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Abstract 

 The single electron oxidation of organic substrates provides access to powerful 

reactive intermediates that can be utilized by organic chemists to produce synthetically 

relevant compounds.  While originally observed by Faraday almost two centuries ago, for 

many years single electron oxidations were not utilized to their full potential in organic 

synthesis primarily due to the lack of fundamental knowledge of how to interconvert 

reactive intermediates.  It is our hypothesis that a thorough mechanistic understanding of 

the factors involved in single electron oxidations will lead to the development of efficient, 

selective and general synthetic protocols thereby expanding the range of reactions in the 

organic chemist‘s ―toolbox.‖  The doctoral research presented herein focuses on 

developing synthetic methods that utilize single electron oxidations to form new carbon-

carbon and carbon-heteroatom bonds and on understanding the key mechanistic factors 

that contribute to the selective formation of products in several single electron oxidative 

bimolecular coupling reactions. 

  The research contained in this dissertation has achieved the following: 1) A novel 

method has been developed for the synthesis of γ-halogenated ketones which are 

important precursors for biologically active compounds such as haldol, 2) a solvent-

dependent oxidative coupling of 1-aryl-1,3-dicarbonyls to styrene was developed and 

selective product formation was shown to be controlled by the lifetime of a radical cation 

intermediate, 3) a synthesis for β-tetralones via intramolecular cyclization of γ-aryl-β-

dicarbonyls was developed and the impact of substrate electron density on product 

selectivity was interrogated with computational studies, and 4) the non-statistical 

oxidative heterocoupling of equimolar lithium enolates was investigated and it was 
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determined that product distributions were, in part, a consequence of lithium enolate 

aggregates. 
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Chapter 1: Introduction to single electron oxidations in organic synthesis 

 

1.1 Origins 

 The single electron oxidation of organic substrates provides access to powerful 

reactive intermediates that can be utilized by organic chemists to produce synthetically 

relevant compounds.  Though single electron oxidations are now ubiquitous in synthesis, 

experimental evidence of their existence has its foundation in work performed by Faraday 

in 1834 in which he reported the evolution of CO2 gas at the anode during the electrolysis 

of acetate.
1
  Subsequent work by Kolbe, after whom this reaction is named, showed that 

ethane gas was also produced in addition to CO2.
2
  The accepted mechanism for the Kolbe 

reaction (Scheme 1.1) is the initial electrochemical single electron oxidation of acetate 

ions to radicals.  These radicals then decompose to expel CO2 and generate methyl 

radicals which homocouple to produce ethane.
3
  Depending on the reaction conditions and 

the organo-acetates employed, the radicals produced after decarboxylation can be 

oxidized further to produce cation intermediates that can couple with water, alcohols and 

other nucleophiles in solution.
4
  Since the seminal work of Faraday and Kolbe, multitudes 

of sophisticated reaction systems have been developed that rely on the interconversion of 

anions, radicals, and cations to achieve the desired transformations. 

 
Scheme 1.1: Mechanism of the Kolbe reaction for the electrochemical oxidation of 

carboxylates.  For the seminal work of Faraday, R = methyl.
1
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1.2 Importance of the interconversion of reactive intermediates in synthesis 

 Although the Kolbe reaction serves as a clear example of the potential of single 

electron transfers (SET) for organic synthesis, reactions involving radical intermediates 

were slow to develop.  The primary reason that radical-mediated reactions were 

underutilized for decades was the lack of a fundamental understanding of how to 

efficiently interconvert between reactive intermediates.  As Tanko points out in a recent 

review of radicals in organic synthesis, ―radicals were viewed as a bit of a curiosity by 

most organic chemists—highly reactive, uncontrollable, and of little interest to anyone, 

save for the petroleum industry.‖
4
  However, as chemists obtained more insight into the 

nature of radicals generated from SETs, new reaction systems were designed that fully 

harnessed the synthetic potential of these intermediates providing efficient pathways to 

structurally complex molecules.   

 The importance of the ability to interconvert reactive intermediates in synthesis is 

exemplified by the work of Jahn depicted in Scheme 1.2.
5
  This reaction involves the 

oxidative intramolecular cyclization of malonate derivative 1 to form the bicyclic lactone 

6.  In the first step of the reaction, compound 1 is deprotonated by base to generate enolate 

2.  The single electron oxidation of intermediate 2 results in a radical species (3).  This 

radical then cyclizes with the pendant olefin, which forms a 5-membered ring and 

produces another radical species (4).  A second SET further oxidizes the radical to a 

cation (5) which is stabilized by the two phenyl groups.  Finally, a second intramolecular 

cyclization with one of the esters followed by the loss of an ethyl group produces the 

bicyclic lactone (6).  This reaction demonstrates how the ability to efficiently interconvert 

reactive intermediates can significantly impact syntheses.  In this one-pot reaction, the 
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organic substrate is converted from a neutral molecule (1), to an anion (2), to a radical (3), 

to a cation (5), and ultimately to the neutral product molecule (6).  Understanding the 

nature of reactive intermediates has dramatically increased the chemical diversity that can 

be accessed through single electron transfers.  While both reductive and oxidative 

processes have significantly contributed to the field of organic chemistry, the research 

presented in this dissertation focuses on reaction systems involving single electron 

oxidations. 

 

Scheme 1.2: Cyclizations of malonate derivatives through single electron oxidations
5
 

1.3 Single electron oxidations 

  Today, radical and radical cation intermediates are routinely generated through a 

variety of methods.  While numerous, the vast majority of the single electron oxidations in 



6 
 

organic chemistry are achieved via one of the following routes: transition metal-based 

oxidants, hypervalent iodine oxidants, electrochemical oxidations, or lanthanide-based 

oxidants.  Often, multiple oxidative methods are capable of performing the desired 

chemical transformation.  However, individual oxidants have discrete characteristics that 

can result in unique reactivity depending on the substrates and reaction conditions.  The 

majority of the oxidative coupling reactions presented in the research chapters of this 

dissertation rely on lanthanide-based reagents.  By understanding the important factors 

involved in single electron oxidations, new reaction systems can be rationally designed 

that are efficient, selective, and broadly applicable. 

1.3.1 Transition metal-based oxidants 

1.3.1.1 Fe(III) oxidants 

 Fe(III)-based reagents, such as iron(III) chloride (FeCl3), are some of the most 

frequently used Lewis acid catalysts in organic synthesis.
6
  In addition to serving as Lewis 

acid catalysts, Fe(III)-based reagents can act as stoichiometric single electron oxidants.  

The single electron oxidations to produce bicyclic lactones developed by Jahn (vide 

supra) were achieved using ferrocenium hexafluorophosphate (FeCp2PF6).
5
  This Fe(III)-

based oxidant has been shown to mediate a variety of other oxidative cyclizations 

involving malonate and ester enolate derivatives.
5, 7-10

 

 Fe(III)-based oxidants have also been extensively applied to the oxidative 

coupling of lithium enolates to generate 1,4-dicarbonyl compounds which are important 

structural components in many natural products and pharmaceutically active compounds.  

Several protocols have been developed for the synthesis of symmetric 1,4-dicarbonyls via 

the oxidative intermolecular homocoupling of enolates derived from ketones using 
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FeCl3.
11-13

  Additionally, intramolecular oxidative coupling of dienolates can be achieved 

with FeCl3.
11

  Both Baran et al. and Overman et al. have reported total syntheses in which 

an integral step was the intramolecular oxidative coupling of dienolates (Scheme 1.3).
14, 15

  

In reaction 1, deprotonation of both the amide and ester of 7 generates two enolates which 

are oxidatively coupled using iron(III) acetylacetonate (Fe(acac)3) producing 8.
14

  In 

reaction 2, an FeCl3/DMF complex is employed as the oxidant to couple the ketone 

enolate with the diester enolate of 9.
15

  The oxidative coupling of enolates including the 

intermolecular heterocoupling of enolates, which provides a direct route to asymmetric 

1,4-dicarbonyls, is discussed in detail in Chapter 5 of this dissertation. 

 

Scheme 1.3: Two examples of Fe(III)-mediated intramolecular cyclizations that are key 

steps in the total syntheses of avrainvillamide and stephacidins (1)
14

 and actinophyllic 

acid (2).
15

 

1.3.1.2 Cu(II) oxidants 

 Copper-catalyzed processes can be found in multiple chemical disciplines from 

biochemistry to materials science to organic synthesis.  In addition to catalysis, Cu(II)-

based reagents are commonly used as stoichiometric oxidants in a variety of carbon-
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carbon bond forming reactions.  Several examples of Cu(II)-mediated oxidative coupling 

reactions are shown in Scheme 1.4.  In the first reaction, silyl bisnaphtholate 11 is 

oxidized with two equivalents of copper(II) chloride (CuCl2) and after radical-radical 

coupling and elimination of the silyl group generates 1,1‘-bi-2-naphthol (BINOL)  

 

Scheme 1.4: Representative reactions involving the Cu(II)-mediated single electron 

oxidation of organic substrates 

derivative 12.
16

  Asymmetric BINOL derivatives were also accessible via this method.
16

  

The synthesis of both symmetric and asymmetric BINOL derivatives is of interest because 

they are important ligands for numerous metal-mediated reactions in organocatalysis.
17

  In 

another example (reaction 4), when aniline derivatives (R = alkyl) are oxidized with 
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copper(II) perchlorate (Cu(ClO4)2), they dimerize to form biaryl products (14).
18

  

Interestingly, if the same reactions are performed in the presence of appropriate 

nucleophiles such as halides and thiocyanates, the dimerization of the radical cation 

intermediates is inhibited and para-substituted anilines (15) are obtained as the major 

products.
18

  In the final example (reaction 6), Baran et al. were able to oxidatively couple 

carvone (16) with indole (17) to generate product 18.
19

 This reaction was shown to be 

general, allowing for a wide range of ketones, esters, and amides to be coupled with 

indoles and pyrroles.
19

  Although a 3-5 equivalent excess of the indoles and pyrroles is 

necessary to obtain synthetically useful yields and limit homodimerization of the enolate 

species, this chemistry provides an efficient route to complex intermediates from 

relatively simple starting materials.  Using this approach, Baran et al. were able to rapidly 

synthesize the natural products oxazinin 3 and acremoauxin A, a potent inhibitor of plant 

growth.
19

 

 In addition to reactions 3-6, Cu(II)-based oxidants are capable of mediating many 

of the same reactions as Fe(III)-based oxidants, in particular the oxidative coupling of 

lithium enolates.  Both CuCl2 and copper(II) triflate (Cu(OTf)2) have been employed to 

oxidatively homocouple enolates
11, 20-22

 as well as intramolecularly couple diketones
20, 21

 

and diesters.
20

  Finally, Cu(II)-2-ethylhexanoate has been used by Baran et al. to produce 

asymmetric 1,4-dicarbonyl compounds through the heterocoupling of enolates.
23, 24

 

1.3.1.3 Mn(III) oxidants  

 Although not as versatile as Fe(III)- and Cu(II)-based oxidants, Mn(III)-based 

oxidants are capable of mediating several SET reactions.  Of these oxidants, 

manganese(III) acetate (Mn(OAc)3) is the most frequently used in organic synthesis.
25

  As 

the reactions in Scheme 1.5 indicate, the vast majority of Mn(III)-mediated reactions 
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involve intramolecular cyclizations via the single electron oxidation of dicarbonyl 

substrates.  In the first example (reaction 7), dimethyl 4-pentenylmalonate (19) is oxidized 

by Mn(OAc)3, generating a radical intermediate that cyclizes with the pendant olefin.  

This intramolecular cyclization generates a primary radical that abstracts a hydrogen 

atom, presumably from solvent or unreacted 19, to form the cyclopentane derivative as the 

major product.
26

  In reaction 8, β-tetralone derivative 22 is produced via the oxidative 

intramolecular cyclization of the 1,3- dicarbonyl moiety with the γ-aryl ring.  The 

Scheme 1.5: Mn(III)-mediated oxidative intramolecular cyclizations 
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research in Chapter 4 of this dissertation describes an alternative synthesis of β-tetralone 

via single electron oxidations.  Reaction 9
27

 illustrates the most significant drawback and 

limitation of Mn(III)-mediated oxidations: the formation of multiple products.
25

  In this 

example, although the initial oxidation of the enol tautomer of diester 23 and the 

cyclization with the allenyl group proceed efficiently, the subsequent radical is 

delocalized and oxidized very slowly by Mn(OAc)3.
27

  Consequently, though high yields 

of the dicyclopentane derivatives are produced, they are obtained as a complex mixture 

consisting of 24a-c.
27

 

1.3.2 Hypervalent iodine oxidants 

 Hypervalent iodine species, I(III) and I(V), represent another class of reagents that 

are capable of initiating a variety of bond forming reactions in organic synthesis through 

SETs.  Of the I(III)-based oxidants, the most widely used is phenyliodine 

bis(trifluoroacetate) (PIFA).
28

  PIFA has been shown to oxidize electron-rich arenes and 

aromatic heterocycles such as thiophenes and pyrroles.
28

  Examples of both 

intramolecular (reaction 10) and intermolecular (reaction 11) bond formations that are 

initiated by PIFA are provided in Scheme 1.6.  In the first reaction, both electron-rich aryl 

rings of 25 are oxidized to radical cations.  Radical-radical coupling and rearomatization 

generate glaucine (26) as the major product.
29

  In reaction 11, naphthalene (27) is 

selectively oxidized in the presence of mesitylene (28) to a radical cation.
30

  Instead of 

dimerizing to binaphthalene, the radical cation adds to 28 generating the heterocoupled 

product (29) after a second single electron oxidation and deprotonation.  A variety of 

substituted naphthalene and mesitylene substrates could be cross-coupled with this I(III)-

mediated method without reducing product yields or selectivities.
30
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Scheme 1.6: Examples of I(III)-mediated oxidative coupling reactions 

 In addition to functional group oxidations,
31

 several intramolecular cyclization 

reactions employing I(V)-based reagents, namely 2-iodoxybenzoic acid (IBX),  have been 

shown to proceed through single electron oxidative pathways.  Scheme 1.7 depicts two 

examples of IBX-mediated oxidative cyclizations.  In reaction 12, the aryl amide (30) is 

oxidized generating a nitrogen-centered radical intermediate which undergoes a 5-exo-trig 

cyclization with the pendant olefin.  Hydrogen atom abstraction produces 31 in a 90% 

yield.
32

  Interestingly, a subsequent mechanistic study by Nicolaou et al. provided 

evidence that initial complexation of IBX to THF was integral to reaction efficiency.
33

  

Based on these synthetic and mechanistic studies, a new route to amino sugars was 

developed in which the key step in the synthesis was an IBX-mediated cyclization.
34

  

Using similar chemistry, Studer et al. oxidized methyl amide 32 (R = Me) to the cyclic 

product 33 in good yields.
35

  Unfortunately, this reaction was not general.  When the steric 

bulk of the amide was increased (R = aryl), only trace amounts of 33 were obtained.  For 
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these substrates, esters (34) along with significant amounts of recovered starting material 

were obtained.
35

 

 

 

Scheme 1.7: Oxidative cyclization reactions initiated with I(V) 

1.3.3 Electrochemical oxidations 

 Electrochemical methods are underutilized in modern synthetic laboratories 

primarily due to the misconception that specialized or overly involved set-ups are 

required. However, electrochemical techniques are applicable to a wide range of single 

electron transfer reactions and often times have simple experimental procedures for small 

scale reactions.
36

  Adaptations of the Kolbe reaction (vide supra) are the most common 

examples of electrochemical SETs in modern organic syntheses.
37, 38

  As shown in 

Scheme 1.8, compound 35 can be efficiently converted to product 40 in a 90% yield via a 

modified Kolbe reaction.  In the presence of sodium methoxide (NaOMe), the carboxylate 

(36) of acid 35 is generated.  When a constant current is passed through the reaction cell, a 

single electron oxidation of 36 occurs at the anode producing radical 37.  This radical 

rapidly eliminates CO2 producing a primary radical species (38) which can cyclize with 

the electron-deficient olefin to generate intermediate 39.  This radical is then captured by 

an excess of another co-acid (for this reaction, R = Me) producing cyclopentane derivative 
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40 and another equivalent of CO2.
38

  Both the starting material and the R-group of the co-

acid can be varied to generate 5- and 6-membered cyclic products in very good to 

excellent yields.
38

 

 

Scheme 1.8: Modern synthetic application of the Kolbe reaction via electrochemical 

anodic oxidation 

  Another area of research that has recently benefitted from electrochemical 

oxidations is organocatalysis.  Recently, the singly occupied molecular orbital (SOMO)-

activated asymmetric catalytic system developed by MacMillan has been achieved via 

electrochemical methods.
39, 40

  In the example shown in Scheme 1.9, the reaction involves 

aldehyde 41 forming an enamine intermediate with the imidazolidinone catalyst (43).
40

  It 

was proposed that both the intermediate enamine and xanthene (42) are oxidized at the 

anode when a constant current is passed through the reaction cell.  After radical-radical 

coupling and release of the catalyst, compound 44 was produced in a 68% yield with 68% 

ee.
40

  While this procedure was applied to several different substrates, 50 mol% of catalyst 

43 had to be employed in many of the reactions in order to obtain synthetically useful 

yields.
40

  Nonetheless, this research demonstrates the potential utility of electrochemistry 
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in the field of asymmetric organocatalysis and single electron oxidations, albeit on a 

millimolar scale. 

 
 

Scheme 1.9: Electrochemical route to asymmetric α-substituted aldehydes 

1.3.4 Lanthanide-based oxidants 

 Discovered in the late 1780s, the lanthanide metals were originally termed ―the 

rare earth metals.
41

‖  Surprisingly, many of the metals in the lanthanide series are actually 

more abundant in the earth‘s crust than other elements that are commonly used in organic 

syntheses.
42

  In particular, cerium is the 25
th

 most abundant element in the earth‘s crust 

making it more prevalent than tin, copper, bromine, lithium, iodine, and boron.
43

  Despite 

being mislabeled as the ―rare earth elements,‖ lanthanide-based reagents have been 

utilized with increasing regularity in organic chemistry due to their unique chemical 

properties.
44

  The lanthanides are the first elements in the periodic table to have electrons 

in the 4f orbitals.  These 4f orbitals are contracted and buried under the 5d and 6s orbitals.  

As a result, lanthanide-ligand interactions are primarily ionic in nature.
45

  Common to all 

lanthanides is the stable +3 oxidation state and many of their applications as Lewis acids 

and internal standards for NMR shift calibration rely on this oxidation state.
46, 47

  

 While the most stable oxidation state for the lanthanides is the +3 state, several 

lanthanides such as cerium, praseodymium, neodymium, terbium, and dysprosium have 

accessible +4 oxidation states allowing them to function as single electron oxidants.  Of 

the lanthanide metals with stable +4 oxidation states, the most widely utilized in organic 
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chemistry are Ce(IV)-based reagents, namely cerium(IV) ammonium nitrate (CAN).  

Though traditionally requiring highly acidic media, milder protocols in solvents such as 

methanol (MeOH), acetonitrile (MeCN), and 1,2-dimethoxyethane (DME) have led to 

increased applications of CAN in organic syntheses.  Furthermore, replacement of the 

ammonium counterions of CAN with more lipophilic tetra-n-butylammoniums (CTAN) 

results in enhanced oxidant solubility in less polar solvents such as methylene chloride 

(CH2Cl2).  The Ce(IV)-mediated processes provided in the following three sections of this 

dissertation are only a handful of examples of the multitude of reactions that have been 

developed.
48-53

 

1.3.4.1 Functional group conversions and deprotections with Ce(IV) 

  Many of the early reactions that utilized CAN in synthesis dealt with the 

oxidation of functional groups.
48, 53

  Scheme 1.10 highlights a few of the functional group 

conversions that can be performed.  In reaction 16, hydroquinone (45) is oxidized to 

quinone (46) quantitatively.
54

  Reactions 17 and 18 involve the oxidation of substrates at 

the benzylic position.  Depending on the substrate, alkyl benzenes (47) are oxidized to 

ketones (48) while benzyl alcohols (49) are converted to benzaldehydes (50).
53

 

Interestingly, Binnemans et al. recently reported that the oxidations of hydroquinones as 

well as benzylic substrates provide excellent yields when the reactions are performed in 

ionic liquids.
55

   Functional group conversions mediated by CAN are not restricted to 

oxidations of carbon and oxygen.  As shown in reaction 19, dialkyl- and diarylthioethers 

(51) can be oxidized to sulfoxides in high yields.
56
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Scheme 1.10: Functional group conversions with CAN 

  In addition to functional group conversions, CAN has been extensively utilized in 

protecting group chemistry.  Since protecting group chemistry adds two additional steps to 

the linear sequence of a total synthesis (one step to put the protecting group on the 

substrate and one step to remove it), the more efficient these steps are, the better.  CAN 

and other Ce(IV)-based reagents have been used successfully in a variety of deprotection 

reactions (Scheme 1.11).  Triisopropylsilyl (TIPS) and tert-butyldimethylsilyl (TBDMS) 

groups can be efficiently removed to produce alcohols.  As shown in reaction 20, primary 

silylethers can be selectively desilylated to alcohols in the presence of protected 

secondary alcohols.
57

  One of the most common protecting groups in organic synthesis for 

amines is tert-butyloxycarbonyl (Boc).  Normally requiring the use of concentrated acid,
58

 

N-Boc amines (55) can be deprotected under mild reaction conditions to the free amines 
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(52) using CAN.
59

  Drawing from the oxidation of hydroquinones to quinones, amine 58 

can be obtained through the CAN-mediated removal of the p-methoxyphenyl group from 

the protected amine (57).
60

  Finally, the deprotection of ketals and acetals to ketones and 

aldehydes has been achieved both stoichiometrically and catalytically with CAN.
61

 

 

Scheme 1.11: Deprotection reactions initiated by CAN 

1.3.4.2 Carbon-carbon bond formations with Ce(IV) 

 While early applications focused primarily on functional group conversion and 

protecting group removal, many carbon-carbon bond forming reactions can be achieved 

through Ce(IV)-mediated oxidations.
48-50, 52

  A number of CAN-mediated reactions 

proceed through radical cation and cation intermediates making them prone to 

rearrangements and other side reactions. However, judicious planning of reactions often 

can circumvent these alternative reaction pathways.  For example, silylenolether 59 can be 

oxidized initially by CAN to generate a radical cation intermediate.  Elimination of the 
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silyl-group, addition to diene 60, oxidation of the product radical, and internal ligand 

transfer from CAN result in a 1:1 mixture of products 61a and 61b (reaction 23, Scheme 

1.12).
62

  However, when treated with Pd(PPh3)4 the nitrato groups are displaced forming 

the palladium complex 62.  Selective attack on the least hindered carbon atom by 

 
 

Scheme 1.12: CAN-mediated carbon-carbon bond forming reactions 

an appropriate nucleophile selectively yields product 63a.
62

  Reaction 24 describes 

previous work from our research group which showed that the oxidative coupling of 1,3-
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dicarbonyl derivatives (64) to allyltrimethylsilane (65) can be controlled to generate either 

allylated products (66) or dihydrofuran derivatives (67) through careful selection of 

solvent.
63, 64

  Based on these results, we recently developed a method for tetra-substituted 

pyrazoles (reaction 25).
65

  After initial allylation of 1,3-dicarbonyl 68 to generate 69, 

treatment with methylhydrazine and a catalytic amount of CAN produced tetra-substituted 

pyrazoles (70) in very good yields.
65

  Using this method, propylpyrazole triol (PPT), an 

estrogen receptor agonist, was efficiently synthesized.
65

 

 The enantioselective organocatalytic, SOMO-activated systems developed by 

MacMillan et al. are recent examples of the synthetic potential of Ce(IV)-based reagents 

in organic chemistry.  These reactions involve the formation of an intermediate enamine 

from the condensation of an aldehyde (71) with the sterically encumbered 

imidazolidinone catalyst (72).  A single electron oxidation of this enamine produces a 

radical cation that has one face completely blocked by the benzyl and tert-butyl groups of 

the catalyst.  As a result, selective coupling with the radicophile (65) occurs at the 

opposite face of the radical cation.  After a second single electron oxidation, 

deprotonation, and release of the catalyst, the enantiomerically enriched α-allylated 

aldehydes 73 are obtained in high yields.
66

  Using similar procedures, the α-vinylation and 

α-enolation of aldehydes have also been achieved which employ CAN as the oxidant.
67, 68

  

Our research group in collaboration with MacMillan recently investigated the mechanism 

of these Ce(IV)-mediated reactions.  Interestingly, by obtaining an intimate understanding 

of the complex roles of additives such as water in the catalytic cycle, the reaction time and 

catalyst loading were significantly reduced while preserving the high product yields and 

enantiomeric excesses.
69
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Scheme 1.13: Enantioselective α-allylation of aldehydes via SOMO-activated catalysis 

1.3.4.3 Carbon-heteroatom bond formations with Ce(IV) 

 In addition to the carbon-carbon bond forming reactions mentioned in the previous 

section, CAN is capable of efficiently constructing carbon-heteroatom bonds as well.
48, 50, 

51
  Scheme 1.14 includes just a few of the Ce(IV)-mediated oxidative coupling reactions 

that have been developed.  In reaction 27, the azide anion is oxidized to a  

 
 

Scheme 1.14: Carbon-heteroatom bond construction via Ce(IV)-mediated oxidations 

radical by CAN and adds to silylenolether 74 to generate the α-azido product (75).
70

  

These products are useful intermediates for the synthesis of α-amino ketones and acyl 



22 
 

enamines.
70

  Oxidative addition of other inorganic anions such as bromide to uracil 

nucleosides (76), which results in regioselective mono-brominated products (77), can also 

be achieved using CAN.
71

  Previous research from our group has shown that β-substituted 

ketones (79) are accessible by oxidizing inorganic anions with CAN in the presence of 1-

substituted cyclopropanols (78).
72

  The oxidative addition of iodides, bromides, azides, 

and thiocyanates proceeded efficiently via this method.
72

  A novel synthetic method based 

on this research is discussed in detail in Chapter 2 of this dissertation. 

