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Abstract 

This dissertation describes the development of a new deposition technique for 

matrix-isolation studies of metal ions codeposited with selected counter-ions.  This method 

was developed to form and stabilize ionic complexes for spectroscopic characterization in 

a matrix under controlled conditions.  Previous techniques have relied on inherently neutral 

sources such as plasmas, which use high energy transfer processes to create ionic species.  

The use of mass-selected cation beams has also been employed, which relies on deposition 

under high-energy to maintain charge balance.  All of these former methods suffer from 

the fact that they rely on secondary processes to generate counter-ions, which are only 

coarsely controlled at best.  One group before us has attempted to deposit mass-selected 

beams of both cations and anions selectively, but observed no bands assigned to an ionic 

species.  We have shown for the first time that ions can be isolated in a matrix through the 

simultaneous deposition of selected cations and anions.  

As proof of concept, anionic copper atoms were codeposited with Ar+ or Kr+ into 

argon matrices along with varying concentrations of CO (0.02% up to 2%) at deposition 

temperatures of 10K or 20K.  Both anionic and neutral copper carbonyl complexes 

Cu(CO)n
q (n=1-3; q=0,-1) were observed in the spectra, with peak positions corresponding 

to previously reported assignments; new partially resolved bands appearing in the range 

1830-1845 cm-1 are assigned to larger [Cu(CO)3•(CO)n]
- aggregates, having additional CO 

ligands in the second solvation shell.   

Deposition in the absence of ambient light at 10 K affords “clean” distributions of 

matrix-isolated copper carbonyl anions, whereby only the anionic bands are present in the 

CO-stretching region of the vibrational spectrum. Furthermore, photodetachment by mild 
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irradiation with visible light was used to initiate complete conversion of the anions into 

their corresponding neutral species.  We demonstrated that the photodetached electrons 

initiate covalent chemistry in the van der Waals dimer of CO, which forms a C-C bond 

following electron capture to make trans-OCCO-.   

After deposition of anionic copper carbonyl precursors at 20 K, annealing led to 

many new sharp features in the anionic region.  These peaks could then be converted into 

transient neutral bands upon photodetachment.  Due to the high level of control afforded 

by this new deposition method, neutralization events occured sufficiently far from the 

copper centers such that the neutral transients formed were stabilized and could be traced 

back to their anionic precursors.  Annealing the system after irradiation gets rid of the 

neutral transients that seemed to “relax” to previously assigned neutral copper carbonyl 

species.  The phenomenology of these bands suggest that they may represent an 

unprecedented direct observation of vertical detachment products. 

Under high-energy deposition, cationic species form due to secondary charge-

transfer interactions between Ar+ and dopant molecules.  Using this method with CO-doped 

matrices, (CO)2
+ has been identified for the first time in an argon matrix.  Likewise, 

oxygen-doped matrices produce (O2)2
+ species which display remarkable conformational 

thermal-equilibrium between 10-16 K.  Quantitative analysis revealed a weakly 

endothermic reaction, driven by increased entropy of the matrix for the cyclic product state.  

Problems encountered with quantitative van’t Hoff analysis of the temperature-dependence 

for the equilibrium constant reveal that the assumptions underlying this standard analysis 

technique may break down at the very low temperatures of these experiments.  

Furthermore, two other peaks display conformational photochromic-equilibria at 10 K.  It 
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is likely that one set of peaks arises due to the quartet electronic state, which has been the 

focus of all previous work, whereas the second set of peaks arises from the doublet 

electronic state, which is able to be stabilized in the matrix.  The advantages of our new 

deposition technique made the study of this complicated system possible. 

Finally, in order to test whether some of the new behavior observed was unique to 

the copper carbonyl system or whether it was more general and extended to other metal 

carbonyl systems, nickel and silver anions were tested.  Similar to the copper system, both 

anionic and neutral nickel carbonyl complexes Ni(CO)n
- (n=1-3) and Ni(CO)n (n=1-4) were 

observed in the spectra, with peak positions corresponding to previously reported 

assignments.  There were also many additional sharp bands that have not been previously 

observed.  While the silver system did not produce any anionic carbonyl bands, it did form 

neutral complexes.  Two of these absorbances can be assigned to the di- and tri-carbonyl 

complexes; the remaining bands do not match well with any previous assignments, which 

is puzzling for such a simple system.  Possible explanations for this discrepancy are 

explored. 

Using selected counter-ions for the deposition of metal anions allows for the 

deposition and stabilization of ionic complexes in argon matrices.  This method affords an 

unprecedented cleanliness and level of control for matrix isolation studies.  The 

development of this technique has enabled the discoveries presented in this dissertation. 
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Chapter 1 

Freeze-Frame Spectroscopy:  

Using matrix isolation as a means to study reactive intermediates 

1.1 Overall research goals  

 Over the past several decades, heterogeneous catalysis, specifically that by 

supported metal nanoparticles, has transformed the chemical industry and advanced energy 

applications through reactions such as Fischer-Tropsch synthesis,1 Haber-Bosch process,2 

petrochemical reforming,3 methane conversion,4 alcohol conversion,5 vehicle emission 

control,2 as well as numerous other applications.6  Both nanoparticle size as well as metal-

oxide support show strong correlations to selectivity and chemical activity,7 yet little is 

known about the precise mechanisms of such heterogeneous catalysts.  The reason for poor 

mechanistic understanding lies with the purpose of a catalyst, namely to lower a reaction 

barrier, which leads to faster formation of products.  Under typical reaction conditions, this 

rapid formation implies that any intermediate formed must be short-lived and does not 

become concentrated enough to detect using conventional spectroscopic methods.  

Consequently, model systems such as size-selected clusters on single-crystal thin films or 

mass spectroscopic studies of mass selected clusters in the gas phase are often employed.  

Many reaction intermediates involve either free radicals or molecular ions,8 both of which 

become the center of most gas-phase studies aimed at probing complex reactions.   

  One of the most studied systems is that of gold nanoparticles supported on TiO2, 

which can readily oxidize CO at room temperature,9 even though gold is the most inert 

metal in the bulk state.10  Many mechanisms have been proposed to explain this reaction, 

which typically involve both ionic reactants as well as gold in different oxidation states,11 
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however, no complete catalytic cycle has been agreed upon.  Although many groups have 

studied this system,11-15 a complete listing is beyond the scope of this dissertation.  Instead, 

several key experimental approaches are presented as examples. 

 There is general agreement that CO absorbs on the surface of gold nanoparticles 

(Au NPs) under reaction conditions16-18 and only absorbs on the support at low 

temperatures or under high CO partial pressures.17,18  The nature of O2 binding and the gold 

oxidation state is much less clear.   Behm studied O2 sites by a technique in which pulses 

of CO reactively removed O2 from the support.  The effluent gases were then analyzed by 

a quadrupole mass spectrometer.19  With this technique, Behm determined that the surface 

lattice oxygen at the perimeter of the Au-oxide interface reacts with CO.19  Yates performed 

experiments at ~120 K aimed at the precise nature of the Au-NP charge-state as well as the 

metal-oxide role through the use of CO as a spectroscopic probe.18,20  These IR studies 

added insight into CO binding sites, but the exact nature of the oxidation states involved is 

still unknown.  Likewise, computational studies that try to provide evidence for bulk phase 

catalysts are difficult to perform, and the theoretical structural data of the catalytically 

active species fall short of experimental measurements. 

 Through gas-phase, mass spectroscopic techniques, Castleman studied the 

reactions of ionic gold clusters with O2 seeded in a helium expansion gas.  Mass-selected 

oxides were then reacted with CO, and reactivity was monitored via the production of CO2 

and depletion of the parent oxide.  Both AuO- and AuO3
- species were reactive toward CO 

to form the product CO2, in agreement with computational studies.21  For anionic gold 

dimers, those which contained a peripheral oxygen atom were most reactive; theory 

supported this as well, however, two different pathways toward CO2 formation were found 
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that could not be differentiated in the experiment.22  For larger clusters, CO binding 

depended on the number and location of oxygen atoms.23  The cationic gold system 

contained similar effects, whereby AuO+ and Au3O
+ were experimentally more reactive 

than Au2O
+, again supported by computationally predicted activation barriers.24,25 

 Although these findings added important insight into small cluster reactions, no 

structural data were acquired due to the detection method of mass spectroscopy (i.e., 

reactions that have occurred were inferred based on CO2 detection and depletion of 

precursors).  These results still leave uncertainties in the exact mechanism when multiple 

reaction pathways are predicted, as is the case for most cluster reactions.  One way to 

separate multiple pathways would be by trapping sufficient amounts of intermediate 

complexes and studying them with FTIR.  By observing the frequency of a strong 

vibrational oscillator, such as CO, which is very sensitive to its environment, quantitative 

structural details, supported by computational data, can be made.     

 The work described in this dissertation was aimed toward developing a new 

technique for spectroscopic observation of intermediates by combining mass spectrometry 

with matrix isolation to study fundamental, metal-ion cluster interactions with reactants of 

catalytic importance.  By using the energy-dissipating environment of rare-gas matrices, 

reactive ionic intermediates can be trapped and built up to significant concentrations so 

that conventional spectroscopies, such as FTIR and UV-Vis, may be used.  These 

intermediates can then be moved along their potential energy surface by the addition of 

energy, such as heat or light, and their products, which can also be new intermediates, 

become trapped and observed spectroscopically.  This forms the basis of a new technique 
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developed by the Moore group called Freeze-Frame Spectroscopy, the foundational studies 

of which are presented herein. 

1.2  Matrix isolation 

 Matrix isolation is a technique whereby a frozen material, typically an inert gas, is 

used to trap reactive species that are dilute compared to the matrix material so that 

bimolecular reactions do not occur.  By depositing for long periods of time, 

spectroscopically detectable amounts of reactants become trapped.  Pimentel first showed 

the potential of matrix isolation by trapping the free radical NO2 as well as several small 

hydrogen-bond forming compounds.26  He later identified four properties that a matrix 

should contain: inertness with respect to the isolated species, rigidity at the temperature of 

study, transparency in the spectral region of interest, and volatility for easy introduction 

into a vacuum system.27  All of these requirements are fulfilled by forming a matrix from 

rare gases, in particular neon or argon.  Although there are reasons for using molecular 

species as a matrix material, all experiments presented have been done in argon, so rare 

gas matrices (RGM) are the focus.  Besides being chemically inert, rare gases are 

transparent at all wavelengths down to vacuum-UV, making them ideal for use in FTIR, 

Raman, and UV-Vis studies.  Furthermore, they do not have any unpaired electrons and do 

not produce any Electron Spin Resonance (ESR) signals.   

1.2.1 Crystal structure and rigidity 

When considering crystal structure, three models may be employed: the single 

crystal, the glassy model, or the microcrystalline model.28  The single crystal, as the name 

implies, consists of well-ordered arrangements of atoms with few or no defects.  Although 
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single crystals can be formed under rigorous conditions as shown by x-ray crystallographic 

studies,29,30 they are not practical for matrix isolation studies and are most often used as a 

model for trapping sites due to their simplicity.   

The glassy model involves a random arrangement of matrix atoms so that trapped 

species are in sites that vary in size and coordination.  Because of this arrangement, the 

environments of isolated species should be random and diverse, and one would expect 

inhomogeneous broadening of peaks.   As will be discussed, the opposite situation typically 

exists; matrix peaks are typically sharp and well resolved, therefore, this model is ruled 

out. 

The microcrystalline model consists of small regions of well-ordered crystals 

surrounded by regions of random structure and is the most probable model.  Due to low 

temperature deposition, only small regions are able to form crystal structures, several of 

which may coexist.  Both ordered and disordered regions make up approximately the same 

volume of the overall solid making this model hard to treat quantitatively.28  This model 

also makes it hard to predict what kind of coordination site a trapped species exists in.  For 

these reasons, detailed analyses begin with assuming a single crystal and treat 

imperfections as perturbations.   

The most stable crystal form for neon, argon, krypton, and xenon is the face-

centered cubic structure (FCC).28,30  This structure means that a single atom contains 12 

nearest neighbors situated in a site of Oh symmetry.  At the low deposition temperatures, it 

is also possible to freeze the less stable hexagonal close-packed (HCP) structure.  This 

structure still consists of 12 nearest neighbors but the site symmetry is reduced to D3h.  

Impurities have been shown to stabilize the HCP structure and small amounts of O2 and N2 
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make it stable up to the melting point.31  As molecular species get larger and/or their 

concentration in the matrix increases, they induce more polycrystallinity and eventually 

large amorphous regions that cannot be probed by x-ray crystallography.32   

When depositing reactive species, it is important that diffusion does not occur to an 

appreciable extent in the depositing layer.  This is done by maintaining the deposition 

substrate at a significantly low temperature generally taken to be lower than 30% of the 

melting point of the matrix.28,33  At this temperature, the matrix is rigid and no changes 

take place on an appreciable time scale.  Between 30% - 50% of the melting point, a process 

known as annealing occurs, which is atomic level reordering of the matrix atoms to form a 

more stable crystal.28,33  Annealing has the added effect of allowing small trapped species 

to move to a significant extent, so they become segregated at grain boundaries.  Large 

stationary species cause their surrounding matrix atoms to rearrange and form a more stable 

cage.  Depending on matrix conditions, annealing may cause two trapped species to interact 

and react; therefore, it is common to use annealing as a way to study reactions in matrices 

after reactive molecules have been stabilized. 

Diffusion only occurs once the matrix is non-rigid, at temperatures near 50% of its 

melting point.  This temperature allows molecules to freely move so that all previously 

isolated species become segregated at grain boundaries as the matrix forms large, single-

crystal domains.  If diffusion is allowed for a long enough period, reactions should occur 

until a large stable cluster is formed.  In practice, the vapor pressure becomes high enough 

that heating the matrix near 50% of its melting point causes significant sublimation and 

overall matrix loss.  We have found the onset of significant matrix loss to be highly 
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dependent on deposition temperature (Chapters 4 and 5).  Table 1.1 contains relevant 

temperatures for rare gas matrices. 

Table 1.1  Significant temperatures for rare gas matrix materials (values taken from     

ref. 28) 

Material 0.3Tm (K) 0.5Tm (K) T(P = 10-5 Torr) (K) T(P = 10-3 Torr) (K) 

Ne 7.3 12.3 9.2 11.1 

Ar 25 42 33 39 

Kr 35 58 45 54 

Xe 48 82 63 74 

 

1.2.2  Trapping sites and probability of isolation 

 Assuming a cubic close-packed crystal structure, it is reasonable to consider two 

types of trapping sites, interstitial or substitution.  Interstitial sites are those that occupy the 

26% empty volume in a cubic close-packed structure.  These sites only become large 

enough to be relevant for krypton and xenon and, even then, only hydrogen atoms fit well; 

therefore, only the substitution site is of importance in the matrix isolation experiments 

described in this dissertation.  A substitution site is one in which a matrix atom is replaced 

by an isolated atom or molecule.  Single substitution sites can incorporate most atoms, 

atomic ions, and very small molecules.  As the size of the compound increases, so does the 

number of substitutions the matrix must make in order to incorporate it.  This site is referred 

to as a multiple substitution site and is necessary for most compounds.  Three common 

sites are presented in Figure 1.1, along with their diameters in neon, argon, and krypton. 
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Figure 1.1  Physical size ranges for substitution sites created by the removal of matrix 

atoms in solid Ne, Ar, and Kr using the model of hard spheres. Adapted with permission 

from Knozinger, E.; Babka, E.; Hallamasek, D., J. Phys. Chem. A. 105, 8177 (2001).  

Copyright 2001 American Chemical Society. 

 Based on the above discussion, one can consider the number of neighboring matrix 

atoms surrounding the isolated species.  A single substitution site is surrounded by twelve 

nearest neighbors, and a double site consists of eighteen.  Once a triple-substitution site is 

reached, multiple geometries can be adopted.  A triangular site has 22 neighbors, and a 

straight row has 24 neighbors.  Molecules larger than diatomics are surrounded by at least 

20 nearest neighbors and larger molecules, much more.  These surrounding matrix atoms 

are known as the matrix cage that has important spectral ramifications when studying 

molecules, as is discussed in the next section.  Furthermore, as the isolated compound gets 

larger, so does its cage and the probability of isolation starts to decrease rapidly.   

 If one considers a molecule occupying a single substitution site, such as CO, one 

can calculate the probability that another CO is not part of its cage based on the matrix 

ratio (n): 

                                           n = [matrix atoms]/[trapped species]             (1.1) 
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By taking the reciprocal of the matrix ratio (r) and assuming 12 nearest neighbors, equation 

1.2 can be used to calculate the probability of a species being isolated:28 

                                                                 P = (1-r)12                                  (1.2) 

 As the isolated molecule gets larger the probability of isolation decreases rapidly.  

Consider a species with a diameter three times that of a matrix atom so that it occupies a 

site produced by a central matrix atom and the 12 surrounding cage atoms.  The cage of 

this species is now expanded to 122 neighbors and the probability that the species is not 

isolated becomes:28 

                                                                 P = (1-r)122                                 (1.3) 

The calculation is even more complicated when considering species that have strong 

interactions such as atomic lithium.  Lithium atoms have been shown to dimerize during 

matrix formation, which could not be explained by simple clustering statistics; instead their 

strong interactions allow them to readily dimerize before the matrix is completely frozen 

if they come within a next-nearest neighbor distance (18 sites) of each other.34  Even at low 

lithium concentrations, perturbations were observed in the atomic electronic structure that 

could only be rationalized by long-range interactions between atoms that are up to 3-matrix 

atom distances away.  This strong interaction allows 68 potential non-nearest neighbor sites 

in which a second Li atom can reside and still perturb the electronic bands of another Li 

atom,34 making isolation predictions difficult.  The probability of isolation for various 

matrix ratios is shown in Table 1.2. 

 

 

 



 

13 

Table 1.2  Probability of isolation (adapted from ref. 28)  

Matrix ratio (dopant %) 100 (1%) 1000 (0.1%) 10000 (0.01%) 

single site, weak interaction 

% non-isolated 11.4 1.2 0.1 

% isolated 88.6 98.8 99.9 

multiple site, weak interaction 

% non-isolated 70.7 11.5 1.2 

% isolated 29.3 88.5 98.8 

single site, strong interaction 

% dimerised 16.5 1.8 0.2 

% perturbed 41.3 6.4 0.7 

% isolated  42.1 91.8 99.1 

 

It should be noted that the above isolation calculations are only valid after all atoms 

and molecules have been frozen.  Depending on deposition parameters, diffusion can take 

place to a considerable extent in each new layer of the forming matrix which complicates 

this evaluation further.  When running a series of experiments, it is common to start with a 

reasonable dopant concentration and adjust it for future experiments based on spectral 

results such as clustering. 

 1.2.3  Spectral effects 

 As stated above, RGM are free from adsorption, emission, and Raman bands, all 

the way down to vacuum-UV radiation, and contain no ESR spectra.  Furthermore, both 

neon and argon have negligible polarizability, so interactions with trapped polar or ionic 

compounds are reduced and vibrational origins will be near those found in the gas-phase.  

Jacox has compared the positions of ground-state vibrational fundamental bands of reaction 

intermediates in the gas phase with those in neon and argon matrices and found most 
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spectral shifts to be less than 1.2%.35  In general, there are larger shifts in argon compared 

to neon as well as large shifts for alkali metal halides due to higher polarizability.35   

 The matrix cage has several important ramifications for trapped species.  One of 

the more obvious effects of the cage is to restrict rotations.  Only a few small molecules 

have been found to show some pseudorotation, such as HCl in Ar, Kr, and Xe36 and OH in 

Ne.37,38  Likewise, a ro-vibrational spectrum is observed for trapped water, which rotates 

nearly freely in RGM (see review ref. 39 and citations contained therein).  Interestingly, 

very recent studies suggest that even the water trimer displays some pseudorotation.40  For 

the majority of molecules, the matrix restricts movement, which simplifies spectra 

compared to those in the gas-phase due to the loss of rotational fine-structure.   

The cage can, however, make a spectrum more complicated due to site effects that 

occur when trapped species exist in several different local environments caused by the non-

equilibrium freezing process.  Site effects will often induce a different number of peaks, 

shift peak positions, and change the shapes of peaks when compared to gas-phase spectra.  

For larger species, this site effect can also be extended to other complexes trapped nearby, 

which leads to further perturbation to the spectrum.  If multiple peaks arise from a single 

active IR mode due to the cage-effect, the less thermodynamically stable sites typically 

decrease when annealing while the most thermodynamically stable site increases in 

intensity, thus leading to a simplified spectrum.  Although never proven, the site effect has 

been used to explain multiple absorbances that could not be explained otherwise.28  One 

objection to this explanation is that a continuous number of sites should exist at the lower 

deposition temperatures, especially for large complexes, and very broad bands should be 

observed instead of sharp multiplets. 
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 Although all the above spectral changes are consequences of the matrix cage, the 

cage effect will be used to distinguish a specific implication for photolysis.  Since 

molecules are trapped, isomeric products can be formed by photo-destruction of a molecule 

followed by rearrangement within its cage.  One example is the HCN molecule trapped in 

neon which photo-dissociates upon UV irradiation forming H + CN fragments.41  Because 

of the cage effect, one of three events can occur depending on how much energy is available 

to the system.  With little available energy, the trapped system will reform HCN.  Given a 

little more energy, photoisomerization can occur forming the product HNC.  Finally, with 

enough energy the hydrogen atom can diffuse out of the matrix cage and bind to other 

trapped species, leaving behind the trapped CN molecule.  This photolysis event has been 

observed by the spectral growth of HCNH+ and CN.41  This technique has also been used 

to yield the HO2 radical by allowing O2 molecules to react with H atoms formed by 

photolysis of precursors such as HBr and HI.42 

1.2.4  Energy dissipation 

 The rapid freezing conditions under which a matrix is formed causes non-

equilibrium trapping (kinetic control) of deposited gas phase species.  Many examples have 

shown that when a high temperature ratio of isomers has been formed in the gas-phase, this 

ratio is preserved by trapping in a matrix.43  One example is the cis/trans methyl-nitrite 

system which contains a 10.8 kcal/mol barrier to interconversion.  By populating the less 

thermodynamically stable trans-structure in the gas phase, Willner showed that an argon 

matrix provides enough energy dissipation to stabilize the high-temperature isomer ratio.44  

It has been estimated that matrices can stabilize species as long as barriers to products are 

greater than ~2.5 kcal/mol.45,46  
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 The rapid energy dissipation has also been used to trap transient intermediates 

formed in the matrix.  A recent hallmark study comes from the Ault group in the formation 

and stabilization of Criegee intermediates.  Through the reaction of ozone with 

cyclopentadiene in argon matrices three intermediates have been observed.47  The 

stabilization of these species is so remarkable because each lies ~50 kcal/mol exothermic 

to the reactants and exist next to low barriers of 10-20 kcal/mol.  This stabilization means 

that the matrix dissipated most of the 50 kcal/mol that was available to the system.  This 

study is crucial to our development of freeze-frame spectroscopy because it shows that a 

large amount of energy can be removed sufficiently quickly in order to trap key 

intermediates that could not be stabilized by other methods. 

 It is also important to consider the energy of impinging ions as they collide with 

the top layer of the matrix.  Metal clusters are known to break apart or even imbed in a 

surface if deposited at a high enough energy,7 which would negate the values of mass-

selection.  Deposition therefore needs to occur under a condition known as soft-landing in 

order to preserve their gas-phase geometry.  As will be discussed in Chapter 2, the energy 

of the metal ions are kept low (<10 eV) in order to minimize destructive deposition for 

cluster studies.  A theoretical study of small Nan clusters (n = 6, 7, 8) impinging on Arm 

clusters (m = 7, 43, 87) held at 0 K shows a very fast energy transfer upon impact from the 

sodium cluster to the argon cluster.48  Even for the smallest Ar7 cluster, energy is quickly 

dissipated, so that the Nan remains geometrically unchanged as long as the initial sodium-

cluster energy is kept low.  The transferred energy is dissipated through argon-atom 

rearrangement and large-scale oscillations with the largest argon cluster being most 

efficient at removing excess energy.48  For a matrix-isolation experiment, greater energy 



 

17 

dissipation is afforded by the large argon surface which is a nearly infinite heat sink.  A 

transient, warm matrix surface exists before freezing out49 which would further aid in soft-

landing when compared to the computational study carried out at 0 K.    

Another reason for minimizing ion energy is to avoid charge transfer during 

deposition, which can occur when the deposition energy is sufficiently high to ionize the 

matrix or trapped species.  Table 1.34 provides ionization potentials of common species 

that are used in matrix experiments.  High-energy deposition has been used in previous 

studies in order to maintain charge balance making use of this secondary ionization process 

(see section 1.4.3 for more detail).50  Although we typically maintain low ion energies 

during deposition, high-energy Ar+ bombardment has allowed our group to observe exotic 

molecules such (CO)2
+ (Ch. 6) and O4

+ (Ch. 7).    

Table 1.3  Ionization potentials of common molecular species commonly found in matrices 

(values taken from NIST, ref. 51) 

Formula I.P. (eV)   Formula I.P. (eV) 

He 24.587  N2 15.581 

Ne 21.565  CO 14.014 

Ar 15.759  CO2 13.777 

Kr 13.999  (CO)2 
b 13.05 

Ar (s) a 13.9  H2O 12.621 

Xe 12.130  O2 12.070 

Kr (s) a 11.9  (O2)2 
c 11.66 

Xe (s) a 9.7       
a solid values taken from ref. 52 

b value taken from ref. 53 

c value taken from ref. 54 
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1.3  Species identification 

 It is often difficult to characterize species in the matrix since the only “handle” one 

has on their identification is spectroscopy.  Deposition temperature plays a large role in 

complexation (Chapter 3) and impurities in the matrix such as H2O, N2, CO2, etc. can also 

complex with the species of interest.  Indeed, early matrix examples formed under poor 

vacuum conditions often contained background contaminants of nearly equal 

concentrations to the system of interest.26,27  Even under the ultra-high vacuum conditions 

gained by our system with a baseline pressure of ~10-10 Torr (Chapter 2) we still observe 

H2O and CO2 from background contamination, depending on sample preparation.   

Due to the difficulty of peak assignment, there have been several wrongly assigned 

peaks in the literature such as that of the CO band at 2136.7 cm-1.  Dubost and Abouaf-

Marguin originally assigned this peak to the CO-N2 complex,55 but it was later reassigned 

to a CO-dimer by two independent groups.56,57  This  assignment was again called into 

question by Givan, who reassigned it to a CO-polymer.58  Givan also noted that it may be 

a CO-monomer that is trapped in an unstable matrix site.58  Finally, under careful 

experimental conditions Yamada has assigned this band to the CO-monomer that is 

undergoing librational motion (hindered-rotation).59  It is clear, therefore, that careful 

control experiments are necessary to make sure that observed changes in spectra are 

attributed to the correct physical phenomena. 

Species identification is often a synergy between multiple techniques including gas-

phase comparison, isotopic substitution, ab initio calculations, and variations to deposition 

conditions.  As was stated, matrix absorptions tend to be close to those observed in the gas 

phase; therefore, identification starts with gas-phase comparison whenever possible.  After 
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gas-phase comparison, the best method is isotopic substitution.  By substituting a heavier 

isotope for a naturally occurring one, the vibrational frequency shifts in a predictable way.  

Assuming the molecule acts as a harmonic oscillator, the vibrational frequency (ν) is given 

by equation 1.3: 

                                                              ν = 
1

2𝜋
√
𝑘

𝜇
                         (1.3) 

where k is the force constant, and μ is the reduced mass.  Substituting ω = 2πν, where ω is 

frequency in wavenumbers, and solving for the force constant we get: 

                                                                  k = ω2μ                                    (1.4) 

Assuming the force constant doesn’t change upon isotopic substitution, which holds true 

for most molecules, equation 1.4 can be solved when considering two isotopes: 

                                                          ω2 = ω1 (μ1 / μ2)
1/2                            (1.5) 

where ω2 is the frequency of the heavier species, ω1 is the frequency of the lighter species, 

and μ1 and μ2 are the reduced masses of the light and heavy isotopes respectively.  As an 

example consider 12CO which absorbs at 2138.0 cm-1 in argon.  The absorbance of 13CO 

can then be predicted by using the reduced masses for 12CO of 6.857 and 13CO of 7.172 

and substituting in to equation 1.4, ω2 is predicted at 2090.5 cm-1 which is indeed where it 

absorbs in argon.   

Isotopic substitution is also useful for determining the number of ligands bound to 

a metal center.  This type of study is typically done by doping a matrix with a 50:50 mixture 

of two isotopes and observing the splitting and intensity patterns.60  For example a 



 

20 

monocarbonyl with the formula MCO would give rise to two peaks of equal intensities in 

a mixed isotope experiment (one for M12CO and another for M13CO).  On the other hand, 

a linear dicarbonyl species would be expected to give rise to three peaks with the mixed 

isotopomer being twice as intense as each single isotope species.  This is because both 

O12C-M-13CO and O13C-M-12CO must be considered as two possible structures that give 

rise to the same frequency, as each are chemically identical.  The interpretation can get 

more complicated if both sides of the molecule exist in distinct sites in the matrix, thus 

chemically distinguishing which side of the metal atom the isotopic molecule is on.  This 

difference in environment should lead to two discrete frequencies for the mixed isotopomer 

and split the isotopic dicarbonyl into a quartet with each frequency of equal intensity.  

Likewise, if the molecule contains a degenerate mode, the degeneracy may be broken 

leading to an intensity ratio that is not easily predicted, as in the case of a D3h species which 

gives rise to a 5:3:3:5 pattern.60   

 Deposition conditions can also be adjusted to add insight into new species.  

Clustering generally increases when the dopant concentration and deposition temperature 

are increased (Chapter 3).  Likewise, neutralization increases at higher temperature 

depositions as well (Chapter 5).  Identification of ions can be particularly challenging, 

especially when trying to identify charge.  In general, anions are red shifted in relation to 

cations due to their stronger interaction with the matrix, which weakens chemical bonds.8  

Although anions can sometimes be identified via photodetachment, the detached electrons 

often neutralize cationic species leading to the loss of both.  A technique used in the past 

was to add small amounts of electron scavengers such as CCl3 that preferentially bind 

electrons in the forming matrix layers before they can attach to species of interest, thereby 
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reducing the anionic peaks in question.60  Because our species are already charged when 

deposited, this technique would probably not aid in our experiments; however, it has been 

shown that we can solely deposit anionic species which greatly simplifies identification 

(Chapter 4).  Sometimes it is worth using high energy Ar+ to generate molecular ions from 

trapped species in the matrix, as we have done to identify the (CO)2
+ complex (Chapter 6). 

1.4  Previous matrix-ion deposition methods 

Studying charged species in rare gas matrices can pose a particular challenge; since 

the matrices are rather poor electrolytes, isolated charges are poorly screened and therefore 

there must be charge balance of anions and cations in order to accumulate sufficient number 

densities for spectroscopic studies.  Many techniques have been employed to accomplish 

this task, including collisional or photoinduced charge transfer in situ, inherently neutral 

plasma sources, and high-energy mass deposition.  Each of these techniques will be 

discussed below, as well as disadvantages of these methods.  For a complete list of ions 

that have been spectroscopically observed in rare gas matrices, see Jacox’s 

compilations.61,62 

 1.4.1  Photoionization and chemiionization - in situ generation 

The first ions in matrices were made from the interaction of deposited alkali metal 

atoms with small trapped molecules, a deposition process developed by Pimentel.63  The 

first ionic species was identified by Andrews to be Li+O2
- which is formed when Li atoms 

and O2 molecules interact in the forming matrix.64,65  This complex is a Coulombically 

bound species which exists because electrostatic attraction makes up for the difference 

between the ionization potential of Li and the electron affinity of oxygen.65  This complex 
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is bound within the same matrix cage, so the cation and anion cannot be considered 

isolated. 

The first truly isolated ions were created independently by both Kasai and Jacox, 

who each used photoionization of trapped electron donors.  Kasai used Na as an electron 

donor and upon irradiation observed the anion B2H6
- via ESR spectroscopy.66  Similarly, 

Jacox observed the C2
- anion by adsorption spectroscopy, which was formed by 

photoionization of acetylene.  This band increased 30-fold when Ce atoms were added to 

the matrix as an electron source, also reaffirming this peak to be anionic.67  Later, studies 

on the vacuum-UV photoionization of acetylene revealed that the C2
- is stabilized as a 

Coulomb ion pair with the C2H2
+ cation existing separated by several argon layers such 

that the neither ion is perturbed by the other.68  Photoionization was also applied to other 

molecules such as CCl4 to reveal the CCl3
+, CCl4

+, and Cl3
+ ions and the CCl3 radical.69,70 

Another method, developed by Ault and Andrews, was to deposit salt vapor with precursors 

in argon, leading to reactions during condensation.  Deposition of NaCl with Cl2 led to 

Na+Cl3
- while CsCl with HCl lead to Cs+HCl2

- ion pairs.71-73  This method has also been 

used to stabilize polyhalides such as Cs+F3
- and Cs+BrF2

- and new compounds such as 

Cs+SiF5
-.74-76  One problem with the use of alkali metals is that they contain strong 

absorbances throughout the visible spectrum77 though this can be avoided by using ESR 

and vibrational spectroscopy.  Second, alkali metals tend to be very perturbing, making it 

hard to observe spectra due solely to anionic species.  Finally, the wavelengths used for 

photoionization will often cause photodetachment of electrons from anionic centers before 

they can be spectroscopically observed.  
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 1.4.2 Plasmas 

 Charge neutrality is also inherently satisfied by several techniques whereby ions 

are produced externally but in close proximity to the matrix and co-deposited with matrix 

gas.  Microwave discharge involves excitation of a gas in a quartz tube with a small orifice 

directed toward the matrix.  The majority of discharge gas leaving the tube remains in an 

excited metastable state.78  The excited atoms relax by collisions with neutral precursors, 

leading to ionization of the precursor and ejection of an electron in a process called Penning 

Ionization.78  The resulting cation gets trapped in the forming matrix while the electron is 

captured by other species present, thus maintaining charge balance. This method was 

applied early on by both Jacox and Andrews through the use of argon as a discharge 

gas.79,80  Using argon, however, introduced many difficulties for matrix isolation, including 

extensive atomization, isotopic scrambling, and matrix charge transfer, and could only be 

used for strongly bound diatomic and small polyatomic species such as C2, N2, CO, CN, 

and C3.
8  Jacox eliminated these problems by designing a new discharge setup using neon 

as the discharge gas and introducing the neutral precursors outside the discharge tube.81  

Since all molecules besides He and Ne have ionization potentials below 16 eV, using 

excited neon atoms with first-excited states between 16.6 eV and 16.85 eV ensures that 

virtually any atom or molecule could be ionized by this method,81,82 even those with high 

ionization potentials such as BF3 and HF.8  Furthermore, as the ion precursors were 

introduced downfield from the discharge tube, atomization and scrambling do not occur.   

