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Abstract 

 

This project consisted of designing and developing a split Hopkinson pressure bar (SHPB) 

apparatus to perform tensile tests on metallic sheet materials at strain rates from 500 s-1 to 

2000 s-1.  

The mechanical components that were designed and built are: a gas gun, incident/transmission 

bars and a momentum trap. A data acquisition system with two data acquisition cards with a 

maximum sampling rate of up to60 MS/s was used. This apparatus was successfully assembled, 

calibrated and tested. A software code was developed to post-process the experimental strain 

data and determine the corresponding flow curves. 

The accuracy of this tensile SHPB apparatus was demonstrated by testing DP600 sheet steel 

specimens in the rolling, diagonal and transverse directions. When compared to published data 

for the same sheet material tested in a different laboratory, the overall errors were found to be 

3.20%, 4.05%, and 3.87% for the rolling, diagonal and transverse directions, respectively. 
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Chapter 1: Introduction 

 

1.1 Background 

Advanced high strength steels have become a material of choice for the body-in-white and 

structure of vehicles as the automotive industry endeavours to reduce weight and increase 

vehicle safety. The use of advanced high strength steels (AHSS) sheets allows the automotive 

industry to produce thinner body components, which lowers the vehicle weight. To further 

reduce automobile weight computer simulations are carried out to predict the outcome of 

automobile crash events, and simulation results can be used to either reduce the thickness of 

stamped components, select stronger materials or optimize the design of the structure.    

In these numerical simulation codes, the constitutive models for the materials that make up the 

body and structure of the vehicle must take into account how the materials behave at different 

strain rates. A “nominal strain rate of 100/s is often used to characterize overall automobile 

crash events, whereas strain rates on the order of 1000/s can occur locally” (Salisbury, 

Worswick, & Mayer, 2006). The constitutive models must be able to accurately predict how 

steel “becomes stronger on impact, allowing the steel to absorb more energy” (WorldAutoSteel, 

2015). 

Automotive vehicle structures are “commonly manufactured by stamping operations and 

experience much lower rates of strain prior to in-service crash events” (Rahmaan, Bardelcik, 

Imbert, Butcher, & Worswick, 2014).  Figure 1 shows the global formability diagram; with the 

increase in strength of the material the percent elongation tends to decrease, which means the 

ductility of the material decreases. Therefore “AHSS products have significantly different 

forming characteristics and these challenge conventional mechanical and hydraulic press 

forming” (WorldAutoSteel, 2014). 
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Figure 1: Global formability diagram (WorldAutoSteel, 2014) 

 

In view of the need to compromise between strength and ductility for sheet materials shaped by 

conventional forming processes, the pursuit of vehicle weight reduction poses a challenge to 

designers seeking to create complex part shapes. This challenge has spurred researchers to 

develop novel forming processes, such as high temperature forming or high strain rate forming. 

One of the most promising of these new technologies is electrohydraulic forming, which is a 

“pulsed forming process that uses the discharge of electrical energy across electrodes 

submerged in a fluid to generate a pressure pulse that forms the work piece” (Maris, 2014).  

In order to obtain the mechanical properties and work hardening behaviour of these AHSS 

materials at different strain rates various types of tests can be performed.  

 

1.2 Objectives of Project 

The main objective of this project is to develop a tensile SHPB apparatus to perform high strain 

rate testing of sheet materials. This development work includes the following tasks:  

 Design and fabricate the mechanical components of the tensile SHPB apparatus, 

 Assemble the SHPB apparatus hardware with the required instrumentation and data 

acquisition system, 
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 Develop a LabVIEW virtual instrument to communicate with the various data acquisition 

cards, 

 Develop a MATLAB code to post-process the experimental data and determine the 

stress-strain curve for a given test, 

 Demonstrate the functionality and accuracy of the tensile SHPB apparatus by 

performing tests for a particular DP600 sheet steel and compare the stress-strain results 

with those obtained for the same sheet material from the tensile SHPB in a different 

laboratory.  

 

1.3 Outline of the thesis 

Before designing and constructing specialized testing equipment such as a SHPB apparatus, it is 

essential to review the existing literature on the subject; this literature review will be presented 

in chapter 2 of the thesis. An in depth description of the SHPB apparatus mechanical 

components and instrumentation, along with how these components are all assembled into a 

functional SHPB apparatus will be presented in chapter 3 of the thesis. In order for the SHPB 

apparatus to be useful, calibration of the gas gun pressure to striker velocity and calibration of 

the strain gauges are required along with the procedures for operating the SHPB apparatus and 

processing the data from it. These topics are presented in chapter 4 of the thesis. To 

demonstrate the functionality of the tensile SHPB apparatus, SHPB specimens were tested and 

the stress-strain curves were obtained. These flow curves were compared to published results 

obtained from world-class laboratories for the same material. These comparisons are presented 

in chapter 5 of the thesis. Finally, the conclusions and future recommendations are presented in 

chapter 6 of the thesis.  
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Chapter 2: Literature Review 

 

2.1 Overview of high strain rate testing 

Engineers often need to know how materials will react to loading applied at different strain 

rates and therefore different testing devices have been developed to measure the material 

response at high strain rates. Servo-hydraulic testing frames can be used to apply strain rates up 

to about 100 s-1.  The Split Hopkinson Pressure Bar (SHPB) apparatus is generally used for 

material testing at strain rates between 100 s-1 and 10,000 s-1. The SHPB “allows the 

deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform 

uniaxial state of stress within the sample” (ASM Handbook , 2000). For strain rate testing above 

1000 s-1 compression and tension tests differ.  The Taylor impact test (ASM Handbook , 2000) is 

typically used for loading in compression at strain rates up to 100,000 s-1. Expanding ring tests 

(ASM Handbook , 2000) are used for loading in tension at strain rates up to 10,000 s-1 and the 

flyer plate test is used for strain rates >100,000 s-1 (ASM Handbook , 2000).   

 

2.2 SHPB Apparatus 

2.2.1 History of the Hopkinson Pressure Bar 

In 1914, Bertram Hopkinson designed an experiment to measure the pressure wave along a 

steel rod, when the rod was struck by a bullet or by the detonation of explosives. Hopkinson’s 

experiment, shown in Figure 2, consisted of a steel rod (rod B) suspended on wires “as a ballistic 

pendulum” (Hopkinson, 1914), with a small rod (rod C) magnetically attached to the suspended 

rod with a joint that is perfectly matched.  
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Figure 2: Bertram Hopkinson’s experiment to measure pressure waves (Chen & Song, 2011) 

 

Rod B would be struck at point A with a lead bullet or by the pressure wave caused by the 

detonation of an explosive. When the length of rod C is shorter than half the length of the 

pressure wave, both rod C and rod B will move apart. When the length of rod C is increased to 

cause rod B to remain at rest, rod C will be “half the length of the pressure wave” (Hopkinson, 

1914). By measuring the momentum of rod C in ballistic pendulum D, “it is possible to measure 

both the duration of the blow and the maximum pressure developed by it” (Hopkinson, 1914).  

 

Landon and Quinney (1923) continued Hopkinson’s work, “in an attempt to interpret the results 

accumulated before the War, and also some results obtained by Prof. Hopkinson’s assistant at 

Cambridge early in 1919”. Landon and Quinney, investigated how the change in the rod length 

has an effect on the distortion of the pressure wave and how the mean pressure varied when 

the bar diameter changed. Hopkinson’s apparatus allowed “a fairly close estimate…of the 

maximum pressure and the time during which the pressure is applicable, but this method gives 

no indication of the instant during the blow when the maximum pressure occurs” (Landon & 

Quinney, 1923). 
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Davies’ (1948) apparatus, shown in Figure 3, further improved upon Hopkinson’s apparatus by 

using parallel plates and cylindrical condenser microphones to electrically measure the axial and 

radial movements of the loaded bar.  

  

Figure 3: General arrangement of Davies’ apparatus (Davies R. M., 1948). 

 

Davies was able to measure lower pressures by eliminating the detachable end piece and to 

measure the time more accurately, and this enabled him to plot the “relation between pressure 

and time” (Davies R. M., 1948). 

 

Kolsky (1949) also further developed a Hopkinson pressure bar apparatus to measure the stress-

strain response of materials under impact loading conditions. There are two major problems 

encountered when investigating the behaviour of materials at very high rates of loading: these 

problems “are associated with inertia effects in the apparatus and with the recording of 

transient stresses and strains” (Kolsky H. , 1949). Kolsky (1949) added a second bar to the 

Hopkinson pressure bar apparatus placing the test specimen between the two pressure bars. 

From these experiments Kolsky was able to determine that the specimen must be significantly 

thin to neglect the axial inertia in the specimen, and due to the fact that the radial inertia is 

proportional to the square of the radius of the specimen, a smaller specimen should be used to 

minimize the radial inertia.  The effects of friction between the specimen and bar ends and the 

radial inertia in the specimen may bring uncertainties to the measured stress-strain response of 

the material being tested. However Kolsky found that “the use of different lubricants did not 
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affect the results; and where permanent deformations were obtained, they were fairly uniform 

with no evidence of barrelling, therefore friction effects would not appear to be large”    

(Kolsky H. , 1949).  

 

Krafft et al. (1954) used strain gauges on the Kolsky bar to measure the stress waves instead of 

the microphones used previously. The use of strain gauges has now become the standard 

measurement technique for Kolsky-bar experiments. Before Krafft et al. (1954), explosives were 

used to generate the impact stress pulse. The repeatability of explosives to generate the stress 

pulse is very low, and generating repeatable results with explosives was very difficult. The use of 

a gas gun as the loading device instead of explosives enabled Krafft et al. to generate repeatable 

experiments with less difficulty.  The launching of the striker into the incident bar generated a 

trapezoidal incident pulse, which has “been traditionally recognized as an ideal for Kolsky bar 

experiments” (Chen & Song, 2011).  

 

2.2.2 Compression SHPB 

A compression Split Hopkinson Pressure Bar (SHPB) is composed of three major components, 

shown in Figure 4: a loading device, the bar components, and the data acquisition system.   

 

Figure 4: Typical layout and major components of a compression SHPB apparatus (Chen & Song, 2011) 



8 
 

The loading device is composed of a gun and striker, used to generate the stress wave in the bar 

components. The gun either uses explosives or compressed gas to launch the striker bar into the 

incident bar. Compressed-gas guns are the preferred method for launching the striker, due to 

the repeatability of gas guns, the ability to control the speed of the striker by changing the gas 

pressure and the increased safety of not having to handle explosives.  The bar components are 

comprised of an incident bar, a transmission bar and a momentum trap.  It is desirable for both 

the incident and transmission bars to have a high yield strength and for them to be linearly 

elastic. The momentum trap is used to catch the bars and dissipate the energy safely from the 

SHPB apparatus. Data acquisition and recording requires equipment with high sampling rates 

due to the small time interval over which the stress wave propagates through the bars. It is also 

desirable for the amplifiers to have low latency, so that the amplifiers are able to respond 

quickly for signal measurement and not introduce errors. 

 

2.2.3 Types of Tensile SHPB 

There are three basic versions of the tensile SHPB apparatus which have been developed over 

the years.   

The first type of tensile test is the direct acting tensile SHPB apparatus developed by Hauser in 

1966. A direct acting tensile SHPB uses a pair of concentric cylinders, with the inner cylinder 

being made up of two solid bars called the incident and transmission bar and with a specimen 

threaded between the incident and transmission bars.  A hollow outer cylinder is attached to 

the incident bar via a transfer connection as shown in Figure 5.  

 

Figure 5: Direct acting tension loading (Hauser, 1966) 

Striker Transfer Bars 

Transfer  
Connection 

Incident Bar 

Specimen 

v 

Transmission Bar 
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To impart a stress wave into the incident bar, the striker hits the transmitter bars, which sends a 

tension wave into the incident bar. The drawback to this arrangement is the covering of the 

sample by the outside cylinder which makes instrumentation difficult and use of optical 

measurement techniques impossible. 

 

The second type of tensile test, developed by Lindholm and Yeakley in 1968, is the top hat 

specimen. This tensile test uses a modified compression SHPB apparatus, by replacing the solid 

transmission bar with a hollow transmission bar of the same cross-sectional area as the incident 

bar. The top hat-type specimen seen in Figure 6, is machined to have the tensile test areas on 

the side of the hat shape. 

 

 

Figure 6: Top hat specimen configuration (Lindholm & Yeakley, 1968) 

 

This specimen hat shape leads to a complex geometry that is not suitable for testing samples 

that cannot be machined into the required geometry. The benefit of this tension test is that very 

few modifications of a compression SHPB apparatus are required. 

 

 𝐿𝑠 
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The third type of tensile test involves a compression split Hopkinson pressure bar apparatus, 

with a “shoulder or collar placed over the threaded specimen” (Nicholas, 1981), shown in Figure 

7.  

 

Figure 7: Nicholas experimental setup. (Nicholas, 1981) 

 

The compression pulse travels along the incident bar, through the shoulder, through the 

transmission bar and reflects back as a tensile pulse to the sample.  The apparatus “shoulder 

which carried the entire compressive pulse around the specimen, is unable to support any 

tensile loads because it is not fastened in any manner to the bars” (Nicholas, 1981). This setup 

limits the access to the specimen for optical measurement techniques and is not suitable for 

sheet materials. 

 

2.2.4 The development of direct acting tensile SHBP apparatus. 

The most common tensile SHPB apparatus in use today is the direct acting tensile SHPB. The 

direct acting tensile SHPB has been further developed into two different methods for loading 

the incident bar and that do not cover the test specimen.  The two different loading methods 

consist of either static loading or dynamic loading of the incident bar.  

 

The static loading is achieved by locking the incident bar in place with a clamp, applying a load 

on the non-specimen end of the bar, as shown in Figure 8. When the clamp is released, the load 

is suddenly transmitted to the other end of the incident bar, the specimen and the transmitter 

bar. 
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Figure 8: Static loading tensile SHPB (Ohio State University) 

 

The design of the clamp is important “in order to minimize the possibility of applying an external 

load other than the reaction to the stored tension “ (Staab & Gilat, 1991). This design also allows 

a strain gauge to directly measure the applied tension load before releasing the clamp, which 

makes it easier to replicate the load for subsequent tests.  

In a dynamic loading tensile SHPB apparatus, the loading is done by placing a hollow striker bar 

around the incident bar, and firing it with a gas gun. The hollow striker bar travels along the 

incident bar and strikes an anvil, or end cap, attached to the end of incident bar, as seen in 

Figure 9.  

 

Figure 9: Layout of a dynamic loading tensile SHPB apparatus (Hasenpouth, 2010) 

 

This set-up of the tensile SHPB apparatus ensures that the force due to the impact of the striker 

bar is the only force acting on the incident bar.  
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2.2.5 Exploring Other Tensile SHPB Apparatus Facilities 

According to a literature search, the direct-acting tensile SHPB apparatuses are the most 

common. Most current tensile SHPB apparatuses have a useful strain rate range of 400 s-1 to 

2000 s-1. Above 1500 s-1, noise in the transmitted strain signal increases and limits the upper 

strain rate of the tensile SHPB apparatus.  A research team at Ohio State University has one of 

the few static loading tensile SHPB, which uses 12.7mm-diameter 7075-T6 aluminum bars, and 

allows testing up to 2000 s-1. The use of aluminum bars allows softer materials to be tested, “in 

terms of impedance matching” (Gebremeskel et al., 2014). A dynamically-loaded SHPB 

apparatus at the University of Mississippi has bars made of various materials, ranging from 

maraging steel to AISI 6061-T6 aluminium to “enable the high-strain rate evaluation of metals, 

nano-reinforced specimens, foams and sandwich composites” (University of Mississippi, 2015).  