1.4 Influencing reaction pathways 

1.4.1 Preferential oxidation of substrates 

 As demonstrated by the examples shown in the previous sections, many different 

substrates and functional groups are susceptible to single electron oxidations.  As a result, 

multiple reaction pathways often can be envisioned for bimolecular oxidative coupling 

reactions.  By knowing the relative rates of oxidation, these seemingly competitive 

processes may be avoided and selective coupling reactions can be developed by 

preferentially oxidizing one substrate over another.  Two reaction systems exemplify the 

concept of preferential oxidation: organo-SOMO catalysis and oxidative addition of 

inorganic anions to cyclopropanols.  In MacMillan‘s organo-SOMO systems, both the free 

imidazolidinone catalyst and the enamine are susceptible to single electron oxidation by 

CAN.  However, the enamine intermediate is oxidized far more readily than free catalyst.  

Due to this difference in oxidation rate, preferential oxidation of the enamine occurs and 

catalyst deactivation through an oxidative pathway is not observed during the course of 

the reaction.
66-68
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 Similarly, 1-substituted cyclopropanols can be oxidized to β-keto radicals through 

single electron oxidation.  Previous research by Narasaka et al. has shown that these β-

keto radicals can efficiently couple with radicophiles such as silylenolethers to generate 

1,5-dicarbonyls as the major product.
73

  However, the rate of oxidation of inorganic 

anions by CAN is much greater than the rate of oxidation of cyclopropanols.  As a result, 

when CAN is added to a mixture of an inorganic anion and a cyclopropanol, the anion is 

preferentially oxidized to a radical which causes the cyclopropanol to act as the 

radicophile in the reaction.
72

  This preferential oxidation of inorganic anions is critical for 

the efficient formation of the β-substituted ketone products.  Components of the research 

presented in Chapters 2 and 5 of this dissertation involve the preferential oxidation of 

substrates to achieve selective bimolecular coupling reactions. 

1.4.2 Impact of solvent 

 While the previous examples highlight how preferential oxidation of substrates 

can influence reaction pathways, the research performed in our group on the oxidative 

addition of 1,3-dicarbonyl derivatives to allyltrimethyl silane demonstrates that solvent 

can significantly impact some carbon-carbon bond forming reactions (reaction 24, 

Scheme 1.12).
63, 64

  When oxidative couplings were performed in polar organic solvents 

such as MeCN, allylated products (66) were obtained, whereas dihydrofuran derivatives 

(67) were formed from reactions performed in less polar CH2Cl2.  During the course of 

these reactions, a β-silyl cation (80) is generated (Scheme 1.15).  More polar solvents such 

as MeCN and MeOH are able to promote the desilylation of this intermediate yielding the 

allylated products (66).  In non-nucleophilic solvents such as CH2Cl2, elimination of the 

silyl group is slow, causing cyclization of the cation intermediate with one of the proximal 
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carbonyl groups to become the favored reaction pathway.
64

  The research presented in 

Chapter 3 of this dissertation involves a detailed mechanistic study of a solvent-dependent 

reaction system.  

 
Scheme 1.15: Solvent-dependent oxidative coupling of 1,3-dicarbonyl derivatives (64) 

with allyltrimethyl silane (65) 

1.5 Expanding the organic chemist’s “toolbox” 

 When planning the total synthesis of a complex synthetic molecule, it is important 

for organic chemists to have a variety of versatile, efficient reactions at their disposal.  

The improvement of a single reaction involved in a multistep synthesis can significantly 

enhance the overall yield of the target molecule.  The driving force for the research 

presented in this dissertation is the expansion of the arsenal of reactions available in the 

organic chemist‘s ―toolbox.‖  Specifically, this research focuses on developing, 

understanding, and improving reactions that proceed through radical cation and radical 

intermediates.  A selection of substrate classes that may participate in single electron 

oxidative coupling reactions are provided in Figure 1.1.  Several of these substrates such 

as silylenolethers, cyclopropanols, and enamines are dual natured in that they can be 

oxidized to generate radical intermediates or they can act as radicophiles themselves to 
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trap an intermediate radical species.  It is our belief that by understanding the mechanistic 

factors that are important to the single electron oxidation of substrates, new coupling 

reactions can be developed.  Furthermore, exploiting differences in reactivity between 

substrate classes can lead to ―fine-tuned‖ syntheses that selectively proceed through a 

single reaction pathway. 

 
 

Figure 1.1: Examples of substrates useful in single electron oxidative couplings 

1.6 Project summary 

 Chapters 2-5 of this dissertation present synthetic and mechanistic research on the 

following topics involving single electron oxidations in organic synthesis: 1) the synthesis 

of γ-halogenated ketones, which are important precursors for biologically active 

compounds such as haldol, via the Ce(IV)-mediated oxidative addition of inorganic 

halides to 1-substituted cyclobutanols; 2) the mechanism of the solvent-dependent 

oxidative coupling of 1-aryl-1,3-dicarbonyls to styrene; 3) the synthesis of β-tetralones via 

the oxidative intramolecular cyclization of γ-aryl-β-dicarbonyls and impact of substrate 



26 
 

electron density on product selectivity; and 4) the mechanistic basis for the non-statistical 

oxidative heterocoupling of equimolar lithium enolates. 
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Chapter 2: Synthesis of γ-halogenated ketones via the Ce(IV)-mediated oxidative 

coupling of inorganic halides to 1-substituted cyclobutanols 

 

2.1 Background and significance 

Ketones with γ-halogenated substitutions are routinely used as starting materials 

for the synthesis of biologically active compounds that contain γ-substituted ketone 

moieties in their structural backbone (Figure 2.1).  The ketone moieties in neurological 

agents such as spiroperidol (A) and haldol (B) are incorporated by utilizing γ-chloro 

ketone precursors.
74, 75

  The drug haldol is prescribed to patients suffering from severe 

cases of schizophrenia and delirium.  Syntheses of antagonists (C) for the melanin-

concentrating hormone (MCH1) receptor require the use of γ-halogenated ketones.
76

  

Since the MCH1 receptor is involved in the regulation of food in-take, these antagonists 

have potential applications as anti-obesity agents.
76

  The ability to efficiently generate 

starting materials containing γ-halogenated ketone subunits
77

 may greatly impact the 

synthesis of novel, pharmaceutically active compounds. 

 

Figure 2.1: Structures of spiroperidol (A), haldol (B), and MCH1 antagonists (C) 
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Although γ-substituted ketone functionalities traditionally have been incorporated 

into molecules through γ-chloro ketones, the use of other γ-halogenated ketones such as γ-

iodo or bromo ketones may be synthetically beneficial since these halides are better 

leaving groups than chloride.  However, the synthetic approaches to structurally diverse γ-

halogenated ketones
77

 have been limited to a handful of synthetic routes for γ-chloro and a 

sparse number of γ-bromo ketones.  Scheme 2.1 includes some of the reactions routinely 

used in synthesis for the formation of γ-halogenated ketones.  Friedel-Crafts reactions (eq. 

1) can be utilized to generate a variety of 1-aryl-γ-chloro ketones.
78

  The Claisen 

condensation of an ester with a γ-lactone can yield both 1-aryl and 1-alkyl substituted 

ketones upon treatment with strong acid (eq. 2).
79

  Aliphatic γ-chloro ketones can also be 

prepared via the Grignard reaction using 4-chlorobutyryl chloride (eq. 3).
80

  Typically,  γ-

iodo and -bromo ketones are produced by refluxing γ-chloro ketones in the presence of 

either iodide or bromide sources (eq. 4).
81

   

 

Scheme 2.1: Previously established synthetic routes to γ-halogenated ketones 
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The conversions shown in Scheme 2.1 are not without drawbacks and limitations.  

Only 1-aryl-γ-chloro ketones can be synthesized via the Friedel-Crafts reaction, and yields 

(3-95%) are variable.
78

  The Claisen condensation requires the use of strong acids at 

elevated temperatures.
79

  Only low to moderate yields of 1-alkyl-γ-chloro ketones were 

obtained by Grignard reactions; 1-aryl-γ-chloro ketones were not accessible via this 

method.
80

  While refluxing works well with a variety of substrates, it requires long 

reaction times and superstoichiometric amounts of the desired halide.
81

  The development 

of a general and direct route to γ-iodo and -bromo ketones is of interest for the synthesis 

of more complex biologically active compounds. 

As described in Chapter 1, cerium(IV) reagents, namely cerium(IV) ammonium 

nitrate (CAN), have been used extensively by organic chemists as single electron 

oxidants.  CAN has proven to be a cost-effective, versatile reagent that is capable of 

mediating the formation of novel carbon-carbon and carbon-heteroatom bonds.
48-50, 52

  

Previous research from our group has shown that β-substituted ketones are accessible 

through the use of CAN.
72

  By selectively oxidizing an inorganic anion with CAN in the 

presence of a 1-substituted cyclopropanol, the generated inorganic radical added to the 

cyclopropanol, resulting in ring-opening.  Subsequent oxidation of the radical 

intermediate and deprotonation produced β-substituted ketones in very good to excellent 

yields.  In addition to short reaction times, these reactions worked for both 1-aryl- and 1-

alkyl-cyclopropanols as well as a variety of inorganic anions.  Based on this precedent, we 

examined whether this method could be extended to 1-substituted cyclobutanols thereby 

providing access to γ-substituted ketones.  The results of these studies are presented in this 

chapter. 
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2.2 Experimental 

2.2.1 Materials 

 Diethyl ether, methylene chloride, tetrahydrofuran and acetonitrile were purified 

with a Pure Solv solvent purification system from Innovative Technology, Inc. using 

alumina columns. Dimethoxyethane was purchased from Acros Organics.  Grignard 

reagents (phenylmagnesium bromide, p-methoxyphenylmagnesium bromide, p-

fluorophenylmagnesium bromide, cyclohexylmagnesium chloride and n-hexylmagnesium 

bromide) were purchased from Acros Organics as solutions in diethyl ether.  

Cyclobutanone was purchased from both Acros Organics and Alfa Aesar and used 

without further purification.  Sodium iodide, potassium bromide, and sodium azide were 

purchased from Acros Organics, Alfa Aesar, and Sigma Aldrich.  CAN and copper(II) 

perchlorate hexahydrate (CuClO4-6H2O) were purchased from Alfa Aesar and Acros 

Organics, respectively, and were used without further purification.  Ferrocenium 

hexafluorophosphate (FeCp2PF6) was prepared according to the literature.
8
 Cyclohexyl 

ethyl ketone and molecular bromine were purchased from Alfa Aesar and Acros Organics, 

respectively. 

2.2.2 Instrumentation 

 Proton and carbon NMR were recorded on a Bruker 500 MHz spectrometer.  GC 

and GC-MS analyses were performed with an HP 5890 Series II Gas Chromatograph with 

an HP Mass Selector Detector.  HR-MS was performed at the Mass Spectrometry Facility 

at Notre Dame University. 

 

 



31 
 

2.2.3 Methods 

2.2.3.1 Procedure for the synthesis of 2-ethyl-cyclobutanone 

 Unsymmetric N,N-dimethylhydrazine (25 mmol, 1.2 equiv) was dissolved in 30 

mL of benzene.  Cyclobutanone (20 mmol, 1.0 equiv) was added to the reaction and a 

Dean-Stark apparatus was attached.  The reaction was refluxed for 5 hours.  The reaction 

mixture was dried with MgSO4, filtered, and concentrated to yield 2.65 grams of the crude 

hydrazone.  A solution of lithium diisopropylamine (LDA) (29.5 mmol in 16 mL THF, 

1.25 equiv) was cooled to 0 
o
C.  The hydrazone was dissolved in 10 mL of THF and 

added dropwise to the LDA.  After stirring for 1 hour at 0
 o

C, the reaction was cooled to   

-78 
o
C.  Ethyl iodide (26 mmol, 1.1 equiv) was dissolved in 10 mL of THF and added 

dropwise to the reaction at -78 
o
C.  The reaction was allowed to slowly warm to room 

temperature and stirred overnight.  The reaction was quenched with saturated NH4Cl, 

extracted with methylene chloride (CH2Cl2) (3x) and concentrated.  The crude product 

was dissolved in acetone and stirred with ―wet‖ Amberlyst (approx. 25 grams, 10 equiv) 

for 3 hours.  The solution was filtered through Celite, concentrated, redissolved in ether, 

dried with MgSO4, filtered, and concentrated to yield pure 2-ethyl-cyclobutanone. 

2.2.3.2 General procedure for the synthesis of 1-substituted cyclobutanols 

 All glassware was flame-dried before use.  Cyclobutanone (13.4 mmol) was 

dissolved in 25 mL of diethyl ether and purged with N2 (2-ethyl-cyclobutanone was used 

for the synthesis of 1f).  The temperature was reduced to 0 
o
C.  The appropriate Grignard 

reagent (14.7 mmol) was added dropwise with stirring.  The reaction was allowed to stir 

for an additional 3 hours.  Water was added slowly to quench the reaction.  The organic 

layer was removed and the aqueous layer was extracted with diethyl ether (3x).  The 
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organic layers were combined, dried with MgSO4, filtered, and concentrated.  Pure 1-

substituted cyclobutanols were then obtained by recrystallization from n-pentane at -20 

o
C, short-path low pressure distillation, or required no additional purification. 

2.2.3.3 General procedure for the synthesis of γ-iodo ketones 

 Sodium iodide (0.33 mmol) was dissolved in 1 mL of H2O and added to the 1-

substituted cyclobutanol (0.33 mmol) in 2 mL of 1,2-dimethoxyethane (DME).  The 

reaction was then purged with N2.  CAN (0.67 mmol) was dissolved in 2 mL of DME and 

added dropwise via syringe with stirring.  After stirring for 30 minutes, the volatiles were 

removed from the reaction via rotary evaporation.  Water was added and then the aqueous 

layer was extracted with diethyl ether (3x).  The organic layers were combined, dried with 

MgSO4, filtered, and concentrated.  The γ-iodo ketones were purified further by flash 

chromatography on a silica column using 15% ethyl acetate:hexanes as the eluting 

solvent. 

2.2.3.4 Procedure for the synthesis of 2-ethyl-1-p-fluorophenyl-4-iodo-1-butanone 

 Sodium iodide (0.33 mmol) was dissolved in 1 mL of H2O and added to the 2-

ethyl-1-p-fluorophenyl-1-cyclobutanol (0.33 mmol) in 2 mL of MeCN.  The reaction was 

then purged with N2 and cooled to 0 
o
C.  CAN (0.67 mmol) was dissolved in 2 mL of 

MeCN and added dropwise via syringe with stirring.  After stirring for 30 minutes, the 

volatiles were removed from the reaction via rotary evaporation.  Water was added and 

then the aqueous layer was extracted with diethyl ether (3x).  The organic layers were 

combined, dried with MgSO4, filtered, and concentrated.  The γ-iodo ketone was purified 

further by flash chromatography on a silica column using 15% ethyl acetate:hexanes as 

the eluting solvent. 
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2.2.3.5 General procedure for the synthesis of γ-bromo ketones 

 Potassium bromide (0.33 mmol) was dissolved in 1 mL H2O and added to the 1-

substituted cyclobutanol (0.33 mmol) in 3 mL of CH2Cl2.  The reaction was purged with 

N2.  CAN (0.67 mmol) was dissolved in 2 mL H2O and added dropwise via syringe with 

stirring.  After stirring for 30 minutes, the volatiles were removed from the reaction via 

rotary evaporation.  Water was added and then the aqueous layer was extracted with 

diethyl ether (3x).  The organic layers were combined, dried with MgSO4, filtered, and 

concentrated.  The γ-bromo ketones were purified further by flash chromatography on a 

silica column using 15% ethyl acetate:hexanes as the eluting solvent. 

2.2.3.6 Procedure for the bromination of cyclohexyl ethyl ketone with molecular 

bromine 

 Cyclohexyl ethyl ketone (0.33 mmol) and molecular bromine (0.17 mmol) were 

added to 4 mL of 50% H2O:CH2Cl2.  The reaction was stirred for 30 minutes.  The 

volatiles were removed from the reaction via rotary evaporation.  Water was added and 

then the aqueous layer was extracted with diethyl ether (3x).  The organic layers were 

combined, dried with MgSO4, and filtered.  The product distribution was determined by 

GC. 

2.2.3.7 Procedure for the bromination of cyclohexyl ethyl ketone with KBr/CAN 

 Procedure 2.2.3.5 was followed, except that cyclohexyl ethyl ketone was 

employed in place of the 1-substituted cyclobutanol.  The product distribution of the crude 

reaction mixture was determined by GC. 
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2.3 Results and discussion 

 In an initial study, sodium iodide (NaI) was oxidized with CAN in the presence of 

1-phenyl-1-cyclobutanol (1a) using reaction conditions [20% H2O: MeCN] previously 

employed for the oxidative addition of inorganic anions to 1-substituted cyclopropanols.
72

  

While the expected 4-iodo-1-phenyl-1-butanone (2a) was produced as the major product, 

analysis of the crude reaction mixture by 
1
H NMR indicated the presence of multiple side 

products.  Since changes in solvent can often impact the chemoselectivity of reactions 

initiated by CAN, several solvent systems were examined to determine if the reaction 

efficiency could be improved.
63, 64

  Among the solvent systems screened, 20% H2O:1,2-

DME generated 2a almost exclusively and did not show any formation of the side 

products by 
1
H NMR. 

 After determining the optimal reaction conditions, a variety of both 1-aryl- and 1-

alkyl-1-cyclobutanols were synthesized to examine the breadth of γ-halogenated 

compounds that could be accessed from the oxidative addition of inorganic anions to 1-

substituted cyclobutanols.  These starting materials were generated via the reaction of 

cyclobutanone, or 2-ethyl-cyclobutanone for 1f, with a variety of Grignard reagents.
82, 83

  

These reactions proceeded either quantitatively or required minimal purification using 

nonchromatographic methods. 

 With these starting materials in hand, iodinations of substrates 1a-e were 

performed using the optimized reaction conditions.  The results of these reactions are 

included in Table 2.1.  The oxidative addition of iodide to unsubstituted, activated, or 

deactivated 1-aryl-1-cyclobutanols (substrates 1a-c) generated the expected γ-iodo 

ketones (2a-c) in good to very good yields.  Comparable yields of the desired γ-iodo 
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ketone products were obtained when 1-alkyl-1-cyclobutanols 1d and e were employed.  

To examine the regioselectivity of the ring opening of the 1-substituted cyclobutanol, 

substrate 1f was subjected to the same reaction conditions.  While 2-ethyl-1-p-

fluorophenyl-4-iodo-1-butanone (2f) was formed exclusively, the reaction mixture 

contained significant amounts of unreacted starting material.  After scanning a series of 

solvent and reaction conditions, optimal yields of 2f were obtained when the reaction was 

performed in 20% H2O:MeCN at 0 
o
C.  The exclusive formation of 2f is consistent with 

the addition of the iodine atom occurring at the less hindered carbon of the cyclobutanol 

ring.  

With synthetic studies of the iodination of 1-substituted cyclobutanols completed, 

the synthesis of γ-bromo ketones was examined.  In the previous work on the synthesis of 

β-substituted ketones, the oxidation of bromide anion by CAN was shown to be relatively 

slow compared to the oxidation of iodide.
72

  To avoid the possibility of direct oxidation of 

substrates 1a-f by CAN, these brominations were performed in a two-phase solvent 

system of 50% H2O:CH2Cl2.
84

  In an initial experiment, the bromination of bromo-1-

phenyl-1-butanone (3a) in an 87% isolated yield.  Brominations of both 1-aryl- and 1-

alkyl-1-cyclobutanols were performed using identical reaction conditions (Table 2.2).  

