flow curve obtained from the hydraulic bulge test 

(Figure 5-9). The power law parameters fitted to these three experimental flow curves 

are provided in Table 17, and both models will be analyzed and compared to one 

another using a quantitative metric.  

Material property Tensile test Tensile test with 
successive flat rolling 

Bulge test 

N 0.199 0.195 0.2029 

K (MPa) 1035.8 1026 1104.6 

Density (tonne/mm
3
) 8.050e-009  8.050e-009  8.050e-009  

Elastic Modulus (MPa) 1.50e+05 1.50e+05 1.50e+05 

Poisson's ratio 0.27 0.27 0.27 

Table 17. Power law material properties 
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6.1 Finite element model of the tensile test 

A FEA model of the standard tensile test was created using 1400 shell elements and 

1595 nodes. Element formulation 2 (Belytschko-Tsay) was used since these elements 

use single point integration, are the most economical and are generally recommended 

unless features particular to the model are needed. The thickness was set to 1.5 mm, 

and 60 elements were used to cover the length of the 60 mm gauge area. The purple 

rectangle in the centre of Figure 6-1 shows the area of the gauge. The red rectangle on 

the left illustrates the area of the model that was fully constrained, so that no 

displacement or rotation is allowed to occur at the nodes in this area. The black 

rectangle on the far right of Figure 6-1 shows the nodes that were displaced in a single 

direction, considered the positive x-direction. The boundary-prescribed-motion option 

was used to displace the nodes using a load curve of XY input data as follows: 0,0 and 

1,20 (s,mm). The input curve for the power law material model was used from the 

original as-received tensile test. 

 

Figure 6-1. FEA model of tensile test  

 

A time-scaled solution was used for this simulation. The end time of the simulation was 

set to 1.1 seconds so as to ensure that the last step of the simulation is accounted for (if 

an end time of 1.0 was used for a 1 second load curve, it is possible for LS-DYNA to skip 

the last step in the load curve). Using a time-scaled solution significantly decreases the 

computation time from hours (for 30.1 seconds end time) to minutes (for 1.1 seconds 

end time). An implicit time integration scheme was used with an absolute convergence 

tolerance of 1.0e-08 and a step of 0.01. However, results need to be compared to a 

more realistic termination time. In section 6.2 a comparison between the time-scaled 
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solution (end-time of 1.1.s) and a more realistic time solution, in this case an end time of 

5.1 seconds and 20.1 seconds, will be analyzed.  

6.2 Validation and verification of implicit tensile test model  

In order to validate the FEA model of the tensile test, a comparison was made between 

the FEA model and the experimental results from the as-received tensile test. From the 

FEA model two nodes were chosen to create a 25 mm gauge, and the distance between 

these nodes was tracked throughout the test and exported to an Excel file. Using the 

distance between these two nodes, true strains were calculated. The forces throughout 

the test were also exported using *DATABASE_SPCFORC. The force was plotted as a 

function of true strain. A power law function was fitted to the predicted force vs. strain 

data and the equation obtained was y=16,552x0.1591 with an R2 value of 0.9903, as 

shown in Figure 6-2. 

 

Figure 6-2. FEA LS-DYNA model - 1 second end time – predicted force vs. true strain in uniaxial tension 

 

The same procedure was followed using the experimental results of the as-received 
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to the data and another equation was obtained y = 16,572x0.1791 with an R2 value of 

0.9721, as illustrated in Figure 6-3.  

 

 

Figure 6-3. Experimental tensile test – force vs. true strain 

 

As can be noted, the experimental results were only plotted from the onset of yielding 

up to the maximum load, which occurred at about 0.15 true strain. If the results were 

continued beyond uniform elongation (i.e. the strain at maximum load), necking would 

be observed. However, the results from the FEA model would show no necking due to 

the fact that shell elements are being used. Shell elements are plane stress elements, 

whereas necking is a 3D phenomenon, thus shell elements are not able to predict the 

onset of a local neck.  

In order to quantify the difference between the predicted and experimental flow curves, 
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where Y(x) is the accepted experimental results, in this case load vs. true strain and y(x) 

is the theoretical results predicted by the LS-DYNA FEA model, once again load vs. true 

strain. The advantage of this particular metric is that it normalizes the difference 

between the numerical results and the experimental data. The absolute value of the 

relative error only accumulates, a positive and negative value do not add up. When the 

difference between the experimental data and the predicted results are zero, this 

metric has a value of 1.0, and when the summation of the relative error becomes 

relatively large, the validation metric approaches zero [10]. Computing this metric from 

0-.15 leads to a validation score of 0.9630: this shows that the numerical simulation of 

the tensile test correlates very well with the actual material behaviour in uniaxial 

tension, and thereby validates the numerical simulations. 

The results for the simulation with a specified 5.1-second end time are illustrated in 

Figure 6-4. Fitting the data to a power law results in y = 16,506x0.1577 with an R2 value 

equal to 0.988. Running the same validation metric and comparing it to the 

experimental results leads to a validation score of 0.9783, almost the exact same result 

as the time-scaled solution (1 second end time).  

 

Figure 6-4. FEA LS-DYNA model tensile test - 5 second end time – predicted load vs. true strain in uniaxial tension 
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The results for the simulation with a 20.1-second end time are illustrated in Figure 6-5. 

Fitting the data to a power law results in y= 16,530x0.1586 with an R2 value equal to 

0.9807. Running the same validation metric and comparing it to the experimental 

results leads to a validation score of 0.9680, almost the exact same result as the time-

scaled solution (1 second end time).  

 

Figure 6-5. FEA LS-DYNA model tensile test - 20 second end time – predicted load vs. true strain in uniaxial tension 

 

The energy verification in Figure 6-6 shows that the total kinetic energy of the specimen 

throughout the entire test is 0 at all times. This is to be expected since the specimen 

does not have any velocity or acceleration applied to it. The internal energy of the 

specimen is equal to the total energy of the specimen, which is also to be expected. The 

only energy in this test is the build-up of internal energy from the displacement of the 

nodes, which should equal the total energy of the test. The energy balance below 

verifies that the model indeed follows the fundamental laws of energy conservation. 