The team of researchers who developed a tensile SHPB apparatus at the University of Waterloo 

indicated that “momentum trapping ability allows the test to be interrupted at predetermined 

strain levels” (Worswick, 2015). Finally, the SHPB apparatus located at Tampere University of 

Technology uses “Kyowa CDV 700A series signal conditioners having a bandwidth of 500 kHz” 

(Tampere University of Technology, 2015) to amplify the signal from the strain gauges. This is a 

much larger bandwidth than is usually used; most SHPB facilities use amplifiers with a 

bandwidth of 100 kHz.  

 

2.3 SHPB Theory 

The following derivation of the basic SHPB equations based on wave propagation theory was 

developed to give the stress, strain and strain rate in the specimen using the strains measured in 

the incident and transmission bars. The equations for a compression SHPB apparatus are the 

same as a tension SHPB apparatus, other than the stress waves having the opposite signs.  For 

analysis of the conservation of energy, the derivation is the same for compression and tension 

SHPB apparatuses.  
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2.3.1 Stress waves in cylindrical bars 

Cylindrical bars of infinite length can have three types of waves propagate along the bar: 

longitudinal, torsional and flexural (transverse) waves.  Pochhammer (1876) and Chree (1889) 

independently derived the equations and solutions for the propagation of longitudinal waves in 

an infinite elastic cylindrical bar. The “theory for an infinite cylinder is based on the boundary 

condition that at the free cylindrical surface both the normal stress and the shear stress vanish” 

(Kolsky H. , 1964). For the “fundamental mode longitudinal waves travel with velocities which 

depend on Poisson’s ratio, 𝜈, and on the value of, 
 𝛬

𝑎
, where, 𝑎, is the radius of the cylinder and, 

𝛬, is the wavelength” (Kolsky H. , 1964). When, “ 
 𝛬

𝑎
≫ 1, the wave travels with the velocity, 𝐶0” 

(Kolsky H. , 1964), from equation 2.1. As the “distance from the pressure end increases, the 

stress distribution becomes more uniform” (Davies R. , 1956). When the ratio of the bar length 

to bar diameter, L/D, is 10 or more, the stress wave is considered to be one-dimensional. With a 

one-dimensional stress wave “the longitudinal stress and displacement are uniform over the 

cross-section of the bar, the radial stress is everywhere zero” (Davies R. M., 1948). Considering 

the uniform longitudinal stress and uniform displacement throughout the bar we can use strain 

gauges on the surface of the bars to measure the strain.  

 

 

2.3.2 SHPB equations 

When the striker impacts the anvil on the incident bar, as shown in Figure 10, a compression 

stress wave, shown in red in Figure 10, propagates through the anvil to the back of the anvil and 

reflects as a tension stress wave through the incident bar. Due to the difference in cross 

sectional area of the incident bar and the specimen, part of the stress wave is reflected back 

toward the anvil and part of the stress wave passes through the specimen. The impact of the 

striker also creates a compression stress wave in the striker, shown in blue in Figure 10, which is 

reflected back at the free end of the striker as a tension stress wave.  The tension stress wave 

transmits through the anvil and reflects as a compression stress wave cancelling out the tension 

stress wave due to the inverse amplitude, and is called the unloading wave. When the unloading 

wave encounters the specimen, it acts like the tension wave reflecting part back to the striker, 

and part traveling through the specimen.  
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Figure 10: X-t diagram of stress wave propagation in a tensile SHPB apparatus 

 

The velocity at which the one dimensional stress wave propagates through the material is the 

speed of sound in the bar material, 𝐶𝐵, which is a function of the Young’s modulus of the bar, E, 

and the density of the bar material, 𝜌𝐵  : 

 

𝐶𝐵 =  √
𝐸𝐵

𝜌𝐵
 

 

(2.1) 

The striker “transmits a ‘square wave’ pulse of compression into the” (Kraft, Sullivan, & Tipper, 

1954) incident bar of a duration, ∆𝑡, which is determined by the length, L𝑠𝑡, of the striker bar: 

 
∆𝑡 =

2L𝑠𝑡

𝐶𝐵
 (2.2) 

If the striker and the incident bars have the same material density and the same cross-sectional 

area, the magnitude of the induced stress pulse, σ𝑖 , “is dependent on the striking velocity” 

(Chen & Song, 2011) . 

 
σ𝑖 =

1

2
ρ𝐵  𝐶𝐵 𝑣𝑠𝑡 (2.3) 

 

Strain Gauge 
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Similarly the magnitude of the strain pulse, 휀𝑖, is also dependent on the velocity of the striker.  

 휀𝑖 =
𝑣𝑠𝑡

2𝐶𝐵
 (2.4) 

The following derivations of the equations for stress, strain and strain rate in the specimen are 

given by William Sharpe Jr. (Sharpe, 2008), with the variables at the specimen rearranged for 

tension, as shown in Figure 11. 

 

Figure 11: Variables at the specimen  

 

These “equations assume that the stress waves propagate in the incident and transmission bars 

without dispersion in the bars, and by one dimensional stress wave theory that relates the 

particle velocities at both ends of the specimen to the three measured strain pulses” (Chen & 

Song, 2011). 

 𝑣1 = 𝐶𝐵(휀𝑅 − 휀𝑖) (2.5) 

 𝑣2 = 𝐶𝐵(−휀𝑇) (2.6) 

 

Where the subscripts, i , R , and T , represent the incident, reflected, and transmitted strain 

amplitude pulses, respectively. The average engineering strain rate in the specimen is the 

difference in the velocity across the specimen divided by the gauge length of the specimen, 𝐿𝑠 .   

 휀̇ =
𝑣1 − 𝑣2

𝐿𝑠
 (2.7) 
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Substituting equations 2.5 and 2.6 into equation 2.7 gives.  

 
휀̇ =

𝐶𝐵

𝐿𝑠
(−휀𝑖 + 휀𝑅 + 휀𝑇) (2.8) 

Taking the time derivative of equation 2.8 gives the average engineering strain. 

 
휀 = ∫ 휀̇𝑑𝑡

𝑡𝑗

0

=  
𝐶𝐵

𝐿𝑠
∫ (−휀𝑖 + 휀𝑅 + 휀𝑇)𝑑𝑡

𝑡𝑗

0

 (2.9) 

where, j, is the sample number to which the time integration is calculated up to. The stresses at 

both ends of the specimen are calculated with the following elastic relations. 

 𝜎1 =
𝐴𝐵

𝐴𝑠 
𝐸𝐵(−휀𝑖 − 휀𝑅) (2.10) 

 𝜎2 =
𝐴𝐵

𝐴𝑠 
𝐸𝐵( −휀𝑇) (2.11) 

where, 𝐴𝐵 , and, 𝐴𝑠 , are the cross-sectional areas of the bars and the specimen and, 𝐸𝐵, is the 

Young’s modulus of the bar material. The specimen is assumed to be stress equilibrated in a 

Kolsky-bar experiment, such that the specimen uniformly deforms during the experiment.   

 𝜎1 =  𝜎2 (2.12) 

By substituting equations 2.10 and 2.11 into equation 2.12 gives.  

 −휀𝑖 − 휀𝑅 = −휀𝑇  (2.13) 

Substituting equation 2.13 into equations 2.8, 2.9 and 2.10 gives  

 
휀�̇� = 2

𝐶𝐵

𝐿𝑠
 휀𝑅 (2.14) 

 
휀𝑢 = 2

𝐶𝐵

𝐿𝑠
 ∫ 휀𝑅𝑑𝑡

𝑡𝑗

0

 (2.15) 

 
𝜎𝑢 =

𝐴𝐵

𝐴𝑠 
𝐸𝐵휀𝑇 (2.16) 

Equations 2.14, 2.15 and 2.16 are known as the Hopkinson equations.  

If the specimen does not experience perfect equilibrium when deformed, the mean value of the 

stresses experienced at both ends of the specimen is taken to get the average stress in the 

specimen:  
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𝜎 =  

1

2
(𝜎1 + 𝜎2) =  

1

2

𝐴𝐵

𝐴𝑠 
𝐸𝐵( −휀𝑇 −  휀𝑅 − 휀𝑖) (2.17) 

However, equation 2.17 is not valid if the “stress or strain in the specimen is in a drastic non-

uniformity” (Chen & Song, 2011). This uniformity can be checked by using equation 2.12. 

 

2.3.3 SHPB Theory using Conservation of Energy 

The following analysis of the conservation of energy in a SHPB is from Chen and Song (Chen & 

Song, 2011). When a stress wave propagates in a long rod, the mechanical energy of the stress 

wave takes the form of strain energy through bar deformation and kinetic energy through bar 

motion (Chen & Song, 2011). Using the incident strain, 휀𝑖  , caused by the stress wave moving 

through the incident bar, the elastic strain energy, 𝑈𝑖  , can be calculated.  

 
𝑈𝑖 =  𝑉𝑖 ∫ 𝜎𝑑휀

𝜀𝑖

0

 (2.18) 

where, 𝑉𝑖 , is the deformed volume in the incident bar. The deformed volume in the incident bar 

depends upon the loading duration and the cross-sectional area of the incident bar, which can 

be expressed by:  

 𝑉𝑖 = 𝐴𝐵𝐶𝐵∆𝑡 (2.19) 

The linear elastic stress in the incident bar can be expressed as: 

 𝜎𝑖 = 𝐸𝐵휀𝑖  (2.20) 

Substituting equation 2.20 into 2.18 gives. 

 
𝑈𝑖 =

1

2
𝐴𝐵𝐶𝐵𝐸𝐵∆𝑡휀𝑖

2 (2.21) 

The elastic strain energies of the reflected and transmitted waves, 𝑈𝑅 and, 𝑈𝑇  , can be 

calculated using a similar derivation giving: 

 
𝑈𝑅 =

1

2
𝐴𝐵𝐶𝐵𝐸𝐵∆𝑡휀𝑅

2 (2.22) 

 
𝑈𝑇 =

1

2
𝐴𝐵𝐶𝐵𝐸𝐵∆𝑡휀𝑇

2 (2.23) 
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The specimen deformation based on the contribution of the elastic strain energy in the bars is 

given by: 

 𝛿𝑒𝑠 = 𝑈𝑖 − 𝑈𝑅 − 𝑈𝑇   (2.24) 

 Substituting equations 2.21, 2.22 and 2.23 into equation 2.24 gives: 

 
𝛿𝑒𝑠 =  

1

2
𝐴𝐵𝐶𝐵𝐸𝐵∆𝑡(휀𝑖

2 − 휀𝑅
2 − 휀𝑇

2) (2.25) 

When the specimen is in a state of dynamic stress equilibrium equation 2.25 is: 

 𝛿𝑒𝑠 = −𝐴𝐵𝐶𝐵𝐸𝐵∆𝑡휀𝑅휀𝑇 (2.26) 

 

It is understood that the energy difference is positive since the reflected strain, 휀𝑟 , takes the 

opposite sign of the incident and transmitted strains. Considering the kinetic energy, 𝐾𝐸𝑖 , in the 

incident bar due to the incident wave as. 

 
𝐾𝐸𝑖 =  

1

2
𝑚𝑣𝑖

2 (2.27) 

where 𝑚 and 𝑣𝐼 are the mass and particle velocity of the deformed portion of the incident bar 

which are given by: 

 𝑚 = 𝜌𝐵 𝐴𝐵𝐶𝐵∆𝑡 (2.28) 

 𝑣𝑖 = 𝐶𝐵휀𝑖 (2.29) 

Substituting equations 2.28 and 2.29 into equation 2.27 gives: 

 
𝐾𝐸𝑖 =

1

2
𝜌𝐵 𝐴𝐵𝐶𝐵

3∆𝑡휀𝑖
2 (2.30) 

The kinetic energies of the reflected and transmitted waves, 𝐾𝐸𝑅 and 𝐾𝐸𝑇 , can be calculated 

using a similar derivation giving: 

 
𝐾𝐸𝑅 =

1

2
𝜌𝐵 𝐴𝐵𝐶𝐵

3∆𝑡휀𝑅
2 (2.31) 

 
𝐾𝐸𝑇 =

1

2
𝜌𝐵 𝐴𝐵𝐶𝐵

3∆𝑡휀𝑇
2 (2.32) 

The contribution of the kinetic energy to the specimen deformation is: 
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 𝛿𝐾𝐸𝑠 = 𝐾𝐸𝑖 − 𝐾𝐸𝑅 − 𝐾𝐸𝑇  (2.33) 

Substituting equations 2.30, 2.31 and 2.32 into equation 2.33 gives. 

 
𝛿𝐾𝐸𝑠 =

1

2
𝜌𝐵 𝐴𝐵𝐶𝐵

3∆𝑡(휀𝑖
2 − 휀𝑅

2 − 휀𝑇
2) (2.34) 

When the specimen is in stress equilibrium equation 2.34 becomes: 

 𝛿𝐾𝐸𝑠 = −𝜌𝐵 𝐴𝐵𝐶𝐵
3∆𝑡휀𝑅휀𝑇 (2.35) 

For linear elastic bars, 

 𝐸𝐵 =  𝜌𝐵 𝐶𝐵
2 (2.36) 

Substituting equations 2.36 into equation 2.35 gives: 

 𝛿𝐾𝐸𝑠 = −𝐴𝐵𝐸𝐵𝐶𝐵∆𝑡휀𝑅휀𝑇 (2.37) 

It can be noted that the specimen deformation due to kinetic energy has the same form as the 

specimen deformation due to the elastic strain energy. If the specimen is assumed to have a 

perfectly plastic response, the specimen deformation energy is simplified to.  

 𝑈𝑠 = 𝐴𝑠𝐿𝑠𝜎𝑦휀𝑝 (2.38) 

where, 𝐴𝑠 , is the initial cross-sectional area of the specimen and, 𝐿𝑠 ,is the initial length of the 

specimen. The yield strength, 𝜎𝑠, and the plastic strain, 휀𝑝𝑠, of the specimen is:  

 
 𝜎𝑠 =

𝐴𝐵

𝐴𝑆
𝐸𝐵휀𝑇 (2.39) 

 
휀𝑝𝑠 =  휀∆𝑡 =  −2

𝐶𝐵

𝐿𝑠
 휀𝑅∆𝑡 (2.40) 

 Equation 2.40 is based on constant strain rate deformation in the specimen. Substituting 

equations 2.39 and 2.40 into equation 2.38 gives: 

 𝑈𝑠 =  −2𝐴𝐵𝐸𝐵𝐶𝐵∆𝑡휀𝑅휀𝑇 (2.41) 

Therefore the specimen deformation energy is equal to.  

 𝑈𝑠 = 2𝛿𝑒𝑠 = 2𝛿𝐾𝐸𝑠 (2.42) 

From equation 2.42 it can be seen that half of the energy needed to deform the specimen 

comes from the elastic strain energy in the bars and half comes from the kinetic energy in the 
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bars. It should be noted that this analysis does not include the kinetic energy in the specimen.  

Knowing that half the energy needed to plastically deform the specimen is important for setting 

up the momentum trap. If the momentum trap stops the movement of the incident bar too 

quickly, the specimen will not plastically deform and the specimen will not reach the ultimate 

strength and break.  