The bromination of 1-aryl substrates 1b-c produced the desired γ-bromo ketones 3b-c in 

good to excellent yields.  While complete conversion to 3f was not achieved even at 

reduced temperatures, bromination of the unsymmetric 1f exhibited the same 

regioselectivity as the iodination reaction with the bromine atom addition occurring at the 

substrate 1a using potassium bromide (KBr) as the bromide anion source provided 4- less 

hindered position of the cyclobutanol ring.  Surprisingly, reactions of 1-alkyl-1- 
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Table 2.1: Synthesis of γ-iodo ketones 

 
Substrate Product R R’ Conditions

a 
Yield (%)

b
 

1a 2a Ph H A 79
 

1b 2b p-CH3O-Ph H A 67
 

1c 2c p-F-Ph H A 79
 

1d 2d cyclohexyl H A 64
 

1e 2e n-hexyl H A 80
 

1f 2f p-F-Ph Et B 80
 

a 
Conditions: (A) 20% H2O:DME room temp. and (B) 20% H2O:MeCN at 0

o
C 

b 
Isolated yields 

 

cyclobutanols 1d-e produced 3d-e in yields of less than 20%.  Examination of crude 

reaction mixtures by GC-MS and 
1
H NMR indicated that brominations of substrates 1d-e 

resulted in a mixture of starting material, desired γ-bromo ketone, and α,γ-dibrominated 

ketones. 

 The presence of α-brominated products for the reactions involving 1-alkyl-

cyclobutanols 1d and e suggested the formation of molecular bromine during the course 

of the reaction.  Under the appropriate conditions, both acid- and base-promoted α-

brominations of carbonyl-containing compounds can occur.
85

  Reactions performed with 

methyl ketones under basic conditions are known as haloform reactions.
85

  To determine 

whether molecular bromine was forming in the reactions involving the 1-alkyl-1-

cyclobutanols, the series of experiments described in Table 2.3 was performed.  For these 

experiments, cyclohexyl ethyl ketone (4) was used as a model substrate since it is  
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Table 2.2: Synthesis of γ-bromo ketones  

 
Substrate Product R R’ Conditions

a 
Yield (%)

b
 

1a 3a Ph H C 87
 

1b 3b p-CH3O-Ph H C 70
 

1c 3c p-F-Ph H C 95
 

1d 3d cyclohexyl H C ND
c 

1e 3e n-hexyl H C ND
c 

1f 3f p-F-Ph Et C 37
d
 

a 
Conditions: (C) 50% H2O:CH2Cl2 

b 
Isolated yields 

c 
Mixture of 1-alkyl-cyclobutanol, γ-bromo ketone and α,γ-dibrominated ketones 

d
 Determined by 

1
H NMR 

 

structurally similar to both starting material 1d and product 3d.  Initially, 1 equivalent of 4 

was reacted with 0.5 equivalents of molecular bromine (entry 1).  In a second experiment, 

substrate 4 was reacted with both 1 equivalent of both CAN and KBr under the same 

conditions the oxidative addition reactions were performed (entry 2).  Bromine atom 

homocoupling following the single electron oxidation of bromine anion should generate 

an equal amount of molecular bromine.  The results from experiments listed in entries 1 

and 2 showed identical ratios of 5:4, a finding consistent with in situ formation of 

molecular bromine.  Interestingly, the use of excess CAN resulted in greater conversion to 

product 5 (entry 3).  This observation suggested an additional role for CAN beyond 

oxidation, presumably through Lewis acid activation. 
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Table 2.3: α-Bromination of aliphatic substrates 

 
Entry Conditions

a
 Ratio (5:4)

b
 

1 4 (0.33 mmol), Br2 (0.17 mmol) 3:1 

2 4 (0.33 mmol), KBr (0.33 mmol), CAN (0.66 mmol)
 

3:1 

3 4 (0.33 mmol), KBr (0.33 mmol), CAN (0.83 mmol)
 

9:1 
a 
50% H2O:CH2Cl2 

 b 
Ratios determined by GC 

 From the data obtained, the mechanism provided in Scheme 2.2 was proposed.  

Initially, bromine anion is oxidized by CAN to bromine radical which adds to the 1-

substituted cyclobutanol 1d and ring-opens to produce intermediate 1d’.  Bromine atom 

addition to cyclobutanols is supported by the observation that no γ-substituted products 

were obtained when 1d was treated with molecular bromine.  The intermediate 1d’, 

generated from the ring-opening of 1d, is less stable than the corresponding benzylic 

radicals of 1-aryl-1-cyclobutanols 1a-c.  As a result, 1-alkyl-1-cyclobutanols are expected 

to be less reactive, causing homocoupling of bromine atoms to become a competitive 

pathway.  A second single electron oxidation of intermediate 1d’ by CAN and subsequent 

 

Scheme 2.2: Proposed mechanism for the bromination of 1-alkyl-cyclobutanols 
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deprotonation produce γ-bromo ketone 3d.  Addition of molecular bromine α to the 

carbonyl of 3d produces the α,γ-dibrominated ketone 3d’. 

Because bromination was only successful in the case of 1-aryl-1-cyclobutanols, 

other oxidants were examined to determine whether the desired mono-brominated 

products could be obtained selectively for the 1-alkyl-1-cyclobutanol substrates.  Both 

iodinations and brominations with NaI and KBr, respectively, were performed with 

CuClO4·6H2O in MeCN.
18

  However, only a complex mixture of reaction products was 

obtained, none being the γ-haloketone.  Additionally, the use of ferrocenium 

hexafluorophosphate in CH2Cl2 provided only unreacted starting material in all cases.
5, 8

  
 

 Due to the rapid evolution and applications of ―click chemistry,‖ direct routes for 

incorporation of azides into molecules would be synthetically useful.  As a result, the 

methodology for the iodination and bromination of 1-substituted cyclobutanols was 

extended to the oxidative addition of azide anions.    Unfortunately, oxidative addition of 

azide anions to 1-substituted-cyclobutanols has been disappointing thus far.  When 1 

equivalent of sodium azide (NaN3) was oxidized by CAN in the presence of 1 equivalent 

of 1a-e, evolution of nitrogen gas was observed even at reduced temperatures, and only 

starting material was recovered after reaction work-up.  Even though azide anion was 

oxidized much faster than 1a-e by CAN, the homocoupling of azide radicals and 

subsequent decomposition to evolve N2 gas was favored over radical addition to the 

cyclobutanols.  When 5 equivalent excesses of NaN3 and CAN were used with 1 

equivalent of 1a, equal amounts of the desired γ-azido product and the γ-nitrato 

compound were generated with isolated yields of less than 20%.  Although this method 

was inefficient for the synthesis of γ-azido ketones, subsequent transformations using the 
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accessible γ-iodo and -bromo products can produce other substrates including azides and 

nitriles.
86, 87

 

Because CAN is a versatile single electron oxidant capable of oxidizing a variety 

of functional groups, this Ce-mediated protocol may appear to be incompatible with more 

complex substrates.  However, rate studies performed by our research group have shown 

that the oxidation of inorganic anions by CAN is extremely fast, indicating that these 

reagents are oxidized preferentially to other functional groups.  Additionally, previous 

studies on the relative rates of oxidation of substrates and functional groups have shown 

that selective oxidations can be achieved using CAN.
72, 88

  As a result, this protocol should 

be applicable to complex molecules, provided that the substrates do not contain functional 

groups with rates of oxidation similar to inorganic anions. 

2.4 Conclusions 

 An alternative route to both γ-iodo and γ-bromo ketones has been developed.  The 

synthesis of γ-iodo ketones from 1-substituted cyclobutanols is general, producing both 

aryl- and alkyl-γ-iodo ketones in good to very good yields.  Although the iodination of 1-

alkyl-1-cyclobutanols proceeded efficiently, brominations of these substrates lead to a 

mixture of the desired product and α,γ-dibrominated ketones.  The formation of these side 

products resulted from the in situ formation of molecular bromine through bromine atom 

homocoupling.  While the synthesis of aliphatic γ-bromo ketones proved to be more 

difficult, 1-aryl-γ-bromo ketones were obtained in good to excellent yields.  For both the 

iodination and bromination reactions, the halide was shown to add selectively to the less 

hindered carbon of the cyclobutanol ring.  The methodology described in this chapter has 

the advantage of short reaction times and provides access to a range of structurally diverse 
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γ-halogenated ketones that can be used as starting materials for the synthesis of more 

complex compounds.  The research presented in this chapter was published in 

Tetrahedron Letters.
89

 

2.5 Future work 

 As stated in section 2.1, the synthesis of many pharmaceutically active compounds 

involves the use of γ-halogenated ketones as precursors.  The most recent total synthesis 

of haldol consisted of 5 steps with an overall yield of 30%, starting from p-fluoro-

benzaldehyde.
90

  Using the methodology described in this chapter, the synthesis shown in 

Scheme 2.3 is a potential alternative route for the total synthesis of haldol.  The first step 

to synthesize cyclobutanol 1c is high yielding and requires no additional purification after 

working up the crude reaction.  The CAN-mediated oxidative addition of bromine to 

substrate of 1c to produce 3c is quantitative.  Rapid, high-yielding procedures exist for the 

coupling of organo halides and amines such as 6 through either sonication or microwave 

irradiation.
91

  This alternative synthesis of haldol benefits from requiring two less steps 

and also from improving the overall yield. 

 

Scheme 2.3: Total synthesis of haldol 

While still readily prescribed for patients suffering from schizophrenia and 

delirium, the use of haldol is limited by the side effects associated with the drug.  
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Generation of a library of compounds related to haldol may lead to a therapeutic agent 

with the same antipsychotic activity but without the unfavorable side effects.  In addition 

to the total synthesis of haldol, a range of haldol derivatives can be rapidly and efficiently 

generated via the method described in Scheme 2.3.  As shown in Scheme 2.4, the γ-

substituted ketone moiety as well as the amine moiety can be varied.  Since both the 

iodination and bromination reactions tolerated substitutions on the aryl ring of the 1-

substituted-1-cyclobutanol, the impact of electron density on drug efficacy can be 

investigated.  In addition, cyclic and acyclic secondary amines can be introduced to assess 

how variations in the amine portion of the molecule affect the activity. 

 

Scheme 2.4: Synthesis of a library of haldol derivatives and anaolgues 

2.6 Synthesis and spectral data for starting materials and products 

2.6.1 1-Substituted cyclobutanols 

1-Phenyl-1-cyclobutanol (1a)  

Procedure 2.2.3.2 was followed employing phenylmagnesium bromide.  
1
H-NMR 

(CDCl3, 500 MHz) – δ 7.50 (m, 2H), 7.38-7.35 (m, 2H), 7.29-7.27 (m, 2H), 2.58-2.54 (m, 

2H), 2.39-2.33 (m, 2H), 2.08-1.97 (m, 1H), 1.96 (s, 1H), 1.72-1.68 (m, 1H). 
13

C-NMR 

(CDCl3, 125 MHz) – δ146.22, 128.45, 127.25, 124.93, 36.81, 12.99. 
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1-p-Methoxyphenyl-1-cyclobutanol (1b) 

Procedure 2.2.3.2 was followed employing p-methoxylphenylmagnesium bromide.  

1
H-NMR (CDCl3, 500 MHz) – δ 7.42 (m, 2H), 6.90-6.89 (m, 2H), 3.80 (s, 3H), 2.55-2.50 

(m, 2H), 2.37-2.32 (m, 2H), 2.01-1.92 (m, 1H), 1.94 (s, 1H), 1.65-1.62 (m, 1H).  
13

C-

NMR (CDCl3, 125 MHz) – δ 158.76, 126.34, 113.72, 109.31, 55.29, 36.84, 12.87. Bp 65-

68 
o
C (at <  25 mtorr). 

1-p-Fluorophenyl-1-cyclobutanol (1c) 

Procedure 2.2.3.2 was followed employing p-fluorophenylmagnesium bromide.  

1
H-NMR (CDCl3, 500 MHz) – δ 7.49-7.46 (m, 2H), 7.07-7.03 (m, 2H), 2.58-2.51 (m, 

2H), 2.40-2.33 (m, 2H), 2.05-1.97(m, 1H), 2.01 (s, 1H), 1.72-1.63 (m, 1H).  
13

C-NMR 

(CDCl3, 125 MHz) – δ 161.96 (d), 142.04 (d), 126.78 (d), 115.13 (d), 37.01, 12.87. 

1-Cyclohexyl-1-cyclobutanol (1d) 

Procedure 2.2.3.2 was followed employing cyclohexylmagnesium chloride.  
1
H-

NMR (CDCl3, 500 MHz) – δ 2.15-2.12 (m, 2H), 1.90-1.65 (m, 8H), 1.59-1.49 (m, 1H), 

1.45 (s, 1H), 1.41-1.36 (m, 1H), 1.27-1.09 (m, 3H), 1.06-0.94 (m, 2H). 
13

C-NMR (CDCl3, 

125 MHz) – δ 78.02, 45.48, 33.85, 26.47, 26.44, 25.58, 12.36. Bp 34-35 
o
C (at < 70 

mtorr). 

1-n-Hexyl-1-cyclobutanol (1e) 

Procedure 2.2.3.2 was followed employing n-hexylmagnesium bromide.  
1
H-NMR 

(CDCl3, 500 MHz) – δ 2.05-1.92 (m, 4H), 1.76-1.68 (m, 1H), 1.57 (t, 3H, J  =  6.75 Hz), 

1.54-1.44 (m, 1H), 1.35-1.26 (m, 8H), 1.24 (s, 1H), 0.87 (t, 3H, J  =  6.73 Hz). 
13

C-NMR 

(CDCl3, 125 MHz) – δ 75.40, 39.54, 35.91, 31.88, 29.70, 23.33, 22.62, 14.0008, 12.11. 

Bp 33-35 
o
C (at < 50 mtorr). 
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2-Ethyl-1-p-fluorophenyl-1-cyclobutanol (1f) 

Procedure 2.2.3.2 was followed employing p-fluorophenylmagnesium bromide. 
 

1
H-NMR (CDCl3, 500 MHz) – δ 7.48-7.40 (m, 2H), 7.07-7.01 (m, 2H), 2.55-2.51 (m, 

1H), 2.40-2.38 (m, 1H), 2.19-2.14 (m, 1H), 2.00-1.97 (m, 1H), 1.82-1.78 (m, 1H), 1.80 (s, 

1H), 1.69-1.51 (m, 2H), 0.90-0.86 (t, 3H, J  =  7.44 Hz).  
13

C-NMR (CDCl3, 125 MHz) – 

δ 161.78 (d), 143.12 (d), 126.54 (d), 114.98 (d), 78.29, 47.59, 34.31, 22.33, 21.32, 11.38. 

2.6.2 γ-Iodo ketones 

4-Iodo-1-phenyl-1-butanone (2a) 

Procedure 2.2.3.3 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 7.97-7.96 (m, 

2H), 7.58-7.7.54 (m, 1H), 7.48-7.45 (m, 2H), 3.32 (t, 2H, J  =  6.70 Hz), 3.12 (t, 2H, J  =  

6.97 Hz), 2.25 (quin, 2H, J  =  6.83 Hz).  
13

C-NMR (CDCl3, 125 MHz) – δ 198.62, 

136.72, 133.24, 128.66, 128.02, 38.92, 27.52, 6.78. 

4-Iodo-1-p-methoxyphenyl-1-butanone (2b) 

Procedure 2.2.3.3 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 7.96-7.93 (m, 

2H), 6.94-6.92 (m, 2H), 3.87 (s, 3H), 3.31 (t, 2H, J  =  6.65 Hz), 3.07 (t, 2H, J  =  7.04), 

2.23 (quin, 2H, J  =  6.84 Hz). 
13

C-NMR (CDCl3, 125 MHz) – δ 197.16, 163.55, 130.28, 

129.81, 113.76, 55.47, 38.52, 27.72, 7.02. 

1-p-Fluorophenyl-4-iodo-1-butanone (2c) 

Procedure 2.2.3.3 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 8.03-7.97 (m, 

2H), 7.18-7.11 (m, 2H), 3.35-3.29 (t, 2H, J  =  6.66 Hz), 3.13-3.08 (t, 2H, J  =  7.01 Hz), 

2.29-2.20 (quin, 2H, J  =  6.84 Hz). 
13

C-NMR (CDCl3, 125 MHz) – δ 196.93, 165.76 (d), 

133.11 (d), 130.62 (d), 115.72 (d), 38.78, 27.39, 6.71. 

1-Cyclohexyl-4-iodo-1-butanone (2d) 
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Procedure 2.2.3.3 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 3.20 (t, 2H, J  =  

6.61 Hz), 2.57 (t, 2H, J  =  7.00 Hz), 2.34-2.30 (m, 1H), 2.04 (quin, 2H, J  =  6.74 Hz), 

1.86-1.62 (m, 5H), 1.36-1.13 (m, 5H). 
13

C-NMR (CDCl3, 125 MHz) – δ 212.63, 50.96, 

40.72, 28.48, 26.97, 25.80, 25.63, 6.97. HR-MS (FAB+): m/z 281.0397 (M+H)
+
 for 

C10H18OI: Calcd. 281.04. 

1-Iodo-4-decanone (2e) 

Procedure 2.2.3.3 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 3.21 (t, 2H, J  =  

6.56 Hz), 2.54 (t, 2H, J  =  6.91 Hz), 2.39 (t, 2H, J  =  7.44 Hz), 2.05 (quin, 2H, J  =  6.73 

Hz), 1.58-1.52 (m, 2H), 1.30-1.24 (m, 6H), 0.87 (t, 3H, J  =  6.91 Hz). 
13

C-NMR (CDCl3, 

125 MHz) – δ 209.76, 43.07, 42.79, 31.56, 28.87, 27.02, 23.81, 22.47, 14.02, 6.71. 

2-Ethyl-1-p-fluorophenyl-4-iodo-1-butanone (2f) 

Procedure 2.2.3.4 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 8.05-8.00 (m, 

2H), 7.18-7.13 (m, 2H), 4.20-4.16 (m, 1H), 3.26-3.14 (m, 2H), 2.22-2.17 (m, 2H), 1.97-

1.82 (m, 2H), 1.10-1.06 (t, 3H, J  =  7.22 Hz ). 
13

C-NMR (CDCl3, 125 MHz) – δ 197.38, 

165.78 (d), 133.15 (d), 130.66 (d), 115.71 (d), 41.66, 38.72, 34.25, 34.15, 14.12. 

2.6.3 γ-Bromo ketones 

4-Bromo-1-phenyl-1-butanone (3a) 

Procedure 2.2.3.5 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 7.98-7.96 (m, 

2H), 7.58-7.55 (m, 1H), 7.48-7.45 (m, 2H), 3.54 (t, 2H, J  =  6.27 Hz), 3.18 (t, 2H, J  =  

6.86 Hz), 2.30 (quin, 2H, J  =  6.64 Hz). 
13

C-NMR (CDCl3, 125 MHz) – δ 198.81, 136.71, 

133.24, 128.65, 128.01, 36.54, 33.64, 26.83. 
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4-Bromo-1-p-methoxyphenyl-1-butanone (3b) 

Procedure 2.2.3.5 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 7.96-7.95 (m, 

2H), 6.94-6.91 (m, 2H), 3.86 (s, 1H), 3.53 (t, 2H, J  =  6.35 Hz), 3.12 (t, 2H, J  =  6.96), 

2.29 (quin, 2H, J  =  6.60 Hz). 
13

C-NMR (CDCl3, 125 MHz) – δ 197.31, 163.52, 130.24, 

129.79, 113.72, 55.44, 36.12, 33.76, 27.01. 

4-Bromo-1-p-fluorophenyl-1-butanone (3c) 

Procedure 2.2.3.5 was followed.  
1
H-NMR (CDCl3, 500 MHz) – δ 8.03-7.98 (m, 

2H), 7.17-7.11 (m, 2H), 3.57-3.53 (t, 2H, J  =  6.33 Hz), 3.18-3.13 (t, 2H, J  =  6.97 Hz), 

2.33-2.26 (quin, 2H, J  =  6.58 Hz). 
13

C-NMR (CDCl3, 125 MHz) – δ 197.13, 165.77 (d), 

133.12 (d), 130.62 (d), 115.72 (d), 36.41, 33.53, 26.74. 
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Chapter 3: Solvent-dependent oxidative coupling of 1-aryl-1,3-dicarbonyls 

and styrene via Ce(IV) reagents 

 

3.1 Background and significance 

 In addition to serving simply as a reaction medium, the solvent has been shown to 

be intimately involved in a variety of reaction systems.  Numerous examples exist in 

which discrete products are formed depending on the solvent.
92

  The types of reactions 

that can be affected by the solvent include but are not limited to, nucleophilic bimolecular 

substitutions,
93

 nucleophilic intramolecular cyclizations,
94

 Diels-Alder reactions,
95

 photo-

oxygenations,
96-99

 fragmentations,
100

 halogen eliminations,
101

 and selective reduction of 

functional groups.
102

  An example of a solvent-dependent Diels-Alder reaction is shown in 

Scheme 3.1.  In this reaction system, the addition of 1,1,2,2-tetracyanoethene with either 

homofuran or homothiophene in polar, aprotic solvents such as MeCN results in a [2+2] 

cycloaddition generating a tricyclic product.
95

  Conversely, when a less polar solvent such 

as CH2Cl2 is employed, the reaction proceeds through a [4+2] cycloaddition pathway 

yielding the 7-membered ring product quantitatively.
95

  The authors reasoned that in more 

polar MeCN, the reaction pathway proceeded through a two-step process involving a 

zwitterionic intermediate, whereas a concerted cycloaddition occurred for the reaction 

performed in CH2Cl2.
95

 

 
Scheme 3.1: Solvent-dependent Diels-Alder cycloadditions to homofuran (X  =  O) and 

homothiophene (X  =  S)
95
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 While many of the reactions noted proceed through two-electron processes, 

solvent can dramatically impact reactions involving single electron oxidations as well.  As 

described in detail in Chapter 1, cerium(IV) reagents, namely cerium(IV) ammonium 

nitrate (CAN), have been used extensively by organic chemists as single electron 

oxidants.
48-50, 52

  Although traditionally restricted to aqueous or polar organic solvents, the 

replacement of the ammonium counterions of CAN with tetra-n-butylammonium ions 

yields cerium(IV) tetra-n-butylammonium nitrate (CTAN) which is more lipophilic, 

resulting in increased solubility in less polar organic solvents.
103

  Previous research in our 

group has exploited the ability to perform Ce(IV)-mediated reactions in less polar media 

to develop two novel methods involving the oxidative coupling of 1,3-dicarbonyls and β-

carbonyl imines to allyltrimethylsilane (Scheme 3.2).
63, 64

  When reactions were 

performed in MeCN, allylated products were obtained, whereas reactions in CH2Cl2 

resulted in dihydrofuran and dihydropyrrole derivatives.  This solvent-dependent 

chemoselectivity is attributed to the solvent-assisted elimination of a β-silyl cation 

intermediate in more polar solvents such as MeCN leading to allylated products and 

inhibiting the intramolecular cyclization pathway which results in the dihydrofuran and 

dihydropyrrole derivatives.
63, 64

 

 

Scheme 3.2: Solvent-dependent oxidative addition of 1,3-dicarbonyls and β-carbonyl 

imines to allyltrimethylsilane 
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The oxidative coupling of 1,3-dicarbonyls and β-carbonyl imines to 

allyltrimethylsilane highlights the ability of solvent to have a significant impact on the 

pathways of some carbon-carbon bond-forming reactions.  Based on this precedent, the 

effect of solvent on the oxidative coupling of 1-aryl-1,3-dicarbonyl substrates to styrene 

was investigated.  While previous research has examined similar synthetic systems, 1-

aryl-1,3-dicarbonyl substrates were not used and reactions were performed only in polar 

solvents.
104-106

  The synthetic and mechanistic details for the Ce(IV)-mediated oxidative 

coupling of 1-aryl-1,3-dicarbonyl compounds to styrene are presented in this chapter. 

