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Abstract 

 

 

 

The automotive industry is interested to reduce vehicles weight, because of the 

need to reduce the fleet fuel consumption.  

Within this scenario, high strength aluminum alloys are a viable alternative to 

heavier steel currently adopted. In particular 7xxx series aluminum alloys, due to 

their excellent strength to weight ratio, are drawing the attention of carmakers. 

The development of a proper precipitation hardening process is extremely 

important in order to obtain the best results in terms of strength and it is what has 

been done in this work for the alloy 7046. 

This thesis evaluates the microhardness and tensile testing results. The latter were 

performed at room temperature, at warm forming temperature and after the alloy 

was heated up to different temperatures for 5 minutes, at the end of different 

artificial ageing treatments. 
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1. Introduction 

The use of aluminum alloys in automotive applications is expanding. They offer a 

lightweight alternative to steel, potentially increasing the efficiency of the vehicles. 

Efficiency gains can be used to lower the amount of energy needed for transportation, 

reducing the emissions while improving the environmental sustainability [1]. Nowadays, 

one of the main challenges for the automotive industry is the reduction of the average 

fleet fuel consumption. The growing concerns on global warming and the greenhouse 

effect, together with a slight worry about the provision of fossil fuels for the future, 

pushed indeed many governments to establish strict legislations for vehicles fuel 

consumption.   

The main responsible for the greenhouse effect, and therefore for global warming, is 

indeed CO2, whose production is directly related to the type and quantity of fuel burnt. 

Even though the main sector that produces CO2 is the industry, precautions and new rules 

in the automotive segment were needed as well. 

New stringent parameters to be met by the vehicles have been introduced in the US in the 

last few years. In Figure 1.1, as an example, it is shown the trend of fuel efficiency 

regulations for passenger cars and light duty trucks between 1980 and 2025 in the US. 

The miles per gallon equivalent (MPGe) is a measure to compare the fuel efficiency of 

alternative fuel vehicles to that of gasoline driven ones, so that all the different types of 

propulsions are comparable to each other. For instance the electricity used by electric cars 

is converted into MPGe through the relationship 33.7 KWh = 1 MPGe [2]. 

According to the figure, the challenge carmakers have to face is evident, since they have 

to move the actual fleet average from 33 MPGe up to 54.5 MPGe in 10 years. For the 

sake of clarity it is better to remind these values refer to vehicles that enter the market in 

the shown year, and not to those already present on the streets. 
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Figure 1.1: Fuel economy standards by model year (in miles per gallon equivalent) [3] 

 

One of the most covered ways to lower fuel consumption and improve MPGe figures is 

the reduction of vehicles weight. According to different studies indeed a 10% mass 

reduction leads to fuel savings between 1.9% and 3.2% in gasoline engines and between 

2.6% and 3.4% in diesel engines; these values refer to non re-sized powertrains. Instead, 

in the case of re-sizing to match the lower vehicle weight, fuel saving would be more 

conspicuous that what showed [4]. 

Weight reduction is usually achieved by designing smaller components or, more 

frequently, by replacing heavy materials with lighter ones. In this particular context 

aluminum alloys, together with other light materials such as magnesium and titanium, 

have been preferred to the heavier steel alloys in some applications.  

Currently, for sheet applications in car body engineering AlMg alloys of the 5xxx series 

or precipitation hardening AlMgSi alloys of the 6xxx series are used. The focus on 

lightweight brought the attention on high strength AlZnMg(Cu) alloys of the 7xxx series 

with tensile strength up to more than 600 MPa. The aerospace and sports industry have 

been benefitting from the utilization of these high strength alloys for decades in terms of 

significant weight savings and enhanced performance. However, a successful transfer to 
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the automotive industry requires innovative solutions to allow cost-efficient series 

production. 

According to the tests performed by Aleris [5], replacing a crash component in a car 

using a 7xxx (not better specified) aluminum alloy instead of boron steel, we obtain very 

similar crash performance in all the trials saving 40% in terms of mass (thickness 

increased from 2 to 3.5 mm). 

Reported in Table 1.1, a comparison among 5xxx, 6xxx and 7xxx aluminum alloys is 

shown: 

 

Table 1.1: Comparison of properties of 5xxx, 6xxx and 7xxx aluminum alloys [6] 

Alloy series 
Methods for increasing  

strength 

Yield strength 

[MPa] 

Tensile strength 

[MPa] 

5xxx Cold working, solid solution 40 - 405 125 - 435 

6xxx Cold working, precipitation hardening 50 - 380 90 - 400 

7xxx Cold working, precipitation hardening 105 - 540 230 - 605 

 

In Figure 1.2, some parts of a car that can be made of aluminum alloys are illustrated: 

 

 

Figure 1.2: Example of the use of aluminum alloys in a car [7] 
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Aluminum alloys are used extensively for such automotive parts as hoods, trunk lids and 

doors because of their light weight, workability and recyclability. Their market share 

continues to increase.  

The key requirements for automotive closures are panel bending stiffness and dent 

resistance. The elastic modulus of aluminum (70 GPa) is about one third that of steel (210 

GPa). As a result, parts previously designed for steel need to be redesigned to achieve the 

same stiffness. One way to improve stiffness in aluminum is to increase the ribbing used 

in the product or increase the part thickness [8]. For closures and body-structure sheets, 

the thickness should be increased by a factor of about 1.45: 

 

 

𝑡𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚

𝑡𝑠𝑡𝑒𝑒𝑙
=  √

𝐸𝑠𝑡𝑒𝑒𝑙

𝐸𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚

3

= 1.44 

 

(1.1) 

 

In which t represents the thickness and E the Young’s modulus. The resulting weight 

saving is about 50%: 

 

 

𝑚𝑎𝑠𝑠𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚

𝑚𝑎𝑠𝑠𝑠𝑡𝑒𝑒𝑙
= 1.44 ∗  

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑡𝑒𝑒𝑙
= 0.5 

 

(1.2) 

 

This thesis, developed in collaboration with the University of Windsor, Politecnico di 

Torino and FCA (Fiat Chrysler Automobiles), is aimed at studying the 7xxx series 

aluminum alloysi.e.the AlZnMg(Cu) alloys. They double the yield strength compared to 

standard 6xxx series automotive alloys. Both alloy families increase their strength 

significantly by precipitation hardening. 
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1.1. Thesis organization 
 

The work done is organized in the chapters listed below: 

 CHAPTER 2: objectives and procedures. It contains the description of the aims of 

the thesis with the procedures that have been followed in order to reach them, 

justifying the adoption of one method instead of another one. 

 CHAPTER 3: literature review. In this chapter a theoretical background is given 

in order to have a better understanding on what happens, step by step, during the 

precipitation hardening process. The influencing factors are listed and explained 

and some previous experiments found in literature are described. Moreover, some 

details concerning warm forming for aluminum alloys are given, as well as a 

description of the possible fracture surfaces that can be observed after a tensile 

test is performed. 

 CHAPTER 4: methodologies. The section is dedicated to the detailed description 

of the steps followed during the research and of the material that was used. All the 

procedures are analyzed: the cutting of the samples, the definition of the heat 

treatments, the microstructural analysis with the previous preparation of the 

samples, the hardness and tensile tests (in each condition). 

 CHAPTER 5: results and discussion. The data obtained, resulting from the 

experimental work described in chapter 4, are reported and discussed with the aim 

of identifying the best precipitation hardening process among the ones tried. Also, 

the behavior of the alloy during every tensile test is analyzed: at room 

temperature, again at room temperature but after the material was heated up to 

different temperatures for 5 minutes and while the alloy is tested at high 

temperature inside the environmental chamber. Some images concerning the 

fracture surface of the specimens are reported. 

 CHAPTER 6: conclusions. The findings of the research presented throughout the 

thesis are outlined and summarized. Some recommendations for future work are 

given.  
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2. Objectives and procedures 

7xxx series aluminum alloys are age hardenable, so their strength can be improved 

through precipitation hardening. The process and its steps are discussed in the next 

chapter. Briefly, the material undergoes a heat treatment and small precipitates form 

inside the microstructure improving the mechanical properties. Two different paths can 

be followed during the heat treatments: artificial ageing, which is the one used within this 

work and that gives the highest strength, and natural ageing. Both of them are discussed 

in the next pages. 

The first objective of the thesis is to establish, for the alloy 7046, the precipitation 

hardening process that gives the optimum mechanical properties i.e combination of high 

strength and ductility. First of all there is the need to identify a solutionizing process 

which allows having only one phase in the microstructure, with the formation of a Super 

Saturated Solid Solution (SSSS) after quenching. Temperature and time are the two 

parameters that have to be adjusted in order to achieve the wanted condition. Information 

coming from the literature and an analysis based on the alloy composition (taking into 

consideration the aluminum-zinc phase diagram) were combined together in order to 

identify the best possible temperature and time for the solutionizing to occur.   

A high quality optical microscope, followed by a more accurate analysis with the 

scanning electron microscopy (SEM) equipped with energy dispersive 

spectroscopy(EDS) analysis has been used in order to verify that second phases were not 

present and that the dissolution occurred properly inside the aluminum matrix. The 

metallographic sample preparation for the microstructural analysis was performed by 

cutting, grinding and polishing steps. It was also necessary to identify the proper etchant 

for revealing microstructure specifically grain boundaries. 

Subsequently, three ageing temperatures and seven different time durations were 

selected, for a total of twenty one different ageing conditions. The Vickers microhardness 

was measured  for each heat treatmen condition. The tensile tests were performed for the 

conditions that  correspond to the highest  hardness values. 

The tensile tests have been conducted at room temperature, at warm forming temperature 

and at room temperature after being previously heated for 5 minutes to three different 
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temperatures. Based on the results obtained from the tensile and hardness tests, the best 

heat treatments among the ones proposed can be easily identified.   

The importance of warm forming for what concerns the stamping of autobody parts is 

discussed in the next chapter. Good mechanical properties also at high temperatures are 

required in order to guarantee a good formability. 

The last step of the study involves the fracture surface analysis of the specimen after the 

tensile tests. 
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3. Literature review 

In this section, the precipitation hardening and its steps are described together with 

the warm forming process for aluminum alloys (especially related to the automotive 

industry). In addition, some examples coming from the literature are given to highlight 

the different possibilities in enhancing the mechanical characteristics of 7xxx aluminum 

alloys. At the end, a description of the possible fracture surfaces that could be present 

after a tensile test is reported. 

 

3.1 Precipitation hardening 
 

In 7xxx aluminum alloys, Zn is the principal alloying element, but other elements 

such as copper, magnesium, chromium and zirconium may be specified. Al-Zn-Mg-Cu 

alloys are usually submitted to different heat treatments to enhance their strength through 

a process called precipitation hardening or age hardening [9] [10]. 

They are indeed characterized by a high decrease in solid solubility of alloying elements 

such as Zn, Mg and Cu with decreasing temperature, meaning the solubility limit of these 

elements in the Al matrix is much lower at lower temperatures, which is the main 

requirement for an alloy to be heat treatable [11]. As a matter of fact, if an alloy which 

does not exhibit this property was submitted to an age hardening heat treatment its 

mechanical properties wouldn’t be affected to a great extent. Another important aspect 

which has to be taken into account in order to understand if an alloy is heat treatable is 

the coherency strain in phase boundaries. The necessary condition is the presence of a 

coherent or semi-coherent boundary. Coherent particles transform to incoherent 

precipitates as the size increases. The strain energy is reduced and the strengthening 

effect is weakened. The critical radius for this transition is around 10 nm – 1 µm. 
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Figure 3.1: From the left to the right: coherent boundary, semi-coherent boundary and incoherent 

boundary [12] 

 

With precipitation hardening small solute rich phases called precipitates are formed 

throughout the material matrix. They act as an obstacle to dislocations motion, so that a 

higher energy is required to deform a part, meaning the material is stronger.  

It should be reminded here that dislocations are linear crystalline defects of the lattice, 

involved in the material deformation. More precisely, a component deforms because of 

dislocations movement, which results in a shift of atoms in the crystalline structure and 

therefore into an atomic change of shape. Considering the high density of dislocations 

(10
8
 cm/cm

3
 in not deformed metals) the overall effect of their simultaneous motion leads 

to the sample deformation. It is therefore clear how anything hindering dislocations 

motion results in an increase of the material strength. 

The strengthening mechanism deriving from the interaction between precipitates and 

dislocations is illustrated in Figure 3.2. 

 

 

Figure 3.2: Dislocations passing precipitates by shearing (a) or bowing (b). Dependence of the strength 

from the precipitates radius when sheared or bypassed by a dislocation [13] 
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When dislocations encounter obstacles during their motion they overcome them by 

shearing (Figure 3.2 (a)) or bypassing (Figure 3.2 (b)) them. As usual, the chosen method 

is the one that requires the least amount of energy. 

