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ABSTRACT 
 

Carbon fiber-reinforced composite material properties can be directly related to the 

manufacturing process. No generally accepted model or system exists that can model the 

relationship between manufacturing process parameters and composite material properties. 

The purpose of this research is to develop an artificial neural network model to predict the 

manufacturing process parameters’ influence on the properties of carbon fiber-reinforced 

composite material. Different types of artificial neural networks are compared in current 

research in order to obtain the best prediction results. In this research, the calculated 

sensitivities from the trained neural network are used to find the effect of processing on 

material properties. Finally, a complete artificial neural network model for predicting 

composite material performance manufactured using the LFT-D process was built.  
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CHAPTER 1 INTRODUCTION 

Composite materials are widely used in mechanical engineering to satisfy specific 

industrial requirements. Composites are a combination of two or more materials with 

different properties, whose combination produces a new material with beneficial 

properties for specific application. In the automotive and aviation fields, lighter, stronger 

and lower cost materials are always required, making composites an obvious choice.  

One of the typical engineered composite materials used by these industries is reinforced 

plastic. Currently, increased research is being done in the automotive industry regarding 

the use of Fiber-Reinforced Plastics (FRP) in automotive applications in order to improve 

fuel economy by reducing the vehicle weight.  

Many automotive companies have already applied lightweight materials to their 

vehicle designs like carbon fiber or glass fiber reinforced plastics, for example on 

Renault’s new concept light-weight design car which only consumes 1 litre per 100km 

(Group 2014). In luxury cars and race cars, carbon fiber composites are generally used in 

inner trim and car body applications. Currently, additional applications are being 

investigated such as trunk lids, exhaust pipes, and the engine head. 

Western University, in London, Ontario, Canada, and the Fraunhofer Institute of 

Chemical Technology (ICT) in Pfinztal, Germany, have launched long-term research 

collaboration on composite technologies for weight reduction. The University of Windsor, 

McMaster University, and the University of Toronto are Canadian members of this project 

as well through their membership in the International Composite Research Centre (ICRC). 

This comprehensive initiative, Fraunhofer Project Centre (FPC) for composite materials 

at Western, is working on design and development of composite technologies to achieve 

required material properties with industrial partners in the automotive industry. 

One of the key research missions at FPC is to produce and analyze lightweight 

composite materials. FPC has four technologically advanced machine lines that produce 

lightweight composite materials. In order to address the interests of industrial 
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manufactures and academic research, FPC conducted trials to produce composite material 

panels with continuous and chopped glass fibers or carbon fibers in different various 

configurations. 

In the automotive industry, applications of FRP can be classified into chassis, body, 

and engine components. For chassis components, many researchers have used 

fiber-reinforced composite in the manufacture of leaf spring and drive shafts. The high 

temperature requirement of the matrix (i.e. resin) component is a big challenge for 

composite engine components. Due to the complex structure and complicated process of 

manufacturing FRP materials, it cannot be analyzed with the same methods as singular 

component material. Therefore, there is a need for a simplified model that can accurately 

relate manufacturing properties and the performance of FRPs. 

Artificial Neural Networks (ANNs) are such tool that can be used to predict 

mechanical properties of composite materials in this way. This black-box model has many 

advantages like global optimal searching and quick convergence speed (J. Xu 2007). 

Additionally, ANNs can be applied not only in the study of mechanical properties but 

wherever the complexity of a problem is overwhelming from a fundamental perspective 

and where over-simplification is unacceptable in the face of reduced accuracy (H. K. 

Bhadeshia 1999). 

One goal of the current research is to use ANNs to determine the relationship 

between FRP performance and the manufacturing process parameters. Thus, there are 

three main topics relevant to the current research: composite materials, composite 

materials manufacturing processes, and neural network modeling.  

This thesis focused on analyzing continuous carbon fiber-reinforced thermoplastic 

composite material (CFRP) which is produced by the LFT-D machine line (Direct Long 

Thermoplastic Molding) at FPC. As such, ANNs were developed relating the LFT-D 

processing parameters (model inputs) to mechanical properties of the material (model 

outputs. All the data used in this research were obtained from FPC and collaborating 
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ICRC researchers at the University of Western Ontario.  

In this thesis, Chapter 2 introduces the basic theories of the research, including 

composite material classification and properties with respect to the geometry. Additionally, 

some traditional methods and advanced methods of composite materials manufacturing 

are introduced as well as a basic introduction to ANNs.  

A review of relevant literature is included in Chapter 3, providing background concerning 

composite material analysis and neural network prediction. Specifically, some literature 

highlighting the use of ANNs in composite material modeling provide examples ANN 

applications in this field. 

In Chapter 4, details of how to design and develop neural networks will be given. The 

prediction processing and analysis of the results are included in Chapter 5 and Chapter 6. 
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CHAPTER 2 THEORY 

The aim of this research is to model the relationship between the material processing 

parameters and the material performance. As such, it is necessary to develop an 

understanding of the composite materials as well as the material manufacturing process. 

Additionally, a foundation in neural networks is also necessary. In this chapter, there are 

three sections: composite materials, composite material processing method, and neural 

networks. 

2.1 Composite Material 

In fact, composite materials have been used since ancient times to enhance the 

material properties. For instance, the civil engineers placed steel rebar in cement and 

aggregate to make a well-known composite material, i.e., reinforced concrete in 20th 

century (Jack R. Vinson and Robert L. Sierakowski, 2008). This research is focused on 

the advanced composite materials that are widely used in today’s industrial applications. 

To provide a more specific description of simple composite materials, there are two 

main categories of composite material components: the matrix and reinforcement 

(Chawla 2012). With a specific proportion of each component, the reinforcement is 

surrounded and supported by the matrix. The matrix performance is improved by 

mechanical and physical properties of the reinforcement. Additionally, composite 

materials are classified based on their material properties, another important aspect to 

study (Jack R. Vinson and Robert L. Sierakowski, 2008). 

The properties of composite materials are dependent on the material components, the 

proportion and distribution of the components, the structure of the materials’ 

crystallography, as well as the manufacturing process of the material. As this research is 

focused on the performance of one kind of composite material, the many factors’ 

influence will be described specifically in a later section (Chawla 2012). 

In many industrial applications, composite materials can be designed to satisfy 
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specific requirements by varying the amount and layout of composite components. One 

key advantage of composite materials used for in automotive applications is lightweight 

structure (Jack R. Vinson and Robert L. Sierakowski, 2008).  

A common type composite material is fiber reinforced polymer (FRP) that is the 

focus of this research. The properties of FRPs can be highly influenced by the material 

characteristics of the fiber rather than that of the matrix. The arrangement, the shape, the 

specification, and the construction of the fibers are the primary factors that influence the 

performance of the FRP. In the automotive industry, there are two types of widely used 

FRPs: carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer 

(GFRP). 

After composite material structures and constituents are explained in general, CFRP 

will be described as the focus in this research. 

2.1.1 Composite Material Structures 

Composite materials are classified according to their structure. The three levels of 

structure for consideration with respect to the constituent elements of advanced composite 

materials are (Jack R. Vinson and Robert L. Sierakowski, 2008): 

(1) Basic/Elemental: single molecules, crystal cells; 

(2) Micro structural: crystals, phases, compounds; 

(3) Marco structural: matrices, particles, fibers. 

In general, the macrostructure level of composite material is the focus of main 

research topics today. In order to obtain a clear understanding of composite materials, it is 

important to review classifications of composite materials as described by the forms of 

materials in Table 2.1.1. 
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Table 2.1. 1 Classification of composite materials (Chawla 2012) 

Material 

forms 
Description Figures 

Fiber Either continuous (long) or chopped whiskers suspended in a matrix material 

 

Particulate Particles suspended in a matrix material 

 

Flake 
Flakes having large ratios of platform area to thickness suspended in a matrix 

material. 
 

Filled/Skeletal Continuous skeletal matrix filled by a second material 

 

Laminar Layers (lamina) bonded together by a matrix material 

 

 
Figure 2.1. 1 Types of Fiber-Reinforced Composites (Chawla 2012) 

Additionally, fiber composites can be further described with respect to direction and 

placement of the fibers, the types can be classified as described Figure 2.1.1.  

Fiber composite materials have received more attention recently, especially with 
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respect to development of fibers such as glass and carbon. As seen in Figure 2.1.1, the 

four types of fiber composite materials can be recognized by the types of the fiber 

reinforcement. Fibers in Figure 2.1.1 (a) and (b) are ideally long continuous fibers which 

are able to contribute to directional stability in the material performance. Chopped fiber 

composites may not have superior performance in any one direction but instead has an 

average performance in any direction. When speaking of performance in this research, the 

research refers to the composite properties derived from the tension test results, such as 

Young’s modulus and tensile strength of the material.   

With regard to the matrix material, widely-used composites materials can be divided 

into five types that are distinguished by their matrix component: Polymer Matrix 

Composites (PMC), Metal Matrix Composites (MMC), Ceramic Matrix Composites 

(CMC), Carbon-Carbon (CC) and Hybrid Composites (HC). 

Currently, the most commonly used fibers are glass, carbon, and aramid; polymer 

matrix composites are often used in industry due to their light weight and low cost. The 

constituent properties will be further discussed in Section 2.1.2. 

2.1.2 Constituent Properties 

The constituent materials work together to determine the mechanical properties of the 

composite material. The following subsection includes an introduction of constituent 

properties. 

2.1.2.1 Reinforcement and fiber properties 

Reinforcements can take the form of particles, flakes, whiskers, short fibers, 

continuous fibers, or sheets. Generally, most reinforcements used in composite materials 

are of the fibrous form due to their stronger and stiffer properties than the other forms. 

Their reinforcement provides the majority of the strength and stiffness to the composite 

material. Fibers can be (Jack R. Vinson and Robert L. Sierakowski, 2008): 

(1) Organic 
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(2) Metallic 

(3) Synthetic 

(4) Mineral 

Naturally occurring fibers are already in use in industry. Although natural fibers 

cannot impart high strength, they have a great advantage in their low cost. For example, 

wood and straw fibers have been used in the paper industry (Chawla 2012). Other natural 

fibers, such as hair, wool, and silk, consist of different forms of protein. However, for the 

current research, popular fibers, such as glass and carbon fibers, are much more attractive 

because of their high strength and high stiffness coupled with a very low density.  

Glass fiber, which is the most commonly used reinforcement in polymer matrices, 

can be easily made into different forms. Aramid fibers have much higher stiffness and 

lower weight than glass fibers. Additionally, fibers such as boron, silicon carbide, carbon, 

and alumina, combine high strength with high stiffness and have recently been developed 

in the second half of the twentieth century.   

Three important characteristics are summarized by Dresher with regard to the use of 

fibers as high-performance engineering materials (Chawla 2012): 

1. Small fiber diameter with respect to its grain size or other microstructure unit: There 

is a linear drop in strength with increasing fiber diameter; sometimes, a nonlinear 

relationship can exist; the probability of having imperfections in the material can be 

directly affected by the size of the grain. 

2. High aspect ratio (length/diameter, l/d): a very large fraction of the applied load is 

able to be transferred from the matrix to the stiff, strong fiber. 

3. Very high degree of flexibility: with low modulus or stiffness and small diameters, 

the fibers can be incorporated into composites using a variety of techniques. 

2.1.2.1.1 Glass fibers  

Glass fiber is a generic name used to distinguish a class of fibers. There are many 

different chemical compositions of glass fibers, which are all silicon based (~50-60% 
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SiO2) and contain a host of other oxides of materials such as calcium, boron, sodium, 

aluminum, and iron (Chawla 2012).  

SiO2 is the largest population of glass fiber, and can be accompanied by the addition 

of oxides of calcium, sodium, iron and etc. Glass fiber composites can be divided into 

three popular types: E-glass, C-glass, and S-glass (Hull, D. & Cylne, T. W. 1996). Table 

2.1.2 shows the basic properties and the component percentages of three different types of 

glass fiber.  

Table 2.1. 2 Glass fiber compositions and properties (Hull, D. & Cylne, T. W. 1996) 

 

Among this three types of glass, E-glass (E for electrical) is most commonly used due 

to its good strength, stiffness, electrical and weathering properties. C-glass (C for 

corrosion) is used in some applications when it’s necessary to prevent corrosion; however, 

it has lower strength than E-glass. S-glass (S for strength) has the highest strength, 

Young’s modulus and temperature resistance among these types; it is the most expensive 

one as well. 
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Figure 2.1. 2 Schematic of glass fiber manufacture (Chawla 2012) 

Figure 2.1.2 shows a manufacturing schematic for the conventional fabrication of 

glass fiber. After melting the raw materials in a hopper, the molten glass is fed into the 

heated platinum bushing which contains about 200 holes at the base. The final fiber 

diameter can be determined as a function of the bushing orifice diameter. Then, the 

molten glass flows through these holes and forms fine continuous filaments. The viscosity 

is a function of composition and temperature. Lastly, the filaments are gathered together 

into a strand and a size is applied before being wound on a drum. As glass filaments are 

easily damaged by the introduction of surface defects, the size, or coating, is applied to 

protect and bind the filaments into a strand. 

Table 2.1. 3 Typical properties of E-glass fibers (Chawla 2012) 

 

Table 2.1.3 shows E-glass fibers have low density and high strength. The Young’s 

modulus is not very high. Therefore, the strength-to-weight ratio of glass fiber is very 

high while the modulus-to-weight ratio is only average. Because of this property, glass 

fibers are not the primary choice for specialized applications in automotive racing or 

aerospace. As glass fiber costs are low and it is easily formed, it’s often used as 

reinforcement in polyester, epoxy, and phenolic resins. This composite material is widely 
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found in the building and construction industry. Additionally, when subjected to a 

constant load for an extended time period, glass fibers can undergo subcritical crack 

growth.  

As a matter of fact, the glass fiber reinforced resins, commonly called glass fiber 

reinforced plastics (GFRPs), are used in the form of cladding for other structural materials 

or as an integral part of a structural or non-load-bearing wall panel. Window frames, tanks, 

bathroom unit pipes, and ducts are examples of GFRP applications as well as boat hulls. 

Additionally, GFRPs are also widely used in the rail and road transportation industry. 

2.1.2.1.2 Carbon fiber 

The density of carbon is equal to 2.268 g/cm3, making it a very light element. In a 

single carbon crystal, the carbon atoms are arranged in a hexagonal array. This is a 

graphitic structure and will be further described here. The basal planes have strong 

covalent bonds in the crystal but weak Van Der Waals forces between them. For this 

reason, the in-plane Young’s modulus (about 1,000 GPa) is much larger than that found in 

the perpendicular plane, so that the crystal units are highly anisotropic. In contrast to glass 

fiber which is isotropic, the properties of carbon fiber are directionally dependent. 

(Chawla 2012) 

 

Figure 2.1. 3 (a) Structure of graphitic layer. The layers are shown not in contact for visual ease. (b) The 

Hexagonal lattice structure of graphite (Chawla 2012) 

The graphite structure is very densely packed in each layer as Fig. 2.1.3 (a) shows. 

Fig. 2.1.3 (b) shows the structure of the lattice. As known, the modulus of a material is 
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determined by the bond strength. As the figure shows, there are high-strength bonds 

between carbon atoms in each layer, but, the weak Van Der Waals bonds between the 

layers result in a lower modulus in the direction perpendicular to the plane. Consequently, 

most of the processing techniques for carbon fiber aim to obtain a high degree of 

preferred orientation of hexagonal planes along the fiber axis to ensure high fiber 

strength. 

To obtain good properties for carbon fiber-reinforced composites, the alignment of 

the basal planes requires attention. Better alignment of the basal planes parallel to the 

fiber axis can bring higher axial modulus and strength. Furthermore, the orientation of 

cross-section layer planes of the fiber can also affect the transverse and shear properties.  

Compared to glass fiber, carbon fiber is much more complex and costly. This is one of the 

reasons that glass fiber is commonly used in today’s industry. As known, carbon 

fiber-reinforced plastic/polymer (CFRP) is an extremely strong and light-weight 

fiber-reinforced composite. However, machining of CFRPs is dramatically more difficult 

than any other composite material.  

 

Figure 2.1. 4 Schematic representation of the structure of carbon fibers (Che, D., Saxena, I., Han, P., Guo, 

P., & Ehmann, K. F. 2014) 

As Figure 2.1.4 shows, the structure of carbon fiber is anisotropic. The planes can be 

clearly seen on the schematic (Che, D., Saxena, I., Han, P., Guo, P., & Ehmann, K. F. 

2014). 
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Figure 2.1. 5 Material properties of CFRPs governing the machine ability of CFRPs 

Figure 2.1.5 shows the two different phases of material with different properties used 

to make CFRPs. Each machining method demonstrated different properties. There are 

three main methods to producing carbon fibers. The first method uses polyacrylonitrile 

fibers and produces the highest-modulus carbon fiber. The second method is from 

mesosphere pitch that produces a higher-thermal carbon fiber. The third method of 

producing carbon fiber uses a gas phase and pyrolytic deposition of hydrocarbons.  

2.1.2.1 Matrix and Properties 

Composite matrix materials are commonly polymers, metals, and ceramics. The most 

common of these are polymers; it’s cheap and the structure is more complex than others. 

As polymers are the most often used resins in composite matrices while metal and 

ceramic are used for specialized applications, this research will focus on the use of 

polymers. 

2.1.2.1.1 Polymers 

Polymers possess an inexpensive complex structure that is easily manufactured at a 

relatively elevated temperature. Generally, polymers have lower strength and modulus 
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and cannot be used in elevated temperatures. Prolonged exposure to ultraviolet light and 

some solvents can degrade polymer properties. Generally, polymers are poor conductors 

of heat and electricity because of predominantly covalent bonding. However, they are 

more resistant to chemicals than metals are. Structurally, polymers are composed of giant 

chainlike molecules. Polymerization is the process of joining many monomers together to 

form large polymeric molecules. 

There are two types of polymerization: condensation polymerization and addition 

polymerization (Chawla 2012). Condensation polymerization is a stepwise reaction of 

molecules. In each step, a molecule of a simple compound forms as a by-product. 

Addition polymerization is generally carried out in the presence of catalysts. In this 

process, the monomers do not produce any by-products. 

There are also two major classes of polymer that can be produced by either the 

condensation or addition polymerization: thermoplastic and thermoset polymers.  

 

Figure 2.1. 6 Possible Arrangements of Polymer Molecules: (a) Amorphous, (b) Semi-crystalline (Chawla 

2012) 

Thermoplastic polymers soften or melt on heating and are suitable for liquid flow 

forming. Its polymer chains are not cross-linked. Thermoplastics can be either amorphous 

or semi-crystalline. When the structure is amorphous, there is no apparent order of the 

molecules as illustrated in Fig.2.1.6 (a). In fig. 2.1.6 (b), long molecular chains are folded 

in a regular manner; the small, plate-like single crystalline regions are lamellae or 

crystallites, the crystallites combine together and form spherulites. Some of the most 

commonly used thermoplastics are polyethylene, polystyrene, and polypropylene. 
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If the molecules in a polymer are cross-linked in the form of a network, the polymer 

does not soften or melt when heating. These polymers are called thermosets. As the 

cross-linked molecules cannot slide past one another, the polymer is strong and rigid. 

Thermoset composite materials are advantageous for high temperature applications. 

Epoxy, phenolic, polyester and vinylester are all thermoset polymers.  

Table 2.1.4 shows some thermoplastic and thermoset materials and their properties.  

Table 2.1. 4 Typical structural matrix resins (Chawla 2012) 

 

 

 

Figure 2.1. 7 Different types of copolymers (Chawla 2012) 

Polymers also can be classified by the type of repeating unit. As Figure 2.1.7 shows, 

there are three types: random, block, and graft. Each repeating unit forming the polymer 

chain is called homopolymer. If polymer chains are composed of two different monomers, 

the constructed units are called copolymers. 

The chemical resistance of the polymer matrix is better than only carbon fiber and the 

toughness and damage tolerance can be controlled by the design of the composite 

material. Carbon fiber composites also have dimensional stability which can be designed 

for zero coefficient of thermal expansion. In conclusion, carbon fiber composites, 

according to their superior performance, are the best choice for automotive and aerospace 

industries except their high cost and complex manufacturing processes. 
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2.2 Carbon Fiber Composite Materials 

As discussed before, composite materials contain multiple materials blended together. 

Among the reinforcements and matrices, a carbon fiber composite has carbon fiber as at 

least one of the components. The fiber can be short or continuous, unidirectional or 

multidirectional. Commonly, the matrix is polymer, metal, carbon, ceramic, or hybrid 

combinations. Furthermore, the matrix is continuous in all directions. Compared with the 

matrix, fiber reinforcements are often discontinuous in all directions, which means most 

materials have different performance along the various fiber directions, unless the fibers 

are three-dimensionally interconnected (Chung 1994).  

In section 2.1.2.1.2, carbon fiber was introduced. In carbon fiber itself, the chemical 

bonding and Van Der Waals bonding are strong enough to address most mechanical 

requirements. Moreover, for fiber composite materials, the high strength and modulus of 

carbon fibers makes them much more useful as the reinforcement for the matrix. In other 

words, the bonding between fiber reinforcement and matrix play an important role in 

material performance. In a unidirectional fiber composite, the longitudinal tensile strength 

is quite independent of the fiber-matrix bonding, but the transverse tensile strength and 

the flexural strength increases with the effect of fiber-matrix bonding. To further 

understand fiber composite materials, classifications of different types of combinations 

will be discussed.  

As noted before, the matrix material described here only refers to polymer materials.  

2.2.1 Fiber Composite Materials Classifications 

Just as the polymers can be divided into thermoplastics and thermosets, so can carbon 

fiber composites be classified as carbon fiber-reinforced thermoplastics and carbon 

fiber-reinforced thermosets. The advantages of the carbon fiber-reinforced thermoplastics 

compared to thermoset-matrix composites were summarized by Deborah D.L. Chung as 
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follows (Chung 1994): 

(1) Lower manufacturing cost:  

No cure 

Unlimited shelf-life 

Reprocessing possible (for repair and recycling) 

Less health risks due to chemicals during processing 

Low moisture content 

Thermal shaping possible  

Weldability (fusion bonding possible) 

(2) Better performance: 

High toughness (damage tolerance) 

Good hot/wet properties 

High environmental tolerance 

Of course, there are some disadvantages of thermoplastics compared to thermoset 

composite materials such as the limitations in processing methods, high processing 

temperatures, high viscosities, stiff and dry prepregs, and less developed fiber surface 

treatments. 

In general, composite materials can be classified by the fibres’ form. In this way, the 

carbon fiber polymer-matrix composites can be continuous fiber composites and short 

fiber composites. According to the fiber type, continuous fiber composites have 

significantly different properties from the short fiber composite mechanically, or even in 

their electrical resistivity, thermal conductivity, and other properties. Consequently, the 

material that is the focus of this research can be summarized as continuous carbon 

fiber-reinforced thermoplastic composite.  

