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ABSTRACT 

 

We study the morning commute problem with a peak period flat toll, where the toll has a maximum 

acceptable toll level and a maximum acceptable length of tolling period. Under such a constrained 

optimization setup, we investigate the system cost minimization problem. A tolling scheme is 

determined by the toll starting time, the toll ending time, and the toll level. The toll starting time 

and ending time are set before and after the common work start time, respectively. We find out 

that, under the toll window length constraint only, a balanced toll window design is always optimal, 

where “balanced” means that the part of the toll window before the work start time and the part 

after have equal monetary value. Under both the toll level and the toll window length constraints, 

the balanced design is optimal if feasible; otherwise the toll should start later with the same toll 

window length. 
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1. Introduction 

 

In recent decades, the problems stemming from high vehicle ownership and heavy road usage has 

become much starker. These problems include road congestion, pavement damage, air pollution, 

traffic accidents and limited parking places. As a result, road pricing has been widely implemented 

all over the world. The world's first congestion tolling scheme was introduced in Singapore's core 

central business district (CBD) in 1975 as the Singapore Area Licensing Scheme (ALS). The roads 

leading to the CBD are tolled. If a driver wants to enter the CBD, she needs to purchase a special 

paper license which is sold at post offices, gas stations or convenience stores, on a monthly or 

daily basis. The toll gate at the entrance of the CBD are gantries where police officers are visually 

checking the license and recording any violations. The ALS was upgraded to 100% free-

flowing Electronic Road Pricing (ERP) system in September 1998. Sensors are installed on the 

gantries to communicate with an In-vehicle Unit (IU) to implement the charging. The IU is a device 

to insert a cash card to pay the toll. When a car drives under a gantry, the sensors on the gantry 

will work with the IU to deduct the money in the cash card automatically. Each registered car 

intending to enter the CBD is enforced to install an IU by law. Actually, before Singapore’s 

implementation of ERP, Hong Kong experimented the ERP system during 1983 to 1985. The 

results demonstrated the technical feasibility of this tolling system, but it was aborted due to the 

public opposition. In Europe, Norway implemented a cordon tolling scheme in the city of Bergen 

(1986), Oslo (1990) and Trondheim (1991). The Oslo toll ring is a classic cordon pricing scheme 

with 19 toll stations circling the centre of Oslo. People driving into the city need to pay a fee when 

they pass the cordon line. The toll stations support electronic payment without reducing vehicle’s 

speed. The cordon tolling scheme makes every car entering the city centre have to pass a toll station, 
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so the city centre’s traffic congestion can be effectively alleviated. The collected toll is intended 

to improve road network and finance road construction projects. Sweden introduced Stockholm 

congestion tax that covers Stockholm city centre in August 2007. All the entrances and exits of 

the centre area have unmanned control points operating with automatic number plate recognition. 

Vehicles entering this are during the peak hours need to pay a fixed fee. The congestion tax 

collected from commuters is also used to construct and maintain the toll roads. US first introduced 

the High-occupancy toll lane (HOT lane) system in 1995 on California’s 91 express lanes. In next 

year, Interstate 15, north of San Diego, also started to implement the HOT tolling scheme. The 

HOT lane is a traffic lane that is only free to high-occupancy vehicles and designated exempt 

vehicles. The high occupancy vehicle usually is the vehicle with at least 2 or 3 occupants. Other 

vehicles intending to use the lane need to pay a toll. If the driver does not like to pay the toll, she 

can also use the general untolled lane. The toll level is displayed at the entry of the lanes, which is 

adjusted according to the travel demand to control traffic volume to ensure the minimum traffic 

speed and service level. 

 

In urban area, during the morning commute peak hours, heavy congestion at road’s bottleneck has 

now become an unneglectable problem for the commuters. It is very common to hear one’s 

colleague complaining how long she has to wait on the road. Since no one would like to come to 

workplace too early or can afford the penalty of being late, travelers usually depart from home at 

approximately same time periods. At the road’s bottleneck section, due to its capacity limit to 

handle the travel demand, congestion is inevitable. Motivated by this problem, this thesis proposes 

a tolling scheme implemented during morning commute peak hours. Our purpose is to alleviate 

the road congestion caused by the excessive traffic flow through charging a coarse toll at the road’s 
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bottleneck area which usually has very limited capacity. We choose to charge a coarse toll because 

of its easiness to implement. The dynamic toll or the time-varying toll can cause confusion to the 

commuter, as the commuter may not know when she should depart from home. In this thesis, the 

bottleneck model is built based on the concept of equilibrium. At equilibrium, no commuter can 

further reduce her travel cost by altering the arrival time at the bottleneck. By levying a toll on the 

bottleneck, the equilibrium profile of commuters could have a tremendous change compared with 

the no-toll scenario. Considering that the toll has a maximum public acceptable level and the tolling 

period has a maximum public acceptable length, we investigate the problem of system cost 

minimization and our goal is to find the optimal tolling scheme under these two constraints. Under 

the optimal tolling scheme, commuters have the minimum total system cost. It could also be 

understood as the best equilibrium profile of all profiles. Under such a constrained optimization 

setup, we first solve the equilibrium of the bottleneck model. We find out that, for any toll window, 

there exists a critical toll level over which capacity waste can happen. Capacity waste is a time 

period during which, no commuter uses the bottleneck. Then, based on the individual cost, we 

prove, in respect of total system cost, a tolling scheme without capacity waste is always better than 

a scheme with capacity waste. We also find out that, under toll window length constraint only, if 

the unconstrained optimal tolling scheme is infeasible, we should push toll window length to the 

upper bound, make toll window balanced and charge the corresponding critical toll price. Balanced 

means the part of the toll window before the work start time and the part after has equal monetary 

value. Under both toll level and toll window length constraints, if the unconstrained optimal tolling 

scheme is infeasible, whenever possible, a balanced toll window and its corresponding critical toll 

price can solve the problem; if the balanced design gives a critical toll price exceeding the upper 

bound of toll level, we can push the toll window rightward to make the tolling time start later, or 
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namely make the toll window unbalanced, and charge the corresponding critical toll price of the 

moved toll window. 

 

The remainder of this thesis is organized as follows. In chapter two, we do a literature review to 

show the previous researches of the road bottleneck model. In chapter three, we review the 

equilibrium of untolled bottleneck model. Chapter four gives a complete picture of tolled 

bottleneck model, where we investigated the equilibrium profiles of different tolling schemes. In 

chapter five, we solve the unconstrained system cost optimization problem based on the individual 

cost. In chapter six, we solve the constrained system cost optimization problem given both toll 

level and toll window length constraints. In chapter seven, we use numerical examples to 

demonstrate the proposed optimal tolling schemes under different constraint setups. Concluding 

remarks are offered in chapter eight. 
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2. Literature Review 

 

To model the morning commute problem, Vickery first introduced the road bottleneck model in 

1969 (Vickery 1969). Hendrickson and Kocur (1981) reviewed the no-toll equilibrium of 

bottleneck model with and without no lateness assumption. They also investigated the distribution 

of work start times and pointed out that the condition of equilibrium is that the arrival rate of 

commuters must be constant. As bottleneck model’s pioneers, Arnott et al. (1988) extend 

Vickery’s model by assuming different work starting times. They investigated users’ no-toll 

equilibrium profile and showed that, for two groups of commuters, the queue at the bottleneck can 

be single peaked, double peaked or the rush hour can be separate based on the work starting times’ 

difference. Arnott et al. (1990) pointed out by levying a flat toll during the commuting period, 

travelers’ total system cost can be reduced and under the optimal tolling scheme, there should be 

no queue at the toll window’s endpoints. Arnott et al. (1993) extended Vickery’s model further by 

assuming elastic demand and found the optimal road capacity under various pricing regimes. 

