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ABSTRACT 

 
Protein-protein interactions play a critical role in sustaining life and diseases can 

often result from mis-regulation of these protein-protein interactions. The interaction 

between glutathione S-transferase pi (GSTpi) and c-Jun N-terminal kinases (JNKs) is 

such a system that has been linked to cancer. GSTpi normally functions in the body to 

detoxify cells by removing foreign compounds, and JNKs participate in the Mitogen 

Activated Protein (MAP) kinase cascade, whose effects range from cell proliferation to 

programmed cell death (i.e., apoptosis). GSTpi is known to inhibit the apoptotic behavior 

of JNK proteins, which in turn can lead to cancer. It is hypothesized that GSTpi does so 

by binding directly to JNKs, and that this interaction depends upon factors such as the 

haplotype of GSTpi, or whether the JNKs are phosphorylated. It is then believed that 

such variables affect the affinity of these proteins for one another. However, these 

interactions have only been identified qualitatively. Thus, understanding quantitatively 

the interactions of GSTpi with JNKs in regards to these factors provides crucial insight 

towards manipulating the pathway for chemotherapies.  

 

This project is aimed at determining the binding affinity constants of GSTpi and 

JNK proteins with relations to the above variables. To achieve this goal, we will use 

Backscatter Interferometry (BSI), a very sensitive technique that utilizes very small 

amount of sample and does not require labeling.  

  

 We have successfully expressed and purified a number of the necessary proteins 

to complete the study. Namely, we have purified GSTpi and the inactive 
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(unphosphorylated) forms of JNK1α2 and JNK2α2, which are two isoforms that have 

been shown to bind to GSTpi. We have also obtained the active/phosphorylated form of 

JNK1α2 and JNK2α2, referred to as pJNK1α2/pJNK2α2 as we plan to study the effect of 

phosphorylation levels of JNKs on binding to GSTpi. We are currently in the process of 

purifying pJNKs. We were also able to obtain preliminary BSI data with GSTpi and 

JNK1α2 alone in solution, demonstrating the efficacy of BSI for use with small quantities 

of proteins. More testing is underway with GSTpi and the phosphorylated version of 

JNK1α2 and JNK2α2.  
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BACKGROUND 

The activities of many proteins and enzymes are modulated via protein-protein 

interactions. A protein can be either inhibited or activated by interacting with other 

proteins, whether it is through post-translational modifications (such as phosphorylation) 

or through direct binding of one protein to another. The main focus of this project is on 

how the phosphorylation of c-Jun N-terminal Kinase (JNK) affects its binding to another 

enzyme, Glutathione S-Transferase pi (GSTpi).  

  

1. Glutathione S-Transferase pi: GSTpi is a member of the family of cytosolic 

glutathione S-transferases (GSTs). It is a 25 kDa enzyme that exists as a monomer at 

lower concentrations and forms a dimer at higher concentrations around 0.1 mg/ml.1,2 

The primary function of GST enzymes is their central role in cellular detoxification. They 

accomplish this by conjugating glutathione molecules to electrophilic foreign toxins, 

which prevents them from causing harm to the cell while simultaneously preparing them 

for excretion.3 The active site of GSTs consists of a hydrophilic site to bind glutathione 

(G site), and a hydrophobic site to bind the toxin (H site).2 The variations in the H sites 

classify the different GSTs, where GSTpi is more hydrophilic than other classes.4 GSTpi 

is the most commonly found GST, and is expressed most in lung, placenta, and 

esophageal tissues. GSTpi in humans is polymorphic, where residues 105 and 114 vary; 

wild type is 105I-114A, while “Haplotype C” is 105V-114V. Haplotype C of GSTpi has 

been associated with various cancers in humans, namely that of the testes and bladder.5 In 

addition to detox, GSTs have also been demonstrated to modulate the activities of 
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enzymes involved in signaling cascades. One such example is the interaction of GSTpi 

with c-Jun N-Terminal kinases (JNKs).  