2.2.2 Continuous Carbon Fiber Polymer-matrix Composite Properties 

Carbon fiber composites have lower density than aluminum and higher strength than 
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high-strength steels. They are all stiffer than titanium. Fatigue resistance and creep 

resistance of carbon fiber composites are ideal. Some carbon fiber composites have low 

friction coefficients resulting in good wear resistance (Chung 1994). 

2.3 Composite Material Process Methods 

In this section, some composites manufacturing processes will be introduced, 

including traditional and advanced methods. As described before, thermosets and 

thermoplastics are the two main classes of polymeric matrix materials. Thus, the process 

can be divided into two main categories even though some of the approaches can be used 

on both types of polymers.  

2.3.1 Processing of Thermoset Matrix Composites 

For composite materials having a thermoset matrix, there are many processing 

methods such as hand layup and spray techniques, filament winding, pultrusion and resin 

transfer molding. 

2.3.1.1 Hand Layup and Spray Technique 

Hand layup and spray techniques are simple manufacturing processes. As the name 

suggests, hand layup composites are created by manually placing the fibers in a mold and 

spraying or brushing the resin (commonly is the polyester) on fibers by hand as shown in 

Figure 2.3.1. Additionally, with spray-up techniques, resin and chopped fibers are sprayed 

together onto the mold surface. In both methods, the layers are formed by hand using 

rollers. Mixed fiber and matrix can be completely cured at room temperature or at a 

moderately high temperature in an oven (Chawla 2012). 



 

19 
 

 

Figure 2.3 1 (a) in hand layup, fibers are laid onto a mold by hand and the resin is sprayed or brushed on 

(b) in spray-up, resin and fibers (chopped) are sprayed together onto the mold surface (Chawla 2012) 

2.3.1.2 Filament Winding 

Filament winding is a very versatile technique used for continuous fiber tows or 

rovings passing through a resin impregnation bath and wound over a rotating or stationary 

mandrel. This kind of approach can produce very large cylindrical like pipes and 

spherical vessels, as the winding of the roving can be hoop or helical. Curing of thermoset 

resin can be done at an elevated temperature, after which the mandrel is removed. (Figure 

2.3.2) (Chawla 2012) 

 

Figure 2.3 2 (a) schematic of filament winding process (b) Schematic of a filament wound pressure vessel 

with a liner; helical and hoop winding are shown (Chawla 2012) 

There are two types of filament winding process. The first process is called wet 

winding. In this process, during the winding process, low-viscosity resin such as 
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polyesters and epoxies with viscosity less than 2 Pa·s (20 P) is applied to the filaments. 

Another process is named prepreg winding. The fiber, in this process, will be 

preimpregnated by a hot-melt or solvent-dip process. Unlike the wet winding process, the 

rigid amines, novolaces, polyimides and higher-viscosity epoxies are generally used. For 

the filament winding approach, the void sites are most likely roving crossovers and 

regions between layers with different fiber orientations. 

2.3.1.3 Pultrusion 

The pultrusion process has a continuous molding cycle which requires that the fiber 

distribution and the cross-sectional shapes are constant. Low labour cost and consistency 

of the product are advantages of the process. Additionally, products like rods, channels, 

angle, and flat stock are easily produced. The reinforcements used in this process can also 

be different forms such as roved continuous fibers and continuous strand fiber mats. If 

using the chopped fiber or chopped strand mat, carrier material is required (Figure 2.3.3) 

(Chawla 2012). 

 

Figure 2.3 3 Schematic of the pultrusion process (courtesy of Morrison Molded Fiber Glass Co) 

2.3.2 Processing of Thermoplastic Matrix Composites 

There are several advangtages and disdavantages of thermoplastic matrix composites 

compared to thermoset matrix composites. Chawla (Chawla 2012) summarized some 

advantages of thermoplastic matrix composites: 

(1) Refrigeration is not necessary with a thermoplastic matrix 

(2) Parts can be made and joined by heating 
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(3) Parts can be remolded, and any scrap can be recycled 

(4) Thermoplastic matrix composites have better toughness and impact resistance than 

thermoset matrix composites. 

Disadvantages of thermoplastic matrix composites include: 

(1) Processing temperatures are generally higher than those with thermosets. 

(2) Thermoplastics are stiff and boardy, i.e., they lack the tackiness of the partially cured 

epoxies. 

(3) A wish quality composite laminate must have no void. For this reason, there must be 

sufficent flow of the thermoplastic matrix between layers and also within individual 

tows. The molding cycle time is shorter for thermoplastic matrices than that for 

thermoset matrices.  

2.3.2.1 Film Stacking 

The laminae are stacked alternately with thin films of pure polymer matrix material. 

The laminae consist of fibers impregnated with insufficent matrix and polymer films of 

complementary weight to give the desired fiber volume fraction of the finished product. 

The pressure and temperature must be sufficient to force the polymeric melt to flow into 

and through the reinforcement preform. As Darcy’s Law (Chawla 2012) states, increasing 

the applied pressure and decreasing the viscosity of the molten polymer can obtain a 

better end product. 

2.3.2.2 Diaphragm Forming 

Diaphragm forming is the sandwiching of a freely floating thermoplastic prepreg 

layer between two diaphragms. The air in the gap between the diaphragms will be 

evacuated. The thermoplastic laminate is heated above the melting point of the matrix. 

The pressure, applied to one side, deforms the diaphragms and forces the material to 

thake the shape of the mold. Because the laminate layers are freely floating and very 

flexible above the melting point of the matrix, the laminae can be conformed to the mold 

shape any time. The mold will cool down after the completion of the forming process and 
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the diaphragms stripped off to obtain the resulting compoiste part (Chawla 2012).  

2.3.3 Introduction to RTM, Injection Molding, SMC, and LFT-D-ILC 

Currently, there are several methods to produce FRP using different kinds of 

fiber-reinforced material. One of these processes is Direct Long Fiber Thermoplastic 

Molding (LFT-D). In this process, thermoplastic material is directly compounded with 

long fibers. There are two direct benefits to using LFT-D: precision of the fiber length, 

and determination of the approximate angle of the fiber. In addition, compound properties 

can be controlled. Compared to Sheet Molding Compound (SMC) processes for FRP, the 

LFT-D results in a lower quality surface finish. However, the processing time for LFT-D 

is much shorter and is easier to mold. Furthermore, it is obvious that long continuou 

fibers can bring better performance when fiber orientation of the material so greatly 

influences the material performance.  

2.3.3.1 Resin Transfer Molding (RTM) 

Resin transfer molding (RTM) is a closed-mold, low-pressure process for preformed 

fiber, such as glass or carbon. The fiber component is placed inside the mold and liquid 

resin, such as epoxy or polyester, is injected into the mold by means of a pump. 

Reinforcements can be stitched, but more commonly they are made into a preform sheet 

or desired shape. During injection of the polymer matrix the shape is already dictated by 

the shape of the mold. The completed composites are able to cure and form as a solid in 

the mold during the process. 

For this process, the polymer viscosity should be low enough for the fibers to be 

wetted easily and the polymer itself to flow smoothly. 

RTM has its own advantages as follows (Chawla 2012): 

(1) Easier to obtain large, complex shapes, and curvatures. 

(2) Processing has a higher level of automation than others. 

(3) Simpler layup and speedier process than manual operations. 
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Fiber volume fractions can be achieved as high as 65% by using woven, stitched, or 

braided performs. 

The process uses a closed mold, resulting in reduction of styrene emissions. 

Generally, RTM produces much fewer emissions compared to hand layup or spray-up 

techniques. 

Mold design is a critical element in the RTM process. Sometimes, the fibrous 

preform is preheated and the mold has built-in heating elements to accelerate the process 

of resin curing. Resin flow and heat transfer are analyzed numerically to obtain an 

optimal mold design. Usually, the automotive industry uses RTM because it is a 

cost-effective, high volume process. 

2.3.3.2 Injection Molding 

Because thermoplastics get soft when heated, melt flow techniques of forming can be 

used. Injection molding is one of these technologies. Generally, short fiber reinforced 

thermoplastic composites can be produced by reinforced reaction injection molding 

(RRIM) which is actually an extension of the reaction injection molding (RIM) of 

polymers. During RIM, two liquid components (resin and short fiber) are pumped into a 

mixing head at high speed and pressure and then they enter a mold together where the two 

components react to polymerize rapidly. During RRIM, short fibers (or fillers) are added 

to one or both of the components. The lengths of fiber, added into the mold, are generally 

short and the specifications are limited by the viscosity. Because a certain minimum 

length of fiber, the critical length, is required for effective fiber reinforcement, RRIM 

additives are fillers rather than reinforcements. Most RIM and RRIM applications are in 

the automotive industry as welle (Chawla 2012). 

2.3.3.3 Sheet Molding Compound (SMC) 

The additives consist of fine calcium carbonate particles and mica flakes. Sometimes, 

for lower density, calcium carbonate powder is substituted with hollow glass 

microspheres. For further weight reduction, the polyester resin can be replaced by 
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vinylester. Both reduction techniques for density and weight are costly. Generally, in 

practice, some auto body parts, such as bumpers, beams, and radiator support panels, are 

produced by SMC. However, SMC has longer cure times of up to two days (Chawla 

2012). 

Currently, there is a process called Direct Sheet Molding Compound (D-SMC). The 

advantage of D-SMC is not only better material properties, but also reduced processing 

time, dramatically increasing efficiency and decreasing cost for industry. 

2.3.3.4 Long Fiber Thermoplastic Compression Molding (LFT) 

Long Fiber Thermoplastic Compression Molding, as the name implies, refers to 

processing composites using a thermoplastic matrix with fibers greater than 10 mm in 

length. As Figure 2.3.4 shows, the length of the fibers can determine the mechanical 

properties of composite materials.  

 

Figure 2.3 4 Variation of Some Mechanical Properties of a Composite as a Function of Fiber Length 

(Chawla 2012) 

Figure 2.3.4 shows advantages of increased fiber length, illustrating why there is a 

focus on processing of long fiber thermoplastic matrix composites. The basic process of 
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LFT is shown in Fig. 2.3.5. The critical step in processing LFTs is the production of 

continuous fiber reinforced rods or tapes from which long fiber pellets are cut.  

 

Figure 2.3 5 Extrusion/compression molding process for making long fiber reinforced thermoplastic (LFT) 

composites. Hot melt impregnation of fibers is used to produce tapes, rods or long pellets of LFT. Pelletized 

LFT material is fed into an extruder or plasticator. (Chawla 2012) 

In this process, continuous fiber tows are first passed through a bath of molten matrix 

and then through a die for shaping into a rod or ribbon, followed by passage through a 

chiller for cooling. The final stage involves a puller/chopper; the puller pulls the tow at 

the desired speed as soon as the chopper cuts the continuous, impregnated tow to desired 

length of pellets suitable for use in an extruder and compression mold. The long fiber 

pellets are suitable for the conventional injection molding process, injection compression 

molding, as well as the extrusion compression molding processes. The LFT pellets made 

by hot melt impregnation are fed into a plasticator where they are metered into a barrel, 

heated above the melting point of the thermoplastic resin, and the mixture of polymer 

plus fiber flows through a low shear plasticator to form a molten charge. The molten 

charge coming out of the plasticator resembles cotton candy and is quickly transferred to 

a heated mold where it is compressed in a closed tool (generally, a high tonnage press). 

The part is then removed after sufficient cooling (Chawla 2012). 



 

26 
 

2.3.4 LFT-D Processes 

There is another commercial process called, LFT-D-ILC (direct long-fiber 

thermoplastic in-line compounding) or LFT-D, which has been used to make LFT 

composites consisting of styrene copolymers/glass fibers. Polypropylene has also been 

used as a thermoplastic matrix in this process. Essentially, it is an extrusion/ compression 

molding process. The distinctive feature of the LFT-D-ILC process is that the long fiber 

composite is produced directly from the basic materials. The polymer matrix material and 

any modifiers/additives are mixed and melted in a compounding extruder. This mixture is 

combined with the reinforcing fibers in a twin screw extruder (Krause et al. 2003). The 

special screw-design disperses the fibers in the matrix and further fiber breakage is 

avoided. The extruder machines work continuously and produce a continuous long fiber 

reinforced extrudate, which is cut into pieces of the desired length and is then directly 

compression molded. 

LFT-D-ILC is a technology useful in establishing long-fiber thermoplastic material 

processing in the automotive industry. The aim is to produce lighter and stronger 

composite material as compared to metal. The LFT-D-ILC technology produced by 

Dieffenbacher consists of two technologies: the hydraulic press and LFT-D line.  

The LFT-D line produces charges for pressing. These charges consist of mixed 

melted polymer and preheated fibers. The hydraulic press is a high-speed compression 

mold in which the charge is placed. In practice, the hydraulic press can fabricate a 

carbon-fiber composite panel in as little as 30 seconds.   
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Figure 2.3 6 Process scheme of LFT-D line 

As Figure 2.3.6 shows, throughout the fiber feeding section, the continuous fiber is 

fed into the extruder from the fiber tow, where it is mixed with the polyamide. The 

polyamide, coming from the dosing unit, is melted as it passes through the heated 

extruder. At the second extruder, the fiber is mixed in a set direction with the melted 

polyamide and the charge is produced for the press. The charge goes in the oven on a 

conveyor, and then charge put into the press machine where the panel is produced. 

 

Figure 2.3 7 carbon fiber in rovings prepared for LFT-D feeding 
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Figure 2.3 8 Charge produced by LFT-D prepared for press 

 

Figure 2.3 9 Test panels produced by LFT-D process 

Figure 2.2.7 shows fiber tow on rovings as it is fed into the LFT-D line. Generally, 

continuous long fiber (fiber tow) is easier for feeding. Unless the fiber is fed smoothly 

into the machine, the mechanical properties cannot be guaranteed. Figure 2.3.8 shows the 

presscharge which is produced by the LFT-D line. The weight and the fiber volume of the 

charge can be set and determined by the machine. Commonly, using an oven to maintain 

the temperature of the charge can ensure the quality when it enters into the press. In 
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Figure 2.3.9, the black panel is the material produced by the LFT-D trial. These panels 

are also the test panels from which data was measured for the current research. 

2.4 Introduction to Neural Networks 

2.4.1 Introduction to Neural Networks 

Artificial neural networks (ANNs), in machine learning and cognitive science, 

evolved from the basic information processing methods found in the brain. The ANN is a 

model of statistical learning algorithms to estimate or approximate a related function by 

examining patterns in a large amount of data. Generally, it is a black-box tool used to 

describe the relationship between input and output data sets. 

Derived from the biological central nervous system in the brain, the basic units are 

called neurons and connect to each other to form a network. Generally, an artificial neural 

network has three types of layers to imitate animals’ feedback processes: an input layer, 

hidden layers, and an output layer. The input and output data are held in the input and 

output layers respectively. The hidden layers use transfer functions to connect the input 

and output layers (Samarasinghe 2006), with relative importance achieved by weighting 

the various paths from input through to the output layers with weights and bias values that 

will be described (see Figure 2.4.1). 

In the general case, the full process of neural network development includes training, 

validation, and testing. Before training a neural network, the first key step is to select a 

proper network configuration. Figure 2.4.1 shows a 2-5-1 feed-forward backpropagation 

neural network, as an example, to introduce the neural network development process. A 

2-5-1 network is named according to the number of neurons in the input, hidden, and 

output layers, respectively. 

So far, the ANN has a complete basic structure: the neurons in different layers are 

connected by weights and biases as well as different transfer functions. In this way, it is 
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obvious that the ANN can be represented by different numbers of neurons, layers, and 

combinations of transfer functions. Figure 2.4.1 is the structure of a one hidden-layer 

feed-forward backpropagation neural network (section 5.2.1 describes the feed-forward 

backpropagation neural network). 

 
Figure 2.4 1 A 2-5-1 backpropagation feed-forward neural network configuration 

Between the input and hidden layers, and between the hidden and output layers, 

weights connect each pair of neurons (w11, w21, b1, b2, etc.). Bias values at each neuron act 

to shift the summed weighted inputs before being passed to the transfer function (w0i and 

b0). Both weights and biases are key parameters of neural network that are adjusted 

during network training.  

In the first layer (input layer): x1 and x2 represent the input data (i.e. two input 

variables). As soon as the inputs are transferred to the hidden layer, they are multiplied by 

the connecting weights and a bias added to form variable μi, that are input to the hidden 

layer neurons: 

𝜇𝑖 = 𝑤1𝑖𝑥1𝑖 + 𝑤2𝑖𝑥2𝑖 +𝑤0𝑖 (𝑖 = 1,2,3… , 𝑛)             (2-1) 
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In this equation, μi represents the weighted sum of inputs to the ith hidden layer neuron. (n 

is the number of neurons in hidden layer). Then, the μi pass through the ith neuron transfer 

function (also referred to as activation function) denoted yi=Li(μi). Various transfer 

functions can be used for nonlinear neurons in a neural network, as shown in Figure 2.4.2 

(Samarasinghe 2006). 

 

Figure 2.4 2 Some Nonlinear Neuron Transfer Functions: (a) Logistic, (b) Hyperbolic-Tangent, (c) 

Gaussian, (d) Gaussian Complement, (e) Sine Function (Samarasinghe 2006) 

The functions shown in Figure 2.4.2 are vital to neural information processing with 

their special characteristics. These functions are nonlinear, continuous, bounded functions. 

Their nonlinear character enables the neural network to model nonlinear relationships 

between inputs and outputs. Continuity of the function makes it possible to adjust the 

weights during the error backpropagation process. 

There are three main classifications of nonlinear transfer functions: sigmoid functions, 

Gaussian functions, and sine functions. Sigmoid functions are a family of S-shaped 

functions. The sigmoid functions include the logistic function and hyperbolic tangent 

function. 

The logistic function has a wider range (i.e. [-1, 1]) than that of the hyperbolic 

tangent (i.e. [0,-1]). The formulation of the logistic function is  

𝑦 = 𝐿(𝜇) =
1

1+𝑒−𝜇
                        (2-2) 

Where e is the base of natural logarithm, equal to 2.71828. Another commonly used 

sigmoid function is the hyperbolic tangent function, 

𝑦 = 𝑡𝑎𝑛ℎ(𝜇) =
1+𝑒−𝜇

1−𝑒−𝜇
                       (2-3) 
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Gaussian functions also include two commonly used functions: standard normal curve 

and Gaussian complement.  

𝑦 = 𝑒−𝜇
2
(Standard normal curve)             (2-4) 

and 

𝑦 = 1 − 𝑒−𝜇
2
(Gaussian complement)            (2-5) 

Both of these functions have range [0, 1]. The standard normal curve peaks at μ=0 and 

Gaussian complement assumes a value of zero when μ=0. 

In general, the sigmoid function, Gaussian functions and sine functions have 

additional variations. In the current research, sigmoid functions are applied due to their 

popularity. In MATLAB’s neural network toolbox, there are three commonly used 

transfer functions for feed-forward networks (introduced in section 5.2.1): 

Logsig function 

𝑦 = 1/[1 + 𝑒𝑥𝑝(−𝑥)]                      (2-6) 

Tansig function 

𝑦 = 2/[1 + 𝑒𝑥𝑝(−2𝑥)] − 1                    (2-7) 

Purelin function 

𝑦 = 𝜇                             (2-8) 

It is obvious that in the input-hidden layer, the logsig function and tansig function are 

the same as function (2-2) and function (2-3) when x=µ. These two functions are used to 

implement in these research as the neural networks are developed and evaluated. 

The purelin function is often used in the hidden-output layer to calculate the output. 

Actually, tansig and logsig functions can be applied in the output neurons as well. 

However, these two functions make the calculations more complicated without increasing 

the accuracy (J. Xu 2007). If it becomes necessary to improve the network accuracy, it’s 

more common to increase the number of hidden layers instead of using nonlinear 

functions in the output neurons.  

In the output neuron, the formed variable is ν is the sum of the weighted 
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hidden-neuron output yi. The function can be written as 

𝜈 = 𝑏0 + 𝑏1𝑦1 + 𝑏2𝑦2 + 𝑏3𝑦3 + 𝑏4𝑦4 + 𝑏5𝑦5              (2-9) 

Where b0 is the bias weight for output neuron and bj are the weights for the hidden-output 

neuron weight. If the purelin function is used in the output layer,  

𝑧 = 𝜈                            (2-10) 

For the general cases, the weighted sum ν comes from the hidden neurons and can be 

represented by y and the output z as:  

𝜈𝑘 = 𝑏0𝑘 + ∑ 𝑏𝑗𝑘𝑦𝑗𝑘
𝑙
𝑚
𝑗=1
𝑘=1

                    (2-11) 

𝑧𝑘 = 𝜈𝑘                           (2-12) 

Where bjk is the weight linking hidden neuron output yjk and the kth output neuron. l is the 

number of hidden neurons and m is the number of network outputs. 

For the example 2-5-1 backpropagation feed-forward neural network, the neural 

network variables can be written as shown in equations (2-13) to (2-17). 

Input-hidden layers: 

𝜇𝑖 = 𝑤1𝑖𝑥1 +𝑤2𝑖𝑥2 + 𝑤0, i = 1 to 5                 (2-13) 

𝑦𝑗 =
1

1+𝑒−𝜇
     , j = 1 to 5                    (2-14) 

or 

𝑦𝑗 =
1+𝑒−𝜇

1−𝑒−𝜇
  , j = 1 to 5                    (2-15) 

Hidden-output layers: 

𝜈 = 𝑏0 + 𝑏1𝑦1 + 𝑏2𝑦2 + 𝑏3𝑦3 + 𝑏4𝑦4 + 𝑏5𝑦5            (2-16) 

𝑧 = 𝜈                           (2-17) 

Where z is the output of the neural network. During training, z will be compared with the 

target data t to get the error in network prediction. 

Multilayer networks, such as feed-forward neural networks, can perform complex 



 

34 
 

prediction or classification tasks. In general, neural network development has three steps: 

training, validation and testing. 

2.4.2 Training of Neural Networks 

When training the network, the weights and biases will have random initial values, 

although they may be restricted to a predetermined range. Commonly, the training process 

is not complete with only one iteration. When training a network, the aim is to get the best 

training performance. This means that the trained network should have a minimum mean 

square error (MSE) after completing a number of epochs, or training iterations. MSE is 

the most commonly used error indicator; it measures the error of the prediction over all 

the samples in each input that are called training patterns. For a one output neural network, 

the MSE can be written as 

𝐸 =
1

2𝑁
∑ (𝑡𝑖 − 𝑧𝑖)

2𝑁
𝑖                        (2-18) 

Where E is MSE, ti and zi are the target data and the predicted output for the ith training 

pattern. The total number of training patterns is N.  

Single epoch training can never satisfy the expected MSE. The output z depends on 

the transfer function and the inputs. As the function is determined by the network 

configuration and the input cannot be changed, the only changeable conditions are the 

values of the weights and biases.  

To update the weights and biases, the neural network undergoes a learning process. 