 Another major breakthrough came with the application of laser ablation.  This 

technique involves hitting a metal target with high energy laser pulses.  The ensuing plasma 

plume consists of neutral metal atoms, a significant number of metal cationic species, and 
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an excess of electrons.  Bondybey first applied this technique to study the gas-phase laser 

induced fluorescence spectrum of Pb2.
83  He later extended these studies to SiC2 both in 

the gas phase and isolated in a neon matrix.84  A more complete exploration of the 

possibilities of laser ablation was realized by Andrews, who has done extensive work on 

transition metals.  By introducing the matrix gas doped with small reactive molecules such 

as O2, N2, CO, H2, etc., complexes form in or near the matrix surface and become trapped.  

Several reviews have been written on the transition-metal carbonyls,85 transition-metal 

oxides,86 transition-metal nitrosyls,87 and transition-metal hydrides.86 

 Charge balance is presumably achieved by both plasma sources because the 

ionization mechanisms also produce counter-ions in close proximity to the matrix, which 

are then trapped along with the ionic species of interest.  Indeed, both cationic and anionic 

species can often be spectroscopically observed together in matrix samples produced using 

these types of sources.82,85,88  The disadvantage to these sources are that they afford little 

control as to the species formed and trapped.  Furthermore, in order for them to operate, 

they must use high energy processes.  Indeed for both cases a greater amount of reactive 

products are observed upon deposition when compared to the same metals vaporized by a 

Knudsen cell.8  Finally, due to the close proximity of the matrix, many unwanted reactions 

occur between species of interest and background gasses which also get trapped and can 

complicate spectral interpretation. 

 1.4.3  Mass-selected ion deposition  

 Beams of mass-selected ions generated in external ionization sources and guided to 

the deposition region have also been used for matrix isolation spectroscopy studies,89-92 

though in these cases the nature of the counter-ions are typically less clear.93  The earliest 
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example of such work is from the Maier group, and featured deposition of small molecular 

cations generated by electron impact ionization of cyanogen and acetylene and probed by 

UV-visible spectroscopy;94,95 these studies were subsequently extended to larger 

molecules, notably cationic and anionic carbon chains.96,97  No specific counter-ions were 

observed, however the high estimated number density of cations in the matrix                          

(~ 1016 cm-3) could only be rationalized by the presence of a comparable density of counter-

anions, which were assumed to have been produced by secondary ionization of the matrix 

or grounded sample holder during bombardment with the fairly high-energy cation beam 

(~150 eV).98  A detailed investigation of the mechanisms by which negative counter-ions 

are generated during deposition of high-energy cation beams was reported by the Leroi 

group, where they directly observed CO2
- radical anions formed by electron capture, 

confirming the earlier hypotheses.93  The types of species able to be deposited with this 

method are limited to very robust molecules which can survive the high energy deposition 

process.  It also relies on uncontrolled secondary ionization in order to maintain charge 

neutrality, which is not useful for catalytic studies where high levels of control are needed. 

 An alternative method for providing charge balance when using beams of mass-

selected cations is to flood the deposition region with low-energy electrons. These electrons 

can attach either to impurity species to form counter-ions,90,99 or they can recombine with 

the cations to form neutral species.100-103  The latter method has proven particularly useful 

for generation of neutral metal atoms and clusters for matrix-isolation spectroscopic 

studies.100-103  More recently years, Moskovits has applied this technique to deposit mass-

selected cation clusters such as Ag5
+,104 Fe3

+ and Ag3
+,105 and Ag7

+103.  Although no ions 

were observed, each of the neutral clusters were probed using resonance Raman 
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spectroscopy.  He also used this technique to form iron cluster carbonyls102,106 and iron-

dinitrogen compounds,107 probed via FTIR, but in each case only neutral species were 

detected. 

1.4.4 Ion-codeposition method 

 An alternative method for providing charge balance to stabilize matrix deposition 

of ions from mass-selected beams would be to simultaneously direct a second beam of 

oppositely charged ions into the same deposition region, adjusting the beam currents so 

that the overall deposited charge is zero.  Indeed, this method was proposed and attempted 

by the Leroi group, using beams of CS2
+ and Cl- ions mass selected by two separate 

quadrupoles aimed toward the deposition window.108  After 48 hours of deposition, no 

evidence of trapped ions was observed, even using high-sensitivity laser-induced 

fluorescence detection.108  We have taken a similar approach by codeposition of metal 

anions with counter-cations; however, our ion beams mix and follow the same deposition 

path toward the matrix, which we attribute to the experiment’s success.  We have been the 

first group to deposit and isolate mass selected metal ions in a matrix through the use of 

specific counter-ions.  Additionally we can selectively form anionic metal species at 10 K 

without their neutral or cationic counterparts, making spectral interpretation far simpler 

than previous studies.  This new deposition method should be generally applicable and may 

shed light on many convoluted previous matrix experiments. 

1.5  Dissertation outline 

 A large amount of time and effort has been spent on designing, building, testing, 

and modifying a custom-made apparatus that can perform the experiments that were 
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proposed.  Chapter 2 is devoted to the experimental details about the system.  Mass spectra 

of the ions used for experiments, along with their stopping potentials and how data is 

manipulated after being taken, is presented.  Chapter 3 is a reproduction of the first article 

published using the counter-ion co-deposition method.  The anionic copper carbonyl 

system was used to analyze this new technique and probe parameters such as deposition 

temperature, dopant concentrations, and neutralization events.  Based on these preliminary 

results, Chapter 4 contains results performed by deposition at 10 K in the absence of 

ambient light and the subsequent “clean” spectra that is afforded by our new method.  By 

isolating only anionic complexes, wavelength dependent photodetachment and subsequent 

electron capture C-C bond formation is monitored.  Chapter 5 covers 20 K deposition in 

the absence of light and the resulting spectra which contain resolution limited peaks.  Even 

more surprising are the transient neutral complexes, which are formed only after annealing 

the anionic system followed by photodetachment.  These transients are then able to relax 

to a more stable geometry with gentle annealing. 

 All experiments presented use either Ar+ or Kr+ as the counter cation, though we 

were not able to definitively identify a cationic species in the matrix until recently.     

Chapter 6 addresses this problem with the identification of (CO)2
+ via high energy Ar+ 

deposition experiments.  This study is the first time this species has been identified in an 

argon matrix.  Chapter 7 presents failed attempts to form copper oxide species; instead, we 

found what appears to be the lowest temperature example of chemical equilibrium, a 

conformational rearrangement of O4
+ at 10 K.  Finally, Chapter 8 describes the versatility 

of the deposition method through the use of the Ag- and Ni- carbonyl systems and the 

implications for this deposition method going forward. 
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  Chapter 2 

Experimental methodologies  

2.1 Introduction 

 This chapter describes the experimental methods used for our matrix-isolation 

experiments.  The apparatus design and assembly of vacuum components including all 

internal ion optics was completed by Dr. David Moore and a previous graduate student 

Alex Hunter.  The first testing and modification of the magnetron source along with the 

first copper mass spectra taken using the system were also carried out by Alex Hunter.  My 

contribution began with taking the first matrix-isolation data, detected using UV-vis 

spectra with help from Nathan Roehr, a graduate student from Dr. Polfer’s group at the 

University of Florida.  I then made several modifications to key components and 

determined the optimal working parameters for matrix-isolation experiments.  These 

modifications led to the first IR data of matrix-isolated ions deposited with this system and 

all subsequent data presented in this dissertation.   

The first section describes the matrix-isolation system, which has been custom built 

in-house to meet our requirements including metal generation and mass selection.  In order 

to generate enough metal ions for spectroscopic observation, the magnetron sputtering 

source had to be significantly modified, as is discussed.  These ions were then mass- and 

charge-selected and balanced by an equal current of counter-ions.  Due to potential 

secondary ionization events98 and destructive deposition for larger clusters,109,110 it is 

important to keep the energies of the both ion beams as they impede on the matrix as low 

as possible.  This energy is measured by use of stopping potentials near the deposition 
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region.  System modifications for both FTIR and UV-Vis spectroscopy employed in these 

experiments are also discussed. 

 Following a description of the instrument, a section is devoted to the gas-delivery 

system.  This gas system was designed so that stock gases could be mixed at various 

concentrations and stored until their introduction to the matrix deposition chamber during 

an experiment.  Finally, a section is devoted to data collection and manipulation.  Data 

manipulation typically involves correcting the baseline and in some cases removing 

etaloning.   Also, small daily fluctuations in atmospheric peaks (water and CO2) must be 

taken out.               

2.2 Matrix-isolation system 

 2.2.1 System overview 

The apparatus for the experiments presented herein is a custom-built ultra-high 

vacuum (UHV) system shown in Figure 2.1.  It combines ion-beam deposition with a 

spectroscopic cryostat for matrix-isolation studies.  A UHV system was constructed in 

order to minimize contamination by background gas; in particular, H2O and CO2 levels 

must be kept low in order to reduce their interactions with species of interest.  Likewise, 

their absorbances in the spectra can complicate spectral interpretation, especially carbon 

dioxide, which is a product of the reactions we aim to study.  The system consists of four 

stages of differential pumping, a condition whereby differences in pressure are maintained 

between different stages of a vacuum system.  This condition is created by using 

conductance limiting apertures between each of the chambers and maintaining UHV with 

magnetically levitated turbo molecular pumps (hereby referred to as “turbo-pumps”) 
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backed by oil-free scroll or rotary-vane pumps.  For vacuum pump and gauge information, 

as well as typical pressures, see Table 2.1 in the Appendix.   

 

Figure 2.1  Ultra-high vacuum system for deposition of mass-selected ions into rare gas 

matrices.  Some interior components, such as collars and housings, have been made 

transparent for clarity. The system stand, internal gas lines, and wires not shown. 

 

 The source chamber houses a magnetron sputtering source (customized version of 

NC200U-B from Oxford Applied Research) used to produce cluster anions.  After being 

generated, the anions are extracted through a 6.25 mm diameter nozzle maintained at a 

potential up to +400 V and sent into the quadrupole chamber.  This chamber houses a series 

of RF and DC ion optics, including a 22-mm RF-only quadrupole collimating ion-guide.  

This quadrupole sends the ion beam into a 9-mm resolving quadrupole mass filter 

contained at the entrance in the bender chamber.  The resulting beam of mass-selected ions 

then enters a DC quadrupole bender, which turns the ions through an octopole ion guide 
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leading to the deposition chamber.  An electron-impact ionization (EI) source is mounted 

to the opposite side of the quadrupole bender for the production of positive counter-ions.  

Each of the quadrupoles, octopole, and bender also contain entrance and exit plates that 

may also be used to guide ions.   

 All ion optics, including the quadrupoles, are controlled using a Tempus data 

system (Ardara Technologies).  The EI source and electron multiplier are controlled by a 

Merlin data system (Extrel).  High voltage is supplied to the EM by a high voltage power 

supply, capable of supplying up to 5000 V (Standard Research Systems, PS350/5000V-

25W).  Common settings on all optics for anionic metal deposition can be found in         

Table 2.2 (Appendix).  Due to the unique requirement for mass-resolution of large metal 

clusters, a custom RF power supply for the 9-mm quadrupole was made.  This supply 

allows one to readily change out the inductance coil, which is typically fixed in commercial 

instruments.  For all data presented in this dissertation, a coil with an inductance of           

24.4 μH and frequency of 2.40 MHz was used.  The Faraday plate is connected via a BNC 

cable to a preamplifier (Advanced Research Instruments, PMT-5R), which is then 

connected the Tempus Data Controller for a digital current reading and mass-spectroscopy.  

The output of the preamplifier can also be connected to an analog electrometer for current 

readings (Kiethley Instruments, 610C). 

All initial samples were deposited onto a KBr window (Koch Crystal Finishing) 

mounted on a 4K closed-cycle helium cryostat (Advanced Research Systems model 

CS204SF-X20B).  Because of its low threshold for thermal stress, the KBr window cracked 

and needed to be replaced periodically; therefore, a CeI window has recently been installed 

due to its higher tolerance to thermal strain.  The cryostat is mounted on a UHV rotating, 
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vertical translation stage (McAllister Technical Services), which allows optimal orientation 

of the window for deposition (0º) or spectroscopy (45º), and also for the sample window 

to be moved up out of the ion beam for current measurements on a Faraday detector, 

maintained at ground potential.  Temperature control of the cryostat is achieved using a 

PID temperature controller (Lakeshore 331), monitoring a silicon diode sensor mounted 

directly on the sample holder window, and controlling a 50 W heating band wrapping the 

second stage of the cryostat.  The matrix gas is introduce through a 1/16” stainless steel 

line aimed toward the window at a distance of about 2 inches. 

Spectra are recorded using an FTIR (Thermo-Nicolet 6700) equipped with an 

externally-mounted, liquid-N2-cooled MCT-A detector coupled into the cryostat chamber 

via a pair of KBr windows.  All data were taken using Omnic, Thermo Nicolet Corporation 

software.  The detector and external beam-path are contained in custom built boxes, which 

are constantly under a nitrogen purge to minimize atmospheric water and carbon dioxide 

in the spectra.  Early studies were done with UV-Vis through the use of a tungsten filament 

lamp introduced through a series of fiber-optic cables and lenses, as is discussed in     

Section 2.2.4.  

 2.2.2 Metal-ion generation and mass selection 

 Motivated by Takagi, who was working on the deposition of large ionic clusters,111 

Haberland proposed a new type of source for formation of large clusters.112  Haberland’s 

source combined discharge sputtering with a gas aggregation technique and showed that 

an intense, continuous beam of metal clusters was possible.112,113  Our magnetron sputter 

source, shown in Figure 2.2, is a commercialized version based off Haberland’s technique.  

It operates by bombarding a metal target with ionized argon.  First, argon is continuously 
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flowed into a gas feed line between the cathode and the anode.  A high voltage controller 

is used to ignite the argon in a small gap (~0.3mm) between the cathode and anode forming 

an argon plasma.  This plasma contains high amounts of Ar+ which are accelerated toward 

the metal target sitting on the cathode. The argon ions bombard the metal target sputtering 

off metal atoms and small clusters.  Electrons, which are in high yield in the plasma, 

become trapped by a permanent magnet also contained under the target.  Following helical 

paths around the magnetic field lines, the electrons collide with neutral argon atoms near 

the target surface leading to further argon ionization and sputtering.  Due to this enhanced 

ionization, sputtering rates are so high compared to previous methods.  Furthermore, 

anywhere from 20% to 80% exist as ions.112,113  For the purpose of this dissertation, only 

the metal anions will be considered because the current counter-ion production method is 

restricted to cations. 

 

Figure 2.2  Magnetron sputter source containing a spent copper target: A) fully assembled, 

B) anode removed, and C) cathode removed. 

 

 In order to form clusters, a rare gas is introduced into a water-cooled aggregation 

tube which causes clustering through metal atom collisions.  Theoretically, cluster size 

should be controlled by adjusting the length of the aggregation region, rate of gas flow, and 
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power supplied to the magnetron.  Early studies on our system only yielded very large 

clusters with little mass resolution, requiring extensive modifications to be made to the 

system.  The most important result of modification has been the improvement of the mass 

resolution in the region of interest.  Another important upgrade has been to the front of the 

aggregation tube, which has been refit with a nozzle capable of maintaining a potential up 

to +400 V which extracts the metal ions from the plasma region.  In order to insulate the 

voltage from the rest of the system, a double Teflon gasket was made.  This split gasket 

design, one with a smaller inner diameter (Figure 2.3C) and one with a larger inner 

diameter (Figure 2.3D), have to be used together to avoid copper build up upon sputtering 

and grounding of the nozzle.  The nozzle and gasket assembly are shown in Figure 2.3.  A 

6.25 mm diameter nozzle has been used for all experiments, maintained at a bias around 

+215 V.                

 

Figure 2.3  Extraction nozzle assembly, completely disassembled showing: A) nozzle 

attachment plate, B) nozzle with 6.25 mm opening, C) inner, sacrificial gasket, and              

D) outer gasket.  Aggregation tube in E with nozzle completely assembled and attached. 
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 All metal targets are standard 2” diameter sputter targets purchased from the Kurt 

J. Lesker Company.  The three metals used so far have been copper, silver, and nickel.  

Both copper and silver targets with a 0.125” thickness and 99.99% purity are used while a 

thinner nickel target of 0.063” and purity of 99.9% is used.  A new and spent copper target 

is shown in Figure 2.4.  The track taken by electrons is roughly the same as where argon 

cations impinge on the target which can be seen on spent targets (Fig. 2.4B).  Under 

appropriate magnetron sputtering conditions (4 sccm Ar, 113 mA discharge current at 250-

300 V), ion currents of 4-11 nA are achievable depending on the target age and metal used.  

The expected target lifetimes, in terms of power absorbed, for copper, silver, and nickel 

are 1200, 800, and 400 W•h, respectively. 

 

 

Figure 2.4  Copper sputtering target used for matrix isolation experiments: A) new B) after 

~20 hours of sputtering. 

 

 Before depositing into a matrix, all sputtering conditions and optics must be 

optimized for the metal of interest, and the absence of contamination peaks must be 

confirmed.  This is done by taking a mass spectrum of the anion beam on an electron 
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multiplier located in the bender chamber (Figure 2.1).  A pure copper spectrum can be 

obtained (Figure 2.5A), where both the anionic copper monomer and dimer are isotopically 

resolved without any contamination peaks (see Appendix 2.12 for a spectrum with a 

contamination peak).  Once the absence of contamination peaks has been verified, the 

resolution of the quadrupole mass spectrometer is detuned for maximum throughput for 

deposition during experiments (Figure 2.5B).  See Figure 2.14 (Appendix) for resolved 

spectra of both silver and nickel anions and Table 2.3 for natural isotope abundances of 

copper, silver, and nickel.   
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Figure 2.5  Mass spectra of copper anions from sputter source: A) high-resolution, 

isotopically resolved monomer and dimer, and B) high-throughput for matrix experiments. 

   

 2.2.3 Charge balance and ion-energy measurements 

 In order to deposit metal anions of interest, it is necessary to maintain charge 

balance through the use of counter cations.  Once the anionic metal current is stable, a beam 

of counter-ions is produced by introducing a low flow (~0.3 sccm) of the desired gas into 

the EI source.  Due to the lack of mass selection for counter-cations, only rare gasses, Ar 

or Kr, are used because only one product can be formed, Ar+ or Kr+ respectively.  The 
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counter-cations are then bent into the octopole and combined with the anionic metal beam.  

In order to achieve a net current of zero as measured at the Faraday plate, several 

parameters may be adjusted.  Since the metal anions represent our limiting reagent, i.e. the 

system optics have already been optimized for max throughput of anions, the only factors 

that are changed have to do with the cation beam.  First, the flow rate of the counter-ion 

gas may be increased, however this also increases the background pressure, so is typically 

kept to 0.3 sccm.  Instead the ionizer filament current is adjusted as a course control and 

the ion region bias in the ionizer is adjusted as a fine control.  

 Another consideration for deposition is the kinetic energy of the impinging beam 

upon the matrix which must be kept low, as stated in Chapter 1.  This energy is measured 

on the Faraday plate by monitoring the total ion flux as a function of the voltage applied to 

the exit plate of the octopole.  As the optical bias is scanned, the ion beam will begin to be 

rejected as its kinetic energy can no longer overcome the electric potential, known as a 

stopping potential.  By taking the first derivative of the beam current at the Faraday plate 

versus the optic bias, the stopping potential can be determined.   

 Assuming an ion is not accelerated or retarded by an external field after being 

formed, its stopping potential is typically established by its birthing potential, which is the 

potential that the ion first “feels” once it is created.  For the EI source, a small metal grid 

surrounds the region where cations are formed.  Once neutral species are ionized, the 

birthing potential is established by the bias that is applied to the grid.  The cation energies 

respond nearly linearly to the bias set inside the ionizer as measured by stopping potentials 

described above (Figure 2.15, Appendix).  On the other hand, metal anions will not change 

their stopping potentials even if the extraction nozzle is adjusted between 0-400 V.  This 
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strange behavior can only be explained by a low birthing potential that is not affected by 

the nozzle’s bias.  We hypothesize that there is a layer of gas-phase “sacrificial” ions either 

in or near the nozzle that shields an inner layer of ions from the applied bias.  These inner 

ions, that survive to be detected, only feel the self-potential at the center of the beam.  Anion 

energy distributions have been measured to be centered around -10 eV for copper anions, 

-5 eV for silver anions, and -4 eV for nickel anions (Figure 2.6).  Cation energies are 

maintained at +60 eV during typical deposition experiments, which are somewhat higher 

than desired, but are required in order to balance the currents at the Faraday plate when the 

ion optics are tuned for maximum anion transmission as stated above.  We later verified 

that the major features of the spectra and subsequent processing steps were unaltered when 

slower cations, ~30 eV, were used. 
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Figure 2.6  Ion energy distributions derived from stopping-potentials of metal-anion beams 

detected at the Faraday plate.   

  

 2.2.4  FT-IR and UV-Vis detection methods 

 Except for the very first data taken on the system, all data have been taken using 

FTIR spectroscopy using a Thermo-Nicolet 6700 spectrometer.  The IR beam is sent out 
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the side of the commercial spectrometer by an internal mirror and directed toward the 

deposition chamber.  An image of the beam path is shown in Figure 2.7.  The beam is 

reflected off two flat mirrors mounted on an optics table and enters the deposition region 

through a differentially pumped KBr window.  The deposition window is rotated so that 

the beam hits it at a 90⁰ angle while taking a scan.  The beam then leaves the chamber 

through another differentially pumped window and is focused by a parabolic mirror into a 

liquid nitrogen-cooled, MCT-A detector.  Each of the optical tables are contained in 

plexiglass boxes (not shown in figure), which are continuously purged with nitrogen from 

a nitrogen generator (Parker Balston, 75-62).   

  

 

Figure 2.7  Close-up illustration of the deposition chamber showing the FTIR beam path.  

The beam is produced by a Nicolet 6700 spectrometer (not shown), directed into the 

vacuum chamber, through the matrix, and detected by an external MCT-A detector. 

      

In order to obtain UV-Vis data, the mirrors and MCT-A detector are removed and 

replaced by a fiber optic system.  A tungsten-filament lamp (Hamamatsu, L2192) is used 

to produce visible light, and UV is generated by a deuterium source (Analytical Instrument 

Systems, DT 1000).  Light from both sources is collected through 100 μm diameter fiber 
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optic cables (Ocean Optics) and is sent through the deposition chamber via a dispersion 

lens sitting close to the differentially pumped KBr window.  The light follows the same 

path as the FTIR beam through the deposition region, exits the other KBr window, and is 

collected by a collimator lens.  Another fiber optic cable sends the collected transmitted 

light into a fixed-grating spectrometer, with a photodiode array detector (Ocean Optics, 

USB 2000).    

2.3 Gas preparation and delivery 

An in-house gas mixing and delivery system (Figure 2.8) has been designed so that 

nearly any matrix gas of varying dopant concentration may be premade and stored before 

the day of an experiment.  Several stock gases (Praxair) are stored at high pressures and 

high concentrations including: argon (6.0 research grade), helium (6.0 research grade), 

carbon monoxide (10.2% in excess argon), and oxygen (10.4% in excess helium).  The 

majority of experiments consist of a dilute solution of either CO or O2 in excess argon 

however if a specialty gas mix is needed such as NO or an isotope, there are two open spots 

to attach these bottles.  Mixes are made by opening one of the six aluminum gas-mix 

cylinders and using standard gas dosing techniques to dilute one of the stock mixes with 

argon.  Aluminum bottles are used to avoid high-pressure mixes of CO from reacting with 

metals, namely nickel, in steel bottles.  Three pressure gauges are contained on the rack: a 

Pirani gauge (1-1000 mTorr, Kurt J. Lesker-6000) used to monitor vacuum conditions 

when not in use, a piezo transducer gauge (1-1000 Torr, Kurt J. Lesker-902) used to 

measure dopant gasses for matrix mixes, and a Bourdon gauge (-0.1 to 0.5 MPa, Swagelok 

EN-837-1) used to measure high-pressure argon when making a matrix-gas mixture.  The 

baseline pressure in the gas rack is normally 10 mTorr and gas mixtures are typically made 
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to a total pressure of 2000 Torr.  Once made, the gas mixes may be stored indefinitely, but 

are usually consumed within a week before a new mix is made.    

 

Figure 2.8  Gas rack used for making matrix gas mixtures.  Stock solutions are diluted into 

aluminum gas mixing bottles and stored until needed for an experiment.  Baseline pressure 

in the rack is measure by a Pirani gauge (mTorr) while low and high pressures during gas 

mixing are measured with a piezo transducer gauge (Torr) and Bourdon gauge (MPa), 

respectively.   

 

Nearly all of the gas lines in the gas rack up to the deposition line are made from 

1/4” copper in order to prevent CO gas mixes from pulling nickel and iron out of stainless 

steel lines; however, it is still necessary to purify the matrix gas before introducing it into 

the deposition region.  This purification is done by making a cold ethanol bath using liquid 

nitrogen as a cooling agent inside a dewar (Figure 2.9).  A section of copper tubing, which 

has been twisted into a spiral, is immersed in the 157 K bath removing any metal carbonyl 

impurities along with CO2 and H2O as the matrix gas flows through it.  Initially, flow rate 

was controlled by a needle valve using approximately constant backing pressure 

maintained in two steel bombs on the gas rack (not shown in figure).  The needle valve was 

shortly replaced by a mass flow controller (Allicat, MC-10sccm) capable of supplying gas 
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between 1 to 10 sccm.  After being purified, the gas is introduced into the deposition 

chamber through a 1/16” stainless steel line aimed toward the deposition window.  An 

ozone generation system, as well as an open line for secondary gas introduction, are hooked 

up near the deposition chamber, however, these were not used in any experiments 

presented.   

 

Figure 2.9  Matrix line used to introduce gas mixtures into the deposition region.  The gas 

is sent from the gas to a mass flow controller which regulates the gas flow.  The gas is 

dehydrated and purified by a liquid N2, ethanol-bath before being introduced into the 

deposition region via a 1/16” tube. 

 

 An argon tank is devoted to both the magnetron sputter source and to the counter 

ion line.  The magnetron line uses a mass flow controller capable of flow rates between    

1-100 sccm (Alicat, MC-100sccm).  The magnetron also has two other permanent lines for 

aggregation gases which are currently not in use.  The counter-ion line uses a low flow 

controller capable of flow rates between 0.1-1sccm (Alicat, MC-1sccm) and can be easily 

switched to a number of gas cylinders for introduction of different cations.  
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2.4 Data collection and manipulation 

 Due to temperature-dependent absorptions from dilute impurities in the window 

material, it is necessary to not only take backgrounds with the window in the beam path 

but it must also be held at 10 K.  A single-beam spectrum is taken by averaging 2500 scans 

with the window cold for resolutions of both 0.5 cm-1 and 0.125 cm-1.  The proper 

resolution background is then applied when taking data in absorption mode.  Most scans at 

0.5 cm-1 resolution require an average of 500 scans while 0.125 cm-1 resolution requires at 

least 1000 scans averaged due to the increase in noise.  All FTIR data are initially taken 

through Omnic, Thermo Nicolet Corporation software and all post-data manipulations are 

done in Origin 8.0 software package.  After being taken, it is necessary to correct the 

baseline which has a steep upward slope (Figure 2.10A).  This slope is due to frequency-

dependent scattering, presumably from polycrystalline domains in the matrix, as evidenced 

by a “foggy” appearance upon deposition (Figure 2.11).  The baseline is corrected by 

applying a 9th-order polynomial fit (Figure 2.11B).  Though a 9th-order fit is not strictly 

necessary, it is easily applied in Origin, does not affect any of the matrix peaks, and 

provides a baseline-corrected spectrum (Figure 2.10C).   
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Figure 2.10  Baseline correction performed in Origin software: A) raw data is taken which 

contains an upward slope, B) a 9th-order polynomial is fit to the raw data, and C) the poly 

fit is subtracted from the raw data to give a baseline resolved spectrum. 
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Figure 2.11  Picture through Kodial glass viewport showing IR window after 4 hours of 

matrix deposition.   

 

Another common problem is etaloning, which occurs when light reflects off two or 

more surfaces, causing interference between the multiple reflections and resulting in a 

standing-wave pattern.  In matrix experiments, etaloning arises due to reflections off the 

deposition window as well as the thin matrix layer.  The phase difference (δ) between two 

beams is dependent on a few factors, including the wavelength of light (λ), the angle of 

light through the material (θ), the thickness of the material (l), and the refractive index of 

the material (n) as seen by equation 2.1: 

                                                         δ = (
2𝜋

λ
)2nl cos θ                                                   (2.1) 

By applying this equation to a 2-hour deposition, 10 sccm flow rate experiment and using 

the index of refraction of bulk argon (1.77114), a matrix thickness of ~60 μm is calculated.  

While useful for matrix thickness, etaloning can obscure data interpretation and makes 
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quantitative analysis very difficult.  Furthermore, there are often several etaloning patterns 

that interfere with one another, causing drastic phase shifts as well as amplitude deviations 

making it challenging to subtract out of the data.  To minimize etaloning a deposition 

window with a 0.5 degree wedge is used.  Also, as more matrix is built up on the window, 

the etaloning increases in frequency and decreases in intensity, as seen in Figure 2.12.  

Because of this, four to six hour depositions are typically employed to minimize the need 

for post-collection manipulations.  Finally, it is common to apply atmospheric suppression 

in Omnic, a quantitative model that reduces or removes the effects of water vapor and 

carbon dioxide on the collected spectra.  Since backgrounds are infrequently collected, this 

takes care of minor atmospheric fluctuations from day to day. 
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Figure 2.12  Argon only matrix deposited at 10 sccm, 20 K for: A) 2 hours, and B) 4 hours.  

As the matrix increases in thickness, the observed etaloning increases in frequency and 

decreases in amplitude.   
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2.5 Appendix 

Table 2.1  Vacuum pump and gauge information 
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Figure 2.13  Baseline-resolved mass spectrum showing copper isotopes as well as a large 

contamination peak.  This peak is likely due to Cu-O or Cu-H2O which is slightly shifted 

from the calculated m/z due to improper spectrometer calibration.  

Source Quadrupole Bender Deposition 

Chamber Chamber Chamber Chamber

Make Osaka Osaka Edwards Osaka

Model TG1300 MCWB TG900 MCAB STP-A1303C TG420 MCAB

Speed 560 Hz 560 Hz 542 Hz 680 Hz

Type rotary vane scroll* scroll* scroll* 

Make Adixen Edwards Edwards Edwards

Model ACP28 XDS 35i XDS 35i XDS 35i

Type compact full range ion ion ion

Make Balzers Lesker Lesker Lesker

Model G100K G100K G100K

Type pirani pirani pirani pirani

Make Lesker Lesker Lesker Lesker

Model KJL-6000 KJL-6000 KJL-6000 KJL-6000
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Table 2.2  Typical parameters set on individual electronic optics for the deposition of 

copper, silver, and nickel anions  

 

 

      
90 100 110 120 200 210 220 230 240

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00

0.05

0.10

0.15

0.20

0.25

 

 

C
u

rr
e

n
t 

(n
A

)

m/z (amu)

Ag
-

 

x50

60 80 100 120 140 160 180

0.0

0.2

0.4

0.6

0.8

1.0

 
 

C
u

rr
e

n
t 

(n
A

)

m/z (amu)

Ni
-

 

Figure 2.14  Silver and nickel high-resolution spectra.  The silver anion is similar to copper 

in that single atoms are relatively easy to produce, but larger clusters are much more 

difficult.  The nickel anion produced the most abundant dimer and trimer, both of which 

were easily baseline resolved.    

Copper Anion Silver Anion Nickel Anion

Optic bias (V) bias (V) bias (V)

nozzle 215 250 225

22 mm quad RF 76 98 76

22 mm quad DC 10 10 25

22 mm exit lens 0 0 0

prefilter 13 15 10

9 mm entrance lens 150 150 150

9 mm quad DC 30 17 30

9 mm exit lens 325 383 325

bender entrance lens 5 0 3

ionizer entrance -10 -10 -10

bender inner pole 56 48 45

bender outer poler -5 -5 -4

bender exit lens 0 0 0

bender top/bottom 60 60 60

octopole entrance lens 0 0 0

octopole RF 54 54 54

octopole DC 15 13 18

octopole exit lens 40 40 40

start mass 62 105 57

end mass 63 106 59
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Figure 2.15  Measured stopping potentials for Ar+ versus bias set on ionizer extraction 

plate.  Measured cation energies vary nearly linearly with the applied bias. 

 

 

    Table 2.3  Natural isotopic abundances for copper, silver, and nickel 

 

 

 

 

 

 

 

Symbol Mole fraction

63
Cu 0.6915

65
Cu 0.3085

107
Ag 0.5184

109
Ag 0.4816

58
Ni 0.6808

60
Ni 0.2622

61
Ni 0.0114

62
Ni 0.0363

64
Ni 0.0093
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Chapter 3 

Formation of ionic complexes in cryogenic matrices:  

A case study using co-deposition of Cu- with rare gas cations in solid argon 

 

Adapted with permission from Ludwig, R. M.; Moore, D. T. Formation of Ionic Complexes 

in Cryogenic Matrices: A Case Study using Co-Deposition of Cu- with Rare Gas Cations 

in Solid Argon. J. Chem. Phys. 2013, 139, 1-9.  Copyright 2013 AIP Publishing. 

 

3.1  Abstract 

Matrix-isolation spectra have been obtained for ionic species formed from a beam 

of mass-selected ions, with a coincident beam of externally generated counter-ions used to 

provide charge balance.  Infrared spectra were obtained for copper-carbonyl complexes 

formed following deposition of Cu- ions with rare-gas counter-cations into CO-doped 

argon matrices.  Both anionic and neutral copper carbonyl complexes Cu(CO)n
q (n=1-3; 

q=0,-1) were observed in the spectra, with peak positions corresponding to previously 

reported assignments; new partially resolved bands appearing in the range                         

1830-1845 cm-1 are assigned to larger [Cu(CO)3•(CO)n]
- aggregates, having additional CO 

ligands in the second solvation shell.  The experimental geometry ensures that all Cu- 

centers initially arrive at the matrix as anions, so the relative abundance of anionic relative 

to neutral complexes is much higher than in previous studies employing alternative 

methods for ion deposition; this approach allows for monitoring of electron-transfer 

processes between anions and cations in the matrix.  Comparison of time-dependent vs. 

temperature-dependent trends reveal two distinct mechanisms by which the population of 

anionic complexes is converted into neutral complexes:  short-range electron transfer 

between a cation-anion pair following diffusion, and long-range electron transfer involving 

photodetachment of an electron from the anion into the conduction band of solid argon, 
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resulting in eventual recombination of the electron with a cation in a remote matrix site.  