3.2 Experimental 

3.2.1 Materials 

 MeCN and CH2Cl2 were purified with a Pure Solv solvent purification system 

from Innovative Technology, Inc.  Methanol (MeOH) was dried with activated 3 Å 

molecular sieves and degassed with argon prior to use.  All 1-aryl-1,3-dicarbonyl 

substrates were purchased commercially from Acros Organics, Sigma Aldrich, and Alfa 

Aesar and used without further purification.  Styrene was purchased from Acros Organics 

and filtered through a plug of neutral alumina immediately before use to remove 

stabilizers.  CAN was purchased from Alfa Aesar and used without further purification. 

CTAN was synthesized via established procedures.
103

 

3.2.2 Instrumentation 

 Proton and carbon NMR were recorded on a Bruker 500 MHz spectrometer.  GC-

MS analyses were performed with an HP 5890 Series II Gas Chromatograph with an HP 

Mass Selector Detector.  A Satellite FTIR from Thermo-Mattson was used to obtain IR 

spectra.  LC-HRMS data were recorded at the Mass Spectrometry Facility at Notre Dame 
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University.  Column chromatography was performed using the automated CombiFlash® 

Rf system from Teledyne Isco, Inc.  Products were separated using prepacked silica gel 

columns with a gradient elution of either ethyl acetate:hexanes or ether:hexanes.  

Mechanistic rate data and time-resolved spectra were obtained using a computer-

controlled stopped-flow reaction spectrophotometer from Applied Photophysics Limited.  

Temperature in the stopped-flow spectrophotometer was regulated using a NESLAB 

RTE-111. 

3.2.3 Methods 

3.2.3.1 General procedure for the synthesis of nitrate ester derivatives 

All glassware was flame-dried before use.  The 1-aryl-1,3-dicarbonyl substrate 

(1.0 mmol) was dissolved in 15 mL of either MeCN or CH2Cl2.  Styrene (1.1 mmol) was 

added dropwise and the reaction was purged with N2 gas.  CAN or CTAN (2.1 mmol) was 

dissolved in 5 mL MeCN or CH2Cl2 respectively and added to the reaction via syringe 

with stirring.  After stirring at room temperature for 2 hours, solvent was removed via 

rotary evaporation.  Water was added and then the aqueous layer was extracted three 

times with ether.  The organic layers were combined, dried with MgSO4, filtered, and 

concentrated.  The nitrate ester products were purified via automated flash 

chromatography.  Products were characterized by 
1
H NMR, 

13
C NMR, GC-MS, IR, and 

LC-HRMS. 

3.2.3.2 General procedure for the synthesis of dihydrofuran derivatives 

All glassware was flame-dried before use.  The 1-aryl-1,3-dicarbonyl substrate 

(1.0 mmol) was dissolved in 15 mL of MeOH.  Styrene (1.1 mmol) was added dropwise 

and the reaction was purged with N2 gas.  CAN (2.1 mmol) was dissolved in 5 mL MeOH 
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and added to the reaction via syringe with stirring.  After stirring at room temperature for 

2 hours, solvent was removed via rotary evaporation.  Water was added and then the 

aqueous layer was extracted three times with ether.  The organic layers were combined, 

dried with MgSO4, filtered, and concentrated.  The dihydrofuran products were purified 

via automated flash chromatography.  Products were characterized by 
1
H NMR, 

13
C 

NMR, GC-MS, IR, and LC-HRMS. 

3.2.3.3 General procedure for kinetic rate studies 

 For the mechanistic studies, the Ce(IV) oxidants and substrates were prepared 

separately in the appropriate solvent in a glovebox, transported in airtight syringes, and 

injected into the stopped-flow spectrophotometer.  The cellblock and the drive syringes of 

the stopped-flow spectrophotometer were flushed at least three times with dry, degassed 

solvent to make the system anaerobic.  Rates studies were performed under pseudo-first-

order conditions with the oxidant concentration kept low (1 mM) and substrate 

concentration kept high (20 mM).  Reaction rates were monitored at 380 nm and 460 nm.  

Temperature in the stopped-flow spectrophotometer was maintained at 25
o
C. 

3.2.3.4 Procedure for time-resolved UV-vis study 

 The samples were prepared as described in procedure 3.2.3.3.  The time-resolved 

absorption spectrum was obtained for CTAN (1 mM) and ethylbenzoylacetate (50 mM) in 

CH2Cl2 from 400-500 nm at 25
o
C.  The spectrum was obtained by taking 10 scans every 5 

nm over a period of 50 msec. 

3.2.3.5 Procedure for the synthesis of 2,2-dideuterio-1-phenyl-1,3-butanedione 

 1-Phenyl-1,3-butanedione (10.0 mmol) was added into D2O (20 mL), potassium 

carbonate (14.0 mmol), and tetra-n-butylammonium bromide (3.0 mmol).  The mixture 
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was stirred for 3 days at room temperature.  The reaction mixture was filtered and 

extracted three times with diethyl ether.  The organic layers were combined and 

concentrated to afford pure 2,2-dideuterio-1-phenyl-1,3-butanedione. 

3.3 Results and discussion 

3.3.1 Scope of reaction 

 In an initial study, when an equivalent of 1-phenyl-1,3-butanedione (1) was treated 

with 2 equivalents of CAN in MeCN in the presence of a slight excess of styrene, the 

nitrate ester derivative (1a) was formed as the major product with an isolated yield of 62% 

(Table 3.1, entry 1).  Interestingly, when the same reaction was performed in MeOH with 

CAN, the dihydrofuran derivatives (1b) were produced in a combined 78% yield.  To 

examine the scope of this solvent-dependent oxidative coupling reaction, a variety of 1-

aryl-1,3-dicarbonyl compounds were examined as substrates.  As shown in entries 1-3 of 

Table 3.1, the oxidative coupling reactions worked well for a 1-aryl-1,3-diketone (1), a 

1,3-diaryl-1,3-diketone (2), and a 1-aryl-β-ketoester (3).  For the dihydrofuran synthesis 

using the 1-aryl-β-ketoester, the product was obtained as a single isomer.  Figure 3.1 

shows the two dihydrofuran isomers that are possible for the oxidative addition of 3 to 

styrene.  The selective formation of the dihydrofuran through cyclization with the ketone 

carbonyl (3b) as opposed to the ester (3b’) is presumably due to the relative stabilities of 

the isomers.  The preferential formation of 3b is consistent with previous oxidative 

additions of β-ketoesters to activated alkenes.
64, 104, 107, 108

  The dihydrofuran derivatives 

from reactions with 4-5 were obtained as single isomers as well.  Nitrate esters 1a and 3a- 
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Table 3.1: Ce(IV)-mediated oxidative coupling of 1-aryl-1,3-dicarbonyls to styrene 

Entry Substrate Conditions
a
 Yield(%)

b 
Ratio (a:b) Product

d 

1 

 

 

A 62 78 : 22 

 

B 78 20 : 80 

 

2
 

 

 

A 50 60 : 40 

 

B 84 10 : 90 

 

3 

 

 

A 61 77 : 23 

 

B 78 16 : 84 

 

4 

 

 

A 25 33 : 67 

 

B 74 11 : 89 

 

5 

 

A 67 100 : trace 

 

B 25 70 : 30 

 

a 
Condition A: 2 equiv CAN in MeCN, room temp., 2 hrs; Condition B: 2 equiv CAN in 

MeOH, room temp., 2 hrs 
b 

Isolated yield 
c
 Ratios determined by 

1
H NMR by comparing the relative intensities of the proton signals 

from 5.6-6.0 ppm in the crude reaction mixture 
d 

Nitrate esters are mixtures of diastereomers 
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5a were obtained as mixtures of diastereomers.  These diastereomers proved to be 

inseparable by column chromatography but could be distinguished by the NMR resonance 

of the benzylic proton. 

 In addition to varying the types of 1-aryl-1,3-dicarbonyl compounds used, the 

effect of altering the electron density of the 1-aryl ring was examined.  As shown in entry 

4, when an electron-withdrawing fluorine was incorporated into the ring, the major 

product for the reaction in MeCN was dihydrofuran 4b instead of the expected nitrate 

ester 4a.  Similarly, when the ring was activated by the addition of three methoxy 

substituents, the selectivity shifted significantly towards the formation of nitrate ester 5a 

in MeOH, producing 5b in only a 25% yield.  In addition, when the reaction was 

performed in MeCN, analysis of the crude reaction mixture by 
1
H NMR showed only 

trace amounts of dihydrofuran 5b.  These results suggested a strong electronic effect with 

electron rich aryl rings favoring nitrate ester formation and electron poor aryl rings 

favoring the production of dihydrofurans. 

 
Figure 3.1: Possible dihydrofuran isomers from the oxidative addition of 3 to styrene 

 The experiments described demonstrate that both the solvent polarity and the 

electron density of the 1-aryl ring play a role in product distribution.  Based on this 

observation, could the chemoselectivity be controlled further by the use of an even less 

polar solvent?  To examine this hypothesis, the oxidative additions of substrates 1-4 to 

styrene were performed in CH2Cl2 using CTAN as the oxidant (Table 3.2).  For all four 
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substrates, the selective formation of nitrate ester derivatives 1a-4a was improved when 

the reactions were performed in CH2Cl2 with CTAN when compared to MeCN and CAN.  

Whereas substrate 4 favored dihydrofuran formation in MeCN, the reaction in CH2Cl2 

produced the desired nitrate ester 4a as the major product in 51% yield. 

Table 3.2: Selective synthesis of nitrate ester derivatives in CH2Cl2
a 

Entry Substrate Product
 Ratio (a:b)

b
 Yield (%)

c 

1 1 1a 88 : 12 66 

2 2 2a 85 : 15 66 

3 3 3a 82 : 18 66 

4 4 4a 66 : 34 51 
a 
2 equiv CTAN in CH2Cl2, room temp., 2 hrs 

b
 Ratios determined by 

1
H NMR by comparing the relative intensities of the proton signals 

from 5.6-6.0 ppm in the crude reaction mixture 
c 
Isolated yield 

With a simple procedure and mild reaction conditions, the oxidative addition of 1-

aryl-1,3-dicarbonyls to styrene provides an efficient approach to substituted nitrate esters 

and dihydrofurans selectively in moderate to very good yields.  Scheme 3.3 illustrates the 

recent work by MacMillan et al. that highlights the accessibility of various cyclic products 

through benzylic nitrate esters with pendent carbonyls.
109

  Additionally, the ability to 

produce dihydrofuran derivatives is synthetically useful
110, 111

 because dihydrofuran  

 

Scheme 3.3: Synthetic utility of benzylic nitrate esters 
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moieties are present in the backbone of natural products such as garcinielliptones K (A) 

(Figure 3.2).
112

  Both Fristad
113

 and Brun
114, 115

 have demonstrated that 2,3-dihydrofurans 

can be efficiently converted to α-tetralones with SnCl4.  The synthesis of α-tetralones is of 

interest since they are important precursors to other natural products such as (+)-

phyltetralin (B) and podophyllotoxin (C).
114

 

 
Figure 3.2: Structures of the natural products garcinielliptones K (A), (+)-phyltetralin 

(B), and podophyllotoxin (C) 

3.3.2 Mechanistic studies 

  With the synthetic studies completed, a thorough mechanistic analysis was 

performed to fully elucidate the solvent-dependent chemoselectivity of the oxidative 

addition of 1-aryl-1,3-dicarbonyls to styrene.  Preliminary studies focused on the initial 

oxidation of 1,3-diketone 1 and β-ketoester 3 in the absence of styrene to determine the 

impact of solvent on the mechanism of oxidation and the stability of the radical cation 

intermediates.  Observed rate constants (kobs) for the oxidation of substrates 1 and 3 were 

obtained in all three solvents using either CAN or CTAN (k1 values, Table 3.3).  These 

rate data were obtained by monitoring the decay of the Ce(IV) absorbance at 380 nm 

using stopped-flow spectrophotometry.  While the λmax of Ce(IV) is at 330 nm, the decay 

of Ce(IV) was monitored at 380 nm because the absorbance of the substrates overlapped 

at 330 nm.  To assess the impact of solvent, rate studies were performed under pseudo-

first-order conditions keeping the substrate in excess with respect to the oxidant.  Based 
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on previous studies involving 1,3-dicarbonyls, the first step of the reaction was postulated 

to be the oxidation of the enol tautomer of the 1-aryl-1,3-dicarbonyl species by Ce(IV) 

generating a radical cation.
88, 116

  This supposition is supported by the fact that many 

radical cations absorb in the range of 400  to 500 nm.
117-120

  To obtain more insight into  

Table 3.3: Rate data for the Ce(IV)-mediated oxidation of 1-phenyl-1,3-butanedione (1) 

and ethyl benzoylacetate (3) in the absence of styrene
 a 

Substrate Intermediate Oxidant Solvent 

Rate constant of 

Ce(IV) decay at 

380 nm 

k1 (sec-1)b 

Rate constant of 

radical cation 

formation at 460 

nm 

k2 (sec-1)b 

Rate constant 

of radical 

cation decay 

at 460 nm 

k3 (sec-1)b 

1 

 

 

CAN 

 

 

 

CTAN 

 

MeOH 

 

MeCN 

 

MeCN 

 

CH2Cl2 

 

5.8 ± 0.6 x 102 

 

8.3 ± 0.2 

 

6.0 ± 0.3 

 

3.4 ± 0.3 

 

6.0 ± 0.2 x 102 

 

8.7 ± 0.1 

 

6.2 ± 0.1 

 

3.4 ± 0.1 

 

4.1 ± 0.1 x 10-2 

 

5.8 ± 0.2 x 10-3 

 

5.1 ± 0.5 x 10-3 

 

1.7 ± 0.1 x 10-3 

3 

 

 

CAN 

 

 

 

CTAN 

 

MeOH 

 

MeCN 

 

MeCN 

 

CH2Cl2 

 

3.5 ± 0.3 x 102 

 

6.2 ± 0.1 

 

3.8 ± 0.4 

 

1.4 ± 0.1 

 

3.7 ± 0.2 x 102 

 

6.3 ± 0.1 

 

3.9 ± 0.1 

 

1.6 ± 0.1 

 

3.2 ± 0.1 x 10-1 

 

9.0 ± 0.3 x 10-2 

 

8.8 ± 0.2 x 10-2 

 

1.5 ± 0.1 x 10-2 
a
 [Ce(IV)]  =  1 mM, [substrate]  =  20 mM at 25

o
C 

b
 Average of at least two runs 

this process, a time-resolved absorption spectrum was obtained for the oxidation of 3 by 

CTAN.  As shown in the inset of Figure 3.3, a clear isosbestic point was observed at 420 

nm.  Since the 1-aryl-1,3-dicarbonyl substrates, Ce(IV), and Ce(III) do not absorb above 

400 nm, the absorption observed at 460 nm was attributed to a radical cation intermediate.  

The observed rates of growth of the absorption at 460 nm for substrates 1 and 3 were 

recorded in each solvent and are included in Table 3.3.  The growth of the radical cation 

absorption (k2) was equal to the decay of Ce(IV) at 380 nm (k1) within experimental error. 

This finding is consistent with earlier studies on the Ce(IV)-mediated oxidation of 1-

alkyl-1,3-diketones.
88

  In addition, since both CAN and CTAN are soluble in MeCN, the 
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rate data illustrate that only a modest decrease in reactivity occurs due to the bulky tetra-

n-butylammonium counterions of CTAN. 

 
Figure 3.3: Time-resolved absorption spectra observed from CTAN and ethyl 

benzoylacetate (3) in CH2Cl2 ([3]  =  50 mM, [CTAN]  =  1 mM) from 400-500 nm at 

25
o
C.  Spectra were obtained by taking 10 scans every 5 nm over a period of 50 msec. 

The rate data obtained indicated a clear trend based on the polarity of the solvent.  

The rate of decay of Ce(IV) increased with solvent polarity, being fastest in MeOH and 

slowest in CH2Cl2.  Furthermore, the rates of oxidation of 1,3-diketone 1 and β-ketoester 

3 are roughly 2 orders of magnitude faster in MeOH than in MeCN.  The impact of 

solvent polarity and the relative rate differences among the solvents examined are 

consistent with earlier studies on 1-alkyl-1,3-diketones and related silyl enol ethers.
88

  

While both substrates exhibited the same trend in solvent polarity (MeOH > MeCN > 

CH2Cl2), the 1,3-diketone (1) was oxidized faster than the β-ketoester (3) in all three 

solvents.  Previous research has shown that, in general, 1,3-diketones have more enol 

content than their related β-ketoesters.
121

  Since the first step of the reaction involves the 

oxidation of the enol tautomer, the enol contents of 1 and 3 should impact their rates of 

oxidation.  Rates of oxidation of 1 when compared to 3 were roughly 1.5 times faster in 
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MeCN and MeOH, and 2.5 times faster in CH2Cl2.  These findings are consistent with 

enhanced enol content for 1,3-dicarbonyls in less polar, aprotic solvents.
92

 

Next, the impact of solvent on the lifetime of the radical cation intermediate was 

examined by monitoring its decay at 460 nm.  Examination of the observed rate constants 

of radical cation decay (k3) contained in Table 3.3 showed a clear dependence on solvent 

polarity in the order of MeOH > MeCN > CH2Cl2.  The k3 value is 4-7 times greater in 

MeOH than in MeCN, whereas k3 is 3-6 times greater in MeCN than in CH2Cl2.  While 

the general trend for the stability of radical cations in the solvents examined is the same as 

in previous studies of 1,3-diketones and β-silyl enol ethers, the difference in the rates of 

radical cation decay of 1 and 3 among the solvents screened is reduced.
88

  Previous 

studies on radical cations derived from 1-alkyl-1,3-diketones showed a large difference 

among the solvents with decays in MeOH on the order of 15 to 100 times faster than in 

MeCN.
88

  It is likely that the presence of the 1-phenyl group stabilizes the radical cation 

intermediate thereby tempering the impact of solvent. 

 To further probe the role of solvent, 2,2-dideuterio-1-phenyl-1,3-butanedione was 

prepared and the rate of decay of its radical cation was measured in all three solvents 

under conditions identical to those previously described.  The data are displayed in Table 

3.4.  The kH/kD values for both MeCN and CH2Cl2 were greater than 2 (entries 2-3, Table 

3.4), a finding consistent with studies reported by Schmittel for the deprotonation of the 

anisyldimesitylethenol radical cation.
122

  The lower kH/kD value in MeOH of 1.5 (entry 1, 

Table 3.4) is likely due to deuterium exchange in the substrate and with bulk solvent.  The 

deuterium-labelled studies indicate that, in the absence of styrene, the decay of the radical 

cation is due to deprotonation, resulting in a radical species.  Both the observation that the 
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radical cations of 1-aryl-1,3-diketones and 1-aryl-β-ketoesters decay faster in more polar 

solvents and the results from the deuterium isotope study agree with the known solvent-

assisted mechanism of O-H bond cleavage
123, 124 

and are consistent with previous 

mechanistic studies on the role of solvent in the decay of radical cations derived from 1-

alkyl-1,3-diketones.
88

 

Table 3.4: Observed rate constants for the decay of the radical cation of 2,2-dideuterio-1-

phenyl-1,3-butanedione in MeOH, MeCN, and CH2Cl2 in the absence of styrene
a
 

 

Entry 
Oxidant / 

Solvent 
kD (sec

-1
)
b 

kH/kD 

1 CAN / MeOH 2.7 ± 0.1 x 10
-2 

1.5 ± 0.1 

2 CAN / MeCN 2.7 ± 0.1 x 10
-3

 2.2 ± 0.1 

3 CTAN / CH2Cl2 7.3 ± 0.1 x 10
-4 

2.4 ± 0.1 
a
 [Ce(IV)]  =  1 mM, [substrate]  =  20 mM at 25

o
C 

b
 Average of at least two runs 

 The mechanistic studies described to this point support solvent playing an 

important role in the oxidation of the substrates and in the stability of the initial radical 

cation intermediates with the decay of the radical cation resulting from deprotonation in 

the absence of styrene.  Next, a series of experiments was performed to determine the 

mechanistic role of styrene in the coupling reactions.  In these studies, the decay of the 

radical cation of 1-phenyl-1,3-butanedione (1) was monitored in the presence of 

increasing concentrations of styrene in all three solvents under pseudo-first-order 

conditions with respect to the oxidant.  The data from these experiments are contained in 

Table 3.5.  These experiments clearly showed that the rate order of styrene was 1 in 

MeCN and CH2Cl2 whereas it was significantly less than unity (0.28) in MeOH.  These 
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results indicated that reaction of the radical cation with styrene was the rate-limiting step 

of the reaction in MeCN and CH2Cl2.  Previous results from our group have shown that 

radical cations derived from 1,3-diketones and related silyl enol ethers are 

deprotonated/desilylated by MeOH through a solvent-assisted process, whereas in CH2Cl2 

and MeCN the radical cation intermediates are converted to radical species through a 

unimolecular mechanism.
88

  Additionally, previous kinetic studies by our group have 

shown that MeOH is first order for the decay of radical cations generated from 1,3-

dicarbonyls in CH2Cl2.
88

  Based on these findings, the fractional rate order of styrene in 

MeOH was interpreted as being consistent with deprotonation of the radical cation by 

solvent occurring prior to the addition to styrene.  

Table 3.5: Rate order of styrene for decay of radical cation at 460 nm
a
 

Entry Oxidant Solvent Styrene Rate Order
b,c 

1 CAN MeOH 0.28 ± 0.01 

2 CAN MeCN 0.97 ± 0.05 

3 CTAN CH2Cl2 1.02 ± 0.06 
a
 Substrate  =  1-phenyl-1,3-butanedione (1) 

b
 Average of at least 2 runs 

c
 Determined from the slope for the plot of lnkobs vs. ln[styrene] 

 Taken together, these studies reveal several key details about the mechanism of the 

Ce(IV)-mediated oxidative coupling of 1-aryl-1,3-dicarbonyls to styrene.  First, in the 

absence of styrene the rates of oxidation of substrates by Ce(IV), the rates of radical 

cation formation, and the rates of decay of the radical cations were solvent-dependent 

(MeOH > MeCN > CH2Cl2).  Second, primary kinetic isotope effects were observed in all 

three solvents in the absence of styrene for the decay of the radical cation.  Third, styrene 

was first order in both MeCN and CH2Cl2 for decay of the radical cation.  Finally, a 

fractional rate order of styrene for the decay of the radical cation in MeOH indicated 
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solvent-assisted deprotonation of the radical cation to a radical species prior to the 

addition to styrene. 