Commonly, the MSE is minimized as a function of the weights and biases. As for linear 

data fitting, linear regression is used to minimize the error by using the least squares fit on 

a set of data, for highly nonlinear problems the gradient descent approach is very efficient 

to find the global minimum of the error between network output and target data during 

network training. 
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Figure 2.4 3 Simple 1-1-1 neuron network configuration 

The backpropagation training method will be illustrated with a simple 1-1-1 network 

as seen in figure 2.4.3. During training, it is necessary to find the error derivative with 

respect to all weights, including the ones in the hidden and output layers, so that the 

weights can be adjusted simultaneously.  

Backpropagation is a concept of the chain rule that links the MSE to the 

hidden-neuron output y, the network output z, as well as the weighted input µ. Denote the 

derivative with respect to output neuron weight as ∂E/∂b, and the derivative with respect 

to the hidden neuron weights as ∂E/∂w. The backpropagation chain rule, for a simple 

1-1-1 neural network (with logsig and purlin transfer functions), the error gradient with 

respect to output neuron weight is: 

𝜇 = 𝑤0 + 𝑤1𝑥                        (2-19) 

𝑦 =
1

1+𝑒−𝜇
=

1

1+𝑒(−𝑤0−𝑤1𝑥)
                    (2-20) 

𝜈 = 𝑏0 + 𝑏1𝑦                        (2-21) 

𝑧 = 𝜈 = 𝑏0 + 𝑏1𝑦 = 𝑏0 +
𝑏1

1+𝑒(−𝑤0−𝑤1𝑥)
            (2-22) 

The predicted output and expected target have a prediction error measure defined as, E 

𝐸 =
1

2
(𝑧 − 𝑡)2 =

1

2
{𝑏0 +

𝑏1

1+𝑒(−𝑤0−𝑤1𝑥)
− 𝑡}

2

          (2-23) 

According to the backpropagation rule, the error derivative for any hidden-output 

weight b is calculated with the chain rule, as  

𝜕𝐸

𝜕𝑏
=

𝜕𝐸

𝜕𝑧

𝜕𝑧

𝜕𝜈

𝜕𝜈

𝜕𝑏
                          (2-24) 

where 
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𝜕𝐸

𝜕𝑧
= (𝑧 − 𝑡)                          (2-25) 

𝜕𝑧

𝜕𝜈
= 1                              (2-26) 

{

𝜕𝜈

𝜕𝑏
= 1, 𝑏 = 𝑏0

𝜕𝜈

𝜕𝑏
= 𝑦, 𝑏 = 𝑏1

                          (2-27) 

The error derivative for hidden-output weight b1 and b0 in the 1-1-1 neural network 

mentioned before is  

𝜕𝐸

𝜕𝑏0
=

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑏0
= (𝑧 − 𝑡) ∙ 1 ∙ 1 = 𝑧 − 𝑡             (2-28) 

𝜕𝐸

𝜕𝑏1
=

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑏1
= (𝑧 − 𝑡) ∙ 1 ∙ 𝑦 = (𝑧 − 𝑡)𝑦           (2-29) 

The error derivative for any input-hidden weight w is  

𝜕𝐸

𝜕𝑤
= (

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑦
) ∙

𝜕𝑦

𝜕𝜇
∙
𝜕𝜇

𝜕𝑤
                   (2-30) 

where 

𝜕𝜈

𝜕𝑦
= 𝑏1                          (2-31) 

𝜕𝑦

𝜕𝜇
= 𝑦(1 − 𝑦)                      (2-32) 

{

𝜕𝜇

𝜕𝑤
= 1,𝑤 = 𝑤0

𝜕𝜇

𝜕𝑤
= 𝑥,𝑤 = 𝑤1

                     (2-33) 

The error derivative for input-hidden weight w1 and w0 in the 1-1-1 neural network 

mentioned before is 

𝜕𝐸

𝜕𝑤0
= (

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑦
) ∙
𝜕𝑦

𝜕𝜇
∙
𝜕𝜇

𝜕𝑤0
 

= (𝑧 − 𝑡) ∙ 1 ∙ 𝑏1 ∙ 𝑦(1 − 𝑦) ∙ 1 

= (𝑧 − 𝑡) ∙ 𝑏1 ∙ 𝑦(1 − 𝑦)                        (2-34) 

𝜕𝐸

𝜕𝑤1
= (

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑦
) ∙
𝜕𝑦

𝜕𝜇
∙
𝜕𝜇

𝜕𝑤1
 

= (𝑧 − 𝑡) ∙ 1 ∙ 𝑏1 ∙ 𝑦(1 − 𝑦) ∙ 𝑥 

= (𝑧 − 𝑡) ∙ 𝑏1 ∙ 𝑦(1 − 𝑦)𝑥                       (2-35) 

Denote ∂E/∂b0=z-t=p, then ∂E/∂b1=py. And denote ∂E/∂w0=q. The error gradient with 
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respect to all the weights and bias for the 1-1-1 network is  

𝜕𝐸

𝜕𝑏0
=

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑏0
= 𝑧 − 𝑡 = 𝑝                  (2-36) 

𝜕𝐸

𝜕𝑏1
=

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑏1
= (𝑧 − 𝑡)𝑦 = 𝑝𝑦               (2-37) 

𝜕𝐸

𝜕𝑤0
= (

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑦
) ∙

𝜕𝑦

𝜕𝜇
∙
𝜕𝜇

𝜕𝑤0
= (𝑧 − 𝑡) ∙ 𝑏1 ∙ 𝑦(1 − 𝑦) = 𝑝𝑏1 ∙ 𝑦(1 − 𝑦) = 𝑞 (2-38) 

𝜕𝐸

𝜕𝑤1
= (

𝜕𝐸

𝜕𝑧
∙
𝜕𝑧

𝜕𝜈
∙
𝜕𝜈

𝜕𝑦
) ∙

𝜕𝑦

𝜕𝜇
∙
𝜕𝜇

𝜕𝑤1
= (𝑧 − 𝑡) ∙ 𝑏1 ∙ 𝑦(1 − 𝑦)𝑥 = 𝑞𝑥     (2-39) 

Comparing the error gradient result of the 1-1-1 network with the 2-5-1 

backpropagation feed-forward neural network, the error gradient for the simple network is 

still valid.  

 

Figure 2.4 4 m-n-l logsig purelin neural network configuration 

Generally, for a complex multiple-layer neural network (m-n-l logsig purelin neural 

network shown in figure 2.4.4), the error gradient can be deduced as the following 

function:  

𝜕𝐸

𝜕𝑏0𝑘
=

𝜕𝐸

𝜕𝑧𝑘
∙
𝜕𝑧𝑘

𝜕𝜈𝑘
∙
𝜕𝜈𝑘

𝜕𝑏0𝑘
=

1

𝑙
(𝑧𝑘 − 𝑡𝑘)                  (2-40) 

𝜕𝐸

𝜕𝑏𝑗𝑘
=

𝜕𝐸

𝜕𝑧𝑘
∙
𝜕𝑧𝑘

𝜕𝜈𝑘
∙
𝜕𝜈𝑘

𝜕𝑏𝑗𝑘
=

1

𝑙
(𝑧𝑘 − 𝑡𝑘)𝑦𝑘                (2-41) 

𝜕𝐸

𝜕𝑤0𝑗
= (

𝜕𝐸

𝜕𝑧𝑘
∙
𝜕𝑧𝑘

𝜕𝜈𝑘
∙
𝜕𝜈𝑘

𝜕𝑦𝑗
)
𝜕𝑦𝑗

𝜕𝜇𝑗
∙
𝜕𝜇𝑗

𝜕𝑤𝑜𝑗
=

1

𝑙
(𝑧𝑘 − 𝑡𝑘)𝑏𝑗𝑘𝑦𝑗(1 − 𝑦𝑗)        (2-42) 
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𝜕𝐸

𝜕𝑤𝑖𝑗
= (

𝜕𝐸

𝜕𝑧𝑘
∙
𝜕𝑧𝑘

𝜕𝜈𝑘
∙
𝜕𝜈𝑘

𝜕𝑦𝑗
)
𝜕𝑦𝑗

𝜕𝜇𝑗
∙
𝜕𝜇𝑗

𝜕𝑤𝑖𝑗
=

1

𝑙
(𝑧𝑘 − 𝑡𝑘)𝑏𝑗𝑘𝑦𝑗(1 − 𝑦𝑗)𝑥𝑖       (2-43) 

In these functions, i, j, and k the ith, jth, and kth neurons in the m-n-l logsig purelin neural 

network which mean that: i=[1,m], j=[1,n] and k=[1,l] in integer.  

In this way, the mean square error of a general neural network can be described as the 

function below.  

𝐸 =
1

2𝑙
∑ (𝑙𝑘 𝑡𝑘 − 𝑧𝑘)

2                      (2-44) 

And then, the total gradient dg for epoch g can be expressed as 

𝑑𝑔 = ∑ [
𝜕𝐸

𝜕𝑤𝑔
]
ℎ

𝑁
ℎ=1                       (2-45) 

Basically, the sum of the gradients for each of the h training patterns of the mth epoch 

is the gradient for the mth epoch.  

The gradient of the error and the mean square error are used to update the weights 

and biases. Generally, the network cannot accurately predict the target with initially 

chosen parameters in only one epoch. Multiple epochs are required to optimize the 

network weights and biases. If the training performance cannot achieve the desired 

accuracy in predicting a specified target in gth epoch, the network will update the weights 

and the biases to new values in the (g+1)th epoch. The total gradient dg and the learning 

rate ε determine the efficiency and the quality of the network learning. As shown below, 

the updated weights and biases are the previous values plus the negative learning rate 

multiplied by the total gradient. (Samarasinghe 2006) 

𝑤𝑔+1 = 𝑤𝑔 + ∆𝑤𝑔                       (2-46) 

∆𝑤𝑔 = −𝜀𝑑𝑔                          (2-47) 

The learning rate controls the speed of network leaning. If the learning rate is too 

small, adjustments are smaller and too many epochs are required. Otherwise, if the 

learning rate is too large, the weights may not converge to an optimal value. 
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2.4.3 Learning of Neural Networks 

As discussed before, neural network training cannot be completed in a single epoch. 

The method described in Section 2.4.2 is the standard backpropagation learning. The error 

derivative with respect to all weights is important for network learning. The chain rule is 

used to derive ∂E/∂w and ∂E/∂b, and then the gradient of E with respect to all weights and 

biases is known. 

2.4.3.1 Backpropagation Learning 

The method of linking E, z, v, y, and u to obtain a relationship for ∂E/∂w and ∂E/∂b is 

required for the backpropagation learning. After calculating the error gradient for all 

weights and biases as previously discussed, the backpropagation has several uses.  

At the ends of every epoch, the weights will be updated using the gradient descent as part 

of backpropagation. The gradient descent method refers to the process of minimizing the 

error between network output and target in the direction of the steepest descent of the 

error when viewed as a function of the weight (or bias), which is the negative of the 

previously calculated gradients (as equation 2-45). Batch learning is one of the most 

widely used methods for training such that overall error with respect to the training set 

decreases incrementally in an average sense.  

2.4.3.2 Batch Learning 

As described previously, the gradients for all of the patterns are stored after the whole 

dataset has been trained. After the whole set has been processed during each epoch, the 

average or the resultant gradient can be found. The total gradient as shown in equation 

(2-45) is used for the weight update. In batch learning, when total gradient is calculated, 

the variable equals to the negative learning rate multiplied by the total gradient (the 

distance of the descent as a portion of the gradient) as in equation (2-47). Then the new 

weight and bias for next epoch training of batch learning can be written as: 

𝑤𝑔+1 = 𝑤𝑔 + (−𝜀 ∙ ∑ [
𝜕𝐸

𝜕𝑤𝑔
]
ℎ

𝑁
ℎ=1 )                (2-48) 
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As discussed before, the learning rate is also a factor that affects the learning 

performance. The optimum learning rate can result in a highly efficient learning process 

to achieve the minimum MSE. Like Figure 2.4.5 shows, the optimum learning rate can 

lead a quick and accurate way to achieve the minimization. Generally, the learning 

process shown in Figure 2.4.5 is idealized, but, if the learning rate is too high, the result 

will be such as shown figure 2.4.6 and Figure 2.4.7 which may never reach the minimum 

MSE.  

 

Figure 2.4 5 Optimal learning rate for efficient error minimization (Samarasinghe 2006) 

 

Figure 2.4 6 Effect of a high rate on learning (Samarasinghe 2006) 
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Figure 2.4 7 Effect of too high a learning rate on learning (Samarasinghe 2006) 

After every epoch, the performance of the network (as indicated by MSE) will 

determine whether the training is complete. Often, achieving the minimum MSE is one 

trigger that will halt training, as well as reaching a gradient limit or the maximum number 

of epochs.  

2.4.3.3 Example-by-Example Learning 

Different form the previously described method, the method of individual weight 

adjustment prior to each input in every epoch is called example-by-example learning. 

This method takes more computation time than batch learning due to the number of 

calculations required per epoch. 

For some problems, example-by-example learning will yield effective results, 

especially for online learning for which the training data arrives in real time. Otherwise, 

this method may bring instability to the problem. Compared to batch learning, the weight 

and bias adjustments cannot follow the total error derivative over the whole training set.  

2.4.3.4 Momentum  

There is another approach for network learning used to optimize the weights and 

biases which incorporates a momentum term. This is an approach that can use the 

exponential average of all of the previous weight changes to guide the current change 

(Samarasinghe 2006). Momentum links the average changes of past weights to the new 

weight increment at each epoch. Compared with batch learning, momentum can be 

presented mathematically as follows: 
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∆𝑤𝑔 = 𝜇∆𝑤𝑔−1 − (1 − 𝜇)𝜀𝑑𝑔
w                  (2-49) 

The wg and wg-1 are the weights of current and previous epoch, respectively. The 

ε is learning rate as per the batch learning method. μ represents a momentum 

parameter that is between 0 and 1. 𝑑𝑔
w is the gth epoch’s total gradient (the same as 

𝑑𝑔 in equation 2-45). The momentum parameter indicates a relevance between the 

past weight change on the new weight increment. The current total derivative alone 

for the weight is now weighted by (1-μ) which is related to the delta weight by μ. 

Therefore, if μ is equal to 0, the momentum is not a factor and the equation is the 

same as equation become to equation (2-47). When the momentum parameter equal 1, 

it means the momentum change now is totally depended on the past changes. If the 

value of momentum parameter is between 0 and 1, there is a combined contribution 

to the weight change. At this time, the above equation can be extended for first to last 

epochs as below: 

∆wg = μ∆wg−1 − (1 − μ)εdg
w 

∆wg−1 = μ∆wg−2 − (1 − μ)εdg−1
w  

∆wg−2 = μ∆wg−3 − (1 − μ)εdg−2
w  

…… 

∆w2 = μ∆w1 − (1 − μ)εd2
w 

∆w1 = (1 − μ)εd1
w 

Combining these equations together, one obtains the △wg with respect to △wg-1 

which can be expressed as: 

∆𝑤𝑔 = 𝜇
𝑔(1 − 𝜇)𝜀𝑑1

𝑤 − 𝜇𝑔−1(1 − 𝜇)𝜀𝑑2
𝑤 − 𝜇𝑔−2(1 − 𝜇)𝜀𝑑3

𝑤 −⋯ 

……− 𝜇(1 − 𝜇)𝜀𝑑𝑔
𝑤                       (2-50) 

Therefore, all the past weight changes are exponentially averaged with momentum. 

The previous weight changes will affect the current one. This method can be used in both 

batch and example-by-example learning. The momentum can offer stability to the 
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gradient descent for the former learning method and minimize the oscillations in the latter 

ones. 

2.4.3.5 The Levenberg-Marquardt (LM) Method 

The Levenberg-Marquardt (LM) Method, a second-order method of error 

minimization and weight optimization, improves the solution to problems that are much 

harder to solve by adjusting the learning rate for each epoch if required (Samarasinghe 

2006). The LM method incorporates a new term eλ added to the second derivative term 

instead of learning rate ε. (where e is the natural logarithm.)  

Firstly, within the general concept of second-order methods, updating the weights in 

the negative direction of the gradient can be expressed as: 

∆𝑤𝑔 = −
𝜕𝐸 𝜕𝑤⁄

𝜕2𝐸 𝜕𝑤2⁄
                      (2-51) 

𝑤𝑔 = 𝑤𝑔−1 + 𝜀∆𝑤𝑔 = 𝑤𝑔−1 − 𝜀𝑹𝑑𝑔              (2-52) 

Where all the variables are the same as before except R. R is introduced here as the 

inverse of the second derivative. If R is not equal to 1 in this equation, more advanced 

second-order learning methods result, including the LM method. Derived from the second 

order concept, the R now becomes [1/ (ds
g+eλ)] and the new weight update for epoch g 

for is expressed as (Samarasinghe 2006): 

∆𝑤 = −
𝑑𝑔

𝑑𝑔
𝑠+𝑒𝜆

                        (2-53) 

In the LM method, the λ is random generated variables until a downhill step is 

produced for each epoch. If the MSE during training does not decrease, λ will repeatedly 

increase until a decrease is produced.  

2.4.4 Training Methods Summary 

In practice, there are more training methods than discussed here. The aim of all the 

methods discussed is to minimize the error between network output and target. For both 

the batch learning and the example-by-example learning methods, the LM or the 
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momentum method are affective for network training. 

Backpropagation using the LM method is commonly used according to research. 

Samarasinghe introduced six training methods in detail (Samarasinghe 2006), which 

included backpropagation, adaptive learning rate, the steepest descent, Quick Prop, the 

Gauss-Newton method, and the LM method. The former three methods use the first 

derivative of error (slope) or are first-order methods. The latter three methods use second 

derivative of error and on first-order methods (slope and curvature) in order to optimize 

weights. In general, the second-order methods are based on the first-order ones and 

provide faster solutions because of the incorporation of additional information in the form 

of the second derivative of the error. The second-order method for adjusting weights can 

be more efficient. Otherwise, for some problems, the first-order methods give the 

researcher the flexibility and direction to improve the analysis when higher order methods 

may fail to converge.  
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2.5 Chapter Summary 

This chapter discussed the main theories associated with this research: composite 

materials, material manufacture processing, and artificial neural networks. As previously 

described, the advanced composite materials currently used in industry are FRPs which 

have many advantages over traditional materials. CFRP is the focus of this research. To 

understand the performance characteristics of CFRP, knowledge of the manufacturing 

process is required in addition to basic composite materials knowledge. In this chapter, 

many general processing methods for composite materials are introduced especially for 

the direct long fiber thermoplastic molding (LFT-D). As discussed before, the 

manufacturing process can be a main factor of influence on the performance of composite 

materials. The LFT-D processing method is very widely used in mechanical industries. 

For automotive and airspace industries, the use of CFRP made using LFT-D has been the 

practice of many companies. However, even though CFRP is thought of as an ideal 

material for mechanical engineering applications, there are still many improvements that 

can be explored. For this reason, many researchers have recently put a lot of effort into 

increasing CFRP performance. 

ANNs are one of the most accessible mathematical methods. However, they also 

have a potentially complex internal structure that requires understanding. As there are 

many training and learning methods, it is difficult to introduce neural networks in a 

comprehensive way. This chapter introduced some basic information about neural 

network applications and expressed some equations that are commonly used in neural 

networks. As neural networks research is varied on its use and intent, the exact network 

configuration of this research will be described in chapter 5 with the network 

development process specific to the current research.   
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CHAPTER 3 LITERATURE REVIEW 

Neural network models applied to composite materials are most common for 

predicting mechanical properties of materials in the available literature. There are many 

advantages of this global optimal search technique including its quick convergence speed 

(J. Xu 2007). Because the prediction of mechanical properties is generally based on large 

data sets, the neural network model is a very useful tool in this respect because it benefits 

from large sets of available data. 

Table 3. 1 Mechanical Properties need to be expressed in quantitative models as a function of large 

numbers of variables (H. K. Bhadeshia 1999) 

 

The list of properties in Table 3.1 indicates that the development and processing of 

materials can be very complex. Neural networks can predict the relationships between 

these properties may not have obvious relevance to each other (H. K. Bhadeshia 1999). 

The multilayer feed-forward backpropagation neural network is a widely used ANN. In 

general, when large amounts of experimental data are to be simulated, other ANNS can be 

used for prediction. They conveniently relate less obvious properties as a black-box tool. 

For many researchers, the choice to use ANNs to model mechanical properties for 
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composite materials is a popular one. S. Jayabal and S. Rajamuneeswaran (2013) recently 

published their research on calcium carbonate impregnated coir-polyester composites 

using ANNs to model the mechanical properties (Jayabal, S., Rajamuneeswaran, 

Ramprasath, R., & Balaji, N. S. 2013). Natural fiber, like coir-polyester, is low cost but 

can provide higher acoustic damping than glass/carbon fiber composite. It’s a good choice 

for automotive interior applications to reduce noise and vibration. There are three 

different types of coir fiber: white, brown, and green husk. The green husk coir fiber has 

the highest strength of the three.  After collecting data experimentally, ANNs were used 

to form three types of multiple layer propagation network (MLP) to model three output 

variables: tensile, flexural, and impact behavior. As the coir fiber is low cost and is easily 

incorporated into composites, low load automotive components can be fabricated with 

this fiber. Jaybal et al. also listed applications of coir fiber composite in their paper.  

There are some researchers using ANNs to predict the failure life of composite 

materials. P. Labossiere and N. Turkkan (1993) used multilayer feed-forward 

backpropagation network to predict the failure of anisotropic fiber-reinforced materials 

under various loading conditions (P. Labossiere and N. Turkkan 1993). They were one of 

the first to use ANNs as is a method for predicting failure. They used the logistic function 

in two hidden layers and updated the weights using momentum. They utilized three inputs 

as shown in Figure 3.1. 
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Figure 3. 1 Outline of the network (P. Labossiere and N. Turkkan 1993) 

The inputs α, β, and φ are special coordinates describing L in σ1-σ2-τ12. L is defined of 

the error to evaluate the strength properties of the particular lamina. In this paper, 

experimental results were used to train the network and the ANN successfully predicted 

failure of fiber-reinforced laminate. They concluded that with enough experimental data 

neural networks can replace analytical failure criteria for a given material.  

The isotropic characteristic of many fibers are not ideal for all uses. Therefore, 

random chopped fibers have becomes a more popular research topic. Victor A. Gotlib 

(2001) used neural networks to compute the effective properties of random composite 

materials (Victor A Gotlib, Tadanobu Sato, Abraham I Beltzer 2001). Gotlib et al. 

compared the self-consistent scheme and neural computations in the case of composites 

with particularly large gaps between the Hashin-Shtrikman bounds. They showed the 

neural networks provided better and more relevant prediction capabilities and revealed 

useful insight into the effective behavior of disordered heterogeneous materials.  
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3.1 Predicting Fatigue Life Using ANNs 

3.1.1 M. Al-Assadi et al. 

The fatigue life of materials is a critical factor to be evaluated. Neural networks can 

successfully predict the fatigue life for different composite materials. M. Al-Assadi et al. 

(2010) used ANNs to model the fatigue behavior of fiber-reinforced composite materials. 

