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ABSTRACT 

With the growth of e-business, many companies are trying to implement online (e-

tail) channel besides their traditional retail stores to provide more convenient access of 

products for the customers and mainly enhance their customer service. These businesses 

are the main entities of a network called dual channel supply chain. Improving customer 

service as one of the main performance measures has got a growing interest in recent 

years from all entities of supply chain specifically manufacturing/service providers. In 

this context, we can express customer service as "being able to satisfy customer demands 

as soon as possible" and from the manufacturer's point of view, it is potentially 

achievable by coordination of scheduling and reliable due date quotation. In this 

dissertation, we consider due date quotation problem coordinated with scheduling in a 

two-echelon dual channel supply chain from the manufacturer point of view. We study 

three main problems. 

We first study a delivery scheduling problem where the manufacturer has to decide 

the earliest delivery time for the orders received from retail channel. In this problem, a 

two-echelon supply chain is considered where a retailer places bulk orders of the same 

product with different families to the manufacturer. Since the manufacture accepts only 

bulk orders, no online order is assumed for this problem. The analysis with no online 

customers is relatively easy and therefore, we consider families of products in this 

problem. For this problem, we consider only retail channel with deterministic demand 

and cross family setup time which was motivated by an application from the automotive 

industry. 

In the second problem, we have a multi-processor manufacturing system receiving 

orders from both e-tail and retail channels. Online orders arrive over time, and as they 

arrive, the manufacturer will decide to accept or reject the orders and quote due dates to 

the accepted ones. Accepted online orders should be delivered to the customers before the 

quoted due dates via one of the two available options: directly by the manufacturer or 

through the retail store. Our goal is to quote due dates to the online orders and schedule 

them to maximize the total profit while satisfying the maximum acceptable lead time for 

online orders and distinct production capacity for each channel. 
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The third problem is an extension of the second case; due date quotation coordinated 

with scheduling in dual channel supply chain, with primarily similar assumptions. 

However in this case, we assume that the production capacity of the manufacturer is 

shared among orders of both channels. 

This dissertation provides methodologies, insights, algorithms, competitive analysis 

and computational results for these three problems. 
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Chapter 1

INTRODUCTION

1.1 Dual channel supply chain

A supply chain encompasses all the activities and facilities integrated with producing

and delivering products or services from the supplier to the end customer. Supply

chain management objective is to deliver maximum value to the end customer which

is possible by integration and collaboration of all the activities and processes along

the chain, however it also depends on the analysis perspective. With the growth

of e-business, many companies are trying to adopt online (e-tail) channel besides

their traditional retail stores to provide more convenient access of products for their

customers and in fact enhance the customer service. These businesses have a dual

channel supply chain or more generally multi-channel supply chain. In a dual channel

supply chain, the manufacturer uses both traditional retail store and e-tail channel

to distribute its products. Firms following this dual-channel strategy are referred

to as click-and-mortar companies, which is distinct from their traditional brick-and-

mortar counterparts (Chand and Chhajed 1992). A review of the literature on multi-

channel distribution systems reveals the economic advantages of serving customers

through different channels. Although dual channel may help companies increase their

customer’s awareness and shopping choices, this type of distribution model affects all

business functions and operational decisions. Hill et al. (2002) introduced four main

strategies for click-and-mortar companies.

In the first strategy, firms separate retail and e-tail channels where each channel

has its own warehouse, as well as inventory control and pricing features. Some com-

panies find it difficult to manage the same product in two different channels; therefore

as the second strategy, they outsource the e-tail channel to the third party and all

the order-fulfilment process is managed by the expert third party firm. Drop-ship
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is another strategy that some companies apply, in which the third party just picks,

packs and delivers the orders to customers in e-tail channel while all the distribution

information is available for him. The other strategy used recently is called professional

shopper strategy, where customers in e-tail channel order online and then pick up the

product from the retail store. In this dissertation, we assume that there exist two

delivery options for e-tail customers which implies that the manufacturer’s strategy

is a combination of drop-ship and professional shopper strategies.

Numerous aspects of dual-channel supply chain such as advantages and disadvan-

tages of having e-tail channel besides traditional retail channel, when to establish

e-tail channel, pricing policies or price completion, replenishment policies and re-

turn policies have been studied broadly in supply chain literature. Investigating dual

channel’s impact on company’s performance is highly integrated with several related

fields, mainly as warehouse design, optimal inventory decisions and pricing, and we

have various studies in each field in the literature. However, there is no research till

date that has discussed due date quotation problem coordinated with scheduling in

a dual channel supply chain, the problem which is considered in this dissertation.

Most of e-business failures are related to operational decisions, and one of the

main reasons of early e-business failures is ineffective order fulfillment (Tarn et al.

2003). It is accepted that even a well-designed dual channel supply chain is useless

when it is not successful to deliver items as promised. If the due dates are set in

advance, the manufacturer has to optimize orders schedule and deliver them as soon

as possible, but if the due dates are not preset which is true in most situations, the

manufacturer has the option of determining delivery time for the accepted orders.

Therefore, effective order fulfilment is tightly related to accurate due date quotation

in most real-world situations. Accurate due date quotation is considered as one of

the main performance measures as well as cost and quality (Handfield et al. 1999,

Stalk and Hout 1990), however it is not an easy task; setting relatively soon due

dates specifically for make-to-order environments and scheduling the orders to ensure

that they meet the quoted due dates (Kaminsky and Hochbaum 2004) specially when

we have unknown demand trend. In fact, capacity constraint makes it impossible
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to set the ideal due dates, so that the challenging part of these problems are the

trade-off between sequencing the jobs to meet the due dates and setting due dates

while sequencing is possible. Considering high competitive environment in recent

years, dual channel supply chain is vastly increasing and one of the most important

challenges for these supply chains will be to quote and manage the most efficient due

dates to get the competitive advantage in the market.

1.2 Due date management

Most of the studies in the scheduling literature that involve due date, focus on se-

quencing the jobs in different stations assuming that the due dates are preset (Ke-

skinocak and Tayur 2003). These problems optimize some objectives while satisfying

the given due dates. Minimization of tardiness, completion times, number of tardy

jobs or lateness are among the common objective functions in these problems. They

also may apply different rules for sequencing the orders such as earliest due date,

minimum slack time, and critical ratio when orders’ due dates are considered as an

input and given parameters. However, in most of the real-case situations, specifically

in make-to-order situations or the cases dealing with online customers, the manufac-

turer needs to set the due dates and schedule the jobs to meet these quoted due dates.

This practical problem of combined due date quotation and scheduling is known as

due date management problem and is considered in this dissertation.

There exist several studies considering due date management problem, i.e., prob-

lems containing both elements of due date (lead time) setting and scheduling. The

challenging issue in these problems is setting relatively soon due dates, specifically

for make-to-order environments, and scheduling the orders to ensure that they meet

the quoted due dates, especially when we have unknown demand trend (Kaminsky

and Hochbaum 2004). In fact, capacity constraint makes it impossible to set the

ideal due dates, so that the thought-provoking part of these problems is the trade-off

between sequencing jobs to meet the due dates and setting due date while sequencing

is possible (Figure 1.1).
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F 1.1. scheduling combined with due date quotation

In the due date management literature, problems can be generally classified as

shown in Figure 1.2. Both problems with dynamic and static demand can be found. In

static models all jobs are available at the beginning of the planning horizon, however,

in dynamic models jobs have different arrival times. In most of the due date quotation

models in the literature there exists no threshold for the quoted due dates. In other

words, any due date can be quoted for the customers (Keskinocak and Tayur 2003).

Any class of the scheduling problems such as single machine, parallel machine or flow

shop models may be considered for both dynamic and static problems in due date

management. Studying dynamic models is further divided into online and offline

models. In offline problems orders arrival time and other information like processing

time are known in advance for the whole planning horizon, and based on them all

sequencing and due date quotation decisions are made. It may be the case where the

demand trend is highly predictable, or loyal customers are considered who place their

orders far ahead. Mathematical programing or different heuristic methods may be

used to solve offline models. In these problems, determining due dates and scheduling

the jobs to ensure they meet the quoted due dates might be much easier than online

problems. In online scheduling the decision about accepting or rejecting the order,

quoting the due dates and sequencing is made when the order arrives, using the

information of jobs arrived by that time, while there is no information about the

future orders. In online problems, mainly unknown demand trend is considered, i.e.,

orders will arrive over time and once the order is received, the manufacturer becomes

aware of the job’s information like the processing time. Online models represent many

real-world applications when a job’s information is not available till it arrives at the
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system, or there is no information about future arrivals. In this dissertation, online

models are considered, where job arrival times are not known in advance.

C:/Users/Nooshin/AppData/Local/Temp/graphics/O252DI07__2.pdf

F 1.2. Due date management problems classification

The most common objectives considered in due date management problems are

minimizing average quoted due dates (lead time), minimizing average tardiness or ear-

liness. Mainly, these model’s objectives are functions of quoted due dates. There are

also several studies maximizing total revenue where the revenue function is also due-

date-sensitive and decreases by increasing the quoted lead times (due dates) (Kamin-

sky and Hochbaum 2004).

Reliability is one of the important features in due date management problems.

Some of the models contain 100% reliability constraints, where each order should

be completed (delivered) by the quoted due dates. In other words, no tardiness

is permitted in these problems. Some others may consider probabilistic reliability

constraints, where each job’s completion/delivery time may exceed the quoted due

dates by specific probabilities. These problems may have restrictions on the number

of tardy jobs or total amount of tardiness for all orders.

There exist three versions of online models based on when sequencing or due date

quotation decisions have to be made (Keskinocak and Tayur 2003).

1) Traditional online version

2) Quotation online version

3) Delayed quotation version

In the first version, orders arrive over time, there is no information regarding future
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arrivals and decisions regarding rejecting or accepting the orders as well as sequencing

are made based on the information of orders arrived till that time. In these models,

decisions can be made any time after an order’s arrival time and there is no time

limit for decision making. In the second version, making decision about accepting

or rejecting the order as well as quoting the due date must be done immediately as

the order arrives, while there is no information about the future arrivals. This is the

tough version of online models since all decisions must be made immediately and it

is even more difficult when quoted due dates should be 100% reliable. In the third

version, making decision regarding accepting/rejecting the orders and quoting the

due dates can be made within s time units after job’s arrival time. In other words,

the manufacturer has s units of time to make decision about each order after they

arrived at the system.

In all versions of online models, there may be a maximum acceptable lead time

(threshold on quoted due dates) which is a realistic assumption. Clearly, the length

of acceptable lead time depends on the industry and product type, but in most of

the situations, if the customers are offered a due date after their desired lead time,

they will not place the order. From the manufacturer’s point of view, in fact the

manufacturer has the option of rejecting the online order by offering a due date after

the desired lead time when there is no benefit in accepting the order.

In this dissertation, we study the problem of 100% reliable and immediate due

date quotation for online orders in a dual channel supply chain in order to maximize

the total profit, while considering a threshold on quoted due dates.

1.3 Research objectives

The objective of this dissertation is to analyze the problem of due date quotation

combined with scheduling (due date management) in a dual channel supply chain.

The main goal is to study this problem from the manufacturer’s point of view, inves-

tigate different production environments and develop proper methodologies for each

situation. In the event of this objective, three main sub-problems are considered in
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this dissertation which are introduced in the following section.

1.4 Problems and solution methodologies

In this section, three main problems studied in this dissertation are introduced fol-

lowing by important approaches/algorithms applied for each problem.

We first study a delivery scheduling problem where the manufacturer has to decide

the earliest delivery time for the orders received from retail channel. In this problem, a

two-echelon supply chain is considered where a retailer places bulk orders of the same

product with different families to the manufacturer. Since the manufacture accepts

only bulk orders, no online order is assumed for this problem. The analysis with no

online customers is relatively easy and therefore, we consider families of products in

this problem. For this problem, we consider only retail channel with deterministic

demand and cross family setup time (a novel assumption in literature) which was

motivated by an application from the automotive industry.

In a problem with cross family setup, job allocations to families are machine

(stage) based. A two-stage manufacturing system is assumed for this problem and

therefore, this system can be represented by a two machine permutation flow shop,

where each stage is represented by a machine with cross family setups and the ob-

jective is to minimize the maximum completion time (makespan) of the jobs in an

order. In this problem, job allocations to families are machine based and there are

two family classes: family class for machine 1 and family class for machine 2. Each

job will have two different family memberships and we call this problem jobs with

cross families, i.e., two jobs belonging to two different families in one stage may be-

long to the same family in another stage. Since the problem is NP-hard for arbitrary

number of families, we study the problem when there is a fixed number of families in

each stage.

Past studies on scheduling of jobs with family setups have assumed that jobs

belonging to the same family in one stage belong to the same family in other stages.

However, this assumption may not be applicable for all production cases. For example,
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consider an automobile manufacturing system where all jobs are processed first in the

body shop and then in the paint shop. In the body shop, jobs are categorized into

two-door or four-door families and the same jobs are re-categorized in the paint shop

based on color requirements. For instance, a two-door job and a four-door job belong

to the same family in the paint shop if they both require the same color. To the

best of our knowledge in scheduling literature, there is no study on jobs with cross

families.

The main approach used to solve this problem is to examine properties of optimal

schedules utilized to develop efficient algorithms. For this problem, we first investi-

gated some properties of job sequences and batches in the optimal schedule which led

us to develop an efficient branch and bound (B&B) search algorithm for sequencing

given ordered batches. In fact an algorithm capable of solving the problem optimally

in O(nc) time is developed. We also developed a hybrid genetic algorithm (HGA) to

solve problems with arbitrary number of families.

In the second problem, we have a multi-processor manufacturing system receiving

orders from both e-tail and retail channels. Online orders arrive over time, and as

they arrive, the manufacturer will quote a due date to the accepted orders. Accepted

online orders should be delivered to the customers before the quoted due dates via

one of the two available options; directly from the manufacturer or through the retail

store (Figure 1.3). Our goal is to quote due dates to online orders and schedule them

to maximize the total profit while satisfying the maximum acceptable lead time for

online orders and distinct production capacity for orders in each channel.

C:/Users/Nooshin/AppData/Local/Temp/graphics/O252DJ09__3.pdf

F 1.3. Due date quotation problem in dual channel

In fact, the second problem we consider is a reliable and immediate due date
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quotation in a two-echelon dual channel supply chain in order to maximize the to-

tal profit which contains a due-date sensitive revenue function and delivery costs of

accepted online orders. We have one manufacturer and a retailer as the traditional

channel and online customers as the e-tail channel who are served by the manufac-

turer. There exist two options for delivering products to the online customers i.e.,

shipping directly from the manufacturer to online customers which is available at

any time, and delivering through the retail store which is available at specific periods

however imposes less cost to the system. In this model, we have the assumption of

unknown demand for e-tail channel (at any time there is no information about future

arrivals of online orders) and deterministic demand (with fixed profit) for the tradi-

tional retail channel. Distinctive demand segments is considered for e-tail and retail

channels. In the problem, we try to maximize a due-date sensitive profit function

by quoting immediate and reliable due dates to online customers while considering

manufacturer’s capacity constraint and also the maximum acceptable lead time of

online orders. There exists maximum acceptable lead time (L�) for e-tail customers;

if they are offered a due date after their desired lead time, they will not place the

order. From the manufacturer’s point of view, in fact manufacturer has the option of

rejecting the online order by offering a due date after the desired lead time when there

is no benefit in accepting the orders. The term due date in this problem is referred

to the time that the order is shipped to the customer, i.e., the time the order leaves

the manufacturer, thus the quoted due date for each order may be different from the

time the order production is completed by the manufacturer. We assume that the

revenue will decrease linearly if the quoted due dates for e-tail customers increase

which was first used by Keskinocak et al. (2001). In order to illustrate the revenue

in the objective function, let r be the revenue that is lost for each unit of time that

the online order waits before being delivered to the customer, and l the time interval

between the order’s arrival time and its quoted due date. Then the revenue will be

r(L� − l) . It is obvious that in this problem, the maximum revenue one can obtain

from each online order is rL, where L = L
� − p and p is the order production time.

In this problem we quote 100% reliable due dates to the online customers, i.e., there
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is no tardiness cost, and all orders should be delivered by the quoted due dates. We

also consider capacity constraint of processing at most N online orders at any time

by the manufacturer.

There exist several solution approaches dealing with online optimization prob-

lems such as probabilistic analysis of heuristics, worst-case (competitive) analysis of

heuristics, and queuing-theory based analysis of problems (Kaminsky and Hochbaum

2004). In this dissertation, as we consider unknown demand for the e-tail channel,

competitive analysis is selected to evaluate the performance of online algorithms we

will present.

In online optimization problems, online algorithm’s performance is mainly eval-

uated via the competitive analysis, comparing an online algorithm’s result with the

offline model’s optimal solution. For the problem we consider in this study, all the

information about the online orders is available in advance for the optimal offline

algorithms in order to obtain the maximum possible profit. Then, the results of both

online and offline algorithms are compared. Given an instance I, let Z(I) denote the

total profit obtained by using an online algorithm, and Z∗(I) denote the maximum

profit obtained by an optimal offline algorithm. For maximization problems, the on-

line algorithm is called ρ−competitive if Z∗(I) ≤ ρZ(I) + b where ρ ≥ 1, and b is a

constant. We define competitive ratio as ρ = suρ(
Z∗
(I)

Z(I)
) for Z(I) > 0. Determining

the bounds of competitive ratio (ρ) is the main issue and also the challenging part of

online optimization problems.

The third problem we consider in this dissertation can be defined as an extension

of the second problem with the same objective and problem structure. However,

capacity constraint in this problem is modified to be a more realistic one. Unlike

the second problem, we assume that the production capacity of the manufacturer

is shared among the orders of both channels, i.e., there is no distinct production

capacity for orders of different channels. This shared capacity assumption affects

the number of online orders that the algorithm accepts, their schedule and clearly

the schedule of retail orders. In addition, in this problem the fixed profit of retail

orders is adjusted and variable revenue lost is considered for orders of this channel.
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The solution procedure considered for this online optimization problem is competitive

analysis as well.

1.5 Organization of the Dissertation

The dissertation is arranged as follows: Chapter 2 presents the first problem con-

sidered in this study: delivery schedule of jobs with cross families in a two stage

manufacturing system with review of related literature. In Chapter 3, the problem

of due date quotation in dual channel supply chain with channel’s distinct-capacity

constraint is discussed. An extension of the second problem is proposed in Chapter

4 which considers shared capacity of production for orders of both channels. Finally,

Chapter 5 presents conclusions and future works.
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Chapter 2

D -

2.1 Motivation and literature review

In this chapter, we study a delivery scheduling problem where the manufacturer has

to decide the earliest delivery time for the orders received from retail channel. In this

problem, a two-echelon supply chain is considered where a retailer places bulk orders of

the same product with different families to the manufacturer. Since the manufacture

accepts only bulk orders, no online order is assumed for this problem. The analysis

with no online customers is relatively easy and therefore, we consider families of

products in this problem. For this problem, we consider only retail channel with

deterministic demand and cross family setup time (a novel assumption in literature)

which was motivated by an application from the automotive industry. The problem

in this chapter is scheduling of jobs in a two stage production system where jobs have

family sequence-independent setup times to minimize the makespan. We assume that

job allocations to families are machine based and therefore there are two family classes:

family class for stage 1 and family class for stage 2. Thus each job will have two

different family memberships and we call this problem jobs with cross families, i.e.,

two jobs belonging to two different families in one stage may belong to the same family

in another stage. This system can be represented by a two machine permutation flow

shop, where each stage is represented by a machine with cross family setup. Since

the problem is NP-hard for arbitrary number of families, we study the problem when

there is fixed number of family in each stage.

Past studies on scheduling with family setups have assumed that jobs belonging

to the same family in one stage belong to the same family in other stages. However,
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this assumption may not be applicable for all production cases. For example, consider

an automobile manufacturing system where all jobs are processed first in the body

shop and then in the paint shop. In the body shop, jobs are categorized into two-

door or four-door families and the same jobs are re-categorized in the paint shop

based on color requirements. For instance, a two-door job and a four-door job belong

to the same family in the paint shop if they both require the same color. To the

best of our knowledge in scheduling literature, there is no study on jobs with cross

families.