 

2. c-Jun N-terminal kinase: c-Jun N-terminal kinases (JNKs) are a class of Mitogen-

Activated Protein Kinases (MAPKs), which are proteins that transduce signals sent by 

cell surface receptors to intracellular targets to control cell proliferation, differentiation, 

inflammation, and apoptosis.6,7 They are activated by UV, osmotic shock, and numerous 

cytokines.8 JNK enzymes have three major subclasses: JNK1, JNK2, and JNK3; each of 

these has its own isoforms. JNK1 and JNK2 have four isoforms, while JNK3 has two 

isoforms.9 There is 85% sequence identity between JNK families (JNK1 vs. JNK2 vs. 

JNK3) and more than 90% sequence identity between JNK isoforms (e.g., JNK1α1 vs. 

JNK1α2).10 The isoforms differ in N-termini and C-termini length, where JNK1α2 and 

JNK2α2 are longer. These monomeric proteins both weigh around 47kDa.  

  

JNK proteins are activated within the MAPK protein cascade, involving the following 

proteins: MAP kinase kinase kinases (MAP3Ks), and MAP kinase kinases (MAP2Ks). 

These proteins are also called MEKKs and MKKs, respectively. In a linear fashion, 

activated MEKKs activate MKKs, which then activate JNKs (Figure 1).11 JNK proteins 

are activated by MKK4 or MKK7 via a dual phosphorylation of Thr183 and Tyr185, and 

once phosphorylated, the JNKs phosphorylate specific substrates in the cytosol or the 

nucleus (e.g., Activating Transcription Factor 2, ATF2), where the signaling pathway 

continues.10,12 
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3. GST-JNK interactions: In vivo, in addition to be found in high level in some cancers,5 

GSTpi inhibits JNK apoptotic activity, leading to increased cell proliferation.13 Aberrant 

cell proliferation and decreased apoptosis are the hallmarks of cancerous cells. Therefore, 

studying this interaction in more detail will lead to a better understanding of how GSTpi 

controls the balance between apoptosis and cell proliferation through modulation of JNK 

activity, and possibly to a new way to modulate apoptotic pathways in cancer therapy. 

 

Studies have shown that the extended C-terminus of JNK1 and JNK2 is important for 

GST binding, and thus the longer isoforms (i.e., JNK1α2 and JNK2α2) interact strongest 

with GSTpi.14 Interestingly, Haplotype C of GSTpi is the only one that inhibits JNK 

apoptotic activity in vivo, suggesting that this haplotype binds strongest to JNKs.3 Even 

though these various active and inactive isoforms of JNK and haplotypes of GSTpi have 

been shown to have somewhat different affinities for one another, the precise binding 

affinities for these interactions have not been defined quantitatively. For instance, 

Thévenin, et al. reported using densitometry analysis of immunoblots that JNK1α2 

interacts more strongly with GSTpi than JNK2α2, and that phosphorylation of JNK 

proteins is essential for interactions with GSTpi.15 The same authors have also been 

reported that GSTpi interacts with inactive JNK only if the substrate of JNK, ATF2, is 

present in solution.16 However, very recently, De Luca et al. have reported, using changes 
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in fluorescence spectra, that GSTpi interacts with inactive JNK1α2 even in the absence of 

ATF2,17 contradicting the previous findings by Thévenin et al. Thus, there is a serious 

need for a better characterization of these interactions to clarify the contradicting data. To 

accomplish this, we take advantage of a relatively novel technique that has shown to 

provide reliable binding constants between proteins in solution, backscatter 

interferometry.18,19 

 

4. Backscatter interferometry: Backscatter interferometry (BSI) is a novel technique that 

allows very sensitive analysis of binding interaction between two proteins.18,19 It relies on 

the scattering of light to indicate changes in refractive index (RI) within a solution. As 

illustrated in Figure 2, a laser beam is directed onto a microfluidic channel containing the 

analytes and is then back-scattered and reflected by a mirror to a charge-coupled device 

(CCD) detector. An interference fringe pattern is generated from the refraction of light 

through the glass chip and solvent. The data obtained by the detector is analyzed using a 

fast Fourier Transform in order to obtain real-time measurements. The generation of the 

signal is thought to arise from changes in solvation, polarizability, and structural or 

conformational changes, which changes the RI of the solution.20 So, by observing the 

lateral shifts in the fringe patterns, BSI provides a means to indicate changes in solution, 

namely the binding of molecules. A typical BSI experiment using the glass microfluidic 

chips is an end-point assay, in which the binding species are premixed and equilibrated 

prior to injection into the microfluidic chip, with one analyte held at a constant 

concentration and the second varying in concentration up to excess. With these 
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experiments, a binding curve can be obtained, and using the rise to max equation for a 

Michaelis-Menten saturation curve, the dissociation constant (KD) can be calculated. 