The material strength and therefore the required energy associated with each method 

depends on the radius of the particles to be passed. Below a certain threshold the energy 

required to shear the precipitate is lower than that required to bypass it; therefore 

dislocations choose the former way. Above that threshold instead dislocations bypass the 

precipitate, since shearing would be more expensive.  

 

3.1.1. Sequence of thermal cycles 

  

The sequence of thermal cycles for the heat treatments is the following: solution 

heat treatment, quenching and ageing.  

During solution treatment the material is heated up to a temperature above its solvus line; 

the temperature line below which β solute rich second phases begin to form into the 

aluminum matrix α. After a varying holding time the sample is then quenched and 

brought back into the phase diagram region where β second phases are present again. 

Finally, in T6 heat treatments the part is held for a varying time at temperatures below the 

solvus line, otherwise, in T4 heat treatments, it is kept at room temperature (RT). In the 

former case the ageing process is addressed as artificial ageing and as natural ageing in 

the latter.  
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Figure 3.3: Generic phase diagram showing the three different thermal cycles required in precipitation 

hardening T6 heat treatments [14] 

 

 

In Figure 3.4 we can see the sequence of thermal cycles in a temperature-time diagram: 

 

Figure 3.4: Temperature-time diagram for high strength 7xxx series alloys [15] 
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3.1.2. Solution treatment 

 

As previously mentioned, the solution treatment consists in heating the material 

up to a temperature above its solvus line, in a region of the phase diagram where all the 

second phases formed during solidification dissolve into the main material matrix, so that 

solute atoms become available for precipitation hardening.  

However, some eutectic phases do not dissolve completely during solution treatment, but 

their shape is profoundly modified by the thermal cycle. Generally they appear more 

rounded than before the treatment, thus the strength of the material is increased. It should 

be pointed out here that sharp and acicular phases, acting as stress concentration sites, 

increase the chance of crack propagation during deformation, so that failure occurs 

earlier. Lastly, besides second phase dissolution and modification, the high temperatures 

adopted in the first step of the T4 or T6 heat treatments enhance the homogenization of 

solute atoms already dissolved into the aluminum matrix [16] [17]. Indeed, in the as cast 

condition, solute atoms are not evenly distributed throughout the metal matrix. When 

submitted to high temperatures instead atoms can diffuse easily and again, since every 

system tends to the lowest energy condition, they distribute homogeneously in the matrix. 

This occurs because solute atoms, having different sizes with respect to aluminum atoms, 

introduce stresses inside the material which are lower when solute atoms are equidistant, 

meaning they are evenly distributed. Two parameters have to be properly set in the 

design of a solution treatment process: temperature and time. Time should be selected 

according to the industrial costs, meaning that beyond a certain period the gain in phase 

dissolution is so low not to justify a further use of energy. On the other side though, a too 

short holding time may not be sufficient.  

As far as what concerns the temperature, it has a major effect on the dissolution of 

eutectic phases; high temperatures lead to high atoms mobility and therefore to a better 

dissolution of second phases, given a constant solutionizing time.  

In Figure 3.5 we can see the microstructure evolution of a conventionally cast 7055 alloy 

related to the different temperatures adopted in the solutionizing step. 

The amount of eutectic phases at the grain boundaries is drastically reduced with respect 

to the as cast condition and the higher the solutionizing temperature the lower the 
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remaining fraction. Moreover those phases still visible present a globular shape, since 

they underwent a profound transformation.  

It is finally worthwhile to observe how the microstructure of this alloy, cast with a 

conventional technique, does not present globular grains.  

 

 

Figure 3.5: Optical micrographs of 7055 aluminum alloy ingots in the as cast condition (a) and after 50 h 

of solution treatment at 455̊C (b), 470̊C (c) and 475̊C (d) [18] 

 

A high dissolution of eutectic phases is desirable, since it increases the saturation level of 

the metal matrix and therefore its precipitation hardening response; too high solution 

treatment temperatures should be avoided instead to prevent the phenomenon of incipient 

melting [19]. This consists in the non-equilibrium melting of the residual phases, 

meaning that they melt at a temperature lower than the one expected from the phase 

diagram. This usually occurs when phases characterized by high stability, which would 

need a long time to be dissolved, are heated up too quickly above their dissolution 

temperature.  

The main drawback of incipient melting is related to the formation of porosities in the 

subsequent quenching step. In fact, when cooled down the molten metal solidifies but, 

being surrounded by a solid matrix and not by liquid as during casting solidification, its 

shrinkage is not compensated by any flow of liquid. Therefore small voids are left in the 
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matrix. These porosities, diminishing the cross area of the component, increase the stress 

level, given the same loading conditions, and therefore lead to early failure of the part 

[19] [20].  

Besides material composition, another parameter which deeply affects the incipient 

melting temperature is the solution treatment heating rate. It is easy to understand how, 

assuming the microstructure takes a constant time to react to a temperature change, 

melting is registered at a higher temperature if the material is heated up faster.  

An alternative method to improve second phases dissolution and prevent incipient 

melting at low temperatures is to solutionize a sample in two or three different steps. The 

same principle of the slow heating rate applies as well; by solution treating a part below 

incipient melting temperature for a variable amount of time, a lower fraction of second 

phases is left when the temperature is increased, so that incipient melting occurs at a 

higher temperature and a higher quantity of solute atoms can be dissolved in the matrix 

[21] [22].  

An additional drawback of high solutionizing temperatures is related to grain growth and 

recrystallization. In fact, the elongated grains typical of a rolled microstructure become 

globular and grow during solution treatment [17] [23]. 

Grain growth should be limited since, according to the Hall-Petch relationship below 

[24], it leads to a decrease in the material yield strength (the stress at which the 

component starts deforming). 

 

 
𝜎𝑦 =  𝜎0 +  

𝑘𝑦

√𝑑
 

 

 

(3.1) 

 

 

            

In the Hall-Petch equation σy [MPa] is the yield strength, σ0 [MPa] is the resistance of the 

lattice to dislocation motion, ky [MPa*mm
1/2

] is a strengthening coefficient and d [mm] is 

the average grain size. σy, σ0 and ky are parameters typical of the material, while d 

obviously depends on the microstructure.  
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It is therefore clear how small grains generate an increase in the material strength (the 

high area of grain boundary prevents dislocation motion) and big grains cause a drop in 

the yield strength instead. 

Summarizing, solution treatment temperature and time should be designed to obtain the 

maximum dissolution of second phases and to improve solute atoms homogenization in 

the metal matrix. This eventually results in a higher hardness and strength of the 

component since more atoms are available for the precipitation stage.  

 

 

Figure 3.6: Effect of solution treatment temperature on hardness after T6 heat treatment in a 7050 

aluminum alloy [23] 

 

Attention must be paid not to overtake incipient melting temperature, otherwise a lower 

fraction of eutectic phases is dissolved and porosities form during quenching, thus 

worsening material hardness and strength.  

However, adopting a slow heating rate or stepped solution treatments the incipient 

melting point can be increased, so that higher mechanical properties are attainable.  

Lastly, the grains size and the level of recrystallization should be monitored to avoid 

lowering the material yield strength.  
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3.1.3. Quenching 

 

The second step of T4 and T6 heat treatments is quenching. Here the material in 

the solution treated condition is cooled down to a temperature where second phases 

should be present inside the microstructure. According to the phase diagram indeed the 

solubility of atoms inside the Al matrix decreases with decreasing temperature, so that 

different compounds are formed. 

Nevertheless the aim of quenching is to prevent the formation of these compounds, called 

quench induced precipitates, and maintain the solution treated condition at room 

temperature, in order to obtain a Super Saturated Solid Solution (SSSS). In a SSSS the 

quantity of solute atoms dispersed in the metal matrix is higher than what the solubility 

limit allows; it is therefore a metastable condition.  

The SSSS is a fundamental step for the success of the precipitation hardening process. It 

is essential indeed to retain as many solute atoms as possible in the metastable condition, 

so that during the subsequent ageing phase they gather forming small precipitates, which 

hinder dislocation motion. On the other side, a low level of supersaturation leads to a 

lower amount of ageing precipitates and therefore to a smaller increase in the material 

strength, meaning the age hardening response of the material is worse.  

To obtain a SSSS the formation of quench induced precipitates should be avoided during 

quenching. When atoms gather into these compounds they are in fact no longer available 

for the nucleation of ageing precipitates and the supersaturation level of the Al matrix is 

decreased, and so does the ageing response of the material [25]. 

The two variables affecting the formation of quench induced precipitates are atoms 

diffusion rate and supersaturation level. In aluminum alloys the critical temperature 

range, where nucleation and growth of these precipitates are maximum, is between 450°C 

and 200°C [13]. Above this range the supersaturation level is not high enough, while 

below it the diffusion rate is too low to cause a fast precipitation of second phases.  

A properly designed quenching should then ensure that as little time as possible is spent 

in this critical region; to do so a proper cooling rate has to be selected.  

The exact temperature range of the critical region and therefore the cooling rate to be 

adopted during quenching depends from the quench sensitivity of each material, whose 
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concept can be better explained by referring to the Time Temperature Property (TTP) 

diagram shown in Figure 3.7. 

 

 

Figure 3.7: TTP curves for 7039 aluminum alloy [26] 

 

In a TTP diagram each curve is an iso-property curve, meaning that each point on a 

single curve is characterized by a strength that is a fixed percentage of the maximum 

attainable strength of the considered alloy [10]. This percentage is expressed as a function 

of the time spent at a specific temperature during the quenching stage. In other words the 

coordinates of each point indicate quenching holding time and holding temperature that 

lead to the expressed properties. Indeed, as mentioned above, holding a component in a 

certain temperature range may induce the formation of quench induced precipitates and 

therefore affects the mechanical properties.  

From TTP curves two important quenching parameters can be introduced: the critical 

temperature range and the transformation time at nose temperature. The former is 

identified by each curve, given a fixed transformation time, while the latter is the 

maximum time that can be spent at the nose temperature to get at least 99.5% of the 

highest properties.  
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Based on these two parameters the quench sensitivity can be defined for each alloy; the 

bigger the critical temperature range or the smaller the transformation time at the nose 

temperature the more quench sensitive an alloy is. 

As previously mentioned, the level of supersaturation influences precipitation kinetics 

during quenching, therefore the higher the amount of solute atoms in Al matrix the higher 

the chance they gather into quench induced precipitates. 

With regards to Zn/Mg ratio it was found instead how a high level of Zn compared to Mg 

reduces the quench sensitivity. This result is likely to be a consequence of the importance 

of Mg in the formation of precipitates in 7xxx alloys [27], therefore the lower its relative 

amount the lower the tendency to form precipitates.  

To understand the influence of Cr and Zr it should be reminded that quench induced 

precipitates usually nucleate at the grain boundaries or on dispersoids and that incoherent 

interfaces attract atoms more easily than coherent interfaces [10] [28] [29]. Then, being 

Zr dispersoids finer and coherent with the matrix while Cr dispersoids are coarse and 

incoherent, the presence of Zr is preferable to Cr from a quench sensitivity perspective 

[10].  

Lastly, the effect of temper on ageing has been verified, but the mechanisms behind the 

relationship are not clear yet, even though it is likely the implemented cooling rate affects 

the ageing dynamics and so the mechanical properties [10].  

As said before, if the cooling rate is not properly selected and the component is held for 

long times in the critical temperature range quench induced precipitates will form in the 

microstructure [29] [30].  

Besides the already mentioned effect on the reduction of the supersaturation level, the 

formation of precipitates during quenching drastically decreases the number of vacancies, 

which are an essential element for the diffusion of solute atoms during ageing. 

Vacancies are point defects of the crystal structure consisting of positions in the material 

lattice where atoms are not present. Their formation is a function of different factors and 

their number is expressed by the following formula [31]: 

 

 𝑁𝑣 = 𝑁𝑒−
𝑄𝑣
𝑘𝑇 (3.2) 
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Nv is the total number of vacancies, N is the total number of atomic sites, Qv is the 

energy required for the formation of a single vacancy, k is the Boltzmann’s constant 

(1.38 ∗ 10−23 𝐽

𝑎𝑡𝑜𝑚 𝑘
) and T is the temperature expressed in Kelvin. During solution 

treatment the high temperatures reached create vacancies (the higher T the higher Nv). As 

aforementioned, vacancies are a fundamental requirement for atoms motion; these can 

indeed diffuse inside the lattice only if there are empty sites in their surroundings [31]. 

Though, when atoms jump from one vacancy to the next one, the vacancy they leave 

behind is destroyed and therefore can no longer be used for diffusion. It is thus clear how 

the gathering of atoms in quench induced precipitates reduces solute mobility during the 

last stage of the heat treatment and therefore the ageing response of the material [32].  

