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ABSTRACT 

The offshore industry is currently experiencing challenges in designing 

flexible risers, cables etc., due to their susceptibility to FIV. Deeper understanding 

of the physics behind FIV is necessary in developing risers etc. This work presents 

two sets of experimental studies, collectively focusing on critical parameters that 

may greatly influence cylinder’s hydrodynamic response. A Tygon tube was towed 

from rest to steady speed before slowing down to rest again in still water. Axial 

pre-tension and mass ratio was varied for parametrically studying their effects on 

the cylinder’s hydrodynamic response, which was characterized mainly by 

vibration amplitudes and frequencies. The resulting effects of varying profile on 

flow-vibration amplitudes and frequencies have been quantified and expressed 

with respect to reduced velocity. A 2D numerical study has also been conducted to 

study the wake behind a circular cylinder, showing 4 types of vortex shedding 

modes.   
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CHAPTER I 

INTRODUCTION 

1 Background 

Flow-induced vibration (FIV) is a multi-disciplinary subject involving fluid and 

structural mechanics and vibrations [1]. It occurs and affects heavily many engineering 

applications where structures are subject to flowing fluid, such as power transmission 

lines, bridge decks and skyscrapers etc. Both destructive and useful motions on structures 

could be potentially caused by the interactions between the structure and moving fluid. In 

particular, offshore industry is one of the most vulnerable fields to FIV due to the 

extensive constructions in flowing water. Drilling risers, catenaries, marine cables and 

underwater pipelines are a few examples that are highly susceptible to FIV. In the 

absence of proper mitigation, FIV could potentially lead to: clashing of adjacent risers 

when multiple risers are present; increased dynamic load that could result in fatigue 

damage or even premature failure. Thus, it is considered to be a major concern 

throughout the development of offshore structures, which includes conceptualization, 

design, assessment, construction and maintenance. In the presence of FIV, the total 

project cost was estimated by British Petroleum to increase by approximately 10 %.  

In the past decades the offshore explorations have advanced to deeper water, 

extending from around 100 m in 1965 to over 3000 m in 2009 [2]. This, in concurrence 

with materials being pushed to their limits, has led to progressively lighter, more flexible, 

and more slender offshore structures. Due to these geometrical characteristics, the 
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aforementioned slender offshore structures are prone to FIV with highly-coupled 

torsional, axial and lateral flexibility [3]. Therefore, it is critical to include particularly 

careful consideration in their design stages to achieve prediction, reduction, suppression 

and mitigation of FIV without the tradeoff of increasing drag force. This requires 

enhanced understanding of the underlying interaction mechanism in FIV. Among many 

others, experimentation and numerical simulation are two viable approaches to gain more 

insights into this problem.  

Ideally, field experiment using real models in their real service locations is the 

best way to examine the occurrence and level of FIV. However, it is a costly process and 

the uncertainties in current make the conduction of experiment under desired conditions 

extremely difficult and challenging. Alternatively, laboratory testing is an appealing way 

for parametric investigation to produce high quality data by manipulating input 

parameters. The limitation of laboratory testing is that realistic fluid condition (high 

Reynolds numbers, turbulent flows, shear flows etc.) as well as model characteristics 

(high aspect ratios, mass ratios etc.) are challenging to achieved due to constrains in the 

scale of testing facility and complicated instrumentation.  

Numerically, computational fluid dynamics (CFD) occurs to be a promising way 

of investigating FIV since it is theoretically able to depict every detail in the interaction 

between structures and fluids. However, it is not yet considered a mature approach, 

especially in 3-dimensional scenarios due to the overwhelming computational time. More 

efficient computation technique and computer resources are in great need to develop this 

approach.    
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2 The phenomenon of FIV 

When a bluff body, like the aforementioned structures, is immersed in a flowing 

fluid, excitations from the fluid would cause it to vibrate and therefore interactively 

change the flow condition. This is so-called flow-induced vibration. Though these 

excitations are known to come from flowing fluid, the inducing sources still would vary. 

Many ways of classifying flow-induced vibrations have been proposed. Weaver [4] 

classified the sources of excitation based directly on the nature of the vibration: (i) forced 

vibrations induced by turbulence; (ii) self-controlled vibrations, in which some 

periodicity exists in the flow, independent of motion; (iii) self-excited vibrations. Other 

than that, a phenomenological classification was proposed by Blevins [1]. He classified 

vibrations sources into: (i) steady flow and (ii) unsteady flow. The former one are then 

subdivided into ‘instabilities’ (i.e. self-excited vibrations) and vortex-induced vibrations, 

while the latter subdivided into: random, e.g. turbulence-related; sinusoidal, e.g. wave-

related; and transient oscillations, e.g. water-hammer problems.  

Naudascher & Rockwell [5, 6] proposed a classification systematically and 

logically in terms of the sources of excitation of flow-induced vibration, namely, (i) 

extraneously induced excitation; (ii) instability-induced excitation; and (iii) movement-

induced excitation. This classification will be used more extensively in our study. 

Extraneously induced excitation is defined as due to fluctuations in the flow or pressure, 

independent of any flow instability and any structural motion, e.g. turbulence buffeting. 

Instability induced excitation is associated with a flow instability and involves local flow 

oscillations, e.g. alternate vortex shedding from a cylindrical structure. Finally, 



 

4 

 

movement induced excitation is the result from movements of the body, e.g. flutter of an 

aircraft. This classification will be used more extensively in our study. 

3 Important parameters for analysis 

A great deal of research effort has been directed to flow-induced vibration on 

circular cylinder, starting from stationary ones, to elastically mounted, and flexible. 

Different parameters ranging from describing flow characteristics to geometrical ones 

have been used in this investigation. These intensively used parameters are summarized 

into three groups in a fashion similar to [7]. Those in the first and second categories are 

related to flow conditions and model’s structural aspects respectively, while the third one 

is describing the interaction between the structure and fluid.  

3.1 Flow parameters 

Parameters described in this section are related to fluid flow properties.  

Reynolds number (Re) characterizes dynamically similar flows, i.e., flows that 

have geometrical similarities in terms of streamlines and submerged objects. It is defined 

as: 




DUDU
f





Re                                                                                                   (1.1) 

where, ρf is fluid density; U is free stream velocity; D is a characteristic dimension of the 

submerged object, which in the present study is the cylinder’s outer diameter; μ and υ are 

the dynamic and kinematic viscosity of fluid respectively.  
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Turbulence intensity is a relative measure of the amount of fluctuations in the 

flow. Usually it is expressed as:  

mean

rms

U

u
                                                                                                                            (1.2) 

with urms the root mean square of the velocity fluctuation; Umean the mean free stream 

velocity. 

3.2 Structural parameters 

These parameters describe the properties of the model under investigation and 

they are related to structure aspects.  

Damping ratio (s) is representation of the structure’s ability to dissipate energy 

in a cycle of motion. It is the ratio of the linear damping coefficient to its critical value, as 

expressed in the below equation:  

nss

s
m

c

km

c




22
                                                                                                   (1.3) 

where, c is the damping coefficient; ωn is the natural frequency. It should be noted that 

for a given vibration mode of a flexible cylinder, there is a corresponding damping 

coefficient and natural frequency. The value of damping ratio for a given mode can be 

obtained experimentally by carrying out decay test.  

Mass ratio (m
*
) describes the relative weights between the test model and fluid. It 

is defined as the ratio of the structural mass over the mass of displaced fluid, as expressed 

below: 
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f

s

m

m
m *

                                                                                                                       (1.4) 

with ms the structural mass of the test model; mf the mass of corresponding displaced 

fluid. In issues of vibration, it is common to expect added mass to the system due to its 

acceleration and deceleration. Therefore, the mass ratio is typically expressed with or 

without the inclusion of added mass in literature. However, the added mass is not 

included in the consideration of mass ratio throughout the present study.  

Aspect ratio (AR) a parameter reflecting the geometric characteristic of a 

structure, which for a circular cylinder is defined as its length over the diameter 

D

L
AR                                                                                                                            (1.5) 

where, L is the cylinder’s length and D is the cylinder’s diameter. 

Roughness ratio (Ra) is a relative measure of the model’s surface roughness. It is 

normally non-dimensionalized by the model’s diameter for a circular cylinder, as  

D

k
Ra                                                                                                                            (1.6) 

where, k is a characteristic dimension of the roughness on the model’s surface. 

Roughness ratio is one of the parameters that greatly influence the flow condition by 

varying the contact surface’s friction and therefore the boundary layer. Among others, 

more intensive turbulence and varied vortex shedding pattern are two immediate results.   

3.3 Interaction parameters 

There are some parameters that are related to both the test structure and fluid 

flow, as the problem under study is intrinsically fluid-structure interaction.   
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Non-dimensional amplitudes (Ax/D & Ay/D) are vibration amplitudes normalized 

by the cylinder’s diameter. They are relative but straightforward means to describe the 

intensity of the undergoing vibration. The in-line non-dimensional amplitude, for 

example, is defined as 

D

Ax
                                                                                                                                 (1.7) 

This also applies to the cross-flow direction.  

Reduced velocity (Ur) is an important parameter in FIV. It is the ratio of travel 

distant per cycle over the cylinder’s diameter, as defined as 

Df

U
U

n
r


                                                                                                                    (1.8) 

where, fn is the natural frequency of the cylinder. Moe & Wu [8] proposed reduced 

velocity with the natural frequency in air which is called nominal reduced velocity and 

also with true vibration frequency which is called true reduced velocity. In the present 

work the fundamental natural frequency, which is the natural frequency of the test 

cylinder vibrating at its first mode, of the system in water (fn) is used for the calculation 

of reduced velocity.  

Strouhal number (St) is a dimensionless parameter describing oscillating flow 

mechanisms and is defined as  

U

Df
St v                                                                                                                       (1.9) 

where, fv is the vortex shedding frequency. Investigations from different researchers have 

demonstrated that the Strouhal number in the wake of a cylinder is mainly dependent on 

the Reynold’s number, as depicted in Fig. 1 [9], with a value of 0.2 over a wide region. 
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Fig. 1. Strouhal-Reynolds Number relationship for circular cylinders [9]. 

4 Mathematical theory  

For cylindrical structures with high aspect ratios, for example drilling risers, they 

can be feasibly idealized as a beam with low flexural stiffness under the following 

assumptions [10]: 

i. Planar surfaces orthogonal to the axis of the beam remain planar and orthogonal 

to the axis after the deformation. Therefore transverse shear is neglected; 

ii. All the forces acting on the beam can be expressed by vectors in x or y axis; 

iii. The transverse section of the beam is symmetric with respect to plane xz or yz. 

