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1 ABSTRACT 

 

Large, hydrophilic polyoxoanions with high solubility in water and/or other polar solvents 

demonstrate unique solution behavior by self-assembling into single layer, hollow, spherical 

“blackberry”-like structures, which are obviously different from small, simple ions. These 

macroions cannot be treated as insoluble colloidal suspensions either because they form stable 

“real solutions”. These inorganic macroions demonstrate some features usually Pobelieved to 

belong only to complex biological molecules, such as the self-recognition, chiral recognition, and 

chiral selection in dilute solutions. Highly negatively-charged molecular rods with almost 

identical structures were observed to self-assemble into their individual ‘blackberry’ structures, 

demonstrating tiny differences (e.g. charge, charge distribution, and organic ligands) could lead to 

self-recognition behavior. Chiral recognition behavior was understood by studying the self-

assembly process in the racemic mixture solutions. Moreover, chiral organic molecules (lactic 

acid and tartaric acid) can be used to selectively inhibit the self-assembly process of one of the 

enantiomers. Meanwhile, polyoxometalate-based organic-inorganic hybrid materials demonstrate 

amphiphilic properties by self-assembling into vesicles and reverse vesicles in polar and non-

polar solvents, respectively, and form catalytic emulsions in biphasic environments. Designed 

hybrid molecules can be programed to different devices with applications in fluorescence, photo-

electronic conversion, molecular switch, and catalyst. 
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1 Chapter 1: Introduction to Polyoxometalates Macroions 

1.1 Introduction of macroions 
It was believed that electrolyte solutions can  be classified into two categories based on the 

electrolyte’s sizes, that is, solutions of simple ions (< 1nm, e.g. NaCl) and colloid suspensions (10 

nm ~ 100 nm, e.g. highly charge polystyrene latex dispersed in aqueous solution).
1
 The solutions 

of simple ions are well understood by the Debye-Hückel theory and its extended form, in which 

an ionic atmosphere model is used to explain the solution behavior of simple ions and the ions are 

believed to be homogeneously distributed in the solutions.
2
 Meanwhile, the colloid suspensions 

can be described by the Derjaguin-Landau-Verwey-Overbeek theory (DLVO theory), which 

suggests that the stability of colloid suspensions is the co-effect of van der Waals force (attractive 

force) and the static charge repulsion force.
3,4

 However, the missing gap between simple ions and 

colloids raises a quite interesting question: what happens when soluble ions reach the nanometer 

size scale? Our experimental results suggest that the highly charge large ions (1 nm ~ 10 nm) 

behave different from either simple ions or colloids in the solution state by self-assembling into 

thermodynamically-stable supramolecular structures.
1,5,6

 Therefore, we believe that solutions of 

large ions open a new research area by filling the gap between simple ions and colloids. These 

new members were named as macroions. Macroions are mainly composed of three groups of 

compounds: nanocages, bio-macromolecules, and polyoxometalates (POMs). 
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Figure 1.1 Illustration of the three categories of electrolyte solutions. 

Nanocages are a large group of metal organic complex clusters at the nanometer scale with 

applications in adsorption, separation, and catalysis.
7
 The clusters are synthesized by coordinating 

multi-functional organic ligands with metal ions, which are also named as metal-organic 

polyhedron (MOP). The cluster can be either highly positively charged (with neutral organic 

ligands) or negatively charged (negatively charged organic ligands).
7
 

 

Figure 1.2 Ball-stick represented model of negative charged (left) and positively charged (right) nanocage, 

respectively. 

The well-known bio-macromolecules, such as DNA, RNA, and proteins, could be highly charged 

and behave as macroions in solution. DNA and RNA are usually negatively charged due to the 
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existence of phosphate while proteins can be charged in both ways since they have both 

positively and negatively charged amino acids. Probably due to their macro-ionic properties, 

these bio-macromolecules are quite sensitive to the introduction of metal ions in solution by 

showing controllable folding and self-assembly behavior.
8-10

 

POMs, as the largest group of macroions, are the major topic of my dissertation and are 

introduced in the following section. 

 

1.2 Introduction to polyoxometalates 

Polyoxometalates are a large class of metal-oxide cluster anions consisting of early transition 

metals (usually Mo, W, V, Nb, and Ta) in their high oxidation states and oxo ligands.
11,12

 POMs 

usually are anions that consist of three or more transition metal-oxo polyhedron linked together 

through shared oxygen atoms to form a large, closed 3-dimensional framework. Due to the 

multiple valences and coordination formats of the center metal ions and various kinds of 

connections of these metal oxide polyhedron units, POMs demonstrate extremely rich topological 

structures, sizes, and charges, and can be structurally classified into several different types (see 

Figure 1.3).
11

 Based on the elemental and molecular structural analysis, POMs can be classified 

into isopolyoxometalates, with general formula as [MmOy]
p-

, and heteropolyoxometalates, with 

general formula as [XxMmOy]
q-

 (M is the early transition metals and X is hetero atoms such as 

phosphorus or silicon). For both kinds of POMs, the MO6 octahedron is the basic building unit of 

the POM framework. According to Lipscomb’s principle, no MO6 octahedron can have more than 

two unshared oxygen atoms (terminal oxo ligand).
13

 The MO6 with only one terminal oxo ligand 

is called type I octahedron and the one with two terminal oxo ligands is called type II octahedron. 

Since type I MO6 octahedron can accommodate addenda metal atoms with d
0
, d

1
, and d

2
 

electronic configurations, whereas type II octahedron are restricted to d
0
 metals only, there is a 
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structural limitation upon the reducibility of POMs. The reduction of POMs must be accompanied 

by only minor structural changes, which can be achieved if the POM is constructed only by type I 

MO6 octahedron (type I POM) since an electron added to metal centers enters an orbital that is 

predominantly non-bonding with minimal subsequent bond length alternation. On the other hand, 

if the MO6 of POM have two cis terminal oxo ligand (type II POM), the added electron must 

enter an anti-bonding orbital and will result in large structural changes.
14

 

As the major types of POMs- Keggin, Lindqvist, Dawson, and Anderson type POMs- have been 

synthesized and characterization several decades ago, they are still hot topics in catalysis and 

organic-inorganic hybrid materials. Keggin type POMs, first reported by Keggin in 1933 with 

formula [XO4M12O36]
n-

, have overall Td symmetry and are based on a central XO4 tetrahedron 

surrounded by twelve MO6 octahedron (all type I) arranged in four groups of three edge-shared 

octahedron, M3O13.
15

 Lindqvist type POMs, with the formula [M6O19]
m-

, are a super octahedron 

composed of six type I MO6 octahedron through edge-sharing linking.
16

 Anderson type POMs, 

[XO6M6O18]
r-
, show planar structures with D3d symmetry. The center octahedron, XO6, is 

surrounded by six type II edge-sharing linked MO6 octahedron.
17

 The Wells-Dawson POM, first 

characterized by Dawson, is considered as the second best known POM. Dawson-type POMs are 

of cylinder-shape with length and diameter as 1.3 and 1.0 nm, respectively. Their structures are 

derivate from Keggin-type POMs by symmetrically linking two tri-lacunary Keggin-type POMs. 

Therefore, Dawson-type POMs show very similar chemical properties (e.g. spectroscopic, redox, 

and catalytic properties) with Keggin POMs even though their stability is weaker.
18,19

 Keggin, 

Dawson, and Lindqvist-type of POMs are type I POMs while Anderson type POMs are type II. 
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Figure 1.3 POM anions with different topologies and sizes. Reprinted with permission from ref. 5. Copyright 

2011 Wiley-VCH. 

Compared to simple ions, POM anions have much larger sizes and lower charge densities. They 

are highly soluble and form real solutions, which is different from thermodynamically unstable 

colloids. Thus, the solution behavior of POM anions, especially their interaction with counterions, 

is different from the previous two types of systems. On the other hand, POM macroions can be 

used as initial candidates for understanding polyelectrolyte solutions. The polyelectrolyte 

solutions are very complex and still poorly understood because both intermolecular and 

intramolecular interactions need to be considered. POM macroions with well-defined molecular 

structure, mass, shape and charge density are ideal, simplified model systems where only 

intermolecular interactions need to be considered.
1,20

 As the result, the POM macroions are 

extremely valuable systems for understanding the transition from simple ions to colloids, and 

particularly important for exploring the macroion-counterion interaction when the two parts have 

inegligible, but still not significant size differences. 

Having been known for centuries, POMs still attract a lot of interest due to their outstanding 

properties in catalysis, medicine, and photo-electronic responses.
12

 Due to the ability to reversibly 

change oxidation states of metal centers with minor structural change and acidic properties, 

POMs are considered to be good catalytic materials with high stability and wide working range, 

including oxidation, hydroxylation, esterification, polymerization, and C-H bond activation 
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reaction.
21

 Currently, more than 80% of the patent applications concerning the application and 

properties of POMs are related to catalysis.
22

 Recent years have witnessed great development of 

POMs’ application as catalysts. ‘Sandwich’ type POMs have been developed as the fastest, 

carbon-free molecular water oxidation catalyst to date, which is of significance in artificial 

photosynthesis.
23

 POMs with complicated structure were developed to selectively catalyze 

functionalization of certain positions of target molecules.
24,25

 What is more, POMs were 

incorporated into metal organic framework (MOF) and were used as high efficiency and selective 

catalytic materials.
26,27

 As early as the 1970s, heteropolyoxometalates that catalyzed the hydration 

of propene had been industrialized in Japan with the production as 50,000 t per year. After that, 

the hydration of isobutene and n-butene were realized with large production. With the catalyst as 

phosphomolybdate, methacrolein was oxidized to produce methacrylic acid (220,000 t per year) 

in 1982.
22

 

Although most of the current POM catalysts show high efficiency during the reaction process, 

most of them are homogeneous systems and share the common drawbacks, that is, 

catalyst/product separation and catalyst reuse are difficult. The immobilization of catalytically 

active species onto solid supports can solve the catalyst recovery and recycle process. With the 

help of noncovalent interactions, POMs can be loaded onto inert solid supports such as zeolites
28

, 

ionic polymers
29,30

, and ionic liquid functionalized silicon substrates
31

. Another way for the 

preparation of such heterogeneous system is to incorporate POMs into MOF structures.
26,27

 

However, these systems have disadvantages. For the former type of heterogeneous catalysts, the 

leaching of POMs due to the non-covalent interaction and the high price for the substrate are two 

weak points for such kinds of materials.
31

 POM-MOF structures actually are the ideal 

heterogeneous catalytic materials with high efficiency, stability and selectivity. However, the 

design and preparation of such structures are quite difficult with rare examples and are currently 

not so easy to be industrialized. On the other hand, as an important issue in research on catalysts, 
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two or more immiscible liquid phases reaction systems cannot be catalyzed with high efficiency 

by either the homogeneous or heterogeneous catalytic materials referred above. 

1.3 Introduction to polyoxometalates-organic hybrid materials 

POMs, generally speaking, are completely hydrophilic, and therefore are not compatible with 

organic media. The rigid nature of POMs, as well as their incompatibility with organic media 

hinders the development of POM-based functional materials. Thus, organic functionalization of 

POMs has been becoming a hot topic and attracting more and more interest, which is able to 

enhance POMs’ compatibility and processibility.
32,33

 Currently, two major different ways are 

provided for the organic functionalization of POMs: 1) non-covalently grafting organic ligands 

onto POMs’ surface through electrostatic, hydrogen bonding or van der Waals interactions; 2) 

covalently or iono-covalently linking organic fragments to POMs’ surface.
32

 Due to the 

advantages of covalent functionalization in stability and controllability, the application of the 

corresponding products has extended from self-assembly research, constructing framework 

materials to building catalytic-active devices.
32,33

  

Dolbecq et al. summarized the previous research on covalent functionalization of POMs and 

suggested six different modes for organic groups to be covalently linked to POM units.
32

 In this 

dissertation, the functionalization of Lindqvist, Anderson, and Dawson type POMs is presented in 

the following section since most of the current synthetic and materials design research start from 

them. 
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Figure 1.4 Main coordination modes of organic groups covalently linked to POM units via p-block elements. 

Reprinted with permission from ref. 32. Copyright 2010 American Chemical Society. 

1.3.1 Organoimido derivatives of hexamolybdate 

The organoimido derivatives of hexamolybdate were formed by replacing one or more oxo 

ligands on the surface of hexamolybdate with the nitrogen atom of organic fragments. The 

organic ligands conjugated link to the surface of hexamolybdate through a Mo≡N triple bond. 

Zubieta et al. first mentioned the synthesis of aryl imido derivatives of hexamolybdate in 1988 

through the reaction of [MoCl4(NNMePh)] with [(n-Bu4N)2[Mo2O7].
34

 Since then, Maatta, 

Errington, Proust, and Peng have developed different synthetic protocols, which significantly 

increased the number of organic imido derivatives with varied functional groups.
33

 

Due to its special conjugated linkage, Neumann and Maatta studied the electron transfer 

properties from organic fragments to hexamolybdate and proposed their potential applications in 

photo-catalysis.
35,36

 Peng succeeded in incorporating hexamolybdate in the main chains and side 

chains of conductive polymers, respectively through such covalent functionalization and the 

obtained hybrid materials were claimed to be good candidates for research in photo-catalysis, 

solar cell, and electronic devices.
37,38

 Wei et al. observed the C-H bond activation by 

hexamolybdate in its alkyl imido deritives.
39
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Figure 1.5 Structural representation of the obtaining of aryl imido derivatives of hexamolybdate. 

1.3.2 Organically functionalization of hexavanadate, Anderson-, and vanadium-capped 

Dawson-type POMs with trisalkoxoides 

In the molecular structures of hexavanadate, Anderson- and vanadium-capped Dawson-type 

POMs, the three neighbor u3-oxo ligands are comparatively more highly negatively charged than 

the other oxo ligands, which are either protonated or coordinated with metal ions without organic 

functionalization. Being similar to the esterification reactions, the three protonated u3-oxo groups 

can react with organic trisalkoxoides and form three C-C single bonds by removing three 

molecules of water. Due to the strong stability of the linkages and the multiple functional groups 

that can be attached on the organic fragments, the obtained hybrid materials have been widely 

studied for their applications.
32

 

Cronin et al. designed 3D porous crystalline materials and cell selective adhesive matrix from 

organically functionalized Anderson-type POMs.
40,41

 Hill and Cronin built POM-based catalytic-

active dendrimer and dimer materials from functionalized Dawson-type POMs.
42,43

 Surfactants 

with POMs as polar head groups were designed and synthesized through the introduction of alkyl 

tails or hydrophobic aromatic groups into organic fragments of the three different types of POMs’ 

hybrids.
41,44-46
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Figure 1.6 a) Structural representation of the organic functionalization of Anderson-type POMs; b) Organically 

functionalized hexavanadate; c) Structural representation of the organic functionalization of Dawson-type 

POMs. Reprinted with permission from ref. 32. Copyright 2010 American Chemical Society. 
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2 Chapter 2: Introduction to the Solution Behavior of POMs 

and Their Hybrids 
Polyoxometalates (POMs), a large group of metal oxide clusters, are important due to their wide 

application as catalysts, photo-electronic/magnetic materials, and biologically active materials.
1,2

 

The self-assembly of POMs at different scales ranging from nanometer to micrometer has been 

recognized as a hot topic since it is well-known that the performance of POMs-based devices and 

materials depends strongly on their self-assembly structures. Currently, various ways are 

available to assemble POMs into nano-, micro-, or framework structures.
3
 Moreover, the nano-

scaled, uniform POMs may also be applied as valuable model systems to address fundamental 

scientific issues.
4
 

Metal oxide polyhedra of POMs (MOx, M=Mo, W, V, and Nb; x= 4~7, e.g. the different colors of 

the POMs in Table 1 represent different types of metal oxide polyhedra; light blue, MoO7 

pentagon bi-pyramid polyhedron; dark blue, MoO6 octahedron; yellow, FeO6 octahedron; light 

green, CrO6 octahedron; dark green, VO6 octahedron) can be considered as ‘monomers’ while 

they are linked with each other through corner-, edge-, or face-sharing manners, which enable 

synthetic chemists to build POMs with different topologies and sizes.
2
  

Due to the excess of oxo ligands over metal ions, POMs are usually highly negatively charged, 

i.e., they exist as soluble macro-anions in solution. This feature makes the POMs unique, as such 

macroions have well-defined molecular structures, uniform shapes, tunable charges and no intra-

molecular charge interactions, and demonstrate completely different behaviors than regular small 

ions or large, unstable colloidal suspensions. These polyoxoanions are ideal models for 

understanding the broadly defined macroionic solutions including polyelectrolytes and 

biomacromolecular systems, e.g., the interaction between DNA and proteins and the formation of 

virus capsids.
4,5
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Meanwhile, organic functional groups can be covalently grafted to the surface of POMs, resulting 

in a new type of amphiphilic hybrid materials.
6-8

 The solvophobic interaction of the amphiphilic 

molecules in appropriate solvents can trigger the formation of micelles, vesicles, and reverse-

vesicle structures,
9-17

 which expands the compatibility of the POMs in organic media. 

2.1 Solution behavior of macro-polyoxoanions 

Table 2-1 Information on the structure, charge density, and self-assembly behavior of macro-polyoxoanions in 

aqueous solutions. 

Polyoxoa

nion 

{Mo72Fe30} {Mo72Cr

30} 

{Mo154} {Cu20P8W4

8} 

{P4Y9W4

3} 

{Mo132} {Mo72V30} 

Molecular 

structure 

     
  

Negative 

Charge 

0 ~ 1 1 ~ 29 29~30 5 15 25 30 42 31 

Size 

(nmx) 

2.5 2.5 3.6 X 

1.2 

2.2 X 1.1 4 X 2 X 

2 

2.9 2.5 

Charge 

Density 

(nm-2) 

0 ~ 

0.051 

pH<2.

9 

0.051 ~ 

1.477 

2.9<pH<6

.6 

unstab

le 

pH>6.

6 

0.255 0.543 1.291 1.08 1.590 1.579 

Self-

Assembly 

in 

aqueous 

solution 

No Yes unstab

le 

Yes Yes Yes Yes Yes at 

high 

conc. 

No 

Rh of 

Blackberr

y (nm) 

 48 ~ 15  60 45 38 46   

 # x represents the dimension of size. 

 Formula ref 

{Mo72Fe30} [MoVI
72FeIII

30O252(CH3COO)12{Mo2O7(H2O)}2{H2Mo2O8(H2O)}(H2O)91]* ca.150H2O 21 

{Mo72Cr30} [{Na(H2O)12}⊂{MoVI
72CrIII

30O252(CH3COO)19(H2O)94}] *ca.120H2O 
25 

{Mo154} Na15[Mo154O462H14(H2O)70]0.5[Mo152O457H14(H2O)68]0.5 * ca.400H2O 18 

{Cu20P8W48

} 
K12Li13[Cu20Cl(OH)24(H2O)12(P8W48O184)] * 22H2O 24 

{P4Y9W43} K15Na6(H3O)9[(PY2W10O38)4(W3O14)] *39H2O 23 

{Mo132} (NH4)42[{(MoVI)MoV
I5O21(H2O)6}12{Mo2O4(CH3COOH)}30] * ca.300H2O* ca.10CH3COONH4 

19 

{Mo72V30} Na8K14(VO)2[{(MoVI)MoVI
5O21(H2O)3}10{(MoVI)MoVI

5O21(H2O)3(SO4)}2{VIVO(H2O)}20{VIVO}10({KSO4}5)

2] * ca.150H2O 

22 
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The past decades witnessed significant development in the synthesis of giant POMs with sizes 

ranging from ca. 2 nm to 6 nm (Table 2-1).
18-25

 From physical chemists’ point of view, these 

macroanions are valuable models to understand the transition of solution behavior from simple 

ionic solution (e.g. NaCl solutions, described by Debye-Hückel theory) to colloidal suspensions 

(Derjaguin-Landau-Verwey-Overbeek theory, or DLVO theory).
4
 

2.1.1 The discovery of the self-assembly of POM macroanions 

Large, anionic POMs were observed to slowly form large structures in aqueous solution even 

though the POMs were highly soluble.
26

 Laser light scattering (LLS), a powerful technique for 

analyzing particles or polymers (including bio-macromolecules) in solution, is used to monitor 

the dilute POM solutions. By measuring the scattered intensity from solutions at different 

scattering angles, static light scattering (SLS) can be used to determine the average molecular 

weight ( ) and radius of gyration (Rg) of the aggregates. Dynamic light scattering (DLS) 

measures the intensity-intensity time correlation function from the scattered light, which is 

analyzed by the CONTIN method to calculate the average hydrodynamic radius (Rh) of the 

particles and the particle size distribution.
4
 The LLS results indicated that large structures were 

detected in various POM solutions, which took a long time to reach equilibrium at room 

temperature.
4
 A typical CONTIN analysis from the DLS study of {Mo154} aqueous solution at 

pH=3.0 showed the formation of large assemblies with an average Rh of 45 nm and a narrow size 

distribution (Fig. 1b). SLS study analyzed by the Zimm plot indicated that the assemblies had an 

average  of 2.54 x 10
7
 g/mol (ca. 1150 {Mo154}) and an average Rg of 45 nm. The relation of 

Rh/Rg ≈ 1 for spherical objects (TEM image in Figure 2.1a) and the low mass suggested a hollow, 

single-layered vesicular structure with the average inter-{Mo154} distance ~0.9 nm. Since {Mo154} 

was fully hydrophilic, the assemblies were formed due to different driving forces from the 

surfactant vesicles where hydrophobic interaction was critical. A nickname “blackberry” was 
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given to the new aggregates due to the similarities between the two species (Figure 2.1c).
27

 The 

free-energy favored stable blackberry structures have been observed in appropriate polar solvents 

of different POM macroanions.
4
 

 

Figure 2.1 a) TEM image on dilute aqueous solution of {Mo154} macroions showing the existence of spherical, 

∼45 nm radius assemblies. b) Zimm plot based on the SLS study of the {Mo154} aqueous solutions at pH=3; 

(inset) CONTIN analysis on the DLS study of the same solution. c) Schematic plot showing the supramolecular 

blackberry structure formed by {Mo154} macroions in aqueous solution. Reprinted with permission from ref. 27. 

Copyright 2003 Nature Publishing Group. 

2.1.2 Driving forces of the self-assembly behavior 

 

Figure 2.2 Transition from discrete macroions (molecules) to blackberries, then to discrete macroions due to the 

change of solvent content for 1.0 mg/mL {Mo132} in water/acetone mixed solvents. Reprinted with permission 

from ref. 28. Copyright 2007 American Chemical Society. 

The blackberries represent a new type of self-assembled structures in solution, formed by 

hydrophilic ions with large size and moderate charges. The most critical issue is the driving force 

behind the assembly process. A simple experiment can help clarify this issue and distinguish the 

macroions from other types of solutes. LLS results revealed the presence of {Mo132} blackberries 



 

18 

in water/acetone mixed solvents containing 3 to 70 vol% acetone, with the average Rh of 

blackberries increasing from 45 to 100 nm with increasing acetone content (Figure 2.2).
28

 Only 

discrete {Mo132} clusters were found in solutions containing <3 vol % and >70 vol % acetone, 

under which circumstances the discrete macroanions were of very high and very low charge 

density, respectively.
28

 In an acetone-rich solvent, the strong counterion condensation made the 

effective charge of {Mo132} very low. In such a case, {Mo132} clusters existed as single clusters 

without any assemblies. With increasing water content, the effective charge of the macroions 

increased, which should increase the electrostatic repulsion between individual {Mo132} 

macroanions. Instead, the {Mo132} macroanions started to attract strongly with each other and 

form blackberries. This observation rules out the possibility that van der Waals forces are the 

major driving force for the self-assembly process.
4
 

On the other hand, in various macroionic solutions, the blackberry size shows a linear relationship 

with the inverse of the dielectric constant of the solvent, which implies a charge-regulated self-

assembly process for blackberry formation (Figure 2.3).
29

 The assumption of such a ‘charge-

regulated’ self-assembly process was further confirmed by the pH-controlled self-assembly 

behavior of {Mo72Fe30}. {Mo72Fe30} can be treated as a weak nano-acid by partially 

deprotonating of 30 water ligands coordinated to the 30 Fe(III) centers on its surface.
21

 The 

chemical equilibrium for deprotonation and protonation of {Mo72Fe30} could be tuned by 

changing the pH of the aqueous environment, which finally affected the net charge of the 

POMs.
30

 LLS studies indicated that the blackberry formation could be observed in solution with 

pH > 2.9, however, no aggregates formed in solutions with pH < 2.9 (Table 2-1).
30

 The 

experimental results suggested that the charge density of {Mo72Fe30} was too low in solution with 

low pH to form blackberry structures, which not only ruled out the major contribution of van der 

Waals forces, but also confirmed the importance of charge effects in blackberry formation.
4
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Figure 2.3 Plot of the average blackberry radius (in Rh) versus the inversed dielectric constant (1/ε) of the 

solvent for various POM macroions in water/acetone mixed solvents. Linear relationship roughly follows for 

these systems. Reprinted with permission from ref. 4. Copyright 2010 American Chemical Society. 

The study of {Mo132} and {Mo72Fe30} solutions suggested that the charge density of the 

macroanions should be neither too low nor too high in order to form blackberry structures. The 

explanation might be that the counterion-mediated attraction is not strong enough to overcome 

the repulsion between POMs with too high charges, while POMs with too low charges are not 

able to hold counterions as ion-pairing structures, which will largely reduce the attractive force.
4
 

The data on the molecular structures and solution behaviors of macroanions can be used to 

estimate the proper charge density range for the self-assembly behavior (Table 2-1). Basically, 

the charge density of macroions with the size of 2~4 nm should be within the range of 

0.051~1.471 nm
-2 

in order to be able to self-assemble into blackberry structures in aqueous 

solution. However, the macroanions with charge densities < 0.051 nm
-2 

or > 1.579 nm
-2 

are 

supposed to stay as discrete single anions or molecules. Obviously, this charge density range will 

change when the macroionic size varies. 

2.1.2.1 Counterion-mediated attraction 

By realizing the importance of charge in the blackberry formation and the uniqueness of the 

macroionic solutions, we tried to seek for the possible contributions of the counterion-mediated 

attractions as the possible driving force. Similar cases were reported in polyelectrolyte and 
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biomacromolecular (proteins and DNAs) solutions, although usually multivalent counterions are 

needed (in our current cases monovalent counterions already can achieve this).
31

 Inspired by the 

formation of bound pairs of highly charged polystyrene latex in aqueous environment, Ise and 

Sogami confirmed the counterion-mediated attraction between like-charged colloidal particles 

experimentally and theoretically (although it is still controversial in the colloid community since 

van der Waals forces among colloidal particles are so dominant).
32

 

2.1.3 Source of counter-ion mediated interaction 

Due to their high charges and size disparity between them and their counterions, macro-

polyoxoanions can strongly associate with their counterions and form ion-pairs, which are 

considered to play a significant role in the formation of blackberry structures. 

2.1.3.1 Small-angle X-ray scattering 

Small-angle X-ray scattering (SAXS) can be used to explore the information on the shape and 

size of macromolecules, characteristic distances of partially ordered materials, pore sizes, and 

other data, such as the determination of the microscale or nanoscale structure of particle systems 

in terms of such parameters as averaged particle sizes, shapes, distribution, and surface-to-volume 

ratio.
33

 SAXS is appropriate for studying the POMs in dilute solution because of their giant sizes 

and well-defined structures.
34,35

 Within appropriate concentration range, SAXS curves are quite 

sensitive to the changes of radius of gyration (Rg) and shape of POM anions.
34,35

 Either 

counterion association around POMs or the self-assembly of POMs will lead to noticeable 

changes in SAXS curves, which can be further quantitatively interpreted by calculating the Rg 

value and the distance pair distribution functions.
34,35

 

2.1.3.2 Counterion distribution around polyoxoanions 

{Mo72V30} stays as discrete anions in dilute aqueous solution due to its high charge density, 

which makes it a good model for studying the counterion distribution around macroanions.
34,36
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Figure 2.4 Top: Distance distribution functions based on calculated and experimental scattering data for 

{Mo72V30} obtained by using an indirect Fourier transform of the primary SAXS data. (○): 0.052 mm {Mo72V30}, 

(●): 0.013 mm {Mo72V30}, (—): {Mo72V30} calculated. Bottom: Experimental distance distributions for 0.26 mm 

{Mo72V30} in water and acetone/water mixed solvents with various acetone content (in vol %). (—): 75% 

acetone/water, (○): 65% acetone/water, (- - -): 45% acetone/water, (…): 10% acetone/water, (□): in pure water. 

Reprinted with permission from ref. 34. Copyright 2009 Wiley-VCH. 

{Mo72V30} macroanion theoretically can carry ~ 31 negative charges with the counterions being 

14 K
+
, 8 Na

+
, 2 VO

2+
, and 5 H

+ 
in its very dilute solutions (the protons might be partially 

associated with surface oxo ligands). The corresponding SAXS curve identified several peaks 

which could be fit by the form factor of single {Mo72V30} cluster. The distance pair distribution 

p(r), the probability of finding the vector length r in a molecule, could be generated from the 

Moore analysis of the SAXS curve to provide a physically meaningful description of the particle 

morphology.
34

 For {Mo72V30} in dilute aqueous solution, the p(r) curves shown in Figure 2.4(top) 

correspond to single {Mo72V30} clusters (a core-shell spherical particle with a maximum linear 

dimension of 26 Å) with no counterion association around macroions. However, when the 

concentration was over 0.052 mM or a certain amount of acetone was introduced into the 

solution, another new peak appeared (centered at ~30 Å and extends the effective distribution to 

~34 Å) in the p(r) plot (Figure 2.4). The original distribution remained unchanged, suggesting 

that the macroions still existed as discrete ions. This additional peak suggested that some metal 

counterions were closely associated with the macroions and distributed in the range of 0.2-0.9 nm 
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to the surface of macroions. The peak due to the associated counterions became more and more 

significant with increasing POM concentration or acetone content. Meanwhile, Guinier plots 

indicated that the average Rg value of the {Mo72V30} macroions also increases, accordingly. The 

appearance of the peak due to associated counterions was consistent with the appearance of the 

blackberry structures, indicating the direct connection between these two issues and the role of 

counterions on the blackberry formation.
34

 

The counterion effect is critical in the current case because the size disparity between the 

macroions and counterions is obvious, but not significant (like in the case of colloids). In other 

words, in macroionic solutions, the counterions cannot be treated as point charges (in colloidal 

suspensions it has no problem) and consequently the hydrated size of the counterions becomes 

important. This introduces more challenges to theoretical approaches because the mean field 

approach cannot be applied for the macroionic solutions quantitatively.
4,34

 

2.1.3.3 Counterion exchange around macranions 

The appropriate size disparity between macroions and their counterions also renders the 

macroions another important feature–it can accurately distinguish monovalent counterions with 

different hydrated sizes, and has a corresponding preference sequence. In other words, the 

exchange of monovalent counterions around such macroions can be achieved. A simple 

observation was the change of blackberry size when a small amount of proper extra salt was 

added (Figure 2.5). For {Mo72Fe30}, the original counterions were protons. Its blackberry size did 

not change from the salt-free solutions when 1-20 mM LiCl or NaCl was added. However, when 

0.1-10 mM KCl was added, the blackberry size became considerably larger (Rh~34.6 nm). Same 

result was observed when RbCl was introduced (Rh~35.7 nm). A reasonable explanation is that 

K
+
 and Rb

+
 ions (smaller hydrated sizes) could replace the protons around {Mo72Fe30}, which 

would increase the attractive force between macroions and lead to larger blackberries, while large 

hydrated ions such as Li
+
 and Na

+
 could not replace the protons due to their lower priority.