The last drawback of quenching precipitation is related to the evolution of the material 

microstructure during ageing. The presence of already formed coarse and incoherent 

precipitates indeed deeply affects solute atoms behavior; while they would gather into 

small and dense precipitates in a properly quenched component, with quench induced 

precipitates they are attracted by the incoherent interfaces of these. Again this occurs 

because the energy required to join an already nucleated and big precipitate is lower than 

forming a new one.  

The attraction results thus in the formation of areas where precipitates are absent, known 

as precipitates free zones (PFZ). In these zones dislocations are free to move without any 

obstacle, so that the material strength is further decreased with respect to a properly 

quenched part.  

PFZ are located in the surroundings of quench induced precipitates and the coarser the 

precipitates the wider their extension. Therefore in a slow cooled sample, where 

quenching precipitates grow bigger and in a higher number, the area fraction of PFZ is 

higher than in a fast cooled one [33] [34].  

In water quenched components the cooling rate is higher than in air quenched ones, 

therefore in the former case η quench induced precipitates, are smaller and more 

continuous than in the latter condition. For this reason in the air cooled part wider PFZ 

evolve during ageing.  
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Air quenched samples are characterized by lower values of microhardness than those 

obtained in water quenched ones.  

Nevertheless it should be mentioned that a too high cooling rate should be avoided. 

During cooling indeed a compressive state is introduced in the surface of the component 

while the interior is submitted to tensile stresses. A high temperature gradient, as results 

from a very high cooling rate, would increase these residual stresses, which in turn may 

lead to an early failure of the component [25]; the presence of residual stresses in fact 

decreases the load a part can withstand before the occurrence of deformation.  

Summarizing, during quenching the material is cooled from the solution treatment 

temperature to obtain a metastable SSSS of solute atoms inside the Al matrix. A high 

supersaturation level is indeed useful to enhance the mechanical properties during the 

ageing stage.  

To prevent the loss of solute atoms available for the nucleation of ageing precipitates, the 

formation of quench induced precipitates has to be avoided. It is therefore necessary to 

select a cooling rate which shortens the time spent in the critical temperature region, 

where the precipitation rate is higher. Water quenching is usually preferred to air 

quenching to attain these characteristics.  

On the other side though a too fast cooling rate should be avoided as well since it may 

introduce in the component residual stresses which could result into an early failure. 

 

3.1.4. Ageing 

 

Ageing is the last stage of precipitation hardening heat treatments. If samples are 

held at room temperature we are dealing with natural ageing. Instead, when components 

are heated up to a temperature below the solvus line, artificial ageing occurs.  

It has already been explained how after quenching the microstructure is in a metastable 

condition, since the concentration of solute atoms in the Al matrix is higher than what the 

solubility limit allows. During ageing therefore solute atoms gather into small and dense 

precipitates which, hindering dislocations motion, increase material hardness and 

strength.  
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The driving force leading to the formation of precipitates is once again the need to 

minimize the energy of the system in the quenched condition. According to what 

previously mentioned, a high supersaturation level results into a higher density of 

precipitates. This, from the energy point of view, means that a high concentration of 

solute generates an increase in the system energy which therefore, to minimize it in the 

shortest time, forms a high number of precipitates. To understand this concept it should 

be remembered that during ageing the part is in the region of the phase diagram where 

second phases should be present, thus destroying the SSSS and nucleating precipitates 

lowers the overall energy. 

 

 

Figure 3.8: Free energy change of precipitation under different supersaturated condition [23] 

 

 

Figure 3.8 illustrates the idea. Given that Gα and Gβ represent respectively the Gibbs free 

energy of the Al matrix α and of the second phase β, by increasing the concentration of 

solute B from C0 to C’0, the matrix energy increases as well from G1 to G’1. Then, drawn 

a straight line between the minimum of the two curves and found the points on this line 

corresponding to the two different concentrations (G2 and G’2), the energy difference G1 

– G2 and G’1- G’2 is defined as the precipitation driving force. As it was expected, the 

driving force is higher with a higher concentration of B since the energy of the matrix is 

higher as well. In turn, the precipitation driving force is inversely proportional to the 
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critical radius of nucleation, that is to say, with a high driving force less atoms are 

required for nucleation. In the end, a small nucleation radius means a shorter time is 

needed for the formation of a phase, so that a high nucleation rate is obtained and the 

density of precipitates is increased [23].  

After this whole explanation it should be clearer why quenching design is usually 

addressed to get the highest possible level of supersaturation; there is indeed a direct 

relationship between solute concentration and density of precipitates. 

The main precipitation sequence taking place in Al-Zn-Mg-Cu alloys is the one that 

follows [28] [30] [34] [35] [36].  

 

SSSS → GPI and GPII → η’ → η(MgZn2) 

 

From the SSSS, in presence of Vacancy Rich Clusters (VRC), namely patches of the 

lattice where the density of vacancies is particularly high, Guinier Preston zones of type I 

(GPI) and type II (GPII) evolve. These are regions of the crystal structure where the 

concentration of solute atoms is higher. They are the precursors to the metastable η’ and 

stable η.  

It should be highlighted that η does not always generate according to the shown 

sequence. Ageing precipitation is in fact an extremely dynamic process and many factors 

influence the microstructure evolution, then the above sequence is not strictly followed. 

 

3.1.4.1. Natural ageing 

 

In the presence of available vacancies solute atoms dissolved in the Al matrix 

start to diffuse to form precipitates as soon as quenching is completed. During natural 

ageing the sample is held at room temperature, then the diffusion rate is low and long 

times are required for the formation of second phases. Although, because of the low 

energy available for atoms diffusion, the precipitation sequence stops at GPI [35], which 

are therefore responsible of material hardening during natural ageing.  

From artificial ageing results it is known that the Zn/Mg ratio of big GPI is equal to 1. 

This induces to believe in natural ageing the early stages of precipitation are 
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characterized by the presence of small Mg rich clusters which, evolving into GPI zones 

and increasing in size, attract Zn atoms until Zn/Mg is 1 [27]. When this condition is 

reached the precipitation sequence ends and the microstructure is stable.  

It was found that early GPI zones show a composition of Cu close to 12 at. %. This value 

decreases in bigger GPI to 5 at. %, meaning Cu is involved only in the early stages of 

GPI formation. The presence of Cu inside small GPI is essential since it promotes a 

higher hardening response of the material in the first precipitation stages [27].  

As far as what concerns the morphology of stable GPI zones it is widely accepted they 

are fully coherent with the Al matrix and feature a spherical shape of alternate Zn and Mg 

layers [35] [36]. 

Lastly GPI zones usually form from room temperature up to 140 °C and do not 

necessarily need the presence of VRC to nucleate [36].  

Summarizing, during natural ageing the only precipitate featuring in the microstructure 

are GPI zones, which in the early stages of their formation are small Mg rich clusters. In 

the coherent and stable condition they are instead characterized by a spherical shape of 

alternate Zn and Mg layers (Zn/Mg = 1). Moreover the presence of Cu may enhance the 

hardening in the early stages of precipitation.  

 

3.1.4.2. Artificial ageing 

 

During artificial ageing the sample is held at higher temperatures with respect to 

natural ageing, therefore more energy is available for atoms diffusion. 

As in natural ageing the first precipitate forming from the SSSS are GPI zones; 

nevertheless their nucleation occurs in a much lower time. If at room temperature GPI 

takes almost one day to reach their stable condition, between 121 °C and 130 °C instead 

they just need 60 min, while their presence is already reported after 15 min only [27] 

[30].  

Through 3D Atom Probe (3DAP) analysis a 3D reconstruction of the precipitates, 

together with their composition analysis, can be performed. Data about the Zn/Mg ratio 

of GPI zones are obtained with this technique. It was found that after 30 min at 121 °C 

the Zn/Mg ratio equals 0.91, indicating that the stable condition has not been reached yet 
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since Mg is still the dominant element (stable condition at Zn/Mg = 1) [27]. Moreover 

this datum demonstrates that GPI zones evolve faster in T6 than in T4; after only 30 min 

at 121 °C indeed their Zn/Mg ratio is higher than after 90 min at RT.  

As aforementioned, after 60 min of artificial ageing GPI are stable, therefore Zn/Mg ratio 

reaches 1. While in natural ageing this condition is the end of the precipitation sequence, 

in artificial ageing GPI can still evolve into η’. In this case more Zn atoms would be 

attracted and, starting from their spherical shape, GPI would grow in one direction and 

would be characterized by an elongated shape and a Zn/Mg ratio of 1.2. Eventually the 

growth would begin in another direction parallel to the first one and η’ would be formed. 

Alternatively GPI can grow in size and become coarse blocky clusters with Zn/Mg of 1 

that would feature in the microstructure even after 24h of ageing [27].  

The effect of Cu reported for natural ageing holds in artificial ageing as well. 

If GPI begin to form from RT, GPII instead nucleate only above 70°C, so that they 

evolve during artificial ageing only, directly from the SSSS. Differently from GPI, VRC 

have to be present for their formation, since GPII were found only in samples quenched 

from solution treatment temperatures higher than 450°C, meaning the amount of 

vacancies in the matrix is an influential factor [30] [35]. 

Specific studies on the formation sequence of GPII were not found. The only information 

in the literature is they are characterized by Zn rich layers organized into a plate like 

morphology [30].  

η’ are metastable Zn rich plate like precipitates that are semi coherent with the Al matrix. 

These compounds evolve from GPI zones but they may nucleate directly from the SSSS 

attracting solute atoms of dissolving GPI. It should be pointed out indeed that small GPI 

may grow into stable blocky clusters, evolve into η’ or alternatively dissolve [36].  

Newly formed η’ are characterized by a Zn/Mg ratio of 1.07, while after 24 h of ageing it 

increases to 1.26. This datum, with those relative to the Zn/Mg ratio of GPI, shows that 

stable conditions are characterized by a high Zn/Mg, meaning that Zn plays an important 

role in the stability of the precipitates [27].  

η (MgZn2) is a stable and fully incoherent precipitate with a plate like morphology and a 

size of 15 nm that evolves from η’ or directly from the SSSS. Overall η can have 9 

different orientations in the crystal structure. The most frequent ones are η1, η2 and η4, to 
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which different evolution paths are associated; η1 nucleates directly from the SSSS, η4 

grows on defects such as grain boundaries and dislocations while η2 evolves from η’. 

This transformation occurs gradually and consists in η’ attracting Zn atoms and slowly 

changing their shape [36].  

Briefly summarizing the precipitation sequence taking place during artificial ageing, in 

the early stages small GPI zones with a Zn/Mg of 0.91 nucleate. These can grow in size 

reaching a stable condition with Zn/Mg of 1, grow and evolve into η’ or dissolve. The 

metastable and semi coherent precipitate η’ begins to form after 60 min of ageing at 121 

°C and stabilizes after 24h with a Zn/Mg of 1.26. It can evolve from GPI or directly from 

the SSSS. At longer ageing times Zn atoms join η’ which further transforms into the 

stable and incoherent MgZn2 η. This precipitate can alternatively nucleate on lattice 

defects or from the SSSS.  

GPI and η’ are the hardening precipitates, while η growth should be avoided since it 

causes a drop in the material strength [36]. In the first stages of ageing the precipitates 

present inside the matrix (GPI and η’) are characterized by a relatively small radius, 

therefore they are sheared by dislocations, so that the material strength increases. η 

instead are beyond the threshold radius and are bypassed by dislocations, leading to lower 

properties.  

It is thus usually desirable to stop the ageing treatment at the peak strength before η 

nucleates and the strength decreases, in which case ageing would be addressed as 

overageing. To avoid overaged conditions the selection of ageing time is therefore 

crucial. Nonetheless the main parameter to be monitored is the ageing temperature. 

Increasing ageing temperature the peak strength is reached in a shorter time since the 

diffusion rate of atoms increases, but the obtained value is lower than what results from 

lower temperatures ageing.  

It is thus now better clear how ageing temperature and time should be appropriately 

chosen in order to obtain the desired mechanical properties.  
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3.1.5. Examples of precipitation hardening process control 

 

Age hardening of aluminum alloys has been investigated in the past years. Many 

researches were concentrated on the precipitation and on the related hardening of the 

alloy both from the experimental and theoretical point of view. 

For the purpose of the alloy design, understanding the relationship between fracture 

behavior and microstructure is a vital requirement. Fracture behavior of Al-alloys is 

essentially controlled by the volume fractions and character of inclusions, dispersoids and 

precipitates. The micromechanisms governing fracture characteristics of age hardened 

alloys depend on coherency and distribution of precipitates, grain size and shape, grain 

boundary precipitates, the presence of other particles which results from impurities. 