In the case of slender flexible cylinders undergoing FIV, their responses are 

considerably more complex than that of short rigid cylinders. However, under the above 

set of assumptions, the planes perpendicular to the axis can be considered to remain as 

planes and being perpendicular to the axis under deformation. With that, the governing 

equation of a flexible cylinder, as depicted in Fig. 2, can be reasonably derived from that 

of a flexibly mounted rigid cylinder, using strip theory, where segments of the flexible 

cylinder are considered as a rigid cylinder [11, 12].  
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Fig.2. A flexible cylinder and its deformed shape under flowing fluid. 

 

Fig.3. An elastically mounted rigid cylinder under uniform flow. 

Considering a Cartesian axis reference system as depicted in Fig. 3, the ordinary 

differential equation governing the motion of a rigid cylinder of mass m, with one degree 

of freedom (depicted in Fig. 3), mounted on springs with spring constant k and dashpots 

with damping constant b, under a uniform current of velocity U can be expressed as: 

                                               
2

2

tfky
dt

dy
b

dt

yd
m                                                  (1.10) 
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 with f(t) representing the time-dependent external force acting on the rigid cylinder. One 

can see from this equation that the system’s mass, spring constant, and damping constant 

are of great significance in its dynamic response upon external forces.  

As depicted in Fig. 2, a Cartesian axis reference system similar to the one used in 

elastically mounted rigid cylinder is set up, with u(z, t) and v(z, t) denoting displacements 

in the x (in-line) and y (cross-flow) direction respectively. By applying strip theory, the 

equation governing a flexible cylinder of length L, mass per unit length m, structural 

damping b, bending stiffness EI and axial tension T, under an external force of f(z, t) in 

the x direction, is given by: 

 
     

 
 

         ,
,,,,

4

4

2

2

tzf
z

tzu
zT

zz

tzu
EI

t

tzu
b

t

tzu
zm 































                        (1.11) 

Thus, for a given external force, the flexible cylinder’s dynamic response is 

highly dependent on its structural properties (mass, damping, and bending stiffness) and 

the applied axial tension. This equation also applies to the y direction, for the cross-flow 

displacement v(z, t). Upon the knowledge of the external force, its dynamic can be 

obtained by applying the appropriate boundary conditions. For a fixed-ends cylinder as 

the one in the present study, the corresponding boundary conditions are:  

   

      0
),(

    ,0
),0(

       0,        ,0,0













z

tLu

z

tu

tLutu

 

5 Research objectives and scope 

The overall research objective of the present work is to enhance the fundamental 

understanding of the physics and interaction mechanism behind flow-induced vibration 
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on a flexible circular cylinder. This understanding is critical in the development of 

offshore cables, pipelines etc. Ultimately it will lead to a more cost-effective and reliable 

offshore structures designs.  

As revealed from the cylinder’s governing equation, the cylinder’s mass, 

damping, bending stiffness, and axial tension appear to be of dominance in its dynamic 

response. Thus, the scope of this work includes experimental investigations on the effect 

of axial pre-tension and mass ratio on the hydrodynamic response of a flexible circular 

cylinder, and a 2-dimensional numerical simulation on circular cylinder to study the wake 

downstream. This thesis is subdivided into 5 chapters to present the research and findings 

in a logical way. The second chapter describes an experimental study on the effect of 

axial pre-tension on the FIV of a flexible cylinder. Following, Chapter III contains a 

experimental work with a similar setup as that in Chapter II, but the focus of this chapter 

is to investigate the mass ratio on the dynamic response of a flexible cylinder. Due to the 

constraint in the experimental facility, the wake behind a circular cylinder with different 

mass ratio is investigated numerically, as presented in Chapter IV. In the last chapter of 

the present work, a summary of conclusions are addressed along with suggested future 

work.  
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Nomenclature 

A Cylinder’s cross-sectional area  L Cylinder’s length 

Ax IL spatio-temporal response amplitude ms Structural mass 

Ay CF spatio-temporal response amplitude m
*
 Mass ratio 

CF Cross-flow direction Re  Reynolds number 

D Cylinder’s outer diameter T Axial pre-tension 

fn Fundamental natural frequency U Towing speed 

fx IL vibration frequency Ur Reduced velocity 

fy CF vibration frequency s Damping ratio 

IL In-line direction   
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1 Introduction 

Long flexible structures subject to water currents are a common occurrence in 

offshore engineering. The slender structures involved are prone to flow-induced vibration 

causing unnecessary motions and deflections which may result in structural fatigue or 

even premature failure if not properly mitigated. Therefore, it has driven particular 

interests of the oil industry for their engineering systems such as riser pipes, catenaries or 

mooring lines. Many other industries, for example offshore wind turbine and offshore 

energy storage, have also extended to this topic. It has been found that their susceptibility 

to flow-induced vibrations with high-coupled torsional, axial and lateral flexibility in 

deep water is able to induce higher harmonics in dynamics and vibration responses at 

frequencies higher than those caused by ocean waves [1]. In practical applications, to 

minimize deflections caused by drag force in the in-line (IL) direction that is transverse to 

the span, pre-tensions in the axial direction are commonly applied on cables and tethers. 

The applied pre-tensions may alter the natural frequency of cables and consequently 

affect their dominant harmonics of IL and cross-flow (CF) responses. Therefore, applying 

pre-tensions to cables and tethers is a potential way for active control of their underwater 

responses. 

Among the published works investigating flow-induced vibrations of cylindrical 

structures in cross flows, the vast majority are on flexibly mounted short rigid cylinders 

with one or two degrees of freedoms [2−4]. In offshore energy and storage applications 

the structures involved are typically long and flexible, which tend to preclude benefitting 

from the vast historical research on simpler, short and rigid cylinders. More recently, 

however, with enhanced interest in deep water exploration some interesting work on the 
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slender flexible cylinders have been published [5, 6]. Systematic studies on the mitigation 

of severe flow-induced vibrations and failure through the use of pre-tension are still 

lacking.  

Recently in a study by Chaplin et al. [7], a tensioned riser of 13.12 m in length 

and 28 mm in diameter, which resulted in an aspect ratio (cylinder’s length/cylinder’s 

outer diameter) of 468.5, was tested in step flow (35% of the model’s length was 

submerged) over the Reynolds numbers range from 2500 to 25000. The mass ratio (mass 

of cylinder/mass of displaced fluid) of their model was about 3 and the bending stiffness 

was 29.9 N∙m
2
. Five cases of axial tension (390 to 1925 N) were applied, resulting in five 

corresponding natural frequencies. Multi-modal response and structural modes up to the 

8
th

 in cross-flow (CF), and 14
th

 in in-line (IL) direction were observed in this work. It was 

also reported that there was no relationship between the modes of vibration and the 

changes in pre-tension [7]. Following this experiment, Huera-Huarte and Bearman [8, 9] 

carried out a similar laboratory test on a vertical flexible cylinder with a diameter of 16 

mm in step flow with Reynolds number between 1200 and 12000. Their model was 1.5 m 

long (L/D = 93.75) with a mass ratio of 1.8. Various pre-tensions in the range from 5 to 

110 N were applied from the top end, giving fundamental natural frequencies from 3 to 

7.1 Hz. The response of their model with lowest pre-tension was found to be similar to 

that of a flexibly mounted cylinder with well-defined initial, lower and upper branches 

within the lock-in region. At higher applied tension, however, only the initial and upper 

branches of response remained. This result is in contrast with the result from the study by 

Sanaati & Kato [1], in which clear initial, upper, lower and de-synchronization branches 

of response amplitude were shown. Sanaati & Kato [1] also found an increase of nearly 
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57% in lift coefficient and a decrease of about 30% in response amplitude as pre-tension 

increased from 73.5 to 294 N. Moreover, a narrowed lock-in bandwidth of response 

amplitude was observed with increasing pre-tension. In a study of a flexible cylinder with 

mass ratio of about 1 and pre-tension of 222.4 N, Lee & Allen [10] identified that if 

either one of the pre-tension and axial stiffness is large, the vibration frequency of a 

cylinder could significantly rise as flow speed increases.  

Many discrepancies remain regarding the effect of pre-tension on flow-induced 

vibration of a flexible cylinder. This paper attempts to further study the effects of pre-

tension on the dynamic response of a flexible cylinder with a relatively high aspect ratio 

and low mass ratio. 

2 Experimental setup 

The experiments were conducted in a 2.5 m long towing tank with a cross section 

of 0.8 × 0.8 m. The tank was filled with water up to a depth of 0.7 m. The towing motion 

is realized through the use of a pneumatic rod-less actuator and a supporting frame. As 

illustrated in Fig. 1a, the supporting frame employed to provide support for the flexible 

cylinder is firmly mounted under the actuator. Compressed air is applied to power the 

actuator with an effective travel distance of 1.6 m, during which the actuator would speed 

up rapidly from rest to steady speed, remaining steady over a short period before slowing 

down to rest again. The time consumed by acceleration and deceleration is around 0.8 s 

and 0.5 s respectively. Steady towing speeds from 0.1 to 1.6 m/s could be obtained by 

adjusting the compressed air pressure applied on the actuator. But in the present study, 

only speeds ranging from 0.1 to 0.8 m/s were investigated. In order to avoid resonance 
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response between the supporting frame and test cylinder, the frame is made highly rigid 

so that its natural frequency is well beyond that of the cylinder. 

 

 

Fig. 1. Experimental setup: (a) A schematic of towing tank; (b) Supporting mechanism. 

A Tygon tube with an effective length of 0.45 m was employed to provide a 

highly flexible model with low mass ratio of 0.77. The test model was a hollow cylinder 

(a) 

(b) 
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with inner diameter of 4.8 mm and outer diameter of 7.9 mm. Therefore, the aspect ratio 

(length to outer diameter) was 57 in this study. Two screws extending nearly 20 mm 

inside the cylinder were used as fixed constraints to make horizontal connection to the 

frame at both ends, as shown in Fig. 1b. With this pair of screws, the cylinder was sealed 

with air inside. Three end conditions with different axial pre-tensions, namely T1 = 0, T2 

= 4, and T3 = 8 N, were applied by means of adjusting the screws to stretch the cylinder. 