 

 

2.3.4 Striker Velocity 

The velocity of the striker is the determining factor of the specimen strain rate. The stresses 

generated upon impact of the striker on the incident bar can be determined from the strain 

gauge mounted on the incident bar. The stress in the striker, 𝜎𝑠𝑡, and incident bar, 𝜎𝑖, are 

“related with the velocity in the common interface” (Gallina, Birch, & Alves, 2003) by the two 

equations from Johnson (1972): 

 𝜎𝑠𝑡 = 𝜌𝑠𝑡𝐶𝑠𝑡(𝑣𝑠𝑡 − 𝑣𝑖) (2.43) 

 𝜎𝑖 = 𝜌𝐵𝐶𝐵𝑣𝑖 (2.44) 

Also at impact, the force exerted onto the incident bar is equal to the reaction force exerted on 

the striker: 

 𝐹𝑠𝑡 = 𝐹𝑖 (2.45) 

 𝐴𝑠𝑡𝜎𝑠𝑡 = 𝐴𝐵𝜎𝑖 (2.46) 

Substituting equation 2.43 and 2.44 into equation 2.46 gives: 

 𝐴𝑠𝑡𝜌𝑠𝑡𝐶𝑠𝑡(𝑣𝑠𝑡 − 𝑣𝑖) = 𝐴𝐵𝜌𝐵𝐶𝐵𝑣𝑖 (2.47) 

 𝛽 =
𝐴𝑠𝑡𝜌𝑠𝑡𝐶𝑠𝑡

𝐴𝐵𝜌𝐵𝐶𝐵
 (2.48) 

In order to ensure one dimensional wave propagation, the properties and cross-sectional areas 

of the striker bar and incident bar must be equal, which yields 𝛽 = 1. Therefore equation 2.47 

can be rearranged as: 
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 𝑣𝑖 =
𝛽𝑣𝑠𝑡

1 + 𝛽
=

𝑣𝑠𝑡

2
 (2.49) 

Substituting equation 2.49 into equation 2.43 and equation 2.44 gives:  

 𝜎𝑠𝑡 = 𝜌𝐵𝐶𝐵 (𝑣𝑠𝑡 −
𝑣𝑠𝑡

2
) =

𝜌𝐵𝐶𝐵𝑣𝑠𝑡

2
 (2.50) 

 𝜎𝑖 = 𝜌𝐵𝐶𝐵

𝑣𝑠𝑡

2
 (2.51) 

Similar to the interface between the striker and incident bars, the force exerted onto the 

specimen is equal to the reaction force exerted on the incident bar, assuming no losses:  

 𝐹𝑖 = 𝐹𝑠 (2.52) 

Recalling that the stress pulse is both transmitted and reflected at this interface, the transmitted 

and reflected stress pulses are: 

 𝐴𝐵𝜎𝑡 = 𝐴𝑠𝜎𝑠 (2.53) 

 𝜎𝑡 =
𝐴𝑠𝜎𝑠

𝐴𝐵
 (2.54) 

 𝜎𝑟 =  𝐸𝐵𝜖𝑟 (2.55) 

where “𝜎𝑡” is the transmitted stress, “𝜎𝑟” is the reflected stress, and “𝐴𝑠” is the cross-sectional 

area of the specimen. Substituting equation 2.55 into equation 2.14 gives:  

 𝜎𝑟 =
𝐸𝐵𝐿𝑠

−2𝐶𝐵
휀̇ (2.56) 

Given that the transmitted stress is equal to the difference between the incident stress and the 

reflected stress, the incident stress is equal to:  

 𝜎𝑖 = 𝜎𝑡 − (−𝜎𝑟) (2.57) 

Substituting equations 2.54 and 2.56 into equation 2.57 gives: 

 𝜎𝑖 =
𝐴𝑠𝜎𝑠

𝐴𝐵
+

𝐸𝐿𝑠

2𝐶𝐵
휀̇ (2.58) 

And substituting equation 2.58 into equation 2.51 gives:  
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 𝑣𝑠𝑡 =
2

𝜌𝐵𝐶𝐵
(

𝐴𝑠

𝐴𝐵
𝜎𝑠 +

𝐸𝐵𝐿𝑠

2𝐶𝐵
휀̇) (2.59) 

Equation 2.59 “allows the calculation of the striker velocity so a given strain rate and stress level 

in the specimen” (Gallina, Birch, & Alves, 2003) can be achieved. 

 

The maximum velocity for the striker is limited by the yield strength of the bar material. Since 

the bar must not deform plastically the induced stress pulse, σ𝑖, in equation 2.3 can be 

substituted with the bar material yield strength, 𝑆𝑦𝐵, and equation 2.3 can be rearranged as:   

 𝑣𝑠𝑡 𝑚𝑎𝑥 =
2𝑆𝑦𝐵

𝜌𝐵𝐶𝐵
 (2.60) 

Equation 2.3 allows the maximum velocity of the striker to be calculated which will not cause 

plastic deformation of the bars.  
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Chapter 3: Design, Construction, and Assembly of SHPB 

3.1 Overview of a Tensile Split Hopkinson Pressure Bar Apparatus 

The Tensile SHPB apparatus is used to test materials in tension at various strain rates. This 

apparatus described in this thesis was specified to test sheet materials with a tensile strength up 

to 1500 MPa at strain rates up to 2000 s-1.  The SHPB apparatus is composed of mechanical 

components, shown in Figure 12, and instrumentation that will gather the data from the 

apparatus. 

 

Figure 12: Mechanical components of tensile SHPB 

 

The mechanical components are composed of a support frame, incident bar, transmission bar, 

bar supports, gas gun, the momentum trap, and the specimen; these will be described in detail 

in Section 3.2. The instrumentation components are comprised of the data acquisition system, 

pressure transducer, strain gauges, strain gauge completion circuits, strain gauge amplifiers, and 

an optical gate to measure the velocity of the striker; these components will be described in 

Section 3.3. 

Gas Gun 
Incident Bar 

Specimen 

Transmission Bar 

Bar Supports 

Momentum Trap 

Anvil 

Striker 

Support 

Frame 
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3.2 Mechanical Components 

3.2.1 Support Frame 

A stable frame to mount the tensile SHPB apparatus is required. The SHPB frame must also be 

adjustable for level, because the floor surface cannot be assumed to be level.  To meet these 

requirements an I-beam mounted on adjustable support legs was designed as part of a 2012 

capstone project to build a compression SHPB apparatus. To accommodate both tensile and 

compressive SHPB apparatuses two I-beams were mounted parallel on the adjustable frame 

seen in Figure 13.   

 

Figure 13: Support frame for SHPB apparatus 

 

The length of the I-beam was determined by the length of the SHPB apparatus plus extra length 

for future expansion if longer incident or transmission bars were used. A W5x16 I-beam “was 

chosen based off the width of its flange” (Zanettin, Young, & Hussain, 2012), with a length of 

8.5m. The I-beam supports were located every 1.3m for a total of six supports. With this spacing 

between supports, the maximum deflection of the I-beam between the supports was calculated 

to be 0.2mm (Zanettin, Young, & Hussain, 2012) under static loading. The deflection of the I-

beam can be compensated for by the adjustment built into the bar holders.  The Vertical 
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supports, shown in Figure 14 (the technical drawings can be found in Appendix B), were made of 

74mm x 74mm and 25mm x 25mm AISI 1020 CD square tubing.  

 

Figure 14: Vertical support (Zanettin, Young, & Hussain, 2012) 

 

Each vertical upright has a top plate welded at one end to accommodate the I-beam and is 

welded to the base tube which has adjustable feet bolted to it for leveling of the frame 

assembly. To keep the vertical uprights the correct distance apart near the top plate, 25mm x 

25mm tube was welded between the two vertical tubes. There are also slender horizontal 

support beams, shown in Figure 15, made of 25mm x 25mm tubing with a plate welded onto 

both ends of the tube, used to bolt onto the vertical supports.  

 

Figure 15: Horizontal support bar (Zanettin, Young, & Hussain, 2012) 

 

The horizontal support is used to keep the support legs from moving horizontally.  
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3.2.2 Bar Holders 

The bar holders, designed  during a 2012 capstone project for the compression SHPB apparatus, 

were designed to allow fine adjustment of the incident and transmission bars in three 

dimensional space and support the incident and transmission bars with minimal friction. The 

exploded view of the bar holder, shown in Figure 16, gives an overview of the components that 

make up the bar holder.  

 

Figure 16: Exploded view of SHPB bar holder (Zanettin, Young, & Hussain, 2012) 

 

The technical drawing in Appendix B shows the actual dimensions of the bar holder. The foot, 

threaded base, outer housing, and the bushing housing were made of AISI 1018 steel. The 

threaded rod is 3/4" UNF with a shoulder machined into one end to support the outer housing. 

A Teflon bushing was pressed into the bushing housing to give the incident and transmission 

bars a low friction surface to move on. The adjustment shown in Figure 17, allows the incident 

and transmission bars to be aligned coaxially with the gas gun. 
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Figure 17: Bar holder showing adjustability (Zanettin, Young, & Hussain, 2012) 

 

The threaded rod allows the height of the outer housing to be raised or lowered, with the set 

nut locking the threaded rod’s movement once the final height is set.  The outer housing can 

rotate on the threaded rod’s machined shoulder to align the bushing housing perpendicular to 

the incident, transmission and unloading bars, with a set-screw to lock the bushing housing once 

the final alignment is reached. The shoulder bolts allow the bushing housing to move from side 

to side in the outer housing and to rotate around the axis of the shoulder bolts, two set screws 

lock the shoulder bolts in the final place.  

The bar holders were clamped to the support frame I-beams with two threaded rods between 

the bar holder and a lower bar, as shown in Figure 18. By using a clamping mechanism, instead 

of bolting the bar holders onto the I-beam, the position of the bar holders along the I-beam can 

be adjusted for different lengths of incident and transmission bars.  
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Figure 18: Bar holder clamped to support frame. 

 

3.2.3 Striker and Bars 

A) Striker 

The striker must have good impact resistance in order to resist plastic deformation when it 

strikes the incident bar. The striker was machined from AISI 4140/ASTM A29 round bar, a 

material with good impact resistance. AISI 4140 steel “has high fatigue strength, abrasion and 

impact resistance, toughness, and torsional strength” (AZO Materials, 2015). The chemical 

composition of the AISI 4140 steel is provided in Table I. 
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Table I: AISI 4140 / ASTM A29 (4140) Elements (ASTM , 2012) 

Grade 
Designation 

Carbon Manganese 
Phosphorus 

Max 
Sulfur 
Max 

Silicon Chromium Molybdenum 

4140 
0.38 -
0.43 

0.75 - 1.00 0.035 0.040 
0.15 - 
0.35 

0.80 – 
1.10 

0.15 - 0.25 

 

The physical properties of AISI 4140 steel are presented in Table 2. 

Table 2: Physical Properties of AISI 4140 (MatWeb, 2015) 

Material 
Density 
(kg/m3) 

Yield strength 
0.2%  

(MPa) 

Ultimate 
Tensile 

Strength 
(MPa) 

Young’s 
Modulus 

(GPa) 

Elongation 
at Break 

(%) 

AISI 4140 7850 415-1735 655 -1965 205 11-25.7 

 

 

Figure 19: Striker 

 

The striker, shown in Figure 19 (the technical drawing can be found in Appendix B), was 

manufactured by first drilling the hole down the length of a solid bar stock and then reaming the 

inside diameter of the hole to 19.1 mm, so as to  have a slip fit over the incident bar. Secondly, 

the outside surface of the striker was turned down to a diameter of 27mm to provide a slip fit 

inside the gas gun, using the finished inside hole to make the outside axisymmetric with the 

inside hole.   
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B) Incident and Transmission Bars 

In order for the stress wave to propagate with the same velocity through both the incident bar, 

transmission bar and the striker, the incident bar and transmission bar were fabricated from the 

same material as the striker, AISI 4140 alloy steel.  The incident and transmission bars were 

machined identically to form a matched set of bars. The incident bar and transmission bar are 

composed of two parts: the bar and an anvil as seen in Figure 20. 

 

Figure 20: Close up view of the bar and anvil attached 

 

The AISI 4140 round bar from which the incident and transmission bars were made was 

purchased with the final outside diameter ground and polished to 19.05mm. Both incident and 

transmission bars are 2000mm long, which yields a length-to-diameter ratio of L/D = 105, so as 

to ensure a one-dimensional stress wave. One end of the bar was then threaded with 0.75” UNF 

thread (ASME, 2003), as seen in Figure 21, to attach the anvil to the bar. The durability of the 

threads subject to cyclic loading is provided in Appendix A. It was estimated that, under the 

maximum loading conditions, the threads on the incident bar and mating anvil would withstand 

approximately 30,000 cycles before failure.  
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Figure 21: Close up view of the threads on the bar 

 

The other end of the incident bar has a slot, as shown in Figure 22, that was designed to 

accommodate the test specimen. This slot was precision electric discharge machined with a 

serrated surface finish to better grip the specimen. Figure 23 shows that the serrated surfaces of 

the slot are able to effectively grip a test specimen as they leave indentation marks on the 

specimen itself. 

 

Figure 22: Slot in bars to hold test specimen  
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Figure 23: Specimen showing serrations from specimen slot in bars 

 

The specimen slot was made 1.5mm wide to accept test specimens taken from sheet materials  

1.5mm thick. The depth of the slot is 22.4mm. A two-piece aluminum clamp-on shaft collar is 

used to compress the incident/transmission bar specimen slot around the specimen, to hold the 

specimen in place during the test. The two-piece aluminum clamp-on shaft collar was ordered 

from McMaster-Carr (part number 6436K72).  

The anvil was also made from the AISI 4140 round bar and was turned to a final outside 

diameter of 27mm, which is the same outside diameter as that of the striker. A hole was then 

turned in the centre of the anvil about half way along its length, and then threaded with a 0.75” 

UNF thread (ASME, 2003) so as to screw the anvil onto the incident bar. Figure 24 shows a 

photograph of the threaded anvil. 
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Figure 24: Anvil showing threading 

 

Loctite threadlocker Blue 242 thread locking compound was used to fill in the voids between the 

threads to prevent the threads from loosening due to shock and vibration.   

 

3.2.4 Gas gun 

The gas gun was positioned on the I-beam frame in such a way that the striker will fit around the 

incident bar and slide along it at high velocity and strike the anvil with the required force. The 

gas gun is composed of three main components: a barrel, a pressure chamber and a valve 

assembly. Using mechanically actuated valves the pressure chamber is filled to the pressure 

required to achieve the desired striker velocity. This pressure is determined from equation (3.1). 

Once the gas gun pressure chamber reaches the required pressure, the pneumatic actuators 

move the valve toward the specimen uncovering two openings in the gas gun barrel. The valve 

blocks one end of the gas gun barrel, leaving the opposite side as the path of least resistance for 

the gas to escape. As the gas enters the gun barrel and the gas volume expands, the striker is 

accelerated along the incident bar up to the required velocity.  

Using Newton’s equations of motion, Berggren & Reynolds (1970) proposed an equation written 

in terms of a non-dimensional barrel length and projectile length, for a cylindrical projectile: 
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 𝑣𝑠𝑡 = [
2𝑃

𝜌𝑃
 
𝐿𝑏𝑎𝑟 𝐷𝑃⁄

𝐿𝑠𝑡 𝐷𝑃⁄
]

1
2⁄

 (3.1) 

 

The projectile velocity can be maximized by increasing the pressure and  𝐿𝑏𝑎𝑟 𝐷𝑃⁄  , while 

minimizing the density of the projectile and  𝐿𝑠𝑡 𝐷𝑃⁄  . When the bore of the gun is held at a 

specific diameter, the velocity of the projectile will increase with an increase in the length of the 

barrel of the gun as can be seen in Figure 25. 