The spectra also show a marked dependence on the deposition temperature and dopant 

concentration, in that 100-fold higher CO concentrations were required during deposition 

with the sample window at 10 K compared to that used at 20 K, in order to obtain a similar 

distribution of copper carbonyl complexes.  Furthermore, although no carbonyl complexes 

are observed initially when low concentrations of CO are used at 10 K, upon warming the 

matrix to 15 K, the neutral di- and tricarbonyl peaks appear abruptly, which is attributed to 

energy released upon short-range recombination of Cu- ions with cations. 

3.2  Introduction 

 This chapter describes preliminary results on the system taken to test the new 

deposition method.  The copper-carbonyl system was chosen for the first trials because it 

is well-studied in the literature, relatively easy to produce ions, and has strong oscillator 

strength in the infrared region.  Due to a few initial failed FTIR attempts, UV-Vis 

spectroscopy was employed due to its higher sensitivity, which yielded the first matrix 

results.  These trials are compared to the work of Ozin, who studied the absorption of the 

copper atom and dimer in argon, krypton, and xenon.115  The studies in this chapter focus 

on the (4p)2P  (4s)2S absorption  in argon. 

 After the success of UV-Vis studies, FTIR was again employed.  The neutral copper 

species were studied in the 1970s by Ozin through the use of a Knudsen cell at high metal 

concentrations.116  More recently, Andrews used laser ablation to observe the anionic and 

neutral copper mono-, di-, and tricarbonyl complexes, as well as the cationic monocarbonyl 

in argon,88 and this study set the stage for experiments done on our new system.  Though 

similarities exist, many improvements have been made in developing the codeposition 
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method.  Namely, no cationic copper complexes exist, and there are roughly equal amounts 

of anionic and neutral complexes.  In addition to demonstrating the viability and utility of 

this technique, the spectra also revealed insights into the formation and neutralization of 

the anionic copper carbonyls.  

3.3  Experimental 

The data in this chapter contain some of our first experiments carried out with the 

counter-ion method, and as such, some of the experimental details are different than what 

follows in subsequent chapters.  Only differences from standard procedures and details 

directly affecting the experiments of this chapter are presented.  For complete experimental 

details, see Chapter 2.     

All matrix samples were prepared as follows, except where otherwise noted:            

8-10 nA each of Cu- and counter cations (Ar+ or Kr+) were co-deposited with Ar matrix 

gas doped with 0.02-2% CO, for 2 hours (54 mmol total gas exposure) at the specified 

deposition temperature (10 or 20 K).  All spectra were recorded with the sample held at    

10 K; annealing steps involved warming for 30 minutes to the specified temperature, then 

re-cooling to 10 K to take the spectrum.  The spectra have been processed in software to 

remove etalon fringes due to the thin layer of the matrix. 

Flow rate was controlled by maintaining a steady backing pressure behind a needle 

valve.  The needle valve was adjusted so that pressure in the deposition chamber was 

maintained at a steady-state value of ~3•10-5 Torr, although fluctuations were inevitable 

since the gas rack was constantly depressurizing.  Also unless explicitly stated, the matrix 

gas was not purified through an ethanol bath and metal carbonyl species, formed in the 

mixing bottles and gas lines, were deposited in many samples (see Results section and 
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Table 2.2).  At every 15-20 minutes, deposition would be stopped and a short survey scan 

was taken.  After deposition, different heights and rotations of the window were scanned 

in order to find the best area of the window for overlapping the IR beam with the highest 

concentration of deposited species.   

For UV-Vis spectra, most lab lights were turned off in order to reduce the ambient 

light that reached the spectrometer.  Both a “dark” spectrum (Idark), taken by blocking the 

entrance of the spectrometer, and a background scan (Iref), taken through the KBr window 

before any matrix was deposited, were collected.  The incident light (I0) was then calculated 

from Iref-Idark and radiation coming from the sample (I) from Isample-Idark.  Absorbance 

spectra could then be generated by plotting –logI/I0 versus wavelength.  All UV-Vis scans 

were taken by averaging 500 scans at 0.5 s intervals.  All samples were deposited at 20 K 

for a total of 60-90 minutes.  Annealing was performed in 2 K steps by holding the sample 

at the set temperature for 5 minutes then cooling back to 10 K to take the spectrum. 

3.4  Results 

 3.4.1  UV-Vis spectroscopy 

These experiments depend on building up a sufficient density of ions in the matrix 

to enable absorption spectroscopy experiments.  Initially, the more sensitive UV-vis 

spectroscopy was employed to verify the presence of copper species in the matrix.  The 

first successful UV-Vis experiment of a neutral copper atom spectrum was performed by 

Nathan Roehr, a graduate student from Dr. Polfer’s group at the University of Florida.  

Soon after, I repeated these results and my data are presented in this chapter.   
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Figure 3.1.  UV spectra of anionic copper monomer balanced by krypton cation deposited 

in a 20 K argon matrix for one hour.  After deposition (blue) bands associated with neutral 

copper monomer are seen for both stable (300.2 nm, 304.6 nm, 309.0 nm) and secondary 

trapping sites (315.6 nm, 319.6 nm, 323.7 nm). Upon annealing to 25 K for 30 min (red), 

thermally unstable bands are irreversibly converted to the stable bands.  Both spectra are 

taken at 10 K.       

 

Figure 3.1 shows spectra obtained after co-depositing Cu- and Kr+ (~3 nA of each) 

with Ar matrix gas (~27 mmol/hr) at 20 K for 2 hours.  The triplet of peaks at 299.8, 304.2 

and 308.3 nm correspond closely with those assigned to neutral Cu atoms in an Ar 

matrix.115  Originally, this triplet was thought to arise by a simple symmetry breaking;117,118 

however, it was later explained by Vala as the existence of simultaneous spin-orbit 

interaction in the Cu excited 2P state to a Jahn-Teller distortion of the matrix cavity.119  The 

weaker triplet of peaks at 316.0, 319.3 and 323.7 nm is gone after annealing the matrix to 

25 K (with concomitant increase of the intensity of the other bands) and does not reappear. 

This peak loss is consistent with the previous assignment of two of these bands (the band 

at 316.0 nm was not resolved in the previous study) to neutral Cu atoms kinetically trapped 

in a thermally unstable site.115   Similar results were obtained when Ar+ was used as a 

counter-ion, though the band intensities were lower after the same deposition interval.  
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Experiments employing deposition at lower temperatures were also attempted, however 

the scattering background increased drastically even at 15 K, so that no absorption bands 

could be observed.  We believe this was due to a higher degree of polycrystallinity in the 

matrices at the lower temperatures, as well as the higher propensity for scattering of the 

shorter wavelength UV light. 

  No direct spectroscopic evidence was obtained that indicate the presence of 

copper anions in the matrix; this absence is likely because the photodetachment threshold 

for Cu- is in the near-IR (~1000 nm120).  Nonetheless, the source of the neutral atoms in the 

matrix must be the beam of copper anions because the sputtering source is over 2 m away 

from the cryostat, and the quadrupole bender insures that there is no line-of-sight pathway 

from the source to the sample window.  The mechanism for neutralization of the Cu- to 

neutral atoms is unclear from these data, however, it seems likely that it is either from 

photodetachment by photons from the UV-vis source (or ambient light), or from direct 

charge transfer with the counter-cations, either in the matrix or in the gas phase.  These 

possibilities are explored further in the discussion section. 

 3.4.2  FTIR spectroscopy 

 The spectrum of the CO stretching region for a sample deposited at 20 K with a 

0.02% mix and Kr+ counter-ion is shown in Figure 3.2, along with spectra following 

annealing to 25, 30, 35 and 40 K; a krypton overlayer (27 mmol) was deposited over the 

matrix to inhibit sublimation at the higher temperatures.  The spectra obtained here are 

somewhat reminiscent of the spectra of neutral and anionic copper carbonyls reported in 

the literature;88,116 a complete listing of the observed bands and their assignments is given 

in Table 3.1.  Most of the major bands observed in the current study correspond closely 
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with those observed in previous work, however there are some significant differences that 

can be attributed to the different deposition method employed here, as discussed below.  

Specifically, it is clear from Figure 3.2 that the annealing steps lead to a net loss of intensity 

from the bands assigned to anionic species, with a concomitant increase of the bands 

assigned to neutral species.  This “neutralization” phenomenon is different from what was 

observed in previous studies upon annealing, and is analyzed in detail below. 

Table 3.1  Vibrational band positions (in cm-1) for Cu(CO)n
q  [n=1,2,3; q=-1,0] species 

in argon matrices 

Assignment 

Deposition 

temp. Ref.a Assignment 
Deposition temp. 

Ref.a 

10 K 20 K 10 K 20 K 

Cu(CO)- 1733.7 1733.5 b Cu(CO) 
2008.0 2007.8 b,c 

2010.2 2010 b,c 

Cu(CO)2
- 

1774.7 ― ― 
Cu(CO)2 

1891.3 1890 b,c 

1780.9 1780.7 b (1876)d ― b,c 

Cu(CO)3
- 

1823.6 1823.4 ― 

Cu(CO)3 

1975.7 1975.5 b,c 

― 1825.1 ― ― 1977.4 ― 

1829.9 1829.9 b 1981.4e ― ― 

[Cu(CO)3•(CO)n]
- 

― 1832.6 ― ― 1981.8 ― 

― 1833.8 ― 1983.4e 1983.2 b 

― 1835 ― 1985.5 1985.9 b,c 

― 1838.1 ―     

― 1843 ―    

a) All references report peak positions within ±0.3 cm-1 of table values. b) ref. 88              

c) ref. 116  d) additional site peaks were reported in refs, but not seen in this study        

e) peak only observed on annealing above 20 K  

 

  The presence of bands corresponding to anionic species in our spectra provides 

direct experimental evidence that the explicit co-deposition of a controlled counter-ion flux 

does indeed allow matrix isolation of ionic species with number densities sufficient for 

infrared spectroscopic experiments.  Control experiments carried out with the same Cu- 

beam current but without counter-ions showed no evidence of any copper species          
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(Figure 3.6, Appendix), confirming that it is the cation beam that is acting to provide the 

necessary charge-balance.  Although neutral complexes are also observed upon deposition, 

they must be the result of some secondary neutralization process occurring during matrix 

formation. 

 

Figure 3.2.  FTIR spectra obtained using co-deposition of Cu- and Kr+ ion-beams (8 nA 

each) for two hours with 0.02% CO in argon at 20 K, with subsequent annealing steps; all 

spectra recorded at 10 K.  Broad feature marked with † assigned to [Cu(CO)3•(CO)n]
- 

species.  Peaks marked with * are assigned to metal-carbonyl impurities. 

 

  3.4.3  Peak assignments 

 The peaks at 1733.7, 1780.9 and 1829.9 cm-1 are assigned to the anionic mono-, di- 

and tri-carbonyl complexes, respectively, based on previous work reported by the Andrews 

group.88  The relative intensities of these bands at 20 K are also generally consistent with 

the earlier study, including the curiously low intensity for the Cu(CO)2
- species.  However, 

the current spectra also contain several incompletely resolved bands (Table 3.1) extending 

to the high frequency side of the Cu(CO)3
- peak, that were not observed in the previous 

argon matrix experiments (which employed deposition at 10 K).  Although these bands are 

incompletely resolved (Figure 3.7, Appendix), their positions are reproducible from 
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experiment to experiment.  Given the higher deposition temperature used here, which 

allows for more diffusion of small dopants prior to “freezing” of the matrix, it seems most 

reasonable to assign these additional features to larger Cu(CO)3•(CO)n
- complexes, where 

the additional CO ligands beyond three are more weakly associated in a second 

coordination sphere, and thus only cause a small shift of the vibrational frequency.  We 

note that analogous bands to these were observed (although not assigned) by the Andrews 

group after annealing to 8 K in neon matrices, lending credence to the notion that they arise 

from larger aggregates.88  Furthermore, although the Cu(CO)3
- complex has planar D3h 

symmetry,88 and thus is not sterically hindered from having additional ligands directly 

coordinated to the copper center, it is already an 18-electron coordination complex, and 

therefore further ligands would be expected to exist in a second solvation shell, consistent 

with the proposed assignment here. 

  As mentioned above, several bands corresponding to neutral copper 

carbonyl complexes are also observed upon deposition at 20 K (Figure 3.2): a doublet at 

2008.0 and 2010.2 cm-1 for CuCO, a broad peak centered at 1891.3 cm-1 for Cu(CO)2, and 

a pair of peaks at 1975.7 and 1985.5 cm-1 for Cu(CO)3, all appearing within 0.3 cm-1 of 

their positions in previous studies employing both laser-ablation,88 and Knudsen-type 

evaporation sources.116  It is interesting to note that in the current study, the relative 

intensities of the neutral and anionic bands are quite comparable, while in the laser-ablation 

work of the Andrews group, the neutral bands were several orders of magnitude more 

intense than the anionic peaks.88  This is because while the laser-ablation method produces 

large fluxes of neutral species with relatively small amounts of ions,85 in the co-deposition 

method employed in the current experiments the total copper flux is limited to the beam 
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current of Cu-, so that any neutral species must be formed by secondary electron-transfer 

processes.  Indeed, one of the advantages of counter-ion co-deposition is that it can provide 

insight into the possible neutralization mechanisms, as discussed below.  All remaining 

bands in the spectra shown in Figure 3.2 arise from small amounts of transition metal 

carbonyls formed in the CO storage bottle; a table of the observed impurity transitions is 

given in the Appendix, Table 3.2. 

  3.4.4  CO concentration dependence 

  Figure 3.3 shows spectra taken with CO concentrations of 0.02%, 0.1% and 0.5% 

in Ar using ~10 nA of Cu- balanced by Ar+ counter-ions, deposited at 20 K for 2 hours     

(54 mmol total gas exposure); spectra taken following annealing to 30 K are also shown 

for each concentration.  The first thing to note is the similarity of the spectra for 0.02% CO 

deposited at 20K with Ar+ counter-ions (Fig. 3A), and the analogous spectrum taken using 

Kr+ counter-ions (Fig. 3.2).  The positions and relative intensities of all of the anionic and 

neutral copper carbonyl bands are practically identical (Figure 3.7, Appendix); even the 

partially resolved bands assigned to Cu(CO)3•(CO)n
- are reproduced quite closely (Figure 

3.8, Appendix). 
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Figure 3.3  CO concentration dependence on copper carbonyl formation for varying CO 

concentrations:  A) 0.02%, B) 0.1%, and C) 0.5%.  Samples were deposited at 20 K for      

2 hours with ~10 nA Cu- balanced by Ar+; all spectra recorded at 10 K. 

 

  Several interesting CO concentration-dependent trends are revealed in the spectra 

in Figure 3.3.  The most obvious one is that the average coordination number of the 

complexes increases with CO concentration.  In the anion region, bands for the mono-, di- 

and tricarbonyl complexes diminish monotonically with increasing CO concentration, 

while the bands assigned to Cu(CO)3•(CO)n
- aggregates grow in, becoming more intense 

than the tricarbonyl peak in the 0.1% CO spectrum (Fig. 3.3B), and completely dominating 

the anion region of the spectrum at 0.5% CO (Fig. 3.3C).  In the neutral manifold, the 

trends are similar but less pronounced; the dicarbonyl band persists even at the highest 

concentration, and the broad band grows in underneath the neutral tricarbonyl doublet 

between 1975 and 1985 cm-1.   

  Another striking feature of these spectra is that the total intensity of the anionic and 

neutral copper carbonyl bands stays approximately constant across the 25-fold 
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concentration range explored.  This result contrasts with the behavior of the impurity bands, 

e.g. the Fe(CO)5 peak at 2025 cm-1, which show a linear increase in intensity with CO 

concentration. This confirms that copper is the limiting reagent in the formation of these 

clusters, and also indicates that essentially every Cu atom or ion has at least one CO 

molecule coordinated to it, even at the 0.02% concentration level.  Finally, the spectra taken 

after 30K annealing for each concentration show the same general “neutralization” trend 

(diminishing anion bands with growth of neutral bands) as observed for the data in Figure 

3.2, however the overall effect seems more muted as the CO concentration is increased. 

3.4.5  Dependence on deposition temperature 

  Figures 3.4A and B show spectra recorded following 10 K deposition of 0.1% and 

2% mixtures of CO in argon with Kr+ counter-ions, respectively, including spectra obtained 

following annealing steps at 15, 20, and 25 K.  It is immediately obvious that there is a 

drastic qualitative difference between the 0.1% sample deposited at 10 K vs 20 K (Figure 

3.3B).  After 10 K deposition, there are no bands whatsoever corresponding to anionic or 

neutral copper carbonyl complexes evident in the spectrum (all bands arise from 

impurities).  Upon annealing however, bands for the neutral di- and tricarbonyl complexes 

appear abruptly, growing in intensity as the annealing temperature is increased from 15 to 

25 K.  There is no sign of anionic complexes, nor is the neutral monocarbonyl complex 

observed (though that region is overlapped by an impurity band, possibly concealing a 

weak absorption).  The implication is that the copper is trapped as free Cu- ions at 10 K, 

only forming complexes upon annealing to 15 K, with neutralization of the copper centers 

occurring either before or during the complexation process.   
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Figure 3.4  FTIR spectra obtained following 2 hours of co-deposition of Cu- and Ar+ at   

10 K with:  A) 0.1% CO in argon, ~7 nA Cu- & Ar+ and B) 2% CO in argon, ~3 nA Cu- & 

Ar+; spectra for subsequent annealing steps are also shown.  All spectra recorded at 10 K. 

 

  On the other hand, when the more CO rich 2% mixture is used for 10 K deposition 

(Figure 3.4B), the bands for the anionic and neutral mono-, di- and tricarbonyl complexes 

are clearly evident in the spectrum.  In fact, the results are qualitatively similar to those 

measured following deposition of the 100-fold more dilute 0.02% CO mixture at 20 K 

(Figure 3.3A), except that the bands for the larger Cu(CO)3•(CO)n
- aggregates are missing, 

and the linewidths of the peaks are noticeably broader.  All of these trends –the requirement 

of higher CO concentration to observe complexation, absence of larger clusters, and 

broader lines– are consistent with a much faster “freezing out” of the dopants during the 

matrix formation process at 10 K as compared to 20 K, as is discussed in detail below. 

  Although the spectra in Fig 3.4B are qualitatively similar to those in Figure 3.2, 

there are some small but significant differences.  First, there is a slight but consistent and 

reproducible blue-shifting of most of the peaks by 0.2-0.3 cm-1 in the 10 K spectrum   

(Table 3.1), with the exceptions being the Cu(CO)3
- peak (not shifted) and the Cu(CO)3 
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peak at 1985.5 cm-1 (redshifted by 0.4 cm-1 from 20 K spectrum).  Additionally, there are 

new bands at 1774 cm-1 and 1824 cm-1, which are tentatively assigned (based on proximity) 

to di- and tricarbonyl complexes trapped in different matrix sites at the lower deposition 

temperature.  There are also partially resolved features at 1981.4 and 1983.4 cm-1 that grow 

in upon annealing to 20 K; although there is intensity in the corresponding region of the  

20 K deposition spectrum (Figure 3.2), it is harder to identify individual bands.  Note also 

that most of the impurity bands are absent from the spectra in Fig. 3.4B; the deposition gas 

for this sample was run through a liquid nitrogen/ethanol bath, in order to remove the metal 

carbonyl contaminants.  The only remaining peaks in the region where impurities were 

observed are at 2039 cm-1, which is from 13C18O (observable in this high-concentration CO 

mix at natural abundance), and at 2048 cm-1, which is now assigned by our group to (CO)2
+.  

(Note: at time of publication the 2048 cm-1 assignment was not known.  For spectroscopic 

details of this peak identification, see Chapter 6.)     

  3.4.6  Time-dependent vs. temperature-dependent neutralization 

 Figure 3.5A shows difference spectra for the data in Figure 3.2 (0.02% CO in argon 

deposited at 20 K with Kr+ counter-ions), where each trace represents sequential changes 

in the spectra between “adjacent” scans taken after annealing at temperatures differing by 

5 K; labels refer to the upper member of temperature pair (e.g. 25 K – 20 K difference 

spectrum is labeled 25 K).  The principal effect upon annealing the sample to 25 K was a 

loss of intensity in all of the anionic bands, with a concomitant growth of the neutral bands.  

This effect is in contrast to the previous laser-ablation study, where annealing resulted in 

cluster growth of the anionic species, without an overall loss of intensity from the 

corresponding bands.88  At higher annealing temperatures, the anionic bands continue to 
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decrease monotonically as the temperature is increased, with the larger clusters persisting 

the longest.  However for the neutral complexes, only the tricarbonyl shows a consistently 

increasing trend up to 40 K; the mono- and dicarbonyl peaks start decreasing above 30 K, 

indicating complexation of additional CO ligands via diffusion of free CO molecules, to 

the extent that at 40 K virtually all of the intensity is in the doublet of peaks assigned to 

Cu(CO)3. 

  To address the question of whether the annealing is really required to observe 

neutralization, a time-lapse study was performed while maintaining the sample at 10 K, 

starting with a 0.02% CO in argon matrix (~7 nA each Cu- and Ar+) deposited at 20 K, 

yielding the results shown in Fig 3.5B (unsubtracted spectra shown in Figure 3.9, 

Appendix).  Even though this sample was not heated, the spectra still show a clear depletion 

of the anionic peaks with concomitant growth of the corresponding neutral peaks over the 

8 hour time-span investigated (which is approximately equal to the total time for all 

annealing experiments).  Furthermore, the correlation of anion depletion to neutral growth 

seems more straightforward than for the annealing data; all anionic peaks show only 

depletion, and all neutral peaks show only growth.  Even more striking is the tight 

correlation between the anionic and neutral peaks with a given stoichiometry:  peaks for 

both dicarbonyl complexes disappear after 4 hours, and peaks for both monocarbonyls 

disappear after 6 hours.  This suggests that whatever “time-dependent” neutralization 

process occurs is rather mild, such that it preserves the coordination number of the 

complexes during electron transfer.   

  Note that the partially resolved bands assigned to larger Cu(CO)3•(CO)n
- aggregates 

show a clear decreasing trend in Fig. 3.5A and 3.5B, confirming their assignment to anionic 
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species.  The trend in Fig. 3.5B seems to indicate that their neutral counterparts contribute 

to the broad absorption between 1975 and 1985 cm-1, however the correlation is not as 

clear as it is for the mono-, di- and tricarbonyl species.  This can be contrasted with the 

behavior of the sharp feature at 1975 cm-1, which grows in with increasing temperature in 

the annealing series, but is not evident in the time-dependent series at 10 K, suggesting that 

there are (at least) two distinct processes contributing to the spectral changes observed 

upon annealing, as discussed below. 

 

Figure 3.5  Difference spectra emphasizing changes during A) 5 K annealing steps for data 

shown in Figure 3.2, and B) time-dependent neutralization of a similarly prepared sample 

maintained at 10 K. 

 

 3.5  Discussion 

 The results obtained here demonstrate the feasibility of using a counter-ion beam 

to provide charge balance during matrix deposition of mass-selected ions, in order to 

accumulate sufficient number densities of ionic species for infrared absorbance 
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spectroscopy after only two hours of deposition.  As mentioned in Chapter 1, previous, 

unsuccessful attempts to achieve this had been reported in the literature, even though much 

longer deposition times and more sensitive detection methods were employed.108  Using 

the ion beam currents and the physical dimensions of the matrix, we can estimate the 

number density of ions in the matrix, assuming unity probability of ion trapping in a 

homogeneous matrix.  Deposition at 10 nA for 2 hours corresponds to delivery of 4.6x1014 

each of cations and anions; based on the etalon peaks in the infrared spectra (Figure 3.10, 

Appendix) the matrix thickness is estimated to be 60 μm, assuming this is uniform over the 

deposition area of 3.1 cm2 yields a matrix volume of 0.018 cm3, corresponding to a number 

density of ~2.5x1016 ions/cm3 each for cations and anions.  Using the bulk density of solid 

argon (~1.77 g/cm3 at 20 K),114 this converts to a molar Cu-:Ar ratio of ~1:106, representing 

an upper limit for the ion concentration in the matrices presented here.  Of course the actual 

ion abundance is likely significantly lower in practice, given expected losses due to 

phenomena such as “grounding out” of ions on the sample holder, as well as scattering in 

local high pressure of the deposition region.  The spectra presented above also reveal 

significant populations of neutral species upon deposition, indicating that many of the ions 

undergo neutralization as the matrix is forming; possible electron transfer mechanisms 

underlying the neutralization are discussed below.   

 We believe that the success of the current efforts may be attributed to various 

features of the experimental design that are distinct from those reported in the earlier 

attempt by the Allison group.108  Perhaps most significant is the use of an octopole ion-

guide to transport the ions to the deposition window, ensuring that they travel on stable, 

non-divergent trajectories until they are within a few cm of the target, and minimizing the 
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field-free distance that must be traversed.  Similarly, the use of the quadrupole bender to 

combine the cation and anion beams ensures that they travel along a common path, and it 

is assumed that this helps to produce a fairly homogeneous spatial distribution of ions in 

the deposition region, though this has not yet been measured explicitly.  It must be noted 

that the choice to combine the ion beams necessitated the use of significantly higher energy 

for the cation beam (~60 eV) relative to the anion beam (~10 eV), in order to balance the 

current while maintaining a high anion flux.  The anion energy is comparable to the 6-8 eV 

used for both ion beams in the earlier study;108 it is not yet clear why such asymmetry in 

the ion beam energies might facilitate stabilization of high number-densities of ions in the 

matrix, but it cannot be ruled out as a potential contributing factor.  Another potentially 

relevant point is that the matrix gas flow rates used here (~27 mmol/hour) are at least 10 

times higher than those typically employed in matrix isolation studies,33 and may be up to 

50 times higher than what was used in the Allison study.108,121  The potential significance 

of the higher flow rate is that it likely leads to a lower probability of cation-anion 

“recombination” during deposition because it results in a lower ratio of ions to matrix 

atoms, and also a higher local gas pressure near the matrix surface, which in turn affords a 

more gradual slowing of the ions in the matrix region.  Finally, the choice of metal 

carbonyls as the species of interest may have enhanced the detection efficiencies in the 

current work, owing to the high oscillator strengths of the molecular vibrations. 

  It must also be pointed out that the goal of the current work was somewhat different 

from that of the earlier Allison study, in that the aim here was to measure spectra of anionic 

complexes formed during the matrix deposition process, rather than to deposit and detect 

the specific ions produced in the external source.  Indeed, as discussed below, the spectra 
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obtained here reveal information about other physical phenomena, such as the formation 

of the complexes, and electron-transfer processes leading to neutralization of ions, and 

allow some inferences to be drawn about the nature of the cations present in the matrix.   

  3.5.1  Complex formation 

 It has long been understood that a cryogenic matrix being formed via condensation 

of room temperature gas in a vacuum chamber will necessarily have a transient “surface 

region” that is warmer than the nominal sample temperature, and thus where fast diffusion 

of dopant species can occur.28  For example, such a surface layer has been implicated to 

rationalize the aggregation of metal cluster carbonyls produced in argon matrices, which 

were much larger than could be explained by simple statistical models.49,122  The results of 

the current study are also consistent with this general picture of complex formation in 

matrices, and further provide insight into how the experimental parameters are correlated 

with average cluster size. 

 The picture of the complex formation process is as follows: first, the gas phase 

species (CO, Cu-, and counter-ions) are initially trapped in the surface region of the matrix 

where fast diffusion is occurring, so there is a reasonable probability of collisions between 

the very low concentration ions and the CO dopant molecules.  Given that the calculated 

binding energies of CO ligands in anionic copper carbonyls are at least 2.5 kcal/mol,88 and 

that the temperature in the surface region will be < ~80 K (the condensation point of liquid 

Ar), the complex formation will occur exclusively under kinetic control.  Each ion-CO 

collision has a near-unity probability of increasing the coordination number of the copper 

centers, and dissociation of CO ligands from complexes already formed should not occur 

to any significant extent.  This qualitative model is similar to the “quenched reaction” 
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mechanism that was found to best explain the experimental results for aggregation of metal 

cluster carbonyls in a previous study.49  Note that collisions between anionic and cationic 

species resulting in neutralization via electron transfer are much less likely than ion-CO 

collisions due to the very low number densities of ions, and are assumed not to occur to 

any significant extent during the steady-state lifetime of the fluid layer (see section on 

neutralization below).   

  It is now straightforward to rationalize the differences between the spectra for 

deposition at 10 and 20 K in terms of the relative steady-state lifetimes of the surface layers 

in those cases.  At 20 K, the dopants experience fast diffusion for a sufficiently long time 

that each copper ion experiences (on average) multiple collisions with CO ligands, 

resulting in a population of anionic copper carbonyls that is reflective of the relative CO 

concentration in the matrix gas (Figure 3.3).  At the highest CO concentration (0.5%) at  

20 K, only unresolved bands for the Cu(CO)3•(CO)n
- aggregates persist at 20 K.  At the 

other extreme, low (0.1%) CO concentration at 10 K, no copper carbonyl bands whatsoever 

were observed upon deposition.  This reflects the much shorter steady-state lifetime of the 

surface layer, which does not allow for even a single collision between Cu- and CO prior 

to “freezing out” of the dopant species.  Only after increasing the CO concentration            

20-fold to 2% are copper carbonyl complexes observed.  Even so, the average coordination 

number of the complexes in this spectrum is lower than observed with 100-fold lower CO 

concentration at 20 K (compare Figures 3.4B and 3.2), and the anionic clusters with a 

second solvation shell of CO are not observed at all at 10 K. 

  So, it is clear that adjusting the dopant concentration and deposition temperature 

appropriately in these ion co-deposition experiments affords coarse control over the 
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complex formation process.  At low temperature and low concentration, the average 

number of ion-dopant collisions is zero, such that free ions and CO ligands are trapped in 

the matrix.  Higher deposition temperatures and dopant concentrations allow formation of 

progressively larger clusters, up to the point where the first coordination sphere is saturated 

and ligands are being added to the second solvation shell.   

  3.5.2  Neutralization 

 As mentioned above, the mass- and charge-selection enforced by the experimental 

setup ensures that all copper species must initially arrive at the deposition region as 

monatomic anions.  Nonetheless, neutral copper complexes are observed both immediately 

after deposition, and later as a result of population transfer from the anionic bands.  

Mechanisms for neutralization of cations by electron transfer in cryogenic matrices have 

been studied by the Harbich group;123 we draw upon their work to identify two distinct 

modes of electron transfer in the matrix samples studied here: “short-range” transfer 

between anions and cations that have diffused to proximate sites in the matrix, and “long-

range” transfer occurring when electrons are photodetached from the anion into the 

conduction band of solid argon (~0.3 eV above the vacuum level,52), whereupon they travel 

relatively long distances through the matrix to recombine with stationary cations.  These 

recombination events are highly exothermic, each releasing >11 eV of energy, a portion of 

which goes into transient heating of the local matrix environment; it is this last 

phenomenon that provides the key to distinguishing the short- and long-range 

neutralization modes, since the local release of energy enables diffusion of free CO 

molecules.  For the short-range case, the cations are necessarily close to copper centers, so 

the spectrum will reflect the increases in coordination number due to the attachment of 
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“transiently mobilized” CO ligands.  Conversely, in the long-range case, the anionic copper 

species and the cation start much farther apart (recall the average ion:Ar ratio is only 

~1:106), so the local heating around the cation center is unlikely to result in any changes in 

coordination number of the copper centers. 

 The clearest example of neutralization occurring via short-range electron transfer 

is upon annealing the low CO-concentration sample deposited at 10 K (Figure 3.4A).  No 

copper carbonyl bands whatsoever were observed upon deposition, but after the 15 K 

annealing step the bands for the neutral tricarbonyl suddenly grew in, reflecting a change 

in coordination number from 0 to 3.  Recall that in this case, we expect that most of the Cu- 

centers are trapped as free ions upon deposition.  The observed behavior on annealing is 

thus consistent with these centers diffusing under coulombic attraction until they can 

undergo short-range charge-exchange with a nearby cationic center.  The precedent for 

diffusion of the Cu- centers at 10-15 K is established by early work with alkali atoms, which 

do diffuse through argon matrices at these temperatures.76  Note also that the doublet of 

peaks at 1975 and 1985 cm-1 in the 15 K spectrum is sharp and baseline-resolved, quite 

unlike their appearance in the analogous 15 K spectrum for the 2% CO mix (Figure 3.4B), 

but much more closely resembling the doublet after annealing the 0.02% 20K-deposition 

sample above 35 K (Figure 3.2), consistent with the proposed local-heating interpretation. 

 The best example supporting the long-range electron transfer picture is the time-

dependent series of spectra (Fig. 3.5B) taken while holding the matrix sample at 10 K, at 

which temperature little or no diffusion through the solid matrix is expected.33  These data 

show a very tight correlation between the disappearance of the anion bands and the growth 

of the neutral bands with no apparent changes in the corresponding coordination numbers.  
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Photodetachment from anionic copper carbonyl complexes upon irradiation with 

broadband visible light has been observed previously;88 in our experiments the photon 

source is the constant, though diffuse, illumination of the sample region by visible radiation 

from the laboratory lighting, as well as Bayerd-Alpert ion gauges in the vacuum chamber.  

A similar long-range electron transfer mechanism was proposed to explain neutralization 

of mass-selected Cun
+ and Agn

+ (n=1-3) clusters during deposition in argon matrices, where 

photoelectrons released from the grounded metal sample support recombined with the 

cationic clusters.123 

  For the other cases where neutralization is observed, after either deposition or 

annealing, it is harder to distinguish between the two mechanisms, and both may actually 

be contributing.  The difference spectra in Fig. 3.2 seem to reflect more long-range 

neutralization between 20 and 25 K, since there is close correlation between depleted 

anionic and enhanced neutral bands for a given coordination number, but this correlation 

is then lost at higher annealing temperatures, suggesting short-range processes may play a 

larger role.  Both mechanisms may also contribute to neutralization during deposition in 

principal, but the results seem more consistent with long-range electron transfer. Otherwise 

one would tend to expect much more neutralization during 20 K deposition than 10 K due 

to the longer surface diffusion period, and this is not the case; for example, the relative 

ratio of neutral to anionic species upon deposition is approximately the same between 

Figures 3.3B and 3.4B. 