35
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Figure 2.5 Change of blackberry size (in Rh) with added chloride salt concentration (A) and total ionic strength 

(B) for 0.5 mg/mL {Mo72Fe30} solutions. For each added cation salt there is a CSC (critical salt concentration), 

above which the blackberry size increases with increasing salt concentration. Reprinted with permission from 

ref. 35. Copyright 2010 American Chemical Society 

This speculation was confirmed by isothermal titration calorimetry (ITC) studies. By adding 

NaCl to the aqueous solution of {Mo72Fe30}, there was no measurable binding of Na
+
 ions to 

macroions even with the molar ratio of Na
+
 to POM of 1000:1. The titration curve for KCl 

indicated that binding between the K
+
 ions and the {Mo72Fe30} macroions was present. 50-60 K

+
 

were needed for completely saturating the binding sites (~6) on {Mo72Fe30}. Instead, < 10 Rb
+
 

ions were needed for saturation, suggesting that the binding to {Mo72Fe30} macroions was much 

stronger for Rb
+
 than for K

+
. The ITC studies provided direct confirmation that the binding 

strength between {Mo72Fe30} and monovalent cations followed the order of (Li
+
, Na

+
) < H3O

+ 
< 

K
+ 

< Rb
+ 

< Cs
+
, which was completely consistent with the observed corresponding blackberry 

formation processes.
35

 

Direct evidence for the counter-cation exchange was obtained from anomalous small-angle X-ray 

scattering (ASAXS) studies. When Rb
+
 was present in {Mo72V30} solution, there was an obvious 

difference between the I(Q) response obtained at different energies. The difference indicated that 

Rb
+
 distributed homogeneously and isotropically around the macroions, which meant that the 

replacement of K
+
 by Rb

+
 in {Mo72V30} solution was possible. Furthermore, pH value of the 

aqueous solution decreased due to the release of more free protons resulted from counterion 
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replacement. The capability of distinguishing different monovalent cations in dilute solution is 

unique for these hydrophilic macroions.
35

 

2.1.3.4 Water-bridged Hydrogen Bonding 

{Mo72Fe30} and {Mo72Cr30} are two POMs with the same size and morphology.
21,25

 They can be 

of the same charge density by carefully tuning the pH of their individual aqueous solutions, 

however,  their assembly sizes are very different (even with the same charge density), which 

implies the existence of another strong inter-POM force besides charge interaction (Table 2-1).
36

 

{Mo154}, a wheel-shape molecule with 70 water ligands on its surface, was applied for dielectric 

relaxation measurements to directly uncover the role of ‘the force’, hydrogen bonding in the 

formation of blackberry structures.
37

 The conductance-corrected dielectric spectra and difference 

spectra of a freshly prepared solution and ‘aged’ solution (two weeks after the preparation) were 

comparatively studied, which indicates that ‘the strength of the hydration extends as cluster 

association takes place with more water molecules being more strongly bound between the 

wheels and the presence of relatively fewer less strongly bound water molecules’.
37

 Simply put, 

the water can stay between the macroanions with higher viscosity than pure water, which can 

support additional hydrogen bonds help to bind the POMs together. However, pH-dependent self-

assembly of {Mo72Fe30} and {Mo72Cr30} in aqueous solution indicated that the two clusters were 

not able to self-assemble into blackberry at low pH, suggesting that water-bridged hydrogen 

bonding might not be the major driving force for the blackberry formation, but the force to 

strengthen the interaction between macroions.
30,36

 

2.1.3.5 Stability of polyoxoanions in salt-containing aqueous solutions 

The stability of polyoxoanions and blackberry structures has been explored at high salt 

concentrations. Basically, the stability of blackberries can be studied in the same way as we do 

for colloidal systems due to their larger sizes than discrete POM anions. As the fundamental 
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theory in colloidal science, DLVO theory reveals that charge repulsion stabilized the charged 

particles while van der Waals force leads to the coagulation of the particles.
4
 Usually adding extra 

ions can be used to destabilize the colloidal system since it significantly screens the repulsive 

interactions. Different types of cations were added to the aqueous solutions of {Mo72Fe30} with 

different concentrations, respectively (Table 2-2). Precipitation, indication of the instability, can 

be observed when the concentrations of added salts passed a critical salt concentration (CSC). 

The monovalent cations with small hydrated radii had lower CSC values. The cations with higher 

valence showed much lower CSC values. Interestingly, there was no trend among different 

divalent cations like that observed among the monovalent cations. In this respect, the valence of 

the divalent cations was so dominant on determining the stability of blackberries which made 

other factors, e.g., the hydration of the cations, negligible. Macroanionic concentration 

dependence was found where the stability of the {Mo72Fe30} solution increased with increasing 

macroanionic concentration. This behavior is likely attributed to the close association of 

monovalent counter-ions around macroions existing in aqueous solution which is facilitated at 

higher macroionic concentrations. The precipitates from {Mo72Fe30} solutions could be re-

dissolved in solution (except for solutions containing Cs
+
 or Rb

+
) when adjusting the solution 

pH<1.5 so that the {Mo72Fe30} clusters became almost neutral and fully protonated.
38

 

Table 2-2 Critical salt concentrations needed for precipitating {Mo72Fe30} blackberries from different 

{Mo72Fe30} concentrations. Reprinted with permission from ref. 38. Copyright 2010 Elsevier. 
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2.1.4 Controlling the assembly/disassembly and blackberry size 

The assembly and disassembly of blackberries, as well as the transition between the blackberries 

with different sizes, can be achieved by properly adjusting parameters such as the macroionic 

charge density, solvent polarity, and extra salt concentration. 

2.1.4.1 ‘Power on/off’ the self-assembly process and accurately controlling the blackberry size 

The charge density of macroions can be tuned by changing the concentration or temperature of 

the macroionic solutions besides the effects of solution pH and solvent polarity that discussed 

earlier. The charge density is too low for macroions to self-assemble when the pH of 0.5 mg/mL 

{Mo72Fe30} aqueous solution is < 2.9; or for {Mo132} in acetone/water solution the acetone 

content is over 70%vol. The self-assembly process can be triggered by adding base into the 

aqueous solution of {Mo72Fe30}, or adding appropriate amount of water to the acetone/water 

solution of {Mo132}.
28,30

 On the other hand, the disassembly of the blackberries can be achieved 

by applying the reverse procedures. {Mo72Cr30} shows the similar pH-controlled self-assembly 

behavior with {Mo72Fe30} by displaying the ‘switch’ point at pH=2.7.
36

 {Mo72V30} is able to self-

assembly into blackberry within the range 2-90 vol% acetone in acetone/water mixed solvents.
36

 

Meanwhile, due to the capturing of counterions (ammonium) in the nano-pores on the surface of 

{Mo72Fe30}, its charge density is lowered and appropriate for counterion-mediated self-assembly. 

However, the total scattered intensity dropped, which meant the blackberry disassembled, after 

mild heating of the solution from room temperature to 40 ⁰C.
39

 The ‘power off’ process can be 

explained by exceeding the critical charge density of {Mo72Fe30} resulted from the temperature 

enhanced release of the ammonium ions from the pores into the bulk solution.
39
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Figure 2.6 Average hydrodynamic radii (Rh) of the blackberries formed in 0.5 mg/mL aqueous solutions of 

{Mo72Fe30} at different pH (adjusted by NaOH or HCl), as measured by DLS at 90˚ scattering angle. TEM 

images of aggregates on carbon film formed at pH∼3.0 (left; conventional TEM) and pH∼4.6 (right; more 

appropriate cryo-TEM). Reprinted with permission from ref. 30. Copyright 2006 American Chemical Society. 

By continuously tuning the pH of the weak acid type POMs’ solutions, the solvent polarity of 

strong electrolyte POMs’ solutions or adding cationic surfactants to macroionic solutions in the 

range that the formation of blackberry can be observed, the charge densities of macro-anions are 

supposed to be varied, which shows a significant effect in the size of the assemblies.
4
 In the 

aqueous solution of {Mo72Fe30},self-assembly occurs with the blackberry size decreasing with 

increasing pH, from Rh∼50 nm at pH =3.0 to Rh∼15 nm at pH=6.0 (Figure 2.6).
30

 The blackberry 

size of {Mo72Cr30} decreases from 70 to 40 nm within the pH range 2.7~7.0.
36

 LLS revealed the 

presence of the {Mo132} blackberry structures in water/acetone mixed solvents containing 3 to 70 

vol% acetone, with their average Rh increasing from 45 to 100 nm with increasing acetone 

content (Figure 2.2). The average blackberry size increased linearly with increasing 1/, with  

being the solvent’s dielectric constant (Figure 2.3).
28

 Similar trends have also been identified in 

{Mo72V30} and {W72Mo60} in water/acetone mixed solvents.
29

 A charge regulated self-assembly 

process was given to explain the formation of blackberries, which predicted that the vesicle size is 

proportional to the inverse of the dielectric constant of the solvent.
29
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Figure 2.7 (left) Gradually introducing alkyl trimethylammonium halide cationic surfactants into the dilute 

aqueous solution of {Mo72V30} cluster can gradually decrease the charge density on the {Mo72V30} macroions and 

induce blackberry formation. The average blackberry size increases with increasing surfactant amount (i.e., 

decreasing charge density on {Mo72V30}). (right) Average hydrodynamic radius (Rh) of the {Mo72V30} 

blackberries in aqueous solution containing CTAB or CTAT, measured by DLS. The concentration of {Mo72V30} 

is 0.5 mg/mL, equivalent to a molar concentration of 2.6 X 10-5M. Reprinted with permission from ref. 40. 

Copyright 2009 American Chemical Society. 

Cationic surfactants with long enough alkyl chains can interact with macroanions 

stiochiometrically and therefore be used to accurately decrease the macroionic effective charge 

(Figure 2.7). A typical study was carried out with {Mo72V30}, which does not show self-assembly 

behavior in dilute aqueous solution due to its high charge density.
40

 After introducing a small 

amount of water-soluble cationic surfactants, such as cetyltrimethylammonium bromide (CTAB), 

trimethyltetradecylammonium chloride (CTAT), dodecyltrimethylammonium bromide (DTAB), 

and octyltrimethylammonium bromide (OTAB), the charge density on {Mo72V30} macroions was 

expected to decrease so that the {Mo72V30} macroions will enter the blackberry-formation regime 

(Figure 2.7). The average Rh of the blackberries continued to increase with increasing surfactant 

concentration, as shown in Figure 2.7.
40

 CTAB and CTAT strongly interacted with the macroions 

stiochiometrically while shorter OTAB had much weaker interaction with the macroions.
40

 

Represented by {Mo72V30} and {P4Y8W43}, weak acid salt type POMs carry a considerable 

amount of charges in crystals but still further deprotonate some surface water ligands when 

dissolved in a solvent.
34,41

 For these macroions, their self-assembly processes can be controlled by 

either changing solvent content or changing solution pH (in aqueous solution). Consequently, 

such POMs are valuable for directly comparing the effects of solvent content and solution pH on 

the blackberry size. The yttrium-containing lacunary polyoxotungstate {P4Y8W43} macroanions 
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could form Rh∼53 nm blackberries in 0.3 mg/mL aqueous solution. The blackberry size increased 

with increasing amount of acetone added into the solution, which was quantitatively similar to the 

case of {Mo132} as described above. Changing solution pH could also alter the blackberry size. 

However, since the pH change only affected the amount of protons released from the macroions, 

the change of blackberry size due to pH was smaller than the change caused by changing solvent 

content.
41

 

2.1.4.2 Size limit of the ‘macroanions’ 

The size disparity between highly-charged particles and their counter-ions is considered to be the 

source for ion-pairing and like-charge interaction.
42

 The static charge interaction is stronger than 

the thermal motion of small counterions, however, weaker than the thermal motion of large 

particles. In that way, it can hold counterions around the highly charged particles. As a quite 

important but unsolved issue, what is the critical size for the macroion that can self-assemble into 

blackberry structures? Currently, the smallest polyoxoanions that were proved to be able to self-

assemble is {Cu20P8W48} with size as 2.2 X 1.1 nm (Table 2-1).
43

 Further exploration on POMs 

with different sizes have been undergoing in our lab to determine the critical size. 

2.1.4.3 Controlling the morphology of the assemblies 

 

Figure 2.8 (Left) Molecular structure of {(RSn)12O14(OH)6}
2+. (six-coordinated tin, green; five-coordinated tin, 

teal; u3-oxo, red; u2-oxo, purple; R, black; hydrogen, gray). (Right) The formation of large aggregate induced by 

dianions. Reprinted with permission from ref. 48. Copyright 2010 American Chemical Society. 

The macroions with anistropic charge distribution can also assemble into non-spherical objects 

with low symmetry. The tin-12 oxo cluster (Figure 2.8), {(RSn)12O14(OH)6}
2+

, first reported in 
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1989, is an interesting, positively charged organic-inorganic cluster. The football-shaped cluster 

exhibits two positive charges that are located at the poles of the cluster, defined by the six-

coordinated Sn ions and the u
2
 ligands.

44,45
 Because of the location of the two positive charges, 

the cluster can interact with dianions to show some interesting assembly behaviors. Very recently, 

Ribot et al. applied pulsed field gradient NMR spectroscopy to probe the anions mediated 

associative behavior of {(RSn)12O14(OH)6}
2+

. The counterion can only interact with the two poles 

of the {Sn12}, which finally direct the formation of a worm-like structure in organic solvents 

(Figure 2.8).
44,45

 

2.1.5 The unique slow self-assembly process vs. virus capsid formation 

Blackberries are thermodynamically stable, which is quite different from colloidal systems.
4,46-49

 

However, different from the comparatively fast self-assembly behavior of amphiphilic molecules, 

the macroanions need a long period of time, sometimes even several months at room temperature, 

to reach equilibrium state.
4,43,50

 The unique slow self-assembly process have been studied by 

long-time monitoring results and kinetic studies, which shared similarities with the self-assembly 

of virus capsid proteins.
4
 

2.1.5.1 The kinetic properties of the self-assembly 

 

Figure 2.9 (left) Change of total scattered intensity of {Mo72Fe30} solutions at 90˚ scattering angle. All solutions 

were kept at 25 ˚ C except one at 45 ˚ C (the data shown by black triangle). (right) CONTIN analysis of DLS 

study on {Mo72Fe30} aqueous solution at different times. Reprinted with permission from ref. 53. Copyright 2005 

American Chemical Society. 
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The slow blackberry formation under certain circumstances enables detailed study on the 

mechanism of the self-assembly. Figure 2.9 demonstrates a typical SLS and DLS study on the 

formation of {Mo72Fe30} blackberries in aqueous solution at different macroionic concentrations. 

The scattered intensity recorded by SLS continued to increase with time, suggesting the 

continuous formation of large structures in solution. At the same time, DLS studies indicated that 

there exist two modes (corresponding to two different types of particles) in solution: discrete 

macroions (Rh∼1.2 nm) and blackberries (average Rh∼25 nm). The first peak became smaller and 

smaller while the second one grew larger with time, indicating that the discrete macroions were 

continuously forming blackberries while the average blackberry size remained almost unchanged 

during the whole process. Combining the above information, we concluded that the formation 

mechanism of the blackberry should follow upper route in Figure 2.10. That is, at the beginning, 

the unimers slowly associated into dimers (or oligomers). This was the rate-determining step. 

Once enough oligomers were available, they quickly assembled into large blackberries. This step 

was fast so that no “small” blackberries were observed during the whole process.
43,50

 

 

Figure 2.10 Possible mechanisms of {Mo72Fe30} blackberry formation in dilute aqueous solution. The upper 

mechanism has been proven to be correct based on SLS and DLS results, while the bottom mechanism can be 

ruled out. Adapted with permission from ref. 43 and reprinted with permission from ref. 5. Copyright 2010 

American Chemical Society. 

The slow blackberry formation is attributed to the high energy barrier for the transition from 

single macroions to blackberries. Time-resolved SLS studies were used to determine the initial 

“reaction” rates in {Mo72Fe30} aqueous solutions at different temperatures. The ‘rate’ could be 
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significantly enhanced by increasing the temperature of the solutions. By using the Arrhenius 

equation ln(k)= -Ea/RT + lnA, the activation energy of the oligomer formation could be calculated 

as ∼115±8 kJ/mol, which was indeed very high (Figure 2.11).
50

 

 

Figure 2.11 (Left) Increment of the scattered intensity (I) from 0.5 mg/mL {Mo72Fe30}/H2O solutions at 

different temperatures (22, 35, 45, and 55 ˚C) with time indicates the progress of blackberry formation. (inset) 

Calculation of the activation energy (Ea) for the blackberry formation. Reprinted with permission from ref. 53. 

Copyright 2005 American Chemical Society. (Right) Thermodynamic demonstration of the blackberry 

formation. Reprinted with permission from ref. 57. Copyright 2011 AAAS. 

2.1.5.2 Lag Phase during the Blackberry Formation 

In aqueous solution containing no or small amounts of extra monovalent cations (e.g., NaCl, 

NaBr, NaI, and Na2SO4 at concentrations of 0.017 mol/L), the {Mo72Fe30} blackberry formation 

process, recorded by SLS studies as the time-resolved intensity curve, showed a linear 

relationship with time, similar to a first-order reaction.
50

 However, a lag phase was observed in 

the SLS studies of the dilute solutions of {Cu20P8W48}
43

 and  {Mo72Fe30}
50

 (in minutes). This lag 

phase became significant when the extra salt concentration was higher or introducing glycerol, a 

viscous and water-miscible solvent, as shown in Figure 2.12. The initial scattered intensity from 

this solution was very low, suggesting that almost all the {Mo72Fe30} macroanions existed as 

discrete anions. After a lag period of ~20 days, the intensity suddenly started to increase until it 

was stabilized after months at a very high level, indicating a slow formation of blackberries. 

Overall, the whole kinetic curve is sigmoidal.
51
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Figure 2.12 (left)Comparison of scattered intensity increment (A) and Rh change (B) of two {Mo72Fe30} samples 

along reaction time in 0.9wt% NaCl and salt-free solutions Reprinted with permission from ref. 54. Copyright 

2010 American Chemical Society. (right) Light scattering study of the assembly of HPV capsid proteins at 

various HPV concentrations. The lag time, reaction slope, and extent of assembly were dependent upon the 

initial protein concentration. Changes in scattered light were not observed until minutes later. Reprinted with 

permission from ref. 55. Copyright 2004 Elsevier. 

The sigmoidal curve for a self-assembly process has also been reported in other systems such as 

virus capsid formation (Figure 2.12)
52

, ester hydrolysis, vesicle formation, and nanoparticle 

preparation. In general, it is considered to be a typical feature of a two-step process: in the initial 

lag period, the “reaction” begins with the slow formation of oligomer nucleus; once the amount of 

the rate limiting nucleus has reached a critical value, subsequent oligomers or monomers are 

quickly added to the growing assembly structures at a time until it is complete.
51

 

To identify the oligomeric species during the lag period, sedimentation velocity (SV) experiments 

were performed on the 18
th
 day after the {Mo72Fe30} solution was prepared, corresponding to the 

final stage of the lag period in the kinetic curve (Figure 2.13). In a typical SV experiment, the 

experimental curves were fitted using the Lamm equation to deduce the sedimentation 

coefficients (s) of sedimentating species and their corresponding sedimentation coefficient 

distributions c(s) (Figure 2.13).
51

 For the {Mo72Fe30} solution on the 18
th
 day, the results showed 

the coexistence of two species: s ∼ 6.6 S with the dominant abundance (56%) and s ∼ 9.5 S 

(10%), corresponding to {Mo72Fe30} monomers and dimers, respectively. In addition, the 

measurement also suggested the possible existence of a small amount of larger oligomers (such as 

trimers) in solution. Besides the concentration of additional salts, the length of the lag period also 
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depended on temperature, the valence state of the cations and the anions, as well as the solvent 

content.
51

 

 

Figure 2.13 Continuous size distribution c(s) analysis of {Mo72Fe30} solution versus sedimentation coefficient, s. 

Experiments were performed at a {Mo72Fe30} concentration of 10 mg/mL in 170 mM NaCl solution at 20 °C. 

Reprinted with permission from ref. 54. Copyright 2010 American Chemical Society. 

The assembly structures and formation processes of blackberries and virus capsids (mostly 

spherical, single-layered structures formed by the ordered assembly of capsid protein units which 

are also soluble macroanions) demonstrate interesting structural similarities. Furthermore, the 

sigmoidal curves suggested that their self-assemblies might share similar mechanisms.
4,5

 The 

hydrophobic interaction is widely believed as the dominant driving force for the virus capsid 

formation. However, for the POMs, they do not contain any hydrophobic moieties, and thus, 

hydrophobic interaction does not play a role in the blackberry formation. Then the question is: is 

it possible that the electrostatic interaction might be underestimated in the virus shell formation? 

Ideally and potentially, the POM macroions might be useful as simple model systems to study the 

more complicated bio-macromolecular systems.
4,42

 

2.1.6 Permeability of Blackberry ‘Membrane’ to small cations 

Advanced AFM technology can realize in-situ detection of blackberry structures in solution state. 

A Si substrate was first modified with ammonium, which can positively charge the surface of 

substrate under low pH. Then the substrate was immersed in the solution of {Mo72Fe30} (vol 
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water/acetone = 1). The single POM anions and the formed aggregates were supposed to be 

negative charged, which favor to interact with the positively charged surface. Interestingly, ring-

like structures were found when the AFM tip tapped the surface immersed in solution. The size of 

the ring was about the same of the size of assemblies observed from LLS studies. As time went 

by, more and more ‘rings’ were detected, which was due to the comparatively slow adsorption of 

self-assembled structures on the surface. The AFM results confirmed that blackberries were likely 

negatively charged hollow structures and the shell of the sphere can be broken by AFM tips.
42

 

 

Figure 2.14 (left) Formation of fluorophore-containing {Mo72Fe30} blackberries in solution. The additional 

cations, once added intosolution, instantly interact with fluorophores in bulk solution and on blackberry 

surfaces, subsequently enter into the blackberries, and interact with the fluorophores inside. The anions could 

not cross the membrane. (right) Change in fluorescence quantum yield of Coumarin 1,6-MQ, and CTC with 

addition of KBr, KCl, and CaCl2, respectively; (a) instantaneous change occurs with the addition of salts; (b) 

change in fluorescence quantum yield with time, once the addition of salt is stopped. Reprinted with permission 

from ref. 56. Copyright 2008 American Chemical Society. 

As the in-situ AFM results proved that the membranes of blackberry were quite soft, permeability 

tests indicated that the membranes selectively allowed cationic species to pass through (Figure 

2.14).
53

 The permeability tests were based on the monitoring of fluorescence spectroscopy of 

water-soluble dyes that are specifically sensitive for one (or two) type of ions. Chlorotetracycline 

(CTC) (sensitive to Ca
2+

 and Mg
2+

), 6-methoxyquinoline (6-MQ) (sensitive to Cl
-
) and Coumarin 

1 (sensitive to Br
-
) were added to the freshly prepared {Mo72Fe30} aqueous solution. The 

fluorophores would be partly incorporated into the inner areas of blackberries during the self-

assembly process, which was confirmed by the 18 nm shift of their fluorescent signals.
53

 Specific 

ions sensitive to the dye were introduced to the solution after the completion of blackberry 
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formation. A sudden jump in fluorescence signal suggested that the CTC molecules staying in 

bulk solution were immediately saturated after dominant amount of Ca
2+

 ions were added. 

Interestingly, there was a very slow, continuous increment in the fluorescence signal after the 

initial process, suggesting a slow, continuous binding between Ca
2+

 ions and CTCs. The results 

could be explained as that Ca
2+

 ions could slow pass the blackberry membranes and bind with 

CTC molecules inside. However, anions such as Cl
-
 and Br

-
 could not pass through the 

membrane.
53

 

2.1.7 The self-recognition behavior during self-assembly process 

The previous studies on the lag phase period in the self-assembly process, the POMs-based host-

guest interaction, and modular redox-active inorganic chemical cells indicate that POMs are good 

models to understand some fascinating behaviors of biological systems in solution. For example, 

self-recognition is a general and significant phenomenon in biological units which directly 

connects to many biological functions. It is important to understand the critical forces for the self-

recognition. Biological systems are too complicated while the POM macroions are ideal simple 

models.
4,51

 

 

Figure 2.15 (Middle) In mixed dilute aqueous solutions, the clusters (polyhedral representation) {Mo72Fe30} (top) 

and {Mo72Cr30} (bottom) self-assemble into different (i.e., individual) blackberry structures of the Cr30 (yellow) 

and Fe30 type (blue)—with interfacial water between the macroions (right)—and do not form mixed species 
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(such as the hypothetical structure shown on the left). Reprinted with permission from ref. 57. Copyright 2011 

AAAS. 

The aqueous solutions containing the mixture of two spherical polyprotic clusters: {Mo72Fe30} 

and {Mo72Cr30} are studied. The clusters have 30 characteristic and active M(H2O) groups 

coordinated to the non-Mo atoms, different mobilities of their surface hydration layers as well as 

degrees of deprotonation. Our previous discussion suggests that the water ligands (weak Brønsted 

acids) release protons, i.e., about seven for {Mo72Fe30} and about five for {Mo72Cr30} in aqueous 

solution.
36

 

The mixed aqueous solutions of the {Mo72Cr30}- and {Mo72Fe30}-type POMs were studied to 

determine whether they form homogeneous or heterogeneous blackberry structures (Figure 2.15). 

The two separated modes in the DLS study indicated the presence of two types of large species 

with different sizes (Figure 2.16). The two peaks corresponded to those of the individual solutions 

containing either {Mo72Cr30} or {Mo72Fe30} at the same pH value. More convincing evidence for 

such self-recognition behavior could be obtained by individually analyzing the elements of the 

two assemblies corresponding to the two peaks. The two assemblies could be separated from the 

parent solution by filtration.
54

 

 

Figure 2.16 (A) CONTIN analysis of the DLS studies at 90° scattering angle measured for aqueous solutions 

containing {Mo72Cr30} or {Mo72Fe30} (0.1 mg/ml each), as well as for a solution containing both species (0.1 

mg/ml of each) (pH = 4.2). In the mixed solution, the peak due to the larger {Mo72Cr30} assemblies is dominant 

because larger structures scatter more light. (B) CONTIN analysis of the DLS experiment carried out on the two 

components after ultrafiltration of the aqueous solution originally containing both {Mo72Cr30} and {Mo72Fe30} 

(0.1 mg/ml of each) by a series of membranes with different pore sizes; fraction A (red): material retained after 

filtering by 100,000 dalton-pore size membrane; fraction B(blue): material retained after filtering by 

30,000dalton-pore size membrane. Reprinted with permission from ref. 57. Copyright 2011 AAAS. 
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As described in section 2.1.5, the formation of oligomers is the rate-determining step for the 

blackberry formation. Time-resolved SLS studies at the early stage of the self-assembly (still in 

lag phase period) showed that the curves for the freshly prepared solutions of {Mo72Cr30} and 

{Mo72Fe30} were almost identical in slope and both show minor lag periods, suggesting that two 

dimer/oligomer formation processes in the solutions are kinetically similar. More importantly, 

SLS studies at both early stage and after the whole self-assembly process indicated that the 

individual species assembled faster than their mixtures at a given concentration, which meant that 

the self-recognition started as early as the oligomer formation. The large energy barrier in the 

oligomer formation probably enabled the self-recognition even for species with minor 

differences. In the current case, the most critical factor of generating the self-recognition was due 

to the small charge density difference between these two types of macroions. Additionally, the 30 

identical Cr
III

(H2O) and Fe
III

(H2O) groups differ greatly in the lability (i.e., residence time) of 

their water ligands. As a result, the interfacial water mobilities and heterogeneities of the 

macroions in the two superstructures differ significantly, and the hydrogen bonding network for 

the {Mo72Cr30}-type blackberries was more dense and stable. The different mobilities of the 

interfacial water networks can be confirmed by the fact that the transport of Ca
2+

 through the 

{Mo72Cr30} blackberry membranes was slower than that through the {Mo72Fe30}-type system by a 

factor of 3 to 4.
54

 

2.1.8 Theoretical studies on the polyoxoanionic solutions 

Bo and Poblet et al. calculated the radial distribution functions of Li
+
, Na

+
, and K

+
 with Keggin 

ions bearing 3-, 4-, and 5- charges, and the diffusion coefficients of these Keggins.
55

 
56

 The effect 

of the microscopic molecular details of the solvent was a key aspect to interpret the simulation 

results due to the competition between electrostatic interaction among the ions and the stability of 

the solvation shell. Further analysis showed that the solvent-shared structures weakly bound to 

the POM anions played a crucial role in the determination of the dynamic properties of the 
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anions. The authors also suggested that the image of the ion pair as a well-defined molecular 

conformation had to be substituted by a more dynamic picture in which the paired ions moved 

inside the region bounded by Bjerrum’s length, with some preferred locations that were the result 

of the more stable balance between electrostatic interactions, entropic effects, as well as the 

solvent effect.
55

 
56

 

 

Figure 2.17 Snapshots of the different simulation boxes after 10 ns. a row, diluted aqueous solution; b row, 

concentrated aqueous solution; c row, concentrated methanol solution. Reprinted with permission from ref. 60. 

Copyright 2008 Royal Society of Chemistry. 

Wipff et al. performed theoretical simulations on the aggregation of Keggin anions (PW12O40
3-

) in 

aqueous and methanol solutions.
57

 Aqueous solutions of Keggin anions were simulated at two 

anionic concentrations with Cs
+
, NBu4

+
, UO2

2+
, Eu

3+
, H3O

+
, and H5O2

+
 being counterions, 

respectively (Figure 2.17). They revealed significant counterion effects related to the degree of 

salt dilution, as well as the cation-anion and anion-anion interactions. The hydrophobic NBu4
+
 

cations tended to surround POMs via loose contacts and created a “phase separation” between 

water and a humid, salty, overall neutral domain where all ions were concentrated. More 

hydrophilic cations were generally separated from the POM anions. The most important finding 

was the aggregation of POMs, mostly into dimers with short inter-POM distances (P
…

P<12Å), 
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but also into oligomers in concentrated solutions where ca. 9 to 46% of the POMs formed 

aggregates, depending on the type of counterions. While Eu
3+

 and UO2
2+

 were fully hydrated and 

interacted at short distances with POM anions as solvent-separated ion pairs, Cs
+
 could form 

contact ion pairs, as well as solvent-separated ions. Among the monovalent counterions, H5O2
+
 

led to the most serious aggregation, due to the influence of the protons. The POMs’ dynamic 

properties were also dependent on the counterions: their diffusion coefficients were the lowest 

with NBu4
+
, and highest with Cs

+
, reflecting the degree of ion condensation in water. The role of 

water on the solution state of the POM salts was further demonstrated by simulating the most 

concentrated systems in methanol solution. Methanol solvated the counter-cations poorer than 

water did and could not form bridges between POMs, therefore a higher portion of anion-cation 

contacts, and no oligomers with short contacts could be found in methanol.
57

 

 

Figure 2.18 a), b), c)Snapshot of water molecules between 2 PW3-, 2 S3- or 2 PW3+ ions. d) Snapshot of the PW3-. . 

. Eu(MeOH)9
3+. . .. PW3- pair at a P. . .P distance of 17.5 Å, corresponding to the free energy minimum along the 

PMF in methanol. e), f)Highest density region of Eu3+ and H3O
+, respectively. Adapted with permission from 

ref. 61. Copyright 2012 Elsevier. 

Further detailed theoretical simulations were carried out to understand the like-charge attraction 

between Keggin type POMs. Wipff and co-workers calculated the changes in free energy ΔG(d) 
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as a function of the P
. . .

P distance d, which represented the inter-POM distance.
58

 As the POM 

anions approached each other, the free energy profiles were found to be quite flat, with a tiny 

minimum at ca.11 Å, showing that the anions can form ‘‘contact ion pairs’’ in the presence of 

either H3O
+
, UO2

2+
 or Eu

3+
 counterions. The appearance of minimum energy around 10 Å and 

contact ion pairs were observed no matter what methodological variants were used, which 

supported the above finding that Keggin anions could form dimers or oligomers in water. The 

importance of stabilizing bridging water molecules was demonstrated by comparing Keggin 

anion (PW
3-

) to its spherical analogues (S
3-

) and to Keggin cations (PW
3+

, with all atomic charges 

of regular Keggin inverted) (Figure 2.18a, b, and c). The water bridged hydrogen bonds were 

specific in the dimer of Keggin anions, which was much stronger than the non-specific ones in 

the dimer of S
3-

. Water could not afford bridging H-bonds with the cationic dimer but solvated the 

contact region of this dimer via its OH2O oxygens. The role of water was further demonstrated by 

comparing the simulation results in water and in methanol solution where there was no contact 

ion pair, but a free energy minimum at ca. 17 Å, corresponding to an ion separated pair PW
3-. . 

