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Abstract 

Carbon capture is essential for reduction of carbon dioxide (CO2) pollution from flue gas 

which is emitted during fossil fuel combustion. The flue gas is mainly composed of 15% 

CO2 and 85% N2 and it requires high selectivity for gas purification. Some methods have 

been developed for carbon capture such as Pressure Swing Adsorption (PSA) and 

Temperature Swing Adsorption (TSA). Unfortunately, these techniques use a lot of energy 

during the desorption step that reduces power generation efficiency. An ideally effective 

carbon capture technique needs to promote CO2 adsorption and desorption at the proper 

times during the separation cycles, without incurring a large parasitic energy load. A new 

gas adsorption technique is presented, Supercapacitive Swing Adsorption (SSA), in which 

CO2 is either actively adsorbed or desorbed by repeated capacitive charge and discharge of 

supercapacitor carbon electrodes and energy used in adsorption can principally be 

recovered upon desorption. It is shown that reversible adsorption/desorption of CO2 from 

a 15% CO2 and 85% N2 gas mixture can be achieved when an electrically conducting high 

surface area porous carbon material is brought into contact with carbon dioxide gas and an 

aqueous sodium chloride electrolyte. When the supercapacitor carbon electrodes are 

charged, the electrolyte ions are spontaneously organized into an electric double layer at 

the surface of each porous carbon electrode. The presence of this double layer leads to 

reversible, selective adsorption and desorption of the CO2 as the supercapacitor is charged 

and discharged. Moreover, it is also shown that SSA has the ability to separate CO2 from 

N2, with a high selectivity for CO2 and only a weak dependence on the CO2 partial pressure 

in a CO2/N2 gas mixture. The amount of adsorbed CO2 scales with applied voltage and 

with the mass of the porous carbon sorbent, which is inexpensive, robust and 

environmentally friendly. The effect barely depends on temperature.
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1. Introduction 

1.1. Global warming and CO2 level in atmosphere 

With the rapid increase of the global population and the industrialization of more and more 

countries, the consumption of energy is explosively growing. It is expected that the world 

energy consumption will grow by 56 percent between 2010 and 2040 according to the 

Energy Information Administration (EIA) [1]. Currently over 85% of the global energy 

demand is being supported by the burning of fossil fuels (coal, oil and natural gas) [2]. The 

reasons for this skewed reliance on fossil fuels as the primary energy source is due to the 

inherent energy density, abundance, and the economic dependence of modern society on 

the acquisition and trade of these resources. Fossil fuels will continue to play an important 

role in the future, mainly in power generation and industrial manufacturing. The burning 

of these fossil fuels releases large amounts of flue gases including carbon dioxide (CO2) 

into the atmosphere, which causes long-range environmental problems [3]. Consumption 

of fossil fuels produces nearly 30 Pg (petagrams) of carbon dioxide annually. About three-

fourths of the increase in atmospheric carbon dioxide is attributed to burning of fossil fuels 

[3]. Carbon dioxide is one of the greenhouse gases that enhances radiative forcing, a 

measure of the influence a factor has in altering the balance of incoming and outgoing 

energy in the Earth-atmosphere system [3]. The term “Greenhouse Effect” was first coined 

by French physicist Joseph Fourier in 1824. The greenhouse effect is the absorption of 

infrared radiation by the atmospheric gases resulting in the trapping of heat, which results 

in heating of Earth’s surface [4].  

Greenhouse gases include carbon dioxide (CO2), water vapor (H2O), ozone (O3), methane 

(CH4), nitrous oxide (N2O), and chlorofluorocarbons (CFCs) [3]. Since the beginning of 

http://en.wikipedia.org/wiki/Greenhouse_gas
http://en.wikipedia.org/wiki/Radiative_forcing
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the industrial period, the concentrations of the anthropogenic greenhouse gases (CO2, CH4, 

N2O, CFC-11 (CCl3F) and CFC-12 (CCl2F2)), have increased. Of those gases, CO2 is the 

principal greenhouse gas of interest because of “its large current greenhouse forcing, its 

substantial projected future forcing, and its long persistence in the atmosphere” [5]. 

The amount of carbon dioxide has risen by more than a third since the industrial revolution 

from 280 parts per million (ppm) by volume to 368 ppm in 2000 [2], and 388 ppm in 2010 

[2]. According to the Intergovernmental Panel on Climate Change (IPCC) [3], the 

atmosphere may contain up to 570 ppm of carbon dioxide in 2100 causing a rise of 

approximately 1.9°C in the mean global temperature, and an increase of 3.8 m in the mean 

sea level [6]. Therefore reducing anthropogenic CO2 emission and lowering the 

concentration of greenhouse gases in the atmosphere has quickly become one of the most 

urgent environmental issues of our age. 

1.2. Flue gas composition 

Flue gases refer to the emissions of combustion product gases resulting from the burning 

of fossil fuels such as coal, oil, and natural gas that exits to the atmosphere via a ''flue'' 

which may be a pipe, channel or chimney [7]. 

Typically, more than two-thirds of the flue gas is nitrogen since ambient air contains about 

75 volume percent of gaseous nitrogen (N2) [7]. The next largest part of the flue gas is 

carbon dioxide (CO2) which can be as much as 3% to 30% volume percent of the flue gas 

according to the respective industrial facilities [7]. It also contains water vapor (H2O) 

created by the combustion of the hydrogen in the fuel with atmospheric oxygen. Much of 

the “smoke” seen exiting from flue gas stacks is this water vapor forming a fog cloud as it 



 

4 

 

contacts cool air and condenses into water droplets. The flue gas may also contain a small 

percentage of air pollutants such as particulate matter, carbon monoxide (CO), nitrogen 

oxides (NOx), sulfur oxides (SOx) and mercury [7]. The nitrogen oxides are derived from 

the nitrogen in the ambient air as well as from any nitrogen-containing compounds in the 

fossil fuel. The sulfur oxides are derived from any sulfur-containing compounds in the 

fuels. The particulate matter, sometimes termed black carbon, is composed of very small 

particles of solid materials and very small liquid droplets which give some flue gases their 

smoky appearance [7]. 

1.3. Carbon Capture & Sequestration (CCS) 

In general, there are several approaches that can be adopted to reduce the total carbon 

dioxide emission into the atmosphere such as a reduction in energy intensity (Total Primary 

Energy Consumption per Dollar of gross domestic product (GDP) [1]) by the efficient use 

of energy, a reduction of carbon intensity (metric tons of CO2 emitted for each unit of 

energy supplied [1]) by using alternatives to fossil fuels such as hydrogen and renewable 

energy, and enhancement of carbon dioxide sequestration by developing new carbon 

capture technologies [8]. From the three approaches above, the most promising approach 

is carbon capture from point source emissions such as power plants.  

According to the IPCC Carbon Capture and Sequestration (CCS) is a “process consisting 

of the separation of CO2 from industrial and energy-related sources, transport to a storage 

location and long-term isolation from the atmosphere.”[9] 

It is expected that by the time of 2020, the number of operational CCS projects is estimated 

to be 100 globally, which will grow to over 3000 by 2050 [10]. Carbon Capture and 
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Sequestration encompasses the removal and sequestration of CO2 from industrial low CO2 

level containing streams, the generation of high concentrated CO2 streams, and the 

transport and storage of compressed CO2. In this context, it should be noted that CCS is 

more suitable and economically feasible for large point sources – fossil fuel or biomass 

energy facilities, natural and synthesis gas production, refineries, steel or cement plants – 

than for small, dispersed emission sources. 

 

Figure 1.1. Schematic of CO2 capture processes and systems [9]. 

Currently, three types of CCS processes are being developed that could be applied to 

industries with large CO2 emissions. A schematic representation of every capture system 

is illustrated in Figure 1.1. The primary fuel (coal, natural gas, oil or biomass) in pre-

combustion systems undergoes a process of partial oxidation to form syngas and finally 

produces separate streams of CO2 for storage and hydrogen (H2) which is used as a fuel. 
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Oxyfuel combustion is still in the demonstration phase and needs more investigation. High 

purity oxygen is used to combust with fuels instead of air. This results in producing the 

flue gas with H2O and high CO2 content that is readily captured, however, at the cost of 

increased energy requirement in the separation of oxygen from air. Post-combustion is 

basically used to sequester CO2 from flue gases produced by the combustion of a primary 

fuel. Compared to other options, post-combustion capture of CO2 is more economically 

favored for existing power plants because retrofitting existing plants with post-combustion 

CO2 capture is expected to be easily conducted and associated with relatively little cost, 

while an integrated power plant system would suggest more profound adjustment [10]. 

Several techniques to capture CO2 in post-combustion power plants are under scope. The 

most studied one is amine scrubbing [11-14]. Also, Pressure Swing Adsorption (PSA) [15-

17], Temperature Swing Adsorption (TSA) [18] and Electric Swing Adsorption (ESA) [19] 

deserves more attention. 

1.3.1. Post-combustion CO2 Capture (PCC) 

Current anthropogenic CO2 emission from stationary sources comes from combustion 

systems such as power plants, cement kilns, steel and iron production plants. For these 

large-scale processes, the direct combustion of fuel with air in a combustion chamber has 

been the most economic strategy to make use of energy contained in the fuel. Therefore, 

the practical importance of the post-combustion capture systems becomes evident when 

confronted with the reality of today’s CO2 emission sources. 

This method involves the removal of carbon dioxide from the combustion reaction product 

stream, the flue gases, before emission to the atmosphere. Post-combustion CO2 Capture 

is a downstream process and is an extension to the flue gas treatment process for NOx and 
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SOx removal. However removal of carbon dioxide is more challenging because of its 

relatively higher quantities in the gas stream (typically 5-15% v/v, depending on the fuel 

being used) [2], low partial pressure of carbon dioxide in the flue gas, and relatively high 

temperature of flue gases [20]. Despite these challenges, PCC is a promising technique 

because it can be retrofitted to existing units [21]. 

There are several technologies for post-combustion carbon dioxide capture which can be 

categorized as conventional or new emerging technologies. These include: (a) adsorption; 

(b) physical absorption; (c) chemical absorption; (d) cryogenics separation and (e) 

membranes. Figure 1.2 shows classification of various separation technologies available 

for post combustion capture. 

 

Figure 1.2. Process technologies for post combustion CO2 capture [22]. 

Among these technologies, chemical absorption using aqueous alkanolamine solutions is 

proposed to be the most applicable technology for CO2 capture before 2030 [23]. At this 

point in time, chemical absorption offers high capture efficiency and selectivity, and the 
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lowest energy use and costs when compared with other existing post-combustion capture 

processes. Gas separation based on adsorption, in which the selection of an adsorbent is 

the key for CO2 separation, has also been well developed.  These two techniques will now 

be further discussed in more detail in Chapter 2. Moreover, there is a lot of research on 

membranes for CO2 separation, both in natural gas processing and also for CCS 

application. The use of membranes in natural gas processing is growing and they have an 

especially strong position in offshore platforms because of the smaller size of the 

membrane system as well as various other advantages [24]. However, for PCC applications 

which have a fairly low CO2 content, no membrane technology seems to be able to compete 

with for example amine systems what has been the conclusion of several studies [25-27].  

There is also physical absorption where solvent combines less strongly with CO2 than a 

chemical solvent. The absorptive capacity of these solvents increases with external gas 

pressure and decreases with temperature. Hence, CO2 can be separated from such solvents 

mainly by reducing the pressure in the desorber, significantly reducing the energy 

requirements in the desorption process. The main physical solvents that could be employed 

are cold methanol (Rectisol process), dimethylether of polyethylene glycol (Selexol 

process), propylene carbonate (Fluor process) and sulpholane [28]. In physical absorption, 

CO2 is physically absorbed in a solvent according to Henry’s Law, which means that they 

are temperature and pressure dependent with absorption occurring at high partial pressures 

of CO2 and low temperatures. The solvents are then regenerated by either heating or 

pressure reduction. The advantage of this method is that it requires relatively little energy, 

but the CO2 must be at high partial pressure. Hence, physical absorption is not economical 

for gas streams with CO2 partial pressures lower than 15vol%. 
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2. Literature review on carbon capture technologies. 

 

2.1. Chemical Absorption of CO2 

In absorption methods the gas separation is achieved by putting the flue gas in physical 

contact with an absorbent which is capable of capturing CO2 [29]. In PCC applications the 

gas separation is achieved with absorbents which are able to form chemical compounds 

with CO2. Chemical absorption involves the reaction of CO2 with a chemical solvent to 

form an intermediate compound which may be regenerated by the application of heat 

producing the original solvent and a CO2 stream. The selectivity of this form of separation 

is relatively high. In addition, a relatively pure CO2 stream can be produced [9]. More 

precisely, in this process there is a solvent which can react with CO2, but not other flue gas 

components such as N2. Carbon dioxide is separated from the flue gas by passing the flue 

gas through a continuous scrubbing system which captures most of the CO2 while the other 

gases can pass through. The system consists of an absorber and a desorber (see Figure 2.1 

[29]). Absorption processes utilize the reversible chemical reaction of CO2 with an aqueous 

alkaline solvent, usually an amine. When all CO2 is captured, the sorbent with the CO2 is 

taken to another vessel (called the desorber). In the desorber, the absorbed CO2 is stripped 

from the solution and a pure stream of CO2 is sent for compression while the regenerated 

solvent is sent back to the absorber. The CO2 is released by a chemical reaction (chemical 

desorption) or by a change in temperature or pressure (physical desorption). Then the CO2 

is removed from the process and can be processed further and the sorbent can be recycled 

in the same way as before. However, a small part of the solvent is always destroyed and 

degraded, which means that a little solvent has to be added and a little removed. Because 

the absorption process is exothermic, the desorption process requires energy to be added 
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to the system what leads to the main energy penalty on the power plant. In addition, energy 

is required to compress the CO2 to the conditions needed for storage and to operate the 

pumps and blowers in the process. Optimal conditions for an absorption process are low 

temperature and high pressure [23]. One example for an absorption process is amine 

scrubbing, which is discussed in more detail.  

 

Figure 2.1. A general scheme for an absorption process [29]. 

2.1.1. Amine-based Chemical Absorption (Amine Scrubbing) 

At this moment the most developed and well known acid gas treating processes are amine-

based. Rao and Rubin [22] show that amine based CO2 absorption systems are the most 

suitable for combustion based power plants: for example, they can be used for dilute 

systems and low CO2 concentrations, the technology is commercially available, it is easy 

to use and can be retrofitted to existing power plants. Amine scrubbing refers to a number 

of commercial technologies that use various primary, secondary or tertiary alkylamines to 

remove acidic components including CO2 or H2S from gas mixtures [30]. Amines are 

chemical derivatives of ammonia (NH3), in which at least one of the hydrogen atoms has 

been replaced with a chain of carbon and hydrogen atoms, such as an alkyl or aryl group 
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[31]. Most of the amines which can be used for PCC and other carbon dioxide removal 

processes are alkanolamines containing at least one hydroxyl group (-OH) and one amino 

group (-NH2, -NHR or –NR2) in which R denotes the alkyl group that can replace a 

hydrogen atom attached directly to the nitrogen. In general, the hydroxyl group serves to 

reduce the vapor pressure and increase the water solubility, while the amino group provides 

the necessary alkalinity in water solutions to cause the absorption of acidic gases, such as 

CO2. Amine absorbers (scrubbers) are commercially available as large scale technologies 

for post-combustion separation of carbon dioxide from flue gases. Amines are available in 

three forms: primary (two hydrogen atoms attached directly to the nitrogen - including 

monoethanolamine (MEA), diglycolamine (DGA)), secondary (only one hydrogen atom 

attached directly to the nitrogen - including diethanolamine (DEA), di-isopropylamine 

(DIPA)), and tertiary (no hydrogen atoms - including triethanolamine (TEA) and methyl-

diethanolamine (MDEA)) [31]. Each of them possesses advantages and disadvantages. 

Primary amines are usually the most alkaline. Different amines have different reaction rates 

with respect to CO2 and other acid gases. In addition, different amines vary in equilibrium 

absorption characteristics for the various acid gases and have different sensitivities with 

respect to solvent stability and corrosion factors. For example, to enhance the reaction rate, 

primary amines are most preferable followed by secondary then tertiary [31]. For 

regeneration energy and loading capacity the most preferred type would be tertiary, 

followed by secondary, and then primary [21]. Generally, primary amines have been the 

traditional solvent of choice for carbon dioxide absorption and acid gas removal at low 

partial pressures. The most applied amine for CO2 capture until now is MEA. Primary 

amines, like MEA, are very reactive to CO2, resulting in relatively small capture plants and 
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very high CO2 recovery. However, at the same time primary amines are generally more 

difficult to regenerate. 

Historically, separating CO2 from flue gas started in the 1970s, not because of concern 

about the greenhouse effect, but as a potentially economic source of CO2, mainly for 

enhanced oil recovery (EOR) operations. In the late 1970s and early 1980s, several 

commercial CO2 capture plants were constructed in the U.S [32]. Then in September 1996, 

the first commercial CO2 absorption facility for CO2 sequestration started in Norway [32]. 

All these plants capture CO2 with processes based on chemical absorption using a MEA-

based solvent which is considered the most mature technology.  

Currently, amine treatment is still the leading alternative for CO2 separation in natural gas 

processing, especially when the gas flows are large, and CO2 concentration and partial 

pressure are fairly low [24]. These conditions closely resemble the requirements that a good 

post-combustion carbon capture technology must meet. It is therefore understandable that 

amine-based system are thought likely to play an important role in decreasing the carbon 

dioxide emission of conventional power plants. 

The underlying principle of amine-scrubbing is the exothermic, reversible reaction 

between a weak acid such as CO2 and a weak base such as an alkylamine. The flue gas to 

be treated is contacted by the aqueous alkylamine solution in an absorbing column or vessel 

in which a soluble salt is formed from the reaction between the CO2 and the alkylamines 

and the reaction can be easily reversed, which allows continuous operation [28] In more 

detail, CO2 reacts with aqueous MEA primarily by means of an intermediate zwitterion 

[33]: 
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                                          𝑅𝑁𝐻2 + 𝐶𝑂2 → 𝑅𝑁𝐻2
+𝐶𝑂𝑂−                                    (1) 

The intermediate zwitterion then reacts with another mole of MEA to form a carbamate 

salt: 

                                      𝑅𝑁𝐻2
+𝐶𝑂𝑂− + 𝑅𝑁𝐻2 → 𝑅𝑁𝐻3

+ + 𝑅𝑁𝐻𝐶𝑂𝑂−             (2) 

This is an exothermic reaction and 72 KJ of thermal energy are released per mole of CO2 

absorbed by the MEA solution. The flue gas, depleted of CO2, is then released to the 

atmosphere. The alkylamine solution is recycled to the absorbing unit while the CO2 is 

made ready for transportation by dehydrating and compressing it [14]. A schematic of the 

process is shown in Figure 2.2 [34]. Generally, the unit in which the carbon dioxide is 

absorbed from the flue gas is called an absorber, and the unit releasing CO2 is called a 

desorber or stripper. The operation pressure is close to 1.0 bar and the temperatures in the 

absorber and stripper are generally in the ranges of 40–60°C and 120–140°C, respectively. 

  

Figure 2.2. MEA absorption benchmark process [34]. 
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The flue gas entering the process at close to atmospheric pressure and required operating 

temperature of typically 40 - 50 ºC is bubbled through a packed absorber column (amine 

scrubber) containing 25-30% aqueous monoethanolamine (MEA) solution. The flue gas 

containing CO2 enters a packed bed absorber from the bottom and contacts counter-

currently with a CO2-lean MEA. The amine absorbs carbon dioxide to form a carbamate 

species. Flue gas exiting the top of the absorber is washed with water to reduce the 

entrained solvent droplets and then vented to the atmosphere. Following the absorption 

process, the rich solvent (high content of carbon dioxide reaction product) passes through 

a desorber column (stripping column) that operates at 100 - 140 ºC and marginally at a 

higher pressure than the absorber in order to release thermally the carbon dioxide with high 

purity (over 99%) which may be later compressed for commercial utilization or storage 

[36]. It has been estimated that up to 80% of total cost in the CO2 absorption/regeneration 

cycle is due to the regeneration procedure [12]. After regeneration, the CO2-lean absorbent 

is pumped back to the absorber for cyclic use. 

Despite the improvements to the amine-based system for post-combustion carbon dioxide 

chemical absorption, amine scrubbing technologies still have a number of challenges and 

disadvantages. Some of these disadvantages include that the process in general requires 

large equipment size and intensive energy input, there is a low carbon dioxide loading 

capacity, high equipment corrosion rate, and amines are subject to degradation in the 

presence of oxygen, SO2, NO2 and HCl, which makes for additional requirements for 

solvent recovery and waste stream disposal [2]. 

Alternate solvents that eliminate or minimize the problems associated with amines are 

under development. An improved solvent should have higher CO2 absorption capacity, 
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faster CO2 absorption rate, low vapor pressure, high degradation resistance, and low 

corrosivity. A number of energy efficient proprietary solvents have been studied based on 

either sterically hindered amines or formulated amines. PSR solvents developed at the 

University of Regina, Saskatchewan, Canada [37], use proprietary mixtures of simple and 

hindered amines designed specifically for CO2 capture from flue gas. Compared with 

MEA, both higher amine concentrations and rich mole/mole loadings are possible. Key 

features claimed are lower regeneration temperature, lower solvent circulation rate and 

reduced degradation and corrosion. One of the advantages of the PSR solvent is its 

flexibility, i.e., its various ingredients enable it to be optimized to meet the needs of specific 

tasks. The key features of the PSR solvents are lower solvent circulation rate, lower 

regeneration temperature, lower solvent degradation rate and lower corrosion rate [37]. 

2.1.2. Aqueous Ammonia-based Absorption 

Although the processes based on chemical absorption with MEA or diethanolamine (DEA) 

are the most widely used technology for the capture of CO2 from flue gas, they are still too 

expensive in the absence of regulations requiring CO2 capture for large-scale applications 

such as the sequestration of CO2 from power plants. The aqueous ammonia-based 

absorption process is similar in operation to the amine systems. However, the reaction of 

ammonia and its derivatives with CO2 has the advantage of having a lower heat of reaction 

than the equivalent amine based reactions, what results in significant energy efficiency 

improvements and cost reductions compared to an amine based absorption system [21]. 