  3.5.3  Nature of counter-cations 

 At the time of publication, we could not positively identify any cations in the 

matrix.  Recently, we have assigned the peak at 2048 cm-1 to the (CO)2
+, as explained in 
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Chapter 6.  Assuming comparable oscillator strength, the CO dimer cation cannot account 

for the entire charge balance in the spectra due to its low intensity compared to the anionic 

copper carbonyl bands.  This suggests that other cations must be present, the precise nature 

of which remains an open question.  No other clear spectroscopic evidence, neither direct 

nor indirect, was found to support the assignment of any bands to cationic molecules or 

complexes, and furthermore no differences in band positions were observed between 

spectra taken using Ar+ or Kr+ counter-cation beams (Figures 3.7 and 3.8, Appendix).  A 

contributing factor is likely that the ionization potential (IP) of solid argon (13.9 eV 52,124) 

lies below that of both atomic Ar (15.8 eV 125) and Kr (14.0 eV 126), as well as CO            

(14.0 eV 127).  This latter fact likely precludes the observation of molecular CO+ in argon;128 

indeed other authors have also noted its conspicuous absence in argon matrix spectra,88,129 

whereas it is readily observable in neon matrices.82  There are also no bands assignable to 

CO molecules perturbed by a localized positive charge, which is expected to produce a 

significant blue-shift of the CO stretch.85,130  This absence is noteworthy because anionic 

CO complexes are readily observable, and the abundances of cations and anions in the 

matrix must be approximately equivalent. 

 It has been suggested that small cations may experience a strong interaction with 

the argon matrix, which effectively cages them against complexation;88,129 evidence to 

support this proposal is derived from the strong red-shifting of vibrational bands for species 

in solid argon.88,129,131  Thus it seems likely that the counter-cations in these experiments 

are localized either as Kr+ (when it is used for cation beam), or as Ar2
+, which is thought 

to be the charge carrier in ionized pure Ar matrices,124,132 but that a “caging” effect prevents 

them from interacting with other species in the matrix.  Some circumstantial support for 
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this hypothesis is derived from the observation that the photoionization thresholds of both 

solid argon, as well as Kr dopants in solid argon (12.2 eV133) are lower by ~1.8 eV from 

the gas phase atomic values, suggesting the ionic centers experience a strong stabilization 

from the matrix.  This notion of “caged” cluster cations is also consistent with experimental 

data on the mobility of holes in pure solid argon, which is particularly low even for highly 

crystalline samples at temperatures near the triple point.132 

3.6  Conclusions 

  The results presented here represent the first time matrix-isolation spectra have 

been obtained for ionic species formed from a beam of mass-selected ions, with a 

coincident beam of externally generated counter-ions used to provide charge balance.  

Infrared spectra were obtained for copper carbonyl complexes formed following deposition 

of Cu- ions with rare-gas counter-cations into a CO-doped argon matrix.  Both anionic and 

neutral complexes were observed in the spectra, with most peak positions corresponding 

to previously reported assignments; new, partially resolved bands were assigned to larger 

[Cu(CO)3•(CO)n]
- aggregates with additional CO ligands in the second solvation shell.   

  The spectra obtained from this ion co-deposition technique provide insights into 

fundamental physical phenomena associated with ions in rare gas matrices, such as 

clustering and neutralization.  Cluster formation appears to occur in the warmer surface 

region of the condensing matrix, therefore rough control over the complex formation 

process is afforded by varying the deposition temperature and dopant concentration.  

Spectra presented here show that roughly 100-fold higher CO concentration is required for 

deposition at 10 K relative to 20 K, in order to obtain a comparable distribution of anionic 
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and neutral copper carbonyls.  Population transfer from anionic to neutral bands is observed 

in both time-lapse and temperature-dependent annealing studies, indicating that there are 

two distinct neutralization mechanisms: short-range electron-transfer between a proximate 

anion-cation pair following diffusion, and long-range electron transfer where the electron 

is first photodetached from the anion into the conduction band, then recombines with a 

spatially remote cation.  Results for deposition using low CO concentration at 10K provide 

a striking example of short-range neutralization; all Cu- are initially trapped as free ions, 

but upon annealing to 15 K, they are drawn through the matrix by Coulombic attraction to 

undergo electron exchange with cationic centers.  The resulting energy release warms the 

matrix, allowing CO ligands to diffuse and form neutral copper carbonyl clusters.  

3.7  Appendix 

 

Figure 3.6  Control experiment of Cu- deposition with no counter-ion in a 0.02% CO/Ar matrix 

deposited at 20 K.  Note that there are no signs of copper complexes upon deposition at 20 K or 

upon annealing to 30 K showing the necessity of the counter-ion for the deposition process.    
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Figure 3.7  Deposition of Cu- into a 0.02% CO in argon matrix at 20 K followed by 30 K annealing 

during two separate experiments using Kr+ and Ar+ as counter-ions as shown.  Note that both 

counter-ions lead to virtually the same spectrum.  The same neutralization events occur in both 

cases upon annealing with the exception of the larger Cu(CO)3
- species persisting longer in the Kr+ 

case.  

 

 

 

 

Figure 3.8  Deposition of Cu- into a 0.02% CO in argon matrix at 20 K during two separate 

experiments using Kr+ and Ar+ as counter-ions as shown.  Spectra are zoomed in on the Cu(CO)3
- 

and [Cu(CO)3• (CO)n]- regions to emphasize the reproducibility of fine structure contained within 

the broad feature.    
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Figure 3.9  Time-lapse study using sample with ~7 nA Cu- & Ar+ co-deposited in a 0.02% CO in 

argon matrix at 20 K.  Sample was maintained at 10 K over the course of 8 hours with scans taken 

every two hours.  Spectra show neutralization attributed to long-range photodetachment mechanism 

(Figure 3.5B). 

 

 

 

Figure 3.10  Unprocessed data from Figure 3.3 of main text showing low-frequency 

etaloning from interference in the matrix.  Using index of refraction of bulk argon (1.77),114 

fringes correspond to matrix thickness of ~60 μm. 
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3.7.1  Description of minor spectral differences for 10 K vs 20 K deposition 

 As stated in the main text, when the more CO-rich 2% mixture is used for 10 K 

deposition (Figure 3.4B), the results are qualitatively similar to those measured following 

deposition of the 100-fold more dilute 0.02% CO mixture at 20 K (Figure 3.2), however, 

there are some small but significant differences.  First, there is a slight but consistent and 

reproducible blue-shifting of most of the peaks by 0.2-0.3 cm-1 in the 10 K spectrum    

(Table 3.1), with the exceptions being the Cu(CO)3
- peak (not shifted) and the Cu(CO)3 

peak at 1985.5 cm-1 (redshifted by 0.4 cm-1 from the 20 K spectrum).  Additionally, there 

are new bands at 1774 cm-1 and 1824 cm-1, which are tentatively assigned (based on 

proximity) to di- and tricarbonyl complexes trapped in different matrix sites at the lower 

deposition temperature.  There are also partially resolved features at 1981.4 and           

1983.4 cm-1 that grow in upon annealing to 20 K; although there is intensity in the 

corresponding region of the 20 K deposition spectrum (Figure 3.2), it is harder to identify 

individual bands.  Note also that most of the impurity bands are absent from the spectra in 

Fig. 3.4B; the deposition gas for this sample was run through a liquid nitrogen/ethanol bath, 

in order to remove the metal carbonyl contaminants.  The only remaining peaks in the 

region where impurities were observed are at 2039 cm-1, which is from 13C18O (observable 

in this high-concentration CO mix at natural abundance), and at 2048 cm-1, which has been 

assigned by our group as (CO)2
+ (Chapter 6).    

3.7.2  Ion abundance calculation 

 Using the ion-beam currents and the physical dimensions of the matrix, we can 

estimate the number density of ions in the matrix, assuming unity probability of ion 

trapping in a homogeneous matrix.  Deposition at 10 nA for 2 hours corresponds to delivery 
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of 4.6x1014 each of cations and anions; based on the etalon peaks in the infrared spectra 

(Figure 3.10) the matrix thickness is estimated to be 60 mm, assuming this is uniform over 

the deposition area of 3.1 cm2 yields a matrix volume of 0.018 cm3, corresponding to a 

number density of ~2.5x1016 ions/cm3 each for cations and anions.  Using the bulk density 

of solid argon (~1.77 g/cm3 at 20 K),114 this converts to a molar Cu-:Ar ratio of ~1:106, 

representing an upper limit for the ion concentration in the matrices presented here.  Of 

course the actual ion abundance is likely significantly lower in practice, given expected 

losses due to phenomena such as “grounding out” of ions on the sample holder, as well as 

scattering in local high pressure of the deposition region.  The spectra presented in the main 

text also reveal significant populations of neutral species upon deposition, indicating that 

many of the ions undergo neutralization as the matrix is forming.   

 

Table 3.2  Peaks assigned to transitions from metal carbonyl impurities (Figures 3.2-3.4), 

based on previous spectroscopic assignments (see references contained within 85 and 129).  

Peaks marked with ‘?’ do not correspond to any previously reported bands, but are still 

assigned to impurity species based on their absence when using an ethanol cooling bath, 

and insensitivity to annealing (note their absence in difference spectra in Figure 3.4B).   

 

Impurity Peaks 

Absorption Assignment 

1998.2 ? 

2001.1 ? 

2003.95 Fe(CO)5 site 

2006.12 Fe(CO)5 

2008.8  ? 

2009.98  ? 

2023.2  ? 

2025.4 Fe(CO)5 

2034.6 ? 

2051.7 Ni(CO)4 
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Chapter 4 

Cold chemical reactions triggered using electrons photodetached from “clean” 

distributions of anions in cryogenic matrices via counter-ion co-deposition 

Adapted with permission from Ludwig, R. M.; Moore, D. T. Chemical Reactions Triggered 

using Electrons Photodetached from "Clean" Distributions of Anions Deposited in 

Cryogenic Matrices Via Counterion Codeposition. J. Phys. Chem. Lett. 2014, 5, 2947-

2950.  Copyright 2014 American Chemical Society. 

 

 

4.1  Abstract 

Application of matrix-isolation spectroscopy to ionic species is typically 

complicated by the presence of neutral contaminant species related to the matrix deposition 

process.  Here it is demonstrated that explicit deposition of balanced currents of counter-

ions with the mass-selected ions of interest can be used to create “clean” distributions of 

matrix-isolated copper carbonyl anions, where only the anion bands are present in the CO-

stretching region of the vibrational spectrum.  Furthermore, photodetachment by mild 

irradiation with visible light is used to initiate complete conversion of the anions into their 

corresponding neutral species.  Finally, it is demonstrated that the photodetached electrons 

initiate covalent chemistry in the van der Waals dimer of CO, which forms a C-C bond 

following electron capture to make trans-OCCO-.  The clear connections that can be drawn 

between the spectral changes induced at each step in the experiment derive from the initial 

“clean” distribution of ions, demonstrating the potential of the counter-ion co-deposition 

technique to enable detailed studies of chemistry involving ions and electron-transfer in 

cryogenic matrices. 
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4.2  Introduction 

While many matrix-isolation studies of ions have been reported,134 the requirement 

that charge-balance be maintained throughout matrix deposition has limited the scope of 

ions that could be studied to those produced by intrinsically neutral sources such as laser 

ablation85 and microwave discharge,81 or to robust ions such as carbon chains that can 

survive deposition at very high kinetic energies.89  All previous methods for generation and 

deposition of matrix-isolated ions tend to be “dirty”, in that a large fraction of the species 

trapped in the matrix are neutrals species produced during ion generation, or formed by 

secondary processes such as fragmentation or auto-neutralization during deposition.  

Photodetachment – the  process whereby an electron is released from a negatively charged 

atom or molecule following the absorption of a sufficiently energetic photon (in analogous 

fashion to photoelectron emission from neutrals) – is a standard method used to distinguish 

charged from neutral species in matrices.135-137  Irradiation of the matrix with broadband 

UV/visible radiation, induces selective depletion of the bands associated with ions; the 

interpretation is that anions are directly neutralized by photodetachment, and the electrons 

released then combine with and neutralize cations.  Few matrix studies have gone beyond 

such simple diagnostic uses of photodetachment, however, due to the contamination issues 

mentioned above; there are some examples where wavelength filters were used to 

distinguish anionic species by their photodetachment thresholds, which tend to be 

significantly blue-shifted in matrices.135,137   

The coupling of a vibrational spectroscopy matrix isolation apparatus to the output 

of a mass-spectrometer to enable structural characterization of arbitrary ions of interest has 

long been recognized as an important goal in instrumental analytical and physical 
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chemistry.108  Results from our group, presented in Chapter 3, demonstrated the feasibility 

of using co-deposition of rare-gas counter-cations for just such a purpose.138 Anionic 

copper carbonyl complexes in sufficient number densities for FTIR spectroscopic 

characterization were produced by simultaneously directing low-energy beams of 

monatomic copper anions   (Cu-) and rare gas cations (Ar+ or Kr+) into a CO-doped argon 

matrix.138  That study demonstrated proof-of-concept for the technique, but still was not an 

ideally “clean” source of matrix isolated ions, since the neutral copper carbonyls were also 

produced during deposition.   

It was clear from the early studies that two neutralization events can occur: one that 

followed annealing whereby excess energy was released local to the copper centers, and 

an event that occurred when holding the sample at 10 K characterized by minimal energy 

transferred to the copper.  In response to these studies, additional experiments were 

performed in the absence of ambient light.  All lab lights were kept off, ion gauges shut 

off, and the IR beam kept bent away from the deposition window until scans were being 

taken.  This chapter presents the ensuing “clean” spectra of anionic carbonyls afforded by 

this method. 

 4.3  Experimental 

For these studies, the deposition and subsequent processing steps were carried out 

under darkened conditions except where otherwise noted; all internal sources of light were 

turned off (ion gauges, RGA analyzer, etc.), and the lab lights were kept off throughout.  

Some light from the spectrometer necessarily reached the sample (the HeNe alignment 

laser for the interferometer) during spectral scans; the spectrometer beam was directed 

away from the deposition chamber when not recording spectra.  For photodetachment 
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studies, broad-band visible irradiation was achieved using a tungsten filament bulb    

(Figure 4.5, Appendix) held outside the vacuum chamber and introduced through a Kodial 

glass viewport (Kurt J. Lesker Company).  Wavelength-dependence studies were 

performed using several narrow-band LED sources (Thor Labs, spectra provided in 

Appendix 4.6).  There was no direct line of sight from the tungsten source to the sample 

holder as the Faraday plate was in the light’s path, therefore, any photons hitting the sample 

were reflected off the inside of the vacuum chamber. 

Gas mixes were prepared by dilution of a purchased mixture of 10% CO in He 

(PRAXAIR) down to a 2% CO mix with Ar (PRAXAIR, 99.9999%).  Isotopic gas mixtures 

were made using 99% 13CO (< 5% 18O, Sigma-Aldrich).  All matrix gases were dehydrated 

by flowing through a copper tube immersed in ethanol-liquid nitrogen bath prior to 

deposition; this method also removed any gas contaminants (i.e. carbon dioxide, metal 

carbonyls, etc.).  Between this cryogenic trapping and the use of UHV vacuum systems, 

the levels of common atmospheric contaminant gases such as H2O and CO2 were kept quite 

low; weak bands corresponding to the isolated monomers, as well as the H2O-CO 

complexes seen in Figure 4.7 Appendix, were typically observed, but no evidence of any 

copper complexes of those species were found.  Thus there is no evidence that those gases 

interfere with the experiments described in the main text in any major way, however, as 

mentioned in our previous paper, the possibility that they are cationic charge carriers 

cannot be completely ruled out.138  Even if this were the case, it would not affect the 

conclusions of the current work in any significant way. 
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4.4  Results 

4.4.1  Visible irradiation followed by annealing 

Figure 4.1 shows an improved version of the experiment where the matrix 

deposition was conducted under completely darkened conditions at 10 K.  The expected 

bands for the anionic mono-, di- and tricarbonyl complexes are observed at 1733, 1780 and 

1829 cm-1, respectively, as in previous studies,88,138 but now the neutral copper carbonyl 

peaks are conspicuously absent from the spectrum  (the peak at 1774 cm-1 was not observed 

in the earlier work, but clearly arises from an anion, as demonstrated below).  Evidently 

the removal of all sources of ambient light during the deposition phase protected the anions 

from premature photodetachment, so that neutral species were not produced.  Note that this 

also implies that neutralization by electron transfer between adjacent pairs of oppositely 

charged ions does not occur to any significant extent.  The implication is that the ions 

become trapped in matrix sites before they can diffuse together under the influence of 

Coulomb attraction; this is qualitatively consistent with previous 10 K studies for this 

system, which showed trapping of uncoordinated Cu- ions at low CO concentrations.138 
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Figure 4.1  FTIR spectra from co-deposition of Cu- and Ar+ ion-beams (3 nA each) for two 

hours with 2% CO in argon at 10 K, with subsequent annealing steps; all spectra recorded 

at 10 K.  A) Spectrum following deposition, showing only anionic copper carbonyl bands. 

B) Spectrum following photodetachment of the anions by visible irradiation; new bands 

correspond to neutral copper carbonyl complexes, as well as trans-OCCO- near                

1515 cm-1. C-F) Spectra following annealing steps at 15, 20, 25 and 30 K, respectively. 

 

The benefit of having a clean source of anions can be appreciated from Fig. 4.1B, 

which shows the spectrum following deliberate photodetachment of the anions using        

~10 minutes irradiation with light from a tungsten-filament bulb.  All of the bands 

corresponding to anionic species (including the new 1774 cm-1 band) have been completely 

depleted, and replaced in the spectrum by the corresponding neutral copper complexes, 

with peaks for the mono- and dicarbonyls at 2010 and 1890 cm-1, respectively, and a broad 

feature centered at 1980 cm-1 with sharp peaks at 1975 and 1985 cm-1 representing the 

tricarbonyl.116,138  The photodetachment seems to be a gentle event, preserving the 

approximate relative intensities of the mono-, di- and tricarbonyls within the anionic and 

neutral manifolds.  The dicarbonyl seems a bit more intense in the neutral spectrum, 
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relatively, but it is not clear whether this represents a difference in population or in 

oscillator strength.  Furthermore, a peak at 1515.5 cm-1 which has been assigned to (CO)2
- 

and 1512.6 cm-1 assigned to a (CO)2
- site88  appears along with a peak at 1521.8 cm-1 which 

has not been reported in the literature, the implications of which are discussed below.  

Annealing to higher temperatures (Fig 4.1C-F) does not cause any further significant 

changes in the spectrum. 

4.4.2  Annealing followed by visible irradiation 

Although long-range neutralization was shut-down, as shown above, due to lack of 

ambient light there exists the possibility of close-range ion recombination during annealing 

of the matrix.  Since the top facile layer of the matrix during deposition should provide 

enough thermal diffusion to see any neutralization if it were to take place, neutralization 

due to annealing post-deposition seemed unlikely, however, was still necessary for 

completeness of study.  Therefore, experiments were performed by annealing in 5 K 

increments after deposition and irradiated only after 30 K annealing (Figure 4.2).  As seen 

in Figure 4.2A there is only a very small population of the neutral dicarbonyl copper 

complex upon deposition.  This is likely due to a small amount of light given off by the 

electron impact ionizer filament in the bender region that still gets to the deposition surface.  

As will be discussed below, the anionic dicarbonyl is easily photodetached with visible 

light.  Annealing to 15K decreases the 1733 cm-1, 1774 cm-1, and 1780 cm-1 bands while a 

broad feature to the blue of the 1830 cm-1 peak grows in (see subtraction spectra,           

Figure 4.8, Appendix).  Although the neutral dicarbonyl gains slight intensity, no other 

neutralization occurs.  It seems likely that this small growth is due to sharpening of the 

already present neutral dicarbonyl and not due to further neutralization of ionic precursors.  
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Annealing to higher temperature continues to decrease the anionic peaks.  It is important 

to note here, that annealing to temperatures of 30 K does not cause any significant 

neutralization as was observed with previous studies,138 even after sitting at 30 K for              

6 hours.  The loss of anionic complexes is due to overall matrix loss as observed by pressure 

spike in the vacuum chamber upon 30 K annealing. 
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Figure 4.2  Cu- Ar+ co-deposited (4 nA each) for 4 hours with 2% CO in argon at 10 K.  

A) 10 K deposition, B) 15 K annealing, C) 20 K annealing, D) 25 K annealing, E) 30 K 

annealing, F) low intensity irradiation, G) high intensity irradiation, and H) 30 K annealing 

after irradiation.  All spectra taken at 10 K. 

Irradiation in this study was performed by first exposing the system to low intensity 

light for 30 min (Figure 4.2F) followed by exposure to full intensity light for another           

30 min (Figure 4.2G).  With the low intensity light, the anionic dicarbonyl species shows 

the greatest relative depletion followed by the anionic monocarbonyl.  The higher intensity 

light is able to neutralize the rest of the anionic population as well as form the (CO)2
- species 

at around 1515 cm-1.  Annealing to 30K after photodetachment leads to an increase in the 

tricarbonyl peaks and a sharpening of the dicarbonyl peak with no change to the mono 
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peak.  One major difference observed between this study and the photodetachment before 

annealing study (Figure 4.1) is the persistence of the 1876.2 cm-1 band even after 30 K 

annealing.   

4.4.3  Wavelength-dependent photodetachment 

Another benefit to having a clean deposition is the ability to follow wavelength 

dependent photodetachment events as shown in Figure 4.3.  Using narrow-band LEDs 

(Figure 4.6, Appendix) individual species can be neutralized based on their 

photodetachment thresholds.  This allows another level of identification that was not 

possible by previous methods.  It should be noted that the photodetachment events shown 

do not provide true thresholds, but instead show that photodetachment occurs at or above 

the wavelength of light by which it is being detached.  The species to detach at the longest 

wavelength of 735 nm is the anionic dicarbonyl.  This low threshold explains previous 

findings of this species having an anomalously low intensity upon deposition which 

certainly occurred with constant light hitting the window.88,138  It should also be noted that 

the 1774 cm-1 peak is detached along with the 1780 cm-1 and both seem to add to the 

intensity of the 1890 cm-1 band.  This not only adds to the notion that this new peak is ionic, 

but also that it is a form of the anionic dicarbonyl as will be discussed.  The anionic 

monocarbonyl is the next complex to photodetach using 660 nm light.  The anionic 

tricarbonyl is harder to track due to its low appearance on this day but is completely 

neutralized with the shortest wavelength at 590 nm.  It does appear however that a small 

population becomes detached at each of the wavelengths.  These detachment events suggest 

that the photodetachment threshold might not be a sharp cutoff but instead either a 

continuum or multiple thresholds possibly due to differences in the local matrix 
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environment.  It could also mean that the tricarbonyl is undergoing a more complicated 

process such as multiple “detach-reattach-detach” events leading to the eventual depletion.   

Upon annealing after photodetachment, the 1975 and 1985 cm-1 tricarbonyl bands 

gain intensity while the mono and dicarbonyl species lose intensity.  This is consistent with 

aggregation toward higher stoichiometries upon annealing.  Finally, it should be noted that 

the (CO)2
- species did not form this day.  Possible explanations as to its absence are 

discussed below.  
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Figure  4.3  Cu- Ar+ co-deposited (4 nA each) for 4 hours with 2% CO in argon at 10 K.  

A) 10 K deposition, B) 735 nm light, C) 660 nm light, D) 590 nm light, and E) 30 K 

annealing.  All spectra taken at 10 K. 

4.5  Discussion 

 4.5.1  Electron-induced C-C bond formation 

One thing to consider is the fate of the photodetached electrons in the matrix.  

Another pair of peaks at 1512.6 and 1515.5 cm-1 also appeared in the spectrum following 

the irradiation step (Figure 4.1B); these have previously been assigned the trans-OCCO- 
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species in argon matrices.129  Their appearance strongly suggests that some of the 

photodetached electrons ended up getting captured by neutral (CO)2 van der Waals 

complexes, which were present in relatively high abundance due to the high CO 

concentration in the matrix (2140 cm-1 band59 in Figure 4.7, Appendix).  This electron-

capture event means that the photoelectrons initiated formation of a covalent C-C bond in 

the weakly bound neutral CO-dimers, and thus we have achieved the photo-triggered 

cryochemistry scheme shown in Figure 4.4. 

 

Figure 4.4  Cryochemistry scheme based on using electrons photodetached from the 

anionic monocarbonyl complex to induce formation of the trans-OCCO- by electron 

attachment to the van der Waals CO-dimer, which results in C-C bond formation.  Positions 

of corresponding IR bands in Fig. 4.1 and 4.7 are indicated. 

 

There is obviously a significant driving force for photodetached electrons to re-

combine with cations trapped in the matrix, as observed by a small decrease in the           

2048 cm-1 peak assigned to (CO)2
+ (see full intensity irradiation subtraction spectrum 

Figure 4.8, Appendix); however, assuming the oscillator strength is near that of the anionic 

complexes, then the 2048 cm-1 peak cannot account for all the cation species.  The 

remaining cations are most likely rare-gas centers lacking vibrational bands,138 making it 

impossible to directly observe them in the spectrum.  However the apparent gentleness of 

the photodetachment results above indicates that this recombination cannot be happening 
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in close proximity to the anion complex that served as the source of the photoelectrons.  

Otherwise the huge amount of energy (>10 eV) released locally into the matrix would be 

expected to perturb the spectral bands of the (now neutral) copper carbonyl source 

complex, as was observed in our previous set of experiments when free Cu- ions underwent 

diffusion and spontaneous neutralization, and the local energy released shifted the 

stoichiometry of the observed neutral complexes to larger clusters.138  Even while 

irradiating the system during deposition during which local diffusion is occurring, the 

stoichiometry remained the same (Figure 4.9, Appendix).  Instead, it seems that the cation 

neutralization is happening in remote sites following diffusion of the electron across 

multiple argon atoms in the matrix.  This is consistent with the expected behavior of 

electrons flowing freely in the conduction band of the argon solid, which lies ~0.3 eV above 

the vacuum level.52  For the current case, the known gas-phase photodetachment thresholds 

of the anionic copper carbonyls are 0.95 and 1.02 eV for the di- and tricarbonyls, 

respectively.139  Thus for the anionic copper carbonyls in the current study, long range 

diffusion following photodetachment is expected for visible light of wavelength < 939 nm 

(1.32 eV), which is certainly available with the broad-band source used here (Figure 4.5, 

Appendix).   

 4.5.2  Wavelength-dependent trends 

 Although we cannot obtain exact thresholds, the wavelength dependent trends 

follow that seen in the literature whereby the anionic copper dicarbonyl is detached before 

the anionic copper tricarbonyl139 (for a complete list of photodetachment energies, see 

Table 4.1 in the Appendix).  There has not been a gas-phase value determined for the 

anionic copper monocarbonyl, but the trends observed here suggest that it should be 
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somewhere between the dicarbonyl and tricarbonyl species (1216 nm to 1305 nm for gas-

phase values). 

Due to higher energy photons necessary in the matrix compared to the gas phase, it 

is clear that the argon cage plays a significant role in determining the energy necessary to 

detach an electron.  The literature value of 0.3 eV above the vacuum level was found using 

a near perfect argon crystal,52 which is not close to our experiments deposited at 10 K.  One 

can imagine then that the local argon structure can shift the exact energy needed to detach 

the electron into the conduction band of argon.  This matrix effect could be one explanation 

as to why the tricarbonyl, which contains the largest cage and should have the greatest 

variation of cage structure, has a small population depleted with every wavelength used 

but a large neutral band isn’t observed until annealing post-irradiation (compare this with 

Figures 4.1 and 4.2, where broad-band irradiation leads to a high neutral complex and 

annealing does not change the spectrum much).  If the photodetachment and conduction 

band injection are two distinct events, then an electron that is photodetached with 

insufficient energy to be “lost” to the matrix may rattle around in the local cage 

environment.  At this point, it may either reattach to form the original anion, or it’s possible 

that it could get “stuck” in some intermediate dark state, such as a Rydberg anion.  This 

“dark intermediate” can then release the electron upon annealing which would recombine 

with a cation in the matrix.  Though this is very speculative at this point, it would be 

consistent with the data in Figure 4.3. 

There is also an absence of (CO)2
- upon irradiation this day, however, there is also 

no discernable neutral (CO)2 peak upon deposition.  The lack of formation of this neutral 

dimer along with an anomalously low anionic tricarbonyl are both consistent with a lower 
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deposition temperature.  This low deposition temperature could also provide an alternate 

explanation as to why annealing leads to such intense 1975 and 1985 cm-1 bands.  It is 

possible that free-Cu- centers were trapped upon deposition and undergo violent 

neutralization during annealing as was seen in the 10 K low concentration experiments in 

chapter 3.  An alternate explanation as to why the (CO)2
- does not form could be because 

of the “gentleness” of photodetachment in this case.  With the broadband source, some 

electrons would be detached with a large amount of excess energy.  It’s possible that this 

extra energy is needed to induce the C-C covalent bond in the neutral complex.  During the 

wavelength dependent studies, photodetachment events may occur close to their threshold 

values so that the electrons do not contain sufficient energy to induce C-C bond formation.  

4.5.3  New spectroscopic peak identification 

As stated above, a new species at 1774.7 cm-1 is formed with equal intensity to the 

1780.9 cm-1 peak, the latter of which has been previously assigned to a  Cu(CO)2
- species 

in argon.    It is clear from the photodetachment studies that this species is ionic and due to 

its frequency is likely anionic.  Isotope studies (Figure 4.10, Appendix) show that this 

species contains two equivalent CO molecules bound to a copper center, therefore we 

assign this peak to be a Cu(CO)2
- species.  Although both the 1774 and 1780 cm-1 peaks 

contain two CO units, the peak shape of the 1780.9 cm-1 mixed isotopomer is surprising.  

For the 1774 cm-1 species, the mixed isotopomer is as expected for a linear dicarbonyl, 

however, the 1780.9 cm-1 mixed isotopomer at 1753.7 cm-1 is inherently broad suggesting 

that the two CO ligands are not equivalent.  This broadening could occur for several reasons 

such as the local environment being different around one side of the molecule in relation 

to the other.  It could also be that this species is being perturbed by another molecule in the 
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matrix making the two ends of the molecule inequivalent.  It is interesting that both the 

1780 and 1774 cm-1 peaks are neutralized to the 1890 cm-1 peak suggesting that whatever 

perturbs the anionic complex, does not seem to have an effect on the neutral complex 

(Figure 4.3).  It should also be pointed out that there are some minor peaks near the neutral 

dicarbonyl complex in the isotope studies, however, they are of low intensity and not 

resolved enough for interpretation at this time.  

Preliminary DFT calculations in our group (carried out by Prof. Moore at the 

B3LYP/6-311+G(3df) level) suggest that the two species observed arise from both the 

triplet and singlet states of the anionic copper dicarbonyl.  Although the ground state is 

predicted to be the triplet and was previously assigned by the Andrews group to the         

1780 cm-1 species,88 our calculations suggest that the 1780 cm-1 peak is due to the singlet 

state and that the 1774 cm-1 peak arises from the triplet.  We predict the singlet state to lie 

~10 kcal/mol higher in energy than the triplet state, which could be formed and stabilized 

under our deposition conditions which occur under a large degree of kinetic control.  It is 

not certain at this time why the Andrews group did not observe this peak as well.  It’s 

possible that it was present but obscured by a large broad peak in this region.88  Also, the 

1780 cm-1 band deposited via laser ablation is about 20-fold lower in intensity than in our 

spectra, so it is possible that the 1774 cm-1 is just not concentrated enough to appear in 

Andrews’ study.  Further investigation on this species in our group is ongoing. 
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4.6  Conclusions 

Looking ahead at the ramifications of the proof-of-concept study presented here, 

there are several aspects to be developed.  Perhaps most obviously, the electron-induced 

bond-formation can be applied to a system that is a bit more interesting than the van der 

Waals dimer of CO.  Adding tighter wavelength resolution to the photodetachment step will 

enable precise determinations of photodetachment thresholds in the matrix, which is 

interesting in its own right, but will also enable determination of the lower energy of the 

conduction band-edge, based on the separation of the measured values for anions with 

known gas-phase photodetachment thresholds.  In terms of the photo-triggered 

cryochemistry scheme in Figure 2, the wavelength resolution will allow for precise control 

of the kinetic energies of the electrons in the matrix.  It would be interesting to investigate 

the correlation between the electron energy in the matrix and the capture efficiency for the 

trans-OCCO- formation; thresholds at both the upper and lower limits are certainly 

conceivable.  It would also be interesting to use this scheme to investigate capture of 

electrons by molecular cations that could be monitored in the IR spectrum.  Finally, it 

should be noted that in a general sense, the phenomenon demonstrated here represents an 

interesting opportunity for theorists to study a quintessential example of long-range 

electron transfer between donor and acceptor species trapped in a conducting medium (for 

electrons that are sufficiently above threshold), and one where detailed experimental 

control over many of the most relevant variables. 
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4.7  Appendix 

 
 

Figure 4.5  UV-visible spectrum of emission from tungsten-filament bulb used for broad-

band photodetachment studies. 

 

 

 

300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

 

 

In
te

n
s
it
y

Wavelength (nm)

 735 nm

 660 nm

 590 nm

 470 nm

 365 nm

 
 

Figure 4.6  LED spectra used for narrow-band photodetachment studies.  Neither the       

470 nm nor the 365 nm centered LEDs were used in this study, but are used in later chapters 

and have been included for completeness.   
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Figure 4.7  IR spectrum of the CO stretching region showing concentration dependence of 

the associated bands.  Note the prevalence of the band at 2140 cm-1 for the van der Waals 

CO-dimer59 in the more concentrated 2% CO matrix used for the current study.  The peaks 

near 2150 cm-1 arise from H2O-(CO)n van der Waals complexes.140,141 
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Figure 4.8  Difference spectra emphasizing changes during 5 K annealing steps and 

irradiation steps for data shown in Figure 4.1. 
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Figure 4.9  Tungsten-filament source on during deposition of 3 nA Cu- balanced by Ar+ in 

0.02% CO doped argon matrix.  As expected, no anionic copper compounds are observed 

after a 2 hour deposition:  A) 10 K deposition, B) 15 K, C) 20 K, D) 25 K, and E) 30 K 

annealing.  All spectra recorded at 10 K. 