The energy balance below also shows that the test is still quasi-static in nature and that 

dynamic effects are not being introduced due to time scaling. Hourglass energy was also 

0. 
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Figure 6-6. Energy Balance in the FE simulation of the tensile test 

 

6.3 Mesh sensitivity study for the tensile test model  

A mesh sensitivity study was conducted on the gauge area of the tensile test specimen. 

The gauge has a length of 60 mm and a width of 12.5 mm. Different models were 

constructed having a number of elements along the length of the gauge ranging from 20 

to 60 elements, and in each case, the rest of the specimen was meshed accordingly in 

order to maintain an element aspect ratio near to 1.0.  From the results in Figure 6-7 it 

can be seen that for 20 or more elements in the length of the gauge the simulation 

results converge to the same solution.  
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Figure 6-7. Mesh sensitivity study conducted on tensile test, 20 to 60 elements were used in the length of the gauge. 
Results were plotted as a function of force vs. true strain 

 

6.4 Finite element model of the hydraulic bulge test 
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properties are required for rigid entities in LS-DYNA as they are used in the calculation 

of penalty-based stiffness contacts.  

An automatic-surface-to-surface contact was used between the specimen blank and the 

3-mm die fillet radius. An implicit time integration scheme was used with an absolute 

convergence tolerance of 1.0e-10 and a 0.01 step. 
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point 2. An end-time of 48.2 s was selected since this was the duration of the loading 

phase of the experimental bulge test. 

The finite element mesh of the sheet specimen is illustrated in Figure 6-8. The element 

size increases as the distance from the centre increases, while still maintaining an aspect 

ratio relatively close to 1.0, as shown in Figure 6-9. 

  

Figure 6-8. Finite element mesh for the bulge test model focusing on the central region of the blank 
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Figure 6-9. Aspect ratio of the elements in the model of the bulge test specimen 

 

Figure 6-10. Bulge test 3 mm radius fillet  

Four distinct boundary conditions were required in this quarter model. The first two 

boundary conditions were used to create orthogonal symmetry planes, and rectangle 1 

and 2 in Figure 6-11 show the location of these symmetry planes. Table 18 shows the 

constraints that were applied to the nodal displacements and rotations along these two 

symmetry planes. 
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Constraint  Symmetry Plane One 

(Rectangle 1) 

Constrained (Yes/No) 

Symmetry Plane One 

(Rectangle 2) 

Constrained (Yes/No) 

X Yes No 

Y No Yes 

Z No No 

RX No Yes 

RY Yes No 

RZ Yes Yes 

 
Table 18. Symmetry planes for the hydraulic bulge test  

 

 
Figure 6-11. One quarter of the bulge test specimen showing the nodes at which boundary conditions were applied  

3 

4 
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The bulge test must be conducted without any material flowing into the forming zone, 

and therefore a full constraint is necessary to achieve this. The third boundary condition 

is a quarter of a circle that corresponds with the area between arc 3 and 4 shown in 

Figure 6-11. The nodal displacements and rotations are fully constrained in order to 

simulate the effect of the secure clamping of the blank between the clamping ring and 

the lower die. The final constraint is another full nodal and rotational displacement 

placed on the 3 mm radius fillet around the die cavity, this is to ensure that this 

boundary does not draw into the forming zone. 

6.5 Validation and verification of implicit hydraulic bulge test simulation 

A comparison was made between the pressure (MPa) and height at the apex of the 

dome (mm) for both the experimental and FEA model of the bulge test. Fourth order 

polynomial functions were fitted to the predicted and experimental pressure vs. bulge 

height data so that the two sets of data could be more easily compared. The equation 

that provided the best fit to the experimental data was y = -0.0044x2 + 0.8547x - 1.6726 

with R2 = 0.9964 and the equation that best fit the predicted results was -0.0031x2 + 

0.7967x - 1.349 with R2= 0.9997 and Figure 6-12 and Figure 6-123 show these data, 

respectively.  

 

 

Figure 6-12. Experimental bulge test pressure vs. height at the apex of the dome  
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Figure 6-13. LS-DYNA Model – predicted bulge test pressure vs. height at the apex of the dome  

 

The predicted pressure vs. bulge height curve was compared to the corresponding 

experimental curve using the same metric as in Equation (37), and the validation score 

was calculated to be 0.98. This indicates that the finite element model of the bulge test 

correlates well with the experimental data throughout the duration of the test.  

Once again, the energy balance was evaluated in order to verify that the model follows 

the fundamental laws of energy conservation. Figure 6-14 shows that the total kinetic 

energy of the specimen throughout the entire test remained at 0. This is to be expected 

since the specimen does not have any velocity or acceleration applied to it. The internal 

energy of the specimen is equal to the total energy of the specimen, which is also to be 

expected. Hourglass energy was 0 throughout the test. 
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Figure 6-14. Energy Balance in the FE simulation of the Bulge Test 

 

6.6 Mesh sensitivity study 

A mesh sensitivity study was conducted for the 3-mm fillet radius that the bulge test 

specimen must wrap around as it bulges. Several different models were constructed, in 

which the number of elements around the 3-mm die radius was increased from a 

minimum of 4 elements up to a maximum of 18 elements. The results were plotted as a 

function of the radius of curvature (mm) at the pole of the bulging specimen vs. time (s) 

and are displayed in Figure 6-15. As can be seen from the results, the element size on 

the 3 mm radius did not have a significant effect on the results of the bulge test.  



