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ABSTRACT 

Relief valves are widely used in the process industry. Their ultimate role is to 

mitigate adverse conditions that would jeopardize safety and incur catastrophic 

losses, especially with respect to human life. The primary focus of this research is 

to investigate the performance of relief valves, with the specific objective of 

reducing the cracking to full by-pass pressure in internal relief valves of positive 

displacement pumps. Two and three-dimensional computational fluid dynamics 

(CFD) models of an external relief valve are developed and used to evaluate the 

effects of the mesh, numerical parameters and boundary conditions on the results, 

including flow pressure and velocity field. Knowledge gained from the external 

relief valve study has guided the internal relief valve simulations, particularly with 

regards to sensitivity of the results to the mesh and other numerical settings. 

Numerical simulations were performed utilizing the CFD codes: ANSYS Fluent 

and STAR-CCM+. 
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CHAPTER 1.   INTRODUCTION 

Internal relief valves (IRV) are mounted as over-pressure protection devices on 

internal gear pumps. The IRV’s main role is to reduce the pressure if an over-pressure 

situation occurs. The IRV can be viewed as a robust safety feature, but most 

internal/external gear pumps do not have them as part of a standard design. This is due to 

a combination of cost and design criteria needed to implement the IRV on the gear pump. 

Very little research has been done towards improving the IRV’s performance. The IRV 

design specifically related to Viking Pump Inc. has been in existence for over 100 years 

with very little change to the design. The major hurdles with researching these 

components are mainly the accessibility in viewing the flow pattern and understanding 

how the flow pattern changes if components are modified within the IRV. 

 Internal gear pumps are a positive displacement pump, which means that the 

discharge head vs. flow characteristic is vertical, thus the flow is inherently independent 

of the discharge head. Liquid is rotated from suction to discharge through cavities within 

the gear teeth and casing. If there is a blockage on the discharge side of the pump, such as 

a valve being closed in the discharge line, there will be an immediate pressure build-up. 

This pressure build-up could be catastrophic if it is not mitigated immediately or at least 

within a suitable time. If this occurs, the pump will fail internally, or the motor will stall, 

or the drive equipment will fail, or the process piping will fail catastrophically. It is 

because of these potential failures and the severe consequences that it is imperative that 

some form of over-pressure protection be used in internal gear pump arrangements. This 

protection could be through the use of an internal relief valve, an external relief valve, a 

torque limiting device or a rupture disc. 
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 There is great interest in improving the relief valve performance of internal gear 

pumps. There are many key advantages related to internal gear pumps that could be 

gained from research carried out towards improving the IRV performance. These 

improvements could help pump companies be more competitive from an applications 

standpoint by reducing the customers’ operating costs while improving safety. A detailed 

understanding of the liquid flow inside the IRV will also help to design more efficient 

internal gear pumps for applications involving thin liquids operating at high pressures. 

Further details with regard to potential improvements will be discussed later in this thesis. 

 The internal relief valve is composed of three main components, the poppet, 

spring and adjusting screw. These three components are essential for setting the cracking 

pressure (pressure at which the IRV begins to open) at which the poppet begins to lift, 

forming an orifice with the seat while pushing against the spring to create full by-pass in 

an over-pressure situation. The concepts behind this full operation will be highlighted and 

explained later in this thesis. 

 A preliminary computational fluid dynamics (CFD) study was first performed on 

a simple model of an external RV, primarily to get a feel for the main characteristics of 

the flow fields associated with RVs, such as: the pressure field, velocity field, regions of 

separation and flow streamlines. This exercise included preliminary validation of the 

numerical models and the opportunity to become more familiar with the software and 

how results are affected by different parameter settings. Based on the experiences gained 

in the preliminary study, a CFD model of a Viking Pump Inc. IRV has been set up and 

analyzed at the fully open condition. 
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The main goals/motivation of this thesis are: 

1. to understand how CFD can be leveraged, in lieu of the availability of physical 

hardware and instrumentation typically reserved for laboratory research 

simulations; 

2. to optimize the parameters that favour a reduced range of cracking to full by-pass 

pressure in internal and external relief valves and therefore improve their 

performance. The pump is sized at the differential pressure. The cracking pressure 

is equivalent to the differential pressure. 
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CHAPTER 2.   LITERATURE REVIEW 

2.1. Introduction 

Several journal articles, papers and reports produced by valve companies were 

reviewed to evaluate the performance status of relief valves. No research exists with 

respect to internal relief valves. The following review of the available literature, however, 

highlights those results which offer some guidance and reflections on the goals of this 

thesis. 

2.2. Previous Studies Related to Internal/External Relief Valves 

Mayer et al. [1] conducted a study to obtain information on the operation of  the 

Viking Pump IRV. The main characteristics studied involved flow vs. pressure as well as 

poppet lift (calculated and measured). The information obtained from the study was used 

to develop the governing mathematical equations and a FORTRAN computer program to 

model the flow through internal relief valves.  

The steady-state flow force equation, spring force and drag force on poppet were 

used in the force analysis of the poppet. Drag coefficient (CD), discharge coefficient (Cd) 

and velocity coefficient (Cv) were determined from performance tests and poppet lift 

measurements. From this analysis, the equation and computer program that was used to 

determine the flow area for a given poppet lift, poppet seat angle and poppet diameter 

was highlighted. Graphical relationships of poppet lift (measured and calculated) and 

capacity vs. discharge were developed to predict relief valve performance at various 

viscosity values.  
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For specific relief valves in operation while the pump was running at speeds in the 

500 RPM to 1200 RPM range, it was noted that the calculated and measured poppet lift 

exhibited the same approximate relationship. These findings were documented in 

Viking’s Pump Internal Archive W.O. 4592 [1]. 

Kourakos et al. [2] investigated the external relief valve (ERV). The main focus 

of their investigation was to determine the forces imposed on the valve disc for different 

inlet pressures and different disc positions using both experimental and CFD results. 

They used a 40 mm (1.5 in.) ERV for the experimental setup. The ERV was modified by 

removing the spring. A force measuring device was mounted on top of the valve. With 

this experimental setup, they determined the forces applied on the disc at different inlet 

pressures and disc positions. For each iteration, the disc was set at a new lift position 

(static position). Chosen set pressures and valve lift from preliminary dynamic valve 

operation investigations were provided to analyze the forces imposed on the disc. 

The experimental apparatus consisted of two ERV models, viz. a metallic model 

and a transparent model made of polymethyl methacrylate (PMMA), with slight design 

differences. The metallic ERV model was used to analyze incompressible flow while the 

transparent model was used to analyze compressible flow. One notable difference 

between the two models is that the plastic model had a longer inlet nozzle when 

compared to the actual metallic ERV. Another important difference was the ability for the 

original metallic ERV to handle higher pressures. The differences between these valves 

can be observed in Fig. 2.1. 
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Fig. 2.1: Comparison of metallic and transparent valves 

(from Kourakos et al. [2], by permission of ASME) 

 

Having a transparent valve allowed for complete optical visualization and 

observation of the flow through the valve as well as cavitation and two-phase flow. 

Kourakos et al. [2] studied these effects in compressible and incompressible 

environments. Further highlights of how Kourakos et al. [2] analyzed the transparent and 

metallic valves are shown in Fig. 2.2 and Fig. 2.3. 
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Fig. 2.2: Transparent valve used by Kourakos et al. [2]  

(by permission of ASME) 

 

 

Fig. 2.3: Metallic valve used by Kourakos et al. [2] 

(by permission of ASME) 

 

In the experimental setup involving the metallic valve, the back pressure affects 

how the valve disc behaves. In the transparent model several pressure sensors were 

placed inside the valve. These allow for measurements of static pressure. In addition to 

measuring pressure inside the valve, additional pressure sensors were placed directly on 

the valve disc to obtain information on the disc flow force. As stated above, the metallic 
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model is able to handle higher pressures compared to the transparent model. However, 

there is limited optical access with the metallic model and only the set pressure and back 

pressure can be measured with this model. 

Since our interest in the current research is to study the flow of water through a 

RV, only the incompressible environment of Kourakos et al. [2] will be discussed further. 

In the experimental setup shown in Fig. 2.4, the metallic ERV is analyzed using water at 

ambient temperature as the test fluid. The calming reservoir is connected to a pump 

capable of producing pressure up to 78 bars (1146 psi) and 250 m
3
/hr (1101 gpm) flow 

rate. The admission valve acts like a variable frequency drive (VFD) to control the flow 

entering the calming reservoir which leads to the long pipe connected to the test ERV. 

The admission valve admits a certain percentage of flow into the calming reservoir. The 

author suggest that this is analogous to a variable frequency drive as it also acts as a flow 

control device by reducing the motor speed of the pump which will only allow a certain 

percentage of the flow to leave the pump going into the process. Pressure on the free 

surface of the reservoir is fixed by compressed air. The flow rate entering the ERV is 

measured by a flow meter. To obtain the best efficiency of the pump, the discharge valve 

operates as a by-pass. This setup permits the observation of opening pressure, closing 

pressure and the discharge coefficient. Also, the approximate flow force on the disc is 

acquired as well with sensors mounted on top of the valve. The flow conditions analyzed 

in the ERV test setup are Pset = 0.7 - 11.0 bar (10.2-160 psi) and lift values at 0.5 to 7.2 

mm (0.02 to 0.283 in.) 

 Computational Fluid Dynamics (CFD) simulations of the test ERV were also 

performed in [2] using ANSYS Fluent [version 13]. A simplified geometry was created 
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for the simulations, with a 2D axisymmetric grid as shown in Fig. 2.4. The grid, which 

contained 1.45 x 10
6
 cells, was designed with a particular focus on the disc region since 

the primary interest was to determine the flow force on the disc. A steady-state case was 

assumed and the k-ω turbulence model was used with a second order discretization 

scheme. The pressure based solver of Fluent (pressure-velocity coupling) was used. The 

following set pressures and lift values were analyzed with the CFD model: Pset = 2, 3, 6 

and 11 bar (29, 43.5, 87 and 159.5 psi) and lift values at 1.5, 3, 4.5 and 7.2 mm (0.06, 

0.12, 0.18, 0.28 in.) 