Arnott et al. (1994) examined the welfare effects of the optimal time-varying toll. In their model, 

the commuters are divided into several groups, each group with its own unique VOT but shares 

same relative cost of late to early arrival. Under the time-varying toll, queue is completely 

eliminated but such a tolling scheme depends on each group’s VOT and travel demand. In real 

world it is very inconvenient to implement and can also be quite confusing to commuters, besides 

their model does not consider continuous VOT distribution either. Further effort was made to 

reduce commuters’ queuing delay at the bottleneck, such as Laih (1994) proposed a multi-step 

tolling scheme where different flat tolls are levied on different time periods during the peak hour. 

The flat toll scheme is easier to implement but Laih’s model is limited by the assumption that the 



6 
 

flat toll does not change commuter’s travel cost (compared with no-toll equilibrium). Although 

under the optimal time-varying toll, the toll revenue equals the saved queuing cost, it is usually 

not true under a flat toll. Lindsey (2004) reviewed previous bottleneck models under assumption 

of multiple user classes and proved the existence and uniqueness of user equilibrium of bottleneck 

model. Xiao et al. (2011) extended Arnott’s model (1990) by providing details of how the queuing 

profile changes with respect to toll level under heterogeneous VOT assumption. They formulate a 

non-linear optimization problem to solve the equilibrium and find out the optimal tolling scheme. 

Under their optimal tolling scheme, no queue exists at toll window’s endpoints either. This is 

mainly due to the proportional assumption of user’s VOT. Xiao et al. (2013) extend Arnott’s model 

(1994) by assuming continuous VOT distribution, where social optimum is also achieved by a 

dynamic tolling scheme. Under his model, the toll level only depends on each commuters’ VOT 

and does not require dividing travelers into groups, which can save some work but such a dynamic 

tolling scheme also suffers from inconvenience of implementing.  

 

Based on our literature review, none of the existing works studied the constrained optimization 

problem of a tolled bottleneck. For public acceptable issue, we consider that the toll has a 

maximum acceptable toll level and a maximum acceptable length of tolling period, both 

exogenously given, so a constrained system optimization problem can be proposed. In this thesis, 

we still use flat toll for our tolling scheme as it is easy to be implemented in real world. We will 

solve the constrained system cost optimization problem given both toll level and toll window 

length constraints and establish the properties of the optimal tolling schemes.   

 

 



7 
 

3. Equilibrium of Untolled Single Bottleneck 

 

During the morning commute peak hours, at some busy roads, we can easily observe travelers 

stuck by heavy congestion. This is usually due to most commuters have roughly same work starting 

time but the capacity of the road cannot satisfy such high travel demand. In order to model this 

phenomenon, bottleneck model is introduced. In this section, we will briefly review the 

equilibrium of untolled single bottleneck during the morning commute period for users with 

heterogeneous VOT. 
*t  is assumed to be commuters’ preferred arrival time at work.  If a 

commuter arrives at work before 
*t , she will be incurred a schedule early delay cost  . If she 

arrives at work later than 
*t  she will be incurred a schedule late delay cost  . The queuing delay 

cost is denoted by  . We assume    and   , where   and   are constants 

 0 1    . The x th user’s VOT  x  is assumed to be a monotonically decreasing function 

with respect to x . The total number of commuters is assumed to be N . The bottleneck’s capacity 

is s . The arrival rate is denoted by  . When commuter’s arrival rate is higher than s , a queue 

will develop at the bottleneck. When commuter’s arrival rate is lower than s , the queue at the 

bottleneck will gradually dissipate. Since   and   are both constants, the profile of the no-toll 

equilibrium should be pretty similar with the equilibrium profile under homogeneous VOT 

assumption. At equilibrium, the arrival rates of commuters having schedule early and late delay 

can be obtained as both constants, implying the traveler’s position in the queue is random. Since 

we assume commuters value schedule late delay more than schedule early delay, we can see in 

figure 1 the arrival rate of commuters having schedule early delay is much higher than that of 

commuters having schedule late delay. The morning commute period starts at qt  and ends at qt  . 
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We can obtain  *

qt t N s      and  *

qt t N s      . Figure 1 shows the untolled 

single bottleneck equilibrium profile of users having heterogeneous VOT. (See Appendix A for 

details)  

 

 

                                                   Figure 1: untolled single bottleneck equilibrium profile 
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4. Equilibrium of Tolled Single Bottleneck 

 

In this section we will talk about the equilibrium of tolled single bottleneck with commuters having 

heterogeneous VOT. A flat toll p  is imposed from t   to t  . Our tolling scheme only assumes 

*t t t   . At equilibrium no traveler can further reduce her travel cost by adjusting her arrival 

time at the bottleneck. Since the flat toll has no impact on toll payers’ travel time choice, the arrival 

pattern of toll payers having schedule early delay or late delay should be similar with those under 

the profile of untolled single bottleneck. As the toll non-payer who arrives before t   is incurred a 

schedule early delay cost, her arrival rate should be similar with that of the toll payer who also has 

schedule early delay cost. The arrival rate of travelers having schedule early delay can be obtained 

as 1s  . The arrival rate of travelers having schedule late delay can be obtained as 1s  .  

 

 

 

 

qt  

t  

t   t   

yt

 

zt  

*t  

mt  

qt   

cumulative 

arrivals and 

departures 

t  

Figure 2: equilibrium profile of tolled bottleneck without capacity waste 
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When the toll window length is not too long and toll level is not too high, the bottleneck can be 

fully utilized with no capacity waste. Here capacity waste means a period during which no queue 

exists at the bottleneck between the arrival time of the first and last commuter. The x th commuter 

is assumed to be the toll non-payer arriving before t  , her travel cost can be given by 

   
   

 
   1 1

*,
q q

t t

q q
t t

d s t t d s t t

C x t x x t t
s s

     
 

    
 

    
 
 

 
 

At equilibrium, we can obtain 

     *, qC x t x t t   (1) 

As the bottleneck is fully utilized, the first toll payer should come no later than t  . The y th 

commuter is assumed to be the toll payer who experiences schedule early delay, her cost can be 

given by 

   
     

 
     

1 2

1 2
*

,
q y

q y

t t

q
t t

t t

q
t t

d d s t t

C y t y
s

d d s t t

y t t p
s

     


     


  



   
 

    
 
 

 

 
 

where t  is the arrival time of the last toll non-payer arriving before t  . 
yt  is the arrival time of 

first toll payer. At equilibrium, we can obtain 

        *, yC y t y t t y t t p        (2) 

The last toll payer should arrive no later than t  . The z th commuter is assumed to be the toll payer 

who experiences schedule late delay, her cost can be given by 
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   
       

 
       

1 2 3

1 2 3
*

,

z

q y z

z

q y z

t t t

q
t t t

t t t

q
t t t

d d d s t t

C z t z
s

d d d s t t

z t t p
s

        


        


   



    
 

    
 
 

  

  
 

where traveler who arrives at 
zt  experiences no schedule early or late delay, since she is cleared 

just at 
*t . At equilibrium, we can obtain 

    *, zC z t z t t p    

Mass arrival happens right after the arrival time of the last toll payer. We denote it by 
mt . Every 

commuter in the mass arrival is assumed to experience an average queuing delay and schedule late 

delay of the total mass. The travel cost of commuter in the mass arrival can be given by 

      *,
2 2

q q

m m

t t t t
C m t m t m t 

 

 
    

         
   

 

At equilibrium, the indifferent user is the commuter who can arrive at any time as she is always 

incurred identical travel cost. For those who have higher VOT than the indifferent user, they will 

pay the toll to pass the bottleneck. For those who have lower VOT than the indifferent user, they 

will avoid the toll by coming earlier or later. The toll price can be easily obtained as the queuing 

cost difference of the indifferent user arriving at t  and 
yt  respectively, thus we have 

   yp s t t t t     
 

 

From 

   
1

q q

s
t t s t t



  


 

   *

1
z y

s
t t s t t



  

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   *

1
m z

s
t t s t t



  


 

q q

N
t t

s
    

we can further obtain 

 
   

2

1
q

p N
t t

ss t t 



 
  

  
 

 (3) 

 
 1

2 1
1

2 2
y q

N
t

s
t t t


 







 
          

   *2 1
1

2 2
m q

N
t

st t t
 

  

 
 

      

From (3), we can see when toll price is increased, the first commuter will postpone her arrival. 

