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ABSTRACT 
 

In this competitive era, there is an increasing demand to address the problem of 

powertrain matching in automobiles, one amongst the significant technologies out in the market 

that addresses such a problem, is cylinder deactivation technology. While this technology 

mitigates the part load losses in an automobile, due to its method of operation, is subjected to 

frictional losses from the deactivated cylinders, which hinder the additional benefit that could 

otherwise be capitalised on, to improve the fuel economy. For this reason, a new strategy is 

presented through this thesis, which eliminates the above discussed frictional losses even while 

addressing the part load performance of the engine. 
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1 Introduction 

Globally, demand for automobiles with higher power, lower fuel consumption and lesser 

emission is on the rise. Automobile manufacturers, to stay current and to improve their product 

appeal, have been trying to enhance the running performance of a vehicle but are finding it 

difficult to cope up with the current fuel economy standards that are getting more stringent day 

by day. One of the most promising areas for increasing the fuel economy of automobiles lies 

in the area of decreasing the brake specific fuel consumption. 

Brake specific fuel consumption, is the amount of fuel consumed per unit power produced in a 

vehicle, it gives a basic understanding of how efficiently the fuel is being utilized by the engine 

to produce power. 

Ever since the automobile was introduced, a major challenge the engine designers have been 

trying to address is to decrease the brake specific fuel consumption in all operating conditions 

in an automobile. 

The nature of the driving cycle plays a vital role in utilizing the brake specific consumption to 

its potential. Contemporarily, most people experience drive cycles that do not even set out to 

utilise the present-day engines at anything even close to their brake specific fuel consumption 

potential. This can be explained in detail by the problem statement below: 

1.1 Problem Statement 

Let us consider a naturally aspirated car, having the following specifications:  

Figure 1.1.1: Car Specifications [9]  
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 Fuel Consumption City: 20 MPG 

 Fuel Consumption Highway: 28 MPG 

 Average City/Highway Fuel Consumption: 24 MPG 

 Corresponding Average BSFC: 0.400 g/W-hr 

 Optimum BSFC: 0.280 g/W-hr 

When the car travels through city and highway conditions, the average fuel consumption is 

about 24 MPG, this corresponds to an average brake specific fuel consumption of about 0.400 

g/W-hr but the average brake specific fuel consumption for this vehicle is around 0.280 g/W-

hr [8]. 

Let us look at the driving time distribution graph to get a detailed picture of what is happening 

with the brake specific fuel consumption. 

 

Figure 1.1.2: Driving time distribution [17] 
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It is clearly understood from the driving time distribution map that the typical road load values 

are nowhere close to utilizing the optimum brake specific fuel consumption of this car. 

This can be further explained by looking into the engine speed vs torque map, where in, the 

brake specific fuel consumption values expressed in g/W-hr are placed as a matrix of values 

that are expressed as a function of engine torque and speed. 

 

 

Figure 1.1.3: Effect of Road load on engine performance [8] 

It can be observed that there is reasonably a broad band range for the engine to operate within 

10% of its best brake specific fuel consumption values. If the vehicle could be used in such a 

manner that it operates within the 10% of the best brake specific fuel consumptions values 

during the entire driving cycle, it would achieve a mileage of about 37 MPG. 

From the above map, it is understood that the 10% of the best brake specific fuel consumption 

band only begins at about twice the road load values. So, this problem of trying to use the 

engine in an optimum manner by designing it in such a way that the engine runs as efficiently 

as possible throughout the entire driving cycles is called a powertrain matching problem. 

The only solution to such a problem would be to improve the brake specific fuel consumption 

over a wide operating range [8]. 
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Let us try to understand the factors that hamper the brake specific fuel consumption over wide 

operating ranges.  

During part load conditions, spark ignited engines restrict the flow of fresh charge into the 

engine by using a throttle. When the throttle valve is partially open, the air pressure inside the 

intake manifold is below atmospheric pressure and the piston, has to work against the partially 

opened throttle valve caused manifold depression in order to induct fresh air charge. This 

negative work done by the piston is called as pumping work and the loss incurred from this 

phenomenon is called as throttling loss. 

 

Figure 1.1.4: Engine pumping losses [10] 

For a given engine output, if it is made possible to reduce the size of the pumping loop, which 

means less amount of power being lost in the induction process and a corresponding reduction 

in the area of the power loop is noticed. Hence, this reduction in power loop proportionately 

reduces the fresh charge requirement for a given engine output and the efficiency is improved.  

It is also noticed that the indicated fuel consumption does not change as drastically as the brake 

specific fuel consumption changes in response to the variations in load. Shown in the Figure 

1.1.5, is a graph of the changes in specific fuel consumption over wide rpm or intake manifold 

pressures. It is observed that the indicated specific fuel consumption changes only about 15%, 

while the brake specific fuel consumption changes about a 100% in response to changes in 

load. 
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Figure 1.1.5: Variation in specific fuel consumption [8] 

This implies that the task of improving on the BSFC is more a task of trying to cut down on 

the losses than trying to improve the Basic Combustion Efficiency.  

In the next chapter, contemporary methods of improving the fuel economy by addressing the 

above discussed issues are briefly analysed. 
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2 Cylinder Deactivation Technology 

2.1 Introduction 

As discussed in the previous chapter, to eliminate the part load losses or the pumping losses in 

a vehicle, for a given output, the area of the pumping loop, in the PV diagram has to be reduced. 

The pumping work can be reduced by making the pressure in the intake manifold as close to 

atmospheric as possible, in other words, eliminating the pressure difference that exists between 

the intake manifold and outside environment leads to reduction of pumping losses in an engine. 

Now to reduce this pressure difference, the throttle opening has to be increased, but the engine’s 

power output is directly proportional to the throttle valve opening, so any increase in the throttle 

opening to reduce the pumping loss, would lead to an increase in the power output of the 

engine. Any abrupt change in the power output is not desirable to the driver. For this reason, 

depending on the need, a few cylinders in the engine are sometimes turned off before the 

throttle opening is increased to eliminate the part load losses. In this way the remainder of the 

active cylinders need to produce more power to compensate for the power lost from the 

deactivated cylinders and require the throttle valve to open wider and eliminate the pumping 

losses, which is the main objective of the cylinder deactivation technology. 

Cylinder Deactivation Technology, is a means of improving the fuel economy in gasoline 

engines. Reduce the part load losses by varying the displacement of the engine, this is 

accomplished by having a control on number of active cylinders and cutting out or deactivating 

the cylinders that are not wanted during the part load operation. 

Deactivation of cylinders can be done by keeping the intake and exhaust valves closed, either 

before the suction stroke or after the compression stroke. When deactivated, the gasses that get 

trapped in the combustion chamber are subjected to compression and expansion due to the up 

and down movement of the piston during the deactivation phase, this creates an air spring inside 

the combustion chamber which has virtually, no additional load on the engine. 

This transition while activating and deactivating the cylinders is made seamless by making 

small changes to the ignition timing, camshaft timing and also, the throttle valve opening, all 

these modifications are controlled by sophisticated electronic control systems. 
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2.2 Types of Cylinder Deactivation Technologies 

Cylinder deactivation technology can be classified into two kinds, depending on the type of 

valve train. 

 

Figure 2.2.1: Types of deactivating mechanisms [4] 

For push road valve trains, the deactivation is initiated at the lifter by decoupling the lifter and 

camshaft. A hydraulically operated pin is used to break the link between the lifter and camshaft.  

For overhead valve trains, the deactivation is initiated at the rocker arm, again by the use of 

solenoid controlled hydraulically operated pin to engage and break the link with the remainder 

of the valve train. 

It can be understood that this cylinder deactivation technology runs the cylinders at higher 

volumetric efficiency zones by increasing the throttle valve opening, eliminates the part load 

losses and also, at the same time reduces the valve train friction. The extent to which the valve 

train friction gets reduced depends on the mechanism of valve train operation. 
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Given below are the current OEM strategies and claimed economy benefits obtained from the 

use of cylinder deactivation technology. 