They indicated that ANNs can be good at dealing with multivariable non-linear behavior 

for which analytical solutions are difficult to obtain. The benefit of applying ANNs is that 

they are able to predict the cyclic behavior of material for which no fatigue data is 

available by using the known characteristics of other composites. In their work, the 

cascade-forward neural networks (CFFN) Elman networks (ELM), and layer recurrent 

network (LRN) were used (Al-Assadi, M., Kadi, H. E., & Deiab, I. M. 2010). 

The CFFN is similar to feed-forward networks. The only difference is there is a 

weight connection between input-hidden and hidden-output layers. These additional 

connections might improve the network training speed. ELMs are multi-layer 

back-propagation networks. There are feedback connections from the output of the hidden 

layer to the hidden layer input. The structure is shown in Figure 3.2. 

 
Figure 3. 2 A two-layer recurrent Elman neural network architecture (Al-Assadi, M., Kadi, H. E., & Deiab, 

I. M. 2010) 

In this way, the recurrent connection forces the network to recognize the temporal 

and spatial patterns in the data. LRNs differences lie in the fact that they are a type of 
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feed-forward neural network with at least one feedback loop. The feedback loops can 

involve the use of branches composed of unit-delay elements.  

The ANN training algorithms used momentum weight updates as well. They also 

utilized variable training functions to train the ANN. Table 3.2 shows network 

performance as measured by root means squared error (RMSE) employing various 

learning algorithms and architectures.  

Table 3. 2 RMSE obtained as a function of the type of architecture and training function (Al-Assadi, M., 

Kadi, H. E., & Deiab, I. M. 2010) 

 

The training algorithms, number of hidden neurons, and network architectures all 

influence the result of network prediction. However, the ANNs can still accurately predict 

the fatigue life of a composite material within a specified error.  

In the following year, M. Al-Assadi and his group (2011) published another paper to 

predict the fatigue life of composite materials that included the stress ratio (Al-Assadi, M., 

Kadi, H. E., & Deiab, I. M. 2011). With optimized ANNs and stress ratios, they achieved 

higher accuracy in prediction of the fatigue life of composites materials.  

3.1.2 Hany El Kadi et al. 

Hany El Kadi et al. (2002) published a method using neural networks to predict the 

fatigue life of FRPs. Besides Feed-forward Neural Networks (FNN), they also employed 



 

51 
 

Modular Networks (MN) and Radial Basis Function networks (RBF) to predict the 

fatigue life of GFRP. In their study, they published a comparison of network performance 

normalized mean square error, NMSE, for different structures (Kadi, H. E., & Al-Assaf,. 

Y. 2002).  

Table 3. 3 Comparison of NMSE and r for the various neural network structures (Kadi, H. E., & Al-Assaf,. Y. 

2002) 

 

Table 3.3 shows the NMSE and r the correlation coefficient, for various networks. 

Compared to the classical FFN, MN improves the ability to decompose the modeling task 

among the other three kinds of models. 

3.1.3 J.A. Lee et al. 

In a study by J.A. Lee et al. (1999), the constant-stress fatigue life of five CFRPs and 

one GFRP were predicted (J.A Lee, D.P Almond, B Harris 1999). It is known that neural 

network can have any number of neurons in a hidden layer, affecting complexity of the 

ANN. Sometimes, over-sized ANNs can not only have excessive training times but may 

also negatively affect their prediction accuracy.  

Lee’s study shows the relationship between root-mean-square error (RMS error) and 

the number of hidden layer neurons (Figure 3.3).  
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Figure 3. 3 Results of Trials to Establish the Optimum Architecture of The ANN (Nodes (neurons) are in a 

single hidden layer ) (J.A Lee, D.P Almond, B Harris 1999) 

In Figure 3.3, the RMS error changes with the number of hidden-layer neurons. More 

complex ANN structures do not always improve prediction results. To optimize an ANN, 

like Figure 3.3 shows, the number of hidden-layer neurons should be optimized. 

The study incorporated the following parameters as inputs: 

 The peak stress in the fatigue cycle, σmax; 

 The minimum stress in the cycle, σmin; 

 The stress ratio, R =σmin/σmax; 

 The stress range, Δσ= (σmin - σmax ); 

 The mean stress, σm = (σmin + σmax)/2; 

 The failure probability level or quanties. 

Another important parameter in their work is the inverse relationship of stress ratio, 

R (the ratio of minimum stress to maximum stress in the cycle, σmin/σmax) with RMS error; 

they show that when R increases, the RMS decreases. 



 

53 
 

3.1.4 Yousef Al-Assaf and Hany El Kadi 

Yousef Al-Assaf, Hany El Kadi (2007) used polynomial classifiers (PC) and recurrent 

neural networks to predict the fatigue life of composite materials. In their study, they 

tested five different specimens with different fiber orientation angles (Yousef Al-Assaf, 

Hany El Kadi 2007). An MTS testing machine was used to measure the experimental data 

for the two different methods.  

PCs use classification, regression, and recognition with remarkable properties as a 

learning algorithm. It is a method used to predict fatigue life of composites. Its 

performance is also evaluated by the mean squared error between the output and target 

values. PCs will be used as ANNs in this study 

Elman Neural Networks (ENN) were used, which are basically ELM (as noted 

previously) with the addition of a feed-back connection from the output to the hidden 

layer.  

Table 3. 4 Mean absolute error between experimental and predictions results using ENN and PC (Yousef 

Al-Assaf, Hany El Kadi 2007)] 

 

As the authors noted, the polynomial classifier is a valuable tool useful for predicting 

the fatigue life of composite materials but it cannot satisfy any a priori decision. PCs can 

lead to a repeatable result with less computational requirements but ANNs are generally 

suitable for all kinds of prediction tasks. 
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3.1.5 Others 

Recently, many researchers have used neural network models to predict fatigue life of 

composite materials. Ke-lu Xiang et al. (2014) used ANNs to predict the fatigue life of 

natural rubber composite (Ke-Lu Xiang, Pu-Yu Xiang, You-Ping Wu 2014). Additionally, 

Abderrezak Bezazi et al. (2007) used Bayesian trained ANNs to predict the fatigue life of 

sandwich composite materials under flexural tests (Abderrezak Bezazi, S. Gareth Pierce, 

Keith Worden, El Hadi Harkati 2007). Anastasios P. Vassilopoulos et al. (2007) also 

published their method to predict the fatigue life of composite materials using ANNs 

(Anastasios P. Vassilopoulos, Efstratios F. Georgopoulos, Vasileios Dionysopoulos 2007).  

3.2 Predicting Composite Material Strength Using ANNs 

3.2.1 Mohammed A. Mashrei et al. 

In addition to fatigue life, strength is another important material property for 

composite materials required by mechanical engineers. Mohammed A. Mashrei et al. 

(2013) used ANNs to predict the bond strength of FRP-to-concrete joints (Mohammed A. 

Mashrei, R. Seracino, M.S. Rahman 2013). They proposed that back-propagation neural 

networks are a reliable means of predicting the bond strength of FRP-to-concrete joints. 

Before ANNs, many models had been used to predict the strength of this type of joint 

with poor results. In their study, they used 150 experimental CFRP-to-concrete joint test 

specimens to train and test neural networks. The backpropagation neural network (BPNN) 

was established in MATLAB with a sigmoid transfer function in the hidden layer and 

linear function in the output layer.  
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Table 3. 5 Comparison of bond strength prediction (Mohammed A. Mashrei, R. Seracino, M.S. Rahman 

2013) 

 
Table 3. 6 Comparison of correlation coefficient, R (Mohammed A. Mashrei, R. Seracino, M.S. Rahman 

2013) 

 

This paper presented a comparison with existing models that predicted the strength of 

FRP-to-concrete joints. From Table 3.5, the average and standard deviation of the ratio of 

the experimental bond strength to the predicted can be seen. The BPNN provided 1.0 and 

0.99 average ratio for training and testing data sets, with a standard deviation of 0.1 and 

0.09, respectively. These results indicated that the prediction of BPNN is much more 

accurate and reliable than the other five models. In table 3.6, the coefficient, R, is 0.99 for 

the BPNN training and testing data. This result is better than those of the other five 

models which indicate the benefit of the BPNN.  
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3.2.2 Z. Zhang et al. 

Z. Zhang et al. (2002) used ANNs to predict the tribological properties of short fiber 

reinforced thermoplastic (SFRT) materials. Their research is a typical example for people 

who use ANNs as a research tool to model the relationship between multiple inputs and 

outputs (Z. Zhang, K. Friedrich, K. Velten 2002). 

More and more SFRT materials are being used as structural materials because of their 

ability to be transformed into complex shapes. However, their characteristic mechanical 

properties cannot match that of continuous fiber reinforced composites. Mathematical 

models derived from experimental data have generally been a useful method to model 

composite material behaviors. But, for SFRT, micromechanical theory, the relevant 

mathematical model, can be used only in very limited cases. For predicting SFRT 

behaviour, the artificial neural network is an ideal tool to use for modeling complex 

conditions occurring during tribological test situations. 

 

Figure 3. 4 Schematic presentation of how to design the composition of wear resistant polymer composites 

(Z. Zhang, K. Friedrich, K. Velten 2002) 

Figure 3.4 is the schematic presentation of the design of wear resistant polymer 

composites. It is a complex task to simulate the mechanical properties related to each 

parameter. From Fig. 3.4, the complexity to produce a wear resistant polymer composite 

is apparent. Enhancing the hardness, stiffness and compressive strength and reducing the 
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adhesion are traditional methods used to improve the friction and wear behaviors of 

polymeric materials. To increase the creep resistance and the compressive strength, short 

aramid fibers, glass fibers or carbon fibers play an important role. In Zhang’s research, 

there are three categories totaling ten inputs and two outputs: specific wear rate/wear 

volume and frictional coefficient (Figure 3.5).  

 

Figure 3. 5  Input Data, Output Data and Schematic Construction of an ANN for Correlating Tribological 

Properties with Testing and Material Parameters (Z. Zhang, K. Friedrich, K. Velten 2002) 

In their paper, they compared the influence of changing different training parameters 

on neural network prediction capabilities. To evaluate and optimize the results of the 

ANN, the researchers used the coefficient of determination B as a quality measure. B is 

defined by: 

𝐵 = 1 − 
∑ [𝑂(𝑝(𝑖))−𝑂(𝑖)]M
1

2

∑ (𝑂(𝑖)−𝑂]M
1

2                       (3-1) 

Where O(p(i)) is the ith predicted wear characteristic; O(i) is ith measured value; O is the 

mean value of O(i); M is the number of test data points.  

The higher the coefficients were, the better the output approximation capabilities of 

the ANN. In their paper, they first compared the influence of the learning rules of ANNs. 

Five training algorithms are used; the BR (Bayesian Regularization) and CGB 
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(Powell-Beale Conjugate Gradient algorithm) both show a high predictive quality. 

Secondly, they tried various ANN structures to compare the results based on the CGB 

algorithm. In their test, the 9 – [15 – 10 – 5]3 – 1 ANN structure provided excellent results 

for the coefficient B. In this way, the very complex relationship of wear performance of 

the short fiber composites becomes much clearer. In addition, they also tried to train a 9 – 

[4]1 – 1 ANN configuration for evaluation. The results of this configuration were not 

stable. Although the simple ANN configuration had poorer accuracy (and instability), it 

could be used for fast estimations with small training datasets. 

In their research, the number of the datasets, the structure of the configuration, and 

the rules of the learning processes influenced the results of the prediction. For an 

excellent prediction in capabilities of this black-box tool, the network design and training 

processes require attention.  

3.3 Predicting Other Properties of Composite Materials with ANNs 

Glass fiber-reinforced plastic composite material (GFRP), as introduced before, is 

one of the most widely used composite materials due to its high mechanical properties 

with low cost and light weight. Ömer Erkan et al. (2013) used artificial neural networks to 

predict the damage factor in the end milling process of GFRP (Erkan, Ömer, Işık, B., 

Çiçek, A., & Kara, F 2013). In their research, they used the basic logistic sigmoid transfer 

function. The inputs of their experiment are the number of flutes, the cutting speed, and 

the depth of cut and feed rate. The output parameter is the damage factor which can be 

calculated by the nominal slot width and the maximum damage slot width of the 

specimens. They also tried five different algorithms to find a most suitable training 

method for this prediction. Their study is a good example for predicting the results of 

machining composite materials. Instead of high the cost of long-term experiments, the 

ANN prediction is a better choice for a mechanical engineer to analyze the properties of 

machining composite materials. 
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Yung-Kuang Yang et al. (2012) used ANNs to optimized some approaches that 

integrate the D-optimal Mixture Design (DMD) method, Genetic Algorithm (GA), and 

Simulated Annealing Algorithms (SAA). Using this concept, they successfully 

determined the optimal mixture ratios for short glass fiber (SGF) and 

polytetrafluoroethylene (PTFE) reinforced polycarbonate (PC) composites (Yung-Kuang 

Yang, Rong-Tai Yang, Chorng-Jyh Tzeng 2012).  

DMD is a technique of DOE for optimizing complex processes. GAs are usually used 

for parameter optimization. In addition, SAA is another algorithm for optimization 

problems. As ANNs are powerful and practical models for complex non-linear systems, 

Yung-Kuang Yang et al. combined the BPNN with SAA and GA in their study. 

In their study, they used DMD to plan the experiments and implemented both GA and 

SAA approaches combined with BNPP to optimize the simulation.  

 

Figure 3. 6 The flow chart of BPNN training and optimization (Yung-Kuang Yang, Rong-Tai Yang, 

Chorng-Jyh Tzeng 2012) 
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As Figure 3.6 shows, the optimization process has seven steps. In step 2, a DMD 

method is used to design and conduct the experiments. And in step 6, the GA and SAA 

was use to obtain an optimal mixture ratio setting by combine the BPNN separately. After 

that, the results by each prediction method were compared.  

In this paper, the BPNN successfully predicted the mechanical properties of ultimate 

strength, flexural strength and impact resistance. At the same time, the combination of 

BPNN/ GA and BPNN/SAA methods can obtain very good results for prediction. This is 

a good example for combining the use of ANNs with other methods in practice.  

3.4 Predicting Material Performance using Neural Network 

Sensitivity 

A commonly used method to predict the relevance of artificial neural network inputs 

on outputs is sensitivity analysis. The sensitivity of the output to changes in the inputs is a 

function of the trained network’s weights and biases. (Goldman 2001) 

RW. Goldman, in his PhD dissertation gives the function of the sensitivity analysis. 

The sensitivity analysis of the ANN would provide the starting point for designing the 

experiments. In his research, a two hidden-layer feed-forward backpropagation network 

structure was chosen to train the data using tan-sigmoid activation functions in the hidden 

layer and linear function in the output layer. The research provided the equation of the 

sensitivity for a tansig-output three layer network as the following: 

𝜕𝑦𝑖

𝜕𝑝𝑗
= 4∑ 𝑤𝑖,𝑘

2 ∙ 𝑤𝑘,𝑗
1 ∙ 𝑒−2𝑀𝑘(1 + 𝑒−2𝑀𝑘)−2ℎ

𝑘=1            (3-2) 

𝑀𝑘 = ∑ 𝑤𝑘,𝑐
1 ∙ 𝑝𝑐 + 𝑏𝑘

𝑛
𝑐=1                    (3-3) 

Where Mk is the sum of the weighted input, yi is ith output and pj is jth input of the network. 

This result is independent of time and it computes the effect on the ith output yi due to 

changes in jth input pj at a discrete point in time.   

w1 and w2 are the weights of the first and second layer of the network. The concept to 
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obtain this equation is from the derivation of the mean square error to all weight of the 

network as section 2.4.2 introduced.  

The sensitivity of outputs to inputs can be a direct indicator of the neural 

network-based relationship between outputs and inputs. The larger the sensitivity is, the 

more influence that the input has on the output.  

This concept is used in the current research and the final result of the sensitivity study 

will be introduced in Chapter 5. 
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CHAPTER 4 COLLECTION AND SELECTION OF 

DATA 

ANNs, used for prediction, are often based on large amounts of data, especially when 

nonlinear pattern recognition is involved. Preparing the data is the first step in neural 

network design and development. In order to achieve optimal results, data should be 

properly organized. This chapter will introduce how the data was managed for the 

purposes of the current research.  

4.1 Data Resource 

As introduced in Chapter 1, FPC is a research center where composite materials are 

designed and manufactured. In this advanced workshop, there are four complete machine 

lines for producing composite materials specifically using carbon and glass fibers. These 

lines include SMC-D, LFT-D, injection, and RTM. As discussed, these lines are all the 

state of the art in composite material manufacturing.  

This research focuses on the processing parameters of the LFT-D line. On January 12, 

2015, FPC ran a group of trials for CFRP. The matrix used in this trial was polyamide 

(Ultramid 8020HS) and the fiber was carbon fiber tow (PANEX 35). The properties of 

these two materials are in Appendix A.1 Material Properties.  

The LFT-D trials were used to produce fiber reinforced thermoplastic plaques for an 

automotive company. The test plaques were made to determine if the performance of the 

material would satisfy the requirements for the vehicle parts. 

The data for this research is organized into two sets: inputs and targets. The processing 

parameters were identified as the inputs and the performance testing raw data as the 

targets.  
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4.2 LFT-D Processing Parameters 

The LFT-D process, as mentioned before, is a highly automated process for 

thermoplastic-matrix composite material production. The LFT-D line at FPC is 

instrumented so that processing parameters can be measured throughout the process. 

There are three important sections (ZSG, ZSE, and PAZ) that make up the LFT-D line. 

The processing parameters are set before each run.  

There are 54 LFT-D processing parameters used in current research, including 

temperature, speed, torque, and flow rate. These 54 parameters can be divided into 3 

categories according to their location in the system: ZSE, ZSG, and PAZ.  

Additionally, the 54 input parameters are set for six different trials classified by the 

fiber volume weight for each trial. Thus, the data is organized as shown in Figure 4.1. 

The first step to pre-processing the data was to remove data that is not available for all 

trials or is not relevant. The machine run time recorded was removed at first because there 

was no need to consider it. As some parameters showed a zero reading from the beginning 

to the end, they were removed as well.  

After pre-processing, there were 52 different processing parameters that were 

available as inputs for the network. However, to accelerate the speed and improve the 

accuracy of the network results, the data often needs to be normalized before network 

training and simulation. 

4.2.1 Mean Data 

As the LFT-D line runs, parameters are recorded once by its own computer every 

second. For each parameter in a trail, there are at least 1,700 values in the data set. 

To consolidate data for this problem in this research, the parameters in each fiber 

volume weight trial are organized by mean value. In this way, the processing parameters 

become a 6 x 52 matrix. Six rows of data are the mean values of each parameter for each 
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of the different fiber weights, and 52 columns of data correspond to the 52 processing 

parameters shown in Appendix A.3 

 

Figure 4. 1 LFT-D processing parameters classification 

4.2.2 Data Standard Deviation 

Standard deviation is a statistic that describes variation, or scatter, in the data. Similar 
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to the mean values, the standard deviation values are organized into a 6 x 52 matrix that 

describes the 52 processing parameters for six different fiber volume weights. The 

standard deviation of the 52 processing parameters can be found in Appendix A.2 

4.2.3 Data Normalization 

Data normalization communizes the range of all the data channels. This practice 

reduces network sensitivity to errors in order for the neural network to provide more 

stable results. Often, data is normalized before data enters the network and is reverted to 

its original scale after the network training.  

There are several kinds of statistical normalization. Network activation functions 

such as logsig and tansig in MATLAB have ranges 0 to 1 and -1 to 1, respectively. To 

normalize data to the range [0, 1], equation (4-1) is used: 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                       (4-1) 

Where X’ is the normalized data, X is the initial data, and Xmin and Xmax are the minimum 

and maximum values respectively of the dataset.  

As previously mentioned, the tansig function in network training processes data to 

the range [-1, 1]. MATLAB offers a function mapminmax to normalize the data to [-1, 1] 

before training. This function in MATLAB is frequently used and its algorithm is shown 

as the following equation (4-2): 

𝑋′ =
(𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛)∗(𝑋−𝑋𝑚𝑖𝑛 )

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)+𝑌𝑚𝑖𝑛
                   (4-2) 

This function in MATLAB is a more flexible version of the former equation. Ymax and 

Ymin are the set maximum and minimum values for normalization. For example, in 

X’=mapmaxmin(X, 0, 1), the Ymax= 1 and Ymin = 0 respectively. In the other word, the 

function can normalize the data in range [Ymin,Ymax]. In this way, the data can be 

normalized to whatever ranges that the research requires.  
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4.2.4 Reversing the Normalization 

Opposite to the data normalization, reversing the process will restore the normalized 

data to its initial scale. 

When data are normalized by the mapminmax MATLAB function, the maximum and 

minimum values can be stored by the function as [Xn, Xs] =mapminmax(X, Ymin, Ymax). 

Xn is normalized data and Xs holds the values of the extrema. 

The organized data of processing parameters are in the table in Appendix A.2. The 6 

x 52 dataset shows the normalized processing parameters which are also the input data of 

the neural network.  

After training the network, the network outputs are reverted back to the initial scale 

of the target data. 

4.3 Material Test Data 

As mentioned section 4.2, there are six groups of LFT-D process parameters for 

producing composite materials having six different fiber volume weights. Therefore, there 

are six different groups of FRPs used in this research.  

Figure 4.2 (a) shows the charges which are put into the press machine to form the 

panels for testing as shown in Figure 4.2 (b). The charge is the material produced by the 

LFT-D. In this research, the panels underwent tension testing to obtain the Young’s 

modulus and tensile strength of the material. 
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(a)                           (b) 

Figure 4. 2  Carbon fiber-reinforced thermoplastic charge and panel by LFT-D 

As the photos show, the materials are labeled and there are six different fiber volume 

weights from 25% to 50% in 5% increments. 

 
Figure 4. 3 Carbon fiber-reinforced thermoplastic panels produced by LFT-D 

Figure 4.3 shows all six fiber weight panels produced by LFT-D. As the photos 

shown, the visual quality of the panels’ surface finish of the panels is an indicator of the 

panel quality. Researchers at the University of Western Ontario conducted the 

experimental testing for these materials. The test data was provided to all researchers in 

the ICRC. Appendix B.1 includes the specifications of the specimens for the tension test. 
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4.3.1 Young’s Modulus and Tensile Strength 

The tension test data recorded included test time, extension, strain, load, tensile stress, 

tensile extension, tensile strain, displacement, position, corrected position, and tenacity. 

Among this data, for Young’s modulus and tensile strength calculations, the load, tensile 

stress, and tensile strain are needed. The Young’s modulus and tensile strength can be 

calculated using the following the equation (Engineering 2015): 

(𝑌𝑜𝑢𝑛𝑔′𝑠) 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =  
𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
         (4-3) 

𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑆𝑡𝑟𝑒𝑠𝑠 (𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) =  
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑎𝑑 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
  (4-4) 

In practice, the Young’s modulus is often obtained from the slope of the stress-strain 

curve below the proportional limit. Even though the cross-sectional areas of the 

specimens after test are not known in the recorded test data, from the relation between 

load and stress, the original cross – sectional area can be calculated by equation (4-5): 

𝑠𝑡𝑟𝑒𝑠𝑠 =  
𝑙𝑜𝑎𝑑

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
                  (4-5) 

Thus, the unknown variable in Equation (4-4) can be calculated using equation (4-5). 