Since the first commuter has postponed her arrival, the first and last toll payer will also postpone 

their arrivals or we can say the equilibrium profile will move rightward. When toll price is 

increased to a certain level, the first toll payer will arrive exactly at t   or the last toll payer will 

arrive exactly at t  . At this moment, if we keep increasing the toll level, capacity waste will occur 

at t  or t  . By setting yt t , we can obtain 

 
   

1

1

2 1

s t t N
p t t

s

  

 

 

 
        

   
 (4) 

If toll window is designed as    * *t t t t     , t t N s    and toll level is kept within  

10 p p  , the bottleneck will be fully utilized. This corresponds to area AOD in figure 2. By 

setting 
mt t , we can obtain 
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     *

2

1

2 1

N
p s t t t t

s


   

 

               
 (5) 

If toll window is designed as    * *t t t t     ,  *t t N s       and toll level is kept 

within 
20 p p  , the bottleneck will be fully utilized. This corresponds to area ODF in figure 2. 

 

If toll window is designed balanced as    * *t t t t     , we have 1 2p p . If toll level is 

pushed to 
1p  or 

2p , the first and last toll payer will arrive exactly at t   and t  , which implies no 

queue exists at the endpoints of the toll window. This corresponds to line OD  in figure 2. 

 

When toll level exceeds 
1p  or 

2p , depending on the design of toll window, capacity waste will 

start to occur at t  , t  or even at both t  and t  . If the toll window satisfies    * *t t t t     , 

when toll level is pushed above 
1p , capacity waste will only occur at t  . Using the same logic, if 

the toll window is designed as    * *t t t t     , when toll level exceeds 
2p , we will observe 

capacity waste only at t  . Of course, for the design of    * *t t t t     , when toll price 

surpasses 
1p  or 

2p , capacity waste will occur at both t   and t  . 

 

If capacity waste only exists at t  , during  , yt t  no queue exists at the bottleneck. From the 

standpoint of the indifferent user we can easily obtain the toll price as the travel cost difference of 

her coming as the first toll non-payer and first toll payer respectively, thus we have 

   y qp N t t     
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where  is the proportion of toll payers. The N th commuter is namely the indifferent user. She 

has the lowest VOT among the toll payers but the highest VOT among the toll non-payers. The 

toll price is simply the schedule early delay difference of her coming at these two moments. Based 

on the fundamental equilibrium relations, we can obtain  

  *

m

N
t t t t

s


         

 
1

2
1 2

N N
p N t t

s s

 
  

 

   
    

   
 

where 

 
y

N
t t

s

    

It is shown the toll price is a function of toll payers’ proportion. When toll level is raised up, the 

indifferent user’s VOT will increase. As fewer people can afford the toll, toll payers can gain more 

time choice freedom. The last toll payer is going to postpone her arrival by arriving closer to t  . 

When toll price is raised to a certain level, the last toll payer will arrive exactly at t  . By setting 

mt t , we have 

       * * *

3

1
2

1 2

N
p s t t t t t t

s

  
    

  

      
             

 (6) 

If the toll window is designed as    * *t t t t     , t t N s    and toll price is kept within  

1 3p p p  , capacity waste only occurs at t  . This corresponds to area AOD in figure 2. 
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When toll level exceeds 
3p , capacity waste will also occur at t  . If we have capacity waste at t  , 

since there is no queue, the mass arrival should happen exactly at t  . If we denote 
zt  as the last 

toll payer’s arrival time, from the standpoint of the indifferent user, we should have 

   * *

y zt t t t     

This implies the first toll payer’s schedule early delay equals the last toll payer’s schedule late 

delay. The toll price can be obtained as    

 
 

 

2
*

1 2 2 2 2 2 3

1 2 1 1
z y z

N
p s t t t t t t

s

        


     

 
     

              

 

where  z ys t t  
 

 is the indifferent user’s VOT.  

 

It is easy to understand when toll price is pushed high enough, only the zeroth person (commuter 

with highest VOT) can afford the toll to pass the bottleneck. The rest commuters have to come 

either before t  , or after t  . It is obvious the zeroth commuter should arrive exactly at 
*t , since 

she will not be incurred any schedule delay cost. Such a toll price can be obtained by setting *

zt t . 

By setting *

zt t , we can obtain   

  
  *

4

1 2 1
0

1 2 1 1

N
p t t t

s

   


   

 
  

    
    

 (7) 

By setting 
zt t , we can obtain 

      * * *1
2

1 2

N
p s t t t t t t

s

  
    

  

      
             

 

If the toll window is designed as    * *t t t t     , t t N s    and toll level is kept within  

3 4p p p  , capacity waste occurs at both t   and t  . (Figure 2 area AOD ) 
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When toll price is greater than 
4p , no commuter can afford the toll, all of them arrive either before 

t   or join the mass arrival at t  . (Figure 2 area AOD ) 

 

Now let us talk about capacity waste only existing at t  . If the toll window design satisfies 

   * *t t t t     , when toll level exceeds 
2p , capacity waste will only occur at t  . Since 

there is no queue between 
zt  and t  , mass arrival will happen exactly at t  . The toll price can be 

obtained as the indifferent user’s travel cost difference of her coming at 
qt  and 

yt  respectively, 

thus we have 

      q yp N t t N t t          

The toll price can be understood as the travel cost difference of indifferent user arriving as the first 

toll non-payer and first toll payer respectively. Based on the fundamental equilibrium relations, 

we can obtain  

   * *

y zt t t t t t        

   
2

*2 1 3
1

2 1 2 2 2

N N
p N t t t

s s

        
  

    

        
       

    
 

where 

 
z

N
t t

s

    

We can see the toll price is a function of toll payers’ proportion. When toll price is increased, the 

indifferent user’s VOT will correspondingly increase. As fewer people can afford the toll, the toll 

payers can gain more time choice freedom. The first toll payer will postpone her arrival by arriving 
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closer to t  . Finally when toll price is increased to a certain level, the first toll payer will arrive 

exactly at t   and at this moment if we keep raising the toll level, capacity waste will also occur at 

t  . By setting yt t , we could obtain 

    
 

 
2 2 2

* * *

5

2 3

2 1 2 1 2 1

N
p s t t t t t t

s

         


       

  
      

       
        

 (8) 

If toll window is designed as    * *t t t t     ,  *t t N s       and toll level is kept 

within 2 5p p p  , capacity waste only occurs at t  . This corresponds to area ODF in figure 2. 

 

When toll level exceeds
5p , capacity waste will also occur at t  . Using the same logic, we can see 

if toll level is kept within 5 4p p p  , capacity waste occurs at both t


 and t  . (Figure 2 area 

ODF ) 

 

When toll price is higher than 
4p , no commuters will use the toll window. All of them will arrive 

either before t   or after t  . (Figure 2 area ODF ) 

 

For the balanced toll window design, we have 1 2 3 5p p p p   , so when toll level exceeds
1p  but 

under
4p , capacity waste occurs at both t   and t  . When toll level exceeds 

4p ,  all commuters 

will arrive either before t   or after t  . (Figure 2 line OD ) 
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Figure 3: complete tolled single bottleneck equilibrium profile 

 

The following equations are the lines in figure 3. 