The yield stress and the ductility are known to be paradoxical: the maximum of age 

hardening corresponds to the minimum of ductility. The study conducted by Chemingui 

et al. [37] checked the heat treatment that offers a better compromise: after achieving a 

high yield strength, heat treatments can give rise also to an increase in ductility. The 

chemical composition of the alloy studied is shown in Table 3.1: 

 

Table 3.1: Chemical composition of the investigated material (wt %) [37] 

Al Zn Mg Cu Mn Fe Si Ti Cr 

Balance 4.6 1.2 0.065 0.3 0.25 0.23 0.036 0.18 
 

After solution treating of the alloy specimens at 475ºC for 24 hours and icy water 

quenching, different ageing treatments were performed. Such preparation of the samples 

allowed the observation of the evolution of the microstructure, so the precipitation 

process and the study of the mechanical properties by means of indentation and tensile 

tests. 

The main experimental results and conclusions were: 

 After various states of ageing, the alloy showed significant changes in the 

microstructure and mechanical behavior. After quenching, the microstructure was 

characterized by a high ductility, whereas the aged sample at 135ºC, 
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corresponding to the maximum value of hardness, revealed the presence of small 

η’ precipitates. 

 The yield strength monotonously varies with the hardness. The ratio between 

them was found almost constant (about 2.2) for all the investigated samples. On 

the other hand, the strain hardening exponent, the difference between the tensile 

strength and yield strength and the elongation vary proportionally with the plastic 

zone dimensions. 

 Whatever the treatment, the samples rupture is considered in a ductile mode. 

 After two-step ageing treatment, the specimen shows a fine distribution of η’ 

precipitate. The two steps aged samples have a higher value of yield strength and 

the alloy retains its ductility. 

 

Another study which has been considered and from which the heat treatment proposed in 

this thesis has been taken as a reference is the one carried out by Sevik et al. [38]. Their 

work was focused on the effect of precipitation hardening treatment on the surface 

roughness and mechanical properties. The mechanical properties of the specimens were 

estimated by hardness and tensile tests. Additionally, the ductility properties and fracture 

behavior of the specimens, fractured in the tensile tests, were analyzed with a scanning 

electron microscopy (SEM) of their fracture surfaces. 

 

Table 3.2: Aging parameters of the material used in the experiments [38] 

Material Solutionizing Quenching Artificial ageing [ºC] Ageing time [h] 

AA7075 480ºC / 2h Icy water 

120 

155 

185 

1 

4 

10 

14 

24 

 

The highest hardness of 210 HV was obtained with ageing treatment at 155 ºC for 14 

hours. These values of hardness are so high since the 7075 alloy is one of the strongest 

among the 7xxx series. The European Aluminum Association (EAA) classified alloys 

with yield strength greater than 300 MPa as high-strength, while those exceeding 400 
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MPa are rated as ultra-high strength. Heat treatable 7xxx alloys are the only ones in this 

category.  

 

3.2.    Warm forming 
 

Vehicle weight reduction can be accomplished by a combination of redesign and 

increased use of lightweight materials, such as aluminum alloys. However, a number of 

technical problems must be overcome before aluminum alloys can replace conventional 

mild steel for many applications. Among these problems is the reduced formability of 

aluminum autobody alloys compared to steel. 

In order to assess the potential for improving the ductility of aluminum autobody alloys at 

elevated temperatures, an actual forming operation was carried out on heated production 

dies [39]. 

Studies carried out by Morris and George tried to eliminate the heat treatment of the 

formed part in order to reduce the cost of high strength aluminum stampings. Usually, the 

followed method of manufacturing a high strength aluminum part is to form an annealed 

age hardenable alloy, followed by solution heat treating, and then artificial aging. The 

consequence of this process is a long time cycle, additional handling and heat treating 

facilities. The extra cost of heat treating represents, therefore, a significant portion of the 

total cost of the part. Because of the aforementioned reasons, it has been developed a 

process to warm form parts directly from previously work hardened or age hardened 

aluminum sheet. In order to reach this objective, it is necessary to form at a temperature 

high enough to give adequate formability but low enough to preclude substantial strength 

loss due to recrystallization or overaging [40].  

Taylor et al and Ayres have shown that the tensile elongation of annealed Al-Mg alloys 

could be increased by testing at elevated temperatures, if the strain rates were low [41].  

In Figure 3.9 we can see the curves showing the change in room temperature yield 

strength, after holding the materials for 5 minutes at different temperatures. 
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Figure 3.9: Recovery curves showing room temperature yield strengths after 5 minutes at the temperatures 

indicated [40]. 

 

At some temperature, the work hardened alloys recrystallize and the age hardened alloys 

overage. The temperature at which a rapid decline in strength begins define the 

maximum, and usually optimum, forming temperature. In the example given in the 

previous image, 5 minutes at temperature was used since it corresponds to the maximum 

time expected in a production trial. As can be easily imagined, shorter times spent at a 

certain temperature will increase the maximum forming temperature. 

From what has been seen in an elevated temperature load-elongation curve, work 

hardening (as defined by the strain to maximum load) is negligible and deformation 

continues at approximately a constant true stress, up to plastic instability and fracture. 

The tensile elongation decreases while increasing strain rate. 
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Figure 3.10: Variation in tensile elongation and reduction in area at fracture with test temperature at a 

strain rate of 10/min [40]. 

 

Strain rate hardening is an important property of high strength aluminum alloys during 

warm forming since the work hardening is small and thus only strain rate hardening, 

which control diffuse necking, prevents plastic strain from concentrating in a localized 

neck. At elevated temperature and low strain rate the high elongation of Al-Mg alloys is 

due to their high strain rate sensitivity while the low elongation of the age hardened 

alloys is due to their lower strain rate sensitivity. 

Another factor that will tend to reduce the tensile elongation at high strain rates is the 

heating of the sample during deformation. As the specimen is deformed, a diffuse neck 

develops and the heat generated in the specimen will be greatest in the center of that part, 

where the strain is the highest. The increase in temperature will produce a gradient in the 

strength of the material which will tend to concentrate the strain and lead to localized 

necking. At high strain rates the effect becomes more pronounced because the flow stress 

is higher and the heat generated cannot be dissipated immediately. This “adiabatic” 

heating will be of more importance in warm forming than in cold forming because the 

flow stress varies more with temperature and because the materials are closer to the point 

of structural instability. 
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For the age hardened alloys tested by Morris and George [40], among which there is also 

the one investigated in this thesis (7046), the optimum forming temperature is about 200 

Celsius degrees. At this temperature these alloys will have a good behavior for what 

concerns enhanced bending or drawing but, because of the low strain rate hardening, they 

would not be expected to perform well during stretch forming. 

In order to verify the manufacturing feasibility of the warm forming process several trials 

were held on production tools. The type of parts selected were thick structural parts 

requiring high strength and represented a variety of stretch-draw forming conditions. 

Forming trials were held on a bumper reinforcement, bumper facebar, bumper absorber 

center mounting bracket and bumper guard. 

Since the formability decreases rapidly with decreasing temperature, cooling of blanks in 

the die is important. A method found to reduce the rate of cooling was to employ a resin 

base isolative lubricant. A concern was related to the need of heating the dies or not. The 

warm aluminum blank will rapidly lose heat when in direct contact with cold dies, this 

factor can have significant influence. With a slow hydraulic press, for example, the blank 

could lose enough heat to create forming problems by bringing the aluminum below the 

formable temperature. In order to make parts, these blanks had to be heated more than 

normally required to compensate for heat losses. In another case, when a mechanical 

press operating at high volume production speed was used, the parts were formed before 

substantial heat loss occurred. In a production run of warm forming the dies would 

absorb heat and reduce the heat loss effect. 

 

3.2.1. Industrial applications 

 

More recent studies [42] regarding the stamping of autobody parts have shown 

that the use of heated dies complicates the process and increases the costs. Present R&D 

efforts are focused on heating the sheet to warm forming temperature while keeping the 

dies at room temperature. Researchers hope to establish a practical and robust process 

that increases the formability of aluminum sheet for forming more complex parts with 

difficult geometries. 
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Other researches focused on warm forming were conducted for 7xxx aluminum series 

[15], according to which warm forming at temperature levels far below those for press 

hardening steel helps to overcome the moderate formability of 7xxx alloys at room 

temperature. AMAG developed a Cu-containing alloy called AMAG TopForm UHS for 

replacing press hardened steel in automotive components like B-pillars or side impact 

beams. It is an AA7075 type alloy optimized for warm forming in the long-term stable T6 

peak age delivery temper, it shows excellent warm forming behavior at temperatures 

between 170 and 230 ºC. 

 

 

 

While warm forming at 170ºC with just one or two minutes process time has almost no 

impact on strength, a slight increase to 200ºC reduces the strength by some 50 MPa. 

AMAG TopForm UHS doubles the strength compared to a standard AA6016 alloy. A 

high specific resistance to denting and high specific crash performance make this alloy 

ideal for the replacement of press hardened steels (side impact protections or bumper 

beams). 

While time consuming process steps at high temperatures like solution annealing and 

artificial ageing are done in the rolling mill in an efficient and controlled manner, it just 

takes seconds in the press shop to heat up the blank to a temperature of around 200ºC. 

There is no requirement of rapid quenching after warm forming. A reliable and stable 

heat treatment process at the rolling mill provides long-term stable mechanical delivery 

properties in T6 temper and offers stable high level properties after press and paint shop 

Figure 3.11: Side impact protection made from AMAG TopForm UHS [15]. 
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within a robust process window. New innovative thermal joining technologies recently 

introduced to the automotive industry have been successfully tested for this AMAG high 

strength alloy. Moreover, mechanical methods and hybrid joining in conjunction with 

adhesive bonding extend the joining portfolio.  

 

3.3.    7xxx series alloy optimization 
 

The desire to achieve high levels of fracture toughness and stress corrosion cracking 

resistance simultaneously with high strength in 7xxx series aluminum alloys has been the 

subject of attention over the years [43]. Such alloys are used in high integrity structural 

applications such as aerospace components, where careful control of both chemical 

composition and processing conditions is applied in order to deliver the necessary levels 

of performance. The development of similar alloys for use in high pressure gas cylinders 

has been described as being significant to the aluminum industry, and requires a 

particularly demanding combination of strength, toughness and corrosion cracking 

resistance. The aim of the study conducted by Clinch et al [44] was to control 

composition, processing and microstructure in order to maximize strength whilst 

maintaining adequate fracture toughness. The importance of factors such as the size and 

distribution of coarse intermetallic particles, quench rates recrystallization and grain 

structure are well known for 7xxx series alloys.  

The strength of this kind of alloys depends principally upon its compositional detail [45], 

since the precipitate phases promote the greatest strength contribution and these depend 

upon the Zn/Mg ratios and copper content. In general, fracture toughness is at its highest 

in the underaged condition, passes through a minimum at peak strength then recovers 

again during overaging [43] [46]. 

A. Mukhopdhyay [47] introduced fundamental basis of high strength wrought Al-Zn-Mg 

and Al-Zn-Mg-Cu alloy system design and processing parameters.  Major alloying 

element must have adequate solid solubility in the aluminum matrix, it encourages the 

nucleation of precipitates formed in the constituent binary system or induces the 

nucleation of fresh binary/ternary precipitates. Commercial Al alloys may further contain 
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a third major element that either accelerates the precipitation process and/or forms fresh 

binary/ternary/quaternary phase precipitates. Minor alloying elements like Cr, Mn and Zr 

form compounds with Al and other alloying elements, inhibiting grain growth and 

recrystallization (Sc).  Sc together with Zr is a good grain refiner.  Small additions of 

either Sc (0.23 wt%) or Ag (0.35 wt%) greatly improve the SCC resistance.  As a 

drawback that limits its usage, Sc is an expensive addition. 7xxx aluminum alloys 

contain: 

 

 3.5 - 8.7% Zn  

 1.0 - 3.1% Mg  

 Up to 2.6% Cu 

 Up to 0.28% Cr 

 Some other elements like Zr, Ti, Mn, (impurities of Fe and Si)   

 

A combination of unrecrystallized grain structure, the presence of a uniform distribution 

of Al3ScXZr1-X dispersoids and smaller grains and narrow Precipitates Free Zone (PFZs) 

adjacent to the grain boundary are responsible for improved stress corrosion cracking 

(SCC) resistance of the Sc-bearing alloy. 

I. Polmear and M. Couper stated that the aged Al alloys have the highest specific strength 

of all commercially available alloys at temperatures up to 100
0
C [48].  Above this 

temperature, mechanical properties decline rapidly due to coarsening of fine precipitates 

responsible for alloy strength.   

S. Senkova et al. [49] [50] evaluated the effect of combined addition of Sc and Zr on 

microstructure and mechanical properties of the direct chill (DC) cast ingots of 

developmental Al-Zn-Mg-Cu alloys subjected to homogenization, solution treatment and 

aging that show superior properties of any commercial cast alloy. Sc containing alloy 

exhibited similar properties to wrought 7075-T6 alloy. 