In this way, the Young’s modulus and tensile strength of the materials can be obtained 

from load, tensile strain, and tensile stress in by the test data.  

4.3.2 Test Data Organization 

As discussed before, the Young’ modulus and tensile strength of the material can be 

calculated by using the experimental test data from the three equations. Appendix B.2 

gives details of the data and these values are used as the target data of neural network as 

well. There are 54 groups of values in the table including six different fiber volume and 

two different fiber directions. Each fiber direction has nine test specimens including five 

0◦ and four 90◦ fiber orientation specimens. 

Similar to the processing parameters, the target data needs to be normalized as well. 
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In this research, to compare the neural network prediction ability, the target data was 

organized using two approaches.  

The first approach to organize the data was to normalize Young’s modulus and the 

tensile strength as discussed before. Then a 54 x 2 dataset is obtained as shown in 

Appendix B.2. This dataset included the entire target data directly derived from the 

tension test data. However, using this data to train the neural network produced 

unsatisfactory results. The details of this problem will be discussed in Chapter 5. 

The second approach taken was to classify the data into different groups according to 

the fiber volume weight and the fiber directions. As there were two different fiber 

directions and two target variables, Young’s modulus and tensile strength, the target data 

was divided into four groups as shown in Appendix B.3. Using the same normalization 

method as before, the target data was organized into ranges of [0, 1] or [-1, 1] as shown in 

Appendix B.4. Finally, mean and standard deviation values for the target data were 

calculated. 

Table 4. 1 Standard deviation and mean of Young’s modulus and tensile strength for target data 

 

MEAN STANDARD DEVIATION 

Young's Modulus Tensile Strength Young's Modulus Tensile Strength 

0
◦
 90

◦
 0

◦
 90

◦
 0

◦
 90

◦
 0

◦
 90

◦
 

Trial 1/25% 202.091 109.753 192.125 109.131 35.342 14.555 11.656 7.865 

Trial 2/30% 242.125 115.399 212.372 114.690 40.292 21.057 10.323 23.218 

Trial 3/35% 244.804 130.118 201.163 128.642 29.907 58.435 15.942 41.083 

Trial 4/40% 273.735 140.423 208.122 89.731 44.878 29.197 32.387 13.453 

Trial 5/45% 299.430 121.722 201.427 94.109 60.802 22.072 36.523 8.1616 

Trial 6/50% 304.886 135.554 227.467 76.464 47.364 20.966 28.004 6.314 

Table 4.1 shows the target data after pre-processing in preparation for network 

training. Organized this way, the six groups of targets (material performance) correspond 

to the six groups of input data (processing parameters) for material made having six 

different fiber volume weights. 
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CHAPTER 5 NEURAL NETWORK PREDICTION 

ANNs, as discussed before, are black-box models that can simulate and predict large 

nonlinear data sets. After pre-processing the input and target data, the network 

configuration is selected in order to obtain the best performance of network prediction. 

This chapter describes how to select the neural network configuration. The configuration 

process includes selection of the transfer functions, training algorithm, number of hidden 

layers, and number of hidden neurons.  

5.1 Function Selection 

As discussed in Chapter 2, there are three activation functions often used in neural 

networks: tansig, logsig, and purelin. Tansig or logsig functions are generally used in the 

hidden layers as transfer (activation) functions. Linear functions are generally used in the 

output layer neurons. 

As in Xiaochuan Wang’s research, when the weights, biases, and network structure 

are held constant, substitution of each of the three transfer functions will result in nine 

different performance values for the network. Table 5.1 shows the performance with the 

error percentage and mean square error of nine different single hidden layer networks 

(Wang 2.13). 

Table 5. 1 The error of different networks with different transfer functions (Wang 2.13) 

Hidden Layer Transfer Function Output Layer Transfer Function Error Percentage MSE 

logsig tansig 40.63% 0.9025 

logsig purelin 0.08% 0.0001 

logsig logsig 352.65% 181.2511 

tansig tansig 31.90% 1.1733 

tansig logsig 340.90% 162.9698 

tansig purelin 1.70% 0.0107 

purelin logsig 343.36% 143.76334 

purelin tansig 120.08% 113.0281 

purelin purelin 196.49% 99.0121 
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According to Table 5.1 taken from Wang, it is apparent that when tansig or logsig 

functions are used in the hidden layer with the linear function in the output layer, the 

errors are minimized. The highlighted values show that the combination of logsig and 

purelin activation functions in the hidden and output layers, respectively, result in the 

lowest MSE. Thus, in this research, the logsig activation function will be used in the 

hidden layer neurons and the purelin function in the output layer.  

 

HIDDEN LAYER NEURON          OUTPUT LAYER NEURON 

Figure 5. 1 Hidden neurons and output neurons schemes 

According to the logsig function’s characteristic, the input data and target data should 

be normalized to the range of [0, 1].  This positive range also corresponds to the fact that 

the data does not exhibit any negative polarity, with all values being greater than zero. 

Then the hidden neurons and the output neurons in the network are shown in Figure 5.1. 

5.2 Training Method Selection 

As discussed in the previous chapter, neural networks can use many kinds of training 

methods and even use some in combination with each other. Many of the training 

methods are defined already. However, for different input and output data, to find a 

suitable method is an important step of the research. According to the training method 

offered by MATLAB, there are at least 19 types of networks and 18 types of learning 

functions. Not all of the network types provided is valid in this research. Most of them are 

used in special situations. This section will compare some selected network types and 

learning functions, then the training method for the ANN development will be 

determined.  
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5.2.1 Network Types 

MATLAB offers a toolbox for neural network simulation with all kinds of network 

types as well as training functions and learning functions. Figure 5.2 is the screenshot of 

network toolbox in MATLAB; the drop-down list is used for network selection. Once the 

type, the functions, and the hidden layer are determined, the network configurations can 

be viewed as shown. 

 

Figure 5. 2  MATLAB neural network programming window 

There are three common types of networks used for nonlinear data prediction: 

feed-forward backpropagation (FFB), cascade-forward backpropagation (CFB), and 

Elman backpropagation (EB). As introduced before, backpropagation is a method 

typically used to adjust the weights and biases of the neural network based on the error 

between output and target. These three types of neural network all use the 

backpropagation learning method; the difference lies in the configuration of the weights. 

The three network configurations shown in Figure 5.2 are FFB, CFB, and EB, from top to 

bottom.  

The FFB network has weights applied to inputs as they pass to the hidden layer. Each 
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subsequent layer has weights and a bias applied to data passing from the previous layer. 

The CFB network also consists of hidden layer and output layer. Actually, for more than 

one hidden layer in CFB, the weights are increased by the hidden layer number. If there 

are S layers including hidden layers and output layer, then the number of weights in Sth 

layer is (1+2+…+S). Figure 5.3 is the two hidden layer CFB network. 

 

Figure 5. 3 Configuration of a 2-hidden-layer Cascade-forward network 

The Elman network is another commonly used neural network type. The first layer 

has weights coming from the input. And each subsequent layer has weights coming from 

the previous layer. The difference is that all hidden layers have a recurrent weight as 

Figure 5.4 shows. 

 

Figure 5. 4 The configuration of a 2-hidden-layer Elman network 

5.2.2 Adaption Learning Functions 

Adaption Learning Functions, in MATLAB, refer to the training method discussed 
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previously. The learning functions can also be selected when using the MATLAB toolbox 

in the drop-down menu. MATLAB provides 18 different learning functions. The default 

and most commonly used one is Levenberg-Marquardt. As introduced before, this 

second-order training methods is the most efficient algorithm used in neural network 

training. In order to find the best learning function for this research, Table 5.2 shows the 

performance (MSE) of all 18 learning functions for each of the three mentioned network 

types in MATLAB. 

Table 5. 2 Performance of each learning function with respect to the training functions 

 

The first column in Table 5.2 is the selected learning function. The blank entries 

indicate that the function is not a valid option for the network type for the research data 

being used. From Table 5.2, most of these learning functions give good performance as 

indicated by the very small MSE values. 

Considering the network performance and the error between the network output and 

target data, there are nine combinations of networks that can be further trained in this 
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research. Table 5.3 shows the available learning functions for each of the three network 

types.  

Table 5. 3 Alternative options of the network types 

Learning Functions 
Feed-Forward 

Backprop. 

Cascade-Forward 

Backprop. 

Elman 

Backprop. 

Learn_cgf   o 

Learn_cgp o   

Learn_gd    

Learn_gdm o  o 

Learn_gda o   

Learn_gdx o   

Learn_lm o o  

Learn_scg   o 

 

5.2.3 Comparison of Network Types  

As Table 5.3 indicated, there are five different learning functions used with 

feed-forward backpropagation networks: three used with Elman backpropagation, and 

only one used with cascade-forward backpropagation.  

5.2.3.1 Learning Function Algorithms 

5.2.3.1.1 Traincgf and Traincgp 

The traincgf leaning function is the conjugated gradient backpropagation with 

Fletcher-Reeves updates (MATLAB n.d.). Traincgf can be used to train any network as 

long as its weight, network input, and activation functions have derivatives. The 

backpropagation in traincgf is used to calculate derivatives of performance with respect to 

the weight and bias variables X. X is then adjusted according to the equation below; 

𝑋 = 𝑋 + 𝑎 ∗ 𝑑𝑋                         (5-1) 

Where dX is the search direction and can be represented as  

𝑑𝑋 = −𝑔𝑋 + 𝑑𝑋𝑜𝑙𝑑 ∗ 𝑍                     (5-2) 

The parameter is used to minimize the performance along the search direction. gX is 
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the gradient. The parameter Z, for Fletcher-Reeves variation of conjugate gradient, can be 

computed as: 

𝑍 = 𝑛𝑜𝑟𝑚𝑛𝑒𝑤𝑠𝑞𝑟/𝑛𝑜𝑟𝑚𝑠𝑞𝑟                    (5-3) 

Where, the normsqr is the norm of the square of the previous gradient and normnewsqr is 

the norm of the square of the current gradient. Traincgf is a very fast way to train the 

network with large a dataset. However, this function only performs very well when using 

Elman backpropagation.  

The traincgp learning function is a method that updates weights and biases according 

to the conjugate gradient backpropagation with Polak-Rbiere updates. The difference 

between traincgf and traincgp is the formula to compute the parameter Z. In traincgp 

function, Z is computed as: 

𝑍 = ((𝑔𝑋 − 𝑔𝑋𝑜𝑙𝑑)
′ ∗ 𝑔𝑋)/𝑛𝑜𝑟𝑚𝑠𝑞𝑟              (5-4) 

Where gXold is the gradient from the previous iteration. The traincgp learning function is 

also a very fast training method and can get very good performance, achieving 0.03 by 

using Elman backpropagation; however, the error between network outputs and target 

values is still very large.  

5.2.3.1.2 Traingdm, Traingda, and Traingdx 

These three learning functions are all gradient descent methods for training neural 

networks. Traingdm adjusts the weights and biases according to gradient descent with 

momentum. Traingda is used to adjust the weights and biases according to the gradient 

descent with an adaptive learning rate. These two methods are the very basic ways to 

update the weights and biases for network training. These algorithms were previously 

introduced in Chapter 2.  

Traingdx is a network training function that updates weights and bias values 

according to gradient descent with momentum and an adaptive learning rate (MATLAB 

n.d.). This means that traingdx combines these two methods together as a network 

learning process. According to the function given by MATLAB, the formula is expressed 
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as follows: 

𝑑𝑋 = 𝑚𝑐 ∗ 𝑑𝑋𝑝𝑟𝑒𝑣 + 𝑙𝑟 ∗ 𝑚𝑐 ∗ 𝑑𝑝𝑒𝑟𝑓/𝑑𝑋            (5-5) 

Where dXprev is the previous change to the weight or bias, mc is the momentum constant, 

lr is the learning rate, and dperf/dx is the gradient of MSE over inputs. 

For each epoch, if performance decreases toward the goal then the learning rate is 

increased by the factor lr_inc in MATLAB. If the performance increases by the factor 

max_perf_inc (maximum performance increase), the learning rate is adjusted by the factor 

lr_dec. 

These three learning functions all provide good performance and small errors 

between targets and outputs. However, compared to the results of training, the gradient 

descent only performed well using the feed-forward backpropagation network.  

5.2.3.1.3 Trainlm 

Trainlm is a network training function in MATLAB that updates weights and biases 

according to the Levenberg-Marquardt optimization method. The LM method is not the 

fastest and best performing, but after several trials of training, LM is the most stable 

method. As introduced before, LM algorithm is designed to approach second-order 

training speed.  

5.2.3.1.4 Trainscg 

The trainscg learning function performed well on MSE and gave small errors by 

using it with Elman backpropagation network. Trainscg is a network training function that 

updates weights and biases according to the scaled conjugate gradient method. The 

algorithm of trainscg is similar to traincgp and traincgf. The difference is trainscg does 

not perform a line search at each iteration. 

5.2.4 Section Summary 

Due to a large number of network types and learning functions, determining the best 

network is a challenge. According to the comparisons discussed, FFB networks are 
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simplest but can provide very good performance. Additionally, in order to calculate the 

sensitivity of the neural network after training, the FFB is the best choice for this 

research.  

In the Section 5.4, a comparison will be made among several learning functions using 

a FFB network in order to examine the results of network prediction. The selected 

learning functions are traincgp, traingdx and trainlm.  

5.3 Hidden Layer Configuration 

For ANNs, the configuration is a key factor affecting the training results. The better 

the training result is, the better the capabilities of the network. Except for the activation 

functions of the neural network, when the input and output are selected, the most variable 

factor is the hidden layer; factors requiring determination include the number of hidden 

layers and the number of hidden neurons per layer.  

5.3.1 Number of Hidden Neurons 

The main difference comparing ANNs in this research is the number of the neurons 

and the number of layers. To compare the effect of the number of hidden neurons, six 

different architectures of MLPs were used; all were 1-x-1 neural networks. The x 

parameter was set to equal 1, 2, 3, 10, 20 and 90. The parameters for all six ANNs were 

the same. (Figure 5.5) 

The results are plotted in Appendix C.1. The plots show that the number of hidden 

layer neurons can make very significant difference in network performance. When x 

equal 1, 2, 3 and 10, the errors were similar and close to zero. Among the six plots, the 

1-3-1 result is the most ideal one. 
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Figure 5. 5 Training parameters 

In neural network architecture, the weights provide flexibility by introducing degrees 

of freedom. More hidden neurons bring more weights to the neural network, thus 

increasing a model’s degrees of freedom. As a result, the 1-90-1 and 1-20-1 networks 

closely fit the data. However, with regard to predicting trends, the larger network over-fits 

the data. As shown in Figure 5.6, the 1-3-1 network provides the best result with regard to 

low training error and good ability to generalize the behaviour of the data.  

 

Figure 5. 6 Best results compare with expected curve 
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There are several methods to deciding the number of hidden neurons. Most 

commonly, Hechi-Nielsen’s 2n+1 method is a popular way to determine the number of 

hidden neurons, where n is the number of input neurons (Hecht-Nielsen 1987). They 

report that it is a good method to determine the number of hidden neurons in a single 

hidden layer network, but not necessarily for multiple hidden-layer neural networks. 

5.3.2 Number of Hidden Layers 

To compare results for different numbers of hidden layers, two different ANN 

architectures were used to train and simulate the concrete data included in Appendix C.2 

(Concrete Data.xls 2008). Smaller data sets do not generally require multiple hidden 

layers; there are eight inputs in this data set. Before training, all inputs and targets were 

normalized by the same method introduced in Chapter 4. The range of input and target are 

all [0, 1]. The training parameters were set as in Figure 5.7: 

 

Figure 5. 7 Training parameters for different number of hidden layers 

For one hidden layer, the number of neurons was set using the 2n+1 rule (for n = the 

number of input neurons). In this case, there will be 2 x 8 + 1 = 17 hidden neurons. For 

two hidden layers, the numbers of neurons were determined by the method proposed by 

Stathakis (Stathakis 2009). The function to calculate the number of hidden neurons in the 
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different layers is shown below: 

First layer:     √(𝑚 + 2)𝑁 + 2√𝑁/(𝑚 + 2)                (5-6) 

Second layer:      𝑚√𝑁/(𝑚 + 2)                         (5-7) 

Where m is the number of output neurons and N is the number of test samples used in 

training. Thus, for two hidden layer network, the first layer neuron should be 47 and the 

second layer neuron should be 31. The architectures of these two different NNs are shown 

below: 

 

Figure 5. 8 The architectures of two ANNs 

When training these two networks, one-hidden-layer training was faster than another 

one. The difference between these two training processes is the slope of the gradient. 

Both used ten validation checks, and the two networks almost reached their limit at the 

same epoch. However, the two-hidden-layer network took more time. The most 

significant difference is that the two-hidden-layer network provided a slower approach to 

the minimum MSE (Figure 5.9). 
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(a)  

(b)  

Figure 5. 9  (a) MSE of 1-hidden-layer training (b) MSE of 2-hidden-layer training 

The second hidden layer adds 61 additional weights and biases, increasing the 

complexity of the network with more degrees of freedom. The results of the multiple 

hidden layer networks may not be very different from those of the simpler network, but 

the process of training and simulation is more accurate. More detail of this comparison 
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can be found in Appendix C.1. 

5.3.3 Comparison of Different Network Architectures 

Neural network architecture is important to the quality of the simulation results. For a 

single-hidden-layer neural network, the 2n+1 method is a commonly used way to 

estimate an appropriate number of hidden neurons. More neurons can reduce the error 

between the network outputs and targets, but it can also cause overfitting of the data. 

However, to date, there is not a generally accepted method to calculate the number of 

hidden neurons. To get a proper result, people often use trial and error to set the network 

architectures. 

The number of hidden layers is one of the things to be considered before training and 

simulation. However, the number of hidden layer is not as important as the number of 

neurons. In today’s research, many researchers are focusing more attention on how many 

neurons are efficient to solve the problem. On the other hand, changing the number of 

hidden layers is another way of changing the number of hidden neurons.  

In this research, there are 52 inputs and four targets in the data. Thus, according to 

section 5.3.1, there should be 52 x 2 + 1 hidden neurons if a single hidden layer were 

chosen. However, as a neural network doesn’t have a set rule for setting the number of 

hidden neuron, an experimental comparison is needed.  

Table 5.4 shows the comparison network performance for different architectures with 

respect to the number of hidden neurons. 

Table 5. 4 Performance (MSE) of different hidden neurons in a one hidden layer logsig-purelin neural 

network 
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Figure 5. 10 Performance (MSE) of different hidden neurons in a one hidden layer logsig-purelin neural 

network 

In Table 5.4 and Figure 5.10, the performance of the network and the best validated 

performance occur together when the number of hidden neurons is 105. Because the 

performance of the neural network changes each time it’s trained, further examination is 

necessary during training. However, from this preliminary comparison, the 2n+1 method 

to determine the number of hidden layers provides a better result.  

In order to obtain a more comprehensive understanding of hidden neuron influence 

on network performance, Figure 5.11 gives a visual plot of MSE with the respect to the 

number of hidden neurons. It must be mentioned that with the increase of hidden neurons, 

the training time increases significantly. When there are less than 90 hidden neurons, the 

training process finishes within one second. The largest networks trained take as much as 

three minutes to complete. However, as the number of hidden neurons increases, the 

regression of normalized output to normalized target is much improved.  
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Figure 5. 11 Performance of neural network with different number of hidden neurons 

In Figure 5.11, the black points indicate performance (MSE) of neural networks with 

one to two hundred single hidden layer neurons. The MSE in Figure 5.11 seems stable 

when there are less than 130 neurons. As discussed previously, there is no standard rule 

for determining the number of hidden neurons. For this research, the number will be 

determined by starting with the 2n+1 empirical method.  

5.4 Artificial Neural Network Training 

The architecture of the ANN has been selected to include the logsig transfer function 

in the hidden layer, the FFB network structure and the 52-105-4 input-hidden-output 

configuration. 

Thus, for this research, the network specifications can be described by Table 5.5 

below; the training parameters are also included. 

Recall that the input data has 52 normalized samples described by mean and standard 

deviation. The network outputs are Young’s modulus and tensile strength at different fiber 

directions derived from test raw data. 
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Table 5. 5 Network training parameters 

Artificial Neural Network Detail 

Target  Data 
Young's modulus & tensile strength at 0º and 90º fiber 

orientation 

Input Data 
LFT-D process parameters for fiber volume weights 25% 

30% 35% 40% 45% 50% 

Network Type Feed-forward backpropagation 

Training Function Traincgp/Traingdx/Trainlm 

Performance Function Mean Square Error (MSE) 

Number of Hidden Layer 1 

Number of Layers 3 

Number of Input Neurons 52 

Number of Hidden Neurons 105 

Number of Output Neurons 4 

With the aid of MATLAB, the work of network training can be simplified. The code 

used for MATLAB training is included in Appendix D. The code includes the data 

loading, data organization, neural network set up, parameter loading, and sensitivity 

calculation. To ensure a good result, as mentioned before, there will be a comparison 

between the different training methods.  

5.4.1 Network Training using Mean Value of Processing Parameters 

The dataset was organized to 52 inputs and 4 targets. The configuration can be 

viewed in Figure 5.12 as MATLAB would show it.  

 

Figure 5. 12 Neural network configuration for training 

The 52 inputs are normalized data of the mean value of each processing parameter. 

The target in this configuration is the mean value of Young’s modulus and tensile strength 
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in two directions (0o, 90o). For accurate prediction, the three training functions were 

applied here for comparison. The performance values are listed in Table 5.6. 

Table 5. 6 Performance of the mean value data trained result 

Training Function LM CGP GDX 

Best Performance (MSE) 0.18559 0.094646 0.056176 

Epoch at Best Performance 1 4 47 

Performance (MSE) 0.0478 0.0787 0.1246 

In Table 5.6, the best performance is the MSE calculated at the epoch when the 

validation check stops the iterations. The performance is the final MSE calculated after 

the network training is completed. If the performance curve after best performance of the 

validation check still decreases sharply, it may mean that the network is overfitting the 

target data.  

5.4.2 Network Training using Standard Deviation of Processing Parameters 

Similar to network training using mean values of processing parameters, the training 

in this section uses the standard deviation instead of the average value for the input and 

target data. The configuration and the training method are the same as the approach in 

Section 5.4.1. The results are listed in Table 5.7. 

