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ABSTRACT 
  

Caveolae are 50-100 nm invaginations in the plasma membrane of eukaryotes that 

are involved in a number of important cellular processes.  The integral membrane protein, 

caveolin-1, is a key architectural component within caveolae.  Despite the preeminent 

role that caveolin holds in maintaining functional caveolae, there is no three-dimensional 

structure available.  Part of understanding the three-dimensional structure of caveolin 

requires defining its depth within the biological membrane.  Only a hazy picture of 

caveolins topology exists, it is known that the global topology of the protein is such that 

the N- and C- termini reside on the cytoplasmic face of the membrane.  In this body of 

work, the topological disposition of the integral membrane protein caveolin-1 

reconstituted into model membrane systems is elucidated using biochemical and 

biophysical techniques.  Chapter 1 is provided to give adequate background needed to 

familiarize the reader with the body of knowledge pertaining to the caveolin protein, 

vehicles for studying membrane proteins, as well as biophysical techniques that are 

employed in the remaining chapters.  In Chapter 2, the characterization of a major 

methodological advancement using perfluorooctanoic acid-lipid mixtures to reconstitute 

protein into liposomes by detergent dialysis is presented.  This chapter tackled the 

challenge of natively refolding caveolin-1 from a highly-purified denatured state and may 

be useful for reconstitution studies in general.  In Chapter 3, a combined biophysical 

approach using fluorescence spectroscopy, nuclear magnetic resonance, and molecular 

dynamics simulations is taken to generate a model of caveolin-1 (residues 82-136) within 

a lipid bilayer.  These studies strongly suggested that caveolin contains a membrane 

embedded turn, an unusual motif in membrane proteins.  Chapter 4 deepens and supports 



 

2 
 

the model presented in Chapter 3 by employing cysteine scanning mutagenesis to 

examine the accessibility of the caveolin-1 scaffolding domain (residues 82-101), a 

region which is critical to the proteins function.  These studies pinpoint the caveolin 

scaffolding domain as being the region of the protein that first enters the bilayer and 

provide a clear rationale for how this region can interact with a diverse group of soluble 

and membrane bound ligands.  Chapter 5 examines the topological significance of two 

major factors thought to impact the caveolin-1 conformation and aqueous exposure, a 

highly conserved proline residue (P110) located within the putative intramembrane turn 

region and the inclusion of cholesterol.  Near and far ultraviolet circular dichroism 

measurements paired with single tryptophan mutant λmax and fluorescence quenching 

experiments provide insight into structural and accessibility changes that the P110A 

mutation and translocation of the protein into a cholesterol rich environment bring about.  

Chapter 6 details the synthesis of a novel lipid that contains an indole headgroup (indole-

PE) as well as its potential as a molecular ruler in fluorescence studies.  Importantly this 

probe draws light on the behavior of commonly employed tryptophan fluorescence 

quenching reagents and aids in the interpretation of tryptophan fluorescence quenching 

experiments performed on caveolin-1 single tryptophan mutants reconstituted into 

phospholipid bicelles. 
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Chapter 1.  Caveolae, Caveolin, and Lipid Environments for the 
Biophysical Characterization of Membrane Proteins 
 
Caveolae 

 The biological membrane has a number of roles within the cell; it provides 

protection of the cells interior from the harsh outer environment, gives the cell its 

identity, allows nutrient influx, waste secretion, compartmentalizes cellular organelles, 

and localizes specific homeostatic processes.  Caveolae (plural caveola) are 50-100 nm 

invaginations that are dispersed throught the plasma membrane of eukaryotic organisms, 

bulging inwards towards the cytoplasm.  These structures were first observed using 

electron microscopy in the 1950’s (Figure 1-1 A-C) 1,2.  

100 nm

50-100 nm

A

B C

 

Figure 1-1.  A) Transmission electron micrograph of caveola scattered across the surface 
of the plasma membrane (arrows). B)  Close up image of a single caveolae which are 50-
100 nm in diameter. C)  Cartoon showing the molecular constituents enriched in 
caveolae: Cholesterol, gangliosides, glycerophospholipids, sphingomyelin, and the 
membrane protein caveolin 24. 
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Nucleus

Membrane 
Stretching

Endoplasmic 
Reticulum

Golgi 
Apparatus

Signal Transduction

Plasma 
Membrane

The Roles of Caveolae in the Cell

Since their initial discovery, caveolae have been observed in many cell types including 

adipocytes, endothelial cells, fibroblasts, and smooth muscle cells 1,3-5.  Furthermore, 

caveolae appear to be associated with the entire metazoan (vertebrate and invertebrate 

animal branch) branch of opisthokonta 6, highlighting the biological importance of these 

highly curved microdomains.  Such high levels of conservation is owed to the multitude 

of functions ascribed to caveolae, which include mechanoprotection, non-clatherin 

mediated endocytosis, and most notably, signal transduction (Figure 1-2) 7-10. 

 

Figure 1-2.  Diagram of a cell detailing the proposed functions attributed to caveolae. 
 
When a force is exerted upon a cellular membrane causing it to stretch, caveolae 

dissipate; therefore caveolae can act as a lipid reservoir, and this helps avoid mechanical 

rupture of the cell 11.  Once the force is removed, caveolae reform.  The flask-like shape 

of caveolae facilitates the endocytotic budding off from the membrane, and they can 

carry various biomolecules to other regions of the cell 12.  Furthermore, they have also 

been implicated in viral entry into cells through endocytosis 13-15.  Caveolae aid the cell 
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by acting as signaling hubs; specific examples of proteins which are thought to be 

regulated within caveolae include endothelial nitric oxide synthase, Src tyrosine kinases, 

H-ras, and G protein α-subunits 16-21.  A transmission electron micrograph of caveola 

along the cell surface is shown in figure 1-1A.  Figure 1-1B displays a close up image of 

a single caveolae 22-24.  Caveolae also have a unique lipid composition that differs from 

that of the plasma membrane (Figure 1-1C).  They are enriched in cholesterol (twice the 

amount in the bulk membrane) and sphingolipids - although recent studies have cast 

doubt on the latter from being significantly greater than what is found in the bulk plasma 

membrane 25,26.  Importantly, cholesterol is thought to be a stabilizing factor to caveolae 

by providing structural support.  Evidence of cholesterol providing structural support 

comes from studies where cells were treated with cholesterol depleting drugs resulted in 

caveolae that had a dramatically flattened morphology 27,28.  The most important and 

abundant protein in caveolae is the integral membrane protein caveolin.  Gene silencing 

studies have shown that when caveolin is not expressed, there is a complete 

disappearance of caveolae from the cell surface 16.  Additionally, expression of caveolin 

in cell lines and organisms that do not normally express the protein has been shown to 

induce the formation of caveolae 29,30.  These studies have implicated caveolin as an 

architect of caveolae morphology.  Despite the plethora of functions that are ascribed to 

caveolae, the exact molecular details of caveolin structure, oligomeric behavior, and 

topology have remained mysterious from a biophysical perspective. 

 

Caveolin 

 The gene encoding for caveolin is found in eukaryotic organisms ranging from C. 

elegans (roundworm) up to H. sapiens (humans) (Figure 1-3A, Table 1-1) 31,32.  
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Interestingly caveolae formation has not been observed in C. elegans, but has been 

confirmed for D. rerio (zebra fish) 33.  In humans, there are three isoforms of the protein 

that have been identified; caveolin-1, -2, and -3, each having a molecular weight of 

roughly 22 kDa (Figure 1-4, Table 1-2). 

 

Figure 1-3.  Sequence alignment for caveolin-1 across species.  Conserved hydrophobic, 
polar uncharged, negatively charged, and positively charged residues are shown in 
purple, green, red, and blue respectively. 
 

Species Nematode  Sea 
louse 

Ant Zebra 
fish 

Frog Chicken Chimp Human 

Nematode  100 21.6 22.9 25.4 22.3 22.8 26.1 26.1 
Sea louse 21.6 100 18.8 27.5 26.5 27.1 27.1 27.1 

Ant 22.9 18.8 100 27.4 23.8 25.6 25.6 25.6 
Zebra fish 25.4 27.5 27.4 100 68.5 72.9 72.9 72.9 

Frog 22.3 26.5 23.8 68.5 100 78.9 75 75 
Chicken 22.8 27.1 25.6 72.9 78.9 100 86.5 86.5 
Chimp 26.1 27.1 25.6 72.9 75 86.5 100 100 
Human  26.1 27.1 25.6 72.9 75 86.5 100 100 

Table 1-1.  Sequence identity as a percentage for caveolin-1 across species. 
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Figure 1-4.  Sequence alignment of caveolin isoforms from humans.  Conserved 
hydrophobic, polar uncharged, negatively charged, and positively charged residues are 
shown in purple, green, red, and blue respectively.  The “Identity” bar indicates the level 
of amino acid conservation where green and yellow regions indicate identical and similar 
respectively.  Transmembrane regions are indicated below the sequence of each isoform. 
 

 

 

 
Caveolin-1 is the most ubiquitously expressed of the isoforms and is found in many cell 

types.  It is present either as caveolin-1α (178 amino acid) or an N- terminally truncated 

caveolin-1β form (missing the first 33 amino acids) 34.  It is thrice palmitoylated at 

positions 133, 143, and 156, which has been shown to be unimportant for trafficking of 

Caveolin Isoform Caveolin-1 Caveolin-2 Caveolin-3 
Caveolin-1 100 33.1 62.9 
Caveolin-2 33.1 100 34 
Caveolin-3 62.9 34 100 

Table 1-2.  Sequence identity as a percentage across human 
isoforms. 
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the protein to the plasma membrane, downplaying any structural role for this post-

translational modification 35.  Caveolin-2 is often co-expressed with caveolin-1 and 

interestingly, (akin to C. elegans caveolin) cannot form caveolae on its own 36.  Caveolin-

3 has the ability to form caveolae on its own and is specifically found within skeletal 

muscles cells, smooth muscle cells, and cardiac myocytes 37-39. 

Caveolins homo- and hetero-oligomerize into Triton-X-114 resistant 200, 400, 

and 600 kDa complexes in vivo, and this oligomeric activity is postulated to provide 

structural stability to caveolae 40-42.  However, it is not clear how these complexes arise in 

vivo, and recent in vitro studies have suggested that caveolin-1 cannot homo-oligomerize 

in the absence of cellular components 43.  More recent examinations of the molecular 

components of the caveolar coat have revealed that caveolin homo- and hetero-oligomers 

are associated with another family of membrane proteins known as cavins, and that 

cavins are necessary for the formation of caveolae 44.  It has been shown using 

fluorescence correlation spectroscopy studies of fluorescent protein tagged caveolin and 

cavins that the four members of the cavin protein family (cavin1-4) associate with 

caveolin in a 1:4 stoichiometry.  It has been observed that different cell types express 

different complements of the cavin isoforms.  It is thought that the different complements 

of cavin-caveolin complexes may be in part responsible for the functional diversity of 

caveolae across cell types 45.  Studies on caveolin-1 have suggested that the protein binds 

cholesterol on a 1:1 molar ratio, however, the exact site of binding and the structural 

implications on caveolin are poorly characterized 19,46. 

 It cannot go without mention that caveolin misregulation and disfunction has been 

implicated in a number of human disease states.  This fact has largely been responsible in 
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generating vast interest in the caveolin proteins.  This list of diseases that caveolin has 

been implicated in is large, a non-exhaustive list includes: cancer, diabetes, 

cardiovascular disease, atherosclerosis, pulmonary fibrosis, and muscular degenerative 

diseases 47-56.  In terms of how misregulation of the caveolin protein is involved with 

disease, there appears to be tissue specificity.  For example, caveolin-1 up-regulation is 

associated with increased metastasis of prostate cancers 57.  On the other hand, caveolin 

knock-out mice showed increased tumor proliferation, pointing to a role of caveolin as a 

tumor suppressor 58,59.  Clearly, there is a delicate balance of caveolin expression levels 

required for proper cell function.  Very few specific mutations are associated with disease 

states; however, a prominent example is in breast cancer where there is a mutation of 

proline 132 to leucine in caveolin-1.  The molecular mechanism of how this mutation 

disrupts normal caveolin function has been uncovered, where improper oligomeric 

behavior (dimerization) results in the retention of the protein in the Golgi apparatus 

43,60,61.  An analogous mutation in caveolin-3, P104L, has also been shown to be 

associated with cardiomyapathies and results in poor myoblast function 62,63.  Therefore, 

proper structuring of caveolin is critical to many aspects of cellular homeostasis. 

 

Caveolin Structure 

 Caveolin-1 is typically divided up into four structural domains: The N-terminal 

domain, the scaffolding domain, the intramembrane domain, and the C-terminal domain 

(Figure 1-5).  Each of these domains is suggested to contribute to caveolin function in a 

variety of ways.  The domains will be discussed in the context of caveolin-1 as it is the 

subject of this dissertation. 
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Figure 1-5.  Domain map of caveolin-1.  Each domain is color coded and the degree to 
which the secondary structure is known is indicated. 
 

The soluble N-terminal domain (residues 1-81) is the most highly variant region 

of the protein across human isoforms and across species, differing in both its length and 

amino acid composition.  It has been implicated in various aspects of caveolin behavior 

such as enhancing cholesterol binding and being important to caveolin filament assembly 

64,65.  It has been shown to be unstructured by circular dichroism (CD) spectroscopy 65.  

Primary sequence analysis algorithms have also suggested the presence of a single 

amphipathic helix, which may interact with the membrane surface 66. 

The next domain in caveolin has been dubbed the caveolin scaffolding domain 

(CSD, residues 82-101).  This domain has been implicated in a number of caveolins 

proposed functions.  In particular, the CSD is thought to govern caveolins association 

with binding partners as it interacts with a number of cell signaling proteins (Src-like 

kinases, Ha-Ras, endothelial nitric-oxide synthase (eNOS), and G protein α-subunits), 

associates with cholesterol, and has been shown to be important for caveolin-1 

oligomeric behavior in vivo 16-21.  Early models of caveolin structure based on sequence 

analysis predicted this region to have an amphipathic α-helix stretching from residues 80-

92 in caveolin-1 66.  Helical character in this region has been supported by a number of 
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studies employing NMR and CD spectroscopy 67,68.  However, recent solid-state NMR 

studies suggest that the CSD may adopt β-strand character in the presence of cholesterol.  

Due to the exotic conditions of these experiments (very high concentrations of truncated 

caveolin-based peptides), it is not clear if the β-strand character is an artifact of irrelevant 

protein aggregation, or if it is indeed an effect of cholesterol on the protein 69. 

The C-terminus (residues 135-178) has a variety of purported functions that 

include membrane binding, signaling interactions, and mediating oligomeric behavior 40.  

It is also the region of the protein that contains two of the three sites of palmitoylation on 

caveolin-1; these post translational modifications may help anchor this portion of the 

protein to the membrane.  Little is known about the C-terminal domain in terms of the 

secondary structure; however, helix prediction software and NMR studies currently being 

undertaken in the Glover lab indicate that it may be composed of a long amphipathic α-

helix that rests on the surface of the membrane. 

The most highly conserved domain across isoforms and across species is the 

intramembrane domain (IMD residue 102-134 in caveolin-1).  This region was predicted 

to be composed of two transmembrane α-helices separated by a 3-4 residue break using 

primary sequence analysis algorithms 66.  Recent NMR spectroscopy experiments 

performed on the 96-136 region of caveolin-1 have supported this postulation and 

identified two α-helices, one stretching from residues 96-107 and the other stretching 

from residues 111-128.  These residues were separated by a three residue unstructured 

region consisting of a glycine (108), isoleucine (109), and proline (110).  Importantly, 

these studies have pinpointed the IMD as being the structural core of the protein 70.  The 

three residues that break the helices have unique character that seems to be critical for 
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maintaining a well structured protein and they may represent a turn 70.  Glycine and 

proline are commonly found in turns, due to their conformational freedom and rigidity 

respectively, therefore this hypothesis is very reasonable.  The IMD has been shown to be 

membrane embedded using a carbonate extraction method, which distinguishes surface 

associated membrane proteins from integral membrane proteins 71,72.  Analysis of the 

primary sequence using transmembrane prediction software indicates that caveolin-1 has 

an unusually long 33 amino acid stretch that is predicted to be membrane embedded 

because it is predominantly populated with aromatic and aliphatic amino acids (Figure 1-

6). 
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Figure 1-6.  Hydropathy plot generated using the primary sequence of caveolin-1.  The 
predicted 33 amino acid transmembrane sequence is indicated (red) and spans residues 
102-134. 
 
This differs from the length of most single spanning transmembrane helices which are 

20-25 amino acids in length. 
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Therefore, caveolin is too long to span the bilayer once but too short to span the 

bilayer multiple times.  Essentially, this sequence analysis inferred two models, one in 

which the long 33 amino acid stretch was highly tilted and traversed the bilayer as a 

single spanning α-helix, or one where the N- and C- termini rested on the same side of 

the membrane and would require a dramatic turn within the transmembrane sequence.  

The first study that examined the directionality of the termini used cell surface 

biotinylation probes and pointed to a single spanning α-helix with the N-terminus being 

cytoplasmic and the C-terminus resting outside of the cell 73.  Around the same time, a 

competing group performed studies that probed the location of the N- and C- termini 

using in vivo immuno-fluorescence.  The immuno-fluorescence study failed to see 

labeling of the caveolin protein using antibodies directed to either terminus unless the 

cells were permeabilized, suggesting that both termini are luminal 71.  This issue was 

finally resolved when the biotinylation experiment was revisited and it was determined 

that an impurity in the earlier study was giving a false positive 42.  In support of the 

immuno-fluorescence studies, and finally leading the field to a topological consensus, a 

study where a caveolin-1 construct with glycosylation epitopes at each of its termini was 

translated in vitro in the presence of dog pancreas microsomes was not glycosylated 

(Figure 1-7) 74. 
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Interior Exterior

Extracellular glycosylation machinery

Dog Pancreas Microsome  

Figure 1-7.  Early glycosylation epitope (asparagine/glycine/threonine) mapping study of 
caveolin-1 indicated that the N- and C- termini were inaccessible using an in vitro 
transcription/translation system.   
 
This meant that neither of the epitopes were accessible to extracellular glycosylation 

machinery, adding support for the termini having an intracellular location.  Combining 

sequence analysis and the aforementioned studies, along with the fact that the protein 

contains no soluble interruptions within its predicted transmembrane sequence, lead to 

the postulation that caveolin may contain an unusual intramembrane turn.  As mentioned 

above, the protein contains a triplet of amino acids at positions 108, 109, and 110 which 

have been shown to be critical to structuring the protein and are implicated as the turn 

region.  Other lines of evidence have suggested that the proline located at position 110 is 

critical to the orientation of caveolin-1 in the bilayer as well 75-77.  When considering that 

proline 110 is conserved across species and isoforms, it is clear that the position must 

play a biologically critical role.  This topic will be explored in later chapters of this work.  

Although the topology of caveolin in the cell has been characterized with respect to the 

location of its termini, many aspects of the topology remain uncharacterized.  For 
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instance, does caveolin automatically adopt the U-shaped topology in membranes, or is 

this conformation controlled by cellular insertion machinery?  Additionally, it is unclear 

where the transmembrane region enters and exits the membrane.  Also, the question as to 

the exposure of the turn region remains unanswered (membrane buried or aqueous 

exposed).  Besides these questions, the importance of specific amino acids within 

caveolins sequence in maintaining the unique topology remains to be an open question 

and one that should be addressed.  Answering these topological questions may help 

explain how this protein influences the curvature of lipid bilayers.  The core objective of 

this work is to draw light on these very pertinent topological ambiguities that surround 

caveolin (Figure 1-8). 

N

C

Intramembrane Turn?

Depth?

 

Figure 1-8.  Cartoon representation of the putative caveolin-1 topology detailing the 
controversy surrounding the protein’s disposition in the lipid bilayer.  Each domain is 
color coded: N-terminal (orange), scaffolding (green), intramembrane (red), and C-
terminal (blue).  Palmitoylation sites are shown in purple. 
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With the N- and C- termini residing on the same side, and no evidence of a 

soluble interruption, this rare motif may have functional consequences in terms of how 

the protein creates membrane curvature, and this idea is strongly supported by the high 

degree of sequence identity of the IMD between species.  Two possible mechanisms of 

how caveolins intramembrane region being inserted with the N- and C- termini on the 

same side could generate membrane curvature include: asymmetric insertion of the 

protein within the bilayer or asymmetric sequestration of cholesterol to one side of the 

membrane 78-80 (Figure 1-9).  Both are plausible models of how caveolin could cause 

negative membrane curvature, and integral membrane proteins containing hairpin turns 

(such as the reticulons) are found to help generate highly curved organelles such as the 

endoplasmic reticulum 81,82.   In the first model, caveolin inserts into the membrane and 

places more of its surface area within the inner leaflet of the membrane than the outer 

leaflet, acting like a wedge (Figure 1-9A).  This would displace more lipids in the inner 

leaflet than the outer and cause an asymmetric stretching effect.  Furthermore, 

oligomerization of caveolin into arrays would exacerbate this action, and could help 

explain the dramatic level of curvature observed in caveolae.  The second possibility 

plays upon the idea that caveolin-1 recruits and holds cholesterol.  Cholesterol has a 

small polar headgroup compared to its hydrophobic region, and this would displace more 

phospholipid tails in the inner leaflet if it were asymmetrically sequestered to it.  Similar 

to the effect of placing a majority of the proteins surface area within one leaflet, this 

would cause an asymmetric bending of the bilayer (Figure 1-9B).  Again, more caveolin 

molecules interacting through oligomerization behavior would result in more cholesterol 

within a confined space and this could enhance the membrane bending.  It is reasonable 



 

17 
 

to consider that the two mechanisms could work together in generating and stabilizing the 

high degree of curvature within a caveola. 

Protein Mediated Membrane 
Bending

Protein and Cholesterol Mediated 
Membrane Bending

A

B

 

Figure 1-9.  Two plausible mechanisms for membrane curvature generation by caveolin-
1. A)  Caveolin asymmetrically perturbs the inner leaflet more than the outer, acting as a 
wedge. B)  Caveolin sequesters cholesterol predominantly to the inner leaflet and disrupts 
the balance of lipids that have large hydrophobic cross sections.  Both mechanisms could 
be enhanced by oligomeric behavior.  Caveolin is represented as two cylinders in a 
wedge-like conformation.  Cholesterol is indicated with its hydroxyl headgroup (grey) 
and hydrophobic portion (blue). 
 
Membrane Proteins and Model Membranes Used in Biophysical Studies 

The biological membrane is comprised of bilayer forming phospholipids, sterols, 

and importantly, about 50% (w/w) of the cell membrane is made up of membrane 

proteins that are critical for survival.  Membrane proteins account for roughly 33% of the 

genome and about 50% or more of drug targets 83-85.  There are a number of different 

types of membrane proteins, and these include: membrane anchored proteins, peripheral 

membrane proteins, and integral membrane proteins.  Membrane anchored proteins are 

those that have been acylated or prenylated at one or more amino acids in their sequence, 

and this post-translational modification is responsible for holding the protein near the 
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membranes surface.  The nature of these modifications is thought to target soluble and 

membrane proteins to specific domains (i.e. caveolae) 86.  Peripheral membrane proteins 

are often associated with the surface of the membrane through electrostatic interactions of 

their charged groups with the polar head groups of the lipid bilayer.  Integral membrane 

proteins, such as caveolin, contain a high percentage of consecutive aliphatic or aromatic 

amino acids which make them extremely insoluble in the aqueous milieu and much more 

at home within the lipid bilayer.  By burying their hydrophobic portions in the bilayer, 

they can avoid the entropic penalty of ordered water surrounding their large non-polar 

surface area.  All of these types of membrane proteins require a lipid bilayer to properly 

study their structure and function because they are very hydrophobic and therefore, will 

often aggregate, precipitate, or adopt irrelevant conformations within purely aqueous 

environments 87-89.  Furthermore, the identity of the lipids is also critical to the proteins 

activity and fold in some cases 90.  The need for a hydrophobic environment for 

membrane proteins has made them very challenging to study and likely contributes to the 

lack of membrane protein structures compared to their soluble counterparts 85. 

 There is a large variety of different systems that can be used to mimic the natural 

plasma membrane environment that membrane proteins require for solubilization, proper 

structuring, and activity.  In this thesis work, three types of membrane mimetic systems 

are used and include: micelles, vesicles, and bicelles, all of which are commonly 

employed for biophysical studies in the field of membrane protein research (Figure 1-10) 

91-96.  Each of these mimics carries with it its own advantages and caveats. 
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Figure 1-10.  Cross sectional views of the three types of native bilayer mimics that are 
typically utilized in membrane protein structure and functional studies including micelles, 
vesicles, and bicelles. 
  

Micelles are aggregates of amphipathic surfactants, which in water place their 

hydrophobic moieties together to avoid the entropic penalty of structured water coverage 

creating an oil droplet that is surrounded by an ionic (sodium dodecylsulfate, lyso-

myristoylphosphatidylglycerol), zwitterionic (dodecylphosphocholine, Empigen BB®), or 

polar headgroup (octyl-β-D-glucoside, Triton-X-100) coating (Figure 1-11).  Micelle 

forming amphiphiles have a large headgroup size compared to their hydrophobic tail 

region and therefore have a cone-like molecular shape, which upon aggregation, allows 

them to support a high degree of curvature, giving the micelles a spherical, prolate, or 

oblate shape 97.  Micelles are typically a few nanometers in diameter.  They are dynamic 
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in nature, where a specific concentration of monomeric detergent is required to saturate 

the solution before they start forming aggregates; this parameter is called the critical 

micelle concentration (CMC).  Detergent micelles have been used almost exclusively in 

membrane protein structural determinations by both NMR and X-Ray crystallography, 

are typically used in membrane protein purification procedures, are easy to work with, 

and can support membrane protein function 98-101.  Additionally, the secondary structure 

of membrane proteins is usually preserved in micelles 102.  However, they have 

disadvantages in that they lack a bilayer, limiting them for topological studies examining 

protein depth and orientation.  Micelles also have a much more curved surface than the 

native bilayer; this aspect can have a negative effect on membrane protein conformation 

103.  They allow extensive water penetration, which could disrupt potentially important 

intra- or intermolecular interactions required for specific folding and activity 104.  They 

also cannot support biologically relevant quantities of cholesterol, a molecule which can 

be critical for the structure and function of some membrane proteins 105.  Small amounts 

of phospholipid can often be doped into micelles, and these structures are termed “mixed 

micelles” 106.  Often times, one must optimize the specific properties of chain length, 

headgroup size, and charge to find the most suitable detergent to uphold a specific 

membrane protein’s structure and function 107. 
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Figure 1-11: Various detergents commonly employed in the purification and study of 
membrane proteins. 
 
 Vesicles are spherical, static aggregates that are composed of bilayer forming 

amphipathic molecules with the ability to entrap solutes within their hollow interior.  A 

liposome is a type of vesicle composed of diacylglycerophospholipids, which have a 

glycerol backbone, a phosphate headgroup, and two acyl chains.  The phosphate 

headgroup is linked to the glycerol backbone via a phosphoester bond.  Headgroups on 

phospholipids vary in their charge and size.  In terms of the headgroups on phospholipids, 

eukaryotic organisms are composed of zwitterionic phosphatidylcholine, and 

phosphatidylethanolamine, and to a lesser extent negatively charged phosphatidylserine, 

phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid.  The lipid chains are 

linked to the glycerol backbone via an ester bond.  The chains vary in their length and 

degree of unsaturation.  Typically the lipids in the biological membrane are 16-20 
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carbons in length and have 1 or more sites of unsaturation within their chain.  The 

identity of the headgroup, chain length, and degree of unsaturation contribute to a 

specific melting temperature (Tm) for lipid bilayers.  The Tm is used to describe the degree 

of order in the acyl chain region.  At low temperatures, the acyl chains are fully extended 

and this is called the gel or liquid ordered phase.  At high temperatures, the acyl chains 

are highly mobile and disordered, and this is called the fluid or liquid disordered phase.  

Physically the Tm represents the halfway point between these two states where half of the 

lipid population is ordered and half is disordered.  The Tm of bilayers is a very important 

parameter biologically as it allows embedded proteins to interact.  The fluidity of the 

bilayer can also be modulated by the addition of cholesterol which causes a broadening of 

the Tm (increase). 

The roughly equivalent surface area of the headgroup and chain regions allow 

phospholipids to pack together in a cylindrical fashion, limiting the amount of curvature 

that they can uphold.  Due to the hydrophobic effect, they form roughly planar bilayered 

structures that close to avoid exposure of the planar regions edges to water, and hence the 

spherical shape of the liposome.  Liposomes can have a single bilayer (unilamellar 

vesicles) or like an onion, multiple bilayers (multilamellar vesicles).  Single shelled 

liposomes are typically divided up into three classes depending on their size: small 

unilamellar vesicles (15-50 nm in diameter), large unilamellar vesicles (100-400 nm in 

diameter), and giant unilamellar vesicles (>500 nm).  Advantages to using vesicles 

include their near cell-like dimensions, which reduces curvature induced defects on 

reconstituted proteins, and an actual lipid bilayer.  They also have a distinct interior and 

exterior which can be useful in transport studies on channel forming proteins as well as 
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lysis/fusion assays of membrane proteins that require the release of entrapped solutes to 

observe their activity 108-110.  This property is also important for topological studies, to 

examine a reconstituted protein’s depth and orientation in membranes 111,112.  They can 

incorporate a wide variety of biologically relevant lipids, including cholesterol.  The 

downside to vesicles is that they are often quasi-stable when they are small, tending 

towards fusion.  They scatter significant amounts of light which can be burdensome in 

some spectroscopic techniques.  Additionally, liposomes have not been successfully 

employed for structural determinations of membrane proteins because their large size 

makes them hard to adapt to crystallization and NMR studies.  

 Bicelles are discoidal lipid aggregates that spontaneously form when long chain 

phospholipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)) and short chain 

phospholipids/specific detergent molecules ((1,2-dihexanoyl-sn-glycero-3-

phosphocholine (DHPC), 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHePC), or 3-

[(3-Cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO)) are 

mixed in aqueous solution  (Figure 1-12) 113,114. 
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Figure 1-12.  Chemical structure of bicelle forming species utilized throughout the 
course of this work. 
 
These structures are characterized by lipid segregation where long-chain phospholipids 

(DMPC and DPPC) form a planar bilayered region and the detergent molecules (DHPC, 

DHePC, and CHAPSO) create a curved rim region packed around the bilayer, shielding it 

from exposure to the aqueous environment.  Similar to micelles, the detergent is in 

exchange with the aqueous environment and there is a critical bicelle forming 

concentration, or CBC.  These structures typically range in size from 2.5 – 20 nm in 

length, and their size is tuned by a property know as q, which is the molar ratio of the 

long-chain lipid to the detergent 94,115,116.  With larger, q values, the length of the 

bilayered region increases, and the disks take on a larger diameter.  This is one way in 

which the tunable nature of bicelles makes them advantageous to use in structural studies.  

For example, a q = 1.0 has a planar bilayered region that is about 147 Å in diameter and 

can support membrane protein behaviors such as oligomerization 113.  Due to the dynamic 
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nature of the detergent, one must consider the overall lipid percentage in the sample.  For 

example, at low lipid percentage in solution, a much greater amount of detergent relative 

to the long chain phospholipid is in exchange, giving rise to a larger q than would be 

expected.  For this reason it is important to prepare bicelles with knowledge of their CBC 

and generate them according to their qeff, ([long chain phospholipid]/([long chain 

phospholipid]total-[long chain phospholipid]free)).  Bicelles can hold a variety of different 

phospholipids, have melting temperatures which are close to that of liposomes composed 

of pure phospholipids, and can contain biologically relevant amounts of cholesterol 

(albeit only at high temperatures) and therefore can mimic the native cellular 

environment nicely 117-121.  Their ability to hold longer chain lipids allows the modulation 

of bicelle thickness.  They can also be loaded with lipids that have negatively or 

positively charged headgroups allowing for modification of their surface charge.  

Additionally, they scatter very little light making them ideal for spectroscopic studies.  

Bicelles have a true bilayer and this allows for topological, functional, and structural 

determinations to be performed on proteins reconstituted into them 93,94,116,122-124.  They 

have disadvantages which include the fact that they cannot be used to determine 

membrane protein orientation, and proteins incorporated into them can be prone to “rim” 

effects (a micelle like environment), especially at low q values.  In most studies q values 

ranging from q= 0.3-3.0 are used, however, low q values are considered to be less 

biologically relevant due to the limited size of the bilayered region and increased 

detergent intermixing, making them more similar to a mixed micelle.  
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Biophysical Methods Used to Characterize Membrane Proteins 

 The characterization of membrane proteins requires not only the study of their 

secondary structure and three-dimensional folds, but also knowledge of their aggregation 

state and their degree of penetration into the bilayer.  The combinations of these 

parameters give an image of a membrane protein which can help explain how it 

functions, and in some cases, a better understanding of the protein can lead to new 

therapeutics or an understanding of disease mechanisms.  For instance, it is now known 

that many membrane receptors bind a variety of ligands through secondary, allosteric 

binding sites.  These secondary binding sites can be utilized to modulate receptor 

selectivity and activity which can bring about dramatic changes in how individuals 

respond to drugs which, without the use of allostery could result in drugs having many 

unintended side-effects 125.  The biophysical study of membrane proteins is critical to 

bring about new developments in the treatment of disease. 

 Although the secondary structure of proteins can be characterized by a number of 

techniques, in this body of work, the most common method used is circular dichroism.  

Circular dichroism examines how molecules absorb right and left handed circularly 

polarized light differentially, and is due to presence of chirality.  The peptide bond has 

slight double bond character and therefore contains a weak but broad n→π* transition 

around 220 nm and a somewhat stronger π→ π* transition at 190 nm.  Because the α-

helix motif in proteins is a chiral structure, it absorbs right and left handed polarized light 

very differently than the other major structural motifs in proteins (maxima at 190 nm and 

minima at 208 nm and 222 nm).  The β-sheet also has its own characteristic absorption 

profile (minimum at 217 nm) 126.  Furthermore, the α-helix and β-sheet give rise to 
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different spectral signatures than the random coil secondary structure (minimum at 204 

nm).  Many proteins contain a mixture of these different secondary structure motifs.  

With information of the proteins concentration and circular dichroism spectra, the 

contributions of different secondary structure motifs can be estimated using prediction 

algorithms and can yield specific information about how much α-helical, β-sheet, and 

random coil character a polypeptide contains. 

Circular dichroism can also yield qualitative information about the tertiary 

structure of proteins by examining the 260-320 nm region, and is referred to as the near 

ultraviolet (UV) CD 126.  The absorption of light in this region is due to the presence of 

tryptophan, tyrosine, and phenylalanine residues.  Each one of these residues gives rise to 

region specific peaks in a CD spectrum at 290-305 nm (primarily tryptophan), 275-282 

nm (primarily tyrosine), and 255-270 nm (phenylalanine).  These features can be 

considered as a “fingerprint” of the tertiary structure (due to the functional groups being 

held asymmetrically) and can be used to compare protein mutants, truncations, or lipid 

environments in terms of their structural impact.  However, this method is not advanced 

enough to give specific structural information one would obtain from solution NMR or 

X-ray crystallography.  Nonetheless, examination of the near UV spectra remains useful 

for comparisons sake. 

Another important method that can be employed to gain insight into the topology, 

dynamic behavior, membrane organization, and oligomeric behavior of a protein is 

fluorescence spectroscopy 127.  These studies require either the use of the naturally 

fluorescent amino acids (tryptophan, tyrosine, and phenylalanine), expression of 

fluorescent protein fusion constructs to the protein of interest (i.e. green fluorescent 
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protein), or the conjugation of a fluorescent molecule such as dansyl or fluorescein by 

covalent bond formation to the species of interest 128,129.  Fluorescence occurs when an 

electron within a chromaphore is excited by a particular wavelength of light.  This 

electron then relaxes back to its ground state after some time being excited, the average 

time a fluorophore spends in its excited state is known as the fluorescent lifetime (Figure 

1-13).  Rather than going through non-radiative decay, when a molecule fluoresces a 

photon is released, usually at a lower frequency than the photon that was absorbed (The 

frequency change is known as the “Stoke’s shift”).  With an environmentally sensitive 

fluorophore, the process can yield information about the micro-environment surrounding 

the molecule as fluorescence lifetimes are typically linked to dynamic processes that are 

occurring locally.  This is only true if the dynamic process occurs within the lifetime of 

the excited state (fluorescence lifetimes typically range from μsec-nsec, tryptophan 

fluorescence usually ranges from 0.1-8 ns) 127,130. 
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Figure 1-13.  Simplified Jablonski diagram.  Absorption of a photon by a fluorophore 
excites an electron from its ground state (S0) to the excited state (S1).  The excited 
electron then relaxes to the lowest vibrational state of S1 on a fast timescale.  The electron 
then falls back to its ground state giving off a photon of lower frequency. 
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Using the native fluorophore tryptophan for fluorescent studies of proteins has 

many advantages.  One particular advantage is that tryptophan can be selectively excited 

over the other fluorescent amino acids by irradiation using the 295 nm wavelength (the 

red edge of the tryptophan’s excitation spectrum).  In doing so, the emission spectrum 

will yield information specific to the environment surrounding the sequence location of 

tryptophan groups.  Another is that tryptophan is an environmentally sensitive 

fluorophore.  This is owed to the fact that there is large electron density redistribution in 

the asymmetric indole ring after the absorption of a photon that leads to a significant 

dipole moment compared to tryptophan in its ground state 131.  Once in the excited state, 

solvent-solute, or solute-solute interactions can occur that change the emission peak 

shape or emission maximum.  These spectral properties are easily recorded using a 

fluorometer and can be determined by fitting the spectrum of the protein to a log-normal 

equation (equation 1-1): 

(λ)ܫ = ݌ݔ0݁ܫ ቈ
݈݊2
ߩ2݈݊

݈݊2 ቆ1 +
ߣ) − ݔܽ݉ߣ 2ߩ)( − 1)
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ቇ቉ 

 

where I0 is the intensity observed at the wavelength of maximum intensity (λmax), Г is the 

peak width at I0/2 (peak shape), and ρ is the asymmetry of the peak 132,133. 

The λmax of tryptophan ranges from 308-360 nm depending on the environment.  

For instance, upon the dipole reorientation of tryptophan, the organization of solvent 

molecules around tryptophan in its excited state may be perturbed and causes a shift in 

the λmax of the protein.  Generally, factors that contribute shifts are described by the 

modified Lippert equation (equation 1-2): 

ݒ∆ ≈ 2|ߤ∆|  ቈ
2(− 1)
2 + 1

−
2(݊2 − 1)
2݊2 + 1

቉
߬ ܨ

߬ ܨ + ܴ ߬
 

 



 

30 
 

This equation relates the spectral shift in wave numbers (∆ν) between the excited and 

ground state to changes in the dipole moment (∆μ), the dielectric constant of the medium 

(), the time of dipole relaxation of the tryptophan (TR) in comparison to the lifetime of 

fluorescence (TF).  In the most simplistic sense when it comes to interpreting the location 

of tryptophan groups within membranes, the dielectric constant is a major factor.  For a 

tryptophan buried in the membrane (small ), the stokes shift would be less than that for a 

tryptophan buried in the aqueous environment (large ).  However, due to the complexity 

of interactions that can occur within protein microenvironments, and the typical scenario 

where a protein contains more than one tryptophan, the degree of spectral shift alone 

must be interpreted carefully alongside orthogonal techniques. 

When considering proteins containing only one tryptophan residue, the emission 

spectra typically fall into three categories 134-136.  The most red shifted spectra, having 

λmax values ranging from 346-350 nm (Class III) are considered to be aqueous exposed.  

The most blue-shifted spectra, having λmax values ranging from 330 -333 nm (Class I) are 

considered to be buried deeply within the tertiary structure of a protein or a lipid bilayer.  