During the EAA (European Aluminum Association) 2011 conference, the effect of 

chemical composition on the microstructure, mechanical properties and susceptibility to 

hot tearing of Al-Zn-Mg-Cu cast alloys were tackled by two teams: H. Zak and Tonn as 

well as S. Bozorgi, M. Justl and P. Schumacher [51] [52].  It was found that Mg and Zn 
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make the highest contribution to yield and tensile strength. Cu content above 2.9 wt% has 

a deleterious effect on mechanical properties forming brittle grain boundary particles 

which cannot be dissolved completely during solution treatment for 16 hours at 470
º
C.   

 

 

3.4. Fracture surface analysis 
 

Fractographic observation and fractography has been a powerful tool used for the 

determination of failure causes in materials or components. A scanning electron 

microscope is generally used because it provides a practical range of magnifications 

suitable for the investigation. 

Type of fracture can be roughly divided into two categories, which are brittle and ductile 

fractures. During brittle fracture a little amount of plastic deformation can be detected, 

what happens is a sudden failure without warning. Ductile failure, on the contrary, 

exhibits rough and dull fracture surfaces with gross plastic deformation, therefore 

allowing more time to correct or prevent such failures [53].  

Brittle materials normally exhibit flat fracture surfaces consisting of transgranular 

cleavage facets. This type of fracture give small areas of fracture surface; hence, 

requiring low specific surface energy to produce two new fresh fracture surfaces. 

Therefore, the fracture energy is low in this case. When the crack is initiated possibly at 

the inclusion, the metal grains then readily cleave along the low fracture energy 

crystallographic plane. The stress lines are steps between cleavage or parallel planes, 

which are always convergent in the direction of local crack propagation. Transgranular 

cleavage fracture is usually associated with defects such as cracks, porosities, inclusions 

or second phase particles in which dislocations movement is obstructed. The stress is 

therefore concentrated in front of these defects, initiating a crack of a critical size. The 

propagation of this crack then finally causes the global failure with very little plastic 

deformation.  

Considering a tensile sample that underwent a ductile fracture, it is possible to see 

necking occurring along the specimen gauge length. Within the necking area, microvoids 
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are formed probably around the particles. During the time of the test, these microvoids 

expand and join together to create a crack with its plane perpendicular to the axis of the 

tensile force applied. Ductile materials show a considerable amount of plastic 

deformation before fracture, providing rough fracture surfaces with relatively high 

surface areas. Ductile fracture therefore requires higher energy to create two new fresh 

fracture surfaces in comparison to the energy required to cleave flat brittle surfaces. With 

the help of a SEM, it is evident how a ductile fracture surface consists of ductile dimples 

or microvoids.  

 

 

Figure 3.12: Schematic drawing of the subsequent stages in ductile fracture [53] 

 

During loading, inclusions or second phase particles (that act as microvoid initiation 

sites) lose coherency with the matrix, forming a microvoid around each particle. After a 

while, the expansion of microvoids leads to their coalescence, giving the complete 

failure.   

Now, an example regarding fracture surface analysis for aluminum alloy is given, taken 

from the study conducted by Sevim et al. [38] on 6xxx and 7xxx series. 
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Figure 3.13: SEM images of the fractured specimen surfaces [38] 

 

Figure 3.13 shows SEM images of the fractured surface taken from fractured tensile test 

specimen. The alloy 6061 exhibits ductile fracture. The dimples and network structures 

were determined to be dominant in the images. The images coming from aged specimens 

have a smaller number of ductile dimples. In the case of alloy 7075, brittle fracture 

occurred and cleavage facets are visible.   
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4.  Methodologies 

In this chapter the composition of the alloy investigated and the procedures followed 

in the experimental work are presented and explained. 

 

4.1. Alloy composition and samples cutting 
 

The aluminum alloy studied in this thesis is a 7xxx series provided by FCA (Fiat 

Chrysler Automobiles), which is the industrial partner of the work. More specifically, the 

alloy is the 7046, with the composition here reported (wt%): 

 Zn - between 6.3 and 6.6% 

 Mg – between 1.4 and 1.6% 

 Cu – between 0.1 and 0.2% 

 Zr – between 0.1 and 0.15% 

 Fe – max 0.2% 

 Si – max 0.1% 

 Mn – max 0.05% 

 Cr – max 0.05% 

 Ti – max 0.05% 

The samples were cut starting from square sheets, 300 mm x 300 mm, whose thickness 

was 1.25 mm. A wire-cut EDM (Electric Discharge Machining) machine was used for 

cutting the samples for the tensile tests. This cutting method allows obtaining a desired 

shape using electrical discharges. Material is removed from the workpiece by a series of 

rapidly recurring current discharges between two electrodes, separated by a dielectric 

liquid and subject to an electric voltage. In wire electrical discharge machining (used for 

the research), a thin single-strand metal wire, usually brass, is fed through the workpiece, 

submerged in a tank of dielectric fluid, typically deionized water. The advantages of 

using an EDM machine are basically two: the material does not undergo a too high 

thermal stress and the cut surface is extremely smooth, so it avoids the formation of 
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rough zones in which the stress would be concentrated during the tensile test falsifying in 

this way the result, which would not be significant. 

Other coupons (1 inch x 1 inch) were cut for the hardness measurements and 

microstructural analysis. 

The EDM machine, during its operation, followed a file on which a drawing prepared 

with the software Solidworks was saved. The standard followed for the drawing is the 

ASTM E8 for sheet-type standard specimen: 

 

 

Figure 4.1: Sketch of the specimen that follows the ASTM E8 standard [54] 

 

Table 4.1: Dimensions for standard specimens given by ASTM E8, sheet-type specimens [54] 

  Dimensions [mm] 

G - Gage length 50 ± 0.1 

W - Width 12.5 ± 0.2 

T - Thickness thickness of material 

R - Radius of fillet, min 12.5 

L - Overall length, min 200 

A - Length of reduced section, min 57 

B - Length of grip section, min 50 

C - Width of grip section, approximate 20 

 

In Figure 4.2 and Figure 4.3 we can see the aluminum sheets as they were received, the 

specimens for the tensile tests (fractured after the experiments) and the EDM machine, 

also with an aluminum sheet in place just before being cut. 
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Figure 4.2: On the left, the aluminum sheets as received. On the right, the specimens cut with the EDM 

machine after having tested them. 

 

 

 

 

                  

Figure 4.3 On the left, the EDM machine used for cutting the specimens. On the right, the aluminum sheet 

placed in the machine before being cut. 
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4.2. Heat treatment utilized 
 

The first step in the precipitation hardening process is, as already discussed, the 

solution heat treatment. In defining the temperature and time more adequate for the 

studied alloy, two things have been considered: the alloy composition, looking at the 

aluminum-zinc phase diagram, and previous studies found in literature. After some trials, 

the solutioning temperature selected was 480ºC and the solutionizing time 2 hours. The 

whole heat treatment procedure established (already reported in chapter 3) is summarized 

in table 4.2. 

 

 

Figure 4.4: Aluminum – Zinc phase diagram [55] 

 

Table 4.2: Heat treatment procedures followed in the research 

Material Solutionizing Quenching Artificial ageing [ºC] Ageing time [h] 

AA7046 480ºC / 2h Icy water 

120 

155 

185 

1 

4 

10 

14 

17 

20 

24 
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The specimens and the coupons, in the furnace for 2 hours, are then rapidly quenched in 

icy water in order to avoid the formation of quench induced precipitates that would 

interfere with the proper precipitation process which occurs during ageing. 

3 different ageing temperatures and 7 ageing times were chosen. All the possible 

combinations were tested for what concerns the hardness measurements, while only the 

best conditions according to the hardness results were tested with the tensile machine. 

The tensile tests are carried out at room temperature, at warm forming temperature and at 

room temperature after the alloy has been heated up to a certain temperature for 5 

minutes, as it will be better explained in the next pages. 

In Figure 4.5 we can see the furnace that has been used for the solutionizing treatments 

but also for artificial ageing, with the controller on the left through which the desired 

temperature can be set. 

 

 

Figure 4.5: Furnace used for the solutionizing and ageing phases 
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4.3. Microstructural analysis 
 

4.3.1. Samples and surface preparation 

 

In order to verify the effectiveness of the solutionizing process, a microstructural 

analysis was carried out to exclude the presence of second phases. The sample mounting 

and preparation needed for the observation with the optical microscope and the SEM was 

done following a procedure that involved the usage of different machines, in the 

laboratories of the University of Windsor. 

First of all, the solutionized coupon was further cut using the cutting machine reported in 

the figure below, in order to reach a size that would fit in the mounting cylinders. These 

small cylinders, open on one side, are then filled with the mounting resin after the 

material that has to be analyzed is placed in the middle of the base. The resin, which at 

first is liquid, solidifies in 20 minutes.  

The cutting machine here shown works thanks a rotating blade with adjustable rotation 

speed. The blade needs to be cooled down in order to avoid overheating. 

 

 

Figure 4.6: Cutting machine used for the preparation of the samples for the microstructural analysis 
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After the sample was mounted, grinding and polishing followed in the preparation 

process. Both of them have been done with the polishing machine, onto which sand paper 

or polishing cloths can be positioned on the rotating plates depending on what it is 

needed: 

 

 

Figure 4.7: Polishing machine used for grinding and polishing  

 

During grinding, sand paper was used, employing step after step a finer size of the 

abrasive surface. After that, the usage of a polishing cloth with alumina was necessary in 

order to get rid of all the scratches on the surface of the sample. The polishing process 

requires time, until all the scratches on the surface of the sample are eliminated, which is 

an essential requirement for the observation with microscopes (both optical and SEM). 

In Figure 4.8, we can see how the mounted sample looks like, ready to be etched and 

observed with the optical microscope. 
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Figure 4.8: Mounted sample ready for microstructural observation 

 

After the surface is ready, the right etchant has to be used in order to reveal the 

microstructure with its grain boundaries. Each material requires the usage of a proper 

etching solution which can react with the surface of the sample to be analyzed. Not only 

the etchant has to be identified, but also the time of exposure needs to be properly set. 

Different etchants have been prepared and tried, but the one that worked better for this 

specific alloy was the Kellers etchant, whose composition is reported in Table 4.3: 

 

Table 4.3: Amount of each constituent in the Kellers etchant [56] 

Distilled water 190 ml 

Nitric acid 5 ml 

Hydrochloric acid 3 ml 

Hydrofluoric acid 2 ml 

 

In the case of the alloy 7046, the time of immersion in the etchant needed for revealing 

the microstructure was 30 seconds. Immediately after the immersion finishes, the surface 

needs to be washed with distilled water and then acetone, before being dried with air. It is 

important to remember that after the surface is etched and then washed as previously 

described, the drying process has to be done without direct contact with other materials, 

in order not to ruin the sample. 
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4.3.2. Observation of the microstructure 

 

After being etched and dried, the sample is ready to be observed with the optical 

microscope. Obviously, with an optical microscope we cannot have too many details 

regarding the microstructure, but it is a good first step in order to have a general idea for 

what concerns the microstructure. If a second phase is evident, the use of an SEM 

(Scanning Electron Microscope), which is expensive, can be avoided and another 

solutionizing process has to be tried. Otherwise, the observation with the SEM and an 

EDS (Energy Dispersive X-ray Spectroscopy) analysis can be conducted in order to 

better investigate the microstructure.  

A scanning electron microscope is a type of electron microscope that produces images of 

a sample by scanning it with a focused beam of electrons. The electrons interact with 

atoms in the sample, producing various signals that can be detected and that contain 

information about the sample’s surface topography and composition. 

The EDS analysis is an analytical technique used for the elemental analysis or chemical 

characterization of a sample. It relies on an interaction of some source of X-ray excitation 

and a sample. 

Before being analyzed with the SEM, the sample required an additional preparation. The 

lateral surface of the mounted sample has been covered with aluminum foil and the top 

surface was carbon coated. Both the treatments had the aim of creating a conduction path 

for the electrons. 
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Figure 4.9: The microscopes used. On the left, the high quality optical microscope; on the right, the 

scanning electron microscope 

 

4.4. Hardness measurements 
 

The hardness of a material is a measure of the lattice resistance to the penetration of 

a specific indenter. A certain load is applied to the indenter and, after a varying holding 

time, removed, so that the trace of the indentation left on the sample surface indicates 

how hard the evaluated sample is; of course the higher the hardness the smaller the 

penetration. 

During the test the material undergoes a surface deformation and then dislocations 

movement is implied. Therefore, since the formation of precipitates hinders dislocations 

motion which, in turn, results into lower deformation and penetration, the measured 

hardness values provide a direct idea on the amount and type of precipitates present in the 

microstructure. For example GPI zones, being small and coherent with the matrix, do not 

require a lot of energy to be overcome. On the other side, when η’ nucleates, dislocations 

motion is hindered and the material hardness increases.   