 

 

Unlike other techniques developed to analyze molecular interactions such as surface 

plasmon resonance, isothermal calorimetry (ITC), and fluorescence-labeled assays, BSI 

does not require the solutes to be tethered to a surface, labeled or present at high 

concentration, which can be very time-consuming, expensive and can perturb binding. In 

addition, due its high sensitivity, BSI only requires very small amount of sample (less 

than 750 µM in 200 pL).20 Numerous other studies have already been conducted with 

BSI, mainly on proteins.22 For instance, BSI has been used to analyze the binding of the 

protein calmodulin (CaM) with several small molecule inhibitors, such as calcinuerin 

(CaN). While the calorimetry results were advantageous in that they yielded a complete 

Figure 2: Setup of BSI and typical data output. (A) Experimental BSI setup. (B) 
Microfluidic chip with serpentine and photo of representative fringe patterns, 
illustrating the RI-induced position shift of fringes, and a representation of a binding 
curve obtained.21 
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thermodynamic profile, BSI demonstrated the importance of using much lower 

concentrations for the interaction of CaM with CaN, as these were prone to aggregation 

at the higher concentrations necessary for ITC.21  
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HYPOTHESIS AND OBJECTIVES 

As mentioned, various active and inactive isoforms of JNK and haplotypes of 

GSTpi have been shown to have different affinities for one another, but the binding 

affinities for these interactions have only been defined qualitatively. We then propose to 

use BSI to determine quantitatively the dissociation constants (KD) for interactions of the 

GSTpi haplotypes: wild-type and Haplotype C, along with JNK proteins JNK1α2, 

JNK2α2, and their phosphorylated counterparts. Importantly, since oligomerization can 

greatly influence protein binding, we will conduct these studies at protein concentrations 

resulting in monomeric states of the proteins. We believe that BSI is the technique of 

choice, as only subtle differences are expected and that preparation of large amounts of 

active kinases can be challenging. 
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RESEARCH STRATEGY 

First, all proteins needed for this study must be expressed, purified, and 

phosphorylated if necessary. Expression vectors containing the DNA sequences coding 

for the proteins of interest were a kind gift from Dr. Anastasia Thévenin, and are as 

follows: JNK1α2/pET15b, JNK2α2/pET15b, His-MKK4/pT75, MEKKC/pBB131, 

GSTpi-105V-114V/pUC120, and GSTpi-His/pET15b. Prior to over-expression and 

purification, these plasmids were transformed into BL21(DE3) E. coli cells, as these cells 

showed better protein expression levels compared to other cell types such as pLysS and 

DH5α (data not shown).  

 

1. Expression and purification of GSTpi, JNK1α2 and JNK2α2:  These 3 proteins 

contain an N-terminal 6x His-tag for purification and are expressed and purified as 

follows: For the GSTpi construct, 500 mL of lysogeny broth (LB) medium is inoculated 

with 4.5 ml of BL21(DE3) E. coli saturated over-night culture, grown at 37ºC to an 

OD600nm of 0.6, induced with 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) and 

grown at 25°C for approximately 18 hours. JNK1α2 and JNK2α2 production followed a 

nearly identical process, however the cultures are grown at 18°C after 0.5 mM IPTG 

induction instead. The cell cultures are then centrifuged and the pellets are resuspended in 

5 ml of buffer: 20 mM Tris pH 8, 20 mM imidazole, 150 mM NaCl, 10% glycerol (JNK 

buffers contain 1mM dithiothreitol) [Lysis Buffer A], and lysed by sonication for 4 min 

at 4°C. The sonicate is clarified by centrifugation at 10,000 rpm at 4°C for 20 min and 

applied to a Ni–NTA column that has been pre-equilibrated in the Lysis Buffer A. GSTpi, 

JNK1α2, and JNK2α2 are then eluted with a linear imidazole gradient using an ÄKTA 
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purification system (GE Healthcare). The solutions are finally dialyzed to reduce 

imidazole with: 0.1 M potassium phosphate, 1 mM EDTA, pH 6.6 for GSTpi, and 20 mM 