.
Eu(MeOH)9

3+. . .
PW

3-
 (Figure 2.18d). These findings were important for understanding processes, 

such as condensation and assembling of POMs and macro-ions in water or at aqueous interfaces. 

Analysis of the distribution of counterion around the Keggin-dimer structures revealed that the 

counterions were in the bridge area of the dimers and acted like a ‘cationic glue’ (Figure 2.18e, 

f).
58

 

Wipff’s studies on comparatively small POMs confirmed the counterion-mediated attraction as 

driving force and the existence of water-bridged hydrogen bonding interaction for like-charge 

attraction and further self-assembly behavior of macroions.
58

 Meanwhile, Kegel et al. claimed 

that only direct-contact hydrogen bonding contributed to the formation of POM shells while 

electrostatic repulsion played a role only in the folding of the sheet-like structures into shell, 

based on a simplified model.
59

 Their simulation results seemed to be inconsistent with the 
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experimental results that the blackberry structures were disassembled into monomers without 

precipitation when {Mo72Fe30} was uncharged (at pH<2.9)
30

 while the hydrogen bonding 

remained. Kegel’s simulation would give opposite results, which could be due to the ignorance of 

the role of water molecules, such as solvation effect of the macroions and the induced 

polarization of water molecules in their simulation. Second, the strength of hydrogen bonding is 

highly dependent on the deprotonation of the water ligands, the distance between donor (D) and 

acceptor (A) atoms and the D-H…A angles, which require more complex models. 

It might be difficult to do detailed simulations on giant POMs nowadays. Therefore, 

thermodynamic studies on the blackberry structures help reveal the key factor that might 

determine the size of blackberry structures. A simplified half empirical equation was presented by 

Kegel et al.
29

 A charge-regulated self-assembly process was given to explain the formation of 

blackberry with a general expression for the blackberry radius R is expressed as 

R∼ -48λBu/ψ
2 
         

 
(Equation 2.1) 

with λB∼56/ε. Consequently, the size of the blackberries is determined by three parameters: the 

solvent content (in ε), the effective charge on the blackberries (described by the zeta potential ψ), 

and the magnitude of the attractive force among the macroions (u).
29

 

2.2 Self-assembly of covalently functionalized amphiphilic hybrid POMs 

Chemical functionalization with organic components can effectively tune POMs’ electronic 

structures and improve their compatibility and processibility.
6
 Due to their negative charges and 

the large amount of oxo ligands on their surfaces, POMs, generally speaking, are hydrophilic and 

therefore many of them are not compatible with organic media. Covalently functionalization by 

hydrophobic organic ligands renders the clusters amphiphilic features, which can be reflected in 

their self-assembly behavior in water/air and water/oil interface, polar and nonpolar solvents.
7-9,11-

17,60
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Different from the self-assembly of macroions into blackberry structures, the driving force for the 

self-assembly of amphiphilic hybrid POMs is mostly solvophobic interaction. Being more 

complicated than the self-assembly of common amphiphilic surfactants, the study of the assembly 

of hybrid POMs needs to take the counterion effect and the bulky, charged polar head group into 

account besides the effect of molecule topology, solvent polarity, concentration, and 

hydrophobicity of the organic ‘tails’.
7
 The current research on all the effects will be summarized 

in the following sections. 

Table 2-3 Formulas and molecular structures of the hybrid surfactants studied in our group. 

Abbreviatio

n 

Hybrid surfactants formula Molecular structure 

S1 (TBA)3[MnMo6O18{(OCH2)3CNHCO(CH

2)4CH3}2] 

 
S2 (TBA)3[MnMo6O18{(OCH2)3CNHCO(CH

2)14CH3}2] 

 

S3 (TBA)2[V6O13{(OCH2)3CCH2OOC(CH2)16

CH3}2] 

 
S4 (TBA)2[V6O13{(OCH2)3CNHOC(CH2)3C16

H9}{{(OCH2)3CNH2}] 
 

S5 (TBA)2[V6O13{(OCH2)3CNHOC(CH2)3C16

H9}2] 
 

S6 ((TBA)5H[P2V3W15O59(OCH2)3CNHCOC1

5H31] 

 
S7 TBA10H2[{P2V3W15O59(OCH2)3CNHCO}2

] 

 
 

2.2.1 Surfactants with POMs as polar head groups 

Conventional surfactants usually have one polar head group covalently linked with one or several 

hydrophobic (e.g., alkyl) tails. Packing parameter (P), defined from a surfactant’s geometrical 
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parameters, can be used to predict the assemblies of the surfactants in polar and nonpolar 

solvents.
7
 The polar head groups of our hybrids have higher negative charge and much larger 

sizes. Our studies indicate that the POM-based hybrid surfactants show complicated but 

controllable self-assembly behavior.
12,60

 

 

Figure 2.19 The formation of vesicles and reverse vesicles structures in polar and nonpolar solvent, respectively. 

Adapted with permission from ref. 16 and 17. Copyright 2008 American Chemical Society and 2010 Wiley-

VCH. 

Due to the convenience in synthesis, the original counterions of the anionic polar head groups are 

usually bulky organic cations, such as tetrabutylammonium (TBA).
6
 TBAs are strongly 

associated with polar head groups through static charge interactions in nonpolar solvents, which 

significantly reduces the polar heads’ hydrophilic properties. Consequently, the amphiphilic 

properties of the hybrids are not obvious.
13

 However, the association between TBAs and POM 

head groups becomes weaker when the polarity of solvent is higher, which is confirmed by the 

difference in diffusion speed between TBA and anionic hybrids calculated from NMR results.
13

 

The hybrids show amphiphilic properties by self-assembly into vesicle structures in appropriate 

polar solvents (Figure 2.19).
13

 The vesicle size of S3 and S6 showed a linear relationship with the 

inverse of the dielectric constant of the solvent, indicating a charge-regulated process. Hybrid S3 

showed a much more negative slope than that of S6, which could be related to the less negative 

charge of hexavanadate (V6) (-2) compared to Dawson-type POM (-6).
13,60

 The counterion 

disassociation is controlled by factors such as static charge interaction, solvent polarity and 

solvation of ions. Static charge force is proportional to the number of charges of the ions and 
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thus, TBA could be easier to diffuse away from the surface of the S3's polar head groups than 

from Dawson clusters (S6). Therefore, the effective charge on the S3 increases more significantly 

when the solvent polarity increases, which finally results in a more negative slope.
13,60

 For S3, 

vesicles could only be observed when 20~35 vol% of water was added to its acetone solution.
13

 

However, due to the high negative charge (-6) and much larger polar head group, S6 can form 

vesicle structures in less polar solvents such as pure acetone.
13,60

 Additionally, two of the hybrids 

(S1 and S2) were proved to be able to form reverse vesicles in nonpolar solvents (Figure 2.19).
17

 

The sizes of the assemblies could be continuously increased by decreasing the polarities of the 

solvents, which is due to the increasing solvophobic interaction.
13,16

 

Different salts, ZnCl2, CuCl2, NaI, tetrabutylammonium iodide (TBA*I) and 

dodecyltrimethylammonium bromide (DTMA*Br), which are soluble in acetonitrile, were added 

to acetonitrile solutions of S6, respectively, to study the role of the counterions on the vesicle 

formation and vesicular sizes. The vesicle size decreased gradually with increasing concentration 

of ZnCl2. Interestingly, the vesicle size remained unchanged at first upon addition of NaI, but 

gradually increased when the NaI concentration exceeds 0.03 mg/mL. ZnCl2, which is quite 

solvated in acetonitrile, preferred coordinating to the terminal or bridging oxo ligands on the 

surface of the Dawson clusters, forcing the polar domains to be exposed to the solvent-

environment, which in turn increased the curvature of the vesicle, i.e. the vesicle size became 

smaller. Upon the addition of NaI, on the other hand, the sodium ions contributed to shielding the 

high negative charges of the polar head groups from each other, and thus reduced the repulsion 

between the polar heads on the surface of the vesicle. The curvature of the vesicle decreased, and 

as a result the vesicle size increased. The additions of CuCl2, TBA*I or DTMA*Br showed no 

obvious effect on the vesicle size as those cations were not able to replace the TBA cations that 

surrounded the polar Dawson clusters. However, TBA*I and DTMA*Br were observed to cause 

the disassembly of the vesicles and this was confirmed by the fact that the scattered intensities 
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from corresponding solutions dropped increasingly when more of these salts were added.
60

 

The hybrids can be water-soluble when the original counterions, TBAs, are replaced by protons 

through ion-exchange resin.
12,13

 In aqueous solution, the POM head groups can work as nano-acid 

by reversibly releasing and associating protons with their surface oxo ligands. The assembly sizes 

were quite sensitive to pH of the aqueous solution. The increasing of pH will further release the 

protons from the surface of POMs, which increases the net charges of the head groups. The 

resulted increasing repulsion between POMs on the surface of vesicles increases the curvature of 

assembles, e.g., smaller vesicle sizes.
12,13

 

Wang and co-workers were able to functionalized Dawson type POMs with polystyrene chain. 

They claimed that the hybrid aggregated into micro-spherical particles and precipitated from 

organic solvent when the POM polar head (Dawson POMs)’s original counterions, TBAs, were 

replaced by proton through ion-exchange resin.
10

 Meantime, the surfactants with Keggin type 

POM as polar head groups were found by Polarz et al. to be able to self-assembly into micelles 

and lyotropic phases.
11

 The surfactants were later observed to self-assembly into a hexagonal 

lattice in air/water interface.
9
 

2.2.2 Molecular bola from organic-inorganic hybrid POMs 

Bola-amphiphiles are a type of molecules with a hydrophobic skeleton and two hydrophilic end 

groups. The synthetic technology rendered us the ability to apply Lindqvist and Dawson type 

POMs as the hydrophilic end groups (Figure 2.20a and b).
8,15

 Based on the molecular structure 

and packing parameter analysis, the POM-based amphiphiles, theoretically, are able to self-

assembly to form only bi-layer structure with POMs heads staying outsides, e.g. regular vesicles, 

which means only polar solvents are appropriate for them. In our research, the polarity of solvents 

was carefully tuned and the bola-amphiphiles were observed to form bilayer vesicle structures 

with POMs on the outside surface while the organic linkers stayed inside the shell (Figure 2.20b). 

The sizes of the assemblies depended largely on the polarity of the solvents by showing a 
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continuous increasing trend when the polarities of the solvents were tuned to be lower,
8,15

 which 

showed the opposite trend with that of POM-organic hybrid surfactants. Five Bola-amphiphiles 

with different central linker groups were systematically studied for comparison. The vesicle 

formation was found to be an entropy-driven process, and the entropy term TΔS was much larger 

compared with conventional surfactants, such as the ionic Gemini surfactants. In addition, the 

length of the organic linker might show a direct relation to the TΔS value, as for a longer linker 

the entropy gain tended to be more negative because more hydrogen bonds needed to be broken.
14

 

 

Figure 2.20 a) Molecular structure of hexamolybdate-based bola-amphiphiles. b) Molecular structures of 

Dawson-type POMs-based bola-amphiphiles and its self-assembly into vesicle structures; Monolayer formation 

for the dumbbell-shaped hybrid surfactants at the water/vapor interface: c) liquid expansion (LE)/G phase, d) 

LE phase, and e) liquid condensed (LC) phase. Adapted with permission from ref. 8, 14, 15. Copyright 2010 

American Chemical Society and 2009, 2011 Wiley-VCH. 

These Bola-amphiphilic hybrids also showed the formation of LB films at the air-water interface 

with TBA as counter-cations (Figure 2.20c,d,e). The air/water interfacial behaviors, obtained 

from the π-A isotherms, for hybrids with linear alkyl chain linkers are relatively similar. 

However, hybrids with bipyridine and ether linkers present different air/water behavior. The 

liquid expanded and liquid condensed phases are clearly located and connected through a plateau. 

We believe that the hydrophobicity and composition of the organic linkers play dominant roles.
14

 

2.2.3 Functionality and application of amphiphilic POM-organic hybrid 

Being similar to the common amphiphiles, POM-organic hybrids were observed to be able to 

reduce the surface tension in the air/water interface. S3 was studied to show a critical micelle 
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concentration (CMC) of 0.23 mg/mL in the surface tension vs. concentration curve.
13

 Therefore, 

the hybrids could be treated as novel surfactants. Furthermore, the surfactants with POMs as polar 

head groups could help form stable emulsions in immiscible water/organic solvents system.
11,60

 

Due to the high catalytic activity of POM polar head groups, the hybrid surfactants, actually, can 

work as emulsion catalysts in biphasic reaction systems.
61

 Polarz et al. applied the surfactants 

with Keggin-type POM as polar head groups in the emulsion polymerization reaction 

environment. The route provided a convenient way to synthesize POM-based nano-scale catalytic 

particles.
20 

Another interesting feature is the controllable fluorescent properties of the hybrids’ assemblies. 

Recently, Hill et al. synthesized two amphiphilic hybrid POMs with two pyrene groups attached 

to the central polyoxovanadate, indicated as S5 in Table 3.
12

 It was found that S5 could form 

fluorescent-active vesicular structures in water/DMSO mixed solvents by folding the pyrene 

groups into the middle hydrophobic layer. By replacing the original bulky TBA (TMA or TEA) 

counterions with protons, obvious emission peak shifts were noticed in the fluorescence spectra, 

which were attributed to the formation of pyrene excimers. Since it is well documented that the 

formation of pyrene excimers largely depends on spatial distance of two pyrene monomers (<0.5 

nm), an estimation of the distance of adjacent S5 molecules could be made through monitoring 

the change of emission pattern. Indeed, the emission spectra of pyrene gradually changed with the 

solution pH values, and so did the vesicle size and zeta potential value of the vesicles. Moreover, 

from the 2D NOESY NMR study, for the first time, it was observed that the amphiphilic TBA 

counterions interact with pyrene groups in the hydrophobic layer of vesicles. This information is 

important to understand how the hybrid surfactants arrange themselves to form closely packed 

regions in the supramolecular structures and could be used to explain how the counter-ions 

perturbs the solvent-phobic layer formation.
12
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2.3 Conclusion and outlook 

The past decades has witnessed the significant advancement of the research on the synthesis and 

application of POMs-based materials. Those large polyoxoanions represent the transitional area 

between simple ions and colloids, and are perfect models for understanding the solution behavior 

of polyelectrolytes. Their unique slow self-assembly process and smart recognition behavior 

uncover the probable mechanism for the self-assembly of bio-macroanions, e.g. virus capsid 

proteins. Our further researches will extend the studying on the recognition behavior between 

polyoxoanions with tiny differences. Meanwhile, the previous research is heavily involved with 

macroanions with high symmetries. Based on the blackberry model, macroanions with 

anisotropic shapes or anisotropic charge distribution might assemble into non-spherical objects. 

The anisotropic macroanions are currently undergoing study in our lab. 

Meanwhile, the amphiphilic POM-based hybrids are actually surfactants with catalytic active 

polar head groups. Our previous study suggests that the hybrids able to form stable emulsions in 

oil/water interface, which support micro-environment for catalytic reactions of the POMs polar 

heads. 
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3 Chapter 3: Self-Recognition of Structurally Similar Rod-

shaped Macroions during Their Assembly Process 

3.1 Introduction 

Biomolecules rarely function in isolation; hence a thorough understanding of biological process is 

highly dependent upon an examination of assemblies of biomolecules and the interaction driving 

the assembly process.
1-3

 When two different assemblies are in the same solution they may coexist 

and remain self-sorted or they may hybridize.
3,4

 Self-recognition and self-assembly of 

biomolecules contribute to the formation of biomolecules complexes with uniqueness and 

specific functionality, which are the chemical basis of diverse phenomena such as cell signaling, 

the immune response, and gene regulatory interaction.
5-8

  

Non-covalent interactions, e.g. hydrogen bonding
9
, π-π stacking

10
, coordination

11
, static charge 

interaction
12

, and solvophobic interaction
13

, are responsible for the self-assembly and self-

recognition of bio-macromolecules.
11,14-16

 Especially, counterion-mediated like-charge attraction 

and water-bridged hydrogen bonding were found to play significant roles in the folding, 

assembly, and recognition behavior of proteins, RNA, and DNA.
17,18

 Meantime, 

polyoxometalates (POMs) can be considered as ‘inorganic polyelectrolyte’ composed of 

negatively-charged metal oxide polyhedra with well-defined molecular structures, uniform 

shapes, and negligible intramolecular charge interaction, which are ideal models for studying the 

intermolecular interaction of polyelectrolytes, e.g. the interaction between DNA and protein and 

the formation of virus capsids.
19-21

 Our previous research helps us understand and control the 

counterion-mediated attraction between macroions through the study of the self-assembly process 

of the macroions into hollow ‘blackberry’-type structures in their dilute solutions.
20-22

 Our recent 

study on an assembly process in a homogeneous dilute aqueous solution of two nano-scaled, 
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spherical polyprotic metal oxide-based macroions demonstrates the self-recognition among these 

two macroions by forming homogeneous ‘blackberries’-type structures.
23

 The role of charge 

density difference in such two macroions is believed to be the dominant factor in the self-

recognition process.
23

 However, the original study was based on an obvious difference while we 

hope to push the limit by studying highly similar mixtures, which might help explain the general 

phenomenon in biological systems. Herein, we report the study of the solution behavior of a 

mixture of two highly charged molecular rods with almost identical structures and charge 

densities except the difference of their encapsulated central metal atoms. Time-resolved light 

scattering, TEM, and energy dispersive X-ray spectroscopy (EDS) were utilized to analyze the 

self-recognition behavior among the two molecular rods. Density function theory (DFT) 

calculation and kinetic monitoring of the disassembly process of the formed ‘blackberry’ 

structures in the individual solutions of the two molecular rods and their mixture solution, 

respectively, were combined to uncover the mechanism for their self-recognition behavior. 

3.2 Experimental Section 

General. TBA*OH solution (40%, wt), EDTA, acetonitrile, anhydrous ZnCl2, d3-acetonitrile and 

d6-acetone were purchased from Sigma-Aldrich and used without further purification. Filters 

were purchase from Millipore for solution preparation. G300 Copper grids were purchased from 

SPI. A commercial Brookhaven Instrument LLS spectrometer equipped with a solid-state laser 

operating at 532 nm was used for measurement for both SLS and DLS. NMR spectra were 

recorded on a Bruker 500 spectrometer and were calibrated to the residual proton resonance of 

the solvent. The TEM images were taken on a JEOL JEM-2000 electron microscope operated at 

200 kV with EDS attachment (Oxford). Samples for the TEM analysis were prepared by dropping 

a small volume of the solution sample onto a carbon film on copper grid. 
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Synthesis of nanorods. The synthesis was done according to the previous procedure.
24,25

 The 

samples were put in air to get rid of the solvent molecular after the crystalline compounds were 

obtained. 

Synthesis of TBA*EDTA. 5 mL TBA*OH (40%,wt) solution was mixed with 0.274g EDTA. 

The mixture was kept sonicating until EDTA was fully dissolved. The obtained solution was kept 

at 50°C with reduced pressure for one week. Colorless ionic liquid was obtained. 

Static light scattering. A commercial Brookhaven Instrument LLS spectrometer equipped with a 

solid-state laser operating at 532 nm was used for measurement of both SLS and DLS. SLS 

experiments were performed at scattering angles (θ) between 20 and 100º, at 2º intervals. 

However, due to the large fluctuations in scattered intensities at low scattering angles, we 

removed the data from 20-40º in the final analysis. Derived from Rayleigh-Gans-Debye 

equation
26

, partial Zimm plot was used to analyze the SLS data to obtain the radius of gyration 

(Rg). The partial Zimm plot stems from the following approximate formula: 1/I = C(1+Rg
2
*q

2
/3). 

Here Rg is determined from the slope and the intercept of a plot of 1/I vs. q
2
. 

Dynamic light scattering. DLS measures the intensity–intensity time correlation function by 

means of a BI-9000AT multi-channel digital correlator. The field correlation function |g
(1)
(τ)| was 

analyzed by the constrained regularized CONTIN method
27

 to yield information on the 

distribution of the characteristic linewidth Γ from |g
(1)
(τ)| = .The normalized distribution function 

of the characteristic linewidth, G(Γ), so obtained, can be used to determine an average apparent 

translational diffusion coefficient, Dapp =Γ/q
2
. The hydrodynamic radius Rh is related to D via the 

Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann constant and η the viscosity 

of the solvent at temperature T. From DLS measurements, we can obtain the particle-size 

distribution in solution from a plot of ΓG(Γ) versus Rh. The Rh of the particles is obtained by 

extrapolating Rh,app to zero scattering angle. 
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TEM and EDS. The TEM images were taken on a JEOL JEM-2000 electron microscope 

operated at 200 kV with EDS attachment (Oxford). Samples for the TEM analysis were prepared 

by dropping a small volume of the solution sample onto a carbon film on copper grid.  

1D NMR and 2D DOSY. All the NMR spectra were recorded on Bruker Avance 500 

spectrometer equipped with a BBO probe at 25 °C. 2.0 mg compound 1 and 1.1 mg TBA*I were 

dissolved in 1 mL d6-acetone, respectively for 
1
H-NMR experiments. 

DOSY was performed on a Bruker 500 MHz spectrometer with the magnetic field gradient (g) 

varying from 0 to 32 G/cm in 16 ~ 32 steps. The length of the gradient (d ) was from 6000 ms to 

8000 ms, and the time interval between two pulsed gradients (D) was from 0.1 s to 0.15 s. All 

spectra were taken at room temperature. After the data collection, FIDs were processed and 

analyzed with the NMR software TopSpin 2.0 provided by Bruker. Both T1/T2 relaxation and 

CONTIN methods were used to fit the raw data. The observed proton signal I in a standard 

DOSY spectrum is expressed through equation 1: 

                                                                               Equation (3-1) 

where I0 is the reference intensity, γ is the gyromagnetic ratio of the proton. If only one diffusive 

component exists in the solution, a straight line will occur in a plot of ln(I/I0) versus g
2
, and the 

apparent diffusion coefficient (D) can be calculated from the slope using linear regression 

analysis. 

SAXS experimental section. The SAXS experiments were performed at 12-ID-B station with X-

ray energy of 12 KeV at the Advanced Photon Source of the Argonne National Laboratory. The 

sample to detector distance was about 2 m. A 2D CCD detector was used to acquire images with 

typical exposure times in the range of 1.0 s. 

X-ray absorption near edge structure (XANES) and extended x-ray absorption fine 

structure (EXAFS). The Zn K-edge (9,659 eV) EXAFS and XANES measurements were carried 
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out at the MRCAT 10-ID beam line at the Advanced Photon Source, Argonne National 

Laboratory in order to study the local environment around the Zn atoms in the NPs.
28

 EXAFS and 

XANES measurements of the samples were done in fluorescence mode with the ion chamber in 

Stern Heald geometry and the samples were loaded in plastic cuvettes for the measurements. Zn 

foil EXAFS was measured with help of the reference ion chamber for every scan taken on the 

samples for the purpose of energy calibration. EXAFS measurements were done in transmission 

geometry on ZnCl2 solution which was used as standards. Data was collected from -250 eV below 

Zn edge to 1,000 eV above Zn edge at step size of 0.35 eV and measurement time 0.1 sec per 

point. Several scans were taken on each sample and merged for better statistics. 

The spot size of the incident x-ray beam on the sample was 500 micron by 500 micron. Data 

collected was processed using Athena software
29

 by extracting the EXAFS oscillations (k) as a 

function of photoelectron wave number k following standard procedures. The theoretical paths 

were generated using FEFF6
30

 and the models were done in the conventional way using the fitting 

program called Artemis
31

. Fitting parameters were obtained by modeling the EXAFS data of each 

sample in R-space until a satisfactory fit describing the system was obtained. Data sets were 

simultaneously fitted in R-space with k-weights of 1, 2 and 3. 
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3.3 Self-recognition of structurally identical rod-shaped macroions with 

different central metal atoms during their assembly process 

 

Figure 3.1 Synthetic procedure of the two molecular rods and the ball-stick representation of molecular 

structures of the building blocks and the molecular rods. X, center heteroatom; A, hexamolybdate; B, the ring-

shaped Anderson-type molecule. 

3.3.1 Macroionic properties of the molecular rods 

Two molecular rods, ((C4H9)4N)7[Mo6O18NC(OCH2)3XMo6O18(OCH2)3CNMo6O18] (X = Mn
III

(1), 

Fe
III

(2)), were synthesized and fully characterized in previous paper.
24

 These two compounds 

were synthesized by covalently linking two super-octahedron-shaped hexamolybdate (A) onto the 

two sides of a ring-shaped Anderson-type POM (B) (Figure 3.1). Basically, the two molecular 

rods are almost identical except that the center heteroatom of the ring-like molecule is different: 

Mn
III

 for rod 1 and Fe
III

 for rod 2. Both molecular rods are highly charged (-7) with 

tetrabutylammonium (TBA) as counterion, and hydrophilic with surface composed of 

molybdenum oxide. Due to the non-conjugative nature of the linkage between A and B units, they 

retain their original charges as -2 and -3, respectively (Figure 3.1). Molecular rods 1 and 2 have 

identical lengths and diameters being ca. 2.47 nm and 0.88 nm, respectively. The actual structures 

of the molecular rods in solution (acetonitrile) have been investigated through solution small 

angle X-ray scattering (SAXS) with a spatial resolution of 2.9 Å.
32

 The two molecular rods show 

identical SAXS curves (Figure 3.2a and Figure 3.3), suggesting they have identical molecular 
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structures in solution state. The calculated SAXS profile for the rod-shape molecular model fits 

well with the experimental data of 1, indicating that the rod-shape survives while the crystals of 1 

dissolve in acetonitrile (Figure 3.2a).
33

 Radius of gyration (Rg) of the molecule is 0.73 nm, 

calculated from small angle region using Guinier equation. Further exploration of the scattering 

data with program GNOM generates pair distance distribution functions (PDDF) in real space, 

p(r).
34

 The PDDF exhibit the feature of rod-shaped molecular triads, where the first peak centered 

at ca. 0.25 nm describes the intra-subunit (A or B) atom-pair distances, while the second peak at 

ca. 0.90 nm and the third peak at ca. 1.70 nm represent the separations of A to B and  A to A, 

respectively (Figure 3.2b and 2c). Time-resolved solution x-ray scattering studies and scattering 

measurements on aged samples suggest that the molecular rods are quite stable at least within two 

months. As a general feature for the solution physical chemistry of macroions, the ion-pairing of 

the molecular rods with its counterions, TBA, were investigated by 
1
H-NMR and 2D diffusion 

ordered 
1
H-NMR spectroscopy (DOSY).

35
 The four proton peaks of TBA in d6-acetone solution 

of 1 were much broader than that in d6-acetone solution of TBA*I (tetrabutylammonium iodide), 

suggesting possible strong association of TBAs with large structures in 1’s acetone solution 

(Figure 3.4). DOSY results indicated that TBAs in the solution of 1 diffuse much slower 

(diffusion coefficient (D) = 2.8x10
-9

 m
2
/s) than the ‘free’ TBAs in TBA*I (tetrabutylammonium 

iodide) solution (D = 4.4 x10
-9

 m
2
/s), suggesting strong association of TBAs with the molecular 

rods. The charge density of the molecular rods is -1.06 e*nm
-2

, which is a little higher than the 

range that might be appropriate for the counterion-mediated static charge-regulated self-

assembly. 
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Figure 3.2 a) Superimposition of experimental solution wide angle x-ray scattering curve of 1 in its acetonitrile 

(2 mg/mL) and simulated scattering curve (in blue) using program SolX with the molecular model (c). b) PDDF 

of 1 in its acetonitrile solution (red curve) obtained using program GNOM and calculated PDDF (green curve) 

from the molecular model (c) using SolX. The broadening features in the PDDF obtained from GNOM could 

arise from the configurationally ensemble in solution due to the free rotation of the Mo-N-C bond. c) The build 

molecular model for fitting. 
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Figure 3.3 SAXS profile of compound 2. 
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Figure 3.4 1H-NMR results of TBA*1 and TBA*I. 

3.3.2 Self-assembly of the molecular rods into blackberries  

The two rod-like molecules are quite soluble in acetonitrile, however are not able to self-assemble 

into larger supramolecular structures in dilute solution with the bulky and hydrophobic 

counterions, TBA, due to their too high surface charge densities. The addition of ZnCl2 to their 

acetonitrile solution of the individual molecular rods, respectively, could trigger the self-assembly 

process since Zn
2+

 has higher priority to interact with rod-like macroanions. Time-resolved static 

light scattering results (SLS) indicated that the scattered intensities at 90° scattering angle for 

both macroionic solutions at room temperature showed a linear increment as time and reached 

equilibrium at ca. 37 days (Figure 3.5a) . Dynamic light scattering (DLS) results indicated that 

the hydrodynamic radii of the assemblies in the individual solution of two molecular rods did not 

change in the whole self-assembly process (Figure 3.6 and Figure 3.7 in supporting information). 

The combination of the DLS and SLS suggested that it was the number of the assemblies, not size 

of the assemblies that increased during the self-assembly process. A typical CONTIN analysis 

from DLS study of individual solutions of the compounds indicated that Rh of large assemblies 
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showed no angular dependence with narrow distribution and average values as 80 ± 4 and 27 ± 2 

nm (Figure 3.5b), respectively, for the solutions of 1 and 2. SLS study analyzed by Zimm plot 

indicated that the assemblies had average Rg of 76 ± 4 and 30 ± 2 nm, respectively. The ratio of 

Rh /Rg ~ 1.0 suggest a hollow spherical structure for the assemblies of 1 and 2, respectively, 

which is also confirmed by TEM results (Figure 3.5c and d). The counterion (Zn
2+

)-mediated 

attraction among the highly charged molecular rods is responsible for the formation of the 

assemblies (blackberries), which shows some obvious similarities with natural 

biomacromolecules, such as viral capsid proteins.
36,37

 Both of the blackberry and spherical viral 

capsid are nanoscaled single-layer hollow shells, which are quite different from the vesicles of 

lipid molecules (Figure 3.5e). Moreover, the two assemblies demonstrate similar kinetic features: 

the rate-limiting oligomers formation followed a rapid formation of the large assemblies from the 

oligomers. The formed blackberry-type structures of 1 and 2, respectively, are of obviously 

different sizes although the two macroanions are almost identical in both shape and charge 

density. It is believed that the encapsulated central metal ions lead to the distortion of Anderson-

type POM framework and therefore affect the charge distribution of unit B. The different charge 

distributions of the two macroions play a vital role in the bind strength of added counterion (Zn
2+

) 

onto the surface of the macroions, which finally determines the size of the assemblies. More 

details on the mechanism are introduced in the next section. 
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Figure 3.5 a) Time-resolved SLS results of the solutions of 1 (green dot), 2 (blue dot), and their mixture (red dot) 

at scattering angle as 90°. b) CONTIN analysis results of the solutions of 1 (green dot), 2 (blue dot), and their 

mixture (red dot). c) TEM images of assemblies in the solution of 2. d) TEM images of assemblies in the solution 

of 1. e) Model for the self-assembly process of molecular rods into blackberry structures. 

 

Figure 3.6 Time-resolved DLS results of 1’s solution with ZnCl2. 
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Figure 3.7 Time-resolved DLS results of 2’s solution with ZnCl2. 

3.3.3 Self-recognition behavior of the two molecular rods  

Impressively, the two inorganic molecular rods show self-recognition behavior by self-

assembling into two types of individual blackberry-type structures instead of mixed ones in their 

mixed solution. The macroions’ shapes, surface composition, charges, and counterions are 

expected to play vital roles in their self-assembly process based on our previous research. 