The pre-tensions were measured by a force meter through inducing same stretch on the 

cylinder before it was connected to the frame. Table 1 indicates their corresponding 

fundamental natural frequencies (frequencies of the first structural mode) and the 

symbols that represent the cases throughout this study. Impulse excitation tests were 

carried out to determine the fundamental natural frequencies and the damping ratios 

(damping coefficient/critical damping coefficient). As was found in our preliminary 

excitation tests, there were only small variations in the average value of damping ratios. 

The damping ratio is assumed to be constant in the current research. Based on the 

obtained fundamental natural frequencies, the reduced velocity, Ur (U/fnD), was 

calculated to be in the range of 2 to 16. Details of the test model are summarized in Table 

2. In order to minimize the impact of the free surface and boundary layer on the bottom 

of the tank, the test cylinder was located 0.40 m above the bottom surface and therefore 

0.30 m beneath the static free surface, about 40 times its outer diameter. 

Table 1. Pre-tension and corresponding natural frequency. 

Pre-tension, Tn (N) Symbol Fundamental natural frequency (Hz) 

0 □ 5.16 

4 △ 7.15 

8 о 9.14 
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To represent the phenomenon in a more realistic manner, the test cylinder was 

free to vibrate in both IL and CF directions with arbitrary amplitudes and stretch in the 

axial direction. For measurement of cylinder motions, two high-performance tracking 

cameras were employed at capture rates of 60 frames per second. One of them was 

positioned at one end of the tank for capturing the cylinder’s cross-flow vibration while 

the other one was mounted above the cylinder for in-line motion. To avoid the impact of 

the free surface on image quality, the latter one was located slightly beneath the water 

surface. While the test is running, the mean drag force causes mean in-line displacement 

on the model. Consequently, the camera could not stay right above the cylinder during 

the test, leading to lowered accuracy. To minimize this effect, the camera mounted above 

the cylinder is positioned approximately 3D behind the cylinder in the IL direction.   

Table 2. Test model characteristics and test parameters. 

Aspect ratio L/D 57 

Axial stiffness EA 120 N 

Damping ratio s 0.014  

Flexural stiffness EI 0.001 Nm
2
 

Length L 450 mm 

Mass ms 0.037 kg/m 

Mass ratio m* 0.77 

Outer diameter D 7.9 mm 

Reduced velocity Ur 2~16 

Reynolds number Re 780~6300 

Towing speed U 0.1~0.8 m/s 
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Responses at three positions (identified as S1, S2 and S3) of the test cylinder were 

analyzed with the help of tracking cameras. The positions relative to the span of the 

model are 0.25, 0.5 and 0.75 of the cylinder length respectively, as illustrated in Fig. 2. 

The uniform cross-flow was generated by towing the test cylinder along the tank in calm 

water condition, and the time interval between two runs was set to be at least 10 minutes 

to minimize the disturbance caused by the previous run. 

 

Fig. 2. Measurement positions along the model. 

 

Fig. 3. Sample variation of towing speed. 

Figure 3 shows the variation of the towing speed for the 4 N pre-tension case. It is 

clear that the towing carriage first accelerates rapidly for approximately 0.8 s before 
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reaching the steady towing speed followed by a rapid slowing down to rest. Obviously, 

higher steady towing speeds resulted in a quicker acceleration during the ramping-up 

stage. Note that there is about 12 s of constant velocity at the lowest towing speed while 

only around 0.5 s at the highest towing speed. 

3 Result and discussion 

In the present study, our focus has been on the dynamic response of a flexible 

model undergoing flow-induced vibration in order to obtain insights into underwater 

flexible cables’ motion. Hence, in this section, the vibration amplitude and frequency are 

chosen to study the model’s dynamic response. For all the following figures, symbols are 

used to indicate different pre-tension applied to the model as indicated in Table 1. For 

each run, the time window in which the model was being towed at a steady speed is used 

for performing vibration amplitude and frequency analysis. Though it is inevitable that 

the tension along the test model would increase due to the mean in-line displacement and 

therefore the natural frequency varies during the tests, the initial value of natural 

frequency is used for analysis and non-dimensionalizing the flow velocity according to 

(2.1)                                                                                                                             
Df

U
U

n
r


  

where, fn is the fundamental natural frequency of the test cylinder in still water obtained 

from impulse excitation test; D is the outer diameter of the cylinder. As shown in Fig. 1a, 

a Cartesian reference system is considered in this study and therefore IL response is 

denoted with u(z, t) and CF one with v(z, t). The vibration amplitude for both IL and CF 
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response are described with spatio-temporal standard deviations of responses, which are 

calculated as follows. 
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where, S is the number of time samples in the selected time window for analysis and N is 

the number of measurement positions. The uncertainties of vibration amplitude are 

estimated to be 10.3% for IL response and 8.9% for CF. 

In Fig. 4, the dimensionless spatio-temporal standard deviations of the in-line and 

cross-flow displacements are presented. Initial, upper and lower branches of the response 

amplitude can be seen clearly for both IL and CF response. Differently, there are two 

peaks in IL response amplitude while only one in CF response amplitude. This is 

different from the findings of the study by Sanaati & Kato [1], where there were two 

peaks clearly shown for CF response amplitude. Clear initial upper branch and lower 

branch were also found in the study by Gu et al. [11] and Huera-Huarte and Bearman [8] 

at low pre-tension. However, Huera-Huarte and Bearman [8] only observed initial and 

upper branches at high pre-tension. In the present study, the first peaks of IL responses 

occur at a reduced velocity around 6, followed by the second peak around 10 for the case 

with pre-tension of 4 N, and 13 for the case with pre-tension of 0 N. It should be noted 

that although there is no implication of suppressing response amplitude, the obtained 

peak amplitude of response decreases with increasing pre-tension. Moreover, from the 
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plot of IL response amplitude, it can be seen that the lock-in bandwidth is narrowed as 

pre-tension increases, and this agrees with the findings of Sanaati & Kato [1]. 

 

 

Fig. 4. Dimensionless amplitudes versus reduced velocity: (a) in-line ( *

xA /D); (b) cross-flow (
*

yA

/D). 

Dominant response frequencies that are the largest peaks in the spectra in each 

case were obtained by frequency analysis, using a Fast Fourier Transform of the response 

(a) 

(b) 



 

25 

 

amplitudes. In the IL response, the mean deflection due to mean drag force was removed 

from the response displacement in advance. Interestingly, the frequency ratios were 

found to be independent of the end conditions; though it was observed that with 

increasing pre-tension the response frequency increases.  

 

 

Fig. 5. Dimensionless response frequencies versus reduced velocity: (a) in-line (fx/fn); (b) cross-

flow (fy/fn). 

(b) 

(a) 
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In Fig. 5, a linear fit to the data is also added to the frequency plot. The frequency 

ratio for IL and CF response for three end conditions remains linear with respect to the 

reduced velocity. The slope for IL response frequency in this work is 0.28 (see Fig. 5), 

which is between the values of 0.16 and 0.32 reported by Huera-Huarte and Bearman [8]. 

For CF response, the slope is 0.14 as can be observed in Fig. 5, slightly lower than the 

value of 0.16 found by Huera-Huarte and Bearman [8]. In a study by Gu et al. [11], IL 

response frequency was also observed to distribute into two branches with slope of 0.18 

and 0.36 respectively, while the CF one was found to be 0.18. In the present study, the 

frequency ratio of IL to CF response is presented in Fig. 6. As expected, this ratio 

remains approximately around 2 with increasing reduced velocity despite the changes in 

end condition. This value was also reported by Sanaati & Kato [1] except for the IL lock-

in and upper branch regions. Moreover, in the study by Gu et al. [11], the frequency ratio 

was found to be either around 1 or 2 when the reduced velocity is higher than 4. 

 

Fig. 6. Frequency ratio of in-line to cross-flow response versus reduced velocity. 
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4 Conclusion 

An experimental investigation on the effects of pre-tension on hydrodynamic 

response of a highly flexible circular cylinder with 2 degree of freedom undergoing cross 

flow-induced vibration has been reported. The Reynolds number was varied from 780 to 

6300 while the reduced velocity changed from 2 to 16. The response has been studied 

through vibration amplitude and frequency analysis. Three end conditions with pre-

tension of 0, 4 and 8 N were tested. Within the tested tension range, two peaks were 

found in in-line response amplitude while only one in cross-flow response. With 

increasing pre-tension, the amplitude of vibration, especially the cross stream one, 

appeared to decrease. This is particularly the case at reduced velocity corresponding to 

the maximum vibration amplitude. Moreover, pre-tension seems to be able to narrow the 

lock-in bandwidth in in-line response. Also examined was the vibration frequency. 

Independence of pre-tension was shown in frequency ratios. For frequencies ratios of IL 

and CF response to fundamental natural frequencies, with increasing reduced velocity, 

they increased approximately linearly with the tested range. The slopes of linear fitting 

are 0.28 and 0.14 for IL and CF motions respectively. The ratio of IL response frequency 

to CF one remained at approximately 2 within the tested range despite the changes in pre-

tension. It should be noted that the pre-tension range tested in this study was relatively 

narrow so the effects of pre-tension on suppressing vibration amplitude cannot be 

generalized. Further study with wider pre-tension ranges is needed to achieve a more 

comprehensive understanding of the effects of pre-tension on flow-induced vibration of 

flexible cylinder. 
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1 Introduction 

The dynamics of cylindrical structures subjected to cross flow have received a 

great deal of attention. This to a great extent is because of their engineering importance, 

particularly in offshore engineering where they are extensively deployed in cross flow as 

deep water exploration pipes, oil production risers, catenaries etc. Inevitably external 

forces exerted by the nearby fluid flow cause these cylindrical structures to oscillate, in 

both stream-wise (in-line, IL) and transverse (cross-flow, CF) directions. This 

phenomenon is termed as flow-induced vibration (FIV) [1]. Increasing the dynamic load 

on offshore structures, FIV could be a significant source of fatigue damage or even 

premature failure. Hence, a comprehensive understanding of the underlying dynamic 

interaction mechanism is important such that general prediction of occurrence, as well as 

probable response amplitude and frequency, corresponding approaches for mitigation 

could be established for offshore engineering designs. 