Tris, 150 mM NaCl, 1 mM DTT, 10% glycerol, pH 7.6 (Kinase Storage Buffer) for 

JNKs. Dialysis is accomplished using a 10,000 MWCO dialysis tubing (Thermo 

Scientific). The purity of the dialyzed proteins is assessed via SDS-PAGE analysis 

(Figure 3). Measuring the absorbance at 280 nm, the concentrations of the proteins have 

been determined as: 100 µM for GSTpi, 6.7µM for JNK1α2, and 10.5µM for JNK2α2. 

Using ImageJ software, purity levels are: >76% for GSTpi, and near 100% for JNKs. 

 

 

 

 

 

 

 

 

 

 

 

 

2. Expression and purification of MEKKC and MKK4 proteins: As Figure 1 illustrates, 

JNKs are activated/phosphorylated by the upstream kinase, MKK4, which also must be 

activated/phosphorylated by MEKK1 to be active. So, to obtain phosphorylated JNKs we 

80 
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must first co-express MKK4 with its upstream kinase, MEKK1, to produce pMKK4, 

which is then purified by Ni-affinity chromatography for use in subsequent in vitro JNK 

phosphorylation. Importantly, rather than using native MEKK1, we use MEKKC, which 

is a constitutively active variant of MEKK1 (i.e., it lacks its regulatory domain). MEKKC 

and MKK4 are expressed simultaneously in BL21(DE3) cells, following the protocol 

described above for GSTpi and JNKs. However, upon induction with 0.5 mM IPTG, cells 

are grown at 37°C for 3 hours, and then pelleted. Cells are then resuspended in 5 mL of: 

15 mM imidazole, 1mM DTT, 0.1mM EDTA, Halt protease inhibitor (Thermo 

Scientific), 150mM NaCl, 10% Glycerol, 1mM Na3VO4, 20mM Tris, pH 7.8. Suspended 

cells are lysed by sonication and purified by nickel column chromatography as previous 

proteins, however using a linear imidazole gradient in the aforementioned buffer for 

MKK4 suspension. The protein is finally dialyzed into Kinase Storage Buffer after 

affinity chromatography. To ensure phosphorylation of MKK4, a western blot is 

performed using an antibody against phosphorylated MKK4 (pMKK4) at Thr261. 

Successful purification of pMKK4 is shown in Figure 4.  

 

 

Figure 4: SDS-PAGE and Western Blot images of pMKK4 purification. Numbers above images 
reflect the fraction collected during nickel affinity chromatography. Corresponding imidazole 
levels listed above. (A) SDS-PAGE stained with Coomassie. (B) Western Blot using anti-pMKK4 
primary antibody of same fractions as (A). Fractions 16 through 21 were pooled together and 
dialyzed into Kinase Storage Buffer.    
	
  



 

13 

3. Activation of JNK proteins: Having obtained pMKK4, activation (phosphorylation) of 

the purified JNK proteins can be accomplished. First, a small-scale test activation is 

conducted:  10 µM purified His-JNK is mixed with active 0.3 µM His-pMKK4 in the 

presence of 10 mM MgCl2, and 6 mM ATP, totaling around 200 µL. The mixture is 

incubated at 25°C for 3 h. Aliquots (32µL) are removed every 30 min, mixed with 8 µL 

of 5x SDS sample buffer and boiled for 5 min for subsequent SDS–PAGE and western 

blot analysis using an anti-phosphorylated JNK antibody. The results shown in Figure 5 

indicate a rapid phosphorylation of both JNK1α2 and JNK2α2. 

 

 

 

 

For large-scale activation of JNK, approximately 2 mg of JNK are activated over the 

course of 2 hours, following the same ratio of reagents as the test-scale activation. After 2 

hours, the reaction mixture is dialyzed for 6 hours at 4°C against 15 mM HEPES buffer, 

pH 7.3, containing 10% glycerol and 1 mM DTT (Cation Exchange Buffer), and then 

again overnight in fresh Cation Exchange Buffer in order to remove NaCl. Because of 

differences in the isoelectric points of JNKs (JNK2α2, 5.3; JNK1α2, 5.8) and pMKK4 

(~8.3), these proteins can be separated at pH 7.3 using cation exchange chromatography. 