91 
 

 

Figure 6-15.  Mesh sensitivity study on 3 mm radius fillet of the die - radius of curvature vs. time 
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Chapter 7 Discussion  

7.1 Comparison of Bulge Test Results 

 

Unlike the tensile test, there is no standard for conducting hydraulic bulge tests. The 

bulge test tooling designed in this research is unique and there is no duplicate of this 

tool. Results obtained from this specific design need to be compared to other published 

and accepted data. However, different bulge test facilities may lead to slightly different 

results due to the different parameters in the die design, such as the radius of the fillet 

on the cavity of the tool. It is also expected that published bulge test data for DP600 will 

differ somewhat since every batch of DP600 steel will have slightly different material 

characteristics. Nevertheless, comparing the experimental flow curves of this DP600 

steel to other similar data from the literature will ensure that the work hardening 

behaviour of DP600 steel obtained with this bulge test facility follows the same general 

trends. 

 

Figure 7-1. Comparison of flow stress curves from determination of sheet material properties using biaxial bulge tests 
[71] 
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Figure 7-2. Comparison of flow stress curves from A. Nasser et al. [22] 

 

Figure 7-3. Comparison of flow stress curves obtained at the University of Windsor 
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approximately 10 percent effective strain, the effective stress in the bulge test curve 

increases above that of the flow curve in uniaxial tension.  

 

Figure 7-4. Comparison of Windsor and Canmet bulge test results 

The same batch of DP600 was tested using the hydraulic bulge test at the Canmet 

Materials (NRC) research facility. Figure 7-4 shows the results match extremely well with 

the results obtained from the hydraulic bulge test apparatus designed in Windsor, 

further showing that the tooling, testing and data analysis methodology provide 

consistent data with other research facilities.  

7.2 Tensile Test with successive cold rolling vs. Bulge Test Flow Curve 

 

The power law fit of the extended tensile flow curve in the sheet rolling direction 

(obtained after successive flat rolling) is  ̅=1026.851   ̅0.1951 and the power law fit of the 

bulge test flow curve is  ̅=1104.6   ̅0.2029. The slight difference in the two power law 

curves highlight the differences between the uniaxial tension test data and the biaxial 

bulge test data. In order to quantitatively determine the discrepancy between the two 

curves, an error and validation metric was calculated using Equation (37). Since the 

tensile test power law fit is the industry-accepted description of sheet material 

behaviour, the bulge test power law function is therefore compared to the tensile data. 
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The error across the range from 0-40 % strain is only 0.03 and the validation metric is 

0.96. There is some difference between the two power law curves but the comparison 

of the curves using these metrics show that the difference is relatively small. The stress 

state in the hydraulic bulge test is biaxial, thus leading to higher strain values without 

localized necking in comparison to the traditional uniaxial tensile test. In industrial metal 

forming processes, the state of stress is generally not uniaxial, thus making uniaxial 

tensile conditions unrepresentative of general sheet forming operations. Furthermore, 

Figure 7-5 highlights the extrapolation that is required to extend tensile test data up to 

the same percent strain as that attained with the bulge test. As can be seen, the bulge 

test data extends to far greater strain levels than what can be obtained in uniaxial 

tension. And if the bulge test was continued to even greater levels of strain (section 7.3 

discusses this issue) there would be even more data that would need to be 

extrapolated.   

  

Figure 7-5. Extrapolated tensile data 

Sarraf et al. [72] developed several Python codes that are capable of fitting constitutive 

equations to experimental data as shown in Figure 7-6. Various constitutive equations 
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from others. The maximum difference can be seen between the Johnson-Cook model 

[72] and the modified Voce-Johnson-Cook model in this comparison.  

In order to see the relationship between various fitted curves, both the extended tensile 

curve and the hydraulic bulge test flow curve were fitted using a power law function, as 

well as the Ludwik [72] and Voce [72] constitutive equations and were plotted on the 

same graph shown in Figure 7-7. The fitted curves match the respective experimental 

data well for both the extended tensile data and the hydraulic bulge test data, the 

exception being the Ludwik fit of the hydraulic bulge test data. The Ludwik fit matched 

well for the tensile test data but not for the hydraulic bulge test data, which 

demonstrates that appropriate constitutive equations must be used in order to obtain 

accurate simulation results. The data was plotted up until the effective strain of the 

hydraulic bulge test.  

 

Figure 7-6. Fitting of uniaxial tension curve of DP600 with various constitutive equations – courtesy of Sarraf et al. [72] 



97 
 

 

Figure 7-7. Fitting of the extended tensile flow curve and the hydraulic bulge test curve using power law, Ludwik, and 
Voce functions 

The general equation of a power law function is: 

 ̅=C1 ̅
c2         (38) 

The general expression of the Ludwik constitutive model is: 

 ̅=C1+ C2 ̅
c3         (39) 

The general equation for the Voce constitutive model is: 

 ̅= (C2 -  (C2-C1) (1 +  (    ̅))+ C4  ̅      (40) 

The error metric that was used to compare the extended tensile test and the bulge test 

and evaluate different hardening models is from [10]: 
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 Extended Tensile 
Test 

Hydraulic Bulge Test Comparison 
Metric [10] 

Error  

Power 
law 
Equation 

 ̅=1026.9 ̅  0.1951  ̅=1104.6  ̅0.2029 0.94 0.06 

Ludwik 
Equation 

 ̅=191.2+853.8  ̅0.2726  ̅=532.8+537.24  ̅0.4064 0.87 0.12 

Voce 
Stage 4 
hardening 
Equation 

 ̅=(354.6-(354.6-

683.9)(1-  (      ̅))+ 
368  ̅

 ̅=(353.86-(353.86-

822.94)(1-  (      ̅))+ 
201.84  ̅

0.94 0.06 

Table 19. Comparison Metrics 

Figure 7-7 shows the results from the extended tensile curve and the hydraulic bulge 

test flow stress curves with various fitted functions up to the effective strain of the 

hydraulic bulge test flow stress curve. The comparison metric in Table 19 [10] shows 

that the hydraulic bulge test data correlate well with the extended tensile flow curve, 

except for the Ludwik function.  