 

 

Chrysler 

Multi 

Displaceme

nt (MDS) 

GM 

Displaceme

nt on 

Demand 

(DOD) 

Honda 

Variable 

Cylinder 

Management 

(VCM) 

Mercedes 

Benz Volkswagen 

Valve 

Train 

Push Rod 

Design 

Push Rod 

Design 

Overhead 

Valve train 

design 

Overhead 

Valve train 

design 

Multi Piece 

cam shaft 

design 

Decoupling 

location Lifter Lifter Rocker Arm Rocker Arm Rocker Arm 

Decoupling 

force Oil Pressure Oil Pressure Oil Pressure Oil Pressure 

Electro 

Magnetic 

Actuator 

Decoupling 

controlled 

by 

Solenoid 

Valve 

Solenoid 

Valve Solenoid Valve 

Solenoid 

Valve 

Claimed 

Benefit 

City 7% 

improveme

nt 

Steady 

CRUISE 

20% 

5.5% - 

7.5% Fuel 

economy 

improveme

nt 

About 7-10% 

fuel economy 

improvement 

About 7% 

fuel 

economy 

improvement 

About 7% 

fuel 

economy 

improvement 

Table 2.2.1: Current technologies [4, 7, 11] 

The United States Environmental Protection Agency (EPA) claims that on an average, the 

Cylinder Deactivation Technology improves the fuel economy by 7.5%. 

 

2.3 Disadvantages 

Besides having an improvement in the fuel economy, the usage of this technology has the 

following drawbacks: 

 The engine cools down unevenly, when the cylinders are deactivated, the exhaust gas 

is entrapped in the combustion chamber, the heat generated from compression and 

expansion of this exhaust gas sets in an uneven pattern in the thermal model of the 

engine and also makes these deactivated cylinders cool down slowly. 
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 A large quantity of the confined gas creates an air spring inside the combustion 

chamber, leads to producing different pressures inside this chamber and would further 

lead to producing greater irregularities in forces on the crankshaft. 

 Care should be taken to ascertain that no vacuum or suction force is produce inside the 

combustion chamber, as this would cause the crankcase engine oil to be drawn into the 

chamber.  

 Even though the cylinders are deactivated, there is power loss incurred from the 

reciprocating pistons, this loss accounts to about 65-80% of the frictional mean 

effective pressure in an engine [7]. 

 

 

Figure 2.3.1: Frictional losses in an engine [7] 

 

 It is only this 7-15% valve train friction, shown in the above pie chart, the cylinder 

deactivation technology manages to save. 

 A major chunk of loss is incurred through the friction from piston assembly and the 

bearings, this loss in total sums up to 65-80% of the friction mean effective pressure in 

an engine. 

 In order to analyse the variation in friction mean effective pressure over a wide range 

of engine load, as depicted in Table 2.3.1, friction mean effective pressure represented 

as a function of rpm and brake mean effective pressure, is taken into consideration. 
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RPM BMEP (Bar) FMEP (Bar) 

6000 10.044 2.19334 

5500 10.4799 2.07223 

5000 10.7896 1.94741 

4500 11.1176 1.83086 

4000 11.5497 1.71931 

3500 11.2842 1.57739 

3000 10.6337 1.42645 

2500 10.3781 1.2733 

2000 10.1414 1.12335 

1500 9.99601 0.979237 

1000 8.755 0.809341 

800 8.15763 0.748192 

Table 2.3.1: Engine data at wide open throttle (WOT) 

 The above data is collected during the wide open throttle conditions (WOT). 

 It can be inferred that the frictional mean effective pressure is about 10-20% of the 

brake mean effective pressure, when the speed ranges from idle to maximum rpm. 

 For example, consider an 8-cylinder engine, running at 3000 rpm, which deactivates 

four of its cylinders, at wide open throttle. It can be inferred from the above figure that 

each cylinder produces 10.6 bars of brake pressure and 1.43 bars of frictional pressure. 

When we sum up the frictional loss from all the 8 engines, it accounts to 11.3 bars, 

which is equal to the power produced by a single cylinder at the same time. 

 This means that even if you use the cylinder deactivation technology, the frictional loss 

is so high that it eats up the entire power produced by a single cylinder running at the 

same instance of time. 
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For this reason, there is a need to curb this frictional loss while trying to improve the part load 

performance to experience a maximum benefit. 

In in the next chapter, a new strategy is developed to curb the frictional loss while improving 

the part load performance of the engine. 
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3 Proposed New Strategy 

For reasons explained in the previous chapter, there is an increasing need to develop a fuel 

saving strategy that averts the piston motion while addressing the problem of powertrain 

matching.  

This is only possible if the motion of the piston is ceased while the throttle position is being 

varied.  For the motion to be ceased, the piston or crank shaft should possess the ability to 

disengage when required. 

Therefore, this requirement lead to the development of a separate engine strategy, instead of a 

single large engine, two separate smaller engines would be connected to the powertrain and 

one of the engines would turn off when not required. This would completely decouple the 

engine from the powertrain and hence, the frictional losses are curbed while improving the part 

load performance. 

For example, in case a vehicle has an 8-cyliner engine that has a cubic capacity of 4 litres, it 

could be replaced with two 4-cylinder engines, having a cubic capacity of 2 litres. 

These separate engines can be connected in two possible ways. 

3.1 Parallel Connection: 

Engines can be connected in parallel by the use of a planetary gear system. Shown above, is an 

example of the planetary gear system layout. It consists of a ring gear, sun gear and a set of 

planet gears that connect by a carrier. This gear system is used in many systems, mostly in the 

hybrid electric vehicles, where the ring, the sun and the carrier or a combination of these can 

be the driven while another shaft is the output. A realistic model has losses due to friction, but 

modelling these losses is very complicated.  

The efficiency of a planetary gear system depends on which gears are driven and the ratio of 

teeth between different gears. Devising a model that includes this friction model at all 

configurations is quite complicated. It is also understood that the input power passes through a 

sequence of gear meshes before it comes out through an output shaft of a planetary gear, the 

number of gear meshes depends on the combination of driven gear and the output shafts. 
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Every gear mesh has about 2-3% loss in power, so in case we use the planetary gear, due to the 

sequence of gear meshes involved in this model, the output power is only about 94-95% of the 

input power, or in other words, the usage of this model causes about 5-6% loss in the power. 

To avoid the above stated power loss, a method described below is chosen for connecting the 

two smaller separate engines.  

3.2 Series Connection: 

A friction clutch as shown in the figure below, is used to connect the engines in series. 

 

Figure 3.2.1: Friction clutch components [24] 

Figure 3.1.1: Planetary gear system layout [12] 
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The clutches are connected to the flywheel of the engine, so a minor modification has to be 

made to the engine that sits in the front, for this engine a flywheel has to be attached to the 

crank shaft and connects on the rear side, i.e., on the side that is on the other end of the 

conventional flywheel location. 

The flywheel is equipped with a friction surface, and this is pressed against the friction surface 

of the clutch discs, this makes the flywheel lock with the clutch and rotate as one unit. 

This additional flywheel does not need to have any teeth on its circumference, as it would not 

be connected to the starter motor, a friction clutch is attached to this additional flywheel and at 

the other end of this friction clutch is the flywheel of the second engine. The layout of this 

model is shown in the image below 

 

Figure 3.2.2: Separate engine strategy 

 This can be correlated to the cylinder deactivation technology, when the cylinders are 

deactivated in the CDA engine, in this model, the second engine is turned off and the second 

friction clutch disengages the motion between the two engines. 

This way, the frictional losses are eliminated while improving the part load performance of the 

vehicle. 
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4 Methodology 

The proposed separate engine strategy is simulated and compared against the conventional 

engine as well as cylinder deactivation engine and the fuel economy benefit if any, observed. 

The following models are built for this project: 

 A 4-cylinder conventional engine 

 An 8-cylinder conventional engine 

 An 8-cylinder cylinder deactivation compatible engine  

The following steps are taken to design and simulate in this project: 

 Firstly, the engine models are built in AVL BOOST software by defining the following 

basic input data 

o bore, stroke, number of cylinders, connecting rod length 

o numbering of cylinders, principle arrangement of manifolds 

o compression ratio, firing order and firing intervals 

o number of valves, inner valve seat diameters 

o valve lift curves 

 The simulated engine data from the first step, is input to the Vehicle model in AVL 

CRUISE. 

 Modifications to the powertrain in case of the proposed separated engine technology is 

accommodated by: 

o Adding the moments of the additional flywheel to the first engine model 

o Adding the weights of the additional components, used to accommodate this 

proposed separate engine strategy, to the vehicle model 

 Running all the vehicle models through drive cycles, which simulate the real life driving 

conditions. 

 Finally, comparing and analysing the results. 
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5 Engine Model Creation 

5.1 AVL BOOST 

BOOST is used for simulating a wide range of engines, spark ignited, compression ignited, 2 -

stroke or 4-stroke. The applications range from small capacity engines such as motorcycles up 

to very large engines used for marine propulsion. 

BOOST comes with an interactive pre-processor that helps in preparing the input data for the 

main simulation program. An interactive post-processor supports the results analysis. The pre-

processor of AVL BOOST is equipped with a model editor. The computational model of an 

engine is defined by using the element tree to select the required elements and these are 

connected by piped elements. Availability of a wide range of elements make BOOST easier to 

model complex engine configurations. 