In between these two classes, a tryptophan group with an emission that ranges from 340-

344 nm (Class II) would be considered to be located at interfaces such as the one between 

the aqueous environment and the hydrophobic core of the membrane.  These classes are a 

result of many investigations into the location of tryptophan’s within both soluble and 

membrane proteins, where the majority of cases contain species within these discrete 

states of fluorescent emission.  By no means do these narrow definitions capture the full 

range of emission spectra possible, as hybrids of classes, which reflect conformational 

flexibility, phase, and oligomeric distributions, can be observed.  The shape of the peak is 
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also important, where Г can give information about the heterogeneity of the distribution 

of fluorophores 133.  For instance, if two different proteins each have a single tryptophan 

with the same λmax but different Г values, the protein with a larger Г could be in multiple 

conformations, or showing other dynamic behaviors. 

 Another method employing fluorescence spectroscopy utilizes the ability of 

particular substances to quench fluorescence.  A number of species can quench 

tryptophan including acrylamide, cobalt, and iodide.  The mechanism of fluorescence 

quenching is not entirely understood, but for halogens such as iodide, it is thought that 

intersystem crossing to an excited triplet state is promoted by spin-orbit coupling of the 

excited fluorophore and the halogen.  In the triplet state, the emission from the 

fluorophore becomes slow and may be quenched by other processes 127.  Quenching can 

be dynamic or static in nature.  Dynamic quenching results from diffusion mediated 

collision between the fluorophore, whereas static quenching is a result in the formation of 

a complex with the fluorophore.  Methods of telling the two apart from one another 

include performing quenching experiments at various temperatures and looking at the 

trend.  With static quenching, complex formation is typically less favored at higher 

temperatures and the amount of quenching decreases whereas collisional quenching is 

enhanced due to the increased rate of collisions.  Collisional quenching is described by 

either the Stern-Volmer equation for quenching or the modified Stern-Volmer equation.  

Upon successive additions of quencher, tryptophan fluorescence is quenched at different 

efficiencies depending on its chemical environment.  This technique is used for 

tryptophan groups which are buried within the core of a folded protein, as well as those 
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which are buried within a biological membrane 137.  The Stern-Volmer equation (equation 

3) takes the form: 

0ܫ
ܫ

= 1 + ܭܵ ܸ[ܳ] 

 

where I0 and I are the initial fluorescence and fluorescence after addition of quencher 

respectively, KSV is the Stern-Volmer quenching constant of the entire population of the 

fluorophores (KSV is the concentration in which 50% of the total fluorescence intensity is 

quenched, and is the product of the bimolecular quenching kq constant and the lifetime of 

the fluorophore in the absence of the quencher, τ0), and [Q] is the concentration of 

quencher.  However, if the plot is not perfectly linear and deviates towards the x-axis, 

then this is indicative of there being an accessible and buried fraction of fluorophores.  

Stern-Volmer quenching curves generated from the quenching data can also be fit to a 

double reciprocal plot (Modified Stern-Volmer plot, equation 1-4) that assumes a buried 

and accessible population to give: 
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where I0 and I are the initial fluorescence and fluorescence after addition of quencher 

respectively, Ka is the Stern-Volmer quenching constant of the accessible fraction (Ka is 

the concentration in which 50% of the fluorescence intensity of the accessible fraction is 

quenched), fa is the fraction of the initial fluorescence that is accessible to the quencher, 

and [Q] is the concentration of quencher.  The fa value is useful and can be used much 

like λmax to interpret the location of tryptophan residues, where more highly exposed 

tryptophan residues will have fa values approaching 1 and tryptophans deeply embedded 

within a hydrophobic matrix such as the lipid bilayer will have fa values that approach 0.  
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However, fa values can have a large degree of error associated with them as the 

measurement extrapolates to an infinite quencher concentration (the y-intercept 

represents quenching at an infinite quencher concentration, as [Q]→∞,	the	ϐirst	term	in	

equation 1-4 becomes ~0), far away from the practical concentrations used within 

experiments.  Nonetheless, the fa value can be more useful than KSV when comparing 

different constructs, as it does not require knowledge of the fluorescence lifetime for 

interpretation. 

 Another useful fluorescence technique which is used to give information about 

the conformational freedom of a fluorophore is fluorescence anisotropy.  When a 

fluorophore is excited with polarized light, the emission can also be polarized 127.  The 

amount of the emission that maintains polarization is described by its anisotropy (r).  

Anisotropies greater than zero are observed if some of the population of the fluorophores 

have their absorption transition moments oriented along the electric vector of the incident 

light.  If the molecules are randomly oriented, then there is no preferential excitation due 

to the polarized light and anisotropies close to zero are observed.  Anisotropy can be 

determined by a comparison of the measured intensity of emitted light from a sample 

which has been excited by vertically and horizontally polarized light (with respect to the 

z-axis).  Anisotropy is given by the equation (equation 1-5): 

ݎ =
ܫܸ ܸ − ܫܸܩ ܪ

ܫܸ ܸ − ܫܸܩ2 ܪ
 

 
where IVV and IVH are the emitted intensities of the fluorophore with the excitation 

polarizer oriented vertically and the emission polarizer oriented vertically or horizontally 

respectively, and G is the G-factor which is the ratio of sensitivities for vertically and 

horizontally polarized light (defined as IHV/IVV). 
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 Finally, fluorescence resonance energy transfer (FRET) can also be used to give 

information about fluorophores in solution.  In this technique, an initially excited donor 

molecule (D) is excited using incident light and gives off an emission.  If this emission 

spectrum overlaps with another fluorophore’s excitation spectrum, the second 

fluorophore can then be an acceptor (A) and will undergo an emission.  The transfer of 

energy that causes the acceptors emission is a photonless event and is highly dependent 

on the distance between the two species (there is an R6 dependence on the efficiency of 

this transition event).  Most FRET events are 50% efficient in the 20-60 Å range making 

this technique a useful molecular ruler for macromolecular distance measurements 127.  

The efficiency of an energy transfer event is measured using the fluorescence intensity of 

the donor in absence and presence of the acceptor and is described by the following 

equation (equation 1-6): 

ܧ = 1 −
ܣܦܨ
ܦܨ

 

 

Where FDA and FD are the fluorescence intensity of the donor in the presence and absence 

of the acceptor, respectively.  If one has knowledge of the R0 value for a given donor 

acceptor pair, an estimate of distance can be made from the following equation (equation 

1-7): 

ܧ =
ܴ0

6
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Where E is the FRET efficiency, R0 is the radius of 50% transfer efficiency and r is the 

distance (reliable only within 2R0). 
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Chapter 2.  Development of Perfluorooctanoic Acid as a Tool for Vesicle 
Formation and Caveolin-1 Topology Analysis 
 

ABSTRACT 
 

The study of membrane proteins has become a major research interest because 

they have a central role in maintaining proper cellular function and also have potential as 

targets in the treatment of disease states.  A major challenge in working with recombinant 

membrane proteins is their reconstitution into a biologically relevant lipid bilayer 

environment where they achieve a refolded state and are functionally active.  The 

detergent dialysis technique, which utilizes mixtures of egg phosphatidylcholine with 

protein dissolved in cholate or octylglucoside, is often used to incorporate membrane 

proteins into lipid vesicles.  Although useful, these lipid-detergent systems are not able to 

reconstitute highly pure, insoluble membrane proteins such as caveolin-1.  The failure of 

these commonly used detergents in reconstituting caveolin-1 warranted the use of novel 

lipid-detergent mixtures.  The removal of perfluorooctanoic acid (PFOA) from mixtures 

of phosphatidylcholine and PFOA results in the formation of small unilamellar vesicles 

with a hydrodynamic radius of approximately 11 nm.  The presence of vesicles was 

confirmed by gel filtration, dynamic light scattering, and glucose entrapment.  Increasing 

the amount of sodium chloride in the dialysate leads to the formation of larger vesicles 

with a hydrodynamic radii ranging from 12-70 nm.  Moreover, cholesterol can be 

incorporated into the vesicles (up to 40% by mol).  Using this method, various caveolin-1 

constructs can be effectively reconstituted into vesicles.  Evidence of incorporation of the 

caveolin-1 protein into vesicles with or without cholesterol was shown by gel filtration 

followed by Western blot analysis.  Sodium carbonate extraction methodologies showed 
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that the reconstituted protein was embedded within the bilayer.  Consistent with caveolin 

being a non-pore forming peptide, a real time entrapment study showed that the 

permeability of entrapped solutes was not markedly enhanced by the incorporation of the 

protein into vesicles.  A limited proteolysis assay to examine the topology of 

reconstituted caveolin-1 was developed and showed a mixed topology where 60 % of 

reconstituted caveolin-1 was present as a single spanning membrane helix and 30% of the 

protein was present with a native topology with the N- and C- termini on the same side of 

the membrane. 
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INTRODUCTION 
 

The cell membrane is composed of a phospholipid bilayer that is enriched with 

membrane proteins.  Biological membranes typically contain approximately 50% protein 

content by weight.  Membrane proteins have a myriad of cellular functions including 

selective transport, catalysis, and signal transduction.  They also play a role in the 

structure and architecture of cellular membranes 138.  The utility of membrane proteins 

has not gone unnoticed by organisms, where approximately 33% of most genomes 

encode for these proteins 31.  Membrane proteins are difficult to characterize in terms of 

their structure and function due to obstacles in expression and solubility.  For this reason, 

unique approaches must be taken to study these highly insoluble proteins. 

Detailed characterization of membrane protein structure and function in vitro 

requires reconstitution of the protein into phospholipid environments that mimic the 

native bilayer.  Unilamellar vesicles are often used to meet these ends because they have 

a single bilayer shell and can be constructed using mixtures of natural lipids such as egg 

yolk phosphatidylcholine (EYPC) 139.  Vesicles are static and hollow giving them a 

distinct interior and exterior that is similar to the cell, making them ideal for the 

topological characterization of reconstituted membrane proteins.  Additionally, vesicles 

are amenable to the incorporation of biologically relevant amounts of cholesterol which 

may be important for maintaining the structure of some membrane proteins 140. 

Detergents can be used to solubilize membrane proteins and lipids, and their 

subsequent dialysis results in the formation of unilamellar vesicles.  In many cases, β-D-

octylglucoside, or sodium cholate are the detergents of choice in vesicle formation for 

membrane protein reconstitution, as they are mild and non-denaturing 96,141.  Although β-
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D-octylglucoside and sodium cholate are useful for the solubilization of membrane 

proteins that already exist in lipid-protein complexes, or membrane proteins which have 

amphipathic characteristics, these mild detergent are not powerful enough to solubilize 

extremely hydrophobic membrane proteins such as caveolin-1, the principle protein 

component of cholesterol rich membrane invaginations known as caveolae.  

Perfluorooctanoic acid (PFOA) is an octanoic acid analogue where the aliphatic 

hydrocarbons have been replaced by fluorine atoms (Figure 2.1).  PFOA has been shown 

to be effective for the solubilization of various membrane proteins 142.  In addition, 

fluorous surfactants have also been shown to be an effective aid in refolding experiments 

using soluble proteins 143,144.  For these reasons, PFOA was investigated in its use as a 

detergent that could both solubilize caveolin-1 and facilitate its reconstitution into 

vesicles.  Advantageously, the adoption of the native fold of caveolin-1 can be evaluated 

by probing the location of its termini; the natively folded protein would maintain the 

hallmark feature of the protein where the N- and C- termini are coincident to the same 

side of the membrane.  Therefore, caveolin serves as an excellent test case for the 

development of the PFOA dialysis method as a way of refolding membrane proteins. 

 
 

Figure 2-1.  Chemical structure of PFOA. 
 

In this chapter, PFOA is shown to be a detergent that can produce vesicles by the 

dialysis of EYPC-PFOA mixtures.  The vesicles were formed in the presence of sodium 

chloride and cholesterol, and the effect of these solutes on vesicle size was examined by 

gel filtration and dynamic light scattering (DLS).  It was found that the addition of 
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sodium chloride allows for size tuning of the vesicles (11-77 nm) and that cholesterol can 

be incorporated into vesicles at physiologically relevant concentrations.  Static light 

scattering (SLS) was used to show that the vesicles were hollow spheres.  Additionally 

the vesicles have the ability to entrap solutes in the absence and presence of caveolin.  It 

was demonstrated that a caveolin-1 construct containing the complete membrane 

interacting domain (residues 62-178), a portion which has been shown to dictate many of 

the protein’s critical functions in vivo, can be reconstituted into lipid vesicles using PFOA 

145.  Upon PFOA mediated reconstitution, caveolin-1 behaved as an integral membrane 

protein when evaluated using the method of carbonate extraction.  The addition of the 

protein was shown to cause a slight increase in the leakage rate of entrapped contents, 

consistent with a modest degree of bilayer disruption.  A limited proteolysis method 

revealed a mixture of topologies upon reconstitution, with the majority of the protein 

(~60%) being in a misfolded, transmembrane orientation with the N- terminus located on 

the interior of the vesicle and the C-terminus located on the exterior and the remainder of 

the population was fully exposed to cleavage by the protease.  Although this attempt to 

refold the protein was met with limited success, the results indicate that that a complex 

set of biological conditions are likely critical to forming caveolins hallmark topology.  

Nonetheless, the detergent dialysis approach using PFOA-lipid-protein mixtures will 

serve as a general method for the reconstitution of membrane proteins into lipid vesicles. 
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MATERIALS AND METHODS 
 
Vesicle Formation 
 

Typically, 50 mg of EYPC (Avanti Polar Lipids, Alabaster, AL) dissolved in 

chloroform was dried down to a film under a stream of nitrogen with gentle heating at 

37°C in a 10 mL glass vial.  Next, a buffer containing 300 mM PFOA (Oakwood 

Products, West Columbia, SC), 10 mM Tris-HCl pH 8.0 was added to the EYPC to 

achieve a final lipid concentration of 20 mM.  The mixture was then sonicated until it 

became transparent.  For samples containing cholesterol, cholesterol (Avanti Polar 

Lipids, Alabaster, AL) was added at 5, 20, and 40 mol % while maintaining the final 

concentration of EYPC and cholesterol at 20 mM.  The resulting solution was then added 

to a 10 kD MWCO slide-a-lyzer G2 dialysis cassette (Thermo scientific, Rockford, IL.), 

and was dialyzed against 2 L of 10 mM Tris-HCl pH 8.0 with various concentrations of 

NaCl added which did not exceed 150 mM.  The mixture was dialyzed for three days 

with buffer exchanges every 24 hours to ensure complete removal of PFOA. 

 
Protein Expression, Purification, and Mutagenesis 
 
 For these studies, the gene encoding for a biologically relevant caveolin-1 

construct containing residues 62-178 flanked by double antibody epitopes (HSV and 

FLAG) on both the N- and C- termini was purchased from Genscript Corporation 

(Piscataway, NJ) (HSVFLAGCav162-178) 145.  The primary sequence is indicated in Appendix 

2-1.  The underlined portion denotes residues 62-178 of caveolin-1.  A few conservative 

mutations were made to the native protein sequence and are indicated by bolding.  Three 

sites of palmitoylation, at positions 133, 143, and 156, which are not essential to 

caveolin-1 trafficking to the membrane were mutated to serine to avoid disruptive and 
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biologically irrelevant disulfide bonding 35.  Additionally, a non-conserved methionine at 

position 111 was mutated to leucine based on sequence homology to caveolin-3 in order 

to facilitate separation of the protein from the TrpLE protein used to direct protein 

expression into inclusion bodies.  The protein was cloned into according to the 

methodologies described in Diefenderfer et al 146,147.  Specifically, the protein was cloned 

into a pET24a between BamHI and EcoRI restriction sites, downstream from a gene 

encoding for the Trp leader protein (cloned between NdeI and BamHI). 

Truncated versions of HSVFLAGCav162-178 were generated to create a ladder for use 

in sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) experiments 

that reflected the molecular weight shifts of our construct after treatment with 

enterokinase.  All mutant constructs were prepared using the Quik change site-directed 

mutagenesis kit (Agilent Technologies, Santa Clara, CA).  To mimic the N-terminal 

cleavage of the protein by enterokinase, a methionine residue was placed immediately 

after the N-terminal FLAG site, therefore, the HSV-FLAG portion would be removed 

during the protein preparation by CNBr cleavage (see Diefenderfer et al).  To mimic the 

C-terminal cleavage of the protein by enterokinase, a stop codon was inserted 

immediately after the second FLAG cleavage site.  Doubly truncated Cav162-178 was 

generated using a combination of the two mutations above.  Primers were designed using 

the free web-based primerX program (Bioinformatics.org).  Primer sequences are 

indicated in Appendix 2-2.  The PCR conditions utilized to generate mutant constructs 

are described in Appendix 2-3.  Following PCR, 1 μL of DpnI (New England Biolabs, 

Ipswich, MA) was added to the reaction test tube and the reaction was incubated at room 

temperature overnight.  This allowed digestion of methylated DNA, ridding the reaction 
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mixture of the template.  Transformation of the mutant plasmid was accomplished as 

described in Appendix 2-4 by adding 1 μL of reaction mixture to 50 μL ultra-competent 

XL-1 Blue E. coli cells.  All constructs were confirmed to be correct by DNA 

sequencing. 

The plasmid was transformed into BL21DE3 cells for expression of the protein as 

described in Appendix 2-4.  The protein was expressed using the auto-induction protocol 

described by Studier et al 147.  Briefly, cells were grown from a glycerol (15%) freezer 

stock in MDG media (Appendix 2-5) for 16-24 hours.  After this time period, a 1:1000 

dilution of the culture was made into 1L ZYM-5052 media (Appendix 2-5).  The growths 

were harvested by centrifugation at 5000 x g for 30 minutes at 4°C after the exponential 

growth phase (typically 10-16 hours, denoted by the leveling out of the optical density at 

600 nm for the culture). 

Purification of HSVFLAGCav162-178 to homogeneity was carried out akin to 

Diefenderfer et al with slight modification.  The cell pellet was first washed using 0.9% 

(w/v) saline solution at a volume that was 20% of the original culture volume.  Next, the 

pellet was taken up into 400 mL of a buffer composed of 20% (w/v) sucrose dissolved in 

10 mM Tris-HCl, pH 8.0.  The pellet was homogenized using sonication for 15 minutes 

at 4℃.  The lysate was then centrifuged at 27,500 x g for 2 hours at 25℃.  The pellet was 

then taken up into 400 mL of 1% (v/v) Triton-X-100 and the sonication/centrifugation 

steps were repeated.  The next step was a modification to the method by 

Diefenderfer et al, in place of three 400 mL Tris-HCl washes after spinning down triton-

X-100 insoluble Trp-Leader HSVFLAGCav162-178 inclusion body pellets, a single 400 mL 

wash using a buffer containing 40% isopropyl alcohol, 50 mM Tris-HCl wash was 



 

43 
 

utilized.  The pellet was sonicated into this buffer at a duty cycle of 40 % and an output 

of 5 for 15 minutes at 4°C with rapid stirring.  The inclusion bodies were then re-pelleted 

by centrifugation at 27,500 x g for 2 hours at 4°C.  The pellet was then subjected to 

cyanogen bromide cleavage (0.2 g CNBr) to remove the Trp leader fusion partner and 

was subsequently isolated using reverse phase high performance liquid chromatography 

(HPLC).  The chromatographic conditions were 80% water/20% acetic acid going to 80% 

n-butyl alcohol/20% acetic acid at a 1%/minute gradient using a Phenomenex (Torrance, 

CA) C4 Jupiter column with a 15 μm particle size.  The resultant peak was dried down 

using a SpeedVac® concentrator.  The resulting film was dissolved in 1,1,1,3,3,3-

hexafluoroisopropanol (HFIP) at a concentration of 0.5 mg/mL and was lyophilized 

overnight.  Aliquots were stored at -20°C until use.  All protein concentrations were 

determined using a micro BCA assay kit (Thermo scientific, Rockford, IL).  The identity 

of the protein was confirmed using matrix assisted laser desorption-ionization time of 

flight mass spectrometry (MALDI-TOF). 

 

Reconstitution of HSVFLAGCav162-178 into Phospholipid Vesicles 

Lyophilized HSVFLAGCav162-178, was dissolved in 300 mM PFOA, 10 mM Tris-

HCl pH 8.0 to a concentration of 1 mg/mL.  The appropriate volume of the 1 mg/mL 

HSVFLAGCav162-178 stock was added to the lipid-detergent solution (discussed in the section 

above) so that the HSVFLAGCav162-178 to lipid ratio was 1:6000.  All other steps were 

carried out as described above.  For experiments containing HSVFLAGCav162-178, 0-150 mM 

NaCl was included in the dialysis buffer. 
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Gel Filtration Experiments 

For gel filtration experiments, a 3 mL preparation of vesicles was concentrated 

down to 600 μL using an Amicon ultrafiltration unit (10 kD MWCO) (Thermo scientific, 

Rockford, IL.).  Next, the sample was passed through a Versapore 5 μM syringe filter to 

remove any large particulates.  The sample was injected onto a Sepharose 4B column 

equilibrated with 10 mM Tris-HCl pH 8.0, 150 mM NaCl.  The elution of vesicles was 

monitored using a refractive index detector. 

 

Sodium Carbonate Extraction 

After forming the HSVFLAGCav162-178 containing vesicles, a 600 μL sample was 

diluted to 1.75 mL using ice cold 100 mM Na2CO3 pH 11.5.  The vesicles were then 

incubated on ice for 30 minutes.  After this time period, the sample was spun 193,911 x g 

at 4 °C for 2 hours with a Beckman L8-55M ultracentrifuge using a Beckman SW 55 Ti 

rotor.  The pelleted lipid was then washed with 1.75 mL ice cold water and was 

centrifuged at 193,911 x g at 4 °C for an additional 10 minutes.  The sample was then re-

suspended into 10 mM Tris-HCl pH 8.0.  A small amount of this stock was then diluted 

to an expected Cav162-178 concentration of 10 μg/mL using SDS loading buffer, assuming 

that all the protein would be associated with the pellet.  The sample was analyzed by 

SDS-PAGE followed by Western blotting, as described in proceeding sections to detect 

the presence of HSVFLAGCav162-178. 

 

Entrapment Assays 

Vesicles were prepared as described previously except 90 mg/mL glucose with 

either 100 mM NaCl for non-protein containing vesicles, or 50 mM NaCl for 
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HSVFLAGCav162-178 containing vesicles, was included in the dialysis buffer.  The last 

dialysis exchange was performed at 4°C.  After dialysis, the external buffer was 

exchanged quickly using a 2 mL Zeba® spin (Thermo Fisher, Rockford, IL) desalting 

column equilibrated with 10 mM Tris-HCl pH 8.0, 150 mM NaCl.  Next, a 180 μL 

aliquot of vesicles was lysed using Triton-X-100 added to a final concentration of 1.0%.  

After 30 minutes, the glucose content was measured using a standard enzymatic glucose 

assay.  A vesicle free solution containing 10 mM Tris-HCl pH 8.0, 150 mM NaCl, 90 

mg/mL glucose was used as a control.  The amount of phospholipid in the sample was 

determined by the method of Stewart 148. 

Leakage over time was examined qualitatively by the entrapment of glucose-6-

phosphate which cannot permeate the bilayer passively (glucose can).  Vesicles were 

formed as described above except 1.3 mg/mL glucose-6-phosphate (Alfa Aesar, Ward 

Hill, MA) with either 100 mM NaCl for non-protein containing vesicles, or 50 mM NaCl 

for HSVFLAGCav162-178 containing vesicles, was included in the dialysis buffer.  After 

dialysis the external buffer was exchanged quickly using a 500 μL Zeba® spin desalting 

column equilibrated with 10 mM Tris-HCl pH 8.0, 150 mM NaCl.  This step was 

repeated to ensure complete removal of the sugar.  Next, 70 μL of a standard glucose-6-

phosphate assay mixture was added to the 30 μL of the vesicle preparation giving a final 

concentration of the following reagents, 1 mM MgCl2, 25 μM NADP+ (Sigma Aldrich, 

St. Louis, MO), 500 μM 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

terazolium (Dojindo Molecular Technologies, Rockville, MD), 7 μM 1-Methoxy-5-

methylphenazinium methyl sulfate (Sigma Aldrich, St. Louis, MO), 200 mU/mL glucose-

6-phosphate dehydrogenase (Sigma Aldrich, St. Louis, MO), 40 mM Tris-HCl pH 8.5 149.  
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The absorbance at 440 nm was monitored versus time for 400 minutes.  The contents 

were then released by lysis of the vesicles using Triton-x-100 added to a final 

concentration of 1%.  The absorbance was then monitored for an additional time period, 

to obtain the signal for the completely processed vesicular contents.  

 

Dynamic/Static Light Scattering Experiments 

DLS and SLS experiments were employed to estimate vesicle size and shape.  For 

these experiments, 100 μL of vesicles were diluted into 2.5 mL of distilled water in a 

glass scintillation vial.  Three or more measurements were obtained for each sample, and 

the results were averaged.  All experiments were carried out at 25°C.  For these 

experiments the viscosity and refractive index were assumed to be that of water, having 

values of 0.8900 cP and 1.332 respectively. 

For these experiments a Brookhaven Instruments LLS spectrometer equipped 

with a solid state laser operating at 532 nm was used.  The scattered light from the sample 

was detected at 90°.  Size information was obtained using a 9000AT multi-channel 

correlator.  The field correlation function was analyzed to determine the translational 

diffusion constant by the constrained regularized CONTIN method to yield the 

hydrodynamic radius (Rh) from the Stokes-Einstein equation (Equation 2-1): 

ܴℎ =
݇T

6D
 

 
Where k is the Boltzmann’s constant, T is the temperature,  is viscosity of the solvent, 

and D is the diffusion constant. 
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For static light scattering experiments, a commercial ALV/CGS3 goniometer 

dynamic light scattering system equipped with solid state HeNe Laser operating at 632.8 

nm was used.  The Rh was determined at angles ranging from 50-135° at 5° increments 

using 3 × 10s measurements.  Three lipid concentrations were analyzed from a 

preparation of vesicles that had 100 mM NaCl in the dialysis buffer (400, 200, and 100 

μg/mL total lipid).  Measurements were repeated three times at each concentration of 

lipid utilized.  The refractive index and viscosity were taken to be that of water and the 

d/dc (change in RI as a function of concentration) was assumed to be 0.16.  ALVSTAT 

software was utilized to generate a Zimm plot 150 in order to obtain the radius of gyration 

(Rg) from extrapolation of the Kc/R versus q2 line to a concentration of zero using the 

following equation (Equation 2-2): 

 

where K is an optical constant, c is the mass concentration of particles scattering in 

solution, Mw is an estimate of the particles molecular weight, and R is the normalized 

scattering ratio. 

 

Western Blot Analysis 

HSVFLAGCav162-178-containing vesicles were diluted to a protein concentration of 

10 μg/mL using Lamelli loading buffer.  The sample was centrifuged at 20,000 x g for 3 

minutes, followed by heating at 100 °C for 3 minutes.  The protein was resolved on a 

15% acrylamide gel for 20 minutes at 100 V and then 150 V for an additional 80 minutes.  

Protein bands were transferred to a 0.2 μm nitrocellulose blot paper and washes were 

ܿܭ
ܴ

=
1

1)ݓܯ − 1
3ܴ݃

(2ݍ2
+  2ܿܣ2
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performed according to well established protocols.  Alkaline phosphatase conjugated 

anti-FLAG (Sigma, St. Louis, MO) was used as the primary antibody for detection of the 

protein bands.  The protein bands were visualized by development with the NBT-BCIP 

colorimetric reagent.  Images were collected using the Biorad Gel Doc XR+ and band 

densities were analyzed using Biorad’s Image Labs software (Biorad, Hercules, CA). 

 

Protease Protection Assay 

HSVFLAGCav162-178-containing vesicle solutions were diluted to a protein 

concentration of 10 μg/mL using 10 mM Tris-HCl pH 8.0, 50 mM NaCl.  50 μL of the 

diluted sample was treated with 2 ng of enterokinase light chain.  The reaction was left to 

proceed for 5 hours at room temperature.  The enterokinase cleavage reaction was 

terminated by the addition of 100 mM phenylmethylsulfonyl fluoride to 1 mM for a five 

minute incubation period.  The samples were then subjected to Western blot analysis 

described in the previous section. 
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RESULTS AND DISCUSSION 
 

Characterization of Vesicle Formation using Gel Filtration Chromatography, 

Dynamic/Static Light Scattering, and Entrapment of Solutes 

The detergent dialysis technique has been successfully employed to reconstitute 

membrane proteins into vesicles.  Membrane proteins are typically solubilized using 

detergents such as octylglucoside, deoxycholate, and Triton X-100 which are amenable to 

the detergent dialysis method 151.  Unfortunately, the detergents commonly used to 

solubilize membrane proteins for reconstitution aren’t powerful enough to completely 

solubilize and de-aggregate the caveolin-1 transmembrane domain.  Highly pure, de-

lipidated Cav162-178 is soluble into 300 mM PFOA at concentrations up to 3 mg/mL.  

Moreover, PFOA can readily solubilize lipids.  Advantageously, PFOA has a high CMC 

(~10-30, buffer dependent) so it is easily dialyzable and has been shown to have a 

reasonable dialysis half-life of 10 hours 142.  For these reasons PFOA was chosen as a 

detergent that could be employed as an alternative to those typically used in membrane 

protein reconstitution studies. 

When forming vesicles, the preparations were not visibly turbid unless sodium 

chloride was included in the outer buffer or cholesterol/protein was added to the mixture.  

Upon centrifugation at 20,000 x g of the vesicles formed in only 10 mM Tris-HCl, no 

lipid precipitated out of solution after three days of dialysis.  This indicated that the lipid 

was in solution, but the particles formed were too small to scatter significant amounts of 

light.  On the other hand, when as little as 25 mM sodium chloride was included in the 

buffer, the vesicles showed turbidity after two days of dialysis.  At concentrations 200 

mM or above, significant precipitation of the lipid was observed resulting in low vesicle 
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yields, and therefore examinations of species formed at high ionic strength was not 

carried out. 

To examine differences in the size and homogeneity of vesicles upon the addition 

of NaCl, cholesterol, and protein, gel filtration and dynamic light scattering experiments 

were carried out.  The chromatograms generated for vesicles formed with NaCl, 

cholesterol, and HSVFLAGCav162-178 are shown in Figure 2-2.  All traces showed Gaussian 

distributions in the particle sizes indicating that the vesicle formation process is well 

controlled and results in homogeneous species.  However, as vesicle preparations 

increased in size, more aggregated material was observed to elute at the void indicating 

that additives can cause some inhomogeneity in the formation dynamics. 

Elution volumes decreased as the NaCl concentration included in the vesicle 

formation buffer increased, indicating an increase in the size of the vesicles formed 

(Figure 2-2 A).  Interestingly, the elution volume showed a sigmoidal relationship with 

respect to the concentration of NaCl that the vesicles were formed in (Figure 2-3).  This 

indicates that the size of vesicles formed largely depends on the ionic strength of the 

medium.  Above 100 mM NaCl the vesicles all eluted at the void volume and separation 

of the well defined vesicles from any large aggregates formed was not possible using 

Sepharose 4B. 
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Figure 2-2.  A)  Refractive index traces of vesicles formed in the presence of 0 mM (–), 

25 mM (○), 37.5 mM (□), 50 mM (◊), 75 mM (×), and 100 mM (+) of NaCl.  B)  

Refractive index traces of vesicles formed with a PC:Cholesterol ratio of 80:20 (–) and a 

PC:Cholesterol ratio of 60:40 (×).  C)  Refractive index trace of vesicles formed in the 

presence of HSVFLAGCav162-178.  This preparation included 50 mM NaCl and had a protein 

to lipid ratio of 1:6000.  Void volumes denoted by an arrow. 
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Figure 2-3.  Elution volume as a function of NaCl concentration that was maintained 
during vesicle formation. 
 

The addition of cholesterol at 20 and 40 mol % resulted in more precipitate that 

had to be removed by centrifugation before injection of the sample onto the sepharose 4B 

column.  The addition of cholesterol also decreased the elution volume of vesicles 

prepared, suggesting that the sterol increases the size of the vesicles (Figure 2-2 B).  The 

addition of cholesterol also broadened the peaks indicating a wider distribution of vesicle 

sizes.  The amount of material eluting at the void volume was insignificant for the 

addition of 20% by mol cholesterol but increased somewhat for 40% by mol cholesterol.  

However, the voided material and the well-defined vesicular population were still 

resolved. 

There appeared to be a limit to the amount of protein that could be included in the 

lipid-detergent mixture during the dialysis without resulting in significant precipitation of 

lipid and protein, and it was found that a 1:6000 ratio of protein to lipid was required to 
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yield homogenous preparations of vesicles.  The addition of HSVFLAGCav162-178 at a 1:6000 

protein to lipid ratio decreased the elution volume of the vesicle peak when compared to 

vesicles that were formed in the absence of HSVFLAGCav162-178 formed in the presence of 

50 mM sodium chloride (Figure 2-2 C).  Inclusion of the protein also resulted in a 

somewhat broader elution profile, indicating that the protein alters the heterogeneity of 

the vesicle preparation.  This result is consistent with a size increase of the vesicles which 

is likely a consequence of Cav162-178 changing the vesicle formation dynamics.  Species 

eluting at the void were insignificant when compared to the major peak, indicating that 

the vesicle formation process is well controlled at the specified ratio. 

Size determinations of the approximate hydrodynamic radius of vesicles came 

from DLS measurements (Figure 2-4 and Table 2-1).  The vesicle size trends using DLS 

were consistent with elution volumes from gel filtration experiments where larger sizes 

were always correlated with lessened elution volumes.  It was observed that the smallest 

species (0 mM NaCl added), which formed vesicles of about 11 nm in radius, were 

unstable and after several days the appearance of a large 230 nm aggregate was detected 

by DLS.  The fusion of these species may be a consequence of limited space to pack the 

large EYPC headgroups within a highly curved sphere and would result in a large amount 

of curvature strain, which would be relieved by aggregation of the small particles into 

larger vesicles.  This type of behavior is commonly observed for small unilamellar 

vesicles (less than 30 nm in diameter) which fuse to form larger more stable vesicles133.  

Anomalous binding of membrane proteins to the bilayer surface as opposed to integration 

into the hydrophobic core has been reported during reconstitution procedures using 
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vesicles of this size 152.  Due to the instability of these particles, they were not 

characterized further in terms of their ability to entrap solutes. 
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Figure 2-4.  Data obtained using dynamic light scattering for vesicles formed in the 
presence of 100 mM NaCl. A)  Regularized correlation function derived from 
fluctuations in scattered light as a function of the measurement time. B)  Count rate 
obtained by two correlators show tiny undulations in the scattered intensity hitting the 
detectors indicative of a single population of small species. C)  Residuals of the 
regularized correlation function fit that was used to derive the diffusion constant for 
utilization in the Stoke’s-Einstein equation. D)  Histogram of particle sizes from fitting of 
the correlation function and obtainment of the diffusion constant showing a very narrow 
distribution.   
 
All other vesicle preparations showed that a single population of vesicles was formed.  In 

contrast to vesicles formed without sodium chloride, the addition of 50-100 mM sodium 

chloride generated vesicles that were stable for one week at 4°C with very little change in 

size (Figure 2-5).  The effect of NaCl on vesicle size is very interesting and may be 
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related to changes in the rate of detergent removal.  It has been shown that vesicle sizes 

that result from the detergent dialysis method are related to the rate of detergent removal, 

where fast rates of removal result in small, monodisperse species 153.  Therefore, NaCl 

may result in slower PFOA removal, possibly by lowering the CMC of the detergent due 

to screening ionic repulsion of the negatively charged headgroup 154.  In agreement with 

gel filtration data, the size of the vesicles increased in a sigmoidal fashion (Figure 2-5). 
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Figure 2-5.  The size of vesicles obtained by DLS experiments show a sigmoidal trend 
for both protein lacking (solid line) and protein containing (dashed line) vesicles.  The 
inset shows that the size of the vesicles formed in the presence of 100 mM NaCl are 
stable over a period of 1 week. 
 
Advantageously, the addition of salt allowed for fine tuning of vesicle size, which could 

be used to examine curvature dependence on membrane protein activity/reconstitution 

behavior and in the case of fluorescence experiments, or to produce smaller vesicles 

which scatter less light. 

A static light scattering experiment was employed on vesicles formed in the 

presence of 100 mM NaCl.  This technique can give information about the radius of 
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gyration (Rg) and the molecular weight of a molecule diffusing in solution.  These 

parameters are derived from variations in the scattered intensity of particles in solution as 

a function of the measurement angle and concentration.  The combination of the Rg and 

Rh can be used to give shape information (sphere, rods, disks, worm-like structures) 

(Figure 2-6).  The vesicles formed using the PFOA method did not vary in size upon 

changing the angle of detection significantly, supporting a spherical structure.  This 

technique can also tell the difference between a hard sphere (non-vesicular) and a hollow 

sphere (vesicle) by using a Zimm plot to determine the radius of gyration and comparing 

it to the radius of hydration.  Extrapolation to lipid concentration of zero yields a line 

with a slope that can be used to derive the Rg.  For a hard sphere Rg/Rh=0.77 whereas for 

a hollow sphere Rg~Rh.   For the vesicle preparation tested, the Rh was determined to be 

27.01  0.30 nm and the Rg was determined to be 25.42  1.53 nm yielding a ratio of the 

two values close to 1 (~0.94) supporting the existence of hollow spheres. 
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Figure 2-6.  A)  The Rh was invariant as a function of the scattering angle, providing 
evidence for the existence of a spherical particle. B)  A Zimm plot generated using a 
static light scattering experiment for different vesicle concentrations allows for 
extrapolation of the Rg, proving the vesicles are hollow spheres. 
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In agreement with gel filtration data, cholesterol is shown to increase the 

hydrodynamic radius of the vesicles (Table 2-1).  Doubling of the cholesterol content 

from 20% by mol to 40% by mol accounted for a roughly 10 nm growth in the size of the 

vesicles.  These vesicles are close in size to those that have been observed for PC-

cholesterol mixtures when prepared by sonication at the same mol % 155.  Importantly this 

method can incorporate cholesterol into vesicles at concentrations relevant to caveolae 26. 

When vesicles with reconstituted HSVFLAGCav162-178 were prepared at different 

NaCl concentrations they were on average larger than those formed in the absence of 

protein.  Generally, HSVFLAGCav162-178 vesicles were 5-10 nm larger (about 6 nm on 

average) than their purely lipid counterparts (Figure 2-5 and Table 2-1). 

[NaCl] 
mM 

Caveolin (-) 
Rh (nm) 

Caveolin (+) 
Rh (nm) 

Cholesterol 
(mol %) 

Rh (nm) 

0 11.39 ± 0.14 14.91 ± 0.10 20 12.41 ± 1.60 
25 12.52 ± 0.28 17.11 ± 0.36 40 22.93 ± 2.20 

37.5 14.48 ± 1.70 -  
50 19.81 ± 0.84 26.75 ± 0.68 
75 23.54 ± 0.68 28.22 ± 1.0 

100 28.28 ± 1.70 32.89 ± 0.66 
150 29.30 ± 2.0 38.79 ± 0.89 

Table 2-1.  Table of vesicle sizes obtained using DLS. 
 

Considering that a 7 nm size increase occurs when comparing vesicles formed using 50 

mM NaCl in the presence or absence of caveolin, it is clear that the integration of the 

protein must profoundly change the vesicle formation dynamics.  This is especially 

remarkable when considering that there are only about 4 HSVFLAGCav162-178 molecules per 

vesicle using a 1:6000 protein to lipid ratio.  For instance when glucose, which is highly 

polar and would not likely interact with the lipids and detergents, was included in the 

formation buffer at a 500 mM concentration, there was no change in vesicle elution time 

compared to when it was absent.  This supports the idea that HSVFLAGCav162-178 was 
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integrated into the volume of the bilayer and was not simply entrapped.  Interestingly, the 

addition of protein alters the sigmoidal behavior observed for non-protein containing 

vesicles where there is a less steep transition going from small unilamellar vesicles to 

large unilamellar vesicles and the curve doesn’t seem to level off clearly by the final 

point tested.  It is possible that the protein’s presence results in alterations in the 

formation dynamics of the vesicles.  The final size of vesicle formed by detergent dialysis 

is related to the size of the mixed micelle that is present just prior to the onset of 

solubilization (in this case, onset of vesicle formation) 153.  Therefore, the protein could 

alter the size of the mixed micelle just prior to vesicle formation.  For subsequent studies, 

vesicles containing protein were formed in the presence of 50 mM NaCl because these 

vesicles were consistent with the size of a caveola (50-100 nm diameter), making the 

vesicles an ideal mimic in terms of the curvature that caveolin-1 would experience in the 

native membrane.  In addition, these vesicles were stable over long periods of time if kept 

at 4°C. 