Table 5. 7 Performance of standard deviation data result 

Training Function LM CGP GDX 

Best Performance (MSE) 0.90202 0.21579 0.91888 

Epoch at Best Performance 1 1 25 

Performance (MSE) 0.2327 0.6573 0.5082 

5.4.3 ANN Development to Predict CFRP Properties Using LFT-D 

Processing Parameters 

In the previous two sections, basic ANNs have been introduced. To refine the training 

results for the selected network structure, a randomly generated input is added to the input 

data. In this way, the relevance of each input parameter relative to a random value can be 
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evaluated and the network structure optimized (see Table 5.8). 

Table 5. 8 Artificial neural network training parameters 

Artificial Neural Network 

Network Type Feed-forward Backpropagation Network 

Network Training Function Levenberg-Marquardt Method 

Performance Function Mean Square Error (MSE) 

Transfer Function (Hidden Layer/Output Layer) logsig/purelin 

Number of Hidden Layer 1 

Number of Hidden Neurons 107 (2n+1 Method) 

Number of Layers 3 

Number of Input Neurons 53 

Number of Output Neurons 4 

Input  Data 
mean value of Young's modulus, tensile strength at 0º and 90º fiber 

orientation, randomly generated value 

Target Data 
mean value of LFT-D process parameters for fiber volume weights of 

25%, 30%, 35%, 40%, 45%, 50% 

As discussed before, the FFB network is one of the simplest but is very effective 

when compared with other, more complex, types of networks. Training time and 

performance associated with the Levenberg-Marquardt training function make it a 

popular choice of researchers. The use of mean value for both the input and the output 

datasets gives a better performance results than the use of the standard derivation.  

The process of neural network training uses MATLAB and code included in 

Appendix D. Figure 5.13 gives the training results of the network.  
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Figure 5. 13 Training status of neural network applied for current research 

This network training used a 53-107-4 logsig-purelin configuration with the LM 

training method. The process was 16 seconds until the gradient achieve the default setting 

value. At this time there were two validations. The final performance was 0.0617 at the 

last epoch with the final weights and biases. The best validation performance of this 

training is 0.1036 at epoch 1, as Figure 5.14 shows.  
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Figure 5. 14 Validation, training, and test MSE 

As Figure 5.14 shows, there were three epochs during training. Due to reaching the 

minimum gradient of the MSE, the network training stopped with results in an acceptable 

range.  

Figure 5.15 gives the results of the network training, with the regression between the 

target and network output illustrating how well the network trained.  
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Figure 5. 15 Regression of network training results: regression of original data 

The regression between target and output shows a good result in Figure 5.15. Thus, 

the network developed during training can be used for prediction as the performance of 

the network is acceptable.  

5.5 Sensitivity of Network Outputs to Network Inputs 

The aim of this research is to find the relationship between the LFT-D processing 

parameters and the CFRP properties. When developing the neural network, all inputs are 

used to predict the outputs. To simplify the network, the sensitivity of each output to each 

input can be calculated to determine if any of the inputs can be eliminated from the model 

due to a lack of influence on any of the output variables. The sensitivity is expressed as 

the partial derivative of each network output with respect to each of the inputs 

(Samarasinghe 2006).  

Using feed-forward neural networks, the approach to determine the relative influence 
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of inputs on outputs can be performed using a sensitivity analysis.  

5.5.1 Sensitivity Analysis 

Sensitivity analysis, as mentioned before, uses the expression of the partial derivative 

of the network output with respect to each input. Sensitivity analysis is based on the 

influence observed in an output zi due to a small change in an input xi. The sensitivity can 

provide information as to the relative influence of each network input on each network 

output. The greater the sensitivity is, the greater the effect of the input.  

As the sensitivity of the input pattern can provide different values, the mean value is 

used to represent the overall sensitivity of an output to an input. The method to obtain the 

partial derivatives was introduced in Section 2.4. The gradient of mean square error with 

respect to any weight has been calculated. Similar to the concept to calculate the error 

derivative for any hidden-output weight, the change in output due to changes in input can 

be expressed, in general, as follows: 

𝜕𝑧

𝜕𝑥
=

𝜕𝑧

𝜕𝑣
∙
𝜕𝑣

𝜕𝑦
∙
𝜕𝑦

𝜕𝜇
∙
𝜕𝜇

𝜕𝑥
                         (5-8) 

Where, x, z, v, y, μ, are as shown in Figure 5.16. 

 

 

Figure 5. 16 Common descriptions of neurons for regular neural network 

As mentioned previously, the logsig transfer function is used in the hidden layer 

neurons and the purelin transfer function in the output layer. Equation 5-8 then becomes: 
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{
 
 
 
 
 

 
 
 
 
 

𝑧𝑘 = 𝑣𝑘   (𝑝𝑢𝑟𝑒𝑙𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

𝑣𝑘 = 𝑏0 +∑𝑏𝑗𝑘𝑦𝑘

𝑚
𝑙

𝑗=1
𝑘=1

 (𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑝𝑢𝑡)

𝑦𝑘 =
1

1 + 𝑒−𝜇𝑗
    (𝑙𝑜𝑔𝑠𝑖𝑔 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

𝑢𝑗 = 𝑤0 +∑𝑤𝑖𝑗𝑥𝑖

𝑙
𝑛

𝑖=1
𝑗=1

 (𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡)

 

As a result, the sensitivity of output zk with respect to the input xi is as follows: 

𝜕𝑧𝑘

𝜕𝑥𝑖
=

1

𝑙
∑ 𝑤𝑖𝑗𝑏𝑗𝑘𝑒

−𝑢𝑗𝑙
𝑗=1 (1 + 𝑒−𝑢𝑗)2                   (5-9) 

For an m-n-l FFB network with logsig-purelin transfer functions, the above equation 

can be used to calculate the sensitivity of outputs with respect to each of the inputs. 

As discussed before, the sensitivity of a network output to an input can imply a degree of 

influence of the processing parameter on the material property. However, as the weight of 

the trained network can vary from training session to training session, the calculated 

sensitivity cannot represent an absolute value. For this reason, the way to obtain a reliable 

result from the sensitivity study is to calculate the average value of multiple sensitivities 

of several good performing networks. In this way, if the input generally has less influence 

on the output, the mean value of the sensitivities will remain low. The average value of 

sensitivities can be indicative of the trends apparent in the relationships between network 

inputs and outputs. 

For this research, acceptable performance is taken to be no more than 0.3 for the best 

MSE and having no more than two outliers in the regression plot. Training was conducted 

ten times with the exact same training parameters as the detailed in section 5.4. Table 5.11 

shows the mean value of the sensitivities’ absolute values for ten training sessions. 

Absolute values are used to restrict our examination to the magnitude of the sensitivities. 

The sum of negative value and positive values will not provide an accurate representation 

of the overall affect. 
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Table 5.9 gives the results of the sensitivity of each output to every input for the data.  

Table 5. 9 The mean value of the summed absolute sensitivities for ten network training sessions 

Material Properties Young's Modulus Tensile Strength 

Fiber Direction 0° 90° 0° 90° 

Throughput Set Value Dosing 5 1.142 0.653 1.010 0.701 

Throughput Actual Value Dosing 5 1.411 0.481 1.054 0.952 

Set Rotational Speed Screw ZSG 0.732 0.300 0.681 0.911 

Torque ZSG 1.227 0.259 0.842 1.103 

Resulting Force Servo Die 1.061 0.388 1.092 1.323 

Force Servo Die Open 1.120 0.720 0.986 0.915 

Force Servo Die Close 1.293 0.443 1.378 1.599 

Actual Rotational Speed Screw ZSG 1.116 0.420 1.322 1.549 

Internal Force ZSG 1.385 0.538 1.338 1.421 

Internal Temperature ZSG 1.028 0.483 0.816 0.907 

Temperature ZSG Zone 1 1.180 0.485 1.096 1.495 

Temperature ZSG Zone 2 1.142 0.862 0.858 1.017 

Temperature ZSG Zone 9 1.233 0.602 1.101 1.032 

Temperature ZSG Zone 10 1.229 0.263 0.872 1.170 

Temperature ZSG Zone 11 1.253 0.373 1.365 1.415 

Temperature ZSG Zone 12 0.880 0.504 0.910 0.846 

Temperature ZSG Zone 13 1.083 0.521 1.185 1.551 

Temperature ZSG Zone 14 1.295 0.338 0.918 1.341 

Temperature ZSG Zone 15 1.675 0.505 1.349 1.523 

Temperature ZSG Zone 16 1.085 0.357 1.015 1.144 

Rotational Speed Motor Shears 1.021 0.361 0.831 1.104 

Pick-Up Belt Temperature 1.044 0.507 0.879 0.663 

Positioning Belt 1 Temperature 1.161 0.467 1.054 1.115 

Positioning Belt 2 Temperature 0.809 0.471 0.984 1.104 

Positioning Belt 3 Temperature 1.061 0.491 1.131 0.948 

Positioning Belt 4 Temperature 0.755 0.406 0.825 0.853 

Positioning Belt 5 Temperature 1.000 0.510 0.678 0.645 

Positioning Belt 6 Temperature 0.805 0.535 1.024 1.028 

Safety Tunnel Temperature 1.319 0.485 1.018 0.823 

Working Tunnel 1 Temperature 0.926 0.576 0.464 0.474 

Working Tunnel 2 Temperature 1.027 0.445 1.049 1.256 

Working Tunnel 3 Temperature 0.809 0.309 0.808 0.828 

Actual Speed Pick-Up Belt 0.508 0.255 0.662 0.620 

Actual Speed Melt Compound 0.650 0.371 0.957 1.235 

Actual Speed Positioning Belt 1 1.556 0.401 1.185 1.251 
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Actual Speed Wagon 1.520 0.407 1.250 1.533 

Set Rotational Speed Screw ZSE 1.042 0.467 1.133 1.423 

Torque ZSE 0.825 0.441 0.571 0.713 

Actual Rotational Speed Screw ZSE 1.266 0.347 0.938 1.312 

Internal Force ZSE 1.508 0.417 1.368 1.407 

Internal Temperature ZSE 0.837 0.453 1.154 1.130 

Temperature ZSE Zone 1 0.672 0.324 0.611 0.486 

Temperature ZSE Zone 2 1.114 0.339 1.166 1.198 

Temperature ZSE Zone 2 0.432 0.417 0.582 0.710 

Temperature ZSE Zone 3 0.905 0.532 0.611 0.836 

Temperature ZSE Zone 4 1.328 0.468 0.976 1.105 

Temperature ZSE Zone 5 1.137 0.704 1.020 1.399 

Temperature ZSE Zone 6 1.017 0.318 1.088 0.931 

Temperature ZSE Zone 7 1.183 0.452 0.786 1.246 

Temperature ZSE Zone 8 1.294 0.266 1.082 1.292 

Temperature ZSE Zone 9 1.012 0.444 0.825 1.086 

Temperature ZSE Zone 10 0.786 0.395 0.961 1.124 

Randomly Generated Input 0.552 0.374 0.807 0.905 

 

(A)  
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(B)  

(C)  

(D)  

Figure 5. 17 (a) to (d) the Mean of the Summed Absolute Sensitivities for outputs to inputs from output z1 to 

z4 

Figures 5.17 (a) to (d) show the sensitivities of four outputs with respect to all inputs. 
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The more influence the input has, the larger the sensitivity is.  

By calculating sensitivity of output to input, the influence of the LFT-D processing 

parameters on CFRP properties can be described by characteristics of the trained neural 

network.  

In Figure 5.17, the red dash lines in each of the four plots correspond to the 

sensitivity of each network output to the randomly generated input variable. Those 

network inputs with the same or lower sensitivity can be removed from the network 

structure as their influence is no more than that of the randomly generated network input. 

With respect to Young’s modulus for 0º fiber orientation, the processing parameters 

shown as black bars have significant influence, specifically, the throughput set value of 

the dosing unit, the set rotational speed of the ZSG’s speed, the force of the blade of the 

servo die, the internal force of ZSG, the rotational speed of the motor, etc. As the 

temperature of the same machine parts in LFT-D often consistent at steady state operation, 

one might assume that the influence of the temperature channels on the material 

properties would also be similar. Interestingly, in the case of the current research, the 

sensitivities of the properties to temperatures in a similar region in the machine 

sometimes have very different values.  

Comparing the four targets, the influence of processing parameters to the tensile 

strength with 0 º fiber orientations is less than the other three properties. The result from 

both the optimized network and the network with randomly generated input shows the 

same result. Therefore, the 0º tensile strength of CFRP in this research is not affected as 

much as the 9e0º tensile strength and Young’s modulus. The fiber direction is an 

important factor that influences the tensile strength as discussed previously in the review 

of continuous CFRP properties.  

After calculating the mean value of summed absolute sensitivities for ten training 

sessions, the result shows all inputs have more or less influence on the four outputs. 

Comparing the four outputs, tensile strength for 0 º fiber orientations has the least effect 
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from inputs as shown by the relative position of the trace in Figure 5.17. Additionally, the 

sensitivities of 0º fiber orientation tensile strength are the most stable ones among the four 

outputs. Table 5.10 gives the best validation performance of these ten training results. 

Table 5. 10 Best validation performance of different training sessions for the network 

 1 2 3 4 5 6 7 8 9 10 

Best validation Performance 0.13 0.09 0.3 0.14 0.01 0.03 0.08 0.15 0.28 0.10 

Compared whit the other three sensitivity curves, the Figure 5.17 (b) has smaller 

range of sensitivity. It means that the influence of the processing parameters for the 0° 

fiber direction on Young’s modulus is less than the other three outputs.  

According to these results, the number of network inputs can be reduced by 

eliminating those inputs with mean sensitivities that are smaller than the sensitivity of the 

randomly generated input. Thus, the reduced set of inputs for the neural network training 

is listed in Table 5.11. Note that the reduced input sets are not the same for each of the 

four outputs, requiring four different network structures.  

Table 5. 11 Remained inputs for four different outputs 

Original Inputs Remained inputs 

Material 

Properties 
Young's Modulus Tensile Strength 

Fiber Direction 0° 90° 0° 90° 

Throughput Set 

Value Dosing 5 

Throughput Set 

Value Dosing 5 

Throughput Set 

Value Dosing 5 

Throughput Set 

Value Dosing 5  

Throughput Actual 

Value Dosing 5 

Throughput Actual 

Value Dosing 5 

Throughput Actual 

Value Dosing 5 

Throughput Actual 

Value Dosing 5 

Throughput Actual 

Value Dosing 5 

Set Rotational 

Speed Screw ZSG 

Set Rotational 

Speed Screw ZSG   

Set Rotational 

Speed Screw ZSG 

Torque ZSG Torque ZSG 
 

Torque ZSG Torque ZSG 

Resulting Force 

Servo Die 

Resulting Force 

Servo Die 

Resulting Force 

Servo Die 

Resulting Force 

Servo Die 

Resulting Force 

Servo Die 

Force Servo Die 

Open 

Force Servo Die 

Open 

Force Servo Die 

Open 

Force Servo Die 

Open 

Force Servo Die 

Open 

Force Servo Die 

Close 

Force Servo Die 

Close 

Force Servo Die 

Close 

Force Servo Die 

Close 

Force Servo Die 

Close 

Actual Rotational 

Speed Screw ZSG 

Actual Rotational 

Speed Screw ZSG 

Actual Rotational 

Speed Screw ZSG 

Actual Rotational 

Speed Screw ZSG 

Actual Rotational 

Speed Screw ZSG 
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Internal Force 

ZSG 

Internal Force 

ZSG 

Internal Force 

ZSG 

Internal Force 

ZSG 

Internal Force 

ZSG 

Internal 

Temperature ZSG 

Internal 

Temperature ZSG 

Internal 

Temperature ZSG 

Internal 

Temperature ZSG 

Internal 

Temperature ZSG 

Temperature ZSG 

Zone 1 

Temperature ZSG 

Zone 1 

Temperature ZSG 

Zone 1 

Temperature ZSG 

Zone 1 

Temperature ZSG 

Zone 1 

Temperature ZSG 

Zone 2 

Temperature ZSG 

Zone 2 

Temperature ZSG 

Zone 2 

Temperature ZSG 

Zone 2 

Temperature ZSG 

Zone 2 

Temperature ZSG 

Zone 9 

Temperature ZSG 

Zone 9 

Temperature ZSG 

Zone 9 

Temperature ZSG 

Zone 9 

Temperature ZSG 

Zone 9 

Temperature ZSG 

Zone 10 

Temperature ZSG 

Zone 10  

Temperature ZSG 

Zone 10 

Temperature ZSG 

Zone 10 

Temperature ZSG 

Zone 11 

Temperature ZSG 

Zone 11 

Temperature ZSG 

Zone 11 

Temperature ZSG 

Zone 11 

Temperature ZSG 

Zone 11 

Temperature ZSG 

Zone 12 

Temperature ZSG 

Zone 12 

Temperature ZSG 

Zone 12 

Temperature ZSG 

Zone 12  

Temperature ZSG 

Zone 13 

Temperature ZSG 

Zone 13 

Temperature ZSG 

Zone 13 

Temperature ZSG 

Zone 13 

Temperature ZSG 

Zone 13 

Temperature ZSG 

Zone 14 

Temperature ZSG 

Zone 14  

Temperature ZSG 

Zone 14 

Temperature ZSG 

Zone 14 

Temperature ZSG 

Zone 15 

Temperature ZSG 

Zone 15 

Temperature ZSG 

Zone 15 

Temperature ZSG 

Zone 15 

Temperature ZSG 

Zone 15 

Temperature ZSG 

Zone 16 

Temperature ZSG 

Zone 16  

Temperature ZSG 

Zone 16 

Temperature ZSG 

Zone 16 

Rotational Speed 

Motor Shears 

Rotational Speed 

Motor Shears  

Rotational Speed 

Motor Shears 

Rotational Speed 

Motor Shears 

Pick-Up Belt 

Temperature 

Pick-Up Belt 

Temperature 

Pick-Up Belt 

Temperature 

Pick-Up Belt 

Temperature  

Positioning Belt 1 

Temperature 

Positioning Belt 1 

Temperature 

Positioning Belt 1 

Temperature 

Positioning Belt 1 

Temperature 

Positioning Belt 1 

Temperature 

Positioning Belt 2 

Temperature 

Positioning Belt 2 

Temperature 

Positioning Belt 2 

Temperature 

Positioning Belt 2 

Temperature 

Positioning Belt 2 

Temperature 

Positioning Belt 3 

Temperature 

Positioning Belt 3 

Temperature 

Positioning Belt 3 

Temperature 

Positioning Belt 3 

Temperature 

Positioning Belt 3 

Temperature 

Positioning Belt 4 

Temperature 

Positioning Belt 4 

Temperature 

Positioning Belt 4 

Temperature 

Positioning Belt 4 

Temperature  

Positioning Belt 5 

Temperature 

Positioning Belt 5 

Temperature 

Positioning Belt 5 

Temperature 

Positioning Belt 5 

Temperature  

Positioning Belt 6 

Temperature 

Positioning Belt 6 

Temperature 

Positioning Belt 6 

Temperature 

Positioning Belt 6 

Temperature 

Positioning Belt 6 

Temperature 
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Safety Tunnel 

Temperature 

Safety Tunnel 

Temperature 

Safety Tunnel 

Temperature 

Safety Tunnel 

Temperature  

Working Tunnel 1 

Temperature 

Working Tunnel 1 

Temperature 

Working Tunnel 1 

Temperature   

Working Tunnel 2 

Temperature 

Working Tunnel 2 

Temperature 

Working Tunnel 2 

Temperature 

Working Tunnel 2 

Temperature 

Working Tunnel 2 

Temperature 

Working Tunnel 3 

Temperature 

Working Tunnel 3 

Temperature  

Working Tunnel 3 

Temperature 

Working Tunnel 3 

Temperature 

Actual Speed 

Pick-Up Belt   

Actual Speed 

Pick-Up Belt  

Actual Speed Melt 

Compound 

Actual Speed Melt 

Compound 

Actual Speed Melt 

Compound 

Actual Speed Melt 

Compound 

Actual Speed Melt 

Compound 

Actual Speed 

Positioning Belt 1 

Actual Speed 

Positioning Belt 1 

Actual Speed 

Positioning Belt 1 

Actual Speed 

Positioning Belt 1 

Actual Speed 

Positioning Belt 1 

Actual Speed 

Wagon 

Actual Speed 

Wagon 

Actual Speed 

Wagon 

Actual Speed 

Wagon 

Actual Speed 

Wagon 

Set Rotational 

Speed Screw ZSE 

Set Rotational 

Speed Screw ZSE 

Set Rotational 

Speed Screw ZSE 

Set Rotational 

Speed Screw ZSE 

Set Rotational 

Speed Screw ZSE 

Torque ZSE Torque ZSE Torque ZSE Torque ZSE Torque ZSE 

Actual Rotational 

Speed Screw ZSE 

Actual Rotational 

Speed Screw ZSE   

Actual Rotational 

Speed Screw ZSE 

Internal Force ZSE Internal Force ZSE Internal Force ZSE Internal Force ZSE Internal Force ZSE 

Internal 

Temperature ZSE 

Internal 

Temperature ZSE 

Internal 

Temperature ZSE 

Internal 

Temperature ZSE 

Internal 

Temperature ZSE 

Temperature ZSE 

Zone 1 

Temperature ZSE 

Zone 1    

Temperature ZSE 

Zone 2 

Temperature ZSE 

Zone 2 

Temperature ZSE 

Zone 2 

Temperature ZSE 

Zone 2 

Temperature ZSE 

Zone 2 

Temperature ZSE 

Zone 2     

Temperature ZSE 

Zone 3 

Temperature ZSE 

Zone 3 

Temperature ZSE 

Zone 3   

Temperature ZSE 

Zone 4 

Temperature ZSE 

Zone 4 

Temperature ZSE 

Zone 4 

Temperature ZSE 

Zone 4 

Temperature ZSE 

Zone 4 

Temperature ZSE 

Zone 5 

Temperature ZSE 

Zone 5 

Temperature ZSE 

Zone 5 

Temperature ZSE 

Zone 5 

Temperature ZSE 

Zone 5 

Temperature ZSE 

Zone 6 

Temperature ZSE 

Zone 6 

Temperature ZSE 

Zone 6 

Temperature ZSE 

Zone 6 

Temperature ZSE 

Zone 6 

Temperature ZSE 

Zone 7 

Temperature ZSE 

Zone 7   

Temperature ZSE 

Zone 7 
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Temperature ZSE 

Zone 8 

Temperature ZSE 

Zone 8 

Temperature ZSE 

Zone 8 

Temperature ZSE 

Zone 8 

Temperature ZSE 

Zone 8 

Temperature ZSE 

Zone 9 

Temperature ZSE 

Zone 9  

Temperature ZSE 

Zone 9 

Temperature ZSE 

Zone 9 

Temperature ZSE 

Zone 10 

Temperature ZSE 

Zone 10 

Temperature ZSE 

Zone 10 

Temperature ZSE 

Zone 10 

Temperature ZSE 

Zone 10 

 

5.5.2 Neural Network Optimization 

Optimizing the neural network depends on several aspects. During the training, if the 

results cannot accurately generalize the target data, the configuration and training 

methods may need to be adjusted. But, as mentioned before, the approaches used to 

modify the configuration and adjust the training methods are done by trial and error. 