   * *:OH t t t t     ,     * *:
N

CG t t t t
s

       ,   : ,
N N

D
s s

 

   

 
 

  
 

   * * 1
:

2

N
BK t t t t

s


   

    ,     * *:
N

AD t t t t
s

      

     
2

* *: 2 1
N

BD t t t t
s

   
 



   
     ,     * *:

N
CD t t t t

s

 

 

      

 

The equilibrium profile is not only restricted to what we have discussed above. In the following, 

we will give a full picture of commuter’s equilibrium patterns. (See Appendix B for details) We 

let 

 
 

 
6

1 12

1 2 1 2 1 2

N s N
p t t t t

s

  


     

   
    

       
        

 

 
 

 * *

7

N
p s t t t t

s

  
  

 

 
  

     
   
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   
 

 * * * *

8

2 N
p s t t s t t N t t t t

s

   


    

   
    

           
      
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 

*
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p N t t

s


 

 


 

     

 

  *
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N

p t t
s

   
   

 
 

       
2

* * * *
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p s t t s t t N t t t t

s

 
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 

     
          

   
 

   * *
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1

2

N
p s t t t t

s

    


 

      
      

   
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 

 

 
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N
p t t

s


   

   
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 
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*

15

N
p N t t

s


 

 


 

     
 

In area ADB : when 
60 p p  , no commuter arrives before t  , no capacity waste occurs at t  , 

mass arrival occurs before or at t  ; when 
6 3p p p  , commuter arrives before t  , capacity waste 

only occurs at t  , mass arrival occurs before or at  t  ; when 3 4p p p  , commuter arrives before 

t  , capacity waste occurs at both t   and t  , mass arrival occurs at  t  . 
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In area CDJ : when 
70 p p  , bottleneck can be fully utilized but has no mass arrival; when

7 8p p p  , capacity waste only occurs at t   and there is no mass arrival; when
8 4p p p  , mass 

arrival recurs at t  , capacity waste occurs at both t   and t


. 

 

In area GJDH : when 
9 8p p p  , capacity waste only occurs at t   and there is no mass arrival; 

when 
8 4p p p  , mass arrival recurs at t  , capacity waste occurs at both t   and t  . 

 

In area PCJI : when 
70 p p  , bottleneck can be fully utilized but has no mass arrival; when 

7 10p p p  , capacity waste only occurs at t   and there is no mass arrival. 

 

In area IJG : when 
9 10p p p  , capacity waste only occurs at t   and there is no mass arrival. 

 

In area CFD : when 
110 p p  , bottleneck can be fully utilized but has no mass arrival; when 

11 5p p p  , capacity waste only occurs at t   and mass arrival occurs at t  ; when 5 4p p p  , 

capacity waste occurs at both t   and t  , mass arrival occurs at t  .   

 

In area LDB : when 
120 p p  , no commuter arrives before t  , no capacity waste occurs at t    

and mass arrival occurs before or at t  ; when 
12 13p p p  , no commuter arrives before t  , 

capacity waste occurs at t   and mass arrival occurs at t  ; when 13 4p p p  , commuter arrives 

before t  , mass arrival occurs at t  , capacity waste occurs at both t   and t  . 
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In area NLBM : when 
120 p p  , no commuter arrives before t  , no capacity waste occurs at t   

and mass arrival occurs before or at t  ; when 
12 14p p p  , no commuter arrives before t  , 

capacity waste occurs at t   and mass arrival occurs at t  . 

 

In area HDLK : when 
15 13p p p  , no commuter arrives before t  , capacity waste occurs at t   

and mass arrival occurs at t  ; when 13 4p p p  , commuter arrives before t  , mass arrival occurs 

at t  , capacity waste occurs at both t   and t  . 

 

In area KLN : when 
15 14p p p  , no commuter arrives before t  , capacity waste occurs at t   

and mass arrival occurs at t  . 

 

In area GCOBK : when 4p p , no commuter uses the toll window, all of them arrive either before 

t   or join the mass arrival at t  . 

 

In area KBM : when 
14p p , no commuter uses the toll window, all of them join the mass arrival 

at t  . 

 

In area PCG : when 10p p , no commuter uses the toll window, all of them come before t  . 

 

In area HDN : when 150 p p  , every commuter pays the toll to pass the bottleneck. 
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In area IDH : when 
90 p p  , every commuter pays the toll to pass the bottleneck. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

5. Unconstrained Optimization Problem 

 

In previous section, we have solved the equilibrium of tolled single bottleneck. In this section, we 

will talk about the unconstrained optimization problem. Unconstrained means there is no constraint 

on toll price level or toll window length. The goal is to minimize commuters’ total queuing delay 

and total schedule delay. The toll revenue collected from toll payers can be regarded as tax paid to 

the government, so minimizing the toll revenue is not our concern. Before our discussion, a lemma 

is introduced: 

 

Lemma 1. For any tolling scheme with capacity waste, by shortening toll window length and 

reducing toll price, there exists a tolling scheme with no capacity waste and incurring less total 

cost. (See Appendix C for proof)  

 

The proof of this lemma is complicated but we can understand it in an easy way. The capacity 

waste happens at t   when toll price exceeds 
1p  or at t   when toll price exceeds 

2p . If we still 

want to retain same amount of toll payers, the only way is to stretch the toll window longer, so the 

original toll payers with relatively lower VOT would still stay within the toll window, because 

coming earlier for them to avoid the toll would incur a higher schedule early cost. If we reverse 

this process, for a toll window with capacity waste, we could shorten the toll window length to the 

clearing period of toll payers (from the first toll payer’s clearing time point to last toll payer’s 

clearing time point) and reduce the toll price to a certain level so the same amount of toll payers 

would still use the tolled bottleneck. As the amount of toll payers does not change, the total queuing 

and schedule delay of toll payers will not change either. But by shortening the toll window length, 
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the toll non-payers at least can incur less schedule early cost, so the total cost of all commuters 

will decrease. 

 

Substituting (3) into (1) and (2) gives us 

         
  

* 2
,

1

N p
C x t x x t t x

s N
  

  

   


 (9) 

         
 

  
*

2 1
,

1

pN
C y t y y t t y p

s N

 
  

  


 

    


 (10) 

(9) and (10) show that, for a fixed toll window, the higher the toll price is charged, the lower a 

commuter’s cost will be, so for any toll window design, we need to push toll level to 
1p  or 

2p  to 

achieve the minimal cost.   

 

If the toll window design satisfies    * *t t t t     , by setting toll price to 
1p , we can obtain 

         * 2
,

2 1

N N
C x t x x t t x t t

s s


  

 

   
      

   
 (11) 

      *,C y t y t t p      (12) 

If the toll window design satisfies    * *t t t t     , by setting toll price to 
2p , we can obtain 

    
 

 
  *

1 1
,

2 1 2 1

N
C x t x x t t

s

 
 

   


 

  
   

 (13) 

      *,C y t y t t p      (14) 

If the toll window design satisfies    * *t t t t     , by setting toll price to 
1p  or 

2p , the 

commuters’ travel cost can be expressed by either form of the unbalanced design. 
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In this section, our goal is to achieve the unstrained optimality, so we do not need to worry about 

the toll level or toll window length. As shown above, there are three different designs of toll 

window, so our concern is which one will incur the lowest cost. The logic is to pick up a toll 

window, design it in three different ways, by comparing the individual user’s travel cost, we can 

find the best design. 

 

Let us first compare the design of    * *t t t t      and    * *t t t t      , where 

t t t t N s        . We readily have 

* N
t t

s

 

 

  


,  * N
t t

s

 

 

  


 

* N
t t

s

 

 

 


,  * N
t t

s

 

 

 


 

Based on (11) and (12), we can see the balanced design is better. 