The permutation flow shop scheduling problem with makespan minimization has

been well studied due to its important applications in manufacturing systems, assem-

bly lines and information service facilities. Two machine flow shop scheduling problem

was first studied by Johnson (1954). Yoshida & Hitomi (1979) studied the problem

when setups are required before processing jobs. Special cases of flow shop schedul-

ing problems are studied by Nouweland et al. (1992), Wlodzimierz (1977), Johnny et

al. (1992), Chuanli & Hengyong (2012) and Lin-Hui et al. (2012). When there are

family setups, jobs of the same family are grouped into batches in order to minimize

resource required for setups. There are several studies considering batching in flow

shops with different assumptions, such as Logendran et al. (2006), Hendizadeha et

al. (2008), Voxa & Wittb (2007) and Bozorgirad & Logendran (2013). Readers may

refer to studies of Allahverdi (2008) and Edwin et al. (2000) for a complete survey on

batching. The problem addressed in this chapter is closely related to studies on two

machine flow shop scheduling with family-sequence-independent setups to minimize

makespan. There have been many studies on this problem over the past four decades.

Scheduling problems with family setups can be classified into two main classes, (i)

scheduling with group technology (GT) assumption, and (ii) scheduling without GT

assumption.

In group technology, jobs of the same family are scheduled into single batch and

thus it simplifies the problem. Therefore, for problems with fixed number of fam-

ilies, researchers were able to develop polynomially bounded algorithms with GT

assumption. Sekiguchi (1983) proved the optimality of Johnson job sequence within
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each batch and used composite job approach to schedule families under series-parallel

precedence constraint. Ham et al. (1985) presented a two-step procedure to find

an optimal solution for this problem and Baker (1990) developed a polynomially

bounded algorithm based on the results obtained by Ham et al. (1985). Logendran

& Sriskandarajah (1993), Marco (2004), Lee & Mirchandani (1988), Cheng & Wang

(1999), and Cheng & Wang (1998) studied two machine flow shop problems with

setups under special conditions such as zero-buffer, limited-buffer, identical versatile

machines, one-setup problem, discrete or batch processor machines, and provided dif-

ferent solution techniques. Yang & Chern (2000) considered job removal time and

transportation time between machines and proposed polynomial-time algorithm.

Two machine scheduling problem to minimize makespan without GT assumption

is more difficult than the problem with GT assumptions. Therefore, researchers de-

veloped heuristic algorithms, approximation algorithms, and for some special cases

polynomial time algorithms. Kleinau (1993) showed that this problem is NP-hard for

both anticipatory (setup can start on the second machine before the processing of the

job on the first machine is finished) and non-anticipatory (setup cannot start on the

second machine until the processing of the job is finished on the first machine) setups

when there are arbitrary number of families. Zdrzalka (1995) developed heuristic

algorithms and investigated their worst-case performances. Danneberg et al. (1998)

compared several heuristic algorithms for the problem with limited buffer between

machines. Lin & Cheng (2001) studied the problem with no-wait and batch availabil-

ity assumptions, and proved that the problem is strongly NP-hard. They proposed an

optimal batch size formulation when jobs have identical processing time. Chen et al.

(1998) proposed two heuristic algorithms with O(n log n) time to solve the problem

with arbitrary number of job families. The first algorithm, with GT assumption and

applying Johnson’s algorithm and the second one with relaxing GT assumption and

applying open shop scheduling technique in order to improve the worst case ratio.

Cheng et al. (2000) proved that the problem with batch availability assumption is

strongly NP-hard, and presented a heuristic algorithm while investigating some spe-

cial cases. Agnieszka & Rudek (2013) developed meta heuristic algorithms using tabu
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search and simulated annealing when processing times follow aging effect function.

In this chapter, we study scheduling of jobs with cross families and sequence inde-

pendent setups in two machine flow shop to minimize makespan when there is fixed

number of families. We first investigate some properties of the optimal schedule and

show that Johnson sequence is optimal for jobs belonging to the same family on both

machines. We develop an efficient branch and bound algorithm with complexity of

O(nc), where c is the total number of families and is a constant, and a hybrid genetic

algorithm for large scale problems using the properties of the optimal schedule. The

chapter is organized as follows; Section 2.2 defines the problem with notation and

assumptions. Section 2.3 discusses some preliminaries for our problem and analyzes

properties of optimal schedule. Section 2.4 presents a branch and bound algorithm

to sequence given batches, optimally. Section 2.5 discusses on optimal scheduling,

and Section 2.6 presents a hybrid genetic algorithm for large scale problems. Fi-

nally computational experiment is provided in Section 2.7 and conclusion is given in

Section 2.8.

2.1.1 Solution Procedure

The solution procedure considered in this chapter is first investigating the properties

of job sequences as well as job batches in the optimal schedule, and generating ordered

batches of the optimal schedule, and then developing a branch and bound algorithm

for optimal sequencing of given ordered batches.

2.2 ProblemDefinition

We are given a set of n jobs {J1, J2, ..., Jn} that has to be scheduled in a two machine
flow shop to minimize the makespan (Cmax). There are two family types, families on

machine 1 (M1) and families on machine 2 (M2). Each job has two family member-

ships, its family on M1 and its family on M2. An anticipatory sequence independent

setup is required on each machine when switching from one family to another. Job Jj

requires a processing time of pj,l and a setup time of sj,l on Ml. When any group of
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jobs having the same family on both machines are scheduled consecutively, no setup

is required on either machine except for the first job in that group. We call such

group a batch, and without loss of generality, we interchangeably use sr,l to denote

the setup time of Jr on Ml or the setup time of βr (the r
th batch) on Ml.

There is a fixed number of families on each machine; K families on M1 and

L families on M2. All jobs are available at time zero, and processing of a job on

the second machine can be started immediately after the completion of that job

on the first machine. Jobs follow the same processing order on both machines and

a machine can process at most one job at a time. Processing of a job cannot be

interrupted and there is an unlimited buffer capacity between machines. We describe

this scheduling problem using the three-field notation of Graham et al. (1979) as

F2/ST, SI, CB/Cmax, where F2 stands for a two machine flow shop, ST for setup

time, Cmax for makespan, SI and CB stands for sequence independent setups and

cross families respectively.

We use the following additional notations:

τ(f, g) The set of all jobs belonging to the f th family onM1 and gth family

on M2, i.e., jobs having the same family on both machines.

Ij(ϕ) The idle time on M2 immediately before starting processing (after

setup if required) of job Jj in any given sequence ϕ.

Aj(ϕ) The total idle time on M2 before processing job Jj, in any given

sequence ϕ.

Tj,l(ϕ) The start time of job Jj (or batch βj) on Ml after any setup, if

required, in any given sequence ϕ.

ai,j = aj,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if jobs Ji and Jj (or batches βi and βj) belong to the same

family on machine M1.

1, otherwise

bi,j = bj,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if jobs Ji and Jj (or batches βi and βj) belong to the same

family on machine M2.

1, otherwise



17

U = [ai,j]n×n

V = [bi,j]n×n

Note that there will be at mostK×L, τ(f, g) sets in this problem. For illustration
consider an example with job set {1, 2, ..., 7} and K = L = 2. Let job set in families 1

and 2 onM1 be {1, 2, 3, 4} and {5, 6, 7} respectively, and job set in families 1 and 2 on
M2 be {2, 4, 7} and {1, 3, 5, 6}. Then, τ(1, 1) = {2, 4}, τ(1, 2) = {1, 3}, τ(2, 1) = {7},
and τ(2, 2) = {5, 6}. For jobs 1 and 2, a1,2 = a2,1 = 0, b1,2 = b2,1 = 1 because jobs 1
and 2 belong to the same family on machine M1 and to different families on machine

M2.

Let σ represent job sequence in the order of job index; σ = {J1, J2, ..., Jn−1, Jn}.
We define Kr(σ) as

Kr(σ) = (total busy time of M1 before starting Jr on M2) − (total busy time of
M2 before starting Jr on M2). Therefore, we have

K1(σ) = p1,1 + s1,1 − s1,2, and
Kr(σ) = (

r

d=1

(pd,1 + sd,1ad−1,d))− (
r−1

d=1

pd,2 +
r

d=1

sd,2bd−1,d), for (r > 1)

2.3 Preliminaries

In this section, we first study some preliminaries for our problem and then we discuss

properties of optimal schedules that lead us to develop efficient algorithms. Consider

a two machine flow shop scheduling problem with sequence independent cross family

setup and arbitrary number of families on each machine. Kleinau (1993) proved that

the problem of batch scheduling with sequence independent anticipatory setup in a

two machine flow shop to minimize makespan is NP-hard for arbitrary number of

families. The problem with cross families will be equivalent to the problem studied

by Kleinau, if all jobs of the same family on one machine belong to the same family

on the other machine. Therefore their problem is a special case of the problem with

cross families. Thus the problem of batch scheduling with cross families when there

are arbitrary number of families is NP-hard. Therefore, the following Theorem holds:
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Theorem 2.1. (Kleinau (1993)) The two machine flow shop problem with cross fam-

ilies to minimize makespan is NP-hard for arbitrary number of families.

Remark 2.1. When the number of families is arbitrary, it is still unknown whether

the problem of two machine flow shop with cross families to minimize makespan, is

strongly or ordinary NP-hard.

Proposition 2.1. Ar(σ) = max
1≤d≤r

{Kd(σ), 0}for (r = 1, 2, ..., n).

Proof: It is clear that for job Jr ∈ σ, Ar(σ) = Tr,2(σ) −
r−1

d=1

pd,2 −
r

d=1

sd,2bd−1,d,

where

Tr,2(σ) = max{
r

d=1

(pd,1 + sd,1ad−1,d) , Ar−1(σ) +
r−1

d=1

pd,2 +
r

d=1

sd,2bd−1,d}. Thus,

Ar(σ) = max{
r

d=1

(pd,1 + sd,1ad−1,d)−
r−1

d=1

pd,2 −
r

d=1

sd,2bd−1,d , Ar−1(σ)}, and
Ar(σ) = max{Kr(σ), Ar−1(σ)} for r = 1, 2, ..., n. We have,
Ar(σ) = max{Kr(σ), Kr−1(σ), ..., K2(σ), A1(σ)} and A1(σ) = max{K1(σ), 0}.

Therefore, Ar(σ) = max1≤d≤r{Kd(σ), 0}.
In this chapter, we define a batch as a partial sequence of jobs in which a setup

is required on machine M1 and/or M2 only for the first job of the partial sequence.

When job sequence of a given batch is known, we define it as ordered batch. Note

that any set τ(f, g) can be split into more than one batch.

Proposition 2.2. There exists an optimal schedule with no idle time on machine M1

until the completion of the last job.

Proof: The proof of this proposition is trivial and is therefore omitted.

Proposition 2.3. Setup times on machine Ml (for l = 1, 2) satisfy the triangular

inequality, i.e., sj,1ai,j + sk,1aj,k ≥ sk,1ai,k, (similarly sj,2bi,j + sk,2bj,k ≥ sk,2bi,k)

Proof: First consider the setups on M1. It is clear that if (ai,k = 0) or (ai,k = 1 and

aj,k = 1), the inequality is satisfied. If ai,k = 1 and aj,k = 0, then jobs Jj and Jk

belong to the same family on first machine. Therefore, sj,1 = sk,1, ai,j = ai,k = 1, and
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sj,1ai,j + sk,1aj,k = sj,1ai,j = sk,1ai,k. Thus the inequality is satisfied. Similarly we can

prove that the inequality is satisfied for M2 too, i.e., sj,2bi,j + sk,2bj,k ≥ sk,2bi,k.

2.3.1 Some properties of job sequence in the optimal schedule

Sekiguchi (1983) proved that for two machine flow shop scheduling problem with

family setup, the Johnson job sequence within batches is optimal. In this subsection,

we prove that Johnson job sequence for jobs belonging to the same family on both

machines is optimal, i.e., if Ji, Jj ∈ τ(f, g) and min{pj,1, pi,2} ≤ min{pi,1, pj,2} then
there exists an optimal schedule where job j precedes job i ( Jj ≺ Ji ). We first prove
Lemmas 2.1 and 2.2 in order to prove Johnson property in Theorem 2.2.

Lemma 2.1. For jobs Ji, Jj ∈ τ(f, g), if pj,1 ≤ pi,2, and if (pj,1 ≤ pi,1 ≤ pj,2 or

pj,1 ≤ pj,2 ≤ pi,1), then there exists an optimal schedule in which Jj ≺ Ji.

Proof: Let us assume that the lemma does not hold. Then in the optimal schedule

Ji ≺ Jj.We assume, without loss of generality (w.l.o.g.), that the optimal schedule is
σ and i < j, (Figure 2.1). Move Jj immediately before Ji in σ and let this modified

schedule be σ�, (Figure 2.2).

C:/Users/Nooshin/AppData/Local/Temp/graphics/O252DK0A__4.pdf

F 2.1. Optimal Schedule σ

Then we have, K1(σ) = p1,1 + s1,1 − s1,2, and
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Kr(σ) = Kr−1(σ) + pr,1 + sr,1ar−1,r − pr−1,2 − sr,2br−1,r, for r = 2, 3, ..., n.

Kr(σ
�) = Kr(σ), for r = 1, 2, ..., i− 1 (2.1)

Kj(σ
�) = Ki−1(σ�) + pj,1 + sj,1ai−1,j − pi−1,2 − sj,2bi−1,j
= Ki−1(σ) + pj,1 + si,1ai−1,i − pi−1,2 − si,2bi−1,i
≤ Ki−1(σ) + pi,1 + si,1ai−1,i − pi−1,2 − si,2bi−1,i = Ki(σ) (2.2)

Ki(σ
�) = Kj(σ

�) + pi,1 − pj,2
= Ki−1(σ) + pj,1 + si,1ai−1,i − pi−1,2 − si,2bi−1,i + pi,1 − pj,2
≤ Ki−1(σ) + si,1ai−1,i − pi−1,2 − si,2bi−1,i + pi,1 = Ki(σ) (2.3)

Kr(σ
�) = Kr−1(σ�) + pr,1 + sr,1ar−1,r − pr−1,2 − sr,2br−1,r, for r = i+ 1, i+ 2, ..., j − 1
≤ Kr−1(σ) + pr,1 + sr,1ar−1,r − pr−1,2 − sr,2br−1,r
= Kr(σ) (2.4)

From Equations (2.1)-(2.4), one can see that max
1≤r≤j

{Kr(σ
�)} ≤ max

1≤r≤j
{Kr(σ)}.

Therefore Aj(σ�) = max
1≤r≤j

{Kr(σ
�), 0} ≤ max

1≤r≤j
{Kr(σ), 0} = Aj(σ).

From Proposition 2.3, it is clear that Tj+1,1(σ�) ≤ Tj+1,1(σ).

Tj+1,2(σ
�) = Aj−1(σ�) +

j

d=1

pd,2 +

j+1

d=1

sd,2bd−1,d − sj,2bj−1,j − sj+1,2bj,j+1 + sj+1,2bj−1,j+1

≤ Aj−1(σ�) +
j

d=1

pd,2 +

j+1

d=1

sd,2bd−1,d

≤ Aj−1(σ) +
j

d=1

pd,2 +

j+1

d=1

sd,2bd−1,d = Tj+1,2(σ)

Since Tj+1,1(σ�) ≤ Tj+1,1(σ) and Tj+1,2(σ�) ≤ Tj+1,2(σ), makespan of σ� cannot be
more than the makespan of σ. This contradicts the assumption.

Lemma 2.2. For jobs Ji, Jj ∈ τ(f, g), if pi2 ≤ pj1, and if (pi2 ≤ pi1 ≤ pj2 or

pi2 ≤ pj2 ≤ pi1), then there exists an optimal schedule in which Jj ≺ Ji.

Proof: Let us assume that the lemma does not hold and Ji ≺ Jj in the optimal
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F 2.2. Modified Schedule σ�

schedule. Also let us assume, w.l.o.g., that the optimal schedule is σ and i < j. Move

Ji immediately after Jj in σ and let this modified schedule be σ
��
.

Kr(σ
��
) = Kr(σ), for r = 1, 2, ..., i− 1 (2.5)

Ki+1(σ
��
) = Ki−1(σ

��
) + pi+1,1 + si+1,1ai−1,i+1 − pi−1,2 − si+1,2bi−1,i+1

= Ki−1(σ) + pi+1,1 + si+1,1ai−1,i+1 − pi−1,2 − si+1,2bi−1,i+1
= Ki+1(σ) + (si+1,1ai−1,i+1 − si,1ai−1,i − si+1,1ai,i+1)

+(si,2bi−1,i + si+1,2bi,i+1 − si+1,2bi−1,i+1) + pi,2 − pi,1
≤ Ki+1(σ) + (si,2bi−1,i + si+1,2bi,i+1 − si+1,2bi−1,i+1) (2.6)

Kr(σ
��
) = Kr−1(σ

��
) + pr,1 + sr,1ar−1,r − pr−1,2 − sr,2br−1,r, for r = i+ 2, ..., j

≤ Kr(σ) + (si,2bi−1,i + si+1,2bi,i+1 − si+1,2bi−1,i+1) (2.7)

Ki(σ
��
) = Kj(σ

��
) + pi,1 − pi,2 ≤ Kj(σ

��
)

≤ Kj(σ) + (si,2bi−1,i + si+1,2bi,i+1 − si+1,2bi−1,i+1) (2.8)

Equations (2.5)-(2.8) show that max
1≤r≤j

�
Kr(σ

��
)
� ≤ max

1≤r≤j
{Kr(σ)} + (si,2bi−1,i +

si+1,2bi,i+1 − si+1,2bi−1,i+1). Therefore,

Ai(σ
��
) = max

1≤r≤j

�
Kr(σ

��
), 0
�

≤ max
1≤r≤j

{Kr(σ), 0}+ (si,2bi−1,i + si+1,2bi,i+1 − si+1,2bi−1,i+1)
= Aj(σ) + (si,2bi−1,i + si+1,2bi,i+1 − si+1,2bi−1,i+1)
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It is clear that Tj+1,1(σ
��
) ≤ Tj+1,1(σ).

Tj+1,2(σ) = Aj(σ) +

j

d=1

pd,2 +

j+1

d=1

sd,2bd−1,d

Tj+1,2(σ
��
) = Ai(σ

��
) +

j

d=1

pd,2 +

j+1

d=1

sd,2bd−1,d − (si,2bi−1,i + si+1,2bi,i+1 − si+1,2bi−1,i+1)

≤ Aj(σ) +

j

d=1

pd,2 +

j+1

d=1

sd,2bd−1,d = Tj+1,2(σ)

Since Tj+1,1(σ
��
) ≤ Tj+1,1(σ) and Tj+1,2(σ

��
) ≤ Tj+1,2(σ), the makespan of σ

��
can

not be more than the makespan of σ. This contradicts the assumption.

Theorem 2.2. In the optimal schedule, jobs belonging to any set τ(f, g) follow John-

son sequence.

Proof: Let the theorem is not true. Then in the optimal schedule, there must be at

least two jobs Ji, Jj ∈ τ(f, g) (for some f, g), where min{pj,1, pi,2} ≤ min{pi,1, pj,2}
and Ji ≺ Jj. There are four possible cases:

1. (pj,1 ≤ pi,2) and (pi,1 ≤ pj,2), i.e., (pj,1 ≤ pi,2) and (pj,1 ≤ pi,1 ≤ pj,2)

2. (pj,1 ≤ pi,2) and (pj,2 ≤ pi,1), i.e., (pj,1 ≤ pi,2) and (pj,1 ≤ pj,2 ≤ pi,1)

3. (pi,2 ≤ pj,1) and (pi,1 ≤ pj,2), i.e., (pi,2 ≤ pj,1) and (pi,2 ≤ pi,1 ≤ pj,2)

4. (pi,2 ≤ pj,1) and (pj,2 ≤ pi,1), i.e., (pi,2 ≤ pj,1) and (pi,2 ≤ pj,2 ≤ pi,1)

Lemma 2.1 for cases 1 and 2, and Lemma 2.2 for cases 3 and 4, prove that

scheduling Jj before Ji does not increase the makespan.