 

Fig. 2.4: Axisymmetric grid for the metallic ERV [2] 

(by permission of ASME) 

 

 To simplify the problem and to decrease computational time, the incompressible 

flow was assumed to be steady and cavitation was neglected. From the CFD results, 

Kourakos et al. [2]  concluded that the lowest lift produced the highest pressure 

concentration in the middle of the disc, whereas higher disk lift positions produced a 

more uniformly distributed pressure over the valve disc. Due to these phenomena, the 

force gradient is more severe for lower disc lifts compared to higher lifts. When 
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experimental and CFD results are compared, the measured and CFD computations 

provide reasonable predictions in flow force with CFD computations. Small deviations 

existed between the tested and computational values. The adjustment ring location for the 

experiment created some experimental uncertainty. 

The research conducted by Chabane et al. [3] concentrates on ERV’s subjected to 

back pressure build up. They indicate that real world safety relief valves, having a back 

pressure that is 30% of the set pressure, generally use a balancing mechanism called a 

bellows. The bellows helps to facilitate the reduction of the forces downstream, resulting 

in the balancing out of the downstream pressure. This helps to avoid vibration/chatter 

usually caused by back pressure. A poorly designed ERV can prove disastrous if back 

pressure values are high. It is stated that a conventional ERV at 10% of the set pressure 

can be used without the balancing effects, however even with low values of back pressure 

fluttering/chattering of the disc may still occur. Comparing the conventional ERV to the 

balanced bellows ERV, the balanced bellows ERV should be able to handle levels of 

back pressure in the vicinity of 40 - 50% of the set pressure, while maintaining its 

approximate capacity. 

 Chabane et al. [3] looked at the ERV and the effects of back pressure from a 

theoretical perspective. In theory, correction factors for back pressure can be obtained 

from the American Petroleum Institute (API) - API 520 Code. The code presents the 

correction coefficient (Cb) for back pressure values obtained from numerous ERV tests 

and use an average value for Cb for a particular case.  They noticed one major flaw in the 

analysis – that these coefficients do not take into account the instabilities due to dynamic 
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effects caused by back pressure. According to the API 520 Code, experiments have 

shown that instabilities could occur with as little as 15% back pressure. 

An experiment to evaluate this concept further was setup by Chabane et al. [3] 

using air with the ERV pressure set at 40 bar (580 psi). The air in the downstream 

reservoir was at 200 bar (2900 psi). Flow rates were measured using four Coriolis flow 

meters. The flow meters were linked to a buffer tank where the ERVs were tested. 

Maximum pressure attainable was 40 bar (580 psi) and maximum mass flow rate was 13 

kg/s (29 lb/s). The effects of pressure are detected when back pressure rises to about 10% 

of set pressure. When back pressure is higher, characteristics of the air flow change. 

Vibration and chattering occur when back pressure reaches values that are 25% to 30% of 

set pressure. 

A CFD model was also developed by Chabane et al. [3] for the numerical 

simulation of the ERV and was validated with the experimental data. The CFX-11 code 

was used to solve the 3D Reynolds-Averaged Navier-Stokes equations. No symmetric 

considerations were assumed. A 3D unstructured mesh was used, comprised of 

15,500,000 cells (3,000,000 nodes). Tetrahedral/prismatic elements were used close to 

the wall, at the nozzle and disc valve to ensure a Y+ value below 100. Unstructured 

tetrahedral elements were used away from the walls. A steady flow approach was 

assumed, using the k-ε turbulence model with wall functions and 2
nd

-order discretization 

accuracy. Three cases were analyzed and compared to the experimental results; Case 1: 

disc in almost closed position. Case 2: disc ½ way closed, and Case 3: disc at fully open 

position. Analysis of the flow patterns in these three cases confirms that the dynamics of 

the flow are complex due to the moving disc. At full flow (Case 3) there is significant 
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turbulence which causes load fluctuations. These fluctuations influence the movement of 

the blocking area (disc). Fluctuations also occur at lower disc lift. Due to stiffness of the 

valve at smaller openings, the hydrodynamic forces vary between two and three times the 

value of the elastic force associated with the spring. 

 A thermodynamic model with test conditions was also developed by Chabane et 

al. [3]. Due to compressibility of the air and gas the fast unsteady effects are normally 

considered insignificant and are not taken into account. Since there is a possibility that 

equilibrium cannot reached due to pipe and control valve downstream creating back 

pressure, this could lead to chattering, which can be destructive to the safety valve 

depending on its frequency. This model was implemented to better understand the 

dynamic behaviour during a test with and without back pressure. Equations of motion 

were developed to help understand these effects. 

 It was important to get an idea of how back pressure affects the ERV when at a 

certain percentage of the set pressure. In this Thesis the assumption is made that back 

pressure effects are accounted for in the calculation of the differential pressure. The pump 

is sized at the differential pressure before the IRV setting is applied.  

 Follmer and Schnettler [4] proposed developing a series of new API ERVs by 

investigating the fluid flow and looking into a new method to perform flow force 

measurements. They were able to analyze which components in contact with liquid could 

be removed or improved. This was done to implement a series of new API ERVs which 

could meet industry certification standards. 

With regards to approval testing, only combinations of flow force and spring 

force were checked in accordance with API 526 designation, which is a specific method 
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of measurement for flow force by API 526 Codes. This method permits the accurate 

evaluation of flow force readings over a large pressure range. Thus, forces on the disc can 

be evaluated from the flow force for various opening and closing values. The following 

conditions have to be met. The interaction between flow force and spring force is 

essential. This will help to determine what type of spring characteristics are needed. Also 

the flow coefficient needs to be large enough to stay within the +/-5% tolerance band 

while maintaining its consistency (constant) while subjected to a pressure of 1 bar (14.5 

psi) and up. 

Optimization of the components was carried out using gases, steam and liquids. 

The blow down ring was removed as it does not impact the flow physically. The blow 

down ring is a component which controls how slowly and how fast the disc closes. The 

term blowdown defines the disc moving down to close. The position of the blowdown 

ring will determine how slow or how fast the disc closes. Calculations (CFD) were 

performed for 3D compressible and incompressible flows. Based on the CFD analysis, 

which was confirmed experimentally, a special ERV was designed that provided a 

proportional performance and consistent opening for 100 bar (1450 psi) pressure and hot 

water at 265⁰C. This valve was designed to conform to all API 526 specifications along 

with approvals by ASME. The valve also was improved and optimised to accommodate 

equal flow geometry for liquids (incompressible), gases and steams and also incorporates 

the ability to handle two-phase flows if needed.  

 Bilanin and Teske [5] investigated spring-loaded safety ERVs. Their goal was to 

try to predict the performance of the ERVs numerically. They used the concept of a semi-

empirical non-linear model of a safety ERV and were able to derive dynamic equations 
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from this model. Bilanin and Teske [5] implemented this model and developed the 

COUPLE predictive dynamic model to simulate flow through an ERV. The COUPLE 

model was used to explain the test data of the ERV such as chatter, lift characteristics, 

etc. The COUPLE code incorporated the flow path of the valve by specifying spring rate 

and the ring settings. The valve models were validated through experiments. 

 Using CFD, the Navier-Stokes equations (NSE) were also used by Bilanin and 

Teske [5] to predict the flow field within the valve. The governing differential equations 

used to model the flow field were the Reynolds-Averaged Navier-Stokes equations. A 

comparison of the Navier-Stokes solution and the predictions from the COUPLE code 

was performed. The NSE results replaced the experimental testing for validation purposes 

with respect to the COUPLE code. Exit angle, mass flow through the valve, seat force 

reduction and stem force on lifted ERVs were compared at different valve stem positions. 

Oravec [6] investigated pressure rise rate characteristics and flow force acting on 

a poppet in a charge pressure relief (CPRV). They are both direct acting poppet style 

relief valves, where in an over pressure situation the poppet is lifted and allows flow to 

recirculate through the relief valve and back to the process or through the pump.  The 

operation of the charge pressure relief valve is very similar to the internal relief valve. 

However, it can also be used in the process line, unlike the IRV which can only be used 

directly on the pump. The CPRV was analyzed using CFD and subsequently verified with 

experimentation. Three stroke positions were considered with poppet lift values of 0.5 

mm, 1.5 mm and 3 mm, while being subjected to a range of flow rates. ANSYS ICEM 

CFD was used with a combination of a hexahedral, tetrahedral and wedge mesh. Velocity 

inlet and pressure outlet boundary conditions were established, the flow was assumed to 
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be steady and the fluid was taken to be incompressible (oil). Post-processing of the CFD 

results was completed using three strokes (lift values) and three flow rates. From this 

data, a quadratic equation was used to solve for flow rate, highlighting the relationship 

between spring force and flow force. Graphs were generated from calculated points and 

trend lines were implemented to support the data points. 

  For validation purposes, an experimental setup of the CPRV was prepared. It is 

important to note that neither the CFD nor the experimental setup incorporated the 

dynamic aspects. The CFD simulation was compared to the experimental simulation 

using flow rate and pressure drop across the CPRV [6].  

 Pressure vessels normally have spring-loaded safety valves (SLSV) in the event 

of an over-pressure situation. Sethi and Lai [7] explored the dynamic behaviour of 

SLSVs. Generally, the forces acting on the moving parts of these valves are non-linear. A 

differential equation model was developed to simulate the non-linear effects of the SLSV. 

This model was used to predict the valve response time. In solving these equations, the 

Advanced Continuous Simulation Language (ACSL) was used to facilitate solution of the 

4
th

-order differential equations utilizing the Runge-Kutta method. Sample tests of the 

Farris 7000 valve were conducted to acquire pressure time history. The response to the 

valve, related to the driving pressure, was illustrated graphically and compared to the 

simulated study. There was close agreement between the simulated and experimental 

data. In conclusion, the simulated results seemed to predict the actual results fairly well.  

 The articles reviewed above are mainly associated with the ERV. There is not 

much published literature on the IRV. One main difference between the IRV and ERV is 

that the IRV spring is always in contact with fluid during by-pass. This is not the case 
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with the ERV. However, the flow fields are in general very similar and the operation in 

an over-pressure situation is identical when comparing the ERV to IRV. The similarity of 

these concepts suggests a close relationship between the physics associated with ERVs 

and IRVs which has been exploited in this thesis. 