The relationship between hardness and precipitates is the same as that between strength 

and precipitates; therefore a direct relationship exists between hardness and strength, both 
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yield strength and ultimate tensile strength. The relationship between hardness and 

strength is linear and the angular coefficient is a function of parameters such as the 

different material analyzed, the material strength, the processes components have been 

submitted to and the adopted hardness tests [57].       

The hardness measurements carried out within this work were done using a Vickers 

machine, so they can be referred to as microhardness measurements. 

 

4.4.1. Microhardness – Vickers 

 

The Vickers test was chosen to carry out the measurements. For this scale the 

indenter is characterized by a pyramidal shape, with a squared base, and both the applied 

load and the holding time can be decided by the user; in this thesis a load of 50 g and a 

holding time of 12 s were selected.  

A typical trace of a Vickers indentation on the material surface is shown in Figure 4.10, 

where the squared base pyramidal indenter can be recognized. 

 

 

Figure 4.10: Optical micrograph of a Vickers indentation [58] 

 

By knowing the length of the two diagonals and the applied load, the hardness value can 

be calculated through the equation: 

 

 𝐻𝑉 = 1854 ∗
𝐹

𝑙2
 (4.1) 
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Where HV stands for Hardness Vickers, F is the applied load [g] and l is the arithmetic 

mean of the two diagonals [µm]. While conducting the tests, the hardness values were not 

calculated through the formula shown above, but a table was used. Knowing the applied 

load and calculating the mean of the two diagonals after having measured the two values, 

the HV can be read from the table. 

The machine used for the measurements is reported in Figure 4.11. 

 

 

Figure 4.11: Buehler Micromet II microhardness testing machine used for the tests 

 

All the possible conditions have been tested with the Vickers machine, repeating the 

measurement 5 times for each condition in order to obtain an average value with a 

standard deviation. Proceeding in this way, the curves for each temperature at different 

ageing times could be observed. The ageing time corresponding to the peak value for 

each temperature was selected as a condition to be tested with the tensile machine. 
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4.5. Tensile tests 
 

4.5.1. Tensile tests at room temperature 

 

The heat treatments performed on the coupons which had the highest hardness values   

were repeated for the specimens prepared for the tensile tests. The tests at room 

temperature were performed with the machine shown in Figure 4.12. 

 

 

 

Figure 4.12: Tensile machine for the tests at room temperature 

 

A template has been created to insert the information regarding the specimens and the 

type of test required. The machine has a capacity of 50 kN and it has been used with a 

strain rate of 2 mm/minute. The dimensions (thickness, width) of the specimen were 

implemented in the template but also checked before each test with the use of a digital 

caliper. 

The information regarding the stress and the strain can be calculated knowing other data 

coming directly from the software which controls the tensile machine. The stress is easily 

obtained dividing the load, which is given by the software, by the cross sectional area of 

the specimen. In order to measure the elongation, an extensometer (gauge length 50 mm) 
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was placed next to the specimen during the test, as shown in Figure 4.13. From the gauge 

length and the value of the elongation measured by the extensometer, we can calculate 

the corresponding strain. 

We must say that, in order to have accurate measurements, the load of the tensile 

machine has to be verified each time the device is started and the correctness of the 

values given by the extensometer needs to be checked as well. 

 

 

Figure 4.13: Extensometer in position during the tensile test 

 

After the machine is started, the test goes on until the fracture of the specimen. The data 

regarding load and elongation are automatically saved by the software, which is also 

responsible for stopping the machine as soon as the break is detected. 

With the aim of avoiding mistakes, each condition was tested three times to see if the 

behavior of the material was always the same. More samples than necessary were 

prepared in advance, because it can be expected that some of the tests are not successful, 

mainly due to the extensometer, which is placed in an instable position which could cause 

it to rotate around the specimen. In the case the previous scenario occurs, the results are 

not significant and need to be discarded. 
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4.5.2. Tensile tests at room temperature after heating 

 

The second typology of tensile test carried out was always at room temperature 

but after holding the material at different temperatures for 5 minutes. As previously said 

in chapter 3, this kind of test is very important: the temperature at which a rapid decline 

in strength begins defines the best, and usually optimum, forming temperature. Moreover, 

the characteristics of the component after stamping can be understood as well.  

According to the literature, a time corresponding to 5 minutes was chosen because it is 

the maximum holding time expected in a production trial. If, with new technologies, 

shorter times will be needed, the maximum forming temperature will increase. 

Since the warm forming temperature for 7xxx series aluminum alloys is around 200ºC, 

three different temperatures around that value were chosen: 170ºC, 200ºC and 230ºC. 

After having selected the temperatures, the procedure to be followed is simple. The 

specimen has to be placed in the furnace at the desired temperature for five minutes, after 

that removed and then the tensile test at room temperature can be performed exactly in 

the same way described in the previous section. Again, the use of an extensometer will be 

needed for the calculation of the strain and the test stops when the fracture occurs. Tests 

for each temperature (170, 200 and 230ºC) have been performed in the as received 

condition and for each ageing temperature at the ageing time that gives the highest 

hardness value. 

 

4.5.3. Tensile tests at high temperature 

 

The last type of tensile test, performed at high temperature, requires a different 

equipment to be performed. The temperature selected was 170ºC for two main reasons: at 

this temperature the mechanical properties of the alloy demonstrated to remain high 

enough and, from a more practical point of view, a temperature higher than 177ºC would 

have required major changes to the tensile machine. 

The tensile tests at warm forming temperature represent an excellent way for 

understanding how much the material can be deformed at high temperature, so what is 
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the maximum elongation that can be expected and with which load, before the specimen 

breaks (useful also for dimensioning the press). The information gained, combined with 

the forming limit curves (FLC), is a useful tool that can be used for simulations regarding 

the formability of the material at high temperature. 

The tensile machine operates (the part in which the specimen is placed) inside an 

environmental chamber, as illustrated in Figure 4.14. 

 

 

Figure 4.14: Tensile machine with the environmental chamber 

 

A cooling system is necessary in order to prevent possible damages due to overheating of 

parts of the machine. On the left, in the image it is possible to see the controller of the 

environmental chamber, through which the temperature can be set. The capacity of the 

machine is 300 kN and the same template, used for the tests at room temperature with the 

information related to the specimens, was employed. Again, a strain rate of 2 mm/minute 

was adopted.  

A detail related to the internal part of the environmental chamber is depicted in Figure 

4.15. 
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Figure 4.15 Internal part of the environmental chamber, used for the tensile tests at high temperature 

 

Before starting with the tests, it was important to understand how long it takes for the 

specimen in order to reach the temperature of the furnace. Some measurements have been 

conducted, exploiting the use of a thermocouple and a non-contact infrared thermometer. 

The controller was set to 170ºC. After the temperature inside the environmental chamber 

reached that value and stabilized, the specimen was placed inside. The temperature of the 

sample was continuously controlled and the time after which it reaches the temperature 

found, corresponding to 8 minutes. 10 minutes after having placed the specimen inside 

the environmental chamber, the test started. 
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Figure 4.16: On the left, a non-contact infrared thermometer. On the right, a thermocouple. 

 

Also for the tests conducted at high temperature, the same cases mentioned in the 

previous sections were selected for the experiments. 

 

4.6. Fracture surface analysis 
 

The last step of the experimental work consisted in carrying out a fracture surface 

analysis with the SEM, in order to understand what kind of fracture occurred. The region 

around the fracture surface of 4 different specimens tested at room temperature was cut 

into smaller pieces; the conditions analyzed are the following: 

 As received 

 Solutionized at 480ºC for 2 hours 

 Aged at 120ºC for 20 hours 

 Aged at 155ºC for 17 hours 

In Figure 4.17 it is shown how the pieces of the specimen that will be analyzed are placed 

before being inserted in the SEM chamber. 
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Figure 4.17: samples positioned for the fracture surface analysis with the SEM 

 

When inclusions appear to be evident in the fracture surface, through the EDS elemental 

analysis, we can discover what elements are present in the inclusion. The inclusions are 

one of the main causes because of which a crack can start. 
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5. Results and discussion 

In this chapter the results and images coming from the microstructural analysis are 

shown. The curves resulting from the hardness measurements and tensile tests are 

illustrated and discussed. At the end of the section, the fracture surface analysis is 

reported. 

 

5.1. Microstructural observation and EDS analysis 
 

The first section of the results is dedicated to the discussion of the images captured 

with the optical microscope, at first, and then with the scanning electron microscope. 

Also, the data coming from the EDS analysis, in which the elements present in the 

microstructure are highlighted, are reported and explained. The objective of the 

microstructural analysis is to verify, for what concerns the solutionized sample, if the 

solutionizing process occurred properly, so a second phase should not be present in the 

microstructure. The solutionizing adopted, as mentioned in chapter 4, consisted in 

holding the material in a furnace at 480ºC for 2 hours. A quenching in icy water 

followed.  It must be kept in mind that, in any case, an SEM analysis is still not enough if 

there is the need to observe the precipitates. In that, case a TEM (transmission electron 

microscope) analysis should be carried out; this is expensive and requires a bigger effort 

for the sample preparation. 

 

5.1.1. Optical microscope images 

 

As previously mentioned in chapter 4, the samples for the observation with the 

optical microscope need to be polished and etched before the analysis. Since the material 

is an aluminum alloy, softer compared to many other metals, the elimination of all the 

scratches is not a trivial process and requires a careful treatment. During the last stages of 
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polishing, a polishing cloth with alumina was used in order to remove also the smallest 

scratches from the surface.  

Another important parameter that has to be set correctly is the etching time. After having 

identified the etchant that reveals in the best way the microstructure, the time of exposure 

has to be established. An immersion of the sample in the solution for a time that is not 

sufficient does not reveal the grain boundaries in a clear way. On the other hand, if the 

sample is hold for too long in the etchant, the surface becomes “burnt” and it cannot be 

observed. In order to understand which immersion time corresponds to the optimum 

value for the etchant, a trials and errors procedure has to be followed. Practically, if with 

the microscope we see the grain boundaries not well defined and they disappear from 

certain regions of the microstructure, the time of exposure is not enough. On the other 

hand, if what we observe is a surface that looks very black and nothing can be really 

distinguished, the holding time was too long. 

The images were taken with the optical microscope at different magnifications. The 

analysis was repeated both for the material in the as received condition and after 

solutionizing (in the furnace at 480ºC for 2 hours). 

In the Figure 5.1, we can see the microstructure of the solutionized sample: 

 

 

Figure 5.1: Optical microscope image of the aluminum alloy 7046, solutionized at 480 ºC for 2 hours. The 

microstructure was revealed with immersion in the Kellers etchant for 30 seconds. 
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As can be seen from the picture, the grain boundaries are well defined and, at a first sight, 

we cannot see the presence of a second phase. The smaller black dots and the 

conglomerates that we can see areporosities, as will be evidenced by the SEM analysis.  

Since, according to the results obtained with the optical microscope, the surface appears 

to be properly solutionized, the analysis with the SEM can be performed in order to have 

more details on the microstructure. 

 

5.1.2. Scanning electron microscope images 

 

The sample used for the SEM analysis is exactly the same prepared for the optical 

microscope, in which a conducting path for the electrons is built as described in chapter 

4.  

Also in this case the images where taken at different magnifications and, after that, an 

EDS analysis was performed in order to understand the elements present in specific 

regions of the microstructure. 

 

 

Figure 5.2: SEM image of the aluminum alloy 7046, solutionized at 480 ºC for 2 hours. The microstructure 

was revealed with immersion in the Kellers etchant for 30 seconds. 
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Figure 5.3: SEM image of the aluminum alloy 7046, solutionized at 480 ºC for 2 hours. The microstructure 

was revealed with immersion in the Kellers etchant for 30 seconds 

 

From Figure 5.2 and Figure 5.3, it can be noticed that the aluminum matrix appears to be 

homogeneous. The black spots, seen also with the optical microscope, are visible and in 

particular regions white zones are present as well. With a higher magnification, some of 

the bigger black spots were investigated. They are porosities in the metal matrix.. 

In order to understand which elements are present in the matrix and in the brighter and 

darker spots, the elemental analysis was carried out. 

 

5.1.3. EDS analysis 

 

A certain region of the microstructure, observed with the SEM, was selected for 

an EDS (energy dispersive X-ray spectroscopy) analysis. In Figure 5.4, Figure 5.5 and 

Figure 5.6 the spots identified for the analysis are reported.  
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Figure 5.4: EDS analysis results for Spot 1, indicated by the red arrow in the picture. The analysis was 

conducted on the aluminum alloy 7046 solutionized at 480 ºC for 2 hours. The elements found are first 

highlighted with the peaks in the diagram and then summarized in the table. 