2.3.2 Some properties of batches in optimal schedule

In this subsection, we first discuss rules that leads us to form initial batches (Lemmas

2.3 and 2.4). Then, we show that any ordered batch can be converted to an equivalent

job that will be used in our algorithm (Lemma 2.6).
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Lemma 2.3. There exists an optimal schedule in which jobs Ji , Jj ∈ τ(f, g) are
scheduled in the same batch if pi,1 ≤ pi,2, pj,1 ≤ pj,2, and pi,1 ≤ pj,2.

Proof : Let, w.l.o.g., the optimal schedule be σ and Ji ≺ Jj. Note that from Theorem
2.2, Ji and Jj follow Johnson rule. Let us assume that the lemma does not hold then

jobs Ji and Jj are scheduled in different batches in σ. Let σ� be the modified schedule

when Jj is scheduled immediately after Ji in σ, i.e., jobs Ji and Jj are in the same

batch.

Kr(σ) = Kr(σ
�), for r = 1, ..., i (2.9)

Kj(σ
�) = Ki(σ

�) + pj,1 − pi,2 = Ki(σ) + pj,1 − pi,2 ≤ Ki(σ) (2.10)

Ki+1(σ
�) = Kj(σ

�) + pi+1,1 + si+1,1 × aj,i+1 − pj,2 − si+1,2 × bj,i+1
= Ki(σ) + pj,1 − pi,2 + pi+1,1 + si+1,1 × ai,i+1 − pj,2 − si+1,2 × bi,i+1
= Ki+1(σ) + pj,1 − pj,2 ≤ Ki+1(σ) (2.11)

Kr(σ
�) = Kr−1(σ�) + pr,1 + sr,1 × ar−1,r − pr−1,2 − sr,2 × br−1,r, for r = i+ 2, ..., j − 1
= Kr(σ) + pj,1 − pj,2 ≤ Kr(σ) (2.12)

It is clear that Ti+1,1(σ�) ≤ Ti+1,1(σ). From Equations (2.9)-(2.12), it can be easily
proved that Ti+1,2(σ�) ≤ Ti+1,2(σ). Therefore makespan of σ�can not be more than the
makespan of σ.

Lemma 2.4. There exists an optimal schedule in which jobs Ji, Jj ∈ τ(f, g) are
scheduled in the same batch if pi,2 ≤ pi,1, pj,2 ≤ pj,1, and pi,2 ≤ pj,1.

Proof: The proof of this Lemma is similar to the proof for Lemma 2.3 and therefore

it is omitted.

Algorithm OptBatch given below generates ordered batches using the rules in

Lemma 2.3 and Lemma 2.4.

Algorithm OptBatch

Step 1. Sequence jobs of each set τ(f, g) (∀g, h) in Johnson order.
Step 2. Group jobs of each family into batches using Lemmas 2.3 and 2.4.
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End.

Lemma 2.5. The complexity of algorithm OptBatch is O(n2).

Proof: In algorithm OptBatch in the first step, sequencing jobs in Johnson order

takes O(n log(n)) time. Lemma 2.3 in the second step requires O(n) time to get the

group of jobs that their processing time on M1 is less than or equal to the processing

time on M2. Batching the jobs in that group (i.e., checking pi,1 ≤ pj,2) requires at

most O(n2) time. Therefore, the complexity of batching jobs using Lemma 2.3 in the

second step is O(n2). Similarly, batching jobs using Lemma 2.4 has the complexity

of O(n2). Thus the complexity of algorithm OptBatch is O(n2).

Remark 2.2. For any optimal ordered batch, i.e., batch with fixed job sequence, all

idle times on M2 can be shifted to the beginning without increasing completion times

on M1 and M2.(Figure 2.3(a) and 2.3(b))

Hereafter, we consider the schedule of an ordered batch as the one that follows

Remark 2.2. Assume that the rth batch (βr) has ur number of jobs. Without loss of

generality we assume that the jobs assigned to the batch are {J1, J2, ..., Jur}.

C:/Users/Nooshin/AppData/Local/Temp/graphics/O252DI08__6.pdf

F 2.3. a) Schedule of batch βr before shifting all idle times on M2 to the
beginning. b) Schedule of batch βr after shifting all idle times onM2 to the beginning

We represent the ordered batch βr by three components Hr, Br, and Lr as shown

in Figure 2.3(b), where,
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(i) Hr is the total idle time on M2 for the batch βr,

Hr = max

�
max
2≤j≤ur

{
j�
d=1

pd,1 −
j−1�
d=1

pd,2} , pi,1
�
.

(ii) Br is the time that both machines are busy processing jobs in βr,

Br =
ur�
d=1

pd,1 −Hr.

(iii) Lr is the idle time on M1 for the batch βr,

Lr = Hr +
ur�
d=1

pd,2 −
ur�
d=1

pd,1.

Lemma 2.6. Consider a schedule φ with w ordered batches sequenced in the order

of index, i.e., φ =
�
β1, β2,...,βw−1, βw

�
. Now consider w jobs J1, J2, ..., Jw that

pi,1 = Hi, pi,2 = Li and job Ji belongs to the family of batch βi for i = 1, ..., w. Let

the schedule φ� be the sequence of jobs {J1, J2, ..., Jw} in the order of index. Then
Cmax(φ) = Cmax(φ

�) +
w�
d=1

Bd.

Proof: For job sequence φ�,

Kr(φ
�) =

r

d=1

Hd +
r

d=1

sd,1ad−1,d −
r−1

d=1

Ld −
r

d=1

sd,2bd−1,d.

For batch sequence φ, let ur be the number of jobs in βr. Then, for any job

Ji ∈ βr,

Ki(φ) =
r−1

d=1

(Hd +Bd)−
r−1

d=1

(Ld +Bd) +
r

d=1

sd,1ad−1,d −
r

d=1

sd,2bd−1,d +

d∈{βr|d≤i}

pd,1 −



d∈{βr|d≤i}
pd,2.

Then,
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max
i∈βr

{Ki(φ)} =

r−1

d=1

Hd −
r−1

d=1

Ld +

r

d=1

sd,1ad−1,d −
r

d=1

sd,2bd−1,d +

max
i∈βr

{



d∈{βr|d≤i}
pd,1 −



d∈{βr|d≤i}

pd,2}

=

r−1

d=1

Hd −
r−1

d=1

Ld +

r

d=1

sd,1ad−1,d −
r

d=1

sd,2bd−1,d +Hr = Kr(φ
�).

Also, Aw(φ) = maxi∈β1,β2,...,βw{Ki(φ)} = maxr=1,...,w{maxi∈βr{Ki(φ)}}.
Therefore, Aw(φ) = maxr=1,...,w{Kr(φ

�)} = Aw(φ�).

Remark 2.3. Since
w�
d=1

Bd is a constant for given set of batches, solving the problem

{Ji|i = 1, 2, ..., w} to minimize makespan will be sufficient to get the optimal batch
sequence for batches {βi|i = 1, 2, ..., w} .Therefore, we can replace batch βr by job Jr
for r = 1, 2, ....w, and solve the problem for makespan minimization for the jobs.

Remark 2.4. Algorithm OptBatch generates initial ordered batches by grouping some

jobs. Remark 2.3 claims that generated batches can be replaced by equivalent jobs.

Therefore, when equivalent jobs are used in our algorithms, one may expect reduced

number of jobs.

2.4 Branch and bound algorithm

In this section, we develop a branch and bound (B&B) algorithm to sequence given

ordered batches. Below we briefly describe the procedure of our branch and bound

algorithm. We use depth first search method for branching in our B&B algorithm.

In order to fathom branches, we use a lower bound and dominance rules. Subsections

2.4.1 and 2.4.2 describe lower bound and two dominance rules respectively.

Note that any set of ordered batches {βi|i = 1, 2, ..., w} can be replaced by corre-
sponding job set {Ji|i = 1, 2, ..., w} for makespan minimization as explained in Lemma
2.6 by setting job Jr with pr,1 = Hr, and pr,2 = Lr for batch βr. Therefore, hereafter,

we consider sequence of corresponding job set instead of ordered batch set.
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2.4.1 Lower bound

In this subsection, we develop a lower bound for B&B algorithm. Propositions 2.4

and 2.5, and Remarks 2.5− 2.7 are used to develop the lower bound given in Lemma
2.8. We use the following additional notation in this subsection:

θ Set of jobs {J1, J2,...,Jw} corresponding to the set of ordered batches
{β1, β2,..., βw}

ψ Optimal schedule for partial job set θ� (θ� ⊂ θ) in which the last job
belongs to set τ(g, h)

δl Set of families on Ml for jobs in θ\θ� (for l = 1, 2)
Let us assume w.l.o.g., θ� = {J1, J2, ..., Ji−1}, and jobs in ψ are assigned in the

order of index. Let C1 and C2 be completion times of ψ on M1 and M2 respectively.

Then θ\θ� = {Ji, Ji+1, ..., Jw}. Let φ be the schedule obtained when all remaining
jobs in θ\θ� are appended to ψ in the order of index, i.e., φ = ψ,ψ� = J1, J2, ..., Jw.

Proposition 2.4. Let φ� be a fictitious schedule obtained by moving non-zero setup

time of a job Jr , (i ≤ r ≤ w) on M1 to the end of the schedule φ. Then Cmax(φ
�) ≤

Cmax(φ).

Remark 2.5. In a schedule φ, if setups of all jobs in θ\θ�on M1 are moved to the

end, then the makespan of the new schedule will not be larger than Cmax(φ). All the

setups which are moved to the end of the schedule φ can be considered as a fictitious

job.

Proposition 2.5. Consider a fictitious schedule φ
��
obtained when non-zero setup time

of job Jr, (i < r ≤ w) on M2 in φ is moved to immediately after completion of ψ(

immediately before the setup of Ji, if required). Then Cmax(φ
��
) ≤ Cmax(φ).

Remark 2.6. In a schedule φ, if setups of all jobs in θ\θ�on M2 are moved to im-

mediately after completion of ψ, then the makespan of the new schedule will not be

larger than Cmax(φ). All the setups which are moved to immediately after completion

of ψ, can be considered as a fictitious job.
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Remark 2.7. In an optimal schedule, for jobs in θ\θ�, we need at least one setup for
each family of δ1/{g} on M1 and at least one setup for each family of δ2/{h} on M2.

In an optimal schedule, therefore, the total setups for the job set θ\θ�on M1 and M2

satisfies the following inequalities: (the total setup time on M1) ≥ pw+1,1 and (the

total setup time on M2) ≥ p0,2.

Lemma 2.7. If the sequence of jobs in θ\θ� in φ is ψ� when appended to ψ (i.e.,
φ = ψ,ψ�) and if no setup is required for jobs in θ\θ�, then ψ� must follow Johnson
rule for minimum Cmax(φ), where ψ is fixed.

Proof: Let, w.l.o.g. ψ� = Ji, Ji+1, ..., Jw. Then Kr(φ) = Kr(ψ,ψ
�).

Kr(ψ,ψ
�) = Kr(ψ) for r ≤ i− 1. When r ≥ i,

Kr(ψ,ψ
�) = Ki−1(ψ,ψ

�) + (
r�
d=i

pd,1 + sd,1ad−1,d −
r�
d=i

sd,2bd−1,d −
r−1�
d=i

pd,2)− pi−1,2 =
Ki−1(ψ) +Kr(ψ

�)− pi−1,2.
Total idle time on M2 in φ,

Aw(ψ,ψ
�) = max{maxr≥i{Ki−1(ψ) + Kr(ψ

�)− pi−1,2},
maxr≤i−1{Kr(ψ)}} = max{Ki−1(ψ)− pi−1,2 +maxr≥i{Kr(ψ

�)}, Ai−1(ψ)} =
max{Ki−1(ψ)− pi−1,2 + Aw(ψ�), Ai−1(ψ)}.
We know that the partial schedule of ψ in φ is fixed, and therefore, Ki−1(ψ), pi−1,2

and Ai−1(ψ) are fixed. Thus if schedule ψ
� gives minimum makespan for job set θ\θ�,

then the schedule φ = ψ,ψ� gives the minimum makespan when ψ is fixed.

Algorithm LowerBound given bellow is used to estimate lower bound at any given

node.

Algorithm LowerBound(θ, θ�,ψ)
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Step 1. Set fictitious job J0 with

p0,2 =
�

r∈δ2/{h}
(setup time for family r on M2) and p0,1 = 0.

Step 2. Set fictitious job Jw+1 with

pw+1,1 =
�

r∈δ1/{g}
(setup time for family r on M1) and pw+1,2 = 0.

Step 3. Append all jobs Ji ∈ {θ\θ�} ∪ {J0} ∪ {Jw+1} to ψ according to
Johnson order

Step 4. Obtain the makespan of the obtained schedule.
End.

Lemma 2.8. Consider a node in B&B algorithm with ψ as the partial schedule of

jobs θ� ⊂ θ. Algorithm LowerBound(θ, θ�,ψ) finds a lower bound for makespan for

jobs in θ.

Proof: Let ψ� be the Johnson sequence for job set θ\θ� ∪ {J0} ∪ {Jw+1}. Also let
us assume no setup is required for jobs in this set. From Remark 2.7, jobs J0 and

Jw+1 represent minimum setup requirement for job set θ\θ�. Further, from Remarks

2.5 and 2.6, combining setups on each machine into corresponding single job will not

increase the makespan. Finally, Lemma 2.7 shows that Johnson sequence for any job

set which is to be appended to ψ will yield the minimummakespan. Thus, Cmax(ψ,ψ
�)

is a lower bound for the given node.

2.4.2 Dominance rules

In this subsection, we present two dominance rules which provide precedence relations

for some jobs. Lemma 2.9 presents the rules for precedence relations for jobs having

the same family only on M1, and Lemma 2.10 presents the rules for jobs having the

same family only on M2.

Lemma 2.9. Consider a schedule σ and let f(e, h), f(g, u), f(g, v), and f(g, w)

be families of (r − 1)th job, rth job, (r + 1)th, and (r + 2)th job respectively with
h 	= u 	= v 	= w. If min{pr,1 − sr,2, pr+1,2} ≥ min{pr+1,1 − sr+1,2, pr,2}, then there
exists an optimal schedule in which job Jr+1 immediately precedes job Jr.
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Proof: Without loss of generality, we can assume that σ = {J1, J2, ..., Jn}. Let σ� be
the schedule when Jr+1 is moved immediately before Jr in σ. Note Ki(σ

�) = Ki(σ)

for i = 1, 2, ..., r − 1.

Kr+1(σ
�) = Kr−1(σ�) + pr+1,1 + sr,1 − pr−1,2 − sr+1,2
= Kr−1(σ) + pr+1,1 + sr,1 − pr−1,2 − sr+1,2
= Kr(σ) + (pr+1,1 − sr+1,2)− (pr,1 − sr,2) (2.13)

= Kr+1(σ)− (pr,1 − sr,2) + pr,2 (2.14)

Kr(σ
�) = Kr+1(σ

�) + pr,1 − pr+1,2 − sr,2
= Kr(σ) + (pr+1,1 − sr+1,2)− pr+1,2 (2.15)

= Kr+1(σ) + pr,2 − pr+1,2 (2.16)

Case 1: pr+1,1− sr+1,2 ≤ pr,2. Considering Lemma’s assumption, then pr,1− sr,2 ≥
pr+1,1 − sr+1,2 and pr+1,2 ≥ pr+1,1 − sr+1,2.
From equation (2.13), Kr+1(σ

�) ≤ Kr(σ) and from equation (2.15), Kr(σ
�) ≤

Kr(σ).

Case 2: pr,2 < pr+1,1 − sr+1,2. Then pr,1 − sr,2 ≥ pr,2 and pr+1,2 ≥ pr,2.
From equation (2.14), Kr+1(σ

�) ≤ Kr+1(σ) and from equation (2.16), Kr(σ
�) ≤

Kr+1(σ).

Tr+2,1(σ
�) =

r−1

d=1

(pd,1 + sd,1ad−1,d) + sr,1 + pr,1 + pr+1,1 = Tr+2,1(σ)

Tr+2,2(σ
�) = max

1≤i≤r+1
{Kr(σ

�)}+
r−1

d=1

(pd,2 + sd,2bd−1,d) +

sr+1,2 + pr+1,2 + sr,2 + pr,2 + sr+2,2

≤ max
1≤i≤r+1

{Kr(σ)}+
r−1

d=1

(pd,2 + sd,2bd−1,d) +

sr+1,2 + pr+1,2 + sr,2 + pr,2 + sr+2,2

= Tr+2,2(σ).
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Since Tr+2,1(σ�) = Tr+2,1(σ) and Tr+2,2(σ�) ≤ Tr+2,2(σ),
then Cmax(σ�) ≤ Cmax(σ).

Lemma 2.10. Consider a schedule σ and let f(c, u), f(d, v), f(e, v), and f(f, v)

be families of (r − 1)th job, rth job, (r + 1)th, and (r + 2)th job respectively with
d 	= e 	= f . If min{pr+1,1 + sr+1,1, pr,2} ≤ min{pr,1 + sr,1, pr+1,2}, then there exists an
optimal schedule in which job Jr+1 immediately precedes job Jr.

Proof: Without loss of generality, we assume that σ = {J1, J2, ..., Jn}. Let σ� be the
schedule when Jr+1 is moved immediately before Jr in σ. Note Ki(σ

�) = Ki(σ) for

i = 1, 2, ..., r − 1.

Kr+1(σ
�) = Kr−1(σ�) + pr+1,1 + sr+1,1 − pr−1,2 − sr+1,2
= Kr−1(σ) + pr+1,1 + sr+1,1 − pr−1,2 − sr+1,2
= Kr(σ) + (pr+1,1 + sr+1,1)− (pr,1 + sr,1) (2.17)

= Kr+1(σ)− (pr,1 + sr,1) + pr,2 (2.18)

Kr(σ
�) = Kr+1(σ

�) + pr,1 + sr,1 − pr+1,2
= Kr(σ) + (pr+1,1 + sr+1,1)− pr+1,2 (2.19)

= Kr+1(σ) + pr,2 − pr+1,2 (2.20)

Case 1: pr+1,1 + sr+1,1 ≤ pr,2. Considering Lemma’s assumption, then pr+1,1 +

sr+1,1 ≤ pr,1 + sr,1 and pr+1,1 + sr+1,1 ≤ pr+1,2.
From equation (2.17), Kr+1(σ

�) ≤ Kr(σ) and from equation (2.19), Kr(σ
�) ≤

Kr(σ).

Case 2: pr,2 < pr+1,1 + sr+1,1. Then pr,2 ≤ pr,1 + sr,1 and pr,2 ≤ pr+1,2.
From equation (2.18), Kr+1(σ

�) ≤ Kr+1(σ) and from equation (2.20), Kr(σ
�) ≤

Kr+1(σ).

Tr+2,1(σ
�) =

r−1

d=1

(pd,1 + sd,1ad−1,d) + sr+1,1 + pr+1,1 + sr,1 + pr,1 + sr+2,1 = Tr+2,1(σ)
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Tr+2,2(σ
�) = max

1≤i≤r+1
{Kr(σ

�)}+
r−1

d=1

(pd,2 + sd,2bd−1,d) + sr+1,2 + pr+1,2 + pr,2

≤ max
1≤i≤r+1

{Kr(σ)}+
r−1

d=1

(pd,2 + sd,2bd−1,d) + sr+1,2 + pr+1,2 + pr,2

= Tr+2,2(σ)

Since Tr+2,1(σ�) = Tr+2,1(σ) and Tr+2,2(σ�) ≤ Tr+2,2(σ),
then Cmax(σ�) ≤ Cmax(σ).
We set the makespan of a random schedule as an upper bound in B&B algorithm.

This upper bound is updated whenever the makespan at a leaf is less than the upper

bound. A branch is fathomed (i) if the lower bound at the corresponding node is

not less than the upper bound, or (ii) if the schedule upto the corresponding node

violates any of the two proposed preceding relation requirements.