One important property that defines vesicles versus other bilayer mimics is that 

they have a distinct interior and exterior, and this makes them ideal for topology assays 

that assess the orientation of proteins reconstituted into them.  To assess if the vesicles 

were static and hollow, a classic glucose entrapment experiment was performed to show 

that polar solutes present during the formation process can be encapsulated inside the 

vesicles.  First, the internal volume of the vesicles was calculated by the method of 

Huang and Mason using the Rh obtained from DLS experiments 156.  This analysis 

assumes a 4.5 nm thickness of the bilayer and surface area of 0.70 nm2 for each lipid.  A 
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calibration plot was generated based on this theoretical treatment and was used to link 

glucose entrapment to the size of the vesicles (Figure 2-7). 
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Figure 2-7.  Entrapped volume of vesicles as a function of their size.  This plot was used 
to obtain theoretical amounts of glucose that would be entrapped by EYPC vesicles in the 
size range generated for the studies performed. 
 
Using the internal volume entrapment parameter it is possible to assess if the vesicles are 

static by measuring the mass of glucose entrapped per mass of lipid and comparing it to 

an expected value based on a given vesicle size and loaded glucose concentration.  For 

this experiment, vesicles formed in the presence of 100 mM NaCl for pure lipid vesicles 

or 50 mM NaCl for HSVFLAGCav162-178 vesicles (1:6000 protein to lipid ratio) were used 

since vesicles of approximately the same size are formed using both methods.  Based on 

theoretical calculations, the entrapped volume for non-protein loaded vesicles was 0.155 

μg glucose/μg lipid.  The actual entrapped volume was determined to be 0.133 μg 

glucose/μg lipid.  The two values are with 14% of each other, indicating that the vesicles 

are static and hollow, in agreement with the SLS studies.  This is also evidence of 
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unilamellar vesicle preparations as multilamellar vesicles entrap much less than the 

theoretical value based on a sphere with only a single bilayer.  For the protein loaded 

vesicles, the entrapped volume was found to be 0.116 μg glucose/μg lipid.  This agreed 

well with the theoretical value of 0.140 μg glucose/μg lipid.  The two values are within 

17% of each other, indicating that the HSVFLAGCav162-178 does not significantly alter the 

encapsulation properties of the vesicles formed.  As mentioned the inclusion of glucose in 

the formation buffer had no effect on the size of the vesicles formed.  Furthermore, the 

closeness of the experimental value to the theoretical value supports the accuracy of DLS 

measurements.  Although glucose entrapment proves that the vesicles are hollow and 

likely unilamellar, it does not give data on the integrity of the vesicles over time. 

To evaluate the permeability of the vesicles as a measure of stability over time, 

glucose-6-phospate, which cannot pass through bilayers due to its -2 charge, was 

entrapped in vesicles with and without HSVFLAGCav162-178.  Un-entrapped material was 

removed using desalting resin and then glucose-6-phosphate dehydrogenase was added to 

the exterior of the vesicles.  This enzyme is large and will not be able to access entrapped 

glucose and will thereby only process glucose-6-phophate that leaks through the vesicles.  

Once the glucose-6-phosphate dehydrogenase processes the glucose-6-phosphate by 

oxidizing the anomeric carbon, NADP+ is reduced to NADPH which then reduces 2-(4-

Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-terazolium and produces a 

yellow colored formazan 157.  After roughly 400 minutes at room temperature the vesicles 

were lysed with Triton-X-100 detergent to assess the total levels of glucose-6-phosphate 

entrapped.  Figure 2-8 shows the entrapment study result.  It was observed that over time 

there is very slow leakage rate in both protein containing and non-protein containing 



 

61 
 

vesicles.  There was a slight difference with the protein containing vesicles being 

somewhat more permeable (roughly 4 fold) than those prepared in the absence of the 

protein (Figure 2-8 inset).  After the addition of detergent, there was a large increase in 

the signal as the substrate became available to glucose-6-phosphate dehydrogenase 

confirming that glucose-6-phosphate was entrapped.  It is surprising that the permeability 

would be altered by the addition of HSVFLAGCav162-178 to the vesicles given that it is not a 

pore forming peptide.  Reports of leakage of entrapped vesicle contents from the 

reconstitution of transmembrane proteins such as mellitin do exist, although the 

mechanism is still unclear.  Nonetheless, it is likely that the vesicles are intact and 

contents on the interior would not be accessible to larger species, such as enzymes. 
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Figure 2-8.  Glucose-6-Phosphate is entrapped within the vesicles over a time period of 
~400 minutes.  The contents are released by the addition of the mild detergent Triton-X-
100 proving that the vesicles are static.  The inset shows a small difference in the natural 
leakage rate between protein lacking and protein containing samples. 
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Reconstitution and Topological Evaluation of HSVFLAGCav162-178 

After first determining that HSVFLAGCav162-178 was associated with the vesicle 

containing faction eluting from the gel filtration column by Western blotting, the amount 

of protein reconstituted into various cholesterol containing vesicles was examined (Figure 

2-9).  This method shows that HSVFLAGCav162-178 co-elutes with the vesicle containing 

fraction (the weak band above the intense band is a small amount of dimer which was 

frequently observed during SDS-PAGE analysis, Figure 2-9A).  Therefore, 

HSVFLAGCav162-178 is incorporated into the vesicles using the PFOA method.  Interestingly, 

HSVFLAGCav162-178 runs higher than the expected molecular weight of 18.2 kD (Figure 2-

9A lane 2).  This phenomenon has been reported as a property of hairpin structured 

membrane proteins due to anomalous detergent binding 158.  Next, the amount of 

HSVFLAGCav162-178 incorporated into cholesterol containing vesicles (lanes 3 and 4) was 

compared relative to the amount of HSVFLAGCav162-178 incorporated into non-cholesterol 

containing vesicles (lane 2) and yielded values of 1.0, 0.91, and 1.11 for 0, 5, and 20% 

cholesterol respectively.  This analysis was undertaken because caveolin putatively binds 

cholesterol in the 94-101 region and an earlier study where caveolin was reconstituted 

into vesicles found that the protein required cholesterol to achieve significant amounts of 

reconstituted protein 19,159,160.  This analysis determined that there was no difference in 

HSVFLAGCav162-178 incorporation into the vesicles due to cholesterol.  Therefore, it appears 

that caveolin does not strictly require cholesterol to partition into membranes.  However, 

it cannot be discounted that the facile reconstitution of HSVFLAGCav162-178 into vesicles 

may be enhance by the presence of the protease cleavage sites engineered to the ends of 

the protein that were required for a topological evaluation. 
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To better understand if the HSVFLAGCav162-178 protein used in these studies was 

behaving as an integral membrane protein and not just as a peripherally bound or a 

vesicle entrapped species, a sodium carbonate extraction method was utilized 161.  This 

method uses sodium carbonate at pH 11.5 to linearize the vesicles into membrane sheets 

as well as to break up electrostatic interactions between peripherally bound proteins and 

the membrane surface.  The membrane sheets are then collected by ultracentrifugation, 

and if a membrane protein is incorporated into the bilayer it will be localized to the pellet.  

Figure 2-9B shows the result of this study.  Lane 1 and 2 represent pre- and post- 

carbonate extraction samples of the same vesicle preparation loaded to the same final 

protein concentration (10 μg/mL).  Analysis of these species by densitometry shows that 

there is very little difference in intensity of the bands found at 18.2 kD having relative 

intensities that are within 30% of one another, providing evidence that the HSVFLAGCav162-

178 construct used in these studies is behaving as an integral membrane protein and is not 

superficially absorbed to the vesicles surface due to electrostatic interactions. 
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Figure 2-9.  A)  Western blot analysis of caveolin-1 reconstituted into vesicles of varied 
cholesterol composition.  Lane 1 is a molecular weight ladder.  Lane 2, 3, and 4 represent 
reconstitution of HSVFLAGCav162-178 into vesicles with a lipid composition of 0, 5, and 20% 
cholesterol by mol respectively.  Each lane was quantified relative to the HSVFLAGCav162-

178 band in lane 2 using densitometry.  B)  Western blot analysis of pre and post carbonate 
extraction of caveolin-1 from vesicles indicating that caveolin-1 is integrated into the 
hydrophobic matrix of the vesicles.  Bands were quantified relative to the amount of 
HSVFLAGCav162-178 in lane 1 by densitometry. 
 

A protease protection assay was used to determine if the protein had been 

integrated into vesicles in a native ‘horseshoe’ orientation.  Two enterokinase restriction 

sites were placed on each flank of the transmembrane region, that if solvent accessible, 

would be cleaved by the protease.  It is unlikely that enterokinase would be able to cross 

bilayers due to its large size (26 kD) and soluble nature, therefore it was an excellent way 

to probe exposure of the HSVFLAGCav162-178 termini upon reconstitution.  Furthermore, the 

prior result showing that glucose-6-phosphate dehydrogenase (67 kD) cannot process the 

majority of entrapped glucose-6-phosphate until vesicle permeabilization by detergent 

adds support to the notion that enterokinase would not be able to access the interior of the 
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vesicles.  Preceding the N-terminal FLAG site and after the C-terminal FLAG site, are 

HSV antibody recognition epitopes, which were added to enhance molecular weight 

changes upon enterokinase cleavage (Figure 2-10). 

Caveolin-1  62-178 FLAGFLAG HSVHSV

Enterokinase Enterokinase

18.2 kD

16.6 kD 15.9 kD

14.4 kD

 

Figure 2-10.  Graphic representation of the limited proteolysis assay principle performed 
on HSVFLAGCav162-178.  The bar diagram on top shows the construct layout with different 
cleavage possibilities and their expected molecular weight shifts shown below. 
 
Using this construct, four cleavage products were possible, each indicating a different 

topological orientation within the vesicles.  The four predicted molecular weights upon 

enterokinase treatment are 18.2 kD (uncleaved), 16.6 kD (C- terminal only cleavage), 

15.9 kD (N- terminal only cleavage), and 14.4 kD (both termini cleaved).  Two 

possibilities correspond to caveolin-1’s natively folded orientation (18.2 kD and 14.4 kD) 

and two possibilities correspond to a non-biologically relevant transmembrane orientation 

(16.6 kD and 15.9 kD).  The result of the cleavage reaction performed on HSVFLAGCav162-

178 reconstituted into vesicles formed using the PFOA detergent dialysis technique is 

shown in Figure 2-11.  The molecular weight markers generated from making truncations 
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of HSVFLAGCav162-178 (Figure 2-11 lane 1) are run side by side with the enterokinase 

treated and untreated vesicles (Figure 2-11 lanes 2 and 3).  Clearly, the four possibilities 

can be resolved using SDS-PAGE.  The cleavage pattern after five hours of allowing the 

vesicles to interact with enterokinase is shown in lane 3 and resulted in the appearance of 

two major bands.  These cleavage products correspond to the fully cleaved product (14.4 

kD) as well as the C-terminally cleaved product (16.6 kD).  Using densitometry to 

compare relative amounts of the cleavage product to the uncleaved parent band showed 

that although a fraction HSVFLAGCav162-178 is integrated with both N- and C- termini facing 

the exterior of the vesicle (32  5%, n=3), most of the protein is present in a misfolded 

(Ninterior, Cexterior) transmembrane orientation (60  2% , n=3, Figure 2-11, lane 3). 

18.2 kDa

16.6 kDa

15.9 kDa

14.4 kDa

1 2 3

1.00 0.60

0.35

 

Figure 2-11.  Typical results of limited proteolysis assay performed on HSVFLAGCav162-178.  
Lane 1 shows a home-made molecular weight marker that is used to track the cleavage 
pattern (all four possibilities).  Lane 2 shows HSVFLAGCav162-178 prior to the addition of 
enterokinase.  Lane 3 shows the post enterokinase cleavage product which resulted in the 
appearance of two major bands.  The cleavage products are quantified relative to the 
parent band in lane 2 by densitometry. 
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It is worth mentioning that changes in the ionic strength of the formation buffer (leading 

to a size change in the vesicles) did not have an effect on the observed cleavage pattern, 

downplaying any significance of vesicle curvature.  The result from the cleavage study is 

surprising for two reasons: One is that the transmembrane conformation would require a 

significant tilt of the protein to provide hydrophobic coverage of the intramembrane 

domain and the other is that the protein seems to preferentially orient with the C-terminus 

on the exterior or with both termini facing the exterior indicating specific topologies were 

preferred.  It would be expected that if the protein weren’t refolded properly, a mixture of 

all four topologies would be observed, however, this was not the case.  This leads to the 

interesting idea that there is an equilibrium between the native topology and the 

transmembrane topology which would be controlled biologically.  It also leads to the 

possibility that the natively folded population positions its termini on the side of less 

curvature through a biophysical mechanism as only small amounts of uncleaved species 

were observed (usually below the detection limit of the assay).  It is possible that the tags 

at the termini or the N-terminal truncation alter the proteins topological behavior.  It has 

been demonstrated that residues flanking the transmembrane region of caveolin have lead 

to differences in its membrane orientation when translated in the presence of dog 

pancreas microsomes.  Specifically, it was found that a full length caveolin construct with 

glycosylation epitopes at its termini could be not be glycosylated at either termini 

(Ncytoplasmic, Ccytoplasmic), in line with the study discussed in chapter 1.  However, a 

construct in which N-terminal residues 1-95 were removed could be glycosylated at the 

N-terminus (Nluminal, Ccytoplasmic), and the removal of C-terminal residues 140-178 resulted 

in a construct that could be glycosylated at its C-terminus (Ncytoplasmic, Cluminal) 76.  Finally, 
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in a construct where the removal of all portions of the protein except the intramembrane 

domain (construct: 96-139), a mixture of topologies was observed.  Removal of the 

termini changes the net charge of the wild-type caveolin molecule.  In the HSVFLAGCav162-

178 construct, both termini have a negative net charge yielding a possible parallel between 

our studies and the aforementioned study where a fine balance of charged residues may 

be required to uphold caveolins specific membrane orientation.  Therefore the construct 

used in these studies may not necessarily capture the true nature of the native caveolin-1 

given that the addition of a single residue flanking a transmembrane sequence has been 

shown to alter its topology 162. 

Another possibility exists that although the insertion of our polypeptide into the 

bilayer is controlled thermodynamically by lipid-protein interactions (therefore correct 

hydrophobic coverage is obtained, as evidenced by carbonate extraction), a specific 

orientation is controlled biologically by the cellular machinery which inserts membrane 

proteins into the lipid bilayer (such as the Sec61 translocon complex) 163.  Interestingly, 

the Sec61 translocon often places termini of transmembrane sequences that are preceded 

by positively charged residues on the cytoplasmic side of the membrane, and the caveolin 

TMD is flanked by a lysine at position 96 and a lysine at position 136 164.  Nonetheless it 

is still very interesting to consider that caveolin-1 may orient with a preference outside of 

a biological system but more studies will be needed to determine what drives this 

preference. 

It is also known that refolding proteins using fluorous surfactants, such as PFOA, 

results in the formation of non-native α-helices 143.  These non-native helices could be 

stable after the detergent has left resulting in the improperly folded transmembrane 
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orientation.  Therefore, it is possible that PFOA is too harsh or too exotic to result in 

properly folded material.  Clearly, other approaches will need to be explored to natively 

fold caveolin-1 in vitro. 
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CONCLUSIONS 

In this chapter, a method of forming lipid vesicles by detergent dialysis of PFOA-

EYPC mixtures was demonstrated.  This expands upon the limited number of detergents 

that have properties that facilitate membrane protein reconstitution into vesicles by 

detergent dialysis (high CMS and can solubilize membrane proteins at high 

concentrations).  Important properties of the vesicles were confirmed including the size, 

shape, homogeneity, and the ability to entrap solutes included in the formation buffer.  It 

was found that NaCl can be used to control the size of the vesicles formed and that 

cholesterol can be incorporated into the vesicles in biologically relevant quantities.  A 

novel assay for examining the permeability of the polar solute glucose-6-phosphate was 

demonstrated and could be useful for studies examining the effects of proteins, 

detergents, or small molecules on the integrity of vesicles.  The reconstitution of a 

functional construct of the integral membrane protein caveolin-1 was proven by co-

elution with vesicles on a gel filtration column.  Caveolin-1 was shown to be 

reconstituted into the bilayer as an integral membrane protein by the carbonate extraction 

method.  Interestingly the HSVFLAGCav162-178 construct used in the studies was found to 

increase vesicle size and permeability slightly.  A limited proteolysis assay was presented 

and it was shown that the majority (60 %) of the protein adopted a non-native fold, 

possibly due to alterations to the constructs termini, detergent mediated formation of non-

native α-helices, or the need for a protein chaperone to mediate the insertion.  The 

remaining population was found to have both termini exposed, indicating that a small 

fraction could be refolded in a directional fashion.  The methodologies presented here 

may be useful for reconstituting extremely hydrophobic membrane proteins that have 
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limited solubility in commonly used detergents used for vesicles formation by detergent 

dialysis.   
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Appendix 2-1.  Sequence of Protein Constructs Utilized 
 

Construct Protein Sequence 
HSVFLAGCav162-178  
Full Length 

QPELAPEDPEDDYKDDDDKDVV
KIDFEDVIAEPEGTHSFDGIWK
ASFTTFTVTKYWYRLLSALFGI
PLALIWGIYFAILSFLHIWAVV
PSIKSFLIEIQSISRVYSIYVH
TVSDPLFEAVGKIFSNVRINLQ
KEIDYKDDDDKDGIQPELAPED
PED 
 

HSVFLAGMinsCav162-178 
N-Terminal Cleavage 

QPELAPEDPEDDYKDDDDKMDV
VKIDFEDVIAEPEGTHSFDGIW
KASFTTFTVTKYWYRLLSALFG
IPLALIWGIYFAILSFLHIWAV
VPSIKSFLIEIQSISRVYSIYV
HTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPE
DPED 

 
HSVFLAGCav162-178Stopins 
C-Terminal Cleavage 

QPELAPEDPEDDYKDDDDKDVV
KIDFEDVIAEPEGTHSFDGIWK
ASFTTFTVTKYWYRLLSALFGI
PLALIWGIYFAILSFLHIWAVV
PSIKSFLIEIQSISRVYSIYVH
TVSDPLFEAVGKIFSNVRINLQ
KEIDYKDDDDK 
 

HSVFLAGMinsCav162-

178Stopins 
N/C-Terminal Cleavage 

QPELAPEDPEDDYKDDDDKMDV
VKIDFEDVIAEPEGTHSFDGIW
KASFTTFTVTKYWYRLLSALFG
IPLALIWGIYFAILSFLHIWAV
VPSIKSFLIEIQSISRVYSIYV
HTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDK 
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Appendix 2-2.  Mutagenesis primers utilized 
 

Construct Primer Sequence 

HSVFLAGMinsCav162-178 
N-Terminal 

Cleavage 

5’-

CAAAGACGACGACGACAAAATGGACGTTGTT

AAAATCGACTTC-3’ 

 

HSVFLAGCav162-178Stopins 
C-Terminal 
Cleavage 

5’-

CGACGACGACAAAGACTAAATCCAGCCGGAA

CTGG-3’ 
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Appendix 2-3.  PCR Cycling Conditions 

 
Reaction Component Volume 

Sterile ddH2O 13.3 μL 

10X Pfu Turbo Buffer 2.5 μL 

10X 9N° Ligase Buffer 2.5 μL 

DMSO 0.2 μL 

dNTPS (25 mM) 2.5 μL 

Template DNA (30 ng/μL) 1.0 μL 

Forward (5’-3’) Quikchange primer (10 μM) 1.0 μL 

Pfu Turbo Polymerase 1.0 μL 

9N° Ligase 1.0 μL 

 
PCR Cycling Conditions   

Number of 

Cycles 

Temperature Time 

1 95°C 30 seconds 

30    Step1 95°C 30 seconds 

        Step2 55°C 1 minute 

        Step3 68°C 6 minutes 

Storage 4°C ∞ 
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Appendix 2-4.  Transformation Protocols 
 
General Transformation Protocol XL-1 Blue/BL21DE3 E. coli  
 

1. Pre-chill a culture tube and thaw 50 μL of cells on ice 

2. Add cells and DNA to the culture tube according to the following table: 

 
Application Cell Type Amount DNA 
Standard Transformation XL-Blue/BL21DE3 

(Subcloning Grade) 
1μL of 20 ng/μL plasmid 
DNA 

Mutagenesis XL-Blue                   
(Ultra-competent) 

1μL of post PCR 
reaction/post DpnI 
treated mixture 

Ligation XL-Blue          
(Subcloning Grade) 

1μL of post ligation 
mixture 

 
3. Incubate reaction mixture on ice for 30 minutes. 

4. Heat shock the cells at 42°C for 90 seconds. 

5. Place the culture back on ice for two minutes. 

6. Add 300 μL of SOC media to the culture. 

7. Incubate at 37°C for 1 hour with shaking at 250 rpm. 

8. Plate various dilutions on LB (XL-1 Blue) or MDAG (BL21DE3) agar plates 

supplemented with the appropriate antibiotic and allow to grow over night. 

9. Pick a single colony for desired downstream application. 
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Appendix 2-5.  Starter and Media Recipes 
 

MDG Starter Recipe 
(5 mL) 

 MDAG Starter 
Recipe (5 mL) 

 

Reagent Volume Reagent Volume 
ddH2O 4.8 mL ddH2O 4.7 mL 
1M MgSO4 10 μL 1M MgSO4 10 μL 
1000× Trace Metals 1 μL 1000× Trace Metals 1 μL 
25% (w/v) Aspartate 50 μL 25% (w/v) Aspartate 20 μL 
40% (w/v) Glucose 62.5 μL 40% (w/v) Glucose 43.8 μL 
50×M 100 μL 50× M 100 μL 
17 Amino Acids None 17 Amino Acids 100 μL 
40 mg/mL Methionine None 40 mg/mL Methionine 40 μL 
1000 × Kanamycin 5 μL 1000 ×  Kanamycin 5 μL 

 
 

ZYM-5052 Recipe (2L)  
Reagent Amount 
ddH2O 1916 mL 
NZ Amine 20 grams 
Yeast Extract 10 grams 
1M MgSO4 4 mL 
1000X Trace Metals 400 μL 
50×M 40 mL 
50×5052 40 mL 
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Appendix 2-6.  Auto-Induction Growth Protocol 
 

1. Add either a fresh colony or a crystal from a 15% glycerol cell stock to 1-5 mL of 

MDG supplemented with antibiotic and shake on a platform shaker at 250 rpm at 

37℃ for 16-20 hours. 

2. Dilute starter culture into ZYM-5052 at a 1:1000 culture to ZYM-5052 ratio and 

shake on a platform shaker at 250 rpm at 37℃ for 10-14 hours. 

3. Harvest by centrifugation at 5000 x g for 30 minutes at 4℃. 

4. Wash pellets with 0.9 % (w/v) NaCl at 1/5 the original culture volume. 

5. Centrifuge 5000 x g for 30 minutes at 4℃. 

6. Cell pellets can be stored short term (days) at -20℃ or long term (months) at -

80℃ before protein preparation. 
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Chapter 3.  Does Caveolin-1 Contain a Membrane Embedded Turn? 
 

ABSTRACT 

Caveolin-1 is critical in many cellular functions that are localized within caveolae.  

It is thought that caveolin induces membrane curvature and drives the formation of 

caveolae, although the mechanism remains elusive.  However, caveolins unique topology 

could be key in understanding the structural role that leads to its bilayer bending 

predilection.  The membrane interacting portion of caveolin-1 is comprised of two α-

helical segments, (H1 and H2) connected by a three-residue unstructured break with both 

N- and C-termini exposed to the cytoplasm.  A U-shaped configuration is assumed based 

on its inaccessibility to extracellular matrix probes, however, both the structure and exact 

topology of caveolin within a bilayer remains elusive.  This chapter aims to characterize 

the structure, depth, and conformation of the core membrane interacting region of 

caveolin-1 residues 82-136 (Cav182-136) in a DMPC bilayer using NMR, fluorescence 

emission measurements, and molecular dynamics simulations.  The secondary structure 

of Cav182–136 from NMR chemical shift index analysis serves as a guideline for 

generating initial structural models for molecular dynamics simulations (MD).  Fifty 

independent molecular dynamics simulations (100 ns each) were performed to identify 

the favorable conformation and orientation of Cav182-136 in the bilayer.  A representative 

configuration was chosen from these multiple simulations and was simulated for 1 μs to 

further explore the stability and dynamics of Cav182-136.  The results of the simulations 

agreed strongly with tryptophan fluorescence measurements (i.e., Cav182–136 insertion 

depth in the bilayer).  These data work together to corroborate that Cav182–136 inserts in 

the membrane with a U-shaped conformation, and that the angle between H1 and H2 is 
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dynamic and ranges from 35 - 69°.  The overall tilt of the Cav182–136 molecule was found 

to be 27  6°, and it was observed that H1 and H2 tilt differentially to provide lipid 

coverage of their hydrophobic segments.  Additionally, the simulations also reveal that 

specific faces of H1 and H2 prefer to interact with each other and with lipid molecules 

and these interactions may help stabilize the membrane-embedded U-shaped 

conformation. 
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INTRODUCTION 
 

Despite great gains in the characterization of the secondary structure of caveolin, 

there are still major questions in terms of its exact membrane topology which need to be 

addressed in order to better understand the proteins tertiary structure in the context of the 

lipid bilayer.  One major question that has brought controversy is what is the structure 

and orientation of caveolin-1 in a bilayer?  Another is the question of the existence of 

specific intramolecular caveolin helix-helix or intermolecular caveolin-lipid interactions 

that would help dictate caveolin structure and orientation.  This chapter tackles these 

provocative and critical questions using molecular dynamics (MD) simulations guided 

and supported by NMR and tryptophan fluorescence emission data.  NMR experiments 

were performed to determine the secondary structure of a caveolin-1 construct consisting 

of the CSD and IMD (residues 82–136: Cav182–136).  NMR experiments employing 

chemical shift index analysis indicates that residues A87–F107 form helix 1 (H1) and 

L111–A129 form helix 2 (H2) which are separated by a three residue break spanning 

from G108 to P110.  This data provided a template for starting conformations in 

molecular dynamics simulations.  The short simulations were employed to sample a large 

conformational space by generating 50 × 100 ns trajectories of Cav182–136 embedded in a 

lipid bilayer with various starting angles between H1 and H2, different initial H1 and H2 

interfaces, and different initial insertion depths.  Next, a simulation that best represented 

the averaged parameters from the short simulations was utilized for an extended 

conformational evolution over a 1 μs time period to further explore dynamics, stability, 

and protein-lipid interactions. 
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The simulation results provide evidence that a U-shaped conformation for Cav182–

136 embedded in the lipid bilayer is stable over the course of the simulations.  The tilt of 

the overall Cav182–136 molecule was determined to be 27  6°, revealing a nearly vertical 

disposition for the protein.  The angle between the two helices was dynamic but 

maintained an average of 53  5°.  Interestingly, side-chain interactions between the two 

helices near the three residue break were evident and may be at play in helping the 

protein maintain its conformation.  Depth measurements revealed that the turn residues 

were buried within the hydrophobic core of the membrane.  The depth was corroborated 

with tryptophan fluorescence experiments examining the Stoke’s shift data obtained for 

Cav182–136 single tryptophan mutants.  Simulations examining the interaction between 

Cav182–136 and lipids showed that residues in both leaflets of the bilayer can interact with 

lipid headgroups via water mediated hydrogen-bonding.  These interactions likely play an 

important role in the topological and conformational preferences of caveolin-1 within the 

bilayer.  Overall, this chapter helps provide a better understanding of caveolin-1 structure 

and behavior within the lipid bilayer. 
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MATERIALS AND METHODS 
 
NMR spectroscopy 

Isotopically labeled Cav182–136 and Cav182–136(W85F, W98F, W115F, W128F) 

were prepared according to protocols described by Lee et al 70.  Lyophilized Cav182–136 

constructs were dissolved into a buffer containing 100 mM 1-myristoyl-2-hydroxy-sn-

Glycero-3-[Phospho-rac-(1-glycerol)] (sodium salt) (LMPG, Avanti Polar Lipids, 

Alabaster, AL), 100 mM NaCl, 20 mM phosphate at pH 7, and 10% D2O for a final 

protein concentration of ~1.0 mM.  This mixture was vortexed vigorously until a clear 

homogeneous solution resulted.  The sample was then passed through a 0.2-μm 

regenerated cellulose spin filter.  NMR spectra were acquired at 310 K using a 600 MHz 

Avance II spectrometer (Bruker, Billerica, MA) equipped with a cryoprobe.  For analysis 

and backbone assignments, the following transverse relaxation optimized spectroscopy 

based 165 pulse sequences were utilized: HSQC 166, HNCA 167, HNCACB 168, HN(CO)CA 

169, and HNCO 170.  The spectra were processed using NMRPIPE and SPARKY software 

171,172.  For the generation of the chemical shift index plot, the observed Cα chemical 

shifts were subtracted from their corresponding random coil chemical shifts as described 

by Wishart and Sykes 173.  To aid in backbone assignments, specific amino-acid labeling 

was employed (Gly, Phe, Tyr, Leu, Ile, and Val). 

 

Single Tryptophan Mutant Cloning, Expression, and Reconstitution into Bicelles 

Cav182–136 was cloned, expressed, and purified according to protocols described in 

Chapter 2 146.  Cav182–136 contains four tryptophan residues: W85, W98, W115, and 

W128.  Single tryptophan mutant constructs were prepared using the Quick-change site-

directed mutagenesis kit (Agilent, Santa Clara, CA).  In each mutant, one of the four 
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native tryptophan residues was retained and the other three were mutated to 

phenylalanine.  Primers were designed using the free web-based primerX program 

(Bioinformatics.org).  See Appendix 2-3 for PCR reaction and cycling conditions.  A 

TROSY-HSQC spectrum was obtained for the most dramatic mutant (Cav182–136(W85F, 

W98F, W115F, W128F)) to confirm that these mutations were not significantly altering 

the structure of the native Cav182–136. 

Cav182–136 was reconstituted into 4% (w/w) lipid, q= 0.5 DMPC/CHAPSO (1,2 

dimyristoylphosphatidylcholine (Avanti Polar Lipids, Alabaster, AL)/3-[(3-

cholamidopropyl)dimethylammonio]-2-hydroxy-1-propane sulfonate) (Anatrace, 

Maumee, OH) bicelles at a protein concentration of 30 μM.  To achieve this, Cav182–136 

was first reconstituted into DMPC vesicles by dissolving the protein and lipid to 30 μM 

and 20 mM, respectively, in a buffer containing 300 mM PFOA and 20 mM Tris-HCl pH 

8.0.  This solution was then dialyzed (three 24-h exchanges) against 1 L buffer (20 mM 

Tris-HCl pH 8.0 and 50 mM NaCl).  The vesicle containing solution was centrifuged at 

10,000 x g for 20 minutes at room temperature.  The supernatant collected and 

centrifuged at 366,613 x g for 2 h at 4°C to pellet the vesicles.  The pelleted vesicles were 

then converted into 4% (w/w) lipid, q = 0.5 bicelles by adding ice-cold buffer components 

(2.704 mL 20 mM phosphate pH 7.0 and 296 μL 25% (w/w) CHAPSO) and slowly 

mixing on ice over the course of 30–60 minutes.  The bicelles were then centrifuged at 

10,000 x g for 20 minutes at room temperature to remove protein and lipid aggregates 

that may have formed during the reconstitution process.  The supernatant was used for 

fluorescence measurements. 
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Determination of λmax for Single Tryptophan Mutants 

Three separately prepared samples were used to determine λmax for each single 

tryptophan mutant.  Bicelles were used because they scatter very little light, and contain a 

planar DMPC bilayer, which closely mimics the environment employed in the 

simulations 116.  Fluorescence emission spectra were acquired using a 1 × 1 cm quartz 

cuvette held at 310 K with an Eclipse fluorometer (Agilent, Santa Clara, CA).  The 

excitation wavelength used was 295 nm to avoid unwanted tyrosine excitation 127.  Both 

the excitation and emission slit widths were set to 5 nm. The emission spectra were 

measured from 315 to 500 nm with a scan speed of 1 nm/s and 0.5 nm data point 

increments.  Four scans were averaged for each construct.  A blank solution containing 

only bicelles was used to subtract background fluorescence.  The λmax values were 

obtained by fitting the spectra to a log-normal distribution using Igor Pro 6.22A software 

(Wavemetrics, Portland, OR) 133. 

 

Building a Structural Model for In Silico Analysis of Caveolin-1 

The characterization of the structure and dynamics of Cav182-136 on a quantitative 

level required that a model be generated that describes parameters which define its 

intramolecular fold and topological disposition with respect to the bilayer.  To define the 

intramolecular fold of Cav182-136 with respect to the bilayer, four parameters are needed: 

the angle between the two helical axes of H1 and H2 (), the angle of rotation for H1 (ρ1) 

and H2 (ρ2), and the distance between a pair of residues that are in close contact (Resij, 

the residues are on different helices).  To define the rotation, two vectors in the plane 

perpendicular to the helical axis of rotation are used.  One of these vectors is the fifth Cα 

from the N-terminus of the helix, the other is one drawn connecting the centers of the two 
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helices, both of which are in structured spots that do not have conformational floppiness 

that would cause difficulties in interpreting the data to arise (Figure 3-1).   

 A description of the topology requires four additional parameters: the Cav182-136 

tilt angle (φ), which is the angle between the molecular plane of caveolin and the 

membrane normal, the individual helical tilts of H1 (α) and H2 (β) in the Cav182-136 

molecular plane (the least squares plane through all of the Cα atoms which define helices 

H1 and H2), and the insertion depth of the protein in the bilayer (ZCOM), which is defined 

as the center of mass of the Z position (distance from the bilayer center in Å) of residues 

at the break (G108-P110).  Although it may not be clear, the individual tilt angles of the 

helices are necessary for an unambiguous description of the Cav182-136 fold in the bilayer.  

This is because the helices sometimes deviate from the molecular plane of caveolin in the 

simulations, however, the two individual tilt angles are a good approximation of  when 

the two helices are within the same plane (α-β ). 
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Figure 3-1.  A)  Parameters used to define the intramolecular fold of Cav182–136 and B)  
Parameters used to define the orientation of the Cav182–136 molecule with respect to the 
lipid bilayer.  Spheres show the approximate location of residues of interest in terms of 
their burial within the bilayer. 
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Multiple 100 ns and 1 μs caveolin-1 simulations in DMPC bilayers 

A Cav182–136 model was first generated using the IC BUILD command in 

CHARMM 174.  Based on the secondary structure assignments from the chemical shift 

index plot, residues A87–F107 (H1) and L111–A129 (H2) were modeled as ideal α-

helices with their Φ- and Ψ- angles assigned to -57.8° and -47°, respectively; the other 

residues were modeled with their Φ - and Ψ- angles in the CHARMM residue topology 

file.  The Φ- and Ψ- angles of G108 were varied randomly to generate initial structures of 

Cav182–136 with different angles between the helical axes of H1 and H2 ().  These 

structures were then placed into five categories (initial=45°, 55°, 65°, 75°, and 85°), with 

10 replicas in each set, all of which have  within  5° of initial.  Prior to inserting 

caveolin models into the bilayer, the protein was oriented so that its principle axis (the 

vector sum of the axis of H1 and H2) coincided with the membrane normal (Z).  As there 

is no concrete depth measurement in existence for caveolin, the insertion depth of the 

model in each replica system was initially positioned along the Z axis by randomly 

placing the break residues’ centers of mass (COM) between -5 Å and 5 Å; by definition 

Z=0 corresponds to the bilayer center. 

After the generation of these initial models, each one was embedded in a DMPC 

bilayer, solvated by 0.15 M KCl.  The system was composed of ~52,000 atoms and had a 

size of 75 × 75 × 90 Å3.  Every system was individually constructed using the 

MEMBRANE BUILDER module 175,176 in CHARMM-GUI 177.  Each short simulation 

was ascribed a reference code in the form of cav1_P_Q, with P and Q corresponding to 

the value of initial and the replica index (cav1_45_5 corresponds to the fifth replica with 

initial=45°).  Each system was allowed to equilibrate for 225 ps to allow initially 
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uncorrelated system components to relax.  After this short time period, 100 ns second 

simulations were performed for each of the 50 systems.  For the first 50 ns of each 

simulation the dihedral restraints of H1 and H2 backbone atoms were not allowed to float 

in order to maintain their secondary structure according to the chemical shift index 

analysis.  This was designated as an equilibrium time period and was not utilized in the 

final trajectory analysis.  For the final 50 ns, these restraints were taken away and the 

system was allowed to explore the conformational preferences of Cav182-136. 

All calculations were performed with the constant particle number, pressure, and 

temperature (NPT) ensemble 178 using CHARMM 174.  The temperature was maintained 

at 310 K using Nosé-Hoover temperature control 179,180 and the extended system 

algorithm was employed to maintain a pressure of 1 atm along the membrane normal 178.  

The C27 all-atom force field 181 with a modified version of dihedral cross-term correction 

182 was used for the protein.  In addition to the protein force field, the C36 lipid force 

field 183 was used for DMPC and the TIP3P water model 184 was employed for water 

molecules.  A time step of 2 fs was enabled with the SHAKE algorithm 185.  Because of 

the U-shaped conformation of caveolin-1 and potential changes in the protein cross-

sectional area in both lipid leaflets during the simulation, the P21image transformation 186 

was applied to allow the variation in the number of lipids at the top and bottom leaflets 

during the simulation.  The non-bonded and dynamics options were kept the same as in 

the MEMBRANE BUILDER input; the van der Waals interactions were smoothly 

switched off at 10–12 Å by a force-switching function 187 and the electrostatic 

interactions were calculated using the particle-mesh Ewald method 188 with a mesh size 
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of ~1 Å for fast Fourier transformation, κ=0.34 Å-1, and a sixth-order B-spline 

interpolation. 

After allowing Cav182–136 to explore conformational and structural preferences in 

a DMPC bilayer using the multiple 100 ns simulations, the distribution of final structural 

parameters (, φ, α, β, ρ1, ρ2, Z) for each set was analyzed to ascertain the most probable 

values.  A snapshot from one of the short simulations, cav1_65_3 at 85 ns had structural 

parameters that met the criteria of being a near mimic of the most probable values from 

the 50 simulations.  This system was employed for a 1-μs simulation using ANTON, a 

supercomputer designed for long timescale MD simulations.  As prior, a constant particle 

number, volume, and temperature (NVT) ensemble was employed with the Nosé-Hoover 

temperature coupling scheme (310 K).   