Figure 5: Western Blot (anti-pJNK primary antibody) of JNK activation by pMKK4. 
For JNK1α2, 2.7µM JNK1α2 and 0.9µM pMKK4 were mixed with 6mM ATP and 
10mM MgCl2. For JNK2α2, 4.5µM JNK2α2 and 0.9µM pMKK4 were mixed with 
6mM ATP and 10mM MgCl2. Mixture was kept at 25°C. Numbers correspond to time 
points (hours), at which an aliquot was removed and boiled with SDS dye.  
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Under these conditions, the positively charged pMKK4 binds to the negatively charged 

CM-52 cation exchange resin, while the negatively charged JNK is eluted in the void 

volume. The resin is equilibrated first with 150mM HEPES, pH 7.3, then with Cation 

Exchange Buffer. The mixture is then rocked with the resin at 4°C for 30 min, and the 

void volume is collected by gravity. The resin is finally washed with three column 

volumes of Cation Exchange Buffer. Successful separation of pJNK1α2 and pMKK4 is 

shown in Figure 6. Quantification of pJNK proteins is performed using the Bradford 

protein assay because ATP present in the mixture absorbs strongly at 260 nm, affecting 

quantification of protein by UV absorbance at 280 nm. Currently, we have a 1 ml aliquot 

of 1 µM pJNK1α2.  

 

 

So far, we have obtained purified solutions of: GSTpi, JNK1α2, JNK2α2, and pJNK1α2. 

 

Figure 6: Separation of pJNK1α2 from pMKK4 by cation exchange chromatography. 
Visualized by immunoblot using (A) anti-pJNK antibody, and (B) anti-pMKK4 antibody. 
Control is the protein mixture prior to cation exchange. Void corresponds to the void 
volume. W1, W2, W3 correspond to Wash 1, Wash 2, Wash 3.  
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4. Preliminary BSI data: For BSI experiments, serial dilutions of the proteins are 

prepared beginning with the stock solution, and 6 2x dilutions are prepared down from 

that (i.e., if stock concentration is 10 mM: 10, 5, 2.5, 1.75 mM, etc will be prepared). 2 

µL are injected for each data point gathered, and all points are done in repeats of 3, thus 6 

µL total of sample is analyzed.	
  

	
  

Prior to protein-protein interaction studies, control curves of the proteins will be 

constructed. These curves are constructed by BSI studies of a protein alone in solution. 

To date, we have obtained BSI data for GSTpi and JNK1α2 alone in solution (Figure 7 

and Figure 8). However, the data is only preliminary as the proteins are in different 

buffers. Regardless, a linear relationship between concentration and BSI signal is 

observed for each, which is indicative of a homo-disperse species. 
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Figure 7: BSI data for GSTpi. GSTpi was diluted in dH2O. Each data point is 
the average of 3 measurements, with standard error bars shown. Data points 
have been minimized to better show error bars.  
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Figure 8: BSI data for JNK2α2. JNK2α2 was diluted in Kinase Storage Buffer 
(20mM Tris, 150mM NaCl, 10% glycerol, 1mM DTT, pH 7.6). Each data 
point is the average of 3 measurements, with standard error bars shown.  
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FUTURE STEPS 

1. Using ATF2 to quantify JNK activation: The level of activity of the purified pJNKs 

will be determined by using ATF2 as a substrate. The experiment will be conducted 

similarly to the activation of JNKs by pMKK4, by taking aliquots at time points 

throughout the activation and subsequent analysis via western blotting with an anti-

pATF2 antibody. Upon completing this stage, we will have obtained and characterized all 

necessary proteins to study using BSI.  

 

2. Expression and purification of GSTpi Haplotype C: In the immediate future, we will 

also express and purify the haplotype of GSTpi, GSTpi-105V-114V using similar 

methods described above for GSTpi.  

 

3. Determination of binding affinities using BSI: Once all proteins are expressed and 

purified, we will conduct all BSI combinations shown in Figure 9. In total, 21 runs will 

be performed to acquire the desired KD values: Proteins will first be run individually as 

controls, and then mixed with a constant concentration of another protein to observe the 

binding curve. For example, using BSI to gather data for GSTpi from 5μM to 75μM, 

then running this same concentration range again but each sample also has 10μM JNK 

protein. In order to obtain reliable KD values, all proteins must be in the same buffer to 

prevent misleading signals from arising due to different solutes across different buffers. 