 

Now let us compare the design of    * *t t t t      and    * *t t t t      , where 

t t t t N s        . We readily have 

* N
t t

s

 

 

  


,  * N
t t

s

 

 

  


 

Based on (13) and (14), we can see the balanced design is still better, so for the unconstrained 

optimization we need to design the toll window balanced and push toll price to 
1p  or 2p . The next 

question is how long the toll window should be. To determine the optimal toll window length, we 

need to solve 
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  
  

 

 

 
 

0

1 1
min

2 1 2 1

N N

N

x N x N N
TC dx y dy

s s s





      
  

       

 
  

        (15) 

(15) is the total queuing delay and schedule delay of all commuters under the balanced toll window 

design. It is easy to see that total cost is a function of toll payers’ proportion  . For ease of 

exposition, we define the following two terms 

   A x x dx  ,    B x x dx   

It is obvious    B x A x . Since VOT is greater than zero, both  A x  and  B x  should be 

increasing functions with respect to x .   

 

From (15), we can obtain 

   

  

  

 

      
  

      

2 11 1

2 1 2 1 2 1

0

N N N B NB N N N N

s s s

dTC

d

N N
N N A N A

s s

         

         

 
   

   

  
 

       


  
 

 

 

When 0  , we can acquire 

    
 

  
 

 

 

2
1 1

2 1 2 1
0 0

N N

s s

dTC
B N B

d

  

     




 

    
    

Based on Lagrange mean value theorem, we can obtain 

     0B N B N     0 N   

obviously    0    and 

 

  

1 1

2 1 2 1

  

     

 

    
  

so we readily have 
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  0 0
dTC

d



   

When 1  , we can acquire 

   
 

 

   

  
    

2 22 1

2 1

1
0

2 1

N

s

N NdTC N N
N N A N A

d s s s



 

   
 

        



 


    

    
 

since it holds 

    
 

 

   

  

2 22 1

2 1

1
0

2 1

N

s

N NN
N N

s s



 

  
 

     



 


  

   
 

we readily have 

 1 0
dTC

d



   

The second order derivative with respect to  can be given by 

 
 

 

 

  
    

    

32
2

2

2

1 1

2 1 2 1
2

2

N N

s s

d TC
N N N N N

d

N
N N N N

s

  

     
      




    

 

 


    
   

 


 

We can further obtain 

 
 

 
 

 

 

  

 

3 3 22

2

1 1

2 1 2 1

2 1

2 1

N N

s s

N Nd TC
N N

d s

 

   

  
    

  

 

   


    

 
 

which readily gives us 

2

2
0

d TC

d
  

As  TC   is a continuous function, these characteristics guarantee  TC   is a convex function 

within interval  0,1  so there must be a global minimizer * . It is apparent that within *0,   , 
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 TC   is a monotonically decreasing function and within *,1   ,  TC   is a monotonically 

increasing function. The optimal solution of unconstrained optimization is given by 

*  ,  
   * *1

2 1

N N N
p

s s

    

 

  
  

   
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6. Constrained Optimization Problem 

 

In previous section, we have discussed how to set the tolling scheme to achieve optimality with no 

constraint imposed on toll window length or toll price. But in real world, from political standpoint, 

the toll window length cannot be set too long and the toll price level cannot be charged too high, 

so now our job becomes how to minimize users’ time costs under these constraints. The toll 

window length constraint can be given by   N s l l N s   , where parameter l  is a pre-

determined toll window length limit. The toll price constraint can be given by p p , where 

parameter p  is a pre-determined toll price limit. 

 

The first problem we consider is how to achieve optimality with only time constraint on toll 

window length but no price constraint on toll level. Such a concern is reasonable since the morning 

commute flow only lasts for one or two hours, if we charge the whole commuting period, the 

congestion tolling will be pointless. In previous section, we have proved for any toll window, in 

order to achieve optimality, we need to make it balanced (    * *t t t t     ) and push toll 

level to 
1p . Since here we do not have any constraint on toll level either, we also need to make the 

toll window balanced and push toll level to
1p . The optimization problem can be given by 

   
 

 
 

 
 

0

1 1
min

2 1 2 1

N N

N

N N N
TC x x dx y dy

s s s





    
    

       

 
  

        

Subject to 

N
l

s


  
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Since within *0,   ,  TC   is a monotonically decreasing function, we can obtain the following 

result: if *N s l  , *  is the solution; if  *N s l  , in order to minimize the commuters’ total 

cost, we need to push toll window length to l , namely, l  is the solution. 

 

The second problem we consider is how to achieve optimality with both time constraint on toll 

window length and price constraint on toll level. Differing from the scenario with only time 

constraint, the balanced toll window design may not be feasible. We need to compare the 

unconstrained optimal solution with our constraints l  and p  to determine the tolling scheme. 

Totally four scenarios can be developed in this problem. 

 

6.1. Scenario one: *N s l  , *p p  

We can see this scenario is the easiest scenario, as the unconstrained optimal solution is covered 

by both the constraints, so *  and *p  are the solution. 

 

6.2. Scenario two: *N s l  , *p p  

In this scenario, although *p  is still within the range of our constraint, toll window length has 

exceeded the limit. The first step of the optimization is to design the toll window balanced and 

push toll window length to l , based on (4), if it holds 

   1

2 1

ls N
l p

s

  

 

  
  

   
 

since  TC   is a decreasing function on *0,   , the solutions are l  and  



31 
 

   1

2 1

ls N
l

s

  

 

  
 

   
 

If it holds 

 
   1

2 1

ls N
l p

s

  

 

  
  

   
 (16) 

we can see under the design of    * *t t t t     , based on (9) and (10), we need to charge 

the toll price as higher as possible, so the toll price should be taken as p . For same toll window 

length, if designed balanced, we have 

* N
t t

s

 

 

  


 

If designed as    * *t t t t     , we have 

* N
t t

s

 

 

  


 

Based on (9) and (10), when toll price is same, the balanced design will incur a lower individual 

cost, so the design of    * *t t t t      is ruled out. We only need to consider the balanced 

design. Now we need to solve: 

     
 

 
 

  

   
 

 
  

0

2 1
min

1

2

1

N

N

N

pN N
TC y y y dy

s s N

N N p
x x x dx

s s N





 
   

    


  

    

 
  

 

  
 





 

Subject to 

N
l

s


  
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The total cost under the balanced design with toll price taken as p  is still a function of  . We 

can further obtain  TC   as 

     
 

   

  

     

  

2
0

1

2 1 0

1

p B N B NN N
TC B N B

s s N

p A N A

N




    

  

  

               

    


 

We can obtain 

   
 

                 

  

2

2

0

2 1 2 1 0

1

dTC N
B N B

d s

B N B N N N N N A N A N N
p

N



  

          

  

      

             



 

Since   0N   , we readily have 

0
dTC

d
  

This tells us  TC   is a monotonically decreasing function. To minimize  TC  , we need to 

push toll window length to l . 

 

We have considered the design of    * *t t t t     , now let us talk about the design of

   * *t t t t     . Based on (9) and (10), we can see for a toll window  ,t t  , if 
2p  is lower 

than p , then the toll price should be taken as 2p ; if 2p  is greater than p , the toll price should be 

taken as p . Let us first consider the scenario of 
2p  lower than p . We need to minimize: 

       
 

 
  * * *

0

1 1
min ,

2 1 2 1

N N

N

N
TC t t y t t dy x x t t dx

s





 
    

   

  
 

     
      

Subject to 
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  

  *
1

2 1

N N
t t p

s

  
  

 


  

       
 (17) 

N
l

s


  

The total cost can be given as 

       
     

 

      

* *

*

1
, 0

2 1

1
                      

2 1

N B N B N
TC t t A N A t t

s

t t B N B N

 
  

 

 

 

 



           

    


 

 

The total cost can be treated as a function of  *t t   and  . We can acquire 

 
     

 

 
   
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*
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*

, 1 1
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TC t t N
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N
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s

  
      

    

    
   

   



 



   
    

    

  
  

   

 

which readily gives us 

 *,
0

TC t t



 



 

This tells us that under the design of    * *t t t t     , when t   is fixed, in order to lower 

the total cost, we need to stretch t   as left as possible. 