The BOOST program also provides optimized simulation algorithms for all the elements. The 

pipe flow is treated as one-dimensional. This implies that the attributes related to flow such as 

flow velocity, temperatures and pressures are obtained by solving the gas dynamic equations 

which represent the mean values over the pipe cross-sections. 

5.2 Creating the Model 

AVL BOOST is used to create the following engine models. 

 A 4-Cylinder Conventional Engine 

 An 8-Cylinder Conventional Engine 

 An 8-Cylinder Engine having 4 cylinders deactivated 

The first step to design an engine is to identify the required components, place them in the 

working area and finally, complete the setup by providing the required connections in between 

the components. 
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The following Figure 5.2.1, is a 4 cylinder conventional engine model after the completion of 

the initial setup: 

 

Figure 5.2.1: 4-cylinder engine model 

5.3 Defining the Input Data 

In Boost it is required to specify the general input data prior to the input of any other element 

data. The general input data regarding the simulation is as follows: 

Cycle Simulation 

Simulation Interval: End of Simulation 40 Cycles 

Convergence Control Activate 
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Spatial Pipe Discretization: Average Cell 

Size 30mm 

Table 5.3.1: Cycle Simulation data 

The simulation interval is set to 40 cycles to make sure that the results converge to provide a 

reliable data. 

5.3.1 System Boundary 1 or the Inlet Environment 

In the first step to model an engine, we define the inlet boundary conditions. In this model 

System Boundary 1, element is used to do this. The following data is used to build the inlet 

boundary conditions: 

Pressure 0.995 bar 

Gas Temperature 30.85 deg C 

Fuel Vapour 0 

Combustion Products 0 

A/F Ratio 10000 

Table 5.3.2: System boundary 1 

5.3.2 System Boundary 2 or the Outlet Environment 

The boundary conditions used for the outlet are as follows: 

Pressure 0.995 bar 

Gas Temperature 676.85 deg C 

Fuel Vapour 0 

Combustion Products 1 

A/F Ratio 14.3 

Table 5.3.3: System Boundary 2 
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5.3.3 Engine  

While defining the engine, the engine speed is set as a parameter value, these values are later 

entered as steps of 500 through to the maximum engine speed, which is 6000 in this case. This 

is done to obtain the engine data for various rpm values. The following data is used to build 

the engine: 

 

 Engine Firing Order 

The following firing order is considered for a 4-cylinder engine: 

Cylinder Firing Angle (Degrees) 

1 0 

2 540 

3 180 

4 360 

Table 5.3.4: 4-cylinder engine firing order 

The following firing order is considered for an 8-cylinder engine: 

Cylinder Firing Angle (Degrees) 

1 0 

2 180 

3 450 

4 630 

5 270 

6 90 

7 540 

8 360 

Table 5.3.5: 8-cylinder engine firing order 
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 Friction  

Engine friction affects the work output as well as fuel economy characteristics of the engine. 

Engine friction data is entered as a function of rpm, the following data is used to define the 

engine friction for a 4-cylinder engine: 

Engine Speed RPM 

Friction Mean Effective 

Pressure (FMEP) bar 

800 0.6 

6000 2.89 

Table 5.3.6: 4-Cylinder Engine Friction 

The following friction data is used for an 8-cylinder engine:  

Engine Speed RPM 

Friction Mean Effective 

Pressure (FMEP) bar 

800 0.6 

6000 3.2 

Table 5.3.7: 8-Cylinder Engine Friction 

5.3.4 Cylinder 

Next comes building of the engine cylinder element that covers basic dimensions of the 

cylinder and crank train such as stroke, bore, compression ratio, connecting road length, piston 

pin offset, etc.., also, information regarding combustion characteristics, scavenging process and 

the valve or port specifications for the attached pipes have to be specified. 

The piston motion is computed from the lengths of stroke, connecting rod and piston pin offset. 

The direction of positive offset is computed as the rotational direction of crankshaft at the top 

dead center. 

The relative piston position is calculated as the distance of piston from the top dead center 

position relative to full stroke. A zero degree crank angle corresponds to the firing at top dead 

center of a selected cylinder. 

While computing the blow-by from this model, average crankcase pressure and the effective 

blow-by gas has to be specified. Cylinder, crank case conditions and effective flow area are 



21 | P a g e  

 

used to calculate the actual blow-by mass. To calculate the effective flow area, cylinder 

circumference and effective blow-by gap are considered. 

The following data is used to build the engine: 

Bore 86 mm 

Stroke 86 mm 

Compression Ratio 10.5 

Con-Rod Length 143.5 mm 

Piston Pin Offset 0 mm 

Effective Blow By Gap 0 mm 

Mean Crankcase Press. 1 bar 

Table 5.3.8: Engine data 

The scavenging model used in this project is perfect mixing, this means that the gas going into 

the cylinder is immediately mixed with the contents of the cylinder. Also, the gas going out of 

the cylinder has the same mixture composition as the gas that was in the cylinder. This perfect 

mixing model is considered to be a standard model to simulate the scavenging in a 4 -stroke 

engine. 

The initial conditions at exhaust valve opening are taken as follows: 

Pressure 5 bar 

Temperature 726.85 deg C 

A/Fuel Ratio 14.3 

Combustion Products 1 

Table 5.3.9: Initial Conditions 

The simulation of the conditions inside the cylinder are started with the opening of exhaust 

valve and not before. 
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 Combustion 

A combustion model can either be described as predictive or non-predictive. 

Predictive Model: A combustion model where in, the burn rate is computed from various 

inputs, such as gas pressure, fuel, temperature, equivalence ratio and residual fraction.  This 

burn rate is then applied in the combustion simulation. 

Non-Predictive Model: A combustion model where in, the burn rate is directly imposed as a 

simulation input. In a non-predictive model, cylinder pressure or residual fraction have no 

effect on burn rate. Fuel and air will burn at a prescribed rate. 

Predictive Combustion Non-Predictive Combustion 

The burn rate is predicted from various 

inputs such as fuel, gas pressure, 

temperature, equivalence ratio... etc. The burn rate is imposed by the user 

Self-adjusting for transient conditions Not affected by operating conditions 

No experimental data needed 

Required experimental combustion data at 

all operating points 

Slow Computation Fast Computation 

Higher accuracy of results Lower Accuracy of results 

Table 5.3.10 Predictive combustion Vs Non Predictive combustion 

As the accuracy of results is high, a predictive combustion model, Vibe, is used to define the 

combustion model. 

The Vibe function is a very convenient method for describing the heat release characteristics. 

It is defined by the start and duration of combustion, a shape parameter 'm' and the parameter 

'a'. These values can be specified either as constant values or dependent on engine speed (in 

rpm) and engine load (expressed as BMEP in bar). The values considered in building the model 

are taken from the example models in the software’s user guide. 

Start of Combustion -5 deg 

Combustion Duration 47 deg 

Shaping Parameter m 1.6 
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Parameter a 6.9 

Table 5.3.11: Combustion Model 

The heat release characteristic of spark ignition engines, with homogeneous mixture 

distribution inside the cylinder, is essentially determined by the speed of flame propagation 

and combustion chamber’s shape. A very high flame propagation speed can be obtained with 

a combination of high turbulence levels and high compression ratio inside the cylinder. For 

precise and accurate engine simulations the actual heat release characteristic of the engine, 

(which can be obtained by an analysis of the measured cylinder pressure history), should be 

matched as accurately as possible. To get an estimate on the required combustion duration to 

achieve a certain crank angle interval between 10% and 90% mass fraction burned (MFB), the 

following chart (Figure 5.3.1) is used [14]: 

 

Figure 5.3.1: Crank Angle related to Combustion Duration [14] 

  

For example: 

“A shape parameter of 1.5 is selected and the duration between 10% and 90% MFB is 30 

degrees CRA. The crank angle interval between 10% and 90% MFB related to the combustion 

duration is 0.46 (from the graph). Hence the combustion duration is 30/0.46 = 65 degrees 

CRA. The point of 50% MFB is at 10 degrees CRA ATDC. According to the graph the location 
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of 50 % MFB after combustion start related to the combustion duration is 0.4. Thus the 

combustion start is calculated from 10 - 65 * 0.4 = -16 = 16 degrees BTDC” [14]. 