 

Figure 25: Velocity of striker for various barrel lengths 

The gas gun was designed considering that the incident and transmission bars would be made of 

C350 maraging steel. This grade of steel was selected so that higher strength test specimens 

could be tested without plastically deforming the incident and transmission bars. The physical 

properties of C350 maraging steel are shown in Table 3.  
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Table 3: Physical Properties of C350 maraging steel (Cardarelli, 2008) 

Material 
Density 

(kg/m3) 

Yield strength 

0.2%  

(MPa) 

Ultimate 

Tensile 

Strength 

(MPa) 

Young’s 

Modulus 

(GPa) 

Elongation 

at Break 

(%) 

C350 8000 2318 2339 200 8 

 

From equation 2.60, the maximum velocity of the striker for bars made of C350 maraging steel 

was calculated to be 121.14 m/s. Using Figure 25, a barrel length of 1m was selected, so the 

striker would not exceed the velocity of the striker that would induce plastic deformation in the 

C350 maraging steel. Using a 1m long barrel also kept the incident bar supports a reasonable 

distance apart. The barrel length was limited by the 1.2m-stroke of available gun drilling 

machines. The gas gun’s maximum pressure was selected to be 6895 kPa, since this pressure will 

allow the striker to reach the design stress and strain rates while keeping the striker velocity 

below the maximum allowable for C350 maraging steel bars. 

The technical drawings for the gas gun are in Appendix B, and the following is a brief description 

of how the parts were manufactured. The barrel was fabricated from AISI 304 stainless steel bar 

stock to eliminate corrosion inside the barrel.  The physical properties of AISI 304 stainless steel 

are shown in Table 4: Physical properties of AISI 304 stainless steel. 

Table 4: Physical properties of AISI 304 stainless steel (Cardarelli, 2008) 

Material 
Density 

(kg/m3) 

Yield strength 

0.2%  

(MPa) 

Ultimate 

Tensile 

Strength 

(MPa) 

Young’s 

Modulus 

(GPa) 

Elongation 

at Break 

(%) 

AISI 304 8000 205-760 515-1035 200 7-40 

 

This AISI 304 stainless steel bar stock was turned into a hollow barrel by gun drilling along the 

central axis of the bar to an inside diameter of 27mm, then using a boring bar the valve area was 

enlarged to the final diameter of 38mm. Two openings were then machined to allow the 

pressurized gas to transfer from the pressure chamber into the gun barrel.  
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The pressure chamber, seen in Figure 26, is composed of four parts: two end plates, the gun 

barrel and a thick-wall cylinder.  

 

Figure 26: Gas gun pressure chamber 

A cross section view shown in Figure 27, shows the relationship of the gas gun parts. 

 

Figure 27: Gas gun cross section 

The end caps of the pressure chamber serve two purposes. First, they are the end caps that seal 

the pressure chamber and enable it to hold a pressure. Secondly, they locate the barrel at a 

distance above the base frame and provide a means for the gas gun to be firmly mounted onto 

the base frame. The two end plates were machined from solid blocks of AISI 1018 steel into an 

inverted “T” shape with a hole in the centre of the upright to allow the barrel to pass through, 

and a circular groove machined into the upright to have a transition fit with the ends of the 

End Cap 

Thick-wall cylinder 
Barrel 
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thick-wall cylinder. The thick-wall cylinder was fabricated from a 114.5mm diameter, solid AISI 

4140 bar stock by boring out the center material to achieve a final inside diameter of 101.8mm. 

The thick-wall cylinder was fabricated this way to avoid having a weld seam in the pressure 

chamber. The thick-wall cylinder was placed concentrically around the barrel and held in place 

by the two end caps. The thickness of the thick-wall cylinder was calculated using the following 

equation from Pressure vessels the ASME code simplified (Carson Sr., Chuse, & Ellenberger, 

2004), for a thick-wall cylinder was used:  

 𝑡𝑐 =
𝑃𝑅

𝑆𝐽 − 0.6𝑃
 (3.2) 

This equation is valid for “use when, 𝑡𝑐, is less than 1/2 𝑅 or ,𝑃, is less than 0.385 𝑆𝐽” (Carson Sr., 

Chuse, & Ellenberger, 2004). The joint efficiency is equal to 1, since there is no weld joint in the 

thick-wall cylinder, and the allowable stress has a value of “𝑆 = 95 MPa” 

 (Carson Sr., Chuse, & Ellenberger, 2004). This gave a wall thickness of 3.85mm, but a thickness 

of 6.35mm was used on the thick-wall cylinder for ease of machining the thick-wall cylinder. The 

thickness of the two end caps was also calculated from Pressure vessels the ASME code 

simplified (Carson Sr., Chuse, & Ellenberger, 2004) according to the following relationship: 

 𝑡𝑒𝑐 = 𝑑√
𝐶𝑃𝑠

𝑆𝐽
 (3.3) 

where: 

𝑑 = Bolt circle “diameter, or short span, measured as indicated in Figure PG-31” (ASME, 2010) in 

the ASME boiler and pressure vessel code. 

𝐶 = Factor depending on method of attachment, “listed in PG-31.4” (ASME, 2010) in the ASME 

boiler and pressure vessel code. 

From the ASME boiler and pressure vessel code (2010), the value for, 𝐶, was determined to be 

0.30 and, 𝑑, was calculated to be 141mm. With these values the thickness of the flat end caps 

was calculated to be 20.78mm, however a thickness of 25.4mm was used since this is a common 

size available from steel suppliers.  
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The valve assembly, seen in Figure 28, consists of a cylindrical valve, pneumatic cylinders, a 

mount for the pneumatic cylinders and a collar to attach the pneumatic cylinders to the 

cylindrical valve.  

 

Figure 28: Valve assembly for gas gun 

The cylindrical valve was fabricated from Teflon with a tight fit with the barrel, with two O-ring 

grooves to seal the barrel off from the pressure chamber, and a groove for locating the collar 

which is attached to the pneumatic cylinders. The valve has a hole in the center to concentrically 

locate the incident bar in the barrel.  The collar is composed of two “Y” shaped pieces machined 

out of AISI 6160 aluminum that bolt together around the valve, and have a threaded hole in 

each arm to attach the two pneumatic cylinders. Each pneumatic cylinder is a double acting, 

27mm bore, nose mount, with a force of 271 N at a pressure of 689 kPa. The pneumatic cylinder 

holder is machined out of a block of AISI 6160 aluminum, with a centre hole to clear the incident 

bar and two threaded holes to mount the pneumatic cylinders parallel to the incident bar.  

 

Cylindrical Valve 

Pneumatic Cylinders 

Pneumatic Cylinder Holder 

Collars 

O-rings 
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3.2.5 Momentum trap 

The purpose of the momentum trap is to arrest the forward motion of the incident bar, by 

dissipating its kinetic energy in a controlled manner. Another use of the momentum trap is to 

interrupt the test at a predetermined strain level. When the striker hits the anvil on the incident 

bar, the compressive pulse travels through the anvil into the momentum trap transfer bar and 

reflects as a tensile pulse at the end of the transfer bar. This reflected tensile pulse pulls the 

momentum trap transfer bar away from the anvil on the incident bar and traps the pulse within 

the momentum trap transfer bar. The trapped pulse energy is then dissipated into the 

momentum trap where the pulse energy is converted into heat through friction. With the 

compressive pulse trapped in the momentum trap, “the incident bar remains at rest”  

(Chen & Song, 2011) and “consequently the specimen is subject to only the first tensile loading” 

(Chen & Song, 2011).  In order for the specimen to be “subject to only the first tensile loading” 

(Chen & Song, 2011) from the striker, the gap between the momentum trap transfer bar and the 

incident bar must be set precisely prior to the test.  

The momentum trap, shown in Figure 29, is composed of a heavy steel base with a V groove 

that extends most of the length of the base, and a top cap that holds a rubber block and bolts 

onto the steel base. 

 

Figure 29: Momentum trap assembly 

 



40 
 

 A brass pin is sandwiched between the base and the rubber block to transfer the energy from 

the transfer bar to the momentum trap. The V groove in the base, shown in Figure 30, does not 

extend the whole length of the base, so as to provide a safety stop if the brass pin is hit with too 

much kinetic energy. 

 

 

Figure 30: V groove in momentum trap base 

 

 There is a transfer bar which is used to transfer the kinetic energy of the incident bar to the 

brass pin of the momentum trap. This transfer bar is made of the same material as the incident 

bar. Since the transfer bar weighs less than the incident bar, it will move further than the 

incident bar and unload the stress wave from the incident bar so that the stress wave does not 

propagate multiple times down the incident bar. The transfer bar then pushes on the brass pin 

of the momentum trap to push the pin into the momentum trap dissipating the kinetic energy 

into heat from friction between the rubber block, the brass pin and the steel base.  

 

3.2.6 Specimen design 

Reviewing different papers on tensile SHPB apparatuses leads to the conclusion that the design 

of the specimen will vary with the design of the tensile SHPB apparatus. Smerd, et al., (2005) 

listed “two requirements for a tensile SHPB specimen are a small gauge length to reduce ring-up 



41 
 

time and inertial effects, as well as a geometry that results in a uni-axial stress state”.  These 

design requirements lead to a specimen design, shown in Figure 31, optimized for the University 

of Waterloo tensile SHPB apparatus, where the gauge length is L = 12.5 mm and the gauge width 

is T = 1.75 mm.   

 

Figure 31: University of Waterloo specimen design (Smerd, Winkler, Salisbury, Worswick, Lloyd, & Finn, 2005) 

 

The “specimen geometry for dynamic tests was chosen to: (i) follow the mechanical response of 

a standard ASTM specimen at quasi-static rates, which requires long gauge length and (ii) 

maintain uniaxial stress equilibrium during the testing, which is achieved by reducing the gauge 

length” (Ulacia, Salisbury, Hurtado, & Worswick, 2011).  The standard ASTM specimen is 

specified in ASTM standards A8/A8M and A370. The University of Waterloo specimen design 

was then scaled up by 1.2x, as shown in Figure 32, to fit the 19.05 mm diameter incident and 

transmission bars being used in this tensile SHPB apparatus. This specimen design also excluded 

the 6.35 mm holes since the specimen was being held in place between the incident and 

transmission bars with collar clamps and not with bolts. 

 

Figure 32: University of Waterloo specimen design modified to fit the new SHPB apparatus 
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 This specimen design was used since the data from this new tensile SHPB apparatus would be 

compared with the known data obtained from the University of Waterloo’s tensile SHPB 

apparatus using the same batch of DP600 material and specimen design.  

 

3.2.7 Assembly and set-up mechanical components 

Assembling the support frame was done by bolting the adjusting feet to the vertical supports, 

and then bolting the horizontal support bars onto the vertical supports. Once the supports were 

assembled the I-beams were bolted to the six vertical supports, creating the support frame for 

the SHPB apparatuses. The support frame was then leveled once located in its final position in 

the laboratory. The gas gun support and one flat endcap, shown in Figure 33, were attached to 

the I-beam using shoulder bolts. By using shoulder bolts to attach these two components to the 

I-beam, the gas gun was locked into place so that it cannot move relative to the I-beam when 

actuated, and therefore the bar alignment does not change. 

 

Figure 33: Gas gun showing which mount is attached with shoulder bolts to I-beam 

 

The gun barrel was then attached to the bolted end cap with a retaining nut holding the gun 

barrel firmly to the flat endcap. The outer thick-wall cylinder was placed over the gun barrel into 

the groove in the flat end cap. The other flat end cap was slid down the free end of the gun 
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barrel so as to sandwich the thick-wall cylinder between both end caps. To seal the gas gun’s 

pressure chamber, Permatex Aviation Form-A-Gasket® No. 3 Sealant Liquid was applied to the 

groove in the endcaps, and between the gun barrel and endcaps. The Permatex Aviation Form-

A-Gasket® No. 3 Sealant Liquid “is a slow drying, liquid that changes to a pliable, tacky film 

through solvent evaporation” (Permatex, 2015), which is designed to seal close-fitting parts and 

machined surfaces. The flat end caps and thick-wall cylinder are held together with four 

12.7mm-diameter threaded rods attached to both flat end caps. After the gas gun was 

assembled the valve assembly was inserted into the gas gun and the pneumatic cylinder holder 

was bolted to the I-beam. The momentum trap was then bolted to the I-beam. After the 

momentum trap, the bar holders were clamped to the I-beam, and the bars were inserted into 

the bar holders. Alignment of the incident, transmission and the momentum transfer bars was a 

critical step in the assembly process. The incident bar was aligned coaxially with the gas gun at 

one end by the cylindrical valve with a tolerance of .025 mm between the incident bar and the 

cylindrical valve. The cylindrical valve has a transition fit with the barrel. The other end of the 

incident bar was aligned to the gun barrels central axis by adjusting the bar support and 

measuring with a pair of calipers at the four points shown in Figure 34.  

 

Figure 34: Aligning incident bar to gun barrel centre axis by measuring at different points 

 

There is a tolerance of 0.025 mm between the incident bar anvil and the bar holder.  Once the 

incident bar was aligned, the momentum transfer bar was then aligned with the incident bar. 

Since one end of the momentum transfer bar shares a support with the incident bar, 

adjustments were done to the other supports of the momentum transfer bar to align it with the 

Gun Barrel 

Incident Bar 
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momentum trap. In order to align the transmission bar, the bar supports were roughly adjusted 

to get the transmission bar coaxially close to the incident bar. The transmission bar was then 

finely adjusted to align the specimen slot with the incident bar, so that the specimen fits freely 

into the slots in both incident and transmission bars.  

 

3.3 Instrumentation 

Instrumentation of the tensile SHPB apparatus is necessary for characterization of materials.  

The instrumentation on the tensile SHPB apparatus is used to obtain information about the 

stress wave propagating through the incident and transmission bars, the velocity of the striker, 

and the pressure in the gas gun. Changing the pressure in the gas gun allows the velocity of the 

striker to be varied. Changing the velocity of the striker, allows different strain rates to be 

applied to the test specimen, which can be measured through the strain gauges mounted on the 

incident and transmission bars.  Finally, stress and strain data for the test specimen can be 

determined by post-processing the strain gauge signals. 

  

3.3.1 Strain gauges 

With a one-dimensional wave propagating through the bar, the strain at the surface of the bar is 

the same as the strain in the center of the bar. By using a strain gauge on the surface of the 

incident and transmission bars, it is possible to measure the amplitude of the incident, reflected 

and transmitted stress wave. 350 ohm, pre-wired, encapsulated foil strain gauges from Omega 

(part number: KFG-3-350-C1-11L1M2R) were installed on the bars. These strain gauges have a 

gauge length of 3 mm and a gauge factor of 2.09 ± 1.0%. The strain gauges were attached to the 

incident and transmission bars using Omega TT300 cement, which is a heat-cured, 2-part epoxy 

adhesive. The strain gauges were located 450 mm from the end of the bars, which is more than 

one wave length from the specimen slot, to ensure that the reflected stress wave does not 

overlap the incident stress wave. Two strain gauges were mounted to each bar, diametrically 

across from each other. This arrangement of pairs of strain gauges when wired into the 

Wheatstone bridge as indicated in Figure 35, compensates for any bending strain that may be 

induced in the bars and doubles the output of the strain gauge.  
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Figure 35: Strain gauges wired into the Wheatstone bridge (Kyowa, 2015) 

 

With this Wheatstone bridge configuration, the output voltage can be converted to strain by: 

 휀 =
2 ∗ 𝑉𝑜𝑢𝑡

𝑉𝑒𝑥𝐺𝐹
 (3.4) 

The output of the Wheatstone bridge is amplified by a Burr-Brown INA129 instrumentation 

amplifier.  The instrumentation amplifier is set to a gain of 106, which multiplies the output 

signal of the Wheatstone bridge by 106.  The Burr-Brown INA129 instrumentation amplifier at a 

gain of 100, has an max accuracy of 0.5%, with a typical accuracy of 0.05% (Texas Instruments, 

2005). At a gain of 100 the Burr-Brown INA129 instrumentation amplifier has a bandwidth of 

200 KHz.  

 

3.3.2 Pressure Transducer 

An Omega MMG1.0KV10P3C0T3A5CE pressure transducer, with a pressure range of 0 to 6895 

kPa, an output signal of 0 – 10 VDC, with an accuracy of +/- 0.08% is used to measure the 

pressure in the gas gun pressure chamber. By controlling the pressure inside the pressure 

chamber, the striker velocity can be determined from an equation derived from calibration of 

the gas gun. The calibration of the gas gun was carried out by varying the pressure in the gas 

gun in small increments and recording the velocity of the striker for each pressure level. The 

tests were repeated in order to obtain a statistical average of the striker velocity at each 

pressure increment, then plotted to obtain a curve similar to those in Figure 25.  