Ammonia (NH3) is a chemical compound consisting of nitrogen and hydrogen, and it is 

widely used in the fertilizer and other chemical industries and also as a refrigerant and a 
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cleaning or neutralizing agent. It is in fact, one of the most important chemicals produced 

in the world, not only financially but also because ammonia and its derivatives play a vital 

role in the food production chain as fertilizers [38]. The large production volumes mean 

that ammonia is cheap compared to the alternative chemicals for carbon dioxide absorption. 

In CO2 capture, ammonia systems work similarly to the amine-based systems [21]. 

The application of aqueous ammonia as an absorption agent, as used e.g. in natural gas 

conditioning was declining in the end of the 20th century. However, recently processes 

based on this solvent are regaining interest as a possible substitute for aqueous MEA based 

processes for CO2-capture from flue gas. The reasons for this are the claimed advantages 

of aqueous ammonia over e.g. MEA, when applied as a solvent for flue gas treatment. 

Potentially, the aqueous ammonia process has a higher loading than MEA, is less corrosive, 

not sensitive to oxygen levels [39] and can also react with SO2 and NOx [40] without the 

need to remove heat stable salts as with MEA. This makes possible the simultaneous 

capture of all three major acid gases (SO2, NOx and CO2) plus HCl and HF [41] in one 

capture-installation, which would facilitate or even promote the use of cheap high-sulphur 

coal for fuelling power plants [42]. Another advantage of the aqueous ammonia process 

according to some authors is the possibility to produce fertilizers such as ammonium 

sulphate ((NH4)2SO4) and ammonium nitrate (NH4NO3). 

This process has been developed by Alston Power Systems and the Electric Power 

Research Institute (EPRI, United States). The process consists mainly of a packed bed 

absorber (scrubber) and a solvent regeneration column (Figure 2.3 [43]).  
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Figure 2.3. Conceptual design of an ammonia-based carbon capture process [43]. The 

resemblance to Figure 2.2 can be easily seen. 

Prior to CO2 absorption, the flue gas is cooled down using chilled water and a series of 

direct contact coolers. Then, the flue gas enters the absorber column at near-freezing 

conditions (0 - 10º C) in which the cooled flue gas flows counter currently to the absorbent 

slurry (ammonium carbonate and ammonium bicarbonate). When CO2 is absorbed in 

aqueous ammonia, the following (overall) reactions between ammonia and carbon dioxide 

can take place [44]:  

2 𝑁𝐻3 + 𝐶𝑂2 ↔ 𝑁𝐻2𝐶𝑂𝑂− + 𝑁𝐻4
+ (𝑐𝑎𝑟𝑏𝑎𝑚𝑎𝑡𝑒)                   (1) 

𝑁𝐻3 + 𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻𝑂𝐶𝑂− + 𝑁𝐻4
+ (𝑏𝑖𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒)             (2) 

2𝑁𝐻3 + 𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐶𝑂3
2− + 2𝑁𝐻4

+ (𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒)                (3) 
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The main reason behind the use of a low operating temperature is to allow high CO2 loading 

of the solvent slurry and to reduce ammonia slip. In the regenerable aqueous ammonia 

process, the absorption by-products are thermally decomposed to release CO2 from the 

solution of ammonium compounds. The regenerator column operates at temperatures > 

120º C and pressures > 2 MPa which produces a high pressure CO2 stream causing a 

reduction in the energy requirement for the subsequent compression and delivery of the 

CO2 product stream for storage. Although the aqueous ammonia absorption process has 

many advantages over the conventional amine based absorption process, it is still subject 

to an extensive development program. There are several drawbacks and concerns regarding 

aqueous ammonia chemical absorption process such as the high volatility of ammonia 

(boiling point -33 °C), cooling the flue gas to the 0-10º C range, the limited rate of the 

reaction between aqueous ammonia and carbon dioxide, the risk of precipitation of some 

of the reaction products (e.g. ammonium bicarbonate) and loss of ammonia during the 

regeneration process because of the elevated temperature [45]. 

2.1.3. Carbonate-Based Systems 

Carbonates are salts of carbonic acid (H2CO3) and they contain the carbonate ion CO3
2-. 

Carbonate-based carbon capture systems are based on the ability of a soluble carbonate to 

react with CO2. This reaction forms bicarbonate which releases the CO2 when heated, thus 

reverting to carbonate [21]. In other words, the process is very similar to the amine or 

ammonia systems described above.  

Carbonate systems actually preceded amine systems in CO2 separation. As early as the 

beginning of the 20th century, sodium carbonate (Na2CO3) solutions were used in dry ice 
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factories to separate CO2 from flue gas [46]. However, the introduction of amines for the 

same purpose led to rapid decline in the use of carbonates. The main reasons were that the 

CO2 absorption is faster in amine systems and it is easier to achieve very high removal 

efficiencies with them. However, the lower total energy requirement for carbonate systems 

applies even at normal pressure and temperature, which has led to renewed interest in 

carbonate systems in recent years. The heat of reaction of CO2 absorption by aqueous 

sodium carbonate is only a third of the heat of reaction for MEA [46]. Several additives to 

increase the CO2 absorption rate, such as amines, glycine and arsenious acid, usually 

referred to as promoters or activators, were discovered in the 1930s [47]. Carbonates also 

have other advantages because they are environmentally safe, non-volatile and do not 

degrade. Despite some promising test results, overall development of carbonate systems 

for PCC applications still lags behind that of amine systems [21].  

2.2. Physical Adsorption of CO2 

As discussed in the previous sections there are several challenges and shortcomings in 

terms of the recent carbon capture technologies. Therefore, there is a crucial need for 

developing an alternative capture technology that can both lower the operation cost and 

have significant advantages for energy efficiency. 

Adsorption, in general can be defined as a process in which the molecules or atoms of a 

single or multi-component fluid system in liquid, gas or even a super-critical phase tends 

to concentrate at the surface of a solid, under the effect of intermolecular interactions 

among fluid (adsorbate) and solid (adsorbent).The difference between absorption and 

adsorption is that in adsorption the adsorbed molecules remain on the surface of the sorbent 
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whilst in absorption the absorbed component enters into the bulk of the solvent or a solid 

to form a solution.  If the strength of the interactive forces between the adsorbent and fluid 

system is very strong, resulting in an electron transfer driven bonding, the phenomena is 

called chemisorption or chemical adsorption. On the other hand physisorption, or physical 

adsorption results when the surface forces between the adsorbent and the adsorbate are 

rather weak and involve only weak-natured electrostatic interactions. There are several 

former works that explain this phenomenon in detail [48-63]. The adsorption can be 

affected by changing either the pressure (Pressure Swing Adsorption, PSA) or the 

temperature (Temperature Swing Adsorption, TSA), i.e., the degree of adsorption increases 

with pressure and decreases with temperature and these two processes are further discussed 

in the following paragraphs. 

An adsorbent is a material to which different gases are attracted with varying degrees. 

These materials take the form of very high surface area porous pellets or beads. In general, 

adsorbents used for CO2 capture from flue gas can be a physisorbent and chemisorbent. 

The physisorbents for CO2 capture mainly include activated carbon, alumina, metallic 

oxides, metal-organic frameworks (MOFs) and zeolites [64-67]. The chemisorbents, 

mainly refer to a few solid adsorbents obtained through the incorporation of specific 

functional groups (mainly amine functionalized adsorbents) resulting in enhancing 

chemical reaction effect between CO2 molecules and adsorbents but chemical adsorption 

is generally undesirable in CO2 capture as the bonds are too strong to be easily broken by 

for example pressure change [68].  

Adsorption systems operate in a three step cycle: adsorb CO2, during which the 

preferentially adsorbed species (CO2) are picked up from the feed, purge (remove impure 
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gases) and evacuate (remove/desorb CO2), during which the adsorbed species are removed 

from the adsorbent, thus "regenerating" the adsorbent for use in the next cycle. This process 

is very similar to that described in Figure 2-1. Adsorption processes possess potential 

advantages compared to the other capture technologies (i.e. chemical absorption processes) 

including less regeneration energy required, greater capacity, and selectivity and ease of 

handling. 

2.2.1. Criteria for adsorbents used for CO2 capture 

Because adsorption occurs on the surface of the adsorbent, the quantity of material 

adsorbed is directly related to the area of surface available for adsorption, and the usual 

adsorbents are prepared in such a way as to have a large surface area per unit weight. The 

most important characteristic of a sorbent is, in fact, the quantity of sorbate that a given 

quantity of sorbent can hold at the operating temperatures and pressures. As the CCS 

application requires that CO2 is separated from the flue gas, which is a mixture of gases, it 

is equally important that the sorbent is selective for CO2. In other words, the adsorbent 

needs to adsorb plenty of CO2 but it should not adsorb much of any of the other gases [2]. 

More precisely, a suitable adsorbent for CO2 capture from flue gas should satisfy several 

important criteria to compete with the present technologies, including [68, 69]: 

1) high CO2 adsorption capacity (loading) – simply stated, it is the amount of 

adsorbate taken up by the adsorbent , per unit mass (or volume) of the adsorbent; 

the CO2 equilibrium adsorption capacity represented by its adsorption isotherm is 

a very important criterion in order to evaluate new adsorbents in terms of the capital 

cost of the capture system. With the knowledge of the adsorption equilibrium 
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capacity the amount of the adsorbent required can be obtained, and consequently 

the volume of the absorber vessels. The suitable adsorbent for CO2 capture from 

flue gas should at least exhibit a CO2 adsorption capacity of 2 - 4 mmol/g at ambient 

pressure [68]; 

2) high selectivity for CO2 - the adsorption selectivity of the adsorbent is defined as 

the ratio of the CO2 capacity to other bulk gas components (i.e. N2 and O2) what is 

one of the main properties of adsorbent material, because it has a direct impact on 

the purity of the CO2 captured; 

3) fast adsorption/desorption kinetics - a good adsorbent should exhibit fast 

adsorption/desorption kinetics under the operating conditions. Fast kinetics may not 

only shorten the cycle operation time, but also to some extent reduce the amount of 

solid sorbents needed to capture a given volume of flue gas; 

4) the stability during repeated adsorption/desorption cycling - stability is a crucial 

property of an adsorbent because it determines the life time of the adsorbents and 

the frequency of their replacement. An ideal sorbent is expected to be used under 

real flue gas environment for hundreds of thousands of operation cycles without 

significant performance deterioration. On one hand, CO2 capture sorbents should 

retain the appropriate working capacity and selectivity during their whole lifetime 

in order to reduce the frequency of material replacement. On the other hand, the 

sorbents should demonstrate enough structural and morphological strength to  

persist under operating conditions, such as high volumetric flow rate of the flue gas, 

vibration, and temperature and mechanical abrasion. A good adsorbent should 
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tolerate the presence of moisture and other impurities in the feed (i.e. water vapor, 

O2 and SO2). 

5) mild regeneration conditions - the interaction between CO2 molecules and porous 

sorbent media should be in the optimal range, which could be also represented and 

measured by the heat of adsorption. Heats of adsorption, a measure of the energy 

required for regeneration, are normally in the range of –25 to –50 kJ/mol for 

physisorption and –60 to –90 kJ/mol for chemisorption [69]. Too strong bonding 

results in the higher adsorption capacity at low partial pressure but requires more 

energy which makes the regeneration difficult and costly; 

6) low operating cost – cost is the most subtle characteristic to discuss because it may 

vary from week to week and from sales representative to sales representative, even 

for the same exact material, 

The major physical adsorbents reported for CO2 adsorption include activated carbons, 

inorganic porous materials such as zeolites and hydrotalcites [67], but activated carbon 

(AC) has a number of attractive characteristics over other physical adsorbents, such as 

its high adsorption capacity, high hydrophobicity, low cost, and low energy 

requirement for regeneration [70]. Activated carbons present a series of advantages as 

CO2 adsorbents: they are inexpensive, insensitive to moisture, have high CO2 

adsorption capacity at ambient pressure and, moreover, they are easy to regenerate, and 

they have well developed micro and mesoporosities [65, 71-73]. 

When the adsorbent is put in contact with a flowing gas, an equilibrium state is achieved 

after a certain time. This equilibrium establishes the thermodynamic limit of the adsorbent 

loading for a given gas composition, temperature, and pressure [50]. Information about the 
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adsorption equilibrium of the different species is vital to design and model adsorption 

processes [64–78]. The time required to achieve the equilibrium state may be also 

important, particularly when the size of the pores of the adsorbent are close to the size of 

the molecules to be separated [79-82]. 

In an adsorption process, the adsorbent used is normally shaped into spherical pellets or 

extruded. Alternatively, it can be shaped into honeycomb monolithic structures resulting 

in reduced pressure drop of the system [83]. The feed stream is put into contact with the 

adsorbent that is normally packed in fixed beds. The less adsorbed component will break 

through the column faster than the other(s). In order to achieve separation, before the other 

component(s) breaks through the column, the feed should be stopped and the adsorbent 

should be regenerated by desorbing the adsorbed compound. Since the adsorption 

equilibrium is given by specific operating conditions (composition, T (temperature) and P 

(pressure)), by changing one of these process parameters it is possible to regenerate the 

adsorbent. Different adsorption methods are often named after the condition which is 

changed during the process. The two main methods relevant for CO2 capture are TSA and 

PSA and the magnitude of the required T or P change, of course, depends on the sorbent 

used. 

2.2.2. Pressure Swing Adsorption 

Pressure Swing Adsorption processes are usually employed for gas-solid system exhibiting 

physisorption, in which both fast adsorption and desorption at the adsorbent surface is 

realized by changing the pressure levels inside the bed. More precisely, PSA is a 

technology used to selectively separate a specific gas from a mixture of gases by 

http://www.hindawi.com/journals/isrn/2012/982934/#B19
http://www.hindawi.com/journals/isrn/2012/982934/#B27
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microporous or mesoporous solid adsorbents at a relatively high pressure, via gas-solid 

contact in a packed column, in order to produce a gas stream enriched in less strongly 

adsorbed components of the feed gas [84]. The adsorbed components are then desorbed 

from the solid by lowering their gas-phase partial pressures inside the column to enable 

adsorbent re-usability. Desorbed gases, as a result, are enriched in the more strongly 

adsorbed components of the feed gas (Figure 2.4 [85]). No external heat is generally used 

for the desorption step. So it can be said that in PSA the total pressure of the system 

“swings” between high pressure during the feed and low pressure during regeneration [86, 

87].  

 

Figure 2.4. Scheme of PSA [85]. 

Figure 2.5. shows schematically the effect of pressure on the adsorption equilibrium of a 

single adsorbate. For any given partial pressure of the adsorbate in the gas phase, an 

increase in pressure leads to an increase in the quantity adsorbed. A relatively modest 

increase in pressure can cause a relatively large increase in loading. 
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Figure 2.5. Pressure effect on adsorbate loading [85]. 

While a PSA process carries out adsorption at superambient pressure and desorption at 

near-ambient pressure level, a vacuum swing adsorption (VSA) process undergoes 

adsorption at near-ambient pressure, while desorption is achieved under vacuum.  

The first patent application in which PSA technology was described, was presented by 

Charles Skarstrom (Skarstrom cycle) in the 1950s [88]. Skarstrom’s apparatus was called 

the heatless air dryer and was used to remove water vapor from air. The cycle involves 

only 2 beds (columns) performing the following four basic steps:  

1. Cocurrent Pressurization with feed,   

2. Adsorption with feed, 

3. Countercurrent blowdown 

4. Countercurrent purge with product 

In this cycle, in the feed step, air is fed to the first column at a pressure higher than 

atmospheric. The adsorbent initially used (zeolite 5A) was selective to nitrogen, making 

the exiting stream richer in oxygen. When the adsorbent packed in the first column is 
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saturated and cannot adsorb more nitrogen, the feed is directed to the second column. In 

order to release part of the nitrogen adsorbed in the first column, the flow direction is 

reversed and the total pressure of the column is reduced by venting to atmosphere. In the 

blowdown step, nitrogen is desorbed from the adsorbent and released and at the end of this 

step, the gas phase inside the column is rich in nitrogen. To additionally remove nitrogen 

from the column, a purge step (or light gas recycle) is used. The purge consists of recycled 

part of the enriched air from the other column which is flowing by the pressure differential 

between the two columns.  

Since the invention of PSA, the process has been applied in many different industries. A 

PSA system usually comprises two or more adsorbent-filled beds interconnected to each 

other via a network of switch valves, which in turn controls the simultaneous operation of 

product purification and adsorbent regeneration steps. Therefore, a multiple bed assembly 

is used to ensure a constant supply of product, while the other beds are in the regeneration 

mode. 

It has been demonstrated that PSA technology can be used not only for CO2 [15, 89] 

removal but in a large variety of other applications like hydrogen purification [90-95], air 

separation [96-104], or noble gases (He, Xe, Ar) purification [105–107] and so forth. 

2.2.3. Temperature Swing Adsorption 

Temperature Swing Adsorption is another technique used for regenerating a bed of 

adsorbent that is loaded with a gas mixture. The TSA process is based on adsorption at 

lower temperature and regeneration at an elevated temperature (Figure 2.6 [85]). 
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Figure 2.6. Scheme of TSA [85]. 

A TSA operation usually employs the following three basic steps. 

1. Adsorption or production step at low temperature; 

2. Heating the bed for desorption of impurities; 

3. Cooling the bed back to the adsorption conditions. 

The adsorption capacity of an adsorbent at higher temperature is lower than at lower 

temperatures. The saturated adsorbent is being regenerated at high temperatures of 110-

280°C (depending on the required dewpoint, the process parameters, the gas composition 

and the used material) [18]. There are several possibilities to introduce heat into the 

adsorber: heating ambient air, heating part of the feed gas, heating part of the product gas, 

heating a separate inert gas. The regeneration time is in general longer than in PSA. The 

Figure 2.7 [108] shows schematically the effect of temperature on the adsorption 

equilibrium (Type I isotherm) of a single adsorbate.  
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Figure 2.7. Temperature effect on adsorbate loading [108]. 

For any given partial pressure of the adsorbate in the gas phase, an increase in temperature 

leads to a decrease in the quantity adsorbed. If the partial pressure remains constant at P1, 

increasing the temperature from T1 to T2 will decrease the equilibrium loading from q1 to 

q2. A relatively modest increase in temperature can effect a relatively large decrease in 

loading. It is therefore generally possible to desorb any components provided that the 

temperature is high enough. However, it is important to ensure that the regeneration 

temperature does not cause degradation of the adsorbents. 

The key advantage of TSA over PSA is its ability to separate impurities having a tendency 

to form strong bonding with the adsorbent (chemisorption) [109]. A major challenge 

related to the use of TSA is the relative long duration of the processing steps necessary to 

change the bed temperature as compared to a PSA system. It should be noted that bed 

pressure transients can be quickly realized in a packed bed by changing the valve settings, 

while temperature changes require heating the whole mass of adsorbent and metallic wall 
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requiring hours or even days [110] to complete one cycle, adversely effecting the cycle 

productivity. 

2.2.4. Electric Swing Adsorption 

The concept of ESA was initially proposed by researchers at the Oak Ridge National 

Laboratory [111-113]. The process still consists of an adsorption process and a subsequent 

desorption process, like a conventional TSA or PSA process. Its unique feature is that in 

the desorption stage the regeneration is performed by increasing the temperature of the 

adsorbent using the Joule effect of passing electricity through a saturated electrically-

conductive adsorbent (Joule’s first law of heating). In fact, regeneration of the adsorbent is 

carried out by reducing the equilibrium capacity of the materials. In these terms, it seems 

that the principles of operation of the ESA process are similar with the operation of the 

TSA, [114]. The in situ heating route can effectively deliver heat to adsorbents without 

heating the additional media, thus ESA offers several advantages including less heat 

demand, fast heating rate, better desorption kinetics and dynamics and independent control 

of gas and heat flow rates as compared with PSA and TSA [115]. On the other hand, the 

adsorbent employed in ESA experiences large differences in temperature, so significant 

differences in loading at low and high temperatures are expected what is normally 

translated to high values of heats of adsorption and maximum performance can be achieved 

if the concentration of the gas to be adsorbed is small. That is why this process is not 

suitable for removal of large contents of gas [116].  

When an electric current flows through a solid with finite conductivity, electric energy is 

converted to heat through resistive losses in the material. The heat is generated on the 
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microscale when the conduction electrons transfer energy to the conductor’s atoms through 

collisions. The heat energy released in a conductor on passing an electric current is called 

the “Joule heat” and effect is called the ‘Joule effect”. Joule’s first law of heating stays 

that: “The heat produced per unit time, on passing electric current through a conductor at 

a given temperature, is directly proportional to the square of the electric current” [117]. 

The Joule effect within a column can be obtained in two different ways. The simplest one 

uses an adsorbent able to conduct electricity (direct ESA). An alternative is to use a 

nonconducting adsorbent and introduce some device able to conduct electricity into the 

column (indirect ESA).  

The ESA process is mentioned in several reports as one possible technique to capture CO2 

from flue gases, but so far this process was commercially employed to remove just volatile 

organic compounds [113,118-122]. Only two technical works report some experimental 

data on CO2 capture, both using commercial adsorbents, where one is an activated carbon 

material [123] and the other one is zeolite 13X [124]. 

2.3. Disadvantages of current carbon capture technologies 

Post combustion capture is based on separation from flue gas, which has low carbon 

dioxide concentrations. Concentration of CO2 for coal power plants is about 12 % to 15 %, 

for coal fired power plants with integrated gasification combined cycle about 9 % and for 

a natural gas fired power station as low as 4 % to 8 % [22]. These low concentrations are 

inconvenient for separation and directly handicap some separation methods. 