 Valves 

Valve dimensions at the intake and exhaust are specified as follows: 

Intake 

Inner valve seat diameter 43.84 mm 

Valve clearance 0 mm 

Scaling factor for effective flow area 1.72 

Exhaust 

Inner valve seat diameter 36.77 mm 

Valve clearance 0 mm 

Scaling factor for effective flow area 1.242 

Table 5.3.12: Valve dimensional data 

The data, used to define the valve lift, is show as curve below, having crank angle as function 

of the valve lift. 

 

Figure 5.3.2: Valve lift curve [14] 

 Heat Transfer 

In addition to the heat transfer coefficient provided by the heat transfer model, the surface areas 

and wall temperatures of the piston, cylinder head and liner must be specified. 

The wall temperatures are defined as the mean temperature over the surface. 
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A calibration factor for each surface may be used to increase or to reduce the heat transfer. 

For the surface areas the following values are considered: 

5.3.4.3.1 Piston: 

SI engines: Surface area is approximately equal to the bore area. 

5.3.4.3.2 Cylinder Head: 

SI engines: Surface area is approximately 1.1 times the bore area. 

5.3.4.3.3 Liner with Piston at TDC: 

The area may be calculated from an estimated piston to head clearance times the circumference 

of the cylinder. The mean effective thickness of the piston, the liner and the fire deck of the 

cylinder head together with the heat capacity determine the thermal inertia of the combustion 

chamber walls. The conductivity is required to calculate the temperature difference between 

the surface facing the combustion chamber and the surface facing the coolant. 

The heat capacity is the product of the density and the specific heat of the material.  

For the heat transfer to the coolant (head and liner) and engine oil (piston), an average heat 

transfer coefficient and the temperature of the medium must be specified [14]. 

To build the heat transfer model, all the surface areas of piston, cylinder head and liners are 

defined as follows: 

Heat Transfer 

Cylinder Model Woschni 1978 

Piston 

Surface Area 5809 mm2 

Wall Temperature 226.85 degC 

Piston Calibration Factor 1 

Cylinder Head 

Surface Area 7550 m2 
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Wall Temperature 256.85 degC 

Head Calibration Factor 1 

Liner 

Surface Area when piston at TDC 270 mm2 

Wall Temperature when piston at TDC 161.85 degC 

Wall Temperature when piston at BDC 151.85 degC 

Liner Calibration Factor 1 

Combustion System Direct Ignition 

In-cylinder Swirl Ratio 0 

Table 5.3.13: Heat transfer model 

5.3.5 Injector 

An injector was defined by specifying the air fuel ratio to 13.34 and a continuous injection 

method is selected as the injector model. 

5.3.6 Air Cleaner 

The total volume of the air cleaner, the collector volumes of the collectors at inlet and outlet 

and the filter element’s length have to be define during air cleaner modelling. The following 

data is considered to build an air cleaner: 

Air Cleaner 

Geometrical Properties 

Total Air Cleaner Volume 8.7 litres 

Inlet Collector Volume 3.0 litres 

Outlet Collector Volume 4.3 litres 

Length of Filter Element 300 mm 

Friction Specification Target Pressure Drop 
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Target Pressure Drop 

Mass Flow 0.13 kg/s 

Target Pressure Drop 0.008 bar 

Inlet Pressure 1 bar 

Inlet Air Temperature 19.85 degC 

Table 5.3.14: Air cleaner data 

The filter element’s length is used to model the time required by the pressure wave to travel 

throughout the air cleaner. 

The performance of the air cleaner is measured by the reference mass flow and the target 

pressure drop, which is defined as the pressure difference at the inlet pipe and outlet pipe, at 

the reference mass flow and the inlet air conditions such as temperature and pressure. 

 

Figure 5.3.3: Steady State Air Cleaner Performance 
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With reference to the above information, the program adjusts the wall friction loss in the 

model accordingly. 

5.3.7 Junctions 

The refined model requires flow coefficients for each flow path in each possible flow pattern. 

For the three-way junction, this adds up to two times six flow coefficients. The following 

Figure 5.3.4 shows the qualitative trend of these flow coefficient versus the ratio of the mass 

flow in a single branch to the mass flow in the common branch for a joining flow pattern 

 

Figure 5.3.4: Flow coefficients of a junction [14] 

The actual values depend on the geometry of the junction, i.e. the area ratio and the angle 

between the pipes. BOOST interpolates suitable flow coefficients for the considered junction 

from a database (RVALF.CAT) delivered with the BOOST code. The database contains the 

flow coefficients of six junctions, covering a wide range of area ratios and angles. The data 

were obtained by measurements on a steady state flow test rig. The file RVALF.CAT is a 

formatted ASCII file [14]. 

5.3.8 Exhaust Connections 

The exhaust connections are important to drive away all the burnt products inside the 

combustion chamber, in case there are two cylinders firing subsequently in an engine, then 

these two exhaust runners should not be interlinked at least in the first stage of connections.  

It is recommended to keep all the subsequently firing cylinders as far as possible, so that there 

are no back pressures generated from the collision of newly generated exhaust gas pulse with 

an existing exhaust gas pulse, which is already present in the exhaust runner as a result of the 
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previous power stroke in the first cylinder, this affects the efficiency of the engine to drive 

away the combustion products from the chamber. 

Therefore, as depicted in the Figure 5.3.5 below, the exhaust connections in an 8-cylinder 

engine are modelled to eliminate the back pressure. 

 

Figure 5.3.5: Exhaust Connections 

The firing order for this engine is 1-6-2-5-8-3-7-4, it can be observed that in the first stage of 

exhaust connections, no two subsequently firing cylinders are located close to each other. 

 

5.3.9 Optimization 

The plenum dimensions play an important role in determining the volumetric efficiency of the 

engine. The engines are modelled to produce maximum torque at 4000 rpm, the volumetric 

efficiency of the engine is a mere reflection of the torque curve, so the plenum volume is 

optimized in a way that it produces maximum volumetric efficiency at 4000 rpm. 
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Figure 5.3.6: Plenum for a 4-cyliner engine model 

As shown in the Figure 5.3.6, the plenum can be defined by volume or diameter and length, 

the air that leaves the plenum passes through pipes to the combustion chamber. Therefore, care 

must be taken to build the plenum model. 

The optimiser has different functions, the user can either specify the exact value of a variable 

required or just say maximum value or minimum value of the selected variable to be optimised. 

In this case, the goal of optimization is set to maximum value, engine torque is taken as the 

target variable to be optimised, the plenum diameters and length are given as parameters to be 

varied in order to achieve the goal of maximum engine torque. Engine rpm is fixed at 4000, 

during this optimization process. 

The limits of the parameter to be varied have to be defined. In case, the optimization result has 

these parameter values on the extremes of initially defined limits, a new optimization process 

is initiated again by, considering the result from the previous iteration, as a mean value to the 

new optimization process, which gets repeated until all the results do not fall on the extreme 

ends of the limits defined for the parameters to be varied. 

 

Figure 5.3.7: Plenum for an 8-cylinder engine model 
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5.3.10 Running the simulation 

Engine speed is set as a parameter and it is considered in steps of 500 from idle speed through 

to maximum engine speed redline. The following results are obtained from simulation. 

 Simulation data of a 4-cylinder engine 

 

 

 

Figure 5.3.9: 4-Cylinder Engine Fuel Consumption Map 

Figure 5.3.8: 4-Cylinder Engine Brake Torque 
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 Simulation data of a 8-cylinder engine 

 

 

Figure 5.3.10: 8-Cylinder Engine Brake Torque 

 

 

Figure 5.3.11: 8-Cylinder Engine Fuel Map 
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 Simulation data of CDA- engine 

While simulating the cylinder deactivation engine the following steps are taken: 

 The cylinders to be deactivated are identified by: 

o Understanding the firing order of the engine and making sure that the power 

stroke is evenly distributed, throughout the crank rotation, for each 

thermodynamic cycle that is every 720 degrees. 

o The firing order for the eight cylinder engine is 1-6-2-5-8-3-7-4. 

o Now subsequent firing cylinders should not be deactivated in order to evenly 

distribute the power stroke. 

o For the same reason, initially, cylinder 1 is considered for deactivation. 

o It is then followed by alternate firing cylinders for deactivation, which are 2-8-

7. 

o So the cylinders, 1-2-7-8 are deactivated and the cylinders 3-4-5-6 keep running 

through this simulation. 

 After identifying the cylinders to be deactivated, their corresponding valve lift is 

defined to be zero and the following results are obtained. 

 

Figure 5.3.12: CDA Engine Brake Torque 
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Figure 5.3.13: CDA Engine Fuel Map 
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6 Running Simulation Using AVL CRUISE 

6.1 AVL CRUISE 

AVL CRUISE is a system level simulation software used to simulate vehicle and powertrain. 