The lengths of all bonds involving hydrogen atoms were constrained using M-

SHAKE 189.  The cutoff of the van der Waals and short-range electrostatic interactions 

was set to 10.06 Å.  Long-range electrostatic interactions were evaluated with the k-space 

Gaussian split Ewald method 190 and a 64 × 64 × 64 mesh.  The integration time step was 

2 fs.  The r-RESPA integration method 191 was employed and long-range electrostatics 

were evaluated every 6 fs. 
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RESULTS AND DISCUSSION 
 
Probing the secondary structure of Cav182–136 

A combination of HSQC, HNCA, HNCACB, HNCO, and HN(CO)CA 

experiments, in conjunction with selective amino-acid labeling, were employed to give 

definitive backbone assignments for Cav182–136.  The HSQC obtained for Cav182–136 

revealed excellent chemical shift dispersion, which was indicative of a well structured 

protein, adding strength to using the secondary structure assignments obtained as a 

starting point for in silico analysis.  Using the aforementioned methods, nearly all of the 

backbone residues (96%) were assigned and all of the Cα values were obtained.  Figure 

3-2 shows a chemical shift index plot of Cav182–136.  Consistently positive stretches of 

∆Cα values indicate that residues 87–107 (H1) and 111–129 (H2) are α-helical 172.  In 

line with NMR studies on a shorter construct, (residues 96-136), there is a break between 

the two helices at residues 108–110, which most likely is the site of a turn between the 

helices, that returns the polypeptide chain to the same side of the membrane 70.  Regions 

flanking the helix-break-helix structural core (residues 82–86 and 130–136) show a 

random pattern of ∆Cα values which is indicative of unstructured or dynamic regions of 

the protein.  Importantly, TALOS+ which requires much more data input (Cα, Cβ, CO, 

N, and NH) is in agreement with the secondary structure assignment given to Cav182–136, 

confirming that the scaffolding domain and intramembrane domain have a helix-break-

helix motif 192.  This expands upon what is known about caveolin-1 secondary structure 

in this region as it is in contrast to the model put forth by Parton et al. 66, which is based 

on primary sequence analysis, and predicts three distinct helical regions for residues 82–
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136 (i.e., 81–92, 97–107, and 112–128).  Therefore, it appears that Cav182-136 is 

composed of two helices that are roughly equal in length. 

D GI WKA SF TTF TV TKY WF YRL LS ALF GI PLA LI WGI YF AIL SF LHI WA VVP SI KS

∆C


Helix 1 (H1)

+

-

Helix 2 (H2)

CSD IMD  

Figure 3-2.  Chemical shift index plot of Cav182–136.  The secondary structure is that of a 
helix-break-helix motif as consecutive positive ∆Cα values are indicative of α-helical 
structure, consecutive negative values are consistent with β-strand structure, and mixtures 
are dynamic regions. 
 
Defining the Cav182–136 Intramolecular Fold in a Lipid Bilayer 

The most distinct structural feature of caveolin-1 is its unusual U-shaped 

conformation shown by in vivo studies, where the N- and C- termini rest on the same side 

of the membrane and there is no portion of the protein accessible to extracellular probes 

71,74.  The current topological model places the portion of the protein that makes this 

dramatic turn to the same face of the bilayer from which it entered within the 

hydrophobic core of the bilayer.  Combining this with the NMR studies, it is clear that 
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this U-shaped model is made up of a helix-break-helix motif, likely implicating residues 

108-110 as the turn residues.  Even with this information in hand, it is unclear how the 

helices would be separated – for instance, is caveolin forming a tight hairpin 

conformation or does the protein adopt a wide angle in which the protein is linear and 

rests on the surface of the inner leaflet?  The angle between these helices also will likely 

play a large role in determining which residues pack together and their packing may give 

information in how a specific angle is stabilized by H1-H2 contacts. 

Simulations were set up to examine this question in depth and help determine 

which angle between the two helices is energetically favorable.  Simulation sets ranged 

with initial H1-H2 angles from 45-85° that were allowed to move into stable 

conformations over the timescale of the simulation.  Figure 3-3 shows the distribution of 

 for all simulations.  It was found that U-shaped conformation is stable in 98% of the 

short simulations having <90°.  Over the course of the longer simulation, the protein had 

a final= 53  5° which lent additional support to the stability of the U-shaped motif.  This 

indicates that, within the timescale explored by the simulation, the U-shape conformation 

is stable within the bilayer.  Significantly, this result shows that the protein is not linear 

and likely does not lay on the surface of the bilayer, which appears to be very 

unfavorable.  This finding is in-line with carbonate extraction studies which have shown 

caveolin-1 as an integral membrane protein 71,72.  This important piece of data will aid 

further refining the proposed mechanism of caveolin induced membrane curvature.  

Interestingly this finding may eliminate a BAR-domain type mechanism which requires 

the protein to lay on the surface of the bilayer acting as a scaffold that stabilizes 

membrane curvature 80,193. 
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Figure 3-3.  Population distributions of  in all systems.  Colors distinguish different 
simulation sets: cav1_45 (red); cav1_55 (green); cav1_65 (blue); cav1_75 (magenta); 
cav1_85 (cyan).  Additionally, the 1 μs simulation is indicated (orange) along with the 
average of all the 100 ns systems (black). 
 

Interestingly, the Cav182-136 molecule displayed a dynamic fluctuation in its  

value in the 1 μs simulation where  ranged from 35-69°.  This fluctuation happened on a 

time scale in the tens of nanoseconds and was usually accompanied by the diffusion of 

lipids between the two helices.  Lipid headgroup or tail intercalation between the two 

helices was observed the majority of the time, and their presence often persisted over the 

course of the entire simulation.  The appearance of lipids between H1 and H2 limited the 

protein from sampling angles below 30°, as angles beneath this limit were coincident 

with absence of lipids between the two helices.  Therefore, caveolin-lipid interactions are 

critical to the proteins maintenance of a specific fold in the bilayer. 

Aside from lipid interactions, specific H1-H2 interactions could be at play in 

determining the fold of Cav182-136.  Therefore, it was pertinent to determine if there were 

specific packing interactions between the faces of H1-H2 that could help explain the 

adoption of a  value that holds Cav182-136 in its U-shape.  The rotation angle (ρ1, ρ2) that 
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was varied randomly in the beginning of each simulation, the terminal position after the 

simulations is shown in Figure 3-4 as a cross plot. 
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Figure 3-4.  The average two dimensional rotation angle distribution for H1 (1) and H2 
(2) shown as a contour map.  Level of the contours are indicated going from low (black) 
to high (red) probability.  The one-dimensional distributions of each individual helix are 
shown with each different simulation set distinguished by different colors with cav1_45 
(red); cav1_55 (green); cav1_65 (blue); cav1_75 (magenta); cav1_85 (cyan).  
Additionally, the 1 μs simulation is indicated (orange) along with the average of all the 
100 ns systems (black). 
 
Although the values were initially randomized, they clearly collapsed upon a favorable 

orientation by the end of the short and 1 μs simulations of ρ1=337°, ρ2=115° and of 

ρ1=331°, ρ2=124° respectively.  The closeness between long and short simulations in 

terms of their ρ1, ρ2 pair values, indicates that the helical contacts form quickly, therefore 

they are likely very stable and are not highly promiscuous.  Specific interactions that 

were observed were van der Waals packing interactions near the turn as the helices come 

close together (Figure 3-5).  Specifically, these packing interactions were between A105 

and L106 of H1, I109 of the break, and I114 of H2.  This result helps explain both the 
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biological conservation of a β-branched amino acid at position 109 across species and 

caveolin isoforms (Figures 1-3 and 1-4), and NMR structural studies that showed only β-

branched amino acids are tolerated at this position for proper structuring.  I109 is likely 

very important in mediating interactions between the two helices 70.  Diverging from the 

turn region, hydrogen bonding interactions between R101 and Y118 to lipid headgroups 

were observed.  For R101 this interaction was electrostatic whereas for Y118 the 

interaction was due to hydrogen bonding.  The positively charged amino acid at position 

101 also represents a strongly conserved site among species and isoforms.  Therefore, the 

combination of these interactions may be crucial in generating and holding the U-shaped 

conformation.  It appears that short distance hydrophobic interactions are important at the 

point of the turn but longer distance hydrogen bonding interactions become dominant at 

the ends of the helices.  Interestingly, in a short simulation in which the U-shape was not 

maintained, these interactions were not present, strengthening the case for a specific 

packing interface between H1 and H2. 

A B

 

Figure 3-5.  A)  Residues that are found to interact at the Cav182-136 H1-H2 interface and 
B) Lipid-protein interactions through specific residues between H1 and H2.  This is a 
cartoon representation and the caveolin-1 scaffolding domain (red) and intramembrane 
domain (green) are indicated.  Lipids are indicated with phosphate atoms of the 
headgroups as orange spheres and tails as grey chains.  Both snapshots were taken from 
the 1-μs simulation. 
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Evaluation of the Orientation and Membrane Depth of Cav182-136 in a DMPC 

Bilayer 

The interplay between the hydrophobic length of transmembrane helices and the 

hydrophobic thickness of the lipid bilayer leads to tilting in membrane proteins.  In 

Cav182–136, the helices have the additional complexity of being tethered together at the 

break region, which likely would have a role in determining the overall tilt of the 

caveolin molecule.  Additionally, the two helices diverge in their physiochemical 

properties, therefore the tilts of each independent helix could modulate how the overall 

caveolin molecule tilts with respect to the membrane.  Defining the way the protein tilts 

in the membrane will undoubtedly yield fruitful insight into caveolins structure-function 

relationship in a variety of biological contexts. 

Over the course of the short simulations the tilt of the molecular plane of Cav182–

136 (φ) was examined and fell to an average value of 21  12°, indicating that the protein 

was near vertical with respect to the plane of the bilayer (Figure 3-6).  This again points 

to a non-peripheral conformation of Cav182–136, otherwise much greater φ values 

approaching 90° would have been observed.  This value varied greatly when comparing 

simulation sets, but over the longer time course fell to a more discrete value of 27.5  6°, 

as indicated by the decrease in error in the simulation.  Therefore, this result suggests that 

φ is a slow converging property and requires a longer time scale to obtain a suitable 

disposition in the bilayer, or is highly sensitive to the starting conformational parameters. 
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Figure 3-6.  The population distribution of φ for all systems simulated.  Different 
simulation sets are indicated by color: cav1_45 (red); cav1_55 (green); cav1_65 (blue); 
cav1_75 (magenta); cav1_85 (cyan).  Additionally, the 1 μs simulation is indicated 
(orange) along with the average of all the 100 ns systems (black). 
 

With the overall tilt of Cav182–136 being described, there is still the possibility that 

H1 and H2 can lie somewhat outside the molecular plane of the overall caveolin 

molecule.  This required the determination of individual tilt angles for H1 (α) and H2 (β) 

with respect to the plane of the bilayer (Figure 3-7). 
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Figure 3-7.  The average two-dimensional tilt angle distribution of individual helices 
H1(α) and H2(β) shown as a contour map.  The contour levels are indicated by color 
going from low (black) to high (red) probability.  The one-dimensional distributions of 
each individual helix are shown with each different simulation set distinguished by 
different colors with cav1_45 (red); cav1_55 (green); cav1_65 (blue); cav1_75 
(magenta); cav1_85 (cyan).  Additionally, the 1 μs simulation is indicated (orange) along 
with the average of all the 100 ns systems (black). 

 
The position of α was found to range between 90-120° in nearly all of the short 

simulations, and fell to 99° for the 1 μs simulation, indicating a near vertical orientation 

for H1.  For H2, a much greater tilt was observed having a value between 40-60° in the 

majority of short simulations and rested at 49° for the 1-μs time course.  From a 

physiochemical standpoint these findings make sense with the sequences of H1 and H2.  

The value of 90° represents the minimum amount of coverage of an α-helix would have 

at a given depth within the bilayer.  Examination of the primary sequence of H1 reveals 

that the first 2/3 of the helix are populated with a number of polar uncharged and charged 
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amino acids and does not become markedly hydrophobic until after R101.  It is likely that 

Cav182–136 remains vertical to avoid the energetic penalty of removing the solvation shell 

from charged residues approaching its turn region such as K96 or R101.  On the other 

hand, the second helix contains no charged amino acids and only a few polar uncharged 

amino acids, and is mostly comprised of hydrophobic amino acids that would prefer lipid 

bilayer coverage.  Therefore, α and β strongly reflect the matching of the hydrophobic 

portions of the protein to the thickness of the bilayer. 

The postulation of an intramembrane turn for Cav182–136 has remained a 

controversy as it is not typical for membrane proteins where the N- and C- termini rest 

upon the same side of the membrane.  This is because it would require the breaking of i 

to i+4 hydrogen bonds that are very stable within the bilayer due to a lack of competition 

with water molecules 194.  The simulation results show that the three residue break 

between helices is located within the hydrophobic core in both the short and the 1 μs 

simulation sets (Figure 3-8).  The average Z values for each of the break residues for the 

short and long simulations are -5.1  2.9 Å (G108), -5.4  2.5 Å (I109), and -6.3  3.0 Å 

(P110) and -5.9 1 .7 Å (G108), -6.8  1.6 Å (I109), and -9.3  1.3 Å (P110) respectively 

(Table 3-1).  Clearly, the short simulations are much wider in their distributions and the 

longer simulation allows the protein to fall upon a more discrete depth for the break 

region.  It is also important to note that the break residues are on average found in the 

second leaflet as the starting conditions placed the break randomly from -5 Å to 5 Å.  

This indicates that there is indeed a preference for these residues to be localized within 

the second leaflet and the final position is not biased by the starting position. 
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Figure 3-8.  Distance from the bilayer center (Z) distributions for key residues in the 
Cav182-136 sequence.  Tryptophan residues W85 (black), W98 (red), W115 (green), and 
W128 (blue) as well as break residues G108 (magenta), I109 (purple), and P110 (orange) 
are shown in both A)  Multiple 100 ns simulations and B)  The 1 μs simulation.  The 
distance of the phosphate atoms of the lipid headgroup are indicated by yellow Gaussian 
distributions located at approximately 20 and -20 Å form the bilayer center indicated by 
the dashed line. 
 
The residues are shown to penetrate deeper in the longer simulation and are therefore 

closer to the lipid headgroup of the second leaflet indicating that a distinct depth in the 

membrane may important in stabilizing Cav182–136.  Importantly, in the snapshots taken, 

the backbone atoms of the turn residues were found to hydrogen bond to lipid headgroups 

of the second leaflet, which can be another stabilizing force in controlling the caveolin 

topology.  The break region clearly is shown to be stable in these simulations indicating 

that a membrane buried turn is energetically possible for caveolin. 
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The residues in the break region cannot be mutated out without dire consequences 

to the caveolin structure and therefore cannot be probed directly.  However, with such a 

controversial motif, experimental evidence was needed to validate the simulation results.  

The four native tryptophan residues in Cav182–136 can be used to indicate its membrane 

location by examining the emission maximum (λmax) after selectively exciting tryptophan 

by irradiation at 295 nm.  In general, the λmax values are divided into three classes, each 

related to the degree of exposure to water.  Tryptophan residues with λmax in Class I (330-

333 nm) are generally solvent-inaccessible because they are tucked away within the 

bilayer.  Class II (340-344 nm) tryptophan residues are usually found at the 

bilayer/aqueous interface (headgroup region of the bilayer).  A Class III (346-350 nm) 

λmax value is indicative of a tryptophan residue that is fully exposed to high mobile water 

molecules.  Therefore it was desirable to examine the fluorescence emission profiles of 

single tryptophan mutants reconstituted into phospholipid bicelles to see how the polarity 

of the sequence changes along the helices.  This analysis was highly relevant because 

bicelles contain a planar bilayer to mimic the simulation conditions.  Bicelles also scatter 

much less light than vesicles, a property which can lead to spectroscopic artifacts that 

make data interpretation more difficult.  Due to the extreme hydrophobicity of Cav182-136, 

a method was developed to reconstitute the protein into bicelles.  This was accomplished 

using a vesicle to bicelle transition.  This method was developed because direct 

reconstitution of the protein into bicelles by adding bicelles to lyophilized material, or co-

lyophilizing the protein with DMPC followed by a rehydration step with DHPC and 

buffer components was resulting in aggregation of the protein giving very low 

fluorescence signals that were unsuitable for max analysis.  Once the protein had been 
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associated with vesicles by detergent dialysis using the methodologies described in 

Chapter 2 except in place of EYPC, DMPC was used, the reconstitution into bicelles was 

facile and protein loss was minimized.  This process is detailed in Figure 3-9 and 

represents a very novel use the PFOA detergent dialysis method. 

3 dialysis 
exchanges

20 mM Tris pH 
8.0

Removal of 
aggregates, 
10,000 x g, 

Ultracentrifugation 
366,613 x g 

1:700 Protein:Lipid
1:15 Lipid:Detergent  

Figure 3-9.  Procedure for vesicle to bicelle transition technique.  The PFOA detergent 
dialysis technique described in Chapter 2 is used to form vesicles.  These vesicles are 
then spun to remove lipid and protein aggregates using a low centrifugal force.  The 
vesicles are then pelleted using a very high gravitational force and the resulting pellet is 
solubilized using ice-cold buffer containing the rim-forming detergents.  This technique 
was crucial in obtaining high reconstitution yields of Cav182-136 into phospholipid 
bicelles. 
 
Figure 3-10 shows the λmax values from the fluorescence emission spectra of each 

tryptophan after reconstitution into bicelles and are 344.4  2.4 nm (W85), 334.4  0.2 

nm (W98), 330.2  1.0 nm(W115), and 338.2  0.6 nm (W128).  The data indicated that 

W85 is a class II/class III hybrid and is likely found in the headgroup region of the 

bilayer.  The λmax value of W98 is between Classes I and II, placing it below the 

headgroup region and possibly near the aqueous-hydrophobic core interface.  The λmax 

value of W115 is consistent with a class I tryptophan that is in a deeply buried position, 

possibly near the bilayer center.  This tryptophan position is only one helical turn from 

the break region and is likely the best indicator as to the turn’s environment.  The final 

tryptophan, W128, has a λmax value that places it between class I and class II, and 

therefore is probably located in the hydrophobic core of the first leaflet but is getting 

close to the lipid headgroup region. 
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Figure 3-10.  Fluorescence emission spectra for Cav182-136 single tryptophan mutants 
reconstituted into q=0.50 4.0% (w/w) DMPC/CHAPSO bicelles.  Each spectrum indicates 
the identity of the mutant, the raw data is shown as points and the fits are shown as solid 
lines.  The max from fits are indicated for each mutant. 
 
In order to validate that these single tryptophan mutants were not impacting the structure 

and/or dynamics of Cav182-136, an HSQC spectrum was obtained to compare 15N labeled 

Cav182-136 with all four tryptophans and Cav182-136(4F) (a construct where all four 
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tryptophan residues were mutated to phenylalanine).  The spectrum of Cav182-136(4F) had 

good chemical shift dispersion and showed only minor changes in its peaks location 

compared to Cav182-136 (Figure 3-11). 

1H (ppm)

15N
 (ppm

)

110

115

120

125

130

105

7.07.58.08.59.0

 

Figure 3-11.  Overlay of TROSY-HSQC spectra of Cav182-136 (red) and Cav182-136(4F) 
(blue). 

 
The relationship between the λmax and water exposure was interrogated further by 

looking at the relative percentage of water molecules associated with the indole side 

chain versus the percentage of lipid contacts (Trp-water/(Trp-Water+Trp-lipid)) during 

the course of the simulation.  From lowest exposure of the tryptophan residues to water to 

the highest exposure, the calculated values are, 2  4% (W115), 22  10% (W128), 32  

22% (W98), and 83  14% (W85) for the short simulations and 5  10% (W115), 23  

18% (W128), 42  26% (W98), and 89  8% (W85) for the 1 μs simulation.  The large 

change in water contacts observed between the short and long timescales likely indicates 

that the interplay between hydrophobic coverage and aqueous exposure is a slow 

converging parameter for the Cav182-136 molecule.  The ZCOM values for each tryptophan 
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were also determined and are shown in Figure 3-8.  Akin to the distributions of the break 

residues, the distributions of the tryptophans were broader for the short simulations than 

they were for the long simulations.  The average values for the 100 ns simulations were 

23.4  4.2 Å (W85), 7.5  2.5 Å (W98), -1.1  2.7 Å (W115), and 11.8  2.9 Å (W128).  

For the 1 μs simulation, the values were 23.7  2.2 Å (W85), 6.5  1.8 Å (W98), -4.0  

1.3 Å (W115), and 10.2  2.0 Å (W128).  Interestingly, W85 changed the least when 

comparing the short and long time course showing that its conformational flexibility (not 

in a helix) allows it to find a favorable position sooner than the other tryptophan sites.  

These values are strongly correlated with tryptophan emission measurements, as in the 

simulations W85 is at the top of the first leaflet, W128 is at the interface between the acyl 

chain-headgroup border, W98 is slightly buried within the lipid bilayer, and W115 is 

deeply buried in the hydrophobic core.  Clearly the simulations are yielding relevant 

information as to the actual bilayer depth of the break residues which cannot be probed 

using experimental techniques directly.  A cartoon representation of the protein 

embedded within the DMPC bilayer is shown in figure 3-12.  All values for all 

parameters obtained from the simulations are available in Appendix 3-1. 
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Figure 3-12.  Topological disposition of Cav82-136 in a DMPC bilayer.  Key residues in 
H1 (T91, K96, Y97, and R101), the break region (G108), and H2 (Y118) involved in 
hydrogen bonding and electrostatic interactions with the surrounding lipids are indicated.  
Phosphate atoms that are within 4.5 Å of Cav182-136 are shown in magenta, phosphate 
atoms in the bulk bilayer are shown in orange.  A water bridge between the backbone 
atoms of G108 (cyan spheres) and a lipid headgroup to the bottom leaflet is shown and 
may help stabilize the loss of breaking of H1. 
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CONCLUSIONS 
 

Caveolins are critical to proper caveolae function and appearance, and are 

intricately linked to a variety of diseased states.  For this reason, significant efforts have 

been undertaken to better understand the structure and function of caveolin.  In this 

chapter, significant strides have been made in elucidating the membrane bound structure 

and topology of caveolin-1 residues 82-136, which represents the structural core of the 

membrane interacting portion of the polypeptide. 

Using MD simulations which used NMR secondary structure data of Cav182-136 as 

a starting point, it was demonstrated that a U-shape conformation in the bilayer was 

energetically favorable.  It also was shown that the structure of Cav182-136 was dynamic 

showing fluctuations in its angle between the two helices that were largely due to lipid-

protein interactions.  However, this angle was consistent with a H1-H2 angle that was 

between 40 and 60°.  This analysis rules out caveolin having a transmembrane orientation 

or a fully extended peripheral orientation, as either of these models would require a very 

wide H1-H2 angle (>90°).  This also indicates that caveolin does not likely curve 

membranes by the same mechanism that other membrane curving proteins use (i.e. BAR 

domain proteins which rest on the surface of membranes to mediate curvature); therefore 

the findings presented in this chapter may serve as important advancement in directing 

future hypotheses attempting to elucidate the mechanism of caveolin-1 induced 

membrane curvature. 

Importantly, the break between the two helices was placed within the second 

leaflet of the hydrophobic core, indicating that caveolin does not completely transit the 

bilayer before it makes a dramatic turn.  Although this motif would appear to be 
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unfavorable due to a loss of intra-helical hydrogen bonds, the energetic penalty was likely 

compensated for by hydrogen bonding between the break residue G108 and lipid 

headgroups.  The placement of the break residues in the second leaflet as well as the 

overall depth profile in the simulations was strongly supported using tryptophan 

fluorescence experiments performed in bicelles.  The simulations also revealed that a 

specific orientation of the helices with respect to one another was favored (ρ1=343°, 

ρ2=111°) where residues in and around the break interact via van der Waals forces.  It 

was observed that residues towards the termini of the helices interact with lipids 

intercalated between them through hydrogen bonding.  The sum of these interactions may 

be critical to upholding the U-shaped motif in the membrane. 

It cannot go without mention, however, that these studies were performed in 

DMPC bilayers without the presence of cholesterol, which is a major component of 

caveolae.  Therefore it is critical that the next steps taken probe the possible role that the 

sterol has on these structural parameters.  Furthermore, the construct lacks 70% of the 

total protein, including three sites of cysteine palmitoylation.  Although the core 

membrane interacting segment has been investigated, a longer construct would help 

determine if distant regions of the protein are involved in defining the structural 

parameters that were obtained through the MD simulations.  Finally, it is known that 

caveolin oligomerizes and these simulations were performed using monomeric 

conditions.  Although it is not yet known how the protein oligomerizes, it will be of 

interest to determine how the oligomerization process changes the binding mode of 

caveolin in the bilayer. 
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Appendix 3-1.  Average Values of Parameters for Cav182-136 from MD Simulations 
 

 
 
 
 
 
 

Replicate θ ϕ ρ1 ρ2 Z  
G108[Å] 

Z  
I109[Å] 

Z  
P110[Å] 

α β 

45_1 44°±4° 39°±6° 353°±14° 325°±11° -6.0±2.1 -7.5±2.3 -9.7±2.1 101°±5° 63°±6° 
45_2 63°±11° 14°±7° 334°±17° 116°±10° -6.5±2.0 -7.1±1.9 -8.3±1.9 109°±7° 51°±9° 
45_3 34°±3° 24°±8° 34°±10° 330°±9° 0.7±2.3 -0.4±2.1 2.0±2.2 49°±7° 46°±7° 
45_4 12°±5° 28°±7° 327°±14° 328°±12° -5.4±2.6 -7.7±2.7 -8.8±2.7 76°±6° 66°±5° 
45_5 44°±5° 45°±6° 197°±13° 61°±11° -7.8±1.9 -4.8±1.8 -6.2±1.7 115°±7° 71°±10° 
45_6 62°±6° 6°±4° 324°±23° 137°±20° -6.4±1.9 -7.0±2.0 -8.1±1.8 109°±6° 49°±6° 
45_7 30°±3° 7°±5° 41°±9° 341°±9° -5.0±2.0 -4.7±2.0 -5.1±2.0 64°±6° 60°±6° 
45_8 45°±5° 6°±4° 335°±16° 288°±13° -5.3±2.2 -8.0±2.3 -8.7±2.2 96°±5° 52°±4° 
45_9 47°±9° 14°±6° 347°±15° 111°±12° -5.4±1.9 -6.1±1.8 -8.8±1.8 90°±11° 45°±5° 
45_10 29°±3° 13°±4° 217°±28° 112°±8° -5.5±1.6 -4.7±1.6 -4.5±1.6 73°±6° 68°±6° 
Avg±S.E. 41°±15° 20°±13° 251°±118° 215°±109° -5.3±2.1 -5.8±2.2 -6.6±3.3 88°±21° 57°±9° 
55_1 66°±12° 18°±6° 262°±19° 308°±13° -5.2±2.0 -7.3±1.8 -8.0±1.9 121°±9° 55°±8° 
55_2 27°±5° 22°±5° 318°±10° 17°±11° -8.9±1.9 -6.8±1.9 -7.7±2.0 84°±5° 63°±5° 
55_3 51°±5° 31°±5° 282°±15° 278°±9° -5.8±1.6 -6.3±1.7 -5.5±1.8 120°±6° 73°±7° 
55_4 59°±6° 25°±8° 354°±14° 334°±14° -3.4±2.0 -4.0±1.8 -5.0±1.7 106°±5° 47°±5° 
55_5 59°±7° 26°±9° 204°±16° 76°±25° -9.4±2.3 -7.1±2.4 -7.6±2.2 115°±10° 56°±9° 
55_6 26°±7° 10°±6° 218°±14° 293°±18° -6.9±2.3 -7.1±2.1 -6.2±2.0 80°±9° 55°±8° 
55_7 45°±7° 5°±4° 231°±18° 294°±12° -6.5±2.0 -7.6±2.0 -7.8±2.0 98°±8° 54°±6° 
55_8 61°±8° 23°±5° 191°±16° 103°±15° -7.2±1.8 -5.6±2.2 -6.4±2.3 105°±10° 45°±9° 
55_9 51°±9° 27°±8° 343°±13° 345°±12° -2.8±2.2 -3.6±2.1 -4.7±1.9 96°±7° 45°±6° 
55_10 23°±4° 17°±5° 344°±17° 274°±12° -5.0±1.9 -7.1±2.0 -7.3±2.1 84°±7° 74°±7° 
Avg±S.E. 47°±15° 20°±7° 275°±59° 232°±113° -6.1±2.0 -6.3±1.3 -6.6±1.2 101°±14° 57°±10° 
65_1 67°±6° 19°±7° 331°±13° 121°±10° -6.4±2.0 -7.0±1.8 -9.5±1.9 108°±8° 42°±8° 
65_2 67°±7° 21°±6° 343°±13° 104°±11° -7.7±1.9 -7.3±2.1 -8.5±2.1 132°±8° 65°±5° 
65_3 63°±10° 19°±10° 331°±12° 121°±11° -6.8±2.1 -7.6±2.1 -9.3±1.9 103°±6° 44°±9° 
65_4 84°±8° 13°±6° 202°±13° 76°±12° -5.2±1.7 -3.5±1.7 -5.6±1.6 126°±5° 43°±8 
65_5 47°±6° 7°±5° 344°±14° 108°±11° -3.9±1.8 -4.3±1.6 -6.7±1.6 97°±6° 51°±6° 
65_6 49°±7° 16°±6° 59°±19° 61°±12° -2.8±2.4 -3.7±2.2 -6.9±2.1 92°±12° 43°±11° 
65_7 66°±6° 12°±7° 221°±12° 133°±10° -9.0±2.0 -7.1±2.0 -6.6±1.7 123°±10° 59°±8° 
65_8 45°±7° 21°±8° 182°±18° 112°±15° -5.7±2.6 -2.9±2.6 -3.9±2.3 92°±8° 51°±7° 
65_9 30°±4° 18°±6° 215°±18° 96°±8° -8.8±2.0 -6.5±1.9 -6.2±1.9 99°±10° 82°±6° 
65_10 61°±7° 6°±4° 350°±15° 108°±10° -4.5±1.9 -5.2±1.9 -7.7±1.8 101°±5° 40°±7° 
Avg.±S.E. 58°±14° 15°±5° 257°±93° 104°±20° -6.1±2.0 -5.5±1.7 -7.1±1.6 107°±14° 52°±13° 
75_1 68°±7° 28°±10° 39°±19° 77°±11° -2.9±2.2 -3.3±2.2 -6.4±2.2 107°±8° 39°±6° 
75_2 58°±5° 12°±6° 339°±13° 122°±10° -4.5±2.7 -5.1±2.8 -7.0±2.4 106°±8° 51°±7° 
75_3 58°±7° 15°±8° 229°±12° 108°±12° -8.5±1.7 -6.9±1.8 -7.3±1.8 108°±7° 51°±6° 
75_4 63°±7° 24°±8° 288°±14° 322°±15° -4.6±1.8 -7.0±2.0 -7.6±2.1 120°±7° 57°±6° 
75_5 45°±6° 13°±7° 336°±18° 117°±13° -3.5±1.9 -4.1±2.0 -5.7±1.9 97°±6° 55°±5° 
75_6 65°±8° 65°±7° 323°±13° 340°±21° 3.9±3.1 2.4±2.4 4.1±2.6 105°±14° 41°±15° 
75_7 53°±7° 9°±5° 229°±29° 286°±13° -11.0±2.4 -9.7±2.4 -7.8±2.8 108°±11° 55°±8° 
75_8 57°±10° 19°±6° 337°±18° 120°±14° -5.3±2.2 -5.9±2.0 -7.5±2.0 109°±8° 55°±5° 
75_9 66°±5° 27°±6° 318°±13° 124°±10° -5.3±1.6 -6.7±1.4 -8.8±1.5 104°±6° 42°±5° 
75_10 79°±8° 29°±6° 353°±13° 118°±14° -4.1±2.8 -4.5±2.7 -7.2±2.5 116°±9° 38°±6° 
Avg.±S.E. 61°±9° 24°±15° 279°±90° 173°±95° -4.6±3.7 -5.1±3.0 -6.1±3.5 108°±6° 48°±7° 
85_1 73°±6° 20°±10° 347°±16° 16°±12° -4.5±2.2 -5.3±1.9 -5.8±1.7 100°±7° 27°±4° 
85_2 58°±7° 10°±6° 236°±13° 278°±17° -9.1±2.2 -7.5±2.2 -6.6±2.3 107°±6° 49°±9° 
85_3 68°±9° 10°±5° 350°±16° 111°±13° -4.3±2.2 -4.5±2.0 -6.5±2.2 104°±9° 37°±5° 
85_4 75°±9° 49°±4° 280°±12° 6°±13° 1.3±1.6 -2.4±1.6 -4.1±1.5 126°±6° 52°±9° 
85_5 143°±9° 27°±11° 260°±15° 44°±37° 1.7±2.4 -0.6±2.4 2.1±2.4 145°±6° 6°±5° 
85_6 74°±7° 37°±6° 310°±15° 128°±11° -4.6±2.0 -5.8±1.8 -8.7±1.7 113°±9° 41°±6° 
85_7 61°±5° 8°±5° 350°±18° 121°±10° -3.8±2.7 -3.8±2.3 -5.5±2.1 104°±5° 45°±5° 
85_8 68°±7° 46°±6° 336°±26° 266°±15° 0.2±2.8 2.8±2.2 1.8±1.8 93°±9° 27°±8° 
85_9 33°±4° 13°±7° 358°±14° 316°±15° -8.0±2.1 -9.3±2.1 -10.2±2.0 88°±5° 57°±5° 
85_10 48°±5° 18°±6° 79°±17° 43°±17° -3.5±2.0 -5.6±1.9 -8.6±1.8 80°±10° 35°±8° 
Avg.±S.E. 70°±27° 24°±15° 291°±81° 133°±109° -3.5±3.4 -4.2±3.3 -5.2±4.0 106°±18° 38°±14° 
Total Avg. 55°±20° 21°±12° 271°±92° 171°±109° -5.1±2.9 -5.4±2.5 -6.3±3.0 102°±17° 50°±13° 
1-μs 
Simulation 

53°±5° 27°±6° 331°±22° 124°±12° -5.9±1.7 -6.8±1.6 -9.3±1.3 99°±7° 49°±7° 
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Appendix 3-2.  Sequences of Protein Constructs Utilized 
 

Construct Protein Sequence 
Cav182-136 

 
DGIWKASFTTFTVTKYWYRLLSALFGIPLALIWGIYFAILSFLHI
WAVVPSIKS 

Cav182-136 
(4F) 

DGIFKASFTTFTVTKYFYRLLSALFGIPLALIFGIYFAILSFLHI
FAVVPSIKS 

Cav182-136 
(W85) 

DGIWKASFTTFTVTKYFYRLLSALFGIPLALIFGIYFAILSFLHI
FAVVPSIKS 

Cav182-136 
(W98) 

DGIFKASFTTFTVTKYWYRLLSALFGIPLALIFGIYFAILSFLHI
FAVVPSIKS 

Cav182-136 
(W115) 

DGIFKASFTTFTVTKYFYRLLSALFGIPLALIWGIYFAILSFLHI
FAVVPSIKS 

Cav182-136 
(W128) 

DGIFKASFTTFTVTKYFYRLLSALFGIPLALIFGIYFAILSFLHI
WAVVPSIKS 
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Appendix 3-3.  Mutagenesis Primers Utilized 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Construct Primer Sequence 
F85W 5’-GGATCCATGGACGGTATCTGGAAAGCGTCTTTCACCAC-3’ 
F98W 5’-CACCGTTACCAAATACTGGTTCTACCGTCTGCTGTC-3’ 
F115W 5’-CTGGCGCTGATCTGGGGTATCTACTTCGC-3’ 
F128W 5’-CTTTCCTGCACATCTGGGCGGTTGTTCCGTC-3’ 
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Chapter 4.  Cysteine Scanning Mutagenesis of Full Length Caveolin-1 
Helps to Explain Its Multi-Faceted Interactome 
 
ABSTRACT 
 

Caveolin-1 is critical in modulating the architecture and engineering the functions 

of caveolae.  At the heart of its functional role is the scaffolding domain (CSD, residues 

82-101), which is thought to be involved both signal transduction and cholesterol 

transport.  However, the exact topology of the CSD is unknown, and is unpredictable due 

to its unusual amino acid composition.  Additionally, it is unknown how cholesterol may 

modulate the topology of caveolin-1.  To elucidate the CSD topology with respect to the 

membrane, the accessibilities of single cysteine mutants (spanning residues 82-111) to 

the membrane impermeant reagent biotin-maleimide was probed after reconstituting the 

protein into phospholipid bicelles.  These mutants were confirmed to have not caused 

major perturbations to the wild-type caveolin structure by probing the secondary structure 

of the protein using far UV circular dichroism measurements.  The protein was then 

gently reconstituted in phospholipid bicelles using a native preparation method.  In 

bicelles where the planar region was composed purely of DMPC, it was determined that 

residues 82-87 were in an aqueous exposed region, whereas residues 88-111 were either 

in a dynamic or a membrane buried environment.  Interestingly, the inclusion of a 

cholesterol analog, cholesteryl hemisuccinate (CHS) at a biologically relevant 

concentration modulated the overall topology of the protein by increasing the exposure of 

the 90-95 region.  The findings in this chapter support the multi-faceted nature proposed 

for the CSD in terms of binding signaling molecules and interacting with cholesterol 

simultaneously. 
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INTRODUCTION 
 

The caveolin-1 scaffolding domain is thought to mediate many of the important 

functions of caveolae (Figure 4-1).  In particular, the CSD plays an outsized role as it 

interacts with a number of cell signaling proteins (Src-like kinases, Ha-Ras, endothelial 

nitric-oxide synthase (eNOS), and G protein α-subunits), associates with cholesterol, and 

has been shown to be important for caveolin-1 oligomerization in vivo 16-21.  For example, 

this region has been implicated in the negative regulation of eNOS activity where 

mutations in the CSD resulted in a significant to total loss of inhibitory activity 195.  

Additionally, cholesterol binding is thought to be mediated through residues 94-101 

which contain a cholesterol recognition/interaction amino acid consensus (CRAC) motif 

(sequence VTKYWFYK) 159,196.  Importantly, this stretch of the protein has been 

demonstrated to be necessary and sufficient for membrane binding 72. 

N-Terminal 
Domain

Residues 1-81
(unstructured)

Scaffolding 
Domain 

Residues 82-101
(87-101 helical)

Transmembrane 
Domain

Residues 102-134
(helix-break-helix)

C-Terminal Domain
Residues 135-178

(structurally uncharacterized)

GIP1 87 12
8

17
8

10
7

11
1

10
1

13
5

DGIWKASFTTFTVTKYWFYR

 

Figure 4-1.  Domain map highlighting the sequence of the caveolin-1 scaffolding 
domain.  The amphipathic nature of the sequence (red) makes CSD burial difficult to 
predict. 
 

Despite the diversity in the physiochemical properties of ligands that the CSD is 

purported to interact with, its degree of exposure with respect to the bilayer remains 

unverified, and therefore it is unclear how this region can bind to soluble proteins and 

cholesterol simultaneously.  To date, there have been a number of inquiries into the 
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topological disposition of the CSD.  A study by Epand et al examining the fluorescence 

emission of two tryptophan residues, W85 and W98, within water-soluble CSD based 

peptides (construct caveolin-1 82-103) found that there was little change in their emission 

properties when mixed with multilamellar vesicles, indicating that there was not a strong 

affinity of these peptides to bind to membranes.  In the same study, two-dimensional 1H 

magic angle spinning nuclear Overhauser enhancement spectroscopy (NOESY) 

experiments examined the interaction of these peptides with multilamellar vesicles 159.  

The NOESY experiments supported an interaction between the peptide and the lipid 

headgroups but did not suggest a specific orientation or topology of the peptides with 

respect to the membrane.  A study by Aoki et al employed molecular dynamics 

simulations to compare the topology of two caveolin-1 constructs, one encompassing part 

of the intramembrane domain (residues 103-122) and one encompassing part of the 

scaffolding and intramembrane domains (residues 94-122) 77.  This simulation showed 

that caveolin-1 adopted a U-shape conformation within the bilayer when the CSD portion 

of the polypeptide was included but not in its absence.  This simulation revealed that the 

CSD was critical to the U-shape conformation.  The simulation placed half of the 

residues of the CSD within the headgroup region and the other half within the 

hydrophobic core of the membrane.  A later simulation study examining the same stretch 

of the protein (residues 94-122) embedded in lipid bilayers found that tryptophan residue 

98 was found within 0 ± 2.5 Å of the phosphate headgroup and the depth was dependent 

on the amount of phospholipid unsaturation and the presence of cholesterol 46.  In this 

study it was found that cholesterol changed the topology by giving the protein a more 

interfacial, surface orientation.  Finally, the studies in Chapter 3, which are based on most 
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of the CSD being part of a helical region, showed that the CSD enters the membrane in a 

near vertical fashion and that residue 96 is likely where the protein enters the 

hydrophobic core of the membrane.  These studies support the scaffolding domain as 

being the portion of caveolin-1 which first enters the hydrophobic core of the bilayer but 

have not pinpointed a specific residue experimentally.  Although these studies have been 

very insightful most of them have lacked the entire CSD, utilize short caveolin-1 

peptides, and are based on simulations.  Therefore it is still an open question as to the 

topology of the CSD in the context of the full-length caveolin-1 protein, where other 

regions of the protein could have an effect on the burial of this crucial region.  It is also 

unclear as to how the exposure of the protein to cholesterol would modulate the 

accessibility of the CSD. 