However, for the two molecular rods, all the above factors look identical, making the possible 

self-recognition challenging and intriguing. It thus provides a good opportunity to uncover the 

mechanism for this phenomenon. The mixed solution of 1 and 2 (1:1 mass ratio, concentration 

0.25 mg/mL each) was prepared for studying their self-recognition behavior. The resulting two 

separated modes in the CONTIN analysis of DLS study of the mixed solution indicated the 

presence of two differently sized large species (Figure 3.5b). The two peaks, within the error limit 

of the CONTIN analysis, correspond to those assemblies from the individual solutions containing 
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either molecular rod 1 or 2 with the same concentration and added ZnCl2 amount, which indicated 

that the molecular rods might recognize each other and assemble into their individual 

homogeneous blackberry structures (Figure 3.5b).  

     Additionally, time-resolved SLS results indicated that two molecular rods self-assembled at 

almost the same speed in their individual solution with the same concentration (0.5 mg/mL, 

Figure 3.5a), which rules out the possibility that the self-recognition is primarily due to kinetic 

effects (i.e., that one type of molecular rods assembles faster). Meantime, the mixture solution of 

1 and 2 (1:1 mass ratio, concentration 0.25 mg/mL each) showed a much slower self-assembly 

process than the individual solution of 1 and 2, respectively (Figure 3.5a), which confirms that the 

molecular rods favor to be self-sorted in the mixture solution. 

 

Figure 3.8 a) Model of the self-recognition during the self-assembly of two molecular rods in the mixture 

solution. b) TEM images of the assemblies in the mixture solutions (red rectangle, large assembly; green 

rectangle, small assembly). c) Zoom in image of the large assembly. d) Zoom in image of the small assembly. e) 

EDS results of the large assembly. f) EDS results of the small assembly. 
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The critical evidence for the self-recognition comes from the combination of TEM and EDS 

technology. TEM images of the assemblies in the mixed solution indicated that vesicles with two 

different sizes co-existed (Figure 3.8b, c, d), whose sizes were close to that of corresponding 

homogeneous blackberries assembled from the molecular rods, respectively, confirming the 

existence of two species in DLS results of the mixture solution. Moreover, EDS results of the 

individual vesicles suggested that the dominant metal elements for larger vesicles (size ca. 160 

nm) and smaller vesicles (size ca. 60 nm) are Mn and Fe, respectively, besides Mo and Zn 

(Figure 3.8e, f), which confirmed that molecule 1 and 2 assembled into the larger and smaller 

vesicles, respectively. To rule out the possibility that the EDS results are random, another 18 

vesicles with different sizes were selected for EDS analysis, which were consistent with the 

previous results and supportive to the model of homogeneous blackberry structures (Figure 3.9). 
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Figure 3.9 TEM images and EDS results of the assemblies in the mixture solution. 

3.3.4 The mechanisms of self-recognition 

Our previous study on the self-assembly of macroions suggest that the formation of oligomers at 

the beginning of the assembly process is the rate-limiting step with high activation energy barrier, 

which enables the preference to the formation of self-sorted oligomers in the mixture of 1 and 2.
23

 

In other words, the formation process is slow compared to the self-assembly of amphiphiles; 

however, it provides the situation for recognition among macro-ions with minor differences. The 

formation energy for homo-oligomers is slightly lower than the hybrid oligomers, however 

enough to lead to the discrimination of homogeneous blackberry structures over heterogeneous 

ones. Additionally, the heteroatoms encapsulated inside the inorganic molecular rods are the only 

difference between the two molecules and supposed to direct the self-recognition behavior 
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(Figure 3.1 and Figure 3.8). DFT calculation indicates that the central atom of molecule 1 

(heteroatom, Mn) is more positively charged than that of molecule 2 (Fe) and the perimeter of the 

planar molecular unit (B) of 1 is more negatively charged than that of 2 although their net charges 

are identical for the two macroanions. Owing to the difference in their charge distribution, 1 is 

more negative on its surface and able to interact with counterion much stronger to strengthen the 

counterion-mediated attraction, which consequently results in the smaller curvature of the 

assemblies of 1, e.g. larger sizes for blackberry structures (Figure 3.8). 

Due to the anhydrous solution environment, zinc chloride favors to bind onto the oxo ligand-

enriched surface of the molecular rods, which enables the formation of blackberries of compound 

1 and 2 and projects their differences of charge distribution into the size differences of their 

assemblies. Different from the solvation model of ions in aqueous solution, zinc chloride prefer to 

direct bind/coordination onto the surface oxo ligands of POMs since solvent molecules 

(acetonitrile) are comparatively weak ligands.
38,39

 Thus, the negative charge density of oxo ligand 

of the molecular rods, which determines the binding strength of oxo-zinc association, has 

significant effect on the size of formed blackberry structures and self-recognition behavior. As 

discussed above, the terminal oxo ligands of 1 carry higher negative charges than that of 2, which 

strengthen 1-ZnCl2 binding and therefore decrease the curvature of assemblies, e.g. larger sizes 

for blackberries. Moreover, in the anhydrous acetonitrile solution of the molecular rods, zinc 

chloride could become partially positively charged by replacing its chloride ligand with solvent 

molecule or surface oxo ligand of POMs. The binding of Zn complex on the surface of molecular 

rods can lower their net charge density to the range appropriate for self-assembly and thus the 

formation of blackberries can be observed when ZnCl2 is added to the original solutions of the 

molecular rods. 1 is supposed to be more negative charged on its surface and therefore able to 

bind more Zn complex than 2, which lowers the net charge of 1 more and makes its blackberries 

with larger sizes. The ability of 1 to strongly bind with more zinc ions than 2 can be further 
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confirmed by the following study which monitors the disassembly process of blackberries in the 

solutions of the molecular rods respectively after removing ZnCl2. 

3.3.5 EXAFS studies of the Zn
2+

 on the surface of molecular rods 

XANES and EXAFS spectroscopy was employed to probe the local environment around Zn 

atoms in the solutions. XANES is used to determine the oxidation state and electronic transitions 

and fingerprint the element of interest. EXAFS is used for determination of local structure i.e. 

interatomic distances, coordination numbers and the types of neighboring atoms with few 

angstroms around the element of interest which is Zn in this case. Figure 3.10a shows the 

normalized absorption coefficient data for ZnCl2’s acetonitrile solution plotted along with the 

samples. The figure clearly show that the spectra for ZnCl2 is different from that of the samples as 

observed from the shift in peak position and the nature of the oscillations indicated by the arrows. 

Figure 3.10b shows comparison of the Fourier transformed EXAFS data in r-space for the 

samples and ZnCl2 solution. It is obvious that the local structure around Zn atoms is different in 

ZnCl2 solution and the samples. For 2’s solution, the first shell peak is observed at 1.5 Å, whereas 

for ZnCl2 it is at 1.7 Å. This would imply presence of slightly higher bond lengths for Zn atoms 

in ZnCl2 when compared to the sample. Figure 3.11a and b show the data and fit of the EXAFS 

data from ZnCl2 and 2’s acetonitrile solution (with Zinc ion) and the fit parameters are listed in 

Table 3-1. 

From Table 3-1, we observe that ZnCl2 solution has Zn-low Z atom bonds (in our case, mostly is 

the N atom from acetonitrile solvent) along with Zn-Cl bonds.
40

 2’s solution has only Zn-O bonds 

while Zn-Cl bonds were not necessary to fit the data. The shift of the first shell peak to high value 

of r in Figure 3.10b for ZnCl2 may due to the presence of Zn-Cl bonds. 
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Figure 3.10 a) Comparison of XANES data from ZnCl2 with data from sample 2; b) comparison of Fourier 

transformed data of Zn edge from ZnCl2 with Zn edge from Sample 2. 

 

Figure 3.11 a) Data and fit of EXAFS data from Zn edge of ZnCl2; b) Data and fit of EXAFS data from Zn edge 

of Sample 2. 

Table 3-1 List of fit parameters obtained from modeling the data for Zn edge of ZnCl2 and 2:  So2 was obtained 

by fitting the Zn foil whose exafs was measured before data collection on samples was started. R factors for all 

the fits are less than 0.03. 

Edge Sample Name Paths 

Bond 

length 

R (ang) 

 

Coordina

tion 

Number 

(n) 

Debye 

Waller 

Factor 

(ang2) 

Energy 

Shift  E 

(eV) 

Zn edge 

 

So
2
=1.04 

 

 

ZnCl2 

R=1.0-3.0 Å 

k= 2.5-12 Å
-1

 

 

Zn-O 
2.04  

0.05 
2.5  1.4 

0.008  

0.003 

2.5 2.6 

Zn-N 
2.20  

0.03 
2.9  1.2 

0.008  

0.003 

 

Sample 2 

 

R=1.1-2.6 Å 

k=2.3-8.2 Å
-1

 

Zn-O 
2.03  

0.01 
3.5  0.3 

0.007  

0.002 

2.1  0.9 
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3.3.6 Dissociation of the blackberries leads to the confirmation the role of counterions  

Time-resolved SLS results of individual solutions of 1 and 2 and their mixtures (with ZnCl2 

added) at equilibrium state indicated that the scattering intensity kept going down exponentially 

to less than 200 kcps (scattered intensity for benzene, 113 kcps) when (TBA)4*EDTA 

(tetrabutylammonium*ethylenediaminetetraacetate, see experimental section, molar ratio of 

(TBA)4*EDTA to added Zn
2+

 is ca. 1) was added to each of the solutions, respectively, 

suggesting the disassembly of the blackberry structures. EDTA is a strong chelating agent that 

can almost stoichiometrically coordinate with metal ions. In our case, EDTA can extract the Zn
2+

 

from the blackberry structures, which will become thermodynamically unstable and consequently 

disassemble into monomers. The half-life of the disassembly process could be used to estimate 

the robustness of macroion-Zn
2+

 interaction and the blackberry structures. Being consistent with 

the DFT calculation results that 1 can more strongly interact with Zn
2+

, 1’s solution showed 

longer half-life (2893 s) than that of 2’s solution (597 s) (Figure 3.12a). The molecular rods self-

assembled in self-sorted ways in their mixture solution and the formed two types of homogeneous 

blackberry structures should have different robustness according to the above discussions. 

Therefore, the half-life of the mixture solution should be longer than that of individual 2’s 

solution due to the existence of 1’s robust vesicles, however, shorter than that of 1 because of 

lower concentration of 1’s blackbeery structures, which was consistent with our experiment 

results (half-life of mixture solution, 1585 s). The monitoring results confirm that molecular rod 1 

can bind more zinc complex strongly than 2. Interesting, SLS and DLS results of the three 

solutions suggested that larger assemblies with similar sizes as that of their original solutions, 

respectively, were observed again in their solution when ZnCl2 was added to each of the 

solutions, which not only confirm the stability of monomers during self-assembly/disassembly 

process, but also provide us a way to reversibly control the self-assembly/disassembly of macro-

ions in their solutions (Figure 3.12). 
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Figure 3.12 a) Time-resolved SLS monitoring results of the three solutions after adding TBA*EDTA (Green, 1’s 

solution; Blue, 2’s solution; Red, mixture solution). b) Model of the reversibly self-assembly/disassembly process. 

3.4 Self-recognition of rod-shaped macroions with different organic 

functional groups during their assembly process  

3.4.1 Molecular structures of two molecular rods with different organic functional groups 

Aryl imido ligands can be used to replace terminal oxo ligands on the surface of unit A in 

molecular rod of 1 through the further reactions of rod 1 with aromatic amines. Organic ligands 

(naphthyl and 1-methylnaphthyl) with tiny differences were grafted onto the surface of molecular 

1 and two new molecular rods 3 and 4 were obtained. Molecular structures of the two compounds 

show that two organic ligands are attached on the surface of two A units, respectively (Figure 

3.13). There is obviously change in their molecular shape and size after the organic modification 

and the charges of them remained unchanged. However, the surface of the new compounds 

became partially hydrophobic due to the introduction of these bulky aromatic groups.
25
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Figure 3.13 Ball-stick representation of the molecular structures of anion part of 3 and 4. 

3.4.2 Self-recognition behavior in their self-assembly process  

Being similar with the self-assembly behavior of macroanion 1 and 2, the new compounds slowly 

self-assembled into hollow spherical supramolecular assemblies in their diluted acetonitrile 

solutions with the addition of extra ZnCl2. DLS analysis on the individual solutions of 3 and 4 

(0.5 mg/mL) at equilibrium state of the self-assembly process indicate that large structures with 

Rh as 30 ± 2 nm and 110 ± 6 nm were formed in the solution of 3 and 4, respectively. SLS results 

show that the ratio of Rg/Rh ~ 1 for both of the two solutions, suggesting hollow spherical model 

for the formed large assemblies, which, as well as their size information, were confirmed by the 

TEM images of the corresponding assemblies (Figure 3.14). Interestingly, DLS results of the 

mixed solution of 3 and 4 (1:1 mixture, 0.25 mg/mL for either of them) indicate that two 

assemblies with Rh as 30 ± 2 and 120 ± 6 nm, respectively, which correspond to the sizes of 

assemblies in the individual solutions of 3 and 4 within the error limit of CONTIN analysis. The 

analysis of the TEM images of the assemblies in the mixture solution provides solid evidence for 
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the formation of two types of assemblies by showing that two types of hollow spherical features 

with obviously different sizes coexist (Figure 3.15). 

 

Figure 3.14 DLS results and TEM images of the individual solutions of 3 (up) and 4 (below), respectively. 

The formation of their individual blackberry structures suggests the self-recognition behavior of 3 

and 4 in the mixture solutions. The tiny difference of their organic fragments (methyl group) is 

supposed to lead to the self-recognition behavior. Being different from the self-assembly of 1 and 

2, hydrophobic interaction should be counted as partial driving force besides counterion mediated 

attraction because of the introduction of organic ligands. Thus, the difference of methyl groups in 

compound 3 and 4 could have effect in the hydrophobic interaction between monomers during 

their self-assembly behavior, which finally results in different sizes of the two compounds’ 

blackberry structures and their self-recognition behavior.  
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Figure 3.15 a) DLS results of the mixed solution (green) and the individual solutions of 3 (red) and 4 (blue); b) 

TEM images of the assemblies in the mixed solution. 

3.5 Conclusion and outlook 
In both of the cases with two very similar macroionic molecular rods, they were observed to self-

assemble into hollow spherical blackberry structures and showed self-recognition behavior by 

assembling into homogeneous blackberries in their mixture solutions. By controlling the addition 

and removal of the counterions, Zn
2+

, the self-assembly/disassembly of the molecular rods can be 

controlled. The counterion-mediated like-charge interaction plays important roles in the 

formation of bio-molecular complex and self-assembly of polyelectrolyte into functional 

materials. Our research on self-recognition and self-assembly/disassembly of macro-ions could be 

helpful to understand recognition behavior and self-assembly of biomolecules and direct the 

design of polyelectrolyte materials. 
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4 Chapter 4: Chiral Recognition and Chiral Discrimination 

during the Self-Assembly Process of Chiral Polyoxoanions 

4.1 Introduction 

Molecular chirality was primarily demonstrated by Louis Pasteur’s famous experiments on 

separating tartaric acid with different handness under microscope in 1848.
1,2

 It was not until 25 

years later that J. H. van’t Hoff and J. A. Lebel simultaneously but independently provided the 

explanation that there are two different ways in which four different objects can be arranged at 

the corners of a tetrahedron, and that the two arrangements are mirror images of one another.
3
 

The term ‘chiral’ is derived from the Greek name kheir meaning ‘hand’ and was firstly mentioned 

by Lord Kelvin in 1904 in his Baltimore Lectures on Molecular Dynamics and the Wave Theory 

of Light in which he stated that ‘I call any geometrical figure, or group of points, chiral, and say it 

has chirality, if its image in a plane mirror, ideally realized, cannot be brought to coincide with 

itself.’
4-6

 Thanks to their opening work in molecular chirality, chirality-related research has been 

attracting more and more interest and. It extended from asymmetric synthesis in organic 

chemistry, chiral separation in analytical chemistry, chiral surfaces and supramolecular 

assemblies, to homo-chirality in the origin of life.
7,8

 In the meantime, the theories on chirality 

have been being updated and now chemists believe that chirality in molecules can result from not 

only chiral building blocks or guest, but also asymmetric arrangements of achiral building blocks, 

or an intrinsically asymmetric molecular structure.
9
 

Chiral recognition and chiral discrimination (selection) are the two major topics in chiral 

research.
10-12

 Currently, the study of the two topics were explored mainly in the study of physical 

properties of solid samples (including crystallization)
10,11

, amino acid clusters in gas phase
13

, 

molecular interaction on surfaces
14,15

, and supramolecular assemblies
16

. However, very limited 
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methods with high cost could be applied for asymmetric synthesis and chiral separation until 

now. Meanwhile, the homo-chirality of biological molecules, as one of the biggest puzzles in 

understanding how life began, is still remained unsolved. The two major building units of bio-

macromolecules, amino acids and sugars, exist only in L- and D-type, respectively. A few 

sketchy theories have been proposed to explain the originality of homo-chirality; however, none 

of them were convincing enough to be widely accepted by the community.
17,18

 Our group mainly 

focuses on the research on solution behaviors of macro-ions, including polyoxometalates, 

nanocages, and bio-macromolecules, by studying their self-assembly process in their dilute 

solutions.
19-21

 Inorganic macro-ions demonstrate similar self-assembly behavior with that of one 

type of early life, viral capsid proteins in both kinetic properties and assembly morphology 

(single-layer hollow spheres). Therefore, chiral inorganic macroions were used in this work, as 

simple models for chiral bio-macromolecules to help us understand chiral recognition and chiral 

discrimination in biological systems.
19,22

 Meanwhile, our recent study on the assembly process of 

two different nano-scaled, spherical polyprotic metal oxide-based macroions with the same size 

but different charge density in dilute solution, demonstrated that the the two macroions can self-

recognize each other by forming homogeneous ‘blackberry’-type structures.
23

 The role of charge 

density difference in such systems is believed to be the dominant factor in the self-recognition 

process.
23

 However, the original study was based on an obvious difference. Here,  we hope to 

push the limit by studying highly similar mixtures, which might help explain the general 

phenomenon of self-recognition in biological systems.  

4.2 Experimental section 

General. D- and L-Lactic acid were purchased from Sigma-Aldrich and used without further 

purification. Macrosep Advance Centrifugal Device, 30K MWCO was purchased from Pall 

Corporation. 200 and 450 nm filters were purchased from Millipore for solution preparation. 
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G300 Copper grids were purchased from SPI. A commercial Brookhaven Instrument LLS 

spectrometer equipped with a solid-state laser operating at 532 nm was used for measurement of 

both SLS and DLS. The TEM images were generated on a JEOL JEM-2000 electron microscope 

operated at 200 kV with EDS attachment (Oxford). Samples for the TEM analysis were prepared 

by dropping a small volume of the solution sample onto a carbon film on copper grid. J-815 from 

JASCO was used to take CD spectra of samples. 

Synthesis. The two pairs of enantiomers, Ca10Fe28(u3-O)8(D-Tart)16(HCOO)24 (Ca-D-Fe28) and 

Ca10Fe28(u3-O)8(L-Tart)16(HCOO)24 (Ca-L-Fe28), Ba10Fe28(u3-O)8(D-Tart)16(HCOO)24 (Ba-D-Fe28) 

and Ba10Fe28(u3-O)8(L-Tart)16(HCOO)24 (Ba-L-Fe28) were synthesized and fully characterized 

previously.
24

  

Static light scattering. A commercial Brookhaven Instrument LLS spectrometer equipped with a 

solid-state laser operating at 532 nm was used for measurement of both SLS and DLS. SLS 

experiments were performed at scattering angles (θ) between 20 and 100º, at 2º intervals. 

However, due to the large fluctuations in scattered intensities at low scattering angles,  data from 

20-40º in the final analysis were removed. Derived from Rayleigh-Gans-Debye equation
25

, partial 

Zimm plot was used to analyze the SLS data to obtain the radius of gyration (Rg). The partial 

Zimm plot stems from the following approximation: 1/I = C(1+Rg
2
*q

2
/3). Here Rg is determined 

from the slope and the intercept of a plot of 1/I vs. q
2
. 

Dynamic light scattering. DLS measures the intensity–intensity time correlation function by 

means of a BI-9000AT multi-channel digital correlator. The field correlation function |g
(1)
(τ)| was 

analyzed by the constrained regularized CONTIN method
26

 to yield information on the 

distribution of the characteristic linewidth Γ from |g
(1)
(τ)| = . The normalized 

distribution function of the characteristic linewidth, G(Γ), so obtained, can be used to determine 

an average apparent translational diffusion coefficient, Dapp =Γ/q
2
. The hydrodynamic radius Rh is 

related to D via the Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann constant 



 

87 

and η the viscosity of the solvent at temperature T. From DLS measurements, we can obtain the 

particle-size distribution in solution from a plot of ΓG(Γ) versus Rh. The Rh of the particles is 

obtained by extrapolating Rh,app to zero scattering angle. 

CD spectrum. Solution samples were put in cuvette (thickness, 1 cm) and the solutions were 

diluted by DI water until the HT in the whole wavelength range is lower than 800 mV. The 

solutions with appropriate concentrations were scanned from 600 to 220 nm for 5 times and the 

obtained data were averaged after subtracting the baseline of pure solvent (water). 

Ultrafiltration. Ultrafiltration was performed using Macrosep Advance Centrifugal Device (30 K 

MWCO) to separate blackberry structure and discrete polyoxometalte. A sample solution was 

poured into the device and the device is rotated at a speed of 4000 xg for 50 minutes. The upper 

layer and bottom layer were collected for CD spectrum testing, respectively. 

Small angle X-ray Scattering. The SAXS experiments were performed at 12-ID-B station with 

X-ray energy of 12 KeV at the Advanced Photon Source of the Argonne National Laboratory. 

The sample to detector distance was about 2 m. A 2D CCD detector was used to acquire images 

with typical exposure times in the range of 1.0 s. 

Preparation of the solutions for SAXS studies. Ca-D/L-Fe28 were dissolved in D.I. water, 

respectively (2.0 mg/mL). CaCl2 stock solution was prepared as 21.8 mg/mL and titrated to 1 mL 

of prepared Ca-D/L-Fe28 solutions, respectively with 0 uL, 5 uL, 5 uL, and 5 uL step by step.  

2 mg of Ba-D/L-Fe28 were dissolved in 1 mL buffer of D- or L-lactic acid (2 mg/mL), 

respectively. 
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4.3 Chiral recognition and chiral discrimination during their self-assembly 

process 

4.3.1 Molecular structures and macro-anionic properties of D/L-Fe28 

Single-crystal X-ray diffraction analyses reveal that the two compounds are enantiomers and 

show chiral wheel-type structures. The anionic ferric wheel [Fe28(u3-O)8(Tart)16(HCOO)24]
20-

 

consists of 29 six-coordinate iron(III) centers linked by 8 u3-oxo bridges, 16 Tart linkers, and 24 

formic acid ligands. The Fe28 wheel contains a cross-like inner cavity with the shortest and 

longest diameter of circa 8.4 and 11.5 Å, respectively; its external diameter is about 26.5 Å and 

the thickness is circa 9.5 Å (Figure 4.1). Seven Fe
3+

 centers coordinate with three Tart ligands to 

form the {Fe7} cluster, which is further linked with another three identical clusters through Tart 

ligands to create the wheel-type macroanions. If the Tart ligands are visiualized as ‘amino acids’, 

the Fe28 cluster can be considered as a protein- or peptide-like molecule because 16 ‘amino 

acids’ will be connected together through Fe
3+

 metal centers.
24

 Therefore, it is straightforward to 

understand chiral recognition and chiral discrimination among bio-macromolecules from the 

corresponding study of Fe28 chiral clusters 
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Figure 4.1 a) Ball-stick representation of molecular structures of enantiomers of Fe28; b) c) Side and top view of 

the molecular structures of L-Fe28 (Molecular fragments highlighted in blue are tartaric acid fragments). 

Reprinted with permission from ref. 24. Copyright 2009 Wiley-VCH. 

Small angle X-ray scattering (SAXS) was utilized to study the molecular structures of the chiral 

wheel in solution state along with counterion (Ca
2+

) association. The Ca-D-Fe28 and Ca-L-Fe28 

were observed to stay as discrete clusters in their dilute solutions by showing low and stable 

scattering intensity (ca. 15.0 kcps at scattering angle 90°; the scattered intensity for pure benzene 

and water are 116 and 13 kcps, respectively at that situation) in time-resolved static light 

scattering (SLS) results. Therefore, this pair of enantiomers is appropriate for studying solution 

properties of single clusters. The two enantiomers show identical SAXS curves, suggesting they 

have ‘identical’ molecular structure in solution state, which is consistent with the structural 

similarity between the enantiomers in crystalline state (Figure 4.2a). The calculated SAXS profile 

based on Fe28 cluster structure in crystalline state fits well with the experimental data of Ca-L-
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Fe28, indicating that the wheel-structure survives and remains stable as the enantiomeric crystals  

dissolve in water (Figure 4.2b). Extra Ca
2+

 was titrated into the homogeneous solutions of both of 

the two enantiomers and radius of gyration (Rg) of the clusters, calculated from the small angle 

region using Guinier equation, was observed to increase with more and more CaCl2 solution 

being titrated (Figure 4.2c). Meantime, further exploration of the scattering data with program 

GNOM generates pair distance distribution functions (PDDF) in real space, p(r). The intensity 

keep increasing at the range from 2.5 nm to 3.5 nm, suggesting the association of counterions on 

the surface of the chiral clusters (Figure 4.2d and e).
27,28

 

 

Figure 4.2 a) SAXS curves of Ca-D-Fe28 and Ca-L-Fe28; b) SAXS curve of Ca-L-Fe28 and the simulated curve 

based on the molecular structures in crystalline state; c) Rg, measured from SAXS curves, of the solutions with 

different amount of extra CaCl2; d) PDDF results of solutions with different amount of extra CaCl2; e) Model 

for the counterions association with Fe28. 

The enantiomers with Ba
2+

 as counterions (Ba-D-Fe28 and Ba-L-Fe28) were observed to self-

assemble into large supramolecular structures, however, only exist as discrete clusters in the 

buffer of lactic acid (2mg/mL). Routine analysis of SAXS data of the two enantiomers in both 

buffers of D and L-lactic acid indicates that the wheel-shaped cluster structures remain stable in 

the buffer solutions. More importantly, the two enantiomers show almost identical SAXS curves 
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in both buffers, suggesting the chiral type of co-anion (lactic acid) have no effect in counterion 

association of the chiral clusters (Figure 4.3). 

 

Figure 4.3 SAXS curves of Ba-D-Fe28 and Ba-L-Fe28 in the buffer of L-lactic acid, respectively.  

4.3.2  Chiral recognition in the self-assembly process of the chiral clusters 

With Ba
2+

 as counterions, Ba-D-Fe28 (0.5 mg/mL), Ba-L-Fe28 (0.5 mg/mL), and their mixture 

(D/L = 1:1, D, 0.25 mg/mL; L, 0.25 mg/mL) in water, as monitored by SLS, showed a slow self-

assembly process and reached equilibrium state at ca. 60 days, which is the typical character of 

self-assembly of macroions into ‘blackberry’-type structures.
19,20

 The two enantiomers show 

almost identical kinetic curves, suggesting that they self-assemble at the same speed. The total 

concentration of the macroions in the mixture solution is actually identical with the individual 

solutions of the enantiomers (0.5 mg/mL). Thus the kinetic properties of the mixture solution 

should be similar with the enantiomer solutions if there is no chiral recognition between the two 

enantiomers in their racemic mixtures. However, the mixture shows slower self-assembly speed 
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and equilibrates at much lower scattered intensity compared to that of the individual enantiomer 

solutions. This implies that the two enantiomers  can self-recognize each other since both of the 

kinetic parameters are highly dependent on the concentration of macroions (Figure 4.4). A typical 

CONTIN analyses on dynamic light scattering (DLS) results of the three solutions indicate that 

assemblies of hydrodynamic radius (Rh) as ca. 65 ± 4 nm form during the self-assembly process 

in solutions, respectively. SLS results indicate that Rg is close to their corresponding Rh values, 

which is consistent with the hollow spherical model of blackberry structures confirmed by further 

TEM studies (Figure 4.4). 

 

Figure 4.4 a) SLS results of Ba-D-Fe28, Ba-L-Fe28 and their racemic mixture solutions; b) TEM images of the 

assemblies in solution Ba-D-Fe28.    

As confirmed by a previous study on self-assembly of macroions, the lag phase period, claimed 

as dimer/oligomer formation state, during the self-assembly process is responsible for the self-

recognition behavior.
23,29

 The two individual enantiomer solutions and their mixture solution were 

monitored by SLS at the first 31 hrs (Figure 4.5). Obviously, the two individual solutions self-

assemble at almost the same speed and much faster than that of the mixture solution, confirming 

the self-recognition of the two enantiomers in their mixture solution. Meantime, after the 

confirmation of the chiral-recognition behavior, the above mentioned mixture solution can be 

now considered as ‘real’ mixtures of two species: D- and L-Fe28. Here comes the next question: 

how independently do the two species self-assemble in their mixture solution? In order to answer 
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the question, another two solutions of individual Ba-D- and Ba-L-Fe28 were prepared at 0.25 

mg/mL, respectively, which is the half of the concentration of the original ones, and monitored 

during the same period. The sum of scattered intensity of the two new solutions was represented 

by curve of black dots. Ideally, D- and L-Fe28 self-assemble independently into larger structures 

in their mixture and scattered intensity of mixture should be exactly the sum of individual 

enantiomer solutions (0.25 mg/mL). Experimentally, the curve of summed intensity showed 

larger slope than that of mixture solution, suggesting that D- and L-Fe28 form non-ideal mixture 

solution and they have negative effect in the self-assembly process of each other. 

 

Figure 4.5 a) Graphical representation of the thermodynamic mechanism of the self-assembly process; b) SLS 

monitoring of different solutions for 31 hours.  

The high symmetry of the assemblies (blackberry structures), strong counterion-mediated 

attraction, and rigid nature of molecular structure are supposed to lead to low tolerance on the 

morphology difference between building units (macroion monomers). Olson et al. have studied 

the viral capsid self-assembly through theoretical simulation and they happened to mention chiral 

recognition in their modeling story.
30

 In the video of the assembly process of Olson’s 

macroscopic models, only oligomers with homo-chiral units were observed at beginning, which is 

consistent with one of our conclusions that the self-recognition starts as early as lag phase period. 

Dimers or oligomers were considered as the intermediate state in the self-assembly process of 

discrete macroions to blackberry structures. Due to the morphological compatibility, the 
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formation energy for homo-oligomers is slightly lower than the hybrid oligomers.However, this 

tiny difference seems to be enough to lead to the discrimination of homogeneous blackberry 

structures over heterogeneous ones. Moreover, typical blackberry structures are almost perfect 

hollow spherical objects and therefore, their high symmetries cannot permit the tiny defects of the 

insertion of heter-chiral monomers. 

4.3.3 Chiral discrimination in the self-assembly process of the chiral clusters 

Chiral organic molecules, e.g. lactic acid, can be used to tune the self-assembly process of Ba-

D/L-Fe28 in their dilute solution. Ba-D-Fe28 and Ba-L-Fe28 (0.5 mg/mL) were dissolved three 

different buffers, D-lactic acid (33 ug/mL in water), L-lactic acid (33 ug/mL in water), and D/L-

lactic acid (D-lactic acid, 16.5 ug/mL; L-lactic acid, 16.5 ug/mL), respectively (Figure 4.6). 

Interestingly, D-Fe28 macroanions were observed to self-assemble rapidly in buffer of L-lactic 

acid with very short lag phase period, however self-assemble very slowly in the buffer of D-lactic 

acid with long lag phase of ca. 10 day. The self-assembly speed of the D-Fe28 in buffer of D/L-

lactic buffer is in the middle of the above two solutions with lag phase as ca. 6 days. In the 

meantime, the self- assembly process of  L-Fe28 is the fastest in the buffer of D-lactic acid with 

shortest lag phase time and slowest in the buffer of L-lactic acid with longest lag phase time (ca. 