 The major research motivation in this thesis is to reduce the cracking to full by 

pass pressure in the IRV. A more in depth discussion regarding research motivation will 

be discussed in Chapter 5. 
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CHAPTER 3.   INTERNAL GEAR PUMP AND RELIEF VALVE 

OPERATION 

It is essential to understand the internal gear pump operation and how it relates to 

relief valve operation. The pump operation is explained in this chapter, followed by a 

focus on the specifics behind the internal and external relief valve operation. 

3.1. Internal Gear Pump Operation 

 The internal gear pump operates on a fairly simple concept. The term “positive 

displacement” is a direct representation of how internal gear pumps operate. Referring to 

Fig. 3.1, at Step 1 the liquid enters the rotor and idler gear as the pump develops pressure. 

The arrows indicate the direction of the flow. At Step 2 the liquid travels between the 

teeth of the rotor and idler gear teeth separately (gear within a gear principle). The moon 

shaped crescent helps to divide the liquid and acts as a seal between the suction and 

discharge ports. At Step 3 the pump is nearly flooded and the gear teeth have a finite 

volume of fluid between them. In Step 4 the rotor and idler teeth are completely aligned 

to form a seal. As the liquid now has nowhere else to go, it is forced out of the port into 

the discharge process line. 

 

Fig. 3.1: Internal gear pump operation 

(from http://www.vikingpump.com [8], by permission of Viking Pump Inc.) 
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3.2. Internal Relief Valve Operation 

 The IRV is the most important component on internal gear pumps with regards to 

safety. It is directly mounted on the pump and is the sole device that provides protection 

against over-pressure inside the pump. Figure 3.2 illustrates an IRV mounted on an 

internal gear pump. 

 

Fig. 3.2: Internal gear pump with IRV mounted on top 

(from http://www.vikingpump.com [8], by permission of Viking Pump Inc.) 

 When an over-pressure situation occurs, the IRV allows the fluid to recirculate 

inside the pump until the pressure is brought down below the setpressure point. The 

mechanism by which this occurs can be explained by referencing Fig. 3.3. The spring (A) 

holds the poppet in place. The poppet guide vanes rest on the internal wall of the IRV in 

the valve body (C), while the spring (A) holds the poppet (B) against the valve seat. This 

position of the poppet is maintained by a force which is determined by the spring size as 

well as how tightly the spring is compressed by the adjusting screw (D). In an over-

pressure situation, the pump discharge pressure pushes against point (E) on the poppet. 

When this occurs, the force exerted by the liquid under the poppet exceeds the force 
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exerted by the spring (set force or set pressure of the spring) and the poppet begins to lift. 

When the poppet lifts the liquid begins to flow through the IRV and return back into the 

suction port of the pump. As the pressure keeps building up past the set pressure, all the 

liquid will eventually flow through the valve and back into the pump. At this point no 

liquid will be leaving through pump discharge. This recirculation will continue until the 

force or pressure drops below the set force or pressure value at which the spring was 

originally set. 

 

Fig. 3.3: Cutaway of Viking internal pressure relief valve [9] 

(by permission of Viking Pump Inc.) 

 

3.3. External Relief Valve Operation 

 The ERV operates on exactly the same concept as the IRV with regards to the 

spring set pressure. Figure 3.4 illustrates a typical ERV. The IRV and ERV have very 

similar flow fields. 
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Fig. 3.4: Detailed view of nozzle and valve disc [2] 

(by permission of ASME) 

The ERV operates on exactly the same principle as the IRV. When the spring 

force is overcome by the force of the liquid coming through the nozzle, the spring 

compresses and the valve disc opens. The valve disc will not close until the force of the 

liquid drops below the spring force (set pressure of spring). It can be noted as well that 

the cross-sectional area of the valve disc (A2) is designed to be larger than that of the 

nozzle (A1). For a constant system pressure, when the fluid exits the nozzle and enters a 

larger area the disc will experience a larger force that will prevail over the disc and thus 

the spring force keeping the disc open. This could result in the valve subsequently 

opening too quickly. Flow velocity could cause changes in valve lift by changing the lift 

height. Due to this larger area, the valve disc will not close until the system pressure goes 

below a certain value (percentage) of the set pressure, referred to as the blow down 

pressure. The huddling chamber is located between the nozzle exit and disc as illustrated 
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in Fig. 3.4. Its geometry is one of the factors determining when the valve will close. The 

adjustment ring is used to control the opening or re-seating characteristics of the disc. 

The adjustment ring is installed on the nozzle and can be found on most ERVs, but not all 

ERVs are equipped with this feature. 
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CHAPTER 4.    CFD SIMULATION OF AN EXTERNAL RELIEF 

VALVE 

4.1.         Introduction 

As mentioned above, the external relief valve (ERV) exhibits flow features that 

are similar to the internal relief valve (IRV), but the geometry of the ERV flow region is 

simpler than the IRV. In this research the ERV was used as a starting point to investigate 

meshing requirements, numerical parameter settings in the software and key features of 

the flow field. Gambit and ANSYS Fluent [version 13] Computational Fluid Dynamics 

(CFD) software were used for mesh generation and to perform the CFD simulations, 

respectively. A simplified ERV design was used to reduce difficulties associated with 

generation of the mesh. Both two-dimensional (2D) and three-dimensional (3D) ERV 

simulations were carried out. 

4.2.          External Relief Valve (2D simulation) 

A simplified 2D model of an external relief valve was utilized for the first stage of 

the CFD study. The simplified ERV model was developed by using a typical ERV as a 

reference, as shown in Fig. 4.1. The circled area of the ERV in Fig. 4.1 was used to 

represent the key geometric features retained in the preliminary model. 
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Fig. 4.1: General design of a spring operated safety relief valve 

(from Helleman [10], by permission of Elsevier) 

The objective of this exercise was to model a flow field similar to, but less 

complicated than the IRV. In doing so, the simplified 2D model of the ERV was used to 

determine appropriate settings that should be used for the 3D simulations of the ERV and 

IRV. The simplified ERV analysis provides the necessary knowledge and tools needed to 

entertain the more complicated IRV design, which is the main focus of this thesis. 

Settings of particular interest are: 

• turbulence model; 

• type of upwinding, i.e., 1
st
 or 2

nd
-order to achieve greater theoretical accuracy; 

• the convergence criteria, which can be manipulated with a tighter tolerance band 

to achieve better results; 

• relaxation factors, which can be adjusted to help smooth out the oscillations of 

residuals and accelerate convergence, based on a specific convergence criteria. 
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 With respect to the ERV model, certain assumptions were made to simplify the 

geometry and for the computational analysis. The ERV was initially modelled with a 

simplified rectangular design as shown in Fig. 4.2. The diameters of the inlet and outlet 

were assumed to be the same. This was done to simulate the IRV, where the inlet and 

outlet ports are the same size. The outlet was taken flush with the side wall. 

 The mesh employed for the ERV simulation was a structured quadrilateral mesh 

as shown in Fig. 4.2. Clustering was applied along the solid walls and at sharp corners to 

capture boundary-layer effects and regions of flow separation. Cell aspect ratios ranged 

from 1.0 and 1.04. 

 

Fig. 4.2:  Clustered mesh with boundary conditions 

 An incompressible Newtonian fluid (water) with viscosity of 1 centipoise was 

used in this analysis. The flow was taken to be steady, with an inlet velocity of 2.1 m/s 

(6.9 ft/s), approximately equivalent to 34 m
3
/hr (150 gpm). This is the typical flow rate 

seen with a 76.2 mm (3 in.) pump. This also reflects the amount of fluid that would be 
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by-passed by a typical IRV during a complete by-pass situation. Fig. 4.2 also illustrates 

the boundary conditions that were implemented. It was further assumed that the ERV disc 

would be at its maximum lift position of 76.2 mm (3 in.) in a complete by-pass situation. 

Turbulence intensity was set at 5% (medium turbulence). The hydraulic diameter was set 

to 76.2 mm (3 in.). The ERV walls were defined with no slip wall boundary conditions. 

 Several test cases were set up to evaluate the effect of the different settings of 

interest mentioned above. A summary of the main parameters in the simulations is 

provided in Table 4.1. 

2D Simulation Cases 
Boundary 

conditions 

Relaxation factors Numerical parameters 

Case Turb. 

model 

Simulation domain Inlet Outlet u,v p k,ε,ω Discr. 

order 
Tol. 

# 

iter. 

A k-ε no extension vel. outflow .6 .3 .8 1 10-3/-6 - 

B k-ε short extension vel. outflow .6 .3 .8 1 10-3 93 

C k-ε short extension vel. outflow .7 .2 .7 2 10-4 283 

D k-ε short extension vel. outflow .6 .2 .7 2 10-4 545 

E k-ε/ω short extension vel. outflow .6 .3 .8 1 10-3 76 

F k-ε short extension pres. pres. .6 .3 .8 1 10-4 323 

G k-ε conv-div nozzle pres. pres. .6 .2 .7 2 10-4 862 

H k-ε conv-div nozzle vel. outflow .6 .2 .7 2 10-4 510 

I k-ε conv-div nozzle, 

extended exits 

pres. pres. .6 .2 .7 2 10-4 345 

J k-ε/ω conv-div nozzle, 

short extension 

pres. pres. .6 .2 .7 2 10-4 383 

 

Table 4.1: Test cases for 2D model of ERV 

 

Case A: Initial simulations were performed using first order upwinding. The inlet 

boundary conditions were set as a velocity inlet, with velocity of 2.1 m/s (6.9 ft/s). The 

outlet boundary condition was specified as outflow. The flow variables were initialized 

from the inlet velocity with a value of 2.1 m/s (6.9 ft/s). For the equation residuals, the 
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convergence tolerance was set at 1.0x10
-3

 for the continuity and x- and y-momentum 

equations. The convergence tolerance for the turbulent kinetic energy and dissipation was 

set at 1.0x10
-6

. These tolerances are the default values in ANSYS Fluent. The k-ε 

turbulence model with near-wall treatment was used since it gives fairly accurate results 

in the majority of uncomplicated fluid flows, and is the most popular model for industrial 

simulations. Under-relaxation factors are listed in Table 4.1. With these settings, the 

residuals stabilized after approximately 100 iterations, but did not fall below the specified 

tolerance within 500 iterations, as seen in Fig. 4.3. 