 From the experimental results and points described in this chapter, the mechanism 

provided in Scheme 3.4 is proposed to explain the solvent-dependent chemoselectivity of 

the oxidative coupling of 1-aryl-1,3-dicarbonyls to styrene.  Initial oxidation of the enol 

tautomer (6’) by Ce(IV) produces radical cation 7.  In MeOH, solvent-assisted 

deprotonation of the radical cation yields radical intermediate 8.  After the addition to 

styrene to form 9, rotation around one of the carbonyl-CH bonds and another single 

electron oxidation by Ce(IV) produces cation 10.  Intramolecular cyclization and 

deprotonation of 10 result in the formation of dihydrofuran derivative 11.  Conversely, in 

less polar solvents such as MeCN and CH2Cl2, radical cation 7 adds directly to styrene 

producing intermediate 12.  This intermediate has restricted rotation since the enolic 

proton is shared by the two carbonyl groups.  Oxidation to cation 13 followed by internal 

ligand transfer of a nitrate from cerium yields nitrate ester 14.  Observations from 

reactions involving substrates 4 and 5 indicate an electronic effect consistent with the 

proposed mechanism.  Electron-donating groups on the aryl ring stabilize radical cation 7.  

This enhanced stability assists in direct radical cation addition to styrene prior to 

deprotonation.  Conversely, electron-withdrawing groups on the aryl ring destabilize 

radical cation 7 and, as a result, deprotonation to radical 8 becomes the favored pathway. 

 The key feature of the mechanism presented in Scheme 3.4 is that direct addition 

of the radical cation to styrene before deprotonation provides a conformationally restricted 

intermediate (12) that inhibits the intramolecular C-O bond formation that produces 

dihydrofurans.  Based on this hypothesis, addition of a cosolvent to a reaction performed  
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Scheme 3.4: Proposed mechanism for the solvent-dependent oxidative addition of 1-aryl-

1,3-dicarbonyls to styrene 

in CH2Cl2 (or MeCN), which is capable of abstracting the enolic proton, should release 

this conformational restriction and lead to the formation of the dihydrofuran derivative as 

the major product.  To test this supposition, the oxidative addition of substrate 2 to styrene 

employing CTAN as the oxidant was conducted in CH2Cl2 containing 5 equivalents of 

MeOH.  Dihydrofuran 2b was obtained in an 80% yield. 
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3.4 Conclusions 

 A solvent-dependent chemoselective method for the Ce(IV)-mediated oxidative 

coupling of 1-aryl-1,3-dicarbonyls to styrene producing substituted dihydrofuran and 

nitrate ester derivatives has been developed.  Reactions performed in MeOH yielded 

predominantly dihydrofuran derivatives whereas reactions in MeCN or CH2Cl2 favored 

the formation of nitrate esters.  The reaction is general, working for a variety of 1-aryl-

1,3-dicarbonyls and generating the desired products in good to very good yields.  The 

reaction conditions are straightforward with short reaction times at room temperature.  

Both dihydrofurans and nitrate esters are useful intermediates in the synthesis of more 

complex, biologically active compounds.  A thorough mechanistic analysis of the reaction 

system was consistent with the rate of solvent-assisted deprotonation of an initial radical 

cation intermediate playing an integral role in the selective formation of products.  To the 

best of our knowledge, this approach is the first reported in which the reaction pathway is 

controlled by the lifetime of a radical cation intermediate.  The work presented in this 

chapter was published in a special issue of Tetrahedron on single electron transfer 

reactions.
125, 126

 

3.5 Synthesis and spectral data for products 

3.5.1 Nitrate ester derivatives 

3-Benzoyl-4-oxo-1-phenylpentyl-1-nitrate (1a): mixture of diastereomers 

 Procedure 3.2.3.1 was followed.  Light yellow oil. 
1
H NMR (CDCl3, 500MHz) – δ 

7.96-7.88 (m, 4H), 7.67-7.61 (m, 2H), 7.55-7.47 (m, 4H), 7.44-7.30 (m, 8H), 5.83 (t, 1H, 

J = 7.2 Hz), 5.75 (dd, 1H, J = 2.3 Hz, 6.0 Hz), 4.61-4.56 (m, 2H), 2.58-2.52 (m, 4H), 

2.17-2.13 (s, 6H).  
13

C NMR (CDCl3, 125MHz) – δ 202.2, 195.4, 137.2, 134.3, 134.2, 
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129.3, 129.1, 129.0, 128.8, 128.7, 126.3, 83.2, 82.8, 58.7, 58.4, 33.4, 33.3, 28.8, 28.5.  MS 

[m/z (rel int)] 264 (M
+
, 1), 221 (65), 203 (18), 173 (15), 105 (98), 77 (90), 51 (30). IR 

(KBr) ν (cm
-1

) 3508, 3448, 3062, 3035, 2962, 2930, 1720, 1635, 1555, 1447, 1358, 1274, 

1071, 964, 855, 758, 698. LC-HRMS calcd. for C18H17NNaO5 [M+Na] 350.0999, found 

350.1006; calc. for C18H17O2 [M-ONO2] 265.1223, found 265.1225. 

3-Benzoyl-4-oxo-1,4-diphenylbutyl-1-nitrate (2a) 

 Procedure 3.2.3.1 was followed.  Yellow oil. 
1
H NMR (CDCl3, 500MHz) – δ 7.97-

7.92 (m, 2H), 7.87-7.83 (m, 2H), 7.64-7.56 (m, 2H), 7.52-7.42 (m, 4H), 7.41-7.38 (m, 

4H), 5.92 (dd, 1H, J = 3.7 Hz, 5.2 Hz), 5.38 (dd, 1H, J = 2.2 Hz, 5.5 Hz), 2.72-2.59 (m, 

2H).  
13

C NMR (CDCl3, 125MHz) – δ 195.0, 194.9, 137.4, 135.4, 135.2, 134.0, 129.3, 

129.1, 129.0 (2), 128.6, 128.5, 126.2, 83.3, 52.4, 33.9.  MS [m/z (rel int)] 326 (M
+
, 1), 239 

(67), 222 (7), 161 (9), 105 (100), 77 (58), 51 (11). IR (KBr) ν (cm
-1

) 3701, 3619, 3063, 

2934, 1693, 1637, 1600, 1569, 1449, 1270, 1189, 1104, 995, 853, 853, 699. LC-HRMS 

calcd. for C23H20NO5 [M+H] 390.1336, found 390.1324; calc. for C23H19NNaO5 [M+Na] 

412.1155, found 412.1143; C23H19O2 [M-ONO2] 327.1380, found 327.1391. 

Ethyl 3-benzoyl-1-phenylbutan-4-oate-1-nitrate (3a): mixture of diastereomers 

 Procedure 3.2.3.1 was followed.  Light yellow oil. 
1
H NMR (CDCl3, 500MHz) – δ 

7.98-7.91 (m, 4H), 7.50-7.33 (m, 15H), 5.93 (dd, 1H, J = 3.2 Hz, 5.6 Hz), 5.83 (dd, 1H, J 

= 2.8 hz, 5.8 Hz), 4.50-4.42 (m, 2H), 4.20-4.12 (m, 4H), 2.66-2.54 (m, 4H), 1.21-1.15 (m, 

6H).  
13

C NMR (CDCl3, 125MHz) – δ 193.9, 193.8, 168.9 (2), 137.2, 137.1, 135.6, 135.5, 

134.0, 133.8, 129.2 (2), 129.0 (2), 128.9 (2), 128.8, 128.7, 128.6, 126.4, 126.3, 83.0 (2), 

61.9 (2), 50.3, 50.2, 33.5, 13.9.  MS [m/z (rel int)] 294 (M
+
, 1), 238 (33), 133 (35), 105 

(100), 77 (60), 51 (20). IR (KBr) ν (cm
-1

) 3457, 3357, 3063, 3035, 2983, 2904, 1736, 
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1688, 1636, 1450, 1274, 1196, 1095, 1021, 855, 755, 696, 592. LC-HRMS calcd. for 

C19H20NO6 [M+H] 358.1285, found 358.1288; calc. for C19H19NNaO6 [M+Na] 380.1105, 

found 380.1099; C19H19O3 [M-ONO2] 295.1329, found 295.1346. 

Methyl 3-(4-fluorobenzoyl)-1-phenylbutan-4-oate-1-nitrate(4a): mixture of diastereomers 

 Procedure 3.2.3.1 was followed.  Colorless oil. 
1
H NMR (CDCl3, 500MHz) – δ 

8.00-7.94 (m, 4H), 7.43-7.32 (m, 8H), 7.19-7.13 (m, 4H), 5.91 (dd, 1H, J = 3.6 Hz, 5.4 

Hz), 5.81 (dd, 1H, J = 3.2 Hz, 5.6 Hz), 4.47-4.41 (m, 2H), 3.72-3.69 (s, 6H).  
13

C NMR 

(CDCl3, 125MHz) – δ 192.1 (2), 169.2, 167.2, 165.2 (2), 137.1, 137.0, 131.5, 131.5 (2), 

131.4, 129.3 (2), 129.0 (2), 126.3 (2), 116.2, 116.0, 82.9 (2), 53.0, 50.0, 49.8, 33.6, 33.5.  

MS [m/z (rel int)] 384 (M
+
, 10), 281 (11), 257 (13), 207 (100), 195 (92), 115 (19), 105 

(27), 77 (16). IR (KBr) ν (cm
-1

) 3472, 3361, 3069, 3033, 2955, 2902, 1741, 1687, 1638, 

1600, 1506, 1442, 1273, 1240, 1161, 1097, 1009, 852, 744, 700. LC-HRMS calcd. for 

C18H17FNO6 [M+H] 362.1034, found 362.1034; calc. for C18H16FNNaO6 [M+Na] 

384.0854, found 384.0843; C18H16FO3 [M-ONO2] 299.1078, found 299.1092. 

Ethyl 3-(3,4,5-trimethoxybenzoyl)-1-phenylbutan-4-oate-1-nitrate (5a): mixture of 

diastereomers 

 Procedure 3.2.3.1 was followed.  Colorless oil. 
1
H NMR (CDCl3, 500MHz) – δ 

7.41-7.34 (m, 8H), 7.25, 7.20 (m, 4H), 5.89, (dd, 1H, J = 5.0 Hz, 4.8 Hz), 5.84 (dd, 1H, J 

= 2.3 Hz, 6.0 Hz), 4.46 (dd, 1H, J = 3.9 Hz, 5.0 Hz) 4.41 (t, 1H, J = 7.1 Hz), 4.24-4.15 (m, 

4H), 3.96-3.88 (m, 18H), 2.64-2.49 (m, 4H), 1.26-1.19 (m, 6H).  
13

C NMR (CDCl3, 

125MHz) – δ 192.6 (2), 169.0 (2), 153.2 (2), 137.3, 137.2, 130.7, 130.6, 129.3, 129.2, 

129.0 (2), 126.3, 126.2, 106.2, 106.1, 83.2, 83.1, 62.0, 61.0, 56.3 (2), 50.3, 50.2, 33.8, 

14.0 (2).  MS [m/z (rel int)] 298 (M
+
, 8), 265 (6), 170 (16), 123 (100), 95 (25). IR (KBr) ν 
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(cm
-1

) 3644, 3553, 3337, 2978, 2944, 2839, 2255, 1734, 1681, 1636, 1584, 1502, 1456, 

1416, 1332, 1272, 1237, 1125, 1004, 914, 854, 735, 704. LC-HRMS calcd. for C22H26NO9 

[M+H] 448.1602, found 448.1596; C22H25O6 [M-ONO2] 385.1646, found 385.1648. 

3.5.2 Dihydrofuran derivatives 

3-Benzoyl-4,5-dihydro-2-methyl-5-phenyl-furan (1b): major isomer 

 Procedure 3.2.3.2 was followed.  Yellow oil. 
1
H NMR (CDCl3, 500MHz) – δ 7.62-

7.58 (m, 2H), 7.51-7.34 (m, 8H), 5.66 (dd, 1H, J = 1.1 Hz, 9.0 Hz), 3.51 (ddd, 1H, J = 1.4 

Hz, 4.1 Hz, 10.5 Hz), 3.17 (ddd, 1H, J = 1.4 Hz, 5.9 Hz, 8.8 Hz), 1.95 (br. t, 3H, J = 1.4 

Hz).  
13

C NMR (CDCl3, 125MHz) – δ 168.5, 141.0, 131.1, 128.7, 128.3, 127.8, 125.8, 

83.4, 39.5, 15.5.  MS [m/z (rel int)] 264 (M
+
, 36), 221 (15), 203 (8), 171 (9), 105 (94), 91 

(17), 77 (100), 51 (35). IR (KBr) ν (cm
-1

) 3448, 3417, 3385, 3355, 3060, 3033, 2927, 

1714, 1639, 1563, 1448, 1352, 1274, 1225, 970, 895, 852, 700. LC-HRMS calcd. for 

C18H17O2 [M+H] 265.1223, found 265.1223. 

3-Benzoyl-4,5-dihydro-2,5-diphenyl-furan (2b) 

 Procedure 3.2.3.2 was followed.  Colorless oil. 
1
H NMR (CDCl3, 500MHz) – δ 

7.51-7.18 (m, 11H), 7.13-7.06 (m, 4H), 5.85 (t, 1H, J = 9.8 Hz), 3.72 (dd, 1H, J = 4.8 Hz, 

10.3 Hz), 3.40 (dd, 1H, J = 6.2 Hz, 8.9Hz).  
13

C NMR (CDCl3, 125MHz) – δ 193.4, 165.4, 

141.1, 139.0, 131.2, 130.1, 129.5, 128.9, 128.8, 128.3, 127.7 (2), 125.9, 111.8, 83.2, 41.2.  

MS [m/z (rel int)] 326 (M
+
, 10), 223 (13), 134 (51), 121 (100), 105 (70), 91 (15), 77 (80), 

51 (16). IR (KBr) ν (cm
-1

) 3698, 3598, 3057, 2955, 2866, 1601, 1491, 1447, 1354, 1231, 

1112, 1016, 918, 879, 695. LC-HRMS calcd. for C23H19O2 [M+H] 327.1380, found 

327.1389. 
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Ethyl-4,5-dihydro-2,5-diphenyl-3-furancarboxylate (3b) 

 Procedure 3.2.3.2 was followed.  Light yellow oil. 
1
H NMR (CDCl3, 500MHz) – δ 

7.88-7.85 (m, 2H), 7.46-7.33 (m, 8H), 5.73 (dd, 1H, J = 2.1 Hz, 8.7 Hz), 4.18-4.12 (m, 

2H), 3.58 (dd, 1H, J = 4.5 Hz, 10.8 Hz), 3.16 (dd, 1H, 6.6 Hz, 8.6 Hz), 1.21 (t, 3H, J = 7.2 

Hz).  
13

C NMR (CDCl3, 125MHz) – δ 198.9, 165.2, 164.8, 141.7, 130.4, 129.4, 128.7, 

128.1, 127.6, 125.7, 102.1, 82.5, 59.8, 39.9, 14.2.  MS [m/z (rel int)] 294 (M
+
, 13), 247 

(26), 220 (4), 115 (25), 105 (100), 77 (43). IR (KBr) ν (cm
-1

) 3658, 3514, 3061, 3033, 

2979, 1693, 1628, 1493, 1452, 1373, 1334, 1241, 1156, 1082, 1029, 928, 828, 758, 694. 

LC-HRMS calcd. for C19H19O3 [M+H] 295.1329, found 295.1349. 

Methyl-4,5-dihydro-2-(4-fluoro-phenyl)-5-phenyl-3-furancarboxylate (4b) 

 Procedure 3.2.3.2 was followed.  Colorless oil. 
1
H NMR (CDCl3, 500MHz) – δ 

7.97-7.91 (m, 2H), 7.44-7.38 (m, 4H), 7.38-7.32 (m, 1H), 7.13-7.06 (m, 2H), 5.73 (dd, 

1H, J = 2.2 Hz, 8.6 Hz), 3.70 (s, 3H), 3.58 (dd, 1H, J = 4.6 Hz, 10.8 Hz), 3.16 (dd, 1H, J = 

6.7 Hz, 8.6 Hz).  
13

C NMR (CDCl3, 125MHz) – δ 165.5, 164.9, 163.9, 162.9, 141.4, 

131.7, 131.6, 128.8, 128.2, 125.7, 114.9, 114.7, 101.6, 82.5, 51.1, 39.8.  MS [m/z (rel int)] 

384 (M
+
, 6), 370 (13), 281 (12), 207 (96), 195 (100), 105 (42), 77 (39). IR (KBr) ν (cm

-1
) 

3067, 3031, 2949, 2871, 1701, 1621, 1507, 1442, 1341, 1240, 1156, 1085, 913, 841, 759, 

700. LC-HRMS calcd. for C18H16FO3 [M+H] 299.1078, found 299.1097. 

Ethyl-4,5-dihydro-5-phenyl-2-(3,4,5-trimethoxy-phenyl)-3-furancarboxylate (5b) 

 Procedure 3.2.3.2 was followed.  Colorless oil. 
1
H NMR (CDCl3, 500MHz) – δ 

7.44-7.33 (m, 5H), 7.33-7.30 (s, 2H), 5.71 (dd, 1H, J = 1.8 Hz, 8.9 Hz), 4.20-4.13 (m, 

2H), 3.90 (s, 9H), 3.58 (dd, 1H, J = 4.5 Hz, 10.8 Hz), 3.16 (dd, 1H, J = 6.6 Hz, 8.8 Hz), 

1.25 (t, 3H, J = 7.1 Hz).  
13

C NMR (CDCl3, 125MHz) – δ 165.2, 156.0, 152.4, 141.6, 
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128.7, 128.2, 125.7, 124.8, 107.1, 101.8, 82.3, 60.9, 59.8, 56.2, 40.4, 14.4.  MS [m/z (rel 

int)] 298 (M
+
, 1), 105 (100), 77 (60), 51 (25). IR (KBr) ν (cm

-1
) 3632, 3502, 2944, 2839, 

1692, 1635, 1583, 1501, 1459, 1417, 1348, 1293, 1241, 1125, 1094, 1007, 914, 851, 734. 

LC-HRMS calcd. for C22H25O6 [M+H] 385.1646, found 385.1651. 
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Chapter 4: CAN-mediated intramolecular cyclizations of δ-aryl-β-dicarbonyls 

 

4.1 Background and significance 

 Cerium(IV) ammonium nitrate (CAN) is a versatile, inexpensive and nontoxic 

reagent used in organic syntheses for performing single electron oxidations.
48-53

  Though 

traditionally restricted to aqueous and polar organic solvents, the solubility of CAN in less 

polar organic solvents such as CH2Cl2 can be significantly enhanced through the 

replacement of the ammonium counterions with more lipophilic tetra-n-butylammoniums 

(CTAN).
103

  As discussed in Chapter 1, numerous carbon-carbon and carbon-heteroatom 

bond forming events are initiated by Ce(IV)-based reagents.    In particular, organic 

transformations involving the single electron oxidation of enolizable carbonyl and 1,3-

dicarbonyl substrates have received considerable interest.
107, 108, 127-131

   

 Recent research from our group reported the oxidative coupling of 1,3-dicarbonyls 

to radicophiles such as allyltrimethylsilane and styrene.
63, 64, 126

  In addition to efficiently 

constructing carbon-carbon bonds, these reactions exhibited solvent-dependent 

chemoselectivities.  As discussed in Chapter 3 of this dissertation, the oxidative coupling 

of 1-aryl-1,3-dicarbonyls to styrene generated discrete products depending on the solvent.  

Reactions performed in methanol (MeOH) yielded dihydrofuran derivatives as the major 

products whereas reactions in acetonitrile (MeCN) and methylene chloride (CH2Cl2) 

produced benzylic nitrate esters predominantly.  A thorough mechanistic analysis of the 

reaction system was consistent with the rate of solvent-assisted deprotonation of an initial 

radical cation intermediate playing an integral role in the selective formation of 

products.
126
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 We have shown previously that when 6-phenyl-2,4-hexanedione (1a) is oxidized 

by CAN in MeCN in the absence of a radicophile, 3-phenylpropionic acid is obtained 

exclusively over the cyclized β-tetralone product (Scheme 4.1).
132

  Using this approach, a 

variety of 1,3-dicarbonyls can be converted under mild conditions to carboxylic acids in 

moderate to excellent yields.
132

  Interestingly, others have shown that the formation of β-

tetralones is possible through single electron oxidations of δ-aryl-β-dicarbonyls.
133, 134

  

Research in this area focused predominantly on the oxidation of β-ketoesters or used 

Mn(III)-based oxidants.
133, 134

  Under the conditions of the reactions, secondary oxidations 

of the β-tetralones at the benzylic position also occurred.
133, 134

  In a previous mechanistic 

study by our group on the Ce(IV)-mediated oxidation of 1,3-diketones, it was shown that 

β-tetralone product 2a was obtained as the major product when 1a was oxidized by CAN 

in MeOH (Scheme 4.1).
88

  More importantly, when only a slight excess of CAN was 

employed, the β-tetralone was obtained cleanly without any secondary oxidations 

occurring at the benzylic positions.  Based on this observation, the single electron 

oxidations of a variety of δ-aryl-β-dicarbonyl substrates with CAN in MeOH were 

performed, the results of which are presented in this chapter. 

 
Scheme 4.1: Oxidative conversion of 1,3-dicarbonyls to carboxylic acids with CAN 
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4.2 Experimental 

4.2.1 Materials 

 Methanol (MeOH) was degassed with argon and dried with activated 3Å 

molecular sieves prior to use.  THF was purified with a Pure Solv solvent purification 

system from Innovative Technology, Inc.  CAN was purchased from Alfa Aesar and used 

without further purification.  The organohalides, 2,4-pentanedione, and methyl 

acetoacetate were all purchased from Acros Organics, Alfa Aesar, and Sigma Aldrich and 

required no additional purification.  Sodium hydride and n-butyllithium were purchased 

from Sigma Aldrich and Alfa Aesar respectively and stored under an inert atmosphere. 

4.2.2 Instrumentation 

 Proton and carbon NMR were recorded on a Bruker 500 MHz spectrometer.  GC-

MS analyses were performed with an HP 5890 Series II Gas Chromatograph with an HP 

Mass Selector Detector.  A Satellite FTIR from Thermo-Mattson was used to obtain IR 

spectra.  LC-HRMS data were recorded at the Mass Spectrometry Facility at Notre Dame 

University.  Column chromatography was performed using the automated CombiFlash® 

Rf system from Teledyne Isco, Inc.  Products were separated using prepacked silica gel 

columns with a gradient elution of either ethyl acetate:hexanes or diethyl ether:hexanes.  

Computational studies for the electron densities of substrates were carried out using 

Spartan ‘08.  Mulliken charges were calculated for each substrate after the structures were 

optimized at the HF/6-31G* level.  Theoretical calculations for the intramolecular 

cyclization of 6-(2-naphthyl)-2,4-hexanedione were performed using Gaussian 03.
135

  The 

structures were optimized at the UHF/6-31G(d,p) level and CHELPG charges were 

calculated at both the UHF/6-31+G(d,p) and UB3LYP/6-31+G(d,p) levels. 
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4.2.3 Methods 

4.2.3.1 General procedure for the synthesis of δ-aryl-β-dicarbonyls 

 Sodium hydride (11 mmol) was dissolved in 25 mL of THF and cooled to 0 
o
C.  