7.3 Future Recommendations  

 

1. In order to obtain a better fit of the flow curve, experimental bulge tests should 

be conducted to a higher level of effective strain. As shown in the Figure 7-8 and 

Figure 7-9, when terminating the biaxial bulge test at a pressure somewhat 

lower than the burst pressure of the material, leads to a significant amount of 

data being missed. These figures also illustrate the large amount of strain data 

that can be achieved from a bulge test.  
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Figure 7-8. Pressure vs. dome height curve extrapolated from 212 bars to a burst pressure of 226 bars [22] 

 

Figure 7-9. The flow curve of TRIP 780 obtained from both experimentally obtained data and extrapolated data [22] 

2. A precise torque gun should be used when torqueing the bolts to clamp the 

bulge test specimen into place. This insures that a more uniform clamping force 

is distributed into the bolts. The clamping ring with no bolts is not adequate to 

provide a constant clamping force, thus should only be used for very formable, 

low strength sheet materials.  

3. The clamping ring with no bolts should be resized in order to make the clamping 

area/diameter smaller, as the reduced contact area would lead to a greater 
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contact stress on the specimen. This could potentially save the operator a 

significant amount of time if the clamping ring with bolts does not have to be 

used.  

4. The piston seal is extremely tight, and therefore requires a significant amount of 

force to move the piston prior. The friction force created by the seal against the 

cylinder wall, which likely increases with increasing pressure, may have led to an 

incorrect calibration of the pressure transducer, thus causing the calculated 

stress values to be increasingly overestimated.  This friction force should be 

measured and quantified for future tests. And the pressure transducer should be 

calibrated with another pressure transducer rather than from the pressure that 

is calculated from the piston force. 

5. Bulge tests should be carried out with a decreasing piston velocity in order to 

maintain a constant strain rate at the pole of the bulging sheet specimen. If a 

constant speed is used the strain rate increases as the test progresses. However, 

the press control system does not currently allow for a programmable reduction 

of the piston velocity throughout the forming process.  

As can be seen in Figure 7-10 the strain deviates from linearity as the test progresses in 

time, this can be fixed with the recommendations made above. 
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Figure 7-10. Effective strain vs. time - Illustrates approximate strain rate 

 

7.4 Conclusions 

 

Tensile tests after prestraining by successive flat rolling were conducted in order to 

obtain a flow curve that could reach 100% effective strain. Increments of 20% strain 

were selected with a minimum of 3 tensile tests at each prestrain increment. The final 

flow curves was determined to be  ̅=1026.851  ̅0.1951 in the rolling direction and 

 ̅=1022.456  ̅0.1758 in the transverse direction. 

A hydraulic bulge test facility was developed with a 3 mm radius on the fillet of the die 

cavity with a 135 mm-diameter opening, a 120 mm-diameter piston that is capable of a 

maximum force of 1000 kN, leading to a pressure of up to 69.9 MPa. The final flow curve 

of DP600 steel obtained from the hydraulic bulge test was determined to be  ̅=1104.6  ̅

0.2029. 

FEA models were created and were verified through the use of energy balances as well 

as validated using the validation metric proposed by Oberkampf et al. [10]. The 

predicted flow curve for the uniaxial tensile test showed a validation score of 0.97 and 

that for the hydraulic bulge test 0.98. 
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Flow curves obtained from the tensile test after successive flat rolling and from the 

hydraulic bulge test were compared using the same metrics [10]: this showed that the 

two flow curves are similar. Comparing the power law fit of the two flow curves yielded 

a comparison metric of 0.94; the same comparison using a Ludwik fit of the 

experimental data yielded a value of 0.87, and 0.94 when the Voce (stage 4 hardening) 

function was used to fit the data.  

The hydraulic bulge test flow curve was compared to the tensile test data after 

successive flat rolling as both sets of data reach much higher levels of effective strain 

than a tensile test. The tensile test after flat rolling and the hydraulic bulge test yield 

similar flow curves which gives evidence that the hydraulic bulge test tooling, testing 

procedures and analysis methodology were successfully developed to generate reliable 

experimental data. Hydraulic bulge tests conducted on the same batch of DP600 steel 

sheet using the University of Windsor’s testing facility and the Canmet Materials’ 

facility, lead to practically identical flow curves. 

In order to produce a flow curve using this hydraulic bulge test facility, the testing and 

analysis take approximately 20 minutes. The experimental testing and analysis required 

to produce a tensile flow curve with successive flat rolling took almost two weeks. The 

difference in time commitment between the two tests is very significant. In order to 

support industrial sheet metal forming applications, the hydraulic bulge test is a 

convenient and practical method to obtain a flow curve up to large deformation, 

whereas tensile tests after successive flat rolling require far too much of a time 

commitment. 
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APPENDICES 

Appendix A – Matlab Code 

 

% Tensile Test Code created by Yang Song and Mario Vasilescu  
%% ======================================== % 
% Variable Naming Convensions 
% sig - stress 
% eps - strain 
% _1 - major 
% _2 - minor 
% _3 - thickness 
% _t - true (relative to engineering) 
% _f - flow (plastic) 
% _m - from mechanical gauge 
% _v - from video extensometer 
% _d - from DIC 
% _sm - filtered  
% _vm - von Mises 
% _oa - overall 
% _ro - rolling 
%  ======================================== % 