1.1 Elastically mounted rigid circular cylinders 

Research in this field began with elastically mounted rigid cylinders with one or 

two degrees of freedom (1DF or 2DF). Fundamental characteristics like dynamic forces, 

vortex shedding mode, lock-in region, effects of surface roughness and mass ratio, have 

driven most interests. The current state of the field and comprehensive reviews are 

provided in [2–8] among others. Review of these references suggests that in terms of a 

cylinder’s dynamic response, mass ratio is an influential parameter. It is well recognized 

that a rigid cylinder’s amplitude response is classified into three main categories, 

depending on the value of mass ratio (see Fig. 1). Firstly, a cylinder with high mass ratio 
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vibrating in cross-flow direction typically displays two branches of response amplitude, 

namely the ‘initial’ and ‘lower’. This was first reported in a study with mass ratio of 248 

by Feng [9]. An abrupt jump and hysteretic transition between these two branches was 

also presented. The jump in response amplitude was accompanied with a jump in the 

phase of pressure fluctuation, which was later revealed to be associated with a transition 

in wake pattern, from the ‘2S’ mode (2 single vortices shed per cycle, Fig. 2a) to ‘2P’ (2 

vortex pairs shed per cycle, Fig. 2b), i.e., ‘2S’ corresponded to the initial branch while 

‘2P’ to the lower one [10–12]. 

 

Fig. 1. Cross-flow vibration amplitude (A
*
) of an elastically mounted cylinder versus reduced 

velocity, Ur, demonstrating various branches and corresponding vortex shedding mode: data from 

Feng [9] at mass ratio, m
*
 = 248 (open circle symbols); Khalak & Williamson [13] at m

*
 = 2.4 

(solid square symbols); and Jauvtis & Williamson [14] at m
*
 = 2.6 (open triangle symbols).     
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An elastically mounted cylinder with reduced mass ratio would experience 

increases in its amplitude response [15]. Further to this, a new branch, namely the ‘upper’ 

branch, was discovered between the initial and lower branches with large response 

amplitude [12, 13, 16, & 17]. A new vortex shedding mode similar to the ‘2P’ mode, with 

two vortex pairs shedding per cycle but the latter vortices of each pair significantly 

weaker than the first (Fig. 2c), was revealed to correspond to the ‘upper’ branch. Beyond 

this, low mass ratios also make the added mass comparable to cylinder’s structural mass, 

which includes any enclosed matter but excludes the hydrodynamic mass. This results in 

a non-negligible variation in the total mass and would thus alter the natural frequency. 

Consequently, significantly broader lock-in regions, within which the vortex shedding 

frequency departs from the Strouhal frequency and synchronizes with the natural 

frequency, is common when the vibrating cylinder has low mass ratios [15].  

Further investigation on rigid cylinders was extended to 2DF by Jauvtis & 

Williamson [14, 18, & 19]. They carried out a comprehensive study on a rigid cylinder 

permitted to oscillate in in-line and cross-flow directions, in which the cylinder was 

designed to have identical natural frequencies and mass ratios ranging from 1.5 to 25.0. 

The added freedom in the in-line direction was found to have little influence on the cross-

flow vibration at high mass ratio, i.e., the findings from 1DF scenarios remained of strong 

relevance to the case of 2DF. The influence became more evident as the mass ratio 

decreased. They concluded that in the cases of mass ratios above five or six, the added 

freedom had limited influence on the cross-flow response; however, once mass ratio fell 

below this value, the system’s response was drastically modified: the upper branch was 

replaced by a new branch (denoted as ‘super upper’; see Fig. 1) characterized by 1.5 
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diameters amplitude and ‘2T’ vortex shedding mode that comprised a triplet of vortices 

every half cycle (Fig. 2d). This trend persisted until it reached the critical mass ratio of 

around 0.54, below which large amplitude vibration persisted over the tested range above 

initial lock-in. 

                       

Fig. 2. Vortex shedding modes of an elastically mounted cylinder: (a), (b) and (c) shows the 

modes corresponding to the initial, lower and upper branches respectively from [12]; (d) shows 

the mode corresponding to the super upper branch, from [18, 19].   
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1.2 Flexible circular cylinders 

With the extensive use of flexible cylinders in offshore engineering, studies on 

FIV have been extended to flexible cylinders in recent decades, but it has not been 

covered as extensively as rigid cylinders. The structural flexibility introduces a capacity 

of vibrating at high modes. When this is considered concurrently with their added mass 

and damping distribution while in motion, it results in added complexities like 

single/multi-mode vibration and thus multi-frequency, modes competition, traveling 

waves along the cylinders’ length etc. [20–23]. For a vibrating flexible cylinder, the 

cable-like and beam-like structures are two generally accepted structural systems for 

analysis. It is termed a cable if the tension dominates, while it is termed a beam if the 

bending rigidity does. Results from the study by Lee and Allen [24] showed that the 

vibration frequency of a cylinder rises with the flow speed for a tension-dominated 

structure but does not rise significantly for a bending rigidity dominated structure. In 

addition, the lock-in bandwidth is broad for bending-dominated cases, indicating a weak 

association between the changes in vibration frequency and lock-in bandwidth. 

In a pioneering work involving flexible cylinders by Vandiver [25] experimental 

results from previous research on flexible cylinders were consolidated to reveal the non-

dimensional parameters governing the phenomena of VIV in flexible cylinders. The 

significance of mass ratio was again emphasized. It was indicated that cylinders with low 

mass ratios present a broader lock-in range than those with high mass ratios, a fact also 

observed in rigid cylinder studies. However, due to the challenges in varying a mass ratio 

during a set of tests for a constructed, instrumented flexible cylinder, a systematic study 

to ascertain the dependence of the cylinder’s dynamic response on mass ratio is still rare. 
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Chaplin et al. [26] carried out a set of laboratory tests on a tensioned riser with an aspect 

ratio of 468.5, a mass ratio of about 3, done in step flow (35% of the cylinder’s length 

was submerged). Cross-flow vibration modes up to the 8th were observed as well as 

multi-mode responses. Contributions from several modes were found in the responses at 

all reduced velocities but the lower ones. Huera-Huarte & Bearman [27] carried out a 

similar test on a flexible cylinder with an aspect ratio of 94 and a mass ratio of 1.8. The 

maximum attainable amplitudes up to about 0.7 diameters in the cross-flow direction and 

0.3 diameters in-line were reported. This was considered a difference from the flexibly 

mounted rigid cylinder, where response amplitude over 1.5 diameters was demonstrated 

in a study by Jauvtis & Williamson [14]. The response frequencies in lock-in region were 

found to synchronize with the natural frequency of the responding mode. They reported 

using a Strouhal number of about 0.16 to predict the response frequencies as Chaplin et 

al. [28] proposed in the past. 

Working in line with their studies, Huera-Huarte et al. [29] recently reported a 

new response data set on a flexible cylinder. They presented the dynamic response of two 

slightly different flexible cylinders: one with a mass ratio and aspect ratio of 1.1 and 158 

respectively while the other one of 2.7 and 187. They reached a conclusion that very low 

mass ratio had the effect of leading to a large increase in both cross-flow and in-line 

response amplitude on flexible cylinders, similar to what it had on elastically mounted 

rigid cylinders. Besides, the overall response in very low mass ratios appeared to be 

contributed from a larger number of modes. Unfortunately no direct comparison was 

made in the dynamic responses between the two cylinders due to the fact that those two 

cylinders were not practically identical except for the mass ratio. To the best of the 
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authors’ knowledge, this is the only experimental work in the literature involving flexible 

cylinders with different mass ratios. More research efforts and systematic investigation 

on the effect of mass ratio are required.  

For the present work a series of experimental tests have been carried out to further 

investigate the flow-induced vibration of a highly flexible circular cylinder at especially 

low mass ratios. The focus is on revealing whether varying mass ratios, below 6, would 

cause significant variations on overall response mode, amplitude and frequency. 

Measurements are obtained for the cylinder’s response to vortex excitation at high modes 

in both cross flow and in line directions. 

2 Description of the experiment 

2.1 Towing tank 

 

Fig. 3. Sketch of overall experiment setup. 
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The towing tank utilized was located in the Turbulence and Energy Laboratory at 

the University of Windsor. Made of glass, it is a transparent tank with dimensions of 2.5 

 0.8  0.8 m (see Fig. 3). During the tests, it was filled with water up to a depth of 0.7 

m. Its transparency made the optical access possible. 

The overall experimental configuration is illustrated in Fig. 3. A pneumatic rod-

less actuator was installed and fixed horizontally along the tank’s length, in the centre of 

the tank width span. It drives a rigid frame that serves as the towing carriage. The rigid 

frame is mounted firmly under the actuator. The rigid frame itself introduces a high 

natural frequency that is well beyond that of the cylinder; which ideally does not interfere 

with its response. The horizontal connection of the test model to the rigid frame is 

achieved through fixed constraints, which are a pair of set screws, at both ends, elevating 

the cylinder at a height of 400 mm from the tank’s bottom, so there is 300 mm between 

the cylinder and the free surface. According to a numerical study of fluid flow past a 

circular cylinder by Farrant et al. [30] it is reasonable to neglect both the effects of tank 

bottom and free surface at such distances, as they are around 50 and 40 times the 

cylinder’s diameter. While horizontally holding the test cylinder, this pair of screws 

extended approximately 15 mm into the cylinder in its axial direction and therefore also 

acted as two plugs at its ends to help seal the cylinder with desired materials inside. This 

towing apparatus carries the test cylinders through still fluids over a total travel distance 

of 1.6 m. During the travel distance, the carriage accelerates rapidly from rest to a 

constant testing velocity and back to rest again. The speed of the carriage is pressure-

controlled, i.e., by adjusting the applied pressure on the actuator, towing speeds up to 1.6 

m/s are possible.  
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2.2 Characteristics of the flexible cylinder 

 

Fig. 4. Supporting mechanism. 