 

 

 

Figure 5.5: EDS analysis results for Spot 2, indicated by the red arrow in the picture. The analysis was 

conducted on the aluminum alloy 7046 solutionized at 480 ºC for 2 hours. The elements found are first 

highlighted with the peaks in the diagram and then summarized in the table. 
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Figure 5.6: EDS analysis results for Spot 4, indicated by the red arrow in the picture. The analysis was 

conducted on the aluminum alloy 7046 solutionized at 480 ºC for 2 hours. The elements found are first 

highlighted with the peaks in the diagram and then summarized in the table. 

 

The results for other spots and areas analyzed are not reported since they are redundant. 

The elements present in those regions are the same as in spot 4 and the weight percentage 

is more or less equal too. We can understand that the brighter spots are characterized by 

the presence of iron or copper, while all the other parts (porosities included) have just the 

elements which characterize the alloy composition.  

According to the outcome of the analysis, the microstructure can be considered as 

homogeneous and it can be said that the solutionizing occurred properly, despite the 

presence of isolated regions with a high weight percentage of iron or copper. These areas 

are not spread all over the microstructure with continuity; the dissolution of the second 

phases is good enough in order to proceed with the ageing treatments. 
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5.2. Hardness results 
 

Within this section the results coming from the microhardness measurements, 

conducted with the Vickers microhardness tester, are shown and discussed. At first, just 

five different ageing times for each ageing temperature were planned. After the tests, 

looking at the trends obtained, it was noticed that probably the peak value for the ageing 

temperatures 120ºC and 155ºC was in the interval between 14 and 24 hours. For this 

reason, other two ageing times were added: 17 and 20 hours, which were not used for the 

material artificially aged at 185ºC, because it already overages after 14 hours. 

The tests were conducted with a load of 50 gf applied for 12 seconds. After having 

measured the length of the two diagonals created by the indenter, the average value was 

calculated. Each condition was tested 5 times and the standard deviation calculated. 

The results are shown in the diagrams and summarized with the corresponding values of 

the standard deviation in the tables. 

 

 

Figure 5.7: Microhardness variation vs. ageing time of the aluminum alloy 7046 aged at 120ºC. The 

applied load is 50 gf for 12 seconds. Each point on the diagram is the average of 5 different measurements. 
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Table 5.1: Summary of the hardness values and the corresponding standard deviations for aluminum alloy 

7046 aged at 120ºC . The applied load is 50 gf for 12 seconds. Each microhardness value is the average of 

5 different measurements, on the base of which the standard deviation is calculated. 

 

 

 

 

 

Figure 5.8: Microhardness variation vs. ageing time of the aluminum alloy 7046 aged at 155ºC. The 

applied load is 50 gf for 12 seconds. Each point on the diagram is the average of 5 different measurements. 

 

 

 

 

 

 

Time [hours] Average hardness [HV] Standard Deviation

1 116.4 4.98

4 133.8 8.98

10 143.8 10.57

14 155.2 10.33

17 159.8 7.26

20 167.2 6.30

24 140.2 8.79
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Table 5.2: Summary of the hardness values and the corresponding standard deviations for the aluminum 

alloy 7046 aged at 155ºC. The applied load is 50 gf for 12 seconds. Each microhardness value is the 

average of 5 different measurements, on the base of which the standard deviation is calculated. 

 

 

 

 

 

Figure 5.9: Microhardness variation vs. ageing time of the aluminum alloy 7046 aged at 185ºC. The 

applied load is 50 gf for 12 seconds. Each point on the diagram is the average of 5 different measurements. 

 

 

 

 

Time [hours] Average hardness [HV] Standard Deviation

1 118.6 8.20

4 133.4 6.80

10 147.8 9.50

14 162 6.96

17 176 5.61

20 162.6 6.31

24 140 8.03
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Table 5.3: Summary of the hardness values and the corresponding standard deviations for the aluminum 

alloy 7046 aged at 185ºC. The applied load is 50 gf for 12 seconds. Each microhardness value is the 

average of 5 different measurements, on the base of which the standard deviation is calculated. 

 

 

For each ageing temperature, it is clear how the hardness increases with time for the first 

period until it reaches a peak, after which the value decreases since the overageing starts 

with the formation of η (as seen in the literature).  

Again, according to what was found in previous studies focused on the precipitation 

process for 7xxx series aluminum alloy, the peak strength is reached with the formation 

of η’, which nucleates only during artificial ageing. 

The ageing time corresponding to the peak is different depending on the temperature at 

which the material is hold. The ageing process is slower at lower temperatures, while it 

increases its speed with higher temperatures. It can be seen, indeed, that at 120ºC we 

have the peak value after 20 hours, while at 185ºC the highest hardness is reached after 

10 hours.  

Considering the results reported in the previous tables, the ageing times which give the 

highest hardness values for each ageing temperature are: 

 20 hours for 120ºC, with an average hardness of 167.2 HV 

 17 hours for 155ºC, with an average hardness of 176 HV 

 10 hours for 185ºC, with an average hardness of 158.4 HV 

The conditions reported above were chosen to be tested with the tensile machine, together 

with the as received and solutionized conditions.  

 

 

Time [hours] Average hardness [HV] Standard Deviation

1 128.8 7.22

4 130.4 8.02

10 158.4 4.45

14 154 11.49

24 114.4 7.89
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5.3. Tensile tests results 
 

At this point, the results coming from the tensile tests can be analyzed. It is important 

to remember that the experimental work for this part was conducted in three different 

ways: 

 Tensile tests at room temperature, without a previous heating 

 Tensile tests at room temperature, after the material was heated up to 3 different 

temperatures for 5 minutes 

 Tensile tests performed at high temperature with the employment of an 

environmental chamber 

The same template, containing the information regarding the specimens, was used for all 

the tests. The strain rate adopted was 2 mm/minute. The test goes on until a break is 

detected and the software automatically saves the data which are useful in order to 

calculate stress and strain.  
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5.3.1. Tensile tests at room temperature  

 

In the graphs and tables the results coming from the tensile tests conducted at 

room temperature without being previously heated are shown.  

 

Figure 5.10: Stress-strain diagrams for the tensile tests carried out at room temperature. Aluminum alloy 

7046 tested after being aged in 3 different ways, in the as received condition and solutionized at 480 ºC for 

2 hours. 

 

From Figure 5.10, there are some considerations that can be done: 

 The heat treatment which gives the best UTS is the one performed at 155ºC for 17 

hours. 

 The ageing at 120ºC for 20 hours improves the UTS compared to the as received 

condition and shows a better elongation compared to the ageing at 155ºC for 17 

hours. 

 For what concerns the heat treatment performed at 185ºC for 10 hours, it can be 

seen that in this case the material does not work harden as much as in the other 

cases. The UTS is lower than the one of the material in the as received condition 

but the yield strength, instead, is higher. 
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 The alloy in the as received condition performs very well in elongation, showing 

anyway a good behavior also for what concerns the UTS. 

The properties of the alloy in each condition tested are summarized in the following 

table: 

 

Table 5.4: Summary of the properties resulting from the tensile tests carried out at room temperature. 

Aluminum alloy 7046 tested after being aged in 3 different ways, in the as received condition and 

solutionized at 480 ºC for 2 hours. 

 

 

It has to be mentioned that we do not have many details regarding the treatments which 

underwent the alloy in the as received condition. It has a very good combination of 

ultimate tensile strength and elongation, which is unusual for something that has been age 

hardened. Of course, the solutionized condition shows low yield strength and UTS, with a 

good elongation, which is what can be expected. 

Having a look at the results coming from the ageing treatments proposed, in two cases the 

UTS has been improved with respect to the as received condition. For what concerns the 

yield strength, instead, the value is higher also for the material aged at 185ºC, but in this 

case the alloy does not work harden and so the ultimate tensile strength does not have a 

high value. 

 

 

UTS [Mpa] Yield strength [MPa] Elongation [%]

Aged at 120ºC 

for 20 hours
455 352 12

Aged at 155ºC 

for 17 hours
461 414 8.8

Aged at 185ºC 

for 10 hours
418 395 6

As received 449 321 19

Solutionized 352 203 17

Room temperature
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5.3.2. Tensile tests at room temperature, alloy previously heated 

 

This section is dedicated to the results obtained from the tensile tests performed after 

the material was heated for 5 minutes. The procedure followed is the following: 

 The material is placed in the furnace at a certain temperature for five minutes. The 

temperatures chosen were 170, 200 and 230ºC. 

 No quenching is performed, the material cools down at room temperature and the 

waiting time, before proceeding with the tensile test, was 30 minutes. In this way, 

the material reaches the temperature of the environment in the whole thickness.  

 The tensile test is performed. 

Thanks to the data obtained, the optimum warm forming temperature can be selected and 

the final characteristics of the component after stamping found. The temperature at which 

a rapid decline in strength begins define the maximum, and usually optimum, forming 

temperature. The diagrams for each heating temperature chosen with the tables which 

summarize the properties are reported. 
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Figure 5.11: Stress-strain diagrams for the tensile tests carried out at room temperature on the aluminum 

alloy 7046 aged at 120 ºC for 20 hours. 3 of the 4 curves show the behavior of the alloy after it was 

previously heated to different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

Table 5.5: Summary of the properties resulting from the tensile tests carried out at room temperature on 

the aluminum alloy 7046 aged at 120 ºC for 20 hours. 3 of the 4 conditions show the behavior of the alloy 

after it was previously heated to different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

. 

UTS [Mpa] Yield strength [MPa] Elongation [%]

No pre-heating 455 352 12

Heated to 170ºC 406 318 12.3

Heated to 200ºC 376 280 12.4

Heated to 230ºC 335 258 9

Aged at 120ºC for 20 hours
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Figure 5.12: Stress-strain diagrams for the tensile tests carried out at room temperature on the aluminum 

alloy 7046 aged at 155 ºC for 17 hours. 3 of the 4 curves show the behavior of the alloy after it was 

previously heated to different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

Table 5.6: Summary of the properties resulting from the tensile tests carried out at room temperature on 

the aluminum alloy 7046 aged at 155 ºC for 17 hours. 3 of the 4 conditions show the behavior of the alloy 

after it was previously heated to different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

 

UTS [Mpa] Yield strength [MPa] Elongation [%]

No pre-heating 461 414 8.8

Heated to 170ºC 399 333 9.2

Heated to 200ºC 381 330 9.8

Heated to 230ºC 334 287 10.7

Aged at 155ºCfor 17 hours
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Figure 5.13: Stress-strain diagrams for the tensile tests carried out at room temperature on the aluminum 

alloy 7046 aged at 185 ºC for 10 hours. 3 of the 4 curves show the behavior of the alloy after it was 

previously heated to different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

Table 5.7: Summary of the properties resulting from the tensile tests carried out at room temperature on 

the aluminum alloy 7046 aged at 185 ºC for 10 hours. 3 of the 4 conditions show the behavior of the alloy 

after it was previously heated to different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

 

 

 

UTS [Mpa] Yield strength [MPa] Elongation [%]

No pre-heating 418 395 6

Heated to 170ºC 389 360 5.9

Heated to 200ºC 378 357 7.7

Heated to 230ºC 325 288 9.4

Aged at 185ºC for 10 hours
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Figure 5.14: Stress-strain diagrams for the tensile tests carried out at room temperature on the aluminum 

alloy 7046 as received. 3 of the 4 curves show the behavior of the alloy after it was previously heated to 

different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

Table 5.8: Summary of the properties resulting from the tensile tests carried out at room temperature on 

the aluminum alloy 7046 as received. 3 of the 4 conditions show the behavior of the alloy after it was 

previously heated to different temperatures (170, 200 and 230 ºC) for 5 minutes. 

 

 

Some considerations can be drawn from the results shown in the previous diagrams and 

tables: 

 As it could be imagined, the properties of the alloy undergo a decay increasing the 

temperature at which it is exposed for 5 minutes. This is valid for the alloy in the 

as received condition but also for each treatment performed. 

 When the material is heated up to 170ºC, the UTS decreases more for the alloy as 

received compared to the treated conditions. 

UTS [Mpa] Yield strength [MPa] Elongation [%]

No pre-heating 449 321 19

Heated to 170ºC 360 251 15.8

Heated to 200ºC 336 233 17

Heated to 230ºC 320 231 13.5

As received
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 The best elongation is always given by the as received condition, but with the 

ageing performed at 120ºC the UTS and yield strength are higher maintaining in 

any case a good elongation. 

 The alloy artificially aged at 185ºC for 10 hours does not work harden in a good 

way, exactly as it was found after the tests at room temperature without pre-

heating. 

 The heat treatment at 155ºC for 17 hours, which gives the best UTS at room 

temperature if not previously heated, shows a higher decay in the mechanical 

properties if heated and does not work harden as properly as the ageing conducted 

at 120ºC for 20 hours. 