2.5 Optimal Scheduling

Optimal scheduling of jobs with family setups is simultaneously splitting jobs of the

same family into batches, sequencing jobs of each batch, and sequencing ordered

batches in an optimal way. Now we present Algorithm OptSchedule to generate

optimal schedule.

Algorithm OptSchedule

Step 1. Call Algorithm OptBatch and get the ordered batches

β1,...,βw−1, βw

Step 2. Generate equivalent job for each ordered batch βr (r =

1, 2, ..., w)

Step 3. Use the Branch and Bound algorithm discussed in Section

2.4 to sequence the generated jobs.
End.

Theorem 2.3. Algorithm OptSchedule solve two machine flow shop with cross family
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setup optimally in O(nKL) time.

Proof: From Theorem 2.2, and Lemmas 2.3 and 2.4, we know there exists an optimal

schedule in which non of the ordered batches generated by Algorithm OptBatch is

split into more than one batch. Lemma 2.6 proves that the optimal schedule of

equivalent jobs yields the optimal schedule for the ordered batches. Finally, B&B

algorithm branches along and does a complete search to generate optimal schedule of

the jobs. Therefore, Algorithm OptSchedule finds an optimal schedule.

Step 1 (algorithm OptBatch), requires O(n2) according to Lemma 2.5, Step 2

requires O(n) time to generate equivalent jobs. In Step 3 (in branch and bound

algorithm on generated jobs) sequence of jobs in each family is known. Further, at

any node there cannot be more than KL branches. Therefore the complexity of the

branch and bound algorithm is O(nKL).

Therefore, Algorithm OptSchedule finds optimal schedule in O(nKL) time.

Remark 2.8. KL is a constant for fixed number of families in each stage, therefore

OptSchedule is a polynomial time algorithm.

Remark 2.9. Note that Theorem 2.2, and Lemmas 2.9 and 2.10 are true for any two

machine flow shop scheduling problem without cross family assumption to minimize

the makespan. Thus the traditional problem of two machine flow shop with family

setup to minimize makespan, i.e., jobs of the same family on one machine belong to

the same family on the other machine, can be solved in polynomial time if the number

of families are fixed.

2.6 Hybrid Genetic Algorithm

Computational time for B&B algorithm exponentially increases with the number of

families. Therefore, in this section, we develop a hybrid genetic algorithm (HGA)

to solve problems with arbitrary number of families. We call Algorithm OptBatch

(presented in Section 2.3) to get initial ordered batches (β1, β2,...,βw) and generate

equivalent jobs using Lemma 2.6. Note that the generated jobs, belonging to the same
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family on both machines, have fixed sequence in the optimal schedule. We use random

key genetic algorithm (RKGA) to sequence generated jobs. RKGA introduced by

Bean (1994) is convenient for scheduling problems without disturbing the feasibility.

In RKGA, random numbers are assigned to jobs and jobs are sequenced in the order

of their random numbers.

Representation: In a chromosome, all jobs Ji ∈ τ(f, g) are represented by |τ(f, g)|

number of genes starting from (
f−1

i=1

L

j=1

|τ(i, j)|+
g−1

j=1

|τ(f, j)|+1)th gene, in Johnson

order. For example, jobs in τ(1, 1) are represented by the first |τ(1, 1)| genes in
Johnson order, jobs in τ(1, 2) are represented by the next |τ(1, 2)| genes in Johnson
order, and so on.

We briefly describe the major steps in our genetic algorithm:

Initial population: We randomly generate 100 chromosomes for initial population.

In section 2.3.1, we have shown that jobs having the same family on both machines

follow Johnson sequence in the optimal schedule. We assign random numbers in non-

decreasing order to jobs belonging to the same family on both machines to maintain

Johnson sequence. Therefore, for each family τ(f, g) (for f = 1, 2, ..., K and g =

1, 2, ..., L), we generate |τ(f, g)| random numbers and assign these random numbers

to genes starting from (

f−1

i=1

L

j=1

|τ(i, j)| +
g−1

j=1

|τ(f, j)| + 1)th gene in non-decreasing
order.

Fitness Evaluation: For each candidate, jobs are sequenced in the order of random

numbers and the schedule is obtained by introducing setups when required. Fitness

value is the makespan of the schedule.

Reproduction: At each iteration, we select the best 20 candidates of the previous

iteration and generate 80 new children to get the population of size 100.

Parent Selection: Candidates in the population are ordered randomly. For each

candidate in the population, we subtotal the fitness values starting from the first

candidate and divide the subtotal of each candidate by the total fitness value of all

candidates. Then two parents (candidates) are randomly selected using roulette wheel

method to generate new offsprings.
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Crossover: A two point crossover method is applied to generate two children. Two

distinct integer random numbers (1 ≤ r1, r2 ≤ N) are generated to divide each parent
into 3 segments S1, S2 and S3, where N is the total number of genes in a chromosome.

Then random numbers of jobs of selected parents in segments S1 and S3 are exchanged.

Exchanging genes may violate Johnson sequence for jobs in families. We make sure

Johnson sequence of the jobs for children by reassigning random numbers of jobs

having the same family on both machines in non-decreasing order. We tested crossover

probabilities of 0.6, 0.7, 0.8 and 0.9 for 30 problems and found the crossover probability

of 0.8 best fits to our problem. Therefore, we set a crossover probability of 0.8.

Mutation: We select two distinct random numbers 1 ≤ i, k ≤ N and exchange

the random number of ith and kth genes. Exchanging genes may violate Johnson

sequence for jobs in families, thus for generated chromosomes, we make sure Johnson

sequence of the jobs by reassigning random numbers of jobs having the same fam-

ily on both machines in non-decreasing order. We tested mutation probabilities of

0.05, 0.1, 0.15, 0.2 and 0.25 for 30 problems and found the mutation probability of 0.2

performs well to our problem. Therefore, we set a mutation probability of 0.2.

Random Shake: A random shake is used to avoid eventual traps in local optimal.

After 50 iterations, if there is no improvement in the best solution, 100 more chro-

mosomes are randomly generated and added to the current population. The best

(H) and the worst (100−H) of this pool of 200 candidates are selected for the new
generation, where H is a random number between 50 and 100.

Stopping Criterion: The algorithm will stop when the number of iterations exceed

1000 or when there is no improvement in the best fitness value for 50 iterations after

the random shake.

2.7 Computational Experiment

In this section, we describe the computational experiment to test performance of the

proposed B&B and HGA algorithms. We coded both algorithms in Visual express

C++ and ran on Pinetum 4 personal computer with 2.67 GHz and 1 GB RAM. We
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studied 9 scenarios with K = 4, 6, 8 and L = 4, 6, 8. For each scenario, the number of

jobs was set at n = 20, 30, 40, 60, 80 and 100. For each of these 54 problem instances,

10 random problems with job processing times and family setup times generated from

discrete uniform distributions, U(10, 100) and U(10, 20), respectively were tested. The

results of our experiment are summarized in Table 2.1.

The B&B algorithm takes very long time to solve large scale problems, and there-

fore, we set a maximum run time of 3600 seconds for the B&B algorithm. It found op-

timal solution for problems with upto 40 jobs. Therefore, for problems with n = 60, 80

and 100 we selected the best solution in the time limit. HGA algorithm took less than

5 seconds to get schedule for any problem. Column "CPU time" in Table 2.1 shows

the CPU time (in seconds) for B&B algorithm.

For each algorithm, we calculated the percentage deviation C −CLB
CLB

× 100, where
C is the makespan of the best schedule obtained by the algorithms and CLB is the

lower bound at the root node. The average and maximum of percentage deviations

are provided in Table 2.1. When the number of jobs increases, there is high chance

of having more than one batch for jobs in the same families, and as a result a high

chance for many setup requirements on machines. However, the lower bound at the

root node considers single set up for each family on machines. Thus, the gap between

optimal solution and the lower bound increases with increasing number of jobs. This

explains the increasing values for percentage deviations with increasing number of

jobs in Table 2.1. As it is shown in Table 2.1, average optimality gaps never exceeds

5% for the B&B and 8% for the HGA algorithm.

In order to evaluate efficiency of the fathoming rules (dominance relations and

lower bound), the percentage of average unexplored nodes (%AUN) is calculated.

By fathoming each node in the search tree, all its children will be fathomed as well,

therefore if a fathoming rule occurs at the top of the tree, it will be more efficient by

decreasing the search environment more quickly. For a given processing time distri-

bution, increase in the number of jobs will lead to have more precedence constraints

and as a result high chance for branches to be fathomed. Last column in Table 2.1

shows that percentage of unexplored nodes increases with increased number of jobs.
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T 2.1. Results of B&B and HGA Algorithms
Type of Instance HGA B&B
K L # of jobs Avg Gap Max Gap Avg Gap Max Gap CPU time %AUN

20 0.43 0.78 0.38 0.73 54 74.05
30 2.18 3.07 1.43 2.32 146 82.36
40 1.51 2.57 1.50 2.56 197 84.83

4 60 1.62 3.08 1.23 2.69 - 87.6
80 3.04 5.33 2.43 4.72 - 88.5
100 4.01 6.73 3.25 5.97 - 90.12
20 2.13 2.66 0.35 0.88 573 82.21
30 3.02 2.81 2.14 2.14 643 83.16
40 2.51 4.75 1.84 3.87 837 82.36

4 6 60 4.92 7.78 2.14 5 - 86.32
80 4.85 8.43 2.74 6.32 - 89.4
100 5.46 8.69 3.58 6.81 - 91.3
20 2.11 3.10 0.03 1.02 1012 77.42
30 3.30 3.39 2.14 2.23 1325 84.23
40 3.52 5.82 2.32 4.62 1465 87.27

8 60 4.12 7.88 3.02 6.78 - 88.9
80 5.20 9.18 4.10 8.08 - 90.2
100 6.40 11.09 6 10.69 - 92.3
20 1.6 2.15 0.68 1.23 534 78.74
30 2.57 2.95 1.48 1.86 675 81.64
40 4.41 7.16 3.14 5.89 902 83.56

4 60 3.78 6.07 2.11 4.40 - 85.6
80 5.94 9.08 3.39 6.08 - 88.25
100 6.39 9.5 4.56 7.12 - 90.41
20 2.24 2.9 0.28 0.94 1958 84.69
30 3.12 3.93 1.12 1.93 2401 87.91
40 3.17 5.72 2.47 4.81 2632 89.34

6 6 60 4.74 6.88 2.67 5.02 - 91.2
80 4.20 7.44 3.25 6.49 - 91.9
100 6.20 10.76 5.56 10.12 - 93.15
20 1.87 1.93 1.30 1.36 2489 89.76
30 3.65 4.54 2.11 3 2745 83.21
40 4.12 6.54 3.41 5.83 2804 87.47

8 60 4.20 6.27 2.35 4.42 - 89.35
80 6.32 9.46 5.24 8.38 - 91.3
100 6.73 11.63 5.45 10.35 - 93.45
20 1.11 2.10 0.36 1.35 1124 78.54
30 1.23 2.32 1.97 3.06 1256 83.47
40 4.02 6.32 2.03 4.33 1580 86.27

4 60 4.57 8.33 1.54 5.30 - 88.32
80 4.45 8.43 2.16 6.14 - 91.58
100 5.22 9.91 4.22 8.91 - 92.03
20 2.33 2.39 0.16 0.22 2563 91.74
30 2.71 4.01 0.06 0.95 2648 90.34
40 3.12 5.13 1.38 3.80 2915 91.41

8 6 60 3.38 6.52 1.16 3.23 - 92.23
80 4.45 6.85 3.65 6.45 - 92.76
100 4.70 9.6 4.14 10.37 - 93.4
20 3.11 3.78 1.84 2.06 2987 89.68
30 4.05 5.03 1.18 2.16 3014 91.87
40 3.51 5.66 2.33 4.48 3542 92.01

8 60 4.62 6.81 2.65 4.84 - 92.87
80 3.14 7.30 3.85 8.01 - 93.4
100 7.56 12.76 4.05 10.25 - 93.89
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2.8 Conclusions

In this chapter, we studied two machine flow shop scheduling problem with cross

families and sequence independent setup time to minimize makespan. The specific

assumption embedded to this problem is that each stage has its own job families. We

proved Johnson sequence is optimal for jobs belonging to the same family on both

machines and developed an efficient branch and bound algorithm. This property of

Johnson sequence for jobs belonging to the same family on both machines, is also

applicable for past studies on two machine flow shop scheduling problems with family

setups to minimize makespan. We also developed a hybrid genetic algorithm using

properties of the optimal schedule to solve large scale problems. Computational

experiment showed the effectiveness of our algorithms.
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Chapter 3

D

3.1 Motivation and literature review

In this chapter, we study the problem of reliable and immediate due date quotation in

a two-echelon dual channel supply chain in order to maximize the total profit. We have

one manufacturer and one retailer as the traditional channel and online customers as

the e-tail channel. Online customers place the order to the manufacturer, however

the products may be delivered to them directly by the manufacturer or through the

retail store. In this problem, we try to maximize due-date sensitive profit function

by quoting immediate and reliable due dates to the online customers while satisfying

capacity constraint and maximum acceptable lead time for online orders.

The problem studied in this chapter has been motivated by the following real-world

application. Consider a roll-producer company that produces customized steel-rolls

for smaller mills (customers) worldwide which produce different steel products. The

customers demand customized orders with different production requirements, thus

no inventory is kept by the roll-producer company. It has several production lines,

however, producing various orders of rolls require similar technology and therefore, the

processing times are almost deterministic. The customers can place their customized

orders to the roll-producer online (e-tail); however this company also serves its retail

channel (distribution center) in specific cycle times for more predictable customers

(demand of the retail channel is almost deterministic). Accepted orders from e-tail

channel can be shipped directly to the customers or to the distribution center. In fact,

the challenging issue in managing this business is not in the manufacturing side but

in the coordination of manufacturing and customer service representatives (CSRs).



40

When the (online) orders arrive, the CSR decides to accept/reject orders and quotes

a due date for accepted ones immediately. For longer due dates it is a common

practice to give price discounts just not to lose customers who have other options.

CSR used to quote due dates without considering the shop floor status in the past,

which led to several problems such as missing quoted due dates, losing customers,

increasing overtime production. This problems can be resolved by coordination of

CSR and manufacturing side. Our model was motivated to support this situation of

coordination. There exist similar situations in automotive supply chains, construction

industry, and in the paper industry as well.

With the growth of e-business, many companies are trying to adopt online (e-tail)

channel besides their traditional retail stores to provide more convenient access of

products for their customers. In dual channel supply chain, the manufacturer uses

both traditional retail store and e-tail channel to distribute its products. Firms follow-

ing this dual-channel strategy are referred to as click-and-mortar companies, which

is distinct from their traditional brick-and-mortar counterparts (Yao et al., 2009).

Although dual channel may help companies increase their customer’s awareness and

shopping choices, this type of distribution model affects all business functions and

operational decisions. Hill et al. (2002) introduced four main strategies for click-

and-mortar companies. In the first strategy, firms separate retail and e-tail channels

where each channel has its own warehouse, as well as inventory control and pricing

features. Some companies find it difficult to manage the same product in two different

channels; therefore as the second strategy, they outsource the e-tail channel to the

third party and all the order-fulfilment process is managed by the expert third party

firm. Drop-ship is another strategy that some companies apply, in which the third

party just picks, packs and delivers the orders to customers in e-tail channel while all

the distribution information is available for him. The other strategy used recently is

called professional shopper strategy, where customers in e-tail channel order online

and then pick up the product from the retail store. In this chapter, the assumption

of two delivery options for e-tail customers implies the manufacturer’s strategy which

is a combination of drop-ship and professional shopper strategy.
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Investigating dual channel’s impact on company’s performance is highly integrated

with several related fields, mainly as warehouse design, optimal inventory decisions

and pricing. There exist several studies in each field which are briefly reviewed in the

following.

Main concerns in warehouse design include; selection of a proper storing method,

handling equipment and best warehouse layout (de Koster et al., 2007). Among the

studies considering warehouse design, we can refer to Johnson and Meller (2002 )

who developed analytic performance model of automated split-case sorting system.

Russel and Meller (2003) addressed an expressive model of the trade-off between pick-

ing and packing efficiencies. Xu (2005) presented a model of a stochastic multi item

two-stage inventory system with space constraint, where there exit two regions for

e-tailing setting, one assigned to order picking and the other one assigned to reserve

stock. Noticing that the largest part of warehouse operating cost accounts for order

picking cost, there are several studies considering design and controlling order-picking

operations in the warehouses in dual/multi channel situations. Readers are referred

to de Koster et al. (2007) for more information. Inventory decisions in multi channel

supply chains can be categorized into two streams based on the demand structure

(Yao et al., 2009). There are several studies in the first stream where demand in

each channel is independent; Alptekinoglu and Tang (2005) studied a multi channel

distribution system with stochastic demand to minimize total expected distribution

cost. They developed decomposition method to get near optimal solution for their

model. Abdul-Jafar et al. (2006) also presented multi-echelon inventory supply chain

with one warehouse, multiple retailers and constant demand. In the second stream

where total demand splits among the channels, Chiang and Monahan (2005) pre-

sented inventory decisions in dual channel supply chain with stochastic demand, and

used online preference rate for determining customer portion of e-tail channel. Yao

et al. (2005) investigated the impact of information sharing between e-tail and retail

channels on inventory related decisions. Network design is one of the main strategic

decisions in any supply chain and includes selecting best possible facility locations

and designing related transportation network. Several studies in literature addressed
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quantitative models for multi channel distribution network design. Abdul-Jalbar et

al. (2006) studied distribution of a single product to multiple sale locations and com-

pared two fulfilment scenarios to minimize total expected distribution costs. Chaing

(2005) developed an inventory model for two-echelon dual channel supply chain in

which both traditional retail stores and e-tail customers are served from a central

warehouse. Singh et al. (2006)provided an analytical inventory model with stochas-

tic demand, investigated the impact of internet channels on retailer capability of

product assortment. Readers are referred to Niels et al. (2008), Yao et al. (2009), Qi

et al. (2008) and Abdul-Jalbar et al. (2006) for more information.

Most of e-business failures are related to operational decisions, and one of the main

reasons of early e-business failures is ineffective order fulfillment (Tarn et al., 2003).

It is accepted that even a well-designed dual channel supply chain is useless when

it is not successful to deliver items as promised. Effective order fulfilment is tightly

related to accurate due date quotation, and according to Niels et al. (2008) and to

the best of our knowledge, there is no study specifically addresses due date quotation

in dual channel supply chain. Accurate due date quotation is considered as one of the

main performance measures as well as cost and quality (Handfield et al., 1999, Stalk

and Hout, 1990), however it is not an easy task; setting relatively soon due dates

specifically for make-to-order environments, and scheduling the orders to ensure that

they meet the quoted due dates (Kaminsky, 2004) specially when we have unknown

demand trend. In fact, capacity constraint makes it impossible to set the ideal due

dates, thus the trade-off between sequencing jobs to meet the due dates and setting

due date so that sequencing is possible, is the challenging part of these problems.

Considering high competitive environment in recent years, dual channel supply chain

is vastly increasing and one of the most important challenges for these facilities will be

to quote and manage the most efficient due dates to get the competitive advantage in

the market. There are several studies in literature considering due date management

when there exist only online customers, not applicable for dual channel environments,

which are briefly reviewed in the following.

Scheduling coordinated with due date quotation for online orders, was first intro-
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duced by Keskinocak et al. (2001) on a single machine. They performed competitive

analysis for a specific online algorithm to maximize due-date sensitive revenue. In

their problem, it is assumed that there is a threshold on the quoted due dates, and

the order will be lost if it is not processed within a specific time interval. Kaminsky

and Lee (2008) proposed an online heuristic model for due date quotation problem,

minimizing total quoted due dates, and investigated the conditions of asymptotical

optimality of suggested algorithm. Zheng et al. (2014) studied the same problem as

Keskinocak et al. (2001) evaluating competitive ratio of non-linear revenue functions

in both discrete and continues time points. Kapuscinski and Tayur (1997), Duenyas

(1995) and Chand and Chhajed (1992) used analytical approaches in due date setting

problems without any constraint on the time interval in which the due date should

be quoted. There exist several studies on due date setting and sequencing problems,

investigating the performance of online algorithms with methods rather than compet-

itive analysis such as simulation, (Baker and Bertrand, 1981, Bookbinder and Noor,

1985, Weeks, 1979, Ragatz and Mabert, 1984). Hsu and Sha (2004) studied online

scheduling and due date quotation problem applying artificial neural network in order

to minimize delay cost objective, and Chang et al. (2005) proposed a fuzzy model-

ing method embedded by a genetic algorithm for a due date assignment problem.