We can also acquire 

 
 

       
*

*

, 1
0

2 1

TC t t
A N A B N B N

t t

 
  

 





  
            

 

It is easy to see  

 
 

*

*

,
0

TC t t

t t

 



 


 
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This tells us for fixed toll window length, we need to move the toll window as left as possible. 

 

Based on (16), we can see when toll window length equals l , if we move toll window rightward, 

*t t   will increase and 
*t t  will decrease. When the toll window is moved rightward to a 

certain point, there must exist such  ,t t   which can satisfy 

 
  

  *
1

2 1

ls N
t t p

s

 
  

 


  

       
 (18) 

At this time, if we continue to move toll window rightward, 
*t t   will become even longer. Since 

it holds 

 
 

*

*

,
0

TC t t

t t

 



 


 
, 

the total cost will increase.   

 

If toll window length decreases (less than l ), in order to make   

  
  *

1

2 1

N N
t t p

s

  
  

 


  

       
, 

based on (18), since  x  is a decreasing function, we need to increase 
*t t   and decrease 

*t t . 

Since we have  

 *,
0

TC t t



 



, 

we can see the total cost under such a toll window is higher than a toll window with same length 

of 
*t t   but total length of l . 
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These tell us to minimize the total cost under design of    * *t t t t      and constraint (17), 

we need to push toll window length to l  and charge a toll of p  or namely we need to find a toll 

window that satisfies (18). 

 

Now let us talk about the scenario with 
2p  greater than p . We need to solve 

        
  
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* *
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2
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1

2 1

1

N

N

N
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TC t t x x t t x dx
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pN
y y t t y dy

s N





   
  

 
  

  

 



    


 
   







 

Subject to 

 
  

  *
1

2 1

N N
t t p

s

  
  

 


  

       
 (19) 

N
l

s


  

Total cost can be given by 

       
   

  

     
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* *
2
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N




  

  

  

 
               
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We can acquire 

 
 *,

0
TC t t



 



 (20) 

This tells us with fixed t


, in order to minimize total cost, we need to stretch t   as left as possible. 

It is also easy to obtain 
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 
 

*

*

,
0

TC t t

t t

 



 


 
 (21) 

This tells us with fixed toll window length, to minimize total cost, we need to move the toll window 

as right as possible. 

As    * *N s t t t t      , total cost can also be treated as a function of 
*t t   and 

*t t , or 

namely,  * *,TC t t t t   , we can obtain 

 
 

   
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

  
     

 

             
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which readily gives us 

 
 
 

* *

*

,
0

TC t t t t

t t

 



  


 
 (22) 

This tells us with fixed t  , in order to minimize total cost, we need to stretch t   as right as possible. 

 

As long as (18) holds (has solution), for a toll window whose critical toll price is bigger than p  

(
2p p ), we can always find another toll window whose critical toll price equals p  (

2p p ) by 

stretching t   rightward and/or moving the toll window rightward. Based on (9) and (10), it is 

shown that with same toll level and same length of toll window, a longer 
*t t   will incur a lower 

individual system cost. This tells us under constraint p p , the system cost of a toll window 

whose critical toll price equals p  is lower than that of a toll window with same length but whose 

critical toll price is greater than p (we can move the toll window with 2p p  rightward to obtain 
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a toll window with 
2p p ). If by only moving the toll rightward, we cannot find a toll window 

whose critical toll price equals p , we can first stretch t  rightward to certain point and then move 

it rightward, so finally we can obtain a toll window whose critical toll price equals p . Based on 

(22), (9) and (10), we can see that, if (18) holds, for a toll window whose critical toll price is bigger 

than p , there must exits a toll window whose critical toll price equals p  with less system cost. 

This tells us a toll window that satisfies (18) is better than any toll window whose critical toll price 

is bigger than p . 

 

If (18) has no solution or it holds that 

  
 

1

2 1

ls N
l p

s

 
  

 

  
      

, 

based on (20), (21) and (22), to minimize the total system cost, we need to push toll window length 

to l , take the toll price as p  and move the toll window as right as possible, or namely, the optimal 

toll window  ,t t  is  * *,t t l . 

 

Now in scenario two under (16) we have two sub-optimal solutions: the first one is to push toll 

window length to l , make it balanced and charge a toll of p ; the second one is to find a toll 

window that satisfies (18) or a toll window of  * *,t t l . We need to compare them to find the 

best one. Based on (9) and (10), it is obvious that with same toll level and same length of toll 

window, a longer 
*t t   will incur a lower individual system cost. For the balanced design, we 

have    

*t t l


 

  

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For the unbalanced design, we have  

*t t l


 

  


 

So it is straightforward that the unbalanced design has a lower system cost than the balanced design. 

Now our conclusion is that if (18) has solution, the optimal solution is a toll window satisfies (18); 

if (18) has no solution, the optimal solution is to push the toll window length to l  and move it as 

right as possible or namely, a toll window of  * *,t t l . Actually, when (18) has no solution, it 

implies the political constraints imposed on the tolling scheme are too strong. It implicates the toll 

window length limit is too short compared to the toll level limit or the toll level limit is too low 

compared to the toll window length limit. 

 

6.3. Scenario three: * *, N s l p p    

In this scenario, the unconstrained optimal toll window length is within our limit, but the toll price 

has exceeded the limit. In order to find the optimal solution under such constraints, the first step 

we should do is to solve 

 
   

 
1

2 1

N N
t t p

s

   

 

 
  

      
 (23) 

we denote the solution as   

 

If N s l  , for   , under the balanced design,    is the optimal solution, because (15) is 

an increasing function with respect to   on interval *,1   . Under the balanced design, for 

  , we have 
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   
 

1

2 1

N N
t t p

s

   

 

 
  

      
, 

so the toll price should be charged by p . With the toll price being p , under balanced design,  total 

cost is a decreasing function with respect to  , so the minimal cost will still be achieved by taking 

  . Now we need to think about the unbalanced design    * *t t t t     . We already 

proved in the section of unconstrained optimization that for the same toll window length, the 

balanced design will incur the minimal cost. So for the toll window with length N s , the 

balanced design with toll price being 
1p  is always better than the unbalanced design with toll price 

being 
2p . And for   , we can always find a dummy toll level bound p p  , then find a toll 

window that  can satisfy 

  
  *

1

2 1

N N
t t p

s

  
  

 


  

       
 

We have proved in scenario two that such a toll window is the optimal solution for problem with 

constraints    and p p .  

 

Based on these discussion, we can see the optimal toll window length should be N s , and toll 

price should be p , or namely a toll window that satisfies (23). 

 

If  N s l  , thus for every N s l  , we have 

   
 

1

2 1

N N
t t p

s

   

 

 
  

      
 

Based on the discussion of scenario two, the optimal solution is a toll window that should satisfy 

equation (18). Of course, if (18) has no solution, we can minimize total cost as much as possible 
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by making toll window unbalanced, pushing toll window length to l  and moving it as right as 

possible or namely a toll window of  * *,t t l . 