The flexible circular cylinder tested is a hollow Tygon tube with an inner 

diameter of 4.8 mm (3/16 in.) and outer diameter of 7.9 mm (5/16 in.). It has an initial 

length of 420 mm and is horizontally connected to the rigid supporting frame via a set of 

screws at both ends, as shown in Fig. 4. It should be noted that the tip to tip distance 

between the two screws is 460 mm (effective length), i.e., the flexible cylinder reaches a 

tensioned state (40 mm elongation) when installed in place. From this point forward, the 

cylinder’s length will always refer to the effective length (460 mm). Inevitably a 

reduction in the cylinder’s diameter occurs when it is being stretched. Measurements 

were conducted on the stretched cylinder’s outer diameter using a digital caliper and it 

was found to be around 7.91 mm, based on which the reduction rate is calculated to be 

3%. Since it is not remarkable, the cylinder’s outer diameter is considered as 7.9 mm 

throughout the whole study. Therefore the test cylinder’s aspect ratio, which is defined as 
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ratio of length to outer diameter, is 58 in the present study. The axial pre-tension applied 

on the stretched cylinder was measured to be around 11 N, using a force meter by means 

of inducing identical elongation (40 mm) on the cylinder when it was disconnected from 

the supporting frame. For the convenience of comparison with literature, the value of pre-

tension is converted to a dimensionless form of 1200, using 

crTTT /*                                                                                                                                              (3.1) 

where, T is the pre-tension, and Tcr is the critical compression load for buckling. Tcr can 

be obtained from 

22 4/ LEITcr                                                                                                                                       (3.2) 

where, E is the Young’s modulus of the model material, I the cross-sectional inertia and L 

the model’s original length. The high value of dimensionless pre-tension is mainly a 

result from the low critical compression load. In the present study, the cylinder is towed 

through the water in speeds ranging from about 0.1 m/s to 1.6 m/s. Accordingly, the 

Reynolds number based on its diameter spans from 800 to 13,000 while reduced 

velocities range from 1 to 25, calculated from 

Df

U
U

n
r


                                                                                                                                            (3.3) 

where, U is the towing speed; fn is the natural frequency of test cylinder in its first 

vibration mode; D is the cylinder’s outer diameter. It should be noted that fn will be 

altered as the result of the varying mass ratio. Therefore, cases with different mass ratio 

may have different value of Ur at a same towing speed. To maintain a uniform cross flow 

at least 10 minutes are taken as time interval between runs for minimizing the disturbance 
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induced by previous run. The cylinder’s material properties and tested flow conditions 

are summarized in Table 1. 

Table 1. Cylinder material properties and flow conditions. 

Aspect ratio L/D 58 

Axial stiffness EA 124 N 

Effective length L 460 mm 

Flexural stiffness EI 0.001 Nm
2
 

Mass ms 37 g/m 

Outer diameter D 7.9 mm 

Pre-tension T
*
 1200 

Reduced velocity Ur 2 − 25 

Reynolds number Re 800 − 13,000 

Towing speed U 0.1 − 1.6 m/s 

Table 2. Test cases with corresponding parameters. 

Mass 

ratio 
Designation Fill material 

Material 

density 

Fund. nat. 

freq. 

Damping 

ratio 

0.7 M-0.7 Air 1.2 kg/m
3
 11.3 Hz 4% 

1.0 M-1.0 Water 997.1 kg/m
3
 10.3 Hz 3% 

3.4 M-3.4 Alloy powder 8000 kg/m
3
 8.4 Hz 3% 

As our focus of this study is the effect of mass ratio on the cylinder’s flow-

induced vibration, the cylinder is pre-pared to have different mass ratios by filling the 

cylinder with different materials. Mass ratios of flexible structures in offshore 

applications can be as low as 3 [29], and as noted there is a dearth of investigations for 

mass ratios near 1. Subsequently, the mass ratios in the present study were chosen to 

explore low values, namely 0.7, 1.0 and 3.4. These were achieved by filling the cylinder 
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with air, water and alloy powder respectively. Table 2 indicates the fill materials and each 

case’s fundamental natural frequency (natural frequency of the first structural mode) as 

well as damping ratio (damping coefficient/critical damping coefficient) in still water. 

Fundamental natural frequency and damping ratio for each case was determined via free 

decay test where impulse excitation was imposed to the mid-span of the tensioned 

cylinder. This was achieved by slightly flipping the submerged cylinder’s mid-point 

using a slim iron wire. The midpoint’s response was then captured and analyzed using 

fast Fourier transform (FFT). The time history and spectra of case M-3.4’s midpoint 

during decay test is presented in Fig. 5 as an example. Damping ratio was determined via 

logarithmic decrement from 

m

yy mnn


 




2

)/ln(
                                                                                                                             (3.4) 

where, yn is the displacement of the n
th

 cycle, and y
n+m

 of the (n+m)
th

 cycle. As found 

from the tests, the case with air has a damping ratio of 4%, which is 1% higher than that 

of cases with water and alloy powder. 

 

Fig. 5. Time history of decay test (alloy powder). 
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2.3 Measurement technique 

In the present study, the response of the flexible cylinder was measured optically. 

Two high-speed cameras were deployed to track its vibration response at a rate of 240 

frames per second. As illustrated in Fig. 3, to visualize the cross flow response, Camera 1 

was installed at one end of the tank, 10 m from the cylinder’s initial position, horizontally 

aligned with the test cylinder. Camera 2 was mounted above the cylinder on the 

supporting frame for the in-line response measurement (also illustrated in Fig. 4). During 

tests, Camera 2 was carried through the fluids and thus stayed above the model. To 

eliminate the impact of free surface on video quality, Camera 2 was immersed slightly 

beneath the water surface. While the test is running, the mean drag force causes mean in-

line displacement on the model. Consequently, the camera could not stay right above the 

cylinder during the test, leading to lowered accuracy. To minimize this effect, Camera 2 

was positioned approximately 3D behind the cylinder’s initial position in the IL direction. 

Marking three locations of the cylinder span, 8 mm wide fluorescent tape rings served as 

a visualizing target, as shown in Fig. 6. Identified as S-0.25, S-0.50 and S-0.75, their 

relative positions on the model’s span are 0.25, 0.50 and 0.75 respectively. 

 

Fig. 6. Measurement locations and their designations. 
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3 Result and discussion  

The hydrodynamic response of a flexible cylinder is a nonlinear phenomenon and 

is highly dependent on parameters such as reduced velocity, Reynolds number, mass ratio 

and damping ratio. Many studies have attempted to combine mass ratio and damping 

ratio to investigate the cylinder’s response. As the damping ratios of three tested cases in 

the present study are nearly the same (4%, 3% and 3%), it is now assumed that the small 

variation in damping ratio has little influence on the cylinder’s response. Consequently, 

the variation in mass ratio is deemed to be the major contributor to the difference in 

system’s response. 

A Cartesian reference system with origin at the mid-span of the model as shown 

in Fig. 3 is under consideration in the present study, with x denoting the in-line direction, 

y the cross-flow and z the span-wise. Therefore, u(z, t) and v(z, t) are used to represent the 

instantaneous displacements in the in-line and cross-flow directions respectively. 

3.1 Towing motion and resulted response 

As mentioned above, the towing carriage is actuated by compressed air starting 

from rest and advancing to a constant velocity. After a short period of that it decelerates 

to a complete stop. This towing motion is demonstrated in Fig. 7, showing several cases’ 

time histories of the towing speeds as examples. It is noted that the positive and negative 

acceleration stages consume approximately 0.8 s and 1 s respectively for all the speeds. 

Hence, the time period remaining for constant speed motion is approximately 12 s for the 

lowest towing speed of 0.1 m/s and 0.6 s for the highest speed of 1.6 m/s.  
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Fig. 7. Examples of time history of towing speed. 

 

 

 

Fig. 8. History of CF displacement, and corresponding amplitude spectra for case M-3.4 at U = 

0.53 m/s 

The variance in towing speed is also reflected in the left column of Fig. 8, 

showing the time history and corresponding spectra of the cross-flow response 

displacement for the case M-3.4 at a towing speed of 0.53 m/s. The cylinder becomes 
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excited as the towing carriage is actuated, and experiences rapid increase in response 

amplitude until around 0.8 s. Steady vibration appears to be reached approximately at a 

time of 1 s. Finally at t ≈ 2.5 s, a drastic change in the displacement is seen, reflecting the 

sharp slowdown of the towing carriage. To study the cylinder’s hydrodynamic response 

through the steady vibration stage, a time window, within which the cylinder vibrates 

steadily, is thus applied to each case to select data of interest. Only displacement within 

the time window is processed for vibration amplitude and frequency analysis. The mid-

column of Fig. 8 presents the enlarged time histories of displacement in these chosen 

time intervals [1, 2.5] s. FFT is thereafter applied to the selected data to obtain the spectra 

distribution, which is demonstrated in the right column of Fig. 8.  

3.2 Multi-frequency vibration & higher harmonics  

One can see from the right column of Fig. 8 that there are two distinct peaks at 

frequencies of 8.9 and 14.5 Hz, indicating significant contributions from these two 

frequencies in the cylinder’s cross-flow response. Furthermore, the dominant frequency, 

which has the highest peak in the spectra, is found to be different at locations along its 

span. In the case shown in Fig. 8 for example, its mid-span, S-0.50, is dominated by 

frequency of 8.9 Hz, while S-0.25 and S-0.75 dominated by frequency of 14.5 Hz. This 

could suggest that the cylinder is undergoing multi-frequency vibration with different 

span locations vibrating at different frequencies. It should be noted that this is not a 

special case in the cylinder’s dynamic response; it also appears at other towing speeds 

and in cases M-0.7 and M-1.0. 
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Fig. 9. History of CF displacement, and corresponding amplitude spectra for the case M-1.0 at U 

= 0.24 m/s. 

Another common phenomenon is that the outstanding frequencies are found to be 

in fold-increase in some tested cases’ response spectra. For example, Fig. 9 shows the 

dis-placement and spectra of case M-1.0 at U = 0.24 m/s in a fashion similar to Fig. 8. A 

dominant vibration frequency of 6.1 Hz is outstanding over the range. In addition to that, 

notable contributions from frequencies that are 2, 3, 4, 5, and 6 times the dominant one 

are also identified in its dynamic response, indicating the existence of higher harmonics. 

This might be a result from the synchronization between the vortex shedding frequency 

and the vibration frequency. For an underwater circular cylinder the vortex shedding 

frequency follows Strouhal frequency (fst) when lock-in is not present. According to Figs. 

14 & 15 that present the response amplitudes of in-line and cross-flow vibrations, it is 

clear that lock-in is absent for case M-1.0 at U = 0.24 m/s (Ur = 2.9). Hence, it is 
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reasonable to assume the vortex shedding frequency (fv) for the case under consideration 

follows the Strouhal frequency, i.e., fv = fst. Then we evaluate the vortex shedding 

frequency, as 

 DUStfst /                                                                                                                   (3.5) 

by adopting St = 0.2, a value of 6.07 Hz is identified for fst and thus fv at U = 0.24 m/s. 

That means the higher harmonics are associated with the synchronization between vortex 

shedding and vibration frequencies. Unlike the higher harmonics reported by Vandiver et 

al. [31] and Song et al. [32], which only had the odd multiple harmonics in cross-flow 

response, both odd and even multiples are found in the cross-flow response in the present 

study. As suggested by Song et al. [32], higher harmonics require more design attention 

since their high frequencies likely lead to more severe fatigue damage. 