  
%       Available interpolation methods are: 
%       'nearest'  - nearest neighbor interpolation 
%       'next'     - next neighbor interpolation 
%       'previous' - previous neighbor interpolation 
%       'linear'   - linear interpolation 
%       'spline'   - piecewise cubic spline interpolation (SPLINE) 
%       'pchip'    - shape-preserving piecewise cubic interpolation 
%       'cubic'    - same as 'pchip' 
%       'v5cubic'  - the cubic interpolation from MATLAB 5, which does 

not 
%                    extrapolate and uses 'spline' if X is not equally 
%                    spaced. 
%% 
format shortg 
clear 
clc 
% Section 1 
pois = 0.33; % Poisson's ratio 
width = 12.5; % mm 
thickness = 1.493; % mm 
Ep1 = 100; % 1st point x for defining modulus line MPa 
Ep2 = 300; % 2nd point x for defining modulus line MPa 
mlsf = 1; % modulus line length scaling factor, default 1 
cdata = 0; % additional data truncating in the end of arrays, default 0 
Rp1 = 0.5; % R value portion 1 
Rp2 = 0.75; % R value portion 2 

  
eps_ro = 0; % rolling strain 
name = 'RD1_2.txt'; % output name 



110 
 

interpm_d = 'linear'; % interpolation method for DIC data on MTS time 

frame 
interpm_i = 'nearest'; % interpolation method for calculating interval 

points 
use_filter = 0; % switch for using filter on DIC minor strain, 1 for 

yes, 0 for no  
SPAN = 12; % SPAN for filter, should be lower than 10% of # of data 

points 
E_choice = 1; % swtich for choosing modulus line fitting method, 1 for 

line defined by [Ep1 Ep2] and [p1 p2] 

  
% Section 2 
%% Loading data from MTS output  
load data.txt 
major = csvread('major.csv'); 
major2 = csvread('major2.csv'); 
minor = csvread('minor.csv'); 
c = data(1:end-cdata,1); % crosshead displacement 
F = data(1:end-cdata,2)/1000; % load 
t = data(1:end-cdata,3)*1000; % test time (MTS machine) 
mech = data(1:end-cdata,12)*100; % strain from mechanical extensometer 
v12 = (data(1:end-cdata,5)*100+mech(1)); % video strains v12-v67 
v15 = (data(1:end-cdata,6)*100+mech(1)); 
v23 = (data(1:end-cdata,7)*100+mech(1)); 
v24 = (data(1:end-cdata,8)*100+mech(1)); 
v34 = (data(1:end-cdata,9)*100+mech(1)); 
v45 = (data(1:end-cdata,10)*100+mech(1)); 
v67 = (data(1:end-cdata,11)*100-mech(1)*pois); 
vt = data(1:end-cdata,13)*1000; % video time as a function of MTS time 

  
% Section 3 
%% Syncing DIC data and convert eng stress and strain to true 
frame = vt/1000*17; % frame # 
d15 = 100*interp1(major(:,1),major(:,4),frame,interpm_d)+mech(1); % DIC 

major strain eng 
d24 = 100*interp1(major2(:,1),major2(:,4),frame,interpm_d)+mech(1); % 

DIC major2 strain eng 
d67 = 100*interp1(minor(:,1),minor(:,4),frame,interpm_d)-mech(1)*pois; 

% DIC minor strain eng 
sig_t_m = F*1000/(width*thickness).*(1+(mech/100)); % true stress from 

strain measured by mechanical gauge 
sig_t_v = F*1000/(width*thickness).*(1+(v15/100)); % true stress from 

strain measured by video extensometer 
sig_t_d = F*1000/(width*thickness).*(1+(d15/100)); % true stress from 

strain measured by DIC 
eps_1_t_m = log(1+(mech/100)); % true major stain mech 
eps_1_t_v = log(1+(v15/100)); % true major stain Vid 
eps_1_t_d = log(1+(d15/100)); % true major stain DIC 
eps_2_t_v = log(1+(v67/100)); % true minor stain Vid 
eps_2_t_d = log(1+(d67/100)); % true minor stain DIC 

  
%% Determination of E modulus and yield stress 
p1 = interp1(sig_t_m,eps_1_t_m,Ep1,interpm_i); % 1st point y for 

defining modulus line 
p2 = interp1(sig_t_m,eps_1_t_m,Ep2,interpm_i); % 2st point y for 

defining modulus line 
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% [p1 p1y] = intersections(eps_1_t_m,sig_t_m,[-5,5],[Ep1,Ep1]); 
% [p2 p1y] = intersections(eps_1_t_m,sig_t_m,[-5,5],[Ep2,Ep2]); 
E = (Ep2-Ep1)/(p2-p1) % Young's modulus MPa 
linex = linspace(0,0.01*mlsf); % modulus line x array for major strain 
liney = linex*E-0.002*E; % modulus line y array for major stess 

  
p3 = ((p2-p1)*(-5*mlsf)+p1); %extrapolated x value to extend the line 

downward 
Ep3 = ((Ep2-Ep1)*(-5*mlsf)+Ep1); %extrapolated y value to extend the 

line downward  
p4 = ((p2-p1)*(15*mlsf)+p1); %extrapolated x value to extend the line 

upward  
Ep4 = ((Ep2-Ep1)*(15*mlsf)+Ep1); %extrapolated y value to extend the 

line upward  
if E_choice == 1 
    linex = linspace(p3,p4)+0.002; 
    liney = linspace(Ep3,Ep4); 
end 
linex2 = -linspace(0,0.0033*mlsf); % modulus line x array for minor 

strain 
liney2 = -linex2*E/pois-0.002*E*pois; % modulus line y array for minor 

stress 
[ystrain,yield] = intersections(linex,liney,eps_1_t_m,sig_t_m) % strain 

and stress at yield 

  
%% Truncating data for plastic range 
index = 1:1:length(sig_t_m)'; 
trunc1 = ceil(interp1(sig_t_m,index,yield,interpm_i)) 
[Fmax,trunc2] = max(F) 
sig_t_m_f = sig_t_m(trunc1:trunc2); % true stress mech truncated 
sig_t_v_f = sig_t_v(trunc1:trunc2); % true stress Vid truncated 
sig_t_d_f = sig_t_d(trunc1:trunc2); % true stress DIC truncated 
eps_1_t_m_f = eps_1_t_m(trunc1:trunc2)-sig_t_m_f/E; % true major stain 

mech plastic 
eps_1_t_v_f = eps_1_t_v(trunc1:trunc2)-sig_t_v_f/E; % true major stain 

Vid plastic 
eps_1_t_d_f = eps_1_t_d(trunc1:trunc2)-sig_t_d_f/E; % true major stain 