 

Fig. 4.3: Scaled residuals (Case A) 

 

 This simulation was initially carried out on a coarser mesh than shown in Fig. 4.2 

and, although the solution did not converge, it suggested certain modifications to the 

mesh. The mesh in Fig. 4.2 is the result of these modifications. The numerical set up was 

evaluated by examining: the contours of velocity magnitude; contours of the x- and y-

components of velocity; velocity vectors and pressure contours. The velocity magnitude 

contours are illustrated in Fig. 4.4, showing the regions of separation that occur because 

of the sharp corners at the junction between the inlet channel and the main body of the 
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valve. The acceleration of the fluid as it is deflected by the disc is also captured. 

However, this plot clearly suggests that the exiting flow is not aligned with the x-axis, 

which is the fundamental assumption of the outflow boundary condition. 

 

 

Fig. 4.4: Contours of velocity magnitude (Case A) 

 

 The static and dynamic pressure distributions, shown in Fig. 4.5 and Fig. 4.6 

respectively, were also assessed. As expected, the static pressure is highest on the frontal 

face of the disc. The contours in Fig. 4.6 show that the highest dynamic pressure occurs 

where the velocity is at its highest as it goes around the sharp corner before it exits the 

valve. 
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Fig. 4.5: Contours of static pressure (Case A) 

 

Fig. 4.6: Contours of dynamic pressure (Case A) 

 

Case B: The analysis of case A indicates that there is a need to incorporate an outlet port 

on the discharge side of the valve to allow implementation of the outflow boundary 

condition at the exit of the domain. This also represents a more accurate simulation of the 

return to tank portion of the valve through a small extended pipe. The ERV was re-
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designed and the multi-block method was used to generate the mesh. A structured 

quadrilateral mesh was still utilized in this analysis. The re-designed ERV model is 

shown in Fig. 4.7. The arrows schematically indicate flow direction and the elliptical 

curves identify regions where particular attention is required due to large gradients in the 

flow variables. 

 

Fig. 4.7: Re-designed ERV model with multi-block mesh (Case B) 

 

If an outflow boundary condition is applied at the outlet, it is imperative that there 

is no back flow on the outlet plane. Therefore different outlet lengths, from 101.6 mm    

(4 in.) to 355.6 mm (14 in.), were investigated to determine the proper outlet length to 

ensure a correct outflow condition was being investigated and to mitigate potential back 

flow. Schematics of the different nozzle lengths are illustrated in Fig. 4.8. For these 

simulations, all boundary conditions (with outflow at the extended outlet plane) and 
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parameter settings in case A were retained, except that the tolerance for the turbulent 

kinetic energy and dissipation residuals was set at 1.0x10
-3

. For the domain with the short 

discharge extension (101.6 mm), the solution converged in 93 iterations, as shown in Fig. 

4.9. Other extended discharge lines also produced converged solutions. 

 

Fig. 4.8: Discharge nozzle extensions 

 

Fig. 4.9: Scaled residuals (Case B) 
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 The velocity magnitude contours for the short extended nozzle are shown in Fig. 

4.10. As the fluid enters the valve, some of the fluid particles accelerate to pass over the 

sharp corner and move towards the discharge channel. Other fluid decelerates as it enters 

the larger valve region and encounters the disc. This flow behaviour is expected due to 

the physical characteristics in the valve and the natural ability of the flow to take the path 

of least resistance. 

 

Fig. 4.10: Contours of velocity magnitude (Case B - 101.6 mm extension) 

Velocity vector plots and contours of turbulence (kinetic energy and dissipation), 

turbulent intensity and static/dynamic pressure show that the change in valve geometry 

and mesh features using a multi-block method facilitate reduced computational time and 

improve accuracy in the CFD simulation. Although longer extensions to the discharge 

channel showed boundary-layer development along the channel walls and slightly longer 

recirculating zones at the entrance to the discharge, the effect on the valve disc was 
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negligible. Thus, the valve with the 101.6 mm discharge extension was retained for 

subsequent simulations. 

Case C: Several parameters were changed to obtain more accurate results. The 

discretization of the convective terms was changed from first order upwind to second 

order upwind for momentum, turbulent kinetic energy and turbulent dissipation rate 

equations. The relaxation factors for pressure, momentum and turbulent kinetic energy 

were changed as listed in Table 4.1. The convergence tolerances were also adjusted from 

1.0x10
-3

 to 1.0x10
-4

 for continuity, x-velocity, y-velocity and turbulent parameters. The 

higher order upwinding and tighter tolerance produced more accurate results, with the 

solution converging after 283 iterations.  

Case D: To assess only the effect of under-relaxation factors, the momentum equations 

relaxation factor was reduced from 0.7 to 0.6 while others were kept the same as in case 

C. Under these conditions, the solution converged at 545 iterations. The solutions from 

cases B and D are compared in Fig. 4.11 using contours of velocity magnitude. 
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(Case B) 

 

(Case D) 

Fig. 4.11: Comparison of velocity magnitude contours (Cases B and D) 

 It can be observed that there is very little distinction in these contours in the 

region around the disc, although the discharge is modified. Pressure contours (dynamic 

and static) and velocity vectors were also compared for cases B and D (93 iteration 

converged solution vs. 545 iteration converged solution). There were no significant 
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differences in these plots. Therefore it was concluded that these changes in the 

parameters did not make a significant difference. 

 Based on these preliminary investigations, it was decided to move forward with 

the following parameters, taking into account the desired accuracy and the computational 

time required for each simulation: 

- convergence tolerances: 1.0 x10
-4

; 

- relaxation factors: pressure = 0.2; default values for momentum, turbulent kinetic 

energy, turbulent dissipation and turbulent viscosity; 

- spatial discretization: second order upwinding for momentum, turbulent kinetic 

energy, turbulent dissipation; standard for gradient and pressure; 

- turbulence model: k-ε with near-wall treatment. 

These parameters correspond to case C and yielded a solution after 283 iterations. 

The first order solution with tolerance 1.0x10
-3

 and convergence at 93 iterations and the 

second order solution with tolerance 1.0x10
-4

 and convergence at 283 iterations are 

compared in Fig. 4.12. There appears to be no significant difference in the contours for 

these two simulations. Velocity vectors and velocity magnitude contours were also 

investigated, leading to the same conclusion as above. 
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(Case B) 

 

(Case C) 

Fig. 4.12: Streamlines coloured by velocity magnitude (Cases B and C) 

  

 The wall Y+ value is usually used to determine whether the mesh is fine enough 

to capture the wall effects. Generally speaking, when using the k-ε turbulent model, a Y+ 

range of approximately 30 to 50 is desired to effectively capture the boundary layer. 

Figure 4.13 illustrates the Y+ on the disc for case C, showing Y+ is close to 30 at the 
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bottom of the disc and increases from 30 to slightly above 50 on the side disc faces. The 

Y+ value at the top of the disc does not appear to be correct. The Y+ on the valve 

boundary walls was also investigated and is illustrated in Fig. 4.14. Along the inlet 

section, the Y+ value ranges from slightly above zero at the entrance to almost 100 before 

the fluid enters into the ERV body. The Y+ values on the ERV outer faces were also 

high, in the vicinity of 100 to 600. The separation, recirculation and reattachment 

occurring in the valve at these locations may be the cause of the high values of Y+. The 

separation and recirculation make it more difficult to capture the boundary layer of the 

flow, where the velocity of the fluid increases from zero to some finite value across a 

very short distance normal to the wall to form the boundary layer.  

 

Fig.4.13: Y+ on disc walls 
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Fig. 4.14: Y+ on ERV boundary walls 

 

Case E: The streamlines predicted by the k-ε and the standard k-ω turbulence models are 

compared in Fig. 4.15. Both solutions incorporated the default Fluent parameters used in 

case B. There appears to be no significant difference between the two models when 

observing these contours. 
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(k-ε) 

 

(k-ω) 

Fig. 4.15:  Streamlines coloured by velocity magnitude – k-ε vs. k-ω turbulence models 

 Since the turbulence model has been changed, it is prudent to check the flow in 

the discharge section to ensure no back flow is present. To do this, five vertical cross-

sections were created in the outlet region of the ERV, as shown in Fig. 4.16. The velocity 

vectors on these vertical cross-sections were plotted and the findings show that near the 

entrance of the outlet channel, around x = 6, 7 and 8, there is recirculation (negative 
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velocities) due to flow separation. However, at x = 9 the velocities are all positive giving 

a strong indication that no back flow is present near the exit of the outlet of the valve.  

 

 

(a) 

 

(b) 

Fig. 4.16: Check for back flow in the discharge line 
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Case F: The velocity inlet and outflow outlet boundary conditions have been used in all 

the above simulations. However, it is important to check whether the velocity inlet 

condition can be reproduced while imposing pressure inlet and pressure outlet conditions, 

since these are the type of boundary conditions that can be extracted for a typical 

industrial installation. A pressure inlet value of 2 kPa (0.3 psi) was estimated from the 

velocity inlet profile and the dynamic pressure contours at the inlet. A pressure outlet 

condition was imposed at the outlet boundary and default values were used for the 

various flow and numerical parameters except the tolerances which were set at 1.0x10
-4

. 

When comparing the velocity magnitude contours with case C, it was observed that the 

two sets of contours match fairly well, as demonstrated in Fig. 4.17. However, the 

predicted velocity at the inlet was approximately 1.50 m/s (4.9 ft/s), which is less than 

original input value of 2.1 m/s used in Case C. Further investigation was conducted to 

determine the cause of this discrepancy. 
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(Case C) 

 

(Case F) 

Fig. 4.17: Pressure inlet/outlet BC’s vs inlet/outlet BC’s (Cases C and F) 

  

Case G: After further extensive investigation, it was apparent that the ERV should be 

viewed like a converging-diverging nozzle, where the seat and disc creates an orifice. 

During operation of the valve, the flow area should vary from zero when the valve is 
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closed to a maximum, less than or equal to the inlet area, when fully opened. The valve 

geometry used in the above cases displays a divergent-convergent section. This indicates 

that the orifice area, referred to as the throat or curtain area (area between bottom of the 

disc and the inlet nozzle seat), is larger than the inlet and outlet port areas. This 

completely defies the theory of valves. According to Bernoulli’s theorem, when a fluid 

under pressure is accelerated through an orifice such as a valve, the static head is 

converted to the velocity head resulting in a pressure drop. If the area is smaller at the 

inlet and outlet, the velocity will decrease as the flow enters the throat area. This could 

have an adverse effect on how the flow responds as it passes the valve throat, as shown in 

Fig. 4.18. 
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(a) 

 

(b) 

Fig. 4.18: Schematic of divergent-convergent model, incorrectly depicting an ERV 

It would be beneficial if the throat or curtain area (orifice) were much smaller 

than the inlet and outlet areas. To account for this, the curtain area has to be made 

smaller. This can be done by extending the valve nozzle seat as illustrated in Fig. 4.19. 