3.3 General vibration characteristics 

Figure 10 demonstrates the response spectra at S-0.50 of three cases expressed 

with respect to reduced velocity. The left column shows the spectra of in-line response, 

while the right column shows that of cross-flow response. One can see from the in-line 

spectra that for case M-0.7, which has air sealed inside the cylinder, its vibration 

frequency increases nearly linearly with increasing reduced velocity, similar to that of a 

rigid cylinder. Govardhan & Williamson [12] reported a relation close to linear between 

the vibration frequency and current velocity on the cylinder with m
*
 ≈ 1. The highest 

frequency observed in current study is around 60 Hz. It is also clear that at a reduced 

velocity around 6, the cylinder experiences a significant amplitude peak. Similarly for 

case M-1.0, its vibration frequency also rises as reduced velocity increases and reaches an  
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Fig. 10. Spectral distribution of S-0.50: from top to bottom are M-0.7, M-1.0, M-3.4 with left 

column for IL response, right for CF. 
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amplitude peak at Ur ≈ 6. However, it is noticeable that at reduced velocity around 7, 

there is a sudden change in the vibration frequency of case M-1.0, jumping from 17 Hz at 

Ur = 6 to 27 Hz at Ur = 8.1. Between them is the transition zone where competition 

between two vibration frequencies is observed. Fig. 11 is a better presentation for such an 

observation. The competition and evolution at consecutive reduced velocities is evident 

here. Following this trend, the second jump and competition is discovered at a reduced 

velocity around 11. This is also the case and even more obvious when the mass ratio is 

increased to 3.4, as shown in the bottom left of Fig. 10. Jumps and competitions are 

observed at reduced velocity regions around 7 and 15, with a broader range around Ur = 

15. This phenomenon was previously reported by Li et al. [33] in a study on a flexible 

cylinder with mass ratio of 4.3. They concluded the mode transition is accompanied with 

continuous change in amplitude, but also a jump in frequency. The overall distribution of 

case M-3.4 is significantly different from the cases with lower mass ratio. No amplitude 

peak is found at Ur ≈ 6, but instead one is found at Ur ≈ 11. One can also find that there 

are two main response frequencies involving in M-3.4’s response in reduced velocity 

ranges of [5, 7] and [16, 25], which does not exist in case M-0.7 and M-1.0. Difference is 

also discovered in the increase rate of vibration frequency. Unlike cases M-0.7 and M-

1.0, while increasing reduced velocity, the vibration frequency of case M-3.4 seems to 

stay steady, with a small increment outside competition regions. It is worth mentioning 

that with in-creasing reduced velocity, the maximum vibration frequencies for three cases 

are all found to be around 60 Hz. It seems the cylinder is limited from vibrating at a 

frequency beyond that value. A possible reason for this is that the cylinder switches from 

a tensioned-dominated cable at low reduced velocity (flow speed) to a bending-
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dominated beam at high reduced velocity. As explained by Lee & Allen [24], the 

increased flow speed tends to induce larger de-flection on the structure. The resistance to 

this tendency comes primarily from the tension for a tension-dominated structure, or from 

the flexural stiffness, EI, for a bending-dominated one. As the tension is expected to rise 

due to increased flow velocity, the natural frequency, and thus the vibration frequency of 

a tension-dominated structure rises with flow speeds. However, this is not the case for 

flexural stiffness, EI, as it will not be affected by flow speed, which in turn means the 

flow speed has limited influence on the response frequency. Another significant 

difference is that when the mass ratio falls below 1, the amplitude peak is remarkable 

compared to other region. But with increasing mass ratio, this peak becomes considerably 

less notable.  

 

Fig. 11. Response spectra of case M-1.0 at Ur = 6.5, 7.5, and 8.1 from left to right. 

As for the cross-flow response shown in the right column of Fig. 10, two 

amplitude peaks are found in case M-0.7 and 1.0 while three peaks in M-3.4 across the 

tested reduced velocity range, among which the first peaks of case M-0.7 and M-1.0 are 

found at Ur ≈ 5, while M-3.4 found at around 7. In fact, the change in the spectra 

amplitude with respect to reduced velocity indicates the vibration mode transition. Take 

case M-3.4 as an example. It experiences two sets of high amplitude vibration in reduced 

velocity range of [4, 11] and [16, 25], between which exists vibration with low amplitude.  
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(a) 1
st
 mode at Ur = 7.3. 

         

(b) 2
nd

 mode at Ur = 13.8. 

         

(c) 3
rd

 mode at Ur = 17.7. 

Fig. 12. Consecutive frames showing the cylinder (M-3.4) vibrating at different modes. 
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The first and second high amplitude range indicates the cylinder is vibrating at its 1st and 

3
rd

 structural modes respectively, while the low one indicates a 2
nd

 mode, at which the 

mid-span (S-0.50) is a node in the structural mode and thus has low amplitude. This is 

confirmed by analyzing the obtained video. As demonstrated in Fig. 12, from top to 

bottom are consecutive frames taken from the recorded video at reduced velocity of 7.3, 

13.8 and 17.7, clearly displaying the cylinder vibrating at its 1
st
, 2

nd
 and 3

rd
 mode 

respectively. It is clear that for every vibration mode, one can expect a peak in the spectra 

amplitude, though for locations at the node of the mode, the peak is considerably smaller 

than that of anti-nodes. From a general and qualitative point of view, the vibration mode 

has strong dependency on the Reynolds number: the higher Reynolds number, the higher 

the vibration mode it may reach. Up to the 3
rd

 vibration mode is excited at the high 

Reynolds number under consideration. With respect to reduced velocity, the first mode 

transition (from the 1
st
 to 2

nd
) takes place at Ur ≈ 15, 13, 11 for case M-0.7, M-1.0, and 

M-3.4 respectively. There seems to be a trend that higher mass ratios lead to earlier mode 

transition with respect to reduced velocity. Similar to that of in-line response, the cross-

flow response frequency also seems to be limited below 30 Hz for the three cases tested. 

 

Fig. 13. Spatio-temporal RMS of normalized in-line displacements versus reduced velocity. 
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3.4 Vibration amplitudes & frequencies 

Figure 13 presents the spatio-temporal root mean square (RMS) of the 

dimensionless in-line response displacement computed as 
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Here, S is the number of samples in the selected time window for analysis and N is the 

number of measurement points along the axis of the cylinder, which is 3 in the present 

study. One can observe that the spatio-temporal RMS of the in-line vibration 

displacement has strong dependence on reduced velocity and generally follows quadratic 

trends for the three cases, with the lower mass ratio cases having considerably larger 

value. Similar trends were previously reported by Chaplin et al. [26] and Huera-Huarte & 

Bearman [27]. It is a result from the increased drag and tension, T, on the towed cylinder. 

Under increasing towing velocities, the cylinder experiences increasing drags and 

consequently higher tensions. It is known that the drag on the cylinder is balanced by the 

sum of horizontal components of tension, which is proportional to the product of Tx ~
. 

This yields 

)7.3(~ 2
1 UCCTx d   

where, C1 is a constant coefficient; Cd is the drag coefficient. Considering the cylinder’s 

modal frequencies are generally proportional to the square root of the tension, the below 

relationship is true upon the assumption of constant drag coefficient: 
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with C2 a constant coefficient. This could help establish a rough estimation on the mean 

deflection of a flexible underwater cylinder on the design stage. 

In the present work, to quantify the general vibration amplitude of the flexible 

cylinder, spatio-temporal standard deviations of displacement are computed to describe 

both the in-line and cross-flow responses. They are calculated as follows, 
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with Ax representing the in-line response amplitude; Ay for the cross-flow one. 

 

Fig. 14. Normalized in-line response amplitude versus reduced velocity. 

The dimensionless spatio-temporal standard deviation of the in-line and cross-

flow response expressed with respect to reduced velocity is shown in Figs. 14 & 15. High 

scatter is found existing in the data set. As the tested cylinder in the present work has low 

mass ratio, the added mass is expected to be comparable to its structural mass and thus 

have significant influence on the overall response by affecting the in-motion cylinder’s 
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natural frequencies. Therefore, the high scatter in the response amplitude could be one of 

the consequences of the potential non-uniform distribution of the added mass and the 

resulting hydrodynamics. 

 

Fig. 15. Normalized cross-flow response amplitude versus reduced velocity. 

As far as the in-line response amplitude is concerned, one of the evident effects of 

mass ratio on the cylinder’s vibration is the generally increased response amplitude. It is 

clear that case M-0.7 is vibrating at an amplitude considerably larger than M-3.4. Case 

M-0.7 achieves maximum amplitude around 0.35D, while M-3.4 can only reach 0.25D. 

All three cases’ response amplitudes start to rise as reduced velocity increases from 2, 

and reach their first peaks at Ur ≈ 6. After this point, cases of M-0.7 and M-1.0 remain 

vibrating at high amplitude with a slight increase, but case M-3.4 seems to experience a 

de-synchronization characterized by a drop in amplitude at Ur ≈ 8. There exist only initial 

and upper branches in the response amplitude; the lower branch disappears for all three 

cases, which could imply lock-in persists over the tested range. This is similar to the 

finding from elastically mounted rigid cylinders with mass ratios below 0.54 [14, 18]. In 

his pioneering work on flexible cylinders, Vandiver [25] addressed an explanation for the 
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widened lock-in band-width in low mass ratio cases: the added mass coefficient decreases 

sharply as the reduced velocity increases [34], which means the total mass and thus the 

natural frequency of the cylinder will rise considerably, since the structural mass is very 

low. The consequence of that is the resonant response frequency increases with flow 

speed and this leads to the persistence of the lock-in region.    

Similar to that of in-line response amplitude, only initial and upper branches are 

found existing in cross-flow response amplitude with large amplitude persisting from a 

reduced velocity of 6 for three cases. It should be pointed out that the de-synchronization 

for case M-3.4 at Ur ≈ 8 is also observed in cross-flow response, leading to a drop in 

vibration amplitude. It returns synchronized again right after that region. Other than that, 

varying mass ratio seems to have little effect on the cross-flow vibration. Vibration 

amplitudes more than 0.5D are observed for all three cases. This is lower than 0.7D as 

reported in a study on a flexible cylinder with mass ratio of 1.8 by Huera-Huarte and 

Bearman [27]. 

 

Fig. 16. Normalized in-line response frequency versus reduced velocity. 
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Dominant response frequencies that are the highest peaks in the spectra for every 

case were obtained by applying Fast Fourier Transform of the response displacement. 