Next, 10 mmol of 2,4-pentanedione (or methyl acetoacetate for the δ-aryl-β-ketoester 

substrates) was added dropwise to the flask, causing the evolution of H2 gas and forming 

an opaque, white solution.  After stirring for 10 min, 10.5 mmol of n-butyllithium was 

added dropwise forming a clear yellow solution that was allowed to stir for an additional 

10 min.  The appropriate organohalide (11 mmol) was dissolved in 2 mL of THF and 

rapidly injected into the reaction at 0
 o

C.  The reaction mixture was warmed gradually to 

room temperature in 30 min.  The reaction was slowly quenched with an HCl solution (2 

mL of concentrated HCl diluted with 5 mL H2O).  The organic layer was separated and 

the aqueous layer was extracted three times with diethyl ether.  The organic layers were 

combined, washed with brine, dried with MgSO4, filtered, and concentrated.  The crude 

product was purified via automated flash chromatography with a gradient elution of either 

ethyl acetate:hexanes or diethyl ether:hexanes.  All new compounds were characterized by 

1
H NMR, 

13
C NMR, GC-MS, IR, and LC-HRMS. 

4.2.3.2 General procedure for the oxidation of δ-aryl-β-dicarbonyls with CAN in 

MeOH 

 CAN (1.1 mmol) was dissolved in 4 mL MeOH.  This CAN solution was then 

added dropwise in 1 min to the δ-aryl-β-dicarbonyl (0.5 mmol) which was dissolved in 15 

mL of MeOH.  The reaction was allowed to stir for 30 min.  Solvent was then removed by 

rotary evaporation.  Ice cold H2O (15 mL) was poured into the reaction mixture, which 

was extracted three times with CH2Cl2.  The organic layers were combined, dried with 
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MgSO4, filtered, and concentrated.  The crude product was purified via automated flash 

chromatography with a gradient elution of either ethyl acetate:hexanes or diethyl 

ether:hexanes.  All new compounds were characterized by 
1
H NMR, 

13
C NMR, GC-MS, 

IR, and LC-HRMS. 

 Best synthetic results for electron-rich substrates were obtained when the reactions 

were quenched 5 minutes after introduction of the oxidant with an equal volume of cold 

H2O.  The rest of the work-up and purification procedure was identical to the 30min 

reactions. 

4.3 Results and discussion 

 In an initial experiment, when compound 1a was oxidized in MeOH with 2.2 

equivalents of CAN, the corresponding β-tetralone 2a was generated in a 73% yield.  To 

examine the breadth of this method, a series of δ-aryl-β-dicarbonyl substrates were 

prepared by a previously reported procedure (Scheme 4.2).
136

  As shown in Table 4.1, the 

intramolecular cyclization of δ-aryl-β-diketones with unsubstituted aryl rings (entries 1 

and 3) afforded β-tetralone products in moderate to good yields.  Additionally, cyclization 

of the β-ketoester substrate (1b) proceeded efficiently, generating β-tetralone 2b in an 

85% yield.  The oxidation of substrate 1d indicated that products with 7-membered ring 

systems were not accessible by this method. 

 

Scheme 4.2: Synthesis of δ-aryl-β-dicarbonyl starting materials 
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Table 4.1: CAN-mediated oxidation of δ-aryl-β-dicarbonyls in MeOH
a 

Entry Substrate Product Yield (%)
b
 

1 1a 

 

2a 

 

73 

2 1b 

 

2b 

 

85 

3 1c 

 

2c 

 

59 

4 1d 
 

2d 
 

--
c 

a
 Reaction conditions: 1 equiv δ-aryl-β-dicarbonyl, 2.2 equiv CAN, MeOH, r.t., N2, 4 hrs. 

b
 Isolated yield.   

c 
GC data indicated that major product was the methyl ester.  Attempts 

were not made to isolate the methyl ester. 

 Previous work by Rickards et al. on a related system reported strong electronic 

effects when electron-donating substituents were incorporated onto the δ-aryl ring of the 

starting material.
134

 For example, the oxidative intramolecular cyclization of 3 shown in 

Scheme 4.3 generated the β-tetralone derivative (4) in a 93% yield.  To probe the impact 

of electron density of the δ-aryl ring on intramolecular cyclization, several substrates with 

both electron-donating and electron-withdrawing groups were synthesized and subjected 

 

Scheme 4.3: Efficient oxidative cyclization of electron-rich δ-aryl-β-dicarbonyl 3 
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to our reaction conditions.  The results of these experiments are summarized in Table 4.2.  

As shown in entry 1, dimethoxylated substrate 1e oxidatively cyclized to the β-tetralone 

derivative in a 76% yield.  However, when only one methoxy group was incorporated 

onto the δ-aryl ring, the expected β-tetralone derivative was only produced when the 

methoxy group was meta to the dicarbonyl (entry 4).  For substrates 1f and 1g with the 

methoxy group at either the ortho or para position respectively, methylesters 2c and 2d 

(entries 2 and 3) were the major products.  Additionally, intramolecular cyclizations with 

electron-deficient δ-aryl rings (entries 5 and 6) did not occur and oxidation of 1i and 2j 

instead favored the formation of methylesters 2i and 2j as the major products.  Finally, the 

tricyclic product (2k) was generated in an isolated yield of 61% when substrate 1k was 

oxidized.  It is important to note that products 2h and 2k were isolated as single isomers.  

Additionally, the regioisomers formed from these reactions result from cyclization 

occurring at the more hindered carbon atom of the δ-aryl ring.  This observed 

regioselectivity is consistent with previous research by both MacMillan et al. and 

Nicolaou et al. on the α-arylation of aldehydes through organo-SOMO activation.
137-140

  

The preferential formation of regioisomers will be discussed vide infra. 

 While alkyl radicals are generally considered nucleophilic, the radicals generated 

from β-dicarbonyls have been shown to display more electrophilic character.
106, 141, 142

  As 

a consequence, these radicals should favor coupling with more nucleophilic, electron-rich 

carbon centers.  The observation that intramolecular cyclization did not occur in either of 

the electron-deficient substrates (compounds 1i and 1j) is consistent with electrophilic 

radical intermediates.  To gain a better understanding of the impact that the electron 

density of the δ-aryl ring has on intramolecular cyclization, theoretical calculations were 
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Table 4.2: Impact of ring substituents on the CAN-mediated oxidation of δ-aryl-β-

dicarbonyls in MeOH
a
 

Entry Substrate Product Yield (%)
b
 

1 1e 

 

2e 

 

76 

2 1f 

 

2f 

 

--
c 

3 1g 

 

2g 

 

--
c 

4 1h 

 

2h 

 

83 

5 1i 

 

2i 

 

--
c 

6 1j 

 

2j 

 

--
c 

7 1k 

 

2k 

 

61 

a
 Reaction conditions: 1 equiv δ-aryl-β-dicarbonyl, 2.2 equiv CAN, MeOH, r.t., N2, 4 hrs. 

b
 Isolated yield.   

c 
GC data indicated that the major products (50-80% conversion) were 

the methyl esters. Attempts were not made to isolate the methyl esters. 
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 performed using Spartan ‘08 (Table 4.3).  In these studies, the structures of substituted 

derivatives of ethylbenzene were optimized at the HF/6-31G
*
 level.  For these studies, the 

β-dicarbonyl group was replaced with an ethyl group for ease of calculation.  Mulliken 

charges were then calculated to determine the effect of these substituents on the electron 

density at C2, the position where cyclization occurred for substrates 1h and 1k.  The 

results of these computational studies show that a chloro group meta to the ethyl group 

significantly reduced the Mulliken charge at the C2 position when compared to the 

unsubstituted ethylbenzene (from -0.225 to -0.206).  Conversely, both the naphthyl- and 

the meta-methoxy-substituted structures exhibited more electron density at the C2 

position in comparison to ethylbenzene (entries 3 and 4).  Since β-tetralone derivatives 

were obtained for substrates 1a, 1h, and 1k, these computational studies affirm that there 

is a minimum electron density that must be met in order for cyclization with an 

electrophilic radical intermediate to occur. 

Table 4.3: Substituent-effect on electron density at C2 of model aryl substrates 

Entry Structure
a 

Mulliken Charge at C2
b 

1 

 

-0.206 

2 

 

-0.225 

3 

 

-0.241 

4 

 

-0.318 

a
 Structures optimized at HF/6-31G

*
 using Spartan ‗08 

b
 The C2 position is marked with an ―*‖ in each structure 
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 Having established a theoretical threshold for oxidative intramolecular cyclization, 

our efforts focused on understanding the nature of the observed regioselectivity in β-

tetralone formation.  While MacMillan and Houk have performed detailed computational 

studies to explain the regioselective radical cyclization with m-methoxylated rings, the 

selectivity of naphthyl substrates was not investigated.
138

  As shown in Scheme 4.4, both a 

phenanthrene- and an anthracene-derived product are possible for the oxidative 

cyclization of 1k. The formation of these regioisomers is dependent upon the position of 

attack on the naphthyl ring by a radical intermediate with cyclization at C8 and C10 

leading to the phenanthrene and anthracene derivative, respectively.  Additional 

computational studies were performed using Gaussian 03 to obtain further insight into the 

regioselectivity of the oxidative intramolecular cyclization of substrate 1k,.
135

  The 

intermediate radical structures were optimized at the UHF/6-31G(d,p) level and charges 

from electrostatic potentials using grid-based method (CHELPG) were calculated at both 

the UHF/6-31+G(d,p) and UB3LYP/6-31+G(d,p) levels.  The data from these calculations 

(Table 4.4) clearly indicate that there is a significant difference in the electron density at 

the two positions on the δ-aryl ring where intramolecular cyclization with the 

 
Scheme 4.4: Regioselectivity for the intramolecular cyclization of 1k 
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electrophilic radical can occur (C8 and C10).  Independent of the orientation of the α-

carbonyl radical (structure A versus B), the carbon atom that should lead to phenanthrene 

derivative 2k (C8) is approximately 3 times more electronegative than the carbon atom 

that should lead to the anthracene derivative (C10). 

Table 4.4: CHELPG charges for optimized radical intermediates of 1k
a 

 
Structure Level C-8 C-10 

A UHF/6-31+G(d,p) -0.359 -0.085 

B UHF/6-31+G(d,p) -0.392 -0.176 

A UB3LYP/6-31+G(d,p) -0.289 -0.048 

B UB3LYP/6-31+G(d,p) -0.320 -0.134 
a
 Structures A and B optimized using Gaussian 03 

 In a previous study by our research group, the rates of oxidation of several β-

diketones and their related silylenol ethers by CAN and CTAN were measured in MeOH, 

MeCN and CH2Cl2 using stopped-flow spectrophotometry.
88

  The rates of formation and 

subsequent decay of radical cations formed after the initial oxidation were measured in all 

three solvents as well.  The data discussed in this chapter in concert with the results from 

the oxidation of 1,3-dicarbonyls to carboxylic acids
88, 132 

provide several key insights into 

the mechanism of the oxidation of δ-aryl-β-dicarbonyls in MeOH.  First, MeOH is 

intimately involved in the decay of the initial radical cation through solvent-assisted 

deprotonation.  Second, intramolecular cyclization of 1a occurs after the rate-limiting step 

of the reaction.  Third, the oxidations of non-aromatic β-diketones and their silylenol 
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ethers in MeOH result in conversion to their methylesters.  In addition, the nitrate ligand 

of CAN plays an integral role in formation of carboxylic acids and their methylester 

equivalents.  Finally, computational studies indicate that only substrates with sufficiently 

electron-rich δ-aryl rings undergo intramolecular cyclization. 

 Based on these previous findings as well as the synthetic and computational data 

presented herein, the mechanism in Scheme 4.5 is proposed for the oxidation of δ-aryl-β-

dicarbonyls in MeOH with CAN.  Initial oxidation of the enol tautomer (4’) by CAN 

produces radical cation 5.  Intermediate 5 is rapidly deprotonated by MeOH to radical 

species 6.  When the radical contains a δ-aryl group with sufficient electron density at the 

* position, Path A is followed.  Intramolecular cyclization (7) occurs through radical 

addition to the aromatic ring forming intermediate 8.  As demonstrated by the oxidation of 

substrate 1k, intramolecular cyclization of this radical occurs at the more electron rich 

carbon atom of asymmetric δ-aryl rings.  A second equivalent of CAN oxidizes 8 to cation 

9.  Rearomatization through deprotonation of intermediate 9 yields the β-tetralone 

derivative 10.  Close inspection of cation 9 reveals that only the substrate with the 

methoxy group at the meta position on the δ-aryl ring (Table 4.2, entry 4) can stabilize 

this cation through resonance.   

 Conversely, when the δ-aryl ring is electron-deficient (Table 4.2, entries 5-6), the 

reaction follows Path B which is similar to the pathway previously established for the 

conversion of β-dicarbonyls to carboxylic acids.
88

  Both a second single electron oxidation 

and internal ligand transfer of a nitrate are required for the conversion of radical 6 to the 

carboxylic acid (11).
88

  Methylester 12 is produced by the Lewis acid-promoted 

esterification of 11 with Ce(III)/Ce(IV) and MeOH.
143-145
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Scheme 4.5 Proposed mechanism for the conversion of δ-aryl-β-dicarbonyls to β-

tetralones (Path A) and methylesters (Path B) 

4.4 Conclusions 

 A protocol for the conversion of δ-aryl-β-tetralones using CAN has been 

developed.  The method presented in this chapter demonstrates that a series of δ-aryl-β-

dicarbonyls can be efficiently oxidized with CAN to form β-tetralones which are 

structural motifs in several natural products such as trigonostemone and daldinone B 

(Figure 4.1).
146, 147

  In addition, β-tetralones have been used as precursors in the synthesis 

of a variety of pharmaceutically active compounds and biologically relevant molecules.
148, 

149
  As a result, a great deal of research has been devoted to developing efficient routes to 
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β-tetralone derivatives.
150-152

  The Ce(IV)-mediated syntheses of β-tetralones presented in 

this chapter had short reaction times, mild conditions, and afforded the desired products in 

moderate to very good yields.  While β-tetralones were not generated for all substrates, 

the data suggest that a general method for the conversion of aliphatic β-dicarbonyls and 

electron-deficient δ-aryl-β-dicarbonyls to esters may be achieved.  Furthermore, the 

results of computational studies presented herein helped establish for the first time that a 

threshold based on electron density of the δ-aryl ring exists for efficient intramolecular 

cyclization.  Finally, the regioselective formation of phenanthrene derivative 2k was 

shown to be a consequence of intramolecular cyclization occurring at the most electron-

rich carbon atom.  The manuscript for this research is currently in preparation for Organic 

Letters. 

 

Figure 4.1: Structures of trigonostemone (A) and daldinone B (B)  

4.5 Synthesis and spectral data for starting materials and products 

4.5.1 δ-Aryl-β-dicarbonyls substrates 

6-Phenyl-2,4-hexanedione (1a) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and benzyl bromide.  

Clear, colorless oil. 
1
H NMR (CDCl3, 500 MHz) – (enol tautomer) δ 15.46 (br. s, 1H), 

7.32-7.27 (m, 2H), 7.24-7.17 (m, 3H), 5.49 (s, 1H), 2.94 (t, 2H, J  =  8.1 Hz), 2.60 (t, 2H, 

J  =  8.2 Hz), 2.05 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 193.2, 191.0, 140.6, 128.8, 



84 
 

128.5, 128.5, 128.4, 128.3, 128.2, 126.4, 126.2, 100.0, 58.0, 45.2, 40.0, 38.1, 31.4, 29.4, 

24.8. MS [m/z (rel int)] 190 (M
+
, 72), 172 (11), 129 (10), 104 (67), 91 (86), 85 (100), 77 

(31). 

Methyl 3-oxo-5-phenyl-pentanoate (1b) 

 Procedure 4.2.3.1 was followed using methylacetoacetate and benzyl bromide.  

Clear, colorless oil. 
1
H NMR (CDCl3, 500 MHz) – (keto tautomer) δ 7.31-7.27 (m, 2H), 

7.22-7.17 (m, 3H), 3.72 (s, 3H), 3.44 (s, 2H), 2.95-2.86 (m, 4H).  
13

C NMR (CDCl3, 125 

MHz) – δ 201.7, 167.5, 140.4, 128.5, 128.4, 128.3, 126.2, 52.4, 49.2, 44.5, 29.4. MS [m/z 

(rel int)] 206 (M
+
, 28), 188 (41), 174 (25), 133 (50), 128 (34), 104 (100), 91 (100), 77 

(47). 

6-Methyl-6-phenyl-2,4-hexanedione (1c) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and (1-

bromoethyl)benzene.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 MHz) – (enol 

tautomer) δ 15.52 (br. s, 1H), 7.34-7.29 (m, 2H), 7.26-7.20 (m, 3H), 5.43 (s, 1H), 3.29 

(apparent sext, 1H, J  =  7.1 Hz), 2.61 (dd, 1H, J  =   14.7, 6.8 Hz), 2.49 (dd, 1H, J  =  

14.3, 8.2 Hz), 2.02 (s, 3H), 1.32 (d, 3H, J  =  7.0 Hz).  
13

C NMR (CDCl3, 125 MHz) – δ 

202.9, 201.8, 191.9, 191.6, 145.8, 145.6, 128.4, 128.3, 126.6, 126.2, 100.6, 58.3, 51.6, 

46.6, 46.5, 36.7, 36.6, 35.1, 35.1, 24.9, 24.8, 21.6, 21.5. MS [m/z (rel int)] 204 (M
+
, 36), 

186 (9), 143 (18), 118 (41), 105 (100), 91 (23), 85 (54), 77 (32). 

7-Phenyl-2,4-heptanedione (1d) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and (2-

bromoethyl)benzene.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 MHz) – (enol 

tautomer) δ 15.50 (br. s, 1H), 7.32-7.28 (m, 2H), 7.22-7.17 (m, 2H), 5.49 (s, 1H), 2.66 (t, 
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2H, J  =  7.7 Hz), 2.31 (t, 2H, J  =  7.7 Hz), 2.06 (s, 3H), 1.95 (apparent pentet, 2H, J  =  

7.7 Hz).  
13

C NMR (CDCl3, 125 MHz) – δ 193.8, 191.3, 141.5, 128.4, 128.4, 126.0, 99.9, 

37.5, 35.2, 27.2, 24.9. MS [m/z (rel int)] 204 (M
+
, 6), 186 (6), 105 (75), 100 (94), 91 (69), 

85 (100), 77 (12). 

6-(3,5-Dimethoxyphenyl)-2,4-hexanedione (1e) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and 3,5-dimethoxybenzyl 

chloride.  Clear oil. 
1
H NMR (CDCl3, 500 MHz) – (enol tautomer) δ 15.44 (br. s, 1H), 

6.37-6.26 (m, 3H), 5.46 (s, 1H), 3.75 (s, 6H), 2.85 (t, 2H, J  =  7.9 Hz), 2.56 (t, 2H, J  =  

7.9 Hz), 2.02 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ  193.3, 190.9, 160.8, 143.1, 106.3, 

100.0, 98.1, 55.2, 39.8, 31.7, 24.7. MS [m/z (rel int)] 250 (M
+
, 21), 232 (9), 165 (100), 

151 (14), 91 (12), 85 (16), 77 (13). 

6-(2-Methoxyphenyl)-2,4-hexanedione (1f) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and 2-methoxybenzyl 

chloride.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 MHz) – (enol tautomer) δ 15.47 

(br. s, 1H), 7.23-7.18 (m, 1H), 7.15-7.12 (m, 1H), 6.91-6.83 (m, 2H), 5.49 (s, 1H), 3.83 (s, 

3H), 2.92 (t, 2H, J  =  7.7Hz), 2.58 (t, 2H, J  =  7.7Hz), 2.05 (s, 3H).  
13

C NMR (CDCl3, 

125 MHz) – δ  193.9, 191.0, 157.4, 129.8, 129.0, 127.5, 120.4, 110.2, 99.8, 55.18, 38.3, 

26.6, 24.9. MS [m/z (rel int)] 220 (M
+
, 27), 146 (13), 134 (33), 121 (77), 91 (100), 85 

(46), 77 (33). 

6-(4-Methoxyphenyl)-2,4-hexanedione (1g) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and 4-methoxybenzyl 

chloride.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 MHz) – (enol tautomer) δ 15.46 

(br. s, 1H), 7.13-7.09 (m, 2H), 6.85-6.81 (m, 2H), 5.47 (s, 1H), 3.79 (s, 3H), 2.88 (t, 2H, J  
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=  7.6 Hz), 2.56 (t, 2H, J  =  7.6 Hz), 2.04 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 

193.2, 191.1, 158.0, 132.7, 129.2, 129.2, 113.9, 113.8, 100.0, 55.2, 40.2, 30.6, 24.9. MS 

[m/z (rel int)] 220 (M
+
, 39), 163 (7), 134 (36), 121 (100), 91 (21), 85 (16), 77 (20). 

6-(3-Methoxyphenyl)-2,4-hexanedione (1h) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and 3-methoxybenzyl 

chloride.  Clear, colorless oil. 
1
H NMR (CDCl3, 500 MHz) – (enol tautomer) δ 15.46 (br. 

s, 1H), 7.23-7.19 (m, 1H), 6.81-6.72 (m, 3H), 5.49 (s, 1H), 3.80 (s, 3H), 2.92 (t, 2H, J  =  

7.9 Hz), 2.60 (t, 2H, J  =  7.9 Hz), 2.05 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 193.3, 

191.0, 159.7, 142.3, 129.5, 120.6, 114.0, 111.5, 100.0, 55.1, 39.9, 31.5, 24.8. MS [m/z (rel 

int)] 220 (M
+
, 38), 202 (11), 162 (11), 135 (100), 121 (71), 105 (27), 91 (73), 85 (91), 77 

(40). 

6-(3-Chlorophenyl)-2,4-hexanedione (1i) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and 3-chlorobenzyl 

chloride.  Clear, yellow oil. 
1
H NMR (CDCl3, 500 MHz) – (enol tautomer) δ 15.41 (br. s, 

1H), 7.22-7.17 (m, 3H), 7.09-7.06 (m, 1H), 5.47 (s, 1H), 2.92 (t, 2H, J  =  8.1 Hz), 2.59 (t, 

2H, J  =  8.1 Hz), 2.05 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 192.9, 190.8, 142.7, 

134.2, 129.8, 129.7, 128.5, 128.4, 126.5, 126.4, 100.0, 58.0, 44.8, 39.7, 31.0, 28.9, 24.7. 

MS [m/z (rel int)] 224 (M
+
, 38), 138 (33), 125 (42), 103 (35), 85 (100), 77 (28). IR (KBr) 

ν (cm
-1

) 3644, 3167, 3064, 2939, 2670, 2365, 1843, 1592, 1438, 1330, 1262, 1142, 1038, 

893, 785, 688. LC-HRMS calcd. for C12H14ClO2 [M+H] 225.0677, found 225.0665. 

6-(4-Chlorophenyl)-2,4-hexanedione (1j) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and 4-chlorobenzyl 

chloride.  White solid (mp 34-36 
o
C). 