5 days). Moreover, the self-assembly speed and the lag phase time of L-Fe28 in the buffer of D/L-

lactic acid lies in the middle. The explanation for the observations is that D-lactic acid suppresses 

the self-assembly of D-Fe28 while L-lactic acid suppresses the self-assembly of L-Fe28. The 

suppression effect depends on the concentration of lactic acid and probably that is the reason that 

Fe28 in D/L-lactic acid is always in the middle in self-assembly speed. On the other hand, the 

comparison of the self-assembly rate of the two enantiomers in the same buffer indicates that L-

Fe28 self-assembles much faster than D-Fe28 for the buffer of D-lactic acid while D-Fe28 self-

assembles faster than L-Fe28 in the buffer of L-lactic acid.  
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Figure 4.6 a) Graphical representation of the chiral discrimination experiments; b) SLS results of Ba-D-Fe28 in 

different buffers; c) SLS results of Ba-L-Fe28 in different buffers.  

Being similar with the chiral recognition study, chiral discrimination starts at lag phase period of 

the self-assembly process. The solution behavior of D-Fe28 and L-Fe28 (0.5 mg/mL) were studied 

in the buffer of L-lactic acid (33 ug/mL) for the first 400 hrs of their self-assembly process 

(Figure 4.7). The lag phase time for the solution of D-Fe28 and L-Fe28 could be roughly 

determined as ca.50 and ca. 266 hrs (longer than 266 hours and less than 400 hrs), respectively. In 

the buffer of L-lactic acid, the formation of D-Fe28 dimers/oligomers at the beginning of self-

assembly process is much easier than that of L-Fe28. 
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Figure 4.7 SLS monitoring of Ba-D-Fe28 and Ba-L-Fe28 in the buffer of L-lactic acid for 400 hrs. 

The chiral discrimination during the chiral macroions’ self-assembly process is believed to result 

from the compatibility between chiral co-anions (lactic acid) and the chiral micro-environment 

confined by chiral POMs. At the lag phase period, discrete macroionic clusters meet with each 

other to form dimer (or oligomer) structures, which is the rate-determine step with high activation 

barrier for the self-assembly process.
29

 The confined space between the clusters is the so-called 

chiral micro-environment. Counterions (Ba
2+

) and their co-anions (lactic acid) are supposed to 

exist in this area to mediate the attraction between the two like-charge clusters. Therefore, the 

compatibility of lactic acid and the chiral micro-environment determines the activation energy of 

the formation of dimers/oligomers (Figure 4.8a). Experimental results suggest L-, and D-lactic 

acid are compatible with the chiral micro-environments of D-, and L-Fe28, respectively and thus 

‘like’ pairs (D-lactic acid/L-Fe28; L-lactic acid/D-Fe28) could have lower activation energy in 

formation dimers than that of ‘dislike’ pairs (D-lactic acid/D-Fe28; L-lactic acid/L-Fe28), which 

explains why the ‘like’ pairs show shorter lag phase periods. Such compatibility was also 
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believed to have effect in the formation of complete blackberry structures. The area pained in 

yellow in blackberry model was actually also chiral micro-environment confined by chiral POMs 

(Figure 4.8b). The compatibility of lactic acid in the buffer with such area could determine the 

rate of the formation of blackberry and its size. Obviously, the ‘dislike’ pairs show much slower 

process in formation of blackberry than that of ‘like’ pairs. CONTIN analyses on the DLS results 

on the solutions of ‘like’ and ‘dislike’ pairs indicates that ‘like’ pairs form larger blackberry 

structures (Rh~Rg = 63 nm) than ‘dislike’ pairs do (Rh~Rg = 40 nm), confirming that POMs in 

‘like’ pairs interact stronger with each other (Figure 4.8). 

 

Figure 4.8 a) Graphical representation of chiral micro-environment; b) c) TEM images of the assemblies in Ba-

D-Fe28 and Ba-L-Fe28 in the buffer of L-lactic acid, respectively. 
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4.3.4 Chiral separation: the combination of chiral recognition and chiral discrimination 

Chiral separation could be carried out if chiral recognition and chiral discrimination can work 

together. The monitoring of individual enantiomer solutions and their racemic mixture in the 

buffer with D- and L-lactic acid, respectively, might provide evidence for the assumption. 

Different from the results regarding the self-recognition study, the blackberry formation speed of 

the racemic mixture is in the middle of ‘like’ pairs and ‘dislike’ pairs in both D- and L-lactic acid 

buffers (Figure 4.9). The plausible explanation is that lactic acids specifically suppresses the self-

assembly of their ‘dislike’-pair partners while their ‘like’-pair partners are able to self-assemble 

into larger structures, which contributes largely to the scattered intensities increment in the 

racemic mixture solutions.  

More convincing evidences for the co-existence of chiral recognition and discrimination are from 

ultrafiltration experiments. Theoretically, based on the above assumption, the addition of certain 

type of lactic acid (let’s take D-lactic acid as an example.) to the racemic mixture of Ba-D/Ba-L-

Fe28 would favor the self-assembly of L-Fe28 and suppress the self-assembly of D-Fe28 and most 

of L-Fe28 would exist as assemblies while most of L-Fe28 stays as discrete clusters. The 

enantiomers could easily be separated since the blackberry structures and monomers are of quite 

different sizes (monomer, 2.65nm; blackberry, 80~120 nm) and can be separated by filtration. 

The racemic mixture with added D-lactic acid was experimentally filtered by passing the solution 

through membrane with cut off molecular weight as 30K. Amazingly, the upper layer solution, 

supposed to be full of large assemblies, shows the signal of L-Fe28 while the bottom layer 

solution, supposed to be dominated by monomers, shows the signal of D-Fe28, which support the 

our assumption that L-Fe28 and D-Fe28 dominantly exist as blackberry structures and discrete 

clusters, respectively in the separated solutions (Figure 4.10). Therefore, chiral recognition and 

discrimination were experimentally confirmed to work together, which not only strongly supports 
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the above study on self-recognition and self-discrimination, but also provides possible way for 

chiral separation. 

 

Figure 4.9 a) SLS results of Ba-D-Fe28, Ba-L-Fe28, and their racemic mixture in the buffer of D-lactic acid 

respectively; b) SLS results of Ba-D-Fe28, Ba-L-Fe28, and their racemic mixture in the buffer of L-lactic acid 

respectively. 

 

 

Figure 4.10 a) Graphical representation of the self-assembly of the two enantiomers in the buffer of D-lactic; b) 

Graphical representation of ultrafiltration experiment; c) CD spectrum of the solution before ultrafiltration; d) 

CD spectra of up layer (red) and bottom layer (green) solutions after ultrafiltration; e) CD spectra of aqueous 

solutions of pure Ba-D-Fe28 (green) and pure Ba-L-Fe28 (red). 

4.4 Conclusion 

Chiral macro-polyoxoanions were observed to show chiral recognition behavior by forming 

homogeneous blackberry structure of the individual enantiomers in their racemic mixtures. Their 

self-assembly behavior can be tuned by addition of lactic acid with the ‘like’-pairs and ‘dislike’-
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pair rules. The study on chiral recognition and chiral discrimination provides us with insightful 

ideas on the nature of interaction between macroions, which not only sheds light on the basic 

research on homo-chirality and chiral selection, but also provides new way for chiral separation 

and sensing. 

 

Reference 

 (1) Gal, J. Chirality 2011, 23, 1. 

 (2) Flack, H. Acta Cryst. A 2009, 65, 371. 

 (3) The Cambridge History of Science; Nye, M. J., Ed.; Cambridge University Press: 

Cambridge, 2003; Vol. 5. 

 (4) Lough, W. J.; Wainer, I. Chirality in Natural and Applied Science; Blackwell 

Science Ltd-CRC Press: USA and Canada, 2002. 

 (5) Clayden, J.; Greeves, N.; Warren, S. Organic chemistry; 2nd ed.; Oxford 

University Press: USA, 2012. 

 (6) Kelvin, W. T. Baltimore Lectures on Molecular Dynamics and the Wave Theory 

of Light; C. J. Clay: London, 1904. 

 (7) Chiral Recognition in Separation Methods: Mechanisms and Applications; 1st 

ed.; Berthod, A., Ed.; Springer, 2010. 

 (8) Cline, D. B. Eur. Rev. 2005, 13, 49. 

 (9) Zang, H.; Miras, H. N.; Yan, J.; Long, D.-L.; Cronin, L. J. Am. Chem. Soc. 2012, 

134, 11376. 

 (10) Kuhnle, A.; Linderoth, T. R.; Hammer, B.; Besenbacher, F. Nature 2002, 415, 

891. 

 (11) Meyer, V. R.; Rais, M. Chirality 1989, 1, 167. 

 (12) Alkorta, I.; Picazo, O.; Elguero, J. Curr. Org. Chem. 2006, 10, 695. 



 

101 

 (13) Dwivedi, P.; Wu, C.; Matz, L. M.; Clowers, B. H.; Siems, W. F.; Hill, H. H., Jr. 

Anal Chem 2006, 78, 8200. 

 (14) Suh, I.-H.; Park, K. H.; Jensen, W. P.; Lewis, D. E. J. Chem. Educ. 1997, 74, 

800. 

 (15) Addadi, L.; Weiner, S. Nature 2001, 411, 753. 

 (16) Supramolecular chirality; 1st ed.; Crego-Calama, M.; Reinhoudt, D. N., Eds.; 

Springer, 2006. 

 (17) Blackmond, D. G. Cold Spring Harb Perspect Biol. 2010, 2, a002147. 

 (18) Breslow, R. Tetrahedron Lett. 2011, 52, 2028. 

 (19) Liu, T. B. Langmuir 2010, 26, 9202. 

 (20) Yin, P.; Li, D.; Liu, T. Isr. J. Chem. 2011, 51, 191. 

 (21) Yin, P.; Li, D.; Liu, T. Chem. Soc. Rev. 2012, 41, 7368. 

 (22) Zlotnick, A.; Aldrich, R.; Johnson, J. M.; Ceres, P.; Young, M. J. Virology 2000, 

277, 450. 

 (23) Liu, T.; Langston, M. L. K.; Li, D.; Pigga, J. M.; Pichon, C.; Todea, A. M.; 

Müller, A. Science 2011, 331, 1590. 

 (24) Zhang, Z. M.; Li, Y. G.; Yao, S.; Wang, E. B.; Wang, Y. H.; Clerac, R. Angew. 

Chem. Int. Ed. 2009, 48, 1581. 

 (25) Hiemenz, P. C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; 

Marcel Dekker: New York, 1997. 

 (26) Provencher, S. W. Comput. Phys. Commun. 1982, 27, 229. 

 (27) Svergun, D. J. Appl. Crystallogr. 1992, 25, 495. 

 (28) Svergun, D. I.; Koch, M. H. J. Rep. Prog. Phys. 2003, 66, 1735. 

 (29) Zhang, J.; Li, D.; Liu, G.; Glover, K. J.; Liu, T. B. J. Am. Chem. Soc. 2009, 131, 

15152. 



 

102 

 (30) Olson, A. J.; Hu, Y. H. E.; Keinan, E. Proc. Nat. Acad. Sci. USA 2007, 104, 

20731. 

 

 



 

103 

5 Chapter 5: Self-Assembly of POM-Organic Hybrids to 

Vesicles with Tunable Sizes and Fluorescence 

5.1 Introduction 

Polyoxometalates (POMs) are a large group of anionic metal oxide clusters with varied 

topologies, sizes and charge densities, composed of early transition metal ions in high oxidation 

states and oxo ligands.
1,2

 POMs have been widely studied for their applications in the 

development of magnetic and photo-electronic materials, catalysts and medicines.
1-3

 POMs are 

also used in industry as catalysts and electrode materials.
4
 In recent years, the self-assembly 

behavior of POMs has received continuous interest as it helps to incorporate POMs into nano-

devices with desired morphology and functionality, which consequently expands the applicability 

of POMs.
5-8

 

Various methods are available to assemble POMs into nano- and micro-structures. As a well-

developed protocol, supramolecular interaction-driven self-assembly, including coordination and 

hydrogen bonding, has been used to obtain oligomers of POMs,
9,10

 POM based nano-cages,
11

 

nano-rods,
12,13

 and 3D frameworks
14,15

. Due to the macroionic feature of POM anions, counterion-

mediated self-assembly leads to the formation of hollow, spherical ‘blackberry’ structures in 

solutions as well as monolayers of close-packed POM clusters on surfaces.
5-7,16

 Self-assembly of 

POMs based on solvophobic interactions has also been achieved by using surfactant-encapsulated 

POMs
17,18

 and/or POM-organic hybrids
19

. In the latter approach, several types of POM hybrids 

with different molecular architectures (dumb-bells, POMs functionalized with single or double 

alkyl chains, etc.) have been successfully explored for their amphiphilic properties in solution and 

at interfaces.
19,20

 Therefore, these POM based hybrids can be considered as unique types of 

surfactants with bulky polar head groups. 
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So far, hybrids containing several types of POM clusters have been explored. Anderson-type 

POMs functionalized with two long alkyl chains were found to form bilayer vesicle structures in 

acetonitrile/water mixed solvents, and reverse vesicle structures in acetonitrile/toluene mixed 

solvents.
21,22

 The vesicle size can be tuned by solvent composition. Moreover, the vesicles of a 

Lindqvist hexavanadate-based hybrid surfactant were found to demonstrate interesting 

fluorescence properties associated with the self-assembly process.
20

 The surfactants with Keggin 

type POM as polar head groups were found by Polarz et al. to be able to self-assemble into 

micelles and lyotropic phases.
19

 The surfactants were later observed to self-assembly into a 

hexagonal lattice at the air/water interface.
23 

However, the research in this area has only just 

started and is still far from achieving the aim of rationally controlling the self-assembly process 

of hybrids by designing their architectures to facilitate their applications. One important POM 

type lacking detailed studies as a polar head group in single cluster hybrid surfactants is the 

Dawson cluster. Earlier studies on single Dawson based hybrids were carried out mainly on bulk 

samples and/or at interfaces, leaving their detailed solution behavior unexplored.
24

 Herein, we 

report the synthesis of a single Dawson cluster based organic-inorganic hybrid and its 

concentration-, polarity-, counterion- and pH-dependent self-assembly behaviors in solution, 

determined by using laser light scattering (LLS), electron microscopy, and 
1
H-NMR techniques. 

5.2 Experimental section 

General. Acetonitrile, acetone, anhydrous ZnCl2, d3-acetonitrile and d6-acetone were purchase 

from Sigma-Aldrich and used without further purification. 200 nm filters were purchase from 

Millipore for solution preparation. Copper grids were purchased from SPI. A commercial 

Brookhaven Instrument LLS spectrometer equipped with a solid-state laser operating at 532 nm 

was used for measurement of both SLS and DLS. NMR spectra were recorded on a Bruker 500 

spectrometer and were calibrated to the residual proton resonance of the solvent. The TEM 

images were taken on a JEOL JEM-2000 electron microscope operated at 200 kV with EDS 
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attachment (Oxford). Samples for the TEM analysis were prepared by dropping a small volume 

of the solution sample onto a carbon film on copper grid. H*1’s aqueous solutions with 

concentrations ranging from 0 to 1.75 mg/mL were prepared for surface tension measurement. 

The measurement was carried out in AR-G2 using Du Noüy Ring method. Differential scanning 

calorimetry (DSC) were done in STA (TA). 

Sample 1 preparation. TBA5H4[P2V3W15O62] was synthesized according to the previous 

literature.
[27]

 TBA5H4[P2V3W15O62] (1.0 g, 0.19 mmol) was dissolved in 30 mL of MeCN, then L
1
 

(0.107 g, 0.3 mmol) was added to the solution. The reaction mixture was refluxed for 6 days in 

the dark. The resulting yellow solution was filtered and added drop-wise to an excess of diethyl 

ether with vigorous stirring. The resulting yellow solid was collected and re-dissolved in 

minimum volume of MeCN, then re-precipitated by addition of diethyl ether. The yellow 

precipitate thus obtained was isolated by filtration, dried overnight under vacuum and 

recrystallized from acetonitrile by ether diffusion. Yield 0.90 g (0.16 mmol, 81.4 %, based on 

TBA5H4[P2V3W15O62]).  

Elemental analysis (%) calcd for C116H254N7O63P2V3W15 (5727.64 g mol
-1

): C 24.32, H 4.47, N 

1.71; found: C 25.20, H 4.65, N 1.80. 
1
H NMR (400 MHz; CD3CN): δ = 6.11 (s, 1H, -NH-), 5.72 

(s, 6H, -CH2-O), 2.15 (t, 2H, -CO-CH2-), 1.30 (m, 24H, alkyl), 0.917 (t, 3H, -CH3) ppm in 

addition to the TBA and solvent resonances. FT-IR (KBr): 3444 (w), 2960 (m), 2929 (m), 2873 

(m), 1483 (m), 1465 (w), 1379, 1083 (s), 1064, 946 (s), 906 (s), 887 (s), 788 (s), 786 (w), 719 cm
-

1
. ESI (CH3CN, m/z): 2621.7 [TBA41]

2-
, 1666.7 [TBA31]

3-
, 1586.5 [TBA2H1]

3-
. 

Sample 2 preparation. (TBA)2[V6O13{(OCH2)3CCH2OH}2] was prepared according to previous 

literature.
[9]

 (TBA)2[V6O13{(OCH2)3CCH2OH}2] (1mmol, 1.26g) DCC (0.44g) and stearic acid 

(4mmol, 1.14g) were dissolved in 50 mL acetonitrile. When they dissolved completely, 0.2g 

DMAP was added to the solution. The mixture was stirred at 80℃ for 72h and then filtered. 0.17g 
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Red thin plate-like crystals of TBA2*1 were collected from the filtrate within two days (yield, 

10%). 

TBA2*2 (Bu4N)2[V6O13{(OCH2)3CCH2OOC(CH2)16CH3}2] Yield: 0.17g (10%). Elemental anal. 

for C78H158N2O23V6: Calc. (%) C, 52.11; N, 1.56; H, 8.86. Found: C, 52.14; N, 1.61; H, 8.80.  

1
HNMR (500MHz, Acetone-d6, 300K): δ = 0.8640(t, 6H, CH3-, tail), 0.9745(t, 24H, CH3-, 

[Bu4N]
+
), 1.2708(m, 52H, -(CH2)13-, tail), 1.4641(m, 16H, -CH2-, [Bu4N]

+
), 1.5487(m, 4H, -CH2-, 

tail), 1.8425(m, 16H, -CH2-, [Bu4N]
+
), 2.2000(m, 4H, OOC-CH2-, tail), 3.5113(t, 16H, NCH2-, 

[Bu4N]
+
), 3.9401(t, 4H, COO-CH2-, tail), 5.0630(s, 12H, (OCH2)3CR). IR (KBr pellet, cm

-1
): 

2961 (s), 2922 (s), 2872(s), 2852 (s), 1752(s), 1485(m), 1469(s), 1384(m), 1159(m), 1132(m), 

1062(s), 961(s), 942(vs), 881(w), 812(m), 720(s), 582(m), 513(w). UV/Vis (MeCN): λmax = 

350nm. ESI (MeCN): 656.35 (2
2-

), 1313.22 ({2+H}
-
), 1554.50 ({2+TBA}

--
). 

Static light scattering: A commercial Brookhaven Instrument LLS spectrometer equipped with a 

solid-state laser operating at 532 nm was used for measurement of both SLS and DLS. SLS 

experiments were performed at scattering angles (θ) between 20 and 100º, at 2º intervals. 

However, due to the large fluctuations in scattered intensities at low scattering angles, we 

removed the data from 20-40º in the final analysis. Derived from Rayleigh-Gans-Debye 

equation
25

, partial Zimm plot was used to analyze the SLS data to obtain the radius of gyration 

(Rg). The partial Zimm plot stems from the following approximate formula: 1/I = C(1+Rg
2
*q

2
/3). 

Here Rg is determined from the slope and the intercept of a plot of 1/I vs. q
2
. 

Dynamic light scattering: DLS measures the intensity–intensity time correlation function by 

means of a BI-9000AT multi-channel digital correlator. The field correlation function |g
(1)
(τ)| was 

analyzed by the constrained regularized CONTIN method
26

 to yield information on the 

distribution of the characteristic line width Γ. The normalized distribution function of the 

characteristic line width, G(Γ), so obtained, can be used to determine an average apparent 

translational diffusion coefficient, Dapp =Γ/q
2
. The hydrodynamic radius Rh is related to D via the 
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Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann constant and η the viscosity 

of the solvent at temperature T. From DLS measurements, we can obtain the particle-size 

distribution in solution from a plot of Γ*G(Γ) versus Rh. The Rh of the particles is obtained by 

extrapolating Rh,app to zero scattering angle. The normalized distribution function of the 

characteristic line width, G(Γ), so obtained, can be used to determine an average apparent 

translational diffusion coefficient, Dapp =Γ/q
2
. The hydrodynamic radius Rh is related to D via the 

Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann constant and η the viscosity 

of the solvent at temperature T. From DLS measurements, we can obtain the particle-size 

distribution in solution from a plot of Γ*G(Γ) versus Rh. The Rh of the particles is obtained by 

extrapolating Rh,app to zero scattering angle. 

1D NMR and 2D DOSY. All the NMR spectra were recorded on Bruker Avance 500 

spectrometer equipped with a BBO probe at 25 °C. DOSY was performed on a Bruker 500 MHz 

spectrometer with the magnetic field gradient (g) varying from 0 to 32 G/cm in 16 ~ 32 steps. The 

length of the gradient (d ) was from 6000 ms to 8000 ms, and the time interval between two 

pulsed gradients (D) was from 0.1 s to 0.15 s. All spectra were taken at room temperature. After 

the data collection, FIDs were processed and analyzed with the NMR software TopSpin 2.0 

provided by Bruker. Both T1/T2 relaxation and CONTIN methods were used to fit the raw data. 

The observed proton signal I in a standard DOSY spectrum is expressed through equation 1: 

                                                                               Equation (3-1) 

where I0 is the reference intensity, γ is the gyromagnetic ratio of the proton. If only one diffusive 

component exists in the solution, a straight line will occur in a plot of ln(I/I0) versus g
2
, and the 

apparent diffusion coefficient (D) can be calculated from the slope using linear regression 

analysis. 
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5.3 Results and discussion 

5.3.1 Synthesis and molecular structures  

Due to the existence of symmetrical functional positions on the surfaces of Anderson, Lindqvist, 

and Keggin clusters, the hybrid surfactants containing such polar head groups usually have two 

alkyl tails.
19-21

 However, the two caps of the substituted Dawson cluster, [P2V3W15O62]
9-

, are 

asymmetrical, with the vanadate cap comparatively more reactive than the tungstate one. 

Therefore, it is only possible to synthesize single-tailed hybrids based on this cluster. Similar to 

the synthesis of Dawson-based dumb-bell molecules,
27

 the organic ligand L
1
 with a 15-carbon 

alkyl chain and tris(hydroxymethyl)amidomethane moiety was initially synthesized and then 

reacted with [P2V3W15O62]
9-

 obtaining the target molecule 

((C4H9)4N)5H[P2V3W15O59(OCH2)3CNHCOC15H31], TBA*1, (TBA, ((C4H9)4N)
+
; 1, the surfactant 

anion) (Figure 5.1). The original counterions, five TBA molecules, can be replaced with protons 

by passing an acetonitrile solution of TBA*1 through a column filled with a cation exchange 

resin. The resulting new compound H6[P2V3W15O59 (OCH2)3CNHCOC15H31], H*1, is soluble in 

both acetonitrile and water. 

 

Figure 5.1 The synthesis of the surfactant 1 with Dawson type POMs as polar head group. Polyhedron color 

code: W, black; P, dark black; V, white. Reprinted with permission from ref. 28. Copyright 2012 Wiley-VCH. 

Plate-like single crystals of TBA2*2 were obtained from different crystallization strategies. 

Although the X-ray diffraction intensities at high angles are very weak due to rather small 
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thickness of the crystals, the locations of all the atoms can be determined very accurately, which 

is rarely seen for compounds with such long alkyl chains. The space group of TBA2*2 is Pī and 

there is an inversion center located at the center oxygen of hexavanadate in the structure of 2. The 

POM core can be considered as consisting two [RC(CH2O)3]
3-

 subunits bound to a [V6O13]
4+

 core 

or, alternatively, as a hexametalate [V6O19]
8-

 core connected to two [RC(CH2)3]
3+

 subunits. The 

trisalkoxy ligands occupy opposite faces of the hexametalate octahedron. The conformation of 

long alkyl tails in crystals is close to the ideal zig-zag chain shape, which favors the parallel 

stacking of chains. The length of a single chain is ca 2.48 nm in crystalline state while the size of 

polar head is ca 0.76 nm, which is much larger than the sulfate group (ca 0.20 nm), the polar head 

of a common ionic surfactant SDS (sodium dodecyl sulfate)  

(Figure 5.2). DSC and TGA results indicate that the melting temperature of TBA2*2 is 90.82 ºC 

and decomposition temperature is as high as 250ºC. 

 

Figure 5.2 Reaction route for the synthesis of molecule 2. Reprinted with permission from ref. 20. Copyright 

2011 Wiley-VCH. 

In the packing diagram (Figure 5.3), ab plane ((001) lattice plane) was formed due to the close 

packing of TBA and V6. The distance between two neighboring lattice planes is 1.88 nm, which 

is filled by the alkyl chains. The non-polar tails tend to align side by side to strengthen the van der 

Waals interactions between their atoms, which is much weaker than ionic interaction in ab plane. 

The structural analysis indicates that the driving force for crystal growth is anisotropic and 

therefore, favors to growth in (001) lattice plane direction to form thin-plate shaped crystals. 
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Figure 5.3 Packing diagram of TBA2*1. (Left: ab plane or (001) lattice plane; right: bc plane or (100) lattice 

plane. Blue sphere represents TBA and red polyhedron represents hexavanadate.) Reprinted with permission 

from ref. 20. Copyright 2011 Wiley-VCH. 

5.3.2 Critical association concentration (CAC)  

The acetone solutions of TBA*1 with concentrations ranging from 0.002 to 0.5 mg/mL were 

prepared and monitored by static light scattering (SLS) at 90º scattering angle. It was expected 

that the scattered intensity would increase significantly if large self-assembled aggregates were 

formed in the solutions. Correspondingly, a sudden, drastic increase in the equilibrium scattered 

intensity at a given TBA*1 concentration would indicate the attainment of the critical association 

concentration (CAC), which was found to be 0.02 mg/mL in the present case. The solutions with 

concentrations below the CAC show very low scattered intensities (< 400 kcps; scattered 

intensity for benzene is 120 kcps), indicating the absence of large assemblies (Figure 5.4a). 

Dynamic light scattering (DLS) and SLS were applied to determine the hydrodynamic radius (Rh) 

and radius of gyration (Rg) of the assemblies, formed at different concentrations (Figure 5.4c). Rh 

values of the assemblies show narrow distributions and no angular dependence, suggesting 

spherical structure for the assemblies. The ratio of Rh/Rg is close to 1, indicating a hollow 

spherical structure. The vesicular structure and the sizes of the assemblies were confirmed by 

TEM studies (Figure 5.4d). Interestingly, contrary to the hexavanadate-based hybrid 2 whose 

self-assembly behavior and assembly sizes are concentration independent,
20

 the vesicle size 

observed here increases from 50 nm to 115 nm as the concentration is raised from 0.02 to 0.5 

mg/mL (Figure 5.4b). 
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The novel hybrid surfactant 2 with a giant polar head group can still decrease the surface tension 

of its aqueous solution with Na
+ 

being the counterions, showing a basic feature of surfactants. As 

the compound concentration increases, the surface tension decreases. Critical Micelle 

Concentration (CMC) is identified as 0.23 mg/mL from the surface tension results. The surface 

tension at the turning point is 45.4 mN/m, which is much lower than the surface tension of pure 

water at room temperature (Figure 5.5). 

 

Figure 5.4 a) Scattered intensities at 90º scattering angle of the TBA*1 in acetone at different concentrations; b) 

hydrodynamic radius of the formed vesicle structures in the TBA*1 acetone solution depending on the 

concentration; c) DLS results of 0.5 (×) and 0.03 (◊) mg/mL TBA*1’s acetone solution at 30º scattering angle; d) 

TEM images of the vesicle structure from the 0.5 mg/mL TBA*1 in acetone solution. Reprinted with permission 

from ref. 28. Copyright 2012 Wiley-VCH. 

 

Figure 5.5 Concentration dependent surface tension of Na2*2’s aqueous solution. Reprinted with permission 

from ref. 20. Copyright 2011 Wiley-VCH. 
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5.3.3 Effect of solvent polarity 

For solutions with a given POM-hybrid concentration, the vesicle size can be tuned by adjusting 

the solvent polarity. Solutions of 0.02 mg/mL TBA*1 in pure acetone, pure acetonitrile and 

acetone/water mixed solvents containing 95:5, 85:15, 65:35, and 50:50 vol% of acetone, 

respectively, were prepared. The vesicle sizes measured by DLS and TEM (Figure 5.6) show a 

linear relationship with the inverse of the dielectric constant of the solvent, indicating a charge-

regulated process.
5 

The solvent-polarity dependent self-assembly can be explained by the 

dissociation of the TBA counterions from the POM surface, consequently increasing the 

hydrophilicity of the polar head groups. The counterion dissociation can clearly be observed by 

comparing the diffusion coefficients of counterions and the anionic hybrids in acetone and 

acetonitrile solutions by Diffusion Ordered Spectroscopy (DOSY) NMR technique. In polar 

solvents (acetonitrile), the TBA counterions diffuse much faster than the hybrid cluster, which 

leads to the TBA disassociation; however, the two parties show very close diffusion speed in the 

relatively nonpolar solvent, acetone, (Figure 5.7) indicating strong TBA association around the 

POM. 

The vesicle size of {V6} surfactant shows a similar dependence on the solvent polarity, but with a 

much more negative slope than that of TBA*1 (Figure 5.6a), which could be related to the less 

negative charge of {V6}  (-2) compared to the TBA*1 (-6).
20

 The counterion disassociation is 

controlled by factors such as static charge interaction, solvent polarity and solvation of ions. 

Static charge force is proportional to the number of charges of the ions and thus, TBA could be 

easier to diffuse away from the surface of the {V6}  surfactant's polar head groups than from 

Dawson clusters (TBA*1). Therefore, the effective charge on the {V6}  surfactant increases more 

significantly when the solvent polarity increases, which finally results in a more negative slope in 

Figure 5.6a. For the {V6}  surfactant, vesicles could only be observed when 20~35 vol% of water 

was added to its acetone solution.
20

 However, due to the high negative charge (-6) and much 
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larger polar head group, TBA*1 can form vesicle structures in less polar solvents such as pure 

acetone. 

 

Figure 5.6 a) The plot of the hydrodynamic radius of vesicles vs. the inverse of the dielectric constant of the 

solvent. ◊ represents the data of Dawson-based surfactant while □ represents that of hexavanadate-based 

surfactant (V6 surfactant); b) TEM images of the vesicle structure formed by TBA*1 in the mixture of water and 

acetone (v/v=1/1), with a proposed model for the bilayer structure. Reprinted with permission from ref. 28. 

Copyright 2012 Wiley-VCH. 

 

Figure 5.7 DOSY-NMR results of TBA*1 in acetone (a) and acetonitrile (b). A circle, solvent; B circle, 

tetrabutylammonium; C circle, surfactant anion. Reprinted with permission from ref. 28. Copyright 2012 

Wiley-VCH. 