To date, chemical absorption with amines is the only technique that has been used 

commercially to capture CO2 from flue gas. Currently there are three electric power 
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generating stations in the U.S. that capture CO2 from flue gas and six other major flue gas 

CO2 capture facilities worldwide. All nine use MEA as the chemical sorbent [125]. The 

main disadvantage of MEA is relatively high amount of energy required for regeneration. 

Possibility of improvement can be brought by sterically-hindered amines which have good 

absorption and desorption characteristics. The sterically-hindered amines have larger 

molecules than MEA and improves CO2 load during absorption. The hindered amine 

process needs less energy, because solvents consume less heat for regeneration then MEA 

solvents. Unfortunately, the drawback is in lower reaction speeds than for MEA. Amine 

based absorption has also problems with an oxidizing environment, which can cause 

solvent degradation and equipment corrosion. Moreover, amine solvents react with NO2 or 

SOx into stable salts which are irreversible. 

The ammonia scrubbing technology possesses many advantages over the conventional 

MEA process for CO2 capture, including lower cost, higher capacity and efficiency for CO2 

absorption, lower decomposition temperature of ammonium bicarbonate, and less 

corrosion to absorber material. However, in addition to the highly volatile nature of 

ammonia, the lack of a process to regenerate ammonia from its carbonate salts hinders the 

ammonia scrubbing technique from being applied in practice. 

Carbon dioxide capture using solid adsorbents is considered one of the most promising 

technologies for CCS [21] despite their disadvantages such as low capacity of sorbents and 

influence of contaminants (SO2, H2O) on the separation process. In desorption step there 

is a need of either pressure or temperature change that makes PSA and TSA inherently 

energy intensive. Therefore, more energy efficient gas separation technologies are 

desirable. 



 

33 

 

This thesis describes a new carbon dioxide adsorption technique, Supercapacitive Swing 

Adsorption (SSA), which is based on reversible adsorption and desorption of CO2 by 

capacitive charge and discharge of electrically conducting porous carbon material and is 

not based on pressure or temperature changes. This method could potentially reduce the 

energy load by the applied electric field which drives the adsorption of CO2 by simply 

switching the electric bias on and off. Energy invested for adsorption of CO2 can be 

recovered during desorption step because SSA relies on reversible capacitive charging and 

discharging. The process of adsorption and desorption can be constantly repeated because 

the stationary sorbent can be reused after the CO2 is released. Chapter 5 describes the SSA 

process in more details
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3. Theory of supercapacitors 

3.1. Introduction to supercapacitors and their principles and properties 

Supercapacitors (SCs), also known as ultracapacitors or electrochemical capacitors, store 

energy through the formation of an electrostatic double-layer of electronic and ionic charge 

accumulated on each side of the electrode/electrolyte interface in response to an applied 

potential [126,127]. Most batteries undergo chemical changes or phase transitions upon 

charge/discharge which degrade performance over several hundred to several thousand 

cycles. In contrast, Electrochemical Double Layer Capacitors (EDLCs) require only the 

physical re-arrangement of electronic and ionic charge with little to no chemical changes 

and can typically be cycled over a million times with little performance degradation. They 

are not limited by reaction kinetics and solid-state mass transport, as is typically the case 

for batteries, enabling EDLCs to be charged and discharged rapidly with nearly 100% 

efficiency. 

Supercapacitors can be divided into two separate types depending on their charge storage 

mechanism: Electrochemical Double Layer Capacitors (EDLCs) and Pseudocapacitors 

(Figure 3.1). In the first case, the charge accumulation is achieved electrostatically by 

positive and negative charges residing on two interfaces. The second type exhibits both 

pseudocapacitance and double-layer capacitance, wherein pseudocapacitance arises from 

the fast faradaic redox reaction mechanism at the interface between electrode and 

electrolyte, or within the electrode itself according to Faraday’s laws [126]. There is also a 

third class of supercapacitors called hybrid capacitors which are fabricated with one 

electrode forming a  double layer (carbon based as the negative electrode) and another 

electrode having  pseudocapacitance (e.g., metal oxide based as the positive electrode). 
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Since this work was based only on EDLCs, the pseudocapacitors and hybrid capacitors are 

not further discussed.  

  

Figure 3.1. Hierarchical classification of supercapacitors [128]. 

Research activities have been intensified over the decades to identify plausible materials 

as candidate electrodes for energy storage applications. The priority has been given to high 

energy, easily available, cheap and environmental friendly materials. In view of the 

mentioned rationale for choice of materials, activated carbons are the most commonly used 

electrode material in commercial SCs at present [126]. Carbon in its various forms is 

currently the most extensively examined and widely utilized electrode materials in EDLCs 

with development focusing on achieving high surface-area with low matrix resistivity. 
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Carbons are attractive as electrodes for SCs due to a unique combination of chemical and 

physical properties, namely [126, 129, 130]: 

- High conductivity, 

- High surface-area range (~ 1000 to 2000 m2g-1), 

- Good corrosion resistance,  

- High temperature stability,  

- Controlled pore structure,  

- Processability and compatibility in composite materials,  

- Relatively low cost.  

The first patent of supercapacitors using porous carbon electrodes in aqueous medium dates 

back to 1957 by Becker assigned to General Electric [131]. The commercialization of a 

supercapacitor in aqueous electrolyte actually started in the 1970s by Nippon Electric 

Company (NEC) [132]. By the 1980s, many companies produced such devices such as 

Gold capacitor by Matsushita, Dynacap by Elna, PRI ultracapacitor by PRI designed for 

military applications such as laser weaponry and missile guidance systems, etc. [133, 134]. 

Since 2000, supercapacitors have effectively permeated industrial applications including 

automobiles, tramways, buses, cranes, forklifts, wind turbines, electricity load leveling in 

stationary and transportation systems, etc. [135].  

3.1.1. Basic scientific principles and construction of an EDLC 

Electrochemical capacitors operate on principles similar to those of conventional 

electrostatic capacitors. It is therefore instructive to undertake a brief review of electrostatic 

capacitor operation. 
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A conventional capacitor stores energy in the form of electrical charge, and a typical device 

consists of two conducting materials separated by a dielectric (Figure 3.2). When an 

electric potential is applied across the conductors electrons begin to flow and charge 

accumulates on each conductor. When the potential is removed the conducting plates 

remain charged until they are brought into contact again, in which case the energy is 

discharged. The amount of charge that can be stored in relation to the strength of the applied 

potential is known as the capacitance, and is a measure of a capacitor’s energy storage 

capability. Equations 3-1 and 3-2 [136] apply to an electrostatic capacitor. 

                  𝐶 =
𝑄

𝑉
= 𝜀

𝐴

𝑑
                                      Equation 3-1 

                𝑈 =
1

2
𝐶𝑉2 =

1

2
𝑄𝑉                            Equation 3-2 

in which C is capacitance in Farads, Q charge in Coulombs, V is electric potential in Volts, 

ε is the dielectric constant of the dielectric, A is conductor surface area, d is dielectric 

thickness, and U is the potential energy. 

 

Figure 3.2. Electrostatic capacitor topology [136]. 
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Electrochemical Double Layer Capacitors store electrical charge in a similar manner, but 

charge does not accumulate on two conductors separated by a dielectric. Instead the charge 

accumulates at the interface between the surface of a conductor and an electrolytic solution 

(Figure 3.3). The accumulated charge hence forms an electric double-layer [136]. 

Figure 3.3 shows the typical configuration of an EDLC, which is symmetric [133]. High 

specific surface area (SSA), porous carbon electrodes are typically cast onto a metallic 

current collector. Two such electrodes are sandwiched around an ion permeable membrane 

that prevents the two electrodes from short circuiting but allows ion migration. If two 

electrodes are far enough apart to prevent short circuiting the membrane can be omitted. 

An electrolyte is typically imbibed into the porous carbon electrode. In this case, during 

operation of the system, the dominant mechanism is the charge/discharge of the electrical 

double-layer, and the system is called an EDLC. Upon application of a potential difference 

between the two electrodes, electrons accumulate near the interface of the negatively 

polarized electrode. The voltage is limited by the stability potential window of the 

electrolyte. At the same time, holes are generated at the oppositely charged electrode and 

anions populate the double-layer on the solution side of this interface. To maintain charge 

neutrality, anions and cations are exchanged across the membrane to balance the charge in 

each compartment. As schematically illustrated in Figure 3.3, the ions and electric charge 

on either side of the interface form what is called a double-layer (DL). The separation 

distance, δ, between these two charged regions is typically on the order of a nanometer, 

corresponding to the radius of a solvated ion. This region of thickness δ can be thought of 

as the dielectric layer separating two plates of a conventional parallel plate capacitor. The 

nanometer-scale charge separation and the use of high specific surface area electrode 
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materials leads to devices with significantly higher specific capacitance than typical 

dielectric capacitors. A more detailed description of the structure of this double-layer is 

given in the next section (3.1.2). The EDL capacitance results from the pure electrostatic 

attraction between ions and the charged surface of electrodes. The electrode together with 

the electrolyte and voltage, determines its capacitance and partially its resistance and self-

discharge characteristics. The ability to store charge is dependent on the accessibility of 

the ions to the porous surface-area, so ion size and pore size must be optimal. 

 

Figure 3.3. Representation of a symmetric EDLC in its charged state [133]. 

Each electrode/electrolyte interface represents a capacitor and hence the simplified 

equivalent circuit of the complete device can be represented by two capacitors in series, as 

shown in Figure 3.3 [133, 137], and the total capacitance (C) expressed by equation 3-3 

[138] is essentially controlled by the electrode with the smallest capacitance but the amount 
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or type of active material in each electrode is often adjusted to obtain matching 

capacitances:  

 1

𝐶
=

1

𝐶1
+

1

𝐶2
                                          Equation 3-3 

Since a double layer forms on each of the two electrodes, a supercapacitor can be thought 

of as equivalent to two capacitors in series, each with its own capacitance, C1 and C2. 

3.1.2. Concept of Electrical Double Layer (EDL) 

The distinguishing feature of the supercapacitor device is the electrostatic charging of the 

electrochemical double layer (EDL). In all capacitors the charge is stored without (ideally) 

reactions taking place, unless the supercapacitor is of the pseudocapacitive type. The 

double layer is formed by the separation of charges in the electrolyte and requires the 

presence of two electrodes accumulating opposite charges (one positive and one negative) 

to each other. 

A double layer is realized when two electrodes immersed in an electrolyte, are polarized. 

The polarized charges at both the positive and negative electrodes resemble two capacitors 

connected in series as it was shown in Figure 3.3. The electrical double-layer mechanism, 

which arises from the electrostatic attraction between the surface charges of activated 

carbon and ions of opposite charge, plays the major role in carbon/carbon supercapacitors. 

The understanding of the electrical processes that occur at the boundary between a solid 

conductor and an electrolyte has developed gradually. Various models have been 

developed over the years to explain the phenomena observed by chemical scientists. 
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The first theoretical models for the EDL were developed by Helmholtz in the 19th century. 

When Helmholtz first coined the phrase “double layer” in 1853, he envisioned two layers 

of charge at the interface between two dissimilar metals. Later, in1879, he compared this 

metal/metal interface with a metal/aqueous solution interface [139, 140]. In this model, the 

interface consisted of a layer of electrons at the surface of the electrode, and a monolayer 

of ions in the electrolyte (Fig. 3.4a). As described by Helmholtz in 1853 [139, 140], a 

charge separation takes place on polarization at the electrode-electrolyte interface with a 

double layer distance d (Figure 3.4a), leading to a capacitance C (equation 3-4):  

                   𝐶 =
𝑄

𝑉
=

𝜀0𝜀𝑟𝐴

𝑑
                           Equation 3-4 

in which Q is the total charge at the electrode, V is the voltage imposed across the capacitor, 

A is the specific area of the electrode and electrolyte interface accessible to ions, d is the 

thickness of the electric double layer, ε0 (8.854 * 10-12 Fm-1) is the permittivity of the free 

space and εr is the dielectric constant of the electrolyte. C is the capacitance predicted by 

the Helmholtz model, and is a constant value dependent only on the dielectric constant and 

charge layer separation. 

Given that the electrode capacitance depends on the reciprocal of the double-layer 

thickness which is in the order of 10-10 m (0.1 nm), and it is directly related to the carbon 

surface area, typically of several hundreds m2 g-1 of carbon, the capacitance of EDLCs is 

significantly higher than that of the dielectric and electrolytic ones. The specific 

capacitance expressed per unit of surface area is typically near 25 µF cm-2, hence, with 

large accessible surface area carbon electrodes, high double layer capacitances on the order 

of 100-150 F g-1 can be achieved [126]. The charge layer in the electrolyte was first 
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considered static and the potential profile in the electrochemical double layer decreased 

linearly with distance from electrode surface. 

In the early 1900’s, Gouy considered observations that capacitance was not a constant and 

that it depended on the applied potential and the ionic concentration. To account for this 

behavior Gouy proposed that thermal motion kept the ions from accumulating on the 

surface of the electrode, instead forming a diffuse space charge (Fig. 3.4b) [126]. Further 

work by Chapman in the 1910’s on this model developed the idea of distribution of ions in 

the electrolyte. This model today is referred to as the Gouy-Chapman model.  In this model 

the positive and negative ions are diffused and distributed at a certain distance from the 

electrode. The Figure 3.4b shows the Gouy-Chapman model and it can be seen that ions 

were distributed in the solution region. The electric potential in this region decreases 

exponentially because of the influence of the charge on the electrode reduced by the 

distance. It can be seen that the change of electric potential becomes higher suddenly near 

the electrode. This model is also known as the diffusion electrical double-layer. The main 

weakness with the Gouy-Chapman model was the overestimation of the capacitance value 

of the electrodes which occurs if the ions are near the electrode surface.  

In 1924, Stern overcame this problem by using the analogy of adsorption of ions according 

to Langmuir at the surface of a solid. Including the hydration shells of ions in the electrolyte 

solution improved the predictions of his model. By adding the hydration shells to the 

model, a more accurate geometry (necessary to predict behavior at the interface) was 

introduced, thus resembling the model seen in Figure 3.4c. As a result, the EDL capacitance 

(Cdl) of the electrode becomes a combination between the Helmholtz/compact double-layer 
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capacitance (CH) and the diffusion region capacitance (Cdiff), and can be expressed as in 

equation 3-5 [126]: 

                   
1

𝐶𝑑𝑙
=

1

𝐶𝐻
+

1

𝐶𝑑𝑖𝑓𝑓
                       Equation 3-5 

Stern recognized that the ions in the electrolyte exhibit a certain ionic radius and, therefore, 

cannot approach the electrode surface closer than their ionic radius allows. This distance 

of closest approach is called the Outer Helmholtz Plane (OHP). 

 

Figure 3.4. Scheme of the electrical double-layer is shown: a) Helmholtz model, b) Gouy-

Chapman model, and c) Stern model. IHP and OHP represent the inner Helmholtz plane and 

outer Helmholtz plane, respectively. d is the double-layer distance described by the Helmholtz 

model. Ψo and Ψ are the potentials at the electrode surface and the electrode/electrolyte 

interface, respectively [135]. 

 

The Stern layer (Figure 3.4c) consists only of the monolayer of adsorbed solvent on the 

electrode and hydrated electrolyte ions. This region can be separated into the inner 
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Helmholtz layer (IHP), which consists of a monolayer of solvent and ions adsorbed on the 

electrode surface, and the outer Helmholtz layer (OHP), which incorporates the solvated 

ions of opposite charge. These layer distinctions arise as a result of the different sizes of 

cations and anions. Anions are usually smaller than the solvated cations and consequently 

the distance between them and the positive electrode is smaller than the space separating 

the hydrated cations from the negative electrode. The capacitance at the positive electrode, 

therefore, is usually twice that of the negatively charged electrode (Figure 3.5 and 3.6). 

Beyond the Helmholtz regions is a diffuse layer consisting of a distribution of ionic charge 

[141]. 

 

Figure 3.5. Electrode electrolyte interface at a negatively charged pore [141]. 
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Figure 3.6. Electrode electrolyte interface at a positively charged pore [141].  

 

 

 

Theoretically, one electrode and electrolyte interface creates a fully functioning equivalent 

of a traditional capacitor. Practically speaking, however, there must be two electrodes so 

that an electric potential may be applied, and there are thus two of these layered regions 

within a supercapacitor. 

The excess charge on the electrode surface is compensated by an accumulation of excess 

ions of the opposite charge in the solution. This structure behaves essentially as a capacitor 

as it possesses the double layer. The amount of charge is a function of the electrode 

potential. Figure 3.7 illustrates the electrode potential before and after charging. The 
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charges are polarized at the interface forming the Helmholtz layer. Thus an electrical 

potential can be observed after the charging [126, 129, 130]. 

 

Figure 3.7. Typical distribution of charges at the interface and its electrode potential before and 

after charging [126]. 

 

In 1963 Bockris, Devanathan and Muller proposed a model that included the action of the 

solvent [142]. They suggested that a layer of water was present within the inner Helmholtz 

plane at the surface of the electrode. The dipoles of these molecules would have a fixed 

alignment because of the charge in the electrode. Some of the water molecules would be 

displaced by specifically adsorbed ions. Other layers of water would follow the first, but 

the dipoles in these layers would not be as fixed as those in the first layer (Figure 3.8). 
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Figure 3.8. A double layer model including layers of solvent [142]. 

3.1.3. Electrolytes for SCs 

The choice of electrolyte in an EDLC is as important as the choice of electrode material. 

The attainable cell voltage of a supercapacitor will depend on the breakdown voltage of 

the electrolyte, and hence the possible energy density (which is dependent on voltage) will 

be limited by the electrolyte. Power density is dependent on the cell’s ESR, which is 

strongly dependent on electrolyte conductivity. There are currently three types of 

electrolyte in use in EDLCs: aqueous, organic and ionic liquids (ILs). 

An aqueous electrolyte has a high ionic conductivity leading to higher power density, but 

a small electrochemical window (1.2 V) which is restricted by the thermodynamic window 
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of water. The electrochemical window is the potential window within which the electrolyte 

is neither reduced nor oxidized at an electrode. Examples of these aqueous electrolytes are 

commonly H2SO4 and KOH. An alternative can be an organic electrolyte which has a 

bigger electrochemical window (3 V) and higher energy storage capacity, but problems of 

relatively high resistivity, depletion and toxicity. Examples of these aqueous electrolytes 

are Propylene Carbonate (PC) and Acetonitrile (ACN) electrolytes [143, 144]. The last 

ones are ionic liquids composed of organic cations and inorganic anions. Their liquid phase 

range is large, so is their electrochemical window (6 V) [145, 146]. The problem is their 

high viscosity which reduces the ions migration rates. 

3.2. What is activated carbon (AC)? 

Activated carbons are largely utilized not only in commercial EDLCs but also in adsorption 

of CO2 because of their low cost. They are typically produced by carbonization of various 

carbonaceous precursors that are easily acquired, such as coals [147] (e.g. bituminous coal 

and lignite), fly ashes [148], anthracites [149], and wood or other biomass sources [150] 

(e.g. bamboo chips, coconut shells, saw dust etc.) [151]. Therefore, activated carbons have 

a huge advantage over other adsorbents and SC materials in terms of the low cost of raw 

materials. The activation and treatment process together with the intrinsic nature of 

different precursors strongly determines the structural characteristics of the resulting 

activated carbons in terms of pore size distribution, porosity, surface area, as well as pore 

volume. Figure 3.9 shows a schematic representation of the structure of activated carbons, 

which gives an idea of how a disordered array of graphene layers, also folded, can be 

arranged. Activated carbons feature high specific surface area (>1500 m2 g-1) and are 
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usually rich in surface functional groups (like hydroxo, keto and carboxylate 

functionalities) on their pore surfaces. 

 

Figure 3.9. Schematic representation of the microstructure of activated carbons [146]. 

Figure 3.10 presents a porous network in an AC granule, which includes micropores (lower 

than 2 nm width), mesopores (between 2 and 50 nm), and macropores (larger than 50 nm) 

according to the IUPAC classification of pores recommended in 1985 [152]. Most of the 

adsorption process takes place in the range of micropores, whereas meso- and macropores 

play very important roles in transporting the adsorbate to the micropores as well as in ionic 

diffusion [153]. A generalization would be that the micropores are responsible for the 

largest part of the total surface area with the meso- and macropores contributing less. 
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Figure 3.10. Schematic representation of an activated carbon granule [153].  

For electrochemical systems these properties of a carbon become significant for the simple 

reason that electrolyte solutions are used and ions that carry charges have a finite size, 

depending on which electrolyte solution is used. In aqueous electrolyte solutions the 

hydration shell of an ion has to be considered as well. For example, a potassium ion, with 

its accompanying hydration shell has a radius of approximately 5-6 Å (0.5-0.6 nm) [153] 

and it is thus clear that not all the pores are available for penetration by this ion. Moreover, 

ACs are relatively hydrophobic materials because of their non-polar C-C and C-H bonds 

which makes it difficult for water molecules to enter the micropores. On the other hand, 

the activated carbons have also hydrophilic pores due to polar hydroxo, keto and 

carboxylate functionalities on their pore surfaces. These hydrophilic pores are filled with 

the aqueous electrolyte. 

The production of activated carbons from raw materials usually consists of two steps: 

carbonization, and activation [147]. The former step includes heating and thermal 
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decomposition of the starting materials at a temperature of 500-1200 oC in an inert 

atmosphere to make carbonaceous materials which have poor surface properties. 

Therefore, it is essential to follow the carbonization process with an activation step, during 

which the carbonaceous materials are modified to produce a suitable porosity, and active 

sites. The activation of the carbonaceous materials can be achieved by either physical or 

chemical activation. 

Thermal or physical activation involves high temperature (700-1100 ºC) controlled 

gasification of carbonaceous precursors in the presence of oxidizing gases such as steam, 

carbon dioxide, air etc. The oxidizing ambience triggers a controlled burning of volatile 

materials and carbons to develop high surface area and porosity. The degree of activation 

is solely controlled by carbonization temperature and duration. Very aggressive activation 

is avoided as it incurs huge carbon burn-off, low carbon yield, low density and pore 

widening [154]. 