It supports day to day tasks in a vehicle, powertrain analysis, through the entire development 

phase, right from concept planning until the launch and beyond. Its application range covers 

conventional drivelines through to advanced hybrid powertrain systems and purely electric 

drivelines. It provides a streamlined workflow for various kinds of parameter optimizations 

and component matching which aid the user in attainable and practical solutions. It has 

organised interface, highly advanced data management scheme, also well equipped with system 

integration and data communication which have established CRUISE as a world leader and is 

being used by major OEM’s and suppliers. 

To summarise, CRUISE is used in engine development and drivetrain to calculate and optimize 

the following: 

 Fuel Consumption  

 Driving Performance 

 Transmission ratios 

 Braking Performance 

6.2 CRUISE Workflow 

The following steps are referred for the CRUISE workflow: 

 Create project/version 

 Create vehicle model 

 Input the data in components 

 Create connections: Energetic 

 Create connections: Informational 

 Create task folders and add tasks 

 Set up calculation 

 Run calculation 

 View and evaluate results 
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6.3 Creating the Vehicle Model 

The following components are placed in the work area and each of them are defined 

individually 

• Vehicle 

• Engine 

• Clutch 

• Gear Box 

• Single Ratio Transmission 

• Differential 

• 4 Brakes 

• 4 Wheels 

• Cockpit 

• Monitor 

6.3.1 Defining the Input Data for each component 

 Vehicle 

It is the main object in the model. It contains the general data of the vehicle, such as weights 

and nominal dimensions. Every model requires only one vehicle component in the model. The 

dimensions and load state form the base for calculating dynamic wheel loads and road 

resistances for different road runs. Wheel loads are calculated considering motion from the 

effects of acceleration, aerodynamic drag and rolling resistance. A passenger car from the 

example model is used to build the vehicle with the following data: 

Type Manual Front Wheel Drive 

Gas Tank Volume 0.075m3 

Vehicle Body Dimensions 

Distance form hitch to front 

axle 3300 mm 

Wheel Base 2650 mm 

Height of support point at 

bench test 100 mm 
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Load Dependent Characteristics [mm] 

Load 

State 

Distance 

of Gravity 

Center 

Height of 

Gravity 

Center 

Height of 

Hitch 

Tire 

Inflation 

front axle 

Tire inflation 

pressure 

Rear Axle 

Empty 1250 552 400 2.0 2.2 

Half 1255 545 390 2.0 2.2 

Full 1263 530 368 2.0 2.2 

Nominal Weight 

Curb Weight 1650 Kgs 

Gross Weight 1850 Kgs 

Air Coefficient 

Frontal Area 1.88 m2 

Drag Coefficient 0.32 

Table 6.3.1: Vehicle data 

 Engine 

It contains the model for combustion engine. The used has to define the characteristic curves 

for motoring curve, full load and fuel consumption. An engine was modelled by a structure of 

curves and maps as follows 

Engine type Gasoline 

No of Cylinders 4/8 

Number of Strokes 4 

Cylinders arrangement Inline 

Charger Without 

Engine Displacement 2000/4000 cm3 

Engine Working 

Temperature 80 C 
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Idle Speed 800 rpm 

Maximum Speed 6000 rpm 

Inertia Moment 0.1225 kg*m2 

Response Time 0.1s 

Fuel Type 

Fuel Type petrol  

Heating Value 44000.0 KJ/Kg 

Specific Carbon Content 0.86 

Table 6.3.2: Engine data 

We also have to provide the full load characteristic, motoring curve and the fuel consumption 

map to completely define the engine in CRUISE. 

Full Load Characteristics: is taken from the engine modelled in AVL Boost, it is the maximum 

torque/BMEP/power produced by the engine at various rpm steps and wide open throttle 

(WOT). 

Motoring Curve: is used to analyse the frictional power in an engine, it is a curve plotted against 

cylinder pressure and crank angle when no firing occurs in an engine. The cylinder pressure 

built in this case is a result of the compression stroke in an engine. This data is again obtained 

from the engine model in AVL BOOST. 

Fuel Consumption Map: is a 3 dimensional map of the fuel consumed in an engine that takes 

into consideration the various rpm values on x-axes, various BMEPs for each rpm value, on y-

axes and the fuel consumed for each BMEP, on z-axes. This is even obtained from the engine 

model in AVL BOOST. 

 Clutch 

Idling, transition to motion and power flow interruption are made possible by the used of clutch. 

When the vehicle is transitioning to motion, the clutch slips to compensate for the difference 

in the rotational speeds of the engine and the drivetrain. The following data was used to model 

the clutch. 
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Type Friction Clutch 

Inertia Moment In 0.01 kg*m² 

Inertia Moment Out 0.01 kg*m² 

Model Type Simple 

Maximum transferable 

Torque 350 Nm 

Table 6.3.3: Friction Clutch data 

The pressure force for the clutch has been defined as a function of clutch release, when the 

clutch release is zero, it means that the pressure pads are exerting maximum force on the clutch 

plates, if the pressure force is one, this means that the driver has stepped on the clutch, it 

disengages the engine from the powertrain and the pressure force exerted by the pressure pad 

on the clutch plates is zero, the same can be seen in the form of numerical values in the table 

below. 

Clutch Release (%) Pressure force (N) 

0 5000 

33 2250 

66 750 

100 0 

Table 6.3.4: Clutch release as a function of pressure force 

6.3.1.3.1 Working Principle 

The clutch model considers standard slip and stick friction values, that friction value used in 

the computation depends on whether the clutch is locked or unlocked. A set of equations run 

in the background to find the unknowns in the following order to obtain the final power loss 

from the clutch: 

 A fictive radius called mean effective radius which determines the radius in which the 

frictional force acts is computed initially 
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 The actual frictional coefficient is then calculated from the relative angular velocity and 

a function of stick and slip frictional coefficients 

 Later, the transmitted torque in a clutch is calculated by interpolating the actual 

clamping force from the actual clutch release map and by multiplying the obtained 

value with the above calculated values 

 Finally, the power loss in a clutch is evaluated from the difference in powers at the inlet 

and output of the clutch 

 Gear Box 

A gear box enables the engine to run as close as possible to its best performance rpm value, it 

is equipped with underdrive and overdrive gear ratios which alter the toque and speed of the 

prime mover output shaft to fulfil the acceleration demands by the drive. The manual gear box 

is modelled with the following data. 

Type 5 Speed Gear Box 

Gear Ratio Table 

Gear 

Transmission 

Ratio 

Inertia 

Moment In 

(Kg*m2) 

Inertia 

Moment Out 

(Kg*m2) 

Number of 

Teeth Input 

Number of 

Teeth Output 

0 1 0.0015 0.005 10 10 

1 3.62 0.0015 0.005 50 181 

2 2.22 0.0015 0.005 50 111 

3 1.51 0.0015 0.005 100 151 

4 1.08 0.0015 0.005 25 27 

5 0.85 0.0015 0.005 20 17 

Table 6.3.5: Gear box data 

 Single Ratio transmission 

This is the final drive unit ratio, it is considered to be separate from the main gear train, usually 

within the differential and on the other side of the differential. The following details are used 

to model the final drive. 
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Type Final Drive 

Location Front 

Transmission Ratio 3.0 

Inertia Moment In 0.008 kg*m² 

Inertia Moment Out 0.015 kg*m² 

Efficiency 0.97 

Table 6.3.6: Final drive data 

 Wheels 

The vehicle is linked to the road through the wheels. This component considers the influence 

of many variables that effect the rolling state. The wheel load factor, slip factor, friction 

coefficient aid in computing the longitudinal circumferential tire force. The wheel load, 

dynamic rolling radius and the rolling drag coefficient form the basis for calculating the 

moment of rolling drag.  

MICHELIN model is used for computing the detailed rolling resistance. The data used for all 

the four wheels is the same, the following information is used to define the wheel. 

Inertia Moment 0.51 kg*m² 

Wheel Slip 

Friction Coefficient of Tire 0.95 

Reference Wheel Load 2500 N 

Wheel Load Correction Coefficient 0.02 

Rolling Radius 

Static Rolling Radius 305 mm 

Circumference 1916.37 mm 

Dynamic Rolling Radius 312 mm 

Circumference 1960.35 mm 

Table 6.3.7: Wheel data 
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 Brake 

The braking torque is calculated using the braking dimensions and input brake pressure. The 

data for the front two brakes and also the data for the rear two brakes is the same. The following 

data is used to model the brakes. Cockpit component delivers the required braking pressure.  