To definitively characterize the membrane topology of the CSD, cysteine 

scanning mutagenesis was utilized, which has been used extensively to elucidate the 

topology of membrane proteins 197-202.  Using this approach, single cysteine mutants of a 

full length caveolin-1 construct (mychisCav11-178) scanning the entire scaffolding domain 

(residues 82-101) and a portion of the intramembrane domain (residues 102-111) were 

generated.  Next, fluorescence anisotropy studies were utilized to determine at which q 

value (ratio of DMPC to DHPC) bicelles began to take on properties similar to that of 

pure lipid vesicles (Tm measurements).  Each mutant was then purified into 2.3% (w/v) 

qeff = 1.0, DMPC/DHPC bicelles using nickel affinity chromatography and their 

secondary structure was evaluated using far-UV circular dichroism spectroscopy by 

comparison to the wild-type (cysteine lacking) control to identify any sites which 

disrupted caveolin structure.  For cysteine accessibility studies, the protein was isolated 
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out of E coli membranes to ensure only properly folded and trafficked mutants were 

analyzed 29.  These membranes were then solubilized into 2.3% (w/v) qeff = 1.0, 

DMPC/DHPC bicelles or 2.3% (w/v) qeff = 1.0, DMPC (80%)/cholesteryl hemisuccinate 

(CHS) (20%)/DHPC bicelles.  Using reactivity to a membrane impermeant biotin-

maleimide reagent as a measure of accessibility, it was found that in both bicelle systems 

the accessibility of mychisCav11-178 changed dramatically over the sequence of the CSD.  

This study pinpointed the CSD as being the portion of the polypeptide which first enters 

the hydrophobic core of the bilayer.  Interestingly, it was found that the mychisCav11-178 

construct was more deeply buried in pure DMPC bilayers compared to a more realistic 

environment which contained the CHS.  This result suggested that various factors limit 

the penetration depth of caveolin into the lipid bilayer and this may have implications on 

caveolin’s degree of exposure in vivo. 
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MATERIALS AND METHODS 

 

Determination of gel (liquid ordered) to fluid (liquid disordered) transition 

temperatures for bicellar solutions 

For fluorescence anisotropy experiments, 2.3% (w/w) DMPC–DHPC mixtures 

having qeff values ranging from 0.05 to 1.50 (0.05, 0.30, 0.50, 0.75, 1.00, 1.50) were 

prepared on a 3 gram scale using the following method (For an explanation of qeff see 

Chapter 1).  DMPC in chloroform (50 mg/mL) was added (83, 370, 510, 630, 720, and 

827 μL respectively) to a 2 mL microcentrifuge tube.  After this, 1,6-Diphenyl-1,3,5-

hexatriene (DPH, Sigma Aldrich, St. Louis, MO) dissolved in methanol was added to 

each tube to give a final concentration of 6 μM once resuspended in the final volume.  

The samples were then dried under vacuum overnight.  The samples were then hydrated 

by the addition of 2.78 mL of water, and 75 μL of 40× buffer (400 mM HEPES, 4.0 M 

NaCl pH 7.4).  Finally, DHPC was added as a 25% (w/w) stock (in water) to achieve clear 

homogeneous solutions (250, 196, 169, 146, 129, and 107 μL respectively).  These 

solutions were used directly for anisotropy measurements.  DMPC vesicles were prepared 

by the addition of 16 mg of DMPC in 600 μL of chloroform with DPH dissolved in 

methanol (1:500 DPH to lipid molar ratio).  The sample was then dried under vacuum 

overnight and rehydrated using 2.78 mL of water and 75 μL of 40× buffer (400 mM 

HEPES, 4.0 M NaCl pH 7.4).  This solution was sonicated for 5 minutes using a Branson 

sonifier (Danbury, CT) equipped with a microtip to generate small unilamellar vesicles.  

The solution became translucent and was then centrifuged at 20,000 x g for 5 minutes at 
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room temperature to remove titanium particles and non-vesicular lipid aggregates.  The 

supernatant was diluted 4-fold for the fluorescence experiments. 

Fluorescence emission spectra were acquired with magnetic stirring using a 1  1 

cm quartz cuvette on an Agilent Eclipse fluorometer (Santa Clara, CA).  The excitation 

and emission slit widths were both set to 5 nm.  The fluorescence emission intensity was 

measured with excitation (355 nm) and emission (430 nm) with polarizers parallel to 

each other (both oriented at 0° from vertical) and repeated in the perpendicular 

configuration (excitation 0° and emission 90°).  The correction factor for emission 

monochromator transmission efficiency was obtained from the ratio of emission intensity 

at 0° and 90° with the excitation polarizer oriented at 90°.  Melting curves were generated 

for both pure DMPC vesicles and DMPC/DHPC bicelles by examining the change in 

DPH anisotropy as a function of temperature over the range of 2-36 °C. 

 

Cloning and Construction of Caveolin-1 Mutants 

A construct encompassing the full-length caveolin-1 (mychisCav11-178, Appendix 4-

1, underlined portion denotes CSD) was purchased from Genscript (Piscataway, NJ).  

This construct contained three mutations where cysteines 133, 143, and 156 were mutated 

to serine in order to avoid labeling of these positions (Appendix 4-1, bolded).  These 

mutations have been shown to be non-disruptive for caveolin-1 trafficking to caveolae in 

vivo 35.  To the C-terminus, a myc antibody epitope tag and 6× polyhistidine tag were 

included for immuno-detection and affinity purification respectively (Appendix 4-1, myc 

epitope is in blue, histidine tag is in red).  Single cysteine mutants were generated from 

residues 82-111 using the Agilent quick change mutagenesis kit (Santa Clara, CA) for a 

total of 30 mutants (See Appendix 4-1 for full length and mutant constructs).  Primers 
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were designed using the free web-based primerX program, see Appendix 4-2 

(Bioinformatics.org).  See Appendix 2-3 for PCR reaction and cycling conditions.  The 

construct DNA was sub-cloned into the multiple cloning site of the pET 24a vector 

(Novagen, La Jolla, CA) between the NdeI and XhoI restriction sites for expression in E. 

coli (strain BL21DE3).  Transformation protocols are described in Appendix 2-4. 

 

Protein Expression 

Expression of the protein of interest was accomplished using the auto induction 

method developed by Studier et al 147.  Briefly, starter cultures were grown with rapid 

shaking (250 rpm) at 37°C in MDG media supplemented with kanamycin for 24 hours.  

After this time period, a 1:100 dilution of this culture was made into 3 mL of ZYM-5052 

media and the growth was harvested after 12 hours by centrifugation at 20,000 x g for 5 

minutes followed by removal of the supernatant and storage of the bacterial pellet at -

80°C until use.  For large scale growths the procedure was performed exactly the same 

except a 1:1000 dilution of the culture was made into 1 L of ZYM-5052 media.  It was 

determined that growth dynamics were very similar under both conditions. 

 

Non-denaturing Purification of mychisCav11-178 into Phospholipid Bicelles using Mini-

Nickel Spin Column for Circular Dichroism Spectroscopy Measurements 

All steps of the preparation were performed at 4°C.  Cell pellets were resuspended 

into 600 μL of lysis buffer (1 mg/mL lysozyme, 5 mM -mercaptoethanol, 10 mM 

imidazole, 50 mM phosphate pH 8.0, 50 mM Empigen BB®detergent (Sigma Aldrich, St. 

Louis, MO), and 300 mM NaCl).  Next, the suspension was gently mixed over the course 
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of 30 minutes.  This step was followed by disruption of the bacterial membranes using a 

Branson sonifier (Danbury, CT) equipped with a microtip.  The suspension was then spun 

at 20,000 x g for 20 minutes to pellet insoluble cellular debris.  The protein was purified 

using a nickel-NTA spin column (Qiagen, Valencia, CA) according to the manufacturer’s 

instructions.  The wash buffer was composed of 5 mM -mercaptoethanol, 40 mM 

imidazole, 50 mM phosphate pH 8.0, 50 mM Empigen BB® detergent, and 300 mM 

NaCl.  The detergent was then exchanged for bicelles by washing the column with 2.3% 

(w/w) qeff = 1.0 DMPC/DHPC bicelles, 5 mM -mercaptoethanol, 40 mM imidazole, 50 

mM phosphate pH 8.0, and 100 mM NaCl.  The elution buffer was composed of 2.3% 

(w/w) qeff = 1.0 DMPC/DHPC bicelles, 5 mM -mercaptoethanol, 500 mM imidazole, 5 

mM phosphate pH 8.0, and 100 mM NaCl.  Samples were eluted into 100 μL of bicelles 

and imidazole was removed using Zeba® spin desalting columns equilibrated with 7 mM 

DHPC in 10 mM phosphate pH 7.0 supplemented with 0.5 mM tris(2-

carboxyethyl)phosphine (TCEP).  Total protein levels were normalized by determining 

the concentration spectroscopically by measuring the absorbance at the 280 nm 

wavelength and diluting the samples to the same concentration (roughly 20 μM) using a 

bicellar solution. 

 

Circular Dichroism Spectroscopy Measurements 

 Circular dichroism measurements were performed on all mutants using a JASCO 

CD Spectrophotometer (Easton, MD) held at 25°C.  A 0.1 mm path length quartz cuvette 

containing a sample volume of 50 μL was utilized for measurements.  Data were 

collected by scanning every wavelength from 260-190 nm in continuous scan mode at a 
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speed of 200 nm/minute taking 16 accumulations for signal averaging.  A background 

spectrum of 2.3% (w/w) qeff = 1.0 DMPC-DHPC bicelles was used as a blank.  The data 

were converted from machine units () to delta epsilon units (∆ε) using the following 

equation: 

∆ε =  ×
(0.1 × (ܹܴܯ

(ܲ × (ܥ × 3298
 

 
 

Here, MRW is the mean residue weight (protein MW/number of residues in the protein), 

P is the pathlength in cm, and C is the protein concentration in mg/mL yielding units of 

M-1cm-1. 

 

Large Scale Preparation of mychisCav11-178 into Phospholipid Bicelles for Analytical 

Ultracentrifugation Experiments 

 Cells from a 1 L growth were harvested by centrifugation at 5,000 x g and were 

washed with 0.9% (w/v) NaCl.  The pellet was then resuspended in 120 mL of a lysis 

buffer containing 50 mM phosphate pH 8.0, 300 mM NaCl, and 2% (v/v) Empigen BB® 

detergent by stirring for 10 minutes at 4℃.  The Sample was then sonicated using a 

Branson sonifier for a period of 15 minutes total, holding the temperature below 8℃.  

After this time period, the supernatant was cleared by centrifugation at 50,000 x g for 1 

hour at 4℃.  The sample was passed through a 0.2 μm syringe filter and was then bound 

to a Ni-Sepharose column.  The bound protein was washed using a gradient going from 

0-50 mM imidazole over a 125 mL volume, with buffer A being composed of 50 mM 

phosphate pH 8, 300 mM NaCl, and 50 mM Empigen BB®, and buffer B being composed 

of 50 mM phosphate pH 8, 300 mM NaCl, 250 mM imidazole, and 50 mM Empigen 
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BB®.  After weakly bound species were removed the protein was eluted in a buffer 

containing 50 mM phosphate pH 8, 300 mM NaCl, 200 mM imidazole, and 50 mM 

Empigen BB®.  The protein-containing fractions were pooled and the sample was 

concentrated to ~ 10 mL using ultrafiltration.  This sample was then filtered through a 0.2 

μm syringe filter and was injected onto a Sephacryl 300 HR 16/60 column (GE 

Healthcare, Piscataway, NJ) equilibrated with a buffer comprised of 50 mM phosphate 

pH 7.4, 150 mM NaCl, 10 mM Empigen BB® and was isolated from other species 

remaining in the sample.  The sample was quantified by examining the absorbance at the 

280 nm wavelength. 

To incorporate mychisCav11-178 into bicelles, an appropriate amount of the gel 

filtration fraction was bound to a Ni-NTA spin column.  The detergent was then 

exchanged for bicelles by washing the column twice with 300 μL of a buffer containing 

2.3% (w/w) qeff = 1.0 DMPC/DHPC bicelles, 250 mM imidazole, 10 mM HEPES pH 7.4, 

and 100 mM NaCl.  The imidazole was removed using Zeba® spin desalting columns 

equilibrated with 7 mM DHPC in 10 mM HEPES pH 7.4, and 100 mM NaCl with D2O at 

71.7% (v/v) (density matched conditions).  The samples were then diluted to 30 ± 2 μM, 

15 ± 2 μM, and 7.5 ± 2 μM for analytical ultracentrifugation experiments by dilution of 

the desalted eluant with a bicellar solution. 

 

Sedimentation Equilibrium Experiments of mychisCav11-178 

 Sedimentation equilibrium experiments were performed at 25°C using a Beckman 

XL-A analytical ultracentrifuge and a 4-hole AnTi-60 rotor.  Samples were loaded into a 

6-channel charcoal-filled epon centerpiece and a reference solution containing only 
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buffer was included.  An equilibration time of 24 hours at 10,000 rpm was given before 

scans were taken.  Equilibrium measurements (280 nm) were taken from 10,000 rpm to 

35,000 rpm with 1000 rpm steps.  The bicellar mychisCav11-178 solution was analyzed at 

three speeds (25,000, 30,000, and 35,000 rpm) and at three concentrations.  These 

experiments were carried out at 25℃.  The data were fit to a single-species model using a 

non-linear least squares approach with the software Heteroanalysis (version 1.1.0.58, 

University of Connecticut Storrs, CT).  The molecular weight, baseline, and reference 

concentrations were allowed to float during the fitting process. 

 

Native Membrane Preparation from E. coli and Reconstitution into qeff = 1.0 Bicelles  

Unless otherwise noted, all steps of the preparation were performed at 4°C.  Cell 

pellets were resuspended into 1000 μL of Tris-Acetate EDTA pH 8.0 buffer 

supplemented with 100 mM β-mercaptoethanol by a briefly vortex mixing.  This step was 

followed by disruption of the bacterial membranes using a Branson sonifier (Danbury, 

CT) equipped with a microtip for 96 seconds in an ice bath.  The suspension was then 

spun at 5,800 x g for 15 minutes to pellet insoluble cellular debris.  The supernatant was 

then spun at 20,000 x g for 2 hours to pellet bacterial membranes.  The supernatant was 

removed and the pelleted membranes were then washed using 100 mM phosphate 

buffered saline (PBS) pH 7.4 supplemented with 0.5 mM TCEP and the previous 

centrifugation step was repeated.  Next, the supernatant was removed and the bacterial 

membranes were solubilized by adding 30 μL of 2.3% (w/w) qeff = 1.0 DMPC-DHPC 

bicelles prepared in 100 mM PBS and 0.15 mM TCEP or the same buffer except 2.3% 

(w/w) qeff = 1.0 DMPC/DHPC bicelles contained 20% CHS (Anatrace, Muamee, OH) in 
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terms of the total lipid mol %.  Solubilization required 2 minutes of vortex mixing.  

Insoluble material was then pelleted by centrifugation of the sample at 20,000 x g for 1 

hour at 25°C.  After this step, 25 μL of the supernatant was removed for analysis. 

Bicelles that contained CHS had to be prepared using a specialized protocol.  

Briefly, the requisite amounts of CHS (10.65 mg, CHS-TRIS salt) and DMPC (47.53 mg) 

for 5 g of 2.3 % (w/w) qeff = 1.0 DMPC/CHS/DHPC bicelles were co-dissolved in a 2:1 

mixture of chloroform (1 mL) and were then dried down under vacuum.  This solution 

was then reconstituted into a buffer containing all the final components, (i.e. 215 μL 25% 

(w/v) DHPC, 500 μL 1 M PBS, 4.22 mL H2O) which was subsequently lyophilized for 24 

hours.  This mixture was then taken into water for a second round of lyophilization before 

use in experiments.   

 

Chemical Accessibility Assays 

After purification, a Western blot was performed by diluting 5μL of the 

reconstituted material five fold into SDS-PAGE sample buffer in order to estimate the 

mychisCav11-178 concentrations using densitometry.  The samples were then diluted to a 

similar level using a bicellar solution before the labeling reaction was performed.  This 

step was performed in order to avoid cysteine labeling rate differences that would come 

from differences in the total level of protein between each single cysteine mutant.  After 

dilution of samples to the same level, 20 μL of a mychisCav11-178 construct was added to a 

tube containing 200 nL of 20 mM Nα-(3-Maleimidylpropionyl)Biocytin (biotin-

maleimide, Invitrogen, Carlsbad, CA) dissolved in dimethylsulfoxide for a final 

concentration of 0.2 mM biotin maleimide.  The sample was briefly mixed and then the 

biotin-maleimide reaction was allowed to continue for 10 minutes at 21℃.  The reaction 
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was quenched by the addition of -mercaptoethanol to a concentration of 100 mM and 

incubation for 10 minutes.  After this time period, the sample was diluted to 100 μL using 

SDS-PAGE sample buffer and was used for Western analysis.  This process was repeated 

three times each for both lipid systems using different membrane preparations to account 

for culture to culture and run to run variability. 

 

SDS-PAGE and Immunoblotting 

Protein samples were resolved on 15% polyacrylamide gels and transferred to a 

PVDF membrane.  The blots were blocked with 0.5% (w/v) casein in TBST, and probed 

using avidin-alkaline phosphatase conjugate (BioRad, Hercules, CA).  Next, the blots 

were stripped, blocked with 5% (w/v) powdered milk in TBST and re-probed using the 

anti-myc primary antibody (Sigma Aldrich, St. Louis, MO) and anti-mouse alkaline-

phosphatase conjugate secondary antibody (Thermofisher Corporation, Rockford, IL).  

Signals were detected using ECL reagent (BioRad, Hercules, CA).   

 

Image and Data Analysis 

Immuno-blots and biotinylation blots were imaged and quantified using a BioRad 

ChemiDoc XRS+ system and Image Lab software (BioRad, Hercules, CA).  

Biotinylation and total protein levels were estimated by densitometry where the % 

Biotinylation of a given mutant was calculated as the Biotin signal/Protein signal.  The 

data set was normalized with respect to the most effectively labeled mutant on the blot 

and the relative biotinylation was plotted versus the cysteine replacement.  Relative 

biotinylation signals for each position were averaged with the maximum number of 

neighbor relative biotinylation signals within ± one residue to generate average relative 
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biotinylation plots.  Igor Pro 6.22A (WaveMetrics, Inc., Lake Oswego, OR) was used to 

fit the data (for both fluorescence anisotropy and relative biotinylation data) to a 

sigmoidal function of the form: 
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RESULTS AND DISCUSSION 
 

Construction of Helix-1 Cysteine Mutants and Chemical Accessibility Assay 

Principle 

The CSD topology is intriguing; there evidence suggesting that there are an 

almost inconceivable number of ligands which are both soluble and membrane bound in 

nature 159,203,204.  The sequence of the CSD is rich with charged and polar uncharged 

amino acids and this makes the prediction of this region’s burial difficult to ascertain.  

There have been a number of inquiries into the exposure of this region but they have been 

inconclusive due to the use of short peptide-based constructs which lack either portions 

or entire domains of caveolin 159,205,206.  To tackle the question of CSD burial to better 

understand how the protein would be able to bind a diverse variety of ligands, the well 

established method of cysteine scanning mutagenesis strategy was utilized 197-202.  In this 

method, constructs are generated which lack native cysteines and have a single cysteine 

replacement site introduced in a one by one fashion along the length of the sequence 

under investigation.  The single cysteine mutant is then subjected to a water soluble 

cysteine reactive probe which can only react with de-protonated (aqueous located) 

cysteines (Figure 4-2).  Advantageously, this approach gives residue by residue 

information on the degree of aqueous exposure and yields information in the broader 

trend in accessibility along the protein sequence.  Therefore, 30 single cysteine mutant 

constructs of full length caveolin were generated replacing every individual amino acid 

within the scaffolding domain and part of the intramembrane domain (82-111) (see 

Appendix 4-1) to examine the exposure along the sequence to a water soluble cysteine 

reactive probe, biotin-maleimide.  Additionally, an anti-myc epitope and 6× 
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polyhistidine tag were added to the C-terminus for immunodetection and nickel affinity 

purification respectively.  It has been shown that the addition of a 6× polyhistidine tag to 

the C-terminus does not affect caveolin’s ability to form caveolae, bolstering the 

argument that the C-terminal tags do not significantly impact caveolin’s native activity29.   

Binding if reaction 
occurs

Signal

No binding if 
reaction doesn’t 

occur

Noise

Biotin-maleimide

Avidin-AP 
Conjugate

-Pi

ECL

ECL

 

Figure 4-2.  Assay principle for cysteine scanning mutagenesis.  Caveolin-1 single 
cysteine mutants (red) that are de-protonated will react with maleimides.  In the aqueous 
environment cysteines have a pKa of ~8.5 and will be de-protonated to a significant 
extent at physiological pH.  The pKa in the hydrophobic core of the bilayer is raised to 
~14 due to the low dielectric of the membrane environment, and therefore these cysteines 
will not be able to react. 
 
Validation of Bicelles using Fluorescence Anisotropy Measurements 

 A key aspect of this experimental strategy is the need for an actual lipid bilayer in 

which the protein can be embedded into natively, which rules out the use of detergent 

micelles.  However, E. coli membranes alone are not ideal because they are comprised 

mainly of phosphatidylethanolamine (PE) (mammalian cells have a roughly equal 

mixture of phosphatidylethanolamine and phosphatidylcholine) and there is no control 
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over the membrane composition (i.e. the introduction of cholesterol).  This can hinder 

studies that examine how different lipids present in the environment play a role in 

modulating membrane protein burial.  Liposomes are also an option but due to the length 

of time that is required to form them by detergent dialysis; they are not viable as cysteine 

oxidation and heterogeneity in the topologies of reconstituted protein can complicate the 

analysis of these studies.  Bicelles, on the other hand, have the advantage of being easy to 

produce, usable in high throughput purification, and also have a bilayered region which 

membrane proteins can bury their hydrophobic portions into natively.  Additionally the 

membrane environment of the bicelles can be modulated with a variety of different lipid 

species 119,120. 

 Bicelles can be prepared at different q ratios, however, it is not clear at which q 

the bicelle begins taking on properties less akin to that of a mixed micelle and more like 

those of a pure bilayer as the physical properties of the bicelle are linked to its size.  

Therefore, the transition temperature of bicelles (Tm) was examined at various qeff values 

(Figure 4-3).  This was achieved by incorporating a small amount of the DPH 

fluorophore into the samples and measuring the anisotropy as a function of temperature.  

It has been well established that DPH anisotropy is quite sensitive to the amount of lipid 

order in a system 207.  When DPH was incorporated into pure DMPC bilayers, the 

anisotropy ranges from 0.340 (highly ordered) at 2°C to 0.085 (low degree of order) at 

36°C.  Importantly, sigmoidal behavior was observed which is indicative of a cooperative 

phase transition of the lipid going through a liquid ordered to liquid disordered transition.  

As one may expect, although the Tm approached that of the pure DMPC bilayer, phase 

transitions did tend to be broader with lower degrees of anisotropy in the gel phase.  This 
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can likely be attributed to the presence of the detergent which will have a finite presence 

in the bilayered region, disrupting gel phase packing of the DMPC.  Analysis of the 

melting curve gave a Tm of 23.10.4°C, in agreement with measurements performed on 

DMPC bilayers using other techniques 121.  These studies were then carried out for 

bicelles for a range of qeff values (0.05-1.5).  For the lowest qeff examined (0.05), the 

anisotropy value ranged from 0.08 at 2°C to 0.03 at 36°C, and the Tm could not be 

evaluated because it was outside of the range of temperatures used in the experiment 

(well below the freezing point of water).  However, it was observed as q increased, the 

phase behavior of the bicelles became more like that of a pure DMPC bilayer.  For 

example, qeff = 1.5 bicelles have a Tm of 24.4 ± 0.2 °C with an anisotropy ranging from 

0.310 to 0.090.  Therefore a q = 1.0 was chosen for these studies because it was the 

lowest q that had a Tm within 1 degree of a pure DMPC bilayer and did not have a 

significant increase in viscosity that would make these solutions difficult to work with.  

Also, it appeared that the anisotropy value was similar in magnitude when pure DMPC 

vesicles and qeff = 1.0 bicelles were around the Tm, suggesting that the detergent levels did 

not significantly alter the degree of disorder for the lipids fluid phase (this was more so 

the case for higher qeff values).  Importantly, this study cautions against the use of bicelles 

with very low q values as they may behave as mixed micelles and will not likely capture 

the essence of a true bilayer.  Low q bicelles will likely subject proteins to detergent 

effects that could disrupt their topological analysis. 



 

130 
 

30.0

Tm °C

Tm Pure DMPC 
vesicle

DMPC Vesicles
q= 1.5
q= 1.0
q= 0.75
q= 0.50
q= 0.30
q= 0.05

DMPC Vesicles
qeff= 1.50
qeff= 1.00

qeff= 0.75
qeff= 0.50
qeff= 0.30
qeff= 0.05

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

A
ni

so
tro

py

Temperature °C

0 5 10 15 20 25 30 35 40

25.0

20.0

15.0

10.0

5.00
0.4 0.6 0.8 1.0 1.2 1.4 1.6

qeff

0.2

 

Figure 4-3.  Left)  Anisotropy for various qeff’s as a function of temperature.  Right)  
The Tm derived from fitting the melting curves to a sigmoidal equation shows that as q 
increases, the Tm approaches the transition temperature for a pure DMPC bilayer 
hyperbolically. 
 
Evaluation of the mychisCav11-178 Oligomeric State in Bicelles 

As caveolin-1 is known to behave as a high order oligomer in vivo, it was desirable to 

know if the protein employed in these studies would have this behavior.  Oligomeric 

activity could influence the interpretation of the accessibility assays by blocking sites that 

would be exposed if not for being part of an aggregate.  However, it had been shown 

previously that caveolin-1 residues 62-178 did not aggregate in vitro, and was in fact 

monomeric 43.  Therefore the protein was expressed and purified on a large scale by 

nickel affinity and gel filtration chromatography, re-bound onto a mini-nickel spin 

column for exchange into bicelles, and then once reconstituted into bicelles, the protein 

was desalted into a buffer containing D2O under a density matched condition for qeff = 1.0 

bicelles (previously determined in the lab of KJG), (Figure 4-4 shows purification traces). 
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Figure 4-4.  Purification traces for large scale expression of mychisCav11-178.  A)  Nickel 
affinity chromatogram.  B)  Gel filtration chromatogram.  Red star denotes peaks that 
were collected. 
 
Using this approach the reconstituted protein was subjected to a sedimentation 

equilibrium study in the AUC.  In a sedimentation equilibrium study, the protein travels 

down the solution column until sedimentation and diffusion are in equilibrium.  Once the 

species has come to equilibrium, absorbance optics measure the concentration profile of 

the protein across the analytical ultracentrifuge sample cell, and this profile gives 

information on the protein’s molecular weight.  The experiment was performed with 

bicelles under a “density matched” condition, which means that the density of the buffer 

and the partial specific volume of the bicelles are the same.  Therefore, bicelles will no 

longer sediment and the concentration profile will allow the extraction of a molecular 

weight of only the protein and not the protein-detergent aggregate.  The molecular weight 

of the protein was analyzed at three different speeds and three different concentrations 

(see methods).  When the data were fit to an ideal single species model, a molecular 

weight of 22,961  103 Da was obtained, which compares nicely to the calculated 

molecular weight of 22,674 Da (Figure 4-5).  Therefore, the protein is behaving as a 

monomer, which greatly reduces the complexity of accessibility analysis in these studies. 
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Figure 4-5.  Sedimentation equilibrium profiles for mychisCav11-178 in bicelles.  Panels A-
C represent a concentration of 30 μM, D-F a concentration of 15 μM, and G-I a 
concentration of 7.5 μM.  Residuals are displayed underneath each equilibrium profile. 
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Evaluation of Single Cysteine Mutants Effect on mychisCav11-178 Secondary Structure 

One of the benefits of cysteine scanning mutagenesis studies is that it requires 

only a single site of cysteine replacement to be introduced, making it a mild way to probe 

protein topology.  However, it is still important to evaluate what effect the mutation will 

have on the proteins structure and function.  Although caveolin-1 is involved in a myriad 

of cellular processes, there is no clear assay to evaluate the correctness of the protein’s 

fold.  Therefore, a comparative study was performed utilizing far UV circular dichroism 

spectroscopy.  In this study the closeness of each single cysteine mutant in terms of its 

secondary structure was compared to that of the cysteine lacking control, which contains 

all the native caveolin-1 residues in the 82-111 stretch. 

For these studies the over-expressed mychisCav11-178 had to be purified away from 

endogenous E. coli proteins which would add a large bias to circular dichroism spectra.  

A non-denaturing strategy was employed using the mild detergent Empigen BB® to bind 

the protein to a mini nickel spin column.  Once the background proteins were eliminated 

by washes with a low concentration of imidazole, mychisCav11-178 was exchanged into 

bicelles and eluted as shown in Figure 4-6. 
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Lysis: 1mg/mL lysozyme, 50 mM 
empigen, 5 mM -ME, 50 mM 
phosphate, 300 mM NaCl pH 8.0 + 
Sonication

Bind to nickel resin
Wash I: 50 mM empigen, 5 mM -ME, 40 mM 

imidazole, 50 mM phosphate, 300 mM NaCl pH 
8.0

Wash II: 2.3 % (w/w) q = 1.0 DMPC-DHPC 
bicelles, 5 mM -ME, 40 mM imidazole, 50 

mM phosphate, 150 mM NaCl pH 8.0

Elution: 2.3 % (w/w) q = 1.0 DMPC-DHPC 
bicelles, 5 mM -ME, 250 mM imidazole, 
50 mM phosphate, 150 mM NaCl pH 8.0

 

Figure 4-6.  Reconstitution strategy for obtaining highly pure mychisCav11-178 in bicelles. 
 
Using this method the protein was purified in high yields.  Examination of each mutant 

using CD spectroscopy by scanning the 190-240 nm region revealed the global secondary 

structure of the single cysteine mutants (Figure 4-7).  Although it has been shown in a 

number of membrane mimetic systems that the caveolin-1 is predominantly α-helical, 

there are no reports of its secondary structure in bicelles.  It appears that in agreement 

with many studies in other detergent systems, the protein has considerable α-helical 

character 68,75,208.  Each mutant overlay shows that no major disruption of the native 

structure was caused by cysteine replacement with each spectrum showing the 

characteristic 190 nm maxima and 208 and 222 nm minima.  Although intensity 

differences were present, it should be noted that the Zeba® desalting columns used to 

remove imidazole lose their effectiveness at high concentrations of salts and may result in 

differences from the bicelle blank that could cause these small variations.  Therefore, 

these data are only to be used qualitatively. 
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Figure 4-7.  Far UV CD spectra of single cysteine mutants (red) compared to the wild-
type protein (dashed). 
 
Analysis of the CSD Topology Using Cysteine Scanning Accessibility Studies 

 To examine the topology of mychisCav11-178, a native preparation strategy was 

utilized which entailed isolating protein from E. coli membranes.  This was undertaken 

because the protein associated with the E. coli plasma membrane would have been 

reconstituted into the membrane by the bacterial translocon, giving it a native fold.  Cryo-

electron microscopy studies have shown that caveolae can be formed in E. coli by the 
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expression of caveolin 29.  From these bacterial systems it was also shown that the 

behavior of caveolin was identical to that of the protein in mammalian systems.  For 

instance, the topology was as predicted (N- and C- termini were on the same side of the 

membrane), isoforms that typically cannot form caveolae did not result in heterogeneous 

formation (C. elegans caveolin-1 and caveolin-2), and a S80E mutation, that results in 

Golgi retention of the protein in mammalian cells, was sufficient to disrupt caveolae 

formation 29.  All constructs expressed in this study were found to be localized to the E. 

coli membrane fraction (Figure 4-8).  After isolation of the membranes through a series 

of centrifugation steps and washes, the membrane pellet was flooded with bicelles; 

bicelles do not likely cause disruption of the protein’s topology/fold as they are very 

mild.  Importantly it was found that TCEP had to be present during the purification steps 

to keep the cysteine residues from oxidizing. 

82 83 84 85 86 87 88 89 90 91

92 93 94 95 96 97 98 99 100 101

102 103 104 105 106 107 108 109 110 111

25 kDa

25 kDa

25 kDa

 

Figure 4-8.  Western blot showing that mychisCav11-178 single cysteine mutants (residue 
replacement site identified by number under the band) are localized to the membrane 
fraction of E. coli.  Levels of protein were somewhat variant; however, this reflected the 
expression difference and not the difference in trafficking to the membrane.  The band at 
25 kD is a molecular weight marker. 
 

As mentioned, E. coli membranes do not natively contain cholesterol.  This 

approach allowed a comparative study to be undertaken to investigate the impact a 
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cholesterol-like analogue (CHS) would have in determining the protein’s topology once 

reconstituted into the bicelles (Figure 4-9). 

Cholesterol Cholesteryl Hemisuccinate  

Figure 4-9.  Comparison of cholesterol and cholesteryl hemisuccinate.  Cholesteryl 
hemisuccinate has a negative charge at neutral pH whereas cholesterol is neutral. 
 
Cholesterol is not amenable to incorporation into bicelles at ambient temperatures when it 

is at concentrations above 5% by mol.  The cholesterol analog CHS was used because 

bicelles can be prepared with 20% by mol which is the concentration of cholesterol that is 

natively found in mammalian cells.  Therefore the CHS containing bicelles should be a 

very good mimic of caveolae which are mainly composed of saturated phospholipids in a 

cholesterol rich environment 26.  Additionally, CHS confers a negative charge to the 

bicelles and at 20% by mol it would give a similar charge to that of the inner leaflet of the 

plasma membrane which has a phosphatidylserine and phosphatidylinositol concentration 

approaching 15% by mol 210.  This approach also allowed the probing of what role 

cholesterol would have on CSD topology as caveolin is thought to bind cholesterol 

through an interaction with residues 94-101 (VTKYWFR) 140,159. 

Before subjecting the mutants to a reaction with biotin-maleimide, a gel was run 

on the reconstituted material to evaluate the total protein levels.  In these experiments, the 

total protein concentration needed to be similar to avoid rate differences (i.e. if a 

particular mutant was expressed 10 times greater than others, it may appear to get labeled 

to a greater extent but in reality this may result from more reactants being present).  Once 
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the relative amounts were determined, all samples are diluted to a similar concentration 

using bicelles. 

A time course was run to evaluate the degree of background labeling of the wild-

type compared to a construct positioned at the beginning of the CSD (W85C) and a 

construct predicted to be buried in the intramembrane domain (L106C) (Figure 4-10).  

This time course showed low background labeling of the cysteine lacking control and a 

persistent low level of biotinylation for L106C compared to W85C.  For practical 

reasons, the 10 minute time course was chosen as the point to quench the reaction in 

subsequent experiments. 
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Figure 4-10.  Time course evaluation of single cysteine mutants located in the CSD 
(W85C) and intramembrane domain (L106C).  Additionally the cysteine lacking control 
was evaluated.  Legend indicates the time point where the reaction was quenched and 
subsequently analyzed by Western blotting.  Clearly, there is little change in the extent of 
relative biotinylation over the time course investigated.  Low levels of relative 
biotinylation (0-5%) were observed for the cysteine lacking control. 
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After all 30 of the reconstituted mutants were reacted with biotin-maleimide and 

quenched, a gel was run to quantify the degree of biotinylation for each replacement site.  

Mutants that have cysteine residues outside the bilayer (accessible) will show high 

reactivity towards biotin-maleimide, whereas those with their cysteine replacement site 

within the bilayer (inaccessible) will show low reactivity.  Each mutant was evaluated for 

its degree of biotinylation on a per protein basis by Western blot analysis.  Figure 4-11 

shows total protein amounts as indicated by blotting the anti-myc antibody after 

solubilization in membranes and dilution to a similar level based on densitometry for 2.3 

% (w/w) q = 1.0 DMPC/DHPC bicelles  (Panel A) and DMPC/CHS/DHPC bicelles 

(Panel B).  Clearly, all the levels are similar during the reaction, which discounts labeling 

rate enhancements brought on by differentials in the amount of protein (levels were 

within a factor of 10). 
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Figure 4-11.  Representative Western blots for biotinylation experiments of mychisCav11-

178 in bicelles.  A)  Anti-myc (left) and Avidin-AP (right) blots for DMPC/DHPC 
bicelles.  B)  Anti-myc (left) and Avidin-AP (right) for DMPC/DHPC/CHS bicelles.  
Note that in the Avidin-AP blot for DMPC/DHPC bicelles, it appears that residue 95 
would be strongly labeled.  However, if one is to look at the total protein blot, it appears 
that there is more material deposited during Western blotting and therefore, this residue 
has low labeling. 
 

Figure 4-11 also shows blots probing for biotinylation using the avidin-AP 

conjugate for qeff = 1.0 DMPC/DHPC bicelles (Panel A) and DMPC/CHS/DHPC bicelles 

(Panel B).  There is a noticeable difference in the magnitude of the signal between 

cysteines that could be labeled and those that were inaccessible to the reagent.  However, 

these differences must be evaluated on a per protein basis as differences in transfer can be 

a large source of error.  To account for this issue, a plot of relative biotinylation versus 

cysteine replacement site was prepared for both data sets (Figure 4-12).  The data showed 

that for q = 1.0 DMPC/DHPC bicelles there is strong labeling with the biotin-maleimide 
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reagent for residues 82-89.  In the 90-96 region, the labeling appears to be dynamic 

(typically less than 40% of the highest labeled residue on the blot) and is very low for 

residues 97-111 (typically less than 15% of the highest labeled residue on the blot).  

Interestingly, F92C is an outlier where it shows a very high relative accessibility 

compared to surrounding residues.  Due to outliers such as F92C, biotinylation is best 

evaluated as a trend in the accessibility of the CSD by making a plot of the cysteine 

replacement site versus the averaged local accessibility (Figure 4-12, average local 

accessibility denotes the relative biotinylation of the position indicated plus the relative 

biotinylation of the two flanking sites on either side, see methods).  Here a sigmoidal 

function can be fitted to the data and shows that the accessibility changes dramatically 

over the CSD region where residue A87C is the inflection point. 
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Figure 4-12.  A)  Relative biotinylation values for each of the 30 constructs reconstituted 
into DMPC/DHPC bicelles.  Note that the residue with the highest degree of biotinylation 
varied blot to blot, and therefore no individual residue has a value of 1.  Error bars 
represent the average of 3 experiments.  The amount of error in these experiments is large 
(for labeled residues its ~10-20%, for unlabeled residues this error is much lower) but 
there is a statistically significant difference in the regions of high and low degrees of 
labeling.  B)  Averaged relative biotinylation values for each position were used to 
examine the overall trend in accessibility, and helps to interpret how the accessibility of 
mychisCav11-178 changes along the length of the sequence. 
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This position has an averaged accessibility of 0.42 and could represent a position that 

would be exposed and buried an equal amount of the time, giving it a position that could 

be somewhere within the headgroup region of the bilayer.  It appears that the CSD has a 

dichotic position in the membrane where residues from 82-95 would be at least partially 

exposed and residues 96-111 would be buried.  Data from the fluorescence studies 

presented in Chapter three indicated that tryptophan 85 and 98 are located in the 

headgroup (accessible) and the hydrophobic core (inaccessible) regions of the bilayer 

respectively when reconstituted into DMPC/DHPC bicelles and are therefore consistent 

with this analysis of the cysteine scanning mutagenesis study 208.  These accessibility data 

are also in agreement with the molecular dynamics simulation work in chapter three 

indicating that in pure DMPC bilayers residues 91 - 95 are located around and within the 

headgroup region.  Therefore, residues in this stretch may show heterogeneous burial that 

would be somewhere between that of an exposed and that of an unexposed region’s burial 

208. 