5.3.4 Effect of counterions 

Counterions play a critical role in colloid systems and biological systems, such as the folding 

of RNA molecules
29

, the formation of virus capsid structures
30,31

, and in the stabilization of 

biological macromolecules
32

. Due to their high charge density and hydrophilic nature, POMs 

exhibit strong counterion-dependent self-assembly, catalytic behavior and stability.
7
 In particular, 

counterion distribution around hydrophilic macroanions, and selective monovalent cation 
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association and exchange around Keplerate POM macroanions in dilute aqueous solutions are 

unique and directly related to their self-assembly process.
33-35

 On the other hand, counterions can 

also affect the behavior of common surfactants in aqueous solution, at air/solution interfaces or at 

solid/solution interfaces and in the micelle to vesicle transition processes.
36-39

 Therefore, the 

effect of counterions on the self-assembly of POM-containing hybrids is an interesting avenue, 

worth further investigation. 

TBA*1 is not soluble in water, but soluble in polar organic solvents such as acetone and 

acetonitrile. Different salts, ZnCl2, CuCl2, NaI, tetrabutylammonium iodide (TBA*I) and 

dodecyltrimethylammonium bromide (DTMA*Br), which are soluble in acetonitrile, were added 

to acetonitrile solutions of TBA*1, respectively, to study the role of the counterions on the vesicle 

formation and vesicular sizes. The vesicle size decreased gradually with increasing concentration 

of ZnCl2. Interestingly, the vesicle size remains unchanged at first upon addition of NaI, but 

gradually increases when the NaI concentration exceeds 0.03 mg/mL (Figure 5.8a). DOSY 

measurements indicated that the addition of NaI increases the diffusion coefficient (D) of TBA 

cations (without NaI, D = 1.4 × 10
-9

 m
2
/s; with 0.1mg/mL NaI, D = 2.0 × 10

-9
 m

2
/s), suggesting 

that the additional counterions replace the original TBA counterions around the Dawson clusters, 

and subsequently release TBA cations into the solution. ZnCl2, which is quite solvated in 

acetonitrile, prefers coordinating to the terminal or bridging oxo ligands on the surface of the 

Dawson clusters, forcing the polar domains to be exposed to the solvent-environment, which in 

turn increases the curvature of the vesicle, i.e. the vesicle size becomes smaller. Upon the 

addition of NaI, on the other hand, the sodium ions contribute to shielding the high negative 

charges of the polar head groups from each other, and thus reduce the repulsion between the polar 

heads on the surface of the vesicle. The curvature of the vesicle decreases, and as a result the 

vesicle size increases. The same argument can be used to explain the formation of larger vesicles 
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from H*1 (Rh = 110 nm), compared to vesicles obtained from TBA*1 (Rh = 75 nm), both in 

acetonitrile. 

The additions of CuCl2, TBA*I or DTMA*Br show no obvious effect on the vesicle size as 

those cations are not able to replace the TBA cations that surround the polar Dawson clusters. 

However, TBA*I and DTMA*Br were observed to cause the disassembly of the vesicles and this 

is confirmed by the fact that the scattered intensities from corresponding solutions drop 

increasingly when more of these salts were added (Figure 5.8b). Further, addition of TBA*I and 

DTMA*Br does not liberate the original TBA counterions, but results in a gradual accumulation 

of the hydrophobic cations around the hydrophilic Dawson clusters, causing a decrease in the 

hybrid molecule’s amphiphilic nature. The TBA counterions dissociate the vesicle structures 

faster than DTMA, possibly due to the comparatively smaller volume of the TBA cations, which 

allows a larger amount of TBA cations to move closer to the POM, compraed tothe larger DTMA 

cations.  

 

Figure 5.8 a) The plot of hydrodynamic radius vs. the concentration of added salt. Circle, NaI; Square, ZnCl2; b) 

the plot of the reduced scattered intensity at 90º scattering angle vs. the concentration of added salt. Circle, 

TBA*I; Square, TMDA*Br. Reprinted with permission from ref. 28. Copyright 2012 Wiley-VCH. 

5.3.5 Effect of pH 

pH-sensitive vesicle structures are important for applications in sensing, imaging, and drug 

delivery systems.
40-42

 {Mo72Fe30}, a POM macroanion, shows pH-controlled deprotonation in 

aqueous environment (like a weak acid) and results in pH-dependent assembled ‘blackberry’ 
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sizes.
43

 H*1 is water soluble and its Dawson cluster polar head group behaves like a nanoacid, 

whose negative charges can be tuned by changing the pH of the solution. 

The pH of a 1.0 mg/mL aqueous solution of H*1 is 2.99, corresponding to the release of ~ 4 

protons per Dawson cluster. Vesicle structures with Rh of ca. 67 nm were observed from this 

solution by light scattering experiments. Interestingly, the Rh of the vesicle structures gradually 

decreased to 64 nm at pH = 5, while the Rh increased to 81 nm when pH = 1.5. A plateau area 

appears from pH = 5 to 9 with Rh ~ 64 nm. However, the Rh value decreased sharply to 38 nm 

when pH changed from 9 to 12 (Figure 5.9b). Further experiments indicate that the pH dependent 

self-assembly process can be done reversibly. 

 The increase of the pH value leads to further deprotonation of the polar head groups, which 

consequently increases their net charge. Therefore, the repulsion between the polar heads of the 

hybrids in the aggregates becomes stronger, resulting in significantly larger curvature of the 

vesicles, i.e. smaller size. The vesicles from the H*1 hybrids and the ‘blackberry’ structures 

formed by POM macroions show the same pH dependent self-assembly behavior.
43

 However, the 

driving forces for the two aggregates are different. It is the solvophobic interaction that controls 

the assembly of the H*1 hybrid surfactant, whilst the counterion mediated attractive forces and 

the hydrogen bonding interactions are the major factors for the blackberry formation. 
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Figure 5.9 a) DLS results of H*1’s aqueous solution at pH = 1.5 (●) and pH= 12 (♦) at 90º scattering angle; b) 

The plot of hydrodynamic radii of vesicles vs. pH of the hybrid aqueous solution. Reprinted with permission 

from ref. 28. Copyright 2012 Wiley-VCH. 

5.3.6 Fluoresecnce 

Interestingly, 2 shows strong blue luminescence in both aqueous and acetone solution when the 

counterions are protons. With an excitation at λ=335nm, both H2*2 and Na2*2 emit blue 

luminescence, peaked at 392nm, 409nm and 429nm (see Figure 5.10), respectively. Interestingly, 

the intensities of the first and the third peaks are higher than that of the second peak, which is 

different from the spectrum of H2*2. The incident light with wavelength 300 - 420 nm can trigger 

such blue fluorescence. No emission is observed if the wavelength of the light is below 300nm. 

The excitation band for H2*2 is around its Ligand (oxo) to Metal (vanadium) Charge Transfer 

(LMCT) absorption wavelength and it is possible that the origin of the emission involves an 

emission derived from an LMCT transition.
44

  

Admittedly, several other POMs were found to have photoluminescence properties in solid 

state at very low temperatures (e.g., 4K). A few of them retain the property in aqueous solution at 

room temperature.
[11]

 The photoluminescence mainly comes from the introduction of Eu
3+

 and 

most of POMs without Eu
3+ 

do not have such property and even worse, they are usually 

considered as fluorescence quenchers due to their special ability to reserve electrons and stabilize 

fragile structures. [Et4N]5[V14O36Cl] was observed to produce intense blue luminescence in 
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aqueous solution by Hong et al. who claimed that luminescence properties have rarely been 

reported for vanadium oxide clusters.
44

 

To further understand 2’s luminescent properties, the fluorescence of [V6O13{(OCH2)3COH}2]
2-

 

was tested with different counterions. Same luminescence, but with much lower intensity, is 

observed as 2 when protons are the counterions. Zubieta showed that minor structural change was 

observed in the [V6O13{(OCH2)3CR}2] core when protons associated with the bridge oxygen 

ligands, which might also lead to the red shift of the characteristic peak from 350 nm (TBA2*2) to 

369 nm (H2*2) in their UV-Vis spectrum. It is possible that the minor structural change of the 

POM cores due to counterion exchange lead to the light emitting phenomenon.
[9]

 Moreover, the 

self-assembly of 2 and the presence of protons or sodium ions as counterions probably results in 

the higher luminescence intensity from 2. The distances between polar heads should be very 

small due to the small sizes of proton and sodium ions in the assemblies and the interaction 

between POM polar head groups would become much stronger, which maybe strengthen the 

luminescence. 

Excited at 410 nm, the aggregates of H2*2 in aqueous solution can be observed in a 

fluorescent microscope (Figure 5.10). Due to the small size of the aggregate, very tiny 

(diffraction limited size) dots can be seen. The intensity of the captured “dot” (Figure 5.10) did 

not show obvious decay in 30 min, which is totally different from the behaviour of organic 

fluorophores that exhibit photobleaching. The luminesce studies shown in Figure 3d indicate that 

the vanadate-hybrid does not break down under UV-light. Another possibility is that the alkyl 

tails might break from the POM while the POM head group stays intact. This is unlikely based on 

our detailed studies on the self-assembly of these hybrids below. The large assemblies (the 

microspheres observed under the fluorescent microscope) will not be stable after losing the alkyl 

chains.  The possible connections between the hybrids’ luminesce property and solution 

behaviors make us to explore the self-assembly of the hybrid in solution. 



 

119 

 

Figure 5.10 (a) H2*2 (left) and TBA2*2 (right) solution under UV light; (b) Fluorescence spectrum of H2*2 

excited at 335 nm; (c)  Fluorescent mage of H2*2 in aqueous solution (By recording the intensity of the red arrow 

pointed assembly, we are able to analyze the decay of the normalized intensity over time); (d) Total intensity 

changes with time for a dot marked with an arrow in (c) demonstrating stability of 2’s blue fluorescence. 

Reprinted with permission from ref. 20. Copyright 2011 Wiley-VCH. 

5.3.7 Formation of nano-structures and the stability of the vesicles  

The addition of divalent counterions to an aqueous solution of the H*1 hybrid causes a decrease 

in the stability of the self-assembled structures. When 20 μL of 0.02 mg/mL CaCl2 aqueous 

solution was added into a 5 mL aqueous solution of the H*1 hybrid (~ 0.2 mg/mL), the solution 

became cloudy and the formation of a large amount of uniform macro-needle like structures was 

observed. SEM results indicate that the length of the needles is ca. 320 µm and the diameter of 

the cross section is ca. 2.7 µm, which is quite similar to the assemblies observed for Anderson-

based surfactant on silicon substrate
45

 (Figure 5.11). The micro-needle structures show high 

contrast from the iron substrate under SEM mode, suggesting that the polar head groups should 

be on the surface of the micro-structures. Known as the salting out effect
46

, addition of Ca
2+

 leads 

to stronger interaction among the assemblies and the consequent coagulation of the assemblies. 
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Figure 5.11 a) SEM image of the micro-needle structures; b) Zoom in image of one needle. Reprinted with 

permission from ref. 28. Copyright 2012 Wiley-VCH. 

In water-acetone mixed solvent containing 20 vol% water of TBA*2, the average vesicle radius 

was around 180-220 nm for the compound concentrations from 0.375 to <1.5 mg/mL. SEM 

results indicate that the cloudy solution at 1.5 mg/mL contains similar micro-plate crystals 

described above (Figure 5.12). 

 

Figure 5.12 Left: SEM image of micro-sheet structure formed by 1. Right: Zoom in image of the surface of the 

micro-sheet. Reprinted with permission from ref. 20. Copyright 2011 Wiley-VCH. 

5.4 Conclusion 

Two organic-inorganic hybrid surfactants with the Dawson-type POM cluster and hexavanadate 

acting as the polar head groups, have been synthesized, which are able to self-assemble into 

vesicle structures in polar solvents. The size of the vesicles can be adjusted by hybrid 

concentration and the solvent polarity. In organic polar solvent, the vesicle formation and their 

corresponding sizes are dependent on the addition of salts: Zn
2+

 cations can decrease the vesicle 
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size, whilst Na
+
 and H

+
 cations can screen the repulsive interaction between POM polar head 

groups and thus increases the size of the vesicles. Due to the positive charge and hydrophobic 

properties of tetraalkylammonium ions, the addition of these can decrease the surfactant’s 

amphiphilic features and eventually disassemble the vesicle structures. In aqueous solution, 

raising the solution pH can reversibly decrease the size of the vesicles by shielding the repulsion 

between polar head groups. The addition of Ca
2+

 triggers the collapse of vesicles into micro-

needle structures. 
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6 Chapter 6: Programmed Spontaneous Self-Assembly of 

Polyoxometalates-Organic Hybrid into Catalytic Active 

Nano-belt 

6.1 Introduction 

The self-assembly of molecules, nanoparticles, and colloids into well-defined micro- and macro-

structures represents one of the key bottom-up protocols in building up artificial devices and 

functional units inside cells and viruses.
1-5

 Single-component spontaneous self-assembly is 

usually adopted by nature due to the convenience in duplication and the need of limited genetic 

codes, e.g. viral capsids and cell membranes are composed of single capsid unit protein and single 

phospholipid molecule.
6,7

 However, multiple components are required to build artificial devices 

and moreover, the self-assembly process need to be triggered or directed by tuning the 

environment parameters or designing the interaction process between multiple species. Currently, 

limited research have been carried out to build artificial functional structures from spontaneous 

self-assembly because of the lack of knowledge in weak interactions that direct the self-assembly 

process and the design of functional building block.
8-11

 Additionally, detailed study of self-

assembly mechanism (e.g. kinetics and intermediate state) is rare although quite important to help 

us in understanding the weak interactions.
12-16

 

Polyoxometalates (POMs) are a large group of metal oxide clusters with wide applications in 

catalysis, photo-electronic, and magnetic materials, medicine, and self-assembly research.
17

 The 

processing of POMs into nano-scaled materials could be applied to enhance their heterogeneous 

catalytic activity and build devices with varied functionalities.
18

 Specifically, one-dimensional 

(1D) nano-materials including nanotube, nanowire (nano-fiber), nanorod, and nanobelt are 

significant in designing electronic and optical devices, bioactive hydrogels, scaffolds in tissue 

engineering, and high-strength materials.
19

 However, rare studies on POM-based 1D nano-
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material have been reported.
20,21

 Herein, we report the unique spontaneous self-assembly process 

of POM-organic hybrid into nano-belt structurebased on the hydrophobic interaction and 

hydrogen bonding. Interestingly, it is the first time that micelle structures were observed as the 

intermediate state in the self-assembly process. Time-resolved small-angle X-ray scattering 

(SAXS) and TEM studies provide the detailed mechanism on the transformation of micelle to the 

nano-belt structures. Moreover, the resulted nano-belt is stable in aqueous and organic media. It is 

also a catalytically active against oxidation desulfurization reactions. 

6.2 Experimental section 

General. H2O2 (30% wt), n-octane, methyl p-tolyl sulfide, acetonitrile, D2O, KOH, NaOH, LiOH, 

CsOH, NH3*H2O, and urea were purchased from Sigma-Aldrich and used without further 

purification. JEOL 2000 was used for TEM study and Hitachi 4300 was used for SEM study. 

Hewlett Packard 5890 Series II GC-MS was used to monitor the oxidation reactions of sulfide.  

SAXS. The SAXS experiments were performed at 12-ID-B station with X-ray energy of 12 KeV 

at the Advanced Photon Source of the Argonne National Laboratory. The sample to detector 

distance was about 2 m. A 2D CCD detector was used to acquire images with typical exposure 

times in the range of 1.0 s. 

Electron microscopy. Several drops of the solutions with target assemblies or aggregates were 

titrated onto the shiny surface of the copper grids, which were then dried in the air. The copper 

grids would be ready for TEM study after at least three days. While for SEM studies, the 

solutions were titrated to the surface of Al substrate (diameter, 25 mm) and dried in air for three 

days. 

Atomic force microscopy (AFM). AFM imaging experiments were carried out on an MFP-3D-

BIO atomic force microscope (Asylum Research, Santa Barbara, CA). The AFM images were 

taken in tapping mode in fluid with a closed-fluid cell. The FMR cantilevers used in the 
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experiments are on-contact mode high frequency silicon cantilevers, which are manufactured by 

Vista Probes (Phoenix, AZ). The image data were processed using Igor Pro (WaveMetrics, Inc. 

Lake Oswego, OR) with Asylum MFP-3D extension. The images were first flattened with an X-Y 

plane-fit to the scan lines. The images were then flattened with a second order polynomial fit to 

the scan lines after masking out the nano-belt area. 

Catalytic reaction set up. 130 uL sulfide, 300 uL H2O2 (30%, wt), 65 uL octane and the catalysts 

(6 mg TBA*1 or different loading amount of the nanobelts, from 0 to 6 mg) were mixed in 3 mL 

acetonitrile. The reaction solution was kept at 40 °C through oil bath with stirring at 1000 rpm. 

GC-MS was used to monitor the reactions. Octane was used as standard to measure the relative 

concentration of reactant and products. Relative concentration of certain species was calculated as 

. 

6.3 Results and discussion 

6.3.1 Synthesis and molecular structure of hybrid 1  

The synthesis of hybrid 1 has been done in our collaborators’ laboratory and will be published 

separately. The molecular structure of the hybrid was showed in Figure 6.1a, which is a typical 

structure of single-tailed surfactant with hexavanadate as polar head groups. Different from our 

previous surfactants with POMs as polar head groups, two amine groups were incorporated into 

the molecular structure of 1, which were designed to introduce inter-molecular hydrogen bonding 

interaction (amine can interaction with surface oxo ligands of POMs through hydrogen 

bonding).
22,23

 Single crystal X-ray diffraction analysis on TBA2*1 (TBA, tetrabutyl ammonium) 

indicates that the POM clusters interact with neighbor cluster with double N-H…O hydrogen 

bonds to form 1D chain structures (Figure 6.1b). The 1D chain structures further pack with each 

other by counter-ion (TBA) mediated attractions to build 2D sheet structures. Since the inter-layer 
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is packed by alkyl tails, these two 2D sheets were stuck together by hydrophobic interactions to 

form A-B-A sandwich-type structures (Figure 6.1c). TBAs were used to fill the space between the 

A-B-A structures to finally pack into 3D crystals. 

 

 Figure 6.1 a) Ball-stick representation of the molecular structure of hybrid 1; b) top view of the A-B-A layer 

structures; c) side view of the A-B-A layer structure.  

6.3.2 Morphological characterization of nano-belts  

H2*1 was dissolved in KOH solution with pH = 13.3 (surfactant concentration: 2.5 mg/mL). The 

obtained solution is clear solution, suggested by low scattered intensity at 90° from SLS studies 

(~ 100 kcps; scattered intensity for benzene, 113 kcps). However, the solution became cloudy 

several hours after the preparation without any external stimulus (Figure 6.2a). Large 1D 

aggregates were observed under optical microscope (Figure 6.2b). SEM and TEM studies suggest 

that these aggregates are uniform 1D nano-belts with thickness and width at nanometer scale 

while their lengths are at micrometer scale (Figure 6.2c, d, and e). High resolution TEM studies 
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on the nano-belt structures suggest the polar heads of surfactants interact with each other to form 

layered structures, which further pack together to form the nano-belts (Figure 6.2d and e). Atomic 

force microscopy confirmed the belt morphology of the aggregates under wet condition and was 

able to accurately determine the thickness of the nanobelts as ~20 nm (Figure 6.3). SAXS 

analysis on the nano-belts dispersed in solution shows three sharp peaks at q = 0.202, 0.609, and 

0.720 Å
-1

, corresponding to the inter-layer distance (3.11 nm) and inter-polar head groups 

distances (1.03 nm and 0.87 nm) when they pack in the layer (Figure 6.4). 

 

Figure 6.2 a) Pictures of the newly prepared solutions and the solutions became cloudy two hours after their 

preparation; b) optical microscopy images of the aggregates; c) SEM image of nano-belt structures; d) TEM 

image of the packing of polar heads on the surface of nano-belt; e) TEM images of the layer structures of nano-

belt. 
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Figure 6.3 a) AFM images of nano-belts under wet condition; b) Z-direction graph of the features; c) Z-direction 

curve of the selected line. 
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Figure 6.4 a) SAXS curve of the nano-belt dispersion solution; b) c) Models of the nanobelts. 

6.3.3 Kinetics study of nano-belts formation 

SAXS studies on the hybrid’s ‘real’ solution when it was just dissolved in KOH solution show a 

typical curve of core-shell structures with radius, core size, and shell size are 4.19, 2.51, and 1.68 

nm, respectively (Figure 6.5a and b). The core-shell assemblies actually represent the micelle 

structure of the hybrid with hydrophilic polar as the shell part and hydrophobic alkyl tails, which 

were confirm by TEM images of the assemblies in the ‘real’ solution (Figure 6.5e). Time-

resolved SAXS studies on the solutions indicate that three sharp peaks of belts appeared and 
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increased while at the same time the characteristic oscillation curve of micelle structure became 

weaker and weaker, and disappeared in 680 min (Figure 6.5c). Detailed SAXS kinetic study was 

summarized in Figure 6.5d by plotting the intensity of the first peak (q = 0.202 Å
-1

) of the nano-

belt and the intensity of micelle curve vs. time during 680 min period. Both of two plots show 

typical sigmoidal shape, suggesting a slow initial nucleation process of micelle structures at the 

beginning of the self-assembly process. It is believed that the micelles structures coagulate and 

form primary layer structures at the 60-min lag phase, suggested by the TEM studies at the lag 

phase period (Figure 6.5f). Due to the comparatively larger size of the initial assemblies, 

especially the micrometer-scaled length, the diffusion of the aggregates became much slower and 

the position for new micelle to be merged became larger, which accelerate growth rate of layer 

structures and the coagulation of micelles. 
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Figure 6.5 a) SAXS curve of initial solution and fitted with core-shell model; b) graphical representation of 

micelle structure; c) time-resolved SAXS results of the hybrid’s solution; d) Plot of micelle peak and nano-belt 

peak vs. time; e) f) TEM images of micelle and primary lamellar phase structures, respectively. 

The formation of nano-belt structures is highly dependent on solution pH, counter-ions, and 

hydrogen bonding. TEM studies on the aggregates of the hybrid dissolved in solution of pH 

ranging from 13.3 to 7.8 indicate that the rigidity of the belts decreased when pH decreased from 

13.3 to 9.0. No regular structures were observed when the pH of aqueous solution < 8 (Figure 

6.6). Moreover, SAXS studies on the hybrid solutions in LiOH, NaOH, KOH, and NH3*H2O at 

almost the same pH value (ca. 12.6) show that regular nano-belts structures were only observed in 

KOH and NH3*H2O solutions. On the other hand, the formation of nano-belts structures became 

significantly slower by adding urea in hybrid’s KOH solution (urea concentration, 1 M) or 

replacing H2O with D2O in hybrid’s KOH solution (more than 2 days). The summarization of the 
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above experimental results indicates the importance of charge interaction and hydrogen bonding 

in the formation of nano-belts. The low pH (< 8) value of aqueous solution makes the 

surfactant/micelle structures lowly charged and significantly weaken the charge interaction and 

lead to the irregular precipitation. Meantime, K
+
 and NH4

+
 can lead to coagulation of micelles and 

further the forming of nano-belts. However, micelle structures are still stable in solution with Na
+
 

or Li
+
 as counterions and no observation of the nano-belts. 
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Figure 6.6 SEM images of the aggregates in solutions with pH as a) 11.9, b) 10.8, c) 10.5, d) 9.8, e) 9.0, and f) 7.8. 

6.3.4 Oxidative desulfurization Catalysisby nano-belts 

Hexavanadate, one of the catalytic active POMs in oxidation reactions, fully covers the surface of 

nano-belts structures and therefore, the nanobelts could work as heterogeneous catalysts. Herein, 

the catalytic efficiency of nanobelts was evaluated based on the catalyzed oxidative 

desulfurization reaction. The nanobelts structures were tested to be stable in acetonitrile and used 

to catalyze the oxidation of methyl p-tolyl sulfide with H2O2 (wt, 30%) (Figure 6.7a). The sulfide 
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were fully oxidized into sulfide mono-oxide and sulfone (molar ratio, 1:1) after running the 

reaction for 1.5 hrs at 40 °C with the loading of 6 mg of nano-belts (Figure 6.7b). Three hours 

after the sulfide is consumed, all the sufide mono-oxide turned into sulfone. SEM studies on the 

catalysts after the reaction indicate that the belt structures remains stable after the reaction (Figure 

6.7c). The catalysts were easily re-collected through centrifugation and further catalytic reactions 

proved that the catalysts did not lose catalytic efficiency for at least two more cycles. Moreover, 

catalytic reactions with homogeneous catalysts (6 mg) and different loading amounts of 

heterogeneous catalysts (0 ~ 6 mg) were carried out and the time it takes for the sulfide to be fully 

consumed  was recorded for each case to generate a comparative study. The results indicate that 

the time it takes for the sulfide to get consumed is inversely proportional to the amount of 

heterogeneous catalyst added to the system to complete the reaction (Figure 6.7d). Even though 

the catalytic activity is better when the catalyst is used homogeneously (40 min), heterogeneous 

catalysis (1.5 hr) will still provide the option of catalyst recyclability, which is a great advantage. 

 

Figure 6.7 a) Reaction scheme for the oxidation of sulfide; b) kinetic curves of the concentrations of reactant and 

products in the reaction catalyzed by 6mg nano-belts; c) SEM images of the catalysts after the oxidation of 

sulfide reaction; d) reaction time of oxidation of sulfide reactions with different loading amount of nano-belts. 



 

137 

6.4 Conclusion 

   A new surfactant with hexavanadate as polar head groups were designed, synthesized, and 

programed to self-assemble into 1D nano-belts structures. The formation mechanism was claimed 

to the coagulation of micelles into layered structures. The nanobelts were proved to high efficient 

heterogeneous catalysts for oxidation of sulfide.  
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7 Chapter 7: Polyoxometalates-Organic Hybrid as Metal-Ion-

Driven Molecular Switch with Reversible Folding and 

Assembly/Disassembly Behaviors 

7.1 Introduction 

Molecular switches are molecules that can be reversibly shifted between two or more stable states 

in response to environmental stimuli, e.g. pH, light, temperature, electrical current, and the 

presence of ligands or metal ions.
1-3

 Metal-ion-driven molecular conformation change, as one of 

the major ideas in designing molecular switches,
2,4,5

 is vital in many biological behaviors, e.g. 

metal ion-directed protein folding and self-assembly, Ca
2+

 caused contraction or relaxation of 

human heart, Na
+
 stimulated nerve impulses, and the Ca

2+
-gated ion channel of K

+
 inside cell 

membrane.
6-9

 However, it is still challenging to build artificial metal-ion-driven molecular 

switches based on relatively simple molecules that work as smart and powerful as the proteins. 

One of the major drawbacks is that only certain specific site or chemical bond related to the 

complexion of metal ions responses (e.g. rotates or bends) to introduction of metal ions, which 

limits the functionality of the molecular switches. Thus, the design of molecules switches with 

multiple responses to the stimuli is quite urgent since this behavior could mimic the folding 

process of bio-macromolecules expand their functionalities. Moreover, molecules switches, with 

metal-ion-responsive folding and self-assembly behavior, are simple models to understand the 

corresponding biological process of proteins and RNAs.  

Polyoxometalates (POMs) are a large group of structurally well-defined molecular metal-oxide 

clusters (ca. 1 ~ 6 nm) with diverse physical properties and applications.
10-13

 Chemically grafting 

organic ligands/chains onto the POMs results in POM-organic hybrids, which can maintain or 

enhance/modify the optical-,
14-16

 electrical-,
17,18

 thermal-,
19

 and fluorescence
20-22

 properties of the 

POMs. The functionality (e.g. self-assembly behavior and catalytic activity) of POM-based 

hybrids highly relies on their molecular conformation and therefore, the corresponding external 
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stimuli could be used as ‘switch’ signal for these functions. Moreover, POMs hybrids show 

specific biological activity, which might enhance the biocompatibility of molecular switch.
23-25

 

Herein, we report, to the best of our knowledge, the first example of POMs-based metal-ion-

driven molecular switch, which can be driven to fold by the stimuli of Zn
2+

 ions. The working 

cycles of the molecular switch were monitored by UV-Vis
 
and 

1
H-NMR. The folding process was 

uncovered by Small-Angle X-Ray Scattering (SAXS) and 2D Nuclear Overhauser Effect 

Spectroscopy (NOSY). More importantly, controllable metal ion translocation has been used to 

reversibly tune the packing parameter of POM-based amphiphile and its consequent self-

assembly behaviour, which was studied by laser light scattering (LLS) and TEM. 

7.2 Experimental section 

General. Hybrid 1, 2, and the bipyridine ligand were synthesized according to previous 

literature.
26

 DMSO, Methanol, anhydrous ZnCl2, EDTA, aquesous solution of TBA*OH (40%, 

wt), and d6-DMSO were purchased and used without further purification.  

Synthesis of (TBA)4*EDTA. 5 mL TBA*OH (40%,wt) solution was mixed with 0.274g EDTA. 

The mixture was kept sonicating until EDTA was fully dissolved. The obtained solution was kept 

at 50°C with reduce pressure for one week. Colorless ionic liquid was obtained. 

UV-Vis monitoring the titration of hybrid 1 with ZnCl2. 5 mg hybrid 1 was dissolved in 20 

mL DMSO. 128 mg anhydrous ZnCl2 was dissolved in 5 mL DMSO. UV-Vis was used to 

monitor 250-600 nm range results of the titration total volume of 5uL to 150 uL ZnCl2 solution to 

the 20 mL 1’s solution. UV-Vis measurements were done in Shimadzu UV-2101PC 

Spectrophotometer and pure DMSO solvent was used for background.  

SAXS experimental section. The SAXS experiments were performed at 12-ID-B station with X-

ray energy of 12 KeV at the Advanced Photon Source of the Argonne National Laboratory. The 

sample to detector distance was about 2 m. A 2D CCD detector was used to acquire images with 

typical exposure times in the range of 1.0 s. 
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TEM. The TEM images were taken on a JEOL JEM-2000 electron microscope operated at 200 

kV. Samples for the TEM analysis were prepared by dropping a small volume of the solution 

sample onto a holey carbon film on copper grid. 

Static light scattering. A commercial Brookhaven Instrument LLS spectrometer equipped with a 

solid-state laser operating at 532 nm was used for measurement of both SLS and DLS. SLS 

experiments were performed at scattering angles (θ) between 20 and 100º, at 2º intervals. 

However, due to the large fluctuations in scattered intensities at low scattering angles, we 

removed the data from 20-40º in the final analysis. Derived from Rayleigh-Gans-Debye 

equation
27

, partial Zimm plot was used to analyze the SLS data to obtain the radius of gyration 

(Rg). The partial Zimm plot stems from the following approximate formula: 1/I = C(1+Rg
2
*q

2
/3). 

Here Rg is determined from the slope and the intercept of a plot of 1/I vs. q
2
. 

Dynamic light scattering. DLS measures the intensity–intensity time correlation function by 

means of a BI-9000AT multi-channel digital correlator. The field correlation function |g
(1)
(τ)| was 

analyzed by the constrained regularized CONTIN method
28

 to yield information on the 

distribution of the characteristic line width Γ. The normalized distribution function of the 

characteristic line width, G(Γ), so obtained, can be used to determine an average apparent 

translational diffusion coefficient, Dapp =Γ/q
2
. The hydrodynamic radius Rh is related to D via the 

Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann constant and η the viscosity 

of the solvent at temperature T. From DLS measurements, we can obtain the particle-size 

distribution in solution from a plot of Γ*G(Γ) versus Rh. The Rh of the particles is obtained by 

extrapolating Rh,app to zero scattering angle. The normalized distribution function of the 

characteristic line width, G(Γ), so obtained, can be used to determine an average apparent 

translational diffusion coefficient, Dapp =Γ/q
2
. The hydrodynamic radius Rh is related to D via the 

Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann constant and η the viscosity 

of the solvent at temperature T. From DLS measurements, we can obtain the particle-size 
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distribution in solution from a plot of Γ*G(Γ) versus Rh. The Rh of the particles is obtained by 

extrapolating Rh,app to zero scattering angle. 

1D NMR and 2D DOSY, NOESY. All the NMR spectra were recorded on Bruker Avance 500 

spectrometer equipped with a BBO probe at 25 °C. 2D NOESY were performed with mixing 

times ranging from 50 to 500 ms. The appropriate mixing time for trans-isomer and cis-isomer 

solution were determined to be 70 ms and 300 ms. Necessary phase corrections and baseline 

corrections were used to enhance the quality of the results.  