When the vehicle is in stand still mode, the calculation time is reduced by reducing the degrees 

of freedom. In case a small velocity threshold is reached, the equation system is reverted back 

to an unreduced basic one and checks if the instantaneous compulsive force is smaller than the 

braking torque, then the vehicle movement is supressed as long as the above condition holds 

good. 

 

Front Disc Brake Rear Disc Brake 

Front right / Front left Rear Right / Rear left 

Brake Piston Surface 1800 mm² 1500 mm² 

Friction Coefficient 0.25 0.25 

Specific Brake Factor 1 1 

Effective Friction 

Radius 130 110 

Efficiency 0.99 0.99 

Inertial Moment 0.02 kg*m² 0.015 kg*m² 

Table 6.3.8: Brake data 

 Differential 

When the car takes a turn, the inner wheels are at different turning radius than the outer wheels, 

this makes the wheels to rotate at different speeds and as a result, slip and wear out over time, 

in order to eliminate this effect while turning a differential is being used in car. The main 

functions of a differential are to transmit the power to the wheels, act as a final gear reduction 

in a vehicle and accommodate the differential speeds of the wheels while turning. The 

following data was used to model the differential. 
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Type Differential 

Location Front end 

Differential Lock Unlocked 

Torque Split Factor 1 

Inertia Moment In 0.015 kg*m² 

Inertia Moment Out 0.015 kg*m² 

Table 6.3.9: Differential data 

 Cockpit 

This component links the drive to the vehicle. The connections in this component are made 

through the Data Bus. Linking is done by communicating the driver pedal positions to other 

components and at the same time, providing the driver, information regarding the vehicle such 

as vehicle acceleration and velocity. The pedal characteristic such as clutch pedal characteristic 

is related to the pedal positions to deliver required information to corresponding indicators such 

as clutch pedal release.  

 

 

 

 

 

 

 

Component Cockpit 

Shift Mode Manual 

Number of Gears 

Forward: 5 

Reverse: 1 

Maximum Brake Force 100 N 

Number of Retarder Steps 0 

Brake Light Switch 

Threshold 1.0 % 

Table 6.3.10: Cockpit data 
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The acceleration pedal characteristic and brake pedal characteristic are defined linearly 

proportional as shown in the graph below, for acceleration pedal characteristic graph is defined 

as acceleration pedal travel (%) vs load signal (%) on x and y axes respectively. The brake 

pedal characteristic map has specific brake pedal force (%) on x axes and brake pressure (bar) 

y axes. 

 

Figure 6.3.1: Acceleration pedal travel (%) vs load signal (%) 

6.3.2 Informational Connections 

In the vehicle system, the Data bus makes all the necessary informational connections for 

connecting different models with information flow.  Given below is an example how different 

components make informational connection via Data Bus. 

Component 

Requirement 

Input Information 

From 

Component 

Delivering Output Information 

Brake Brake Pressure Cockpit Brake Pressure 

Clutch-Friction 

Clutch 

Desired Clutch 

Release Cockpit Desired Clutch Release 

Cockpit 

Gear Indicator Gear Box Current Gear 

Operational 

Control Engine Operational Control 

Speed Engine Engine Speed 

Engine Load Signal Cockpit Load Signal 
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Start Switch Cockpit Start Switch 

Gear Box Desired Gear Cockpit Desired Gear 

Table 6.3.11: Data bus connections 

6.3.3 Vehicle Models Created 

To compare the proposed Separate Engine Strategy with Cylinder Deactivation strategy and 

the Conventional Engine Model, the following models have been created in CRUISE. 

Model Created Key Component Components added 

Conventional 8 Cylinder 

Engine 8 Cylinder Engine, 4000 cc None 

CDA Engine 

8 Cylinder Conventional 

Engine, 4000 cc 

Cylinder Cut-Out Engine, 

4000 cc 

Separate Engine Strategy 4 Cylinder Engine, 2000 cc Friction Clutch 

Table 6.3.12: Vehicle models created 

The modifications done to the conventional model are briefly discussed in the control strategy 

section below.  
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Given below is, an 8-cylinder conventional engine model, having a cubic capacity of 4000 cc, 

the layout of the vehicle after creating and connecting the required components in CRUISE. 

 

Figure 6.3.2: 8-Cylinder conventional engine model 

6.4 Control Strategy 

A control algorithm is devised to deactivate and reactivate the cylinders in Cylinder 

Deactivation Engine (CDA Engine) and in case of separate engines, algorithm is used to turn 

on and off the second engine. 

6.4.1 Cylinder Deactivation Engine (CDA Engine) 

CRUISE uses Cylinder Cut-out Engine (CCE) to accommodate the cylinder deactivation 

technology.  This CCE represents a cylinder cut-out, it is directly connected to the main engine, 

through the use of activation control, a decision can be made on which engine is activated. The 

signal for the cut-out engine is 2 and for the main engine is 1. When the CCE engine is 
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activated, some data such as full load characteristic and engine maps are taken from CCE 

engine and the remaining data such as motoring curve are all taken for main engine. 

Using AVL Boost, data required by the CCE Engine is generated by defining the valve lift to 

be zero for 4 alternate cylinders in an inline 8 cylinder engine and the corresponding full load 

characteristics and fuel consumption maps are generated through simulation. The weight of the 

additional components added to the system in order to accommodate the CDA technology is 

very small when compared with the weight of the vehicle and hence, can be neglected. 

 

Figure 6.4.1: 8-cylinder CDA engine model 

The function component keeps checking the boundary conditions for the operation of each 

engine, then communicates with the engine and cockpit via the corresponding results obtained 

from control strategy. 
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 Control Algorithm Code 

A function component is used to calculate the user defined functions. The program can be 

written in C-Programming style. Up to 99 function inputs and outputs can be defined in 

Function component. The function component only interprets the C code during simulation and 

does not compile it. After computing the function value, it can be used as an output value via 

the Data Bus. The logic for cylinder deactivation in this project is as follows: 

The parameters that establish boundaries for the operation of CDA System are as follows: 

 Vehicle Speed > 30 Km/hr 

 Engine Speed > 1000 rpm and < 4000 rpm 

 Acceleration < 0 

 Gear State >= 3 

Cylinder deactivation is usually done during decelerations because during accelerations it is 

very likely that at some point the active cylinders will not be able to provide the required power 

demanded by the driver and it is also difficult to achieve a smooth transition phase for 

reactivation of the cylinders while the vehicle is accelerating.  NVH constraints prevent the 

vehicle from deactivating the cylinders during idling conditions and also in the first and second 

gear. 

Once all the above conditions are satisfied, the Function component sends an input signal “2” 

to the engine. This activates the CCE Engine, the full load characteristics and engine maps 

from CCE are considered for computing the fuel economy during the drive cycle simulation. 

In order to prevent from frequent deactivation and reactivation, the fluctuation in the vehicle 

velocity during phase changes is considered and a hysteresis has been accordingly added to the 

code by slightly increasing the acceleration limits for reactivation, this takes care of any 

acceleration fluctuation during the event of deactivation. 

6.4.2 Separate Engine Strategy 

In this case, two, 4 cylinder engines having a cubic capacity of 2000cc have been added to the 

powertrain. A friction clutch connects these two engines in series. The first engine has another 

flywheel on the other end where the second engine is connected. This modification to a standard 

engine is incorporated in the model by, making an assumption that 50% of the moment of 

inertia in an engine comes from the flywheel, and adding this additional moment incurred from 
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the flywheel located at the rear end of the engine to the moment of a standard engine model. 

Also, adding the weight of additional components such as flywheel and clutch to the overall 

weight of the vehicle, accommodates all the modifications done to the standard vehicle model.  

 

The moment of the flywheel and clutch assembly can also be obtained from any OEM’s sales 

brochure, for this project, the moments and weights of a flywheel manufactured by Tilton 

Engineering are taken into consideration, it has a maximum torque capacity of 650 Nm, the 

weight and moment are as follows [15]: 

 Weight: 5.5 Kgs 

 MOI: 0.03 Kg*m2 

The control strategy used in this case is the same as the code used in Cylinder Deactivation 

Engine, the only difference being the signal output from Function component, communicated 

upon satisfying the operational boundary parameters. 

In this case, the engines are connected by the use of a clutch in series. So, a signal to turn off 

the second engine, is always accompanied by a signal to disengage the clutch. The RPM input 

to the Function component is provided by the Engine 1 and upon checking for the conditions 

of separate engine operation, the Function component sends signals to the 2nd engine to shut 

down or reactivate, and to engage or disengage the friction clutch present in between the 

engines. 
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The model for Separate Engine Strategy is shown in the following Figure 6.4.2: 

 

Figure 6.4.2: Separate Engine Strategy 

6.5 Adding Tasks and Solvers 

After the model for the vehicle is well defined, a task is assigned to the model, Cycle Run task 

is used for calculating the fuel consumption. 