DIC plastic 

  
%% R Value Calculations 
if use_filter == 1 
    eps_2_t_v_sm = smooth(eps_2_t_v,SPAN,'rloess'); 
    eps_2_t_d_sm = smooth(eps_2_t_d,SPAN,'rloess'); 
    RMSE(1) = sqrt(mean((eps_2_t_v(trunc1:trunc2) - 

eps_2_t_v_sm(trunc1:trunc2)).^2))./sqrt(mean((eps_2_t_v(trunc1:trunc2))

.^2))*100; 
    RMSE(2) = sqrt(mean((eps_2_t_d(trunc1:trunc2) - 

eps_2_t_d_sm(trunc1:trunc2)).^2))./sqrt(mean((eps_2_t_d(trunc1:trunc2))

.^2))*100; 
    fprintf('Filter activated, RMS error for filtered/unfiltered data 

are shown below:\n') 
    fprintf('Video   DIC\n') 
    fprintf('%2.3f%%  %2.3f%%\n\n', RMSE) 
    eps_2_t_v_f = eps_2_t_v_sm(trunc1:trunc2)+sig_t_v_f/E*pois; % true 

minor stain vid plastic 
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    eps_2_t_d_f = eps_2_t_d_sm(trunc1:trunc2)+sig_t_d_f/E*pois; % true 

minor stain DIC plstic filtered 
elseif use_filter == 0 
    eps_2_t_v_f = eps_2_t_v(trunc1:trunc2)+sig_t_v_f/E*pois; % true 

minor stain vid plastic 
    eps_2_t_d_f = eps_2_t_d(trunc1:trunc2)+sig_t_d_f/E*pois; % true 

minor stain DIC plstic filtered 
else 
    fprintf('Error. The switch "use_filter" must be equal to 0 or 

1.\n'); 
    return; 
end 
eps_3_t_v_f = 0-eps_2_t_v_f-eps_1_t_m_f; % true thickness stain vid 
eps_3_t_d_f = 0-eps_2_t_d_f-eps_1_t_m_f; % true thickness stain DIC 
R_v = eps_2_t_v_f./eps_3_t_v_f; 
R_d = eps_2_t_d_f./eps_3_t_d_f; 

  

  
% Section 4  
%% Effective Strain 
eps_vm = 

sqrt((2/3)*((eps_1_t_m_f).^2+(eps_2_t_d_f).^2+(eps_3_t_d_f).^2)); 
eps_oa = eps_vm+eps_ro; 

  
%% Output data 
output = [eps_oa,sig_t_m_f]; 
save(name,'output','-ascii') 

  
%% Ploting figures 

  
figure(1) 
hold on 
grid on 
plot(c,eps_1_t_m) 
xlabel('Displacement)') 
ylabel('True strain') 
title('Crosshead v.s. Time','fontweight','bold') 

  
figure(2) 
hold on 
grid on 
plot(t,F) 
xlabel('Time (ms)') 
ylabel('Load (kN)') 
title('Load v.s. Time','fontweight','bold') 

  
figure(3) 
hold on 
grid on 
plot(t,mech) 
plot(t,v15,'LineStyle','--') 
plot(t,d15,'LineStyle','-.') 
plot(t,v67) 
plot(t,d67,':') 
xlabel('Time (ms)') 
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ylabel('Eng Strain (%)') 
legend('Mechanical Extensometer','Video 

Extensometer','DIC','v67','d67') 
title('Strain v.s. Time - Different Extensometer in 

Comparison','fontweight','bold') 

  
figure(4) 
hold on 
grid on 
plot(mech,F) 
plot(v15,F,'LineStyle','--') 
plot(d15,F,'LineStyle','-.') 
xlabel('Eng Strain (%)') 
ylabel('Load (kN)') 
legend('Mechanical Extensometer','Video Extensometer','DIC') 
title('Load v.s. Strain - Different Extensometer in 

Comparison','fontweight','bold') 

  
figure(5) 
hold on 
grid on 
plot(v12,F) 
plot(v15,F) 
plot(v23,F) 
plot(v24,F) 
plot(v34,F) 
plot(v45,F) 
plot(v67,F) 
plot(mech,F,'LineStyle','-','LineWidth',1) 
plot(d15,F,'LineStyle','--') 
plot(d24,F,'LineStyle','-.') 
plot(d67,F,'LineStyle',':') 
xlabel('Eng Strain (%)') 
ylabel('Load (kN)') 
legend('V12','V15','V23','V24','V34','V45','V67','mech','D15','D24','D6

7') 
title('Load v.s. Strain - All in Comparison','fontweight','bold') 

  
figure(6) 
hold on 
grid on 
plot(eps_1_t_m,sig_t_m) 
plot(eps_1_t_v,sig_t_v,'LineStyle','--') 
plot(eps_1_t_d,sig_t_d,'LineStyle','-.') 
plot(eps_2_t_v,sig_t_v) 
plot(eps_2_t_d,sig_t_d,':') 
xlabel('True Strain') 
ylabel('True Stress (MPa)') 
legend('Major Strain Mech','Major Strain Vid','Major Strain DIC','Minor 

Strain Vid','Minor Strain DIC') 
title('True Stress v.s. True Strain - 3 in 

Comparison','fontweight','bold') 

  
figure(7) 
hold on 
grid on 
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plot(eps_1_t_m(1:length(sig_t_v)),sig_t_m(1:length(sig_t_v)),'LineWidth