1
H NMR (CDCl3, 500 MHz) – (enol tautomer) δ 
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15.42 (br. s, 1H), 7.26-7.23 (m, 2H), 7.14-7.10 (m, 2H), 5.46 (s, 1H), 2.91 (t, 2H, J  =  7.9 

Hz), 2.57 (t, 2H, J  =  7.9 Hz), 2.04 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 192.9, 

190.9, 139.1, 132.0, 129.6, 128.6, 100.1, 39.8, 30.7, 24.8. MS [m/z (rel int)] 224 (M
+
, 65), 

138 (59), 125 (76), 103 (29), 85 (100), 77 (24). IR (KBr) ν (cm
-1

) 3491, 2884, 2396, 2283, 

1894, 1808, 1608, 1498, 1427, 1251, 1097, 1006, 940, 807. LC-HRMS calcd. for 

C12H13ClNaO2 [M+Na] 247.0496, found 247.0487. 

6-(2-Naphthyl)-2,4-hexanedione (1k) 

 Procedure 4.2.3.1 was followed using 2,4-pentanedione and 2-

(bromomethyl)naphthalene.  White solid (mp 57-58 
o
C). 

1
H NMR (CDCl3, 500 MHz) – 

(enol tautomer) δ 15.51 (br. s, 1H), 7.84-7.75 (m, 3H), 7.67-7.62 (s, 1H), 7.51-7.42 (m, 

2H), 7.37-7.32 (m, 1H), 5.50 (s, 1H), 3.12 (t, 2H, J  =  8.0 Hz), 2.70 (t, 2H, J  =  8.0 Hz), 

2.05 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 193.1, 191.0, 138.2, 133.5, 132.1, 128.1, 

127.6, 127.4, 126.9, 126.4, 126.0, 125.3, 100.0, 39.9, 31.6, 24.8. MS [m/z (rel int)] 240 

(M
+
, 55), 182 (12), 154 (65), 141 (100), 128 (35), 115 (62), 85 (40). 

4.5.2 β-Tetralone derivatives 

1-Acetyl-3,4-dihydro-2(2H)-naphthalenone (2a) 

 Procedure 4.2.3.2 was followed.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 

MHz) – (enol tautomer) δ 16.53 (br. s, 1H), 7.25-7.18 (m, 3H), 7.15-7.10 (m, 1H), 2.86 (t, 

2H, J = 6.9 Hz), 2.56 (t, 2H, J = 6.9 Hz), 2.39 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 

200.0, 183.8, 135.4, 132.8, 127.4, 126.5, 126.4, 125.4, 110.9, 35.3, 27.8, 23.3. MS [m/z 

(rel int)] 188 (M
+
, 26), 173 (23), 146 (21), 141 (21), 128 (24), 115 (100), 102 (10), 91 

(24), 77 (16). 
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Methyl 3,4-dihydro-2(2H)-naphthalenone-1-carboxylate (2b) 

 Procedure 4.2.3.2 was followed.  Clear, colorless oil. 
1
H NMR (CDCl3, 500 MHz) 

– (enol tautomer) δ 13.32 (br. s, 1H), 7.72-7.67 (m, 1H), 7.22-7.18 (m, 1H), 7.15-7.12 (m, 

1H), 7.10-7.06 (m, 1H), 3.93 (s, 3H), 2.83 (t, 2H, J = 7.4 Hz), 2.55 (t, 2H, J = 7.4 Hz).  

13
C NMR (CDCl3, 125 MHz) – δ 178.4, 172.4, 133.2, 131.3, 127.2, 126.4, 125.8, 125.0, 

99.9, 51.7, 29.5, 27.7. MS [m/z (rel int)] 204 (not observed), 189 (2), 146 (56), 117 (44), 

104 (100), 91 (23), 78 (33). 

1-Acetyl-3,4-dihydro-4-methyl-2(2H)-naphthalenone (2c) 

 Procedure 4.2.3.2 was followed.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 

MHz) – (enol tautomer) δ 16.56 (br. s, 1H), 7.26-7.15 (m, 4H), 3.07-3.00 (m, 1H), 2.66 

(dd, 1H, J = 16.2, 5.1 Hz), 2.40 (s, 3H), 2.39 (dd, 1H, J = 7.6 Hz), 1.31 (d, 3H, J = 7.0 

Hz).  
13

C NMR (CDCl3, 125 MHz) – δ 199.1, 183.6, 139.8, 132.1, 126.7, 126.2, 125.7, 

110.8, 42.7, 32.4, 23.4, 18.9. MS [m/z (rel int)] 202 (M
+
, 62), 187 (25), 141 (44), 128 (38), 

115 (100), 105 (25), 91 (31). IR (KBr) ν (cm
-1

) 3089, 2958, 2549, 2411, 1595, 1408, 

1271, 984, 759. LC-HRMS calcd. for C13H15O2 [M+H] 203.1067, found 203.1060. 

1-Acetyl-6,8-dimethoxy-3,4-dihydro-2(2H)-naphthalenone (2e) 

 Procedure 4.2.3.2 was followed.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 

MHz) – (enol tautomer) δ 15.56 (br. s, 1H), 6.41-6.32 (m, 2H), 3.80 (s, 3H), 3.77 (s, 3H), 

3.19-2.37 (m, 4H), 2.00 (s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 206.4, 203.3, 198.2, 

183.8, 160.2, 158.9, 157.4, 155.7, 138.8, 138.7, 114.6, 114.0, 107.4, 104.4, 104.2, 96.9, 

96.8, 62.6, 55.4, 55.3, 55.0, 37.7, 35.2, 29.6, 29.0, 28.5, 23.1. MS [m/z (rel int)] 248 (M
+
, 

32), 233 (6), 215 (21), 206 (100), 191 (30), 177 (34), 161 (13), 147 (11), 131 (11), 115 

(11), 103 (11), 91 (15), 77 (13). 
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1-Acetyl-8-methoxy-3,4-dihydro-2(2H)-naphthalenone (2h) 

 Procedure 4.2.3.2 was followed.  Single isomer existing in keto, cis-enol and 

trans-enol tautomers. Clear, light yellow oil. 
1
H NMR (CDCl3, 500 MHz) – (enol 

tautomers) δ 16.32 (br. s, 1H), 15.75 (br. s, 1H), 7.26-7.09 (m, 2H), 6.88-6.76 (m, 4H), 

3.82 (s, 6H), 3.24-2.42 (m, 8H), 2.06 (s, 6H).  
13

C NMR (CDCl3, 125 MHz) – δ 206.2, 

202.9, 197.7, 185.5, 182.0, 157.4, 156.4, 154.6, 138.1, 137.8, 137.0, 128.6, 127.5, 126.8, 

125.3, 121.8, 121.7, 120.5, 119.6, 113.2, 111.4, 110.5, 109.6, 108.5, 107.6, 63.0, 55.4, 

55.3, 55.0, 37.7, 35.5, 34.9, 29.9, 28.5, 28.2, 28.1, 23.4, 23.0. MS [m/z (rel int)] 218 (M
+
, 

31), 203 (14), 185 (17), 176 (100), 161 (48), 131 (31), 115 (43), 103 (28), 91 (20), 77 

(20). IR (KBr) ν (cm
-1

) 3635, 2948, 2823, 1712, 1597, 1461, 1425, 1260, 1167, 1086, 969. 

LC-HRMS calcd. for C13H15O3 [M+H] 219.1016, found 219.1006. 

4-Acetyl-1,2-dihydro-3(2H)-phenanthrenone (2k) 

 Procedure 4.2.3.2 was followed.  Clear, light yellow oil. 
1
H NMR (CDCl3, 500 

MHz) – (enol tautomer) δ 15.51 (br. s, 1H), 7.91-7.81 (m, 1H), 7.71 (d, 1H, J = 8.3 Hz), 

7.64 (d, 1H, J = 8.2 Hz), 7.50-7.42 (m, 2H), 7.39 (d, 1H, J = 8.2 Hz), 3.18 (td, 1H, J = 

15.0, 4.3 Hz), 2.93-2.85 (m, 1H), 2.71-2.62 (m, 1H), 2.51 (td, 1H, J = 15.6, 5.4 Hz), 1.91 

(s, 3H).  
13

C NMR (CDCl3, 125 MHz) – δ 206.4, 202.8, 201.7, 179.7, 135.4, 134.6, 133.1, 

133.0, 131.3, 130.0, 129.4, 129.2, 128.6, 127.3, 126.9, 126.5, 125.8, 125.7, 125.7, 125.4, 

125.0, 122.2, 110.1, 65.8, 37.3, 36.2, 29.2, 28.8, 28.7, 23.1. MS [m/z (rel int)] 238 (M
+
, 

23), 196 (63), 178 (32), 165 (100), 152 (47), 139 (25), 115 (15). IR (KBr) ν (cm
-1

) 3420, 

3048, 2953, 2254, 1712, 1601, 1402, 1248, 1026, 915, 818, 739. LC-HRMS calcd. for 

C16H15O2 [M+H] 239.1067, found 239.1062. 
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4.5.3 Methyl ester derivatives 

Methyl 4-phenyl-butanoate (2d) 

 Procedure 4.2.3.2 was followed and the crude reaction was analyzed by GC-MS.  

MS [m/z (rel int)] 178 (M
+
, 28), 147 (31), 104 (79), 91 (100). 

Methyl 3-(2-methoxyphenyl)-propionate (2f) 

 Procedure 4.2.3.2 was followed and the crude reaction was analyzed by GC-MS.  

MS [m/z (rel int)] 194 (M
+
, 34), 121 (80), 91 (100). 

Methyl 3-(4-methoxyphenyl)-propionate (2g) 

 Procedure 4.2.3.2 was followed and the crude reaction was analyzed by GC-MS.  

MS [m/z (rel int)] 194 (M
+
, 16), 121 (100), 91 (25). 

Methyl 3-(3-chlorophenyl)-propionate (2i) 

 Procedure 4.2.3.2 was followed and the crude reaction was analyzed GC-MS.  MS 

[m/z (rel int)] 198 (M
+
, 9), 138 (100), 125 (31), 103 (53), 89 (22), 77 (45). 

Methyl 3-(4-chlorophenyl)-propionate (2j) 

 Procedure 4.2.3.2 was followed and the crude reaction was analyzed by GC-MS.  

MS [m/z (rel int)] 198 (M
+
, 33), 138 (100), 103 (61), 77 (39). 



91 
 

Chapter 5: On the nature of the oxidative heterocoupling of lithium enolates 

 

5.1 Background and significance 

 The coupling of enolates through single electron oxidation is one of the most 

direct routes to generating 1,4-dicarbonyls, which are important structural motifs in a 

variety of natural products
153-156

 and pharmaceutically active compounds (Figure 5.1).
157, 

158
  Reactions of this kind provide one-step synthetic routes to complex products from 

relatively simple starting materials.  Direct routes to complex structures and molecular  

 

Figure 5.1: 1,4-Dicarbonyl structures in the natural products herquline A (A), sordaricin 

(B), neosurugatoxin (C) and pharmaceutics such as matrix metalloprotease inhibitors (D) 

scaffolds are of paramount importance to synthetic chemists.  In recent years, increasing 

consideration has been given to the concepts of ―atom economy‖ and ―protecting-group-

free‖ approaches in the total synthesis of biologically relevant compounds.
159-161

  Unlike 

other synthetic routes to 1,4-dicarbonyls,
23, 24, 162, 163

 the single electron oxidative coupling 



92 
 

of equimolar amounts of enolates can afford the same products while requiring no 

prefunctionalization steps. 

 Numerous protocols have been developed for the oxidative homocoupling of 

enolates which use a variety of oxidants and are applicable to many different substrates.
11-

13, 20-22, 164-167
 Reaction 1 in Scheme 5.1 depicts the intermolecular oxidative homocoupling 

of isophorone (1).
12

  After deprotonation with lithium diisopropylamine (LDA), the 

enolate is oxidized by iron(III) chloride (FeCl3) dimerizing to produce the symmetric 1,4-

diketone product (2).
12

  In addition to intermolecular homocoupling reactions, 

intramolecular cyclizations can be achieved through the single electron oxidation of 

dienolates.
20, 168

  As shown in reaction 2, diester 3 can be deprotonated with two  

 

Scheme 5.1: Synthesis of 1,4-dicarbonyls via the oxidative coupling of metal-stabilized 

enolates 
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equivalents of LDA to generate a dienolate.
20

  After oxidation with copper(II) triflate 

[Cu(OTf)2], the cyclopropane derivative (4) is produced via intramolecular radical-radical 

coupling.
20

  As demonstrated by Baran et al., intramolecular cyclizations can also occur 

through the oxidative coupling of two different enolates.
14

  In reaction 3, deprotonation of 

both the amide and ester of 5 generates a dienolate which oxidatively heterocouples using 

iron(III) acetylacetonate (Fe(acac)3) to produce 6.
14

 

 Despite the large amount of research on intra- and intermolecular oxidative 

coupling of enolates, the synthesis of unsymmetric 1,4-dicarbonyls via the single electron 

oxidation of two different metal-stabilized enolates has been slow to develop.  

Applications of traditional oxidative procedures require the use of superstoichiometric 

amounts of one enolate relative to the other to obtain synthetically useful yields of the 

heterocoupled product (i.e. better than 50%).
21, 22

   As shown in reaction 4 of Scheme 5.2, 

when a 3 equivalent excess of acetone (7) relative to ketone 8 is employed the 

heterocoupled product (9) is generated in 59% yield.
21

  Thomson et al. have shown that 

 

Scheme 5.2: Previous synthetic approaches to the oxidative heterocoupling of enolates 
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unsymmetric 1,4-dicarbonyls are produced through the oxidation of silyl bis-enol 

ethers.
169

  In reaction 5, the silyl bis-enol ether (10) is oxidized with two equivalents of 

cerium(IV) ammonium nitrate (CAN) to produce 11.  While unsymmetric 1,4-dicarbonyls 

have been generated in acceptable yields (40-82%) by this method, multistep syntheses 

are required to make the silyl bis-enol ethers reducing the appeal of this approach in terms 

of atom economy.
169

 

 Recently, Baran et al. reported the intermolecular oxidative heterocoupling of 

enolates.
23, 24

  In all reported cases, when equimolar amounts of two different enolates (12 

and 13) were oxidized with Fe(III)- or Cu(II)-based oxidants, the heterocoupled product 

(14) was obtained in greater than 50% yield with some products being obtained in 70-90% 

yields (Scheme 5.3).  These findings are intriguing because statistically the oxidation of 

equimolar amounts of two enolates, at best, should result in 50% yield of the 

heterocoupled product along with 25% of each of the homodimers.  Interestingly, they 

also found that the diastereoselectivity was oxidant-dependent, with Fe(III)-oxidants 

favoring β-stereochemistry at the ―*‖ position and Cu(II)-oxidants favoring α-

stereochemistry.
23

  While synthetic studies were performed to probe the basis for 

diastereoselectivity,
23

 the underlying mechanistic basis for the selective formation of 

heterocoupled products has not been elucidated.  The research presented in this chapter 

uses mechanistic and synthetic studies to test two possibilities for enhanced  

 

Scheme 5.3: Oxidative heterocoupling of an equimolar mixture of two different enolates 
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heterocoupling yields: 1) selective heterocoupling as a result of preferential oxidation of 

enolates, and 2) selective heterocoupling as a result of non-statistical distributions of 

lithium heteroaggregates. 

5.2 Experimental 

5.2.1 Materials 

5.2.1.1 
7
Li NMR experiments 

 THF was purified with a Pure Solv solvent purification system from Innovative 

Technology, Inc.  Toluene was degassed with argon for 1 hour and then stored over 

activated 3 Å molecular sieves under an inert atmosphere.  A stock solution of 2.0 M 

THF/toluene was prepared by diluting 8.1 mL of THF to a final volume of 50 mL with 

toluene.  LiHMDS was purchased from Sigma Aldrich as a white solid and used without 

further purification.  All ketones were purchased from Alfa Aesar or Acros Organics and 

purified by short-path distillation, recrystallization from n-pentane, or column 

chromatography prior to use.  As a reference and locking signal, 0.3 M LiCl in CD3OD 

was prepared and flame-sealed inside melting point capillaries.  All solutions and 

substrates were stored inside a glovebox filled with argon. 

5.2.1.2 Oxidative heterocoupling reactions 

 THF was purified with a Pure Solv solvent purification system from Innovative 

Technology, Inc.  LiHMDS was purchased from Sigma Aldrich as a white solid and used 

without further purification.  All ketones were purchased from Alfa Aesar or Acros 

Organics and purified by short-path distillation, recrystallization from n-pentane, or 

column chromatography prior to use.  Molecular iodine was purchased from Acros 
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Organics and used without further purification.  Anhydrous N,N-dimethylforamide (DMF) 

was purchased from Acros Organics. 

5.2.2 Instrumentation 

 Proton, carbon, and lithium NMR were recorded on a Bruker 500 MHz 

spectrometer.  GC-MS analyses were performed with an HP 5890 Series II Gas 

Chromatograph with an HP Mass Selector Detector.  LC-HRMS data were recorded at the 

Mass Spectrometry Facility at Notre Dame University.  Column chromatography was 

performed using the automated CombiFlash® Rf system from Teledyne Isco, Inc.  

Products were separated using prepacked silica gel columns with a gradient elution of 

either ethyl acetate:hexanes or diethyl ether:hexanes. 

5.2.3 Methods 

5.2.3.1 General procedure for the determination of lithium enolate aggregation 

 All glassware was flame-dried before use.  Two portions of LiHMDS (0.304 mmol 

each) were dissolved in 0.5 mL of 2.0 M THF/toluene each in septated vials with 

magnetic stirrers and cooled to -10 
o
C.  Each ketone (0.300 mmol) was dissolved 

separately in 0.5 mL 2.0M THF/toluene and added dropwise to one of the vials of 

LiHMDS.  The two solutions were stirred at -10 
o
C for 45 minutes.  The enolate solutions 

were then cooled to -78 
o
C, combined via syringe (stirred for 5 minutes), warmed to -10 

o
C (stirred for 5 minutes), and recooled to -78 

o
C.  The solution was transferred to a 

septated NMR tube containing a sealed insert (0.3 M LiCl in CD3OD).  The sample 

temperature was maintained at -78 
o
C until it was placed in the NMR spectrometer (NMR 

probe temperature was -30 
o
C).  The sample was locked and shimmed extensively using 

the CD3OD.  A pre-thermal equilibrated 
7
Li NMR spectrum was obtained for the sample 
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at -30 
o
C.   The NMR tube was then ejected from the spectrometer, warmed in-hand for 2 

minutes, recooled to -30 
o
C inside the spectrometer, and the 

7
Li NMR spectrum was 

recorded again.  The peaks were integrated with the signal corresponding to the A4 

aggregate set to a value of 1.  The shift values are reported relative to the signal for LiCl 

(0.00 ppm).  For all equimolar enolate mixtures reported, the lithium aggregates were 

ensembles of tetramers (A4 : A3B1 : A2B2 : A1B3 : B4) consistent with those reported by 

Collum et al.
170

 

5.2.3.2 General procedure for the oxidative heterocoupling of lithium enolates 

  All glassware was flame-dried before use.  The ketone substrates (0.30 mmol of 

each) were dissolved together in 1.0 mL of THF in a septated vial with a magnetic stirrer.  

The vial was then cooled to -10 
o
C.  LiHMDS (0.64 mmol) was dissolved in 1.0 mL of 

THF and added dropwise to the solution of ketones.  The solution was stirred at -10 
o
C for 

45 minutes.  The enolate solution was placed in a water bath at room temperature (stirred 

for 5 minutes) and then cooled to -78 
o
C.  Molecular iodine (0.30 mmol) was dissolved in 

1.0 mL of THF and added to the enolate solution dropwise via syringe with vigorous 

stirring.  The reaction solution was removed from the -78 
o
C bath and allowed to slowly 

warm to room temperature over 30 minutes.  The reaction was quenched with an equal 

volume of brine, separated, and the aqueous layer was extracted three times with ethyl 

acetate.  The organic layers were combined, rotary evaporated to dryness, and the crude 

reaction mixture was redissolved in CDCl3.  DMF (0.3 mmol) was added.  Product yields 

and ratios (heterocoupled product:homocoupled product) were determined by 
1
H NMR.  

The heterocoupled products were purified via automated flash chromatography and 

characterized by 
1
H NMR, 

13
C NMR, GC-MS, and LC-HRMS.   
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5.3 Results and discussion 

  Depending on the conditions of the reaction system, some substrates can either be 

oxidized to radical cation/radical species, thereby initiating bond-forming events, or act as 

radicophiles themselves.  As depicted in Scheme 5.4, the single electron oxidation of 

silylenol ether 15 generates radical cation 16.  Coupling with an appropriate radicophile 

(such as allyltrimethylsilane) and elimination of the silyl group, results in the α-

substituted carbonyl product (17).  Alternatively, if another radical species is present in 

the reaction mixture, silylenol ether 15 can instead act as a radicophile generating radical 

intermediate 18.  The single electron oxidation of this radical generates a carbocation 

which after desilylation produces a different α-substituted carbonyl compound (19).  With 

a complete understanding of the important mechanistic factors of a system, new reactions 

can be designed that proceed through a specific pathway.   

 

Scheme 5.4: Dual nature of silylenol ethers in reactions involving single electron 

oxidations 

 As highlighted in the research presented in Chapter 2 of this dissertation, 

preferential oxidation is one way to influence reaction pathways.  Because metal-

stabilized enolates are structurally related to silylenol ethers, if two enolates of different 

stabilities are present, one enolate may be preferentially oxidized to a radical as shown in 
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Scheme 5.5.  Faster oxidation of enolate 20 leads to radical 22.  Preferential reaction of 22 

with enolate 21 (as opposed to homodimerization) provides the intermediate 23.   A 

second single electron oxidation leads to heterodimer 24.  Two enolates that efficiently 

heterocoupled having very different rates of oxidation would provide strong evidence that 

preferential oxidation may be involved in the selective formation of heterocoupled 

products.  To test this possibility, the oxidations of several enolates derived from the 

reaction of ketones, esters, and amides with lithium hexamethyldisilazide (LiHMDS) were 

examined with cerium(IV) tetra-n-butylammonium nitrate (CTAN) using stopped flow 

spectrophotometry.  Surprisingly, all reactions were too fast to monitor and occurred in 

the mixing time of the instrument even at reduced temperatures.  Although these 

experiments did not provide the expected results, the data suggested that differential rates 

of oxidation may not provide the basis for the selectivity observed in these oxidative 

enolate heterocouplings. 

 

Scheme 5.5: Selective formation of heterocoupled products through preferential oxidation 

 Careful inspection of the literature describing successful enolate coupling through 

oxidation reveals a common factor: the use of lithium bases.  Lithium coordination to 
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anions, alkoxides, and carbanions often leads to highly ordered aggregates in solution.  

The work of Reich
171, 172

 and Collum
173-178

 has demonstrated that the unique coordination 

chemistry of lithium is responsible for the reactivity observed when lithium bases are 

employed as reagents in many bond-forming reactions.  Interestingly, Collum et al. have 

shown that equimolar mixtures of two different enolates in tetramethylethylenediamine 

(TMEDA)/toluene preferentially formed heteroaggregated dimers depending on the steric 

congestion of the carbonyl precursors.
179

  Given these previous findings, spectroscopic 

and synthetic studies were performed to determine the mechanistic role of lithium 

aggregation in the non-statistical oxidative heterocoupling of enolates. 