The mean deflection in in-line response due to mean drag force was removed from the 

response displacement in advance. Figs. 16 & 17 presents the vibration frequencies of in-

line and cross-flow response with respect to reduced velocity. In the plot of in-line 

response (Fig. 16), frequencies that have comparative magnitude to the dominant one are 

added as solid symbols as well. 

One immediate observation from Figs. 16 & 17 is that the response frequencies 

rise linearly with reduced velocity, despite the variation in mass ratio. The slope for in-

line and cross-flow responses is 0.3 and 0.15 respectively, which also indicates the 

frequency ratio between the in-line and cross-flow response is approximately 2. 

 

Fig. 17. Normalized cross-flow response frequency versus reduced velocity. 

4 Conclusion  

An experimental investigation of the effects of mass ratio on the hydrodynamic 

response of a highly flexible cylinder with 2 degrees of freedom undergoing cross flow-
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induced vibration has been reported. Reynolds number range of 800 ~ 13,000, 

corresponding to reduced velocity range of 2 ~ 25 has been tested. Low values, namely 

0.7, 1.0 and 3.4, of mass ratios were tested to investigate its effect. Multi-frequency 

vibration was discovered in the cylinder’s dynamic response. The cylinder seemed to 

transition from tension-dominated at low reduced velocity to being bending dominated at 

high reduced velocity. Within the tested range, only the initial branch and upper branch 

were discovered in the response amplitudes of the in-line and cross-flow vibrations. After 

the initial rise, high amplitude responses were found to persist over the tested range 

because of the low value of mass ratio. An observed effect of mass ratio was the overall 

decreased amplitude in the in-line response. Limited influence was found on the cross-

flow amplitude. Also examined was the vibration frequency. Linear relationships and 

independence of mass ratio was shown for normalized frequencies with respect to 

reduced velocities. Slope of 0.3 and 0.15 was revealed to predict the vibration frequency 

for in-line and cross-flow respectively. Correspondingly, the frequency ratio between in-

line and cross-flow response was shown as approximately 2.  
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NOMENCLATURE 

Ax IL spatio-temporal response amplitude m
*
 Mass ratio 

Ay CF spatio-temporal response amplitude Re  Reynolds number 

CF Cross-flow U Free stream velocity 

D Cylinder’s outer diameter Ur Reduced velocity 

fx IL vibration frequency s Damping ratio 

fy CF vibration frequency IL In-line 
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1 Introduction 

Fluid-structure interaction phenomena occur in many engineering fields, among 

which, flow-induced vibration is one of the fundamental problems. Particular research 

attention has been drawn to the case of circular cylinder mainly due to its extensive 

applications in engineering, such as power transmission lines, marine cables, mooring 

lines, and flexible risers in petroleum production. The current state and research effort in 

the field is well reviewed by Sarpkaya [1], Bearman [2], and also recent papers by 

Khalak & Williamson [3] and Govardhan & Williamson [4]. It is well known that an 

elastically mounted circular cylinder subject to oncoming flow exhibits several different 

types of responses, which is a joint result from a number of parameters. It includes the 

reduced velocity, Reynolds number, mass ratio, and damping ratio. Lock-in, in which 

case the vortex shedding frequency departs from the Strouhal frequency and follows the 

oscillation frequency, may occur in its vibration response and is one of the phenomenon 

that deserves great attention. This synchronization can lead to amplifications in cylinder’s 

hydrodynamic response, and thus potentially destructive consequences.  

A considerable amount of experimental studies has been carried out to investigate 

flow around a circular cylinder with two degrees of freedom (see e.g. [5-10]). However, 

these kinds of experiments are expensive to achieve, as it requires appropriate 

experimental facilities and instrumentations, which are usually at high prices. Therefore 

an attractive alternative is to utilize Computational Fluid Dynamics (CFD) as a tool to 

obtain the essential hydrodynamic quantities and flow structure information for 

engineering structure development. Anagnostopoulos [11] carried out a numerical 

simulation to investigate the hydrodynamic response and wake structure of a circular 
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cylinder undergoing flow-induced vibration in laminar flow. The Navier-Stokes 

equations were numerically solved via implementing a finite element scheme. The results 

obtained from his numerical simulation were revealed to be in a fairly good agreement 

with those obtained from experimental tests, except for those at reduced velocities above 

the lock-in region. Newman & Karniadakis [12, 13] performed direct numerical 

simulation (DNS) studies on flow past a freely vibrating cable. The implemented a body 

fitted coordinates for their solution and tested the cable at Reynolds numbers of 100 and 

200. Guilmineau & Queutey [14] investigated FIV on a rigid circular cylinder with low 

mass-damping. The flow condition was turbulent and the SST κ-ω model was utilized to 

describe the flow. They considered three sets of scenario: (a) flow starting from rest; (b) 

increasing velocity; and (c) decreasing velocity. The lower branch was the only response 

amplitude branch predicted in the first and third sets tested scenario. Other than that, as 

the flow velocity rose, the cylinder progressively reaches its maximum vibration 

amplitude, which agreed to those reported from experimental studies. But discrepancies 

from experiment results were found in the response upper branch. 

Placzek et al. [15] studied a circular cylinder with forced and freely vibration in 

flow with low Reynolds number. They analyzed the vortex shedding modes and 

established a relation with frequency response. Bahmani & Akbari [16] numerically 

investigated the hydrodynamic response characteristics and vortex shedding mode of a 

freely vibrating circular cylinder with two degrees of freedom in laminar flow. Bao et al. 

[17] presented interesting results of freely vibrating cylinders in isolated and tandem 

configurations. The cylinders were modeled with two degrees of freedom at a series of 

natural frequency ratios (in-line to cross-flow). Schulz & Meling [18] reported an 
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analysis on the fluid-structure interaction between a long flexible rise and turbulent flow. 

The problem was tackled using a multi-strip method, which was achieved by solving the 

two-dimensional Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations 

concurrently with a finite element structural dynamic response model. The full three-

dimensional structural analysis was realized by combining a couple of individual two-

dimensional simulations on various section location along the riser. Overall 

hydrodynamic response in terms of resulted loads and displacement were predicted.  

To date, not many numerical simulations have been performed to investigate the 

wake pattern around a circular cylinder with low mass ratio. More research effort is 

needed in the field.  

2 Description of the problem  

2.1 Computational domain and boundary conditions 

 

Fig. 1. Geometrical model and computational domain. 
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As depicted in Fig. 1, a circular cylinder standing in a rectangular flow field is 

under consideration in the present study. The distances from the inlet and outlet to the 

cylinder center are 15D and 30D respectively, with D being the diameter of the circular 

cylinder, while the lateral dimension of the fluid domain is 20D. 

The boundary conditions employed for the present investigation are specified 

below. The inlet is specified with various constant stream-wise velocities, while the outlet 

is maintained with velocity gradients xu  /  and xv  /  being zero. In the present study, 

the cylinder diameter D = 8 mm; mass ratio m
*
 = 1.0; damping ratio ζ = 0.04; natural 

frequency fx = fy = 5 Hz, and the Re number is from 530 to 3,200. Cylinder wall is 

specified to be impermeable with no-slip condition for flow velocity. The two side 

boundaries of the fluid domain are imposed with free-slip conditions. The Neumann 

condition is applied to the inlet and surface of the cylinder for pressure setting, while the 

outlet boundary is also imposed with pressure Dirichlet boundary. 

 

Fig.2. Generated mesh around the circular cylinder. 
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2.2 Generated mesh 

For the achievement of accurate solution in a reasonable computation time, it is 

essential to establish a mesh with adequate flow resolution while maintaining computable 

number of mesh nodes. As such, relatively fine mesh is adopted in the downstream 

behind the cylinder as well as regions around it. Outside these regions, the mesh is 

constructed to be relatively coarse with lower resolution. This could help in dealing with 

any unexpected large mesh deformation. Bias is set towards to the wall of the cylinder, 

i.e., the mesh is placed denser near the wall of the cylinder, but it becomes gradually 

sparser as the distance between the wall and cell centre increases. It is critical to ensure 

the first layer grid thickness satisfies the condition that 1
w

y
y 


, where, y is the 

distance from the wall to the cell centre; u is the molecular viscosity, ρ is the density of 

the water; and τw is the wall shear stress. Based on that, the first grid size near the 

cylinder wall is determined to be 0.01D, and the time step is set at 0.005 according to the 

courant-Friedrichs-Lewy (CFL) condition. Finally the generated mesh consists of 41000 

nodes and 20000 elements. Fig. 2 presents the enlarged view of the mesh generated 

around the circular cylinder under consideration.  

2.3 FSI solution of ANSYS 

In the present study, the flow-induced vibration of a circular cylinder is simulated 

using Ansys Workbench. This platform couples the Fluent and Ansys Transient Structure 

to solve fluid-structure interaction model. It is equipped with a well-designed FSI 

solution scheme that is able to carry out tight integrations between the hydrodynamics 
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and structural response. It is a flexible and advanced tool for this kind of coupling 

problems. The solution scheme of the problem under consideration is presented in Fig. 3, 

showing the modules utilized in the present study as well as the connections between 

each of them. The Geometry module is set up for the construction of geometric models of 

both the cylinder and fluid domain. The information from the Geometry module is shared 

by the Transient Structural and Fluid Flow modules, where the structural response and 

hydrodynamics is solved respectively. For this analysis, FLUENT is utilized as the fluid 

solver. Upon the successful executions of the Transient Structure and Fluid Flow, the 

System Coupling module will start the coupled simulations. It performs as a coupling 

master process. Both the Transient Structure and Fluid Flow modules are connected to it 

for data communication. Once the communication is through, System Coupling transfer 

the data sequentially between Transient Structure and Fluid Flow at pre-defined 

synchronization points (SP), i.e., at each of this point, information of fluid dynamic loads 

is transferred to the Transient Structure via System Coupling; Transient Structure 

determines the cylinder’s response based on the obtained fluid information and send the 

response information back to Fluid Flow thereafter. Upon the reception of the structural 

deformation data, the mesh in fluid domain will be updated (diffusion-based smoothing 

method is used in the present study). After convergence is reached, the coupled 

simulation proceeds to the next time step until the pre-set end time. The implicit coupling 

iteration is adopted to secure the consistency between the fluid and structure solution at 

the end of every coupling step, as such resulting in higher numerical solution stability 

[19]. Second Order Backward Euler scheme, which is an implicit time-stepping scheme, 
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is applied in the transient analysis as generally recommended for transient analysis in 

ANSYS FLUENT.  