On the other hand, chemical activation is conducted at lower temperatures (400-800 ºC) 

involving chemical activating (dehydrating) agents e.g. potassium hydroxide, phosophoric 

acid, zinc chloride etc. The activating agent penetrates into the precursor and comes out 

during activation creating huge porosity and surface area. The final morphology of carbon 

can be easily tuned by controlling the amount of activating agent, carbonization 

temperature/duration, heating rate etc. [155]. Chemical activation is widely used to produce 

exceptionally high surface area carbon (>2500 m2/g). 

The solid matrix of an electrode acts as a carrier of electrons during the charging and 

discharging of a SC. Therefore it is highly desirable that there are as few limitations as 

possible in this matrix. The resistivity, ρ, corresponds to the conductivity, κ, as ρ = κ−1. In 
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active carbons this property can vary greatly. Since graphene layers constitute the bulk of 

active carbons (hexagonal sheets of carbon) the conductivity of the carbon is dependent on 

the orientation of these sheets. The conductivity can therefore vary by several orders of 

magnitude [156]. Furthermore, it may be affected by activation treatments such as chemical 

oxidation, extent of porosity, composition and heat treatment. 
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4. Characterization methods 

Proper characterization of electrode materials was necessary to gain understanding of the 

specific compositional, structural and electrochemical aspects which are responsible for 

the SSA results obtained. Thus, several techniques were employed to address this challenge 

and are described below. 

4.1. Physicochemical characterization 

Physical characterization techniques assist in evaluating the chemical and morphological 

properties of the constructed electrodes. There are many physicochemical methods that 

exist but in this work the gas adsorption-desorption technique, scanning electron 

microscopy and transmission electron microscopy were used and are further discussed 

below. 

4.1.1. Gas adsorption-desorption technique 

Physical adsorption at the gas/solid interface is a commonly used method for the 

characterization of surface and structural properties of porous materials allowing the 

determination of their surface area, pore volume, pore size distribution, and adsorption 

energy distribution. The gas adsorption technique is performed by the addition of a known 

volume of gas (adsorbate), typically nitrogen, to a solid material in a sample vessel at 

cryogenic temperatures (77K for N2). At cryogenic temperatures, weak molecular 

attractive forces (van der Waals forces) will cause the gas molecules to adsorb onto (attach 

to the surface of) a solid material. An adsorbate (gas) is added to the sample in a series of 

controlled doses, the pressure in the sample vessel is measured after each dosing. There is 

a direct relationship between the pressure and the volume of gas in the sample vessel. By 

measuring the reduced pressure due to adsorption, the ideal gas law can then be used to 
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determine the volume of gas adsorbed by the sample. The resulting relationship of volume 

of gas adsorbed vs. relative pressure (pressure/saturation vapor pressure of the adsorbent 

(P/P0) at constant temperature is known as an adsorption isotherm. From the analysis of 

the isotherm the surface area and pore size distribution of the sample can be derived. The 

adsorption isotherm can have different shapes which are based on the adsorbent, adsorbate 

and the adsorbent adsorbate interaction. According to IUPAC [157] adsorption isotherm is 

classified into six types. The adsorption types are shown in figure 4.1. 

 

Figure 4.1. The IUPAC classification of isotherms [157]. 

Type I isotherms are observed with microporous solids with relatively small contributions 

from the external surfaces of the solid. Hence, the limiting gas uptake is often governed by 

the accessible micropore volume rather than by the external surface area. Type I isotherm 

occurs when a monolayer of adsorbate molecules is adsorbed on a non-porous solid. This 

type is also common for chemisorption.  
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Type II isotherms are displayed by a nonporous or macroporous adsorbent with high energy 

of adsorption and have unrestricted monolayer-multilayer adsorption on the surface area 

of the non-porous adsorbents. The point B shown on the isotherm is often taken to indicate 

the stage at which monolayer coverage is completed and multilayer adsorption begins 

dominating during the measurement. 

Type III isotherms are affected by the adsorbate-adsorbent interactions and show the 

formation of a multilayer; they are uncommon and typical for vapor adsorption (i.e. water 

vapor on hydrophobic materials).  

Type IV isotherms reflect monolayer-multilayer adsorption path similar to the type II 

isotherm, although a type IV isotherm is observed with many mesoporous industrial 

adsorbents. At saturation vapor pressure the isotherm levels off to a constant value of 

adsorption. The portion of isotherm which is parallel to the pressure axis is attributed to 

pore filling by capillary condensation. Capillary condensation occurs due to multilayer 

adsorption when pore spaces in a porous medium are originally filled with vapor. The gas 

molecules condense into a liquid phase in the pores. After condensation in the pores, a 

meniscus is formed at the vapor-liquid interface and at pressures below the saturated vapor 

pressure, there is equilibrium. In mesopores it is generally associated with a shift in the 

vapor-liquid coexistence curve [158]. According to Roque-Malherbe [158], condensation 

occurs at a pressure P, less than the saturation pressure Po, of the fluid and this relative 

pressure (P/Po) value depends on many factors. Some of these factors include: vapor-liquid 

interfacial tension, the strength of the molecular interactions among the fluid and the 

mesopore walls, the mesopore geometry, and the mesopore size. Capillary condensation is 

typically characterized by a step change in the adsorption isotherm [158]. Materials which 
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have a uniform pore size distribution usually have a notably sharp step in their adsorption 

isotherm in which capillary condensation occurred.  

Type V isotherm is also not very common, and it is related to the type III isotherm in that 

the adsorbent-adsorbate interaction is not strong, but can be observed with certain porous 

adsorbents. 

Type VI isotherm represents stepwise multilayer adsorption on a uniform non-porous 

surface. 

In surface adsorption, hysteresis is used to describe the phenomenon of the desorption 

isotherm being different from the adsorption isotherm, viz. the amount of adsorbate is 

greater for desorption [157]. Conventionally, four types of hysteresis loops are identified 

(Figure 4.2).  

 

Figure 4.2. Types of hysteresis loops [157]. 
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Hysteresis loops reveal more details of pore structures of the materials: An H1 type 

hysteresis loop suggests that the material has regular even pores without interconnecting 

channels; the H2 type of loop indicates that the pores with narrow and wide sections and 

the materials have possible interconnecting channels; the H3 type is for a type II isotherm 

with slit-like pores; and H4 is for slit-like pore for type I adsorbent - adsorbate pairs [157]. 

In the literature, there are many models which describe the adsorption phenomenon using 

mathematical relationships. The Langmuir monolayer adsorption is the simplest isotherm 

model. It has been derived theoretically from both kinetic and statistical mechanical 

concepts [159]. In this model, it is assumed that the adsorbate molecules are adsorbed on a 

fixed number of well-defined, localized sites, each of which can hold only one adsorbate 

molecule. All sites are energetically equivalent and there is no interaction among the 

adsorbate molecules adsorbed on neighboring sites. 

Stephen Brunauer, Paul Emmett, and Edward Teller [160] extended the Langmuir model 

in 1938 by introducing a multilayer adsorption model. The first letter of each publisher’s 

surname was taken to name this theory. The BET model assumes that, in addition to the 

assumptions made for the Langmuir model, each adsorbate molecule in the first layer 

serves as an adsorption site for an adsorbate molecule into the second layer, the second 

layer to the third layer, and so on. The attractive forces between the adsorbate molecules 

are negligible. The heat of adsorption of the second and subsequent layers is assumed to 

be equal to the heat of liquefaction of the adsorbate and different from the heat of the 

adsorption of the first layer. The BET equation used can be given as [160]: 
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in which W is the weight of the gas adsorbed at a relative pressure P/P0 and Wm is the 

weight of the adsorbate required for the monolayer surface coverage; C is the BET constant 

and is related to the energy of adsorption in the first adsorbed layer and it indicates the 

magnitude of the adsorbent/adsorbate interactions, it varies from solid to solid (𝐶 =

𝑒𝑥𝑝 (
𝐸1−𝐸𝐿

𝑅𝑇
) in which E1 is the heat of adsorption for the first layer, and EL is heat of 

adsorption for the second/ higher layers (also known as heat of liquefaction)). 

BET theory is based on the following hypotheses [161, 162]:  

1. Gas molecules physically adsorb on a solid in layers infinitely – an isolated adsorbed 

molecule can adsorb a second molecule on top, yielding a full energy of liquefaction, 

and that in turn a second molecule can adsorb a third and so on; 

2. Adsorption takes places either on surface sites or on the top of molecules already 

adsorbed but not in-between positions; 

3. The first layer only interact with the surface, all other layers have interparticle 

interactions with the same energy as would apply in the liquid state, and involving only 

nearest neighbors in the vertical stack of adsorbed atoms in each site; 

4. For each layer it is possible to apply Langmuir theory since the BET theory is 

essentially an extension of Langmuir model to multilayer adsorption. 

Surface area measurements are usually done using inert adsorbates such as N2, or Ar and 

expressed in units of area per mass of a sample (m2/g). Based on the amount of the 

adsorbate required to form a monolayer surface coverage at a given pressure, one can 

calculate the total surface area of the material. The cross sectional area (Acs) value for the 

hexagonal close-packed nitrogen monolayer at 77 K is 16.2 Å2 [160]. Thus, the total 

surface area of the sample can be expressed as [160]: 
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                          𝑆𝑡 =
𝑊𝑚𝑁𝐴𝑐𝑠

𝑀
                         Equation 4-2 

in which N is the Avogadro’s number (6.022 x 1023 molecules mol-1) and M is the 

molecular weight of the adsorbate. The specific surface area can be determined by dividing 

St by the sample weight. Nitrogen is used most often to measure BET surface area, but if 

the surface area is very low, argon or krypton may be used as both give a more sensitive 

measurement, because of their lower saturation vapor pressures at liquid nitrogen 

temperature. The amount of gas adsorbed depends not only on the exposed surface area but 

also on the temperature, gas pressure and strength of interaction between the gas and solid. 

In BET surface area analysis, nitrogen is usually used because of its availability in high 

purity. The surface is cooled using liquid N2 to 77K to obtain detectable amounts of 

adsorption. Relative pressures less than atmospheric pressure is achieved by creating 

conditions of partial vacuum.  Known amounts of nitrogen gas are then released stepwise 

into the sample cell. Highly precise and accurate pressure transducers monitor the pressure 

changes due to the adsorption process. The data collected are displayed in the form of an 

isotherm, which plots the amount of gas adsorbed as a function of the relative pressure. 

In addition to the surface area measurements, the pore volume and pore size distributions 

are also calculated. For pore volume measurements, the total pore volume can be calculated 

from the amount of vapor which is adsorbed at a relative pressure close to unity (with an 

assumption that all the pores are filled by the adsorbate). The volume of nitrogen adsorbed 

(Vads) can be converted to the volume of liquid nitrogen (Vliq) contained in the pores using 

the following equation [160]: 

                       𝑉𝑙𝑖𝑞 =
𝑃𝑎𝑉𝑎𝑑𝑠𝑉𝑚

𝑅𝑇
                         Equation 4-3 
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in which Pa and T are ambient pressure and temperature respectively and Vm is the molar 

volume of the liquid adsorbate (34.7 cm3 mol-1 for nitrogen). 

The distribution of pore volumes with respect to the pore size is known as pore size 

distribution. The most common method for obtaining the pore size distribution is the 

Barrett-Joyner-Halenda (BJH) method [163]. The basic assumptions which the BJH takes 

into consideration are; (a) cylindrical pore shape, (b) condensation takes place at lower 

pressure in smaller pores and larger pores are filled as the relative pressure increases. 

Mesopore size calculations assuming the cylindrical geometry can be obtained by using 

the Kelvin equation [160]: 

                               𝑟𝑘 =
−2𝛾𝑉𝑚

𝑅𝑇𝑙𝑛
𝑃

𝑃0

                     Equation 4-4 

in which γ is the surface tension of nitrogen at its boiling point (8.85 ergs cm-2 at 77 K), 

Vm is the molar volume of nitrogen, rk is the Kelvin radius of the pore. 

Desorption is a process opposite to the adsorption and occurs in a system being in the state 

of sorption equilibrium between the bulk phase (fluid phase) and the adsorbing solid 

surface. When the concentration (or pressure) of the adsorbate in the bulk phase is lowered, 

some of the adsorbate is released from the surface of the adsorbent to the bulk phase. 

Temperature change can also cause desorption. As the temperature rises, desorption occurs, 

because the increase in temperature provides the energy required to overcome forces 

between the adsorbent and the adsorbate.  

Before the specific surface area of the sample can be determined, it is necessary to remove 

gases and vapors that may have become physically adsorbed onto the surface after 
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manufacture and during treatment, handling and storage. If outgassing is not achieved, the 

specific surface area may be reduced or may be variable because an intermediate area of 

the surface is covered with molecules of the previously adsorbed gases or vapors. Samples 

are degassed in a vacuum at high temperatures. The highest temperature possible that will 

not damage the sample’s structure is usually chosen in order to shorten the degassing time.  

4.1.2. Scanning Electron Microscopy (SEM) 

Electron microscopes were developed in the 1930s to overcome the limitations of optical 

microscopy and provide increased magnification and resolution, far superior to optical 

systems. The first commercialized Scanning Electron Microscope (SEM) was built by 

Cambridge Instruments [164]. 

Scanning Electron Microscopy is a very powerful imaging tool commonly used to visualize 

nano- and microstructures [165-167]. The difference between optical microscopy and SEM 

is the way how an image is “produced”. In the first case the sample is probed with photons 

while in SEM a focused electron beam is transmitted from an electron gun (Figure 4.3). 

The principle of SEM is based on the interaction of an incident electron beam and the solid 

specimen [168]. The resolution of SEM images is so greatly improved when compared 

with optical ones due to ca. 105 times shorter wavelength of electrons than photons. The 

signal contains information about surface topography, external morphology, chemical 

composition, crystallographic information, and electrical conductivity [168]. The 

instrument allows for the observation of materials on a very small scale ranging from 

nanometers to micrometers. An ability to produce three-dimensional (3D) images is one of 

the most outstanding capabilities of the SEM apart from the high resolution, higher 
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magnification and ease of sample observation. A large depth of field of the SEM allows 

for the focusing of larger areas of the specimen at one time resulting in 3D images.  

Electrons generated in the electron gun are accelerated in an electric field. Then the beam 

is focused by condenser lenses, passes through deflection coils and when it is properly 

oriented it finally scans the sample [165]. Scanning Electron Microscopy uses electrons 

emitted from tungsten or Lanthanum hexaboride (LaB6) thermionic emitters for the 

visualization of surface of the sample. The filament is heated resistively by a current to 

achieve a temperature between 2000-2700 K what results in an emission of thermionic 

electrons from the tip over an area of 100 μm x 150 μm. The electron gun generates 

electrons and accelerates them to energies in the range 0.1 – 30 keV towards the sample 

[169]. A series of lenses focus the electron beam on to the sample where it interacts with 

the sample to a depth of approximately 1 μm. There are many possible ways for loss of 

energy by electrons interacting with the sample. It can be emitted as low-energy secondary 

electrons (SE), high-energy backscattered electrons (BSE), characteristic X-rays, 

transmitted electrons or heat. X-rays have a characteristic energy unique to the element 

from which they originate and so provide compositional information about a sample. 

Usually a detector that collects SE electrons is utilized. Obtained SEM images are 

characterized with a very high quality and resolution [167]. However, in some cases, it is 

more intentional to use a detector that collects BSE which allows to record images with 

high compositional contrast of different components present in the sample [167]. Both SE 

and BSE signals are collected when a positive voltage is applied to the collector screen in 

front of the detector. When a negative voltage is applied on the collector screen only BSE 

signal is captured because the low energy SEs are repelled. 
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An SEM consists of three distinct parts: an electron column; a detection system; and a 

viewing system. Figure 4.3 shows a schematic of a simple scanning electron microscope. 

Two electron beams are controlled simultaneously by the same scan generator: one is the 

incident electron beam; the other is for the cathode ray tube (CRT) screen. The incident 

beam is scanned across the sample, line by line, and the signal from the resulting SE is 

collected, detected, amplified and used to control the intensity of the second electron beam. 

Thus a map of intensity of secondary electron emission from the scanned area of the sample 

is shown on the CRT screen as variations in brightness, reflecting the surface morphologies 

of the specimen. Given this mechanism, the magnification of the SEM image can be 

adjusted simply by changing the dimensions of the area scanned on the sample surface 

[164]. 

One of the crucial issues to be considered is the preparation of a sample. Conductive 

substrates do not need a special treatment; they only have to be electrically grounded. This 

is also applicable for substrates in which only a top layer is conductive (e.g. ITO electrode). 

However, when the sample is insulating, an ultrathin conductive film has to be deposited, 

usually by sputtering to make the surface conductive, increase signal and surface 

resolution, and prevent accumulation of static electric charge on the specimen. Metallic 

(e.g. gold or platinum) thin films are commonly used. Nonetheless, there is an exception 

from these methodologies when non-conductive samples are analyzed in low-voltage mode 

of SEM or environmental SEM. Last but not least, the sample has to fit the holder that is 

placed in the chamber [169]. 
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Figure 4.3. Schematic illustration of SEM setup [170]. 

4.1.3. Transmission electron microscopy (TEM) 

In a transmission electron microscope (TEM), similarly to the SEM, electrons are used to 

screen the sample and produce an image [171-173]. However, there are several significant 

differences between them. First, in TEM, the electron beam is partially transmitted through 

the sample and then it is collected on the fluorescent screen (Figure 4.4). Another issue is 

how strongly the beam is accelerated by an anode. For TEM it is usually 100 keV (40 – 

400 keV), while for SEM it ranges between 0.2 and 40 keV [171]. Specimen preparation 

is also different. Since the beam has to penetrate the sample, the specimen has to be thin 

enough, on the order of hundreds of nanometers. Otherwise the electron beam might be 

completely scattered. 
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The first practical TEM was built by Albert Prebus and James Hillier at the University of 

Toronto in 1938 using concepts developed earlier by Max Knoll and Ernest Ruska [174]. 

Since then, the TEM has had considerable development and is now a versatile tool of 

characterization in material science and biology. 

A general TEM usually consists of six basic components, as follows [174, 175]: 

1) Source providing illumination: An electron source, commonly used in all TEMs, 

comprises a filament, which emits electrons either by thermal heating (a so-called 

thermionic filament) or through application of a high electric field to a metal 

filament tip generating field emission electrons (so-called field-emission filament). 

The field-emission filament is a lot more expensive and requires much higher 

vacuum than the thermionic filament, but offers a very stable source with a greater 

resolution and longer life-time. 

2)  Electrodes: These include a cathode, which accelerates the electrons generated 

from the filament to a high energy, ranging from a few hundreds to over a million 

electronvolts. Although a higher voltage can produce a higher resolution, in fact, 

most TEM instruments are operated at energies between 100 kV and 400 kV. This 

is to reduce sample damage and the cost of the instrument while still achieving a 

very short electron wavelength. 

3) An electron optics system: This consists of a series of electromagnetic lenses, such 

as condenser lens, objective lens, projective lens as well as intermediate lens. These 

lenses help to focus the electrons to produce a small probe beam and form images 

of samples. The objective lens is the heart of the microscope. The spherical and 
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chromatic aberrations inherent in the objective lens are the major limitations to the 

resolution of the TEM instrument. 

4) A sample chamber: This is where the sample is positioned, and is directly above 

the objective lens. It is important that the chamber is spacious enough to allow the 

samples to be viewed with a wide range of tilting necessary for the crystal 

orientation examination as well as for chemical analysis. 

5) Camera(s): Images of the samples can be acquired using a video/scanned camera 

which is located beneath a phosphor screen where the images are seen. The 

photographs are taken by lifting up the screen and exposing the film in the camera. 

However, this recording method has been gradually replaced by using a charge-

coupled device (CCD) camera, which collects a digital image which can be saved 

onto a computer. 

6) Vacuum system: in order to minimize scattering of the electrons by air molecules 

and to increase the mean free path of the electron the TEM runs at a very high 

vacuum (typically 10-4 Pa), which is maintained by a vacuum system. In most cases, 

such a system comprises a combination of two types of pumps, i.e. mechanical and 

diffusion pumps. 

An electron gun is responsible for producing the electrons that are irradiated onto the 

specimen. Electrons are usually generated in an electron microscope by thermionic 

emission from a filament, usually tungsten, in the same manner as a light bulb, or by 

field emission. The electrons are then accelerated by an electric potential (measured in 

volts) and focused by electrostatic and electromagnetic lenses onto the sample. Two 

condenser lenses are responsible for focusing the beam into a pinpoint beam. The 
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transmitted beam contains information about electron density, phase and periodicity. 

All of the information is to be used to form an image [176].  A condenser aperture then 

restricts the beam by knocking out high angle electrons. As the beam comes into contact 

with the specimen, part of it is transmitted and focused by the objective lens forming 

an image. The image is then passed through the intermediate and projector lenses which 

enlarge it before it hits the phosphor screen where it can be seen. The TEM image 

contrast is due to elastic scattering of electrons. There are various contrast modes to 

improve the image quality. These modes include: bright and dark field; diffraction 

contrast; and phase contrast [177]. Bright and dark field modes are based on the 

occlusion and absorption of electrons in the sample. For amorphous materials, darker 

areas on the image correspond to fewer electrons being transmitted due to the thicker 

or denser nature of the material at that point. Lighter areas of the image are a result of 

more electrons being transmitted through the material in areas that are thinner or less 

dense [174]. The contrast is greater at low accelerating voltage and smaller aperture 

diameters. To study crystalline structures, the diffraction contrast mode is used. Using 

selective Bragg scattering, sharp spots can be visualized. In phase contrast mode, 

scattered electrons are allowed to recombine with unscattered electrons to form the 

image [174]. 

To examine materials by TEM requires a sample that normally should be less than 3 mm 

in diameter with the area of interest sufficiently thin to allow electrons to penetrate it. It is 

very important to prepare a good TEM sample, which is a prerequisite for any analysis 

using various TEM techniques (including imaging, EDX and others). Not only is it difficult 

to thin the bulk sample down to the desired thickness (mostly less than 100 nm), but also 
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preparation (such as mechanical/electrochemical polishing and ion sputtering) can create a 

lot of artifacts in and on the sample, which may give rise to false information. 