The distance between the bottom of the disc and the inlet into the ERV (curtain distance) 

was changed from 76.2 mm (3 in.) to 12.7 mm (0.5 in.), thereby decreasing the throat 

area from 5806.4π mm
2
 to 967.7π mm

2
. See Appendix B for calculations. 
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(a) 

 

(b) 

Fig. 4.19: Schematic of convergent-divergent nozzle, correctly depicting a valve 

analogous to an ERV 

 

 Following the same setup and procedure as in case F with the short extended 

outlet nozzle and using this new valve configuration which models the ERV as a 

convergent-divergent nozzle, the pressure inlet/outlet conditions reproduce the correct 

velocity inlet. 
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Case H: The converging-diverging model that was used in case F was further investigated 

using velocity inlet and outflow boundary conditions, and the results are compared with 

case F in Fig. 4.20. 

 

(Case G) 

 

(Case H) 

Fig. 4.20: Velocity magnitude contours (Cases G and H) 
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Case I: With the new geometry it is necessary to check for possible back flow in the 

outlet nozzle and to see where the flow reattaches after it separates at the sharp corners in 

the ERV. To verify that there is no backflow on the outlet plane, the discharge nozzle 

length was extended by 50.8 mm (2 in.), 127 mm (5in.) and 355.6 mm (14 in.), as shown 

in Fig. 4.8 and displayed below for convenience. However, the new configuration being 

tested includes the curtain described above, which are not shown in Fig. 4.8. 

 

 

Fig. 4.8: Discharge nozzle extensions 

 Pathlines, velocity magnitude contours and velocity vectors were plotted to 

determine where the recirculation occurs and where the flow reattaches. A vertical line 

was drawn at all new nozzle lengths in order to capture velocity and dynamic pressure 

profiles beyond the 101.6 mm (4 in.) nozzle length in the extended valves. Profiles like 
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those shown Fig. 4.22 indicate that the recirculation and reattachment points are captured 

more effectively by extending the nozzle. However, this investigation was solely done to 

ensure that no back flow was occurring and to determine if the outlet length of the valve 

needed to be longer to capture this feature. It was observed that by extending the 

discharge length, no back flow was present. This confirmed that the original outlet length 

was adequate for further 2D and 3D analysis.  

 

� Determined their was 
separation, thus back flow is 
occurring in nozzle

� Extended nozzle an additional 
14 inches which changed 
length to 18inches total

� Re-attachment occurred at  
approximately  9 to 10 inches 
in nozzle length

 

Fig. 4.21: Outlet condition check – velocity vectors 
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•

� Does not capture recirculation

� Does capture slight recirculation bubble

� Dynamic pressure larger especially at 1.5 to 2” 
section of nozzle (Extended nozzle)-7000 Pa 
compared to 10000 Pa

 

Fig. 4.22: Outlet condition check – dynamic pressure profiles 

 

Case J: The k-ε (standard and realizable) and k-ω (standard) turbulent models were 

investigated and compared using the new geometry described above. The results between 

the models were not significantly different. However, for the 3D simulations, a model 

will be required that can handle adverse pressure gradients and give reasonably accurate 

results with boundary layer flow. The k-ω turbulent model was selected for subsequent 

simulations since the 3D ERV and the 3D IRV geometry (bends/corners/etc.) will be 

more complicated. 

4.3.         Three-Dimensional Simulation of the ERV 

 A three dimensional model of the ERV was developed using the same parameters 

in Fluent with the k-ω turbulent model as in case J above. Figure 4.23 shows the hybrid 

mesh that was used for the simulation, comprised of structured hexahedral and 

unstructured tetrahedral elements with approximately 77,564 nodes and 186,831 mixed 
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cells. Dynamic pressure contours are shown in Fig. 4.24. This shows the surfaces on 

which the contours of dynamic pressure are plotted. Fig. 4.24 also displays a central 

plane cross-section of the valve and shows that the high velocity fluid that is squeezed 

between the valve disc and the curtain contributes to the region of high dynamic pressure.  

 

Fig. 4.23: Mesh for model of 3D ERV 
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a) 

 

b) 

Fig. 4.24: Dynamic pressure contours of 3D valve model 
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CHAPTER 5.    INTERNAL RELIEF VALVE 

5.1.         Introduction 

 The internal relief valve (IRV) is a safety device which is essential in providing 

over-pressure protection to the internal gear pump. The IRV device not only protects the 

pump from catastrophic failure but also serves as a protection measure for workers and 

the general public in the event of such a failure. In this chapter, a computational model 

for the fluid flow through an IRV is developed and used to investigate the features of the 

flow through the valve at fully open condition. In particular, the CFD model provides 

detailed information on the velocity and pressure fields within the valve. Analysis of the 

results leads to a fuller understanding of the valve operation and suggests potential 

modifications for improvement of the IRV.  

5.2.         Determining IRV pressure setting 

 The relationship between the internal gear pump and the IRV is based on the 

differential pressure that the pump experiences and the capacity/flow that the pump 

produces. The IRV has a predetermined setting at which the valve will be fully open, thus 

creating a full by–pass situation in the pump. In this scenario, the fluid will circulate 

within the pump and not leave through the discharge. The IRV setting is determined from 

an optimum point selected on a graph of the differential pressure vs. pump capacity, and 

by a line intersecting the horizontal x-axis. For example, as shown in Fig. 5.1, the 

optimum point is generated by intersecting the pump capacity 14 m
3
/hr (60 gpm) and the 

pump differential pressure 552 kPa (80 psi). Once the optimum point is obtained, a 

diagonal line is drawn through the optimum point and parallel to the differential pressure 
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line on the graph. The full by-pass pressure is set at the point where this diagonal line 

intersects the horizontal axis. In practice, most pump internal relief valves are set at 

approximately 172 kPa to 207 kPa (25 to 30 psi) above the differential pressure setting. 

However, the size of the pump, which influences capacity/flow capabilities, is often used 

as a measure to change this range to a higher value. It is important to note that the 

differential pressure at which the pump is sized at is representative of the cracking 

pressure. Therefore in the example discussed above, 552 kPa (80 psi) which is the 

differential pressure is the same value as the cracking pressure. 

 

Fig. 5.1: Viking safety relief valve performance curve (K-LS size pump) [11] 

(by permission of Viking Pump Inc.) 
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5.3.         Research Motivation 

 Advancement in product development is of utmost importance in the practical 

engineering world. Research plays a critical role in this type of engineering environment. 

In the present context, for companies like Viking Pumps Inc., exploring potential 

techniques for improved IRV performance is key in moving forward with better products. 

The goal would be to reduce the range from cracking to full by-pass pressure of the IRV 

as illustrated in Fig. 5.2. By achieving this goal, numerous direct benefits may be 

realized, as is further discussed.  

 To date very little is known about the poppet movement inside the internal 

production relief valve. A couple of studies have been performed on prototypes for new 

designs, but these have not made it to production thus far. There have been no studies 

done on production IRV’s to validate poppet movement.  Once the IRV is subjected to an 

over-pressure situation, movement of the poppet cannot be confirmed precisely in a 

practical sense since the poppet is completely enclosed in the IRV. An experimental 

study would require a transparent model and rather sophisticated measuring devices, 

thereby incurring considerable cost. A CFD analysis will provide detailed flow data from 

which it is possible to get a better understanding of the poppet movement and help to 

relate the flow and differential pressure to a specific poppet lift position. 



54 

 

 

Fig. 5.2: Relationship between cracking and full by-pass pressure [11] 

(by permission of VikingPump Inc.) 

By reducing the pressure range from cracking to full by-pass pressure, the fluid 

would by-pass earlier. This would lead to significant improvements in valve operation. It 

is anticipated that a reduction in the cracking to full by-pass range could be achieved by 

modifying the IRV design, changing the functionality of a component, changing 

materials or through some other mechanism that improves the flow characteristics which 

affect the forces acting on the poppet. 

5.4.        Benefits from Improved Relief Valve Performance 

 There are many benefits to be gained from improved IRV performance by 

reducing the pressure range (cracking to full by-pass): 

1. Reduced horsepower requirement:  

Pumps are sized based on the relief valve setting. By shortening the pressure 

range from cracking to full by-pass, the IRV setting could be reduced. This would 
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result in a smaller motor horsepower (HP) requirement to completely open the 

valve in over-pressure situations. This would generate a huge cost savings 

especially when larger HP motors are used. 

2. Reduction in slippage: 

Slippage occurs when thin liquids fall behind the rotor and idler teeth while the 

pump is running. When this occurs flow will be diminished since you will have 

fluid slipping past components instead of exiting the pump as the fluid is carried 

from the suction to discharge port. Slippage gets worst with increased temperature 

and pressure.  With a reduced pressure range, the pump would be subjected to 

lower pressure. This would be especially helpful in applications with thin liquids 

and higher pressures where slippage is inevitable. By reducing slippage, the 

mechanical efficiency of the pump would improve since the fluid would not be 

lost due to slippage. Also, considering the frequency at which the IRV comes on, 

with smaller pressure range the spring would be subjected to less pressure/force, 

and thus have a potential extended life. 

3. Avoid  damage to pump 

If the IRV works properly and efficiently it will help to avoid damage to the 

pump.  
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5.5.        Internal Relief Specifications 

 The internal relief valve modeled in this study is a Viking IRV 3-795 series, as 

shown in Fig. 5.3.  Figure 5.4 illustrates the three-dimensional mathematical data that 

represents the actual IRV in Fig. 5.3.  

 

Fig. 5.3: Cross-section of the 3-795 series Viking IRV 

(by permission of Viking Pump Inc.) 