Kaminsky and Kaya (2005) studied the problem of due date quotation and developed

three online heuristics in order to minimize the total processing time. They applied

probabilistic approach to investigate asymptotical optimality of suggested heuristics.

For a comprehensive review on papers related to due date management, readers are

referred to Keskinocak and Tayur (2003) and Cheng and Gupta (1989).

In this chapter, we study the problem of reliable due date quotation in a two-

echelon dual channel supply chain to maximize the total profit, while there exists a

threshold on due dates, i.e., latest acceptable time for the quoted due dates. The on-

line order will be lost if the quoted due date is after the latest acceptable time. There

are two options of delivering items to the online customers; directly from the manu-

facturer or through the retail store. The objective function includes due-date sensitive

revenue function and delivery cost. We consider single type of e-tail customers and
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adopt the competitive analysis (Borodin and El-Yaniv, 1998) to investigate the per-

formance of the online heuristic algorithms. To the best of our knowledge, this is

the first study of due date quotation in dual channel supply chain, considering both

e-tail and retail channels. The chapter is organized as follows. Section 3.2 explains

the problem with assumptions and section 3.2.1 provides the problem notations and

mathematical model. Section 3.3 characterizes the profit function of both online and

optimal offline algorithms. Section 3.4 presents a parametric upper bound and lower

bound for the competitive ratio of any arbitrary online algorithm using concave frac-

tional programing. Section 3.4.1 proposes specific online algorithm and investigates

its performance for single-type e-tail customers. A detailed computational experiment

is provided in Section 3.5 and finally, Section 3.6 concludes with a summary of the

insights from the analysis.

3.1.1 Solution Procedure

the solution procedure considered in this chapter is developing the mathematical

model for maximization of the total profit, finding the bounds of objective function

for online and optimal offline algorithms of due date quotation, and then applying

competitive analysis to investigate bounds of competitive ratio for any arbitrary online

algorithm. We also present specific online algorithm for due date quotation and

investigate its corresponding competitive ratio for a worst-case scenario.

3.2 Problem Definition

In this chapter, we study the problem of due date quotation for online customers in

a two-echelon dual channel supply chain while maximizing the profit function which

contains due-date sensitive revenue and delivery costs of accepted online orders. We

have one manufacturer and a retailer as the traditional channel and online customers

as the e-tail channel who are served by the manufacturer. There exist two options

for delivering products to the online customers i.e., shipping directly from the man-

ufacturer to online customers which is available at any time, and delivering through
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the retail store which is available at specific periods however imposes less cost to the

system. In our model we have the assumption of unknown demand for e-tail channel

(at any time we have no idea about future arrivals of online orders) and determinis-

tic demand (with fixed profit) for the traditional channel. This assumption implies

that there is an optimal cycle time (T ) for delivering items to the retail store, and

thus the option of delivering items to online customers through the retail store is

available every T periods. There exists maximum acceptable lead time (L
�
) for e-tail

customers, and if they are offered a due date after their desired lead time, they will

not place the order. From the manufacturer’s point of view, in fact the manufacturer

has the option of rejecting the online order by offering a due date after the desired

lead time when there is no benefit in accepting the order. The term due date in this

chapter is referred to the time that the order is shipped to the customer, i.e., the

time the order leaves the manufacturer, thus the quoted due date for each order may

be different from the time the order production is completed by the manufacturer.

Since the delivery option through the retail store is available at specific periods with

less cost, the online order may be held by the manufacturer after its production is

completed in order to use the most cost-effective delivery method. We assume that

the revenue will decrease linearly if the quoted due dates for e-tail customers increase

which was first used by Keskinocak and Tayur (2001) (review on non-increasing rev-

enue functions can be found in Keskinocak (1997)). In order to illustrate the revenue

in the objective function, let r be the revenue that is lost for each unit of time if the

online order waits before being delivered to the customer, and l the time interval

between the order’s arrival time and its quoted due date, then the revenue will be

r(L
� − l) (Keskinocak and Tayur, 2001). It is obvious that in this problem the maxi-

mum revenue one can obtain from each online order is rL, where L = L
� − p and p is

the order’s production time. In this problem we quote 100% reliable due dates to the

online customers, i.e., there is no tardiness cost, and all orders should be delivered

by the quoted due dates. We also consider capacity constraint of processing at most

N online orders at any time by the manufacturer. We consider a basic model, with

single type e-tail customers, i.e., all online orders have unit-length processing time,
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identical L
�
, revenue and delivery cost parameters.

3.2.1 Mathematical Model

In this sub-section, we introduce the batch definition in our problem, then the nota-

tions used in the rest of the chapter are provided followed by the developed math-

ematical model. Assume that ∂ is the schedule of online orders generated by any

algorithm, we can divide each schedule to batches where each batch contains con-

secutively scheduled online orders. Let si be the start time of the batch Bi and s�i

the completion time of the last order in the batch. In batch Bi, the order which is

processed at time si, has also arrived at si and all the accepted online orders arrived

before si are processed before, however they may leave the system after si. Batch

definition in this chapter is different from phase definition in Keskinocak and Tayur

(2001), as the online orders scheduled in each batch may leave the system after the

batch completion time, because in our problem the quoted due date for e-tail or-

ders are the time that the orders leave the system and may be different from their

completion time.

If we assume that we have a single type of e-tail customers, our problem of due date

quotation for online customers will be reduced to determining how many online orders

should be accepted, how many accepted orders should be processed and how many

processed orders should be shipped in each period. We use the following notations:
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i Time index , i = 1, 2, ..., n.

T Optimal cycle time of shipments to the retail store.

π Set of time indices that are multiples of T , {T, 2T, 3T, ...}.
ti Time interval between period i and the next period of regular shipment

to the retail store.

r Penalty (or revenue that is lost) for each unit of time that the online

order waits before being delivered to the customer.

L Maximum acceptable lead time excluding the order’s processing time.

c1 Delivery cost per online order shipped through the retail store.

c2 Delivery cost per online order shipped directly from the manufacturer

(c1 < c2).

N Maximum number of online orders can be processed at any time by the

manufacturer.

di Number of arrived online orders (e-tail demand) in period i.

σ(i) =

⎧⎪⎪⎨⎪⎪⎩
1 if i /∈ π

0, otherwise

Decision Variables:

qi Number of accepted online orders in period i.

wi Number of accepted online orders shifted from period i to i+ 1 before

being processed.

ui Number of online orders processed in period i but not delivered to the

customers (being held).

vi Number of online orders processed in period i and delivered to the

customers.

For a schedule ∂ with n periods, we can define the following mathematical model;
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Max

n

i=1

Ci, where Ci = rLqi−rwi−ui(rti+ c1)−vi[σ(i)(c2− c1)+ c1]

s.t.

ui + vi ≤ N ∀ i = 1, 2, ..., n,
qi + wi−1 − wi = ui + vi ∀ i = 1, 2, ..., n,
qi ≤ di ∀ i = 1, 2, ..., n,

where, the first term of the objective function is the maximum possible revenue

one can obtain from any accepted online order. The expression rwi−uirti represents
the revenue lost for the accepted online orders for each unit of time they spend in the

manufacturer’s system before being delivered. The terms uic1 and vi[σ(i)(c2−c1)+c1]
are the delivery costs of online orders shipped directly by the manufacturer and

through the retail store, respectively.

The first set of constraints represent the capacity restriction. The second set of

constraints represent that at any time, the number of orders produced or delivered

should be equal to the number of accepted orders or the ones which are held to be

delivered by the manufacturer for the e-tail channel. The last constraints ensure that

number of accepted online orders at any time is less than the online arrivals (e-tail

channel demand).

3.3 Preliminaries

In any online algorithm dealing with e-tail customers and unknown demand, making

decision about accepting or rejecting the order, also quoting the due date must be

done immediately when the order is arrived, while there is no information about

the future orders. However, in the offline algorithms, all the information about the

orders are available in advance. Mainly online algorithm’s performance is evaluated

by comparing the results of online and offline algorithms for specific instances. In

this section, we study the mathematical model provided in section 3.2.1 for both

online and offline models. For a given batch with n periods, let Z(n) denotes the

total profit obtained from an online algorithm and Z∗(n) the maximum profit one can
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obtain from the online arrivals during the batch. First, we present some remarks

and propositions to illustrate the features of the problem, and then in Lemma 3.1,

we prove that for a given batch with n periods, the lower bound of Z(n) is a linear

combination of variables q and u, where q and u are the column vectors of n elements;

q = (q1, ..., qn), u = (u1, ..., un). Then in Lemma 3.2, considering the offline model

for a given batch, an upper bound for optimal function of Z∗(n) is provided. These

two lemmas are then used for computing the bounds of the competitive ratio for any

arbitrary online algorithm.

Consider the following remarks and propositions for any online algorithm.

Remark 3.1. We know that any online algorithm tries to schedule orders to be

processed as soon as possible to guarantee the available capacity for future online

arrivals, as they have no idea about the future e-tail’s demand, therefore in each pe-

riod, if wi ≥ 1, it means that we are shifting some orders to be processed in next

periods, and in this case we should have used all available capacity in that period, i.e.,

in online strategies if wi ≥ 1 then ui + vi = N .

Remark 3.2. In each period if ui > 0, then i /∈ π and σ(i) = 1.

Remark 3.3. If i ∈ π, then ui = 0 and σ(i) = 0 .

Remark 3.4. vn =
n

i=1

(qi)− (n− 1)N − un where n is the last period in a batch.

Proposition 3.1. If n is the last period in a batch, then

n

i=1

wi =

n

i=1

[(n− i)(qi)]−N(n(n− 1))/2

Proof: According to the batch definition, wi ≥ 1, for i = 1, 2, ..., n − 1 and wn = 0.
Therefore from Remark 3.1, we have ui + vi = N for i = 1, 2, ..., n − 1, and thus
wi =

i

j=1

(qj −N) for i = 1, 2, ..., n− 1 and wn = 0. Accordingly,

n

i=1

wi =

n

i=1

i

j=1

(qj −N) =
n

i=1

[(n− i)(qi)]−N(n(n− 1))/2.
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Lemma 3.1. Considering any arbitrary online algorithm’s schedule with single type

of e-tail customers and q ≥ 0, the lower bound of profit function Z(n) for a batch with
n periods can be written as r��q+ c�u+K where q, u, r� and c� are the column vectors

of n elements and r
��
i = rL− r(n− i)− σ(n)(c2 − c1)− c1, c�i = −(r + h)ti − c1 + c2

and K = rN(n(n− 1))/2 + (1− σ(n))(N(n− 1)(c1 − c2)).

Proof: Assume that we have n periods in batch Bl. According to the batch definition,

wn = 0, and since the equality ui+vi = N is true for i = 1, 2, ..., n−1, we first consider
Z(n−1) as the profit function of the first n− 1 periods in Bl. Let Q and P be the sets
Q = {i | ui = 0, i 	= n} and P = {i | ui > 0, i 	= n}. Then,



i∈Q

Ci =


i∈Q
{rLqi − rwi −N [σ(i)(c2 − c1) + c1]}, (3.1)



i∈P

Ci =


i∈P
{rLqi − rwi − ui[rti + c1]− (N − ui) [σ(i)(c2 − c1) + c1]}. (3.2)

From Remark 3.2, we have


i∈P

Ci =


i∈P
{rLqi − rwi − ui[rti + c1] − (N − ui) (c2)}.

Therefore,

Z(n−1) =


i∈P

Ci +


i∈Q

Ci =
n−1

i=1

rLqi −
n−1

i=1

rwi − (3.3)



i∈Q

N [σ(i)(c2 − c1) + c1]−


i∈P

ui[rti + c1]−


i∈P
(N − ui) (c2).

For i = n, we have two cases;

Case 1. n ∈ π: We have σ(n) = 0, and from Remark 3.3, un = 0. Therefore, Cn =

rLqn − vnc1, and from Remark 3.4, we have Cn = rLqn − [
n

i=1

(qi) − (n − 1)N ][c1].
Therefore,
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Z(n) = Z(n−1) + Cn = Z(n−1) + rLqn − [
n

i=1

(qi)− (n− 1)N ][c1] = (3.4)

n−1

i=1

rLqi −
n−1

i=1

rwi −


i∈Q

N [σ(i)(c2 − c1) + c1]−


i∈P

ui[rti + c1]−



i∈P
(N − ui)(c2) + rLqn − [

n

i=1

(qi)− (n− 1)N ][c1].

It is clear that we can write


i∈P

ui[rti + c1] as
n

i=1

ui[rti + c1], since if i ∈ Q then

ui = 0 and in this case un = 0. Also note that
n−1

i=1

rwi =
n

i=1

rwi because wn = 0.

Thus, we can rewrite the equation (3.4) as

Z(n) =

n

i=1

rLqi −
n

i=1

rwi −


i∈Q

N [σ(i)(c2 − c1) + c1]−
n

i=1

ui[rti + c1] (3.5)

+

n

i=1

(c2ui)−


i∈P

Nc2 − [
n

i=1

(qi)− (n− 1)N ][c1] =
n

i=1

rLqi −
n

i=1

rqi(n− i) + rN(n(n− 1))/2−


i∈Q

N [σ(i)(c2 − c1) + c1]−
n

i=1

ui[rti + c1 − c2]−


i∈P

Nc2 − [
n

i=1

(qi)− (n− 1)N ][c1]

Let r�i = rL− r(n− i), c�i = −rti − c1 + c2, Q1 = {i ∈ Q & i ∈ π} and Q2 = {i ∈
Q & i /∈ π}. Then, the total profit function of the batch in case 1 will be

Z(n) = r�q + c�u− c1q − |P |Nc2 − |Q1|N c1 − |Q2|Nc2 + (3.6)

rN(n(n− 1))/2 +N(n− 1)c1,

where q, u, r� and c� are the column vectors of n elements; q = (q1, ..., qn), u =

(u1, ..., un), r� = (r�1, ..., r
�
n), c

� = (c�1, ..., c
�
n).
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Case 2. n /∈ π: In this case σ(n) = 1 and Cn = rLqn − un(rtn + c1)− vnc2. From
Remark 3.4, we have Cn = rLqn−un(rtn+c1)− [

n

i=1

(qi)−(n−1)N−un]c2. Therefore,

Z(n) = Z(n−1) + Cn = (3.7)

Z(n−1) + rLqn − un(rtn + c1)− [
n

i=1

(qi)− (n− 1)N)− un]c2 =
n−1

i=1

rLqi −
n−1

i=1

rwi −


i∈Q

N [σ(i)(c2 − c1) + c1]−


i∈P

ui[rti + c1] +



i∈P
(ui −N)(c2) + rLqn − un(rtn + c1)− [

n

i=1

(qi)− (n− 1)N)− un]c2

Setting r�i, c
�
i, Q1 and Q2 as in case 1, then the total profit function of the batch

for case 2 will be as

Z(n) = r�q + c�u− c2q − |P |Nc2 − |Q1|N c1 − |Q2|Nc2 + (3.8)

rN(n(n− 1))/2 +N(n− 1)c2.

Note that (n − 1) = |P | + |Q1| + |Q2| and c1 < c2. In either case 1 or 2, we can
replace the expression (−|P |Nc2 − |Q1|N c1 − |Q2|Nc2) by (−|P |Nc2 − |Q1|N c2 −
|Q2|Nc2) and determine the lower bound of Z(n) as follow;

Z(n) ≥

⎧⎪⎪⎨⎪⎪⎩
r�q + c�u− c1q + rN(n(n− 1))/2 +N(n− 1)(c1 − c2) n ∈ π

r�q + c�u− c2q + rN(n(n− 1))/2 n /∈ π.
(3.9)

Therefore, for a given batch in an arbitrary online algorithm’s schedule, we have

Z(n) ≥ r��q + c�u+K, where r��i = r�i − σ(n)(c2 − c1)− c1 and
K = rN(n(n− 1))/2 + (1− σ(n))(N(n− 1)(c1 − c2)).
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Lemma 3.2. The maximum profit one can obtain from the online arrivals during

the given batch, i.e., Z∗(n) (profit of optimal offline algorithm) has the following upper

bound, where q�i is the number of accepted online orders in period i by an optimal

offline algorithm and q� is the column vectors of n elements; q� = (q�1, ..., q
�
n).

Z∗(n) ≤ (rL− c1)q� (3.10)

Proof: Assume that we have n periods in batch Bl. For the periods {i = 1, ..., n

|ui = 0}, if i ∈ π, delivery cost for each of the online orders in period i is c1 and
if i /∈ π, delivery cost is c2, thus considering c1 as the delivery cost for all orders in
these periods {i = 1, ..., n | ui = 0} does not reduce the profit function since c2 > c1.
For periods {i = 1, ..., n | ui > 0}, delivery cost is c1, but we have also the cost rti
since i /∈ π and ti > 0. Therefore, in this case considering c1 as the total delivery

and holding cost for each of the online orders in these periods do not decrease the

profit function as well. According to the batch definition, we know that wi ≥ 1 for

i = 1, 2, ...., n−1 and wn = 0, thus rw ≥ 0. Therefore, based on the objective function
in section 3.2.1, it is clear that maximum profit one can make from the online arrivals

during a given batch has the following upper bound, Z∗(n) ≤ (rL− c1)q�.

3.4 Competitive Analysis

In online optimization problems, online algorithm’s performance is mainly evaluated

via the competitive analysis, comparing an online algorithm’s result with the offline

model’s optimal solution. For the problem in this chapter, all the information about

the online orders are available in advance for the optimal offline algorithm obtaining

maximum possible profit. Given an instance I, let Z(I) denote the total profit ob-

tained by using an online algorithm, and Z∗(I) denote the maximum profit obtained

by an optimal offline algorithm. For maximization problems, the online algorithm is

called ρ−competitive if Z∗(I) ≤ ρZ(I) + b where ρ ≥ 1, and b is a constant. We define
competitive ratio as ρ = suρ(

Z∗
(I)

Z(I)
) for Z(I) > 0. Determining the bounds of compet-
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itive ratio (ρ) is the main issue and also the challenging part of online optimization

problems.

According to the batch definition provided in section 3.2.1, any schedule of online

orders generated by an online algorithm can be divided into batches. Therefore, if

we investigate the competitive ratio of a given batch, we can generalize the results to

determine the competitive performance of the corresponding online algorithm. In this

section, we first investigate the competitive ratio of any arbitrary online algorithm

(section 3.4.1) and then the parametric bounds of competitive ratio for a specific

online strategy are provided (section 3.4.2).

3.4.1 Competitive ratio of any arbitrary online algorithm

In this subsection, we review the concave fractional programming (proposition 3.2)

which is used in Lemma 3.3 to prove an upper bound for the competitive ratio of any

arbitrary online algorithm (q ≥ 0). The lower bound for the ratio is also provided in
Lemma 3.4.

Proposition 3.2. Concave Fractional Programming. If x ∈ C, C ⊂ Rn is a convex
set, f is a concave and non-negative function on C and g is a positive and convex

function on C, then the optimization problem max
x∈C

f(x)
g(x)

is equivalent to the following

problem

min λ

s.t.

−∇f(x) + λ∇g(x) = 0
−f(x) + λg(x) ≥ 0

x ∈ C
λ ≥ 0

Proof: The proposition’s proof and more general results on concave fractional pro-

gramming can be found in Avriel et al. (1988).

In Lemma 3.3, we provide a parametric upper bound for the competitive ratio of

any online algorithm using concave fractional programming.
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Lemma 3.3. For an arbitrary online algorithm with single type of e-tail customers, if

a finite competitive ratio exists, it satisfies ρ ≤ (rL−c1)
nr+r�min−c2− r

2
, where r�min = min{

i

rL−

r(n− i)}.