Figure 4-11 shows that for q = 1.0 DMPC/CHS/DHPC bicelles there is strong 

labeling for the first 14 residues which drops off starkly at position 96.  These data are 

somewhat different than the data for the pure DMPC bicelles as they show that in the 

presence of CHS, mychisCav11-178 seems to have more even labeling across the CSD and a 

more dramatic drop off in accessibility that occurs between positions 93 and 98 (Figure 

4-13).  Fitting of the averaged relative accessibility data to a sigmoidal function extracts 

an inflection point of T95C, which has an averaged accessibility of 0.35 (Figure 4-13).  

Although in both lipid environments the accessibility to the water soluble probe changes 
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rapidly in the CSD region, pinpointing it as the likely region of membrane entrance, the 

appearance of the averaged relative biotinylation plots are quite different. 
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Figure 4-13.  A)  Relative biotinylation values for each of the 30 constructs reconstituted 
into DMPC/DHPC/CHS bicelles.  As was the case for DMPC/DHPC bicelles, the residue 
with the highest degree of biotinylation varied blot to blot, and therefore no individual 
residue has a value of 1.  Error bars represent the average of 3 experiments.  B)  
Averaged relative biotinylation values for each position were used to examine the overall 
trend in accessibility.  It appears that CHS promoted a more even degree of biotinylation 
across the CSD and a considerably more distinct drop off in accessibility. 
 
Residues 97-111 are poorly accessible in both of the lipid systems.  A deeper look at the 

difference between the two lipid systems by examining which residues were statistically 

different in terms of their relative biotinylation indicated that scaffolding domain residues 

T90, T91, T93, V94, and T95 and the intramembrane domain residue F107 were more 

accessible when CHS was included (Table 4-1).  It should be noted that F107 was an 

outlier compared to residues surrounding it.  Therefore CHS appears to be adjusting the 

exposure of the CSD such that the residues 90-95 are sampling an environment with a 

higher degree of water penetration on average.  This result could be indicating that CHS 

has decreased the depth of bilayer penetration or tilt of the CSD. 
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As both lipid systems should be in the gel phase at the temperature employed 

(Tm= 22.000.27℃ for DMPC/DHPC bicelles and sterols broaden the Tm), it appears that 

the sterols presence or the surface charge that CHS imparts on the bicelles could be 

impacting the protein’s topology.  This is in agreement with a number of studies 

investigating the response of caveolin-1 topology to the inclusion of the sterol in bilayers.  

For instance, a molecular dynamics simulation of residues 94-122 embedded in bilayers 

showed that the protein was much deeper in pure DPPC bilayers than it was in 70:30 

DPPC:cholesterol bilayers 46.  Additionally, tryptophan fluorescence quenching studies on 

a caveolin-1 intramembrane peptide (residues 103-122) showed that acrylamide was able 

to quench tryptophan residues within the protein more effectively when reconstituted into 

membranes composed of POPC/DPPC/Cholesterol versus those composed of purely 

POPC suggesting that cholesterol limits the proteins insertion into bilayers. 
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Single Cysteine Position Relative Biotinylation 
DMPC/DHPC 

Relative Biotinylation 
DMPC/DHPC/CHS 

82 0.69  0.28 0.48  0.17 
83 0.67  0.15 0.46  0.20 
84 0.84  0.14 0.58  0.21 
85 0.97  0.05 0.71  0.19 
86 0.53  0.11 0.77  0.29 
87 0.42  0.08 0.53  0.18 
88 0.39  0.14 0.81  0.18 
89 0.31  0.10 0.56  0.25 
90 0.09  0.04 0.44  0.23 
91 0.23  0.08 0.70  0.18 
92 0.69  0.32 0.67  0.11 
93 0.09  0.03 0.42  0.22 
94 0.14  0.11 0.42  0.06 
95 0.20  0.11 0.50  0.12 
96 0.06  0.02 0.14  0.12 
97 0.06  0.03 0.03  0.02 
98 0.05  0.03 0.03  0.01 
99 0.02  0.01 0.02  0.01 

100 0.01  0.01 0.12  0.09 
101 0.01  0.01 0.03  0.05 
102 0.00 0.01 0.01  0.01 
103 0.01  0.01 0.01  0.01 
104 0.02  0.01 0.01  0.01 
105 0.01  0.01 0.05  0.06 
106 0.03  0.02 0.02  0.01 
107 0.06  0.01 0.17  0.06 
108 0.02  0.01 0.04  0.05 
109 0.01  0.01 0.00  0.01 
110 0.01  0.01 0.00  0.01 
111 0.01  0.01 0.01  0.01 

Table 4-1.  Table of relative biotinylation value averages of three trials for both bicelle 
types employed in this study.  Residues that had statistically significant differences in 
accessibility have been highlighted in orange. 
 

The relationship between caveolin-1 and cholesterol is very intimate and 

caveolin-1 is considered to be a cholesterol binding protein 19.  Residues (94-101) in the 

CSD form a putative CRAC motif 159,196.  The disposition of cholesterol within bilayers 

places its hydroxyl moiety in the headgroup region and the sterol portion within the 
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hydrophobic core of the bilayer 210.  The accessibility data show that in the presence of 

CHS, the CRAC motif would be partially exposed and partially buried and could 

facilitate the interaction with both the headgroup and ring regions of cholesterol.  

Interestingly, the CHS seems to cause an increase in the exposure of the CRAC motif 

residues 94 and 95; however, it is unclear how this would enhance the proposed 

interaction between the protein and cholesterol.  Taken together, our accessibility data 

clearly show that the CSD could simultaneously interact with cholesterol and be available 

for binding to soluble proteins.  These studies rationalize how the CSD can interact with 

both signaling proteins and cholesterol simultaneously. 

Using a residue by residue approach, these data have revealed that the CSD 

topology is even more complicated than originally thought and is highly dependent on the 

lipid environment.  To complicate this matter further, there is no consensus as the two 

dimensional structure of the CSD.  Our circular dichroism data suggest that the protein is 

indeed highly α-helical in bicelles.  Bioinformatic and structural studies that have been 

performed have suggested that the stretch of residues in the 82-111 region is composed of 

two α-helices, one amphipathic, and one transmembrane (residues 81-92 and residues 97-

107) 66,68,75.  However, the structural studies performed in Chapter 3 indicated that the 

region is comprised of a single transmembrane α-helix (residues 87-107) 208.  Although 

the former model of two α-helices is difficult to project, the depth of a single α-helix 

ranging from residues 87-111 can be estimated.  A pure DMPC bilayer is roughly 40 Å 

thick, with a single headgroup region having a thickness of ~10 Å 208.  If A87C 

(inflection point of sigmoidal fit in pure DMPC bilayers) is in the center of the headgroup 

region, there is about 5 Å between this residue and the borderline of the hydrophobic 
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core.  If one assumes that the protein does not tilt at all, this helix would extend 31.5 Å 

placing the C-terminus of the helix into the center of the opposing headgroup region.  

However, if that was the case, labeling of F107C-M111C would have been observed, 

therefore it is likely that if this protein was behaving as a single membrane spanning α-

helix, A87C would be above the center of the headgroup region or the protein would be 

tilted to account for the results of this study (Figure 4-14).  This model places the turn 

residues within the second leaflet, near the interface between the headgroup and the 

hydrophobic core regions of the bilayer.  This is consistent with the simulation data 

presented in Chapter 3.  However, due to the nature of these studies (i.e. relative scale), 

the only definitive statement that can be made is between an intramembrane region 

versus an exposed region 211.  The assumption that A87 would be in the center of the 

headgroup region may be incorrect.  Therefore it is unclear how the protein would enter 

the bilayer, although the averaged relative biotinylation data could be consistent with a 

large degree of tilt. 
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Figure 4-14.  Speculative cartoon of the topology of caveolin-1 residues 82-111 in 
DMPC/DHPC bicelles based on biotinylation data.  This analysis is based on residues 87-
107 being α-helical, residues 93-111 being intramembrane (less than 20% relative 
biotinylation), A87 being positioned somewhere within the headgroup region.  The 
ability of arginine 101 (red) to reach the headgroup region of the bilayer to avoid 
desolvation of the positive charge is likely key in determining the degree of tilt.  Gray 
circles are going away from the viewer whereas black circles are coming towards the 
viewer. 

 
The addition of cholesterol to a pure DMPC bilayer at 20% by mol increases the 

bilayer thickness by about 1-2 Å, however, the thickness increase is due to the rigidifying 

of the acyl chains, therefore the headgroup region likely remains a similar thickness 

212,213.  With T95C being buried close to the headgroup-hydrophobic core border, a model 

assuming a single transmembrane α-helix model (residues 87-107) would place F107C 
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~7 Å short of the opposite leaflet’s headgroup region assuming a tilt angle of zero.  This 

model would be consistent with the topological data presented here, however the burial of 

the arginine would likely have to be compensated for by the protein having to tilt 

somewhat to avoid shedding its hydration layer (Figure 4-15). 

When examining the primary sequence of the 82-111 region, it is interesting to 

speculate as to the rationale of why caveolin may prefer cholesterol rich bilayers 

compared to the bulk membrane.  There are a number of charged residues in the CSD, 

two of which are expected to be in inaccessible regions in both lipid systems employed 

that could be key in maintaining the depth of caveolin-1 in the bilayer (K96 is completely 

across species and isoforms and R101 is positive charge conserved).  The more deeply 

buried DMPC model shows that K96 and R101 would have to extend their aliphatic 

chains significantly to secure the charges outside of the bilayer.  In the presence of 

cholesterol the protein is less deeply buried and charged residues would be closer to the 

bilayer surface.  This position could allow snorkeling of these residues out of the 

hydrophobic core to avoid desolvation of the guanidino/lysine moieties more readily.  

This hypothesis will likely need experimental validation to gain stronger support.  

Additionally, it will be worthwhile to examine the trend of labeling in bicelles composed 

of negatively charged lipids to determine if the sterol’s presence changes the topology or 

if the presence of a negative charge on the CHS moiety could bring on topological 

differences (perhaps by electrostatic interactions with K96 and R101).  If the assumption 

that the inflection point is not within the headgroup region, these models become less 

constrictive, nonetheless, it is clear that the 96-111 region seems to be inaccessible and 

these residues would be positioned within the hydrophobic core of the membrane. 
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Figure 4-15.  Speculative cartoon of the topology of caveolin-1 residues 82-111 in a 
DMPC/DHPC/CHS bicelles based on biotinylation data.  This analysis is based on 
residues 87-107 being α-helical, residues 96-111 being intramembrane (less than 10% 
relative biotinylation), T95 being positioned somewhere within the headgroup region.  As 
was the case for caveolin in DMPC/DHPC bicelles, the ability of arginine 101 (red) to 
reach the headgroup region of the bilayer to avoid desolvation of the positive charge will 
likely affect the way the protein tilts.  Gray circles are residues going away from the 
viewer whereas black circles are residues coming towards the viewer. 
 

The data corroborate other studies that probed binding of caveolin-1 to some of its 

partners.  For example, eNOS binding to caveolin-1 has been shown to be dependent on a 

triplet of residues (T90, T91, and F92), which according to the accessibility data, would 
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be exposed and available for binding in cholesterol rich bilayers but less exposed in pure 

DMPC bilayers 195.  Clearly this interaction is occurring outside of the hydrophobic core 

of the bilayer, with the more exposed portion of the CSD.  This is a reasonable location 

for CSD-protein interactions considering that many of the caveolin-1 interaction partners 

such as eNOS, Src kinases, and G proteins are soluble proteins which are held proximal 

to the membrane surface by acylation 17,215.  It seems that cholesterol could optimize the 

CSD interactions with soluble ligands. 

The uniform inaccessibility of residues 96-111 in both cases supports a variety of 

tilts but doesn’t support a horizontal surface orientation (as some models predict 66), as 

this would give an oscillating accessible/non-accessible pattern 215,216.  Therefore, this 

result places the putative loop formed by the intramembrane domain in the hydrophobic 

core as has been suggested by others in the field 66,75-77.  The accessibility data 

corroborate the intramembrane turn location that has been proposed in Chapter 3.  

However, due to the scale being relative, a more concrete experimental metric will likely 

be needed to fully corroborate this assertion. 
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CONCLUSIONS 

 In this chapter, single cysteine mutants of caveolin-1 were reconstituted into 

biologically relevant (in terms of Tm) DMPC/DHPC bicelles and DMPC/CHS/DHPC 

bicelles for secondary structure evaluation using circular dichroism and topological 

evaluation using chemical accessibility assays.  This is the first example of cysteine 

scanning studies employing biotin-maleimide having been performed on over-expressed 

membrane proteins natively reconstituted into bicelles.  The accessibility studies showed 

a clear trend in labeling, where the residues become decreasingly accessible as the 

position of the mutation approaches the putative turn region of caveolin-1 in both 

membrane environments.  This data provides a strong indication that the CSD is likely 

the portion of the protein which first enters the bilayer.  Importantly, the entrance point 

into the hydrophobic core can now be more confidently positioned to residue 96, which is 

buried in both model systems.  The postulation of a membrane embedded turn seems to 

be reasonable as evidenced by the lack of labeling in the 108-110 region, however, one 

must err caution as these residues have been shown to be sensitive to substitution 70.  In 

any case, it appears that the studies employed have lead to a refinement of the topology 

model of caveolin-1.  This study also showed that CHS, which closely resembles 

cholesterol and imparts negative charge, modifies the CSD topology by increasing its 

exposure one helical turn.  Structural data will likely be critical in deciphering how this 

interaction changes caveolins membrane positioning on the molecular level.  In the 

future, the examination of the remainder of the intramembrane domain (residues 112-

134) using the same technique will be important for determining the overall burial and 

exit point from the membrane.  This chapter presents clear topological data which help 
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explain the multi-faceted functionality of the CSD and shed light on the role that the lipid 

environment plays in determining the proteins aqueous exposure. 
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Appendix 4-1.  Sequences of Protein Constructs Utilized 
 

mychisCav11-178  MSGGKYVDSE GHLYTVPIRE QGNIYKPNNK AMADELSEKQ 
VYDAHTKEID LVNRDPKHLN DDVVKIDFED VIAEPEGTHS 
FDGIWKASFT TFTVTKYWFY RLLSALFGIP MALIWGIYFA 
ILSFLHIWAV VPSIKSFLIE IQSISRVYSI YVHTVSDPLF 
EAVGKIFSNV RINLQKEIEQ KLISEEDLLE HHHHHH 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Construct Sequence of 82-111 Portion 
Wild-Type N-DGIWKASFTTFTVTKYWFYRLLSALFGIPM-C 
D82C N-CGIWKASFTTFTVTKYWFYRLLSALFGIPM-C 
G83C N-DCIWKASFTTFTVTKYWFYRLLSALFGIPM-C 
I84C N-DGCWKASFTTFTVTKYWFYRLLSALFGIPM-C 
W85C N-DGICKASFTTFTVTKYWFYRLLSALFGIPM-C 
K86C N-DGIWCASFTTFTVTKYWFYRLLSALFGIPM-C 
A87C N-DGIWKCSFTTFTVTKYWFYRLLSALFGIPM-C 
S88C N-DGIWKACFTTFTVTKYWFYRLLSALFGIPM-C 
F89C N-DGIWKASCTTFTVTKYWFYRLLSALFGIPM-C 
T90C N-DGIWKASFCTFTVTKYWFYRLLSALFGIPM-C 
T91C N-DGIWKASFTCFTVTKYWFYRLLSALFGIPM-C 
F92C N-DGIWKASFTTCTVTKYWFYRLLSALFGIPM-C 
T93C N-DGIWKASFTTFCVTKYWFYRLLSALFGIPM-C 
V94C N-DGIWKASFTTFTCTKYWFYRLLSALFGIPM-C 
T95C N-DGIWKASFTTFTVCKYWFYRLLSALFGIPM-C 
K96C N-DGIWKASFTTFTVTCYWFYRLLSALFGIPM-C 
Y97C N-DGIWKASFTTFTVTKCWFYRLLSALFGIPM-C 
W98C N-DGIWKASFTTFTVTKYCFYRLLSALFGIPM-C 
F99C N-DGIWKASFTTFTVTKYWCYRLLSALFGIPM-C 
Y100C N-DGIWKASFTTFTVTKYWFCRLLSALFGIPM-C 
R101C N-DGIWKASFTTFTVTKYWFYCLLSALFGIPM-C 
L102C N-DGIWKASFTTFTVTKYWFYRCLSALFGIPM-C 
L103C N-DGIWKASFTTFTVTKYWFYRLCSALFGIPM-C 
S104C N-DGIWKASFTTFTVTKYWFYRLLCALFGIPM-C 
A105C N-DGIWKASFTTFTVTKYWFYRLLSCLFGIPM-C 
L106C N-DGIWKASFTTFTVTKYWFYRLLSACFGIPM-C 
F107C N-DGIWKASFTTFTVTKYWFYRLLSALCGIPM-C 
G108C N-DGIWKASFTTFTVTKYWFYRLLSALFCIPM-C 
I109C N-DGIWKASFTTFTVTKYWFYRLLSALFGCPM-C 
P110C N-DGIWKASFTTFTVTKYWFYRLLSALFGICM-C 
M111C N-DGIWKASFTTFTVTKYWFYRLLSALFGIPC-C 
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Appendix 4-1.  Mutagenesis Primers Utilized 
 

Construct Primer Sequence 
D82C 5’-GAAGGTACCCACTCTTTCTGTGGTATCTGGAAAGCGTC-3’ 
G83C 5’-CCCACTCTTTCGACTGTATCTGGAAAGCG-3’ 
I84C 5’-CCACTCTTTCGACGGTTGTTGGAAAGCGTCTTTCAC-3’ 
W85C 5’-CTTTCGACGGTATCTGTAAAGCGTCTTTCACC-3’ 
K86C 5’-CTTTCGACGGTATCTGGTGTGCGTCTTTCACCACCTTC-3’ 
A87C 5’-CTTTCGACGGTATCTGGAAATGTTCTTTCACCACCTTCACCG-

3’ 
S88C 5’-GTATCTGGAAAGCGTGTTTCACCACCTTCAC-3’ 
F89C 5’-GTATCTGGAAAGCGTCTTGTACCACCTTCACCGTTAC-3’ 
T90C 5’-

GTATCTGGAAAGCGTCTTTCTGTACCTTCACCGTTACCAAATAC-
3’ 

T91C 5’-CTGGAAAGCGTCTTTCACCTGTTTCACCGTTACCAAATAC-3’ 
F92C 5’-GCGTCTTTCACCACCTGTACCGTTACCAAATACTG-3’ 
T93C 5’-GCGTCTTTCACCACCTTCTGTGTTACCAAATACTGGTTC-3’ 
V94C 5’-CTTTCACCACCTTCACCTGTACCAAATACTGGTTC-3’ 
T95C 5’-CTTTCACCACCTTCACCGTTTGTAAATACTGGTTCTACCGTC-

3’ 
K96C 5’-CCACCTTCACCGTTACCTGTTACTGGTTCTACCGTC-3’ 
Y97C 5’-CTTCACCGTTACCAAATGTTGGTTCTACCGTCTGC-3’ 
W98C 5’-CGTTACCAAATACTGTTTCTACCGTCTGCTG-3’ 
F99C 5’-CGTTACCAAATACTGGTGTTACCGTCTGCTGTCTG-3’ 
Y100C 5’-CAAATACTGGTTCTGTCGTCTGCTGTCTGCG-3’ 
R101C 5’-CAAATACTGGTTCTACTGTCTGCTGTCTGCGC-3’ 
L102C 5’-

CCAAATACTGGTTCTACCGTTGTCTGTCTGCGCTGTTCGGTATC-
3’ 

L103C 5’-GTTCTACCGTCTGTGTTCTGCGCTGTTC-3’ 
S104C 5’-GTTCTACCGTCTGCTGTGTGCGCTGTTCGGTATC-3’ 
A105C 5’-CTACCGTCTGCTGTCTTGTCTGTTCGGTATCCCG-3’ 
L106C 5’-CGTCTGCTGTCTGCGTGTTTCGGTATCCCGATG-3’ 
F107C 5’-CTGTCTGCGCTGTGTGGTATCCCGATGG-3’ 
G108C 5’-GTCTGCGCTGTTCTGTATCCCGATGG-3’ 
I109C 5’-CTGCGCTGTTCGGTTGTCCGATGGCGCTGATC-3’ 
P110C 5’-GCGCTGTTCGGTATCTGTATGGCGCTGATCTGG-3’ 
M111C 5’-

CTGCGCTGTTCGGTATCCCGTGTGCGCTGATCTGGGGTATCTAC-
3’ 
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Chapter 5.  The Lipid Environment and Proline at Position 110 
Modulate the Aqueous Exposure of Caveolin-1 
 

ABSTRACT 

The hallmark conformational feature of caveolin-1 is that it has an unusual 

topology where both N- and C- termini are cytoplasmic as a result of a membrane-

embedded turn.  Recent biophysical studies have revealed that a highly conserved proline 

residue located at position 110 (P110) and the protein’s association with cholesterol are 

critical to the structure and topology of caveolin.  Some studies have suggested that the 

protein is dramatically altered and becomes linearized upon the substitution of proline 

110 to alanine, whereas others suggested that there is very little change in the proteins 

conformation.  There have been reports that cholesterol results in secondary structure 

changes to the protein (increased β-strand character) and also causes global topological 

changes.  This work utilizes a functional construct of caveolin-1 (Cav162-178) reconstituted 

into DPC micelles to characterize structural and accessibility changes that occur upon the 

P110A substitution (Cav162-178(P110A)).  Additionally, cholesterol’s effect on 

determining the protein’s exposure was examined by reconstituting the protein in 

micelles composed of both DPC and cholesterol-PEG600.  To unveil global and local 

changes in the environment of the protein upon alanine substitution and the presence of 

cholesterol, four evenly-spaced tryptophan residues native to the caveolin-1 protein were 

utilized as fluorescent reporters.  Near and far UV circular dichroism spectroscopy 

experiments were used to examine changes in aromatic residue packing and global 

secondary structure between constructs.  Next, fluorescence λmax and Stern-Volmer 

quenching analysis were used to examine global (all tryptophan residues present) and 
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local (single tryptophan mutants) accessibility differences.  Fluorescence λmax and Stern-

Volmer quenching analysis revealed that upon mutation and inclusion of cholesterol, 

local changes in tryptophan accessibility occurred.  Additionally, a fluorescence 

resonance energy transfer experiment was used to further examine conformational 

changes that may be occurring in the presence of the cholesterol mimic.  This study 

supports the structural importance of P110 in maintaining a specific caveolin-1 fold, but 

downplays pervious inquiries that suggested an over-arching topological role.  This study 

also indicates that cholesterol may cause small changes in the protein’s fold but large 

changes in the proteins aqueous exposure. 
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INTRODUCTION 

Caveolins are found within cholesterol rich domains in the bilayer called caveolae.  

They all contain a highly conserved 33 amino acid long intramembrane domain (residues 

102-135 in caveolin-1) that has been postulated to form an unusual re-entrant loop within 

the hydrophobic core of the lipid bilayer resulting in a cytoplasmic location for both the 

N- and C- termini 42,66,71,74.  The position of this loop within the intramembrane domain 

of caveolin-1 was suggested to be comprised of four amino acids located at positions 

108-111 based on primary sequence analysis 66. 

In Chapter 3, nuclear magnetic resonance spectroscopy (NMR) experiments 

performed on a caveolin-1 construct containing the entire intramembrane domain and the 

N-terminal flanking region (residues 82-136) revealed that the secondary structure of this 

region was comprised of two helices, each containing ~20 amino acids (residues 87-107 

and residues 111-128) separated by a three residue break in helicity (residues 108-110) 

208.  The three amino acids in the unstructured region are glycine 108, isoleucine 109, and 

proline 110 and are thought to form a re-entrant loop structure.  Mutagenesis experiments 

employing NMR revealed that the identities of the amino acids in this region were critical 

to the caveolin-1 structure 70.  It was found that positions 108 and 109 could only tolerate 

conservative amino acid substitutions and that proline at position 110 appeared to be 

central to maintaining the proper structuring of the protein.  Based on this result, it has 

been postulated that P110 is a critical residue for forming the hallmark intramembrane 

loop configuration.  However, the exact nature of the disruption following P110 mutation 

could not be inferred from analysis of the NMR spectra alone. 
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Interestingly, the degree of α-helical character in the 82-101 region has been disputed.  

Some studies have suggested that there may be a propensity for anti-parallel β-strand 

formation in the 84-94 region of the protein 31.  When residues 76-109 of caveolin-1 were 

examined using Fourier transform infrared spectroscopy, circular dichroism 

spectroscopy, and solid-state NMR, it was shown that substantial portions of the protein 

remained non-helical in the presence of cholesterol 69.  The β-strand character was 

observed specifically in the region of alanine 87 to lysine 96, with the 99-109 region 

showing α-helical character.  However, no insight was given in how this change in the 

secondary structure would play into caveolin’s topology. 

A number of investigations that attempted to shed light on the role of the conserved 

proline on the structure and topology of caveolin-1 have used a proline 110 to alanine 

mutant (P110A).  An in vivo immuno-fluorescence study performed on an N-terminally 

FLAG-tagged caveolin-1 construct showed that wild-type caveolin-1 could not bind 

FLAG-antibodies unless the cells were permeabilized 77.  However, upon the P110A 

mutation, FLAG-antibody binding was observed in non-permeabilized cells.  This study 

indicated that a topological change occurred but, only the location of the N- terminus was 

probed.  Therefore, it was not clear whether this change was due to the linearization of 

the peptide (one long transmembrane helix) or a less dramatic orientation change (N- and 

C- termini both oriented extracellularly).  Interestingly, this study also indicated that the 

P110A impacts the protein functionally as the mutant could not form caveolae.  In the 

same study, the effect of the P110A mutation on a truncated intramembrane construct 

(residues 94-122) embedded in a lipid bilayer was evaluated using molecular dynamics 

simulations and supported a linear conformation for the mutant protein.  A tryptophan 
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fluorescence study that employed truncated wild-type and P110A N- and C-terminally 

lysinated intramembrane-domain constructs (residues 103-122) reconstituted into vesicles 

showed that the mutant was less solvent accessible than the wild-type protein.  However, 

these constructs were soluble in the absence of lipid mimics, did not contain the entire 

intact intramembrane domain, and included more than a single tryptophan.  Therefore the 

data were unable to give conclusive information pertaining to structural and topological 

changes that occurred upon the mutation 75.  Additionally, an in vitro study employing a 

full-length caveolin-1 construct containing two glycosylation sites at both the N- and C-

termini reconstituted into dog pancreas microsomes showed that neither the wild-type or 

the P110A mutant could be glycosylated, pointing to a cytoplasmic disposition for the 

termini 76.  This result showed that wild-type and mutant constructs had the same 

orientation; casting doubt on the over-arching role that proline had been posited to play in 

determining caveolins configuration.  However, the interpretation of these data was based 

on a negative result, and therefore conclusions from these experiments must be taken 

with pause because not all sequences containing a glycosylation epitope are necessarily 

glycosylated.  Clearly, there is still a need to address the role that proline plays in 

modulating the structure and topology of caveolin-1. 

Although chapter 4 indicated that a closely related cholesterol mimic (CHS) increases 

the exposure of the CSD by one helical turn, the results could not differentiate if the 

change was related to the presence of the sterol or the negative charge of the molecule.  

Additionally, the study does not indicate how other portions of the protein that are 

predicted to be membrane embedded (residues 112-134) would change in response to the 

sterol.  There have been attempts to gain insight into how cholesterol may play into 
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caveolin topology.  In a study by Epand et al utilizing small peptidic mimics of residues 

in the 83-101 region reconstituted into POPC or POPC/Cholesterol (1:1) multilamellar 

vesicles, it was found that these peptides showed a deeper position within the membrane 

when cholesterol was present 159.  Conversely, in another study by Aoki et al, a lysinated 

caveolin analogue containing half the intramembrane domain (residues 103-122 flanked 

by four and five lysine residues at the N- and C- termini respectively) reconstituted into 

POPC/DPPC/Cholesterol 1:1:1 vesicles showed higher accessibility to the collisional 

quencher acrylamide compared to when it was reconstituted into vesicles composed 

purely of POPC.  A molecular dynamics study of caveolin-1 residues 94-122 embedded 

in various bilayer types attempted to reconcile the topological difference in response to 

the sterol by providing evidence that the depth of tryptophan residues was more affected 

by the removal of cholesterol from DPPC bilayers than they were from POPC bilayers 46.  

Nonetheless, it remains to be shown how a longer construct of caveolin-1 containing the 

entire intramembrane domain and flanking regions would respond to the presence of the 

sterol. 

The importance of the proline at position 110 and cholesterol represent two key 

topological parameters that haven’t been addressed in the context of a caveolin-1 

construct that accurately captures the essence of the full-length protein.  In this chapter, a 

functional caveolin-1 construct (traffics correctly to caveolae in vivo) containing residues 

62-178 (Cav162-178) was employed to probe structural and accessibility differences 

between the wild-type and the P110A mutant reconstituted into dodecylphosphocholine 

(DPC) micelles and DPC:cholesterol-PEG600 (a cholesterol analog) micelles 145.  

Circular dichroism measurements in the far and near UV regions indicated a preservation 
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of secondary structure but a major change in the tertiary fold between the wild-type and 

mutant construct.  These studies also indicated a possible increase in β-strand character 

when the protein was in DPC:cholesterol-PEG600 micelles.  The fluorescence properties 

of the four native tryptophan residues in caveolin-1 (W85, W98, W115, and W128), 

which are exquisitely evenly spaced throughout the structural core of the protein, were 

used advantageously to shed light on the exposure of the intramembrane domain upon the 

P110A mutation and cholesterol-PEG600 inclusion.  The tryptophan residues in both 

wild-type and the P110A mutant were probed in aggregate by examining tryptophan λmax 

of emission and fluorescence quenching and did not indicate dramatic changes in 

accessibility were occurring upon proline replacement.  In contrast, the inclusion of 

cholesterol-PEG600 into the micelles caused major changes in the accessibility of 

Cav162-178.  To definitively and precisely evaluate the specific modulation of the local 

tryptophan environments by the P110A mutation and inclusion of the sterol into micelles, 

four single tryptophan mutant constructs were generated for both the wild-type and 

P110A Cav162-178 for a total of 8 constructs.  The conformation and secondary structure of 

each was probed using CD spectroscopy in the near and far ultraviolet regions and the 

exposure of each was probed using λmax and Stern-Volmer quenching analysis.  Near and 

far UV circular dichroism experiments on the mutants indicated that there were slight 

changes in the tryptophan packing environment but the secondary structure was largely 

maintained between the wild-type and the P110A single tryptophan mutants.  

Fluorescence studies indicated that modest changes in the local environment of 

tryptophan residues at positions 85, 98, and 115 occurred upon the mutation of P110A, 

with tryptophans within the center of the intramembrane domain becoming more shielded 
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from the aqueous environment.  These findings show that the P110A mutation leads to 

significant alterations in the fold and minor changes in the aqueous accessibility of 

caveolin-1.  On the other hand, the same suite of studies performed on single tryptophan 

mutants (WT and P110A) in the presence of the sterol indicated that minor changes 

occurred in the protein’s fold but major changes were observed in the local accessibility 

of the protein to iodide.  Additionally, a fluorescence resonance energy transfer (FRET) 

experiment looking at how the distance between a dansyl moiety covalently attached at 

position 133 and all four tryptophan residues in aggregate changed in response to the 

sterol.  The FRET study supported the near UV CD studies that indicated cholesterol-

PEG600 causes a minor change in the conformation of caveolin-1. 
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MATERIALS AND METHODS 

 

Protein Expression and Purification 

 DNA for wild-type Cav162-178, was synthesized by Genscript Corporation 

(Piscataway, NJ).  Caveolin-1 has three native cysteines that are palmitoylated in vivo 

(C133, C143, C156), and these residues were shown to be not critical to caveolin-1 

trafficking to caveolae 35.  Therefore, these sites were mutated to serine to avoid 

unwanted disulfide bond formation.  The Cav162-178 gene was cloned, over-expressed, and 

purified according to previously reported protocols (See chapter 2) 146.  After purification 

using high performance liquid chromatography, the identity of the protein was confirmed 

using MALDI-TOF mass spectrometry.  Next, purified Cav162-178 was aliquoted and 

lyophilized using protocols described by Rieth et al 43.  Mutant constructs were prepared 

using the Agilent Quik change mutagenesis kit (Santa Clara, CA) for a total of ten 

constructs (see Appendix 2-3 for PCR conditions).  For labeling of the protein with 

dansyl aziridine which reacts specifically with cysteines, a construct was generated where 

S133 was changed to the native cysteine (Cav162-178(C133)).  Cav162-178 contains four 

tryptophan residues: W85, W98, W115, and W128 that can be used to explore the 

exposure of the protein along the sequence.  For single tryptophan mutants, one of the 

four native tryptophan residues was retained and the other three were mutated to 

phenylalanine to generate the following constructs: Cav162-178(W85), Cav162-178(W98), 

Cav162-178(W115), and Cav162-178(W128).  Additionally proline 110 of Cav162-178 was 

mutated to alanine for wild-type and each of the four single tryptophan mutants to 

generate the following constructs: Cav162-178 P110A, Cav162-178(W85) P110A, Cav162-

178(W98) P110A, Cav162-178(W115) P110A, and Cav162-178(W128) P110A (see 
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Appendices 5-1 and 5-2 for construct sequences and mutagenesis primers respectively).  

Unless otherwise noted, all mutants were expressed and purified according to protocols 

described in Chapter 2. 

 

Labeling of Cav162-178(C133) with Dansyl Aziridine 

 For purification of Cav162-178(C133), the protocol described by Diefenderfer et 

al was employed with some minor differences 146.  Cav162-178(C133) was purified by 

nickel-NTA chromatography by first dissolving the post Triton-X-100 pellet in a binding 

buffer comprised of 8% (w/v) PFOA, 0.5 mM TCEP, 50 mM phosphate pH 8.0, washing 

the bound protein with a buffer comprised of 1% (w/v) PFOA, 0.5 mM TCEP, and 50 

mM phosphate pH 8.0.  The protein was eluted with a buffer comprised of 1% (w/v) 

PFOA, 250 mM imidazole, 0.5 mM TCEP, and 50 mM phosphate pH 8.0.  The eluted 

protein was quantified by measuring the absorbance at 280 nm and then rapidly desalted 

using sephadex G-25 resin equilibrated with a buffer containing 1% PFOA (w/v), 50 mM 

phosphate pH 8.0.  The desalted protein was then treated with a 50 fold molar excess of 

dansyl aziridine (generously synthesized by Dr. Larry Courtney, dissolved in DMOS at 

100 mg/mL).  The solution was then covered in foil and was allowed to react for 18 

hours.  Excess dansyl aziridine was quenched by the addition of β-mercaptoethanol added 

to a concentration of 10 mM.  The protein was then precipitated by dialysis against 20 L 

of 50 mM ammonium sulfate.  The precipitate was then subjected to cyanogen bromide 

cleavage, purified using reverse phase HPLC, and aliquoted out of HFIP 146.  The percent 

labeling of the protein was estimated by measuring the absorbance at 340 nm (dansyl 

peak absorbance) using an extinction coefficient of 3980 M-1cm-1 for dansyl and the 
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absorbance at 280 nm for the protein (22% of the dansyl absorbance at 340 nm was 

subtracted from the absorbance at 280 nm to account for its lower wavelength absorption) 

217,218.  Only 100% labeled material was utilized for fluorescence resonance energy 

transfer experiments.  The protein was reconstituted as described in proceeding sections. 

 

Protein Reconstitution 

To 1.2 mg of lyophilized Cav162-178, 3 mL of ice-cold buffer comprised of 20 mM 

phosphate pH 7.0, 100 mM NaCl, and 50 mM DPC (Anatrace, Maumee, OH) was added 

to reconstitute the protein to a final protein concentration of 30 μM.  After vortex mixing 

until clarification, each sample was filtered using a 0.2 μm filter to remove particulates.  

All mutants were reconstituted in an identical manner. 

For samples containing cholesterol-PEG600 (Sigma Aldrich, St. Louis, MO), Cav162-

178 constructs were first dissolved into HFIP at a concentration of 2 mg/mL.  A 1.2 mg 

quantity of protein was added to a 3 mL solution of 60 mM phosphate pH 7.0, 300 mM 

NaCl, 60 mM cholesterol-PEG600, and 90 mM DPC.  The HFIP concentration was 

adjusted to 50% (v/v) and the solution was lyophilized over night.  The solution was then 

rehydrated and subsequently lyophilized for 15 hours to remove all traces of HFIP.  The 

powder was then taken up into 9 mL of H2O to yield a solution which was 20 mM 

phosphate pH 7.0, 100 mM NaCl, and 20 mM cholesterol-PEG600 and 30 mM DPC for a 

final protein concentration of 30 μM.  This solution was then reconstituted by incubation 

on ice for 1-2 hours with occasional gentle mixing.  The solutions were filtered through a 

0.2 μm filter before use. 
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Far and Near UV Circular Dichroism Spectroscopy 

Circular dichroism experiments were performed using a JASCO circular dichroism 

spectrophotometer (Easton, MD).  The experiments were carried out at 298 K using a 

quartz cuvette with a 0.1 mm path length and a 1 cm path length for far and near UV 

experiments respectively. 

For far UV experiments, spectra were obtained from 260 to 190 nm with a 1 nm data 

point interval in step mode accumulating 16 scans.  For near UV experiments, spectra 

were obtained from 350 to 250 nm with a 0.5 nm data point interval in step mode 

accumulating 16 scans.  In each case, a background spectrum of buffer without 

reconstituted Cav162-178 was subtracted from the protein containing spectra.  Circular 

dichroism experiments were performed for Cav162-178 and Cav162-178(P110A) constructs 

twice.  For far UV experiments, machine units () were converted to mean residue 

ellipticity [] using the following equation: 

[ ] =  ×
(0.1 × (ܹܴܯ

(ܲ × (ܥ  

 

Here, MRW is the mean residue weight (protein MW/number of residues in the protein), 

P is the path length in cm, and C is the protein concentration in mg/mL yielding units of 

deg×cm2×dmol-1.  Far UV spectra were decomposed to reveal their secondary structure 

characteristics using the CDSTR algorithm with basis set 7 (optimized for 240-190 nm 

wavelength range) in dichroweb 224.  For near UV experiments, machine units () were 

converted to mean protein ellipticity [] using the following equation: 

[ ] =  ×
(0.1 × (ܹܯ

(ܲ × (ܥ  
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Here, MW is the molecular weight of the protein, P is the path length in cm, and C is the 

protein concentration in mg/mL yielding units of deg×cm2×dmol-1. 

 

Tryptophan λmax Determination and Fluorescence Quenching 

Steady-state fluorescence emission spectra were acquired at 298 K with an Eclipse 

fluorometer (Agilent, Santa Clara, CA) using a 1  1 quartz cuvette.  The excitation 

wavelength chosen was 295 nm which selectively excites tryptophan residues 127.  Both 

excitation and emission slits were set to 5 nm.  The emission spectrum was measured 

from 315-500 nm with a scan speed of 1 nm/s and 0.5 nm data point increments, 

averaging four scans.  The λmax values for all constructs used in the study were 

determined by fitting the data to a log-normal distribution using Igor Pro 6.22A 

(WaveMetrics, Inc., Lake Oswego, OR) 133.  The error in max values were assigned from 

the average of separate reconstitution experiments and was roughly  1 nm. 