 

Figure 4.4. Schematic illustration of TEM setup [178]. 

4.2. Electrochemical characterization 

Electrochemistry is the interplay between chemistry and electricity in which reactions 

involving electrical currents and potential are considered [179]. Since the SSA technology 

is based on supercapacitors, the electrochemical techniques were utilized in order to 

ascertain the capacitance, energy and resistances presented in each supercapacitor used for 

SSA experiments. There are many electrochemical techniques that exist but in this work, 
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cyclic voltammetry and galvanostatic charge-discharge were used because of their ability 

to quickly and easily reveal important characteristics of the capacitor and are further 

discussed in detail. Electrochemical characterization was done with a high-current, high-

performance USB potentiostat (GAMRY Reference 3000) in a two electrode cell 

configuration; all plots were generated using Gamry’s Analyst software. A potentiostat is 

a device that controls the potential between a pair of electrodes whilst measuring the 

resulting current flow. The Gamry potentiostat can be operated also as a galvanostat. In 

this case the current flow is controlled while the potential is monitored. The two electrode 

set up, which uses a working and counter (auxiliary) electrode, was chosen as the simplest 

cell setup to measure the whole cell. The electrochemical measurements were done directly 

in the SSA cell in order to measure the capacitive behavior of each pair of electrodes 

prepared for the SSA experiments. 

The standard cell configuration consists of three electrodes immersed in the electrolyte: the 

working electrode (WE), counter electrode (CE), and reference electrode (RE). This 

configuration is known as a half-cell setup in which the potential at the WE is monitored 

and controlled precisely with respect to the RE while the current flowing between the WE 

and CE is measured [180]. Three-electrode setups have a distinct experimental advantage 

over two electrode setups: they measure only one half of the cell. That is, the potential 

changes of the working electrode are measured independent of changes that may occur at 

the counter electrode. This isolation allows for a specific reaction to be studied with 

confidence and accuracy. For this reason, 3-electrode mode is the most common setup used 

in electrochemical experimentation [181] but in this work a two-electrode configuration 

was used in order to measure the voltage of the whole cell. This setup is typically used with 
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energy storage or conversion devices such as supercapacitors, batteries, fuel cells, 

photovoltaic panels, etc. in which the potential across the complete cell is measured. This 

includes contributions from the CE/electrolyte interface and the electrolyte itself. The two-

electrode configuration can therefore be used whenever precise control of the interfacial 

potential across the WE electrochemical interface is not critical and the behavior of the 

whole cell is under investigation. 

4.2.1. Cyclic Voltammetry (CV) 

Cyclic Voltammetry (CV) is a potentiodynamic experimental method and probably the 

simplest and most versatile electroanalytical technique used by electrochemists for the 

study of electroactive species. This technique is performed by cycling a linear potential-

sweep between two defined voltages determined by the electrolyte decomposition limits. 

Often, a CV test will repetitively sweep the voltage between two limiting potentials.  A 

pair of voltage sweeps in opposite directions is called a cycle. The potential applied to the 

electrode varies linearly with time yielding a time-dependent dynamic responsive current 

(I) which is recorded by the computer software and given by the following equation [181]: 

    𝐼 =
𝑑𝑄

𝑑𝑡
= 𝐶

𝑑𝑉

𝑑𝑡
= 𝐶𝑠                            Equation 4-5 

in which C is a capacitance in Farads (F = A s/V) and dV/dt is the scan rate (s) of the linear 

voltage ramp (V/s). 

Several predetermined constant potential-sweep rates are used in the following 

experiments to evaluate the capacitive charging current passing through the material. In 

this work the rate was between 0.1 mV/s to 1mV/s. Fast scan rates often show lower 
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capacitances than slower scan rates. Slow scan rates allow slow processes to occur but take 

a lot of testing time. In the case where slow surface reactions are present, fast scans are 

over before reactions occur – all current is due to capacitance.  Faradaic current has time 

to flow when scan rates are slower, increasing total current and capacitance. The increase 

in capacitance by decreasing scan rate can be explained by kinetically slow Faradaic 

reactions on the electrode surface and by transmission line behavior caused by electrode 

porosity. An electrode surface with a high electrolyte resistance will not have time to 

respond to voltage changes during a fast scan.  In effect, the fraction of electrode surface 

accessible to the electrolyte depends on the scan rate [182]. 

Ideal double-layer capacitance through CV analysis is depicted by a constant and 

equivalent charging and discharging current (called the double layer charging current) 

resulting from a constant sweep rate and is represented by a rectangle within a voltammetry 

plot of the current with respect to applied potential illustrated in Figure 4.5. The current 

response of a SC is ideally very fast since the charge storage is electrostatic. 

Supercapacitors exhibiting double-layer capacitance approach ideality with a constant 

current measured through a majority of the charging process, deviating slightly from this 

relation due to diffusion resistances in the initial charging or discharging process of the 

double-layer for the respective voltage limits. Other materials may not exhibit constant 

capacitance as a result of material resistances or may display potential specific Faradaic 

reactions depicted by peaks in the response current due to reversible pseudocapacitive 

processes typically shown in metal oxides and conducting polymers. Characteristic profiles 

of these capacitive mechanisms from CV technique are also shown in Figure 4.5. 

Determining the capacitance C from CV experimental results often requires the integration 
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of the current response (by integration of a segment of the CV curve the stored charge (Q) 

can be calculated) in a cyclic voltammogram and can then be calculated by the following 

equation [182, 183]: 

                   𝐶 =
∫ 𝐼×𝑑𝑉

∆𝑉×𝑠
=

𝑄

∆𝑉
                     Equation 4-6 

 

Figure 4.5. Comparison of cyclic voltammograms of various capacitors [184]. 

Voltammetry can be also graphed as capacitance vs. voltage instead of current vs. voltage. 

Charging and discharging at higher power levels correspond to faster sweep rates. Multiple 

plots which are obtained at different sweep rates are usually displayed on the same graph 

to demonstrate the influence of power levels on the charging characteristics [185]. In ideal 
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capacitors capacitance does not depend on the scan rate. However, EDLCs are not ideal 

and higher scan rate creates lower capacitances.  

4.2.2. Galvanostatic Charge-Discharge (GCD) 

Galvanostatic Charge-Discharge (GCD) is the standard technique used to test the 

performance and cycle life of EDLCs. Galvanostatic testing applies a constant current to 

the electrochemical capacitor using a galvanostat and the resulting voltage change with 

time is measured resulting in charging of the capacitor up to a pre-set voltage. The capacitor 

is then discharged and the voltage drop with time is measured. A repetitive loop of charging 

and discharging is called a cycle. Different currents can be chosen resulting in different 

current densities that can be used to calculate specific capacitance. The charge (capacity) 

of each cycle is measured and the capacitance C, in farads (F), is calculated (Equation 4-

7). Both are plotted as a function of cycle number. This curve is called the capacity curve 

[185]. 

                  𝐶 =
𝑄

𝑉
 →

𝑑𝑉

𝑑𝑡
=

𝐼

𝐶
                        Equation 4-7 

in which V is the cell potential in volts (V), I is the cell constant current in amperes (A), 

and Q is the charge in coulombs (C) or ampere seconds (As). 

A typical constant current charge and discharge chart of an ideal supercapacitor is 

characterized by linear charging and discharging curves (a mirror image of the charging 

and discharging curves) as shown in Figure 4.6. However, a non-ideal supercapacitor or 

the one which is characterized by pseudocapacitance has non-linear charge and discharge 

curves.  
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Figure 4.6. Typical charge and discharge curves for a supercapacitor [186]. 

This technique allows for a determination of the equivalent internal series resistance by 

quantifying the drop upon discharge (𝐸𝑆𝑅 =
∆𝑉𝐼𝑅

𝐼
 [

𝑉

𝐴
= Ω]). The ESR has several 

contributions to it including the electrical resistance of the carbon electrodes, the interfacial 

resistance between the current collectors (contacts) and active electrode mass, and ionic 

resistance of the electrolyte [185, 187]. The GCD test provides information on the 

(specific) capacitance of the device (F/g), energy density (Wh/kg), power density (W/kg), 

ESR (Ohm) and the effect of current density on these characteristics. Theoretically, a 

perfect ideal capacitor would be lossless and have an ESR of zero, but unfortunately 

capacitors always have some ESR. A higher ESR leads to a large VIR at each half cycle 

which dramatically reduces power and capacity [185].  

Different constant currents can be applied but as the charge-discharge happens at constant 

current values the power increases, but the capacitance and energy density are reduced due 

to the inability of the ions to respond quickly enough to form the double layer and/or allow 

for the necessary faradaic reactions to take place.  
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From the GCD experiments also energy (E) used for charge and recovered by discharge 

can be calculated by integration of the area under the GCD charge and discharge curves 

multiplied by the constant current accordingly with equation 4-8 [185]. 

      𝐸𝑐ℎ𝑎𝑟𝑔𝑒  =  𝑉 × 𝐼 × 𝑡   [𝑉 × 𝐴 × 𝑠 = 𝐽]           Equation 4-8a 

    𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  =  𝑉 × 𝐼 × 𝑡   [𝑉 × 𝐴 × 𝑠 = 𝐽]         Equation 4-8b 

in which V is potential difference (voltage), I is a constant current value and t is time in 

seconds necessary to complete charge or discharge step.
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5. Introduction to Supercapacitive Swing Adsorption (SSA) 

 

5.1. The origins of SSA 

The original idea of adsorption and desorption of carbon dioxide was high electric field 

and high voltage application to two electrolyte-free inexpensive high surface area carbon 

(HSAC) materials. These HSAC materials are electrically conductive sorbents with large 

capacity for CO2 capture. The technique, called electric field swing adsorption (EFSA), 

would use applied high electric potentials (up to 5kV) to control the surface interaction 

between CO2 gas molecules and an electrically conducting carbon sorbent material. The 

structure of CO2 suggests that it is an electron-poor π-system, which would have an affinity 

for an electron rich π-system. It was expected that the high electric potential would change 

the electronic structure of the carbon sorbent material which would increase or decrease 

CO2 adsorption properties of this carbon depending on the used bias. Negative charges 

would increase the Lewis basicity of the sorbent surface. Moreover, the adsorptive forces 

could have partial chemisorptive character because the interactions can be understood as 

dative bonds between the Lewis basic π-electron system of the carbon and the Lewis acidic 

center of CO2. According to this model, a negative bias should favor adsorption, while 

positive bias should favor desorption. Selectivity of CO2 over N2, a major component of 

flue gas, should be high due to lack of an electron accepting center in nitrogen. 

In an attempt to test the effectiveness of an electric field on the carbon dioxide adsorption 

capacity, a custom cell was designed according to Figure 5.1, in which two carbon 

electrodes formed a parallel plate capacitor. The cell was leak-tight down to < 1x10-6 Torr. 

It was made from inert materials (stainless steel, alumina) to minimize residual absorption 
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on cell surfaces. A mount for the adsorbent was electrically isolated and capable of 

sustaining electric potentials of ±5 kV relative to ground without breakdown. 

 

Figure 5.1. Preliminary design for EFSA adsorption cell (image designed by Dr. David T. Moore 

and Nina K. Jarrah). 

Unfortunately this idea did not work and no adsorption or desorption was observed while 

applying high voltages up to 5kV probably because it was not possible to change the 

surface charge-density of the sorbent to a sufficient extent to produce a significant change 

of the CO2 adsorption properties. The experimental setup was analogous to a parallel plate 

capacitor setup in which voltage is supplied from two electrode plates with a dielectric 

medium in between. In the parallel plate capacitor model, the charge in the capacitor is 

distributed mostly on the outer surface of the electrode, rather than the inside and suggests 

that in the proposed set up only the outer surface area of the carbon electrodes was 
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effectively charged, which was a tiny fraction of the total high surface area. The calculation 

of the number of charges distributed over the outer surface area of the carbon electrode (the 

electrodes were in the form of pellets with diameter of 13 mm what gives an outer surface 

area of 530.93 mm2 (4 × 𝜋 × 𝑟2) in which r is a radius of the pellet) can show if it is 

possible that these charges can affect the CO2 sorption behavior of the carbon electrodes 

since the CO2 sorption capacity of a typical carbon sorbent is on the order of 2 mmol/g at 

298 K and 1 atm. By using equation 5-1 the capacitance C of flat, parallel plates of area A 

and separation d can be calculated: 

                                                 𝐶 =
𝑘×𝜀0×𝐴

𝑑
                        Equation 5-1 

in which k is the dielectric constant of a material between two electrodes (1.6 for carbon 

dioxide) and ε0 a permittivity of empty space (8.85× 10−12 F/m). 

𝐶 =
1.6 × (8.85 × 10−12) × (5.31 × 10−4)

0.001
= 7.52 × 10−12𝐹 [

𝐹
𝑚 × 𝑚2

𝑚
= 𝐹] 

Further, by using equation 5-2 the amount of charge that can be placed on a capacitor can 

be calculated:  

                                                                     𝑄 =  𝐶 𝑥 𝑉                           Equation 5-2 

in which Q is number of charges in Coulombs (C), C is capacitance in Farads (F), and V is 

potential difference (voltage) between two electrodes in volts (V). 

𝑄 =  7.52 × 10−12 𝐹  ×   1 𝑉 =  7.52 × 10−12 𝐶 [𝐹 × 𝑉 =
𝐶

𝑉
× 𝑉 = 𝐶] 
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Since in 1 Coulomb there are 6.24151 × 1018 electrons, in 7.52 × 10-12 Coulombs there are 

4.69 × 107 electrons. 1 mol is 6.02 × 1023 electrons so 4.69 × 107 electrons are in 7.79 × 10-

14 mmol. Thus, the ratio between the number of electrons in the capacitor material and the 

number of carbon dioxide molecules that can be adsorbed is 7.79 × 10-14 mmol electrons/g 

÷ 2 mmol CO2/g. From this calculation it can be concluded that it is highly unlikely that 

the charges can change the surface charge-density of the carbon electrode to a sufficient 

extent to affect the sorption behavior of a significant number of CO2 molecules.  

To circumvent these problems and to effectively load charges into the inner surface of the 

HSA carbon, the concept of the electric double layer capacitor (EDLC) was used. An 

EDLC (also called a supercapacitor) has much higher capacitances (on the order of several 

hundred Farads per gram electrode material) in comparison to a classical parallel plate 

capacitor. The derived gas adsorption technique was named as supercapacitive swing 

adsorption (SSA).  

5.2. The main hypotheses of SSA 

As it was described in Chapter 3 of this thesis an EDLC (also called supercapacitor) 

contains two nanoporous carbon electrodes with a separator soaked in electrolyte. When 

an EDLC is charged, an electrical double layer of charges forms at the interface between 

the electrode pore surface and an electrolyte, increasing the amount of charge that can be 

delivered to the sorbent surface This much higher capacitance is due to the high surface 

area of the carbon material which has direct contact between the charge on its pore surfaces 

and the counter ion from an electrolyte. It was expected that the presence of this electric 

double layer can change the interaction of the CO2 with the electrode, because a much 



 

80 

 

larger number of electrons were stored in the capacitor compared to the previous parallel 

plate capacitor.  Moreover, it was possible to estimate the number of these surface charges 

and hence the number of counter ions covering that surface by assuming a typical surface 

area for the capacitor material (e.g. 1000 m2 g-1), a typical operating voltage (1V), and a 

typical capacitance (100 F g-1). The calculation of the number of counter ions distributed 

over a surface area of 1000 m2 g-1 would show if it may be possible that these ions can 

affect the CO2 sorption behavior of the carbon electrodes since the CO2 sorption capacity 

of a typical carbon sorbent is on the order of 2 mmol/g at 298 K and 1 atm. By using 

equation 5-2 the amount of charge that can be placed on a capacitor can be calculated:  

𝑄 =  100 𝐹  ×   1 𝑉 =  100 𝐶 [𝐹 × 𝑉 =
𝐶

𝑉
× 𝑉 = 𝐶] 

Since in 1 Coulomb there are 6.24151 × 1018 electrons, in 100 Coulombs there are 6.24151 

× 1020 electrons. 1 mol is 6.02 × 1023 electrons so 6.24151 × 1020 electrons are in 1.03 

mmol. These electrons are balanced by the counter-cations M+, therefore there are 1.03 

mmol M+ on the pore surface per gram of the capacitor material. Thus, the ratio between 

the number of electrons in the capacitor material and the number of carbon dioxide 

molecules that can be adsorbed is 1.03 mmol M+/g÷2 mmol CO2/g. From this calculation 

it can be concluded that the ions may affect the sorption behavior of a significant number 

of CO2 molecules because their numbers are in the same order of magnitude. 

The two desirable properties of both EDLC’s (very high capacitance) and microporous 

activated carbon (high adsorption affinity for CO2), are used in the implementation of SSA 

for carbon dioxide capture. 
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Aqueous electrolyte was chosen because of its low cost and its excellent solubilizing 

properties for ions. Carbon materials are quite hydrophobic and only hydrophilic carbon 

pores should be infiltrated by the aqueous electrolyte, leaving the hydrophobic ones open 

for gas adsorption. Moreover capillary forces are only attractive when adhesion (water is 

attracted to other substances) is stronger than cohesion (water is attracted to water) and 

these forces are weaker the larger the pore size. It was assumed that the aqueous electrolyte 

would infiltrate the mesopores and interparticulate spaces of pressed carbon pellets, 

however the micropore surfaces, as the smallest in size, would be sufficiently hydrophobic 

thus the aqueous solution would be kept out by capillary forces, leaving the micropores 

free for CO2 adsorption. This means that the electrolyte and the sorbent must interpenetrate 

in a way that leaves contiguous pathways available for transport of gas molecules (through 

the open sorbent pores), electrons (through the sorbent pore walls), and ions (through pores 

filled with the electrolyte).  Furthermore, it was hypothesized that an optimum combination 

of gas sorption and ion conductivity can be achieved by a three-phase system in which 

carbon electrodes would be partially immersed into aqueous electrolyte solution, leaving 

the upper part of the electrode accessible to the adsorbate gas while the lower part can be 

infiltrated by the electrolyte. 

When charging the EDLC, small ions (e.g. Cl-, Na+) would be mobilized out of the bulk 

electrolyte and drawn into micropores, that would change the electronic structure of the 

carbon pore surface of the micropores. It is assumed that this would bring a significant 

change on the CO2 adsorption properties which was adsorbed on the micropore walls 

leading either to an enhanced or decreased adsorption of the CO2 (Figure 5.2). Size and/or 

direction of the effect would depend on electrode character (anode vs. cathode) since the 
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structures of both double layers are different. Moreover, when the EDLC would be 

discharged, the driving force would be in the opposite direction, and the ions would return 

to the electrolyte, restoring the original electronic state of the pore walls and thus the 

original adsorptivity of the sorbent material. 

 

Figure 5.2. Scheme of the hypothesized SSA mechanism. 

In SSA electrodes with high surface area (HSA), high electrical conductivity and high 

affinity for CO2 are needed. High surface area activated carbons are the predominant 

electrode material not only for SC applications but also as solid sorbents for carbon dioxide 

adsorption. For SSA application the commercially available activated HSAC (BPL carbon 

from Calgon Company) was used as the electrode material. The BPL carbon is a low cost 

mesoporous-microporous carbon activated from bituminous coal, and usually used as a 

reference material for CO2 adsorption. It has a surface area of 640 m2 g−1 (calculated from 

the BET method) and a CO2 equilibrium loading of 1.2 mol/kg at 298 K and 1 atm. The 

electrodes were prepared as pellets or as monoliths and detailed procedure of their 

preparation is given in Chapter 6 (section 6.3). An important factor for SSA is that the AC 
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materials have inherent corrosion resistance and can be used millions of cycles with little 

performance degradation. This property is well documented for applications is 

supercapacitors. [188].  

5.3. Advantages of SSA 

There are several advantages which could potentially make SSA a good candidate for 

carbon dioxide capture in coal-fired power plants: 

 Since the SSA method depends on repeated capacitive charge and discharge of SC, 

energy invested for adsorption would principally be recovered upon desorption.  

 SC requires only the physical re-arrangement of electronic and ionic charge with 

no chemical changes and can typically be cycled over a million times with little 

performance degradation, thus, the process of adsorption and desorption could be 

constantly repeated. 

 In an SSA cycle no temperature and pressure changes are required because 

adsorption and desorption would be only controlled by capacitive charge and 

discharge.  

 The operating temperature of SSA would only be limited by boiling point of the 

used electrolyte. If aqueous electrolytes are chosen the maximum operating 

temperature would be 99 °C (at 1 atm). The temperature of flue gas leaving a 

desulfurization unit is around 70 °C,  consequently SSA with aqueous electrolytes 

could be compatible with flue gas temperature conditions. 

 The parasitic load associated with SSA would likely decrease with increasing 

operating temperature since the charge-discharge energy efficiency of 
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supercapacitors increases with increasing temperature because of increasing ionic 

conductivity with increase in temperature. 