 

Fig. 5.4: 3D mathematical representation of 3-795 series IRV 

 

The internal relief valve is composed of several components which make up the 

complete assembly. Figure 5.5 illustrates these components. 
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Fig. 5.5: Cross-section of 3-795 series IRV 

 Item 1 is the relief valve body which encases all of the other internal components 

(Items 2 through 12). Item 2 is the poppet, which is one of the most important 

components on the relief valve. The poppet helps to relieve pressure by sliding open in 

over-pressure situations, allowing the fluid to pass through the IRV and re-circulate in the 

pump. Once the over-pressure situation drops below the spring setting, the poppet closes 

and blocks flow through the IRV. Item 3 is the bonnet (RV cap) which encloses the back 

of the spring and spring guide. Its main purpose is to hold all the components inside the 

internal relief valve body. Item 4 is the adjusting screw cap which covers and protects the 

adjusting screw apparatus. Item 5 is the spring guide which helps the spring to react in 

the horizontal direction as the spring is subjected to compression and then returns to its 

elastic initial state. Item 6 is the spring, which is the most important component in the 

IRV assembly. The spring setting will dictate when the poppet moves in an over-pressure 

situation by compressing when pressure in the pump rises above the spring setting. Item 

9 is the adjusting screw, which allows adjustments to the spring to whatever desired 

setting pressure is needed, considering the pressure is in the spring pressure range. Item 

10 is the hex nut (lock nut) which is used to lock the adjusting screw in place once the 



58 

 

pressure setting has been determined. Items 11 and 12 are gaskets which have the sole 

purpose to create a positive seal between two relatively stationary parts. This will prevent 

leakage onto the adjusting screw threads and the hex nut. 

Since it is assumed that heat transfer is negligible, the valve wall thickness is 

irrelevant and the flow region is bounded by the interior wetted surfaces of the IRV. 

Components such as the adjusting screw, adjusting screw cap and bonnet were removed 

from the model as these will not come in direct contact with the fluid. Figure 5.6 shows 

cross-sectional views of the complete IRV and in its design configuration used for the 

CFD analysis. 

 

Fig. 5.6: Cross-sections of complete IRV and modeled IRV with interior wetted surfaces 

 The poppet was offset a distance of 0.63 to 0.64 inches. This offset distance is an 

estimate of where the poppet would be at the fully open position, calculated through an 
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approximate theoretical formula. As there is quite a bit of pressure fluctuation in an over-

pressure situation, it is very complicated to predict exactly what position the poppet 

would be at in the fully open position. Figure 5.7 shows valve with the offset distance 

used in this thesis.  

 

(a) 

 

(b) 

 

(c) 

Fig. 5.7: Poppet in closed position and with offset; 3D offset distance in CFD model 
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This IRV is typically used on the K and KK size Viking pumps. The selected 

spring range was 558 kPa to1034 kPa (81 to 150 psi), which is a typical representation of 

a practical IRV setting in industry. Nominal flow rates of the K and KK size pumps are 

approximately 17 to 22 m
3
/hr (75 to 100 gpm). In a full by-pass situation this will be the 

approximate flow re-circulating within the pump until the over-pressure drops below the 

spring pressure setting. 

 

5.6.        IRV Simulations (Setup) 

IRV simulations were performed using the CFD software package STAR-CCM+. 

The 3D geometry data was imported into STAR-CCM+ using a Nastran file type. Once 

the file was imported the complete solution domain was partitioned into regions. Edges 

were split using split angle (60 to 70 degrees) to define boundaries for inlet, outlet, 

poppet, etc. Geometry cleanup was performed on the model prior to meshing.  

The model was meshed using the surface remesher, prism layer mesher and 

polyhedral mesher available in STAR-CCM+. The surface remesher was applied to the 

surface mesh and tetrahedral faces were implemented. A prism layer mesh was used to 

help capture the boundary layer at the walls. The prism layer mesh configuration 

consisted of the following: 

- prism layer stretching = 1.3 

- prism layer thickness = 1.5mm 

- number of prism layers = 10. 

 For meshing the volume, polyhedral cells were implemented in an unstructured 

configuration. The volume mesh consisted of 1,146,533 cells. 
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To generate a good volume mesh, a surface mesh with an absolute minimum size 

of 1.0 mm and an absolute maximum size of 1.5 mm was used. A surface curvature of 36 

points was also utilized to aid in define the meshing around the circular features in the 

IRV. Other mesh parameters include the base size which was set to 0.035052 m. This 

represents the approximate diameter of the inlet and outlet port of the IRV. The surface 

growth rate was left at its default value of 1.3. The final mesh can be viewed in Fig. 5.8. 

 

Fig. 5.8:  Surface and volume mesh 

 

Both the standard k-ε and k-ω turbulence models were used in the analysis with 

the “all Y+ wall treatment” option. Ultimately, due to its ability to handle separated flows 

more effectively, the k-ω turbulence model was used in further analysis. The segregated 

solver was used. This type of solver allows for superior manipulation of the relaxation 

factors. The relaxation factors used in the model were as follow: 

- for pressure: 0.2 
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- for velocity: 0.8 

-for k-ε or k-ω turbulent viscosity: 0.7 

- for k and for ε or ω turbulence: 0.5 

 Both first and second order upwinding of the convective terms were used in the 

analysis. Unlike many other commercial CFD codes, STAR-CCM+ does not provide the 

option of using equation residuals to determine whether the iterative solution procedure 

has converged. Residuals are calculated and can be monitored as the iterations proceed. 

The  following residuals are calculated: continuity, x, y, z, momemtum, kinetic turbulent 

energy and dissipation rate. Once the desired residual levels are reached, the simulation 

can be terminated. The maximum number of iterations has been set at 6000, which acts as 

a stopping criteria if the residuals have not decreased sufficiently. 

 The IRV boundary conditions were set as follows. The inlet boundary was set as a 

pressure inlet and, on the basis of having a spring range of 558 kPa -1,034 kPa (81-150 

psi), the inlet (stagnation) pressure was specified at 565 kPa (82 psi), with a 7% 

turbulence intensity value. The turbulence intensity is scale which characterizes the 

turbulence expressed as a percent.  High speed flow inside complex geometries such as 

the IRV can be assumed to have high turbulence intensity level. The outlet was set as a 

mass flow outlet (negative mass flow inlet per CCM+) with mass flow rate = 5.674 kg/s. 

For the outlet boundary condition, a performance curve (see Fig. 5.9, [3]) was utilized to 

determine the approximate maximum flow rate through the IRV in a full by-pass 

situation using a set pressure of 565 kPa (82 psi). This procedure was used to form a 

direct linkage between set pressure and maximum flow through the pump. It is important 

to note that the performance curve is mainly used to describe pump performance, while 
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the maximum flow rate through the pump is influenced by pressure and viscosity. It was 

assumed in the current analysis that the maximum flow through the IRV in an over-

pressure situation, where the IRV is subjected to full by-pass, is approximately equal to 

the maximum flow through the pump. 

 

The default values in CCM+ were used to initialize the parameters: 

- turbulence intensity: 1% 

- pressure: 0 Pa 

-turbulence viscosity scale = constant: 1.0 m/s 

-turbulence viscosity ratio = constant: 10.0 

-velocity: [0.0, 0.0, 0.0] m/s. 
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Fig. 5.9:  Performance curve - IRV set pressure setting = 565 kPa (82 psi) [8] 

(by permission of Viking Pump Inc.) 

 

All other components within the IRV such as the poppet, spring, bonnet, etc., as 

described above in Section 5.5, were set with wall boundary conditions. The opening gap 

(orifice width)/(offset distance) of the poppet was set to 0.64″. 
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The liquid flowing through the IRV is assumed to be incompressible and 

Newtonian (e.g., water). It is assumed that fluid temperature is ambient at a constant 

value of 20⁰C. It is also assumed that the problem is a steady flow problem with flow 

moving over static components in their fixed positions. 

5.7.        IRV Simulations 

Simulations were performed using both the standard k-ε and k-ω turbulence 

models. Results from these simulations were compared to assess whether the k-ε model, 

which is regarded as the industry workhorse, could accurately predict the flow 

parameters. However, the IRV geometry is complex and promotes flow separation as the 

liquid travels through it. The k-ω turbulence model was selected for subsequent analysis 

due to its ability to handle separated flows more effectively. First and second order 

upwinding for the convective terms were also investigated. Second order upwinding was 

used in further analysis to maintain more accuracy. The equation residuals as described 

earlier in chapter play an important role in assessing the accuracy of the solutions that 

were monitored. A stopping criterion of 6000 iterations was imposed, and all simulations 

converged well within this number of iterations.  

The residuals shown in Fig. 5.10 and Fig. 5.11 are representative of the k-ε and   

k-ω turbulence models using the 1
st
-order upwind scheme. All residuals have dropped 

below 1.0x10
-6

. The continuity is of most importance and even though is it above other 

residuals, its residual drops below 1.0x10
-6

 in less than 1000 iterations. Viewing these 

residuals, it is evident that the continuity residual fluctuates in a repetitive manner after a 

sufficient number of iterations, indicating that the solution is not changing significantly 

from one iteration to the next. The significance of having the solution run until 6000 
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iterations is to ensure nothing in solution has diverged after the solution has converged. 

This happens in the k-ε turbulence model at around 2000 iterations, while this behaviour 

can be observed with the k-ω model at around 1000 iterations. 

Fig. 5.10:  Residuals for k-ε turbulence model (1
st
-order upwind) 

 

Fig. 5.11: Residuals for k-ω turbulence model (1
st
-order upwind) 

 The velocity vectors were also observed to get an idea of how the flow behaves 

within the valve. It is important to note that the velocity magnitude increases at the inlet 

and outlet ports. This is due to the fact that the diameter is not constant at the inlet and 

outlet ports. The IRV has assembly clearances within the design; this is to accommodate 

the attachment of the IRV to the pump using bolts as seen in Fig. 5.12. It should be noted 
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that the sole purpose of the clearance design is for installation. There were no flow 

considerations taken into account when the design was implemented. 