𝑉𝑜𝑢𝑡 

 

 

 

𝑉𝑒𝑥 
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3.3.3 Striker Velocity 

It is important to know the striker velocity, since it determines the strain rate in the test 

specimen. The strain rate can be calculated from equation 2.59. The velocity of the striker is 

measured using two optical gates placed at a distance of 0.05 m apart. The time difference (∆𝑡) 

between the activation of each optical gate, and the known distance (𝐷) between the gates 

allows the velocity of the striker to be calculated using:  

 𝑣𝑠𝑡 =
𝐷

∆𝑡
 (3.5) 

  

The second optical gate is aligned with the face of the anvil on the incident bar. This placement 

of the second optical gate allows the velocity at impact to be recorded.  

 

3.3.4 Start data acquisition signal 

With the entire test taking place in less than 100 ms, an electrical signal is needed to start the 

data acquisition processed.  A micro-switch is activated by the valve assembly collar, as shown in 

Figure 36, to output a +5V signal to the data acquisition system. This output signal, commonly 

called a TTL signal, is either 0V or +5V.  
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Figure 36: Micro-switch location on SHPB apparatus 

 

The signal from the micro-switch is used to start the data acquisition by the digitizer, to obtain 

the striker velocity and to record the pressure in the gas gun at firing.  

 

3.3.5 Data acquisition 

In order to record the various signals from the strain gauges, pressure transducer, micro-switch, 

and striker timing gate, a data acquisition system is required. The data acquisition system 

dedicated to this SHPB apparatus is a National Instruments PXIe-1082 8 slot chassis, shown in 

Figure 37, populated with a PXIe-8135 Core i7-3610QE 2.3 GHz Controller card, a PXIe-6361 X 

series data acquisition card and a PXI-5105 digitizer card.  



48 
 

 

Figure 37: National Instruments data acquisition system 

 

The PXIe-6361 card is used to read the pressure transducer, the time pulse from the striker 

velocity optical gate, and the TTL voltage signal from the micro-switch.  The signals from the 

pressure transducer, optical gate and the micro-switch are sent to the PXIe-6361 card via a NI 

SCB-68A shielded I/O connector block. The SCB-68A provides a, “very low-noise signal 

termination” (National Instruments, 2015) and it is easy to attach the signal wires to. The PXI-

5105 digitizer card is used to read the amplified signals from the Wheatstone bridge.  

Information about the two cards used for data acquisition is presented in Table 5.  

 

Table 5: Information about the data acquisition cards (National Instruments, 2015) 

Data 

acquisition 

card 

Maximum 

Sample Rate 

ADC 

Resolution 

Number of 

analog input 

channels 

Number of 

analog 

output 

channels 

Number of 

digital 

input/output 

channels 

NI PXIe-6361 2 MS/s 16 bit 16 2 24 

NI PXI-5105 60 MS/s 12 bit 8 N/A N/A 
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Table 6 gives the maximum range and accuracy, at that range, of the two data acquisition cards. 

Table 6: Range and accuracy of the two data acquisition cards (National Instruments, 2015) 

Data acquisition card Range Accuracy 

NI PXIe-6361  

Analog Input 

Maximum Voltage Range 

+/- 10V 
Absolute accuracy at full scale:  

±1.66 mV 

NI PXI-5105  

Input Impedance 1 MΩ 

Maximum Voltage Range 

+/- 15 V 
DC Accuracy at full scale: 

±(0.75%*Reading+0.25% of FS+600µV) 

 

 

The PXI-5105 card has a maximum bandwidth of 60 MHz, and an optional 24MHz anti-aliasing 

filter. The National Instruments PXIe-8135 Controller card is a computer running Windows 7 

Pro™ operating system, with National Instruments’ NI-DAQmx and LabVIEW 2014 software to 

interface with the two data acquisition cards. Once the test data is collected it is saved in an 

Excel file for post-processing after the test is completed.  

 

3.3.6 Assembly and set-up electrical components 

The National Instruments PXIe-1082 chassis and data acquisition cards are placed inside a 

computer cabinet, shown in Figure 38. The computer cabinet is a secure and dedicated location 

in which to place the DAQ system, keyboard, mouse, monitor and cabling needed to connect the 

various instruments to the DAQ system. 
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Figure 38: Computer cabinet for storing DAQ system 

 

Once the strain gauges were attached to the incident and transmission bars 450 mm from the 

ends of the bars, they were clamped while being heated to 80OC to cure the adhesive for four 

hours. After cooling to room temperature and removing the clamps, the strain gauges were then 

heated to 120oC for six hours to stress relieve them.  The strain gauges were then wrapped in 

electrical tape, as shown in Figure 39, to protect the strain gauges and provide strain relief for 

the wires.  

 

Figure 39: Strain gauge wrapped with electrical tape 
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The strain gauges were then wired into their separate half-bridge Wheatstone bridges, and the 

cables were run back to the DAQ system.  

The pressure transducer was attached to the gas gun by a tee fitting installed on the flat endcap 

as seen in Figure 40.  

 

Figure 40: Valve configuration on gas gun 

 

The striker velocity optical gate was installed on the end of the gun barrel as shown in Figure 41.  

 

Figure 41: Optical gate to measure striker velocity 
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The micro-switch was installed by the valve assembly of the gas gun. Whenever the valve opens 

the micro-switch triggers the data collection by the DAQ system. The data wires are run 

separately from the power wires to the equipment and into the computer cabinet, so as to 

minimize noise on the data wires.  
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Chapter 4: Calibration, Operation and Data Analysis of a SHPB 

4.1 Calibration of the gas guns velocity versus pressure  

The gas gun was calibrated by taking five measurements of the velocity of the striker at various 

firing pressure values. The five measurements of each pressure and velocity were averaged to 

get the mean value of the pressure and velocity of the striker at the different pressure settings. 

The only difficulty was to manually set the same pressure each time a test was repeated. Table 7 

summarizes the mean values of the firing pressure of the gas gun and the striker velocity. Table 

7 also includes the standard deviation for both the pressure and velocity measurements.   

Table 7: Average striker velocity and firing pressure of the gas gun 

Mean Standard Deviation 

Pressure (kPa) Velocity (m/s) Pressure (kPa) Velocity (m/s) 

0.00 0.00 0.00 0.00 

76.97 4.58 1.95 0.65 

145.91 9.60 3.49 0.51 

212.26 12.56 2.25 0.25 

279.97 14.96 3.73 0.31 

349.08 16.98 2.25 0.21 

419.96 18.94 2.62 0.34 

488.69 20.49 2.26 0.23 

557.81 22.13 4.48 0.37 

625.69 23.60 5.30 0.20 

691.25 24.99 4.98 0.26 

 

The average deviation of the velocity of the striker was ±0.333 m/s. The average deviation of the 

pressure was ±3.33 kPa. The mean values for the gas gun firing pressure and velocity of the 

striker were plotted with the theoretical velocity values derived from equation 3.1. Figure 42 

shows that the theoretical values correlate reasonably well with the experimental data. 
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Figure 42: Velocity of striker vs. firing pressure of gas gun 

 

In Figure 42 it can be seen that the measured velocities are consistently lower than the 

theoretical velocities; this is because friction between the barrel,  the striker, and the air 

resistance the striker is subject to are not accounted for in the theoretical equation.  

It is useful to establish an equation that correlates the striker velocity to the firing pressure of 

the gas gun, so that the strain rate can be selected using equation 2.59. Therefore, the pressure 

versus velocity data from Table 9 was plotted and a trendline equation was fitted to the 

experimental data, as shown in Figure 43. 
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Figure 43: Pressure of gas gun vs. velocity of striker 

 

 The trendline equation extrapolated from the graph is:  

𝑦 =  0.0165𝑥3  +  0.2433𝑥2  +  11.342𝑥 +  5.0761 (4.1) 

The velocity calculated in equation 2.59, can be inserted as variable 𝒙, in equation 4.1 to get the 

pressure, 𝒚, required in the gas gun in order to achieve the desired striker velocity. It was found 

during the calibration of the gas gun that the anvil on the incident bar and the anvil on the 

momentum transfer bar had come loose. The Loctite threadlocker Blue 242 had failed and was 

replaced with Loctite 648 Retaining Compound.   It was also noted that the gas gun was not 

holding pressure. Taking out the valve assembly it was found that the sealing O-rings were 

damaged. The damage was most likely from the openings in the gun barrel to the pressure 

chamber. This pressure drop was slow and was taken into account during the calibration by 

filling slightly over the desired pressure and activating the gas gun at the desired pressure.  

y = 0.0165x3 + 0.2433x2 + 11.342x + 5.0761 
R² = 0.9992 
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4.2 Calibration of the strain gauge output  

The strain gauge signal goes through the Wheatstone bridge, out to the INA129 instrument 

amplifier into the PXI-5105 card as shown in Figure 44.  

 

 

 

 

Figure 44: Path for strain gauge signal 

 

The Wheatstone bridge has a voltage equalization circuit, shown in Appendix B, which is 

designed to eliminate the error that might be present in the strain gauge and the completion 

resistors of the Wheatstone bridge. The INA129 instrumentation amplifier error and the 

Wheatstone bridge error are much smaller than the error from the PXI-5105, and therefore the 

PXI-5105 is considered the main source of error for the strain gauge signals. The calibration of 

the strain gauges mounted on the incident and transmission bars was carried out with a LC305-

20K miniature load cell connected to a DP-41-S-A strain meter. The accuracy of this miniature 

load cell was first verified using a MTS Criterion model 45 universal testing apparatus (having a 

calibrated load cell itself): the LC305-20K load cell was subject to increasing compressive forces 

up to 19,250 N in the MTS test machine, as shown in Figure 45, and it was found that the 

readings on the strain meter varied by less than 100 N from the readings on the MTS tester, 

which is within the MTS testers 1% force accuracy (MTS , 2015). 
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Figure 45: MTS tester applying a load on the LC305 load cell 

 

In order to calibrate the strain gauges on the incident and transmission bars, the LC305-20K load 

cell was placed against the momentum trap which is fixed to the I-beam, as shown in Figure 46. 

The slots in the incident and transmission bars were filled and the bars were connected with a 

sleeve which kept the contacting faces of the incident and transmission bars aligned when the 

load was applied to the transmission bar. A jack screw was set up between the free end of the 

transmission bar and a steel block clamped to the I-beam so as to be able to apply an axial 

compressive force on the transmission bar, as shown in Figure 47. Since the change in electrical 

resistance in a strain gauge is similar in compression or in tension, the strain gauges can be 

calibrated in compression even though the incident and transmission bars of this SHPB 

apparatus will generally be loaded in tension. 
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Figure 46: Load cell placement for calibrating strain gauges 

 

 

Figure 47: Set up of jack screw used to apply a compressive load on the bars for calibration of strain gauges 

 

In the strain gauge calibration procedure, the jack screw was used to apply load increments up 

to a maximum load of 6583.1 N. The maximum load was limited due to the risk of buckling the 

transmission bar under the static load and because the clamped steel block would start to move 

relative to the I-beam when the load exceeded a certain limit. The output voltages from the 
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Wheatstone bridges were measured through the PXI-5105 digitizer at the various load levels, 

and Ch0 represents the strain gauges on the incident bar and Ch1 the strain gauges on the 

transmission bar.  The error calculated for the readings on the PXI-5105 were 0.0031 mV. The 

PXI-5105 gives a large error percentage at low readings, but the error percentage decreases as 

the readings get closer to full scale values on the PXI-5105. The measured voltage values from 

the strain gauges can be compared with the theoretical voltage values (or strains) that would be 

calculated for different values of applied force. The theoretical force is obtained by multiplying 

the stress (equation 2.3) by the cross-sectional area of the striker. The theoretical output 

voltage from the Wheatstone bridge (i.e. the theoretical strain) was calculated by substituting 

equation 2.4 into equation 3.4 and re-arranging to get the output voltage.   

The experimental load and voltage data are presented in Table 8. 

Table 8: Experimental data for calibration of strain gauges 

Load (N) Ch0 (V) Ch1 (V) 

66.9 -0.003052 -0.0024332 

252.9 -0.0057202 -0.005954 

767.7 -0.015065 -0.0151 

1708.2 -0.033419 -0.031698 

2878.6 -0.055269 -0.053348 

3935.4 -0.074998 -0.07354 

4578.8 -0.087259 -0.085028 

5540.3 -0.10521 -0.10399 

6093.5 -0.11461 -0.11442 

6356.4 -0.12002 -0.11961 

 

 

The data measured data for Ch0 and Ch1, and the theoretical data are plotted in Figure 48. 
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Figure 48: Voltage out of Wheatstone bridge vs. applied load for load cell #3 

 

To compare the difference between the measured and theoretical strain gauge voltage values, 

the average error was calculated and a validation metric was computed. The average error was 

calculated from an equation from Audysho et al. (2013), that “represents the average error 

determined over the entire” (Audysho, Smith, Altenhof, & Patel, 2013) range of values 

measured. 

𝐸𝑀 =
1

𝑋2 − 𝑋1
∗ ∫ |

𝑦(𝑥) − 𝑌(𝑥)

𝑌(𝑥)
| 𝑑𝑥

𝑋2

𝑋1

 (4.2) 

Oberkampf and Trucano (2002) developed a validation metric that compares measured values 

to computed values at the measured location.  

𝑉𝑀 = 1 −
1

𝑋2 − 𝑋1
∗ ∫ 𝑡𝑎𝑛ℎ |

𝑦(𝑥) − 𝑌(𝑥)

𝑌(𝑥)
| 𝑑𝑥

𝑋2

𝑋1

 (4.3) 

An advantage of this validation metric is that “first, it normalizes the differences between 

computational results and experimental data” (Oberkamf & Trucano, 2002).  The second 
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advantage of this validation metric is that “the absolute value of the relative error only permits 

the difference between the computational results and the experimental data to accumulate” 

(Oberkamf & Trucano, 2002). A weakness of this validation metric, however, is that it “is 

inappropriate when any of the Y(x) are near zero” (Oberkamf & Trucano, 2002). Therefore in this 

evaluation of the strain gauge readings, the first two data points were omitted from the 

calculation of the error and validation metric due to the values being close to zero and since 

they have large error percentages due to the digitizer error.  The results for the error and 

validation metric are presented in Table 9. 