Fluorescence quenching experiments were performed directly after λmax 

determinations utilizing a kinetic mode of data acquisition.  First, freshly prepared 

dithiothreitol was added to a final concentration of 1 mM.  The sample was then 

continuously excited at the 295 nm wavelength and the fluorescence intensity at the λmax 

of emission was monitored at a rate of 1 measurement/s.  Initially the sample’s 

fluorescence intensity was monitored for 3 minutes to ensure the sample was at 

equilibrium and accurately determine the unquenched intensity.  After this time period, 

an 18 μL aliquot of 20 % (w/w) potassium iodide in 1 mM dithiothreitol was added to 

2.58 mL of reconstituted Cav162-178 and the intensity was monitored for one minute 

before the next addition of quencher.  Addition of the quencher was repeated to obtain 
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quenching data in the 10-100 mM range.  Intensity averages at each potassium iodide 

concentration were fit to the modified Stern-Volmer equation to determine tryptophan 

fractional accessibilities 127. 

0ܫ
0ܫ − ܫ

=
1

݂ܽ ܽܭ [ܳ]
+

1
݂ܽ

 

 

All fluorescence experiments were repeated three times for the following constructs, 

Cav162-178, Cav162-178(W85), Cav162-178(W98), Cav162-178(W115), Cav162-178(W128), 

Cav162-178(P110A), Cav162-178(P110A/W85), Cav162-178(P110A/W98), Cav162-

178(P110A/W115), and Cav162-178(P110A/W128). 

 

Fluorescence Resonance Energy Transfer Experiments 

 The samples were diluted to the same concentration (~30 μM) using either a 

buffer comprised of 20 mM phosphate pH 7.0, 100 mM NaCl, and 50 mM DPC or 20 

mM phosphate pH 7.0, 100 mM NaCl, and 20 mM cholesterol-PEG600 and 30 mM DPC.  

Steady-state fluorescence emission spectra were acquired at 298 K with an Eclipse 

fluorometer (Agilent, Santa Clara, CA) using a 1  0.1 cm quartz cuvette.  The excitation 

wavelength chosen was 295 nm which selectively excites tryptophan residues 127.  Both 

excitation and emission slits were set to 2.5 nm.  The emission spectrum was measured 

from 315-595 nm with a scan speed of 1 nm/s and 0.5 nm data point increments, 

averaging ten scans.  Three experiments were performed for both micellar environments.  

Intensities at the max were used directly for fluorescence resonance energy transfer 

efficiency determination in equation 1-6: 

ܧ = 1 −
ܣܦܨ
ܦܨ
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For the distance calculation, an R0 of 21 Å 127 for the tryptophan-dansyl pair was utilized 

in equation 1-7: 

ܧ =
ܴ0

6

ܴ0
6 +  6ݎ
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RESULTS AND DISCUSSION 

 

Construct Design and Protein Reconstitution 

 In order to characterize the structural and accessibility changes occurring upon the 

caveolin-1 P110A mutation, a construct that encompassed residues 62-178 (Cav162-178) 

was chosen.  This portion of the protein was selected because it has been shown to 

capture the behavior of the full-length protein in terms of trafficking to caveolae 145.  

Therefore, the structural core that is critical for the protein’s function is intact in the 

Cav162-178 construct.  In order to exhaustively characterize accessibility changes imparted 

by the P110A mutation along the sequence of the protein, single tryptophan mutants of 

the four native tryptophan residues in caveolin-1 were generated for both the wild-type 

and the mutant construct for a total of 8 mutants.  Importantly, the tryptophan residues 

are reasonably spaced across the intramembrane domain (roughly every 14 amino acids 

from residues 85-128), providing complete coverage of the environment that the 

structural core of the protein experiences.  In each of these constructs, one tryptophan 

was maintained while the others were mutated to phenylalanine.  Phenylalanine was 

chosen because of its similarity to tryptophan in terms of hydrophobicity and size.  All 

constructs were reconstituted in DPC micelles.  DPC micelles were chosen because they 

are native-like and have been widely utilized in biophysical studies of membrane proteins 

(For chemical structure see Figure 1-11) 219-222.  To determine how the protein would 

change conformation in response to the inclusion of cholesterol, a detergent-like 

cholesterol mimic was utilized (cholesterol-PEG600) (Figure 5-1) as pure cholesterol has 

poor micelle solubility.  This molecule was chosen because it can be incorporated at 40% 
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by mol within the micelle, which is the concentration of cholesterol natively found within 

caveolae.  Additionally, this reagent, like cholesterol, is not charged. 

Cholesterol Cholesterol-PEG600
 

Figure 5-1.  Comparison of cholesterol and cholesterol-PEG600.  The PEG moiety 
allows for a high degree of cholesterol incorporation into micelles.  The mass that the 
PEG unit adds to cholesterol is roughly 600D on average. 
 
Far and near UV Circular Dichroism Spectroscopy 

 Circular dichroism spectroscopy was used to compare the secondary and tertiary 

structural changes that occur upon the P110A mutation.  Figure 5-2 shows the far UV 

circular dichroism spectra for Cav162-178 and Cav162-178(P110A) constructs.  When 

reconstituted into DPC, the far UV spectra of both the wild-type and mutant protein had a 

very similar appearance and showed two distinct minima at 208 and 222 nm, which is a 

signature of α-helical secondary structure.  However, a close examination of the spectra 

indicated that there may be a slight increase in helicity upon the P110A mutation (~15%, 

see table 5-1) 223.  This small increase could be due to the turn region becoming helical as 

alanine does not have the helix-breaking properties of proline 224,225.  Therefore, the loss 

of proline does not result in a major change in the secondary structure of caveolin-1, as 

its mutation to alanine only resulted in slight changes to the far UV circular dichroism 

spectra.  All single tryptophan mutants were also examined.  In DPC micelles, the 

secondary structures of the single tryptophan mutants compared nicely to that of the 

constructs where all four tryptophans were present as α-helical character was the major 
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contributor to the secondary structure (Figure 5-2, Table 5-1).  Interestingly, in some of 

the single tryptophan mutants made for the wild-type construct, increased α-helical 

character was observed relative to the wild-type that was of the same magnitude as the 

increase caused by the P110A mutation.  However, it appeared that the increase in 

helicity for the P110A mutant was more consistent, as the percentage of helicity between 

P110A mutants had a much smaller error (60  1%) than that for wild-type mutants (54  

8%). 
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Figure 5-2.  Comparison of far UV circular dichroism spectra of Cav162-178 constructs 
reconstituted in DPC micelles (black) or DPC:cholesterolPEG600 micelles (red) and 
Cav162-178 P110A constructs reconstituted into DPC micelles (blue) or 
DPC:cholesterolPEG600 micelles (green).  Panels A-E represent Cav162-178 constructs 
with all tryptophans present, W85 present, W98 present, W115 present, and W128 
present respectively.  The value [] is calculated for the mean residue ellipticity. 
 

Comparison of the different micelle environments also indicated that there was 

little difference between the protein reconstituted into DPC or DPC:CholesterolPEG600 

micelles.  Morphologically, the CD spectra of cholesterolPEG600 samples always had 

somewhat less defined minima (208 and 222 nm) and maxima (195 nm).  This could be 

due to the appearance of β-strand character which has a minima at 215 nm and a less 

intense maxima at 195.  Analysis of the spectra using dichroweb indicated that there was 
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on average about 19.0  2.0% β-strand character for Cav162-178 constructs reconstituted 

into DPC:CholesterolPEG600 micelles versus 11.0  3.0% β-strand character for Cav162-

178 constructs reconstituted into micelles composed of DPC only.  It appears that there is a 

statistically significant increase in the amount of β-strand character, in agreement with 

studies by others who have suggested that the sterol modifies caveolin’s secondary 

structure.  The increase was also observed when comparing Cav162-178 P110A constructs 

in the different micelle environments (Table 5-1).  Therefore it appears that the 

DPC:cholesterol-PEG600 micelle increases β-sheet character for the constructs used in 

this study.  More data will be required to definitively prove where this increase is 

localized, as dichroweb can only give a very rough estimate of such structural data. 
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Construct and Micelle System 
 

α-Helix  
(%) 

β-Strand  
(%) 

Turns  
(%) 

Disordere
d (%) 

Cav162-178 Wild-Type (DPC) 
 

0.45 0.13 0.17 0.25 

Cav162-178 Wild-Type 
(DPC:Cholesterol-PEG600) 

0.48 0.22 0.12 0.17 

Cav162-178 P110A (DPC) 
 

0.59 0.12 0.18 0.12 

Cav162-178 P110A  
(DPC:Cholesterol-PEG600) 

0.49 0.20 0.12 0.20 

Cav162-178(W85) (DPC) 
 

0.60 0.10 0.14 0.16 

Cav162-178(W85)   
(DPC:Cholesterol-PEG600) 

0.43 0.20 0.17 0.20 

Cav162-178(W85) P110A (DPC) 
 

0.60 0.10 0.16 0.14 

Cav162-178(W85) P110A 
(DPC:Cholesterol-PEG600) 

0.59 0.08 0.21 0.11 

Cav162-178(W98) (DPC) 
 

0.44 0.14 0.2 0.22 

Cav162-178(W98)   
(DPC:Cholesterol-PEG600) 

0.51 0.19 0.13 0.16 

Cav162-178(W98) P110A (DPC) 
 

0.62 0.09 0.14 0.15 

Cav162-178(W98) P110A  
(DPC:Cholesterol-PEG600) 

0.49 0.21 0.14 0.16 

Cav162-178(W115) (DPC) 
 

0.57 0.07 0.21 0.15 

Cav162-178(W115) 
(DPC:Cholesterol-PEG600) 

0.57 0.18 0.11 0.13 

Cav162-178(W115) P110A (DPC) 
 

0.61 0.12 0.15 0.14 

Cav162-178(W115) P110A  
(DPC:Cholesterol-PEG600) 

0.51 0.21 0.15 0.13 

Cav162-178(W128) (DPC) 
  

0.61 0.09 0.15 0.15 

Cav162-178(W128) 
(DPC:Cholesterol-PEG600) 

0.53 0.16 0.15 0.16 

Cav162-178(W128) P110A (DPC) 
 

0.59 0.12 0.14 0.14 

Cav162-178(W128) P110A 
(DPC:Cholesterol-PEG600) 

0.49 0.23 0.13 0.15 

AVG Cav162-178 (DPC) 
 

0.54  0.08 0.11  0.03 0.17  0.03 0.19  0.05 

AVG Cav162-178  
(DPC:Cholesterol-PEG600) 

0.50  0.05 0.19  0.02 0.14 0.02 0.16  0.03 

AVG Cav162-178 P110A (DPC 
) 

0.60  0.01 0.11  0.01 0.15  0.02 0.14  0.03 

AVG Cav162-178 P110A 
(DPC:Cholesterol-PEG600) 

0.51  0.04 0.19  0.06 0.15  0.04 0.15  0.03 

Table 5-1.  Percentages of different secondary structure components for each mutant 
from Dichroweb analysis.  Averaged values show that the secondary structure between 
different mutants is very similar and that the type of micelle is important in determining 
the amount of β-strand character. 
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Near UV circular dichroism, which gives information about the unique 

environment that phenylalanine (255-270 nm), tyrosine (275-282 nm), and tryptophan 

(290-305 nm) are sampling, was used to examine differences in the tertiary fold between 

the wild-type and mutant proteins 126.  When all tryptophans were present in aggregate, 

the appearance of the near UV circular dichroism spectra for wild-type and P110A 

mutant proteins in DPC micelles were very different, especially in the 290-305 nm region 

(Figure 5-3).  There is a large negative peak centered on 298 nm that was not present for 

Cav162-178 but was observed for Cav162-178(P110A).  The spectra also differed somewhat 

in their magnitude but had a similar morphology in the 285-250 nm region.  Although 

tryptophan and tyrosine overlap significantly in this region, there are no mutations to 

tyrosine residues; therefore, the decrease in signal in this region could indicate changes in 

tryptophan packing.  These differences indicate that the structure of the protein has 

changed.  Therefore it is plausible that the mutation of P110A has decreased helical 

packing within the transmembrane region.  Additionally, the appearance of the large 

negative peak in the near UV spectrum of Cav162-178(P110A) is indicative of a dramatic 

environmental change around one or more of the four tryptophan residues.  To try to link 

these changes to a particular tryptophan residue, each single tryptophan mutant was 

examined using near UV circular dichroism. 

Interestingly, when comparing the Cav162-178 and Cav162-178(W85) spectra, it 

appears that W85 contributes strongly to the peak centered on 290 nm, implicating this 

tryptophan in being in a unique fold of the protein.  When examining the single 

tryptophan mutants in which P110 is present the spectra always have a larger signal in the 

295-275 nm region.  The most significant case of this change is in comparing Cav162-
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178(W98) and Cav162-178(W98) P110A.  In the Cav162-178(W98) spectrum the CD signal 

increases over the 290-270 region whereas in the Cav162-178(W98) P110A spectrum the 

CD signal decreases dramatically.  In chapter 3, W98 was observed to be on the face of 

helix-1 that would be involved in helix-helix packing with helix-2.  Therefore, the change 

in the morphology of the Cav162-178(W98) P110A far UV trace could reflect alterations in 

this interaction.  All other single tryptophan mutant traces looked similar in terms of their 

morphology between the wild-type and P110A mutants.  Curiously, the large negative 

peak that appeared at 298 nm in the Cav162-178 P110A spectrum could not be linked to 

any of the single tryptophan mutants.  This observation possibly implicates a unique 

tryptophan-tryptophan interaction within the P110A mutant.  Proline is a special amino 

acid in terms of its structural effect on proteins as it has a narrow range of obtainable Φ 

and Ψ angles on the Ramachandran plot.  Therefore, the replacement of this residue with 

an alanine greatly opens the allowed number of Φ and Ψ angle combinations around the 

turn region.  This less stringent angle around position 110 may result in different 

rotations of either of the helical regions within the structural core of the protein.  A 

change in the rotation of the helical regions would result in a different environment for 

amino acids around and within them, and explains the differences observed in the near 

UV circular dichroism plot.  Regardless of the nature of the structural change, it is 

evident that proline 110 plays an important role in maintaining the proper fold of the 

protein. 
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Figure 5-3.  Comparison of near UV circular dichroism spectra of Cav162-178 constructs 
reconstituted in DPC micelles (black) or DPC:cholesterolPEG600 micelles (red) and 
Cav162-178 P110A constructs reconstituted into DPC micelles (blue) or 
DPC:cholesterolPEG600 micelles (green).  Panels A-E represent Cav162-178 constructs 
with all tryptophans present, W85 present, W98 present, W115 present, and W128 
present respectively.  The value [] is calculated for the mean protein ellipticity. 
 

Examination of the differing micelle environments shows that the inclusion of 

cholesterol-PEG600 caused a decrease in the intensity of the near UV circular dichroism 

spectra but does not significantly change the morphology compared to DPC only micelles 

for both wild-type and P110A spectra when all tryptophan residues are present (Figure 5-

3).  In agreement with the observation that W85 contributes strongly to the signal 

positioned around 290 nm, this peak is very strong in the case of the Cav162-178(W85) 
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spectrum.  This lack of dramatic changes in the near UV spectra leads to the conclusion 

that cholesterol may not change the conformation of caveolin significantly around the 

tryptophan groups.  The lack of appearance of any “new” peaks likely indicates that 

cholesterol would not be locked in place through a specific interaction; such has been 

suggested to occur between cholesterol and the 94-101 region of the protein.  This 

finding corroborates simulation studies which failed to see a specific cholesterol packing 

interface 46.  This also downplays the increased β-strand character in having a role in 

changing the conformation of the protein. 

 

Tryptophan λmax Determination and Fluorescence Quenching: Comparison of 

Cav162-178 and Cav162-178 P110A Constructs 

 The tryptophan residues native to Cav162-178 can act as reporters of solvent 

exposure by analyzing their fluorescence emission maximum (λmax) 133.  Analysis of the 

change in λmax (∆λmax) can be used to compare the degree of aqueous exposure between 

Cav162-178 mutants and different micellar environments (here ∆λmax will be from the 

reference point of going from the wild-type to the P110A mutant, or going from DPC to 

DPC:cholesterol-PEG).  Generally, a blue shift in the λmax value is indicative of greater 

membrane burial or tertiary structure associated shielding from the aqueous environment 

130,134-136.  In these studies, a negative value of ∆λmax will be indicative of a blue shift 

(decrease in accessibility) and a positive value of ∆λmax will be indicative of a red shift 

(increase in accessibility) compared to the reference point.  Steady-state Fluorescence 

emission spectra for all constructs used in the study in both DPC and 

DPC:cholesterolPEG600 micelles are shown in figure 5-4. 
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Figure 5-4.  Steady state tryptophan emission profiles for Cav162-178 and Cav162-178 
P110A constructs in DPC or DPC:cholPEG600 micelles.  Raw data (black) and fits (red) 
are indicated.  Fits were used to obtain max values, hence determining the wavelength 
that would be monitored for fluorescence quenching experiments.  Experiments were 
repeated three times to ensure max values were consistent.  An error of  1 nm was 
assigned to all peaks as this reflected the variance in different preparations. 
 

To further probe accessibility changes upon the P110A mutation of caveolin-1, 

tryptophan fluorescence quenching experiments employing iodide were performed 127.  

Quenching of tryptophan fluorescence by the soluble quencher iodide is greater for 

residues that are exposed to the aqueous environment (large fractional accessibility, fa) 

than for those buried within a membrane.  Modified Stern-Volmer quenching curves for 

all constructs utilized in the study in both DPC and DPC:cholesterol-PEG600 micelles 

are shown in figure 5-5.  Importantly, quenching experiments add a second technique that 
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can compare and contrast with λmax information, which can be subject to influences from 

the local environment of the tryptophan residue (i.e. polarity of neighboring residues, 

degree of hydrogen bonding available in the environment) and not necessarily differences 

in aqueous exposure.  Similar to ∆λmax analysis, ∆fa values can be used to compare 

differences in the exposure due to environment or mutation (Here, ∆fa will be from the 

reference point of going from the wild-type to the P110A mutant, or going from DPC to 

DPC:cholesterol-PEG).  In these studies, a negative ∆fa will be indicative of a more 

shielded environment and a positive ∆fa will be indicative of a less shielded environment 

than the reference point. 
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Figure 5-5.  Representative modified Stern-Volmer quenching curves for all Cav162-178 
constructs.  Plots showed very linear behavior and extrapolation to the y-intercept yielded 
fa values. 
 

Both wild-type and the P110A mutant that contained all tryptophans were probed 

to determine if there were major changes in accessibility between constructs.  Analysis of 

both Cav162-178 and Cav162-178 P110A emission spectra yielded λmax values of 341 nm 

(∆λmax=0), indicating that in aggregate, the tryptophan residues appeared to be sampling a 

similar environment (Figure 5-6).  Next, Cav162-178 and Cav162-178 P110A were quenched 

using iodide and both yielded linear modified Stern-Volmer quenching curves (Figure 5-

5).  Extrapolation of the best fit line in modified Stern-Volmer plots to the y-intercept 

yielded fractional accessibility (fa) values of 0.55 ± 0.02 and 0.54 ± 0.01 respectively 
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(∆fa=0) (Figure 5-7).  The determined λmax and fa values indicate that tryptophan residues 

in Cav162-178 and Cav162-178 P110A do not seem to have appreciably different 

accessibilities.  However, the CD data implicated changes in the tryptophan environment 

upon the P110A mutation (large negative peak at 298 nm).  This result suggested that the 

behavior of the tryptophans in aggregate was masking changes that may be occurring for 

each tryptophan individually (i.e. as one tryptophan becomes more exposed, another 

becomes less exposed).  In order to definitively probe changes that may be occurring 

local to each tryptophan residue, the four single tryptophan mutants generated for both 

Cav162-178 and Cav162-178 P110A were subjected to the same analysis. 

The first tryptophan in the caveolin sequence is at position 85 and is a few amino 

acids prior to the start of the structural core of the protein.  Analysis of the single 

tryptophan mutant spectra for Cav162-178(W85) and Cav162-178(W85) P110A yielded λmax 

values of 334.86 ± 1.0 nm and 341.12 ± 1.0 nm respectively.  Therefore, the ∆λmax going 

from Cav162-178(W85) to Cav162-178(W85) P110A was 6.3 ± 1.4 nm, consistent with a less 

hydrophobic environment for the mutant (Figure 5-6).  Fluorescence quenching analysis 

yielded very linear modified Stern-Volmer plots that had fa values of 0.53 ± 0.01 and 0.59 

± 0.02 for Cav162-178(W85) and Cav162-178(W85) P110A respectively (Figures 5-7).  The 

∆fa value obtained was 0.06 ± 0.01, confirming that W85 became more accessible to 

iodide quenching upon the mutation.  Tryptophan 85 is 25 amino acid residues away 

from position 110 and, remarkably, sensed a different environment when the P110A 

mutation was made.  Therefore, this finding lends extremely strong support to the 

hypothesis that P110 is required for maintenance of the global caveolin fold.  
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The next tryptophan in caveolin is at position 98 is centered within the protein’s 

structural core (helix-break-helix region).  Analysis of the single tryptophan mutant 

spectra for Cav162-178(W98) and Cav162-178(W98) P110A yielded λmax values of 342.78 ± 

1.0 nm and 336.08 ± 1.0 nm respectively.  The ∆λmax value obtained was -6.7 ± 1.4 nm, 

which indicates that the proline replacement results in greater micelle coverage of this 

region of the helix (Figure 5-6).  Modified Stern-Volmer plots for both constructs were 

linear and gave fa values of 0.63 ± 0.02 and 0.58 ± 0.01 for Cav162-178(W98) to Cav162-

178(W98) P110A respectively (Figure 5-7).  The ∆fa value of -0.06 ± 0.02 agrees with λmax 

data, therefore it is clear that the proline substitution resulted in a significantly more 

buried environment for the W98.  Therefore, proline 110 is absolutely critical to 

maintaining a specific depth of caveolin in the micelle. 

The second tryptophan resident to the structural core of the protein is W115.  This 

position should serve as a reporter for the putative turn region as it is located one helical 

turn from position 110.  Analysis of the single tryptophan mutant spectra for Cav162-

178(W115) and Cav162-178(W115) P110A yielded λmax values of 339.33 ± 1.0 nm and 

339.86 ± 1.0 nm respectively.  The ∆λmax value obtained, 0.5 ± 1.40 nm, is small in 

magnitude, which correlates with a relatively miniscule difference between wild-type and 

mutant environments around W115 (Figure 5-6).  Quenching of both wild-type and 

mutant W115 constructs again yielded very linear modified Stern-Volmer plots and gave 

fa values of 0.60 ± 0.01 and 0.52 ± 0.01 for Cav162-178(W115) to Cav162-178(W115) P110A 

respectively (Figure 5-7).  Interestingly, this yields a ∆fa of -0.08 ± 0.01, which is the 

largest fold change in iodide accessibility between any of the single tryptophan mutants 

between WT and P110A single tryptophan mutants.  It appears that the two methods are 
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not in agreement in terms of the effect that the proline replacement causes.  As mentioned 

previously, λmax values are subject to factors other than micelle coverage.  One such 

factor is hydrogen bonding from the indole to the surrounding amino acids or other 

molecules in the local environment of the tryptophan, which causes red shifts in emission 

spectra 226.  Therefore, the lack of blue shift in the spectra of Cav162-178(W115) P110A 

coincident with a decrease in iodide accessibility could be due to the formation of a 

unique hydrogen bond between tryptophan 115 and the surrounding environment.  

Although this is a plausible explanation for the discrepancy between methods, more 

experiments will be needed to confirm this hypothesis. 

The final tryptophan at position 128 is the terminal residue of the second helix 

within the structural core of the protein.  Analysis of the single tryptophan mutant spectra 

for Cav162-178(W128) and Cav162-178(W128) P110A yielded λmax values of 343.65 ± 1.0 

nm and 340.59 ± 1.0 nm respectively.  This gives a small ∆λmax value of -3.1 ± 1.4, 

indicating that W128 was only slightly more buried in the case of the mutant (Figure 5-

6).  Modified Stern-Volmer plots were linear and yielded fa values of 0.57 ± 0.01and 0.55 

± 0.01 for Cav162-178(W128) and Cav162-178(W128) P110A respectively.  Clearly, the 

∆λmax was strongly supported by the small ∆fa value of -0.02 ± 0.02 (Figure 5-7).  

Therefore it can be concluded that the P110A mutation only slightly modifies the depth 

of the C-terminal end of the structural core of the protein. 

With this combined fluorescence data, conclusions as to how the intramembrane 

domain and flanking regions are modulated by the presence of proline at position 110 can 

be drawn.  The decrease in accessibility of tryptophan residues within the intramembrane 

domain points to a role of proline 110 in altering the penetration depth of the protein in 
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micelles.  This effect seems to be more dramatic for residues within the center of the 

intramembrane domain, as the decrease in accessibility was less significant for W128 

than it was for W98 and W115.  Interestingly, it seems that the deeper burial of the 

intramembrane domain within the hydrophobic core of the micelles comes at the cost of 

greater exposure for W85.  Therefore, proline 110 also has a role in orienting regions 

flanking the intramembrane domain.  All data for the single tryptophan mutants are 

reported in tables 5-1 and 5-2. 

 
Figure 5-6.  Comparison of max values obtained from tryptophan emission profile fits. 
 

Tryptophan 
Position 

DPC micelles DPC with Choleserol:PEG600 micelles 
max (nm) max (nm) 

(P110A – 
WT) 

max (nm) max (nm) 
(P110A – 

WT) Cav162-178 
Cav162-178 

P110A Cav162-178 
Cav162-178 

P110A 
W85 334.9 ± 0.8 341.1 ± 0.2 6.3 ± 0.8 340.0 ± 0.2 347.5 ± 0.1 7.5  0.2 
W98 342.8 ± 0.3 336.1 ± 1.0 -6.7 ± 1.0 347.2 ± 0.1 341.2 ± 0.1 -6.0  0.1 
W115 339.2 ± 0.6 339.9 ± 1.5 -0.5 ± 1.6 344.9 ± 0.1 345.0 ± 0.1 0.1  0.1 
W128 343.7 ± 0.3 340.6 ± 1.4 -3.1 ± 1.4 347.2 ± 0.1 347.1 ± 0.2 -0.1 ± 0.2 

Table 5-2.  max and ∆max values obtained for single tryptophan mutants of Cav162-178 
and Cav162-178 P110A. 
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Tryptophan λmax Determination, and Fluorescence Quenching of Cav162-178 

Constructs: a Comparison of Micellar Environments 

 Minor changes in the secondary and tertiary structure of Cav162-178 were observed 

in the near and far ultraviolet regions when the micellar environment was loaded with 

cholesterol-PEG600 at 40% by mol.  Specifically, the amount of β-sheet character 

increased and the appearance of the near UV CD spectra showed a decrease in signal 

intensity.  To evaluate if these changes were also coincident with changes in protein 

accessibility, the changes in λmax (∆λmax) and fa (∆fa) were used to compare the degree of 

aqueous exposure between Cav162-178 in micelles composed purely of DPC and those 

composed of DPC:cholesterol-PEG600. 

First, the Cav162-178 that contained all tryptophans was probed to determine if 

there were major changes in accessibility between micellar environments.  Analysis of 

Cav162-178 reconstituted into either DPC or DPC:cholesterol-PEG600 spectra yielded λmax 

values of 341.1  1.0 nm and 344.5  1.0 nm respectively, indicating that in aggregate, 

the tryptophan residues appeared to be sampling a similar environment as the magnitude 

of the red shift was minor (~3.4 nm, Figure 5-4 and Figure 5-6).  Next, Cav162-178 was 

quenched using iodide and gave linear modified Stern-Volmer quenching curves for both 

micelle types (Figure 5-7).  Extrapolation of the best fit line in modified Stern-Volmer 

plots to the y-intercept yielded fractional accessibility (fa) values of 0.55 ± 0.02 and 0.34 

± 0.01 for Cav162-178 in DPC and Cav162-178 in DPC:CholesterolPEG600 respectively 

(∆fa=-0.21  0.02) (Figure 5-7).  This result was very surprising as there was little 

difference between the emission maxima but a very large decrease in iodide accessibility.  

To better characterize how this change in accessibility translates across the 
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intramembrane domain, the individual tryptophan mutants were examined using the same 

approach. 

Analysis of the single tryptophan mutant spectrum for Cav162-178(W85) 

reconstituted into DPC:cholesterolPEG600 yielded a λmax value of 340.0 ± 1.0 nm.  

Therefore, the ∆λmax going to a cholesterol rich environment from DPC was 5.1 ± 1.4 nm, 

a fairly large red shift (Figure 5-6).  Fluorescence quenching analysis yielded very linear 

modified Stern-Volmer plot and gave a fa value of 0.34 ± 0.01 for Cav162-178(W85) in the 

sterol rich environment (Figures 5-7).  The ∆fa value obtained was -0.26 ± 0.01, 

confirming that the W85 became much less susceptive to iodide quenching upon 

translocation to a cholesterol rich environment.  This is not in agreement with the small 

magnitude in the change of the emission maximum. 

Analysis of the single tryptophan mutant spectrum for Cav162-178(W98) 

reconstituted into DPC:cholesterol-PEG600 yielded a λmax value of 347.2 ± 1.0 nm 

(Figure 5-5).  Going from pure DPC micelles to the DPC:cholesterol-PEG600 micelles 

yields a ∆λmax of 4.4 ± 1.4 nm, indicating a red shift for W98 (Figure 5-6).  The modified 

Stern-Volmer plot gave a fa value of 0.48 (Figure 5-7).  The ∆fa value between DPC 

micelles and those containing cholesterol-PEG600 was -0.15 ± 0.02, again pointing to 

increase shielding of the tryptophan environment from the aqueous milieu due to the 

sterol. 

The next tryptophan examined in DPC:cholesterol-PEG600 micelles, Cav162-

178(W115), gave a λmax value of 344.9 ± 1.0 nm (Figure 5-5).  The ∆λmax value was 5.7 ± 

1.4 nm, revealing a dramatic change in the accessibility or hydrogen bonding 

environment due to the sterol (Figure 5-6).  A significant change in the fa value was again 
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observed, where a modified Stern-Volmer plot yielded an accessibility of 0.50 ± 0.01 (∆fa 

= -0.10  0.02) (Figure 5-7).  Again, the change in the emission maximum (red shift) and 

the change in iodide accessibility were not in strong agreement. 

The final tryptophan site examined in DPC:cholesterol-PEG600 micelles, Cav162-

178(W128), gave a λmax value of 347.2 ± 1.0 nm (Figure 5-5).  Again, there was a red shift 

in the emission maximum compared to that of the protein incorporated into pure DPC 

micelles (∆λmax = 4.2 nm).  However, as has been the case with the other mutants, the 

modified Stern-Volmer plot yielded a fa = 0.38 0.01, giving a ∆fa = -0.20  0.02 which 

again points to the protein being shielded from the aqueous phase to a greater degree 

when in the presence of cholesterol (Figure 5-7).  It is clear that the micelle environment 

is causing drastic changes in the accessibility of the protein in terms of the fraction 

accessible to iodide quenching, where all constructs are less exposed to the aqueous 

environment. 

It appears that the inclusion of cholesterol-PEG600 results in the protein being 

much less accessible to the water soluble quencher iodide without leading to a significant 

blue shift in the observed spectra.  This same trend was observed when comparing 

Cav162-178 P110A constructs reconstituted into the differing micelle environments.  

Therefore, it is likely that the shift in the emission maximum may be the result of 

increased hydrogen bonding between the tryptophan residues and polyethylene glycol 

moieties hanging off the cholesterol molecule.  In the case of this study, the ∆max only 

appears to be useful in comparing different constructs in the same type of micelle as the 

values tracked with the change in the fractional accessibility in a more consistent manner. 
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There were some significant differences when comparing Cav162-178 and Cav162-

178 P110A constructs reconstituted into DPC:CholPEG600 micelles.  The ∆λmax value 

between Cav162-178 and Cav162-178 P110A with all four tryptophan residues in aggregate 

was roughly zero.  The fa values were roughly the same as well (~0.34), yielding a ∆fa of 

zero.  Interestingly, there was a very significant red shift going from Cav162-178(W85) to 

Cav162-178(W85) P110A of 7.5  1.4 nm.  The ∆fa was found to be 0.19  0.02, in 

agreement with the change in the emission maximum, indicating a significant decrease in 

shielding of W85 upon the P110A mutation.  This change was much more dramatic than 

that observed between Cav162-178(W85) to Cav162-178(W85) P110A in pure DPC micelles.  

For Cav162-178(W98) and Cav162-178(W98) P110A, it was found that the ∆λmax and ∆fa 

values were -6.0  1.4 nm and -0.15  0.02 respectively.  This indicates that there was a 

significant increase in shielding from the aqueous environment.  For Cav162-178(W115) 

and Cav162-178(W115) P110A, it was found that the ∆λmax and ∆fa values were -0.1  1.4 

nm and -0.07  0.01 respectively.  This indicates that there was increased shielding of 

W115 in response to the P110A mutation that was not strongly reflected by the change in 

emission maximum.  For Cav162-178(W128) and Cav162-178(W128) P110A, it was found 

that the ∆λmax was -0.1  1.4 nm and the ∆fa was roughly zero.  Therefore, it seems that 

accessibility of W128 remains unchanged.  These data mirrors the changes in the pure 

DPC micelles indicating that P110A mutation alters the accessibility of the caveolin-1 

protein in a predictable way, where W85 is more exposed, W98 and W115 are less 

exposed, and W128 is unaffected (Figure 5-7).  Although three tryptophan residues 

decrease in their accessibility going from wild-type to P110A Cav162-178, the two 

tryptophan residues that are on the N-terminal side are much more affected.  This result 
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could indicate that there is a significant amount of play between the cholesterol-PEG600 

and the protein, and that P110 helps to position the protein for this putative interaction. 

Cholesterol has been suggested in some studies on caveolin to be a factor causing 

aggregation of the protein into 200, 400, and 600 kD oligomers in vivo 74.  Therefore 

protein oligomerization could also be at play in shielding tryptophan residues from 

quenching.  Of course, more conclusive evidence (possibly analytical ultracentrifugation) 

will be needed to support this conclusion.  Therefore, in the context of the construct used 

for these studies, it seems that cholesterol leads to a decreased aqueous accessibility in 

this system.  This result may need visitation in a more relevant system that has a bilayer 

to examine if cholesterol indeed imparts a topological change as these results could be 

artifacts from differential micelle coverage of the protein in the DPC:cholesterol-PEG600 

mixture that may not be related to the protein’s burial.  In contrast to P110A which 

caused changes in the tertiary fold of the protein and does not impart significant changes 

in the secondary structure and only modest alterations to the degree of micelle coverage, 

it appears that cholesterol inclusion causes the opposite, where large changes were 

observed for the degree of burial but slight changes were observed in regards to the 

tertiary fold of the protein. 
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Figure 5-7.  Comparison of fa values obtained from modified Stern-Volmer plots. 
 

Tryptophan 
Position 

DPC micelles DPC with Cholesterol-PEG600 micelles 
fa (%) fa (%) 

(P110A – 
WT) 

fa (%) fa (%) 
(P110A – 

WT) Cav162-178 
Cav162-178 

P110A Cav162-178 
Cav162-178 

P110A 
W85 53 ± 1 59 ± 2 6 ± 1 27 ± 1 46 ± 1 19  1 
W98 63 ± 1 58 ± 1 -5 ± 1 48 ± 1 33 ± 2 -15  2 
W115 60 ± 1 53 ± 1 -7 ± 1 50 ± 1 43 ± 1 -7  1 
W128 57 ± 1 55 ± 1 -2 ± 1 37 ± 1 38 ± 2 1  2 

Table 5-3.  fa and ∆fa values obtained for single tryptophan mutants of Cav162-178 and 
Cav162-178 P110A. 
 
Fluorescence Resonance Energy Transfer Experiments: Comparison of Differing 

Micelle Environments 

 The near UV circular dichroism experiments suggested that there was not 

a major change in tryptophan packing when the protein was reconstituted into 

cholesterol-PEG600 micelles.  However, far UV experiments seemed to suggest a more 

dramatic change in the secondary structure of the protein that could impact the fold.  To 

examine the impact of the sterol on the fold of the intramembrane domain and flanking 

regions, a fluorescence resonance energy transfer experiment was devised.  In this 

experiment, a cysteine native to position 133 was re-introduced and was labeled using 

dansyl-aziridine (Figure 5-8).  Once covalently attached, the dansyl can be excited by 
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tryptophan’s emission and this requires close contact of the fluorophores in space for the 

energy transfer event to occur.  Upon excitation, changes in the tryptophan distances due 

to the micellar environment will be evidenced by increases or decreases in the efficiency 

of the energy transfer (increase in dansyl emission at the cost of a decrease in tryptophan 

emission, (Figure5-9)).  R0, the radius of 50% transfer efficiency is 21 Å for the 

tryptophan-dansyl FRET pair.  This distance would be appropriate to examine changes in 

the average distance of this position from nearby tryptophan residues as W128 is only 5 

residues away from the labeled position and W115 is ~20 Å away from W128 (assuming 

they are within the same helix as suggested in chapter 3).  Assuming a static triangle 

shaped, helix-break-helix motif with an intra-helical angle 53° (see Chapter 3), there 

would be an average distance of 24 Å between the heads of the helices.  Therefore, the 

dansyl group could also report on changes in the distance to tryptophans W85 and W98. 

Getting the protein labeled to 100% is critical for this experiment because 

unlabeled material will not contribute to the FRET process.  It was found that the protein 

had to be kept completely reduced until moments before the addition of the reagent using 

TCEP because caveolin-1 has a strong disulfide bond forming tendency that results in 

protein dimerization.   
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Figure 5-8.  A)  The dansyl-aziridine moiety is highly reactive due to ring strain and can 
be attached to sulfhydryl groups on proteins at a physiological pH.  B)  FRET assay 
principle.  The hypothesis is that changes in the micelle environment will cause 
differences in the dansyl-tryptophan distance.  The dansyl label is denoted as a star and 
tryptophan residues 85, 98, 115, and 129 are show as circles in black, red, green, and 
blue respectively.  The “fixed” distance between the top of the two helices is based on 
geometric arguments assuming the helices form a co-planar triangle with one helix being 
27 Å and the other being 28.5 Å and the intra-helical angle is 53° based on MD 
simulations (see Chapter 3). 
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However, if the TCEP was left in solution, only 50% of the protein was labeled 

on average.  Once the protein was purified by nickel affinity chromatography, it was 

desalted and the reagent was added as fast as possible.  This reaction had to be quenched 

after about 18 hours as incubation times greater than 24 hours resulted in over-labeling.  

This is because the aziridine can react with other nucleophiles on the protein (i.e. lysine).  

Over-labeling is undesirable because it can complicate FRET analysis.  The absorbance 

spectrum of the labeled Cav162-178 is shown in figure 5-9. 

Figure 5-9.  Post HPLC purified Cav162-178 UV-VIS absorbance profile.  The peak 
absorbance at 340 nm is due to the covalently attached dansyl label. 
 

The FRET experiment showed that there were significant differences (~20%) in 

the energy transfer efficiency between the dansyl moiety and the tryptophan groups when 

going from pure DPC micelles to DPC:cholesterol-PEG600 micelles (0.64  0.01 and 

0.43  0.01 respectively) (Figure 5-10).  When using an R0 of 21 Å, the average donor-

acceptor distance translates to 19.04  0.10 Å and 22.00  0.10 Å for Cav162-178(C133) 
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reconstituted in DPC and DPC:cholesterol-PEG600 micelles respectively.  This is in 

agreement with a simulation study which showed that there was an increase the average 

radius of gyration for caveolin residues 94-122 in the presence of cholesterol, suggesting 

that the sterol promotes open conformations of caveolin 46.  This change is very slight in 

terms of intramolecular distance, and agrees with the near UV CD data which pointed to 

very little change in tryptophan packing in micelles composed of DPC:cholesterol-

PEG600.  These data cannot say how the conformation changed, only that there was a 

change in the average distance between the donor and acceptor pair.  For this reason, the 

exact nature of the distance change could not be evaluated.  The use of single tryptophan 

mutants may give more specific information of how each tryptophan environment 

changes when the sterol is included in the micelles, and could clarify the exact nature of 

the change observed.  It is also possible that the distance between the dansyl moiety and 

some of the tryptophan residues would be greater than 2R0, and therefore this would not 

yield any relevant information to changes that are occurring with cholesterol being 

present (E=1.56% at r=2R0).  In this case it may be necessary to label many more sites to 

completely understand how or if the conformation is changing with the inclusion of 

cholesterol. 
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Figure 5-10.  Comparison of dansyl-tryptophan FRET for Cav162-178 reconstituted into 
either DPC micelles (left) or DPC:cholesterol-PEG600 micelles (right).  The unlabeled 
species emission profile is in black and the dansyl-labeled species is in red.  Total 
amounts of protein were the same as assessed by measuring the absorbance at 280 nm 
and diluting each sample using the appropriate micelle blank.  Therefore differences in 
the emission intensity between the unlabeled spectra are due to environmental effects of 
the different types of detergent micelles. 
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CONCLUSIONS 

 Recent biophysical studies revealed that the highly-conserved P110 of caveolin-1 

is critical to its structure and topology.  Importantly, this residue is thought to be vital to 

the appearance of a membrane-embedded helix-break-helix motif that gives caveolin-1 its 

hallmark topology and the loss of this residue is sufficient to disrupt caveolae formation.  