 

Table 4.1  Gas-phase photodetachment thresholds for anionic copper clusters and anionic 

copper carbonyls 

Anionic Copper Energy   Anionic Copper Energy 

Clustersa eV nm   Carbonylsb eV nm 

Cu1
- 1.2 1033  Cu- 1.23 1008 

Cu2
- 0.9 1378  Cu(CO)- NAc NAc 

Cu3
- 2.4 517  Cu(CO)2

- 0.95 1305 

Cu4
- 1.5 827  Cu(CO)3

- 1.02 1216 

Cu5
- 1.9 653  Cu(CO)4

- 1.04 1192 

Cu6
- 2 620  Cu2(CO)4

- 1.43 867 

Cu7
- 2.2 564  Cu2(CO)5

- 1.25 992 

Cu8
- 1.5 827         

avalues taken from ref. 142 
bvalues taken from ref. 139 
cno photoelectron value is available for the anionic copper monocarbonyl 
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Figure 4.10  Cu-Ar+ codeposited with a 1% 12CO + 1% 13CO in Ar matrix at 10 K:                 

A) deposition, B) visible irradiation, and C) 30 K annealing after irradiation. 
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Chapter 5 

High-temperature deposition: intermediate anionic complex formation upon 

annealing and trapping of subsequent transient photodetachment products 

5.1  Abstract 

 Since its early development, matrix isolation has been used to stabilize transient 

species.  By using the counter-ion codeposition method, transient formation is observed for 

the simple copper-carbonyl system.  After deposition of anionic copper carbonyl precursors 

at 20 K, annealing leads to many new sharp features in the anionic region.  What makes 

this so remarkable is that oscillators which have nominally one vibrational frequency give 

rise to multiple peaks in the spectrum.  The anionic monocarbonyl, for example, gives rise 

to at least five bands while the anionic tricarbonyl gives rise to over fifteen bands, most of 

which contain resolution limited line-widths.  Upon irradiation with wavelengths above 

470 nm, new transients are observed in the neutral copper carbonyl region that have not 

been observed in previous studies.  These peaks clearly arise from precursors that must be 

annealed-in in the anionic region and subsequently photodetached.  Due to the high level 

of control afforded by this new deposition method, neutralization events occur sufficiently 

far from the copper centers such that the neutral transients formed are stabilized and can 

be traced back to their anionic precursors.  Annealing the system after irradiation gets rid 

of the neutral transients which seem to “relax” to previously assigned neutral copper 

carbonyl species.  Some of these bands are reminiscent of long sought-after vertical 

detachment products as is discussed. 
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5.2  Introduction 

 As stated in Chapter 1, our new deposition method was developed with the goal of 

creating a technique called freeze-frame spectroscopy.  We envisioned that transient 

species could be trapped in a matrix, driven over a barrier with the input of energy, and the 

subsequent transient product would also be trapped in the energy dissipating environment.  

Chapter 3 demonstrated the feasibility of depositing sufficient amounts of anionic metal 

into a matrix through the use of explicit counter-ions.  Chapter 4 showed the power of this 

new method, whereby deposition in the absence of ambient light at 10 K allows for a 

“clean” deposition under which only the anionic carbonyl species are created and trapped.  

This study was important since it provided a level of control that cannot be afforded by any 

other method.  However, annealing did not cause any changes in the relative intensities of 

the peaks, only an overall scaling of the spectrum, presumably from matrix loss.  

Furthermore, the anionic to neutral photodetachment occurred in an approximately 1:1 

relation assuming that there isn’t much change in the relative oscillator strengths of the 

various anionic and neutral complexes. 

With these studies in mind, 20 K deposition was reinvestigated.  Due to the higher 

temperature, we expect facile diffusion in the top layer to persist for a longer time than that 

of our 10 K study and for there to be some neutralization.  Indeed a small population is 

neutralized upon deposition but what was not expected was the increased complexity of 

the anionic region of the spectrum due to the appearance of a large number of new peaks 

upon annealing the sample.  Many resolution-limited bands are observed for species having 

nominally one vibrational absorbance in the IR.  Furthermore, the neutralization of these 

peaks through photodetachment leads to neutral species that were not observed before.  
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These new bands seem to arise from a “trapped” transient photodetachment product which 

can be “relaxed” upon annealing to previously assigned complexes.  The spectra of such 

studies are presented here along with possible explanations as to what might give rise to 

the observed transients as well as their connection to possible vertical detachment products. 

5.3  Experimental 

All of the studies contained in this chapter were performed under darkened 

conditions, with all internal sources of light turned off (ion gauges, RGA analyzer, etc.), 

and the lab lights kept off as well.  The spectrometer beam was directed away from the 

deposition chamber when not recording spectra. Irradiation was performed using narrow-

band LED sources centered at 590 nm and 470 nm (Thor Labs, see spectra Chapter 4     

Figure 4.6) held outside the vacuum chamber and introduced through a Kodial glass 

viewport (Kurt J. Lesker Company). 

All matrix samples were prepared by deposition of 4 nA Cu- and Ar+ counter-ions 

in an Ar matrix gas doped with either 0.02% CO for 20 K deposition or 0.0002% CO for 

30 K deposition for 4 hours at 20 K (108 mmol total gas exposure).  Isotopic gas mixtures 

were made using 99% 13CO (< 5% 18O, Sigma-Aldrich).  All matrix gases were purified 

by flowing through a copper tube immersed in an ethanol liquid-nitrogen bath prior to 

deposition.  Annealing up to 30 K was carried out by holding the sample at the specified 

temperature for 30 minutes then cooled back to 10 K in order to record a spectrum.  

Annealing to 40 K was done by holding the sample at temperature for 5 minutes before 

cooling to 10 K.  We have found that samples deposited at higher temperatures can 

generally withstand higher annealing temperatures.  This is attributed to the matrices being 

annealed during deposition to a higher extent, making them more crystalline and thus 
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making them less prone to vacuum sublimation.  Matrices formed at 20 K and 30 K can be 

annealed briefly to 40 K and 45 K, respectively, before significant loss occurs. 

5.4  Results 

 5.4.1  Annealing followed by irradiation 

 Figure 5.1 presents deposition at 20 K in the absence of light.  As was seen in earlier 

20 K deposition experiments,138 all anionic copper carbonyl species are present along with 

the secondary-shell cluster.  Furthermore, a small amount of neutral species are present 

upon deposition as well, which is in contrast to the “clean” deposition afforded at 10 K 

under which only anionic copper species are present.143  Presumably the transient warm 

layer of the matrix persists long enough for a small population of anions to come in close 

enough proximity with a cation and directly transfer charge.  Qualitatively the deposition 

is similar to that seen in our previous study when all lights were left on (Chapter 3) with 

some minor quantitative differences such as an increased amount of anionic dicarbonyl. 

 A big difference between this study and our previous studies occured when the 

matrix is annealed.  Annealing the matrix to 25 K (Fig. 5.1B) and 30 K (Fig. 5.1C) depletes 

several of the anionic bands while several new sharp bands appear slightly blue shifted to 

those that annealed away (subtraction spectra have been included in order to emphasize 

changes).  Specifically the CuCO- band at 1733.5 cm-1 losses intensity while the            

1745.0 cm-1 grows in.  Likewise, the anionic dicarbonyl peak at 1774.2 cm-1 is annealed 

away while a peak at 1784.6 cm-1 anneals in.  The implications of this apparent population 

transfer are discussed below.  The main anionic tricarbonyl peak at 1829.9 cm-1 does not 

change even though there is a growth of peaks to the red of this peak at 1823.1 cm-1 and 

1826.0 cm-1 as well as peaks to the blue which sharpen out of the solvation shell complexes.  
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This increased complexity is an odd phenomena for matrix studies which normally use 

annealing as a way to simplify spectra by annealing away site-effects into a single stable 

band; instead the anionic region is becoming much more complicated.  Furthermore, a large 

amount of neutral complexes appear after annealing (for a full list of matrix peaks, see 

Table 5.1 in the Appendix).  Since the overall area of the anionic complexes is conserved, 

it is unclear at this point where the neutral complexes originate.  It is possible these arise 

from free Cu- centers that become neutralized and form complexes upon annealing, or from 

a small population of anionic complexes that become neutralized and have greater 

oscillator strengths in their neutral forms.   
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Figure 5.1  Cu- Ar+ co-deposited (4 nA each) for 4 hours with 0.02% CO in argon at 20 K:  

A) 20 K deposition, B) 25 K annealing, C) 30 K annealing, D) 590 nm irradiation,                  

E) 470 nm irradiation, F) 30 K annealing, and G) 35 K annealing.  All spectra taken at        

10 K.  Subtraction spectra included to emphasize changes.  

 

Irradiation with a 590 nm centered, narrow-band LED causes photodetachment 

from all anions except for the Cu(CO)3•(CO)n
- species while their corresponding neutrals 

grow in.  This result is consistent with previous photodetachment studies on the 10 K 
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deposition system with the exception of the solvated clusters which are not formed at the 

lower deposition temperature.143  Further irradiation with 470 nm centered light depletes 

the remaining solvation shell anions.  In addition to the expected neutral carbonyl species 

formed from photodetachment of the anionic precursors, new transient peaks also appear 

in the neutral copper carbonyl region.  In particular, a transient monocarbonyl band at 

2022.2 cm-1 and two transient dicarbonyl bands at 1889.9 and 1894.7 cm-1 are the focus 

of this study.  There are also transient dicarbonyl bands at 1869.2, 1875.7, and                

1876.2 cm-1 as well as tricarbonyl peaks at 1962.2, 1991.1, and 1992.3 cm-1, none of which 

play a prominent role in the following discussion.  These transient species are gone after 

30K annealing with the exception of the 1991.1 cm-1 and 1992.3 cm-1 peaks which persist 

until 40 K annealing.  These transients have important ramifications for our new deposition 

method and future studies as is discussed.  In addition there is a large increase in the neutral 

intensities upon annealing after photodetachment.  In particular, the dicarbonyl seems 

much larger than can be explained just from the initial intensity in the corresponding anion. 

What is immediately obvious about most of the peaks observed is that they are 

sharp and baseline-resolved, causing us to take some high resolution (0.125 cm-1) scans.  

Figure 5.2 shows the remarkable spectra with unprecedented resolution for peaks of ions 

deposition in argon.  Most of these bands are resolution-limited and reveal how unique and 

clean this new deposition method is.  It is also revealing to see how many peaks are present 

in each of these regions.  The anionic monocarbonyl, for example, contains 5 absorbances 

while the anionic tricarbonyl contains at least 20 resolved bands.  It is important to keep in 

mind that all these peaks arise from species with nominally one IR active mode.  It is also 

revealing to see peaks which are inherently broad such as the neutral dicarbonyl bands at 
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1982.5 and 1983.4 cm-1 in comparison to the neutral dicarbonyl transient bands at 1890.0, 

1894.3, and 1894.8 cm-1, which are all resolution-limited.    
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Figure 5.2  High resolution (0.125 cm-1) spectra of Figure 5.1 after 30 K annealing of        

A) anionic region and B) neutral region.  C) neutral region after 470 nm irradiation.  In 

order to get spectrum A, the high resolution 30 K scan was subtracted from the irradiation 

scan in order to remove atmospheric water lines across this region.  No anionic species 

remain after irradiation, so subtraction only removes water lines and does not affect the 

anionic spectrum.  Since the atmospheric peaks are only present up to ~1800 cm-1,      

spectra B and C are both raw data with no background interferences.   
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 5.4.2  Irradiation before annealing 

 A comparison experiment was performed whereby a matrix was deposited and 

irradiated before annealing.  All deposition parameters remained the same as that in    

Figure 5.1 and therefore all species formed upon deposition remain the same (compare 

Figures 5.1A and 5.3A).  However, when irradiation is performed before annealing, Figures 

5.2B and 5.2C, several of the transient neutral species are never observed.  In particular, 

the 2022.2 cm-1 and the 1894.7 cm-1 peaks no longer appear even after all anionic copper 

peaks are gone (see subtraction spectra in appendix Figure 5.8 for obvious differences).  It 

is important to note here that since annealing was not performed while the anionic species 

were present, neither the 1745.0 cm-1 nor the 1784.8 cm-1 species are created.  Their 

absence coincides with the absence of the neutral transient bands implying that the anionic 

species that are annealed in are precursors to the transient neutrals observed above as will 

be discussed in detail below.         
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Figure 5.3  Cu- Ar+ co-deposited (4 nA each) for 4 hours with 0.02% CO in argon at 20 K:  

A) 20 K deposition, B) 590 nm irradiation, C) 470 nm irradiation, D) 30 K annealing, and 

E) 35 K annealing.  All spectra taken at 10 K.   
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 5.4.3  High-temperature assessment 

 Two experiments were performed to see if the new anionic species remain at higher 

temperatures.  After forming the transient anionic peaks by annealing to 30 K               

(Figure 5.4B), the system was warmed to 40 K.  As seen in Figure 5.4, both the 1745.0 and            

1784.8 cm-1 peaks are annealed away, with the 1733.5 and 1780.8 cm-1 species regaining 

some of the lost intensity.   In contrast, the peaks that sharpen out of the anionic tricarbonyl 

region remain at the higher temperature.  Upon photodetachment, the neutral transient 

species are again absent, providing further support for the hypothesis that they arise from 

the anionic precursors (which were lost after 40 K annealing).  Also, there are now clear 

differences in the tricarbonyl region after photodetachment.  Only four bands are observed 

at 1975.5, 1982.5, 1983.4, and 1985.8 cm-1 and this spectrum did not change upon 

annealing. Furthermore, the overall population of neutral species did not change upon 

annealing after irradiation (compare this to Figures 5.1 and 5.2). 
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Figure 5.4  Cu- Ar+ co-deposited (4 nA each) for 2 hours with 0.02% CO in argon at 20 K:  

A) 20 K deposition, B) 30 K annealing, C) 40 K annealing, D) 470 nm irradiation, and      

E) 30 K annealing.  All spectra taken at 10 K.  (data taken by Michael Goodrich) 
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 Since the anionic transients anneal in at 30 K, deposition was performed at 30 K to 

try and selectively deposit these transients (Figure 5.5).  Due to increased clustering at the 

higher deposition temperature, a 2 ppm CO matrix was used, however this largely shifts 

the overall stoichiometry to the monocarbarbonyl.  Upon deposition a large amount of 

1745.0 cm-1 is present in comparison to 20 K, but none of the other transients are observed.  

There is also a new peak in the neutral region at 1970.2 cm-1 which has not been observed 

in previous studies.  We observe previously assigned water complexes in our spectra at 

2149.3 and 1572.9 cm-1 assigned in the literature to the CO-H2O complex140 and the         

Cu-H2O species144, respectively.  Based on this observation, it is possible that the             

1970 cm-1 band is due to a Cu-H2O-CO complex.  Furthermore, this species is lost upon 

470 nm irradiation signifying that this could be an anionic species.  An experiment using 

higher levels of 0.002% CO was attempted, but the increased clustering greatly shifts the 

complexation toward the tricarbonyl making it impossible to observe the 1745.0 or       

2022.2 cm-1 bands (Figure 5.9, Appendix).   

What is very interesting is the lack of the 2022.2 cm-1 peak which is suspiciously 

absent even though some 1745.0 cm-1 was present before irradiating.  On the other hand, 

the 1962.5 cm-1 complex does appear even though the anionic tricarbonyl is very low.  This 

1962.5 cm-1 peak is annealed away at 40 K annealing.  Using a 470 nm centered LED is 

able to get rid of the 1970.2 cm-1 peak.  Unlike the previous studies, neutralization of these 

transients did not seem to add intensity to any other complex. 
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Figure 5.5  Cu- Ar+ co-deposited (4 nA each) for 4 hours with 2 ppm CO in argon at 30 K:  

A) 30 K deposition, B) 35 K annealing, C) 590 nm irradiation, D) 30 K annealing, E) 40 K 

annealing, and F) 470 nm irradiation.  All spectra taken at 10 K.   

 

5.5  Discussion 

 Typically annealing a matrix leads to simplification of the spectrum, instead the 

anionic region presented here becomes much more complicated.  All the copper species 

have nominally one infrared active mode yet give rise to multiple bands.  Just as surprising, 

especially for argon, is that higher resolution scans show that most of these peaks contain 

resolution limited linewidths (see high resolution scan Figure 5.2).  Upon annealing, the 

neutral complexes behave “normally” in that they move toward a more stable peak.  As we 

do not understand why these changes are occurring, each of the mono-, di-, and tricarbonyl 

changes are discussed below in a phenomenological way.  Possible explanations as to why 

these changes occur are also discussed as well as their connection to vertical-detachment 

products.   
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5.5.1  Cu-CO-  Cu-CO 

 The easiest peak transitions to follow are those which arise from the monocarbonyl.  

The previously assigned anionic copper monocarbonyl at 1733.5 cm-1 gives rise to a new 

peak at 1745.0 cm-1 upon annealing to 30 K.  A 50:50 12CO:13CO doped matrix reveals this 

peak to arise from the copper monocarbonyl species (see isotopic spectrum, Figure 5.11.C).  

After irradiation, a peak at 2022.2 cm-1 appears in the spectrum.  Due to its broadness, it is 

difficult to assign this band in the isotope study although there seems to be another broad 

band at 2002.5 cm-1 which may be the 13CO complex.  The 2022.2 cm-1 band is annealed 

away at 30 K with the concomitant 2-fold growth of the previously assigned neutral          

Cu-CO peaks at 2007.7 and 2010.2 cm-1 (Figure 5.1F).  If the system is not annealed when 

the anionic species are present such that the 1745.0 cm-1 does not form, the 2022.2 cm-1 

does not appear upon neutralization.  Likewise, annealing after neutralization does not lead 

to any increase in the 2007.7 or 2010.2 cm-1 bands (Figure 5.8, Appendix).  Finally, if the 

1745.0 cm-1 is annealed away at 40 K before irradiation (Figure 5.4C), the 2022.2 cm-1 

does not appear after neutralization and once again the 2007.7 and 2010.2 cm-1 peaks do 

not gain intensity upon further annealing.  We can therefore draw the following reaction 

scheme: 

 

Figure 5.6  Reaction scheme for the copper carbonyl complex.  The asterisks denotes a 

transient complex. A curved arrow is used to emphasize that the “back” process happens 

only at 40 K. 
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 The 30 K deposition study is strange in that the 2022.2 cm-1 is not formed even 

though a large fraction of 1745.0 cm-1 is present upon deposition (see Figure 5.5).  This 

makes sense upon deposition since any 2022.2 cm-1 that is formed should be rapidly 

converted to the more stable 2010.2 cm-1 at 30 K; however, irradiation should have led to 

a population of the 2022.2 cm-1, which did not occur.  Since we do not know precisely what 

mechanism gives rise to these peaks (see section 5.5.4), it is difficult to speculate about 

these high-temperature results at this time. 

 5.5.2  Cu(CO)2
-  Cu(CO)2 

 A similar situation exists for the dicarbonyl species.  Two peaks are present for the 

anionic dicarbonyl upon deposition, at 1774.2 cm-1 and 1780.7 cm-1, both of which have 

been observed in our previous studies at 10 K deposition.  Annealing to 30 K destroys the 

1774.2 cm-1 band and slightly decreases the 1780.7 cm-1 peak while a new band at       

1784.8 cm-1 grows into that region (see subtraction data, Figure 5.1C-B).  Just as in the 

anionic monocarbonyl system, 40 K annealing transfers the population from the           

1784.8 cm-1 species back to the 1780.7 cm-1 signal (Figure 5.9C-B, Appendix).  In isotopic 

studies, the 1784.8 cm-1 peak is overlapped by the 13CO-tricarbonyl compound and its 

mixed isotopomer was not intense enough to observe in those studies.   

 The neutral dicarbonyl species consists of six peaks.  Two peaks at lower 

wavenumbers of 1869.2 and 1875.7 cm-1 are present upon irradiation and disappear upon 

subsequent annealing to 30 K.  In the high temperature annealing study (Figure 5.4) the 

1875.7 cm-1 peak is present upon irradiation regardless of the fact that the 1784.8 cm-1 

precursor is not present.  It is difficult to determine whether the 1869.2 cm-1 species is also 

present due to its inherent broadness and weak intensity.  It should also be noted that the 
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30 K deposition study does not have either of these two peaks but instead contains a new 

transient at 1876.2 cm-1 (Figure 5.5). 

 The other four neutral bands, all of which show expected isotope behavior for a 

dicarbonyl, are much more interesting to track and play a more prominent role toward the 

vertical detachment explanation below.  Upon annealing the deposited matrix, two peaks 

at 1890.9 cm-1 and 1892.3 cm-1 anneal in (Figure 5.21C-B).  On the other hand, irradiation 

leads to bands at 1889.9 cm-1 and 1894.7 cm-1 (Figure 5.1D-C).  A high-resolution 

spectrum reveals that the 1894.7 cm-1 band is actually a doublet at 1894.3 and                

1894.8 cm-1 but for clarity will be considered here as one peak.  Upon annealing to 30 K 

after irradiation, both of the two “outer” transient bands anneal into the two inner bands 

(Figure 5.1F-E).  Further annealing to 35 K, reduces more of the 1889.9 cm-1 band as well 

as the 1892.3 cm-1 band while the 1890.9 cm-1 peak gains some intensity.  Although these 

are very minor changes compared to the rest of the processing steps, deposition at 30 K 

creates only the 1890.9 cm-1 peak; therefore, it seems as though the 1890.9 cm-1 species is 

the most stable form of the neutral dicarbonyl.  When the matrix is processed at 40 K, 

irradiation leads only to the 1889.9 cm-1 species which is then annealed into the            

1890.9 cm-1 band.  It is difficult to tell if the 1892.3 cm-1 peak also increases since these 

changes are very small in the subtracted data (Figure 5.9E-D, Appendix).  Based on the 

above observations, we can write the following dicarbonyl reaction for 20 K deposition: 
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Figure 5.7  Reaction scheme for the copper dicarbonyl complex.  The asterisks denote a 

transient complex. A curved arrow is used to emphasize that the “back” process happens 

only at 40 K. 

 

 5.5.3  Cu(CO)3
-  Cu(CO)3 

The tricarbonyl species is much more difficult to follow due to the number of peaks 

observed in this region and exact reactions cannot be made at this time, however, some 

points are worth mentioning.  Throughout the annealing steps, the 1829.9 cm-1 band does 

not seem to change despite many sharp peaks arising from this area.  This is interesting 

because both the anionic mono- and di-carbonyl systems lost intensity in their main bands 

which gave rise to anionic transients.  Likewise, when annealing the anionic system to       

40 K the new bands near the anionic tricarbonyl are relatively unchanged although some 

unresolved changes do take place (Figure 5.9C-B, Appendix).  This again is in contrast to 

both the anionic mono- and di-carbonyl systems.  The changes occurring in the tricarbonyl 

region do not appear to be due to transient species or at the very least are not due to the 

same phenomena that alter the other two systems.  Since a large population of the anionic 

tricarbonyl contains some CO in an outer solvation shell, the changes observed could be 

due to these secondary molecules rearranging to create more stable structures.  Besides two 

peaks at 1823.1 cm-1 and 1826.0 cm-1 that gain intensity to the red of the anionic tricarbonyl 

compound, all other changes occur to the blue in the solvation shell region.  One feature 
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that is very prominent in the spectrum is a triplet at 1832.5, 1834.0, and 1835.2 cm-1.  Upon 

annealing, the 1832.5 cm-1 peak loses intensity while the 1835.2 cm-1 peak becomes more 

intense than the normal tricarbonyl band.   

Irradiation with 590 nm centered light photodetaches most of the anionic 

tricarbonyl region with the exception of the larger solvation shell clusters.  These are able 

to photodetach with UV light centered at 470 nm.  One possible explanation is that the 

extra energy is needed for the electron to escape the surrounding CO-containing cage.  The 

unresolved broad anionic feature clearly neutralizes into the unresolved broad region 

between the neutral tricarbonyl peaks (Figure 5.1E-D).  The overall area of the broad region 

is roughly the same between the anionic and neutral spectra.  This same trend is seen when 

irradiation is performed without annealing (Figure 5.8C-B, Appendix).  The neutral 

tricarbonyl region has peaks which sharpen and gain intensity as the system is heated.  It 

seems as though the entire system is annealing toward the 1985.8 cm-1 at the higher 

temperatures.  

 Although the overall trends cannot be followed at this time, there are a few 

differences between the different experiments that should be mentioned.  First, one peak 

worth noting is the 1978.1 cm-1 band which is present whether the anionic system is 

annealed first or not, however, it is not there when the system has been heated to 40 K.  

Also, the 1975 cm-1 to 1985 cm-1 ratio is much greater when the anionic bands are annealed 

to 40 K before irradiation.  Likewise deposition of 0.002% CO at 30 K (Figure 5.10, 

Appendix) leads to a large amount of both the 1975 and 1985 cm-1 bands.  Both these 

studies and our previous studies are consistent with the 1975 cm-1 band being the Cu(CO)4 

species however previous isotope studies (Chapter 4) suggest this peak contains three 
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equivalent CO ligands.  It is possible that the fourth CO-ligand might show up somewhere 

else, but as of now we have no evidence for this.  An isotope study at the higher temperature 

may be warranted for a future study.  Finally the lowest CO concentration at 30 K        

(Figure 5.5) contains a new peak at 1970.2 cm-1.  This does not change upon annealing 

even up to 40 K but instead goes away upon 470 nm irradiation.  Also, upon irradiating the 

anionic peaks with 590 nm light, a transient at 1962.5 cm-1 is present which anneals away 

at 40 K.  The loss of these two peaks does not seem to add intensity to any other species 

and it is uncertain why they go dark under these conditions. 

5.5.4  Possible explanations for anionic transient formation  

One major point that is not understood is why the anionic transient peaks arise.  

Each individual species is presented below, but it seems as though the phenomenon which 

gives rise to these peaks should be generally the same for each species.  A simple 

explanation is that the complex changes geometry upon annealing which would lead to a 

change in frequency.  It is hard to imagine why this would occur spontaneously even with 

the matrix moving toward a more crystalline form.  If structural geometry is changing, it 

seems as though this must be driven by another process occurring in the matrix.  Another 

possibility is that another CO molecule gets close enough to perturb the vibrational 

frequency.  Indeed we have assigned peaks that are blue shifted from the anionic 

tricarbonyl to such secondary shell molecules,138 which would be consistent with these new 

transients also blue shifting.  The problem with this explanation is that isotope studies do 

not show any unexplained peaks, i.e. all isotopic peaks can be explained based on their 

parent species.  Also, this type of diffusion-like process should shift the complexes toward 

larger stoichiometries which does not seem to occur.   
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Since cations and anions must be present in order to maintain charge balance, these 

peaks could arise due to ion-ion interactions.  Deposition at 20 K forms a portion of neutral 

species whereas 10 K deposition (Chapter 4) isolates only anionic complexes; therefore, 

anions and cations in the surface layer of the forming matrix must be getting close to each 

other at 20 K, close enough that some population is able to transfer charge.  It is interesting 

to note here that these transients are not observed when processing a 10 K sample which is 

consistent with the ions getting trapped far enough apart at the colder deposition such that 

they cannot anneal close to each other.  All of these explanations become very complicated 

when considering the high temperature annealing at 40 K before irradiation (Figure 5.4C) 

which transfers population from the transients back to their precursor anionic peaks.  If 

secondary molecules were causing a change, higher temperature annealing should lead to 

clustering.  Likewise if ion pairs create the observed shift, then high temperature annealing 

should lead to neutralization.   

There is also a third possibility that should be mentioned:  the spectral changes are 

due to a temperature-dependent change in the argon matrix.  This change in the cage 

structure could induce the observed shifts.  Although there is no precedent to believe that 

a temperature-dependent argon transition exists, it would explain the issues described 

above. 

5.5.5  Vertical detachment products: an explanation for neutral transients 

Regardless of what causes the anionic transient bands to form, the neutral transients 

must arise from the anionic transient precursors.  These bands only form from irradiation 

of the anionic transient system.  Furthermore, they anneal away to previously assigned 

bands.138  It seems that whatever form they exist in as anions becomes trapped as neutrals 
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in the energy dissipating environment upon irradiation.  They are then able to “relax” to 

stable geometries upon annealing.  This behavior is very reminiscent of vertical 

detachment, which can arise when the geometry of an ion differs from that of the neutral 

molecule, as is often the case.  A vertical detachment product is the result of an ion that has 

been neutralized or neutral molecule that has been ionized and the resulting complex 

remains trapped in the precursor geometry.   This is in contrast to adiabatic ionization which 

is the lowest energy necessary to detach an electron and leads to the lowest, relaxed 

geometry of a system.145  Furthermore, according to the Franck-Condon principle the 

vertical ionization energy is always greater than the adiabatic ionization energy.145  This 

property could be used in future wavelength-dependent photodetachment studies 

experiments if selective wavelengths can be used to neutralize precursors versus transients. 

5.6  Conclusions 

 The power of this new deposition method toward the formation and stabilization of 

transient bands has been presented.  Though a small population of ions become neutralized 

upon deposition, this method is still much cleaner and under more control than previous 

ion deposition methods.  Different combinations of heating and irradiation afford us the 

ability to follow reactions by forming intermediates and/or products.  Indeed this is what 

we set out for with the development of freeze-frame spectroscopy.  Future studies involving 

very-narrow wavelength filters should allow us to follow these reactions in greater depth.  

Furthermore, in-depth information should be gained by deposition of metal-cluster ions in 

future reaction studies. 
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Future studies will also involve deposition of spectroscopically active counter-

cations such that ion-ion interactions in the matrix can be followed if any are occurring.  

Selection of such cations could afford us another level of control in that smaller mobile 

cations could be used to follow annealing changes or larger cations that should not diffuse 

readily can be deposited.  Finally, many of the neutral transients stabilized here are 

reminiscent of vertical detachment products.  Success of isolating such species is critical 

in moving forward with this project.  It is proof that we not only can form such unstable 

intermediates, but we have the ability to move them along potential energy surfaces by the 

introduction of heat or light.  

5.7  Appendix 
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Figure 5.8  Subtraction data from Figure 5.3 showing differences for:  B-A) 590 nm 

irradiation, C-B) 470 nm irradiation, D-C) 30 K annealing, and E-D) 35 K annealing.   
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Table 5.1  Peak assignment for high temperature, 20 K and 30 K, deposition.  Wherever 

possible, peak position was based on high-resolution scan (0.125 cm-1) 

Parent 
Species Wavenumber (cm-1)   Parent Species Wavenumber (cm-1)   

Cu(CO)- 1733.5 A Cu(CO) 2007.7 B 

  1737.1 A   2010.2 B 

  1739.2 B   2022.2 C 

  1742.6 B       

  1745.0 B       

Cu(CO)2
- 1774.2 A Cu(CO)2 1869.2 C 

  1780.8 A    1875.7 C 

 1781.9 A  1876.2 C 

  1784.8 B   1889.9 C 

       1890.9 B 

      1892.3 B 

        1894.7 C 

Cu(CO)3
- 1823.1 B Cu(CO)3 1962.2 C 

 1825.1 A  1962.5 D 

  1826.0 B   1970.2 D 

  1827.0 B   1975.5   

 1830.0 A   1978.1 A 

  1832.5 A   1981.0 A 

  1834.0 A    1982.5 B 

  1835.2 A   1983.4 B 

  1836.6 B   1984.6 B 

  1837.5 B   1985.8 B 

  1838.1 B   1991.1 C 

  1839.8 B   1992.3 C 

  1841.0 B       

  1842.4 B       

  1843.1 B       

  1843.9 B       

  1845.3 B       

A – peak present upon deposition 

B – peak annealed in 

C – transient peak upon photodetachment 

D – only present at 30 K deposition 
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Figure 5.9  Subtraction data from Figure 5.4 showing differences for: B-A) 30 K annealing, 

C-B) 40 K annealing, D-C) 470 nm irradiation, and E-D) 30 K annealing.   
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Figure 5.10  Cu- Ar+ co-deposited (4 nA each) for 4 hours with 0.002% CO in argon at     

30 K:  A) 30 K deposition, B) 35 K annealing, C) 590 nm irradiation, and D) 30 K 

annealing.  
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Figure 5.11  Cu- Ar+ co-deposited (4 nA each) for 6 hours with 0.02% 12CO + 0.02% 13CO  

in argon at 20 K:  A) 20 K deposition, B) 25 K annealing, C) 30 K annealing, D) 590 nm 

irradiation, E) 470 nm irradiation, F) 30 K annealing, and G) 35 K annealing.   
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Chapter 6 

Identification of (CO)2
+ in argon matrices 

Data in this chapter were collected with assistance of undergraduate research student, Jin 

Nam Ahn.  All data workup presented here and analysis were performed by Ryan Ludwig. 

 

6.1  Abstract 

 The CO+ and (CO)2
+ species have been well-known ions in neon matrices where 

they are formed under plasma deposition techniques.  Likewise, (CO)2
- is also formed in 

these experiments by trapping of an electron by the (CO)2 cluster.  The CO-dimer anion 

has also been observed in CO-doped argon matrices formed as a byproduct of laser ablated 

metals.  In these studies, however, no CO or CO-cluster cations were observed.  Using our 

deposition system under high energy Ar+ settings, bombardment of CO-doped argon 

matrices forms several ionic CO species.  Two bands near 1513 and 1516 cm-1 have been 

observed and assigned by previous groups to be the (CO)2
- anion.  We also observe a new 

peak in this region at 1522 cm-1 which is tentatively assigned to CO-.  In order for the 

matrix to maintain charge balance, cationic species are also formed.  Two new peaks at 

2047 and 2048 cm-1 are assigned to the (CO)2
+ complex based on isotopic shifts and our 

previous observations that these peaks are formed and contain the same behavior regardless 

of metal that is used.  Finally, a peak is observed at 2181 cm-1.  This position is near the 

neon value for CO+ and may be due to this ion; however, the frequency of any isotopically 

labeled molecule will be covered by the large, neutral CO bands and a definitive 

assignment cannot be made at this time.  
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6.2  Introduction 

 The CO dimer has long been known to be a stable molecule.146  Even early matrix-

isolation studies showed complexities in the vibrational spectrum of CO-doped 

matrices147,148 which Pimentel later proposed was due to CO clusters that are easily formed 

under typical deposition conditions.149  The exact identification of these clusters was long 

debated,55-58,150-152 until Yamada’s experiments in which both the 2136.1 and 2138.5 cm-1 

bands were assigned to the CO monomer, the 2140.1 cm-1 signal to the CO-dimer, and a 

peak at 2149 cm-1 to the CO-H2O complex.59   

The (CO)2
+ cation has also been studied in gas-phase experiments for many years.  