',2) 
plot(eps_1_t_v(1:length(sig_t_v)),sig_t_v(1:length(sig_t_v)),'--') 
plot(eps_1_t_d(1:length(sig_t_v)),sig_t_d(1:length(sig_t_v)),'-.') 
plot(linex-0.002,liney) 
plot(linex,liney) 
plot(eps_2_t_v(1:length(sig_t_v)),sig_t_v(1:length(sig_t_v))) 
plot(eps_2_t_d(1:length(sig_t_v)),sig_t_d(1:length(sig_t_v)),':') 
plot(linex2,liney2) 
if use_filter == 1 
    

plot(eps_2_t_v_sm(trunc1:trunc2),sig_t_v(trunc1:trunc2),'LineWidth',1) 
    

plot(eps_2_t_d_sm(trunc1:trunc2),sig_t_d(trunc1:trunc2),'LineWidth',1) 
end 
xlabel('True Strain') 
ylabel('True Stress (MPa)') 
legend('Major Strain Mech','Major Strain Vid','Major Strain DIC','E 

Modulus Line','E Modulus Line Offset','Minor Strain Vid','Minor Strain 

DIC','E/\nu Modulus Line Offset') 
if use_filter == 1 
    legend('Major Strain Mech','Major Strain Vid','Major Strain DIC','E 

Modulus Line','E Modulus Line Offset','Minor Strain Vid','Minor Strain 

DIC','E/\nu Modulus Line Offset','Minor Strain DIC Filtered 

Truncated','Minor Strain Vid Filtered Truncated') 
end 
title('True Stress v.s. True Strain - E modulus & Yield 

point','fontweight','bold') 

  
figure(8) 
hold on 
grid on 
plot(eps_1_t_m_f,sig_t_m_f) 
plot(eps_vm,sig_t_m_f,'--') 
plot(eps_oa,sig_t_m_f,'-.') 
xlabel('True Plastic Strain') 
ylabel('True Stress (MPa)') 
legend('True Stress vs Major Strain','True Stress vs Effctive 

Strain','True Stress vs Overall Effctive Strain') 
title('Flow Curve','fontweight','bold') 

  

  
% Hydraulic bulge test flow curve code  
% Mario Vasilescu 
% Variables 
% Section 1 
dis = csvread('Displacement2.csv'); 
pressinfo = csvread('Test8PressDataMatLab2.csv'); 
name = 'dataflowcurves.txt' 

  
%Section 2 
t = pressinfo(:,11); % test time (MTS machine) 
innerpos=pressinfo(:,3)% Inner Position 
Innerload = (pressinfo(:,5))*1000 / 60 / 60 / 3.141614; % load 
Hd= dis(:,2); 
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newtime=linspace(0,48.359095,567); % Interpoolation of Displacement 

(frames to time (s)) 
Hdf=interp1(newtime,Hd,t); 
Rc= 3; 
Dc= 135 
Rad=135/2; 
To= 1.5; 

  
% Section 3 
Rd= (((Dc/2)+Rc).^2 + Hdf.^2 - 2.*Rc.*Hdf) ./(Hdf.*2); 
Td= (To.*(((Rad./Rd)./ (asin(Rad./Rd))).^2)) ; 
EffStress= ( Rd./Td + 1 ) .* (Innerload./2) 
EffStrain= -1*log((Td./To)); 

  
%plot(EffStrain,smooth(EffStress)) 
testtime=linspace(0,48.359095,1613) 
plot(EffStrain,EffStress) 

  
output = [EffStrain,EffStress]; 
save(name,'output','-ascii') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

Appendix B – Technical drawings for hydraulic bulge test and pressure transducer 

 

 

Main Block Technical Drawing 
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Clamping Ring Technical Drawing 
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Upper block Technical Drawing 

 

Barksdale 423 series Pressure Transducer Technical Drawing 
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Item Quantity 

Main block 1 

Upper block 1 

Clamping ring (12 M12 Bolts 
configuration) 

1 

Clamping ring 1 

Custom piston head 120 mm 1 

Team Tube-Metric honed 
tubing 

1 

Selemaster DSM Piston Seal 1 

Pipe fitting 1/2'' NPT nipple 1 

Pipe fitting 1/2'' NPT elbow 1 

Barksdale 423 series pressure 
transducer 

1 

One way 10,000 PSI exit valve 1 

M12 Bolts 12 
Bill of Materials 
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Appendix C – Step by step procedure to operate hydraulic bulge test 

 

1. Insert key to start up press and switch from “off” to either manual or auto mode. 

2. Restart and/or turn off master stop and emergency stop buttons 

3. Reset all faults, first by pressing the master control reset and then the 

emergency stop reset 

4. Press the pump start button, this will allow the actuators to load. The operator 

must wait until actuators are fully loaded to operate the press 

5. If manual mode is selected: 

a. Press the manual setup button 

b. Close and open speed is defined as percentage of the press maximum 

close and open speed. The “lock enabled” button locks the inner and 

outer together, allowing the punch and press slide to travel together. This 

can be turned off to allow independent motions. 

6. If automatic mode is selected a profile needs to be chosen. Press “Active Recipe” 

in the bottom left corner, then press “Load” and choose the bulge test recipe.  

7. Press “Active Recipe” again in order to confirm that the bulge test profile was 

chosen 

8. Select “Process Setup” and manually move inner and outer to starting position. 

The key will need to be moved to the manual mode selection. 

9. Move the key back to automatic mode and press “cycle press enable” and “cycle 

press” to begin the cycle 
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Appendix D - Tabular Data (Effective Stress, Effective Strain) 

 