 

Table 9: Error and Validation Results 

 
Error (%) Validation Metric (V) 

Ch0 1.17 0.988 

Ch1 2.17 0.978 

 

It is apparent from the analysis of these experimental data that the error percentage is very low 

and the validation metric is very close to 1.00 for both channels. Therefore the measurements 

from the strain gauges on both the incident and transmission bars can be considered accurate.  

 

4.3 Operating Procedure 

The operation of the tensile SHPB apparatus is quite straightforward, but requires a series of 

steps to set up the apparatus and to conduct a test. One must take precautions when working 

around a gas gun to ensure the operators safety. It is advisable to only pressurize the gas gun 

just before a test is to be conducted, and to empty any residual pressure immediately after the 

test is conducted. The following steps should be taken in order to prepare for testing:  

 Open the DAQ cabinet, turn on the power bar in the bottom of the cabinet to power the 

sensors and Wheatstone bridge, then power on the DAQ system.  

 Verify that the gas gun pressure release valve, Figure 40, is open and the fill valve, Figure 

40, is closed. 
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 Check the bar supports for any loose hardware, if any bar supports are loose, re-

alignment of the bars is required.  

 Check that the striker is fully seated up against the gas gun valve. 

 Align the incident bar with the velocity optical sensors by aligning the edge of the anvil 

with the top of the optical gate housing seen in Figure 49. 

 

Figure 49: Alignment of incident anvil and optical gate housing 

 

 Set the momentum trap cap pressure by tightening the screws, the higher the striker 

velocity the more pressure is required for the momentum trap cap. If the pressure on 

the momentum cap is too high the test specimen will not break; if it is too low the 

whole SHPB apparatus will be subject to a shock, which could affect the bar alignment 

or maybe even damage the bars.  

 Connect the shop airline to the fitting for the pneumatic valve actuators, shown in 

Figure 50. 

Anvil 

Optical Gate Housing 
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Figure 50: Valve actuator connection and fill selection valves 

 

 Open nitrogen tank valve a quarter turn. 

 Set pressure regulator for just over the maximum pressure calculated for the test. 

 Open fill selector valve for either tension or compression, shown in Figure 50, 

depending on which SHPB apparatus is appropriate (the tension and compression SHPB 

systems are side-by-side on two different I-beams). 

 Insert a test specimen into the incident bar and tighten the collar clamp; check that the 

specimen is not crooked and is fully inserted into the specimen slot.  

 Insert the other end of the test specimen into the slot in the transmission bar; check 

that the specimen is fully inserted into the slot and tighten that collar clamp. It is very 

important not to twist the test specimen when tightening the collar clamps. When 

tightening collar clamp bolts, alternate between the two bolts and increase the bolt 

tightness incrementally. 

 On the DAQ, open up LabVIEW 2014 software, and then open TensileSHPB.vi for the 

tensile SHPB apparatus. 

The following steps should be taken in order to conduct a SHPB tensile test: 

Pneumatic Valve  

Actuator Connection 

Tension or Compression  

Fill Selector Valves 



64 
 

 Start the LabVIEW virtual instrument (vi) program to see the pressure in the gas gun 

pressure chamber.  

 Close the pressure release valve, shown in Figure 40, and open the fill valve, shown in 

Figure 40, to increase the pressure in the gas gun pressure chamber to the value 

calculated from equation 4.1. 

 Stop the LabVIEW vi, and click the switch to change the vi over to the data collection 

mode, and restart the vi.  

 Open the gas gun valve by moving the leaver shown in Figure 51. 

 

Figure 51: Valve pneumatic actuator controller 

 

 Right click on graph in the vi and export the data to excel. 

 Add the velocity and pressure data to the excel worksheet, and save the file. 

 Open the gas gun pressure release valve (see Figure 40).  

When finished with testing for the day: 

 Open the gas gun pressure release valve.  

 Close the gas gun fill valve. 

 Disconnect the shop airline to the fitting for the pneumatic valve actuators. 

 Close the nitrogen tank. 

Open 

Valve 

Close 

Valve 
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 Close the fill selector valve.  

 Power down the DAQ and turn off the power bar. 

 Close and lock up DAQ cabinet. 

It is important for the SHPB operator to secure the SHPB apparatus, so that other people will not 

be hurt if they are in the lab area around the SHPB apparatus when the SHPB operator is not 

present.  

 

4.4 Signal processing 

A tensile SHPB tests generates a data set that is exported as an Excel worksheet and consists 

of thousands of rows of voltage data, recorded at a sampling rate of 60 million data per 

second. In order to post-process this data file, a MATLAB program provided in Appendix C, 

was written to calculate the true stress and corresponding true strain data for a given test 

specimen. The MATLAB data processing program executes the following operations:  

 The program requires the user to select the data file to be processed using a graphical 

user interface, and then loads the output voltage data from the incident and 

transmitted strain gauges into the program. 

 The output voltage data from the strain gauges are then divided by the amplification 

factor and then converted into micro-strain using equation 3.4. 

 The initial strain gauge voltage readings are plotted as a graph, shown in Figure 52, for 

the user to see the initial offset of the signals. 

 

Figure 52: Example of initial strain vs. count graph for the incident and transmission bars 
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The initial strain gauge voltage readings might be slightly off zero, due to environmental 

factors (such as … room temperature). Adding or subtracting microvolts to the entire 

data set so as to ensure the initial strain value is zero is easier to do with the software 

after the test than trying to precisely adjust the strain gauges to zero prior to the test, 

because the amplifier greatly increases the sensitivity of the adjustment.  

 The data is then optionally filtered using a digital filter. The digital filter creates a low-

pass infinite impulse response filter from the specified passband frequency and filter 

order number. The passband frequency denotes the upper limit of the low-pass filter 

and the order number represents how fast the filter attenuates the magnitude of the 

signal after the passband frequency. The higher the order number is the faster the 

signals magnitude is attenuated above the passband frequency; this can be seen 

between Figure 53 and Figure 54. 

 

Figure 53: 250 kHz, 2nd order lowpass filter 

 

 



67 
 

 

Figure 54: 250 kHz, 6th order lowpass filter 

 

 The initial settings for the digital filter provide a filter bandwidth of 250 kHz which is greater 

than the bandwidth of the INA129 instrumentation amplifier and eliminates noise from the 

signal as seen in Figure 55. 

 

Figure 55: Unfiltered and filtered transmission bar strain gauge output 

 

 The filtered data is plotted on two graphs, one for the incident bar data and one for the 

transmitted bar data. If the filtered data is acceptable to the operator, it is accepted and 

the user then moves on to select the start point and end point of the incident pulse. If 

the user does not want to filter the signal at all, the passband frequency is set to 5 MHz, 

the maximum passband frequency of the digital filter.  
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 By zooming in on the incident bar graph the sample number of the start and end points 

of the incident pulse can more accurately be selected. On the incident bar graph the 

sample number of the start of the reflected pulse is also found.  The graph of the 

transmitted data is used to get the sample number for the start of the transmitted 

pulse. The number of sample points that the incident pulse covers is the same number 

of sample points used for the reflected pulse and the transmitted pulse. 

 The incident pulse and inverted reflected pulse are plotted on the same graph so that 

the user can alter the start point of the incident pulse to align up the incident and 

reflected pulses, as shown in Figure 56.  

 

Figure 56: alignment of the incident and reflected pulses 

 

 Once the user is satisfied with the incident start and end points and the reflected and 

transmitted start points, the engineering strain is calculated from equation 2.09 and 

2.15. Equation 2.09 gives the average strain of the specimen without assuming the 

specimen uniformly deforms as equation 2.15 does, during the test. Comparing the 

results of equation 2.09 and 2.15 graphically shows that there is not much variation 

 

Incident Pulse 
Reflected Pulse 
Transmitted Pulse
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between the two equations in the elastic region and minor variation as the strain 

increases in the plastic region.  

 

Figure 57: Engineering stress versus strain for uniform and average strain 

 

The engineering stress is calculated from equation 2.16.  

 The true stress and strain are calculated from:  

휀𝑡𝑟𝑢𝑒 = ln (1 + 휀𝑢) (4.4) 

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑢 ∗ (1 + 휀𝑢) (4.5) 

 The engineering stress versus engineering strain, the true stress versus true strain, the 

strain rate versus time, and the true strain versus time are graphed on separate graphs 

so the user can see the data visually. An example of the graphs plotted is shown in 

Figure 57 and Figure 58 .  
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 The strain rate is calculated from the slope of the true strain versus time graph. 

 

Figure 58: Example of the true stress-strain versus engineering stress-strain 

 

 The user then has the option to save the data to an excel file. This excel file contains the 

engineering stress and strain data, the true stress and strain data and the strain rate 

data.  

The MATLAB code developed for post-processing the experimental data from the SHPB tests 

yields a dynamic flow curve for the specimen tested.  
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Chapter 5: Experimental testing of DP600 Sheet Steel 

5.1 High strain Rate flow behaviour of DP600 sheet steel 

The tension SHPB apparatus that has been described in the previous chapters will now be used 

to perform some high strain rate tensile tests on a DP600 sheet material. This steel sheet 

material has been tested within the framework of another research project, and in particular, 

it’s high strain rate behaviour was characterized at the University of Waterloo. This research 

team at the University of Waterloo is world-renowned in the field of high strain rate testing and 

has published extensive experimental data obtained with their own SHPB apparatus. The 

objective of this chapter is to describe the testing of DP600 sheet using our newly developed 

SHPB apparatus and compare our results with high strain rate flow curves for this same sheet 

material obtained at the University of Waterloo and published in peer-reviewed literature 

[Rahmaan et al., 2014]. 

 

5.1.1 Properties of DP600 sheet steel 

 

The SHPB test specimens were taken from DP600 steel sheet material with a nominal thickness 

of 1.5mm supplied by ArcelorMittal. The chemical composition of the DP600 steel was obtained 

from ArcelorMittal and is provided in weight percent in Table 10. 

Table 10: Chemical composition of DP600 steel in weight percent 

C Mn P Si Al Cu Ni Cr Mo V Nb Ti 

0.11 1.50 0.01 0.18 0.04 0.06 0.02 0.18 0.21 <0.01 <0.01 0.03 

 

Quasi-static uniaxial tension tests were performed on this DP600 steel, as seen in Figure 59 
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Figure 59: Uniaxial tension test data for DP600 steel  

 

The mechanical properties of the DP600 steel obtained from the quasi-static uniaxial tension 

tests are shown in Table 11 

 

Table 11: Mechanical properties of DP600 steel 

Material 
E (handbook) 

[GPa] 
Yield Stress 

[MPa] 
Ultimate 

Stress [MPa] 
n-value 
[true] 

r0 

DP600 210 340 587 0.175 0.687 

 

5.1.2 SHPB tests on DP600 sheet steel 

In order to achieve a strain rate of 1000 s-1 during the SHPB tensile test and a stress of 600 MPa, 

the striker velocity was calculated to be 15.2 m/s, using equation 2.59. Using equation 4.1, a 

pressure of 292 kPa in the gas gun pressure chamber was required to achieve this striker 

velocity.  
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The PXI-5105 was set to a sampling rate of 10 MS/s so as to collect approximately 7500 data 

points in the TensileSHPB.vi LabVIEW program. The TensileSHPB.vi LabVIEW program was also 

set to have a low-pass Butterworth filter of an order of 2, and a 250 kHz cut-off frequency to 

reduce any signals above this frequency. Since the INA129 instrumentation amplifier has a 

bandwidth limit of 200 KHz at a gain of 100, any signal above 250 kHz is considered noise and 

not actually part of the signal.  

Testing was conducted in such a way that a test specimen would reach its ultimate tensile 

strength and fracture. And in order for the test to be valid, the fracture must occur within the 

specimen gauge length. Furthermore, in order to demonstrate that the specimens did not slip in 

the bar specimen slots, the edge of the specimen-to-bar interface was marked with a black 

marker before each test, as shown in Figure 60. Figure 61 shows the specimen-to-bar interface 

after a test, showing no slipping of the specimen.  

 

 

Figure 60: Mounted specimen with black marker at bar/specimen interface to show if slipping occurs 
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Figure 61: Fractured SHPB specimen with marker at bar/specimen interface showing no slipping 

The striker bar was lubricated approximately every 10 tests. And the bar holders and the 

incident bar and momentum transfer bar anvils were also checked for any looseness every time 

the striker was lubricated. 

 

5.1.2.1 SHPB test results in the rolling direction 

A total of 11 test specimens were tested for the rolling direction. Of the 11 test specimens, eight 

tests were considered successful. Three tests were considered to have failed, due to the test 

specimens necking but not fracturing.  All test specimens that fractured, had the fracture in 

approximately the middle of the gauge length, as seen in Figure 62.  

Figure 62, also shows that specimens 7, 8, and 9 did not fracture, but did neck in the middle of 

the gauge length. Three failed test in a row was most likely due to the striker needing to have 

lubrication re-applied. The striker was lubricated after test specimen 9, and there were no more 

failed tests. The striker velocity did not indicate that the striker needed to lubricated, since the 

striker velocities were still very close to 15.2 m/s.  
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Figure 62: RD fracture location 

 

The test specimen shown in Figure 63 was bent due to the transmission bar not having a 

momentum trap and colliding with the stopped incident bar. Not having a momentum trap on 

the transmission bar was an oversight in the design phase.  This oversight could be resolved by 

adding a hard stop on the I-beam so that the transmission bar does not impact the specimen 

after the test. 

 

Figure 63: Bent test specimen from transmission bar collision 
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The gas gun firing pressure and corresponding striker velocity are presented in Table 12 for each 

tensile test in the sheet rolling direction.  

Table 12: Gas gun pressure and striker velocity data for the RD specimens 

 
Pressure (kPa) Velocity (m/s) 

RD-EX1 299.3 15.16 

RD-EX2 296.6 14.82 

RD-EX3 295.3 15.10 

RD-EX4 294.4 15.29 

RD-EX5 296.6 14.89 

RD-EX6 296.4 15.37 

RD-EX7 297.7 15.05 

RD-EX8 296.8 14.91 

RD-EX9 299.3 14.92 

RD-EX10 299.3 15.32 

RD-EX11 298.6 15.10 

 

The average pressure was 297.3 kPa, with a standard deviation of ±1.7 kPa. The average velocity 

was 15.09 m/s with a standard deviation of ±0.19 m/s. The calculated velocity was within the 

error range of the average striker velocity. 

The strain rate calculated for each of the RD specimens is shown in Table 13. The average strain 

rate for the RD specimens is 1012 s-1 with a standard deviation of 33 s-1. The necked specimens 

were not included in the average and standard deviation calculations. 

Table 13: Strain rate for RD specimens 

 
Strain Rate (s-1) 

RD-EX1 962 

RD-EX2 1064 

RD-EX3 1050 

RD-EX4 1007 

RD-EX5 1003 

RD-EX6 996 

RD-EX7-Necked 983 

RD-EX8-Necked 1017 

RD-EX9-Necked 986 

RD-EX10 1027 

RD-EX11 987 
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All of the valid tests for the RD are plotted in Figure 64. 