 

6.4. Scenario four: * *,  N s l p p    

In the last scenario, the unconstrained optimal toll window length and toll level have both exceeded 

the limits, it is obvious that 

   1

2 1

ls N
l p

s

  

 

  
  

   
, 

based on the discussion of scenario two, the optimal solution is a toll window that should satisfy 

equation (18). If (18) has no solution, we can minimize total cost as much as possible by making 

toll window unbalanced, pushing toll window length to l  and moving it as right as possible or 

namely a toll window of  * *,t t l . 
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7. Numerical Examples 

 

We use a numerical example to demonstrate what tolling scheme should be adopted under both 

toll window length and toll level constraints. We use the VOT setup adopted in Xiao et al.’s paper 

(2011). The travel demand is 100. Capacity of the bottleneck is 50. 0.609   and 2.377  . The 

preferred arrival time at work place is at 0 o’clock (the time points only serve as reference points). 

The difference is that the VOT function in our model is a monotonically decreasing function. 

Following is the VOT function setup: 

   0.128 100x x    

   0.078 100x x    

   0.3042 100x x    

Table 1 shows the unconstrained optimal tolling scheme 

 

Table 1: unconstrained optimal tolling scheme 

proportion of toll payers 39.91% 

toll window length 0.798 

tolling starting time -0.635 

tolling ending time 0.163 

optimal toll level 4.14 

peak hour stating time -1.5182 

peak hour ending time 0.488 
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We can see that under the unconstrained optimal tolling scheme the peak hour starts at -1.5182 

and ends at 0.488. We need to start charging the toll at -0.635 and stop charging at 0.163. The 

optimal toll level is 4.14. There will be almost 40 toll payers.  

 

If there is only toll window length constraint, e.g. 0.75l  , the optimal tolling scheme is shown in 

table 2. 

 

Table 2: constrained optimal tolling scheme with 0.75l   

proportion of toll payers 37.50% 

toll window length 0.75 

tolling starting time -0.597 

tolling ending time 0.153 

optimal toll level 4.48 

peak hour stating time -1.515 

peak hour ending time 0.485 

 

We can see the unconstrained optimal tolling scheme is no longer feasible, but with constraint only 

on toll window length, we still adopt the balanced toll window design. 
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If we have both toll window length and toll level constraint, e.g. 0.75l   and 4.3p  , the optimal 

solution is shown in table 3. 

 

Table 3: constrained optimal tolling scheme with 0.75l   and 4.3p   

proportion of toll payers 37.50% 

toll window length 0.75 

tolling starting time -0.587 

tolling ending time 0.163 

optimal toll level 4.3 

peak hour stating time -1.5817 

peak hour ending time 0.4813 

 

The toll window length constraint in table 3 is same with table 2 and the two schemes have same 

number of toll payers. But with the toll level constraint of table 3, we need to start charging the 

toll later. 
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Table 4, Table 5, Table 6 and Table 7 give another four examples of constrained optimal tolling 

scheme under both toll window length and toll level constraints.  

 

Table 4: constrained optimal tolling scheme with 0.85l   and 4p   

proportion of toll payers 40.90% 

toll window length 0.818 

tolling starting time -0.651 

tolling ending time 0.167 

optimal toll level 4 

peak hour stating time -1.52 

peak hour ending time 0.48 

 

 

Table 5: constrained optimal tolling scheme with 0.75l   and 4p   

proportion of toll payers 37.50% 

toll window length 0.75 

tolling starting time -0.57 

tolling ending time 0.18 

optimal toll level 4 

peak hour stating time -1.524 

peak hour ending time 0.476 

 

 



45 
 

Table 6: constrained optimal tolling scheme with 0.75l  and 4.6p   

proportion of toll payers 37.50% 

toll window length 0.75 

tolling starting time -0.597 

tolling ending time 0.153 

optimal toll level 4.48 

peak hour stating time -1.515 

peak hour ending time 0.485 

 

 

Table 7: constrained optimal tolling scheme with 0.81l   and 4p   

proportion of toll payers 40.5% 

toll window length 0.81 

tolling starting time -0.6414 

tolling ending time 0.1686 

optimal toll level 4 

peak hour stating time -1.5203 

peak hour ending time 0.4797 
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8. Conclusions 

 

This thesis studied the morning commute problem with a peak period flat toll on a single bottleneck. 

We first solved the equilibrium of bottleneck model under different tolling schemes. We found out 

that, for any toll window, there exists a critical toll level over which capacity waste happens. Then, 

based on the individual cost, we proved that, in respect of total system cost, a tolling scheme 

without capacity waste is always better than a scheme with capacity waste. We also found out that, 

under toll window length constraint only, if the unconstrained optimal tolling scheme is infeasible, 

we should push toll window length to the upper bound, make toll window balanced and charge the 

corresponding critical toll price. Balanced means the part of the toll window before the work start 

time and the part after has equal monetary value. Under both toll level and toll window length 

constraints, if the unconstrained optimal tolling scheme is infeasible, whenever possible, a 

balanced toll window and its corresponding critical toll price can solve the problem; if the balanced 

design gives a critical toll price exceeding the upper bound of toll level, we can push the toll 

window rightward to make the tolling time start later, or namely make the toll window unbalanced, 

and charge the corresponding critical toll price of the moved toll window. 
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Appendix A. Derivation of Untolled Bottleneck Equilibrium 

 

As the bottleneck is not tolled, commuters can be divided into two groups. One has queuing delay 

and schedule early delay. The other has queuing delay and schedule late delay. We assume the x

th user has the schedule early delay and the y th user has the schedule late delay. Her cost is given 

by 

 
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Condition (24) implies the x th commuters are cleared from 
qt  to 

*t . By setting ( , ) 0C x t t   , 

we can obtain 
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Substituting  1 t  into ( , )C x t  gives us 

  *, ( ) ( )qC x t x t t    

The y th user’s cost is given by 
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Condition (25) implies the y th users are cleared from 
*t to 

qt  . By setting ( , ) 0C y t t   , we can 

obtain 

 2
1

s
t





 

Substituting  2 t  into ( , )C y t  gives us 

*( , ) ( )( ) ( ) ( )
1

q qC y t y t t y t t
 

  



   


 

Substituting 
1( )t  and 

2 ( )t  into (24) and (25) can give us 

 *( ) ( )
1

q q

s
s t t t t


  


 (26) 

 *( ) ( )
1

q q

s
s t t t t


   


 (27) 

Based on (26), (27) and the fact ( )q qs t t N   , we can readily obtain 

*

( )
q

N
t t

s



 
 


 

*

( )

N
t t

s



 
 


 

*

( )
q

N
t t

s



 
  


 

If the x th commuter chose to come after t , he would have a cost of 

*( )( ) ( ) ( )
1

q qx t t x t t
 

  



  


 

Based on (26) and (27), we can obtain  

* *( ) ( ) ( )( ) ( ) ( )
1

q q qx t t x t t x t t
 

    



    


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This tells us at equilibrium, a commuter can choose to arrive at any time. No matter when she 

comes, she will have the same cost. 
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Appendix B. Derivation of tolled bottleneck equilibrium 

Here, we give the derivation of the equilibrium profile of capacity waste at both  and  as an 

example. 

 

Capacity waste happening at both  and : 

 

 

If there is capacity waste at both t   and t  , it is very obvious that the mass arrival happens at t  . 