6.5.1 Cycle Run 

It is a computational task for analysing the fuel consumption of the model. In this task, the 

behaviour of the model is observed when it follows a predefined velocity profile. 

 Velocity Profile/Drive Cycle 

The velocity profile simulates the real life driving conditions in a vehicle. It is defined as a 

profile that is entered as a function of time or distance, in other words, the velocity profile 

represents a set of vehicle points versus time.  

The driving cycles can be classified into two kinds, firstly, modal cycles, these are a 

compilation of linear acceleration and constant velocity periods, hence, cannot represent a real 

life driver behaviour, whereas, the transient cycles accommodate many velocity variations, and 
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represent a typical on-road real life driving behaviour. European standard NEDC or Japanese 

drive cycles are typical examples of modal cycles and American driving cycles such as FTP-

75 and Highway Fuel Economy Test Cycle (HWFET) are examples of transient cycles. 

The driving profiles considered in this project are city (FTP-75) and highway (HWFET) driving 

conditions defined by United States Environmental Protection Agency (EPA). 

6.5.1.1.1 Federal Test Procedure cycle (FTP-75) 

This has been developed by Environment Protection Agency to represent a typical commuting 

cycle which includes parts of urban driving conditions with frequent stops and a portion of 

highway driving. 

 

Figure 6.5.1: Federal Test Procedure cycle velocity profile (FTP-75) 

Driving Cycle Distance Duration Average Velocity 

FTP-75 17.77 km 1874 s 34.1 km/hr 

Table 6.5.1: Federal Test Procedure cycle data (FTP-75) [16]. 

6.5.1.1.2 Highway Fuel Economy Test Cycle (HWFET) 

This is used to compute the fuel economy by simulating highway driving conditions. 
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Figure 6.5.2: Highway Fuel Economy Test Cycle velocity profile (HWFET) 

 

Driving Cycle Distance Duration Average Velocity 

HWFET 16.45 km 765 s 77.7 Km/hr 

Table 6.5.2: Highway Fuel Economy Test Cycle data (HWFET) [16]. 

6.6 Choosing the Solver 

The solver is component in a software package that determines the time, required for next 

simulation step, also applies numerical methods to solve a set a differential equations which 

represent the model.  

Solvers can be broadly classified into two kinds, fixed step solvers and variable step solvers. 

Both the solvers calculate the next simulation time by adding up the current simulation time 

and a quantity called as step size. The former has the step size constant throughout the entire 

simulation and leads to large simulation times, whereas, in the latter, the step size depends on 

the model dynamics and varies from step to step. The variable step solver shortens the 

simulation time by altering the step size and at the same time complying with the error tolerance 

specified by the user. Controlling the error by varying the step size can stabilize the integration, 

hence it is important to estimate the error to gain some confidence in the simulation. 

Considering all the reasons stated above, a variable Step Bulirsch-Stoer Solver with an error 

estimator has been used in this project. 
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In AVL CRUISE, modelling a vehicle by modules with various connections leads to a system 

of non-linear ordinary differential equations which are of the form below, and are to be solved. 

           (1) 

           (2) 

“Hidden in the system are possible changes of the number of unknowns, gear changes, opening 

and closing of connections. That is why the system function f may be very unsmooth” [13]. 

 Discretization 

“The Bulirsch-Stoer approach discretizes the Ordinary Differential Equation (ODE) System 

with an implicit midpoint rule: 

 

       (3) 

With the equidistant time step size h for an integration step with local grids. 

By linearizing this equation the result is the semi-implicit midpoint rule” [13]. 

   (4) 

 Smoothness 

“For calculating a time step, the Bulirsch-Stoer approach performs the time integration step 

with different equidistant local steps and uses extrapolation for extrapolating the step size to 

zero. The extrapolation rests on smoothness assumptions for the function ƒ and the solution 

vector y. 

In contrast to this the integral formulation and the implicit discretization is applicable for 

functions and solutions with less smoothness. The nonlinear equation is solved by 

reformulating it to an optimization problem in which regularization by line search and trust 

region are applied to detect and handle appropriately critical situations” [13]. 

 Step Size Control 

“The Bulirsch-Stoer algorithm uses information from the extrapolation for the assumption of 

the next step size length. This is an a posteriori approach. If the function ƒ changes rapidly and 

especially if switches occur, this approach tends to be very small step sizes” [13]. 
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 Solution of Equations on Local Level 

“As shown the Bulirsch-Stoer approach leads to the semi-implicit midpoint rule. For a fixed 

step size h the matrix on the left hand side  remains the same so that one LU-

decomposition is performed and then only forward-backward substitutions are needed. 

Therefore one Jacobian  has to be calculated, then for the extrapolation a number of LU-

decomposition is performed and afterwards the iteration is performed. But especially with a 

fine local time step, many function evaluations of ƒ are needed. 

Now for the calculation of each search direction we have to solve one linear system, which is 

more time consuming than just a forward-backward substitution, but we calculate the time step 

with fewer function evaluation ƒ. The size of the matrix is comparable small and the computing 

time for one evaluation of ƒ is comparable large, so that this approach is considerable faster 

and still handles the instabilities more accurately” [13]. 
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7 Results and Discussion 

7.1 Analysing the part load performance 

It is observed that running the engine on a separate cylinder mode is more beneficial than 

cylinder deactivation mode.  

To compare these two strategies during part load conditions, for the same engine speed (rpm) 

and a specific power output, the attributes of different components are compared in the Table 

7.1.1. 

When the corresponding fuel saving strategy is active, a few attributes are taken at the active 

cylinder while others at the engine and are compared as follows:  

 

For a Brake Power of 20.8 kW and Engine Speed 2500 rpm 

  

Conventional 8-

Cylinder Engine 

Cylinder 

Deactivation 

Engine Separate Engine 

Engine Displacement 4000 cc 4000 cc 2000 cc 

No of Cylinders 

Active/Deactivated All active 

4 active/ 4 

deactivated 

4 active/ 4 

deactivated 

Air Flow @cylinder 187.7 mg/cycle 364.8 mg/cycle 282.6 mg/cycle 

Fuel Flow rate @cylinder 14.6 mg/cycle 28.6 mg/cycle 22.67 mg/cycle 

Indicated Specific Fuel 

Consumption (ISFC) 

@cylinder 280.22 g/kWh 247.59 g/kWh 264.16 g/kWh 

Volumetric Efficiency 

@cylinder 32.18% 62.54% 49% 

Pumping Mean Effective 

Pressure @cylinder 0.61bar 0.27 bar 0.42 bar 
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Indicated Mean Effective 

Pressure @cylinder 4.36 bar 8.59 bar 6.6 bar 

Indicated Efficiency 

@cylinder 29.40% 33.30% 31.18% 

Burn Residual % @cylinder 11.03% 5.32% 8.08% 

Throttle angle 7.3 8 10.5 

Volumetric Efficiency 

@Engine 30.95% 29.52% 48.14% 

Torque @Engine 79.55 Nm 79.55 Nm 79.55 Nm 

Brake Mean Effective 

Pressure @Engine 2.5 bar 2.5 bar 5 bar 

Brake Specific Fuel 

Consumption  @Engine 420 g/kWh 405.4 g/kWh 326.7 g/kWh 

Table 7.1.1: Comparing the engine performances for the same power and rpm 

The following can be deduced from analysing the above data: 

 All the data is taken when the corresponding fuel saving strategy in each engine is 

active. 

 For the cylinder deactivation engine, when only 4-cylinders are active, to produce the 

same power as the remaining ones, it has to burn more fuel, in order to compensate for 

two things, firstly, no combustion taking place in the deactivated engines and secondly, 

the frictional losses incurred from the deactivated cylinders. 

 For the same reason, it has to produce more power that eventually suffers losses to stay 

on par with separate engine strategy, therefore, it burns more fuel and this is reflected 

in the above data by a comparative increased flow rates such as air flow and fuel flow 

rate. 

 The increased flow rate results in an increased volumetric efficiency of the cylinder 

deactivation engine and this in turn leads to a comparatively higher indicated mean 

effective pressure and efficiency. 

 When running at same rpm, the volumetric efficiency is directly related to the throttle 

valve opening, hence, a comparatively higher volumetric efficiency is observed in the 

separate engine technology. 



57 | P a g e  

 

 Finally, to produce the same amount of power, as the fuel consumed is the lowest for 

the separate engine strategy, this results in lower brake mean effective pressure for this 

strategy. 