Proof: According to the competitive analysis description, competitive ratio is de-

fined as ρ = suρ(
Z∗
(I)

Z(I)
) for a given instance I. In order to find ρ, we can solve the

optimization problem of max
Z∗
(I)

Z(I)
.

According to Lemma 3.1, for each batch with n periods, Z(n) ≥ r��q+c�u+K, where
c� is a column vector of n elements and c�i = −rti−c1+c2. Note that ∀ i, if c�i ≥ 0 then
ui ≥ 0, and if c�i < 0, the option of delivering items through the retail store is not cost-
effective in any situation, so ui = 0, therefore, c�u ≥ 0 and we have Z(n) ≥ r��q +K.
Also based on Lemma 3.2, for each batch, we have Z∗(n) ≤ (rL − c1)q�. Then it is
obvious that the inequality of

Z∗
(n)

Z(n)
≤ (rL−c1)q�

r��q+K is satisfied and thus ρ ≤ max( (rL−c1)q�
r��q+K ).

By the batch definition, we know that
n

i=1

qi ≥ (n−1)N+1 and let r�min = min{
i

r�i}.

From Lemma 3.1, we have

Z(n) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(r�min − c1)((n− 1)N + 1) + rN(n(n− 1))/2 +N(n− 1)(c1 − c2) n ∈ π

(r�min − c2)((n− 1)N + 1) + rN(n(n− 1))/2 n /∈ π

(3.11)

As N(n− 1)(c1 − c2)− c1((n− 1)N + 1) ≥ −c2((n− 1)N + 1), therefore, Z(n) ≥
(r�min − c2)((n− 1)N + 1) + rN(n(n− 1))/2. By rearranging the inequality we have,

Z(n) ≥ (n− 1)N(r�min − c2 +
nr

2
) + (r�min − c2) ≥

Nrn2

2
+ n(Nr�min −Nc2 −

Nr

2
) +Nc2 − r�min(N − 1)− c2 (3.12)

Note that
n

i=1

q�i ≥
n

i=1

qi and considering the batch definition, the maximum

possible number of orders accepted from arrivals during the batch can be at most NL
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orders more than the accepted ones by any online algorithm, i.e.,
n

i=1

q�i ≤
n

i=1

qi+NL.

Also we know that
n

i=1

qi ≤ nN . Therefore,
n

i=1

q�i ≤
n

i=1

qi + NL ≤ Nn + NL, and
Z∗(n) ≤ (rL − c1)q� ≤ (rL − c1)(Nn + NL). Based on Proposition 3.2, optimization
problem (ρ ≤ max( (rL−c1)q�

r��q+K )) can be written as the following dual model if Z∗(n) and

Z(n) are concave and convex functions, respectively.

min λ

s.t.

−∇Z∗(n) + λ∇Z(n) = 0
−Z∗(n) + λZ(n) ≥ 0

λ ≥ 0

Note that d2

dn2
(Z∗(n)) = 0 and d2

dn2
(Z(n)) = Nr, (the corresponding conditions are

satisfied). Therefore, if a finite ratio ρ exists, i.e., there would be a feasible solu-

tion for the above dual model, and we have ρ ≤ λ = ∇Z∗
(n)

∇Z(n) =
N(rL−c1)

Nnr+Nr�min−Nc2−Nr
2

=

(rL−c1)
nr+r�min−c2− r

2
.

In Lemma 3.4, we provide a parametric lower bound for the competitive ratio of

any arbitrary online algorithm.

Lemma 3.4. For any arbitrary online algorithm with single type of e-tail customers,

the lower bound of the competitive ratio is ρ ≥ (L+1)/2−L/k2
1−1/k2 ≥ 1.5− 1

k2
where k2 = rL

c2

and k2 ≥ L ≥ 2.

Proof: In order to find the lower bound of competitive ratio for any online algorithm,

we adapt the rule that at any time, the adversary knows all the actions of online

algorithm and provides the worst possible arrivals of e-tail customers as an input to

maximize the competitive ratio. Based on this rule, at any time, if the algorithm

decides to accept even one of the online arrivals to be processed at time t, we will

have NL number of new online arrivals in each period afterwards till period t. At

any time, if the algorithm decides to reserve the capacity for period t by rejecting

the available orders and using future arrivals for period t, there would be no more

online arrivals afterwards. Note that if the algorithm decides to accept all the NL
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possible orders, it implies that r ≥ c2 (which is the worst case and is considered in

this Lemma), otherwise, at any time only the number of orders that guarantees the

profitability will be accepted.

Assume that in each T -period, the last x orders have the option of delivery through

the retail store, and we know that their delivery cost is c
�
i = (r)

�
i
N

�
+c1 for i = 1, ...., x

where
�
i
N

�
is the greatest integer which is less than i

N
. This cost is replaced by c1 for

all x orders in the online profit function, where c1 ≤ min
i
(c

�
i) and is replaced by c

�
for

all x orders in the optimal offline profit function, where c
�
= max

i
(c

�
i) = (r)

x
N
+ c1 .

Let at t = 0, the online algorithm decides to reserve the capacity for time t ≥ 1 by
rejecting the available e-tail orders and using new arrivals. Based on the adversary

rule, there would be no more arrivals after t = 0, and thus batch length is n = 1.

In this case the online profit is Z(n) ≤ NrL −
�
1
T

�
x(c1) − (N − � 1

T

�
x)c2. However,

the maximum profit one can gain from the arrivals during the batch period (arrivals

at t = 0) is Z∗(n) = (
NL(L+1)

2
)r − �L

T

�
xc

� − (NL − �L
T

�
x)c2. At t = 0, the maximum

possible orders that offline algorithm can accept is NL. Therefore, the revenue gained

from these accepted orders is NL+N(L−1)+ ...+N(1) = NL(L+1)
2

. In this case, the

length of consecutively scheduled orders will be L. The term
�
L
T

�
x determines the

number of orders that have been delivered through the retail store in each T -period

and (NL− �L
T

�
x) represent the rest of accepted orders shipped directly to the online

customers.

If the batch ends at t ≥ 1, it is clear that in this case, batch length is n = t+1 and
the maximum revenue one can gain from online algorithm isNrL+Nt(r)(L−1), where
NrL is for the first period andNt(r)(L−1) denotes the maximum possible revenue for
the next t periods. Therefore, Z(n) = NrL−Nc2+Nt(r(L−1)−c2)+

�
1+t
T

�
x(c2−c1).

For this case, the maximum number of orders that the offline algorithm can accept

from the arrivals during the batch length is N(t) + NL. In the first t periods that

we have arrivals the revenue will be Nrt, and in the last period that we have any

arrivals, we will accept the maximum number which is NL, where its revenue will be

NL+N(L− 1)+ ...+N(1) = NL(L+1)
2

. So the partial schedule has t+L periods and

the maximum possible profit one can gain is Z∗(n) = (NL(L+1)
2

)r − NLc2 + Nt(Lr −
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c2) +
�
L+t
T

�
x(c2 − c�).

It is clear that when t and N increase the ratio Z∗(n)/Z(n) increases and when

T increases the ratio decreases. Therefore, the minimum amount of the ratio occurs

when t = 0, N = 1 and T equals to infinity, and the lower bound of the competitive

ratio for any online algorithm is
Z∗
(n)

Z(n)
≥ rL(L+1)/2−Lc2

rL−c2 . Let c1×k1 = rL and c2×k2 = rL
where k1 > k2 > 1, then

Z∗
(n)

Z(n)
≥ (L+1)/2−L/k2

1−1/k2 . Note that we assumed that if the

algorithm decides to accept orders at any time, all the possible NL arrivals may be

accepted, therefore we should have r ≥ c2. Thus r ≥ rL
k2
, k2 ≥ L. In this situation,

Z∗
(n)

Z(n)
has the minimum amount at L = 2, and

Z∗
(n)

Z(n)
≥ (3)/2−2/k2

1−1/k2 ≥ 1.5 − 1
k2
where

k2 ≥ L ≥ 2.

3.4.2 Algorithm of Due Date Quotation for Online Customers (DQC)

In this subsection, we introduce a specific online algorithm for single type of e-tail

customers, called DQC and we investigate its corresponding competitive ratio. Se-

lect 0 < α < 1, among the orders that arrive at time t, the ones that yield at least

α(rL − c1) profit are accepted and others will be rejected. The accepted orders will
be scheduled at the earliest possible position. Note that (rL − c1) represents the
maximum possible profit yield from any accepted order, which includes the maxi-

mum possible revenue (rL) and the minimum delivery cost (c1), gained from delivery

through the retail store without holding the order. In fact, in this algorithm, an online

order is accepted if a certain fraction of maximum profit is guaranteed and the rest

arrived orders are rejected to keep the capacity for the later orders that may yield

more profit. The main idea of this algorithm gained from the algorithm presented

by Keskinocak and Tayur (2001) for the problem of revenue maximization, however

there exist influencing differences in details and assumptions.

Lemma 3.5. The competitive ratio of algorithm (DQC) is at most
(1− 1

k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)

where α�� = α(1− 1
k1
) + 1

k2
and α satisfies the following equation.

(2α�� − 1 + 1
L
+ 2

Lk1
− 2α��

k1
− ( 1

k2
− 1

k1
)2)

(1− α��)2 + (1−3α��)
L

− 2
Lk2

+ 2
Lk1

=
(rL− c1)

α(rL− c1) + 1
T
(c2 − c1) . (3.13)



59

Proof: For the batch Bl with n periods, let Z(n) be the profit obtained from DQC

algorithm and Z∗(n) the maximum possible profit one can gain from the arrivals during

the batch. Note that all the accepted orders by algorithm DQC yield at least α(rL−
c1) profit. Assume R is the revenue obtained from an accepted online order by DQC,

and in worst case it is delivered directly to the customer, then R−c2 ≥ α(rL−c1). Let
α� = c2−αc1

rL
, then R ≥ αrL + α�rL, and any accepted order by algorithm DQC yield

at least α��rL revenue where α�� = α+ α� and 0 < α�� < 1. Note that for determining

the bounds of competitive ratio, we have to consider the worst-case situation. First

assume that n ≥ �(1− α��)L
+ 1, the revenue we can get from DQC algorithm is at

least

Z(n) ≥ rN(
L(L+ 1)

2
− �α

��L
 (�α��L
+ 1)
2

) + (n− �(1− α��)L
 − 1))α��rLN −

nNc2 +
�n
T

�
N(c2 − c1)

≥ rN(
L(L+ 1)

2
− α

��L(α��L+ 1)
2

) + (n− (1− α��)L− 1))α��rLN −
nNc2 + (

n

T
− 1)N(c2 − c1). (3.14)

We assume that all the orders scheduled in the first �(1− α��)L
+ 1 periods have
been arrived at t = 1 (the worst-case situation), therefore the revenue DQC algo-

rithm can gain from these orders will be rN(L(L+1)
2

− 	α��L
(	α��L
+1)
2

) ≥ rN(L(L+1)
2

−
α��L(α��L+1)

2
), which is the first term in right-hand side of equation (3.14). α��rL is

the minimum revenue DQC algorithm can get from the remaining periods (n −
�(1− α��)L
 − 1)) in batch Bl, thus we have (n − (1 − α��)L − 1))α��rLN as well.

The expression −nNc2 +
�
n
T

�
N(c2 − c1) denotes the maximum delivery cost for all

the orders scheduled in the batch, where we know that
�
n
T

� ≥ n
T
− 1, and therefore�

n
T

�
N(c2 − c1) is replaced by ( nT − 1)N(c2 − c1) in equation (3.14). Without loss of

generality, let c1 × k1 = rL and c2 × k2 = rL where k1 > k2 > 1, then −N(c2 − c1)
in equation (3.14) can be replaced by NrL2

2
( −2
Lk2

+ 2
Lk1
). By rearranging the equation

(3.14), we have
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Z(n) ≥ NrL2

2
((1− α��)2 + (1− 3α

��)
L

− 2

Lk2
+

2

Lk1
) +

nNrα��L− nNc2 + n

T
N(c2 − c1). (3.15)

Note that α��rL = αrL+c2−αc1, therefore the term nNrα��L−nNc2 in equation
(3.15) is equal to nNα(rL− c1), and we have

Z(n) ≥ NrL2

2
((1−α��)2+(1− 3α

��)
L

− 2

Lk2
+
2

Lk1
)+nNα(rL−c1)+ n

T
N(c2−c1). (3.16)

The maximum profit we can obtain from the arrivals during the batch Bl (for the

considered worst-case situation) is as follows;

Z∗(n) ≤ (n− �(1− α��)L
))NrL+Nr(L(L− 1)
2

)−
nNc1 − �α��L
Nc1 − rN�n

T
�(1 + 2 + ...+ x). (3.17)

Considering the batch definition, capacity constraint N , and the worst-case situa-

tion mentioned above, there would be no arrivals during the last �(1− α��)L
 periods
of batch Bl. The first term in the right-hand side of equation (3.17) shows that all

the orders arrived in periods 1, 2, ..., n − �(1− α��)L
 can obtain maximum amount

of revenue which is rL, and the second term denotes that the maximum possible rev-

enue one can get from the arrivals during the last �(1− α��)L
 periods of the batch is
Nr(L(L−1)

2
). The last period in the batch in which we could have any online arrival

is the period (n− �(1− α��)L
)th, and in order to obtain maximum possible revenue,

we assume the maximum number of orders we can accept (NL) have arrived in that

period. Therefore, the maximum possible revenue for the arrivals during the last

�(1− α��)L
 periods is Nr(L− 1)+Nr(L− 2)+ ...+Nr(1) = Nr(L(L−1)
2
). The terms

nNc1 and �α��L
Nc1 are also the minimum delivery costs for all online arrivals during
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the batch time. Some of the orders delivered through the retail store may have been

held after their completion time, and it is obvious that their holding time would be

rN� n
T
�(1 + 2 + ...+ x), where x = c2−c1

r
= ( 1

k2
− 1

k1
)L.

Note that −�α��L
Nc1 ≤ (1 − α��L)Nc1 = NrL2

2
( 2
Lk1

− 2α��
k1
), and −rN� n

T
�x(x+1)

2

≤ −rN x2

2
= −NrL2

2
( 1
k2
− 1

k1
)2. By rearranging equation (3.17), we have

Z∗(n) ≤
NrL2

2
(2α�� − 1 + 1

L
+

2

Lk1
− 2α

��

k1
− ( 1
k2
− 1

k1
)2) + nN(rL− c1). (3.18)

Considering the right-hand side of equations (3.16) and (3.18), If we set

(2α�� − 1 + 1
L
+ 2

Lk1
− 2α��

k1
− ( 1

k2
− 1

k1
)2)

(1− α��)2 + (1−3α��)
L

− 2
Lk2

+ 2
Lk1

=
(rL− c1)

α(rL− c1) + 1
T
(c2 − c1) , (3.19)

we have Z∗(n) ≤ ( (rL−c1)
α(rL−c1)+ 1

T
(c2−c1))Z(n). Note that

(rL−c1)
α(rL−c1)+ 1

T
(c2−c1) =

(1− 1
k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
, then Z∗(n) ≤ (

(1− 1
k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
)Z(n), where

α is obtained from the quadratic equation (3.20). By replacing α�� = α + c2−αc1
rL

=

α(1− 1
k1
) + 1

k2
in equation 3.19 , we have

α2(a) + α(b) + (c) = 0 (3.20)

a = (1− 1

k1
)3 − 2(1− 1

k1
)2 +

2

k1
(1− 1

k1
)2

b = −2(1− 1

k1
)(1− 1

k2
)2 − 3

L
(1− 1

k1
)2 − 2

k1
(1− 1

k1
) +

(1− 1

k1
)− 1

L
(1− 1

k1
)− 2

Lk1
(1− 1

k1
) +

2

k2k1
(1− 1

k1
) +

(1− 1

k1
)(
1

k2
− 1

k1
)2 − 2

T
(1− 1

k1
)(
1

k2
− 1

k1
) +

2

k1T
(1− 1

k1
)(
1

k2
− 1

k1
)
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c = (1− 1

k1
)(1− 1

k2
)2 +

1

L
(1− 1

k1
)− 5

Lk2
(1− 1

k1
) +

2

Lk1
(1− 1

k1
)− 2

Tk1
(
1

k2
− 1

k1
) +

1

T
(
1

k2
− 1

k1
)− 2

TL
(
1

k2
− 1

k1
)−

2

LTk1
(
1

k2
− 1

k1
) +

2

Tk2k1
(
1

k2
− 1

k1
) +

2

T
(
1

k2
− 1

k1
)3.

It is obvious that 1
k2
− 1

k1
≥ 0, then (1− 1

k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
≤ 1

α
, and Z∗(n) ≤ 1

α
Z(n) where

α is obtained from equation (3.20).

Note that if n < �(1− α��)L
+1, then the online algorithm will accept all possible
arrivals during the batch length and schedule them in a non-decreasing order of their

arrival times, because any arrival during the �(1− α��)L
 + 1 periods yield at least
α��rL revenue. It can be simply shown that the online algorithm in this case gives an

optimal solution, i.e.,
n

i=1

q�i =
n

i=1

qi and Z∗(n) = Z(n).

Corollary 3.1. In Lemma 3.5, we assumed we have the option of holding the com-

pleted orders to be delivered through the retail store, which implies that c2 > r + c1.

However, we may have two other cases; (c2 > r & c2 < r + c1) and ( c2 < r, i.e.,

k2 > L), where holding the completed item is not profitable, and completed orders

may be delivered through the retail store only if their completion time is at π set. For

these two cases, Z∗(n) in Lemma 3.5 changes to Z
∗
(n) ≤ NrL2

2
(2α��−1+ 1

L
+ 2
Lk1
− 2α��

k1
)+

nN(rL − c1), and we have Z∗(n) ≤
(1− 1

k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
Z(n) , where α is obtained from

equation
(2α��−1+ 1

L
+ 2
Lk1

− 2α��
k1
)

(1−α��)2+ (1−3α��)
L

− 2
Lk2

+ 2
Lk1

= (rL−c1)
α(rL−c1)+ 1

T
(c2−c1) .

Corollary 3.2. Note that based on the results obtained from Lemma 3.3, the upper

bound of competitive ratio for any arbitrary online algorithm is ρ ≤ (rL−c1)
nr+r�min−c2− r

2
.

In Algorithm DQC, r�min = α��rL, thus ρ ≤ (rL−c1)
nr+α��rL−c2− r

2
=

(1− 1
k1
)

n
L
+α(1− 1

k1
)+ 1

k2
− 1
k2
− 1
2L

=

(1− 1
k1
)

( n
L
− 1
2L
)+α(1− 1

k1
)
, and it is clear that ρ ≤ 1

α
. Therefore, results of both Lemmas 3.5 and

3.3 satisfies the inequality of Z∗(n) ≤ 1
α
Z(n) for DQC online algorithm.
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3.5 Experimental Results

In order to evaluate the competitive performance of the proposed algorithm, we define

three different cases, 1) c2 > r+ c1 2) c2 > r & c2 < r+ c1 3) c2 < r, i.e., k2 > L. We

investigate DQC algorithm’s performance by providing computational experiments on

its competitive ratio upper-bound (The bounds in Lemma 3.5 and Corollary 1). Note

that we may use different scenarios for each case, and in each scenario, the maximum

possible ratio is reported since for our performance evaluation the upper bound of

the ratio is required. For all the three cases, experimental analysis denoted that by

increasing k1 while other parameters are fixed, the algorithm DQC’s ratio increases,

thus the maximum amount of ratio occurs with the minimum amount of delivery

cost c1. In addition, by increasing T , the competitive ratio decreases (α increases)

and it implies that the maximum amount of ratio occurs when T has the minimum

amount. This result also satisfies the argument in Lemma 3.4, which denoted the

minimum ratio for any online algorithm occurs when T goes to infinity. For each

case, the competitive ratio is calculated for different amounts of L and k2 while k1

and T are set to be 10000 and 2, respectively. (Note that T = 1 is not considered

for this problem, as it eliminates the second option of direct delivery and k1 = 10000

examined and proved to be large enough for the analysis). The results are provided

in Table 3.1. For case 1, we have c2 > r + c1 which means 1
k2
> 1

k1
+ 1

L
, thus for a

specific L, the parameter k2 should be within 1 < k2 < Lk1
L+k1

. In cases 2 and 3, for

a specific L, we have k2 > Lk1
L+k1

and k2 > L, respectively. In case 1, the minimum

amount of k2 is set to be 1.01 and in cases 2 and 3, the maximum amount of k2 is

set to be 10000. For all the cases, the maximum amount of ratio (ρmx) is reported

obtained from all possible amounts of k2 for a specific L. As it is shown in Table

3.1, L is changing from 2 to 10000 and the maximum amount of competitive ratio for

cases 1, 2 and 3 is at most 2.247761, 2.00128 and 1.990304, respectively. We can claim

that the competitive ratio of the DQC algorithm is at most 2.247761, considering all

different cases. Note that by increasing L, the competitive ratio in cases 2 and 3

converges to 1.618, which is the number Keskinocak and Tayur (2001) reported as
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the competitive ratio of their problem where their problem is a special scenario of our

problem in these two cases. In their problem, the manufacturer is assumed to be a

single machine and they consider only maximizing revenue in an e-tail channel, i.e., (

c1 = c2 = 0). In order to evaluate the performance of bounds provided in lemmas 3.3

and 3.4, for case 2 and 3 of the data sets, the gap between the upper bound and lower

bound of the DQC’s competitive ratio is presented in Figures 3.1 and 3.2. In these

figures, k1 and T are set as mentioned above, and for each L and its corresponding k2

amounts, the maximum amount of upper bound and the minimum amount of lower

bound is reported.