 

Fig. 5.12:  IRV assembly clearance 

 

 The flow velocity increases through the gap where the poppet has an offset 

distance of 0.64″. Flow separation occurs at the sharper edges which induces flow 

recirculation. The velocity vectors also reveal the regions where the flow tends to reverse 

its direction due to the obstructions it encounters in the valve. The flow characteristics in 

the IRV (determined using CFD) help to identify how the flow can potentially be 

improved to increase the valve performance. These comments are reinforced in Figs. 5.13 

and 5.14, illustrating the velocity vectors coloured by velocity magnitude based on the 

simulation using the first order upwind scheme. This cross-sectional view of the IRV 

illustrates how the flow physics operates within the IRV. Theoretically we would expect 
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to see the velocities in the IRV as shown in Figs. 5.13 and 5.14, based on the inlet and 

outlet boundary conditions used as stated above. In both the k-ε and k-ω models, an 

accumulation of fluid tends to build up near the top left hand portion of the IRV. This 

accumulation of fluid is caused by the centrifugal effect of the flow near the top of 

poppet. This is mainly due to the fact that as the flow enters the valve it is not distributed 

evenly before encountering the poppet. The flow has taken the path of least resistance. 

 

Fig. 5.13: Velocity vectors, coloured by velocity magnitude – k-ε turbulence model;     

1
st
-order upwind scheme 

 



69 

 

 

Fig. 5.14: Velocity vectors, coloured by velocity magnitude – k-ω turbulence model;    

1
st
-order upwind scheme 

 

The 1
st
-order upwind scheme was used in the preliminary stages because it tends 

to have better convergence properties than 2
nd

-order schemes as a result of the added 

numerical diffusion associated with it. Results are obtained more quickly using the 1
st
-

order scheme, which is especially beneficial when performing sensitivity analyses with 

the simulations. The various numerical parameter settings noted above were determined 

after extensive tests with different parameters such as the mesh size, number of prism 

layers, relaxation factors, etc., all of which contribute to the sensitivity analysis. To 

increase the accuracy of the solution, the maximum number of iterations and the upwind 

scheme can be changed. It was decided to keep the maximum number of iterations set at 

6000 since the 1
st
-order upwind scheme yielded good results with much less than this 

number of iterations. Therefore, the only change implemented was changing from a 1
st
-

order to a 2
nd

-order upwind scheme. All other physical and numerical parameters were 

kept the same as stated above.   
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Figures 5.15 and 5.16 illustrate the residuals from the 2
nd

-order simulations for the 

k-ε and k-ω turbulence models. The residuals for all the fluid dynamics equations except 

continuity drop below 1.0x10
-8

 within 1000 iterations. The continuity residual for the k-ε 

turbulence model drops slightly below 1.0x10
-7

 at 2000 iterations before it starts to 

stabilize. The continuity residual for the k-ω turbulence model drops to 1.0 x10
-5

 at 500 

iterations and then levels out slightly about this value in subsequent iterations. 

 

Fig. 5.15: Residuals for k-ε turbulence model (2
nd

-order upwind) 

 

Fig. 5.16: Residuals for k-ω turbulence model (2
nd

-order upwind) 

  The differences between the k-ε and k-ω turbulence models are quite evident. The 

k-ω model appears to stabilize much sooner, after about 500 iterations, while the k-ε 
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model requires about 2500 iterations to reach a stable value. Since the flow in the IRV is 

complicated, with separation and large recirculation regions, it was decided that the k-ω 

turbulence model would be best in capturing the flow field within the IRV. 

The velocity vectors are shown in Fig. 5.17, coloured with velocity magnitude. 

The k-ω model turbulent model with a 2
nd

-order upwind scheme is used. The predicted 

flow field appears to be more realistic than that obtained with the 1
st
-order scheme. Flow 

separation and recirculation is captured, along with the flow reaction to discontinuities 

within the IRV. The change in direction of the velocity vectors illustrates the reversal of 

the flow at the inlet section and when the flow goes around the spring and other cavities 

in the outlet section of the IRV.  

 

Fig. 5.17: Velocity vectors, coloured by velocity magnitude – k-ω turbulence model;   

2
nd

-order upwind scheme 

 The contours of velocity magnitude are shown in a cross-section of the IRV when 

viewing from the top of the IRV in Fig. 5.18. The cross section is taken from the top of 

the IRV. The flow accelerates in smaller areas where the vena contracta (orifice) exist. 

The offset region where the poppet is pushed back is where the increase in velocity 
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occurs. The velocity also increases at the entrance and exit of the IRV due to the 

assembly clearance for the bolt holes. The velocity magnitude superimposed with 3D 

streamlines is also plotted in the xz plane. The main purpose of plotting the streamlines is 

to observe the flow pattern as the fluid moves from the inlet port of the IRV to the outlet 

port. When viewing the streamlines in Fig. 5.19, the chaotic flow behaviour in the IRV is 

quite evident.  

 

Fig. 5.18: Velocity magnitude contours – k-ω turbulence model; 2
nd

-order upwind 

scheme 
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Fig. 5.19: Velocity magnitude contours and streamlines – k-ω turbulence model;          

2
nd

-order upwind scheme 

 The total pressure is of primary importance. The IRV setting is solely dependent 

on the set pressure in reference to which spring range is used in the IRV. The pressure 

contours in Fig. 5.20 illustrate that the assembly clearance for the bolt holes does increase 

the pressure at the inlet of the IRV. The pressure should also be higher on the inlet side of 

the IRV due to restriction caused by the poppet, which the contours confirm. The 

contours in Fig. 5.20 also help to understand the relationship between pressure and the 

valve offset distance. It can be seen that irrespective of the valve offset distance there will 

always be greater pressure on the inlet side of the IRV due to the placement of the poppet 

in the valve, which acts as a restriction within the IRV. 
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Fig. 5.20: Total absolute pressure – k-ω turbulence model; 2
nd

-order upwind scheme 

 Observing the wall Y+ values on the IRV shell, as demonstrated in Fig. 5.21, the 

range is approximately from 15 to 20. When viewing the cross-section shown in Fig. 

5.22, the Y+ values are approximately from 4 to 9. Based on the standard meshing and 

prism layer meshing applied, these wall Y+ values allow the simulations to capture the 

flow characteristics at the wall. In earlier trial simulations, divergence occurred quite 

frequently before the prism layer mesh was implemented. With the prism layer mesh 

implemented, the divergence issue was corrected and convergence realized. 

 

Fig. 5.21: Wall Y+ of IRV shell –k-ω turbulence model; 2
nd

-order upwind scheme 
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Fig. 5.22: Wall Y+ of IRV cross-section (near-wall) 
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CHAPTER 6.    CONCLUSIONS AND RECOMMENDATIONS 

6.1.         Conclusions 

 The external valve and internal relief valve were both studied and analysed. 

Conclusions have been drawn from the findings. 

External Relief Valve (ERV) 

The objective of the ERV simulations was to test several key factors that are 

known to affect the successful implementation of commercial CFD software. Chapter 4 

concentrated on developing a simplified model of the ERV that could be used to perform 

numerical sensitivity analyses with respect to several physical and computational 

parameters, thereby acquiring valuable knowledge. The 2D ERV simulations provided 

guidance in deciding which parameter settings were best to use for the 3D ERV analysis, 

and subsequently for the internal relief valve (IRV) study. The work done on the ERV 

helped identify key areas that require special attention, such as appropriate mesh size and 

characteristics, when to use a fine/coarse mesh, location and implementation of boundary 

conditions, turbulence modeling, etc. Numerical tests involving adjustments to 

parameters such as convergence criteria, relaxation factors, upwind schemes and 

selection of a solver helped capture more accurate solutions.  

The 2D ERV model underwent many improvements which subsequently helped 

with the 3D analysis of the ERV. Certain criteria were checked at the 2D stage to ensure 

that the model correctly predicted the flow physics. Preliminary simulations indicated 

significant back flow re-entering the outlet port of the ERV. This was resolved by 

extending the outlet nozzle. Plots of the velocity vectors in the extended outlet were used 
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to determine the length of the outlet nozzle needed to eliminate back flow at the outlet. It 

was also concluded that the inlet nozzle should be extended inside the valve body to form 

a curtain, thereby creating a converging/diverging flow which is more representative of 

the actual relief valve configuration. The 3D ERV model was based on the changes made 

in the 2D stage. Major changes discussed above were the specific aspects implemented in 

the 3D model. 

Internal Relief Valve (IRV) 

The analysis performed on the 2D and 3D ERV models provided valuable input to 

initiate the setup for the IRV simulation. Manipulation of some of the numerical 

parameters such as the meshing/prism layers, relaxation factors and choice of solver 

helped to promote convergence in the simulation. It can also be concluded that there was 

a significant difference in the predictions from the k-ε and k-ω turbulence models. The   

k-ω model captured the flow reversal and recirculation within the IRV more accurately. 

From the simulation results it was seen that the IRV has some structural features that do 

not promote desired flow characteristics within the IRV. Based on the IRV simulations, it 

appears that there are some areas where potential improvements could be made to 

enhance the performance of the IRV by reducing the pressure range from cracking to full 

by-pass pressure. The recommendations below further show how the desired outcome is 

potentially realized. 

 

 



78 

 

6.2.         Recommendations 

IRV – General Recommendation 

 The main objective of this thesis was to provide some scientific and engineering 

guidance with respect to improving the IRV performance. The ultimate goal is to reduce 

pressure range from the cracking to full by-pass. Viewing the flow dynamics and the 

behaviour of the fluid within the IRV has helped to identify some areas where 

improvement could be made. For future work once a sound design is approved through 

experimental validation the web based curve generator located on the Viking Pump Inc. 

website would be modified to incorporate changes related to improved IRV performance. 