 Many successful oxidative couplings of enolates are performed in THF.
11-13, 20-24, 

165
  Collum‘s work on the impact of solvent on lithium aggregation shows that enolates 

are tetrameric in THF.
170

  Given the complexity of the system, we chose to study the 

lithium enolate of pinacolone with an equimolar amount of lithium enolates derived from 

a series of cyclic ketones.  Ketones with similar pKa values were chosen so that rates of 

enolization and stabilities were comparable.  As a consequence, the relative rates of 

oxidation should be similar as well.
180

  Pinacolone was selected as one of the ketone 

partners because it is sterically bulky and has been shown previously to preferentially 

form lithium heteroaggregate dimers in TMEDA/toluene.
179

  To
 
determine the impact of 

structure on heteroaggregation of equimolar mixtures of two different lithium enolates, 

7
Li NMR experiments were performed on a series of ketone-ketone mixtures (Table 5.1).  

In these experiments, the lithium enolate of pinacolone (26) was mixed with an equal 

amount of another lithium enolate derived from cyclic aryl ketones (25, 27-30). 
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Table 5.1: Lithium aggregate distributions
a
 of equimolar mixtures of enolates

b
 

Entry Ketone A Ketone B 
 

1 
  

15.7 : 1 

2 
  

14.7 : 1 

3 
  

14.3 : 1 

4 

  

8.5 :1 

5 

  

4.4 : 1 

a
 Distributions obtained by integrating 

7
Li NMR spectra at -30 

o
C  

b
 [A] = [B] = 0.15 M and [LiHMDS] = 0.304 M in 2.0 M THF:Toluene 

 The results of the 
7
Li NMR experiments revealed several important features of the 

aggregation of lithium enolates in THF.  For all the equimolar enolate mixtures of ketone-

ketone partners examined, the lithium aggregates were ensembles of homoaggregated and 

heteroaggregated tetramers (A4 : A3B1 : A2B2 : A1B3 : B4) consistent with those reported 

by Collum et al.
170

  As illustrated in Figure 5.2 (Spectrum 1), when lithium enolates of 26 

and 28 were generated separately and mixed at -78 
o
C, the homotetramer of 28 (A4) as 

well as smaller amounts of other aggregates including the homotetramer of 26 (B4) were 

the predominant species indicating minimal interaggregate exchange at reduced 

temperatures.  However, upon warming and recooling the solution, the aggregate 

distribution shifted dramatically to favor the heteroaggregated A2B2 tetramer (Figure 5.2, 
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Spectrum 2).  This finding indicates that an energy barrier exists for rearrangement to the 

more thermodynamically stable enolate heteroaggregates.   

 

Figure 5.2: 
7
Li NMR at -30 

o
C of 1:1 mixture of 26 and 28 with LiHMDS. Enolized 

separately and combined at -78 
o
C (Spectrum 1).  Warming and recooling to -30 

o
C 

(Spectrum 2). 

 To assess the impact of substrate structure on the heteroaggregate distribution of 

equimolar mixtures of lithium enolates, the ratio between the most abundant 

heteroaggregate (A2B2) was compared to the individual homotetramers (A4 and B4) for 

every ketone-ketone mixture.  As shown in Table 5.1, a unique ratio was obtained for 

each mixture of lithium enolates.  Interestingly, even the ratio
 
for the lithium enolates 
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derived from 26 and 30, which was the lowest of the mixtures examined, was still above 

the statistically predicted distribution for an ensemble of tetramers.  Based on Pascal‘s 

triangle, the statistical distribution of an equimolar mixture of two enolates in an ensemble 

of tetramers should be 1 : 4 : 6 : 4 : 1.  For this distribution, the ratio of heteroaggregate 

A2B2 to the homoaggregates A4 and B4 would be 3 : 1.  While placing substituents on the 

aromatic ring of ketone A (substrates 25 and 27) did not significantly impact the lithium 

aggregation, increasing the size of the adjacent ring (substrates 29 and 30) greatly reduced 

the amount of heteroaggregated tetramers.  These observations are consistent with 

Collum‘s work on lithium heterodimers, which showed that statistically predicted 

aggregate distributions were obtained when both enolates were sterically bulky.
179

 

 With the 
7
Li NMR data in hand, the question remained whether these non-

statistical distributions of lithium aggregates are involved in the selective oxidative 

heterocoupling of lithium enolates.  To investigate the role of heteroaggregation, optimal 

reaction conditions were determined for the coupling of substrates 26 and 28.  By 

screening several different oxidants, reactions using CTAN and I2 were found to provide 

the best yields and reproducibility.  Iodine was employed as the oxidant in subsequent 

reactions (Table 5.2) because it is an attractive oxidant in terms of atom economy in that 

one equivalent of I2 carries out two single electron oxidations.
167

  Furthermore, oxidations 

using I2 benefited from improved synthetic work up procedures because the tetra-n-

butylammonium counterions of CTAN are lipophilic and act as phase-transfer reagents, 

complicating reaction workup.  

 The oxidative coupling of equimolar mixtures of two different enolates 

preferentially generated the heterocoupled products (Table 5.2).  More importantly, in all 
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cases the product ratio of heterocoupled product to homodimer of 26 was better than 

statistically predicted (2 : 1).  Interestingly, both product yields and selectivity were 

negatively impacted when LiHMDS was replaced by Na- or KHMDS.  In addition, 

omission of the warming and recooling steps (vide supra) prior to oxidation by I2 

dampened product selectivity dramatically.  These observations provide strong evidence 

that not only is the lithium counterion integral to reaction efficiency, but the distribution 

of lithium homo- and heteroaggregates is as well.  It is important to note that the 

homodimers of ketone A were never observed, and the starting ketones were recovered 

Table 5.2: Product distributions from the oxidative coupling of lithium enolates
a
 

Entry Ketone A Ketone B 
Heterocoupled 

Product 
Product 

Distribution
b
 

Yield 

(%)
c, d

 

1 
   

13.8 : 1 62 

2 
   

12.8 : 1 58 

3 
   

12.4 : 1 62 

4 

   

7.0 : 1 46 

5 
   

3.0 : 1 47 

a
 [A] = [B] = 0.12 M in THF, [LiHMDS] = 0.26 M in THF, [I2] = 0.12 M in THF 

b
 Ratios (heterocoupled product:homodimer of 26) were determined by 

1
H NMR.  Trace, 

if any, amounts of homodimer of ketone A were observed by GC and 
1
H NMR. 

c
 Determined by 

1
H NMR with ± 3% error.  

d
 15-25% of ketone A was recovered in these reactions. 



105 
 

in all cases.  While experimental observations indicate that enolates derived from these 

ketones are oxidized, hydrogen atom abstraction from THF coordinated to the lithium 

centers of the aggregates becomes a competitive pathway.
167, 171

 

 With the synthetic studies completed, the degree of lithium enolate 

heteroaggregation was compared to the product ratios obtained after oxidation.  As shown 

in Figure 5.3, there is a direct, linear correlation between the amount of lithium enolate 

heteroaggregation and the formation of heterocoupled product.  Furthermore, the high 

degree of correlation between the heteroaggregate content and the degree of heterodimer 

product suggests that aggregation is the major driving force for the selective 

heterocoupling of two different lithium enolates.  In the predominant A2B2  
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Figure 5.3: Impact of heteroaggregation on the oxidative heterocoupling of lithium 

enolates 
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heteroaggregate, two different enolates are tethered to one another in solution.  Having 

these enolates in close proximity transforms a bimolecular oxidative carbon-carbon bond-

forming event into a unimolecular process and provides a mechanism for non-statistical 

heterocoupling.  As a consequence, equimolar mixtures of lithium enolates that exist 

predominantly as heteroaggregated enolates (A2B2) generate the most heterocoupled 

product when oxidized. 

 Previous coupling reactions performed by both Saegusa
21

 and Baran
23, 24

 have 

shown that synthetically useful yields of heterocoupled products can be obtained by 

employing an excess of one enolate relative to another.  To further demonstrate the 

importance of lithium aggregation in the oxidative coupling of lithium enolates, the 
7
Li 

NMR spectra for a 1 : 1 and a 2 : 1 mixture of enolates from substrates 29 and 26 were 

obtained (Figure 5.4).  Spectrum 1 containing equimolar amounts of enolates derived 

from 26 and 29 exhibits a symmetric distribution of tetrameric aggregates.  When 

oxidized, the heterocoupled product 34 to homodimer of 26 ratio was 7 : 1 (Table 5.2).  

Spectrum 2 shows the 
7
Li NMR spectrum of a 2 : 1 ratio of enolates derived from 29 and 

26.  Interestingly, the lithium enolate aggregate distribution dramatically shifts for the 2 : 

1 mixture to favor A2B2 over the homotetramer of 26 (B4).  When the 2 : 1 mixture was 

oxidized with I2, the selective formation of 34 improved to 26 : 1, well above the ratio 

expected from employing a one equivalent excess of 29 relative to 26.  Additionally, the 

yield of heterocoupled product 34 improved to 60%.  The enolate derived from 29 does 

not tend to homocouple upon oxidation (vide supra), and the homotetramer of 26 is 

drastically reduced in the 2 : 1 mixture.  As a consequence, the likelihood of 26 being in 

close proximity to 29 is significantly increased and the presence of excess A4 is not 
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Figure 5.4: 
7
Li NMR at -30 

o
C for 1 : 1 enolate mixture of 26 and 29 (Spectrum 1) and 2 : 

1 mixture (Spectrum 2) 

detrimental since 29 does not homocouple.  This combination of factors leads to the 

increase in selectivity and yield, reaffirming the integral role that lithium aggregation 

plays in the oxidative coupling of enolates. 

5.4 Conclusions 

 Taken together, the mechanistic and synthetic experiments described in this 

chapter have shown the following: 1) Equimolar mixtures of two different lithium 

enolates are ensembles of tetramers in THF, a finding consistent with the work of 

Collum.
170

  2) The distribution of homo- and heteroaggregates in THF is dependent on 

substrate structure.  3) The major component of the mixture is heteroaggregate A2B2 when 
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one enolate is sterically encumbered.  4) Single electron oxidation of solutions containing 

predominantly heteroaggregate A2B2 furnish the heterocoupled product selectively.  5) A 

direct correlation exists between the amount of heteroaggregate A2B2 and the ratio of 

heterocoupled to homocoupled products. 

 The rational design of efficient syntheses is best facilitated by identifying and 

understanding the important mechanistic factors involved in the reaction system.  Simple 

empirical models that discount aggregation are often insufficient to explain their role in 

bond-forming reactions.  While a great deal of research has been dedicated to 

understanding and elucidating the solution structures of lithium complexes, the impact of 

lithium aggregation on organic reactions is often overlooked.  Overall, the results 

presented herein serve as yet another example of lithium aggregation driving selectivity in 

organic reactions.  The work presented in this chapter was recently submitted to the 

Journal of the American Chemical Society. 

5.5 Impact of lithium enolate aggregation on other reaction systems 

 The data presented in this chapter suggest that the success (or failure) of 

previously reported reactions proceeding through the single electron oxidation of enolates 

may be explained by considering the mechanistic role of lithium aggregation.   Previous 

work by Snider et al. on the oxidative intramolecular cyclization of metal-stabilized 

enolates (36) with pendent olefins found that discrete products were obtained depending 

on the metal employed (Scheme 5.6).
181

  The expected cyclized product (38) was obtained 

when 36 was a silylenol ether (M = SiMe3) whereas the single electron oxidation of the 

lithium enolate resulted in homodimer 37.  At the time this work was published, it was 

suggested that ―intramolecular coupling of the enol radical with the alkene cannot 
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compete with intermolecular coupling with the very reactive enolate.‖
181

  However, given 

the research detailed in this chapter, it is likely that lithium enolates tethered through an 

aggregate drive formation of the dimer (37), even over the relatively fast intramolecular 

cyclization with the olefin.  Successful cyclization of the silylenol ether can be attributed 

to the increased steric bulk around the radical intermediate, inhibiting dimerization and 

allowing intramolecular cyclization with the pendent olefin to occur. 

 

Scheme 5.6: Competitive dimerization in the oxidative intramolecular cyclization of 

metal-stabilized enolates with pendant olefins 

 The reaction shown in Scheme 5.7 involves oxidation of the lithium dienolate 

derived from diamide 39.  When oxidized with excess copper(II) bromide (CuBr2), both 

the expected cyclopentane product (40) and the macrocycle (41) were generated in equal 

amounts.
165

  As in the previous example by Snider, the intramolecular cyclization to 

produce 40 should proceed more readily than dimerization, which is a bimolecular 

process.  However, since the dienolate of 39 is in close proximity to other dienolates 

through lithium aggregation, the rate of formation of macrocycle 41 through two radical-

radical coupling steps is comparable to intramolecular cyclization.  
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Scheme 5.7: Macrocyclization versus intramolecular cyclization of substrate 39 

 As a final example, Scheme 5.8 depicts an intramolecular cyclization developed 

by Overman et al. involving the Fe(III)-mediated oxidative coupling of lithium enolates 

derived from a ketone and a diester (42).
15

  Interestingly, the intermolecular dimerization 

at the ―*‖ position of the lithium dienolate was found to be a competing process.  While 

optimizing the production of 43, they noticed that the intramolecular cyclization to 43 

improved as the dienolate concentration was increased.
15

 This finding is seemingly at 

odds with a classic bimolecular process in which dimerization should increase as the 

concentration of enolates is increased.  Although Overman‘s system is expected to be 

more complex than the lithium enolate mixtures detailed in this chapter, a plausible 

mechanism involving lithium aggregation can be envisioned for the observed inverse 

relationship between dimerization and concentration.  If the lithium dienolate of 42 is in a 

homoaggregated state, intermolecular dimerization becomes a competing pathway to the 

intramolecular cyclization at low enolate concentrations.  However, as the dienolate 

concentration increases, the amine concentration (from LDA) increases as well.  

Previously, Collum et al. have shown in some systems that diisopropylamine (or LDA) is 

able to form mixed aggregates with simple lithium enolates.
170, 173, 182

  If more mixed 

amine-enolate aggregates are formed at higher concentrations, the dienolate should be 
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more "monomeric" in nature, which would facilitate the intramolecular cyclization to 43 

becoming the dominant reaction pathway. 

 

Scheme 5.8: Concentration dependent intramolecular cyclization of enolates derived from 

a ketone and a diester 

5.6 Spectral data 

5.6.1 
7
Li NMR spectra of lithium enolate aggregates 

5-Methoxy1-indanone (A) with pinacolone (B) 

 Procedure 5.2.3.1 was followed.  
7
Li NMR (2.0M THF/toluene, 194 MHz, shifts 

relative to 0.3M LiCl in CD3OD) – δ 1.18 (A3B1), 1.12 (A4), 0.79 (A2B2), 0.69 (A3B1), 

0.27 (A1B3), 0.24 (A2B2), -0.03 (A1B3), -0.07 (B4). 

5-Bromo-1-indanone (A) and pinacolone (B) 

 Procedure 5.2.3.1 was followed.  
7
Li NMR (2.0M THF/toluene, 194 MHz, shifts 

relative to 0.3M LiCl in CD3OD) – δ 0.99 (A3B1), 0.88 (A4), 0.66 (A2B2), 0.51 (A3B1), 

0.20 (A1B3), 0.12 (A2B2), -0.06 (B4), -0.09 (A1B3). 

1-Indanone (A) and pinacolone (B) 

 Procedure 5.2.3.1 was followed.  
7
Li NMR (2.0M THF/toluene, 194 MHz, shifts 

relative to 0.3M LiCl in CD3OD) – δ 1.21 (A3B1), 1.13 (A4), 0.80 (A2B2), 0.69 (A3B1), 

0.28 (A1B3), 0.24 (A2B2), -0.04 (A1B3), -0.07 (B4). 

4-Chromanone (A) and pinacolone (B)  
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 Procedure 5.2.3.1 was followed.  
7
Li NMR (2.0M THF/toluene, 194 MHz, shifts 

relative to 0.3M LiCl in CD3OD) – δ 0.78 (A3B1), 0.73 (A4), 0.60 (A2B2), 0.44 (A3B1), 

0.20 (A1B3), 0.06 (A2B2), -0.07 (B4), -0.17 (A1B3). 

1-Tetralone (A) and pinacolone (B) 

 Procedure 5.2.3.1 was followed.  
7
Li NMR (2.0M THF/toluene, 194 MHz, shifts 

relative to 0.3M LiCl in CD3OD) – δ 0.97 (A3B1), 0.95 (A4), 0.70 (A2B2), 0.61 (A3B1), 

0.27 (A1B3), 0.19 (A2B2), -0.06 (A1B3), -0.10 (B4). 

5.6.2 Synthesis and spectral data for heterocoupled products 

2-(3,3-Dimethyl-2-oxobutyl)-5-methoxy-indan-1-one (31) 

 
Procedure 5.2.3.2 was followed. Clear, colorless oil.  62% yield.  

1
H NMR 

(CDCl3, 500 MHz) – δ 7.68-7.63 (m, 1H), 6.89-6.84 (m, 1H), 6.84-6.81 (m, 1H), 3.84 (s, 

3H), 3.38 (dd, 1H, J = 7.8 Hz, 17.7 Hz), 3.16 (dd, 1H, J = 3.4 Hz, 18.3 Hz), 3.01-2.94 (m, 

1H), 2.75 (dd, 1H, 9.5 Hz, 18.3 Hz), 2.56 (dd, 1H, J = 4.2 Hz, 17.2 Hz), 1.13 (s, 9H).  
13

C 

NMR (CDCl3, 125 MHz) – δ 214.2, 206.3, 165.3, 156.5, 129.8, 125.4, 115.3, 109.5, 55.6, 

43.9, 43.0, 38.4, 33.6, 26.4.
 
MS [m/z (rel int)] 260 (M

+
, 9), 203 (22), 175 (100), 161 (10), 

147 (36), 131 (9), 115 (13), 103 (11), 91 (12), 77 (9), 57 (31) . LC-HRMS calcd. for 

C16H21O3 [M+H] 261.1485, found 261.1480. 

5-Bromo-2-(3,3-dimethyl-2-oxobutyl)-indan-1-one (32) 

 
Procedure 5.2.3.2 was followed.  Light yellow oil.  58% yield.  

1
H NMR (CDCl3, 

500 MHz) – δ 7.63-7.57 (m, 2H), 7.51-7.46 (m, 1H), 3.39 (dd, 1H, J = 8.0 Hz, 17.3 Hz), 

3.18 (dd, 1H, J = 2.7 Hz, 17.7 Hz), 2.97-2.92 (m, 1H), 2.88 (dd, 1H, J = 8.3 Hz, 18.0 Hz), 

2.64 (dd, 1H, J =  4.4 Hz, 17.5 Hz) 1.14 (s, 9H).  
13

C NMR (CDCl3, 125 MHz) – δ 213.9, 

206.8, 155.0, 135.5, 131.0, 130.0, 129.8, 125.0, 43.9, 43.0, 38.0, 33.0, 26.5.  MS [m/z (rel 
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int)] 308/310 (M
+
, 9), 251/253 (29), 223/225 (76), 145 (22), 115 (88), 89 (21), 57 (100). 

LC-HRMS calcd. for C15H18BrO2 [M+H] 309.0485, found 309.0462. 

2-(3,3-Dimethyl-2-oxobutyl)-indan-1-one (33) 

 
Procedure 5.2.3.2 was followed.  Clear, colorless oil.  62% yield.  

1
H NMR 

(CDCl3, 500 MHz) – δ 7.80-7.75 (m, 1H), 7.62-7.56 (m, 1H), 7.47-7.43 (m, 1H), 7.41-

7.35 (m, 1H), 3.46 (dd, 1H, J = 8.0 Hz, 17.2 Hz), 3.22 (dd, 1H, J = 3.4 Hz, 18.5 Hz), 3.05-

2.98 (m, 1H), 2.86 (dd, 1H, J = 8.8 Hz, 18.5 Hz), 2.67 (dd, 1H, J = 4.6 Hz, 17.6 Hz), 1.18 

(s, 9H).  
13

C NMR (CDCl3, 125 MHz) – δ 214.1, 208.2, 153.5, 136.6, 134.7, 127.4, 126.5, 

123.8, 44.0, 43.0, 38.2, 33.5, 26.5.  MS [m/z (rel int)] 230 (M
+
, 8), 173 (16), 145 (100), 

131 (11), 115 (67), 91 (21), 57 (27). LC-HRMS calcd. for C15H19O2 [M+H] 231.1380, 

found 231.1383. 

3-(3,3-Dimethyl-2-oxobutyl)-chroman-4-one (34) 

 
Procedure 5.2.3.2 was followed.  Off-white solid.  46% yield.  

1
H NMR (CDCl3, 

500 MHz) – δ 7.88-7.83 (m, 1H), 7.49-7.42 (m, 1H), 7.03-6.97 (m, 1H), 6.97-6.92 (m, 

1H), 4.48 (dd, 1H, J = 5.2 Hz, 11.1 Hz), 4.20 (t, 1H, J = 11.3 Hz), 3.42-3.35 (m, 1H), 3.10 

(dd, 1H, J = 4.4 Hz, 18.4 Hz), 2.57 (dd, 1H, J = 8.0 Hz, 18.1 Hz), 1.18 (s, 9H).  
13

C NMR 

(CDCl3, 125 MHz) – δ 212.9, 193.7, 161.8, 135.9, 127.3, 121.4, 120.7, 117.8, 70.3, 44.3, 

41.7, 32.6, 26.5.  MS [m/z (rel int)] 246 (M
+
, 3), 189 (100), 171 (9), 161 (24), 147 (40), 

133 (6), 121 (16), 92 (14), 57 (36). LC-HRMS calcd. for C15H19O3 [M+H] 247.1329, 

found 247.1330. 

2-(3,3-Dimethyl-2-oxobutyl)-tetral-1-one (35) 

 
Procedure 5.2.3.2 was followed.  Light yellow oil.  47% yield.  

1
H NMR (CDCl3, 

500 MHz) – δ 8.01-7.96 (m, 1H), 7.47-7.40 (m, 1H), 7.30-7.25 (m, 1H), 7.23-7.19 (m, 
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1H), 3.26 (dd, 1H, J = 5.1 Hz, 18.0 Hz), 3.17-3.06 (m, 2H), 2.96-2.89 (m, 1H), 2.56 (dd, 

1H, J = 6.8 Hz, 18.1 Hz), 2.15-2.08 (m, 1H), 1.89 (dddd, 1H, J = 4.4 Hz, 12.9 Hz, 13.7 

Hz, 13.1 Hz) 1.19 (s, 9H).  
13

C NMR (CDCl3, 125 MHz) – δ 214.2, 199.3, 144.1, 133.2, 

132.4, 128.7, 127.4, 126.6, 44.2, 43.8,  37.4, 29.4, 26.5.  MS [m/z (rel int)] 244 (M
+
, 1) 

187 (100), 169 (16), 159 (5), 145 (11), 131 (27), 115 (11), 91 (16), 57 (21). LC-HRMS 

calcd. for C16H21O2 [M+H] 245.1536, found 245.1519. 
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