 

Figure 64: True Stress vs. True Strain curves for all SHPB specimen tested in the RD 

 

From Figure 64 it can be seen that the elastic region of the stress-strain curves are almost 

identical with very little variation. The oscillations in the plastic region are most likely due to the 

stress wave not being fully one-dimensional. When the striker impacts the anvil many different 

frequency components are generated to make up the stress wave. The “higher frequency 

components travel slower than, 𝐶0, since phase velocity decreases with decreasing wavelength” 

(Follansbee & Frantz, 1983). This “difference in wave velocity leads to spreading or dispersion of 

the initial pulse; the rise time lengthens and oscillations occur” (Follansbee & Frantz, 1983).  In 

order to reduce the oscillations in the incident pulse, the length of the incident bar can be 

increased to give the stress wave more bar length to disperse. The length of the striker can also 

be increased so that the stress wave will act over a longer period of time, giving the stress wave 

more time to disperse. The anvil on the incident bar is also “thought to induce oscillations and 

lower the rise time of the incident pulse” (Clark, 1993). By changing the shape of the anvil it may 

be possible to reduce the oscillations in the incident pulse.  
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5.1.2.2 SHPB test results in the Diagonal Direction 

A total of 14 test specimens were tested for the diagonal direction. Of the 14 tested specimens, 

eleven tests were considered successful. Three tests were considered to have failed, due to the 

test specimens necking but not fracturing. Once again, the fractures consistently took place 

approximately in the middle of the gauge length, as can be seen in Figure 65. 

 

Figure 65: Central fracture location for DD specimens 

It can be seen in Figure 67 that specimens 2 and 3 failed to fracture due to the momentum trap 

being set too tight and stopping the movement of the incident bar too quickly. The gas gun firing 

pressure and the striker velocity for each of the DD specimens are presented in Table 14. 

Table 14: Gas gun pressure and striker velocity data for the DD specimens 

 
Pressure (kPa) Velocity (m/s) 

DD-EX1 300.4 14.48 

DD-EX2 305.3 15.41 

DD-EX3 305.5 15.38 

DD-EX4 300.8 15.72 

DD-EX5 298.4 15.21 

DD-EX6 295.1 15.45 

DD-EX7 295.5 15.23 

DD-EX8 298.6 15.02 

DD-EX9 297.7 15.49 

DD-EX10 297.5 15.18 

DD-EX11 297.1 15.50 

DD-EX12 297.5 15.07 

DD-EX13 294.2 15.21 

DD-EX14 295.1 15.15 
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The average pressure was 298.5 kPa, with a standard deviation of ± 3.5 kPa. The average 

velocity was 15.25 m/s with a standard deviation of ±0.29 m/s. The calculated velocity was 

within the error range of the average striker velocity. 

The strain rate calculated for each of the DD specimens is shown in Table 15. 

Table 15: Strain rate for DD specimens 

 
Strain Rate (s-1) 

DD-EX1 995 

DD-EX2-Necked 992 

DD-EX3-Necked 978 

DD-EX4 1021 

DD-EX5 1098 

DD-EX6 998 

DD-EX7 1008 

DD-EX8 1010 

DD-EX9 1000 

DD-EX10 1002 

DD-EX11 1007 

DD-EX12-Necked 952 

DD-EX13 1005 

DD-EX14 999 

 

The necked specimens were not included in the average and standard deviation calculations. 

The average strain rate for all the DD specimens is 1013 s-1 and the standard deviation is 29 s-1. 

 

5.1.2.3 SHPB test results in the Transverse Direction 

A total of 13 test specimens were tested in the transverse direction of the sheet. Of the 13 

specimens, 10 tests were considered successful. Two tests were considered to have failed due 

to the test specimens necking but not fracturing. One test was considered to have failed 

because the test specimen showed evidence of slipping in the incident bar specimen slot. The 

specimen showed a shiny area where it moved in the bar specimen slot, as seen in Figure 66. 
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Figure 66: Sample specimen showing evidence of slipping in bar specimen slot 

The fracture consistently occurred approximately in the middle of the gauge length, as can be 

seen in Figure 67. 

 

Figure 67: Central fracture location for TD specimens 

The gas gun firing pressure and the corresponding striker velocity for the TD specimens are 

presented in Table 16. 

The average pressure was 297.3 kPa and the standard deviation was ± 1.3 kPa. The average 

velocity was 15.32 m/s with a standard deviation of ± 0.15 m/s. The calculated velocity was 

within the range of error of the average striker velocity. The velocity of TD-EX2 was not included 

in the average and standard deviation calculations for the velocity, because this value is 

erroneous. It was found that when the incident bar anvil covers the second optical gate in the 

velocity sensor, the computed velocity will be high such as that which was calculated for 

specimen TD-EX2.  

Area displaying  
signs of slipping 
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Table 16: Gas gun pressure and striker velocity data for the TD specimens 

 
Pressure (kPa) Velocity (m/s) 

TD-EX1 296.8 15.37 

TD-EX2 298.8 394.54 

TD-EX3 296.4 15.12 

TD-EX4 298.6 15.54 

TD-EX5 299.3 15.13 

TD-EX6 295.9 15.43 

TD-EX7 296.6 15.14 

TD-EX8 297.3 15.43 

TD-EX9 296.2 15.25 

TD-EX10 297.5 15.47 

TD-EX11 296.4 15.29 

TD-EX12 299.1 15.21 

TD-EX13 295.9 15.51 

 

The strain rate for all the TD specimens is shown in Table 17. 

Table 17: Strain rate for TD specimens 

 Strain Rate (s-1) 

TD-EX1 989 

TD-EX2 995 

TD-EX3 1014 

TD-EX4-Necked 1035 

TD-EX5 1003 

TD-EX6 997 

TD-EX7 1002 

TD-EX8 988 

TD-EX9 1001 

TD-EX10-Necked 992 

TD-EX11 992 

TD-EX12-Necked 1006 

TD-EX13 1013 

 

The failed specimens were not included in the average and standard deviation calculations. The 

average strain rate for the TD specimens was 999 s-1 with a standard deviation of 9 s-1.  
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It is thought that this first series of tension tests performed with the newly developed SHPB 

apparatus were quite successful, in terms of the repeatability of the test, and the consistency of 

the striker velocity, the strain rates achieved and the fracture location near the centre of the 

gauge length. Apart from one specimen that showed evidence of slippage during the test, the 

collar clamps proved to be an adequate method of clamping the specimens to the incident and 

transmission bars. However it remains to be shown that the experimental results generated 

with this SHPB apparatus are indeed accurate. 

 

5.2 Comparison of experimental data to known data 

In order to validate the experimental results generated by the tensile SHPB apparatus described 

in this thesis, the DP600 stress-strain data presented in the previous section was compared to 

data obtained from the University of Waterloo for the same DP600 steel. A research team at the 

University of Waterloo carried out these tests within the framework of a collaborative research 

project with the University of Windsor and a number of industrial partners. This comparison is 

meaningful in as much as the experimental results from the tests described in the previous 

section and those that were supplied by the researchers at the University of Waterloo were all 

obtained from specimens taken from the very same coil of DP600 steel. Tensile tests were 

carried out with both SHPB testing facilities at a strain rate of 1000 s-1 in the RD, DD, and TD 

(Rahmaan et al., 2014). Figure 68 - Figure 70 show the comparisons of the flow curves obtained 

from both laboratories in the RD, DD and TD, respectively. 
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Figure 68: Comparison of the true stress vs. true strain data in the RD obtained from two different laboratories 

 

 

Figure 69: Comparison of the true stress vs. true strain data in the DD obtained from two different laboratories 
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Figure 70:  Comparison of the true stress vs. true strain data in the TD obtained from two different laboratories 

 

The same validation metric and average error that were used to calibrate the strain gauges were 

also used to compare the flow curves obtained from this testing apparatus with those from the 

University of Waterloo. Since the Waterloo research team has been publishing data obtained 

from their SHPB testing apparatus in peer-reviewed papers for many years, it is reasonable to 

assume that these data are reliable and can be considered as a reference from which to 

evaluate the data obtained from our newly developed apparatus. The average error and 

validation metric for each material direction are summarized in Table 18.  

Table 18: Error and Validation metric for comparing project data to known data 

Direction Error % 
Validation 

Metric 

DD 4.05 0.9596 

RD 3.20 0.9681 

TD 3.87 0.9614 
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The flow curves obtained from tests using the newly developed SHPB apparatus were also 

compared with data obtained from ArcelorMittal. However, in this case, the data supplied by 

ArcelorMittal was obtained from SHPB specimens taken from a DP600 steel sheet with a 

nominal thickness of 1.8mm and pulled them in tension along the RD at a strain rate of 1000 s-1. 

It is not known which laboratory or SHPB apparatus was used to produce these data from 

ArcelorMittal. Nevertheless, the flow curve supplied by ArcelorMittal was plotted in Figure 71 

along with the corresponding flow curve obtained from our SHPB apparatus. 

 

Figure 71: Comparison of ArcelorMittal and project data 

 

The same validation metric and average error that was used with the strain gauge calibration 

was used to compare the data from ArcelorMittal and the adjusted data from this project. The 

average error and validation metric are compiled in Table 19.  
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Table 19: Error and Validation metric for comparing ArcelorMittal data to project data 

Direction Error % 
Validation 

Metric 

RD 9.49 0.9056 

 

This large error could have been due to the materials being from different batches of DP600 

steel with different mechanical properties. 

The data sets obtained from the University of Waterloo and ArcelorMittal have very few data 

points in the data sets. ArcelorMittal has 40 data points making up their data set and the 

University of Waterloo has 71 data points in their data set. This is much less than the 1302 data 

points are used in the data sets, generated by our new apparatus. When looking at the data sets 

from ArcelorMittal and the University of Waterloo the strain intervals are evenly spaced and at 

exact points. This leads to the hypothesis that both ArcelorMittal and the University of Waterloo 

are reducing their data sets by interpolating the stress data at even strain spacing.   
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Chapter 6: Conclusions and Recommendations 

6.1 Conclusions 

The various mechanical components of a tension SHPB testing apparatus have been designed, 

built, assembled and shown to function well. The addition of a high-speed data acquisition 

system, the corresponding instrumentation and LabVIEW operating software has enabled the 

author to successfully carry out a series of SHPB tests on DP600 steel specimens. A MATLAB 

code was also developed to post-process the strain signals, and using the Hopkinson equations, 

to obtain the high strain rate flow curves of this grade of steel.  

The following observations can be made based upon the experience of developing and using the 

tensile SHPB apparatus:  

1. The gas gun has a slow pressure leak; however the largest pressure deviation during 

testing was only ±3.5 kPa. In spite of this small deviation of the pressure over time the 

gas gun can be effectively operated at a specified pressure. 

2. The gas gun had an average deviation in the velocity of the striker of 0.333 m/s during 

the calibration of the gas gun. This deviation is related to the friction in the barrel of the 

gas gun, since the inside of the gas gun is not polished to a smooth finish. 

3. The average strain rate for the RD, DD, and TD directions were within error for the test 

strain rate of 1000 s-1.  

4. The data provided from the tensile SHPB apparatus is within 4.06% of the reference data 

obtained from the University of Waterloo.  

In addition to the observations made, the following conclusions can be drawn after the 

completion of this tension SHPB apparatus: 

1. The gas gun, striker, incident and transmission bars were adequately aligned so that 

friction between the bars and the bar holders was minimized. 

2. The LabVIEW code is able to control the triggering of the data acquisition system 

3. The MATLAB code developed is able to calculate the stress and strain in the test 

specimen 

4. This tensile SHPB apparatus is functioning well and providing accurate results.  
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5. The length of the incident bar could have been increased in order to obtain flow curves 

that reach greater levels of deformation. 

 

6.2 Recommendations for further improvement of the SHPB 

A number of recommendations can be made to help improve the operation and performance of 

the tensile SHPB apparatus and the data provided by the tensile SHPB apparatus. 

1. Disassemble the gas gun and remove the sharp edges that are cutting the O-rings, to 

stop the slow pressure leak in the gas gun.  

2. When making new bars to replace the initial bars, consider using a longer incident bar to 

allow the stress wave to fully develop into a one-dimensional wave. It would also be 

useful to get some extra bar material to perform quasi-static tensile tests in order to 

obtain the bar’s yield and ultimate tensile stress. 

3. Incident and transmission bars made of C350 maraging steel rather than the AISI 4140 

steel would allow the tensile SHPB apparatus to achieve greater strain rates, by 

enlarging the elastic region of the incident and transmission bars and allowing higher 

strength specimens to be tested.  

4. Using a longer striker would allow the incident pulse to take place over a longer period 

of time, and thus the stress wave would take longer to disperse into a one-dimensional 

wave. And in order to fit a longer striker into the tensile SHPB apparatus the momentum 

transmitter bar would have to be shortened. The shortened momentum transmitter bar 

would let the incident bar holder to be moved away from the gas gun to allow the 

longer striker to use more of the gas gun barrel for acceleration up to the required 

velocity. It would also require higher gas pressures to achieve the striker velocity, and 

the calibration of the gas gun would need to be redone.  

5. It would be very interesting to carry out SHPB tests with a high-speed, high-resolution 

digital camera. This would allow for an independent measure of strain and strain rate in 

the gauge of the specimen. 

6. Additional development of the LabVIEW virtual instrument would help to make the 

software more user-friendly and versatile. For instance, adding a timing pulse that 

would trigger the operation of the high speed camera. Also, the current process of 
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having to start and stop the vi to switch between reading the pressure in the gas gun 

and data collecting, can be eliminated by using an event structure to read the selection 

buttons change of state.  

7. The post-processing MATLAB code could be improved by adding dispersion correction to 

the code. This would help eliminate the oscillations in the incident pulse and provide a 

more accurate true stress versus strain graph.  
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Appendix A – Durability Calculation of Threads on the Bars 

Due to the nature of the loading on a tensile SHPB apparatus, calculating the durability of the 

threads on the incident bar is important. The durability calculation was done by calculating the 

ratio of the impact force to the shear area of the threads. This calculation gives the stress 

amplitude acting on the threads shear area, which can then be used with an S-N curve to gather 

the approximate number of cycles to failure.  The assumption is made that there are no energy 

losses when the striker hits the anvil. Using this assumption the impact force on the anvil is 

equal to the incident stress from the striker. The impact force can be calculated from:  

 𝐹𝑖 =  σ𝑖𝐴𝑠𝑡 (A.1) 

The highest stress that would be seen by the incident bar would be the yield stress of the bar 

material. The bar material used to test this tensile SHPB apparatus was a 4140 steel, with a 

Rockwell  hardness of 28 HRC.  Since the bar material yield tensile stress was not provided by 

the supplier, and because there was not sufficient bar material to produce test coupons, the 

material yield point was estimated from a comparison of measured hardness values and yield 

tensile stresses, seen in Figure 72. The HRC and yield values for the Tensile strength vs. HRC 

graph seen in Figure 72, were obtained from the website MatWeb.com.   
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Figure 72: Yield Strength versus Hardness Rockwell C 

From the trend line equation, the yield tensile stress of the 4140 steel was calculated to be 776 

MPa.  To use equation A.1 the area of the striker was calculated from: 

 
𝐴𝑠𝑡 =

𝜋

4
(𝑑𝑜

2 − 𝑑𝑖
2) (A.2) 

 𝐴𝑠𝑡 =
𝜋

4
(0.0232 − 0.0192)  

 𝐴𝑠𝑡 = 0.00029 𝑚2  

Knowing the area of the striker and the yield stress, equation A.1 can be used to get the incident 

force: 

 
𝐹𝑖 =  (776

𝑀𝑁

𝑚2
) (0.00029 𝑚2)   

 𝐹𝑖 = 222832.9 N 

𝐹𝑖 = 223 𝑘𝑁 
 

To calculate the shear area of the threads, the geometry of the threads is needed. The threads 

used on the incident bar and the anvil are 3/4”-16 UNF, which allows the shear area of the 
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thread to be calculated. By using the minor diameter of the thread, the circumference of the 

minor diameter circle can be calculated using:  

  𝐶𝑡 = 𝜋𝐷𝑚𝑖𝑛  (A.3) 

 𝐶𝑡 = 𝜋 ∗ 0.017178 𝑚  

 𝐶𝑡 = 0.054 𝑚  

The length of each thread used to calculate the shear area is smallest at the minor diameter of 

the thread seen in Figure 73.  The distance through the thread at the minor diameter is the area 

where the thread will shear.    