Hydraulic Bulge Test 

445.9217 0.002831 

431.6153 0.003217 

430.727 0.003688 

429.1683 0.00426 

427.508 0.004715 

432.7255 0.005186 

439.1197 0.006157 

446.5046 0.006203 

455.6371 0.007214 

465.2446 0.00793 

477.3136 0.008758 

484.8494 0.009748 

490.2318 0.010977 

488.2705 0.01242 

485.0213 0.014434 

491.3187 0.015641 

495.077 0.017142 

501.7367 0.018568 

506.4859 0.019895 

510.72 0.021323 

515.9206 0.022829 

521.036 0.024363 

525.3 0.025825 

530.1402 0.027279 

533.4955 0.028655 

539.403 0.030301 

545.6569 0.031908 

549.0775 0.033372 

554.2898 0.03503 

557.4902 0.036418 

561.7489 0.037936 

566.0579 0.039328 

569.6046 0.040986 

574.6959 0.042482 

579.8986 0.044085 

582.67 0.045911 

588.6565 0.047693 

590.7555 0.049766 

590.6927 0.052767 

595.2718 0.054499 

599.8103 0.056523 

605.2465 0.058662 

610.2288 0.060536 

615.9921 0.062904 

621.9719 0.065088 

626.1767 0.067278 

632.4234 0.069761 

628.4119 0.070945 

638.8736 0.072691 

641.7014 0.074499 

647.3121 0.076209 

650.3513 0.077984 

654.3622 0.079564 

658.1386 0.081494 

661.8396 0.083148 

665.1659 0.08511 

668.4518 0.086901 

672.8896 0.088641 

675.6255 0.090405 

679.1889 0.092351 

682.6477 0.094143 

686.2305 0.096029 

687.163 0.098949 

689.8959 0.101037 

693.7058 0.103058 

697.4258 0.104985 

700.53 0.107079 

703.7225 0.10919 

705.9686 0.111234 

710.1238 0.113236 

713.2766 0.11531 

717.1507 0.117592 

720.4061 0.119694 

723.6516 0.121926 

727.0764 0.12441 

729.6931 0.126568 

733.6863 0.128822 

736.9671 0.131277 

739.76 0.133613 

742.9646 0.135985 

746.2984 0.138313 

749.2148 0.140907 

752.4514 0.14346 

755.7825 0.14589 

758.8 0.14866 

761.9136 0.151143 

763.7137 0.155244 

766.445 0.158304 

769.9154 0.160978 

771.5416 0.163663 

776.0182 0.166351 

776.2699 0.169128 

781.7313 0.17197 

784.6299 0.175073 

787.4415 0.17802 

790.6902 0.181019 

793.0962 0.184041 

795.8246 0.187187 

798.4848 0.190292 

801.3301 0.193299 

804.1786 0.19669 

806.2705 0.199791 

809.2846 0.203089 

811.3903 0.206371 

815.012 0.209611 

817.1577 0.213169 

819.5031 0.216435 

822.6676 0.219786 

824.5239 0.223299 

825.6521 0.226867 

829.7664 0.231025 

832.0955 0.236372 

833.8474 0.240095 

835.7647 0.244007 

838.4482 0.24777 

840.9509 0.251798 

843.3526 0.25608 
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844.8044 0.260228 

847.871 0.26406 

850.18 0.268859 

851.2796 0.273457 

854.2928 0.277985 

855.9638 0.282781 

858.6672 0.287225 

860.4838 0.291866 

862.6556 0.296347 

864.3399 0.301119 

866.7174 0.305529 

868.8683 0.310395 

870.6738 0.314948 

871.0984 0.319816 

874.5413 0.324549 

875.4471 0.329724 

877.9782 0.334741 

879.4562 0.34005 

880.994 0.347869 

882.9928 0.3532 

884.6631 0.358691 

886.3039 0.364209 

888.0188 0.370066 

888.6697 0.37598 

 

Tensile Test Rolling Direction 

0.001402 351.4054 

0.005578 365.781 

0.008376 388.3179 

0.011225 410.2268 

0.014126 430.2601 

0.017056 448.6092 

0.020045 465.3249 

0.023064 480.4522 

0.026121 494.3582 

0.029197 507.1347 

0.032296 519.1022 

0.035429 529.9652 

0.038583 540.2402 

0.041736 549.7697 

0.044927 558.747 

0.04814 567.1979 

0.051378 575.2885 

0.054679 582.8684 

0.057995 590.1441 

0.061317 597.0629 

0.064684 603.6872 

0.068077 610.0661 

0.071496 616.0638 

0.074963 621.8634 

0.078464 627.4505 

0.08201 632.9253 

0.085577 638.1501 

0.089175 643.1841 

0.092785 648.0346 

0.096435 652.7629 

0.100112 657.3147 

0.103812 661.6303 

0.107542 665.8361 

0.111296 670.0737 

0.115078 674.1047 

0.118884 678.0086 

0.12273 681.8218 

0.126606 685.4589 

0.130515 689.1238 

0.134452 692.7286 

0.138421 696.1794 

0.142409 699.5534 

0.146434 702.8969 

0.150484 706.2307 

0.154584 709.3948 

0.158742 712.4474 

0.160789 713.3657 

0.203543 756.1626 

0.393536 853.4196 

0.599365 919.9831 

0.807238 987.7113 

1.003936 1033.318 

 

Tensile Test Transverse Direction 

0.001736 369.8657 

0.005974 383.76 

0.008819 406.2316 

0.011749 427.9214 
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0.014691 448.041 

0.017677 466.3625 

0.020704 483.1258 

0.02377 498.4644 

0.026867 512.4053 

0.029992 525.3135 

0.033138 537.1332 

0.036311 548.1417 

0.039498 558.3703 

0.042688 567.8793 

0.045921 576.7885 

0.04918 585.2348 

0.052462 593.2493 

0.055783 600.8308 

0.059141 608.0715 

0.062525 614.9749 

0.065947 621.5257 

0.069385 627.8033 

0.072861 633.7833 

0.076358 639.5587 

0.079898 645.0886 

0.083461 650.4057 

0.087051 655.5009 

0.090671 660.4506 

0.094321 665.2375 

0.097997 669.8811 

0.101712 674.3593 

0.105457 678.6904 

0.109219 682.9156 

0.113019 687.0005 

0.116838 690.9557 

0.120693 694.8543 

0.124572 698.6806 

0.128487 702.3329 

0.132443 705.9177 

0.136427 709.4467 

0.140442 712.9076 

0.144479 716.1526 

0.148547 719.372 

0.152653 722.5988 

0.200939 773.5923 

0.389335 862.7231 

0.598023 932.762 

0.797669 979.7765 

0.987033 1025.403 
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