 SSA would use only inexpensive and environmentally friendly materials (NaCl and 

activated carbon). 
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6. Materials, reagents and experimental setup 

6.1. Materials and chemicals 

 Activated Carbon (Coal Based) – BPL Carbon 4x10 was obtained from Calgon 

Carbon Corporation. It was obtained in a granular form which was then powdered 

with a mortar and pestle; 

 

 Polyvinylidene fluoride (PVDF), -(C2H2F2)n-, with average Mw ~534,000 by GPC, 

in the form of powder was purchased from Sigma Aldrich; 

 

 N-Methyl-2-pyrrolidone (NMP), C5H9NO, with 99.5+% grade was purchased from 

Alfa Aeasar; 

 

 Carbon fabric, 20cm x 20cm, AvCarb © was purchased from Fuel Cell Earth; 

 

 Conductive Carbon Paint was purchased from SPI Supplies®; 

 

 Sodium Chloride (NaCl) with 99.0% grade was purchased from EMD Chemicals 

 

 15% CO2/85% N2 gas mixture - NI-CD15K (15.6% of CO2 certification, +-2% 

accuracy) was purchased from Airgas, pure CO2 (ultra-pure) was purchased from 

Airgas, pure N2 -  NI4.8T 5.0 (ultra high purity) was purchased from Praxair, pure 

He - HE4.7LS-T (ultra high purity) was purchased from Praxair 

 

6.2. Experimental setup for the SSA experiments 

To explore the effect of SSA on carbon dioxide/sorbent interactions in aqueous electrolyte 

systems, the pressure response of the gas phase above the sorbent was monitored while 

charging/discharging a supercapacitor. In this method two electrodes and the electrolyte 

were sealed in a glass pressure cell of 135 mL volume custom-made by Exeter Scientific 

Glass Company (Figure 6.1.). The cell was designed to have metallic leads to connect two 

electrodes with an external power supply and a gas inlet and outlet. The electrodes were 

placed into the cell using vacuum stable Teflon bushings (ACE Glass Company). The SSA 

cell was partially filled with a known volume (30 mL) of aqueous electrolyte solution  
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(1 M NaCl) to create separate gas and liquid phases in contact with the electrodes. The 

pressure cell was then placed inside a Julabo F25 water bath with controlled temperature 

(299.00 +/- 0.01 K) and flushed with pure CO2 or a gas mixture with  simulated flue gas 

composition (15% CO2, 85% N2) for four hours at atmospheric pressure by bubbling 

through the solution and expelling contaminants through an oil bubbler.  After 4 hours, 

sealing all valves isolates a constant amount of gas inside the cell which is left to equilibrate 

for 12 hours. Equilibration ensures that the solution is saturated with CO2 gas, and that CO2 

adsorption onto the high surface area carbon electrode is complete. Most experiments were 

carried out at room temperature (299 K) but also higher temperatures were used in some 

experiments (313 K and 328 K). The potential difference across the electrodes was 

typically cycled between +1 V and 0 V (relative to ground) with 120 min duty cycles (60 

min at +1 V and 60 min at 0 V) using a  DC power supply (Extech 382260) or a potentiostat 

(Gamry 3000). The SSA cell was connected to a high precision barometer (Paroscientific, 

Inc., Digiquartz ® Pressure Instrumentation, Model 6000-16B) which allowed measuring 

the pressure inside of the SSA cell with an ±0.08 hPa (±0.06 torr) accuracy. For the 

performance of an SSA experiment one electrode was partially submerged in an electrolyte 

(hereafter named the working electrode) and the other one was fully submerged in the 

electrolyte (the counter electrode) so it could not directly interact with the CO2 in the gas 

phase (Figure 6.2.). The partially and fully submerged electrodes served as a cathode (-) 

and an anode (+), respectively. The cell was configured with sorbent pellets in such a 

configuration (asymmetric configuration) in order to assess whether competitive 

anode/cathode effects take place. Effects at both the anode and the cathode could be 

separated by submerging one of the electrodes completely in electrolyte, and the other one 
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only half way. This way the pressure changes could be attributed to anode or cathode 

effects depending on the bias of the electrode half way submerged in the electrolyte and 

half way exposed to the gas. The pressure cell contained also a temperature probe (Rugged 

Heavy Duty Transition Joint Thermocouple TJ36 Series from Omega ®) which allowed 

measuring the temperature of the gas during the experiments with an accuracy of 0.01K. 

The whole setup was further placed in a custom made Styrofoam box to further ensure that 

there are no significant temperature changes during the experiments. For the purpose of 

experiments at higher temperatures (40 °C and 55 °C), a light bulb connected to a 

Powermite heat controller (POWERMITE™ solid-state type-600W capacity heat control) 

was placed inside the Styrofoam box. The composition of the CO2/N2 mixture during 

charge and discharge of the sorbent electrodes was measured by a Hewlett Packard 5890 

series II gas chromatograph with a thermal conductivity detector and a Carboxen ™ 1006 

plot fused silica capillary column (30m x 0.32 mm) (Supelco). 

 

Figure 6.1. Custom made glass pressure cell used for SSA experiments. 
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Figure 6.2. Schematic illustration of an SSA cell in which cathode is partially submerged in the 

electrolyte, while the anode is fully submerged. 

 

6.3. Preparation of electrodes for the SSA experiments 

To produce BPL carbon pellets (2 mm thickness and 13 mm diameter), 0.2 g BPL carbon 

was ground with a mortar and pestle and then mixed with 0.026 g of Polyvinylidene 

fluoride (PVDF, Sigma Aldrich) binder in 1.3 mL of N-Methyl-2-pyrrolidone (NMP, Alfa 

Aesar, 99.5%) solvent. The PVDF binder was used due to its non-reactivity with the 

electrolyte and chemical inertness.  Next, the solvent was removed at 120⁰C within 12 

hours and the powder was pressed in 13mm ID Pellet Die (Carver ®) at 8000 psi using an 

ICL hydraulic press (ICL ®). The pellets were glued with conducting glue (SPI ®) to a 

carbon cloth (AvCarb carbon fabric, Fuel Cell Earth) which served as the current collector. 

In order to see if the SSA effect can be scaled up monoliths with higher than the nominal 

pellet mass were prepared. The monoliths (3.7 g or 7.5 g) were prepared by casting a 
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mixture of 3.7 g BPL carbon with 0.37 g of PVDF binder in 18.5 ml of NMP solvent and 

3.7 g NaCl crystals in a 1.3 cm in diameter and 7 cm long glass tube (Exeter 

Scientific Glass Company). The role of the NaCl was to create macropores and improve 

kinetics of gas adsorption inside of the monoliths. The monoliths were then dried at 120⁰C 

for 12 hours in order to remove NMP. Then NaCl was leached out with 0.8 L of water 

within 10 hours and monoliths were dried in a vacuum oven at 100 ⁰C overnight. 

Completion of NaCl removal was checked by measuring the weight difference before and 

after the leaching process.  

6.4. Equipment used for the characterization of the prepared electrodes 

The prepared electrodes were characterized with the techniques described in Chapter 4 

before the SSA measurements. The results of this characterization can be found in 

Appendix A of this dissertation. 

All the gas/vapor sorption properties of the electrode materials were studied with an 

Autosorb-1 instrument from Quantachrome Company (Figure 6.3) using N2 adsorbate at 

77 K for measuring surface area of the electrode materials. A CO2 adsorption isotherm was 

measured in order to check the CO2 uptake (how much CO2 can be adsorbed per gram of 

material) on BPL carbon. The CO2 isotherms were measured at 4 different temperatures: 

273 K, 298 K, 323 K and 343 K. 
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Figure 6.3. A photo of the Autosorb-1 instrument at Lehigh University available in Prof. Kai 

Landskron lab. 

Scanning electron microscope was used to check surface physical morphology and 

structure of the BPL carbon electrode materials prepared for SSA experiments. The SEM 

systems employed in this work was a Hitachi 4300SE/N. Figure 6.4 shows a photo of this 

model available at Lehigh University. 

 

Figure 6.4. A photo of the Hitachi 4300SE/N microscope at Lehigh University in department of 

Materials Science and Engineering [189]. 
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Transmission electron microscope was used to examine the microstructure of the BPL 

carbon electrode materials prepared for SSA experiments. The TEM systems employed in 

this work was a JEOL JEM-2000FX with a lanthanum hexa-boride filament. Figure 6.5 

shows a photo of this model available at Lehigh University.   

 

Figure 6.5. A photo of the JEOL JEM-2000FX microscope at Lehigh University department of 

Materials Science and Engineering [189]. 

 

The electrochemical characterization of prepared electrodes was done by CV and GCD. 

All CV and GCD experiments were recorded with a Gamry Potentiostat (GAMRY 

Reference 3000), shown in Figure 6.6, in a full cell configuration and all plots were 

generated using Gamry’s Analyst software. The reference 3000 is a high-performance 

Potentiostat/Galvanostat/ZRA with a maximum current of ±3 A and a maximum voltage 
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of ± 32 volts. In addition, energy measurements were done with a Voltech PM1000+ power 

analyzer which can provide measurements of electrical power and energy with 0.1% 

accuracy. This instrument can measure power consumption from milliwatts to megawatts, 

providing accurate power and data on products ranging from the tiniest cell phone charger 

to the electric hybrid bus and has a built-in energy analyzer (watt-hour integrator) for 

measuring energy consumption over time.  

 

 

Figure 6.6. A photo of the Gamry Potentiostat/Galvanostat/ZRA model 3000 available at Lehigh 

University in Prof. Kai Landskron lab. 
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7. Results of the SSA experiments 

In an SSA experiment a known volume of gas (pure CO2 or a gas mixture which simulated 

flue gas (15% CO2, 85% N2)) was added to the cell and the pressure was recorded during 

cycles of applied bias. Pressure changes observed were interpreted as changes in moles of 

gas adsorbed or desorbed on the BPL HSAC electrodes according to the ideal gas law 

(equation 7-1):  

                                    ∆𝑃 = ∆𝑛 (
𝑅𝑇

𝑉
)             Equation 7-1 

in which ΔP is a change of the pressure (in Torr) due to adsorption or desorption of CO2, 

Δn is a change in the number of moles of CO2, R is a gas constant = 62.36 (
𝐿×𝑇𝑜𝑟𝑟

𝐾×𝑚𝑜𝑙
), T is 

the temperature in which the experiment was done (usually it was room temperature, 25 ºC 

= 298.15 K) and V is the volume of gas. 

An increase in the pressure (at constant volume and temperature) was interpreted as gas 

desorption, a pressure decrease was interpreted as gas adsorption.  

All the experiments were done in the set up described in the previous Chapter and shown 

in Figures 6.1. and 6.2.  

7.1. SSA effect during CV and GCD experiments 

The SSA method is based on repeated capacitive cycling of SC, hence during the SSA 

experiments the capacitive behavior of the system was verified by CV and GCD which 

were recorded with a Gamry Potentiostat (GAMRY Reference 3000) in a two electrode 

cell set up. The electrochemical behavior and the pressure changes were recorded 

simultaneously. As described in Chapter 4 these electrochemical methods provided the 
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specific capacitance of electrodes and confirmed that Faradaic reactions did not contribute 

significantly to the charging current over the range of potentials used during gas sorption 

experiments.  

Carbon dioxide capture requires more energy efficient gas separation technologies than the 

ones which are available at this time. Thus it was important to check how much energy is 

used during the charge step and how much can be recovered during the discharge step of 

designed SC since the SSA method relies only on repeated capacitive cycling. The GCD 

experiments allowed us to calculate the energy used for charge and recovered during 

discharge by the integration of the area under the GCD charge and discharge curves 

multiplied by the constant current used accordingly to equation 4-8a,b. 

Both the CV and GCD experiments confirmed the capacitive behavior of the system. The 

half-submerged electrode was working as a cathode and the fully submerged in 1M NaCl 

electrolyte electrode as an anode to separate effects at both the anode and the cathode as 

was described in the experimental setup (Chapter 6). Both electrodes had 3.7 g mass and a 

1V potential difference was used. In these experiments a mixture composed of 15% CO2 

and 85% N2 was used as a gas phase. This mixture corresponds to a coal-fired power plant 

flue gas after water, NOx and SOx removal.  

During the CV and GCD characterization pressure changes were measured concurrently in 

order to see if charging and discharging of a supercapacitor causes adsorption. The pressure 

changes monitored during these experiments showed pressure decrease during charging 

and increase by about the same value during discharging (Figure 7.1 and 7.3) and the 

magnitude of the effect depended on a scan rate (during CV) or constant current value 

(during GCD) as well as the capacitance of the prepared SC.  



 

95 

 

 

a) 

 

b) 

0 40 80 120 160 200 240 280

823

824

825

826

827

828

829

830

831

 

 

Charge step in CV

Discharge step in CV

P
re

s
s
u

re
 [
to

rr
]

Time [min]

shortening 

of the circuit

0 2 4 6 8 10 12 14 16 18 20
816

818

820

822

824

826

828

 

 

Charge step in CV

Discharge step in CV

P
re

s
s
u

re
 [
to

rr
]

Time [hours]

shortening 

of the circuit



 

96 

 

0 2 4 6 8 10 12 14 16 18 20 22 24
805

810

815

820

825

830

 

 

Charge step in CV

Discharge step in CV

P
re

s
s
u

re
 [

to
rr

]

Time [hours]
 

c) 

Figure 7.1. Pressure changes observed during CV experiments at different scan rates a) 1 mV/s, 

b) 0.2 mV/s, c) 0.05 mV/s for 3.7 g BPL carbon monoliths in asymmetric configurations with 

electrode half way submerged working as cathode, 15% CO2/85% N2 gas mixture (red – charge 

step, green –discharge step). 

 

For CV experiments pressure changes of approximately 3 Torr, 9 Torr, and 17 Torr were 

observed for scan rates at 1 mV/s, 0.2 mV/s, and 0.05 mV/s respectively (C = 12 F, 36 F 

and 59 F respectively) (Figure 6.1). During the CV experiments the pressure minimum was 

not at the maximum voltage and this delay was decreasing with decreasing scan rate and 

was nearly absent when the scan rate was 0.05 mV/s. This phenomenon is due to the 

different kinetics associated with charging for the different scan rates. For very low scan 

rates, the capacitance values are higher because the ions have a much longer time to 

penetrate and reside in all the available electrode pores and form electric double layers, 

which are needed to generate higher capacitance. At 1 mV/s the capacitance was 13 F, for 
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0.2 mV/s the capacitance was already 36 F and at 0.05 mV/s it reached 59 F. It can be seen 

from CV curves (Figure 7.2) for these three scan rates that the current increases with the 

scan rate. Furthermore, as the scan rate decreases, the voltammogram’s ‘window’ tends to 

tilt toward the vertical axis, thereby becoming a quasi-rectangle. At higher scan rates 

transport of ions from the electrolyte to the electrode is limited. Thus, a smaller capacitance 

is produced. The monoliths used for this experiment were 1 cm thick thus it is better to use 

a lower scan rate to overcome diffusion limitations of the ions into inner deep gaps and 

pores of HSAC electrode. 
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Figure 7.2. CV curves for the 3.7 g BPL carbon monoliths in asymmetric configurations with 

electrode half way submerged working as cathode at three different scan rates from 0V to 1V 

potential range. 
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From the CV experiments it can be observed that the higher the capacitance of the system, 

the more the pressure changes what is expected because the hypothesis was that adsorption 

is a function of the capacitance.  

For the GCD experiments two constant current values were chosen, 10 mA and 2 mA and 

the observed pressure changes were 9 Torr and 16 Torr respectively (C = 39 F and 59 F 

respectively) (Figure 7.3). In this case there was no delay for pressure changes as there was 

during the CV experiments. In CV the potential is ramped at a constant scan rate and the 

resulting current is being measured. In GCD a constant current is held until a set voltage is 

reached, making time a dependent variable. At the chosen scan rates and constant currents 

for the CV and GCD respectively, the GCD experiments take much longer than the CV 

experiments, hence, the carbon dioxide has a much longer time available for adsorption 

and desorption. 
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b) 

Figure 7.3. Pressure changes observed during GCD experiments at different constant current a) 

10 mA, b) 2 mA for 3.7 g BPL carbon monoliths in asymmetric configurations with electrode half 

way submerged working as cathode, 15% CO2/85% N2 gas mixture (red – charge step, green –

discharge step). 

 

To see if SSA has high energy efficiency, the charge-discharge energy efficiency was 

calculated according to equations 4.8a and 4.8b and was equal to 42% at 10 mA constant 

current and 74% at 2 mA constant current (see calculations in an appendix B). The energy 

efficiency of a supercapacitor is a matter of the charge-discharge rate and the ESR of the 

capacitor [189]. The smaller the ESR of a capacitor the faster it can be charged at constant 

efficiency. The slower the charge rate the higher the efficiency at constant ESR. The ESR 

has been measured from the current resistance (IR) drop and was equal to 17.7 Ohms. As 

it was discussed in Chapter 4, theoretically, a perfect capacitor would be lossless and have 

an ESR of zero. Real capacitors suffer from power loss during charge and discharge.  This 
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loss is caused by resistances in the electrical contacts, the electrodes, and the electrolyte.  In 

the designed capacitor this value is higher than in commercially available capacitors, like 

Nesscap capacitors in which ESR is usually smaller than 0.5 Ω. Current commercial SCs 

can be charged and discharged with around 95% efficiency which suggests that SSA can 

be still optimized in the future.  

Next, it was important to see whether the specific interactions of CO2 with the cathode and 

anode are different, since the respective double layers are different. Here, the half-exposed 

gas electrode acted as the anode, and the fully submerged electrode acted as the cathode. 

The GCD experiment at 10 mA constant current was performed similarly as in the other 

configuration. In this case a reversible effect was observed, however, the pressure was 

increased when the electrodes were charged (Figure 7.4) which indicates that the polarity 

of the half-submerged electrode can be chosen to either adsorb or desorb CO2. When the 

gas-exposed electrode (half way submerged) is acting as a cathode in 1M NaCl (negative 

bias), the pressure decreases which indicates that the SSA effect at the cathode leads to 

increased adsorption of CO2, while when the exposed electrode is working as an anode 

(positive bias) the pressure increases indicating desorption of CO2 occurred from this 

electrode. The BPL HSAC electrode has high natural affinity for CO2 itself. The CO2 

isotherm for a small sample of the prepared electrode with 13% of PVDF binder showed a 

specific capacity of 31 cc of CO2/g of sorbent material (see Figure A2 in Appendix A). The 

specific CO2 capacity was determined by measuring the isotherm for the pressed BPL 

carbon electrode with 13% binder on the Autosorb-1 instrument at room temperature. The 

results of the anodic experiments showed that it is possible to desorb CO2 which was 

“naturally” adsorbed on the BLP carbon electrode. 
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Figure 7.4. Pressure changes observed during GCD experiments at 10 mA (C = 42 F) constant 

current for 3.7 g BPL carbon monoliths in asymmetric configurations with electrode half way 

submerged working as an anode,  15% CO2/85% N2 gas mixture (red – charge step, green –

discharge step). 

 

As can be seen from the Figure 7.4. the pressure increased almost 2 Torr during the first 

charging half-cycle while the pressure increased close to 1 Torr upon the second charging. 

This phenomenon can be explained by the fact that the adsorbed CO2 was not fully 

desorbed while switching the polarity of the working electrode. When the electrode started 

to work as an anode, the charge step speeded up desorption. The opposite effect for the 

electrode working as the anode suggests that the specific interactions of CO2 with the 

cathode and anode must be different, believably due to the different structure of the 

respective double-layers. The magnitude of the anode effect was much smaller (9 times) in 

comparison to the effect observed for the cathodic experiment.  The significance of this 



 

102 

 

asymmetry in the magnitudes may be reflective of the different molecular-level processes 

occurring at the anode and cathode, respectively.  

7.2. SSA effect at different potentials 

Previous experiments were done at 1 V potential difference using a potentiostat and 

electrochemical techniques to charge and discharge the supercapacitor. Here, the constant 

voltage power supply was used in order to see if again the same effects of pressure change 

can be observed. Four different voltage values, 0.53 V, 0.77 V, 1.02 V, and 1.21 V, were 

applied with the DC power supply and held for 1 hour after which the potential was turned 

off and the circuit was shorted. The half-submerged electrode served as the cathode. Again, 

a 15% CO2/85% N2 mixture served as a gas phase. It was observed that the size of the 

pressure changes depends on the voltage. They increased dramatically from 3 Torr at 0.53 

V to 30 Torr at 1.21 V for the first half-cycle (Figure 7.5). 
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d) 

Figure 7.5. Pressure changes at different voltages a) 0.53 V, b) 0.77 V, c) 1.02V and d) 1.22 V 

for 3.7 g BPL carbon monoliths in asymmetric configurations with electrode half way submerged 

working as cathode. 15% CO2/85% N2 gas mixture. Red curve: Electrodes are charged. Black 

curve: Electrodes are discharged (short-circuited). 

 

It was noticed in all the above experiments that the largest pressure drop was observed for 

the first charging cycle for the first 1 h adsorption half-cycle, however upon discharging 

the pressure did not increase by the same value.  All second cycles exhibited a declining 

trend in the pressure change, however, after the final cycle there was a long, slow recovery 

of the pressure to its initial value.  This suggested that the declining SSA effect from cycle-

to-cycle might be due to incomplete discharge of the supercapacitor resulted from slow 

desorption kinetics. That is why, in order to fully discharge the SC and completely desorb 

CO2 adsorbed on the electrode, more time is needed.  
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During these experiments the energy flow was monitored using a power analyzer (Voltech 

PM1000+) which was placed between the constant voltage power supply and the 

electrodes. The values of pressure change and energy used for the first charging are shown 

in Table 7.1. 

Table 7.1. Adsorption of CO2 depending on voltage value. 

Voltage 
[V] 

Pressure 
change 
[Torr] 

Energy 
used for 
charging 
[mWh] 

P/V2 
[Torr/V2]

P/E 
[Torr/mWh] 

V2 

[mWh/V2] 

0.53 V 3.2 torr 3.6 mWh 11.4 0.87 12.9 

0.77 V 8.9 torr 7.2 mWh 12.2 1.22 12.2 

1.02 V 19.4 torr 13.4 mWh 18.6 1.44 12.9 

1.21 V 30.4 torr 17.7 mWh 20.7 1.71 12.1 

 

Energy (E) which is stored in a SC can be calculated by equation 7-2: 

                                             𝐸 =
1

2
𝐶 × 𝑉2                                    Equation 7-2 

in which C is a capacitance of SC and V is the applied voltage. 