 

Figure 73: Unified Thread Standard profile dimensions 

Simple trigonometry (see Figure 74), was used to calculate the distance, X, which is half the 

distance through the thread. 
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Figure 74: Triangle Used to calculate X, the half-distance through the thread 

 

 

𝑋 =

(
(𝐷𝑚𝑎𝑗 +

𝐻
4) − 𝐷𝑚𝑖𝑛

2
)

𝑡𝑎𝑛 60°
   

(A.4) 

 

𝑋 =
(

(0.01905𝑚 + 0.0003437 ) − 0.01717802𝑚
2

)

𝑡𝑎𝑛 60°
 

 

 𝑋 =  0.000639613 𝑚  

 2𝑋 =  0.001279226 𝑚  

   

The shear area is:  

 𝐴𝑡ℎ𝑟𝑒𝑎𝑑 = #of threads ∗ 2X ∗ C  (A.5) 

 𝐴𝑡ℎ𝑟𝑒𝑎𝑑 = (14)( 0.001279226 𝑚)(𝐶

= 0.054 𝑚) 
 

 𝐴𝑡ℎ𝑟𝑒𝑎𝑑 = 0.000967𝑚2 

 
 

Using the incident force and the shear area, the shear stress amplitude can be calculated:  

(𝐷𝑚𝑎𝑗 +
𝐻

4
) − 𝐷𝑚𝑖𝑛 
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τ𝑡ℎ𝑟𝑒𝑎𝑑 =

𝐹𝑖

𝐴𝑡ℎ𝑟𝑒𝑎𝑑
  (A.6) 

 
τ𝑡ℎ𝑟𝑒𝑎𝑑 =

223 𝑘𝑁

0.000967 𝑚2
  

 
τ𝑡ℎ𝑟𝑒𝑎𝑑 = 230 𝑀𝑃𝑎 

 
 

Using von Mises, the shear stress can be converted to normal stress:  

 

 

σ =
1

√2
√(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑧 − 𝜎𝑥)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2)  (A.7) 

 

σ = √3𝜏𝑡ℎ𝑟𝑒𝑎𝑑  

 

σ = √3 ∗ 230 𝑀𝑃𝑎  

 
σ = 398 𝑀𝑃𝑎  

 

 

Knowing the normal stress amplitude, an S-N curve, seen in Figure 75, for ANSI 4140 steel is 

used to get the number of cycles to failure. 
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Figure 75: S-N Curve for 4140 steel (Boyer, 2006) 

From the S-N curve in Figure 75, the estimated failure limit for the threads is about 30,000 

cycles.  This estimation was based on the maximum stress the bars can withstand without 

yielding. Since the bars will not be subject to this load every time the bars are used, the number 

of cycles that the bars can withstand before failure will be greater than this estimate.  
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Appendix B – Technical Drawings 
 

Striker velocity optical gate 

 

 

 

 

 

 

 

 

 

 



102 
 

Strain Gauge Completion and Amplification 
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Overall assembly of tensile SHPB apparatus 
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The assembly of the momentum trap consists of: 

 Momentum trap base 

 Rubber block cover 

 Rubber block 

 Brass pin  

 Momentum transfer bar and anvil 

 

 

 

 

 

 

 

 

Rubber block cover 

Rubber block 

Brass pin 

Momentum Trap 
Base 
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Momentum trap base 

 
Momentum trap cover 
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Momentum transfer bar 
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The assembly of the gas gun consists of: 

 Barrel 

 End caps 

 Outer chamber 

 Barrel nut 

 Barrel support base and cap 

 

 

 

 

 

 

 

 

Barrel support base  
and cap 

Barrel 

Outer Chamber 

End caps 

Barrel nut 
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Barrel 

 
End Cap 
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Outer Chamber 

 
Barrel Nut 
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Barrel Support Base 

 
Barrel Support Cap 
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The assembly of the gas gun valve assembly consists of: 

 Support base 

 Valve 

 Valve carriers 

 

 

 

 

 

 

 

 

 

 

Support base 

Valve 

Valve carrier (2) 



112 
 

Support Base 

 
Valve 
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Valve Carrier

 
Valve Carrier
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The assembly of the incident and transmission bars consists of: 

 Incident and transmission bars 

 Anvils 

 Striker 

 Bar holder 

 

Bar holder (Zanettin, Young, & Hussain, 2012) 
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Incident and Transmission Bars 

 
Anvil 
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Striker 

 
Outer Housing for the anvil support 
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Bushing Housing for anvil support 

 
Teflon Bushing for anvil support 
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Base Clamping Bar  

 

Specimen Drawing 
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Assembly of the frame consists of: 

 I-beam 

 Horizontal support 

 Vertical support  

 

Horizontal support (Zanettin, Young, & Hussain, 2012) 
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Vertical Support (Zanettin, Young, & Hussain, 2012) 

 
I-beam 
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Appendix C – MATLAB Data Processing Program 
 

% University of Windsor  
% Department of Mechanical and Materials Engineering 
% SHPB Analysis Version 1.0 
% June 2015 

  
% Developed by: Kevin Young 

  
clear all 
close all 

  

  
%______________________________________________________________________

____ 

  
% Constant Values: 

  
bar_dia = 19.05/1000;           % the diameter of the incident and 

transmission bars (m) 

  
Ro_bar = 7850;                  % Density of the bars (kg/m^3) 
E_bar = 205e9;                  % Young's modulus of the bar (Pa) 
sr_dig = 10e6;                  % Sample rate of the digitizer 

  
%______________________________________________________________________

____ 

  
% Calculated Values: 

  
C_bar = sqrt(E_bar/Ro_bar);     % Elastic wave speed in the bars (m/s) 
A_bar = pi*(bar_dia/2)^2;       % Area of bars (m^2) 
A_spc = 0.0015*0.0021;          % Area of spceimin (m^2) (sheet 

material) 

  

  
%______________________________________________________________________

____ 

  
% Input from Excel 

  
[file_name,PathName] = uigetfile('*.xlsx','Select the Excel file'); 

  
data_inc = xlsread([PathName file_name],'B:B');     % Data for the 

incident pulse 
data_trans = xlsread([PathName file_name],'D:D');   % Data for the 

transmitted pulse 

  
x = size(data_inc);             
data_points = 1:x;                                  % Number of data 

points sampled 
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%______________________________________________________________________

____ 

  
% Convert voltages to microstrain  

  
inc_pulse_originraw = ((data_inc./106).*2)./(10*2.09); 
tra_pulse_originraw = ((data_trans./106).*2)./(10*2.09); 

  
%______________________________________________________________________

____ 

  
% Zero incident and transmitted waves  

  
figure(1); 
plot(data_points,inc_pulse_originraw); 
grid on; 

  
figure(2); 
plot(data_points,tra_pulse_originraw); 
grid on; 

  
not_done = false; 
  while(not_done == false) 

     
    offset_inc = input('Enter offset needed to zero the incident 

wave:'); 
    offset_tra = input('Enter offset needed to zero the transmitted 

wave:'); 

  
    inc_pulse_offset = (inc_pulse_originraw(:)+offset_inc); 
    tra_pulse_offset = (tra_pulse_originraw(:)+offset_tra); 

     
    figure(1); 
    plot(data_points,inc_pulse_offset); 

     
    figure(2); 
    plot(data_points,tra_pulse_offset); 

        
    not_done = input('Are the plots zeroed? true/false:'); 
  end 

   
%______________________________________________________________________

____ 

  
% Filtering the incident and transmitted signals 

  
% Initial filter values 

  
Fpass = 250e3;                      % Passband frequency: Enter in Hz 

the cutoff frequency you want 
Ford = 2;                           % Filter order: must be a positive 

integer scalar 
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not_done = false; 
  while(not_done == false) 

             
    lpFilt = designfilt('lowpassiir','FilterOrder',Ford, ... 
         'PassbandFrequency',Fpass,'PassbandRipple',0.2, ... 
         'SampleRate',sr_dig); 

      
    inc_pulse_origin = filtfilt(lpFilt,inc_pulse_offset); 
    tra_pulse_origin = filtfilt(lpFilt,tra_pulse_offset); 

     
%     figure(3), 
%     fvtool(lpFilt) 

     
    figure(3),  
    plot(data_points,inc_pulse_origin); 
    grid on; 

  
    figure(4),  
    plot(data_points,tra_pulse_origin); 
    grid on; 

  
    not_done = input('Happy with the filtered signals? true/false:'); 

     
    if(not_done == true) 
        break; 
    end 

     
     Fpass = input('Enter new passband frequency (in Hz):'); 
     Ford = input('Enter new filter order (must be a positive integer 

scalar):'); 

      

      
  end 

  
%______________________________________________________________________

____ 

  
% Finding the incident, reflected and transmitted pulse times using 

force 
% equilibrium 

  
not_done = false; 

  
  while(not_done == false)  

     
    beginc=input('please input the sample number that incident pulse 

begins:'); 
    inc_begin=ceil(beginc)+1; 
    inc_end=ceil(input('please input the sample number that incident 

pulse ends:'))+1; 
    ref_begin=ceil(input('please input the sample number that reflected 

pulse begins:'))+1; 
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    tra_begin=ceil(input('please input the sample number that 

transmitted pulse begins:'))+1; 

  
    n0=inc_end-inc_begin+1; 

     
    for i=1:n0; 
        t(i,1)=(i-1); 
        inc_pulse(i,1)=inc_pulse_origin(inc_begin-1+i); 
        ref_pulse(i,1)=inc_pulse_origin(ref_begin-1+i); 
        tra_pulse(i,1)=tra_pulse_origin(tra_begin-1+i); 

       
        F_inc(i,1)=(inc_pulse(i,1)+ref_pulse(i,1))*E_bar*A_bar; 
        F_tra(i,1)=tra_pulse(i,1)*E_bar*A_bar; 
    end 

  
    figure(5)  
    plot(t,inc_pulse,'r'),hold on; 
    plot(t,-ref_pulse,'g'),hold on; 
    plot(t,tra_pulse,'b'),hold on; 
    axis tight;grid on; 
    title('Pulses zoom in','FontName','Cambria','FontSize',12); 
    xlabel('Sample Number','FontName','Cambria','FontSize',12); 
    ylabel('strain(\mu\epsilon)','FontName','Cambria','FontSize',12); 
    hold off; 

     
    figure(6)  
    plot(t,F_inc,'r.'),hold on; 
    plot(t,F_tra,'b'),hold on; 
    axis tight; grid on; 
    title('Force applied on the 

specimen','FontName','Cambria','FontSize',12); 
    xlabel('Sample Number','FontName','Cambria','FontSize',12); 
    ylabel('Force(N)','FontName','Cambria','FontSize',12); 
    hold off; 

     
    not_done = input('Happy with force equilibrium? true/false:'); 

  
  end 

   
%______________________________________________________________________

____   

  
% Convert microstrain to strain 

  
inc_pulse_strain = inc_pulse_origin./1e6; 
tra_pulse_strain = tra_pulse_origin./1e6; 

  
%______________________________________________________________________

____ 

  
% Calculating the stress-strain curve's 

  
for i=1:n0 
    k1 = ref_begin + i -1; 
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    k2 = tra_begin + i -1; 
    k3 = inc_begin + i -1; 

     
    ref_data(i,1) = inc_pulse_strain(k1); 
    ref_area(i,1) = trapz(ref_data); 

     
    trans_data(i,1) = tra_pulse_strain(k2); 
    trans_area(i,1) = trapz(trans_data); 

     
    inc_data(i,1) = inc_pulse_strain(k3); 
    inc_area(i,1) = trapz(inc_data); 

     
end 

  
for i=1:n0 
    eng_strain(i,1) = -2*(C_bar/0.015)*ref_area(i,1); 
    eng_stress(i,1) = E_bar*(A_bar/A_spc)*trans_data(i,1); 

     
    eng_strain2(i,1) = (C_bar/0.015)*(inc_area(i,1)-ref_area(i,1)-

trans_area(i,1)); 
    eng_stress2(i,1) = 

E_bar*((A_bar)/(2*A_spc))*(inc_data(i,1)+ref_data(i,1)+trans_data(i,1))

; 

     
    true_strain(i,1) = log(1+eng_strain2(i,1)/10); 
    true_stress(i,1) = eng_stress(i,1)*(1+eng_strain2(i,1)/10); 

     
    strain_rate(i,1) = (C_bar/0.015)*(inc_data(i,1)-ref_data(i,1)-

trans_data(i,1)); 
    time(i,1) = t(i,1)/sr_dig; 

  
end 

  
figure(7) 
plot(eng_strain/10,eng_stress); 
hold on; 
plot(eng_strain2/10,eng_stress, 'r'); 
title('Engineering Stress-Strain 

Curve','FontName','Cambria','FontSize',12) 
xlabel('Strain (mm/mm)','FontName','Cambria','FontSize',12) 
ylabel('Stress (MPa)','FontName','Cambria','FontSize',12) 
legend('Uniform strain','Average strain','Location','southeast') 
grid on; 

  
figure(8) 
plot(true_strain,true_stress); 
hold on; 
plot(eng_strain2/10,eng_stress, 'r'); 
title('True Stress-Strain Curve','FontName','Cambria','FontSize',12) 
xlabel('Strain (mm/mm)','FontName','Cambria','FontSize',12) 
ylabel('Stress (MPa)','FontName','Cambria','FontSize',12) 
legend('True stress-strain','engineering stress-

strain','Location','southeast') 
grid on; 
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figure(9) 
plot(time, strain_rate*1e6); 
title('Strain Rate vs. Time','FontName','Cambria','FontSize',12) 
xlabel('Time (s)','FontName','Cambria','FontSize',12) 
ylabel('Strain Rate (1/s)','FontName','Cambria','FontSize',12) 
grid on; 

  
figure(10) 
plot(time,true_strain); 
xlabel('Time(\mus)','FontName','Cambria','FontSize',12) 
ylabel('True Strain (%)','FontName','Cambria','FontSize',12) 
grid on; 
click = 1; 
while(click ~= 3) 

     
    [x1,y1] = ginput(1); 
    [x2,y2] = ginput(1); 

     
    strainrate = (y2 - y1)/((x2 - x1)) 

     
    title('Press right mouse button to continue, any other to 

redo','FontName','Cambria','FontSize',12) 
    [junkx,junky,click]=ginput(1); 

  
end 

  
not_done = false; 

  
  while(not_done == false)  

  
    not_done = input('Do you want to save data? true/false:'); 

     
    if (not_done == false) 
       break; 
    end 

     
    [FileName,PathName] = uiputfile({'*.xlsx'}); 

        
    xlswrite([PathName,FileName],{'eng strain'},1,'A1'); 
    xlswrite([PathName,FileName],eng_strain,1,'A2'); 
    xlswrite([PathName,FileName],{'eng stress'},1,'B1'); 
    xlswrite([PathName,FileName],eng_stress,1,'B2'); 
    xlswrite([PathName,FileName],{'true strain'},2,'A1'); 
    xlswrite([PathName,FileName],true_strain,2,'A2'); 
    xlswrite([PathName,FileName],{'true stress'},2,'B1'); 
    xlswrite([PathName,FileName],true_stress,2,'B2'); 
    xlswrite([PathName,FileName],{'strainrate'},2,'C1'); 
    xlswrite([PathName,FileName],strainrate,2,'C2'); 
  end 
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