 

Fig. 3. Solution scheme in ANSYS WORKBENCH 

3 Results and discussions 

The FIV of an elastically mounted rigid cylinder is nonlinear. The fluid force 

generated by the vortex around the cylinder makes the cylinder vibrated; in turn, the 

oscillating cylinder also affects the flow field around it, eventually flow field changes the 

induced forces on the cylinder and hence the cylinder response. Normally the cylinder’s 

response follows sinusoid wave trend at low reduced velocities, e.g., the time history of 

dimensionless cross-flow vibration amplitude shown in Fig. 4. But in some cases, 

instability indicated by beat phenomenon occurs in the cylinder’s dynamic response. Fig. 

5(a) presents the time history of the lift coefficient at Ur = 6.0, where distinct beat 

phenomenon is shown. Fast Fourier Transform is applied on this signal and the result is 

shown in Fig 5(b). Two distinct frequencies are dominating the cylinder’s response, with 

one at approximately 18 Hz and the other at 23 Hz.  
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Fig. 4. Time history of dimensionless cross-flow response amplitude at Ur = 2.6. 

Figs. 6 & 7 present the maximum vibration amplitude of the tested cylinder. It is 

clear that there exist initial, upper, and lower branch in both the in-line and cross-flow 

response. For both of them, the amplitude peaks at Ur ≈ 6.2, with a value approaching to 

0.36 for in-line response while 1.26 for cross-flow one. Right after this reduced velocity 

point, the cylinder experiences sharp reduction in its maximum vibration response. The 

in-line response drops to approximately 0.1, while the cross-flow one decreases to about 

0.6. This is believed to due to the occurrence of lock-in by when considered concurrently 

with Fig. 8 that presents the normalized cross-flow response frequency. For a circular 

cylinder, it is well recognized that the vortex shedding frequency follows Strouhal 

frequency (fst) when lock-in is not present. As the Strouhal frequency is calculated as  

 DUStfst / ,                                                                                                                                    (4.1) 

One can expect the vortex shedding frequency will rise linearly with respect to 

flow velocity. This is evident in Fig. 8, where the normalized cross-flow response 

frequency rises linearly within the reduced velocity range of 2 to 7, but outside this range 

the response frequency starts to depart from Strouhal frequency with an almost constant 

value around 1.2. 
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Fig. 5. Time history of lift coefficient at Ur = 6.0 and corresponding frequency spectrum.   

 
Fig. 6. Dimensionless in-line response amplitude versus reduced velocity. 
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Fig. 7. Dimensionless cross-flow response amplitude versus reduced velocity. 

Figure 9 shows the periodical trajectory of the elastic cylinder at different 

Reynolds number. These plots clearly show that the oscillations are self-limiting and they 

all appear to have a “Figure 8” shape except for the one at Re = 1800. 

In Fig. 10, the downstream wake structures are presented. At low reduced 

velocity, the cylinder is starting to vibrate. Both in-line and cross-flow vibration are not 

influential at this moment, with a very low amplitude. With the flow velocity increasing 

to Ur = 4.8, the Karman vortex street is formed behind the cylinder, and it causes uneven 

pressure distribution at two sides, leading to an excited cylinder. In this case, the wake 

transition to a 2S mode (see Fig. 10(a)), with one single vortices shedding from each side 

of the cylinder every half cycle. When the reduced velocity keep increasing to around 6, 

where the cylinder exhibit maximum response amplitude, the vortex shedding turn into a 

2T mode, with 2 sets of triple shedding from the cylinder every cycle. 2P vortex shedding 

mode, where 2 pairs of vortices flow to downstream every cycle, is found existing at Ur 

higher than 6. 
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Fig. 8. Normalized cross-flow response amplitude versus reduced velocity. 

                                        

Fig. 9. Cylinder’s vibration trajectory at different Reynolds number.  

 

                                

 

Fig. 10. Downstream flow structure.        
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4 Conclusion 

A numerical simulation has been carried out on the fluid-structure interaction of 

an immerged smooth circular cylinder with two degrees of freedom at Reynolds number 

ranging from 530 to 3200 using the SST κ−ω turbulent model. With the mass ratio being 

1, the cylinder has a natural frequency ratio (in-line/cross-flow) of 1. Initial, upper, and 

lower branches are found in the cylinder’s response amplitude for both the in-line and 

cross-flow directions. At most of the tested velocities, the cylinder exhibits a “Figure 8” 

trajectory, except for those velocities where the cylinder had large response amplitudes. 

The present study also presents the flow structure downstream the cylinder, 

demonstrating “SS”, “2S”, “2T”, and “2P” vortex shedding modes.   
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CHAPTER V 

CONCLUSIONS AND RECOMMEDNED FUTURE 

WORK  

1 Conclusions 

With the increasingly extensive offshore exploration, it is critical to enhance our 

understanding in the interaction mechanism of flow-induced vibration on flexible 

cylinder and to ensure offshore flexible cylindrical structures to be well designed in terms 

of performance, reliability, and costs. To achieve that, studies on the influential 

parameters (axial pre-tension and mass ratio) of the phenomenon have been carried out 

and presented in this thesis.  

Experimental investigations have been conducted on a flexible circular cylinder 

with two degrees of freedom undergoing cross flow-induced vibration using optical 

measurement technique. In Chapter II, the effect of axial pre-tension has been tested by 

imposing three different axial pre-tensions, namely 0, 4 and 8 N on the cylinder 

separately. The flexible cylinder with mass ratio of 0.77 has been tested at Reynolds 

number from 780 to 6300, corresponding to reduced velocity range of 2 to 16. The 

vibration amplitudes and frequencies have been quantified. The results reveal that higher 

pre-tension is able to decrease the vibration amplitudes, in particular the cross flow one. 

The lock-in bandwidth in the in-line response is narrowed when the pre-tension is high. 

Though the vibration frequencies is found to rise with increasing pre-tension, 
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independence of pre-tension is demonstrated in frequency ratios, which rises linearly with 

respect to reduced velocity. The slopes of linear fitting are 0.28 and 0.14 for IL and CF 

motions respectively. The ratio of IL response frequency to CF one remained at 

approximately 2 within the tested range despite the changes in pre-tension. 

In Chapter III, the effects of mass ratio has been studied and reported. The 

flexible cylinder has been tested at Reynolds number range of 800 ~ 13,000, 

corresponding to reduced velocity range of 2 ~ 25. Realistic mass ratios, namely 0.7, 1.0, 

and 3.4 have been studied. Within the tested range, only the initial and upper branches 

appear in the response amplitudes of both the in-line and cross-flow vibrations. High 

amplitude responses persist over the tested range after the initial rise. Low value mass 

ratio is revealed to be able to decrease the amplitude in the in-line response but rather 

limited in the cross-flow one. Similar to that in Chapter II, linear relationships and 

independence of mass ratio are found in the normalized frequencies with respect to 

reduced velocity. However, the slopes found in this set of experiment are 0.3 and 0.15 for 

the in-line and cross-flow response respectively.  

Numerical simulation has also been attempted to investigate the wake patterns 

behind a circular cylinder in a 2-dimensional scenario. To explore the possibility of study 

this phenomenon numerically, the numerical model in the present work has been built to 

represent the experimental model. The results present four distinct vortex shedding 

modes behind a rigid circular cylinder, namely, “SS”, “2S”, “2T”, and “2P”. 
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2 Recommended future work 

The findings of the present work mainly serve as addition to the knowledge of 

flow-induced vibration on a flexible circular cylinder. Since applications of flexible 

cylinders in offshore engineering are expanding at a high speed in recent decades, the 

information revealed from the present thesis enhances our knowledge in the field. This is 

essential and critical in offshore structures development and can help solidify the future 

of offshore industry. While the experiments conducted presented the general vibration 

characteristics of a flexible cylinder undergoing flow-induced vibration in uniform flow 

and the numerical simulation demonstrated the wake pattern in a 2-dimensional scenario, 

the below future work is recommended to enhance our understanding in the field.  

2.1 Sheared flow 

Most of offshore structures encounter sheared flows at their practical services. It 

is well known that sheared flow is able to induce more complex vibration on flexible 

cylinder. In addition to providing more insights in realistic scenario, experiment of 

flexible cylinder under sheared flow condition is necessary to generate quality data for 

the validation of numerical and empirical studies. The current experimental setup is 

encouraged to extend to sheared flow conditions. Concurrently with the information 

presented in this thesis, this would improve our understanding of the underlying 

mechanism. 
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2.2 Downstream flow structure 

As the uneven pressure distribution associated with the wake behind a flexible 

cylinder is one of the major contributors to the flow-induced vibration, it would be 

beneficial and interesting to investigate the flow structure behind a flexible cylinder. In 

the Chapter III of this thesis, the high amplitude vibration was suspected to be caused by 

lock-in. But without the knowledge of vortex shedding frequency in the wake, no one can 

be sure about that. By illuminating the downstream flow structure, it will deliver the 

necessary knowledge of vortex shedding frequency to certify the occurrence of lock-in.  

2.3 Three-dimensional simulation 

While 2-dimensional simulation has been carried out in this thesis, the model 

should be extended to a 3-dimensional scenario to fully capture the flow structure and 

cylinder modal characteristics. Computational Fluid Dynamics is a powerful and 

promising tool for the analysis of flow-induced vibration, as it could possibly reduce the 

times of conducting experimental work, which for offshore structure research would 

normally require expensive facilities and instrumentations. The main issue for now is that 

computation time required for such a problem is overwhelming for academic research, 

not to mention the industry that is chasing for effectiveness and efficiency. Therefore, it 

is meaningful to develop high-performance computer and high-efficiency solution 

algorithm to make the three-dimensional simulation realistic in both academic researches 

and industrial projects. 
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APPENDIX A 

DETERMINATION OF TOWING SPEED  

The following content describes the determination of the towing speed in the 

experiments presented in this thesis.  

Prior to experiments, the towing tank utilized is marked with fluorescent tapes on 

the bottom to identify the instantaneous location of the cylinder. As illustrated in Fig. 1, 

the fluorescent tapes are placed on one side of the tank floor and aligned along its length 

at a distance of 25 mm.  

 

Fig. 1. Illustration of fluorescent marker for speed determination. 

As such, to determine the towing speed Ut1 at the time t1, we only need to identify 

the n
th

 fluorescent marker at that moment and the m
th

 marker at the next time instance, t2. 

Then the towing speed is calculated as 

 
smm

tt

nm
U t /

25

12
1




                                                                                             (A.1) 
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