The calculated values of ΔP/V2 and ΔP/E are increasing with increased voltage value while 

E/V2 is almost constant for all the voltages. The capacitive charging behavior of the system 

can be seen from the fact that E/V2 is nearly constant. Moreover, sine ΔP/V2 and ΔP/E are 

increasing with increased voltage value, SSA can operate more energy-efficiently at higher 

voltages. Unfortunately, the limiting factor here is the voltage range imposed by the 

electrolysis of water, which thermodynamically occurs at 1.23 V at 25 °C and decreases 

with temperature. Thermodynamically oxygen evolution occurs at 1.23 V vs. standard 

hydrogen electrode (SHE), and hydrogen evolution, per definition, at 0 V vs. SHE. 
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Recently, it has been demonstrated that neutral aqueous electrolytes such as alkali sulfates 

could achieve higher voltages with symmetric carbon/carbon capacitors than generally 

obtained in acidic or basic medium. Béguin et al. demonstrated that a stability potential 

window of 2.0 V can be achieved with activated carbon in 0.5 mol L-1 Na2SO4 [191]. The 

electrochemical analysis of seaweed-derived carbons in 0.5 mol L-1 Na2SO4, demonstrated 

that the nature of the electrode material and the electrolyte pH influence both the 

capacitance values and the stability potential window; due to the presence of nitrogenated 

functionalities in these carbons, the potential window reached 2.4 V in 0.5 mol L-1 Na2SO4 

[192]. Qu et al. [193] reported that the migration rate of hydrated ions in the bulk electrolyte 

and within the inner pores of activated carbon increase in the order of Li+ < Na+ < K+, and 

that the rate performance improves in the order Li2SO4 < Na2SO4 < K2SO4. The highest 

operating voltage of 2.2 V with an exceptional cycling stability has been demonstrated in 

Li2SO4; Fic et al. have suggested that the stronger hydration of Li+ compared to Na+ and 

K+ ions is responsible for larger voltage in Li2SO4 solution[194]. Also, the use of equation 

7-3 to calculate the mass ratio of two electrodes in a hybrid supercapacitor (a hybrid 

capacitor is the combination of two electrodes, one that stores charge electrostatically, and 

the other storing charge faradaically) allows the operating voltage range to be extended up 

to 2 V in neutral media [195] 

𝑚+

𝑚−
=

𝐶−∆𝐸−

𝐶+∆𝐸+
                                                       Equation 7-3 

in which m+ and m- are the masses of positive and negative electrode, respectively and C+ 

and C- the specific capacitance for the positive and negative electrodes, respectively; ∆E- 

and ∆E+ are the potential difference from the open circuit voltage (OCV) to the negative 
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and positive potential stability limits, respectively. This equation is widely used in 

literature for assembling hybrid supercapacitors with electrodes having different values of 

specific capacitance (C-≠C+) and/or operating at different voltage (ΔE-≠ΔE+) [196]. 

However, this equation may also be applied to non-hybrid systems to increase the operating 

voltage of the supercapacitors. Chen et al. reported the effect of mass-balancing on the 

performance of SCs using the same activated carbon in both electrodes in neutral 

electrolyte [197]. These findings have opened a new door for the aqueous electrolytes and 

show that SSA might operate at higher voltages boosting the CO2 adsorption capacity. 

7.3. Reproducibility of the SSA effect 

In order to probe the repeatability of the SSA experiments three subsequent repetitions of 

the same experiment were conducted. The gas-exposed electrode was working as the 

cathode in contact with the 85%N2/15%CO2
 gas mixture, and the bias was cycled with the 

Extech DC power supply from +1 V to 0V with a 2-hour duty cycle.   

 

Figure 7.6. Pressure changes during subsequent repetitions of the same experiment for 3.7 g BPL 

carbon monoliths in asymmetric configurations with electrode half way submerged working as 

cathode. 15% CO2/85% N2 gas mixture. Red curve: Electrodes are charged. Black curve: 

Electrodes are discharged (short-circuited). 

Pressure drop   Pressure drop  Pressure drop 

Cycle 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

p 17.6 10.9 8.5 7.3 6.7 11.3 7.9 7.6 7.1 7.0 11.1 7.6 7.1 6.5 6.3 
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The results, shown in Figure 7.6, reveal that the SSA effect is reproducible from cycle-to-

cycle, and from day-to-day. As previously, in all experiments the largest pressure drop was 

observed for the first charging cycle (17.6 Torr) (the first 1 h adsorption half-cycle). 

However upon discharging the pressure only increased by 9.5 torr. All further cycles 

exhibited a gradually declining trend in the pressure change between 10.9 and 6.7 Torr 

(first experiment in Figure 7.6). This effect was attributed to the incomplete desorption 

since the pressure did not go back to the original value within one hour desorption half-

cycle.  

In addition, after the final fifth cycle, there was a long, slow recovery of the pressure to its 

initial value suggesting that the declining SSA effect from cycle-to-cycle is likely due to 

incomplete discharge of the supercapacitor and slower kinetics of the discharge step. All 

further repetitions of this experiment over several days exhibited qualitatively similar 

trends. On the average of all the cycles the pressure change was ca. 7 Torr. 

7.4. SSA effect vs. reverse-charging of the working electrode 

In Section 7.1 it was already shown that the reverse-charging of the half-submerged 

working electrode can either actively adsorb CO2 (cathode) or desorb CO2 (anode). In those 

experiments a potentiostat was used to charge and discharge the supercapacitor with the 

galvanostatic charge-discharge method. Here, a similar experiment was done but a constant 

voltage power supply was used in order to see if again the same effects of pressure change 

can be observed while the working electrode has different polarity. Figure 7.7 shows the 

pressure changes when the working electrode was used as the anode in contact with the 

85%N2/15%CO2
 gas mixture, and a 1 V potential was applied. The duration of a charge-

half-cycle and discharge-half-cycle was 1h, respectively.  
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Figure 7.7. Pressure changes observed for 3.7 g BPL carbon monoliths in asymmetric 

configurations with electrode half way submerged working as an anode while charging with the 

constant voltage power supply,  15% CO2/85% N2 gas mixture (red – charge step, black –

discharge step). 

 

As can be seen from the Figure 7.7 the pressure also increased about 1 Torr when a bias 

was applied and decreased by about the same value when the bias was removed. The 

desorption of CO2 from the biased anode is smaller than the adsorption of CO2 on the 

biased cathode. The desorption can be explained by the fact that the BPL HSAC electrodes 

have their own “native” affinity for CO2 binding. 

The results discussed above showed that SSA can be used to actively adsorb or desorb CO2 

simply by directly switching the polarity of the bias applied to the half-submerged electrode 

from cathodic (adsorption) to anodic (desorption) configuration. Results from this type of 

experiment are shown in Figure 7.8. 
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Figure 7.8. Pressure changes observed during cathodic-anodic half cycles for 3.7 g BPL carbon 

monoliths in asymmetric configurations with electrode half way submerged working alternately 

as a cathode and as an anode while using the constant voltage power supply, 15% CO2/85% N2 

gas mixture (red – cathodic step, black – anodic step). 

 

In this case during the first half-cycle (adsorption) the half-submerged electrode was 

working as a cathode and a +1 V potential was applied to the fully submerged electrode. 

Then the leads were reversed for the desorption step in which the working electrode served 

as the anode. It can be seen from Figure 7.8 that reversible pressure changes of around 11 

Torr were possible for all five adsorption-desorption cycles. What is also important, 

reversing the polarity of the applied bias during desorption cycles leads to full cycle-to-

cycle reversibility with equal full-range adsorption and desorption magnitudes.   
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7.5. The influence of electrode infiltration on the SSA effect  

It was observed that the efficacy of the 3.7 g BPL electrodes increased with continued 

usage. The pressure response during subsequent, repeated cathodic cycles increased from 

the average of 7 Torr to 16 Torr (compare Figure 7.6 with Figure 7.9). 

206 208 210 212 214 216 218

818

820

822

824

826

828

830

832

834

836

838

840

842

844

 

 

P
re

s
s
u

re
 [
to

rr
]

Time [hours]

 

Figure 7.9. Pressure changes observed for 3.7 g BPL carbon monoliths after being used for a 

longer time in asymmetric configurations with electrode half way submerged working as a 

cathode while charging with the constant voltage power supply,  15% CO2/85% N2 gas mixture 

(red – charge step, black –discharge step). 

From Figure 7.9 it can be seen that the same setup of electrodes was in use for almost 9 

days before the experiment was started (206h). In the context of the results from Fig. 7.6 

the above results (Fig. 7.9) showed that the SSA effect is not only reproducible from cycle 

to cycle but also can get bigger after long, subsequent charging and discharging. This 

increase may be attributed to an increase in the degree of infiltration of electrodes upon 

repeated charging and discharging and hence increase in capacitance of the carbon 

electrodes. The same effect was also observed in experiments with the larger (7.5 g) 
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electrodes (7.5 g) when running cathodic GCD experiments at 2 mA constant current. The 

first experiment was done two days after the electrodes were submerged in the electrolyte, 

and the next one was done 21 days after the first experiment (Figure 7.10). It must be also 

said that between these days other experiments were done (such as charge-discharge with 

the power supply) and the system was in use all the time. 
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a)                                                                                         b) 

Figure 7.10. Comparison of pressure changes during GCD experiment at 2 mA constant current 

within 0 V to 1 V potential range done at different times: a) 2nd day of experimental setup, b) 23rd 

day of experimental setup for 7.5 g BPL carbon monoliths in asymmetric configurations with 

electrode half way submerged working as cathode, 15% CO2/85% N2 gas mixture (red – charge 

step, blue –discharge step). 

From the above figure it is clear that the pressure change increased almost twice (from an 

average of 12 Torr to an average of 22 Torr) with time. Electrode capacitance was also 
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found to depend on time that electrodes were soaked in the electrolyte (from 44 ̅̅ ̅̅  F to 102 

F). 

7.6. Scalability of the SSA effect  

In order to see if it is possible to scale up the SSA effect, experiments with three different 

masses (0.2 g, 3.7 g and 7.5 g) of BPL carbon electrodes were done at the same conditions 

(electrode half- way submerged served as the cathode, 15% CO2/85% N2 gas mixture). The 

constant voltage power supply was used to charge electrodes at 1 V with a 2 hour duty 

cycle. It was observed that the SSA effect scales up proportionally with the mass of the 

sorbent electrodes (Figure 7.11). 
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b) 

 

c) 

Figure 7.11. Pressure changes for three different masses of electrodes: a) 0.2 g (𝛥𝑃̅̅ ̅̅  = 0.4 Torr), 

b) 3.7 g and (𝛥𝑃̅̅ ̅̅  = 7 Torr) c) 7.5 g. (𝛥𝑃̅̅ ̅̅  = 14 Torr) in asymmetric configurations with electrode 

half way submerged working as a cathode. 15% CO2/85% N2 gas mixture. Red curve: Electrodes 

are charged at 1V. Black curve: Electrodes are discharged (short-circuited). For a) baseline was 

subtracted for clarity. 
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For the largest electrodes the first 1 hour adsorption half-cycle showed again the largest 

pressure drop but upon discharging the pressure did not increase to its original value. All 

further cycles exhibited a gradually declining trend in the pressure change and after the last 

cycle the pressure recovered to its initial value but at a very slow rate. The average pressure 

drop during the charge steps was 7 Torr for the 3.7 g electrodes and 14 Torr for the 7.5 g 

electrodes. 

From Figure 7.7 it can be observed that increasing the mass of the electrode by a factor of 

18 (from 0.2 g to 3.7 g) increased the SSA effect 18 times (from 0.4 Torr to 7 Torr). 

Similarly, increasing the mass of the electrode by the factor 2 (from 3.7 g to 7.5 g), 

increased the SSA effect by 2 (from 7 Torr to 14 Torr). Since gas separations are often 

done at large scale, the possibility of the scaling of the SSA effect with the mass of 

electrodes is an important fact. 

7.7. The gas selectivity of the SSA effect 

In order to see if SSA can actively separate CO2 from a CO2/N2 mixture, the gas phase 

composition was investigated upon adsorption and desorption by gas chromatography 

(GC). At the end of each charge and discharge half cycle 10 µL aliquots of gas were 

sampled with a microliter syringe and the composition of the gas was analyzed by the GC. 

For the smallest size electrode pairs (0.2 g) for which the 0.4 Torr pressure change was 

observed (Figure 7.11a) there was no change in composition observed with GC what can 

be explain by the fact that the expected composition change was only 0.06% (calculations 

in appendix B) which is below the detection limits of the GC technique. In order to monitor 

the composition of CO2 during charge and discharge the pressure change needed to be at 
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least 17% larger to see at least 1% change (
0.40 𝑇𝑜𝑟𝑟

0.06%
= 6.67 𝑇𝑜𝑟𝑟). For this reason larger 

monolithic pieces of BPL carbon where prepared (3.7 g and 7.5 g) for which 7 Torr and 14 

Torr pressure changes were observed (Figure 7.11b,c) while charging with the power 

supply. The GC measurements showed that it is possible to separate CO2 from N2 in the 

mixture. For the 3.7 g monoliths it was observed that approximately 7 Torr pressure change 

corresponds to 1% change in CO2 content while for 7.5 g electrodes 14 Torr pressure 

change would give an average of 2% change (Table 7.2). It is also important to add here 

that after the final cycle the pressure and, hence, composition of CO2 went back to the same 

value as before the experiment. 

Table 7.2. Change in gas composition during SSA experiment with 3.7 g and 7.5 g electrodes. 

Mass of 

electrode 

3.7 g  7.5 g  

Cycle number Pressure 

change [torr] 

Change in 

composition 

of CO2 [%] 

Pressure 

change [torr] 

Change in 

composition 

of CO2 [%] 

1 charge step -11 .3 -2.1% -14.91 -2.7% 

discharge 

step 

+8.0 +1.1% +12.42 +1.7% 

2 charge step -7.9 -1.1% -14.86 -1.9% 

discharge 

step 

+7.8 +1.0% +13.93 +1.9% 

3 charge step -7.6 -1.1% -15.27 -2.1% 

discharge 

step 

+7.2 +1.1% +14.88 +1.8% 

4 charge step -7.1 -1.4% -15.48 -2.2% 

discharge 

step 

+7.0 +1.0% +15.40 +2.3% 

5 charge step -7.0 -1.4% -15.84 -2.5% 

discharge 

step 

+6.9 +1.3% +16.05 +2.8% 
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To measure the gas separation even more precisely, electrodes with the highest mass (7.5 

g) were used and a GCD experiment was performed at 2 mA constant current within 0 V 

to 1.2 V potential range with the same gas mixture. Reversible pressure changes ranging 

from 47 Torr (first cycle) to 39 Torr (last cycle) were measured (Figure 7.12). 
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Figure 7.12.  Pressure changes during GCD (cathodic) at 2mA constant current within 0V to 

1.20V potential range for 7.5 g BPL carbon electrodes in asymmetric configurations with 

electrode half way submerged working as a cathode. 15% CO2/85% N2 gas mixture. (red – 

charge step, blue –discharge step). 

 

Table 7.3 shows the results of the GC measurements. At the end of the adsorption 

(charging) cycles the percentage of CO2 in the gas mixture was reduced by values between 

6.5% and 5.9%.  During desorption (discharging) cycles, the CO2 content increased by 

approximately the same extent (6.1 to 5.4%). It was expected from previous GC 

measurements that a 42 Torr pressure change should give 6% change in CO2 since 7 Torr 

and 14 Torr gave 1% and 2 % respectively (see calculations in Appendix B) and exactly 
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this value was observed. The SSA effect of such a system was determined to be 6%, which 

can be defined as 6% enhancement of the sorption capacity in the charged state versus the 

uncharged state. These results further confirmed actual gas separation of CO2 and N2 from 

the mixture and showed that the effect is selective for CO2 over N2. There is good 

agreement between reversibly adsorbed CO2 calculated from the measured composition 

and the measured pressure changes what further confirms that SSA is highly selective for 

CO2 over N2. 

Table 7.3. Change in gas composition during SSA experiment with 7.5 g electrodes. Cycle 3 and 

5 ended during the night and GC experiments were not performed for lab safety reasons. 

 

Experiments with pure N2 were carried on in exactly the same way as with the gas mixture 

or pure CO2. Monoliths with a mass of 7.5 g were used to ensure the maximum sensitivity 

of the experiment. Figure 7.13 shows the pressure response upon charging and discharging 

the BPL carbon monoliths. In this experiment the half-submerged electrode was used as 

the cathode. Before the experiment, electrodes were cleaned and outgassed in a vacuum 

oven at 100 ºC for 12 hours to make sure that no air was adsorbed. Further, electrodes were 

closed in the SSA cell and flushed for 4 hours with helium gas which does not adsorb on 

Cycle number Pressure change [torr] Change in composition of CO2 

[%] 

1 charge step -47.7 -6.5%  

discharge step +46.1 +6.1%  

2 charge step -42.6 -6.0%  

discharge step +42.0 +5.9%  

3 charge step -40.3 Not measured 

discharge step +40.3 Not measured 

4 charge step -39.1 -5.5%  

discharge step +38.9 +5.4%  

5 charge step -38.4 Not measured 

discharge step +38.0 Not measured 
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the carbon surfaces. To make sure that the electrolyte does not contain any air, a fresh 1 M 

NaCl aqueous solution was prepared under vacuum conditions according to the following 

steps: first 100 mL of distilled water was redistilled under helium. Second, 5.8 g of NaCl 

was placed in a round bottom 2-neck flask. Next, the NaCl was outgassed at 100℃ under 

vacuum to remove any air or moisture. Then, 100 mL of redistilled water was moved with 

a syringe into the flask containing NaCl crystals to make 1 M aqueous NaCl electrolyte. 

This electrolyte was further moved with a syringe to the SSA cell.   
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Figure 7.13. Pressure changes during 1 hour cathodic half cycles in pure N2 .Red curve: 

Electrodes are charged at 1V. Black curve: Electrodes are discharged (short-circuited).  

 

From Figure 7.13 it can be observed that the pressure is going slightly up while charging 

the electrodes what suggests that N2 is actually slightly repelled from the BPL carbon 

electrode what further confirmed selectivity of CO2 over N2.  
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Next, an experiment with helium was performed as a control experiment with the purpose 

to differentiate between gas adsorption effects and other effects that may influence the gas 

pressure during the charging and discharging (Figure 7.14). Helium can be assumed to not 

adsorb significantly on the carbon surfaces and therefore sorption effects can be 

distinguished from other effects. Before this experiment the electrodes were also cleaned 

and outgassed for 12 hours and then the system was purged with He for 4 hours. The 

electrolyte was prepared under vacuum conditions. It was observed that there were 

practically no pressure changes upon the applied bias for the helium control experiment 

which further confirmed that  the observed SSA effect is specific to CO2, indicating a high 

selectivity for CO2 over N2 and also He. 
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Figure 7.14. Pressure changes during 1 hour cathodic half cycles in pure He .Red curve: 

Electrodes are charged at 1V. Black curve: Electrodes are discharged (short-circuited).  
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7.8. Dependence of the SSA effect on CO2 partial pressure 

According to Dalton's Law of Partial Pressures (1) each gas in a mixture of gases exerts a 

pressure, known as its partial pressure that is equal to the pressure the gas would exert if it 

were the only gas present; (2) the total pressure of the mixture is the sum of the partial 

pressures of all the gases present. Flue gases and engine exhaust gases have low CO2 partial 

pressures with CO2 concentrations of typically 15 vol%. As a consequence, it was 

important to investigate the dependence of the SSA effect on the CO2 partial pressure. 

Experiments with pure CO2 and with a gas mixture of 15% CO2/85% N2 were done with 

the cathode half-way exposed to the gas for 0.2 g BPL HSAC electrodes (compare Figure 

7.13a with 7.11a). For both the pure CO2 and the gas mixture, it was possible to see a clear 

pressure drop of 1.5 Torr and 0.4 Torr respectively when the bias was applied. What is 

more, even though the partial pressure of CO2 in a gas mixture was 6.7 times smaller, the 

corresponding pressure response decreased by a factor of only 3.7. The same comparison 

was also made for larger monoliths (compare Figure 7.11c with 7.13b). These experiments 

were carried out as previously described: 7.5 g BPL carbon electrodes were used, the gas-

exposed electrode was biased as the cathode and the bias was cycled from +1V to 0V with 

two hour duty cycles with the constant current power supply. Again experiments with pure 

CO2 resulted in an approximate four-fold increase (48 Torr) in the effect compared to a 

15%/85% CO2/N2 mixture (14 Torr) but the CO2 partial pressure increased by a factor of 

6.7. From these results it can be concluded that there is a less than proportional dependence 

of the effect on CO2 partial pressure. 
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b) 

Figure 7.15. Pressure changes during 1 hour cathodic half cycles in pure CO2 for a) 0.2 g BPL 

HSAC pellets and b) 7.5 g BPL HSAC monoliths in asymmetric configurations with electrode half 

way submerged working as a cathode. Red curve: Electrodes are charged at 1V. Black curve: 

Electrodes are discharged (short-circuited). For a) baseline was subtracted for clarity. 
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7.9. SSA effect in thermodynamic equilibrium 

From all of the above figures illustrating the pressure changes it can be observed that after 

one hour for each half cycle the pressure is not equilibrated. Therefore the size of the SSA 

effect for the 15% CO2/85% N2 gas mixture was measured in thermodynamic equilibrium 

(at 1.0 V and 1.2 V for the 7.5 g monoliths) to find out how much time is needed to fully 

adsorb and desorb CO2 upon charging and discharging of the carbon supercapacitor. Here 

the time for a single adsorption half-cycle was extended until no further pressure decrease 

was observed. The pressure changes were confirmed in two independent experiments. As 

can be seen from Figure 7.16 the SSA effect saturates at a pressure drop of 54 Torr at 1V 

and at 74 Torr at 1.2V. 
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Figure 7.16. Pressure changes in thermodynamic equilibrium for SSA at 1.0 V and 1.2 V for 7.5 

g BPL carbon monoliths in asymmetric configuration with 15% CO2 and 85% N2 gas mixture. 