DOSY was performed on a Bruker 500 MHz spectrometer with the magnetic field gradient (g) 

varying from 0 to 32 G/cm in 16 ~ 32 steps. The length of the gradient (d ) was from 6000 ms to 

8000 ms, and the time interval between two pulsedgradients (D) was from 0.1 s to 0.15 s. All 

spectra were taken at room temperature. After the data collection, FIDs were processed and 

analyzed with the NMR software TopSpin 2.0 provided by Bruker. Both T1/T2 relaxation and 

CONTIN methods were used to fit the raw data. The observed proton signal I in a standard 

DOSY spectrum is expressed through equation 1: 

                                                                               Equation (1) 

 where I0 is the reference intensity, γ is the gyromagnetic ratio of the proton. If only one diffusive 

component exists in the solution, a straight line will occur in a plot of ln(I/I0) versus g
2
, and the 

apparent diffusion coefficient (D) can be calculated from the slope using linear regression 

analysis. 

Video for the folding process of hybrid molecule. The movie Hybrid_Movie was made by the 

author and based on NMR and SAXS results. The charge-free software Picasa 3 and windows 

movie maker are acknowledged here. The movie can be found as another supporting file or 

through the link http://youtu.be/ZkIDe5z3Ils. The addition of ZnCl2 and the molecule of ZnCl2 

were omitted for clarity. 
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7.3 Results and discussion 

7.3.1 Molecular structure of the hybrid molecular switch  

Hybrid 1, TBA10H2[{P2V3W15O59 (OCH2)3CNHCO}2(C5H3N)2] (TBA, tetrabutylammonium), has 

been reported and fully characterized in previous literature.
26

 It shows a dumbbell shape with two 

Dawson-type POMs at the two ends linked by a 2, 2’-bipyridine unit (Figure 7.1). The covalent 

but non-conjugated linkage between different building blocks makes the molecule quite stable 

while the functions of different components are maintained. The size of the molecule is ca. 1 X 1 

X 4 nm
3
 and its molecular weight is ca. 10.6 kDa. 2, 2’-bipyridine is a key unit in designing smart 

molecules because of its metal-ion-induced controllable conformation around C-C single bond.
29-

32
 The purpose of designing hybrid 1 is to inherit the metal-ion-responsive behaviour from 

bipyridine to hybrid POMs. The POM units are bonded to the para-position of the heteroaromatic 

rings, which not only can extend the bipyridine unit’s conformation change to the whole hybrid 

molecules, but also largely reduce the possible steric hindrance of POM units during the rotation 

process (Figure 7.2). Based on the above assumption, the hybrid can exist in two isomers: the 

trans-isomer in metal-ion-free environment and the cis-isomer when metal ions are added. 

 

Figure 7.1 Ball-stick representation of molecular structure of anions in hybrid 1. 
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Figure 7.2 The reversible transformation process between trans-isomer and cis-isomer of 1. 

7.3.2 UV-vis monitoring the trans- to cis- isomer transformation process.  

By titrating ZnCl2 into the DMSO solution of the bipyridine ligand, a bathochromic shift of the 

bipyridine band from ca. 300 to 330 nm can be observed, which is resulted from the complexion 

between Zn
2+

 and the ligand (Figure 7.3 and Figure 7.4). The resolved absorption peak for 

bipyridine unit cannot be observed in the UV-Vis spectrum of hybrid 1 since it is immersed in the 

strong absorption peak of the POM unit. However, the similar bathochromic shift can be observed 

when Zn
2+

 is added to the DMSO solution of 1 (Figure 7.5). Control titration experiment on the 

bipypridine-free dumbbell-shape hybrids 2 (Figure 7.6 and Figure 7.7) shows no obvious change 

in its UV-Vis spectrum, ruling out the possibility that the interaction between the POM unit and 

Zn
2+

 contributes to the bathochromic shift. Therefore, the addition of Zn
2+

 can trigger the 

formation of Zn-bipyridine complex and change the conformation of the dumbbell structure from 

trans- to cis-. 
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Figure 7.3 Molecular structure and NMR results of the bipyridine ligand. 

 

Figure 7.4 UV-Vis monitoring of the titration of ZnCl2 into the DMSO solution of the bipyridine ligand. A 

bathochromic shift of the bipyridine band from ca. 300 to 330 nm can be observed, which is resulted from the 

complexion between Zn2+ and the ligand. 
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Figure 7.5 UV-Vis monitoring of hybrid 1 with the titration of ZnCl2 in DMSO. 

 

Figure 7.6 Molecular structure of hybrid 2. Cyan polyhedron, WO6; yellow polyhedron, VO6; purple 

polyhedron, PO4; black sphere, carbon atom; blue sphere, nitrogen atom; red sphere, oxygen atom, gray sphere, 

hydrogen atom. 

 

Figure 7.7 UV-Vis monitoring of the titration of ZnCl2 into the DMSO solution of hybrid 2. No bathochromic 

shift were observed. 
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7.3.3 1
H-NMR monitoring the reversible transformation process  

1
H-NMR was further used to obtain detailed information and test the reversibility on the metal-

ion-driven conformation change. Due to the strong induce effect of metal ions in their complexes, 

1
H-NMR studies on the bipyridine ligands suggest that the corresponding peaks of the protons in 

heteroaromatic rings and amino groups show signal broadening and downfield shift when added 

Zn
2+

 reaches a molar ratio of 3.5:1 to bipyridine (i.e., 3.5 equivalents, Figure 7.8). The similar 

downshift and signal broadening of the peaks can be observed in the corresponding experiments 

of hybrid 1. After titrating extra ZnCl2 to the hybrid solution (5~18 equivalents), it can be clearly 

observed that the signal of Ha and Hc at 7.83 and 8.74 ppm, respectively, decrease gradually 

correlated with the appearance and increasing of two new peaks at 8.20 and 9.05 ppm (Figure 7.9 

bottom, black line and green line correlated peak series), indication the Zn
2+

 controlled trans- to 

cis- transformation. Meantime, the peak of Hb and Hd at 8.46 and 8.84 ppm, respectively, 

continuously move downfield to 8.55 and 8.91 ppm, respectively (Figure 7.9 bottom, aqua line 

and pink line labelled peak series). As high as ca. 18 equivalents of ZnCl2 is needed to fully 

transform the trans-isomers of hybrid 1 into cis-isomers probably due to the repulsive interaction 

between the giant Dawson clusters during the rotation process, which is confirmed by the fact that 

ca. 20 equivalents of HgCl2 are needed for the transformation process of 1. Interestingly, the 

downfield shifted peaks move upfield back to their original chemical shift after the adding of ca. 

9 equivalents of (TBA)4*EDTA (tetrabutylammonium*ethylenediaminetetraacetate, see 

experimental section), suggesting that the cis- conformation changes back to trans- conformation. 

EDTA is a strong chelating agent that can almost stoichiometrically coordinate with metal ions. 

In our case, EDTA can extract the Zn
2+

 from the cis-isomers, which become thermodynamically 

unstable and change back into trans-isomers. The addition of Zn
2+

 and later removal of it with 

EDTA in the DMSO solution of hybrid 1 is a running cycle of the molecular switch (Figure 7.2). 
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Further NMR studies confirm that the switch can work for at least 5 cycles through controlling 

the stimuli of Zn
2+

 without decomposition of the hybrids or dysfunctionality (Figure 7.10). 

Additionally, the transformation from trans- to cis-isomer can lead to observable change of 

diffusion speed of the hybrid molecule in 2D diffusion ordered 
1
H-NMR spectroscopy (DOSY). 

DOSY results indicated that the diffusion coefficient (D) of trans-isomer is 7.927x10
-11

 m
2
/s 

(before adding ZnCl2) and that of cis-isomer is 1.295x10
-10

 m
2
/s. Based on Stokes-Einstein 

diffusion equation (Equation in experimental section), hydrodynamic radii (Rh) of trans-isomer 

and cis-isomer can be calculated as 1.379 nm and 0.844 nm, respectively, suggesting the 

shrinking of the molecular size during the transformation process. The observation could be 

explained by the shorter distance between two Dawson-type POMs in cis-isomer than that of 

trans-isomer. 
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Figure 7.8 1H-NMR monitoring of bipyridine ligand with adding ZnCl2 and TBA*EDTA. The downfield shift of 

hydrogen atom of bipyridine and N-H after the adding ZnCl2 suggests the transformation of the trans- to cis-. 

After adding TBA*EDTA to the above solution, the chemical shit move upfield back to their original position, 

indicating the transformation of cis- to trans-. 
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Figure 7.9 1H-NMR monitoring results of the titration of ZnCl2 to the d6-DMSO solution of 1 (bottom) and 

adding of (TBA)4*EDTA after the titration of ZnCl2 (top). 
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Figure 7.10 1H-NMR monitoring results of the five working cycles of the hybrid 1.  

7.3.4 The observation of folding behavior of hybrid during the transformation process in 

SAXS and NOESY.  

Basically, the molecular framework of hybrid 1 is rigid and only five single bonds are allowed to 

rotate (the pair of C4-N1, the pair of C2-C3, C1-C1´), which might control the molecule’s 

conformation. However, due to the symmetrical structure of Dawson-type POM, the pair of C4-

N1 single bond have no effect in changing the hybrid’s conformation. The rotation of C1-C1´ 

highly relies on the complexation of bipyridine unit with metal ions and thus the study of hybrid’s 

molecular comformation is heavily involved with C2-C3 bond. The amid groups and 

neighbouring heteroaromatic rings are forced to stay coplanarly because of the conjugative effect, 

which, therefore, limits the possible conformation number for both cis-isomer and trans-isomer to 

be only 3 (Figure 7.1 and Figure 7.11). SAXS, a powerful technique for characterizing 

nanostructures in solution, was used to determine the actual molecular conformation of hybrid 

1.
33-37

 The SAXS profiles of hybrid 1 before (open square) and after (open circle) adding ZnCl2 
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(Figure 7.12a) are completely different, where they have peak maxima at q = 0.27, and 0.33 Å
-1

, 

respectively (Figure 7.12a). To further understand the strucutral cause of SAXS profile change, 

pair distance distribution functions(PDDF) in real space, p(r), were obtained using program 

GNOM
38

 as shown in Figure 7.12b.  All PDDF exhibit dumbbell-type bimodal feature, where the 

first peak describes the  intra-subunit (Dawson-type POM) distances and is same for all these 

three samples, while the second peak describes the inter-subunit pair distances.  The position of 

the second peak roughly measures the center to center distance of the two subunit.
39

 The second 

peak shifts its center from 28.5 Å to 21.2 Å after adding ZnCl2,  resulting from the induced trans-

to-cis isomerization and the shorter subunit seperation in cis-isomer.   In order to exam the correct 

molecular conformations, the PDDF for each conformation was calculated using program 

SolX
40,41

 and superimposed with the experimental PDDFs in Figure 7.12c. All the three trans-

conformations fit well with experimental curve while only cisII fits the experimental data for cis-

isomer.  

To further exam those conformers, 2D NOESY measurements were empolyed. 2D NOESY is a 

NMR technology whose aim is to identify spins undergoing cross-relaxation and to measure the 

cross-relaxation rates.
42

 The intensity of NOESY is highly dependent on the distance between 

protons and normally a signal is only observed if their distance is smaller than 5 Å.
42

 Therefore, 

NOESY results could be helpful to confirm the SAXS results and determine the right 

conformation by collecting information on the inter-proton distances in organic fragments. In 

NOESY result of 1’s Zn
2+

-free solution (trans-isomer), crosspeaks of amine proton (Hd) and Hc 

are observed (red retangle) as well as that of Ha/Hb (aqua retangle) and Hd/He (green retangle), 

however, no crosspeaks of Hd/Ha shows up, which suggest that Hd is only close to Hc, implying 

transIII should be the correct model for trans-isomer (Figure 7.11 and Figure 7.13a). Meantime, 

NOESY results of the hybrid solution with Zn
2+

 (cis-isomer) suggests that Hd is close to both Ha 

and Hc by showing crosspeaks with both Ha (blue retangle) and Hc (red retangle), which confirm 
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the SAXS result that cisII is the right or the major conformation for cis-isomer (Figure 7.11 and 

Figure 7.13b). Theoretically, adding ZnCl2 to drive the rotation of C1-C1´ would change transIII 

into cisIII if C2-C3 bonds are frozed. However, the inter-POM distance (center to center) for 

cisIII is too close (1.2 nm)  and the steric hinderence finally forces one of the C2-C3 bond to 

rotate 180° and make the distance further (2.0 nm) (Figure 7.11 and Figure 7.13c). The further 

roration of C2-C3 bond requires extra energy, which explains why excessive Zn
2+

 is needed for 

the transformation from trans- to cis-isomer. The smart behavior of 1 mimics the metal-ion-driven 

folding process of proteins, which directs the functionality of proteins. 

 

Figure 7.11 The possible conformations for trans-isomer and ciso-isomer, respectively. 

SAXS was also used to confirm that the cis-isomers could be converted back to trans-isomers. 

After adding (TBA)4*EDTA, (shown in Figure 7.12a open triangle), the clusters are trans-isomers 

(open square), and the d spacing is around ca. 28 Å, based on the p (r) curve in Figure 7.12b, 

indicating a unfolding process for the hybrids (Figure 7.13c). It also should be noted that both 

trans- and cis- isomers are stable in solution after one month (Figure 7.14). In addition, from the 



 

154 

p(r) curve, the minimum of trans-isomer is lower than 0, which is due to the lower density of 

organic linker compared to the buffer, DMSO.  In the case of cis-isomer, because of the existence 

of heavy metal Zn
2+

, their minimum is higher than 0. 

 

Figure 7.12 a) SAXS curve of trans-isomer without metal ions (open square), cis-isomer after adding ZnCl2 

(open circle), and trans-isomer after adding the EDTA into the cis-isomer solution (open triangle). SAXS 

profiles are vertically offset for clarity.  b) Pair distance distribution function, p(r), of the three samples 

obtainedusing program GNOM. c) The overlay of calculated p(r) of the three trans-conformations and 

experimental p(r) of trans-isomer. The calculated p(r) were computed directly from the molecular coordinates 

using program SolX. d) The overlay of calculated p(r) of the three cis-conformations and experimental p(r) of 

cis-isomer. 
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Figure 7.13 a) b) 2D NOESY result of hybrid 1’s solution without and ZnCl2, respectively. (retangle-crosspeak 

code: red, Hd/Hc; green, Hd/He; aqua, Ha/Hb; blue, Hd/Ha ) c) Model for the folding and unfolding behavior of 

the hybrid stimulated by Zn2+. 
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Figure 7.14 SAXS data of trans-isomer and cis-isomer measured at 1st day and 30 day. Data are arbitrarily 

scaled for clarity. 

7.3.5 Metal-ion-driven self-assembly/disassembly behavior of hybrid in solution  

The dumbbell hybrids are amphiphilic molecules 
43-45

 and the metal-ion-driven conformation 

change of 1 can likely alter its packing parameter (P), which might be utilized to manipulate its 

solvophobic-driven self-assembly behaviour. The trans-isomers exist as discrete molecules in 

DMSO/methanol mixed solvents (1:1 volume ratio), suggested by the stable and low scattered 

intensity (ca. 40 kcps; scattered intensity for benzene is ca. 120 kcps) from the time-resolved SLS 

studies. However, the scattered intensity of 1’s solution increased to ca. 9,000 kcps without any 
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precipitation after ca. 18 equivalents of ZnCl2 were added, suggesting the formation of large 

structures. A typical CONTIN analysis from dynamic light scattering (DLS) study indicated the 

existence of assemblies with an average Rh of 138±7 nm with a narrow size distribution (Figure 

7.15a). Radius of gyration (Rg) of the assemblies, obtained from the SLS measurment as 144±7 

nm, was very close to Rh, suggesting a hollow spherical structure for the assemblies, which was 

confirmed by the TEM image (Figure 7.15b). The control experiment on hybrid 2 suggested that 

no assemblies were observed even as high as 54 equivalents Zn
2+

 were added, which ruled out the 

possibility that the POM-ZnCl2 interaction led to the formation of large assemblies. The trans-

isomer of 1 is of cylinder-shape with diameter as ca. 1 nm, and therefore the closest distance of 

the heteroaromatic ring in two nearest hybrid molecules should be no less than 1 nm based on the 

parallel-packing model (Figure 7.16).
43,44

 However, the distance for aromatic groups should 

achieve as short as 0.34 nm for face-to-face π-π stacking, which means that it is difficult for the 

hydrophobic organic linker of trans-isomer to directly interact with each other due to the steric 

hindrance of large-size POMs. In our previous study, vesicles were observed to form from 1’s 

trans-isomers since TBAs were claimed to strongly interact with the organic linker in polar 

solvents (water/acetone mixtures) and fill up the solvophobic region
43,44

. However, the interaction 

between TBAs and organic linkers became weaker in comparatively less polar solvent, e.g. 

DMSO/methanol mixtures, and therefore, no assemblies of 1’s trans-isomer could be observed. 

The cis-isomer is a V-shaped molecule with the angle as 108° and P as 0.55, much large than that 

of trans-isomer, 0.40. In the packing model in figure 7c, two cis-isomers can strongly interact 

with each other through hydrophobic interaction and the π-π stacking of heteroaromatic ring with 

inter-POM distance > 2 nm, which enables two possible packing style of cis-isomers to form 

vesicles: 1) monolayer structure: two polar heads of 1 are on the outside surface and internal area 

surface, respectively with linker inside the shell of vesicle; 2) bilayer structure: the two polar 

heads are on the same side with linkers inside the shell. By removing ZnCl2 from cis-isomer 
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through adding (TBA)4*EDTA, the conformation of 1 change back to trans- and the vesicles 

disassemble, indicated by the dropping of scattered intensity to 47 kcps. This controllable self-

assembly and disassembly processes can be repeated with the same sample by adding and 

removing ZnCl2 for several cycles (Figure 7.17). 

 

Figure 7.15 a) DLS results of the assembies of Hybrid 1 in Methanol/DMSO mixed solvents at 45° scattering 

angle. b) TEM image of the large assembly. c) Model for the vesicle structure. 

 

Figure 7.16 Model for the parallel packing of trans-isomer of 1. 



 

159 

 

Figure 7.17 Graphical representation of the trans-isomer to cis-isomers to vesicle structures process. 

7.4 Conclusion 

In summary, the bipyridine-containing dumbbell-shape POM hybrid works as a Zn
2+

-driven 

molecular switch. The hybrid exists as trans-isomer in metal ion-free solutions while it changes to 

cis-isomer when Zn
2+

 is added. The molecule can keep reversibly switching for multiple cycles if 

the adding and removing of Zn
2+

 in its DMSO solution can be controlled. As the first POM-based 

metal-ion-driven molecular switch that mimics the behaviour of metal ion-directed folding and 

assembly of proteins, the Zn
2+

-controlled its conformation transformation can further utilized to 

manipulate its self-assembly behavior, which might be useful in delivery and control releasing. 
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8 Chapter 8: Polyoxometalate-Organic Hybrid Molecules as 

Amphiphilic Emulsion Catalysts for Oxidation Reactions 

and Nanostructured Polyoxometalate-Polymer Latex Beads 

8.1 Introduction 

Polyoxometalates (POMs), a large series of discrete and stable nano-scaled metal oxide clusters 

with well-defined molecular structures, are optically and electrically active materials and have 

attracted increasing interest in recent years, especially as promising homogeneous and 

heterogeneous catalysts both in laboratory research and industrial processes.
1-6

 Major limitations 

of the POM catalysts include the high cost for homogeneous catalysis (difficult to recycle the 

catalysts from the solution after the reaction) and the low catalytic efficiency for the 

heterogeneous catalysis (only surface layer of POM crystals are effective in catalytic reactions).
2
 

Mizuno, Hill, and Wang el al. developed the POM-incorporated porous crystalline framework for 

high efficient heterogeneous catalysis.
7-10

 Neumann and Mizuno et al. loaded POMs on the 

surface of micelles and positively charge substrate to obtain recyclable quasi-homogeneous 

catalysts.
11-15

 However, the applications are limited for a few reaction systems. An additional 

issue is that the oxidation reactions in petroleum industry with POMs as catalysts often involve 

reactants in immiscible liquid phases, e.g., sulfur-containing and unsaturated organics in oil phase 

and oxidizing agent (H2O2) in aqueous phase.
16,17

 A possible scheme for solving these problems is 

to increase the interfacial area and try to locate catalyst at the interface. Such reaction systems 

provide an easy way to separate catalysts, excess reactants, and products from the reaction media 

which will therefore remain uncontaminated. This idea can be applied to environmental benign 

and green chemistry, organic synthesis, and industrial-scale reactions including biomass 

conversion, biofuel upgrade, and oxidation desulfurization.
18

 However, very few studies on the 

application of POMs as catalysts in the two-immiscible phase system has been reported since the 

reactions are usually slow, or even impossible because of the limited interfacial area where 
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reactants and catalyst interact. Neumann, Li, and co-workers successfully developed the so-called 

‘emulsion catalyst’ by replacing the counterions of POMs with cationic surfactants.
16,17

 The 

electrostatic interaction between the POM anions and cationic surfactants leads to the formation 

of amphiphilic complexes which can be used to create emulsions. However, a large portion of 

POMs’ active surface area is covered by cationic surfactants, which lowers their catalytic activity 

and the stability of the corresponding emulsions. The relatively weak static charge interaction 

between the POMs and cationic surfactants might not be stable especially at low pH or at high 

ionic strength. Moreover, the lack of quantitative study on the mechanism and key factors that 

might control the catalytic activity hinders further improvement and practical applications. 

Herein we report a new approach of forming functional emulsions by using POM-organic hybrid 

amphiphilic molecules. Chemically grafting functional organic chains/ligands to the POMs has 

been developed rapidly recently as these new materials can successfully expand the compatibility 

of the POMs in organic media, and also introduce more features to the POMs (e.g., controllable 

fluorescence properties).
19,20

 Long alkyl tails covalently functionalized hexavanadate was 

reported previously by us to demonstrate amphiphilic feature and form stable emulsions in the 

mixture of toluene and water.
21

 This kind of functionalized hexavanadate hybrids is electrically 

active and able to act as catalyst for oxidation reactions.
8,22,23

 We use two hexavanadate-based 

hybrid surfactants in oxidation desulfurization reactions to demonstrate quantitative study of the 

mechanism of the emulsion catalysis, as well as the effects of pH and hydrophobicity of the 

organic tails on their catalytic activity. To the best of our knowledge, it is the first example that 

catalysts can controllably form catalytic active emulsions and reverse emulsions, which can be 

applied to tune the phase transfer behavior of catalysts. Gas chromatography (GC) and GC-MS 

were utilized to monitor the reaction rate while laser light scattering (LLS), electron microscopy 

(EM), 
1
H-NMR, and UV-Vis were applied to give direct and indirect information on the catalytic 

mechanism. 
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8.2 Experimental section 

Synthesis of hybrid 2. 2 was prepared by heating a mixture of 

(TBA)2[V6O13{(OCH2)3CCH2OH}2] (2.5g, 2mmol), steric anhydride(0.55g, 1mmol), 

DMAP(0.13g, 1.1mmol) and 40ml acetonitrile at 70℃ for 24h. After the reaction, the mixture 

was cooled down to room temperature and filtrated. The solvent was then removed by rotary 

evaporation and the precipitates was dissolved in 20 ml chloroform and then filtrated to remove 

excess amounts of (TBA)2[V6O13{(OCH2)3CCH2OH}2]. Then the chloroform was removed by 

rotary and the crude products were dissolved in an aceton/water (4:1) mixture. When acetone was 

slowly evaporated in the open air, red platelet crystals was firstly appeared in the solution and 

removed by filtration. Finally the pure product was obtained as red needle-like crystals. 

ESI-MS (MeCN, negative, m/z): 523.32(100%) [V6C18]
2-

, 1246.98 H[V6C18]
-
, 1288.19 

(TBA)[V6C18]
-
; IR(KBr, cm

-1
): 2960(m, C-H vibration of –CH3), 2923(s, C-H vibration of -CH2-

), 2853(m), 1752(m, C=O vibration), 1632(m), 1467(m), 1384(w), 1159(w), 1130(m), 1067(m, C-

O vibration in esterified tris), 1039(m, C-O vibration in unesterified tris), 956(s), 944(vs, V-Ot 

vibration), 811(m), 720(s, V-Ob-V vibration), 582(m). 

Catalytic reaction of desulfurization set-up. As a typical case, thiophene (50 uL) was dissolved 

in 4 mL hexanes. 8 mg hybrid surfactant or V6 or SDS (4 mg) (proton as counterion) was 

dissolved in 2.5 mL water and mixed with 2.5 mL hydrogen peroxide (30%,wt). The pH value of 

the obtained aqueous solutions was tuned to the required value by carefully titrating HCl or 

NaOH solutions. The two solutions were then mixed with continuous stirring (1000 rpm) with 

water bath (35 ~ 40 ⁰C). The reaction progress was monitored by GC and GC-MS by collecting 

samples (1 uL) at different time intervals. The concentration of thiophene is calculated based on 

the ratio of the area integration of thiophene peak over the area integration of hexanes peaks. The 
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conversion ratio at any time interval can be calculated as: (Conversion)t = (Ct – C0)/C0, C0 and Ct 

means the concentration of thiophene in organic phase at time 0 min and t min, respectively. 

Synthesis of hybrid 3. 3-(Trimethoxysilyl) propyl methacrylate (1.5 mL, 6.3 mmol) was added 

to 200 mL of a solvent mixture of CH3CN/H2O (150 mL/50 mL, v/v). The solution was acidified 

with 5 mL of 6 M aqueous HCl solution. To it was slowly added the precursor Na9[A-

PW9O34]*15H2O (it was synthesized according to previously published procedure
24

) (2.7 g, 1.0 

mmol) with a small portion. The resulting colourless clear solution was concentrated to ca. 60 mL 

in volume with a water bath at 80 °C. To it was added Bu4NBr (3.0g, 9.3 mmol). After stirring for 

30 min at room temperature, a white powder formed, was collected by centrifugation at 6000 rpm 

for 1 hr.  The obtain compound was dissolved in acetonitrile and ran through proton exchange 

column. The solution passed through the column was collected and vacuumed to remove the 

solvent. The resulted white powder was directly used in my research.  

8.3 Polyoxometalate-organic hybrid molecules as amphiphilic emulsion 

catalysts for deep desulfurization 

Two hexavanadate-based hybrid surfactants were synthesized and their molecular structures were 

displayed in Figure 8.1. 1 has been reported recently
21

, while the synthesis of 2 is similar to that of 

1 by controlling the molar ratio of stearic acid/hexavanadate which is less than 1, leading to the 

formation of single-tailed POM hybrids. The original counterions of both hybrids, 

tetrabutylammonium (TBA), have been replaced with protons or sodium ions via ion-exchanger, 

making the hybrids soluble in aqueous solution (see experimental section). The critical micelle 

concentration (CMC) of Na*1 (Na*1 represents hybrid 1 with sodium as counterions) reported 

recently
21

 is used as the minimum concentration for creating emulsions. 
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Figure 8.1 Molecular structures for hexavanadate-based hybrid surfactants, 1 and 2. Reprinted with permission 

from ref.25. Copyright 2012 Wiley-VCH. 

The oxidization of thiophene by hydrogen peroxide (H2O2) is used as the model reaction (Figure 

8.2). H2O2, an environmentally benign oxidizer, has been used widely for hazardous waste 

disposal, oxidation desulfurization, and organic synthesis.
26

 Thiophene, the most inert compound 

against an oxidizing agent among all its derivatives, is poisonous to living bodies, environment, 

and noble metal catalysts for oil reforming in petroleum industry.
27

 However, thiophene is 

immiscible with aqueous solution of hydrogen peroxide, making the oxidation of thiophene by 

H2O2 very difficult. Hence, this makes it an ideal model reaction not only to study the mechanism 

of the POM-based emulsion catalysis, but also to evaluate the potential practical applications of 

this approach in environmental chemistry and petroleum industry. 

For a typical experiment, thiophene (50 uL) was dissolved in hexanes (4 mL) as a simple model 

for crude oil. Na*1 or Na*2 was dissolved in the aqueous solution of (ca. 1.6 mg/mL, 5 mL) 

H2O2 and mixed with the organic phase. The aqueous solution of the hybrid showed yellow color 

because of a strong UV-Vis absorption of the hexavanadate at 350 nm.
22

 Emulsions were formed 

in aqueous solution after stirring, which are stable for at least 2 days without further stirring (pH 

of the aqueous solution is ca. 6.0). Interestingly, the emulsion layer showed a deeper color than 

that of original aqueous solution; however, the aqueous solution at bottom is almost colorless 

(Figure 8.3a), suggesting most of the hybrids are at the water/hexanes interface. The hybrid 

surfactants are known to self-assemble into vesicle structures and be homogeneously distributed 
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in aqueous solution without the organic phase. When hexanes containing thiophene is added, the 

hybrids will stay at water/oil interface due to their amphiphilic feature and consequently stabilize 

the emulsions. As a result, almost all the catalytically active POM clusters are concentrated at the 

emulsion surface where two types of reactants can meet (Figure 8.3b and c). Dynamic light 

scattering (DLS) results indicated that the size of the emulsions is ca. 800 nm (Figure 8.4). 

 

Figure 8.2 The equation for the catalytic oxidation reaction of thiophene. Reprinted with permission from ref.25. 

Copyright 2012 Wiley-VCH. 

 

Figure 8.3 a) Picture of the emulsion catalytic system of surfactant with the pH of aqueous solution at 6; b) 

Models for the catalytic system; c) Model for the biphasic catalytic reactions. Reprinted with permission from 

ref.25. Copyright 2012 Wiley-VCH. 

 

Figure 8.4 DLS results of the diluted emulsion solution. (Rh = ca. 400 nm). Reprinted with permission from 

ref.25. Copyright 2012 Wiley-VCH. 
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For a typical reaction, the concentration of thiophene in organic phase was monitored by GC 

and the reaction rate is evaluated by the decomposition conversion of thiophene after 80 min 

reaction. For all the reactions involving the emulsion catalysts, i.e., emulsions can be successfully 

created by using the hybrids, the conversion are much higher than those of the control 

experiments (the experiments with identical conditions but without adding any hybrids) within 80 

min time interval (Figure 8.5 and Table 8-1). The synergetic effect of 1 and 2’s amphiphilic and 

catalytic properties make them much better than either simple catalyst (e.g., hexavanadate, V6) or 

conventional surfactant (SDS). 

 

Figure 8.5 Oxidation decomposition conversion of thiophene for 1 and 2 catalyzed reactions at 80 min. (Control 

groups: V6 as catalyst, the conversion is ca. 0% even after 1 day; SDS (sodium dodecyl sulfate) as catalyst, the 

conversion is ca. 6% at 80 min at pH = 1.7, 4.8, and 6.5, and achieved 40 % after 12 hrs.) Reprinted with 

permission from ref.25. Copyright 2012 Wiley-VCH. 

Table 8-1Oxidation decomposition conversion ratio of thiophene for 1 and 2 catalyzed experiments and control 

experiments at 80 min. 

pH       1 2 
6.9 90% 90% 

6.0 41% 35% 
5.2 23% 23% 
4.8 93% ------ 
3.0 92% ------ 
1.7 98% 17% 
Control 1: V6 as catalyst, the conversion is ca. 0% even after 1 day.  