The first toll payer arrives after t   and the last toll payer arrives before t  . Each traveler’s 

individual cost is given as  

   
   

 
   1 1

*,
q q

t t

q q
t t

d s t t d s t t

C x t x x t t
s s

     
 

    
 

    
 
 

 
 

   
   

 
   2 2

*,
y y

t t

y y
t t

d s t t d s t t

C y t y y t t p
s s

     
 

    
 

     
 
 

 
 

t  t 

t  t 

 

q
t  t

  y
t  *

t  z
t  t

  q
t   

Cumulative 

arrivals and 

departures 

Figure 4: equilibrium profile of capacity waste at both t


and t

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   
     

 
     

2 3

2 3
*

,

z

y z

z

y z

t t

y
t t

t t

y
t t

d d s t t

C z t z
s

d d s t t

z t t p
s

     


     


  



   
 

    
 
 

 

 

      *,
2 2

q qt t t t
C m t m m t 

 

 
    

        
   

 

By setting  , 0C x t t   ,  , 0C y t t    and  , 0C z t t   , we can obtain 

   1 2
1

s
t t 


 


 

 3
1

s
t





 

Substituting  1 t ,  2 t  and  3 t  into to  ,C x t ,  ,C y t  and  ,C z t  gives us 

    *, qC x t x t t   

    *, yC y t y t t p    

    *, zC z t z t t p    

At equilibrium, no commuter can further reduce his individual cost by changing arrival time, so 

we must have 

     * *

q yx t t x t t p      

     * *

y qy t t p y t t      

      * *

2 2

q q

q

t t t t
x t t x x t  

 

 
    

         
   
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      * *

2 2

q q

q

t t t t
m m t m t t  

 

 
    

         
   

 

     * *

y zy t t p y t t p       

     * *

z yz t t p z t t p       

which readily gives us  

  
 y q

p
x

t t






 (28) 

  
 y q

p
y

t t






   (29) 

 * *

y zt t t t     

  (30) 

From the fact that   

   
1

q q

s
t t s t t



  


 

   *

1
z y y

s
t t s t t


  


 

   *

1
z z z

s
t t s t t


  


 

we can further obtain 

 qt t t t       (31) 

 
* *

z yt t t t     (32) 

 * *

z zt t t t     (33) 

 * *

2 2

q q

q

t t t t
t t t 

 

 
    

         
   
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(32) and (33) readily gives us 

   * *

y zt t t t     

The N th person is the indifferent user who can choose to arrive at any time at equilibrium. Based 

on (28) and (29), we readily have 

 
 y q

p
N

t t
 





 

this can give us 

 
 

q y

p
t t

N  
   (34) 

The toll payers are cleared from 
yt  to 

zt , we can easily obtain 

z y

N
t t

s


   

The length of the peak hour can be given by 

  (35) 

which readily gives us 

  (36) 

     (37) 

Substituting (36) and (37) into (30) can give us 

  (38) 

Substituting (34) into (38) gives us 

   q q y z

N
t t t t t t

s

 

      

q q y z

N
t t t t t t

s

 

      

2q q y z

N
t t t t t t t

s

  

       

   * 1
2

q y z

q

N
t t t t

st t t    





   

    
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    
 

 
  

* *
11 2

1
2 2 2

z

y y y

t tp N
t t t t t t

N s

 
   

  




  

          (39) 

since    * *

y zt t t t    , (39) can further be converted to 

   
 

      
1 2

1 1 2 1z y z y

p N
t t t t t t

N s

 
   

  

  
           (40) 

since 
z yt t N s  , (40) can give us 

 
   

 
 

   
1 2 2

1
1 1

z y

p N
t t t t

N s

  


    

  
     

 
 (41) 

Based on the fact    * *

y zt t t t     and (41), we can obtain 

  
 

 

2
*

1 2 2 2 2 2 3

1 2 1 1
z y z

N
p s t t t t t t

s

        


     

 
     

              

 (42) 

The condition bottleneck has capacity waste on both sides is given by 

yt t t   

z qt t t

   

Since  and , we can easily obtain  

 

Also from  and (35), we can obtain 

 

which gives us 

  (43) 

   * *

y zt t t t   
zt t

 * *

zt t t t




  

qt t



y z q

N
t t t t t t

s

       

z y q

N
t t t t

s

   
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Based on (34) and (42), (43) can further give us 

  (44) 

As , we readily have 

 

which gives us  

 

From  and (31) , we can easily obtain 

 

this gives us  

which readily gives us 

 
y

p
t t

N  

    

so we can further obtain 

  (45) 

As , we readily have 

 

this gives us  

 

*2z

N
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so finally we need 

 

Now let us talk about the toll price’s range under different designs of toll window. 

Let the right side of (44) minus right side of (45) gives us 

 

When , we need 

and   

If it holds 

, 

we need 

 

We can also acquire ’s range as 

 

From the plotting of line 

 

 

and line 

, 

we can see we further need 

   * *1

2

N N
t t t t

s s


   

     

  
   * *1 2

1
t t t t

 
 

  

  
   
  

   * *t t t t    

zt t
     

2
*2 1 2 2

1 1 1
z

N
t t t t

s

    

        

  
   

     

     
2

* *2 1
N

t t t t
s

   
 



   
    

*

zt t t 

yt

 * * *

yt t t t t




   

     
2

* *2 1 0
N

t t t t
s

   
 



   
     

   * * 0t t t t     



59 
 

and  

Based on (42), toll price’s range can be given by 
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From the plotting of the line 

 

and the line 

 

we can see we further need 
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When    * *t t t t      , we need 
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If it holds 
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we need  
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When    * *t t t t     , the toll price’s range can be given by either forms of the unbalanced 

design. Just notice that the dots  are on the line of    * * 0t t t t      . 
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Appendix C. Lemma 1 proof 

 

Since there are many scenarios related with capacity waste, for simplicity, we only give one 

scenario’s proof as an example. Other scenarios’ proof can follow the same logic. 

 

 

Figure 5: equilibrium profile of toll window only with capacity waste at t   

 

For scenario where capacity waste only exists at t  (figure 3), from t   to 
yt , no queue exists at the 

bottleneck. From the indifferent user’s standpoint, the toll price can be obtained as the schedule 

early delay difference of her coming as the first toll payer and the first toll non-payer, respectively. 

Thus we have 

    y qp N t t     (46) 

From the fact the toll payer has schedule early delay if she is cleared before 
*t  and has schedule 

late delay if cleared after 
*t , we readily have 

 *

1

z y

y

t t
t t




 


 (47) 

 

q
t  t


 

*
t  yt  m

t  t

 

q
t   

Cumulative 

arrivals and 

departures 

z
t  



64 
 

 *
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 
 


 (48) 

It is easy to obtain 

 
y

N
t t

s

    (49) 

Based on the definition of equilibrium, the toll non-payer can either arrive before t   or join the 

mass arrival right after the last toll payer arrives. This gives us 
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 (50) 

Substituting (49) into (47) gives us 
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 (51) 

Substituting (51) into (48) gives us 
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m

N
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Substituting (52) into (50) gives us 
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Based on the fact q q yt t N s t t      , (49) and (53), we can obtain 
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1 2 2 2

1 1 1
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The condition bottleneck only has capacity waste at t   is given by 

yt t  , 

which readily gives us 
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N
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 (55) 

From (46), (49) and (55), we finally can obtain 
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Based on the fact 
mt t , we can acquire 
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which readily gives us 
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From (49), we can further obtain 
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(57) and (58) tell us that 

   * *

yt t t t      

For a toll window  ,t t    designed as    * *t t t t       with toll price of 
1p , we have 
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For a toll window only having capacity waste on t  , we have 
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    *,w yC y t y t t p    

From (56), we can easily obtain 
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If we let t t   and choose the same  , or namely let yt t , we readily have 

   , ,wC x t C x t  and    , ,wC y t C y t  

We can see the system cost of the y th user remains same, but under a tolling scheme without 

capacity waste, she pays less toll. The system cost of the x th user is also lower under a tolling 

scheme without capacity waste. This tells us for a toll window having capacity waste, we can 

shorten the toll window to the clearing period of toll payers, then reduce toll price to the critical 

level corresponding to the amount of the toll payer. With this new toll window, the total system 

cost is reduced and commuters pay less toll. This proves Lemma 1.   
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