Red curve: Bias ON. Black curve: Bias OFF (short-circuited). 
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The gas composition was measured at the end of each half cycle. The gas composition 

change for the experiment at 1.0 V was 7.1% and for the 1.2 V experiment the change was 

10.1% what means that at 1.2V about two thirds of the CO2 has been removed from the gas 

mixture (0.1 atm out of 0.15 atm CO2). As can be seen from Figure 7.16 discharge of the 

electrodes led to full recovery of the pressure which was also confirmed by the GC 

measurements. The equilibrium pressure changes showed that SSA can be fully reversible 

and CO2 can be successfully adsorbed and desorbed. The same experiment was also done 

with pure CO2 and the results are shown in Figure 7.17. For pure CO2 the effect was 97 

Torr at 1 V and 109 Torr at 1.2 V that further confirmed the less than proportional 

relationship between the pressure changes and the CO2 partial pressure. What is more, the 

less than proportional relationship  is even more pronounced in equilibrium since at 

thermodynamic equilibrium the pressure changes only double when the CO2 partial 

pressure increases from ca. 0.15 atm to ca. 1. 
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Figure 7.17. Pressure changes in thermodynamic equilibrium for SSA at 1.0 V and 1.2 V for 7.5 

g BPL carbon monoliths in asymmetric configuration with pure CO2. Red curve: Bias ON. Black 

curve: Bias OFF (short-circuited). 
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Since the volume of the gas sorption cell and the mass of the electrodes are known the 

magnitude of the effect in mol of gas per kilogram of carbon in equilibrium can be 

calculated. From the pressure change in Figure 6.15 it can be calculated that at 1.2V 0.05 

mol CO2/kg of sorbent material can be reversibly adsorbed at 299 K and a CO2 partial 

pressure of 0.15 atm (see calculations in an appendix). If this value would be compared 

with a native sorption capacity of BPL carbon which is 0.24 mol CO2/kg of sorbent at the 

same conditions this is relatively little but it is important to say that the native loading for 

BPL carbon is for a completely dry CO2 while in all SSA experiments the CO2/N2 gas 

mixture is saturated with water vapor from aqueous electrolyte. 

7.10. SSA effect at different temperatures. 

In post-combustion processes, the flue gas temperature is typically within the range of 50 

to 120°C [198]. Thus, SSA experiments were done at three different temperatures, 26 °C, 

40 °C and 55 °C in order to check if the SSA effect depends on temperature. Higher 

temperatures could not be applied due to maximum operating temperature of the pressure 

sensor (60 °C). These experiments were done with the 15%CO2/85%N2 gas mixture in 

thermodynamic equilibrium. It was observed that the effect of adsorption/desorption of 

CO2 is only weakly dependent on the temperature (Figure 7.18). However, it was observed 

that the higher the temperature, the more time is needed for the system to reach 

thermodynamic equilibrium. This observation was surprising because usually equilibrium 

is established faster at higher temperatures due to higher ion mobility. Surprising was also 

that the SSA effect stays the same with increasing temperature. In the activated carbon 

based supercapacitors an increase in the operating temperature causes an increase in the 

overall capacitance [199,200].In SSA an increase in capacitance with temperature was 
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observed. At 26 °C the capacitance was 102 F while at 40 °C the capacitance was already 

172 F (from CCD at 2 mA constant current and 0 V to 1V potential range). It was observed 

previously that the higher the capacitance of the system, the higher the SSA effect. The 

higher capacitance requires a longer time until the equilibrium is reached because there is 

greater degree of electrode infiltration what leads to an increase in the SSA effect.  On the 

other hand, the CO2 adsorption capacity of solid adsorbents decreases with temperature 

(see Appendix A). The solubility of CO2 in water decreases with an increase in 

temperature. It can be concluded that the two effects compensate, that is why the SSA 

effect did not increase with increased temperature. 
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Figure 7.18. Pressure changes at different temperatures at 1.0 V (first cycle) and 1.2 V (second 

cycle) at 26 °C (green), 40 °C (purple), and 55 °C (blue)  for 7.5 g BPL carbon monoliths in 

asymmetric configuration with 15% CO2 and 85% N2 gas mixture. 
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At 1.02 V pressure changes of 55, 50, and 55 Torr were observed at temperatures of 26, 

40, and 55 °C respectively. At 1.2 V the effect was increased to 67 Torr at 26 °C. At 40 

and 55 C° it was observed that the pressure first decreased and then slowly increased and 

this phenomenon was especially seen at 55 °C. The reason for this effect could be in 

overcoming the overvoltage that prevent electrolysis at 1.23 V. Overvoltage is the extra 

voltage that must be applied to a reaction to occur at the rate at which it would occur in an 

ideal system. This overvoltage must be applied due to the resistance inside the electrolyte, 

electrode, and also the reaction system itself. Under ideal conditions, a potential of 1.23 

volts is large enough to oxidize water to O2 gas. Under real conditions, however, it can take 

a much larger voltage to initiate this reaction. High temperature can cause overvoltage to 

be reduced. At the end of the experiment at 55 °C it can be observed that the pressure is 

higher than in the beginning of the experiment that further suggests the electrolysis of 

solvent and evolution of gas.    

7.11. Possible mechanisms for SSA  

Since experiments without any electrolyte did not show any pressure changes at voltages 

up to 5 kV it is obvious that the electric double layer is essential for the SSA effect. The 

question is how this SSA effect occurs. Principally, the interactions between the electrode 

and the CO2 gas could happen via one of the following molecular mechanisms: 

a) adsorption of CO2 at the gas-solid interface, 

b) adsorption of CO2 at the liquid-solid interface. 

Physisorption at a gas-solid interface is kinetically very fast and typically complete within 

seconds to minutes, however the SSA effect requires several hours to fully adsorb or desorb 
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CO2 (see Figure 7.16) what suggests that the adsorption does not take place at the gas-solid 

interface but rather within the electrical double layer at the liquid-solid interface which is 

consistent with slow adsorption kinetics. During all the SSA experiments asymmetry 

between the interactions of CO2 with the partially and fully submerged electrode in the cell 

was observed. The enhanced adsorption of CO2 during cathodic cycles and desorption 

during anodic cycles could be observed which indicates that the specific interactions of 

CO2 with the cathode and the anode must be different since structures of the respective 

double layers are different. Calculations in Chapter 5 showed that it is possible that the 

number of delocalized π-electrons in the carbon upon charge and discharge may affect the 

sorption behavior of a significant number of CO2 molecules. 

In the SSA experiments it was also observed that with time the capacitances become larger 

and hence, the SSA effect becomes also larger (Figure 7.10). It can be concluded that the 

area of the wetted interface has likely increased. In addition, electrowetting could play a 

significant role. Electrowetting is the modification of the wetting properties of a surface 

(which is typically hydrophobic) with an applied electric bias. As it was said before 

nanoporous carbons are relatively hydrophobic materials because of their non-polar C-C 

bonds however, when the carbon capacitor is charged the area of the wetted interface of 

the gas-exposed electrode increases while the gas-solid interface decreases. This 

phenomenon would also speak against adsorption at the gas-solid interface as the 

explanation for the SSA effect, since pressure swings have increased, while the area of the 

gas-solid interface has decreased. 

On the other hand the SSA effect could also occur due to changes in the solubility of the 

CO2 in the electrolyte. When the capacitor is charged, the ions are being removed from the 
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bulk electrolyte to form double layers, this would lead to increased CO2 solubility in the 

bulk electrolyte since the solubility of CO2 is decreasing with increasing ionic strength 

[201]. When the half-submerged electrode was working as the cathode pressure drops 

could be observed but when the same electrode was working as the anode the pressure was 

increasing. This suggests that the SSA effect is not due to changes in the solubility of the 

CO2 in the electrolyte since it would be expected to see similar pressure drops no matter 

whether the gas-exposed electrode is working as the cathode or the anode. However, since 

CO2 tends to be salted out of NaCl solutions and the amount of the dissolved CO2 in the 

aqueous electrolytes is significant, this mechanism contributes to some extent and cannot 

be ruled out. Since the salting-out effect depends on various factors such as the charge and 

radius of the ions, the salt concentration, temperature and the static dielectric constant of 

the solvent [202], it is clear that more experiments are required to clarify the full 

mechanism of the SSA effect. Therefore, in the future, it is necessary to do experiments 

with various aqueous electrolytes which have different radii of the ions. It would be 

interesting for example to compare aqueous NaCl, KCl, and CaCl2 at different 

concentrations. 
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8. Summary and Conclusions 

 

8.1. Summary 

In this dissertation a novel and simple technique, supercapacitive swing adsorption, for 

carbon dioxide adsorption and separation is described. It is shown that in this technique 

adsorption and desorption of CO2 can be accomplished by the reversible charge and 

discharge of high surface area carbon supercapacitor electrodes which are in contact with 

the gas phase and an aqueous 1M sodium chloride electrolyte. This process requires no 

temperature and pressure changes, because adsorption and desorption are controlled only 

by capacitive charge and discharge of supercapacitive HSAC electrodes. It is proven that 

the electric double layer formed during the charge of the carbon electrodes is necessary for 

the SSA effect.   The results of the experiments show that SSA has the ability to 

successfully separate CO2 from N2. Moreover, there is a high selectivity of CO2 over N2 

and He gas and little dependence on the CO2 partial pressure in a 15% CO2/85% N2 gas 

mixture. The presented results show also that CO2 can be reversibly adsorbed and desorbed 

depending on the direction of applied bias and this effect is only weakly dependent on the 

temperature. During cathodic charging of the half-submerged electrode adsorption of CO2 

is possible. When the system was charged, the sorption capacity of CO2 went up, leading 

to a pressure drop and when the system was discharged, the sorption capacity dropped, 

causing the system pressure to rise higher. On the other hand the anodic charging can 

harness the “native” high adsorptivity of HSA BPL carbon sorbents for CO2, and desorb 

adsorbed CO2. The adsorption property of activated BPL carbon is changed without 

chemical modification. The SSA effect scales approximately proportionally with the 

amount of used sorbent material. Hence, the SSA technique may be scalable to the 
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industrial scale and could help reduce the emissions from fossil fuel power plants.  

Furthermore, SSA may be potentially extended to other gas system because it is doubtful 

that the SSA effect is only restricted to CO2. 

8.2. Results of SSA experiments vs. hypotheses of SSA 

It was possible to link very high capacitance and high adsorption affinity for CO2 properties 

of activated carbon material in the implementation of SSA for carbon dioxide capture. The 

reversible adsorption/desorption behavior of carbon dioxide can be controlled by charging 

and discharging of the capacitive system 

Moreover, calculations in Chapter 5 showed that a significant fraction of the BPL carbon 

pore surface area is covered by ions from electrolyte in the charged state which can affect 

the sorption behavior of a significant number of CO2 molecules. The results of SSA 

experiments confirmed the calculations since the sorption capacity of CO2 went up during 

cathodic charging, and when the system was discharged, the sorption capacity dropped. 

Further, size and/or direction of the effect really depends on the electrode character (anode 

vs. cathode) because the structures of both double layers are different. Adsorption of CO2 

during cathodic charging and desorption of CO2 during anodic charging was observed.  

Finally, competitive anode/cathode effects was observed due to the asymmetric 

configuration of the two BPL carbon electrodes, in which one electrode was partially 

submerged in an electrolyte while the other one was fully submerged in the electrolyte so 

it could not directly interact with the CO2 in the gas phase. 
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8.3. Conclusions 

The SSA effect is reversible and selective for CO2 over N2. The SSA effect scales with the 

mass of the sorbent material. An important fact is that SSA achieves the gas adsorption in 

the presence of water what shows that the technique is insensitive to water vapor in the gas 

mixture. 

There are several aspect which can have a significant impact on the SSA effect. First, SSA 

can be applicable to a variety of different sorbent materials because the only basic 

requirement for the sorbent is electrical conductivity, high surface area and high 

equilibrium loading for CO2 gas what can be applicable to many carbon materials and also 

for some other materials including metal-organic frameworks which can be electrically 

conducting and can have higher equilibrium loadings for CO2 in comparison to the BPL 

carbon. 

Another impact on the magnitude of the SSA effect could be in the chemical nature and 

concentration of the electrolyte. The electrolyte determines the capacitance and also the 

degree of infiltration of the HSAC electrodes. In this work only 1 M NaCl was used 

therefore it would be interesting to see how the SSA effect will change with concentration 

of the electrolyte. Also, it will be interesting to compare various aqueous electrolytes which 

will have different radius of the ions.  

From Figure 7.3 the charge-discharge energy efficiency was calculated according to 

equations 4.8a and 4.8b and was equal to 42% at 10 mA (22.2 J was used for charging and 

9.5 J was recovered upon discharging) constant current and 74% at 2 mA (33.1 J was used 

for charging and 24.4 J was recovered upon discharging) constant current. This calculations 
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allowed us to calculate the parasitic load of SSA which can be correlated with the charge-

discharge energy difference (33.1 J- 24.4 J = 8.7 J) and the measured pressure changes (16 

Torr at 2 mA constant current). By using equations 8-1 and 8-2 the energy penalty of 2.1 

GJ/ton CO2 can be calculated and this value is comparable to energy penalties for amine-

based systems which are at this moment the most developed systems for carbon capture 

[203]: 

         𝑛 =
𝑃𝑉

𝑅𝑇
=

16.00 𝑇𝑜𝑟𝑟×0.11 𝐿𝑚𝑜𝑙𝐾

62.36 𝐿𝑇𝑜𝑟𝑟×299.75 𝐾
= 9.42 × 10−5𝑚𝑜𝑙 = 0.094 𝑚𝑚𝑜𝑙         Equation 8-1 

in which P is the pressure change, V is the volume of the SSA cell filled with gas, R is gas 

constant (8.314 J K-1 mol-1 = 62.364 L Torr K-1 mol-1) and T is temperature inside of the 

cell which is equal to temperature of the room in which experiment was carried on (26.6⁰C 

= 299.75K). Further, the energy penalty (E) can be calculated (1 mol of CO2 = 44.01 g of 

CO2): 

                𝐸 =
8.7 𝐽

0.094 𝑚𝑚𝑜𝑙
=

92.6 𝐽

𝑚𝑚𝑜𝑙
=

92.6 𝑘𝐽

𝑚𝑜𝑙
=

92.6 𝑘𝐽

44.0 𝑔
=

2.1 𝑘𝐽

𝑔
=

2.1 𝐺𝐽

𝑡
                Equation 8-2 

Since an average CO2 emission for US coal fired power plants = 1 ton per 3.6 GJ of energy 

generated [1], the parasitic load here is 58.3%: 

     𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 𝑙𝑜𝑎𝑑 =  
2.1 𝐺𝐽

3.6 𝐺𝐽
× 100% = 58.3%                   Equation 8-3 

It needs to be considered that the SSA system has relatively low charge-discharge energy 

efficiencies. Commercially available supercapacitors can be charged and discharged within 

seconds at energy efficiencies larger than 95% what suggests that SSA can be still 

optimized. The major reason for the relatively low charge-discharge energy efficiency is 

due to high ESR of our capacitive system. One of the reasons why the ESR is higher for 
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prepared capacitor is the electrically insulating PVDF binder which was used for 

preparation of carbon pellets and monoliths. This binder not only increases the internal 

resistivity of the capacitor but also reduces the charge-discharge energy efficiency. 

Electrodes used for SSA experiments have large distance and a large thickness which is 

not ideal from the standpoint of ionic resistivity. These arguments show that there is strong 

potential that the parasitic load of SSA can be still decreased. 
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Appendix A 

 

1. The gas/vapor sorption properties of the BPL carbon electrode materials  

The measured N2 isotherm (Figure A1) belongs to type IV, as defined by IUPAC and 

showed mesoporous structure of BPL carbon with mainly microporoes at 0.4nm and 

mesoporous ranging from 2 to 4nm and with a surface area close to 640 m2/g of material. 

A CO2 adsorption isotherm was measured in order to check the CO2 uptake (how much 

CO2 can be adsorbed per gram of material) on BPL carbon. The CO2 isotherms were 

measured at 4 different temperatures: 273 K, 298 K, 323 K and 343 K. It was observed that 

BPL carbon shows diminished sorption capacities at higher temperature (Figure A2). The 

equilibrium CO2 adsorption capacity of BPL carbon increased as the temperature decreased 

giving 66 cm3 of CO2 adsorbed per gram of BPL carbon at 0 ºC, 31 cm3/g at 25 ºC, 19 

cm3/g at 50 ºC and 11 cm3/g at 70 ºC. This is due to the fact that increase in the temperature 

excited the internal energy of the adsorbent which tends to release the CO2 molecules 

present on the adsorbent. Maroto-Valer et al. [205] reported that physisorption process 

involves high surface adsorption energy and molecule diffusion at elevated temperatures, 

which results in instability of the adsorbed gas on the surface of activated carbon and 

consequently, the desorption process will occur. 
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Figure A1. N2 isotherm of BPL carbon at 77 K (inset: pore size distribution). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. CO2 adsorption isotherm for BPL HSAC electrodes at three different temperatures. 

2. TEM images of BPL carbon 
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TEM was used to examine the microstructure of the BPL carbon electrode materials 

prepared for SSA experiments which showed both mesopores and micropores (Figure A3). 

The results of TEM analyses were consistent with the results of nitrogen adsorption 

isotherm analysis and confirmed the porous structure of the electrode material. 

 

Figure A3. TEM images of BPL carbon. 

 

3. Electrochemical characterization of the BPL carbon electrodes. 

a) Cyclic Voltammetry (CV) 

Cyclic Voltammetry experiments done in a two-electrode configuration confirmed the 

capacitive behavior of the BPL carbon electrodes prepared for the SSA experiments (static 

pressure experiments). Since higher scan rate creates lower capacitances, here mostly slow 

1 mV/s scan rate was chosen in order to get the full capacitance of the HSAC electrodes. 

The scan rate must be low to record full capacitance because there are slow electrode 

processes in the “inner” surface of the BPL carbon electrode pores. 
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Figure A4 shows typical CV curves measured for the BPL carbon pellets and monoliths 

prepared for the SSA experiments. It can be seen from this figure that resistance causes a 

slow rise in the current and rounds two corners of the rectangle at the beginning of the 

charge and discharge process. The voltammogram adopts a more slanting shape and the 

current over the potential window is no longer constant. Ideal double-layer capacitance 

through CV is represented by a rectangle within a voltammetry plot of the current with 

respect to applied potential as illustrated in Figure 4.5. However prepared supercapacitors 

deviate slightly from this relation due to diffusion resistances in the initial charging or 

discharging process of the double-layer for the respective voltage limit. 
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Figure A4. Cyclic Voltammetry curves of 0.20 g BPL carbon pellet (red curve), 3.70 g BPL 

carbon monolith (black curve) and 7.5 g BPL carbon monoliths (green curve) measured in 1 M 

NaCl solution at 1 mV/s scan rate from 0V to 1.0V without reference electrode (full cell set up); 

the counter electrode had the same mass as the working electrode. 
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b) Galvanostatic Charge-Discharge (GCD) 

Galvanostatic Charge-Discharge experiments done in a two-electrode configuration also 

confirmed the capacitive behavior of the BPL carbon electrodes prepared for the SSA 

experiments. 
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Appendix B 

 

 

1. Method used for the calculation of energy efficiency. 

 

Energy calculations from CCD experiments 

 

Echarge = I × V × t [A×V×s = J] 

Edischarge = I × V × t [A×V×s = J] 

 

a) CCD at 10mA constant current (cathodic cycle) 

 

Echarge = 0.01 A × 2224.07 Vs = 22.24 J = 6.18 mWh 

Edischarge = 0.01 A × 950.83 Vs = 9.51 J = 2.64 mWh 

 

Efficiency = 42.72 % 

 

b) CCD at 2mA constant current (0V to 1V) (cathodic cycle) 

 

Echarge = 0.002 A × 16539.36 Vs = 33.08 J = 9.19 mWh 

Edischarge = 0.002 A × 12182.44 Vs = 24.36 J = 6.77 mWh 

 

Efficiency = 73.67 % 

 

2. Method used to determine relationship between pressure and composition 

change 

 As can be seen a 0.93% composition change correlates to a pressure change of 7 Torr. 

𝑝𝑉 = 𝑛𝑅𝑇 ⇒  ∆𝑛 =  
∆𝑝𝑉

𝑅𝑇
=

7.00 × 105

62.36 × 299.75
    [

𝑚𝑚𝐻𝑔 × 𝑚𝑙

𝑚𝑙 × 𝑚𝑚𝐻𝑔
𝐾 × 𝑚𝑚𝑜𝑙

× 𝐾
= 𝑚𝑚𝑜𝑙] 

∆𝑛 = 3.93 × 10−2 𝑚𝑚𝑜𝑙      (𝑓𝑜𝑟 𝐶𝑂2 𝑔𝑎𝑠) 

- 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑐𝑦𝑐𝑙𝑒: 𝑝 = 835 𝑇𝑜𝑟𝑟 (𝑚𝑖𝑥 𝑜𝑓 𝐶𝑂2 𝑎𝑛𝑑 𝑁2) 

∆𝑛 =
835 × 105

62.36 × 299.75
= 4.69 𝑚𝑚𝑜𝑙 
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               4.62 𝑚𝑚𝑜𝑙       − 100% 𝑜𝑓 𝑔𝑎𝑠 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
               𝑥 𝑚𝑚𝑜𝑙             − 15% 𝑜𝑓 𝐶𝑂2

    → 𝑥 = 0.70 𝑚𝑚𝑜𝑙 𝑜𝑓 𝐶𝑂2 

 

∆𝐶𝑂2 = 0.70 𝑚𝑚𝑜𝑙 − 3.93 × 10−2𝑚𝑚𝑜𝑙 =  0.66 𝑚𝑚𝑜𝑙 

 

#𝑚𝑚𝑜𝑙 𝑜𝑓 𝑁2 = 85% × 4.69 = 3.99𝑚𝑚𝑜𝑙 

 

%𝐶𝑂2 =  
0.66

0.70 + 3.99
× 100% = 14.07% 

∆𝐶𝑂2 = 15% − 14.07% = 0.93% 

Where:  

V – Volume of the SSA cell filled with gas 

R – gas constant (8.314 J K-1 mol-1 = 62.364 L mmHg K-1 mol-1) 

T – temperature inside of the cell which is equal to temperature of the room where 

experiment was carried on ( 26.6⁰C = 299.75K) 
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