Additionally, a method to optimize the neural network is to combine another modeling 

method with neural network.  

There is some research illustrating the use of genetic algorithms to optimize neural 

networks (Koehn 1994). The genetic algorithm can be used as an initial weight selection 

tool so that the neural network can provide a more accurate result in predicting the target 

(Wang 2.13).  

Another method is to reduce the structural complexity of the neural network 

(Samarasinghe 2006). The purpose of reducing the complexity of the neural network is to 

retain the essential weights and neurons in the model, reduce computations, but maintain 

accuracy. This commonly used method is referred to as network pruning. Pruning reduces 

the structural complexity of a neural network and the method can be based on variance of 

network sensitivity. The pruning of the structural complexity can include elimination of 

inputs, weights, and/or hidden neurons.  

For the current research, in Section 5.5.1, the sensitivities of outputs to the inputs 

have been analyzed. Figure 5.17 shows the sensitivities of the 53 inputs (including the 

randomly generated input) on the 4 outputs. According to this result, the complexity of 
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the network can be reduced by eliminating those inputs with the same or less influence on 

the outputs as the random input (see Figure 5.17). Table 5.10 lists the final remaining 

inputs.  

Recall Figure 5.11, the performance of the logsig-purelin feed-forward 

backpropagation network with different hidden neurons with one-hidden-layer. In order to 

obtain the best validation performance (best MSE before the validation check expired) of 

the network, the network was trained again and the best performance for a different 

number of hidden neurons is shown in Figure 5.18 (a). In a neural network, the final MSE 

cannot really indicate the performance on its own. The best validation performance of the 

network is the MSE value of the network training before over-fitting occurs. To evaluate a 

good performing network, there are three basic rules to follow: 

(1) The final mean-square error is small. 

(2) The test set error and the validation set error has similar characteristics. 

(3) No significant over-fitting has occurred where the best validation performance occurs. 

In Table 5.11, the remaining inputs for the four neural networks predicting each of he 

four outputs are different. For the tensile strength in the 0º fiber orientation, the 

sensitivities of the original inputs were not larger than the randomly generated input 

which means all inputs were retained. The numbers of inputs for the other three networks 

(and three outputs) are all reduced according to the sensitivities. In this section, the 

Young’s modulus in the 90º fiber direction will be trained as an output with the remaining 

inputs as an example. All the training parameters are the same as the parameters described 

in Section 5.5.1. The only difference is there are now only 39 inputs instead of 53.  
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(a)  

(b)  
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(c)  

Figure 5. 18 Training results of 39-input network:  (a) best validation performance of network and the 

MSE of training, test, and validation;  (b) regression of target and output;  (c) regression of normalized 

target and output. 

 Figure 5.18 shows the results of the optimized neural network with 39 inputs. The 

trained network with a reduced number of inputs provides a MSE equal to 0.05 at epoch 1. 

From Figure 5.18, the result of this training is acceptable because of the regression plot 

have all points on the 45º line. Figure 5.18 (b) and (c) shows the points lie on or close to a 

45º line, and the error between the target and output is very small.  

  

 

 

 

  



 

105 
 

CHAPTER 6 RESULT ANALYSIS 

As discussed in Chapter 5, there are at least five different styles of neural network 

that are used for prediction. At very beginning of Chapter 5, the neural network was 

trained for original inputs and outputs with 105 hidden neurons. Using this configuration, 

the network was too complex and the training time was very long. To optimize the 

network, the number of hidden neurons was reduced. With the hidden neuron reduction, 

the result of the network training was better than the original but further optimization was 

sought to reduce the number in network inputs using the results of the sensitivity study. In 

order to make any conclusions about the relative sensitivity of each output to each input, a 

randomly generated input was added to the network. Comparing the sensitivity of each 

output to each input relative to the random variable, the inputs with less influence than the 

randomly generated input were eliminated.  

Using this optimization scheme, a final neural network was trained with only 39 

inputs for the Young’s modulus at 90º fiber orientation, for example. The training results 

can be seen in Figure 5.18 The regression between target and output lies mostly on a 

45-degree line which means the network gives an acceptable training result. With the 

value of 0.05 for the MSE, the network for 39 inputs trained to Young’s modulus at 90º 

fiber orientation can be further analyzed by the sensitivity of the output to the inputs.  

For all intents and purposes, the neural network development is a somewhat random 

procedure. A better training result only can indicate that the neural network can be used 

for predicting the relationship between the CFRP material properties and the processing 

parameters set for material production. As the input data are the mean value of the 

processing parameters, the sensitivity analysis cannot describe their influence on 

properties extremely accurately, but instead provides a generalized relative comparison 

between parameters. In Figure 5.17, the largest values highlight which inputs has more 

influence on the output. The ZSE extruder screw speed has a large influence on material 

properties, as does the temperature of the fiber re-heating section.  
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATIONS 

7.1 Conclusions 

CFRP is an advanced composite material. As discussed in Chapter 2, carbon fiber is a 

material showing it can benefit all areas of mechanical engineering with a possible 

exception with regard to its high cost. However, with improvements in future technology, 

carbon fiber will become more available and more affordable. Thermoplastic is an 

excellent material for engineering applications due to its low cost, ease of 

manufacturability, and high strength. Thus, CFRP combines the advantages of these two 

materials as well as producing a material that is much more than the sum of its parts. 

Currently, automotive industries are very interested in CFRP products because of its high 

performance. Thus, the manufacturing process of CFRP by LFT-D is widely used because 

it is a very efficient manufacturing process for composite materials.  

In this research, the model’s input data come from the processing parameters of 

LFT-D. LFT-D is already widely used for composite materials, especially for the 

production of continuous FRP. The charge produced by LFT-D can be easily formed to 

any shape that is required. With high temperatures, the process of LFT-D mixes the 

continuous reinforcement and the matrix materials efficiently. CFRP material produced 

by LFT-D has already been tested or used by many companies in the automotive industry. 

As there are a large number of processing parameters involved, sometimes not all will 

significantly affect the material properties, so optimization of the production process is 

still needed. Therefore, examining the influence of processing parameters on material 

properties is necessary in efforts to optimize manufacturing. 

The ANN is an excellent tool for predicting the material performance as introduced 

before, especially applied to large data sets. In this research, the processing parameters of 
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the LFT-D process serve as the inputs to the neural network. The target and output data 

sets are organized into four groups based on the test data of the CFRP and the fiber 

directions of the test specimens. After several networks were trained, the results of the 

influence of processing parameters on material properties are calculated as the 

sensitivities of the network outputs to the inputs. From the results of the network training, 

the 52 processing parameters all have an effect on the material properties that were 

examined, but for different network training results the degree of their influence varies. 

When considering each of the outputs individually, all but one of the networks was 

optimized using a reduced set of input channels. 

According to sections 5.5.1 and 5.5.2, the sensitivity analysis directly indicates the 

influence of the processing parameters on the Young’s modulus and tensile strength of the 

material with 0° and 90° fiber orientation. In Figure 5.17, after training the network ten 

times, the Young’s modulus of 0° fiber orientation shows sensitivity to almost all 

processing parameters. The 33nd and 44th processing parameters of the 52 processing 

parameter input data (one tunnel temperature and one ZSE temperature) have lower 

sensitivity than that due to the randomly generated value. Young’s modulus for 90° fiber 

orientation shows less sensitivity, in general, to the processing parameters. Although there 

are 13 processing parameters having less influence on the 90° Young’s modulus compared 

to the randomly generated values, the range of all calculated sensitivities is less than that 

of other three properties. For the tensile strength of CFRP with 0° and 90° fiber 

orientation (Figure 5.17 (C) and (D)), in general, the sensitivities between about 20th and 

50th processing parameters have less effect than the other processing parameters. 

According to Table 5.11, these processing parameters describe operational settings in the 

ZSE region of the LFT-D machine which is the section of the extruder to mix the fiber 

and the melted polymer together in a specific direction.  

Comparing the four model outputs, the latter thirty processing parameters have less 

influence than that of the former ones, in general. The influences of the 20th to 52th 
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processing parameters (Figure 5.17 (A) to (D)) are smaller than the influence of the 1st to 

19th processing parameters. This means that, according to the calculated sensitivities, the 

ZSG region of the LFT-D machine has more effect on the property of Young’s modulus 

and tensile strength of the material in both 0° and 90° fiber orientation. ZSG mainly 

consists of the fiber and polymer feeding sections and the pre-heated sections. According 

to this result, the properties of the final CFRP composite produced by LFT-D are most 

influenced before the fiber and the polymer are mixed together. As a result, consistency in 

parameter control during the preparation of the fiber and polymer can provide better 

stability in material performance (Young’s modulus and tensile strength in 0° and 90° 

fiber orientation) of the CFRP when produced using LFT-D.  

7.2 Recommendations 

There are still areas for improvement for this research. The first is in regard to the 

accuracy of the data obtained from FPC. The data used for this research are the average 

values of each processing parameter. If the test specimens are matched to their own 

recorded data from the LFT-D trial, the network training result will be more robust. 

Another issue concerns the lack of measured deformation of the test specimens. If more 

tests were included in the data, the network’s predictive capabilities would likely be more 

comprehensive. 

A result of this research is the creation of an ANN model for performance prediction 

of CFRP produced by LFT-D. In the future, after the processing parameters and material 

properties are related by neural network model development, the relationship can be 

described by the function as dictated by the neural network structure. Furthermore, in the 

future, as more data becomes available, an inverse model can be generated, allowing for 

the calculation of processing parameters necessary for a desired set of material properties. 

A design tool of this type will prove in valuable in increasing the efficiency of CFRP 

design and development tasks.    
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APPENDIX 

Appendix A 

Appendix A.1 Material Properties 



 

112 
 



 

113 
 

 

  



 

114 
 

Appendix A.2 

STANDARD DEVIATION 

Throughput Set Value Dosing 

5 
0.3519 1.5954 0.7126 0.0000 0.5693 0.0000 

Throughput Actual Value 

Dosing 5 
0.8370 1.6354 0.7896 26.7901 0.5981 9.5687 

Set Rotational Speed Screw 

ZSG 
0.1055 0.8347 0.0992 15.2223 0.0586 6.3338 

Torque ZSG 4.0598 5.2120 4.9189 81.4812 7.3397 43.3375 

Resulting Force Servo Die 0.3680 0.1722 0.3482 0.4749 0.2384 0.5704 

Force Servo Die Open 0.4822 0.5162 0.4294 5.9733 0.4225 2.1149 

Force Servo Die Close 0.5318 0.4701 0.4640 6.1070 0.3822 2.1729 

Actual Rotational Speed 

Screw ZSG 
0.1149 0.8335 0.1044 15.2714 0.1126 6.4146 

Internal Force ZSG 0.0035 0.0177 0.0039 0.0029 0.0033 0.0031 

Internal Temperature ZSG 0.2508 6.1047 0.4691 2.0843 0.6789 0.4034 

Temperature ZSG Zone 1 0.2690 6.1172 0.3744 0.6258 0.2435 0.3713 

Temperature ZSG Zone 2 0.2478 6.1597 0.1441 0.1934 0.1720 0.0980 

Temperature ZSG Zone 9 0.0607 6.1230 0.5973 1.2864 1.1903 0.6273 

Temperature ZSG Zone 10 0.0517 6.1229 0.0705 0.3137 0.5109 0.0969 

Temperature ZSG Zone 11 0.7035 6.2436 0.1800 0.7661 0.3373 0.1604 

Temperature ZSG Zone 12 0.2552 6.1796 0.2349 1.1274 0.2556 0.2263 

Temperature ZSG Zone 13 0.0710 6.0095 0.0618 0.1404 0.1182 0.0732 

Temperature ZSG Zone 14 0.1249 6.1025 0.2560 1.1225 0.2673 0.1667 

Temperature ZSG Zone 15 0.1776 6.1223 0.1907 0.5421 0.3080 0.1934 

Temperature ZSG Zone 16 0.2299 6.1225 0.1525 0.5405 0.3644 0.1589 

Rotational Speed Motor 

Shears 
24.5360 18.9730 17.8230 20.4261 17.1076 15.1917 

Pick-Up Belt Temperature 364.1358 384.5255 359.5270 312.2360 360.7937 348.8935 

Positioning Belt 1 

Temperature 
2.4753 6.3061 2.1954 8.4647 2.3818 2.0801 

Positioning Belt 2 

Temperature 
0.1131 5.8794 0.0921 18.4468 0.0726 0.0986 

Positioning Belt 3 

Temperature 
0.2718 5.8742 0.0847 17.0065 0.1000 0.1896 

Positioning Belt 4 

Temperature 
0.5770 5.8992 0.1575 15.4414 0.1535 0.7930 

Positioning Belt 5 

Temperature 
0.6113 5.8973 0.0984 16.6378 0.0617 0.5104 

Positioning Belt 6 0.2900 5.8923 0.1028 15.8270 0.1243 0.4791 
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Temperature 

Safety Tunnel Temperature 0.5355 5.9000 0.1676 15.5231 0.2119 0.8129 

Working Tunnel 1 

Temperature 
0.2078 5.8960 0.1243 6.5838 0.0977 0.1815 

Working Tunnel 2 

Temperature 
1.9644 5.9654 0.4841 4.6187 0.7029 1.8771 

Working Tunnel 3 

Temperature 
0.8783 5.9014 0.3037 4.5386 0.3234 1.3520 

Actual Speed Pick-Up Belt 0.9345 5.9068 0.2297 4.8145 0.1939 1.7679 

Actual Speed Melt Compound 7.6851 6.1737 9.9541 22.4933 9.0162 27.4428 

Actual Speed Positioning Belt 

1 
40.1015 40.2671 40.6155 40.5273 41.3192 46.6435 

Actual Speed Wagon 7.4507 5.6122 9.5169 8.5655 8.3647 9.8737 

Set Rotational Speed Screw 

ZSE 
0.3942 1.7870 0.7906 29.8134 0.6376 10.2670 

Torque ZSE 14.9461 17.3104 16.1261 197.0795 13.5010 78.8789 

Actual Rotational Speed 

Screw ZSE 
0.4526 1.7703 0.8056 29.9668 0.6884 10.3686 

Internal Force ZSE 0.0037 0.0063 0.0028 0.0032 0.0024 0.0009 

Internal Temperature ZSE 0.2628 6.2036 0.3511 0.2581 0.2521 0.2631 

Temperature ZSE Zone 1 0.2402 6.0403 0.0782 1.0305 0.1368 0.0879 

Temperature ZSE Zone 2 1.4524 6.2663 1.5091 1.4752 1.4833 1.5924 

Temperature ZSE Zone 2 0.1009 6.1226 0.0592 0.1242 0.0702 0.0661 

Temperature ZSE Zone 3 0.1276 6.1226 0.0809 0.1433 0.1406 0.0669 

Temperature ZSE Zone 4 0.1121 6.1225 0.0697 0.1085 0.0873 0.0613 

Temperature ZSE Zone 5 0.6120 5.7073 0.2625 0.2255 0.9431 0.6713 

Temperature ZSE Zone 6 0.4666 6.0399 0.5864 0.9108 0.8264 0.6027 

Temperature ZSE Zone 7 0.6184 6.2292 0.7003 1.2286 0.4862 0.4292 

Temperature ZSE Zone 8 0.1912 6.1229 0.2001 0.2928 0.2328 0.2913 

Temperature ZSE Zone 9 0.1154 6.1223 0.1251 0.1510 0.1186 0.1388 

Temperature ZSE Zone 10 0.2628 6.2036 0.3511 0.2581 0.2521 0.2631 
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Appendix A.3 

EAN VALUE  Trial1 Trial2 Trial3 Trial4 Trial5 

Throughput Set Value Dosing 5 [kg/hr] 67.01 63.52 60.05 56.22 52.38 

Throughput Actual Value Dosing 5 [kg/hr] 67.10 63.56 43.46 56.23 50.68 

Set Rotational Speed Screw ZSG [kg/hr] 36.66 36.27 28.13 36.09 35.04 

Torque ZSG [Nm] 164.22 184.58 156.29 275.55 266.84 

Resulting Force Servo Die [kN] 0.64 0.31 0.37 0.41 0.54 

Force Servo Die Open [kN] 13.49 13.71 10.01 13.36 13.05 

Force Servo Die Close [kN] 14.13 13.93 10.28 13.75 13.51 

Actual Rotational Speed Screw ZSG [U/min] 36.56 36.19 28.17 35.99 35.02 

Internal Force ZSG [bar] 0.76 0.75 0.75 0.75 0.75 

Internal Temperature ZSG [°C] 269.09 270.39 271.45 276.36 278.59 

Temperature ZSG Zone 1 [°C] 269.57 269.47 270.04 268.91 269.51 

Temperature ZSG Zone 2 [°C] 271.51 271.88 271.90 272.14 272.42 

Temperature ZSG Zone 9 [°C] 269.88 271.21 272.92 276.25 279.46 

Temperature ZSG Zone 10 [°C] 269.88 270.02 269.98 269.93 270.03 

Temperature ZSG Zone 11 [°C] 275.21 275.54 275.82 279.20 279.25 

Temperature ZSG Zone 12 [°C] 272.39 272.98 273.21 275.55 275.06 

Temperature ZSG Zone 13 [°C] 264.87 265.01 264.95 265.00 265.00 

Temperature ZSG Zone 14 [°C] 268.99 269.79 269.88 271.91 271.87 

Temperature ZSG Zone 15 [°C] 269.86 270.01 269.82 269.98 270.00 

Temperature ZSG Zone 16 [°C] 269.88 270.03 269.78 269.95 269.97 

Rotational Speed Motor Shears [U/min] 114.68 178.50 248.52 309.42 365.64 

Pick-Up Belt Temperature [°C] 56.11 50.26 37.45 50.19 47.59 

Positioning Belt 1 Temperature [°C] 261.56 261.27 258.19 254.89 252.25 

Positioning Belt 2 Temperature [°C] 259.15 259.30 252.99 249.64 249.62 

Positioning Belt 3 Temperature [°C] 258.93 259.12 253.25 249.42 249.35 

Positioning Belt 4 Temperature [°C] 259.98 260.03 254.71 249.91 249.90 

Positioning Belt 5 Temperature [°C] 259.93 260.01 254.06 250.01 249.97 

Positioning Belt 6 Temperature [°C] 259.71 259.88 254.51 249.93 249.89 

Safety Tunnel Temperature [°C] 259.98 260.01 254.73 249.96 249.92 

Working Tunnel 1 Temperature [°C] 259.89 260.01 257.81 250.27 250.09 

Working Tunnel 2 Temperature [°C] 258.03 259.12 257.58 249.11 249.02 

Working Tunnel 3 Temperature [°C] 258.94 259.55 258.01 249.61 249.39 

Actual Speed Pick-Up Belt [mm/s] 259.51 259.90 258.12 249.91 249.80 

Actual Speed Melt Compound [mm/s] 11.53 11.79 10.77 11.71 15.18 

Actual Speed Positioning Belt 1 [mm/s] 17.76 18.23 15.44 18.28 21.48 

Actual Speed Wagon [mm/s] 0.33 -0.04 0.18 0.11 -0.15 

Set Rotational Speed Screw ZSE [U/min] 75.06 71.15 52.41 62.97 56.79 

Torque ZSE [Nm] 488.95 471.67 336.41 492.18 463.51 
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Actual Rotational Speed Screw ZSE [U/min] 74.79 71.35 52.48 62.91 56.55 

Internal Force ZSE [Bar] -0.21 -0.21 -0.21 -0.22 -0.22 

Internal Temperature ZSE [°C] 273.45 274.08 274.26 273.09 272.63 

Temperature ZSE Zone 1 [°C] 266.24 266.39 266.98 266.50 266.43 

Temperature ZSE Zone 2 [°C] 269.82 270.00 270.11 269.97 270.01 

Temperature ZSE Zone 2 [°C] 269.86 270.00 270.03 269.98 270.00 

Temperature ZSE Zone 3 [°C] 269.86 270.00 270.02 269.99 270.01 

Temperature ZSE Zone 4 [°C] 269.86 270.00 270.01 270.01 270.01 

Temperature ZSE Zone 5 [°C] 251.57 251.97 251.95 248.39 250.55 

Temperature ZSE Zone 6 [°C] 266.19 266.14 266.37 266.33 266.13 

Temperature ZSE Zone 7 [°C] 274.04 274.99 274.73 273.64 275.00 

Temperature ZSE Zone 8 [°C] 269.88 270.00 269.99 270.06 270.01 

Temperature ZSE Zone 9 [°C] 269.87 270.01 269.96 270.01 270.00 

Temperature ZSE Zone 10 [°C] 273.45 274.08 274.26 273.09 272.63 
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Appendix B 

Appendix B.1 

Tension Test Processing Parameters 

Specimen 1 
 

Final width 25 mm 

Specimen label H1-T-C-L 
 

Final thickness 3 mm 

Width 25.1 mm Final length 50 mm 

Thickness 3.2 mm Final diameter 14 mm 

Length 50 mm Final Inner diameter 8 mm 

Diameter 14 mm Final outer diameter 10 mm 

Inner diameter 8 mm Final wall thickness 1 mm 

Outer diameter 10 mm Final area 0.75 cm^2 

Wall thickness 1 mm Final linear density 100 tex 

Area 0.8032 cm^2 Type 
  

Linear density 100 tex Operator Ying 
 

Sled weight 10 N Sample Identification Henkel 
 

Loading span 10 mm Machine model Instron 8800 
 

Support span 100 mm Rate 1 2 mm/min 
 

Span ratio 2 
 

Humidity 0.49 
 

Fixture type 4-point 
 

Temperature 23C 
 

Extensometer 0.05 m Reference Number Oct 29th, 2014 
 

Appendix B.2 

Fiber 

Weight 

Fiber 

Orientation 

Specimen 

Number 

Young's 

modulus 

Tensile 

Strength 

YM TS 

%     normalized normalized 

25 0 1 163.9929 192.2186 0.633708 0.633708 

25 0 2 175.761 183.1407 0.58675 0.58675 

25 0 3 192.8338 197.4853 0.660952 0.660952 

25 0 4 233.8792 179.2662 0.566709 0.566709 

25 0 5 243.9888 208.5161 0.718011 0.718011 

25 90 1 128.5817 109.4259 0.205442 0.205442 

25 90 2 105.3603 101.0734 0.162236 0.162236 

25 90 3 111.4122 119.7388 0.258788 0.258788 

25 90 4 93.65933 106.2884 0.189213 0.189213 

30 0 1 308.6791 213.9192 0.74596 0.74596 

30 0 2 233.1917 227.564 0.816541 0.816541 

30 0 3 223.8519 208.9298 0.720151 0.720151 
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30 0 4 243.3876 198.9086 0.668314 0.668314 

30 0 5 201.5158 212.5412 0.738832 0.738832 

30 90 1 123.2578 127.8231 0.300606 0.300606 

30 90 2 102.5207 84.63088 0.077184 0.077184 

30 90 3 141.2559 137.2595 0.349418 0.349418 

30 90 4 94.56492 109.0475 0.203485 0.203485 

35 0 1 231.2057 184.656 0.594589 0.594589 

35 0 2 285.2188 190.4354 0.624484 0.624484 

35 0 3 215.4965 213.3801 0.743171 0.743171 

35 0 4 247.2964 216.1841 0.757676 0.757676 

35 0 5 232.6405 201.5783 0.682124 0.682124 

35 90 1 94.0076 108.8007 0.202208 0.202208 

35 90 2 102.9919 103.3278 0.173898 0.173898 

35 90 3 123.4473 112.3698 0.22067 0.22067 

35 90 4 97.50725 117.134 0.245314 0.245314 

40 0 1 267.3084 185.8378 0.600702 0.600702 

40 0 2 270.1817 231.1717 0.835203 0.835203 

40 0 3 204.2819 176.6107 0.552972 0.552972 

40 0 4 316.9048 252.6693 0.946405 0.946405 

40 0 5 309.9997 194.3213 0.644585 0.644585 

40 90 1 137.946 101.1056 0.162403 0.162403 

40 90 2 140.9496 72.07844 0.012253 0.012253 

40 90 3 177.1003 86.45568 0.086623 0.086623 

40 90 4 105.6971 99.2853 0.152987 0.152987 

45 0 1 296.7338 173.8167 0.53852 0.53852 

45 0 2 271.8612 232.0374 0.839681 0.839681 

45 0 3 401.1213 205.9707 0.704845 0.704845 

45 0 4 239.9607 155.3034 0.442755 0.442755 

45 0 5 287.4778 240.0088 0.880915 0.880915 

45 90 1 127.548 98.50387 0.148945 0.148945 

45 90 2 105.2286 103.0466 0.172443 0.172443 

45 90 3 103.6183 85.01565 0.079174 0.079174 

45 90 4 150.4958 89.87189 0.104294 0.104294 

50 0 1 297.2958 252.5146 0.945604 0.945604 

50 0 2 388.1345 204.8349 0.698969 0.698969 

50 0 3 286.4889 263.0304 1 1 

50 0 4 278.2419 206.0701 0.705359 0.705359 

50 0 5 274.271 210.8878 0.730279 0.730279 

50 90 1 133.362 75.75994 0.031296 0.031296 

50 90 2 110.7088 75.41561 0.029515 0.029515 
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50 90 3 136.2055 69.70969 0 0 

50 90 4 161.9398 84.97261 0.078951 0.078951 

nor:  normalized data. 