The CO-dimer cation was first observed through use of mass spectroscopic studies by the 

Franklin group, who showed that it readily forms with CO partial pressures below 100 Pa 

and low electron energies.153  Franklin extended these studies to high pressure reactions of 

methane with CO+ and (CO)2
+.154  Using photoionization techniques, Linn measured the 

molecular dissociation energy for the formation of CO + CO+ to be 0.97 eV,53 which was 

in agreement with previous studies.154-156  More recently, the ground-state dissociation 

energy has been estimated to be greater than 1.29 eV.157  In 1982 Knight and coworkers 

first isolated the CO+ species in a neon matrix, detected via ESR spectroscopy,158 and 

extended these studies to include the (CO)2
+ species.159  This study also included ab initio 

calculations which predicted the charge to be delocalized with a planar trans, ground-state 

structure and CCO bond angles of 141⁰.159  Weinhold later performed detailed calculations 

of the potential energy surface to account for the exceptionally high photodissociation 

energy which was consistent with the earlier prediction of the structure.160,161 
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The (CO)2
- was not observed in early mass-spectroscopic studies, however 

calculations predicted that the ground state should be bound and stable with respect to the 

separated CO + CO- molecules.162  Similar to the dimer-cation, the dimer-anion was 

predicted to have charge delocalization and adopt a planar trans-structure with CCO 

valance angles of 143⁰.163  These calculations were supported by Schaefer, who predicted 

the ground state to be a trans-bent, C2h structure with the bond angle near 150⁰.164  The 

first experimental evidence came from Margrave who deposited CO and Li in cryogenic 

matrices which spontaneously formed a Li+C2O2
- complex observed by IR spectroscopy 

(Chapter 1).165  Similarly, Silvia observed two IR bands for the Na+C2O2
- complex in argon 

which corresponded to calculations for the planar trans structure with angles near 170⁰.166  

Franklin has reported an electron affinity of 1.37 eV for CO, but definitive spectral data 

for CO- have not yet been reported.167 

Using a microwave discharge source (see Chapter 1 for details), Jacox was able to 

create and stabilize CO+, C2O2
+, and C2O2

- in a neon matrix.168  They assigned a peak at 

2194.4 cm-1 to the CO+ species which was only shifted by 10.5 cm-1 from the gas-phase 

value of 2183.9 cm-1.  A peak at 2056.6 cm-1 was assigned to C2O2
+ redshifted from the 

CO frequency.  This lower frequency was rationalized by bond lengths determined 

experimentally for CO and CO+ to be 1.128 Å and 1.115 Å,169 respectively, and a calculated 

bond length of ~1.14 Å for the trans-OCCO+ species.159,160  Finally, a band at 1520 cm-1 

was assigned to C2O2
- as well as a combination band at 2041 cm-1 from the ν3 (bend) + ν5 

(CO stretch), though they could not rule out that the band at 2041 cm-1 was not due to      

CO-.168  The computational study by Schaeffer was in excellent agreement with Jacox’s 

experiments, including isotopic predictions within a few wavenumbers.168 



 

125 

Andrews also observed these species in neon, with similar frequencies to those 

observed by Jacox.129  The laser-ablation source naturally generated such species as 

byproducts during the deposition of ablated metals.  The CO+ and (CO)2
+ species are 

formed near the highly energetic deposition region and the (CO)2
- was assumed to form 

from capture of an electron by the van der Waals CO-dimers.129  When CCl4 was added to 

neon as an electron trap, both the CO+ and (CO)2
+ bands doubled in intensity while the 

yield of (CO)2
- was reduced.  The cationic bands presumably increased in yield since there 

were not as many free electrons to neutralize these species whereas the anion decreased 

since fewer electrons were available for capture by the neutral CO-dimer compound.  In 

Andrews’ copper-CO study in argon, a peak at 1515.5 cm-1 was assigned to the (CO)2
- and 

a peak at 1512.9 cm-1 was assigned to a site peak of the dimer anion, however, neither the 

CO+ nor the (CO)2
+ were observed.       

In this chapter, the (CO)2
+ resonance is assigned for the first time in argon.  This 

species has been observed in all of our previous metal-CO experiments and does not change 

based on the metal in use (Figure 6.4).  In order to rule out any metal perturbations, high 

energy Ar+ bombardment is used to produce ionic CO species in the matrix without the use 

of explicit counter-ions such as a metals; therefore, all ionic peaks are believed to only 

contain CO-units. 

6.3  Experimental 

For these studies, the deposition and subsequent processing steps were carried out 

under darkened conditions.  Irradiation studies were performed using several narrow-band 

LED sources (see spectra, Chapter 4).  Gas mixtures were prepared by dilution of a 

purchased mixture of 10% CO in He (PRAXAIR) down to a 2% CO with Ar (PRAXAIR, 
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99.9999%) for 10 K deposition studies or 0.5% for 20 K deposition.  Isotopic gas mixtures 

were made using 99% 13CO (< 5% 18O, Sigma-Aldrich).  All matrix gases were purified 

by flowing through a copper tube immersed in an ethanol-liquid nitrogen bath prior to 

deposition.  Ionic CO species were formed in situ by bombardment of ~60 nA of 400 eV 

Ar+ throughout matrix deposition, which ionizes CO clusters, a process that occurs 

spontaneously, presumably due to the difference in ionization potentials and the high Ar+ 

kinetic energies employed (Chapter 1).  As far as we can tell, no other ionic species are 

formed other than those derived from CO units.  We believe this is due to the low levels of 

contaminants in our system such as H2O, CO2, and O2 which should readily ionize under 

these conditions if present at sufficient concentrations. 

6.4  Results 

 6.4.1  High energy Ar+ bombardment 

 Figure 6.1A shows a high-resolution spectrum after a 4 hour deposition at 20 K of 

400 eV Ar+ into a 0.5% CO in argon matrix.  Two spectral regions are shown:  an anionic 

region near 1515 cm-1 and a cationic region near 2050 cm-1.  The anionic region contains 

two peaks around 1513 and 1516 cm-1 which are reminiscent of (CO)2
- bands observed in 

previous argon experiments,88,129 and a new peak at 1522 cm-1 which has nearly equal 

intensity to the 1513 cm-1 species.  There are also a few low intensity, broad peaks in that 

region as well (Figure 6.7, Appendix).  A complete listing of the observed ionic bands and 

their assignments are given in Table 6.1.   

Two other peaks that were not observed in the previous studies appear in our 

spectrum at 2047 and 2048 cm-1 and are assigned to the (CO)2
+ species.  These bands were 

present in all our previous metal carbonyl experiments at 20 K as well, and had the same 
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vibrational frequency regardless of metal used (Figure 6.4, Appendix).  Irradiation with 

wavelengths employed in this study longer than 470 nm, had no effect on the spectra.  With 

470 nm centered light (Figure 6.1F), all peaks, except the 1522 cm-1 band, began to 

decrease.  The 1522 cm-1 peak seems to not be affected even with wavelengths down to 

365 nm.  

Table 6.1  Vibrational band positions (in cm-1) for (CO)2
q  [q=-1,+1] species in 

argon matrices 

Species 10 K (cm-1) 20 K (cm-1) 

CO+ 2180.6 2180.6 

(CO)2
+   2047.0 

  2047.8 2047.9 

(CO)2
- 1513.0 1513.1 

  1514.7 

 1515.5 1515.8 

 1519.7 1519.9 

CO- 1521.8 1522.0 

    1526.4 

 

 

A weak band at 2180 cm-1 is also present in our spectra.  This band has been 

observed in previous experiments by our group while studying metal carbonyl complexes, 

but has never been so clearly present as it is under high-energy deposition.  This band also 

follows the general irradiation trends observed for the anionic and cationic species 

observed in Figure 6.1.  Based on this trend and its location, we tentatively assign this band 

to a CO+ species (see Discussion section for details). 
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Figure 6.1  400 eV Ar+ deposition into 0.5% CO in excess Ar matrix, deposited for 4 hours 

at 20 K.  A) 20 K, 0.125 cm-1 resolution, B) 20 K, 0.5 cm-1 resolution, C) 735 nm,                  

D) 660 nm, E) 590 nm, F) 470 nm, and G) 365 nm.  All spectra taken at 10 K.  Irradiation 

performed for 5 minutes with specified LEDs while sample at 10 K. 
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Figure 6.2  Same sample as Figure 6.1 showing a low intensity band blue-shifted from the 

main CO peak.  This is near where CO+ should show up and follows the same irradiation 

trends as the other ionic peaks:  A) 20 K, 0.125 cm-1 resolution, B) 20 K, 0.5 cm-1 

resolution,  C) 735 nm, D) 660 nm, E) 590 nm, F) 470 nm, and G) 365 nm.  All spectra 

taken at 10 K.   
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6.4.2  Isotopic studies 

An isotopic sample was prepared with high energy Ar+ bombardment in a             

0.5% 13CO + 0.5% 12CO in argon matrix (Figure 6.7).  Both the 1516 and 1513 cm-1 bands 

show a 1:2:1 intensity ratio consistent with two chemically equivalent CO units.  The new 

band at 1522 cm-1 is a bit more difficult to track due to its inherent broadness, however, 

there is a new peak in the anionic isotope spectrum at 1508.1 cm-1 which does not line up 

with any other bands.  Furthermore, this has roughly the same intensity and broadness as 

observed for the 1522 cm-1 and is assigned to the all 13CO species of the 1522 cm-1 band.  

Based on this 1:1 isotope ratio, the 1522 cm-1 peak is found to arise from a single-CO unit.   

 

 

Figure 6.3   400 eV Ar+ deposition into 0.02% 12CO + 0.02% 13CO in excess Ar matrix, 

deposited for 4 hours at 20 K:  A) 20 K deposition, B) 735 nm, C) 660 nm, D) 590 nm,         

E) 470 nm, F) 365 nm, and G) 30 K annealing. 
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In the cationic region, a mixed isotopomer doublet at 2010.4 and 2011.4 cm-1 and 

a doublet for a completely substituted 13CO species at 2001.7 and 2002.7 cm-1 are observed 

(Figure 6.3).  This means that both the 2047.0 and 2047.9 cm-1 peaks contain two 

chemically equivalent CO units.  It should be pointed out that there are some anomalies 

with the isotopic data.  First, the frequency shift between the all 12CO species to the mixed 

isotopomer is ~36 cm-1 whereas the mixed isotopomer to the all 13CO species is only           

~9 cm-1.  Also, the relative intensity ratios between the two peaks of the doublet are 

reversed when comparing the mixed isotopomer to the all 13CO substituted isotopomer.  It 

is difficult to compare the 12CO species in this context due to the large 13C18O absorption, 

however, comparing previous data to this experiment reveals that the all 12CO doublet has 

an intensity ratio similar to that in the 13CO species (Figure 6.8, Appendix).  Finally a peak 

corresponding to isotopically equivalent band of the 2180 cm-1 cannot be observed due to 

the large CO peak which dominates this region.  A future study is needed using a pure 13CO 

in argon matrix to confirm that this peak is at least due to a CO unit. 

6.4.3  Temperature dependent differences 

Deposition at 10 K provides a very similar picture to that at 20 K; however, there 

is only one peak in the (CO)2
+ region at 2047.8 cm-1 (Figure 6.4).  Also, the anionic region 

is missing the 1514.7 and 1526.4 cm-1 analogues seen upon 20 K deposition.  Note, 

however, that the 10 K spectrum contains inherently broad peaks and it is hard to tell if the 

low intensity bands observed at 20 K are contained under broad features.   
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Figure 6.4  400 eV Ar+ deposition into 2% CO in excess Ar matrix, deposited for 4 hours 

at 10 K.  Note that only one peak for the (CO)2
+ is present at 2047.8 cm-1.  Due to the high 

CO concentration, the 13C18O species is observable at 2038.9 cm-1. 

 

It is interesting that even though the 10 K spectrum has an much lower 

concentration of cationic species, the anionic (CO)2
- still contains roughly the same 

intensity (see temperature comparison, Figure 6.5).  This can be tested quantitatively by 

integrating the area of both regions.  Integrating the area between the 1513 and 1516 cm-1 

peaks gives a value of 0.0152 for 20 K deposition and 0.0111 for 10 K deposition; however, 

integration across the 2048 cm-1 region reveals areas of 0.00714 and 0.00112 for 20 K and 

10 K respectively.  Also, this “lost” intensity is not made up with the CO+ band.  In fact 

the 2180 cm-1 band shows the same anomalously low concentration at 10 K (Figure 6.9, 

Appendix).  The implications of this are discussed below. 
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Figure 6.5  Deposition-temperature comparison.  Both samples deposited under high 

energy argon for 4 hours using argon matrices doped with 2% and 0.5% CO for 10 K and 

20 K deposition, respectively. 

 

6.5  Discussion 

 6.5.1 Cationic dimer, (CO)2
+ 

 Although matrix shifts are generally larger for species in argon compared to neon, 

neon values can be used to approximate where a compound might absorb in an argon 

matrix. The relative shift of an ionic species in relation to its neutral counterpart in neon 

can be used to estimate the ion’s absorbance in argon assuming the shift from the neutral 

complex is the same.  This approximation is of course an oversimplification since the 

higher polarizability of argon causes greater interaction with ionic compounds and 

therefore causes larger shifts when compared to the same ion in neon.170  This estimation 

does, however, allow for a starting point for species identification.  

The CO stretch appears at 2140.8 cm-1 in neon, whereas the (CO)2
+ appears at 

2056.3 cm-1 (a shift of -84.5 cm-1).  Using this value for argon and noting that CO in argon 

is at 2138.2 cm-1,88 the (CO)2
+ frequency should be near 2053.7 cm-1.  Indeed, the          

2053.7 cm-1 prediction is fairly close to our peaks at ~2049 cm-1 with a slightly greater red-
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shift due to a larger interaction with the argon as was discussed.  The isotopic data show 

that two chemically equivalent CO molecules are involved and therefore we are left 

assigning these two bands to the (CO)2
+ complex in argon.   

There are still a few points that are unclear at this time.  First, two peaks are formed 

in the 20 K deposition.  In previous annealing studies, we have shown that the lower 

frequency band anneals away (Figure 6.8, Appendix).  It is possible that this is just a site 

affect whereby the lower frequency band is trapped in a less thermodynamically stable site.  

Typically if this is the case, annealing converts the less stable population into the more 

stable band and while the 2047 cm-1 anneals away, the 2048 cm-1 band does not gain 

intensity.  Second, the splitting in the isotopic pattern is unusual.  For completely 

symmetric molecules the relative frequency spacing between each of the isotopomers is 

the same (see (CO)2
- isotope bands in Figure 6.3).  The complete 13CO species is not shifted 

nearly as far from the mixed isotopomer as the mixed isotopomer is from the complete 

12CO species.  One possible explanation is that the positive charge is not evenly distributed 

between both CO units, as computational studies have suggested.159-161  If the positive 

charge resides closer to one of the molecules, then a (12CO)…(13CO)+ versus 

(13CO)…(12CO)+ will be two chemically different species.  In this case there should be a 

fourth doublet that is not observed; however, if this other doublet is shifted the same 

distance from the (12CO)2
+ as the (13CO)2

+ is from the observed mixed isotopomer, then 

this absorbtion would be masked by the large 13C18O peak at 2038 cm-1.  Finally, the 

relative intensities of the two peaks in the doublet isotopomer seem backwards based on 

the all 12CO and all 13CO complexes. 
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6.5.2 Cationic monomer, CO+ 

Using the same logic as above, the CO+ frequency in argon can be estimated from 

its absorbance in neon.  CO+ has been assigned to 2194.3 cm-1 in neon88 (a shift of            

+53.5 cm-1 in relation to the neutral CO frequency).  Assuming again that this ion will 

interact with argon to the same extent as with neon, the CO+ frequency for argon should be 

near 2191.7 cm-1.  This estimation is somewhat close to our new peak at 2180 cm-1.  

Furthermore, this peak does follow the same trends upon irradiation as the other ionic 

species giving credence to this species containing a charge.  Because of this and its relative 

location we assign this band to the CO+.  This assignment is very tentative, however since 

we cannot observe the corresponding isotopic peak due to the large CO peak which 

dominates the region where the 13CO-derived complex should show up. Other possibilities 

are that this is a larger (CO)n
+ cluster (n > 2).  Though molecular beam studies have shown 

that additional CO units bind weakly to the (CO)2
+,53,171 this experiment is under kinetic 

control and formation of larger CO-clusters are very possible during the initial “warm 

surface layer” phase of deposition.  Linn has measured an ionization potential of 12.91 eV 

for the (CO)3
+ which is below that of solid argon making it a possible candidate.53  Finally, 

this peak could be a CO+ aggregated with a contaminant such as H2O or CO2, both of which 

are present in low amounts in the matrix.  

 6.5.3 Anionic CO complexes 

 Upon deposition, both bands previously assigned to the (CO)2
- are formed.129  Our 

isotopic experiment are consistent with these assignments.  We also observe a few new low 

intensity bands in the 20 K experiments as well.  We cannot definitively assign them since 

they are of too low intensity to observe in the isotope experiments, but due to their location 
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they probably arise from (CO)2
- anions.  Another band not observed in the Andrews’ study 

is at 1522 cm-1.  Due to its location and our previous observation of its formation upon 

electron capture (Chapter 4), we are left assigning this to an anionic CO compound.  There 

also seems to be a 1:1 isotope splitting for this band which supports this assignment     

(Figure 6.3).   Based on this data, it seems likely that the 1522 cm-1 band is due to the 

monomer, CO- anion.  Even using light down to 365 nm, the 1522 cm-1 band is not affected 

which is in agreement with the high electron affinity of 1.37 eV for CO- observed by 

Franklin.167  

 6.5.4 Complex formation and anomalous temperature concentrations 

As was stated above, the 2047 and 2048 cm-1 peaks were present when anionic 

metals and 70 eV Ar+ were deposited into the matrix.  Our earlier studies also showed that 

these peaks scaled with the CO concentration.138  In these studies, the (CO)2
- was not 

observed presumably because the anionic copper complexes provided charge balance.  In 

the experiments presented here, no explicit anion was deposited leaving the matrix to “self-

neutralize” by forming the CO-dimer anion.  It is interesting then to consider the formation 

process of these ionic species.  For the cationic dimer two reactions can occur.  Reaction 

one consists of an argon cation transferring charge to a neutral CO.  The newly created CO-

cation then clusters to form the cationic dimer.  The second reaction involves the formation 

of a neutral CO-dimer which then becomes directly ionized by an argon cation. 

Ar+ + CO  Ar + CO+ + CO  (CO)2
+              (1) 

Ar+ + (CO)2  Ar + (CO)2
+                                 (2) 

There is precedence that reaction 2 leads to the formation of (CO)2
+.  First, the ionization 

potential of solid argon lies slightly below that of CO whereas the CO-dimer lies below 
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that of solid argon (Chapter 1 and Table 1.4).  Also once a cation is formed in the matrix it 

tends to become strongly solvated making it hard to cluster with other molecules.  This 

solvation was used by Andrews to explain the lack of any cationic copper carbonyl 

complex larger than the monocarbonyl in argon, even though complexes up to the cationic 

tetracarbonyl were observed in neon.88  In any case, both of these reactions are probably a 

significant oversimplification of a complicated ionization process occurring near the 

surface of the forming matrix. 

 The anionic complexes are a bit tougher to rationalize.  We have shown that the 

van der Waals CO-dimer can readily trap free electrons in the matrix (Chapter 4).  The 

source of the extra electrons is not obvious here.  They cannot be directly from the 

depositing Ar+; instead a secondary process must be occurring.  One possibility is that the 

electrons are ejected from the sample holder when it is bombarded with the high energy 

argon cations.  This explanation has been used in previous experiments to explain charge 

neutrality when specific counter-ions were not deposited.93  

 With the above in mind the strange deposition temperature observations, whereby 

both 10 K and 20 K deposition contained roughly the same amount of anionic species 

whereas the 20 K deposition produced 6-fold more cationic species, can now be 

rationalized (section 6.4.3).  At the 10 K deposition temperature, the warm top layer of the 

depositing matrix persists for a much shorter time compared to that at 20 K (section 3.5.1).  

Therefore, species are effectively “frozen out” before they have a chance to interact.  This 

minimizes the interactions with CO species and the deposited Ar+, and therefore effectively 

reduces the probability of charge transfer between a CO complex and an argon cation.  On 

the other hand, the anionic CO species do not need to interact with another molecule in 
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order for charge transfer to occur (although they do interact to an extent that dimer clusters 

are formed).  Electrons that are released into the matrix (see above) can freely move and 

attach to a CO-dimer even if the dimer is some distance away from the place of the 

electron’s origin (Chapter 4).  In this way, deposition temperature only matters in so far as 

to cause clustering; it does not make a difference for electron capture events.  Finally, 

because total anionic concentrations are the same in each case, the total cationic 

concentrations must be the same as well in order to maintain charge balance.  This implies 

that there are a lot of cationic species in the 10 K sample that are “dark” in our spectrum.  

One likely possibility is that these “extra” cations exist as Ar2
+, which is thought to be the 

charge carrier in ionized pure Ar matrices.124,132  Indeed, we have used this explanation in 

the past to explain charge balance for our anionic copper carbonyl system138 (section 3.5.3). 

6.6  Conclusions 

 Through the deposition of high energy Ar+ into a CO-doped argon matrix, ionic 

CO-complexes were formed.  Two peaks previously assigned to the (CO)2
- species are 

observed near 1515 cm-1 upon deposition.  These peaks show a high threshold for 

photodetachment, with the onset of neutralization not beginning until use of 470 nm 

centered light.  A new peak at 1522 cm-1 shows an even higher resistance toward 

photodetachment with the lowest wavelength of 365 nm used in this study not able to 

decrease this peak.  Though the isotope experiment is not entirely clear at this point, it 

seems as though this peak may be the CO-.   

Two peaks near 2048 cm-1 are assigned to the (CO)2
+ in argon for the first time.  

These were readily formed in our previous studies of metal carbonyl systems and do not 

show any dependence on the counter-anion present in our previous studies.   Finally, a peak 
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near 2180 cm-1 is in the correct region to be the CO+.  Due to the large neutral CO band in 

this region, however, no isotopic peaks can be found.  In future experiments employing 

mass-selected CO+, will eliminate the large neutral CO peak and should afford us with the 

ability to definitively assign this species. 

6.7  Appendix 
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Figure 6.6  Anionic CO-dimer region from Figure 6.1B showing low-intensity peaks at 

1514.7, 1519.9, and 1526.4 cm-1. 
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Figure 6.7  0.02% CO in argon matrix deposition at 20 K of 70 eV Ar+ balanced by A) Cu- 

and B) Ag-.  The (CO)2
+ behaves the same regardless of counter-ion.  All spectra taken at 

10 K. 
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Figure 6.8  Deposition-temperature comparison of 2180 cm-1 band.  Both samples 

deposited under high energy argon for 4 hours using argon matrices doped with 2% and 

0.5% CO for 10 K and 20 K deposition, respectively. 
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Chapter 7 

The coldest example of chemical equilibrium: reversible conformational 

rearrangement of O4
+ in an argon matrix at 10 K 

 

7.1  Abstract 

Thermodynamic equilibria are commonplace for chemical systems under standard 

conditions, but what is the lowest temperature at which chemical equilibrium can be 

observed? Matrix-isolation spectroscopy is typically the realm of kinetic control of 

chemical reactions, where non-thermal statistical distributions are “frozen-out” to allow 

characterization of metastable species.  Nonetheless, FTIR spectroscopy of O4
+ ions 

trapped in argon matrices has revealed a reversible exchange of intensity between two 

peaks assigned to trans and cyclic conformational isomers.  Since the population can be 

driven back and forth between the two conformers by changing only the matrix 

temperature, we conclude that the system must be in thermodynamic equilibrium.   The 

population trends are consistent with a weakly endothermic reaction, driven by increased 

entropy of the matrix for the cyclic product state.  Problems encountered with quantitative 

van’t Hoff analysis of the temperature-dependence for the equilibrium constant reveal that 

the assumptions underlying this standard analysis technique may break down at the very 

low temperatures of these experiments. 

7.2  Introduction 

 The O4
+ system is a complicated and still largely misunderstood compound, as 

shown by its long, complicated history in both experimental and theoretical work.  Yang 
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and Conway first observed the complex using high-pressure mass spectroscopy.  They 

found that the complex was stable by approximately 10 kcal/mol with respect to O2 + O2
+, 

which was attributed to an ion-induced dipole.172  Their later calculations showed that 

electron delocalization, presumably with the molecule in a  rectangular structure, would 

cause additional stabilization.173  Semi-empirical molecular orbital calculations suggested 

that the trans-bent structure was more stable than either the cis or rectangular structures 

but all were still found to be bound states.174  

 The first IR spectrum was taken in 1989 when Jacox stabilized the molecule in a 

neon matrix through the use of a microwave discharge source.175  Four bands were 

observed in that study, all of which showed isotopic substitution consistent with an O4
+ 

species containing two-chemically equivalent O2-units: two strong bands at 1164 and   

1320 cm-1 and two weak bands at 2808 and 2949 cm-1.  Based on isotopic splitting and 

previous calculations, the 1164 and 2808 cm-1 bands were assigned to the υ5 (bu) and 

(υ1+υ5) (bu) modes of trans-O4
+, respectively.175  The other set of bands, however, 

presented a problem because the trans-O4
+ should only have one IR-active, high-frequency 

O-O fundamental.  Based on the lack of observation of a second isomer upon photolysis or 

annealing and an intensity anomaly observed for the heavy isotope species in isotopically 

enriched matrices, Jacox assigned the other two bands to the υ5 mode of a perturbed trans-

O4
+ combination band, but noted the possibility of a second isomer.175  In the same year, 

Knight used ESR to probe the molecule in neon and found the ground state to be nonlinear 

with three-unpaired electrons occupying π–type orbitals.176 

 Using ab initio calculations, Peel found a rectangular ground-state structure with 

an unreasonably high stretching fundamental at 4331 cm-1,177,178 however Jacox pointed 
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out that even if the calculation yielded a realistic frequency, rectangular O4
+ still only has 

one high-frequency, active-IR mode and could not explain the earlier experimental 

data.175,179  While studying electron transfer to O4
+ from other species, Helm and Walter 

observed higher excited states with Rydberg character leading to dissociation patterns 

consistent with a rectangular structure.  Using high theory ab initio calculations on the 

quartet-state, Lindh and Barnes showed that the trans-O4
+ was the most stable structure but 

the rectangular structure exists at only 0.46 kcal/mol higher energy in agreement with 

experimental studies.180  They also predicted ionization potentials of O4 and O2 to be 11.67 

and 12.21 eV, respectively, which were in agreement with experimental values of 11.66 

and 12.07 eV.180    They also explained that earlier calculation problems were due to 

symmetry breaking.  To date, this remains the best theoretical study on this system.  In 

conjunction with Lindh and Barnes, Jacox was able to confirm the earlier 1164 and         

2808 cm-1 band assignment of trans-O4
+ and reassign the 1320 and 2949 cm-1 bands to the 

rectangular structure.179,180  This study also allowed her to justify the isotope anomaly 

whereby the greater zero point energy of the lighter isotope allowed that species to tunnel 

through the small isomerization barrier.179 

 While studying laser ablated metals with oxygen in argon, Andrews observed O4
- 

at 953.8 cm-1 and an 1118.6 cm-1 band assigned as the trans-O4
+.181,182  Through the use of 

electron impact and a Townsed discharge chemical ionization source, O4
- and (O2)n

+         

(n= 2-4) ions were formed in argon as well as in oxygen-doped neon matrices through laser 

ablation of Co, Ni, and Cu.183  Six argon peaks were observed due to O4
+ cations.  The band 

at 1119 cm-1 previously assigned to the trans-O4
+ was present upon deposition while a band 

at 1186.1 cm-1, which showed the same 16/18 ratio in isotope studies as trans-O4
+ and 
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increased upon annealing at the expense of the 1119 cm-1 signal, was assigned to a         

trans-O4
+ perturbed by an O2.

183  Four other bands were observed at 1302.1, 1310.6, 

1328.9, and 1331.4 cm-1 and assigned to the cyclic-O4
+.183  Finally, the argon experiment 

yielded bands at 1416.7 and 1490.4 cm-1 which were tentatively assigned to the cyclic-O6
+ 

and O8
+, respectively.183   

 This Chapter describes our studies with this complicated system.  While trying to 

form copper oxides, large amounts of ionic oxygen-derived compounds were formed upon 

deposition.  This was confirmed in our system by deposition of high energy Ar+ with no 

metals present showing that the metal was only acting as a spectator ion to maintain charge 

balance but was not involved in the chemistry presented.  In particular, this Chapter focuses 

on two sets of bands, each showing conformational equilibrium under different sets of 

conditions.  The trans-1119 and cyclic-1310 cm-1 species show reversible thermal 

equilibrium while the trans-1186 and cyclic-1331cm-1 bands show photochromic 

equilibrium.  Both sets of equilibria occur independently from all other bands in the matrix.  

These findings call into question the current assignments in the literature as is discussed. 

7.3  Experimental 

For these studies, the deposition and subsequent processing steps were carried out 

under darkened conditions; all internal sources of light were turned off (ion gauges, RGA 

analyzer, etc.), and the lab lights were kept off throughout the experiment.  Some light from 

the spectrometer necessarily reached the sample (the HeNe alignment laser for the 

interferometer) during spectral scans; the spectrometer beam was directed away from the 

deposition chamber when not recording spectra.  Irradiation was performed either by 

narrow-band LED sources or through use of a tungsten filament bulb (see spectra,      
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Chapter 4).  For irradiation scans, the sample was maintained at 10 K and a scan taken 

while the light was on (~13 min for a 500 scan average).  After the scan, the light was the 

turned off and a second scan taken under darkened conditions.    

Temperature studies were achieved by cycling from 10 K to 18 K while stopping 

and scanning at all integer temperature values (i.e. 10 K, 11 K, …, 18 K).  The system was 

then cooled from 18 K to 10 K while stopping and scanning at all half integer values (i.e. 

17.5 K, 16.5 K, …, 10.5 K).  Finally, quarter integer values were scanned at 0.5 K steps 

from 10 K back up to 16 K (i.e. 10.25 K, 10.75 K, …, 17.75 K).  This was done to rule out 

any anisotropy in the system.  The 18O2 system was only cycled to 16 K since the 

conformational transition occurs at a lower temperature (see below).  Higher temperature 

processing was performed by annealing the system to the specified temperature at a rate of 

4 K/min.  Scans were taken at the higher temperature before cooling the system back to    

10 K and taking another scan.  Unless noted, all temperatures presented in this Chapter are 

the temperatures at which the scan is taken (this was not the case in previous Chapters 

where all scans were taken at 10 K). 

Gas mixtures were prepared by dilution of a purchased mixture of 10.4% O2 in He 

(PRAXAIR) with Ar (PRAXAIR, 99.9999%) down to a 2% O2 mix for 10 K deposition or 

a 0.5% mix for 20 K deposition.  Isotope gas mixtures were made using 99% 18O2 (< 5% 

17O, Cambridge Isotope Laboratories).  All matrix gases were purified by flowing through 

a copper tube immersed in ethanol-liquid nitrogen bath prior to deposition.  Matrices were 

formed under a steady-state pressure of 10-5 Torr in the deposition chamber for 2 to 6 hours.  

Ionic oxygen species were formed in situ by bombardment of 400 eV Ar+ throughout 

matrix deposition which transfers charge to the O2, a process that occurs spontaneously 
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presumably due to the difference in ionization potentials (see discussion).  Charge balance 

was achieved by one of two methods: deposition of Cu- with low Ar+ energies or deposition 

of high energy (400 eV) Ar+ through which anionic (O2)2
- naturally forms to maintain 

charge neutrality.   

7.4  Results 

 7.4.1  Cu- Ar+ deposition in a 0.5% O2 matrix 

Original experiments on this system were performed by depositing Cu- counter-

balanced by low-energy Ar+ into O2-doped matrices in order to observe copper oxides; 

however, we only observed one copper-derived peak and many ionic oxygen peaks.    

Figure 7.1 shows the effects of such a deposition.  All peaks were originally assigned based 

on the literature183 and scrutinized by isotopic data performed by our group.  Upon 

deposition at 20 K, a small band at 846.1 cm-1 was observed for the neutral Cu(O2)2 species.  

Interestingly, the O4
- complex was also observed at 953.9 cm-1, even though Cu- should be 

present in the matrix as a counter-ion.  Two bands due to the trans-O4
+ were observed at 

1118.5 and 1186.2 cm-1 as well as three cyclic O4
+ bands at 1309.9, 1329.0, and             

1331.8 cm-1.  Figure 1 was taken at 10 K, so the band at 1186.1 cm-1 is very weak, but this 

species plays an important role in the thermal equilibrium described below.  Finally, the 

cyclic-O6
+ complex was also observed at 1416.2 cm-1.  With high O2 concentrations, a 

broad band at 1548.1 cm-1 was observed and assigned to an (O2)n cluster (Figure 7.21, 

Appendix).  
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Figure 7.1  Cu- Ar+, 20 K deposition in a 0.5% O2 in Ar matrix showing a survey scan of 

ionic complexes formed upon deposition.  Note that the Cu(O2)2 is the only copper derived 

peak formed.  The sharp line in the baseline near 1385 cm-1 is due to a difference in the 

background and the irregular baseline is due to the KBr window cracking from repeated 

use.  

 

7.4.2  Isotopic study  

A 50:50 16O2:
18O2 isotopic experiment was performed using 0.5% of each oxygen 

isotope in argon with Cu- and Ar+ deposited at 20 K for 6 hours.  The results for the trans- 

and cyclic region are shown in Figure 7.2.  Both trans- species at 1119 and 1186 cm-1 show 

typical isotopic patterns for two chemically equivalent O2 molecules.  This data is similar 

to findings in previous experiments, however, we did not observe another O2 coupled to 

the species at 1186 cm-1 and annealing did not lead to an increase in this peak; therefore, 

we believe the 1186 cm-1 band arises from a pure O4
+ complex and not an O4

+…O2 as had 

been assigned.183  The reason we believe this band is perturbed from the 1119 cm-1 band is 

explained below.   
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The cyclic doublet at 1329 and 1332 cm-1 each show the same splitting that 

indicates two equivalent O2 molecules.  The 1310 cm-1 peak is interesting in that it shows 

a splitting into four bands with a ratio of 1:1:1:1.  This pattern means that the mixed 

isotopomer is perturbed so that instead of adding into a single band, the intensity is split 

between two bands.  One possible explanation for this result would be that the positive 

charge resides on one O2 molecule versus the other, whereby the 16O2
+…18O2 and 

18O2
+…16O2 complexes would no longer be chemically equivalent.  Another possibility is 

that there is a coupling to the matrix cage in such a way that both sides of the molecule are 

distinguishable.  Finally, both the 846 and 954 cm-1 peaks show splitting due to two 

equivalent O2 molecules (Figure 7.24, Appendix).  
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Figure 7.2  Cu- Ar+ deposition for 6 hours at 20 K in a 0.5 % 16O2 + 0.5% 18O2 in argon 

showing trans-O4
+ and cyclic-O4

+.  Spectra are taken with sample at 10 K and 14 K, 

respectively.  A peak at 1337.2 cm-1 is due to an isotope of the O6
+ complex 
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7.4.3  High energy Ar+ formation 

The O4
+ complexes can also be formed from high energy (400 eV) Ar+ deposition 

without the use of specific counter-ions.  Figure 7.3A shows a deposition through the use 

of 70 eV Ar+ with Cu- while 7.3B shows 400 eV Ar+ with no intentionally deposited 

counter-ions.  What is immediately obvious is that both systems are the same with respect 

to the O4
+ derived bands.  This result is confirmed in both our temperature and irradiation 

studies (see below).  The Cu- is primarily a spectator ion only present to maintain charge 

balance.  A small amount of copper, however, also reacted with O2, as seen by the band at 

846 cm-1.  Note that this peak is absent in the high-energy case, adding evidence that this 

peak involves a copper atom.  In the case of the high-energy deposition, the system must 

remain neutral through secondary processes.  The “self” neutralization is observed by the 

presence of a large O4
- band that is not present in the low-energy deposition with Cu-.  Also, 

the overall concentration of O4
+ complexes is lower for the high-energy deposition.  This 

probably occurs due to the formation process whereby free electrons must be available in 

the matrix to bind to a neutral O4 to form the anion.  This is the same process we observed 

for the (CO)2
+ complex, described in Chapter 6.  There is a large Coulomb potential for 

free electrons to bind to an already-formed O4
+ over a neutral complex, and this process 

probably leads to a final, lower cation formation.  Furthermore, O2 must be used to form 

the O4
- which effectively lowers the concentration available to form cations.   
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Figure 7.3  Deposition condition comparison for 0.5% O2 in argon at 20 K formed from 

deposition of A) 70 eV Ar+ with Cu- and B) 400 eV Ar+ only.  Note the lack of the O4
- in 

the high-energy deposition. 