Despite many investigations into the part that P110 plays in caveolin-1 topology, results 

have been inconclusive in determining the exact magnitude of its role in modulating the 

structure and aqueous accessibility of the protein.  In previous NMR studies, high quality 

hetero-nuclear single quantum correlation spectra were not obtainable for the caveolin-1 

P110A mutant, indicative of a poorly structured protein.  In this chapter, the data have 

linked this poor structuring to changes within the tertiary structure rather than the 

secondary structure using near and far circular dichroism spectroscopy 70.  It was found 

that the examination of each tryptophan individually was critical to observe changes in 

the proteins micellar coverage as the behavior of tryptophans in aggregate masked the 

accessibility changes that occurred upon the P110A mutation.  Specifically, the P110A 

mutation slightly decreased the accessibility of tryptophan mutants within the structural 

core of the protein (residues 87-128), confirming that the proline is playing a role in 

modulating the caveolin topology.  However, the magnitudes of these changes were not 

dramatic, therefore the mutation leads to only a modest difference in tryptophan 

accessibility and not major changes (i.e. the translocation of a tryptophan from a fully 

buried to a fully exposed environment.).  The proline also plays a role in determining the 

global fold as W85 showed an increased accessibility upon mutation.  This study lends 

support to in vitro glycosylation studies which failed to see very drastic changes in the 
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topology of caveolin-1 upon proline substitution 76.  To date, this body of work represents 

the most in-depth study of structural and accessibility changes that occur from the 

substitution of caveolin’s critical proline residue.   

 In this study, cholesterol (in the context of a pegylated micellar analogue) was 

shown to result in very slight changes in helical packing, and promoted β-strand 

character.  The FRET experiments showed that there is a slight increase in the average 

distance between a dansyl moiety placed at position 133 and the tryptophan residues 

within the 85-128 region, possibly indicating a more open conformation of the protein.  

On the other hand, quenching data suggested that there is a significant decrease in 

aqueous accessibility of the tryptophans in the presence of the sterol (these data were not 

at all consistent with max data).  These data are at odds with the findings in chapter 4 in 

regards to the sterol’s effect on the burial of the scaffolding domain and reports in the 

literature which indicated that the protein became more accessible in the presence of 

cholesterol.  Interestingly, when the P110A mutant was probed in DPC:cholesterol-

PEG600 micelles, it showed the same trend in accessibility changes that was observed 

between the wild-type and mutant in pure DPC micelles, where residue 85 became more 

exposed and residues 98 and 115 became more buried.  Interestingly, the accessibility of 

the two tryptophan residues that were on the N-terminal side of the P110 residue were 

much more affected by its mutation to alanine.  It was found that shits in max did not 

strongly agree with the degree of quenching when comparing different micelle types.  

However, the max and quenching studies were generally in agreement when comparing 

proteins within the same micellar environment (i.e. blue shift in max was coincident with 

a decrease in the fraction accessible).  Therefore it is with great caution that max should 
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be used alone in comparing the hydrophobic coverage of a protein in different types of 

micelles.  It is difficult to glean topological information in a micellar environment and 

these studies will need to be performed in a bilayered mimic for stronger validation of 

trends observed upon P110A mutation and cholesterol inclusion.  Nonetheless this 

chapter has utilized the most native-like construct to date to try to answer questions of 

how the accessibility of the entire intramembrane domain is linked to the proline at 

position 110 and cholesterol.  Future work will be needed to place these accessibility 

changes into the context of conformational changes within a lipid bilayer.  
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Appendix 5-1.  Sequences of Protein Constructs Utilized 

 

Construct Protein Sequence 
Cav162-178 Wild-
Type 

DVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTKYWYRLLSA
LFGIPLALIWGIYFAILSFLHIWAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178 Wild-
Type C133 

DVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTKYWYRLLSA
LFGIPLALIWGIYFAILSFLHIWAVVPCIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178(W85) DVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTKYFYRLLSA
LFGIPLALIFGIYFAILSFLHIFAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178(W98) DVVKIDFEDVIAEPEGTHSFDGIFKASFTTFTVTKYWYRLLSA
LFGIPLALIFGIYFAILSFLHIFAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178(W115) DVVKIDFEDVIAEPEGTHSFDGIFKASFTTFTVTKYFYRLLSA
LFGIPLALIWGIYFAILSFLHIFAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178(W128) DVVKIDFEDVIAEPEGTHSFDGIFKASFTTFTVTKYFYRLLSA
LFGIPLALIFGIYFAILSFLHIWAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178 P110A DVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTKYWYRLLSA
LFGIALALIWGIYFAILSFLHIWAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178 
P110A(W85) 

DVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTKYFYRLLSA
LFGIALALIFGIYFAILSFLHIFAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178 
P110A(W98) 

DVVKIDFEDVIAEPEGTHSFDGIFKASFTTFTVTKYWYRLLSA
LFGIALALIFGIYFAILSFLHIFAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178 
P110A(W115) 

DVVKIDFEDVIAEPEGTHSFDGIFKASFTTFTVTKYFYRLLSA
LFGIALALIWGIYFAILSFLHIFAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 

Cav162-178 
P110A(W128) 

DVVKIDFEDVIAEPEGTHSFDGIFKASFTTFTVTKYFYRLLSA
LFGIALALIFGIYFAILSFLHIWAVVPSIKSFLIEIQSISRVY
SIYVHTVSDPLFEAVGKIFSNVRINLQKEI 
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Appendix 5-2.  Mutagenesis Primers Utilized 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Construct Primer Sequence 
F85W 5’-

GGATCCATGGACGGTATCTGGAAAGCGTCTTTCACCA
C-3’ 

F98W 5’-CACCGTTACCAAATACTGGTTCTACCGTCTGCTGTC-
3’ 
 

F115W 5’-CTGGCGCTGATCTGGGGTATCTACTTCGC-3’ 
 
 

F128W 5’-CTTTCCTGCACATCTGGGCGGTTGTTCCGTC-3’ 
 
 

P110A F115F 5’-
CTGTCTGCGCTGTTCGGTATCGCACTGGCGCTGATCTT
CGGTATC-3’ 

P110A F115W 5’-
CTGTCTGCGCTGTTCGGTATCGCACTGGCGCTGATCTG
GGGTATC-3’ 
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Chapter 6.  Applications of Indole-PE:  A Novel Lipid with a 
Tryptophan Headgroup for Use in Quenching Studies 
 
ABSTRACT 
 

Fluorescence quenching studies are routinely employed to estimate the burial of 

tryptophans within the tertiary folds of soluble proteins.  Fluorescence quenching of 

tryptophan residues within membrane proteins embedded in micelles, bicelles, and 

vesicles has also become a standard method to evaluate the protein’s degree of burial.  

The quenching of membrane proteins tends to be more complex because the barrier effect 

of the membrane mimetic on quenchers is not precisely known.  To help with the 

interpretation of quenching studies, a novel lipid with an indole headgroup, dubbed 

“indole-PE”, was synthesized by coupling 3-iodoacetic acid and DMPE via peptide bond 

formation.  This chapter describes the purification and characterization of the 

fluorescence properties of indole-PE.  Additionally, the utility of indole-PE as a 

molecular ruler was examined in two cases.  In the first case it is shown that indole-PE 

can be used to investigate the permeability of commonly used quenchers across lipid 

vesicles.  In the second example, it is shown that indole-PE serves as a tool to help 

interpret fluorescence λmax measurements and iodide fluorescence quenching experiments 

performed on thirteen single tryptophan mutant constructs of caveolin-1 reconstituted 

into phospholipid bicelles. 
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INTRODUCTION 
 
 Tryptophan fluorescence is highly useful in the structural probing of proteins.  For 

instance the max of a residue’s emission can often be linked to different degrees of 

exposure to water and therefore can be an analytical tool to study protein folding or in the 

case of membrane proteins, an estimation of their burial within phospholipid bilayers.  

Additionally, tryptophan can be quenched by a number of different small molecules.  

These molecules can carry different charges or vary in their degree of polarity and 

therefore their usage in combination can yield a rich amount of information about the 

environment of a given residue.  In the study of membrane proteins, soluble probes are 

often used which have limited aces sot the membrane matrix.  To what degree these 

different probes cross or diffuse into bilayers to cause differential quenching is not 

known.  A common technique used is comparing the degree of quenching of the free 

amino acid tryptophan to that of the protein of interest.  This approach can be 

complicated as free tryptophan can interact with membranes and cannot help with finer 

levels of differentiation (i.e. burial at aqueous headgroup interface or within the 

hydrophobic core of the bilayer). 

 In this study, a novel lipid which contains the indole moiety as its headgroup, 

indole-PE, was synthesized to provide a more accurate molecular ruler for comparison in 

max and quenching studies of tryptophan residues.  Herein, the synthetic approach and 

purification of the lipid is described.  The product was confirmed by MALDI-TOF mass 

spectrometry and NMR.  Additionally the fluorescent properties were probed.  It was 

found that indole-PE incorporated into liposomes provides a good marker to determine if 

the polar tryptophan quenching reagents can permeate across bilayers.  It is also shown to 
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be useful in quenching studies when reconstituted into phospholipid bicelles.  

Specifically it was utilized as a metric for a tryptophan scanning mutagenesis study on 

caveolin-1 residues 62-178.  In this study, 13 single tryptophan mutants were generated 

for the protein by mutating all native tryptophans to phenylalanine and then replacing 

aromatic positions or non-conserved positions with tryptophan in the 85-133 region.  It 

was found that these positions were less accessible to iodide quenching than indole-PE 

indicating that this region of the protein is buried beneath the aqueous headgroup 

interface.  
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MATERIALS AND METHODS 
 
HSVFLAGCav162-178 Single Tryptophan Mutant Cloning, Expression, and 
Reconstitution into Bicelles 
 

HSVFLAGCav162-178 was cloned, expressed, and purified according to protocols 

described in chapter 2 and Appendices 2-3 through 2-6.  Cav162–178 contains four 

tryptophan residues: W85, W98, W115, and W128.  The original gene had all four native 

tryptophan residues replaced with phenylalanine.  After this, 13 constructs were 

generated with a single tryptophan re-introduced at a native site (W85, W98, W115, 

W128), a site that contained an aromatic residue (F89, F99, F107, Y118, F124), or a site 

that was not highly conserved across isoforms (L102, M111, I117, C133) (See Appendix 

6-1) using the Quik-change site-directed mutagenesis kit (Agilent, Santa Clara, CA).  

Additionally native cysteines were mutated to serine in order to avoid any biologically 

irrelevant disulfide bond formation and are justified by reasons discussed in previous 

chapters.  Primers were designed using the free web-based primerX program 

(Bioinformatics.org) (See Appendix 6-2).  See Appendix 2-4 for PCR reaction and 

cycling conditions. 

HSVFLAGCav162-178 was reconstituted into 2.5% (w/w) lipid, q= 0.5 DMPC/DHPC 

bicelles at a protein concentration of 30 μM.  To achieve this, HSVFLAGCav162-178 (1.64 mg) 

and DMPC (32.8 mg) were dissolved in 3 mL HFIP.  Next, 2 mL of water was added and 

this solution was rapidly frozen and lyophilized for 24 hours.  The lyophilized mixture 

was then converted to bicelles by adding 166 μL 25% (w/w) DHPC, 300 μL 200 mM 

phosphate pH 7.0, and 2500 μL H2O by vortex mixing.  The bicelles were then 

centrifuged at 10,000 x g for 20 minutes at room temperature to remove aggregates that 
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may have formed during the reconstitution process.  The supernatant was used for 

fluorescence measurements. 

 

Determination of λmax for Single Tryptophan Mutants 

Two separately prepared samples were used to determine λmax for each single 

tryptophan mutant.  Bicelles were used because they scatter very little light, and contain a 

planar DMPC bilayer, which avoids orientation differences associated with vesicles.  

Fluorescence emission spectra were acquired using a 1 × 1 cm quartz cuvette held at 298 

K with an Eclipse fluorometer (Agilent, Santa Clara, CA).  The excitation wavelength 

used was 295 nm to avoid unwanted tyrosine excitation 127.  Both the excitation and 

emission slit widths were set to 5 nm.  The emission spectra were measured from 315 to 

500 nm with a scan speed of 1 nm/s and 0.5 nm data point increments.  Four scans were 

averaged for each construct.  A blank solution containing only bicelles was used to 

subtract background fluorescence.  The λmax values were obtained by fitting the spectra to 

a log-normal distribution using Igor Pro 6.22A software (Wavemetrics, Portland, OR)133. 

 

Synthesis and Purification of Indole-PE 

In a 20 mL glass scintillation vial, 0.573 mmol (100 μL, neat) of N,N-

diisopropylethylamine, 0.044 mmol (7.65 mg, powder) indole-3-acetic acid, 0.20 mmol 

(30.5 mg, powder) 1-hydroxybenzotriazole hydrate, and 0.050 mmol (9.00 mg, powder) 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide were dissolved into 2.5 mL of 

chloroform with stirring.  After 1 hour, 0.022 mmol (13.80 mg, powder) of 1,2-

dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) was added with stirring and the 
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mixture was allowed to react at room temperature overnight in the dark.  The mixture was 

then transferred to a 50 mL glass conical tube and 5 mL of chloroform was added along 

with 10 mL of 20 mM phosphate pH 7.0 and 9 drops of a saturated NaCl solution.  The 

mixture was vortexed for 5 minutes, and centrifuged at 6000 x g for 10 minutes at 4°C.  

The top layer was disregarded and the bottom layer was washed a second time.  The 

bottom layer was then dried using MgSO4 and the solution was filtered using Whatman 

No. 2 filter paper.  The supernatant was dried under vacuum to a gel.  The resulting gel 

was then taken up into 5 mL of a 50:50 solution of ammonium acetate buffer pH 8.0 and 

methanol by vortexing.  The reconstituted material was then passed through a 0.2 μm 

regenerated cellulose filter.  The sample was then injected onto a 250 x 21.20 mm C4 

reverse phase column with a 15 μm particle packing having a 300 Å pore size at 10 

mL/min.  The lipid was eluted using a 1.25 %/ minute gradient starting at 50 % buffer A 

(ammonium acetate buffer pH 8.0) 50 % buffer B (methanol) and going to 100 % buffer 

B.  After drying down the isolated product, the stock was kept in chloroform at -80°C 

until usage.  The purification gave rise to a well resolved species having an 1H NMR (500 

MHz, CDCl3)δ 0.87(t, 6H), 1.2-1.32(m, 36H), 1.53(m, br, 4H), 2.00(s, 3H), 2.20(q, 3H), 

3.30(br, 2H), 3.60(s, 2H), 3.70(br, 3H), 4.0(q, 1H), 4.2(d, 1H), 5.18(m, 1H), 6.88(t, 1H), 

7.06(t, 1H), 7.1(m, 2H), 7.27(d, 3H), 7.33(d, 1H), 7.5(d, 1H), 9.507(s, 1H).  Additionally, 

MALDI-TOF mass spectrometry was utilized by drying the product down in an 

Eppendorf tube and then resuspension of the film in a solution containing saturated 

sinnipinic acid in 1:1:2 0.1% trifluoroacetic acid:acetonitrile:acetic acid yielding a HR-

MALDI MS for C43H72O9N2P ([M+Na]+) Calcd.: 816.037 D. Found: 815.969 D. 

 



 

211 
 

Reconstitution of Indole-PE into Vesicles and Bicelles 

For reconstitution into vesicles, 180 μl of a 2.5 mM stock (450 nmol) of indole-

PE in chloroform was co-mixed with 46.62 mg of egg yolk phosphatidylcholine 

dissolved in chloroform at 50 mg/mL.  The mixture was then dried down using N2(g) and 

the resultant film was placed under vacuum for 4 hours.  The film was then dissolved in a 

buffer containing 300 mM PFOA (Oakwood Products, West Columbia, SC), 10 mM 

Tris-HCl pH 8.0 to the egg PC to achieve a final lipid concentration of 20 mM.  The 

mixture was then heated until it became transparent.  The resulting solution was then 

added to a 10 kD MWCO slide-a-lyzer G2 dialysis cassette and was dialyzed against 2 L 

of 10 mM Tris-HCl pH 8.0, 100 mM NaCl.  The mixture was dialyzed for three days with 

exchanges every 24 hours to ensure complete removal of PFOA and resulted in the 

formation of vesicles.  The vesicles were spun at 12,000 x g for 20 minutes to remove any 

aggregated material.  The supernatant was used for fluorescence quenching experiments. 

For reconstitution into bicelles, 36 μl of a 2.5 mM stock (90 nmol) of indole-PE in 

chloroform was co-mixed with 32.8 mg of DMPC dissolved at 50 mg/mL in chloroform.  

This solution was then dried down using N2(g) and the resultant film was hydrated with 

166 μL 25% (w/w) DHPC, 300 μL 200 mM phosphate pH 7.0, and 2500 μL H2O by 

vortex mixing.  Once homogeneous, the solution was frozen and lyophilized for 24 hours.  

The lyophilized material was then reconstituted using 2925 μL H2O to generate 2.5% 

(w/w) q=0.5 DMPC/Indole-PE/DHPC bicelles.  The sample was then utilized in 

fluorescence quenching experiments and max determinations. 
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Measurement of Indole-PE Excitation and Emission Spectra 

 This measurement was performed on indole-PE reconstitute into bicelles.  

Fluorescence excitation and emission spectra were acquired using a 1 × 0.1 cm quartz 

cuvette held at 298 K with an Eclipse fluorometer (Agilent, Santa Clara, CA).  The 

excitation and emission slits were set to 2.5 nm.  First the absorbance spectra was 

evaluated using UV-VIS spectroscopy and it was determined that 280 nm was the peak 

absorption wavelength.  This wavelength was used to excite the indole-PE and the 

emission spectrum was obtained by scanning in the 240-500 nm wavelength range 

acquiring a total of 50 scans using a scan speed of 1 nm/s with 0.5 nm data point 

increments.  After determination of the maximum wavelength of emission, the excitation 

spectrum was obtained by scanning in the 240-330 nm wavelength range acquiring a total 

of 50 scans using a scan speed of 1 nm/s with 0.5 nm data point increments.  The λmax of 

emission was determined by fitting the emission spectrum to a log-normal equation 

132,133.  The Stoke’s shift was calculated by taking the difference of the emission and 

excitation maxima in terms of wavenumbers (cm-1). 

 

Measurement of Bilayer Permeability of Iodide and Acrylamide using Large 

Unilamellar Vesicles with Reconstituted Indole-PE 

The vesicles formed were diluted 12.5 fold into 3 mL to a final concentration of 

12 μM and 1.6 mM for indole-PE and EYPC, respectively, using the dialysis buffer 

supplanted with 1 mM DTT at 25℃.  Using an excitation wavelength of 280 nm, the 

emission intensity was recorded at 343 nm (λmax) for 3 minutes using a 1 s averaging 

time.  To determine if KI can cross the bilayer, 60 μL of 1 M KI dissolved in 1 mM DTT 
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was added with stirring to give a final concentration of 20 mM KI.  After monitoring the 

fluorescence signal for 30 minutes, Triton-X-100 (reduced form) was added to a final 

concentration of 1 % (v/v).  The fluorescence signal was monitored for an additional 20 

minutes.  This addition leads to a signal increase, therefore a control employing only the 

addition of Triton-X-100 determined that the signal increase was due in part to the 

addition of the detergent.  The data is corrected for before and after permeabilization, and 

yields data on the unexposed fraction.  This experiment was repeated using acrylamide 

under the same conditions without DTT. 

 

Fluorescence Quenching of Indole-PE and Single Tryptophan Mutants 

Reconstituted Into DMPC/DHPC Bicelles 

The quenching studies were performed on indole-PE and single tryptophan 

mutants reconstituted into 2.5% (w/w) lipid, q = 0.5 DMPC/DHPC bicelles on a 3 mL 

scale at a concentration of 30 μM.  Fluorescence emission spectra were acquired using a 

1 × 1 cm quartz cuvette held at 298 K with an Eclipse fluorometer (Agilent, Santa Clara, 

CA).  The excitation wavelength used was 295 nm.  Fluorescence emission curves were 

collected and analyzed using a log-normal equation to determine the λmax of emission for 

each mutant 132,133.  The λmax of emission was monitored during the quenching 

experiments.  Both the excitation and emission slit widths were set to 5 nm.  Four scans 

were taken for each point.  An 18 μL aliquot of 20% (w/w) KI in 1 mM DTT was added 

to the cuvette with rapid stirring for the first point allowing 1 minute before measuring 

the intensity at λmax.  After this, 18 μL aliquots of the quencher were added for each point, 

allowing 1 minute of mixing before recording the intensity.  Stern-Volmer quenching 
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curves were generated by a plot of [I-] versus I0/I and the slope was taken as the KSV.  

Modified Stern-Volmer quenching curves were generated by plotting 1/[I-] versus I0/I0-I 

and the y intercept was taken as the fractional accessibility of each single tryptophan 

mutant. 

Indole-PE was used in the case of the bicelle studies so that all quenching 

measurements could be compared to a headgroup located indole group.  
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RESULTS AND DISCUSSION 
 
Synthesis and Purification of Indole-PE 

 The generation of lipids with amino acids as their headgroup is not a new idea.  

This work has been pioneered by Regen and co-workers in his nearest neighbor studies 

212.  However, there is no report of an indole moiety having been coupled to a lipid.  Such 

a molecule could serve as a useful standard in evaluations of tryptophan accessibility in a 

variety of contexts.  Therefore, standard peptide bond formation chemistry using 

HOBt/EDC to couple indole acetic acid and 1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine was utilized (Reaction Scheme 6.1). 

DIPEA
EDC
HObt
CHCl3

1 hour 25 °C
Overnight

25 °C 

+

 

Reaction Scheme 6-1.  Synthesis of indole-PE. 
 
This approach resulted in a species that could be isolated using reverse phase HPLC to 

homogeneity (Figure 6-1).  The product migrated to a single spot using thin layer 

chromatography and was confirmed to have the correct identity by 1H and 31P NMR and 

MALDI-TOF (Figure 6-1). 
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Figure 6-1.  Purification trace for indole-PE using reverse phase HPLC.  The product is 
denoted by the red star.  B)  High resolution MALDI-TOF spectrum of indole-PE.  The 
molecular ion appeared to be a sodium adduct denoted by the red star.  C)  Proton NMR 
of indole-PE.  For assignments, see methods section.  Resonances in the 1-3 ppm region 
where indicative of the acyl-chain region of the molecule whereas resonances in the 6-8 
ppm region had signatures of the indole moiety.  D)  The presence of the phosphate 
headgroup was shown using 31P NMR. 
 

Bilayer Permeability of Commonly Used Quenchers 

 Fluorescence quenching studies are common place in investigations of the 

aqueous exposure of fluorescent molecules.  In the case of species buried within the lipid 

bilayer, or trapped within vesicles, it is unclear how these quenchers respond to the 

phospholipid barrier.  Prior quenching studies have suggested that potassium iodide and 

acrylamide, which are soluble quenchers commonly employed in topological 

investigations, passively diffuses across lipid bilayers 227.  This study was performed by 
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entrapping tryptophan within the vesicles at an expected concentration of 15 mM.  

Tryptophan, although zwitterionic, is small and hydrophobic and could have leaked 

across bilayers causing a false positive for the bilayer crossing of the quenchers.  

Therefore it is still an open question as to the ability of iodide and acrylamide to cross 

bilayers.  The proposition that these quenchers can cross bilayers, if true, complicates 

analysis of quenching studies of proteins within lipid vesicles, and can lead to inaccurate 

data on depth and orientation estimates.  This claimed “leakage” of the quenchers was 

investigated by employing indole-PE incorporated into lipid vesicles formed of roughly 

55 nm in diameter.  Vesicles of this size have roughly equivalent amounts of the indole-

PE distributed in each leaflet (this assumption was based on vesicle size calculations 

from Huang and Mason 156).  Therefore, it would be expected that only 50 % of the 

fluorescence that can be quenched at a given quencher concentration should be available 

under non-permeabilized conditions for our vesicles.  The addition of acrylamide caused 

an intense drop in indole-PE fluorescence directly after the reagent was added.  The 

fluorescence then remained relatively constant over the course of 30 minutes 

(0.05%/minute decrease, Figure 6.2).  After the addition of Triton-X-100, the 

fluorescence signal of the indole-PE was quenched further, consistent with acrylamide 

being able to access the tryptophan headgroup on the inner leaflet of the vesicle under 

permeabilized conditions.  The magnitude of the drop in fluorescence after 

permeabilization was roughly equal to that of the non-permeabilized sample (14% and 

11% of the total signal, respectively).  This result agrees with the expected distribution of 

indole-PE being equal in the inner and outer leaflets.  When added to the external 

environment of the vesicles, iodide also quenched indole-PE fluorescence (Figure 6-2).  
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Interestingly, after a short period of a relatively steady signal, the fluorescence began to 

decay linearly, possibly indicating that the iodide indeed was crossing the bilayer, which 

is consistent with reports in the literature 227.  Addition of Triton-X-100 caused a further 

drop in the intensity.  The drops in intensity before and after permeabilization were again 

consistent with an equal distribution of indole-PE on either side of the bilayer (8% and 

7% of the total signal respectively).  When considering the properties of the two 

quenchers utilized, it is unusual that negatively charged iodide would permeate across the 

bilayer more readily than acrylamide.  Therefore, the smaller size of the iodide ion 

compared to that of the acrylamide molecule could result in iodides enhanced 

permeability into vesicles.  It seems that acrylamide may be a better choice when 

evaluating the distribution of tryptophan groups that are exposed on different sides of the 

bilayer.  Additionally, it was observed that the magnitude of the quencher’s effect on the 

indole-PE fluorescence was different with acrylamide being twice as potent of a quencher 

versus iodide.  This could be explained by the negative charge on indole-PE that would 

repulse other negatively charged species.  This study therefore shows the benefit of using 

quenchers that vary in their properties to obtain as much information on a fluorophores 

location as possible. 
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Figure 6-2.  Acrylamide and iodide were evaluated for their ability to quench indole-PE 
located within different leaflets of vesicles.  The results are consistent with an equal 
distribution of the fluorophore in each leaflet of the large unilamellar vesicles.  The 
smaller ionic quencher, iodide, had enhanced permeability into these vesicles compared 
to the larger polar quencher, acrylamide.  Experiments were repeated twice and showed 
similar results. 
 
Tryptophan Scanning of Caveolin-1 in Bicelles Using Indole-PE as a Molecular 

Ruler 

 One advantage of bicelles in terms of investigating absolute exposure of 

reconstituted membrane proteins using fluorescence quenching is that they do not have an 

interior compartment that can complicate quenching analysis.  However, differences in 

quenching efficiencies that would be observed between tryptophans within the aqueous, 

headgroup, and bilayer regions are not clear for bicelles as there are a limited number of 

reports where the quenching of proteins reconstituted within them has been investigated.  

In particular, it is unclear if tryptophans located within the headgroup and bilayer region 

would show differences in quenching efficiency, due to the increased water penetration 

brought about by the detergent in the bicelle.  Therefore, it seemed necessary to have a 

molecular ruler in order to allow stronger conclusions to be drawn on membrane protein 

quenching experiments performed in bicelles. 
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 First, the excitation and emission spectra were acquired for the indole-PE 

molecule reconstituted into bicelles.  The indole-PE was found to have a max of 

excitation and emission of 280 nm and 343.47 ± 0.93 nm respectively giving a Stoke’s 

shift value of 6389 cm-1.  Next, the indole-PE exposure was probed using iodide (Figure 

6-3). 
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Figure 6-3.  Normalized excitation (black) and emission (red) spectra for indole-PE 
reconstituted into phospholipid bicelles. 
 
Quenching curves were very linear and highly reproducible and were analyzed using both 

Stern-Volmer plots and the modified Stern-Volmer plot in order to obtain both KSV 

(average collisional quenching constant) and the fractional accessibility (Figure 6-4).  

From the slope of the Stern-Volmer plot, the KSV was determined to be 4.40 M-1, which is 

much less accessible than tryptophan in buffer that has a KSV value of ~14.3 M-1, 

characteristic of an indole group that is shielded from the aqueous environment (Figure 6-

4).  The fractional accessibility was determined from the intercept of the modified Stern-

Volmer plot and gave a value of 0.67  0.03 (Figure 6-4).  The value is likely 
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underinflated due to the negative charge on the indole-PE moiety which, due to 

electrostatic repulsion, would decrease the apparent fractional accessibility.  However, 

the max is consistent with an aqueous-headgroup bordering molecule (~343 nm), and 

therefore this value is consistent with a species that would not be completely solvent 

exposed.  This molecular ruler is also valid for this comparative study considering that 

the HSVFLAGCav162-178 molecule has an isoelectric point = 4.21 and would also be 

negatively charged at the pH that these studies were performed at. 
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Figure 6-4.  Quenching of indole-PE with iodide.  A)  Kinetic quenching plot generated 
by monitoring the 343 nm wavelength and adding iodide every minute after an initial 3 
minute incubation period.  B)  Modified Stern-Volmer plot used to obtain the fractional 
accessibility of indole-PE.  C)  Stern-Volmer plot used to obtain the KSV value for indole-
PE to iodide.  Some deviation towards the x-axis was observed at high concentrations of 
iodide. 
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With the accessibility of indole-PE characterized, the quenching of single 

tryptophan mutants was undertaken to determine the positioning of the protein within the 

bicelles.  For these studies, a construct which was flanked by highly charged antibody 

epitopes (HSV and FLAG) at both the N- and C- termini was utilized to facilitate 

reconstitution into bicelles by classical methods.  The addition of charged tags greatly 

decreased the protein’s propensity for aggregation and allowed the time consuming 

vesicle to bicelle transition method presented in chapter 3 to be circumvented.  Thirteen 

mutants in the 85-133 region were analyzed, thereby giving good coverage of the 

proposed membrane interacting domains (the scaffolding domain + the intramembrane 

domain).  Importantly, this will give information about the trend in accessibility and may 

shed light on the burial of the turn region (residues 108-110) as well as the burial of the 

helical regions.  After reconstitution, the mutants were probed by the same methods used 

for the indole-PE.  The max of emission, KSV, and the fractional accessibility values were 

utilized to evaluate the trend in accessibility along the sequence (Table 6.1).  From the 

quenching of the spectra (Figure 6-5 shows un-quenched and partially quenched emission 

spectra for each mutant), it was clear that there were differences in the burial going along 

the sequence. 
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Figure 6-5.  Fluorescence emission spectra for each mutant probed in the presence of 0 
mM iodide (red) and ~110 mM iodide (black). 
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Figure 6-6.  Representative Stern-Volmer quenching curves for each single tryptophan 
mutant used in the study. 
 
Fitting of the max of emission data at different iodide concentrations to Stern-Volmer 

plots (Figure 6-6) showed linear trends with slight curvature towards the x axis, which 

indicates a partially buried fraction.  Modified Stern-Volmer plots were very linear which 

is important for fractional accessibility determination as poorly linear plots tend to have 

very large error due to extrapolation to an infinite quencher concentration (Figure 6-7).  

Each parameter determined from the fluorescence experiments was plotted as a function 

of the position probed to evaluate how the accessibility changes along the length of the 

85-133 region of the protein (Figure 6-8, Table 6-1). 
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Figure 6-7.  Modified Stern-Volmer plot used to evaluate the fractional accessibility of 
the fluorophore population for each single tryptophan mutant used in the study. 
 
Importantly, the plots have are evaluated with respect to the indole-PE moiety which 

represents a headgroup accessible species.  Clearly there is a similar trend among all 

determined parameters where there is decrease in the max, KSV, and fa from residues 85-

107 consistent with greater burial of the protein approaching the turn region.  

Interestingly, in both max and KSV values, there appears to be an upswing in these values 

around position 111.  This could be indicative of the protein having crossed the bilayer 

center and started to enter the aqueous-headgroup region of the second leaflet.  This 

would be in agreement with the simulation data from Chapter 3 which positioned the turn 

residues near the headgroup region of the second leaflet of the bilayer.  After residue 111, 
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the data shows that the accessibility continues to decrease in terms of the max and KSV.  

The values began to increase again after residue 124.  These trends are less pronounced in 

the fractional accessibility data which, due to large error bars show very little difference 

in accessibility in the 99-133 region.  The W-shape of the overall plots is consistent with 

the horseshoe topology as a straight transmembrane helix would show a simple U-shape.  

However, it is likely that more evidence would be needed to fully support this conjecture.  

Importantly, all values probed were significantly lower than that determined for the 

indole-PE molecule.  This indicates that the protein is buried at least as deep as the 

headgroup region from residues 85-133.  These data are in agreement with the data in 

Chapter 3 indicating that the 87-107 region may be overall less buried than the 111-128 

region, as the max and KSV values appear to be on average lower for region after the turn.  

Interestingly, W128 has a relatively red shifted max in comparison to residues 

surrounding it (F124W and C133W).  However if one looks at the KSV and fa values, they 

clearly show accessibilities that are more in line with the surrounding residues (compare 

this to W85 and F89W which have fa and KSV values that reflect the max).  This could be 

an indication that W128 is involved in a hydrogen bonding interaction.  More data will be 

needed to support this conjecture.  It is unlikely that the negatively charged tags would be 

influencing the quenching data as they are far removed from the sites scanned.  The data 

agree nicely with values obtained on the shorter, tag-less caveolin-1 construct used in 

chapter 3 (residues 82-136) – with the major difference being W85 that is 8 nm blue 

shifted in this study.  However, it may be that the truncated construct used in Chapter 3 

results in improper burial as these data are also consistent with the simulation data.  

Although interesting, these mutants will need to be evaluated in terms of their ability to 
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behave like wild-type caveolin in vivo to be sure that they are not significantly altering 

the protein. 
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Figure 6-8.  Examination of parameters (max, KSV, and Fraction accessible) for each 
mutant along the region of the protein scanned.  All plots show similar trends in 
accessibility.  Importantly, parameters determined for indole-PE (red dashed line) give an 
indication that each species is buried beneath the top of the headgroup region of the 
bicelles. 
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Construct λmax (nm) KSV (M-1) fa 
Indole-PE 343.5  0.9 4.40  0.05 0.667  0.030 

W85 338.5  0.1 2.66  0.09 0.497  0.030 
F89W 340.2  0.1 2.74  0.13 0.593  0.017 
W98 335.7  0.1 2.81  0.07 0.511  0.010 

F99W 336.5  0.2 2.21  0.12 0.425  0.060 
L102W 335.6  0.8 1.66  0.11 0.398  0.062 
F107W 334.7  0.1 1.94  0.03 0.447  0.017 
M111W 335.7  0.1 1.96  0.01 0.405  0.027 
W115 332.1  0.1 1.67  0.01 0.395  0.082 
I117W 333.7  0.3 1.42  0.04 0.303  0.065 
Y118W 331.7  0.1 1.36  0.07 0.337  0.033 
F124W 333.14  1.3 1.41  0.01 0.368  0.103 
W128 339.6  0.1 2.14  0.11 0.443  0.029 

C133W 336.7  1.1 2.00  0.01 0.468  0.001 
Table 6-1.  Averaged values of parameters determined for all fluorophores in the study (n 
= 2-3). 
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CONCLUSIONS 
 
 This chapter has provided a number of important findings.  For the first time a 

bonafide indole-based marker for the headgroup region of the bilayer has been 

synthesized, purified to homogeneity, and characterized in terms of its usefulness in 

fluorescence studies of proteins embedded in phospholipid bilayers.  Specifically, it was 

shown that both iodide and acrylamide fluorescence quenchers could be used in 

examinations of membrane protein burial within phospholipid vesicles but iodide may 

have to be used on a faster time scale as it diffuses through bilayers more readily.  

Additionally, the probe helped with interpretation of quenching data in phospholipid 

bicelles.  This is important because, unlike vesicles and micelles, there is a dearth in the 

literature on the amount quenching that would be expected for a membrane protein with a 

tryptophan buried within a bicelle’s bilayered region.  These data showed that for thirteen 

caveolin-1 single tryptophan mutants, each was buried deeper than the top of the 

aqueous-headgroup interface, covering a span of 49 residues.  This result agrees with the 

hydropathy plots which predicted this region to be buried in the 102-135 region.  These 

data cannot differentiate between different degrees of membrane burial, this will likely 

require the synthesis of an indole probe that can be fixed within the center of the bilayer. 
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Appendix 6-1.  Sequences of Protein Constructs Utilized 
 

Construct Protein Sequence 
 

 

HSVFLAGCav162-178 (W85) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIWKASFTTFTVTKYFFYRLLSALFG
IPLALIFGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (F89W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASWTTFTVTKYFFYRLLSALFG
IPLALIFGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (W98) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYWFYRLLSALFG
IPLALIFGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (F99W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFWYRLLSALFG
IPLALIFGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (L103W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLWSALFG
IPLALIFGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (F107W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALWG
IPLALIFGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (M111W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALFG
IPWALIFGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (W115) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALFG
IPLALIWGIYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (I117W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALFG
IPLALIFGWYFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
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HSVFLAGCav162-178 (Y118W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALFG
IPLALIFGIWFAILSFLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (F124W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALFG
IPLALIFGIYFAILSWLHIFAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (W128) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALFG
IPLALIFGIYFAILSFLHIWAVVPSIKSFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
 

 

 

HSVFLAGCav162-178 (C133W) 

QPELAPEDPEDDYKDDDDKDVVKIDFEDVIAEP
EGTHSFDGIFKASFTTFTVTKYFFYRLLSALFG
IPLALIFGIYFAILSFLHIFAVVPSIKWFLIEI
QSISRVYSIYVHTVSDPLFEAVGKIFSNVRINL
QKEIDYKDDDDKDGIQPELAPEDPED 
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Appendix 6-2.  Mutagenesis Primers Utilized 
 

Construct Primer Sequence 
W85 5’-CTCTTTCGACGGTATCTGGAAAGCGTCTTTCACCAC-3’ 

F89W 5’-GTATCTTCAAAGCGTCTTGGACCACCTTCACCGTTAC-3’ 
W98 5’-CACCGTTACCAAATACTGGTTCTACCGTCTGCTGTC-3’ 

F99W 5’-CGTTACCAAATACTTCTGGTACCGTCTGCTGTCTG-3’ 
L102W 5’-CAAATACTTCTTCTACCGTTGGCTGTCTGCGCTGTTCGG-3’ 
F107W 5’-GCTGTCTGCGCTGTGGGGTATCCCGCTGG-3’ 
M111W 5’-GCTGTTCGGTATCCCGTGGGCGCTGATCTTCGG-3’ 
W115 5’-CTGGCGCTGATCTGGGGTATCTACTTCGC-3’ 
I117W 5’-GCGCTGATCTTCGGTTGGTACTTCGCGATCCTG-3’ 
Y118W 5’-GCTGATCTTCGGTATCTGGTTCGCGATCCTGTCTTTC-3’ 
F124W 5’-CGCGATCCTGTCTTGGCTGCACATCTTCGC-3’ 
W128 5’-GTCTTTCCTGCACATCTGGGCGGTTGTTCCGTCTATC-3’ 

C133W 5’-CTTCGCGGTTGTTCCGTGGATCAAATCTTTCCTGATC-3’ 
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