T 3.1. Competitive ratio of DQC Algorithm
Case 1 Case 2 Case 3

L ρmx ρmx ρmx

2 1.001 2.00128 1.990304

3 1.05722 1.955236 1.954316

4 1.066855 1.897095 1.896957

5 1.202256 1.857932 1.860584

6 1.307815 1.820385 1.818566

10 1.570692 1.743365 1.750954

50 2.060528 1.637027 1.64149

100 2.150173 1.625775 1.626146

500 2.228154 1.618276 1.613276

1000 2.238121 1.611491 1.6121

10000 2.247761 1.617716 1.617945

ffffffffff

ffffffffffffffffffffffff

fffffffffffffffffffffffffffff

fffffffffffffffffffffffffffffffffff

fffffffffffffffffffffffffffffffffffffffff
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F 3.1. Upper bound and Lower bound of ρ (Case 2)

C:/Users/Nooshin/AppData/Local/Temp/graphics/O252DM0D__8.pdf

F 3.2. Upper bound and Lower bound of ρ (Case 3)

3.6 Conclusion

With the growth of e-business, many companies are trying to adopt online (e-

tail) channel besides traditional retail stores and provide more convenient access of

products by this dual channel strategy. It is accepted that even a well-designed

dual channel supply chain is useless when it is not successful to deliver items as

promised. One of the most important challenges for these facilities is to quote and

manage the most efficient due dates to get the competitive advantage in the market.

In this chapter, we studied reliable due date quotation in two-echelon dual channel

supply chain while there is an availability interval for online customers. We applied

competitive analysis for this problem while maximizing the total profit. The profit

function consists of linear due date sensitive revenue and delivery cost. We considered

two delivery options for e-tail customers with different costs and availability intervals

and also capacity constraint. We provided parametric bounds on the competitive ratio

of any arbitrary online strategy, also investigated the competitive ratio of a specific
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online algorithm for single type of e-tail channel orders. Computational experiments

illustrate the effectiveness of the proposed analysis.
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Chapter 4

D

4.1 Introduction

In this chapter, we study an extension for the problem of due date quotation co-

ordinated with delivery schedule in a two-echelon dual channel supply chain, which

was discussed in chapter 3. Some of the assumptions are modified in the extension

problem in order to make it more realistic. In chapter 3, we defined the capacity

constraint as the capability of processing at most N online orders at any time by the

manufacturer, which is modified in this chapter. Although it is possible that every

channel’s orders been assigned to different production processes and machines, we

may have a number of real-world situations where several channels share the equip-

ment and use the same production process. In other words, it is reasonable to adjust

the capacity constraint of previous model to the situation where both e-tail and re-

tailer channel’s demand share the production capacity in the manufacturer’s system.

The problem studied in this chapter assumes that the manufacturer can process at

most N orders (both online and retailer’s demand) at any time in the system. In the

previous problem, the whole capacity was considered only for e-tail channel orders,

and it was assumed that the retailer order’s schedule do not affect the online order’s

acceptance or sequence. However, it is clear that considering common capacity of

production for both channels affect scheduling and due date settings for e-tail and

retail orders.

We first present a modified batch definition for this new problem, and then intro-

duce a specific online algorithm for quoting due dates to e-tail customers (if they are

accepted) and scheduling the retailer’s orders while maximizing the total profit. Un-
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like the previous model, in this chapter, the total profit one can obtain from retailer’s

demands are not fixed. The goal in this problem is to evaluate the performance of the

proposed online algorithm. We determine competitive ratio of the proposed algorithm

by applying competitive analysis.

This chapter is organized as follows. Section 4.2 explains the problem with as-

sumptions and section 4.2.1 provides the problem notations and mathematical model.

Section 4.3 proposes specific online algorithm and investigates its performance for

single-type e-tail customers. A detailed computational experiment is provided in Sec-

tion 4.4 and finally, Section 4.5 concludes with a summary of the insights from the

analysis.

4.2 Problem Definition

In this chapter, we study the problem of due date management (due date quotation

coordinated with scheduling) for online customers in a two-echelon dual channel sup-

ply chain while maximizing total profit obtained from both accepted online orders

and retailer’s demand. The problem presented in this chapter is as an extension of

the problem studied in chapter 3, where there exist some modifications making the

problem more realistic. The problem’s structure (network) is still the same; we have

one manufacturer and a retailer as the traditional channel and online customers as the

e-tail channel who are served by the manufacturer. There exist two options for deliv-

ering products to the online customers i.e., shipping directly from the manufacturer

to online customers which is available at any time, and delivering through the retail

store which is available at specific periods and imposes less cost to the system. In this

model, we still have the assumption of unknown demand for e-tail channel (at any

time there is no information about future arrivals of online orders) and deterministic

demand for the traditional channel (which implies that there is an optimal cycle time

(T ) for delivering items to the retail store). However, unlike the previous model, the

total profit one can obtain from retailer’s demands is not fixed. The profit one can

obtain from any orders of retailer’s channel contains; fixed revenue and delivery cost
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beside the order’s earliness cost (penalty per unit of time after order’s completion

time before being delivered). Lets assume that the manufacturer has to process Q

number of retailer’s orders in each T -cycles. For each unit of time that the retailer’s

order is completed but not delivered to the customer (being held by the manufacturer

till its delivery time), r� earliness cost is carried out by the system, which represents

the retailer’s variable cost. It is obvious that Q ≤ NT , where N is the manufacturer’s

whole capacity for processing orders of both channels at any time. The problem stud-

ied in this chapter assumes that the manufacturer can process at most N orders (both

online and retailer’s demand) at any time in the system. However, in the previous

model, it was presumed that the retailer order’s schedule do not affect e-tail order’s

acceptance or schedule. It is clear that by considering common capacity of production

for both channel’s demand, scheduling and due date settings would be different.

The other assumptions are similar to the previous model; there exists maximum

acceptable lead time (L�) for e-tail customers, and if they are offered a due date

after their desired lead time, they will not place the order. From the manufacturer’s

point of view, in fact the manufacturer has the option of rejecting the online order by

offering a due date after their desired lead time when there is no benefit in accepting

the order or there exists capacity restriction. The term due date is still referred to

the time that the order is shipped to the customer, i.e., the time the order leaves the

manufacturer, thus the quoted due date for each order may be different from the time

the order production is completed. Since the delivery option through the retail store

is available at specific periods with less cost, the online order may be held by the

manufacturer after its production is completed in order to use the most cost-effective

delivery method. Since Q number of retailer’s orders must be produced within each

T -cycle and being delivered at the end of the cycle, their completion time may be

different from delivery time as well, because of the capacity constraints. We assume

that the revenue of the e-tail orders will decrease linearly if the quoted due dates

increase. In this problem, we quote 100% reliable due dates to the online customers as

well and there is no tardiness cost. We consider a basic model, with single-type orders

for both channels, i.e., all online and retailers orders have unit-length processing time,
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and similar cost parameters. Although these basic models look rather restricted, they

still enclose many difficulties of online quotation problems.

4.2.1 Mathematical Model

In this sub-section, we first introduce the batch definition for this new problem,

then the notations used in the rest of the chapter are provided. The mathematical

model is also followed which maximizes the total profit obtained from orders of both

channels. Assume that ∂ is the schedule of online and retailer’s orders generated

by any online algorithm, we can divide each schedule into batches where each batch

contains consecutively scheduled orders (it can be both channel’s orders). Let si be

the start time of the batch Bi and s�i the completion time of the last order in the

batch. In batch Bi, the online order which is processed at time si, has also arrived at

si and all the accepted online orders arrived before si are processed before, however

they may leave the system after si. Batch definition in this chapter is different from

chapter 3, since it can be a partial schedule of both channel orders, although it starts

with the accepted and processed e-tail orders.

As we assume that we have a single type of customers, our problem of due date quo-

tation will be reduced to determining how many online orders should be accepted in

each period, how many accepted online orders or retailer’s orders should be processed

and how many processed orders should be shipped in each period. We use the fol-

lowing notations;



71

i Time index , i = 1, 2, ..., n.

T Optimal cycle time of shipments to the retail store.

π Set of time indices that are multiples of T , {T, 2T, 3T, ...}.
ti Time interval between period i and the next period of regular shipment

to the retail store.

r Penalty (or revenue that is lost) for each unit of time that the online

order waits before being delivered to the customer.

r� Earliness cost per unit of time for each of the retailer’s orders.

L Maximum acceptable lead time for online orders excluding their

processing time.

c1 Delivery cost per order (online or retailer’s) through the retail store.

c2 Delivery cost per online order shipped directly from the manufacturer.

N Maximum number of orders (from both channels) can be processed by

manufacturer at any time

di Number of arrived online orders (e-tail demand) in period i

Q Number of retailer’s orders that should be produced in each T -cycle

σ(i) =

⎧⎪⎪⎨⎪⎪⎩
1 if i /∈ π

0, otherwise

Decision Variables:
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qi Number of accepted online orders in period i.

wi Number of accepted online orders shifted from period i to i+ 1 before

being processed.

ui Number of online orders processed in period i but not delivered to the

customers (being held).

vi Number of online orders processed in period i and delivered to the

customers.

q�i Number of of accepted retailer’s orders in period i.

w�i Number of accepted retail orders shifted from period i to i + 1 before

being processed.

u�i Number of retail orders processed in period i but not delivered to the

customers (being held).

For a schedule ∂ with n periods, we can define the following mathematical model;

Max
n

i=1

Ci, where Ci = rLqi− rwi−ui(rti+ c1)− vi[σ(i)(c2− c1)+ c1]−u�i(r�ti),
s.t.

ui + vi + u
�
i ≤ N ∀ i = 1, 2, ..., n,

qi + wi−1 − wi = ui + vi ∀ i = 1, 2, ..., n,
q�i + w

�
i−1 − w�i = u�i ∀ i = 1, 2, ..., n,

w�i ≤ tiNσ(i) ∀ i = 1, 2, ..., n,
q�i = (1− σ(i− 1))Q ∀ i = 1, 2, ..., n,
qi ≤ di ∀ i = 1, 2, ..., n,

where, the first term of the objective function is the maximum possible revenue

one can obtain from any accepted online order. The expression rwi+uirti represents

the revenue lost for the accepted online orders for each unit of time they spend before

being delivered. The terms uic1 and vi[σ(i)(c2−c1)+c1] are the delivery costs of online
orders shipped through the retail store or directly by the manufacturer, respectively.

And u�i(r
�ti) represents the earliness cost of retailer’s orders.
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The first set of constraints represent the capacity restriction. The second and

third set of constraints represent that at any time, the number of orders produced

and delivered should be equal to the number of accepted orders and the ones which

are held to be delivered by the manufacturer, for e-tail and retailer’s channels, respec-

tively. The forth constraint ensures that all retailer’s orders in each T -cycle should

be processed before their predetermined due date (the end of the cycle). The fifth

constraint shows that the manufacturer accepts to process fixed number of retailer’s

orders (Q) at the beginning each T -cycle, and the last constraint ensures that the

number of accepted online orders at any time is less than online channel demand.

We have online orders arrive over time and fixed number of retailer’s orders in

each T -cycle. In the online version of due date quotation model considered in this

chapter, all the information about online orders become available as they arrive at

the system, and their release times are not known in advance. In these algorithms

decision about accepting or rejecting the online orders and also quoting due dates for

the orders (if accepted) must be made as soon as they arrive. It is clear that due

date setting is tightly integrated with scheduling and for the model we have in this

chapter, we need to consider retailers orders as well. It is assumed that the retailer’s

demand is deterministic and the manufacturer can not reject or delay retailers orders

because of online orders.

We know that any online algorithm tries to schedule accepted online orders as

soon as possible to guarantee the available capacity for future arrivals, as there is no

information about the future online arrivals. In addition, there may exist retailer’s

orders that must be processed before their predetermined due dates and should be

delivered without any tardiness. Therefore, we accept Remark 4.1.

Remark 4.1. Considering any online algorithm, in the case of no online orders and

having not-processed retailer’s demand at any time, the online algorithm will process

at least some of the retailer’s orders at that time in order to reserve the capacity for

future online arrivals. In the case of having both online arrivals and not-processed

retailers demand at any time, scheduling online orders have more priority if there is

enough capacity to postpone scheduling of retailer’s orders upto their predetermined
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due date.

Competitive analysis is used to evaluate the performance of online algorithms,

where the result of online algorithm is compared with optimal offline algorithms’ for

specific instances. For the offline algorithms all the information about the orders are

available in advance. For a given batch with n periods, let Z(n) denotes the total profit

obtained from an online algorithm and Z∗(n) the maximum profit one can obtain from

retailer’s orders and the online arrivals during the batch.

4.3 Competitive Analysis

In online optimization problems, online algorithm’s performance is mainly evaluated

via the competitive analysis; comparing an online algorithm’s result with the offline

model’s optimal solution. For the problem in this chapter, all the information about

the online orders are available in advance for the optimal offline algorithms to obtain

maximum possible profit. Given an instance I, let Z(I) denote the total profit ob-

tained by using an online algorithm, and Z∗(I) denote the maximum profit obtained

by an optimal offline algorithm. As it was discussed in chapter 3, for maximization

problems, the online algorithm is called ρ−competitive if Z∗(I) ≤ ρZ(I) + b where

ρ ≥ 1, and b is a constant. We define competitive ratio as ρ = suρ(Z
∗
(I)

Z(I)
) for Z(I) > 0.

Determining the bounds for competitiveness of online algorithms, in other words,

finding bounds of competitive ratio (ρ) for the online algorithms is the main issue

and challenging part of online optimization problems.

According to the batch definition provided in section 4.2.1, any schedule of orders

(considering both online and retailer’s orders) generated by an online algorithm can

be divided into batches. Therefore, if we investigate the competitive ratio of a given

batch, we can generalize the results to determine competitiveness of the corresponding

online algorithm. In this section, we first introduce a specific online algorithm called

DQCC for single type of customers in both channels, then we evaluate the performance

of proposed algorithm by determining parametric upper bound for its competitive

ratio.
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4.3.1 Algorithm of Due Date Quotation for Online Customers with Shared

Capacity (DQCC)

In this subsection, we introduce a specific online algorithm of due date quotation for

single type of customers, called DQCC and we investigate its corresponding compet-

itive ratio. Select 0 < α < 1, among the online orders that arrive at time t, the ones

that yield at least α(rL − c1) profit are accepted only if we have enough capacity
to postpone existing retailer’s demand to be processed upto their due date. At any

time, if there is no online order to be processed, the existing retailer’s demand will be

processed using full possible capacity. The accepted online orders will be scheduled at

the earliest possible position. Note that (rL− c1) like the one discussed in chapter 3,
represents the maximum possible profit yield from any accepted online order, which

includes the maximum possible revenue (rL) and the minimum delivery cost (c1),

gained from delivery through the retail store without holding the order. In fact, in

this algorithm, an online order is accepted if a certain fraction of maximum profit

is guaranteed and also if accepting those online orders may not lead to lateness for

delivering existing retailer’s demand.

Remark 4.2. Consider the batch Bl with n periods. If the batch contains more than

one T -cycle, based on the online algorithm definition and Remark 4.1, in all T -cycles

of the batch except the last one, the online algorithm will process all the retailer’s

orders as late as possible before their due date(at the end of the cycles). In an optimal

offline algorithm also retailer’s demand will be processed at the end of the cycle to

minimize the earliness cost of retailer’s demand.

Lemma 4.1. The competitive ratio of algorithm (DQCC) is at most
(1− 1

k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)

where α�� = α(1− 1
k1
) + 1

k2
and α satisfies the following equation,

(2α�� − 1 + 1
L
+ 2

Lk1
− 2α��

k1
− ( 1

k2
− 1

k1
)2 + 2Tα��

L
)

(1− α��)2 + (1−3α��)
L

− 2
Lk2

+ 2
Lk1

=
(rL− c1)

α(rL− c1) + 1
T
(c2 − c1) . (4.1)

Proof: Consider the batch Bl with n periods. If the batch contains more than one

T -cycle, according to Remark 4.2, both online and offline algorithms would schedule
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the retailers demand at the end of the cycle for all T -cycles except the last one. Thus,

the difference between the online and offline algorithm’s schedules are the number of

accepted online orders in the last T -cycle in the batch and therefore the schedule of

retailer orders in the last cycle and clearly the profit one can gain from all online

order arrivals during the batch time. Therefore, in this proof only the profit got

form retailer’s orders in the last T -cycle of the batch is considered. Let Z(n) be the

profit obtained from DQCC algorithm and Z∗(n) the maximum possible profit one can

gain from retailer’s orders and the online arrivals during the batch. Note that all the

accepted online orders by algorithm DQCC yield at least α(rL − c1) profit. Assume
R is the revenue obtained from an accepted online order by DQCC, and in worst case

it is delivered directly to the customer, then R − c2 ≥ α(rL − c1). Let α� = c2−αc1
rL

,

then R ≥ αrL + α�rL, and any accepted online order by algorithm DQCC yield at

least α��rL revenue where α�� = α+α� and 0 < α�� < 1. Let n be the last period of the

batch where n /∈ π, and let T � be the next regular shipment to retail store after the
batch completion time, i.e., tn + n = T �. Also assume that n1 is the last period that

online orders are scheduled in the last cycle of the batch. Note that for determining

the bounds of competitive ratio, we have to consider the worst-case situation. First

assume that n1 ≥ �(1− α��)L
 + 1, the revenue we can get from DQCC algorithm is

at least

Z(n) ≥ rN(
L(L+ 1)

2
− �α

��L
 (�α��L
+ 1)
2

) + (n1 − �(1− α��)L
 − 1))α��rLN

−n1Nc2 +
�n1
T

�
N(c2 − c1)−

Nr�(
(T � − n1)(T � − n1 − 1)

2
− (T

� − n)(T � − n− 1)
2

)

≥ rN(
L(L+ 1)

2
− α

��L(α��L+ 1)
2

) + (n1 − (1− α��)L− 1))α��rLN
−n1Nc2 + (n1

T
− 1)N(c2 − c1)−

Nr�

2
((T � − n1)2 − (T � − n1)− (T � − n)2 + (T � − n)). (4.2)

In the worst-case situation, we assume all the online orders scheduled in the first

�(1− α��)L
 + 1 periods have been arrived at t = 1, therefore the revenue DQCC
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algorithm can gain from these orders will be rN(L(L+1)
2

− 	α��L
(	α��L
+1)
2

) ≥ rN(L(L+1)
2

−
α��L(α��L+1)

2
), which is the first term in right-hand side of equation (4.2). Term α��rL

is the minimum revenue DQCC algorithm can get from the remaining periods (n1 −
�(1− α��)L
−1)) in batch Bl, thus we have (n1− (1−α��)L−1))α��rLN as well. The

expression −n1Nc2 +
�
n1
T

�
N(c2 − c1) denotes the maximum delivery cost for all the

online orders scheduled in the batch, where we know that
�
n1
T

� ≥ n1
T
−1, and therefore�

n1
T

�
N(c2 − c1) is replaced by (n1T − 1)N(c2 − c1) in equation (4.2). The expression

Nr�( (T
�−n1)(T �−n1−1)

2
− (T �−n)(T �−n−1)

2
denotes the earliness cost for retailer’s orders in

the last T -cycle. Without loss of generality, let c1 × k1 = rL and c2 × k2 = rL where
k1 > k2 > 1, then −N(c2 − c1) in equation (4.2) can be replaced by NrL2

2
( −2
Lk2

+ 2
Lk1
).