 

5.3.3. Tensile tests at high temperature 

 

The last type of tensile tests performed required the adoption of a different 

machine, which had to be combined with an environmental chamber in order to carry out 

the tests at higher temperatures.  

The results, in this case, are important for having an understanding on the behavior of the 

material at high temperature. Some of the characteristics that can be studied: 

 The deformability of the alloy  

 The maximum elongation reachable before a break occurs 

 The stress at which the failure verifies 

Thanks to the gained information, simulations for the formability of the material at high 

temperature could be done. 
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Figure 5.15: Stress-strain diagrams for the tensile tests carried out at 170 ºC on the aluminum alloy 7046, 

for each condition tested: 3 different ageing conditions, as received and solutionized at 480ºC for 2 hours. 

 

As can be clearly understood from the curves in the graph shown in Figure 5.15, the 

stress-strain curves of the results refer to the engineering stress and strain and not to the 

true stress and strain. This is the reason why the curves, after a while, go down to level of 

stress (and so also level of load) lower compared to the peak values. The explanation is 

quite simple: in the engineering stress, the area over which the stress is calculated is 

always the initial area. In this way, it does not take into account that an area reduction is 

present during the test, due to the fact that the specimen is elongating.  

During the tests at high temperature, the elongation is much higher compared to the one 

obtained from the tests at room temperature, the necking phenomenon is accentuated and 

visible, so the curve goes down as it is shown by the figure. 
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Table 5.9: Summary of the properties resulting from the tensile tests carried out at 170 ºC, for each 

condition tested: 3 different ageing conditions, as received and solutionized at 480ºC for 2 hours. 

 

 

 Of course, the condition which gives the best elongation is the solutionized alloy, 

which is also the one with the lowest UTS and yield strength. 

 The best compromise between strength and elongation is given by the material 

treated at 120ºC for 20 hours.  

 In this case, the as received condition does not show the best possible elongation 

(solutionized condition excluded), which is instead given by the material aged at 

120ºC for 20 hours (22%). 

 The best UTS is again given by the alloy aged at 155ºC for 17 hours, but the 

elongation is not so elevated and in this case the UTS given by the ageing at 

120ºC for 20 hours is very close. 

 The values regarding the ultimate tensile strength and yield strength are lower 

compared to what it was obtained at room temperature, and this is something that 

can be easily expected. 

 Depending on what are the properties needed by the material, a certain treatment 

can be chosen instead of another one. 

 

 

 

 

UTS [Mpa] Yield strength [MPa] Elongation [%]

Aged at 120ºC 

for 20 hours
349 296 22

Aged at 155ºC 

for 17 hours
353 345 14

Aged at 185ºC 

for 10 hours
323 322 14

As received 345 295 20

Solutionized 258 184 30

Tensile tests at high temperature
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5.4. Microstructural analysis of fracture surfaces 
 

The last step of the experimental work consisted in a fracture surface analysis, 

performed with the scanning electron microscope. The objective of this analysis is to 

evaluate the micromechanisms of fracture.  

The fracture surface of samples tested by loading at room temperature were: 

 As received 

 Solutionized for 2 hours at 480ºC 

 Aged at 155ºC for 17 hours  

 Aged at 120ºC for 20 hours  

Figure 5.16 shows the solutionized condition and Figure 5.17 the material aged at 155ºC. 

Then, the other conditions will be shown and the EDS analysis performed on an inclusion 

reported. 
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Figure 5.16: SEM images of the aluminum alloy 7046 solutionized at 480ºC for 2 hours, different 

magnifications of the same region. The fracture is very ductile as evidenced by the presence of dimples 

clearly visible. 

 

The dimples present in the SEM images reported in Figure 5.16 are evident, the fracture 

occurred in a ductile way. 
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Figure 5.17: SEM images of the aluminum alloy 7046 aged at 155 ºC for 17 hours, different magnifications 

of the same region. In this case the fracture is brittle. 

 

Fig 5.17 shows a transgranular type of fracture which failed in a brittle manner. Some 

dimples are still visible but they are much more evident in the solutionized condition (at 

480ºC for 2 hours). If the solutionizing is not followed by ageing, the hardness of the 

material is lower and so it elongates more before fracturing. 

Figure 5.18 and Figure 5.19 refer to the alloy in the as received condition. Three different 

magnifications are reported and also a bigger image which covers a wider area is present. 
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Figure 5.18: Three different magnifications of the fracture surface of the aluminum alloy7046 in the as 

received condition. The fracture can be classified as brittle. 

 

 

Figure 5.19: SEM image of the fracture surface of the aluminum alloy 7046 in the as received condition. 
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The last condition shown is the one aged at 120ºC for 20 hours. In this case an inclusion 

was identified and an EDS analysis performed onto it in order to understand which 

elements were present. 

 

 

Figure 5.20: SEM image of the aluminum alloy 7046 aged at 120ºC for 20 hours. Ductile fracture with 

dimples. 

 

In this case, the dimples are clear and so the fracture occurred in a ductile way. As 

previously mentioned, inclusions or second phase particles can act as microvoid initiation 

sites. They lose coherency with the matrix forming a microvoid around each particle. 

After a while, when a load is applied (in this case during the tensile test), the expansion 

of microvoids leads to their coalescence, giving the complete failure. 

In Figure 5.21, the blue arrow identifies the inclusion onto which the EDS analysis was 

performed.  
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Figure 5.21: Results of the EDS analysis conducted on the inclusion found in the fracture surface of the 

aluminum alloy 7046 aged at  120ºC for 20 hours. The inclusion is highlighted with the blue arrow in the 

image. The specimen underwent a tensile test at room temperature. 

 

The EDS analysis, in order to have a comparison, was performed also in other spots of 

the region. The results for the other spots are not reported since nothing particular was 

found, the elemental analysis highlighted the presence of aluminum, zinc and magnesium 

in the expected amounts. 

For what concerns the inclusion, instead, we can see the presence of iron in a not 

negligible percentage. As can be seen from the image, the inclusion is in the middle of 

the microvoid, as almost always happens.  
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5.5. Discussion 
 

In this last section of the chapter, a discussion of the results is given in order to 

summarize what was obtained. 

The first part of the experimental work was focused on the definition of a solutionizing 

process which allows having only one phase in the microstructure. The microstructural 

analysis was carried out first with an optical microscope and then with an SEM. As can 

be seen in section 5.1, the presence of a second phase was excluded after the 

solutionizing at 480ºC for 2 hours, which was therefore adopted as the first step of the 

precipitation hardening process. The microstructure shown in Figure 5.3 shows a 

homogeneous composition; only two spots (onto which an EDS analysis was performed, 

Figure 5.4 and Figure 5.5) demonstrated to have a high percentage of iron and copper. 

These spots are isolated and so their presence is not enough for saying that the 

solutionizing process did not occur properly. 

The first common part of the treatment was followed by 3 different ageing processes at 

the following temperatures: 120, 155 and 185ºC. Several ageing times have been tried for 

each ageing temperature and the hardness was measured after each trial. In order to 

perform a more accurate measurement, each condition was tested 5 times with the 

Vickers machine and the average value of the hardness calculated. The ageing time which 

gave the best result was identified (as a reference, these results can be found in Table 5.1, 

Table 5.2 and Table 5.3) for each ageing temperature. In this way, 3 different ageing 

procedures were identified: 

 At 120ºC for 20 hours 

 At 155ºC for 17 hours 

 At 185ºC for 10 hours  

The abovementioned conditions were studied, focusing on the tensile properties of the 

aluminum alloy 7046. The experimental work in this phase was divided into three 

different parts. The first one consisted in tensile tests conducted at room temperature, 

after that the same tests were performed with the alloy previously heated at different 
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temperatures for 5 minutes and finally the tensile tests at high temperature were 

performed. 

Considering the tensile tests conducted at room temperature (Figure 5.10 and Table 5.4): 

 Two of the three precipitation hardening processes improved the ultimate tensile 

strength of the alloy with respect to the as received condition: alloy artificially 

aged at 120ºC for 20 hours and at 155ºC for 17 hours. 

 It must be kept into account that the alloy in the as received condition was already 

treated, but not many details were known about the heat treatments performed. It 

shows a good strength while having an excellent elongation. 

 Among the precipitation hardening processes proposed, the one which gives the 

best compromise of strength and elongation is the artificial ageing at 120ºC for 20 

hours. 

 In order to understand which precipitates are present inside the microstructure, a 

TEM analysis would be necessary. 

The other two typologies of tensile test were interesting for understanding some 

properties related to the formability at high temperature of the material. The tests at room 

temperature, after the alloy was heated up to 3 different temperatures for 5 minutes, were 

useful to assess the properties of the material after stamping and to have an idea about the 

optimum warm forming temperature for the alloy. The three temperatures selected for the 

heating that precedes the tests at room temperature were 170, 200 and 230ºC. These 

values were chosen because, according to the information found in literature, they are 

close to the optimum warm forming temperature for a 7xxx series aluminum alloy. It 

must be kept in mind that 30 minutes have to be waited before carrying out the tensile 

test in order for the material to have time for cooling down completely at room 

temperature. 

The tensile tests at high temperature, instead, were carried out in order to understand the 

elongation and maximum stress that the alloy shows at warm forming temperature. 

Thanks to this information, simulations of formability at high temperature could be 

performed. The temperature selected for the tests was 170ºC. Some considerations can be 

drawn from the results: 



 

86 

 

 Increasing the temperature of the heating performed before the tensile tests at 

room temperature, the mechanical properties of the alloy worsen as it was 

expected. At 170ºC we still have a good behavior, especially for what concerns 

the alloy aged at 120ºC for 20 hours (Figure 5.11), which also demonstrated to 

have a good elongation. 

 Moreover, for what concerns the tests at room temperature with a previous 

heating of the material, the artificial ageing at 185ºC for 10 hours gives results not 

so satisfactory from the point of view of the elongation and it does not work 

harden properly. The ageing at 155ºC for 17 hours, instead, is a middle way 

between the other 2. 

 During the tensile tests performed at 170ºC with the tensile machine connected to 

the environmental chamber (Figure 5.15), the UTS and the yield strength 

decreases consistently while the elongation increases a lot. The ductile behavior 

of the alloy is accentuated. The best compromise of strength and elongation is 

given by the material treated at 120ºC for 20 hours. 

The last step of the experimental work was to perform a microstructural analysis of the 

fracture surfaces with the SEM on the fractured specimens after the tensile tests at room 

temperature. From the images taken, the fracture appeared as ductile with the presence of 

dimples for most of the conditions. The alloy aged at 155ºC for 17 hours and the one in 

the as received condition showed a brittle behavior.  An inclusion was found in the 

fracture surface of the specimen aged at 120ºC for 20 hours. An EDS analysis was 

performed, which revealed the presence of iron. As seen in the literature review, an 

inclusion can be the cause of a crack initiation. 
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6.  Conclusions 

This thesis investigated basically two aspects of the aluminum alloy 7046. The first one 

was related to the definition of the heat treatment procedure which gives the best results 

in terms of mechanical properties. The second aspect concerned the study of the tensile 

properties of the material at room temperature, at warm forming temperature and after the 

alloy was heated up to a certain temperature for 5 minutes. The tensile properties were 

investigated both for the alloy in the as received condition and for the same alloy age 

hardened with the conditions established in the first part of the work. A microstructural 

analysis of the fracture surfaces was eventually conducted in order to discover the nature 

of the fracture. 

 The solutionizing process selected is at 480ºC for 2 hours, followed by a 

quenching in icy water.  

 The alloy aged at 120ºC for 20 hours gives the optimum mechanical properties in 

terms of elongation and strength.  

 The tensile behavior of the material after it was heated to 170ºC for 5 minutes was 

still good enough, meaning that it could be a good temperature for warm forming.  

 It was verified with the tests at high temperature that, again, the best compromise 

of strength and elongation was given by the ageing at 120ºC for 20 hours.  

 The typology of fracture observed with the microstructural observation is ductile 

with the presence of dimples in most of the samples analyzed, excluding the alloy 

in the as received condition and the alloy aged at 155ºC for 17 hours.  
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6.1. Recommendations 
 

For what concerns the possible future work on this project, some recommendations 

can be done: 

 The data coming from the tensile tests performed at high temperature could be 

used, combined with the forming limit curves, for simulations of the behavior of 

the alloy in warm forming conditions. 

 With some changes on the tensile machine that operates with the environmental 

chamber, other temperatures could be tried for the tensile tests. 

 Different solution heat treatments could be tried in order to reduce even more the 

presence of impurities in the aluminum matrix. 

 A combination of cold working and precipitation hardening could be performed 

on the alloy in order to verify if the strengthening effect changes. 
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