Control 2: SDS as catalyst, the conversion is ca. 6% at 80 min at pH = 1.7, 4.8, and 6.5, and achieved 

40 % after 12 hrs. 

pH effect has been confirmed to play significant role in the self-assembly of POM-based hybrid 

surfactant in aqueous solution by changing the surface charge of POM polar head groups and, 
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consequently, their amphiphilic properties,
28

 which could control the catalytic activity of the 

emulsion catalysts. H2O2 was tested to be quite unstable and would decompose immediately at 

pH>8 at 40 ˚C in the aqueous solution of the hybrids. A series of biphasic oxidation 

desulfurization catalytic reactions for both hybrid surfactants at different pH of aqueous solutions 

(from 1.0 to 6.9) were carried out at 35 ~ 40 ˚C (Figure 8.3). For catalytic experiments involving 

hybrid 2, the oxidation decomposition conversion of thiophene became lower when the pH of 

aqueous solution dropped from 6.9 to 1.7 (Figure 8.5).  The trend is consistent with the catalytic 

reactions of hybrid 1 when the corresponding pH decreased from 6.9 to 5.4 (Figure 8.5). It was 

experimentally confirmed that protons can covalently associate with hexavanadate clusters, which 

would significantly decrease its surface charge.
22

 Consequently, the static charge repulsion 

between the hexavanadates on emulsion surface became weaker, leading to much smaller 

curvature, i.e., larger emulsion sizes. In the current catalytic reactions, the emulsion sizes should 

become larger when the pH of aqueous solution is lower. Larger emulsions tend to lead to smaller 

total interfacial area when fix amount of surfactants are present in solution. Consequently, it will 

decrease the reaction rate. Static charge repulsion is expected to stabilize large particles by 

preventing them from collapse according to the DLVO theory.
29

 Emulsions are not stable at very 

low pH since the hexavanadate clusters are weakly charged or neutral and therefore cannot 

stabilize the emulsions. 

Interestingly, reverse emulsions can be observed in the hexanes phase for the pH range 4.8-1.7 in 

the catalytic reactions involving hybrid 1 (Figure 8.6 and Figure 8.7). Different from the oil-in-

water emulsions, the reverse emulsions have the hexavanadate groups of the hybrids and the 

aqueous solution of H2O2 staying inside while thiophene and hexanes stay in the continuous 

phase (Figure 8.7d). The reverse emulsions can also work as catalytic centres with reactions 

carried out at the interface, which explains why hybrid 1 does not show decreased catalytic 

capability at lower pH (4.8-1.7) (Figure 8.5). As the indication of the reverse emulsion formation, 



 

171 

the organic phase turned to yellow in the reactions catalysed by hybrid 1 at low pH value (Figure 

8.6), which was not observed in the reactions of hybrid 2. UV-Vis spectrometry studies on 

organic phase indicated the existence of hybrid 1 at pH < 5, which confirmed the formation of 

reverse emulsions (Figure 8.7a). The concentration of reverse emulsions formed by hybrid 1 

became higher in organic phase at lower pH by showing stronger UV-Vis absorption (Figure 

8.7a). Interestingly, TEM studies confirmed that the reverse emulsions were not spherical, but 

rod-like structures with diameter and length as ca. 100 and 800 nm, respectively (Figure 8.7). 

When the pH in aqueous phase is lower than the critical value (ca. 5), the repulsion between the 

hexavanadate clusters is weak enough and the hydrophobic interaction is dominant, which drives 

the formation of reverse emulsions. However, no reverse emulsions were formed in the reactions 

of hybrid 2 since its hydrophobic part is not large enough to stabilize the hydrophilic domains in 

hexanes. The reverse emulsions of hybrid 1 are not stable and began to collapse to form 

precipitation with layer structures after ca. 1 hour without stirring and heating (Figure 8.7e and 

Figure 8.8). The hexanes phase separated from reaction system of 1 finally became colorless with 

precipitation in the bottom for overnight. 

 

Figure 8.6 Pictures of hybrid 1’s the catalytic systems with aqueous solutions at different pH values. The organic 

phases for pH = 5 and 6 are colorless while the pH is lower than 5, the organic phases are of yellow color. 

Reprinted with permission from ref.25. Copyright 2012 Wiley-VCH. 

The ultimate goal for desulfurization is not only oxidizing thiophene, but more importantly, 

removing all the sulfur-containing compounds from the oil phase. Most previous research on the 

oxidation desulfurization failed to achieve that and the oxidation products (sulfone) were left in 

the oil phase.
16,17

 In order to examine the existence of possible sulfur-containing product after our 
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reactions, the scanning temperature of GC was extended to up to 300 ˚C to search for possible 

products of the catalytic reactions. However, only hexanes and very tiny amount of unreacted 

thiophene (decomposition conversion is higher than 98%) were detected in the organic phase of 

the reactions with either 1 or 2 being the catalyst. For comparison, when using SDS as 

emulsifiers, a large amount of unreacted thiophene, together with thiophenoxide, thiophone and 

other unidentified organic molecules with high boiling temperatures can be observed in the 

hexanes phase. The unidentified organic compounds might be cyclo-addition products of 

thiophenoxide and thiophone.
27

 The combination of the two GC results suggests that hybrid 1 and 

2 catalyzed oxidation of thiophene produces water-soluble sulfur-containing species (sulfate) 

probably due to their highly efficient catalytic property. For practical applications this is very 

important since the emulsion catalysts are able to fully get rid of sulfur-containing species from 

the oil phase. 

 

Figure 8.7 a) UV-Vis results of the hexanes phases with aqueous solutions at different pH values (Blue, pH=6; 

Green, pH=4; Red, pH=2); b) TEM images of the rod-like reverse emulsions; c) EDS results taken from the rod-

like structures in b) in TEM, indicating large abundance of vanadium; d) Model for the rod-like reverse 
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emulsion; e) SEM images of the precipitation. Reprinted with permission from ref.25. Copyright 2012 Wiley-

VCH. 

 

Figure 8.8 a) The freshly separated organic phase of catalytic reactions with the pH value of aqueous solutions 

as 2; b) sample a) overnight. 

As claimed above, it is easy to separate reactants, products, and catalysts in such emulsion 

catalytic reactions. Organic phase and aqueous phase can be easily separated after demulsifying. 

The catalysts remained in aqueous solution were collected after the evaporation of water. 
1
H-

NMR results indicate that the hybrids are stable during the catalytic reaction. The emulsion 

catalyst can be recycled by running it through ion exchange column or evaporating the water 

solvent. 

8.4 POMs-organic hybrid for building nanostructured POMs-polymer latex 

beads 

Hybrid 3 is synthesized by covalently grafting four propyl methacrylate groups on the surface of 

phosphotungstate through multiple C-Si-O bonds.
30

 The tri-lacunary POM is quite hydrophilic 

with three negative charges while the four organic groups form the hydrophobic part of the hybrid 

(Figure 8.9). In this project, amphiphilic hybrid 3 was utilized in the emulsion polymerization of 

styrene system. As a typical experiment for emulsion polymerization, hybrid 3 was used to 

stabilize the emulsion droplets of styrene in aqueous environment (Figure 8.10). Actually, the 

hybrid works also as co-monomer in the polymerization process of styrene since the organic 
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fragments are ended with C=C double bonds. The organic fragments are supposed to form 

random co-polymer with styrene because of their similar reactivity ratios.  

 

Figure 8.9 Molecular structure of hybrid 3. 

The polymer reaction was carried out based on traditional emulsion polymerization protocol 

except we used hybrid 3 as surfactant.
31

 After 12 hrs polymerization reaction at 70 °C with 

potassium persulfate as initiator, the obtained milk-like solution was centrifuged and the obtained 

solid sample was washed with water. DLS results indicated Rh of the particles in the solution was 

ca. 100 nm. TEM confirmed that spherical particles with sizes as ca. 200 nm were the major 

assemblies in solution (Figure 8.11). More important, EDS analysis on the particle surface 

indicates that tungstate are concentrated on the surface of particles, suggesting POMs clusters 

cover the surface of the particles and stabilize them in solution. In that way, POMs can be easily 

and stably grafted on the surface of polymer latex, which provides a cheap way to produce POM-

based heterogeneous catalysts. 
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Figure 8.10 top) Typical experiment for emulsion polymerization; bottom) model for hybrid stabilized emulsion 

and the particles after polymerization. 
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Figure 8.11 top) TEM images of the POM-polymer latex; bottom) EDS results of the surface area of the latex 

beads. 

8.5 Conclusion 

In summary, the amphiphilic hybrid hexavanadates are proven to be highly efficient emulsion 

catalysts with high stability for ultra-deep oxidation desulfurization. The hybrids can be used as 

amphiphiles to create emulsions with the catalytically active hexavanadate headgroups distributed 

at water/oil interface. The emulsion formation and the efficiency of the emulsion catalysts were 

monitored through time-resolved measurements. The conversion rate for the oxidation reaction of 

thiophene has been significantly improved since the catalysts at interface can connect the 

reactants in aqueous phase and oil phase. The pH of aqueous phase and the hydrophobicity of 

alkyl tails on the hybrids both play key roles in controlling the size of emulsion and the formation 
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reverse emulsions, which consequently determine the reaction rate. As an opening work on the 

emulsion catalytic behaviour of amphiphilic hybrid POMs, our research is supposed to extend the 

catalytic application of POMs and impose more controllability on their catalytic systems. The 

reported approach of emulsion catalysis can be easily expanded to other systems and to practical 

applications.   
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9 Chpater 9: Supramolecular Assembly of Conjugated 

Polymers Containing POM-terminal Side Chains in Polar 

and Nonpolar Solvents 

9.1 Introduction 

Conjugated polymers are important materials with unique electrical and optoelectronic properties, 

which have found applications in a variety of molecular electronic devices including light-

emitting diodes, solar cells, field effect transistors, photodetectors, sensors, and nonlinear optics.
1-

3
 Polyoxometalates (POMs), a large group of metal oxide clusters consisting of early transition 

metal cations and oxo ligands, are also considered electrically active materials and have attracted 

increasing interest in recent years due to their outstanding properties in catalysis, medicine, and 

photo-electronic responses.
4-6

 Incorporating POM clusters covalently with conjugated polymers 

may lead to hybrid materials with not only value-adding properties but also synergistic effects. 

For example, POM-containing hybrid polymers have been found to be good candidates for 

photovoltaic cells, photocatalytic materials, and catalytic nanoparticles.
7
 While it is well known 

that the device performance of hybrid materials depends strongly on their aggregated micro- or 

nano-structures, there has been very few research on the aggregation of POM-containing 

conjugated polymers in both solution and solid states. Such studies are essential if POM-based 

controllable ordered structures are to be realized. 

On the other hand, understanding the aggregation behavior of polyelectrolyte solutions has 

always been an important goal
8,9,10

 in polymer and biological sciences since it may help explain 

the behaviors of DNA
11,12

, RNA
13

, and proteins
14

 in living cells and guide the design of 

polyelectrolyte-based functional materials
3
.  However, due to the coexistence of complex inter- 

and intra-chain electrostatic interactions, the polyelectrolyte solutions are still poorly 

understood.
15-18

 Herein, we report the self-assembly behavior of conjugated polymers containing 
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POM-terminal side chains in polar and nonpolar solvents. As shown in Figure 1, such polymers 

have rigid rod-like structures due to the phenylene ethynylene backbone. The POM cluster, an 

organoimido derivatized hexamolybdate with size as ~1 nm and carring two negative charges 

with two tetrabutyl ammonium (TBA) as the counter-cations, is covalently linked to the polymer 

backbone as the terminal of their side chains. 

9.2 Experimental section 

The syntheses of the four polymers have been previous reported. 
19

 Toluene, acetone and DMSO 

were purchased from Aldrich-Sigma and were used without further purification. All solutions for 

light scattering experiments were filtered through a 200-nm filter, which was purchased from 

Millipore and used with a syringe. The UV-Vis absorption value of solutions with concentration 

ranging from 0.001 to 0.04 mg/mL were measured at 532 nm and used for absorption correction 

in CMC determination and molecular weight determination in light scattering experiments. The 

video for the fluorescence microscopy results can be watched through the following links: 

Video for the aggregates of 1 in toluene: http://www.youtube.com/watch?v=kr64xGO_OBM 

Video for the aggregates of 1 in acetone: http://www.youtube.com/watch?v=kr64xGO_OBM 

Video for the rod-like aggregates of 1 in DMSO: 

http://www.youtube.com/watch?v=njObmpjjAuE 

Video for the co-existence of rod-like and dot-shape aggregates of 1 in DMSO: 

http://www.youtube.com/watch?v=LlaDQLbm66I 

Light scattering measurements for CMC determination in toluene: A toluene solution of 

polymer 1 with a concentration of 0.1 mg/mL was titrated with pure toluene while the scattering 

intensity of the solution at the 90º scattering angle was simultaneously monitored.  Figure S1 

shows how the scattering intensity changes as the concentration of the solution is lowered, from 

which the CMC can be determined to be 0.04 mg/mL.  
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Light scattering measurements for molecular weight determination: solutions with 

concentrations from 0.001 mg/mL to 0.04 mg/mL in toluene were prepared. The dn/dc for 

polymer 1 in toluene was determined to be 0.273 mL/g within the above concentration range.    

Static light scattering: A commercial Brookhaven Instrument LLS spectrometer equipped with a 

solid-state laser operating at 532 nm was used for measurement of both SLS and DLS. SLS 

experiments were performed at scattering angles (θ) between 20 and 100º, at 2º intervals. 

However, due to the large fluctuations in scattered intensities at low scattering angles, we 

removed the data from 20-40º in the final analysis. Derived from Rayleigh-Gans-Debye 

equation
20

, partial Zimm plot was used to analyze the SLS data to obtain the radius of gyration 

(Rg). The partial Zimm plot stems from the following approximate formula: 1/I = C(1+Rg
2
*q

2
/3). 

Here Rg is determined from the slope and the intercept of a plot of 1/I vs. q
2
. 

Dynamic light scattering: DLS measures the intensity–intensity time correlation function by 

means of a BI-9000AT multi-channel digital correlator. The field correlation function |g
(1)
(τ)| was 

analyzed by the constrained regularized CONTIN method
21

 to yield information on the 

distribution of the characteristic linewidth Γ from |g
(1)
(τ)| = .The normalized 

distribution function of the characteristic linewidth, G(Γ), so obtained, can be used to determine 

an average apparent translational diffusion coefficient, Dapp =Γ/q
2
. The hydrodynamic radius Rh is 

related to D via the Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann constant 

and η the viscosity of the solvent at temperature T. From DLS measurements, we can obtain the 

particle-size distribution in solution from a plot of Γ*G(Γ) versus Rh. The Rh of the particles is 

obtained by extrapolating Rh,app to zero scattering angle.= .The normalized 

distribution function of the characteristic linewidth, G(Γ), so obtained, can be used to determine 

an average apparent translational diffusion coefficient, Dapp = Γ/q
2
. The hydrodynamic radius Rh 

is related to D via the Stokes–Einstein equation: Rh = kT/(6πηD) where k is the Boltzmann 

constant and η the viscosity of the solvent at temperature T. From DLS measurements, we can 
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obtain the particle-size distribution in solution from a plot of Γ*G(Γ) versus Rh. The Rh of the 

particles is obtained by extrapolating Rh,app to zero scattering angle. 

Transmission electric microscopy studies. The TEM images were taken on a JEOL JEM-2000 

electron microscope operated at 200 kV. Samples for the TEM analysis were prepared by 

dropping a small volume of the solution sample onto a holey carbon film on copper grid. 

9.3 Results and discussion 

9.3.1 Molecular weight determination 

Polymers 1–4, (C140H203Mo6N3O28)n, (C212H299Mo6N3O36)n, (C148H223Mo6N3O30)n, and (C18H24O2)n 

(Figure 9.1), were synthesized according to literature
19

 and they have been fully characterized. 

They are insoluble in water, but can be easily dissolved in some common organic solvents with 

different polarities (e.g., toluene, acetone, and DMSO). Polymers 1, 2, and 3 all possess the same 

type of POM clusters, but with different side chain lengths and/or POM cluster loading ratios, 

making them ideal models for understanding such hybrid polymers. Polymer 4, without any POM 

in polymer chain, is used for control study in order to clarify the importance of POMs in the 

solution behaviors of these copolymers. Due to the low polarity of toluene, the counter-cations, 

TBAs, are expected to be associated firmly with the cluster anions to neutralize the charges on 

polymers, a situation which is suitable for determining the polymer’s molecular weight.  Polymer 

1 is observed to self-assemble in toluene, with the critical micelle concentration (CMC) being 

0.040 mg/mL according to static light scattering (SLS) studies (Figure 9.2). The determination of 

the weight average molecular weight ( ) must be done below the CMC in toluene. It is 

calculated to be 28,000 g/mol for polymer 1 from SLS studies (Figure 9.3), corresponding to 9-10 

repeating units (n=9~10). The length of each repeating unit is ca. 5.3 nm. Therefore, the contour 

length of the polymer chain should be ca. 50 nm. Interestingly, the chain structure of Polymer 1 

can be clearly observed when studying its film with atomic force microscope (AFM) (Figure 9.4). 
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Polymer 2 has fewer POM-containing side chains (lower POM loading ratio) than Polymer 1 does, 

while polymer 3 possesses the same POM-loading ratio as Polymer 1 but through a longer and 

more flexible bridge. Polymers 2 and 3 is expected to have similar contour length as polymer 1 

based on the previous characterization.
19

  

 

Figure 9.1 Molecular structures of polymers 1, 2, 3, and 4. Reprinted with permission from ref.22. Copyright 

2012 Wiley-VCH. 

 

Figure 9.2 The change in scattered intensities monitored at 90º scattering angle as the concentration of polymer 

1 in toluene is continuously lowered through solvent titration. The CMC was determined to be 0.04 mg/mL. 
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Figure 9.3 Zimm plot for the calculation of molecular weight of polymer 1. 

 

Figure 9.4 Topography of the surface of a spin-coated polymer 1 film. 
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9.3.2 Self-assembly of the polymers in nonpolar solvent 

Polymer 1 shows amphiphilic property in toluene since the polymer backbone is solvophilic 

while the POM clusters are solvophobic. In a freshly prepared 0.1 mg/mL toluene solution of 1, 

dynamic light scattering (DLS) indicates the coexistence of two species with hydrodynamic radii 

(Rh) of ca. 5 ± 1 nm and 44 ± 3 nm, respectively (Figure 9.5a). The smaller species can be 

assigned to single polymer chains and the larger ones are likely the assemblies. Time-resolved 

SLS study monitored at 90º scattering angle shows that the scattering intensity keeps increasing 

with time and reaches equilibrium after 20 days (Figure 9.5b), suggesting the formation of 

supramolecular structures. However, the average Rh of the aggregates does not change with time, 

suggesting that it is the number, not the size of supramolecular aggregates that increases with 

time. The Rh value does not show angular dependence, indicating spherical structures for the 

aggregates. The average radius of gyration, Rg, is calculated to be 43 ± 3 nm from the SLS 

studies. The ratio of Rh/Rg is ~ 1, suggesting a hollow spherical structure for the aggregates, 

which is also confirmed by TEM results (Figure 9.6a). Interestingly, a large number of assemblies 

can be directly observed in solution under fluorescence microscope as large dots (Figure 9.6b). 

Based on the analysis of the amphiphilic properties of 1, the assemblies are presumed to be 

reverse vesicles with polymer backbones exposing to the solvent while the POMs forming the 

solvophobic interior (Figure 9.6c). 
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Figure 9.5 a) CONTIN analysis results of DLS data of polymer 1’s 0.1 mg/mL toluene solution at the scattering 

angle of 30; b) the scattering intensities versus time monitored at 90 scattering angle for polymer 1’s 0.1 

mg/mL toluene solution. Reprinted with permission from ref.22. Copyright 2012 Wiley-VCH 

 

Figure 9.6 a) TEM image of the assembly of polymer 1 in toluene; b) fluorescence microscope image of a 0.1 

mg/mL toluene solution of polymer 1 (scale bar, 30 um); c) model of the reverse vesicle structure in toluene. 

Reprinted with permission from ref.22. Copyright 2012 Wiley-VCH 

Similar to Polymer 1, Polymers 2 and 3 in toluene form vesicular assemblies as well, but with 

much larger sizes (Rh = Rg = ca. 200 nm for 2 and ca. 110 nm for 3, respectively, Figure 9.7). 

Without POM clusters in the side chain, polymer 4 shows very low scattered intensity with small 

average Rh values (less than 10 nm) in toluene, indicating negligible inter-polymer aggregation. 

The similar assembly behavior of the three POM-based polymers, coupled with the lack of 

supramolecular structure formation of polymer 4, suggests that both the hydrophobic backbone 

and the POMs on side chains play crucial roles in the reverse vesicle formation. The size 

difference among these vesicles can be attributed to the extent of imbalance between 

solvophilic/solvophobic components of the polymers. With lower POM loading ratio or longer 

flexible organic linkage on the side chain, the backbones of polymers 2 and 3 are more flexible 
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than that of 1, consequently easier for them to bend toward the solvent part, which will reduce the 

area of solvophilic components and lead to smaller curvature, i.e., larger vesicle size. 

 

Figure 9.7 Dynamic light scattering (DLS) results of 2 (blue) and 3 (red) at scattering angle of 30 degree. 

Rh=Rg=200 nm for 2 and Rh=Rg=110 nm for 3. 

9.3.3 Self-assembly of the polymers in polar solvents 

In a polar solvent such as acetone or DMSO, the TBA counter-cations may dissociate from the 

surface of cluster anions and make the POM clusters charged. The charged clusters render these 

polymers polyelectrolyte properties, as confirmed by Zeta-potential measurements. The Zeta-

potential values recorded in 0.5 mg/mL acetone and DMSO solutions of polymer 1 are -23.9 and -

24.0 mV, respectively. These polyelectrolytes further assemble. SLS and DLS results show that 

the average Rh and Rg of the assemblies in acetone solution are 15 and 48 nm, respectively, and 

those of the assemblies in the DMSO solution are 43 and 60 nm, respectively. The assembly sizes 

remain the same when the solution is diluted even down to 0.1 mg/mL. For both assemblies, their 

average Rg value is much larger than their corresponding Rh value, suggesting anisotropic 
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(possibly rod-like) structures for the assemblies. These rod-like assemblies with very uniform 

sizes can be directly observed under fluorescence microscope (Figure 9.8). Tiny dots can be 

found around the rod structures in the solutions, which might be due to the existence of polymer 1 

single chains or oligomers (Figure 9.9). Interestingly, corresponding TEM studies not only 

confirm the rod structures of the assemblies, but also show their hollow feature, e.g., from the 

broken rods shown in Figure 9.10. Strong contrast between the dark, solid shell and the light 

hollow centre can be observed in the collapsed rod structure (Figure 9.10). The thickness of the 

wall is ca. 4 nm. The diameters (D) for the tube structures formed in acetone and DMSO are 30 

nm and 38 nm, respectively. Energy-dispersive X-ray spectroscopy (EDS) studies indicate the 

existence of molybdenum in the features, which confirms that the building units of the tube-like 

structures are indeed polymer 1 (Figure 9.11). POM-based microtubular structures have been 

obtained in solution state and crystalline state
23-25

; however, the report on POM-based single-wall 

nanotube structures (SWNTs) is rare
26

. 

 

Figure 9.8 Images taken under fluorescence for a) assemblies in 1’s 0.1 mg/mL acetone solution; b) assemblies in 

1’s 0.1 mg/mL DMSO solution. Scale bar, 10 um. Reprinted with permission from ref.22. Copyright 2012 Wiley-

VCH 
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Figure 9.9 Fluorescence image of a DMSO solution of polymer 1, showing the rod structure (up right corner) 

and small dots of single chains. 

 

Figure 9.10 TEM images for a) assemblies in acetone; b) zoom in image of the feature in a); c) another rod 

structure in acetone; d) assemblies in DMSO (inset: zoom in image for the tube structure). e) Model for the tube-

like assemblies. Reprinted with permission from ref.22. Copyright 2012 Wiley-VCH 
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Figure 9.11 EDS taken under TEM for a) aggregates in toluene; b) aggregates in acetone; c) aggregates in 

DMSO. The peak at 17.4 KeV indicates the existence of Mo. 

The tubular assemblies are found to be counterion dependent.  Light scattering and TEM results 

indicate that the diameter of the tubes increases in the presence of ZnCl2 (D = 58 nm) or 

tetramethyl ammonium bromide (D = 55 nm) (Figure 9.12 and Figure 9.13). However, the wall 

thickness does not change, suggesting the obvious role of counterions and the charge-regulated 
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mechanism for the self-assembly behavior. The additions of tetrapropyl ammonium bromide and 

tetrabutyl ammonium bromide have no effect on the sizes of the supramolecular structure. 

 

Figure 9.12 TEM images for the tube-like structures in 1’s 10 mL 0.5 mg/mL DMSO solution with 0.5 mg ZnCl2. 

Diameter = 58 nm. Light Scattering results indicate the Rh and Rg values for the aggregates being 69 nm and 80 

nm, respectively. 
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Figure 9.13 TEM images for the tube-like structures in 1’s 10 mL 0.5 mg/mL DMSO solution with 2 mg 

tetramethyl ammonium bromide. Diameter = 55 nm. Light Scattering results indicate Rh and Rg values for the 

aggregates are 60 nm and 73 nm, respectively. 

Polymers 2 and 3 show similar behavior in DMSO by also forming anisotropic structures. The Rh 

values are almost identical for the three polymers, while the Rg value for the assemblies formed 

by polymer 2 (67 nm) is higher than polymer 1 (60 nm) and polymer 3 (52 nm). In other words, 

the assemblies of polymer 2 seem to adopt a more rigid-rod like morphology, presumably due to 

its lower POM content in the polymer. On the other hand, the tubular structures formed by 

polymers 1 and 3 can be more easily bent due to the presence of more POM clusters. Polymer 4 is 
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not soluble in DMSO, but slightly soluble in acetone. The acetone solution of Polymer 4 shows 

no supramolecular structure formation, confirming again the important role that POMs play on 

the solution behavior of such copolymers. 

A model is presented here to explain the assembly formation in polar solvents. The electrostatic 

interaction between the polymer chains, mediated by counter-ions, leads to the formation of tube-

like structures. Due to the solvophobic and rigid rod nature of the polymer backbone, the polymer 

chains may aggregate through π-π stacking to grow the tube along length direction (Figure 9.10e). 

The π-π stacking of the poly(phenylene ethynylene) (PPE) backbones is supported by the 

observation that both the excitation and the emission spectra bathochromically shift when the 

polymer concentration increases (e.g., from 0.005 to 0.1 mg/mL in any of three solvents, Figure 

9.14, Figure 9.15, Figure 9.16, and Figure 9.17).
27

 This is similar to the case reported by Wegner 

et al. in the formation of micelle structure of another type of rigid-rod polyelectrolyte and the 

bundle structures due to the metal ions induced aggregation of the micelle structures.
28,29

 

 

Figure 9.14 Excitation (blue) and emission (red) spectra of 0.005 mg/mL solution of 1 in acetone. 
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Figure 9.15 Excitation (blue) and emission (red) spectra of 0.1 mg/mL solution of 1 in acetone. 

 

Figure 9.16 Excitation (blue) and emission (red) spectra of 0.005 mg/mL of 1 in DMSO solution. 
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Figure 9.17 Excitation (blue) and emission (red) spectra of 0.1 mg/mL of 1 in DMSO solution. 

The assembly of the three hybrid polymers appears to mimic the solution behavior of inorganic 

macroions. We have previously demonstrated that macroions, including POM anions, with large 

sizes (2-6 nm) and moderate charge density, tend to self-assemble into large vesicle-like single-

layered blackberry-type structures, with counterion-mediated attraction and hydrogen bonding as 

the major driving forces.
30-32

  As we mentioned before, the macroions, in fact, are simple models 

of 0-D polyelectrolytes with well-defined shape, size and adjustable charge.
30

 The rod-shaped 

polymers can be treated as 1-D linear polyelectrolytes, and consequently form 1-D hollow tubular 

structures, as shown schematically in Figure 9.10e. 

9.4 Conclusion 

In summary, the assembly behavior of three conjugated polymers containing POM-terminal side 

chains in both nonpolar and polar solvents has been studied. In nonpolar solvents such as toluene, 

the polymers show amphiphilic characteristics and self-assemble into reverse vesicles. In polar 

solvents, the POM side chains are charged and consequently the polymers show polyelectrolyte 

properties by forming tubular structure which might mimic the behavior of inorganic macroions. 
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Their different aggregation performance will be helpful in developing POM-based functional 

devices. 
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Chapter 10 : Conclusion 

Macroions, as the major research area in our lab, have been claimed to fill the gap between 

simple ion solutions and colloid suspensions in the research of electrolyte solutions.
1,2

 

Polyoxometalates (POMs) were selected as simple models to study the solution behaviors of 

macroions, especially, inter-macroions forces. More importantly, the study of POMs’ solution 

behaviors could be instructive in understanding the functionality of biopolymers, e.g. proteins, 

RNAs, and DNAs. Part of my PhD research is specifically focusing on the self-recognition and 

chiral recognition behavior of macroions during their self-assembly process in dilute solutions. 

Self/chiral-recognition behavior is universal phenomenon and considered to play dominant role in 

multiple biological processes.
1-3

 

On the other hand, POMs are photo-electronic, catalytic, biologic, and magnetic active metal 

oxide molecular clusters and the assemblies of POMs could be design into functional devices. 

Due to weak interaction (e.g. hydrophobic interaction, hydrogen bonding, π-π interaction, and 

static charge interaction), the designed POM-organic hybrid molecules can be deliberately 

assembled into aggregates with different morphologies with size scale ranging from nm to um, 

which were studied as their potential application in functional materials and devices.
2,4,5

 

The project of self-recognition between molecular rods in their self-assembly process contributes 

to not only the mechanism of weak interaction resulted self-assembly, but also the advanced ideas 

on how to characterize/judge the self-recognition behavior. The self-recognition between two 

molecular rods with different encapsulated central metal ions or different organic functional 

groups demonstrates that different charge distribution and hydrophobic interaction/π-π interaction 

are strong enough to lead self-recognition behavior. Meanwhile, the combination of TEM and 

energy dispersive X-ray spectrum (EDS) is powerful tool to characterize the self-recognition 

behavior by analyzing individual assemblies with different sizes and compositions besides 

traditional SLS and DLS technologies. What is more, the disassociation of the assemblies by 
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removing/replacing the counter-ions could be used to confirm the self-assembly behavior as well 

as the importance of counter-ion in forming and stabilizing the assemblies by measuring the 

stability/toughness of the assemblies during the disassociation process.  

The project of self-recognition between chiral POMs and chiral discrimination/selection of chiral 

POMs induced by small organic molecules in their self-assembly process in dilute solution 

pushes the limit of similarity between POMs in self-recognition study and provides possible 

mechanisms for chiral recognition and chiral selection in biological systems. Chiral macro-

polyoxoanions were observed to show chiral recognition behavior by forming homogeneous 

blackberry structure of the individual enantiomers in their racemic mixtures. Their self-assembly 

behavior can be tuned by adding of lactic acid with the ‘like’-pairs and ‘dislike’-pair rules. The 

study on chiral recognition and chiral discrimination provides us with insightful ideas on the 

nature of interaction between macroions, which not only sheds light on the basic research on 

homo-chirality and chiral selection, but also provides new way for chiral separation and sensing. 

 

Figure 10.1 Different functional devices derived from the assemblies of POM-organic hybrids. 
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POM-organic hybrids with different functional groups could be designed to self-assemble into 

varied devices with wide applications (Figure 10.1). Surfactants with POMs as polar head groups 

are able to self-assemble into vesicles with tunable sizes and fluorescence due to hydrophobic 

interaction and the interaction between POMs.
6,7

 Conjugated polymers with POMs in their side 

chains can form reverse vesicle and 1D nanotube structures with potential application in photo-

electronic devices.
8
 Two Dawson-type POMs linked by one 2, 2’-bipyridine unit works as metal-

ion-responsive dumbbell-shape molecular switch, which shows multiple responses to the 

adding/removing of metal ions and the controlled self-assembly/disassembly behavior. POMs 

based surfactant with multiple amine groups was programmed to spontaneously assemble into 1D 

nano-belt structures, which show high efficient heterogeneous catalytic activity against the 

oxidation reaction of sulfide. Due to the amphiphilic properties of POM-organic hybrids and their 

catalytic active polar head groups, they can be used in emulsion catalysis and emulsion 

polymerization.
9
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