 

7.4.4  Dependence on deposition temperature  

 Deposition temperature had the effect of shifting the relative populations of the 

different cationic confomers observed.  At 10 K, Figure 7.4A, a very intense band was 

observed for the trans- complex at 1119 cm-1.  As deposition temperature increased, the 

cyclic doublet near 1330 cm-1 was selectively deposited while the trans- complex was 

decreased.  At 25 K deposition the trans- structure was not formed at all (Figure 7.4C).  

This result aids in studying some complex physical phenomena that occur in our matrices, 

as will be discussed below.  It is interesting to point out that the amount of O4
- anion is 

approximately the same at each temperature, maybe even a little smaller at 10 K, though 

the peak is broader so overall area may be conserved.  This result is in contrast to the O4
+ 

species, which seem to be much more concentrated in the sample deposited at 10 K.  

Assuming the oscillator strengths of the trans- and cyclic species are roughly the same, 
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other cationic species must exist at 20 K, and a lot more at 25 K that are dark in the IR 

spectra.  One potential candidate would be O2
+, which does not have an active IR-mode.  It 

is difficult, however, to understand why higher deposition temperatures, which should 

cause increased clustering, instead favor monomeric units. 
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Figure 7.4  Temperature deposition comparison using 400 eV Ar+ for: A) 10 K deposition 

of 2% O2, B) 20 K deposition of 0.5% O2, and C) 25 K deposition of 0.02% O2.   

 

 We note that the band at 1119 cm-1 has two shoulder peaks upon deposition at          

10 K (Figure 7.22, Appendix).  Both of these shoulder bands anneal away at 20 K, while 

both bands at 1416, O6
+, and 1548 cm-1, (O2)n, gain significant intensity (Figure 7.21, 

Appendix).  There was also a small increase in the 1186 cm-1 band.  We suspect that these 

shoulder peaks may be what Andrews observed in his data at 1119 cm-1.  This interpretation 

would explain why he observed an increase in the band at 1186 cm-1 and did not see the 

thermal trends explained below.  Because of these shoulders, all samples deposited at         
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10 K were first annealed to 20 K for 15 minutes, so that they did not interfere with the 

quantitative data assessment given below. 

 

 7.4.5  Thermally-induced reversible conformational change 

The central focus of this temperature study was how the spectrum in Fig 7.5A 

responded to changes in the temperature of the matrix.  Fig 7.5B shows traces taken for 

temperature steps of 1 K between 11 K to 18K; all of the peaks show non-negligible 

changes with temperature, however, the thermal study was focused on just two of them, 

near 1119 cm-1 (peak A) and 1310 cm-1 (peak B), previously assigned to trans-planar and 

cyclic O4
+ conformers, respectively, based on isotopic substitution183 and comparison with 

theory.174,178,180  It is immediately apparent that these two peaks have opposite intensity 

trends, with A dying out and B growing in as the temperature is increased.  What is even 

more striking is that upon cooling the sample back to 10 K, the original spectrum was 

restored, as shown in Fig 1C, indicating that these thermal trends are reversible.  In fact, 

these trends proved to be completely reproducible over several temperature cycles.   
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Figure 7.5  FTIR spectra of O4
+ in argon matrices: A) spectrum recorded at 10 K following 

10 K deposition, showing bands assigned to trans- (1119 and 1186 cm-1) and cyclic (1329 

and 1331 cm-1) conformers;  B) growth of new cyclic conformer band (1310 cm-1) and 

concomitant loss of trans band (1119 cm-1) upon warming from 11-18 K.  Note that only 

whole-integer temperature values are shown, but scans were taken at 0.25 K intervals, see 

text;  C) Restoration of initial spectrum upon re-cooling to 10 K, demonstrating reversible 

nature of spectral changes;  D) Loss of both 1119 cm-1 and 1310 cm-1 bands following 

heating to 24 K.   
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7.4.6  Radiation-induced reversible conformational change 

Figure 7.7 shows an FTIR spectrum taken after 4 hours of deposition at 20 K.  For 

the irradiation studies, two peaks are once again the focus, one near 1186 cm-1 (peak C) 

and one near 1332 cm-1 (peak D), previously assigned to a trans-(O4)
+…O2 complex and a 

cyclic O4
+ respectively.183  These two bands showed a qualitative equilibrium trend in the 

annealing data above, Figure 7.5 (see also Figure 7.15 in the Appendix for a clearer thermal 

trend for the 18O2 system), but their interconversion becomes clear in the presence of light.  

When a scan was taken with a 735 nm centered LED on, the peaks did not change; however, 

when 660 nm light was used, peak C gains some intensity while D losses some.  Both peaks 

returned to their original intensities when the light was turned off.  This same reversible 

population transfer occurred with the 590 nm light and reached the maximum conversion 

in these studies with 470 nm light.  Furthermore, the cyclic-to-trans conversion (light on) 

seemed to be instantaneous on the timescale of our study; however, the “relaxation” back 

to the original state was slow enough to observe when taking a quick spectrum (16 scans 

averaged, ~30 s).  We are working on a method to track this conversion quantitatively in 

order to derive kinetics data.  Use of shorter-wavelength light, 365 nm light, again induced 

this change but to a lesser extent than the 470 nm light.  In studies employing a broadband 

visible source (tungsten bulb used in Chapter 4), the reaction proceeded in the opposite 

direction, with peak C completely losing intensity while peak D gained intensity          

(Figure 7.14, Appendix).  Once again, this change was reversible once the light was turned 

off.  Apparently, a wavelength longer that 735 nm, which is produced by the broadband 

source, caused the D-to-C conversion. 
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It should also be made clear that peaks A and B described above were not affected 

by the irradiation studies (Figure 7.14, Appendix).  Furthermore, the described changes 

occurred regardless of deposition temperature or the nature of the counter-anion and took 

place, even if peaks A and B were not present (see 25 K deposition, Figure 7.20, Appendix).  

Because of these trends, we conclude that the two trans-peaks, A and C, and the two cyclic-

peaks, B and D, cannot be due to the same species as has been reported in the literature.  

Potential species assignments are presented in the Discussion section.  Finally, the peak at 

1329 cm-1 appears to be a spectator throughout both sets of experiments, but nonetheless 

is clearly an O4
+ species.  These irradiation results make it clear that this species cannot be 

a simple “site” peak, given its completely different qualitative response to visible 

irradiation. 

 

Figure 7.7  Irradiation series showing photochromism between the cyclic-1331 cm-1 and 

trans-1186 cm-1 conformers using different narrow-band LEDs.  Spectra are taken at 10 K 

either with the light on or off as specified.   
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7.5  Discussion 

 Five peaks play a pivotal role in the studies presented above.  Peaks at 1119 (A) 

and 1186 cm-1 (C) have been assigned by Andrews183   to the trans-O4
+ while bands at      

1310 (B), 1329, and 1332 cm-1 (D) have been assigned by Andrews183 to the cyclic O4
+.  

All of these complexes have been assigned to the quartet spin state, based on theory.180  

Interestingly, the cyclic structure has been assigned in the gas-phase by Douberly and 

Duncan184 at 1323 cm-1 whereas Jacox179 assigned it at 1320 cm-1 in neon and Andrews183  

at 1330 cm-1 in argon.  That is a neon value redshifted from the gas phase while the argon 

value is blueshifted!  This odd apparent discrepancy suggests that some more complicated 

process is occurring other than simply site peaks or simple conformer conversion. 

7.5.1  Thermodynamic equilibrium at 10 K 

In general, cryogenic spectroscopy techniques involving chemically inert 

condensed materials such as rare gases are the realm of kinetic control, where owing to the 

low temperature and fast energy dissipation afforded by condensed matrices, the species 

observed tend to be those that form the fastest, rather than those that are the most 

energetically stable.  Indeed, this was largely the goal when Pimentel developed matrix-

isolation spectroscopy for the study of transient molecules many years ago; metastable 

species such as radicals or ions generated in situ in the matrices or deposited from gas-

phase sources have their internal degrees of freedom rapidly quenched before they can 

rearrange or react to more stable forms.26  Contrast this situation with the case of 

thermodynamic control, whereby chemical systems in thermodynamic equilibrium tend to 

favor the most stable state with the lowest free energy.  The principle of detailed balance 

states that for a chemical system to be in equilibrium, the forward and reverse reactions 



 

156 

must be occurring with equal rates, such that the free energy difference between the 

reactants and products is reflected in the relative populations of those states.  Thus while it 

is technically possible for a matrix-isolated chemical system to be in thermodynamic 

equilibrium, it requires unlikely conditions to be satisfied, namely that the free-energy 

difference between reactants and products is <1 kJ/mol. From a practical point of view, the 

barrier separating products and reactants must be also comparably low in order for the 

equilibrium to be achieved on the timescale of the experiment, but this is a kinetic, rather 

than thermodynamic, consideration.   

Thermodynamic equilibrium has been shown below 30 K before by the Wight 

group while studying the difluoronitroxide radical system.185  This system exhibits 

dynamic equilibrium between the F---FNO and F2NO species when the system is annealed 

from 17 to 30 K.185  In what follows, we present experimental evidence that the O4
+ ion, (a 

covalently bound dimer of molecular oxygen with a single electron removed)179,183,186 

exhibits a conformational equilibrium while trapped in an argon matrix at temperatures 

down to 10 K. 

Under normal circumstances, it would be completely natural to attribute annealing 

behavior to thermodynamic equilibrium between the two conformers, but as the process 

occurs in a cryogenic matrix between 10 and 18 K, such behavior would be surprising to 

say the least!  However, there are several aspects of the data that suggest that species A 

and B do actually represent two distinct chemical species in thermodynamic equilibrium.  

In such a case, the populations of species A and B (PA and PB) must sum to 1, so the 

summed intensity of both peaks (Itot) at all temperatures should be represented by the linear 

equation Itot = σAPA + σBPB, where σA and σB are constant scaling factors.  Indeed, we find 
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a strong linear relationship between the integrated areas of peaks A and B for all the 

different temperatures (Figure 7.10, Appendix).  Furthermore, when the sample is warmed 

to temperatures higher than 23 K, both species A and B are irreversibly lost from the 

spectrum.  Figure 7.5D shows spectra both during heating to 24K (~ 30 min) and after 

cooling to 10 K; species B is clearly absent from the 24 K spectrum, and species A is also 

missing after cooling, yet the other 3 O4
+ peaks are still present with their original 

intensities.  The implication is that, above 23 K, the cyclic conformer (species B), which 

dominates at higher temperatures can either dissociate irreversibly into O2 and O2
+, both of 

which are undetectable in the infrared spectra, or gain another O2 unit to form the O6
+ 

cluster which increases slightly upon annealing (Figures 7.12 and 7.13, Appendix). 

7.5.2  Quantitative assessment  

Thus, the spectral trends described above for species A and B reveal that the trans-

planar and cyclic conformers of O4
+ are in thermodynamic equilibrium in the temperature 

range between 10 and 20 K.  As such, it is sensible to convert the normalized peak 

intensities to relative populations and use them to track the temperature dependence of the 

equilibrium constant for the conversion of trans- to cyclic-O4
+; these data are collected in 

Table 7.1 of the Appendix.  Figure 7.3A plots the relative populations of trans-planar and 

cyclic O4
+, which show near-perfect inverse correlation, as expected from the linear trend 

found in Fig. 7.5.  The sigmoidal shapes of the curves are consistent with the reaction (trans 

to cyclic) being endothermic (positive ΔH), balanced by a positive entropy change that is 

sufficiently large to shift the reaction from favoring reactants to favoring products over the 

fairly narrow observed temperature range.  Note however that at these temperatures, there 

can be little difference in the vibrational entropies of the O4
+ conformers, because the 



 

158 

probability of having significant population in vibrationally excited states is very small.  

Similarly, rotational degrees of freedom are not likely to contribute since the molecules are 

frozen inside a solid matrix.  Therefore the entropic driving force must arise from 

differences in the way the two conformers interact with the surrounding argon matrix.  

Indeed, the Wight group used this explanation to account for the large entropy measured 

when forming an F2 bond in the F2NO molecule.185  Likewise, this result is somewhat akin 

to solvent-driven processes occurring under more typical conditions, for example the 

inverted helix-coil transition of poly-benzyl-glutamate in mixed dichoroethylene 

dichloroacetic acid solvent, where going from helix to coil induces a positive entropy 

change in the solvent that compensates for the small (< 1 kcal/mol) endothermicity of the 

reaction.187   

 

 

Figure 7.8 A) Temperature dependence of normalized populations in peaks A                 

(1119 cm-1) and B (1310 cm-1).  B) van’t Hoff plot reflecting temperature dependence of 

Keq for trans-to-cyclic conversion, derived from population data in part A.  The higher 

temperature line was fit with a linear equation of y = -280 ± 8 x + 20.6 ± 0.5 with an R2 

value of 0.9886.  The lower temperature line was fit with a linear equation of y = -28.4±7 

x + 0.969±0.6 with an R2 value of 0.5690. 
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Quantitative values for standard enthalpy and entropy can be obtained from a van’t 

Hoff plot of the natural log of the equilibrium constant versus inverse temperature, as 

shown in Fig 7.3B.  The negative slope of the plot is consistent with an endothermic 

reaction, and the linearity of the points in the higher temperature region (points 

corresponding to 13-16 K) indicates that ΔHº and ΔSº are constant in this temperature 

range, and can be extracted from the slope and intercept of a linear fit (shown), respectively.  

The plot clearly deviates from linearity for larger values of 1/T (points corresponding to 

10-12.75 K), so these points were fit by a second line; possible explanations for the non-

linearity of these points are considered below.  The values obtained from the higher-

temperature (13-16 K) linear fit are ΔH⁰=2.33 ± 0.06 kJ mol-1 and ΔS⁰=171±5 J mol-1 K-1.  

The former value is consistent with the calculations of Barnes and Lindh, which predicted 

the cyclic conformer to be ~2.2 kJ mol-1 higher in energy than the trans.180  The latter value 

is surprisingly large for a conformational rearrangement; for comparison, the standard 

entropy of vaporization of argon is 79.1 J mol-1 K-1 at 87 K.188  In terms of the Boltzman 

definition of statistical entropy, S=kB lnW, the ΔSº value obtained from the van’t Hoff 

analysis here would mean that the products have ~9x108 times higher configurational 

entropy (W) than the reactants.  Even considering participation from some degrees of 

freedom of the argon matrix (i.e., those associated with the shell of atoms surrounding the 

O4
+), this large entropy seems hard to rationalize at the low temperatures of these reactions.  

The fit from the lower temperature line (10-12.75 K) are ΔH=0.236 ± 0.06 kJ mol-1 and 

ΔS=8.06±5 J mol-1 K-1.  The entropy change in this case is more consistent with that 

observed for a simple molecular rearrangement. 
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7.5.3  Qualitative assessment 

Figure 7.9 shows a simple model for the coupling between the argon matrix and the 

O4
+ that captures the qualitative aspects of the measured trends.  The argon atoms are 

locked in an FCC crystal structure at the known spacing of 375 pm,28 and the geometrical 

parameters for the O4
+ conformers are taken from the equilibrium geometries predicted by 

Lindh and Barnes.180  The trans-planar conformer fits almost perfectly into a double-

substitution site (Fig. 7.4A), whereas the cyclic conformer is much more compact, leaving 

a significant amount of free space inside the cavity.  It has been shown experimentally that 

creation of a cavity inside solid argon is associated with a positive entropy change,28 and 

the translational modes associated with the motion of the smaller cyclic conformer inside 

the cavity will contribute additional degrees of freedom that further increase the entropy of 

the product species relative to the reactant.  This crude model is certainly an 

oversimplification, since it neglects the relaxation of the matrix cavity to accommodate the 

geometric change of the O4
+ (and vice versa).  Nonetheless, it is at least qualitatively 

consistent with the experimentally observed phenomena.  A more quantitative analysis 

would require molecular dynamics simulations using a highly accurate potential energy 

surface describing the interaction between the argon and the O4
+ dopant, allowing for the 

possibility that quantum nuclear tunneling plays a role in determining the relative 

conformer energies, all of which lies beyond the scope of the current work. 
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Figure 7.9  Simple schematic showing trans and cyclic conformers of O4
+ in double 

substitution sites in a rigid fcc argon matrix (figure created by David Moore).  

 

7.5.4  Isotopic substitution 

As a final experimental test of the system, we repeated the set of experiments using 

pure 18O2, and the results were completely analogous to the initial experiments with 16O2, 

as shown in Figures 7.15-7.18 and Table 7.2 of the Appendix.  The spectral series shows 

the same general trends for all of the O4
+ bands (appropriately shifted) with temperature 

(Figure 7.15, Appendix), and the peaks corresponding to the trans and cyclic conformers 

(at 1056 and 1243 cm-1, respectively) display reversible population transfer.  Some of the 

quantitative details are different, for example there is more of the cyclic conformer present 

at 10 K for the 18O4
+, as reflected in the thermal population data shown in Figure 7.17.  

Furthermore the van’t Hoff plot shows an even greater deviation from linearity at the lower 

temperatures (Figure 7.18, Appendix), and the thermodynamic parameters extracted from 

the linear fit are ΔHº=1.8± 0.1 kJ mol-1 and ΔSº=136 ± 8 J mol-1 K-1, both about 15% lower 

than for the 16O4
+ case.  Finally, the bands corresponding to both the trans and cyclic 
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conformers disappear irreversibly when the matrix is heated above 23 K (Figure 7.19, 

Appendix), just as with the 16O4
+ case.  The fact that the same phenomenology is exhibited 

by both isotopomers confirms that this behavior is characteristic of O4
+ trapped in argon 

matrices in this temperature range.  Furthermore, the small quantitative differences 

observed for the 18O4
+ case indicate that quantum effects such as zero point energy, and 

possibly tunneling, are affecting the measured properties of the system.  There is a problem 

there as well however, since it is very hard to conceive of a tunneling model where the 

heavier species has a higher population in the higher energy state at lower temperature. 

7.5.5  Photochromic conformational changes at 10 K 

It is clear that a second type of equilibrium exists in the system, between species C 

and D.  These peaks are also assigned in the literature to trans-O4
+ and cyclic-O4

+,183 

however, based on the irradiation results they must be independent from species A and B.  

Not only do these peaks show photochromic changes, C and D must also be in 

thermodynamic equilibrium which is why they can re-establish the original populations 

when the lights are turned off.  As was mentioned, qualitative evidence of this equilibrium 

exists in the thermal behavior presented in Figure 7.5 (see also Figure 7.15 in the Appendix 

for a clearer thermal trend for the 18O2 system). 

Based on all the data presented, it seems probable that all five O4
+ peaks represent 

distinct species.  It is easy to rationalize the thermal conversion between A and B as a 

conformational change, but C and D also present a conformational change.  It is hard, then, 

to rationalize the existence of 5 distinct, well-separated spectral features that somehow 

correspond to only two different structural isomers.  Therefore we are left with the 

hypothesis that different electronic states must also be involved.  The quartet state of O4
+ 
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is the lowest energy electronic structure and as such all previous work, both experimental 

and theoretical, have been based on the study of the quartet; however, the system can also 

exist in a doublet state.  With this in mind, it seems likely that the A-B and C-D pairs may 

be tracking the trans-cyclic isomerization of two different electronic states.  There is still 

the problem of the 1329 cm-1 peak which does not appear to be coupled to any of the other 

bands, yet isotope data clearly shows that this is another O4
+ species (Figure 7.2).  This 

fifth species suggests that there is another distinct combination of structural and electronic 

states of the O4
+ stabilized in argon, but an assignment as to which one cannot be made 

without further investigation. 

7.6  Conclusion 

It is clear that the experimental data unambiguously support the qualitative 

interpretation that the trans and cyclic conformers of O4
+ are in thermodynamic 

equilibrium over the range 10-16 K in argon matrices, which gives rise to the reversible 

exchange of intensity between peaks A and B observed in the spectrum.  To our knowledge, 

this is the lowest temperature for which a chemical equilibrium has been characterized; as 

mentioned in the Introduction, matrix isolation normally involves the realm of kinetic, 

rather than thermodynamic, control of chemical reactions, and it appears that this work 

may be the first time a reversible chemical equilibrium has been observed in a matrix 

isolation experiment.   

The thermal trends in the populations of the two conformers are consistent with an 

endothermic, entropy driven reaction taking the system from trans-to-cyclic, and this can 

be rationalized in terms of a simple cavity-coupling model where the more compact 

structure of the cyclic conformer has more low-lying translational states than the more 
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extended trans-conformer.  The quantitative van’t Hoff analysis of equilibrium constants 

derived from the thermal population data proved harder to understand, however, predicting 

unphysically large values for ΔSº.  This result raises the question of whether it is reasonable 

to apply van’t Hoff analysis to a chemical equilibrium at such an unprecedentedly low 

temperature. 

This system requires a careful treatment with high-level theoretical methods, but 

that is not without its own set of difficulties.  The isolated O4
+ system is extremely difficult 

to treat theoretically, as its inherently multi-configurational and multi-reference nature 

makes it extremely prone to symmetry-breaking in electronic structure calculations.  

Indeed, the 1994 paper by Lindh and Barnes remains the most thorough treatment of this 

system,180 and even those results have been called into question in light of the symmetry-

breaking problem.189  Of course here, the O4
+ is just part of the system; modeling of the 

chemical equilibrium would require including the degrees of freedom of the argon matrix 

in some fashion as well.   

7.7  Appendix 

 7.7.1  Peak fitting and error analysis 

 In order to extract quantitative data, the peaks of interest must first be integrated.  

A program was written by DTM in order to perform high-throughput peak fitting for 

multiple peaks and multiple spectra in Origin computer software.  For each of the peaks to 

be fit, a starting point and ending point are selected near the baseline of the peak.  The 

program then integrates the area between the points chosen down to the spectral baseline.  

These areas are taken to be the signal (S) and become the basis for the rest of the 
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quantitative analysis.  Error is estimated by running area statistics (a preloaded feature in 

Origin) over a region of ~150 data points where the spectral baseline is relatively flat.  The 

standard deviation found by this method is then take to be the noise level (N).  The error 

can then be calculated as the sqrt(N/S)*S.   

 Once error was determined for the raw data, the areas of the two peaks were 

normalized.  As was discussed above, the populations of species A and B (PA and PB) must 

sum to 1, so the summed intensity of both peaks (Itot) at all temperatures should be 

represented by the following linear equation, where σA and σB are constant scaling factors: 

Itot = σAPA + σBPB                          (1) 

A plot is made of area of peak A versus area of peak B (Figure 7.10).  The two peaks in 

equilibrium should have a linear relationship; therefore, a linear line is fit to the data.  If 

plotted so that the slope is negative, the y-intercept becomes σB and the given error becomes 

the absolute error.  We can then calculate σA by equation 2 where m is the slope: 

σA =  -σB/m                            (2) 

Absolute error can then be calculated through standard error analysis.  Normalized 

intensities can then be calculated according to equation 1 and absolute error can be 

calculated using standard error analysis.   
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7.7.2  16O2 system 
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Figure 7.10  Integrated area of peak A (1119 cm-1) versus integrated area of peak B        

(1310 cm-1).  There is a highly linear dependence between the two peaks across the 

temperature range with an R-squared value of 0.9749. 

 

 

Table 7.1  Normalized peak areas with calculated errors for the calculation of an 

equilibrium constant for the 16O2 system 

 

Temp (K) 1119 norm 1119 abs err 1310 norm 1310 abs err K norm K err 1/T ln K ln K err

10.00 0.9099 0.0656 0.1451 0.0401 0.1594 0.0456 0.1000 -1.8360 0.2858

10.25 0.8611 0.0630 0.0905 0.0316 0.1050 0.0375 0.0976 -2.2534 0.3573

10.50 0.8412 0.0619 0.1501 0.0408 0.1785 0.0503 0.0952 -1.7234 0.2817

10.75 0.8365 0.0617 0.1735 0.0439 0.2074 0.0547 0.0930 -1.5732 0.2635

11.00 0.8825 0.0642 0.1346 0.0386 0.1526 0.0452 0.0909 -1.8801 0.2960

11.25 0.8015 0.0598 0.1682 0.0432 0.2098 0.0561 0.0889 -1.5615 0.2676

11.50 0.8376 0.0618 0.1766 0.0443 0.2109 0.0551 0.0870 -1.5565 0.2614

11.75 0.8199 0.0608 0.2159 0.0490 0.2633 0.0629 0.0851 -1.3346 0.2388

12.00 0.8674 0.0633 0.1819 0.0450 0.2097 0.0540 0.0833 -1.5619 0.2577

12.25 0.7993 0.0597 0.2158 0.0490 0.2700 0.0645 0.0816 -1.3094 0.2390

12.50 0.7518 0.0571 0.2294 0.0505 0.3051 0.0711 0.0800 -1.1871 0.2330

12.75 0.7172 0.0552 0.2003 0.0472 0.2792 0.0692 0.0784 -1.2757 0.2479

13.00 0.7093 0.0548 0.2885 0.0567 0.4067 0.0859 0.0769 -0.8997 0.2113

13.25 0.6046 0.0490 0.3271 0.0605 0.5410 0.1092 0.0755 -0.6143 0.2019

13.50 0.5407 0.0455 0.4511 0.0712 0.8343 0.1492 0.0741 -0.1812 0.1788

13.75 0.4831 0.0422 0.5754 0.0806 1.1910 0.1966 0.0727 0.1748 0.1651

14.00 0.4060 0.0376 0.7050 0.0895 1.7364 0.2730 0.0714 0.5518 0.1572

14.25 0.2723 0.0293 0.6790 0.0878 2.4935 0.4196 0.0702 0.9137 0.1683

14.50 0.2356 0.0269 0.8094 0.0961 3.4358 0.5660 0.0690 1.2343 0.1647

14.75 0.1836 0.0232 0.8190 0.0967 4.4605 0.7721 0.0678 1.4953 0.1731

15.00 0.1402 0.0199 0.9482 0.1043 6.7623 1.2158 0.0667 1.9114 0.1798

15.25 0.0694 0.0136 0.8845 0.1006 12.7432 2.8854 0.0656 2.5450 0.2264

15.50 0.0763 0.0143 1.0030 0.1074 13.1401 2.8348 0.0645 2.5757 0.2157

15.75 0.0497 0.0114 0.9132 0.1023 18.3625 4.6840 0.0635 2.9103 0.2551

16.00 0.0630 0.0129 0.9952 0.1070 15.8084 3.6585 0.0625 2.7605 0.2314

16.25 0.0202 0.0072 0.9592 0.1050 47.5589 17.6578 0.0615 3.8620 0.3713

16.50 0.0300 0.0088 0.9623 0.1051 32.1218 10.0290 0.0606 3.4695 0.3122
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Figure 7.11  Conversion from 1119 to 1310 cm-1 upon increasing temperature.  High 

density plot of data condensed in Figure 7.1. 
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Figure 7.12  High temperature annealing for 16O2 system.  Note the loss of 1119 and       

1310 cm-1 above 22 K as well as growth of the (O2)3
+ species at 1416 cm-1. 

1115 1120

0.000

0.003

0.006

0.009

0.012

0.015

0.018

1300 1310 1320

0.000

0.003

0.006

/  /

A
b

s
o

rb
a

n
c
e

Wavenumber (cm
-1
)

/  /

Increasing Temperature

        (10 K to 18 K)

 

 



 

168 

 

Figure 7.13  Area of 1416 cm-1, O6
+, as a function of temperature.  Integrated area from 

peaks in Figure 7.7. 
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Figure 7.14  FTIR spectra of O4
+ in argon matrices: A) spectrum recorded at 10 K 

following 20 K deposition, showing bands assigned to trans- (1119 and 1186 cm-1) and 

cyclic (1329 and 1331 cm-1) conformers, B) 590 nm centered LED, C) dark spectrum,        

D) broad band visible source, E) dark spectrum, F) 470 nm centered LED, and G) dark 

spectrum. 
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7.7.3  18O2 system 
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Figure 7.15  Cu- Ar+ deposited into a 0.5% 18O2 in argon matrix.  Note that the Cu- is 

used here for the sole purpose of charge balance.   
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Figure 7.16  Two interconverting peaks for the 18O4
+ system.  Isotopic substitution shows 

the same linearity as that of the 16O4
+ system.  R-squared value is 0.9317. 
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Figure 7.17  Thermal population of the 18O4
+ system.  There is more cyclic-O4

+ at 10 K 

for the 18-isotpe species. 
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Figure 7.18  Van’t Hoff plot for the 18O4
+ system.  Note the lower ΔH and ΔS values 

compared to the 16O4
+ system as well as the divergence from linearity at 10 K and 11 K. 
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Table 7.2  Normalized peak areas with calculated errors for the calculation of an 

equilibrium constant for the 18O2 system 
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Figure 7.19  Higher temperature annealing of the 18O4
+ system.  Upon heating to 25 K, 

both the 1056cm-1 and 1243cm-1 peaks are destroyed irreversibly analogous to the 16O4
+ 

system. 

 

 

Temp (K) 1056 norm 1056 abs err 1243 norm 1243 abs err K norm K err 1/T ln K ln K err

10.00 0.8278 0.0636 0.1339 0.0514 0.1617 0.0633 0.1000 -1.8219 0.3912

10.25 0.8492 0.0646 0.2443 0.0699 0.2877 0.0852 0.0976 -1.2459 0.2961

10.50 0.8563 0.0649 0.1362 0.0518 0.1590 0.0617 0.0952 -1.8387 0.3879

10.75 0.8618 0.0652 0.1897 0.0614 0.2201 0.0731 0.0930 -1.5137 0.3323

11.25 0.8413 0.0642 0.2244 0.0669 0.2667 0.0821 0.0889 -1.3216 0.3078

11.50 0.8061 0.0626 0.1981 0.0628 0.2458 0.0802 0.0870 -1.4033 0.3261

11.75 0.7914 0.0619 0.1392 0.0524 0.1759 0.0676 0.0851 -1.7380 0.3844

12.25 0.7419 0.0595 0.2849 0.0757 0.3841 0.1066 0.0816 -0.9570 0.2776

12.50 0.7439 0.0596 0.2423 0.0696 0.3257 0.0972 0.0800 -1.1218 0.2983

12.75 0.6787 0.0565 0.3460 0.0838 0.5098 0.1306 0.0784 -0.6737 0.2561

13.25 0.5229 0.0485 0.4508 0.0963 0.8620 0.2008 0.0755 -0.1485 0.2330

13.50 0.4484 0.0444 0.5096 0.1029 1.1363 0.2555 0.0741 0.1278 0.2248

13.75 0.3725 0.0400 0.6306 0.1154 1.6929 0.3592 0.0727 0.5265 0.2122

14.25 0.2418 0.0316 0.7959 0.1310 3.2920 0.6921 0.0702 1.1915 0.2102

14.50 0.2082 0.0292 0.8480 0.1357 4.0724 0.8663 0.0690 1.4042 0.2127

14.75 0.1393 0.0236 0.8914 0.1395 6.3976 1.4759 0.0678 1.8559 0.2307
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7.7.4  Deposition temperature anomalies   
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Figure 7.20  Deposition at 25K.  Notice the absence of 1119 and 1310 cm-1 both upon 

deposition and at 15 K.  Photochromism still occurs between the 1186 and 1332 cm-1 bands 

that are still present. 
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Figure 7.21  Deposition at 10 K with initial annealing to 20 K (before temperature series).  

Both the O6
+ and (O2)n clusters at 1416 and 1548 cm-1, respectively, anneal in with the loss 

of a small population of trans-O4
+. 
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Figure 7.22  Expansion of trans-O4
+ band from Figure 7.21 showing two shoulder bands 

upon deposition at 10 K.  Both bands are annealed away after initial warming of the system 

to 20 K along with a small population of the main 1119 cm-1 peak. 

 

 

 

Figure 7.23  Deposition of high energy Ar+ (300 eV) into a 0.5% doped argon matrix with 

no explicit deposited anion.  Note the large O4
- peak at 953 cm-1 formed upon deposition 

to maintain charge balance. 
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Figure 7.24  Cu- Ar+ deposition for 6 hours at 20 K in a 0.5 % 16O2 + 0.5% 18O2 in argon 

showing Cu-O4 and O4
-.  Spectra are taken with sample at temperature shown.  Note that 

this region does not have any temperature dependent trends. 
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Chapter 8 

Silver and nickel anionic carbonyl systems:                                                                   

an investigation of the counter-ion codeposition method versatility 

 

8.1  Abstract 

 The counter-ion codeposition method has been shown in previous chapters to 

successfully form and stabilize the anionic copper carbonyl system.  In order to test whether 

some of the new behavior observed is unique to that system or whether it is more general 

and extends to other metal carbonyl systems, both anionic nickel and anionic silver were 

deposited in CO-doped matrices counter-balanced by argon cations.  These metals were 

chosen due to their relationship to copper, namely silver being another coinage metal and 

nickel being in the same row next to copper.  The anionic nickel system yields results very 

similar to those observed for the copper system.  Both the anionic system, Ni(CO)1-3
-, and 

the neutral system, Ni(CO)1-4, are readily formed upon deposition and provide a wealth of 

peaks upon annealing and irradiation.  The anionic silver system produced very few bands 

upon deposition with none that could be assigned to an anionic species, consistent with 

results from previous matrix isolation studies on the silver carbonyl system.  After 

irradiation and post-irradiation annealing, many bands were observed including those 

assigned to the Ag(CO)1-3 in the literature.  Both systems exhibit IR features that have been 

previously reported as well as several new ones that are observed here for the first time.   
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8.2  Introduction 

 This chapter presents studies on both the nickel and silver carbonyl systems to test 

the versatility of this new deposition method.  Both systems have been studied in argon by 

previous groups and our results are compared to these studies for comparison and initial 

assignment of peaks.  The studies presented here were performed at 20 K due to the large 

wealth of peaks observed with the copper system (Chapter 5).  The following results are 

analyzed in light of our copper experiments.    