 The IRV flow vectors shown in Fig. 5.17 suggest that the flow entering the IRV 

from the inlet is not uniformly distributed when it impinges on the poppet, which creates 

a larger force on one side of the poppet. It is assumed in this case that the poppet is at its 

fully open position, it cannot be confirmed at this time if when poppet is ½ open if this 

uniformity still exists.  Since the force of the fluid is not uniformly distributed along the 

face of the poppet, this can cause a potential torque applied to the poppet with one side of 

the poppet and spring tending to rotate as illustrated in Fig. 6.1. However, it is desirable 

to keep the poppet moving in the axial direction as it moves back and forth. During 

poppet chatter this may be one of the causes for the poppet becoming unseated when it is 

returned back to its closed state. By improving the flow distribution the cracking to full 

by-pass pressure should be reduced. There would be a more uniform force distribution 

applied to the entire poppet face rather than a larger force at the top of the poppet.  
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Fig. 6.1: Illustration of flow interaction with the poppet 

IRV – Recommendation #1 

 To create a more uniformly distributed flow, vanes at the inlet elbow can be 

implemented as shown in Fig. 6.2. Rounding out the sharp 90° bend at the bottom of the 

valve would also help to achieve better flow distribution and reduce the flow separation, 

thereby reducing the size and strength of the flow recirculation region. 
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Fig. 6.2: Added features for better flow distribution 

IRV – Recommendation #2 

 The ERV operates with the converging-diverging nozzle principle. The 

simulations in Chapter 4 where the converging diverging nozzle principle was elaborated 

on indicate that increasing the size of the nozzle after the throat produces an expansion 

which results in a pressure drop. The same principle is applied to the IRV. By increasing 

the diameter of the IRV body, the clearance after the throat would be enlarged to yield 

the same benefits. Creating more expansion after the orifice (gap between the valve seat 

and poppet) will also yield a wider range of pressure drop. With more pressure the 

cracking to full by-pass would be reduced as well as illustrated in Fig 6.3. Another 

change that would enhance the effect of the converging/diverging principle would be to 

remove the assembly clearances for the bolt holes. This would ensure that the areas at the 

inlet and outlet ports are much larger than the throat area in the IRV where the poppet is 

positioned. 
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Fig. 6.3: Removal of assembly clearance and wall thickness 

IRV – Recommendation #3 

 Another potential improvement would result from the removal of the guide vanes 

and increasing the poppet diameter to contact the internal wall of the IRV while 

maintaining the same clearance as the guide vanes, as shown in Fig. 6.4. The assembly 

clearances would also be removed. The idea behind this concept is to reduce the losses at 

the front face of the poppet. Since the losses would be reduced, the time from cracking to 

full by-pass pressure would be decreased due to maximizing the flow through the valve. 
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Fig. 6.4: Adding convex curvature to front face of poppet and removal of guide vanes 

 These recommendations are based on results obtained from the sensitivity 

analyses and careful examination and interpretation of the velocity and pressure fields in 

the IRV. It can be concluded that the valve has many features which were not designed 

with the intent to accommodate how the flow would react inside the IRV. The main 

motivation behind the recommendations is to improve the cracking to full by-pass 

pressure. This would be beneficial in achieving a well-designed IRV which would be 

more competitive in the oil and gas industry, while maintaining its technical function for 

safety. 
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APPENDICES 

APPENDIX A - Copyright Permission Documents  

From: Nantau, Chris  

Sent: Thursday, July 24, 2014 8:48 AM 

To: Henry, Yohance; Goddard, Derrick; Toy, Joe 

Cc: Yohance Henry (henry8@uwindsor.ca) 

Subject: RE: Pictures of Actual Relief Valve (THESIS)-Yohance 

No problem Yohance. Our only concern would be if you used actual component 

drawings showing sensitive information, dimensions etc. This is not the case so go ahead 

and good luck. 

Chris Nantau – Director of Sales, – Canada and European Operations 

Viking Pump and Wright Flow – Units of IDEX Corporation 

 

661 Grove Avenue, Windsor, Ontario  N9A 6M3 

E-Mail:  cnantau@idexcorp.com |  Web: www.vikingpumpcanada.com; www.wrightflowtechnologies.com 

Office:  888-845-7867  ext: 4296| Mobile:  519-259-2715 | Fax: 888-803-8640            

 

From: Henry, Yohance 

Sent: Thursday, July 24, 2014 8:37 AM 

To: Goddard, Derrick; Nantau, Chris; Toy, Joe 

Cc: Yohance Henry (henry8@uwindsor.ca) 

Subject: Pictures of Actual Relief Valve (THESIS)-Yohance 



88 

 

Good Morning Derrick, Chris and Joe, 

The pictures below represent the actual physical relief valve in real life. I will be 

performing the CFD simulations on the 3-dimensional (3D) RV data which represents the 

physical relief valve in the pictures below. This is the same 3D data I had shown to all of 

you in my last presentation.  I would like to have permission to include these pictures in 

my Thesis write up/presentation. I would like to include some practical components in 

my thesis as well. Please let me know if this is okay. 

Thanks again for the support. 

Yohance Henry, M.Eng., P.Eng.  - Application Engineer 

Viking Pump of Canada –  A Unit of IDEX Corporation 

661 Grove Avenue, Windsor, Ontario  N9A 6M3 

E-Mail:yhenry@idexcorp.com | Web: www.vikingpumpcanada.com 

Office:  519-259-4268 | Fax:  519-256-5070 

Figure A.1 – Permission for use of Viking Pump Inc. relief valve in thesis 
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-----Original Message----- 

From: Goddard, Derrick  

Sent: Tuesday, April 07, 2015 6:25 PM 

To: Henry, Yohance 

Cc: Toy, Joe; Yohance Henry (henry8@uwindsor.ca) 

Subject: Re: Additional Figures included in THESIS-Yohance 

 

Approved  

 

Sent from my iPhone 

 

On Apr 7, 2015, at 5:57 PM, Henry, Yohance<YHenry@idexcorp.com> wrote: 

 

Good afternoon Derrick, 

 

 As a standard protocol I must ask to have permission to include the list of figures into my final 

Thesis. None of the figures contain dimensions of any sort/proprietary  information. 

 

 Can you please review and let me know if you have any concerns/reservations. I ‘ve attached 

the word document for your reference. 

 

 

 Thanks and best Regards. 

 

Yohance Henry, M.Eng.,P.Eng.  - Application Engineer 

 Viking Pump of  Canada –  A Unit of IDEX Corporation 

 661 Grove Avenue, Windsor, Ontario  N9A 6M3 

 E-Mail:  yhenry@idexcorp.com<mailto:yhenry@idexcorp.com>|  Web:  

www.vikingpumpcanada.com<http://www.vikingpumpcanada.com/> 

 Office:  519-259-4268 | Fax:  519-256-5070  

 [cid:image002.jpg@01CFBAD1.28E967B0] 

 

Figure A.2 – Permission for use of Viking Pump figures in thesis [8], [9], [11] 
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From: Beth Darchi<DarchiB@asme.org> 

Date: Thu, Apr 16, 2015 at 10:09 AM 

Subject: RE: Permission Request form-YohanceHenry(University of Windsor) 

To: Yohance Henry <henry8@uwindsor.ca> 

Cc: Accounts Receivable<AccountsReceivable@asme.org> 

 

Dear Prof. Henry, 

I apologize, the copy I had must have been cut off.   I have revised the permission letter 

to include Figure 13.  It is our pleasure to grant you permission to publish the ASME 

Figures 1, 2, 4,6,13 and Table 1 from “Flowforce in Safety Relief Valve Under 

Incompressible, Compressible and Two-Phase Flow Conditions,” by Vasilios Kourakos, 

Saïd Chabane, Patrick Rambaud and Jean-Marie Buchlin, Paper No. PVP2011-57896, as 

cited in your letter for inclusion in a journal/magazine entitled Improved Internal Relief 

Valve Performance Study Of Reduced Cracking To Full By-Pass Pressure Using CFD 

Simulation to be published by University of Windsor, Ontario, Canada. 

Permission is granted for the specific use as stated herein and does not permit further 

use of the materials without proper authorization.  Proper attribution must be made to 

the author(s) of the materials.  As is customary, we request that you ensure proper 

acknowledgment of the exact sources of this material, the authors, and ASME as original 

publisher. Acknowledgment must be retained on all pages printed and distributed. 
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In accordance with ASME policy, this permission is contingent upon payment of a 

royalty fee of US$50 for 6 figures (at a discounted price). This is solely charged to non-

authors of the requested ASME papers. We accept payments on all major credit cards 

such as: Visa, MasterCard, American Express, Discover, and Diners Club, or by check 

payable to ASME.  Please send payment to the attention of the Accounts Receivable 

Department, ASME, 22 Law Drive, Fairfield, NJ 07007, and indicate that this is a 

permission payment.  Should you have any questions regarding payment form or 

transfer, please contact AccountsReceivable@asme.org.     

ASME does not hold the copyright of the following figures: 

•       Figure 3a original source of this figure is referenced in the paper by Chabane, S., 

Plumejault, S., Pierrat, D., Couzinet, A., and Bayart, M., 2009. “Vibration and chattering 

of conventional safety relief valve under built up back pressure”. In 3rd IAHR 

International Meeting of the WorkGroup on Cavitation and Dynamic Problems in 

Hydraulic Machinery and Systems, International Association of Hydro-Environment 

Engineering and Research,  

•       Figure 3b original source of this figure is referenced in the paper by Corbin, F., 

Pozzoli, R., and Francois, P., 2009. Essais de soupapes-Banc eau. Documents Qualite 

CETIM T-8600-a, Centre Technique des Industries Mecaniques, Techniques des fluides et 

des ecoulements, 74 route de la Joneliere BP 82617, 44326 Nantes Cedex 3. 
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Unfortunately, ASME cannot grant permission for usage of Figures 3a and 3b.  Please 

contact the original source for permission. 

Many thanks for your interest in ASME publications. 

Sincerely, 

  

 

Beth Darchi 

Publishing Administrator  

ASME 

2 Park Avenue, 6th Floor 

New York, NY 10016-5990 

Tel  1.212.591.7700 

darchib@asme.org 

  

 

Figure A.3 – Permission for use of figures 1, 2, 4 and 6 in reference [2] 
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Figure A.4 – Permission for use of one figure on page 85 in reference [10] 
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APPENDIX B - Calculations  

Figure B.1 – Divergent-convergent model (3D), incorrectly depicting an ERV 

 

Figure B.2 – Convergent-divergent nozzle (3D), correctly depicting a valve 

                      analogous to an ERV 

 

 

 

 

 

 

Throat � Curtain area = π x D x H = π x 76.2mm x 

12.7mm = π967.74 mm
2

 

Inlet area = (π x D
2

)/4 =  π1451.61 mm
2

 

Outlet area = (π x D
2

)/4 =  π1451.61 mm
2

 

NOTE: Inlet and Outlet area are now larger than throat 

area. 

Throat � Curtain area = π x D x H = π x 76.2mm x 76.2 

mm = π5806.44 mm
2

 

Inlet area = (π x D
2

)/4 =  π1451.61 mm
2

 

Outlet area = (π x D
2

)/4 =  π1451.61 mm
2

 

NOTE: Inlet and Outlet area are smaller than throat area. 
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