 

7.2 Simulating through the drive cycles 

7.2.1 Trial run 

Before running the final simulation, a trial run is performed to check for the authenticity of the 

engine models built. In this trail run, the separate engine strategy model is made to run through 

the drive cycles without deactivating any engine. This means that the two 4 litre engines keep 

running throughout the drive cycle and the clutch connecting the engines is also engaged 

throughout the drive cycle. The results are shown in the table below: 

 

8-Cylinder Conventional 

Engine (MPG) 

Separate Engine Strategy 

without deactivating the 

second engine (MPG) 

City, FTP-75 20.04 19.64 

Highway, HWFET 27.95 27.49 

Table 7.2.1: Trial run 

It is observed that the separate engine strategy has slightly lesser mileage, this reduction can 

be attributed towards moments and weight of the components added to the vehicle by the use 

of flywheel and clutch, in order to accommodate the separate engine strategy. Thus, it can be 

deduced that the data used is reliable and two similar entities are being compared in the next 

phase of simulation. 

7.2.2 Final Simulation 

Given in the Table 7.2.2 below, is the mileage obtained from simulating the models through 

city and highway drive cycles. 
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8-Cylinder 

Conventional Engine 

(MPG) 

Cylinder 

Deactivation 

Engine (MPG) 

Separate Engine 

Strategy (MPG) 

City, FTP-75 20.04 21.07 21.34 

Highway, HWFET 27.95 30.40 31.08 

Table 7.2.2: Drive cycle simulation results 

 

Given in the Table 7.2.3 below, is the improvement in fuel consumption over conventional 8-

cylinder engine, expressed in percentages: 

 

8-Cylinder Cylinder 

Deactivation Engine Separate Engine Strategy 

City, FTP-75 5.1% 6.5% 

Highway, HWFET 8.8% 11.2% 

Table 7.2.3: Mileage improvement over conventional engine 

Given in the Table 7.2.4 below, is the comparative benefit obtained from use of separate engine 

strategy over cylinder deactivation technology, expressed in percentages: 

 Separate Engine Strategy 

City, FTP-75 1.2% 

Highway, HWFET 3.5% 

Table 7.2.4: mileage improvement over cylinder deactivation 

In order to analyse brake specific fuel consumption over various drive cycles, the 

corresponding driving time distribution maps for all the engines are considered in the next 

section.  

The maps represent the driving time as a collection of points through the entire cycle run 

simulation. The graph contains torque produced on y-axes, rpm on x-axes, and the brake 

specific fuel consumption can be seen as contour circles in the plot area.  
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 Conventional 8-Cylinder Engine 

Highway drive cycle 

 

Figure 7.2.1: Driving Time Distribution for conventional 8-Cylinder Engine in highway cycle 

 

Figure 7.2.2: Driving Time Abundance for conventional 8-Cylinder Engine in highway cycle 
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 Cylinder Deactivation Engine 

Highway drive cycle 

 

Figure 7.2.3: Driving time distribution for Cylinder Deactivation Engine in highway cycle 

 

Figure 7.2.4: Driving time abundance for Cylinder Deactivation Engine in highway cycle 
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 Separate Engine Strategy 

Highway drive cycle 

 

Figure 7.2.5: Driving time distribution for Separate Engine Strategy in highway cycle 

 

Figure 7.2.6: Driving Time Abundance for Separate Engine Strategy in highway cycle  
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From the above results, the following observations can be made: 

The data generated is reliable and the engines considered are comparable entities. This is 

apparent from the trail run results where, the separate engine strategy when both the engines 

are kept running throughout the entire drive cycle, has a slightly higher fuel consumption when 

compared with a conventional engine due to the components added to connect the engines in 

series. 

The highway cycle simulation generates better results as the engine runs more on open throttle 

while traveling at high speeds and also speed fluctuations, gear changes are comparatively less 

in a highway drive cycle.  

The separate engine strategy has a better overall mileage because, it saves on the frictional 

losses which are otherwise experienced in the cylinder deactivation engine. This saving of 

friction in tern leads to better brake specific fuel consumption values and hence better mileage 

over cylinder deactivation technology. 

The percentage of improvement in the fuel consumption by the use of separate engine strategy 

is higher in the highway when compared to city drive cycle. This is because the highway drive 

cycle maintains higher velocities and the decelerations are gradual, where as in the city driving 

conditions, the decelerations are very steep and result in rapid gear changes, as the control 

algorithm checks for vehicle speed, gear state and deceleration, this results in lesser time for 

the fuel saving strategy to capitalise on the driving conditions. Hence, the highway conditions 

are ideal for fuel saving strategy to set in for a longer duration, and therefore, better mileage 

improvement is observed in case of highway driving simulations. This is clearly evident from 

the driving time abundance graphs where, the top row having better brake specific fuel 

consumption points are more in number for a separate engine strategy, when compared to the 

driving time abundance points of other strategies.  
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 Driving time distribution vs fuel flow 

CDA Engine 

 

Figure 7.2.7: CDA Engine fuel flow 

Separate Engine 

 

Figure 7.2.8: Separate Engine fuel flow 
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It can be observed from the Figure 7.2.7, the green points on the fuel map on the left side are a 

result of normal driving mode, and when the CDA mode is activated, the data is represented as 

yellow colour points visible on the right side of the Figure 7.2.7. 

Just in the same way, the yellow colour points in the Figure 7.2.8, are a result of separate engine 

operation on the first engine and the decoupled engine operating fuel points are marked in green 

and are seen on the right side of the Figure 7.2.8. 

It can be observed from the Figure 7.2.7 and Figure 7.2.8, that the yellow colour points in both 

the figures, which represent the fuel data with respect to engine rpm, operate in between 1500-

2500 rpm, and at a maximum torque of 60 Nm. This implies that the control strategy used in 

both the cases is the same. 

The fuel saving by the use of separate engine technology, can be calculated from the Figure 

7.2.9, for example, consider the car to run at 1600 rpm and produce a power of 50 Nm, the 

corresponding fuel saving obtained, when this car operates using separate engine strategy 

would be 0.5 Kg/hr. 

 

 

Figure 7.2.9: Fuel benefit from separate engine operation 

   

K
g

/h

r 



65 | P a g e  

 

8 Conclusions 

The basic conclusions that can be deduced from this project are: 

 Even though cylinder deactivation addresses the powertrain matching problem, it 

has a major setback involving frictional losses even when the cylinders are 

deactivated. This hinders the additional benefit obtained from the use of such a 

technology. 

 The frictional losses incurred in the cylinder deactivation engine account to about 

65-80% of the frictional mean effective pressure generated by the engine. So, these 

losses have to be curbed in order to get a maximum benefit. 

 A separate engine strategy would eliminate the frictional losses incurred in a 

cylinder deactivation engine while addressing the problem of powertrain matching.  

 From the Table 7.2.2, it can be inferred that during part loading conditions, the 

separate engine strategy has the best brake specific fuel consumption.  

 In city driving conditions, a separate engine strategy has a mileage improvement of 

6.5% over conventional engine and 1.2% over cylinder deactivation engine. 

 In highway driving conditions, a separate engine strategy has a mileage 

improvement of 11.2% over conventional engine and 3.5% over cylinder 

deactivation engine. 

 From the driving point of view, a maximum benefit can be obtained from using this 

separate engine strategy on a steady CRUISE. 

 Form the application point of view, a maximum benefit can be observed when this 

technology is used in a muscle car or a pickup truck which experience severe 

powertrain matching problems.  
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9 Future Work 

In a separate engine strategy, the second engine turns off when the vehicle complies with a set 

of conditions defined. A major limiting condition is the activation of such a technology only 

during deceleration, both engines keep running all the time, only when the vehicle decelerates 

and other set of conditions are satisfied, the second engine turns off. 

Instead of turn off the second engine intermittently, It would be interesting to check for the 

feasibly of turning on the engine intermittently. So, an extension of this project would be to 

investigate the feasibility of supplying power only on demand. The first engine keeps running 

throughout the entire drive cycle, the second engine only kicks-in when there is an additional 

power demand form the driver. 

There has to be no difference in terms of acceleration in a vehicle having this proposed 

technology and a conventional vehicle. For the same gas pedal positions, both these vehicles 

have to accelerate in the same way. In order to accomplish this, a continuously variable 

transmission has to be used in the vehicle which runs using this proposed technology. The gear 

ratios have to be varied depending on how many engines are being used at that particular 

instance. 

While running on a smaller engine, varying the gear ratios on the continuously variable 

transmission and running engine on higher rpms, meets the acceleration demands of the driver. 

This allows the first engine to run as close as possible to the optimum operating line and thus, 

the efficiency gets improved. 
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