Neutral nickel atoms were first deposited into a CO-doped argon matrix in 1969 

yielding the tri- and tetra-carbonyl compounds as studied by IR.190  These initial studies 

were later extended to the observation of all four carbonyl species Ni(CO)1-4.
191,192  In the 

late 1990’s Manceron reinvestigated the nickel monocarbonyl system to include overtones 

and combination bands in argon.193  The dicarbonyl system was then reinvestigated and 

twelve overtone, combination and fundamental bands, including seven of the nine 

fundamental vibrations, were assigned.194  Based on these findings, they reassigned the 

dicarbonyl to a bent structure and not a linear structure as was previously thought.194  

Finally, Andrews investigated the nickel carbonyl system in argon via laser ablation.195  In 

addition to the observation of all four neutral carbonyls, these studies also created the 

anionic Ni(CO)1-3.
195  Though the cationic species were not observed in this study, 

Andrews’ use of laser ablation applied to a neon matrix proved useful for the formation of 

the anionic, neutral, and the cationic system, Ni(CO)1-4
+.196 

 Ogden first showed IR evidence for silver carbonyl formation in an argon matrix in 

1971.197  Using both IR and UV-Vis studies, Ozin observed peaks which were identified 

as the mono-, di-, and tri-carbonyl silver complexes.198  The identification of the 
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monocarbonyl was later called into question by ESR studies which suggested that the 

monocarbonyl does not form.199,200  This observation is supported by calculation of the   

Ag-CO- anion potential energy surface which found no bound states at the MP4 level.201  

Likewise, the neutral Ag-CO system has been calculated to have an extremely small 

binding energy of ~0.114 kcal/mol.202,203  Andrews has applied his laser ablation technique 

to this system in neon and observed Ag(CO)2-3 and Ag(CO)1-4
+.204  He noted the absence 

of any silver or gold based anionic compounds in this study.204  Anionic metal species were 

absent even though free electrons still existed in the system as demonstrated by (CO)2
-, 

whose formation coincided with the formation of metal anions in all other transition metal 

studies.85,204  To date, no anionic silver carbonyl complexes have been observed in any 

matrix material and no cationic silver carbonyls have been observed in argon. 

8.3  Experimental 

All of the studies contained in this chapter were performed under darkened 

conditions with all internal sources of light turned off (ion gauges, RGA analyzer, etc.), 

and the lab lights kept off as well.  The spectrometer beam was directed away from the 

deposition chamber when not recording spectra.  Irradiation was performed using narrow-

band LED sources centered at 735, 670, 560, 470, and 365 nm (Thor Labs, see spectra 

Figure 4.6) held outside the vacuum chamber and introduced through a Kodial glass 

viewport (Kurt J. Lesker Company). 

Most of the ion optics remained the same as that for copper anion deposition with 

a few minor changes.  First, the magnetron source was run at a current of 108 mA for silver 

and 81 mA for nickel (down from 117 mA for Cu).  Also, the 22 mm quadrupole DC-bias 

was turned up to 25 V (up from 10 V) for nickel anion deposition.  Finally, the inner pole 
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was turned down to ~45 V for both Ni- and Ag-.  All settings remained the same for the 

octopole ion guide (for a complete list of ion optic settings, see Table 2.2).  It should also 

be mentioned that the Ni- and Ag- ion energies were slightly lower than that for copper 

anions at -4 and -5 eV, respectively. 

All matrix samples were prepared by deposition of either 4 nA Ni- or Ag- with Ar+ 

counter-ions in an Ar matrix gas doped with 0.02% CO at 20 K deposition for 4 hours 

under a steady-state pressure of 10-5 Torr (~108 mmol total gas exposure).  All matrix gases 

were purified by flowing through a copper tube immersed in an ethanol liquid-nitrogen 

bath prior to deposition.  Annealing was carried out by holding the sample at the specified 

temperature for 15 minutes then cooling back to 10 K in order to record a spectrum.  Isotope 

experiments have not been performed on either system yet, therefore all assignments are 

tentatively based on literature values and reaction to post-deposition manipulations. 

8.4  Results and discussion  

 8.4.1  Anionic nickel deposition 

 Figure 8.1 shows data for deposition of anionic nickel in a CO-doped matrix using 

Ar+ as the counter-ion.  This system is very similar to what we observed for the copper 

carbonyl (Chapter 5) in that a wealth of peaks are present, some of which have the same 

trends as the transients observed for copper.  Many of these peaks are reminiscent of those 

observed in previous laser ablation studies;195 a complete listing of all peaks observed is 

given in Table 8.1.  In general the anionic nickel carbonyl species exist in the range of 

1700-1900 cm-1 while the neutrals are found between 1900-2050 cm-1.   
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Figure 8.1  Ni- Ar+ co-deposited (4 nA each) for 4 hours with 0.02% CO in argon at 20K:  

A) 20 K deposition, B) 25 K annealing, C) 30 K annealing, D) 735 nm irradiation,                 

E) 670 nm irradiation, F) 560 nm irradiation, G) 490 nm irradiation, H) 365 nm irradiation, 

I) 30 K annealing, J) 35 K annealing, and K) 40 K annealing.  All spectra taken at 10 K.  

Major bands labeled for the mono- (1), di- (2), tri- (3), and tetra-carbonyl (4) complexes 

and unknown species (?). 

 

The anionic mono- and tri-carbonyl frequencies are very close to one another near 

1850 cm-1, which convoluted some of the early assignments of these bands.192  We observe 

bands at 1847.0 and 1850.2 cm-1 which have been assigned to the anionic monocarbonyl 

as well as bands at 1854.0 and 1859.1 cm-1 assigned to the anionic tricarbonyl.195  We also 

observe the previously assigned anionic dicarbonyl at 1801.7 cm-1.195  Similar to our copper 
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system, there are many other bands in this region that increase or decrease upon annealing 

(Figure 8.2).  Without assignment of these new bands, it is difficult to tell whether the 

observed annealing changes are due to clustering or due to a more complex mechanism 

such as transient formation. There are also two other groups of bands that are not near any 

of the peaks assigned in the literature, namely near 1700 cm-1 and 1890 cm-1 (see Table 8.1 

for specific frequencies).  With the exception of five bands including the two assigned to 

the anionic tricarbonyl, all peaks below 1900 cm-1 are destroyed upon 735 nm light 

including the new bands near 1700 cm-1 and 1890 cm-1 (Figure 8.1D).  Based on their 

location and depletion with 735 nm light, these new bands are likely anionic.  The 735 nm 

irradiation also gives rise to bands near 1966, 1995, and 2051 cm-1 assigned to the neutral 

di-, mono-, and tetracarbonyl systems respectively.  This behavior adds further insight 

toward the new anionic bands observed, that they are likely one of these three systems.  

Furthermore the neutral tetracarbonyl increases, yet this was not one of the assigned 

anionic bands that were lost.  It is likely that one or both of our new anionic regions is due 

to the anionic nickel tetracarbonyl, however, it is too early to definitively assign this 

without isotope experiments. Likewise, the bands assigned to the (CO)2
+ (Chapter 6) are 

present as shoulder bands to the tetracarbonyl (see Figure 8.2 for depletion upon annealing 

to 30 K and irradiation at 735 nm). 
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Figure 8.2  Subtraction data from Figure 8.1, Ni- Ar+, showing stepwise differences that 

occurred at each processing step labeled accordingly.   

 

The other five anionic bands, which include the two assigned to the anionic 

tricarbonyl, are decreased with 560 nm light (Figure 8.1F).  Likewise the neutral 

tricarbonyl bands near 2017.4 cm-1 increase adding credence to all these new bands 

belonging to the tricarbonyl system.  Irradiation with 490 nm light completely destroys 

what’s left of the anionic tricarbonyl bands (Figure 8.1G).  Now, however, instead of just 

the neutral tricarbonyl growing in, the monocarbonyl is affected and the tetracarbonyl gains 

intensity as well (see subtraction Figure 8.2).  Since the more energetic UV light does not 

affect the neutral bands further (Figure 8.1H), it seems likely that the neutral-complex 
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changes with 490 nm light stem from the anionic tricarbonyl precursor which may be 

undergoing photolysis or clustering at that wavelength, although it cannot be ruled out that 

any “reactions” occurring have not gone to completion which is why no change occurs 

with UV light.   

Annealing at 30 K after irradiation has the same outcome as observed for copper 

whereby population transfer is observed presumably from less stable matrix-sites to more 

stable sites.  This effect is seen with the di-, tri-, and tetracarbonyl, all of which show the 

depletion of one or more bands with the concomitant growth of a single, sharp, intense 

peak (compare spectra 8.1H with 8.1I; see also subtraction spectra, Figure 8.2).  The 

monocarbonyl displays anomalous behavior in that four peaks are interconverted 

depending on what process is applied to the sample.  Upon 460 nm irradiation, the        

1993.8 cm-1 band increases while the 1995.3 cm-1 decreases.  Annealing at 30 K increases 

the 1991.4 and 1995.3 cm-1 while decreasing the 1993.8 cm-1.  Annealing to 35 K once 

again decreases both the 1991.4 and 1995.3 cm-1 while 1994.5 cm-1 increases.  Finally, at 

40 K the 1994.5 cm-1 band decreases with no growth in any of the other bands.  This system 

is very reminiscent of that observed for the copper dicarbonyl (see Chapter 5).   

With the exception of the monocarbonyl bands just described, peaks associated 

with the other three carbonyl species increase upon annealing to 35 K.  This growth is 

interesting since no depletion is observed in the carbonyl region (with the exception of the 

monocarbonyl described).  It is possible this is due to aggregation although the small 

amount of monocarbonyl that is lost does not seem like it could give rise to the large growth 

of the other three species that is observed, unless it has a very low oscillator strength in 

relation to the other species.  Finally, 40 K annealing leads to a loss of the mono-, di-, and 
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tri-carbonyl species which is consistent with our previous observation of overall sample 

loss through argon matrix sublimation.     

It is worth briefly discussing the strange trends in the various vibrational 

frequencies with cluster size.  The Ni-CO is anomalously blue shifted similar to what we 

observed for the Cu-CO system; however, the copper and nickel trends arise from two 

separate phenomena.  The copper monocarbonyl blue shift has been explained due to the 

odd electron existing almost entirely in a 4s character, thus containing almost no back 

bonding as observed by a blue shifted monocarbonyl from what would be expected based 

on the di and tricarbonyl trends.198  The nickel carbonyl, on the other hand, has been found 

to contain substantial vibrational coupling between the Ni-C and C-O stretching 

coordinates which effectively blue-shifts the vibration.193  The nickel dicarbonyl also 

shows a strange vibrational pattern with two modes separated by ~100 cm-1.  Originally, 

this compound was believed to exist in a linear geometry191 with the 1966 cm-1 band 

belonging to the strong asymmetric stretch (note that the 2071 cm-1 band was not observed 

in this earlier study).  The observation of a weak band at 2071 cm-1 could only be described 

by the symmetric vibrational mode of a bent dicarbonyl structure containing more Ni-C 

movement than C-O.195  Furthermore, Andrews calculations found that the linear molecule 

is 2.7 kcal/mol higher in energy and contains an imaginary frequency signifying that the 

bent structure is the stable structure and its existence in the matrix is not simply due to 

matrix effects.  Both the nickel tricarbonyl and tetracarbonyl species show typical behavior 

for the asymmetric stretch.195  The anionic anomalies arise for the same reasons as the 

neutral complexes.  Again, the anionic monocarbonyl vibration contains a high amount of 
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Ni-C character while the dicarbonyl contains a slight bent geometry in the ground state.195  

Finally, the anionic tricarbonyl shows typical behavior for a D3h molecule. 

 8.4.2  Anionic silver deposition 

 The anionic silver carbonyl system only yielded four weak bands upon deposition 

at 1786.4, 1803.0, 1940.8, and 1959.1 cm-1, Figure 8.2A, none of which are in the literature 

(a complete listing of peaks can be found in Table 8.2).  This is in stark contrast to the 

anionic copper and nickel studies where we observed peaks for M(CO)n
q (M = Ni or Cu,  

n = 1-3 & 4 for nickel, q = -1,0) including many new sharp bands not previously assigned.  

Even initial annealing up to 30 K only anneals three bands at 1841.7, 1951.6, and          

1957.9 cm-1, all of which are relatively weak (Figure 8.3C).  Interestingly, these three bands 

match assignments in the literature.204  Five peaks have been assigned in an argon matrix, 

but only two can be definitively assigned to peaks we observe (Table 8.2).  The first two 

bands at 1841.7 and 1951.6 cm-1 correspond to the dicarbonyl and tricarbonyl 

respectively.198  The band at 1957.9 cm-1 is near an absorbance for both the mono- and tri-

carbonyl bands in previous work198 and cannot be definitively assigned at this time, 

although its increase upon each annealing step lends credence to this being another 

tricarbonyl band.   
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Figure 8.3  Ag- Ar+ co-deposited (4 nA each) for 4 hours with 0.02% CO in argon at           

20 K:  A) 20 K deposition, B) 25 K annealing, C) 30 K annealing, D) 470 nm irradiation, 

E) 30 K annealing, F) 365 nm irradiation, G) 30 K annealing, and H) 40 K annealing.  All 

spectra taken at 10 K.  Literature peaks labeled for di- (2) and tri-carbonyl (3).  The * 

denotes a peak near a literature assignment for a mono- and tri-carbonyl species separated 

by 0.2 cm-1. 

 

It is not until irradiation with 470 nm centered light that large changes are observed 

in the spectrum (Figure 8.3D).  One peak in particular becomes in very intense at           

1959.1 cm-1.  A few lower intensity bands are also irradiated into the spectrum (see         

Table 8.2).  It should be noted that no peaks are diminished from irradiation at this 

wavelength, so it is unclear at this time how these compounds are made and any attempted 
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explanation would be purely speculative at this point however, the (CO)2
+ does go away 

with the 470 nm light insinuating that electrons are being photodetached in the matrix 

(Figure 8.4, Appendix).  It’s possible that there are free Ag- atoms trapped that become 

photodetached or some anionic silver carbonyls that are dark in their ionic state, but both 

situations are hard to rationalize.  Just as interesting, annealing to 30 K after the initial 

irradiation step, yields even more growth in several peaks with only small depletions of 

very weak bands.   

Because of these results, a second irradiation step was performed using 365 nm 

light.  Five bands are clearly affected by the UV light (see subtraction data, Figure 8.4); an 

increase is seen for the 1937.6 and 1948.2 cm-1 bands while a decrease is observed for the 

bands assigned in the literature at 1841.7, 1951.6, and 1957.7 cm-1.198  All of these changes 

are reversible by annealing to 30 K.  Finally, 40 K annealing seems to simplify the spectrum 

in that minor peaks are annealed away while four intense peaks ensue: 1841.7, 1951.6, 

1957.9, and 1959.1 cm-1.  Once again the first three of these bands are the ones assigned in 

the literature study.  This system’s response to high energy light is reminiscent of the         

Cu-NO study performed by the Manceron group.  They showed a photoconversion between 

two low-lying states of Cu-NO in an argon matrix monitored by a shift in the NO 

vibrational mode.205  After excitation into a nearly isoenergetic electronic state with          

632 nm light, the system relaxes back to its original state over the course of ~5 minutes.205  

Low-lying electronic states, such as in the Manceron study, could be important in 

identifying some of the new bands that are observed in our carbonyl complexes.   
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8.6  Conclusion 

 The versatility of the counter-ion codeposition method has been presented here.    

Both the nickel and silver carbonyl systems were investigated by deposition of Ni- or Ag+ 

counter-balanced by Ar+.  These systems were chosen in order to do “short” survey scans 

on a metal both in the same row and in the same family as copper; however, the complexity 

of both systems warrant further investigations. 

 Both metals here were studied under the same deposition conditions as that of the 

anionic copper carbonyl system.  It was assumed that the two systems studied would 

behave the same as the copper system both upon deposition and upon post-deposition 

manipulations.  This is definitely an oversimplification since factors such as interaction 

with the argon matrix, diffusion during deposition, and M-COn reactions are different for 

each of the systems.  Future studies on these systems will include manipulation of 

parameters such as deposition temperature and CO concentration.  Finally, due to the 

wealth of peaks observed for both systems that was not observed in the literature, careful 

isotope experiments are necessary for complete characterization of each system. 
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8.7  Appendix 

Table 8.1  Vibrational frequencies observed for the anionic and neutral nickel carbonyl 

system.  Changes at various processing steps are shown accordingly.   

 
a reference 192 

b reference 191 

c reference 193 

d reference 194 

e reference 195 

 

 

Tentative

Peaks Increase Decrease Increase Decrease Increase Decrease  Assignments Ref.

1702.2 30 K 735 nm

1708.2 735 nm

1801.7 30 K 735 nm Ni(CO)2
-

e

1802.7 30 K 735 nm

1810.4 30 K 735 nm

1847.0 30 K 735 nm Ni(CO)- e

1850.2 735 nm Ni(CO)- e

1851.4 30 K 735 nm

1854.0 30 K 560, 490 nm Ni(CO)3- e

1858.3 560, 490 nm Ni(CO)3
-

1859.1 30 K 560, 490 nm Ni(CO)3- e

1862.7 30 K 560, 490 nm Ni(CO)3-

1863.7 30 K 560, 490 nm Ni(CO)3-

1883.7 30 K 735 nm

1886.6 30 K 735 nm

1889.4 735 nm

1893.3 735 nm

1896.7 735 nm

1965.9 25 K 30, 35 K 40 K Ni(CO)2 b,c,d,e

1968.3 25 K 735 nm 490 nm 30 K

1991.4 25 K 30 K 35 K Ni(CO) e

1993.8 490 nm 30 K Ni(CO)

1994.5 30 K 735 nm 35 K 40 K Ni(CO) c,e

1995.3 30 K 490 nm 30 K 35 K Ni(CO) a

1996.2 25 K Ni(CO) b

2017.4 30 K 30, 35 K 40 K Ni(CO)3 b,d,e

2019.4 560, 490 nm 30 K Ni(CO)3

2021.1 560, 490 nm 30 K Ni(CO)3

2031.7 30 K site e

2032.6 30 K

2047.8 30 K

2049.0 735 nm

2050.2 735 nm

2051.2 30 K 735 nm 30, 35 K Ni(CO)4 e

2051.9 30 K 35 k 30 K Ni(CO)4 a,b

2071.7 30 K 30 K Ni(CO)2 d,e

Pre-Irr. Annealing Post-Irr. AnnealingIrradiation
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Table 8.2  Vibrational frequencies observed for the anionic and neutral silver carbonyl 

system.  Changes at various processing steps are shown either by an increase in the peak 

(↑) or a decrease in the peak (↓).  Assignments based on ref. 198. 

 
†denotes peaks present upon deposition at 20 K 

*two peaks at 1958.0 and 1958.2 cm-1 were assigned to the Ag(CO) and Ag(CO)3 species 

respectively in ref. 198 
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Figure 8.4  Subtraction data from Figure 8.2, Ag- Ar+, showing stepwise differences that 

occurred at each processing step labeled accordingly.   

Peaks Tentative

20 K ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ Assignment

1796.4 †

1803.0 †

1841.7 x x x x Ag(CO)2

1844.6 x x x

1848.9 x x

1855.4 x x

1859.3 x x

1862.4 x x

1937.6 x x x

1940.8 † x

1948.2 x x x

1951.6 x x x x x Ag(CO)3

1952.3 x x

1954.0 x x

1955.2 x x

1956.9 x

1957.9 x x x x x *

1959.1 † x x x

40 K

Post-365 nmPost-470 nm

30 K 470 nm  Annealing 365 nm 30 K
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Chapter 9 

Conclusions and future directions 

9.1  Conclusions 

 The results presented in this dissertation have demonstrated a new method for 

deposition of ions into an argon matrix, namely a counter-ion codeposition technique.  This 

approach uses mass-selected metal anions, generated from a magnetron sputter source, that 

are codeposited with a beam of counter-cations into rare-gas matrices.  By balancing the 

current of both ion beams such that the overall net-charge is zero, sufficient number 

densities of ions are built up in the matrix.  Furthermore, by doping an amount of reactive 

gas into the matrix such as CO, metal-ligand complexes can be spectroscopically observed. 

We have proven the feasibility of this technique through intensive studies of the 

copper carbonyl system by deposition of Cu- balanced by either Ar+ or Kr+ into CO-doped 

matrices. Our initial studies (Chapter 3) show that compound-formation is strongly 

dependent upon both dopant concentration and deposition temperature.  At the lowest 

temperature, 10 K, CO concentrations of 2% are necessary to form sufficient carbonyl 

concentrations upon deposition, whereas only 0.02% CO is necessary to produce roughly 

the same spectrum when deposited at 20 K.  At 30 K only 2 ppm are necessary, very close 

to a Cu-:CO ratio of 1:1 yet di- and tri-carbonyl complexes are still observed.  Likewise 

when a high CO concentration of 0.5% is deposited at 20 K, only large clusters of the type 

[Cu(CO)3•(CO)n]
-1,0 are formed.  This is the first time these secondary shell species have 

been identified in matrices. 
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One hallmark of this new technique occurred when deposition was carried out at 

10 K in the absence of any ambient light (Chapter 4).  Under these conditions, only the 

anionic copper carbonyl species were observed upon deposition.  This presents a huge 

advancement from the literature where ion deposition methods typically produce anions, 

cations, and neutrals of both the system of interest and from contaminant species trapped 

in the matrix.  Our new method not only allows the selective isolation of anionic metal 

compounds but it is also gentle enough that secondary reactions and uncontrolled processes 

do not occur.  This works to our advantage in that wavelength dependent photodetachment 

events can be carried out and monitored.  Furthermore, because of the “clean” deposition 

spectrum the fate of this detached electron can be followed.  In this study it attaches to the 

van der Waals CO-dimer and induces a covalent C-C bond.  The ability to deposit under 

such control and monitor reaction processes has promise moving forward with future 

studies of catalytically relevant systems. 

 The power of this new deposition method toward the formation and stabilization of 

transient bands is demonstrated with 20 K deposition under darkened conditions       

(Chapter 5).  Here, annealing diminishes several anionic bands with the concomitant 

growth of new anionic peaks.  By photodetachment of these newly formed species, peaks 

appear in the neutral region which can be directly linked to the previously induced anionic 

bands.  These bands are very reminiscent of vertical detachment products predicted by 

computational ionization studies.  Further annealing of the neutral system diminishes 

several transient neutral bands while adding intensity to previously observed neutral bands.  

Based on these results, multiple reaction pathways can be drawn based upon the input of 

energy either in the form of heat or light.  This is directly related to our goal of a new 
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technique called “freeze-frame” spectroscopy whereby reaction intermediates are trapped 

in a matrix and then driven over reaction barriers by the input of external energy.  The 

reactions drawn from data in Chapter 5 present the first example of the “freeze-frame” 

technique using this new deposition method.  Furthermore, high resolution spectra show 

that most of the bands contain instrument-limited linewidths at the maximum 0.125 cm-1 

resolution setting which is not typical for matrix isolation in general and very rare for argon 

matrices.   

 In our attempts to study the copper oxide system, a fundamental discovery was 

made: the coldest example of chemical equilibrium (Chapter 7).  We have shown a 

reversible conformational rearrangement from the trans-O4
+ to cyclic O4

+ by annealing 

between 10-16 K.  Quantitative analysis on this system is consistent with an endothermic, 

entropy-driven reaction taking place which is rationalized in terms of a simple cavity-

coupling model.  Two other peaks, also assigned to trans- and cyclic O4
+ species, show 

photochromic behavior in that different wavelengths of light drives reversible changes 

between the two conformers.  The only way we can rationalize these two sets of peaks at 

this time is that one set is due to the quartet spin state while the other arises from the less-

stable doublet which is able to be trapped in the matrix.  Again, the level of control in this 

new deposition method affords us with the ability to study fundamental phenomena which 

were not studied using previous deposition methods. 

 Finally, the robustness of this new technique was studied through the deposition of 

both nickel and silver anions into CO-doped matrices.  Nickel deposition provided both 

anionic and neutral carbonyl complexes similar to that observed with the copper system.  

Silver on the other hand contained almost no complexes upon deposition.  This observation 
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was in line with literature studies which also noted the lack of any ionic complexes and 

very low amounts of the neutral mono-, di-, and tri-carbonyl complexes.  Silver eventually 

did react with CO after irradiation and annealing.  Both systems provided many new IR 

bands which have not been observed by previous methods which is in line with our copper 

system.   

The unique control afforded by this new deposition technique should add insight 

into fundamental ion-reactions in future experiments.  Though the studies presented here 

have all been anionic metal species, this technique should be generally applicable to any 

ions of interest that can be easily introduced in the gas phase.  It is our hope that this method 

will inspire the chemistry community as a whole to revive the matrix isolation technique 

as a way of studying fundamental reactions under a high levels of control.   

9.2  Future directions  

9.2.1  Mass-selected cations 

An obvious next step in future experiments is to deposit mass selected cations.  Up 

to this point, all counter-cations have been Ar+ or Kr+ due to their ease of formation.  Beside 

the formation of a small amount of (CO)2
+, we are spectroscopically blind to any other 

cations in the matrix.  It’s of vital importance that we have an IR active compound as a 

counter-cation moving forward.  This will afford us the ability to not only monitor anionic 

metal complexes but also gives us a handle as to what the cation is doing during post-

deposition matrix manipulations.  For example, we still do not know if any of the new 

peaks observed upon annealing are due to ion-ion interactions.  A spectroscopically active 

cation should afford us valuable information if such an events occurring.  A few attempts 
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were made to deposit IR active cations such as CO+ and SF5
+ formed by electron impact 

ionization in the bender chamber, however the background gas was sufficiently high that 

enough neutral gas contaminated the spectrum.  Furthermore, we do not know what cations, 

if any, were being generated. 

We are currently in the process of installing a chemical ionization (CI) source which 

is coupled to a second quadrupole bender as well as another quadrupole mass-filter.  This 

will give us the opportunity to form a beam of either mass-selected cationic or anionic 

species.  Furthermore these species are generated in a new, differentially pumped chamber 

so that background gas necessary to form the ions does not contaminate the matrix.  The 

setup and initial testing of this source is largely being carried out by Michael Goodrich and 

has been used thus far to generate mass selected beams of Ar+ and Ar2+.   

An early experiment to be carried out with this source will be Cu- counter-balanced 

by CO+ and (CO)2
+ with no neutral CO deliberately doped into the matrix.  Assuming one 

or both of these cations can be stabilized during deposition in the matrix, a number of 

important findings should come from this.  First, definitive assignments of the cation peaks 

derived from CO species can be made.  In particular, the CO+ molecule can be assigned 

since no neutral CO should be present to obscure its frequency.  Also fundamental reaction 

and diffusion kinetics should be gained by adjusting deposition conditions and observing 

Cu- + CO+ reactions which should lead to the neutral monocarbonyl complex.  Since the 

copper and CO concentrations will be fixed in these studies, deposition temperature and 

matrix flow rate can be changed to study such kinetics. 

 As was explained in Chapter 1, high energy deposition has been used in previous 

studies as a way to maintain charge balance making use of secondary ionization 
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processes.50  Indeed using Ar+ even at lower energies is able to create (CO)2
+ clusters upon 

deposition (see Chapter 6 for complete details).  One potential method to shut down charge 

transfer events would be to deposit cations that have a much lower IP than that of argon.  

For example, SF5
 has an IP of 9.60 eV.51  This should be low enough that charge transfer 

to the matrix is completely shut down.  Finally as was laid out in detail in Chapter one, 

complex formation in matrices occurs in a transient “surface region” that is warmer than 

the nominal sample temperature, and thus where “fast diffusion” of dopant species can 

occur.28  Using cations of various sizes, we may be able to control and study some counter-

ion size dependent diffusion and clustering trends. 

 9.2.2  Ionic-cluster deposition 

 Another logical step is the study of metal clusters.  Indeed this was one of the 

original goals of this project.  The magnetron source, however, has made it difficult to 

produce useful currents of anionic metal clusters for matrix isolation studies.  A 

modification to the magnetron source in the future may be use of an ion funnel in place of 

or in combination with the nozzle that is currently being used.  Ion funnels use a series of 

cylindrical ring electrodes to which radio frequency potentials of opposite polarity are 

applied on adjacent electrodes.  Their main application has been to reduce losses that occur 

at the interface of high pressure ion sources of mass spectrometers.206  The use of such a 

source at the end of the aggregation tube may lead to a high extraction of ions in general 

including cluster ions. 

One attempt at the deposition of the anionic copper dimer is shown in Figure 9.1.  

There are several peaks near the 1800 cm-1 region that were not observed previously in our 

atomic copper studies, specifically at 1817.8, 1839.0, and 1865.6 cm-1.  Surprisingly, the 
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most intense peaks in the spectrum are those assigned to the neutral tricarbonyl species of 

monatomic copper at 1975 and 1985 cm-1.  There also appear to be peaks at 1938.6, 1961.0, 

and 2009.7 cm-1 however these are very low intensity and may not be due to copper species 

in the matrix.  Irradiation with 590 nm light eliminates all three of the bands in the           

1800 cm-1 region adding credibility to these being ionic species, although no corresponding 

neutral bands seemed to appear in the spectrum.  Unfortunately the band assigned by 

Moskovits207 to the Cu2CO at 2116 cm-1 is covered this day by atmospheric water bands 

from a failure in the nitrogen purge system.  As of now it is uncertain why the bands for 

the neutral tricarbonyl species are so intense.  Most likely, the copper dimer is breaking 

apart upon deposition although other factors cannot be ruled out, such as a copper dimer 

carbonyl cluster giving rise to the same absorbances as the monatomic copper tricarbonyl.  

Much more work is needed on this system to definitively assign any bands, although it is 

promising that our system is sensitive enough to detect such a low concentration of metal 

carbonyls (~3.6*1013 total metal ions assuming 100% sticking probability). 
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Figure 9.1  Cu2
- Ar+ co-deposited (~400 pA each) for 4 hours with 0.02% CO in argon at 

20 K:  A) 20 K deposition, B) 25 K annealing, C) 30 K annealing, D) 590 nm irradiation, 

E) 490 nm irradiation, and F) 30 K annealing.  All spectra recorded at 10 K.  
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 It should be noted here that cationic clusters are much easier to form with the 

magnetron source.  Michael Goodrich has worked with optimizing beams of cationic metal 

atoms and clusters in the gas-phase.  These provide higher currents of cation clusters and 

have promise for future matrix isolation experiments.  The newly installed CI source will 

give us the ability to generate mass-selected counter-anions so that cationic metal clusters 

can be studied. 

 9.2.3  Formation and deposition of gas-phase carbonyls 

 Another interesting prospect is the deposition of metal carbonyls that have been 

formed in the gas phase.  By formation and mass selection of a single anionic copper 

carbonyl species, its spectrum can be conclusively assigned.  Also, by adjusting the kinetic 

energy of the impinging complex, dissociation energies can be found when the complex 

breaks apart upon collision with the matrix.  This would be observed by the loss of parent 

species and the growth of a lower coordinated species.   

 The formation of such clusters is a difficult task.  One possibility is to generate 

them via the magnetron sputtering source.  There is a spare gas inlet for introduction of 

reactive gas that leads to the aggregation region of the magnetron source.  We have tried 

introducing a 10.2% CO in He in this region but were unsuccessful in generating a large 

current of carbonyls.  A low concentration was formed, however the electron multiplier 

was needed in order to detect these compounds.  One problem that occurred was that the 

sputtering power became unstable when gas was introduced in the aggregation tube.  We 

have observed this for pure He introduction into this region as well.  It seems as though 

sputtering dynamics are very delicate and a slight change in the high pressure region can 

disturb this balance.  Future attempts may have greater success by using a pure CO stream 
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such that the additional gas is low enough to aggregate but not disrupt the magnetron 

plasma.  Also, mixes of varying concentrations of CO in He or Ar may be able to not disturb 

the plasma while allowing enough gas phase collisions for the CO to bind to copper atoms. 

 9.2.4  Wavelength dependent studies 

 As shown in Chapter 4, the anionic bands show wavelength dependent 

photodetachment events.  It would be useful to have tighter wavelength control over such 

events so that photodetachment thresholds can be measured.  Future plans include a 

monochromator in order to only allow very narrow band wavelengths to the sample.  Also, 

the use of a pulse generator may lead to some photobleaching that can be quantitated.  

Figure 9.2 shows preliminary results of anionic band depletion through the use of 470 nm 

LED light pulsed at 1 second intervals.  All four anionic species are found to follow roughly 

the same curve while using this light.  These kinetics should change however once the 

wavelength of light is changed.  For example, the anionic dicarbonyl readily photodetaches 

under 735 nm light whereas the anionic monocarbonyl only loses a small amount of 

intensity (Chapter 5).   
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Figure 9.2  Normalized area of anionic copper carbonyl complexes at 10 K, 

subjected to 1 s pulses of 470 nm centered light.   
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 Another wavelength dependent trend worth pursuing is that of the photochromic 

peaks in the O4
+ system (Chapter 7).  As was stated, these instantaneously convert from the 

cyclic to the trans form under 590 nm light under the timescale of our studies.  The back 

conversion, however, is slower and kinetic data may be extracted.  By taking rapid scans, 

quantitative conversion data may be obtained.  The problem with this is that rapid scans 

must be done with a low number of averaged scans which leads to lower signal to noise.  

It should be possible to sync the pulse generator, mentioned above, to the spectrometer so 

that many cycles of this photochromic event can be scanned and precise scan times over 

multiple events can be averaged together to increase signal to noise.    

 9.2.5  Pump-probe technique   

 One of the initial goals for this project was to use a new technique called pump-

probe.  This would be a new complimentary technique to the freeze-frame spectroscopy 

method developed here.  The basis is simple: once pre-reactive complexes are trapped in 

the matrix a burst of energy, such as from a laser, can be used to excite frequency-specific 

vibrational modes and move select reactants over activation barriers.  In this way thorough 

mechanistic analysis can be drawn about product formation based upon specific reactant 

species.  The results discussed above and throughout this dissertation in general, warrant 

the use of such lasers to this system.  Indeed it was the long-term intention of this deposition 

method to study catalytically relevant species.  As a final promising experiment, Figure 9.3 

shows different length of time exposure to 365 nm light.  At each length of exposure, the 

neutral dicarbonyl is decreased.  When the UV LED is kept on for a minute or longer, the 

neutral tricarbonyl complex increases.  What’s more exciting is that upon 5 minute and     

15 minute irradiation, CO2 increases in the spectrum.  There are many possibilities as to 
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where the carbon dioxide is coming from, such as desorption from the sample holder, 

however it is exciting to see the growth of a potential chemical product, CO2, with the 

concomitant decrease of a potential reactant, Cu(CO)2.  It should be noted that there is 

precedence for this type of reaction in what’s known as the Boudouard reaction.208  This 

reaction involves the disproportionation of carbon monoxide into carbon dioxide and 

graphite.  It would make sense for this reaction then to occur from a “catalyst” with two 

CO units such as the dicarbonyl. 
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Figure 9.3  Subtraction data showing changes upon different length exposures to 365 nm 

light.  Note the large decrease of the dicarbonyl complex with the concomitant increase of 

both the copper tricarbonyl and CO2. 
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