By rearranging the equation (4.2), we have

Z(n) ≥ NrL2

2
((1− α��)2 + (1− 3α

��)
L

− 2

Lk2
+

2

Lk1
) +

n1Nrα
��L− n1Nc2 + n1

T
N(c2 − c1)−

Nr�

2
((T � − n1)2 − (T � − n1)− (T � − n)2 + (T � − n)). (4.3)

Note that α��rL = αrL+c2−αc1, therefore the term nNrα��L−nNc2 in equation
(4.3) is equal to nNα(rL− c1), and we have

Z(n) ≥ NrL2

2
((1− α��)2 + (1− 3α

��)
L

− 2

Lk2
+

2

Lk1
) +

n1Nα(rL− c1) + n1
T
N(c2 − c1)−

Nr�

2
((T � − n1)2 − (T � − n1)− (T � − n)2 + (T � − n)). (4.4)

For the maximum profit Z∗(n), in the presumed worst-case situation, we need to

find out the last possible period we might have online arrivals in the batch. We

assumed that n /∈ π, and there exist a gap between n and T �. Therefore, if there were
online arrivals after (n1 − �(1− α��)L
)th period, there would be enough capacity to
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schedule retailer’s orders later, and the batch length would be more than n. Thus,

the last period in the batch that could have any online arrival is the period (n1 −
�(1− α��)L
)th. We assume the maximum number of online orders we can accept

(NL) have arrived in the that last period (worst-case situation). Thus, we may have

two cases; 1) tn1 ≥ �α��L
 + (n− n1) or 2) tn1 < �α��L
 + (n− n1). In the first case,
we have enough capacity to schedule all NL online orders accepted in the last period,

consecutively before retailers orders in the last cycle. In the second case, some of the

accepted online orders may be scheduled after retailers orders (after T �). It is clear

that the maximum ratio would be obtained in the first case, which is considered in

the following.

The maximum profit one can obtain from retailer’s orders and the online arrivals

during the batch Bl, (for the considered worst-case situation) is as follows:

Z∗(n) ≤ (n1 − �(1− α��)L
))NrL+Nr(L(L− 1)
2

)− n1Nc1 −
�α��L
Nc1 − rN �n1

T
� (1 + 2 + ...+ x)−

Nr�

2
((T � − n1 − �α��L
)(T � − n1 − �α��L
 − 1)−

(T � − n− �α��L
)(T � − n− �α��L
 − 1)). (4.5)

Considering the batch definition, capacity constraint N , and the worst-case situ-

ation mentioned above, there would be no online arrivals after (n1 − �(1− α��)L
)th

period of the batch Bl. The first term in the right-hand side of equation (4.5) shows

that all the online orders arrived in periods 1, 2, ..., n1−�(1− α��)L
 can obtain maxi-
mum amount of revenue which is rL, and the second term denotes that the maximum

possible revenue one can get from the online arrivals in periods (n1 − �(1− α��)L
)th

till n is Nr(L(L−1)
2
). As it was mentioned above, the last period in the batch that we

could have any online arrival is the period (n−�(1− α��)L
)th, and in order to obtain
maximum possible revenue, we assume the maximum number of orders we can accept

(NL) have been arrived in that period. Therefore, the maximum possible revenue for

the arrivals during those periods is Nr(L−1)+Nr(L−2)+ ...+Nr(1) = Nr(L(L−1)
2
).
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The terms n1Nc1 and �α��L
Nc1 are also the minimum delivery cost for all online

arrivals during the batch time. Some of the online orders delivered through the retail

store may have been held after their completion time, and it is obvious that their hold-

ing time would be rN�n1
T
�(1+2+...+x), where x = c2−c1

r
= ( 1

k2
− 1
k1
)L. The expression

Nr�
2
((T �−n1−�α��L
)(T �−n1−�α��L
− 1)− (T �−n−�α��L
)(T �−n−�α��L
− 1)),

represents the earliness cost for retailers orders in the last cycle of the batch, where

the first case (tn1 ≥ �α��L
+(n−n1)) is satisfied. In this case, we have enough capac-
ity to schedule all the online orders accepted in the last possible period consecutively

and shift the retailer’s orders to be scheduled later but before their predetermined

due date.

Note that −�α��L
Nc1 ≤ (1 − α��L)Nc1 = NrL2

2
( 2
Lk1

− 2α��
k1
), and −rN�n1

T
�x(x+1)

2

≤ −rN x2

2
= −NrL2

2
( 1
k2
− 1

k1
)2. By rearranging equation (4.5), we have

Z∗(n) ≤ NrL2

2
(2α�� − 1 + 1

L
+

2

Lk1
− 2α

��

k1
− ( 1
k2
− 1

k1
)2) +

n1N(rL− c1)− Nr
�

2
((T � − n1 − �α��L
)(T � − n1 − �α��L
 − 1)−

(T � − n− �α��L
)(T � − n− �α��L
 − 1)). (4.6)

After rearranging the last term in the right-hand side of the equation (4.6), we

have −Nr�
2
((T �−n1)2−(T �−n1)−(T �−n)2+(T �−n))+Nr� �α��L
 (n−n1). Therefore,

Z∗(n) ≤ NrL2

2
(2α�� − 1 + 1

L
+

2

Lk1
− 2α

��

k1
− ( 1
k2
− 1

k1
)2) +

n1N(rL− c1) +Nr� �α��L
 (n− n1)
−Nr

�

2
((T � − n1)2 − (T � − n1)− (T � − n)2 + (T � − n)). (4.7)

In case 1, we have tn1 ≥ �α��L
 + (n − n1), thus (n − n1) ≤ tn1 ≤ T , and we can
replace the Nr� �α��L
 (n− n1) in equation (4.7) with Nr� �α��L
T . We assume that
r� = r, Therefore, Nr �α��L
T = NrL2

2
(2Tα

��
L
), and
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Z∗(n) ≤ NrL2

2
(2α�� − 1 + 1

L
+

2

Lk1
− 2α

��

k1
− ( 1
k2
− 1

k1
)2 +

2Tα��

L
) + n1N(rL− c1)

−Nr
�

2
((T � − n1)2 − (T � − n1)− (T � − n)2 + (T � − n)). (4.8)

Considering the right-hand side of equations (4.4) and (4.8), If we set

(2α�� − 1 + 1
L
+ 2

Lk1
− 2α��

k1
− ( 1

k2
− 1

k1
)2 + 2Tα��

L
)

(1− α��)2 + (1−3α��)
L

− 2
Lk2

+ 2
Lk1

=
(rL− c1)

α(rL− c1) + 1
T
(c2 − c1) , (4.9)

we have Z∗(n) ≤ ( (rL−c1)
α(rL−c1)+ 1

T
(c2−c1))Z(n). Note that,

(rL−c1)
α(rL−c1)+ 1

T
(c2−c1) =

(1− 1
k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
, then Z∗(n) ≤ (

(1− 1
k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
)Z(n), where

α is obtained from the quadratic equation (4.10). By replacing α�� = α + c2−αc1
rL

=

α(1− 1
k1
) + 1

k2
in equation (4.9) , we have

α2(a) + α(b) + (c) = 0 (4.10)

a = −(1− 1

k1
)3 + (1− 1

k1
)2(2− 2

k1
+
2T

L
)

b = (1− 1

k1
)(
1

k2
)(2− 2

k1
+
2T

L
) +

1

T
(1− 1

k1
)(
1

k2
− 1

k1
)(2− 2

k1
+
2T

L
) +(4.11)

(1− 1

k1
)(
1

L
− 1 + 2

Lk1
− ( 1
k2
− 1

k1
)2)− 2(1− 1

k1
)2(
1

k2
)−

(1− 1

k1
)2(−2− 3

L
)

c =
1

k2T
(
1

k2
− 1

k1
)(2− 2

k1
+
2T

L
) +

1

T
(
1

k2
− 1

k1
)(
1

L
− 1 + 2

Lk1
− ( 1
k2
− 1

k1
)2)−

(1− 1

k1
)(
2

Lk1
− 2

Lk2
)− (1− 1

k1
)(
1

L
+ 1 +

1

k22
)− (1− 1

k1
)
1

k2
(−2− 3

L
) (4.12)
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It is obvious that 1
k2
− 1

k1
≥ 0, then (1− 1

k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
≤ 1

α
, and Z∗(n) ≤ 1

α
Z(n) where

α is obtained from equation (4.10).

Note that if n1 < �(1− α��)L
+1, then all possible online arrivals during the batch
length are accepted by the online algorithm and are schedule in a non-decreasing order

of their arrival times, since any online arrival during the �(1− α��)L
+1 periods yield
at least α��rL revenue. It can be simply shown that the online algorithm in this case

gives an optimal solution, i.e.,
n

i=1

q�i =
n

i=1

qi and Z∗(n) = Z(n).

Corollary 4.1. In Lemma 4.1, we assumed we have the option of holding the com-

pleted online orders to be delivered through the retail store, which implies that c2 >

r + c1. However, we may have two other cases; (c2 > r & c2 < r + c1) and (

c2 < r, i.e., k2 > L), where holding the completed online item is not profitable,

and completed orders may be delivered through the retail store only if their comple-

tion time is at π set. For these two cases, Z∗(n) in Lemma 4.1 changes to Z
∗
(n) ≤

NrL2

2
(2α�� − 1 + 1

L
+ 2

Lk1
− 2α��

k1
+ 2Tα��

L
) + nN(rL− c1)− Nr�

2
((T � − n1)2 − (T � − n1)−

(T � − n)2 + (T � − n)), and we have Z∗(n) ≤
(1− 1

k1
)

α(1− 1
k1
)+ 1

T
( 1
k2
− 1
k1
)
Z(n) , where α is obtained

from equation
(2α��−1+ 1

L
+ 2
Lk1

− 2α��
k1
+ 2Tα��

L
)

(1−α��)2+ (1−3α��)
L

− 2
Lk2

+ 2
Lk1

= (rL−c1)
α(rL−c1)+ 1

T
(c2−c1) .

4.4 Experimental Results

In order to evaluate the competitive performance of the proposed algorithm, we de-

fine three different cases, 1) c2 > r + c1 2) c2 > r & c2 < r + c1 3) c2 < r, i.e.,

k2 > L. We investigate DQCC algorithm’s performance by providing computational

experiments on its competitive ratio upper-bound (Lemma 4.1 ). Note that we may

use different scenarios for each case, and in each scenario, the maximum possible

ratio is reported since for our performance evaluation the upper bound of the ratio

is required. For all the three cases, experimental analysis denoted that by increasing

k1 while other parameters are fixed, the algorithm DQCC’s ratio increases, thus the

maximum amount of ratio occurs with the minimum amount of delivery cost c1. In

addition, by increasing T , the competitive ratio decreases (α increases) and it implies
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that the maximum amount of ratio occurs when T has the minimum amount. For

each case, the competitive ratio is calculated for different amounts of L and k2 while

k1 and T are set to be 10000 and 2, respectively. (Note that T = 1 is not considered

for this problem, as it eliminates the second option of direct delivery and k1 = 10000

examined and proved to be large enough for the analysis). The results are provided

in Table 4.1. For case 1, we have c2 > r + c1 which means 1
k2
> 1

k1
+ 1

L
, thus for a

specific L, the parameter k2 should be within 1 < k2 < Lk1
L+k1

. In cases 2 and 3, for

a specific L, we have k2 > Lk1
L+k1

and k2 > L, respectively. In case 1, the minimum

amount of k2 is set to be 1.01 and in cases 2 and 3, the maximum amount of k2 is

set to be 10000. For all the cases, the maximum amount of ratio (ρmx) is reported

obtained from all possible amounts of k2 for a specific L. As it is shown in Table

4.1, L is changing from 2 to 10000 and the maximum amount of competitive ratio

for cases 1, 2 and 3 is at most 4.857014, 3.290674 and 3.290669, respectively. We

can claim that the competitive ratio of the DQCC algorithm is at most 4.857014,

considering all different cases. Note that by increasing L, the competitive ratio in all

cases converges to 1.618, which is the number Keskinocak and Tayur (2001) reported

as the competitive ratio of their problem where their problem is a special scenario of

our problem in these two cases. In their problem, the manufacturer is assumed to be

a single machine and they consider only maximizing revenue in an e-tail channel, i.e.,

( c1 = c2 = 0, with no retail orders).

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
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T 4.1. Competitive ratio of DQCC Algorithm
Case 1 Case 2 Case 3

L ρmx ρmx ρmx

2 4.857014 3.290674 3.290669

3 3.183267 2.622464 2.622462

4 2.57460 2.351725 2.351724

5 2.307077 2.201813 2.201813

6 1.953789 1.94741 1.94741

10 1.680011 1.683079 1.683079

50 1.648414 1.65049 1.65049

100 1.623987 1.624509 1.624509

500 1.621001 1.62127 1.62127

1000 1.618329 1.618356 1.618356

10000 1.618062 1.618065 1.618065

4.5 Conclusion

In this chapter, we studied an extension of the problem presented in chapter 3,

due date quotation coordinated with delivery schedule in dual channel supply chain,

with the same objective and problem structure. However, capacity constraint in this

problem is modified to be a more realistic one. Unlike the problem in chapter 3, it

is assumed that the production capacity of the manufacturer is shared among the

orders of both channels, i.e., there is no distinct production capacity for orders of

different channels. This shared capacity assumption, affects the number of online

orders that the algorithm accepts, their schedule and clearly the schedule of retail

orders. In addition, in this problem the fixed profit of retail orders is adjusted and

variable revenue lost is considered for orders of this channel. The solution procedure

considered for this online optimization problem was competitive analysis as well. In

this chapter, we investigated the competitive ratio of a specific online algorithm for

single type of e-tail channel orders. The computational experiments illustrate the

effectiveness of the proposed analysis.



84

Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Summary of contributions

The objective of this dissertation is to analyze the problem of due date quotation

and delivery scheduling (due date management) in dual channel supply chain. The

main goal is to study this problem from the manufacturer’s point of view, investigate

different production environments and develop proper methodologies for each situ-

ation. To this aim, three main problems (three different production environments)

have been investigated and appropriate analysis and solution methodologies for each

problem have been developed.

In Chapter 2, we studied a delivery scheduling problem where the manufacturer

has to decide the earliest delivery time for the orders received from retail channel. In

this problem, a two-echelon supply chain is considered where a retailer places bulk

orders of the same product with different families to the manufacturer. Since the

manufacture accepts only bulk orders, no online order is assumed for this problem.

The analysis with no online customers is relatively easy and therefore, we consider

families of products in this problem. For this problem, we consider only retail chan-

nel with deterministic demand and cross family setup time (a novel assumption in

literature) which was motivated by an application from the automotive industry. In

a problem with cross family setup, job allocations to families are machine (stage)

based. A two-stage manufacturing system is assumed for this problem and therefore,

this system can be represented by a two machine permutation flow shop, where each

stage is represented by a machine with cross family setups and the objective is to

minimize the maximum completion time (makespan) of the jobs in an order. In this

chapter, we first analyzed some properties of the optimal schedule and proved that

Johnson sequence is optimal for jobs belonging to the same family on both machines
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and developed an efficient branch and bound algorithm with complexity of O(nc),

where c is a constant to solve the problem. This property of Johnson sequence for

jobs belonging to the same family on both machines, is also applicable for past stud-

ies on two machine flow shop scheduling problems with family setups to minimize

makespan. We also developed a hybrid genetic algorithm using properties of the op-

timal schedule to solve large scale problems. Computational experiment showed the

effectiveness of our algorithms.

In Chapter 3, we studied a problem of reliable due date quotation coordinated

with delivery schedule in a multi-processor manufacturing system receiving orders

from both e-tail and retail channels. Online orders arrive over time, and as they

arrive, the manufacturer will decide to accept or reject the orders and quote due dates

to the accepted orders while deterministic demand is assumed for the retail channel.

There exists an availability interval for online customers, i.e., accepted online orders

should be delivered to the customers within their acceptable lead time via one of the

two available options; directly by the manufacturer or through the retail store. Our

goal in this problem was to quote due dates to the online orders and schedule them

to maximize the total profit while satisfying the maximum acceptable lead time for

online orders and distinct production capacity for each channel. In this chapter, we

applied competitive analysis for this maximization problem where the profit function

consists of linear due date sensitive revenue function and delivery costs. We first,

provided parametric bounds on the competitive ratio of any arbitrary online strategy,

and then investigated the competitive ratio of a specific online algorithm for single

type of e-tail channel orders. Computational experiments illustrate the effectiveness

of the proposed analysis.

In Chapter 4, we studied an extension of the problem presented in Chapter 3,

due date quotation coordinated with delivery schedule in dual channel supply chain,

with the same objective and problem structure. However, capacity constraint in this

problem is modified to be a more realistic one. Unlike the problem in Chapter 3,

it is assumed that the production capacity of the manufacturer is shared among the

orders of both channels, i.e., there is no distinct production capacity for orders of
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different channels. This shared capacity assumption, affects the number of online

orders that the algorithm accepts, their schedule and clearly the schedule of retail

orders. In addition, in this problem the fixed profit of retail orders is adjusted and

variable revenue lost is considered for orders of this channel. The solution procedure

considered for this online optimization problem was competitive analysis as well.

In this chapter, we investigated the competitive ratio of a specific online algorithm

for single type orders of both channels. Computational experiments illustrate the

effectiveness of the proposed analysis.

The future works for this dissertation are discussed in the next section:

5.2 Future work

In the first part of this dissertation, we studied a two-stage manufacturing system

receiving orders with cross family setup time from retail channel and has to decide

the earliest delivery time of accepted orders. This problem can be viewed as a two

machine permutation flow shop problem with cross families and the objective function

of minimizing the makespan. As the cross family setup time is a new assumption

introduced to the scheduling literature, for the future work, it can be applied for

several other scheduling problems like three machine flow shop problems or flow shop

problems with dominant machine(s).

In Chapter 2, we investigated features of optimal schedule and accordingly, de-

veloped B&B and HGA algorithms. Developing a tighter lower bound can be a

suggestion for improving the performance of such algorithms as the future work. De-

veloping approximation algorithms (worst-case analysis) can also be an appropriate

way to extend the presented problem.

For the problems presented in Chapters 3 and 4, where we studied online quotation

versions in dual channel supply chain, we concentrated on special cases with single-

type of customers. However, in many real-world situations we may have to deal

with different types of orders from both e-tail and retail channels. Therefore, one of

the extensions suggested as the future work is considering different types of orders,
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with different processing time and cost parameters. In order to analyze these types of

problems, asymptotic probabilistic analysis of the model and heuristics can be helpful.

In this type of analysis, a sequence of deterministic instances of the problem are

generated randomly, and the objective values of the heuristic algorithms are evaluated

when the size of the generated instances grows to infinity.

In addition, for both problems studied in chapters 3 and 4, it is assumed that

the retail channel’s demand is deterministic, which can be modified to the stochastic

demand in an extension models, also the assumption of decreasing linearly the revenue

function can be modified to a non-linear (step function) one as well.

Competitive analysis applied to evaluate the online heuristic algorithms in this

study provides worst-case estimates and may not be representative of the average-

case performance of the algorithms. Thus, computational experiments on online

quotation problems in dual channel environment is suggested as a future work to

compare average-case performance with worst-case performance of online strategies

using randomized algorithms.
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