Thus, to keep conditions constant, all proteins will be dialyzed into Kinase Storage 

Buffer for the study. 
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The KD values for each pair will then be determined using the resulting binding curves. 

The inverse experiment (varying [JNKs] while keeping [GSTpi] constant) will also be 

performed to compare KD values. Should issues arise within this portion of the study, the 

His-tag will be cleaved off GSTpi and see whether it changes the data. Treating the BSI 

channels with various functional groups (e.g., silano) could also be used to avoid possible 

protein aggregation on the glass surface. In addition to using the proteins described in this 

proposal, we can also attempt to express rat His-JNK that is contained in a plasmid with 

MEKKC/MKK4 already present. Expression of this JNK protein will produce already 

activated JNK, thus eliminating the bench-top activation step.  

 

4. Using AUC to confirm oligomeric states of proteins: Analytical ultracentrifugation 

will be used to determine the oligomeric states of proteins at various concentrations. 

Although the data output from BSI should indicate a change in oligomeric state, as would 
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seen by a sharp change in the data, analytical ultracentrifugation will be used to show 

specifically which oligomeric state is present in solution. It also ensures optimal 

performance for BSI assays, as we want to prevent BSI from picking up self-binding 

events. By determining which concentrations of the proteins result in monomeric or 

dimeric states, we can establish a working concentration range where the protein will 

remain in only one oligomeric form.  

 

5. BSI studies with ATF2 as a JNK substrate: Once the initial BSI study is complete 

with the aforementioned proteins, studies will be done to examine the effects of ATF2. 

As reported, ATF2 should promote a greater binding affinity between inactive JNK and 

GSTpi.12 Such interactions can be quantified by BSI to determine the accuracy of the 

report. ATF2 has already been purchased from BPS Bioscience for use with our BSI 

studies. 
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OBSTACLES 

All research encounters issues along the way, slowing up the collection of data. 

Some due to human error, while some due to faulty equipment, reagents, etc. Throughout 

the course of this project, a few obstacles were encountered. 

 

1. Faulty anti-pJNK antibody: The first anti-pJNK antibody (Cell Signaling) we used did 

not recognize pJNKs. At first, the lack of pJNK bands led to the belief that our sample 

(testing activation of JNK by pMKK4) simply did not contain pJNK. Upon conducting 

control experiments with our pMKK4, we confirmed that MKK4 was indeed active. Dr. 

Lowe-Krentz then provided us with a different anti-pJNK antibody (Santa Cruz), which 

did reveal pJNK by immunoblot. The subsequent experiments (and the ones presented) 

were thus conducted the same antibody.  

 

2. CM-52 cation-exchange resin: The cation-exchange resin (kind gift from Dr. Lowe-

Krentz) we used to purify pJNK from pMKK4 has also caused issues. The first time 

using the resin, pJNK1α2 and pMKK4 were successfully separated. However, the next 

use of the resin to separate pJNK1α2 from pMKK4 resulted in no collection of protein as 

determined by immunoblot. It led us to believe that the resin was not functioning 

properly after storage. We are currently repeating these experiments with a new batch of 

resin.  

 

3. Difficulties with BSI: Finally, it has been difficult to obtain BSI data because the use 

of the apparatus is limited by the availability of the Flowers’ lab, as the apparatus is 
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under their supervision. Consequently, we must schedule appointments with them to run 

BSI studies, and the lab members need to have an entire day free to accommodate our 

samples. As expected, their free time is limited due to priority given to their own 

experiments. 
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IMPACT 

 Obtaining precise binding affinities for these various protein interactions will 

provide crucial quantitative information regarding the behaviors of the GSTpi-JNK 

system. Understanding these behaviors can expedite the process to discovering novel 

ways to manipulate this pathway for therapeutic purposes, given that this pathway 

involves apoptosis and thus can be linked to cancer. Additionally, success of this goal 

will help further solidify the validity and usefulness of BSI, a technique that has yet to be 

popularized despite possessing many benefits.  
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