Appendix B.3 

 

Young's 

modulus  
Tensile Strength 

 

 
0 90 0 90 

Trial1 /25% 163.9929 128.5817 192.2186243 109.4259461 

Trial1 /25% 175.761 105.3603 183.1406883 101.0733562 

Trial1 /25% 192.8338 111.4122 197.4853065 119.7387694 

Trial1 /25% 233.8792 93.65933 179.2661837 106.2883953 

Trial1 /25% 243.9888 
 

208.5160621 
 

Trial2 /30% 308.6791 123.2578 213.919201 127.8230809 

Trial2 /30% 233.1917 102.5207 227.5639931 84.6308767 

Trial2 /30% 223.8519 141.2559 208.9297767 137.2594616 

Trial2 /30% 243.3876 94.56492 198.9086162 109.0474838 

Trial2 /30% 201.5158 
 

212.5412088 
 

Trial3 / 35% 231.2057 94.0076 184.6559997 108.8007313 

Trial3 / 35% 285.2188 102.9919 190.4353796 103.3278268 

Trial3 / 35% 215.4965 123.4473 213.3801053 112.3698217 

Trial3 / 35% 247.2964 97.50725 216.1841369 117.1340377 

Trial3 / 35% 232.6405 
 

201.5783097 
 

Trial4 / 40% 267.3084 137.946 185.8377753 101.1056396 

Trial4 / 40% 270.1817 140.9496 231.1716862 72.0784358 

Trial4 / 40% 204.2819 177.1003 176.610679 86.45567703 

Trial4 / 40% 316.9048 105.6971 252.6693212 99.28529644 

Trial4 / 40% 309.9997 
 

194.3213376 
 

Trial5/ 45% 296.7338 127.548 173.8167413 98.50387297 

Trial5/ 45% 271.8612 105.2286 232.0373507 103.0465759 

Trial5/ 45% 401.1213 103.6183 205.9707416 85.01565045 

Trial5/ 45% 239.9607 150.4958 155.3034121 89.8718872 

Trial5/ 45% 287.4778 
 

240.0088396 
 

Trial6 / 50% 297.2958 133.362 252.5145652 75.7599355 

Trial6 / 50% 388.1345 110.7088 204.8349047 75.41561171 

Trial6 / 50% 286.4889 136.2055 263.0303819 69.70968684 

Trial6 / 50% 278.2419 161.9398 206.0700962 84.97261065 

Trial6 / 50% 274.271 
 

210.8878269 
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Appendix B.4 

 
Young's modulus Tensile Strength 

 
0 90 0 90 

Trial1 /25% 0 0.726039 0.342674 0.79722 

Trial1 /25% 0.049628 0.594919 0.258406 0.736367 

Trial1 /25% 0.121626 0.629091 0.391563 0.872353 

Trial1 /25% 0.294719 0.528849 0.22244 
 

Trial1 /25% 0.337353 
 

0.493958 0.774361 

Trial2 /30% 0.61016 0.695978 0.544114 0.931252 

Trial2 /30% 0.29182 0.578885 0.670775 0.616576 

Trial2 /30% 0.252433 0.797604 0.497799 1 

Trial2 /30% 0.334817 0.533962 0.404775 0.794462 

Trial2 /30% 0.158239 
 

0.531323 
 

Trial3 / 35% 0.283445 0.530816 0.272472 0.792665 

Trial3 / 35% 0.511225 0.581545 0.32612 0.752792 

Trial3 / 35% 0.217197 0.697047 0.53911 0.818667 

Trial3 / 35% 0.351301 0.550576 0.565139 0.853377 

Trial3 / 35% 0.289496 
 

0.429557 
 

Trial4 / 40% 0.435694 0.778914 0.283442 0.736602 

Trial4 / 40% 0.447812 0.795874 0.704264 0.525125 

Trial4 / 40% 0.169904 1 0.19779 0.62987 

Trial4 / 40% 0.644849 0.59682 0.903821 0.72334 

Trial4 / 40% 0.615729 
 

0.362193 
 

Trial5/ 45% 0.559785 0.720202 0.171854 0.717647 

Trial5/ 45% 0.454894 0.594175 0.7123 0.750743 

Trial5/ 45% 1 0.585083 0.470331 0.619379 

Trial5/ 45% 0.320366 0.849777 0 0.654759 

Trial5/ 45% 0.520751 
 

0.786297 
 

Trial6 / 50% 0.562155 0.753031 0.902385 0.551947 

Trial6 / 50% 0.945233 0.625119 0.459787 0.549438 

Trial6 / 50% 0.516581 0.769087 1 0.507868 

Trial6 / 50% 0.481802 0.914396 0.471253 0.619066 

Trial6 / 50% 0.465057 
 

0.515975 
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Appendix C 

Appendix C.1 

Plot of different numbers of hidden neurons 
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Appendix C.2 

Cement (component 1) 

(kg in a m^3 mixture) 

Concrete compressive 

strength 

(MPa, megapascals) 

Cement (normalized) Concrete compressive 

strength(normalized) 

200.0 7.84 0.84213 0.519598 

225.0 11.17 0.86085 0.608933 

236.0 9.99 0.868437 0.580784 

238.0 12.05 0.869778 0.628122 

238.1 10.34 0.869845 0.589361 

250.0 12.73 0.877597 0.642023 

252.0 11.47 0.878863 0.615543 

252.0 13.71 0.878863 0.660713 
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252.5 11.48 0.879178 0.615937 

255.0 10.22 0.880744 0.586568 

275.0 14.20 0.892746 0.669564 

281.0 14.50 0.896176 0.674777 

289.0 14.60 0.900638 0.676463 

295.0 14.80 0.903904 0.679884 

295.8 14.84 0.904335 0.680694 

296.0 14.20 0.904442 0.669564 

296.0 18.91 0.904442 0.741819 

300.0 15.58 0.906576 0.692833 

310.0 14.99 0.911787 0.683155 

310.0 17.24 0.911787 0.718513 

325.0 17.54 0.919298 0.722814 

331.0 16.26 0.922205 0.703763 

331.0 17.44 0.922205 0.721322 

333.0 23.40 0.923163 0.7956 

339.0 20.97 0.926001 0.767843 

339.0 21.16 0.926001 0.770156 

339.2 21.18 0.926095 0.770386 

349.0 18.13 0.930622 0.731108 

350.0 18.13 0.931077 0.731108 

350.0 20.28 0.931077 0.759406 

375.0 26.06 0.942043 0.822736 

382.0 24.00 0.944982 0.801942 

382.0 24.00 0.944982 0.801942 

382.5 24.07 0.94519 0.802623 

385.0 23.22 0.946226 0.793615 

393.0 27.74 0.949494 0.838501 

397.0 25.45 0.951104 0.816717 

400.0 30.14 0.952301 0.85945 

475.0 38.60 0.979615 0.921869 

480.0 34.57 0.981279 0.894018 

500.0 33.21 0.987768 0.883909 

522.0 50.51 0.994612 0.989707 

525.0 42.42 0.995522 0.945677 

531.3 46.90 0.997418 0.970981 

540.0 52.61 1 1 
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Appendix D 

clc 

clear 

%% Import the data of 25% 

[~, ~, raw] = xlsread('C:\Users\user\Documents\MATLAB\gogogo\WT25wt.xls','Sheet3','A3:BC2542'); 

data = reshape([raw{:}],size(raw)); 

WT25wt = dataset; 

WT25wt.VarName1 = data(:,1); 

WT25wt.ThroughputSetValueDosing5 = data(:,2); 

WT25wt.ThroughputActualValueDosi = data(:,3); 

WT25wt.SetRotationalSpeedScrewZS = data(:,4); 

WT25wt.TorqueZSG = data(:,5); 

WT25wt.ResultingForceServoDie = data(:,6); 

WT25wt.ForceServoDieOpen = data(:,7); 

WT25wt.ForceServoDieClose = data(:,8); 

WT25wt.ActualRotationalSpeedScre = data(:,9); 

WT25wt.InternalForceZSG = data(:,10); 

WT25wt.InternalTemperatureZSG = data(:,11); 

WT25wt.TemperatureZSGZone1 = data(:,12); 

WT25wt.TemperatureZSGZone2 = data(:,13); 

WT25wt.TemperatureZSGZone9 = data(:,14); 

WT25wt.TemperatureZSGZone10 = data(:,15); 

WT25wt.TemperatureZSGZone11 = data(:,16); 

WT25wt.TemperatureZSGZone12 = data(:,17); 

WT25wt.TemperatureZSGZone13 = data(:,18); 

WT25wt.TemperatureZSGZone14 = data(:,19); 

WT25wt.TemperatureZSGZone15 = data(:,20); 

WT25wt.TemperatureZSGZone16 = data(:,21); 

WT25wt.ActualCycleNumber = data(:,22); 

WT25wt.RotationalSpeedMotorShear = data(:,23); 

WT25wt.PickUpBeltTemperature = data(:,24); 

WT25wt.PositioningBelt1Temperatu = data(:,25); 

WT25wt.PositioningBelt2Temperatu = data(:,26); 

WT25wt.PositioningBelt3Temperatu = data(:,27); 

WT25wt.PositioningBelt4Temperatu = data(:,28); 

WT25wt.PositioningBelt5Temperatu = data(:,29); 

WT25wt.PositioningBelt6Temperatu = data(:,30); 

WT25wt.SafetyTunnelTemperature = data(:,31); 

WT25wt.WorkingTunnel1Temperature = data(:,32); 

WT25wt.WorkingTunnel2Temperature = data(:,33); 
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WT25wt.WorkingTunnel3Temperature = data(:,34); 

WT25wt.ActualSpeedPickUpBelt = data(:,35); 

% WT25wt.ActualSpeedMeltCompound = data(:,36); 

WT25wt.ActualSpeedPositioningBel = data(:,37); 

WT25wt.ActualSpeedWagon = data(:,38); 

WT25wt.SetRotationalSpeedScrewZS1 = data(:,39); 

WT25wt.TorqueZSE = data(:,40); 

WT25wt.ActualRotationalSpeedScre1 = data(:,41); 

WT25wt.InternalForceZSE = data(:,42); 

WT25wt.InternalTemperatureZSE = data(:,43); 

WT25wt.VarName44 = data(:,44); 

WT25wt.TemperatureZSEZone1 = data(:,45); 

WT25wt.TemperatureZSEZone2 = data(:,46); 

WT25wt.TemperatureZSEZone3 = data(:,47); 

WT25wt.TemperatureZSEZone4 = data(:,48); 

WT25wt.TemperatureZSEZone5 = data(:,49); 

WT25wt.TemperatureZSEZone6 = data(:,50); 

WT25wt.TemperatureZSEZone7 = data(:,51); 

WT25wt.TemperatureZSEZone8 = data(:,52); 

WT25wt.TemperatureZSEZone9 = data(:,53); 

WT25wt.TemperatureZSEZone10 = data(:,54); 

% WT25wt.TemperatureZSEZone11 = data(:,55); 

clearvarsdataraw; 

%% Import the data of 30%,35%,40%,45%,50% are the same method 

%% get the mean and standard deviation of the input 

wt25=double(WT25wt);wt30=double(WT30wt);wt35=double(WT35wt);wt40=double(WT40wt); 

wt45=double(WT45wt);wt50=double(WT50wt); 

Processparametername(1,:)=WT50wt(1,:);Processparametername(1,:)=[]; 

wt25mean=mean(wt25,1);wt30mean=mean(wt30,1);wt35mean=mean(wt35,1); 

wt40mean=mean(wt40,1);wt45mean=mean(wt45,1);wt50mean=mean(wt50,1); 

wt25std=std(wt25,1);wt30std=std(wt30,1);wt35std=std(wt35,1); 

wt40std=std(wt40,1);wt45std=std(wt45,1);wt50std=std(wt50,1); 

%% obtain the input of mean and std 

input_mean=[wt25mean; wt30mean; wt35mean;wt40mean; wt45mean; wt50mean]; 

input_std=[wt25std; wt30std; wt35std;wt40std; wt45std; wt50std]; 

input_mean(:,1)=[]; 

input_std(:,1)=[]; 

%% load target from the excel files 

%% Import the data 

[~, ~, raw] = xlsread('C:\Users\user\Documents\MATLAB\gogogo\Orgnaized ANN data.xlsx','Raw Data Standard 

Deviation','BF1:BG57'); 
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raw(cellfun(@(x) ~isempty(x) &&isnumeric(x) &&isnan(x),raw)) = {''}; 

R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 

raw(R) = {NaN}; 

data = reshape([raw{:}],size(raw)); 

OrgnaizedANNdataS1 = table; 

OrgnaizedANNdataS1.Youngsmodulus = data(:,1); 

OrgnaizedANNdataS1.TensileStrength = data(:,2); 

clearvarsdatarawR; 

Youngsmodulus=double(OrgnaizedANNdataS1.Youngsmodulus); 

TensileStrength=double(OrgnaizedANNdataS1.TensileStrength); 

%% 

Youngsmodulus(1:3,:)=[]; 

TensileStrength(1:3,:)=[]; 

a11mean=mean(Youngsmodulus(1:5,:)); 

a12mean=mean(Youngsmodulus(6:9,:)); 

a21mean=mean(Youngsmodulus(10:14,:)); 

a22mean=mean(Youngsmodulus(15:18,:)); 

a31mean=mean(Youngsmodulus(19:22,:)); 

a32mean=mean(Youngsmodulus(23:27,:)); 

a41mean=mean(Youngsmodulus(28:32,:)); 

a42mean=mean(Youngsmodulus(33:36,:)); 

a51mean=mean(Youngsmodulus(37:41,:)); 

a52mean=mean(Youngsmodulus(42:45,:)); 

a61mean=mean(Youngsmodulus(46:50,:)); 

a62mean=mean(Youngsmodulus(51:54,:)); 

Youngsmodulus0mean=[a11mean; a21mean; a31mean; a41mean; a51mean; a61mean]; 

Youngsmodulus90mean=[a12mean;a22mean;a32mean;a42mean;a52mean;a62mean]; 

a11std=std(Youngsmodulus(1:5,:)); 

a12std=std(Youngsmodulus(6:9,:)); 

a21std=std(Youngsmodulus(10:14,:)); 

a22std=std(Youngsmodulus(15:18,:)); 

a31std=std(Youngsmodulus(19:22,:)); 

a32std=std(Youngsmodulus(23:27,:)); 

a41std=std(Youngsmodulus(28:32,:)); 

a42std=std(Youngsmodulus(33:36,:)); 

a51std=std(Youngsmodulus(37:41,:)); 

a52std=std(Youngsmodulus(42:45,:)); 

a61std=std(Youngsmodulus(46:50,:)); 

a62std=std(Youngsmodulus(51:54,:)); 

Youngsmodulus0std=[a11std;a21std;a31std;a41std;a51std;a61std]; 

Youngsmodulus90std=[a12std;a22std;a32std;a42std;a52std;a62std]; 
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%% 

b11mean=mean(TensileStrength(1:5,:)); 

b12mean=mean(TensileStrength(6:9,:)); 

b21mean=mean(TensileStrength(10:14,:)); 

b22mean=mean(TensileStrength(15:18,:)); 

b31mean=mean(TensileStrength(19:22,:)); 

b32mean=mean(TensileStrength(23:27,:)); 

b41mean=mean(TensileStrength(28:32,:)); 

b42mean=mean(TensileStrength(33:36,:)); 

b51mean=mean(TensileStrength(37:41,:)); 

b52mean=mean(TensileStrength(42:45,:)); 

b61mean=mean(TensileStrength(46:50,:)); 

b62mean=mean(TensileStrength(51:54,:)); 

TensileStrength0mean=[b11mean; b21mean; b31mean; b41mean; b51mean; b61mean]; 

TensileStrength90mean=[b12mean;b22mean;b32mean;b42mean;b52mean;b62mean]; 

b11std=std(TensileStrength(1:5,:)); 

b12std=std(TensileStrength(6:9,:)); 

b21std=std(TensileStrength(10:14,:)); 

b22std=std(TensileStrength(15:18,:)); 

b31std=std(TensileStrength(19:22,:)); 

b32std=std(TensileStrength(23:27,:)); 

b41std=std(TensileStrength(28:32,:)); 

b42std=std(TensileStrength(33:36,:)); 

b51std=std(TensileStrength(37:41,:)); 

b52std=std(TensileStrength(42:45,:)); 

b61std=std(TensileStrength(46:50,:)); 

b62std=std(TensileStrength(51:54,:)); 

TensileStrength0std=[b11std;b21std;b31std;b41std;b51std;b61std]; 

TensileStrength90std=[b12std;b22std;b32std;b42std;b52std;b62std]; 

%% 

%% organized input and taget 

input=input_mean'; target=[Youngsmodulus0mean Youngsmodulus90mean TensileStrength0mean 

TensileStrength90mean]'; 

% input=input_std'; target=[Youngsmodulus0std Youngsmodulus90std TensileStrength0std TensileStrength90std]'; 

clearvars-exceptinputtargetinput_meaninput_std 

%% normalize data 

[inputn,inputps]=mapminmax(input,0,1); 

[targetn,targetps]=mapminmax(target,0,1); 

%%build neural network 

[r,c]=size(inputn); 

P=inputn;T=targetn; 
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S=2*r+1; 

% S=104; 

% % while S<=120 ; 

net=newff(P,T,S); 

% net=newcf(P,T,S); 

% net=newelm(P,T,S); 

% %Training function selet 

net.layers{1}.transferFcn = 'logsig'; 

net.layers{2}.transferFcn = 'purelin'; 

net.trainFcn='trainlm'; 

[net,tr]=train(net,inputn,targetn); 

outputn=sim(net,inputn 

%reverse normolize 

output=mapminmax('reverse',outputn,targetps,0,1); 

%network error figure 

plotperform(tr); 

errors=output-target; 

errorn=outputn-targetn; 

figure(1) 

plot(1:6,errors(1,:),'bo',1:6,errors(2,:),'g+',1:6,errors(3,:),'rx',1:6,errors(4,:),'c*') 

title('BP Network Simulate error','fontsize',12) 

ylabel('Error','fontsize',12) 

xlabel('Output Sample','fontsize',12) 

figure(2) 

plot(1:6,output,'s',1:6,target,'-.+'); 

title('Comparison on Target to Output') 

ylabel('Output (Youngs modulus and Tensil Strength)') 

xlabel('Output Samples') 

figure(3) 

plot(target',output','o'); 

axis([0 500 0 500]); 

title('Regression of Target and Output'); 

ylabel('Output'); 

xlabel('Target'); 

figure(4) 

plot(targetn',outputn','s'); 

axis([0 2.5 0 2.5]); 

title('Regression of Normalized Target and Output'); 

ylabel('Normalized Output'); 

xlabel('Normalized Target'); 

hiddenlayerweight=net.iw{1,1}; 
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outputlayerweight=net.lw{2,1}; 

hiddenlayerbias=net.b{1,1}; 

outputlayerbias=net.b{2,1}; 

bestperform=tr.best_perf; 

tr; 

performn=perform(net,targetn,outputn); 

performance(S,:)=performn 

xmean=mean(inputn,2)'; 

[rm,cm]=size(xmean); 

i=1; 

whilei<=S 

x(i,:)=xmean(1,:); 

i=i+1; 

end 

a=hiddenlayerweight; 

a0=hiddenlayerbias; 

b=outputlayerweight; 

b1=b(1,:)';b2=b(2,:)';b3=b(3,:)';b4=b(4,:)'; 

z=outputn; 

% clearvars -except a a0 b x z b1 

%calculate u 

u=sum(a.*x,2)+a0; 

%calculate sensitivity 

%dz1dx 

ii=1; 

while ii<= cm 

dz1dx(ii,:)=sum(b1.*a(:,ii).*((1+exp(-u)).^2)); 

ii=ii+1; 

end 

%dz2dx 

ii=1; 

while ii<= cm 

dz2dx(ii,:)=sum(b2.*a(:,ii).*((1+exp(-u)).^2)); 

ii=ii+1; 

end 

%dz3dx 

ii=1; 

while ii<= cm 

dz3dx(ii,:)=sum(b3.*a(:,ii).*((1+exp(-u)).^2)); 

ii=ii+1; 

end 
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%dz4dx 

ii=1; 

while ii<= cm 

dz4dx(ii,:)=sum(b4.*a(:,ii).*((1+exp(-u)).^2)); 

ii=ii+1; 

end 

S 

dzdx=[dz1dx/S dz2dx/S dz3dx/S dz4dx/S]; 

% clearvars -except dzdx10 a b u 
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